---
title: Pi 🥮 by lattice (GALLERY DEV)
toc: false
---
```js
import {Scrubber} from './components/scrubber.js'
```
# 🎨 Pi by lattice 🥮
inputs ⚙️
${view(Inputs.bind(Scrubber(_.range(2,76), {value: 10, delay: 1000/10, autoplay: false, loop:false}), n_in_Input))}
Press **play** for an improving approximation of **π** based on approximating the area of a unit circle using a lattice!
calculated area **inside** unit circle = ${model.proportion_inside({n_in}).toFixed(5)} units
2 (1 quadrant); *4 ⇒
### π ≈ ${model.pi_approximation({n_in}).toFixed(5)}
⇒ error ≈
${model.error({n_in}).toFixed(5)}
(using πr
2 and r=1)
inspiration 🧙
[A Geogebra example](https://www.geogebra.org/m/kwty4hsz) I found linked in the [wikipedia article for Pi](https://www.geogebra.org/u/kmhkmh). I replicate this approach/numbers.
Given this is similar but simpler than the Monte Carlo Pi approximation I reproduced last year, I'm not sure why this approach isn't more common.
```js
const viz_placeholder = html`
`
display(viz_placeholder)
```
```js echo
const spec = ({
// vega-lite
title: "points",
mark: {type:'point', tooltip:true, filled:true},
encoding: {
x: { field: 'x', type: 'quantitative', scale: { domain: [0,1]} },
y: { field: 'y', type: 'quantitative', scale: { domain: [0,1]} },
color: {field: 'inside', type: 'nominal', sort: 'descending'},
detail: {field: 'i_in', type: 'nominal'},
},
data: { name: "data" },
autosize: { "type": "fit", "contains": "padding"},
// no reactive w/h due to https://github.com/observablehq/framework/issues/1194
width: 400,//Math.min(500,content_width-30),//Math.min(400,content_width),
height: 400-30,//Math.min(500,content_width-30)/1.2,//Math.min(400,content_width-30),
background:'rgba(0,0,0,0)'
})
// interactivity via vega signals and listeners
const viz = embed('#viz', spec)
```
```js echo
const data_source = calcuvegadata({
models: [model],
spec,
domains: {
i_in: _.range(0,n_in*n_in)
},
input_cursors: [
{ n_in }
]
})
```
```js echo
viz.view.data("data", data_source)/*.resize()*/.run(); // turn off resize
```
📜
```js echo
const pis = [5, 10, 20,30,50,55,60,65,70,75]
.map(n_in => ({n_in, pi_approximation: model.pi_approximation({ n_in}), proportion_inside: model.proportion_inside({ n_in}), error: model.error({ n_in})}))
display(Inputs.table(pis, {sort: 'n_in', reverse: true, format: { pi_approximation: d3.format(',.10f'), error: d3.format(',.4f') }}))
```
---
**⚠️ This π approximation is not suitable for space travel.**
For better approximations check my
post from last year. See also, separate approximation using
Monte Carlo methods.
```js
import {FileAttachment} from "npm:@observablehq/stdlib";
const cul_default = await FileAttachment('./cul/pi-lattice.cul.js').text()
```
```js
const n_in_Input = Inputs.input(2);
const n_in = Generators.input(n_in_Input);
// I CAN'T USE reactive width because hot reload will wipe it to 0
// https://github.com/observablehq/framework/issues/1194
const content_width = Generators.width(document.getElementById("content2")); // keep as a generator for reactivity
// circular definition if I use cul_default ?!
const cul_Input = Inputs.input(cul_default);
const cul = Generators.input(cul_Input);
```