{-# OPTIONS --safe --without-K #-} -- ═══════════════════════════════════════════════════════════════════════════ -- PHYSICS-CHALLENGE: Why Physics Doesn't Come First -- ═══════════════════════════════════════════════════════════════════════════ -- -- Claim: D₀ (distinction) is ontologically prior to physics. -- -- This IS a claim about reality: -- Nothing can exist without being distinguishable from non-existence. -- -- Proof: To deny distinction requires using distinction. -- Therefore distinction cannot be denied. -- Therefore distinction is necessary for any possible world. -- -- CHALLENGE TO PHYSICISTS: -- To refute this result, you must deny that distinction -- is a precondition for identity, difference, or existence. -- Any such denial necessarily uses the very notion it rejects. -- -- NOTE: -- This does not claim to be physics. -- It claims to describe what must already be in place -- for physics to be possible at all. -- -- Type checker verifies. No axioms. No postulates. --safe --without-K -- -- ═══════════════════════════════════════════════════════════════════════════ module Physics-Challenge where open import Agda.Primitive using (Level; lsuc; _⊔_; lzero) -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- § 1. Minimal Definitions -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ data ⊥ : Set where ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ A = A → ⊥ data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where refl : x ≡ x record Σ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- § 2. The First Distinction D₀ -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- -- D₀: φ distinguishable from ¬φ -- -- This is not an assumption. To deny it requires using it. data Distinction : Set where φ : Distinction ¬φ : Distinction -- Proof: φ ≠ ¬φ (type checker verifies) φ≢¬φ : ¬ (φ ≡ ¬φ) φ≢¬φ () -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- § 3. Constraint: Formally Verifiable Theories -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- -- Constraint (C1): -- We restrict attention to theories whose objects are -- constructively representable. -- -- This is methodological, not ontological: -- Any theory that can be formally checked falls under (C1). -- Physics, to be testable, must be formalizable. -- Therefore physics falls under (C1). record ConstructiveOntology (ℓ : Level) : Set (lsuc ℓ) where field Dist : Set ℓ inhabited : Dist distinguishable : Σ Dist (λ a → Σ Dist (λ b → ¬ (a ≡ b))) open ConstructiveOntology public -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- § 4. Theorem: D₀ is Forced -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ theorem-D0-forced : ConstructiveOntology lzero theorem-D0-forced = record { Dist = Distinction ; inhabited = φ ; distinguishable = φ , (¬φ , φ≢¬φ) } -- Initiality: Distinction is initial among constructive ontologies. -- For any ConstructiveOntology O, there exists a canonical map from D₀. -- (Universal property, not value extraction.) physics-cannot-be-prior : ∀ {ℓ} → ConstructiveOntology ℓ → Distinction physics-cannot-be-prior _ = φ -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- § 5. Consequence: Physics Cannot Come First -- ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ -- -- Any physical theory that is: -- - formally expressible -- - empirically testable -- - logically consistent -- -- must presuppose distinguishable states. -- -- Therefore: D₀ is prior to physics. -- -- To reject this, provide ONE of: -- 1. A physical observable without distinguishable outcomes -- 2. A formal theory without distinction that makes predictions -- 3. A denial of distinction that doesn't use distinction -- -- Until then: D₀ comes first. Physics follows. -- ═══════════════════════════════════════════════════════════════════════════ -- DEDICATION -- ═══════════════════════════════════════════════════════════════════════════ -- -- This proof stands on the shoulders of giants: -- -- George Spencer-Brown (1923–2016) -- "Draw a distinction." — Laws of Form, 1969 -- -- Per Martin-Löf (*1942) -- Constructive type theory: existence = construction -- -- Gottlob Frege (1848–1925) -- The concept of concept; logic as foundation -- -- L.E.J. Brouwer (1881–1966) -- Intuitionism: mathematics is construction, not discovery -- -- Ulf Norell (*1979) -- Agda: the tool that makes this proof checkable -- -- And to all who dared ask: "What comes before physics?" -- -- ═══════════════════════════════════════════════════════════════════════════ -- END -- ═══════════════════════════════════════════════════════════════════════════