

Goal? Make methods for data processing in ecological research more accessible, save time and standardize workflows.

University of Helsinki *Environmental Data Science*

LIÈGE université Gembloux Agro-Bio Tech

Alexander G. Hurley

Relevance? Ecological research is becoming increasingly data-rich!

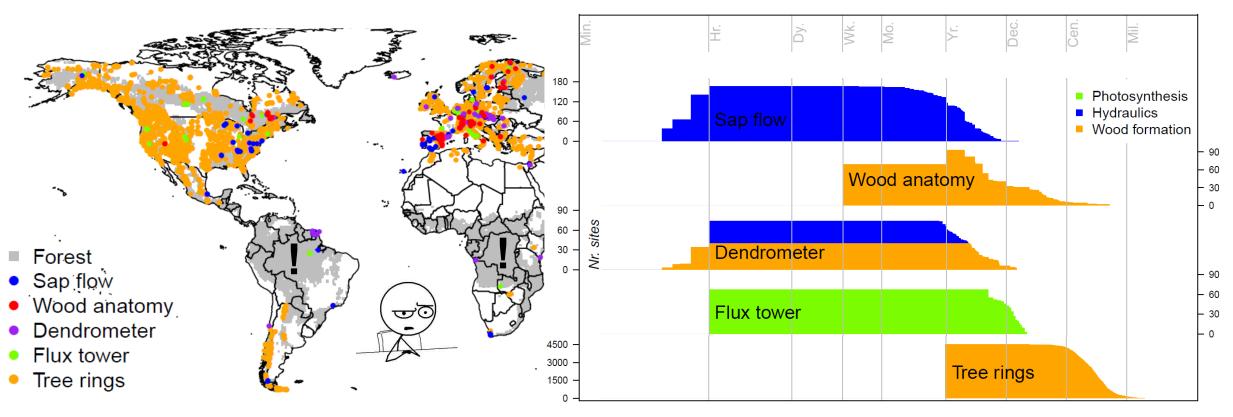
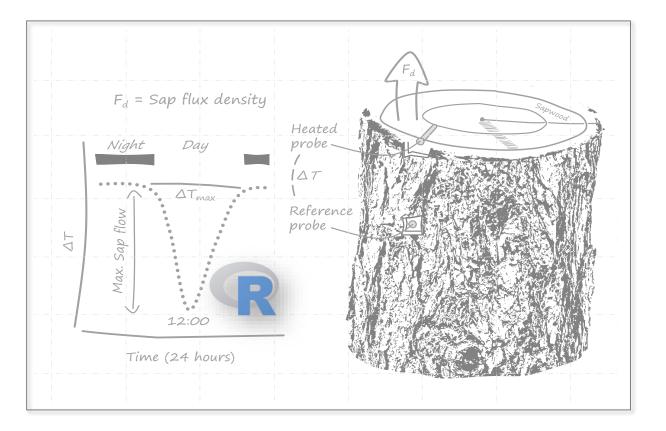


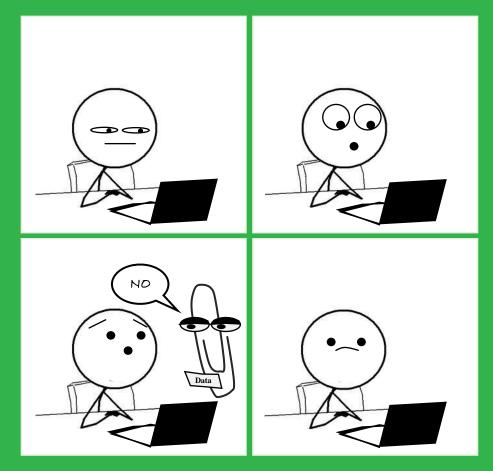
Fig. Global distribution of sites with relevant tree physiological measurements.


Time scale

Source: Peters (2018) doi: https://doi.org/10.5451/unibas-007085812

¥.

Goal? Make methods for data processing in ecological research more accessible, save time and standardize workflows.


University of Helsinki *Environmental Data Science*

Course

Introduction Typical data issues Programming solutions Monitoring examples (Sap flow + Dendrometers)

Assignments 01_datacleanr 02a_treenetproc 02b_trex

Time series ≈ A collection of values obtained over time

Fig. Examples of relevant reference for performing time series analyses, with a focus on its application.

See also: Zuur et al. (2009) doi: https://doi.org/10.1007/978-0-387-87458-6

Focus! Obtaining "clean" data usable for data analysis

Properties of time-series data:

- Large quantities;
- ±Regular collection intervals;
- Often requires data aggregation.

Processing such data is challenging:

- Data formatting issues;
- Timestamp and interval issues;
- Outlier and sensor failure issues.

[09/02/2021]

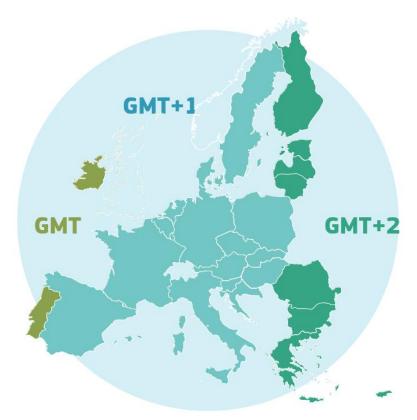
Data formatting issues *Three typical examples*

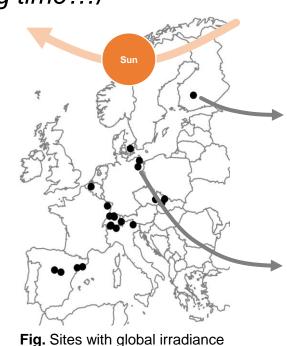
Long format

B File Ec	dit Code View Plots	Session Build	Debug	Pr	ofile Too	ols	Help			×
			The second						les proces	ssing •
deno	iro_data_L0 × 🔍 01_dataclean	» =d	5	Environment		History		Conne		
(00)	🖉 🛛 🖓 Filter	Q,			O New C	onnect	ion	Q,		
*	series	ts ‡	value 👘		Connect	ion		Statu	s	
1	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:00:00	NA	4						
2	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:10:00	NA NA NA							
3	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:20:00								
4	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:30:00								
5	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:40:00	NA							
6	dendro_stem_birch_Jennib_LVDT	2015-01-01 00:50:00	NA.							
7	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:00:00	NA							
8	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:10:00	NA							
9	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:20:00	NA							
10	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:30:00	NA.							
11	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:40:00	NA							
12	dendro_stem_birch_Jennib_LVDT	2015-01-01 01:50:00	NA.							
13	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:00:00	NA							
14	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:10:00	NA							
15	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:20:00	NA							
16	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:30:00	N4							
17	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:40:00	NA							
18	dendro_stem_birch_Jennib_LVDT	2015-01-01 02:50:00	NA	÷						
Showing	1 to 19 of 381,650 entries, 3 total ci	plumns								
Console			6		Files PI	ots	Packa	ages	Help	View

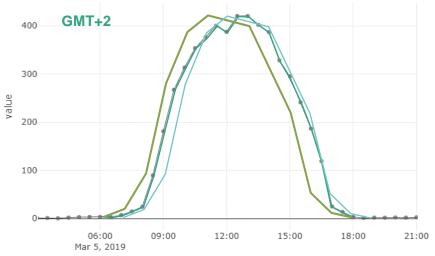
Fig. Sites with dendrometer and sap flow data.

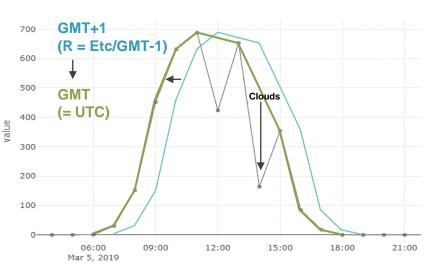
Wide format

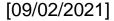

File	Edit	Format	View	/ Help			
Index	c				N08A	d_L1	\sim
(10/3)	80/07	7 13:0	00:00)	NA		
(10/3	80/07	7 14:0	00:00)	279		
(10/3	80/07	7 15:0	00:00)	275		
(10/3	80/07	7 16:0	00:00)	275		
(10/3	80/07	7 17:0	00:00)	274		
(10/3	80/07	7 18:0	00:00)	270		
(10/3	80/07	7 19:0	00:00)	276		
(10/3	80/07	7 20:0	00:00)	279		
(10/3	80/07	7 21:0	00:00)	279		\sim
<						>	
100%	Unix	(LF)		UTF-	8		
		_	_	_			_


Bestand Start Invoe Teker Pagir Form Gege Conti Beelc Help B666220 ▼ : × √ f_x 365 B D Α С Е 1 year Day Larch1 Spruce1 P. sylvestris1 time 2 3 4 2000 0 NA NA NA 1 2000 1 15 NA NA NA 2000 1 30 NA NA NA 5 6 2000 1 45 NA NA NA 2000 100 NA NA NA 1 7 115 NA NA NA 2000 1 8 2000 130 NA 1 NA NA Ð Foglio1 4 ► ्रि Weergave-instellingen Ħ E 巴

of year

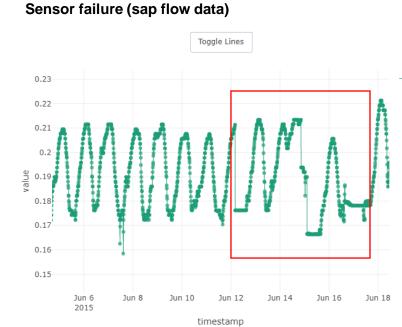


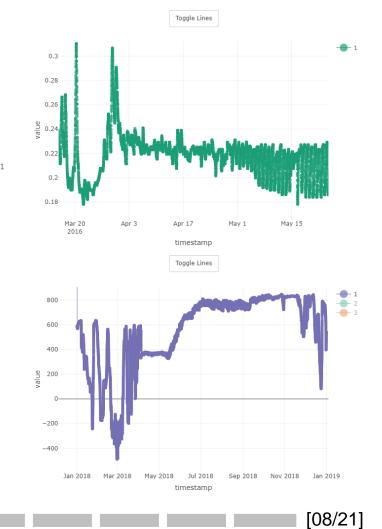

Timestamp and interval issues *Time zone and the elephant in the room (daylight saving time...)*



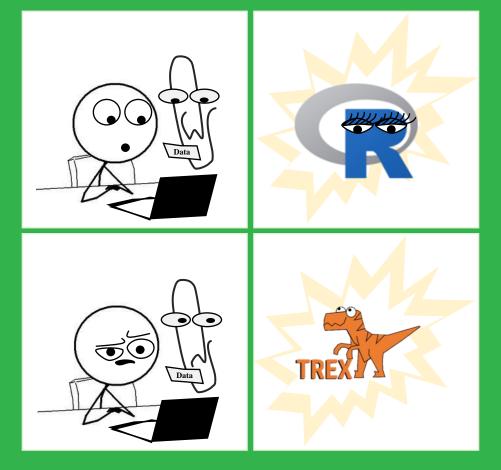
 (W/m^2) data.

Source: ec.europa.eu/transport/themes/summertime_en

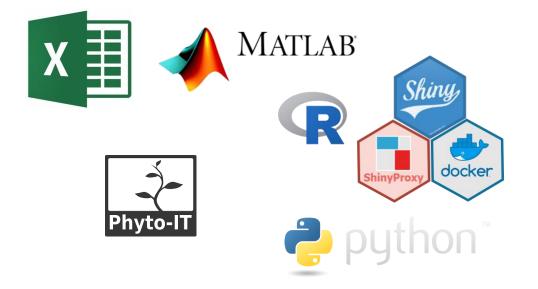




Outlier and sensor failure issues *Removing data should always be done with care!*


What about spring data?

[09/02/2021]


Outliers (dendrometer data)

Available software *Excellent software is available to work with time-series data*

Fig. Examples of software available for performing time-series data processing. Within this course we will focus on using R, RStudio, R Shiny apps and specific CRAN packages.

Focus! *R* is extensively used in Environmental Sciences

Packages are key:

- **ZOO**;
- lubridate;
- datacleanr;

library(datacleanr)
library(dplyr)

and many more...

See also: www.datacamp.com/community/tutorials/time-series-r

A novel R-based package A flexible and efficient tool for interactive data cleaning

datacleanr Removing data should finally be reproducible! – A.G. Hurley

 Bit Decided
 Image: Decided in the image: D

Properties:

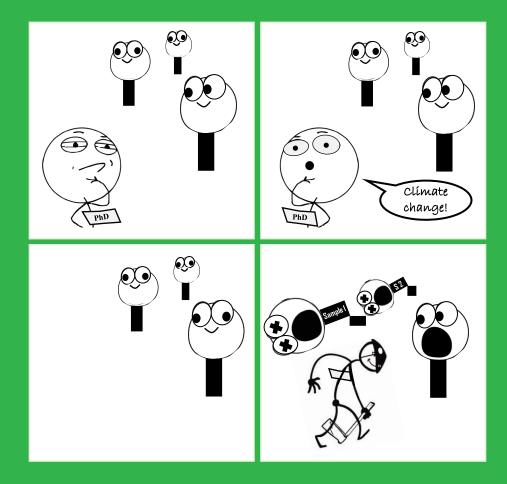
- Uses R (links with other packages);
- Freely available (avoid license costs);
- Uses R shiny (interactive approach).

Structure of the tool:

- Set-up & overview;
- Filtering;
- Visual cleaning and annotating;
- Extract.

Extract Reproducible recipe to cook up some fresh data

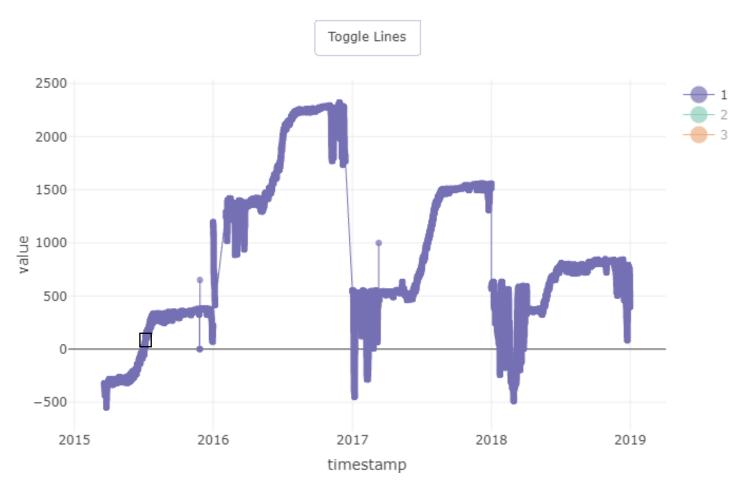
Fig. Example of dendrometer data recorded for three trees and its resulting datacleanr recipe.


Versatile *Tested on multiple temporal- and spatial-specific data sets*

				X Var		Y Var	Z Var			
Plot Group	S	C Update	× Reset	XCAL	-	YCAL_dcr	▼ CA	-		🖿 Piot
Show 10 ~	entries	Search: 2007		Click for Help						
Group	+ YEAR_dcr	♦ ROW_dcr	n obs. 🔶				Toggle Lines			
1	2007	0	198							
2	2007	1	22			1 : : : :			5 1 H 1 1 1	
3	2007	2	20	1200						● 3 ■ ● 4
4	2007	3	20	1100					N N N N N N N N N N N N N N N N N N N	5 6
5	2007	4	19							7
6	2007	5	17	1000						9 10
7	2007	6	19	900					a a a	11
8	2007	7	22						×	13 14
9	2007	8	18	800						15
10	2007	9	16	700						17
Showing 1 to 1	0 of 34 entries (filtered	from 136 total entries) Previous 1 2 3	4 Next	700	0 200	400	600 80	00 10	1200	19
Annotate la	st selection			່ 🕽 Undo last s	election					🛕 Clear all
Click for Hel				Show 10 ve	ntries				Search:	
check		¶ Anno	otate			ER ♦ max_length ♦ cur	nulative_year_length 🔶 YEAR_do	cr 🔶 ROW_dcr 🔶	YCAL_dcr	.annotation \$
Auto-annota	ite			3.96	30 1	672.739143504389	672.739143504389 2007	30 718	8.748539359654 31	check
				3.55	30 2	672.739143504389	672.739143504389 2007	30 79	98.09355342285 116	check
Impact on o		😂 Upda	ate	3.67	30 3	672.739143504389	672.739143504389 2007	30 873	3.132060339785 204	check
Click for Hel	p			3.47	30 4	672.739143504389	672.739143504389 2007	30 909	9.497866222949 254	check


Fig. Example of wood anatomical data loaded into datacleanr. Each dot present a tracheid cell measured from a *Pinus cembra* tree (available within the RAPTOR R package).

Hyytiälä Forestry Field Station Flux tower site in Finland



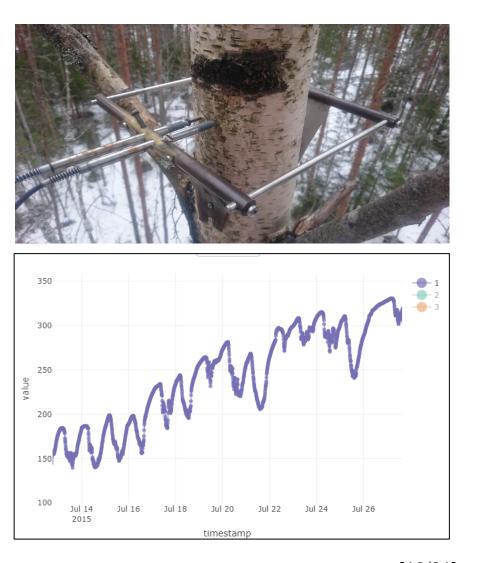
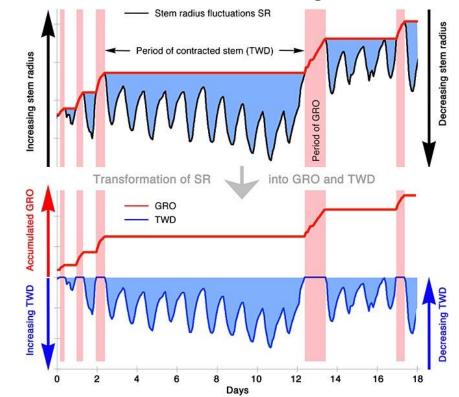


Fig. Examples of an linear variable differential transformator (LVDT) dendrometer installed on a birch tree (top) and thermal dissipation probes (TDP) installed on a Scots pine (bottom), to measure stem radial change and sap flow, respectively.

Dendrometers Data

[09/02/2021]

[16/21]

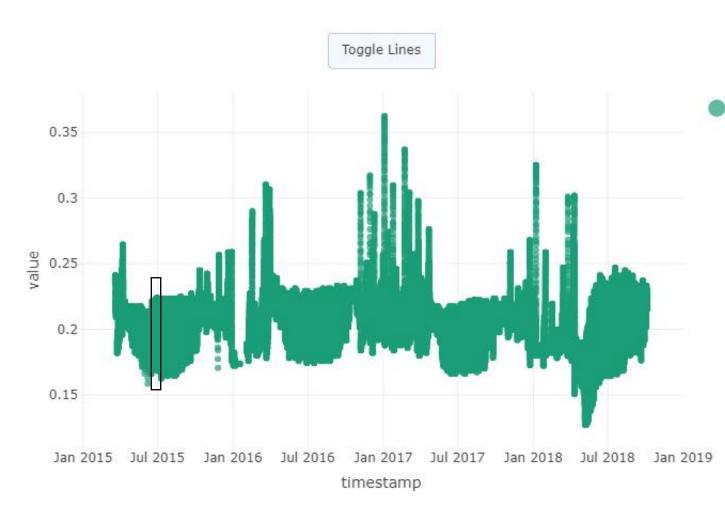

*

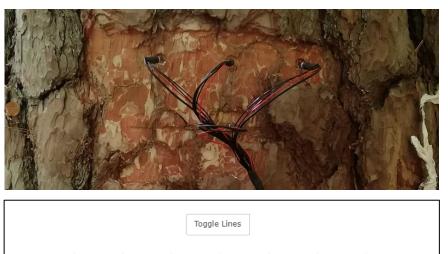
Dendrometers Stem radius changes of trees provide information on growth and drought stress

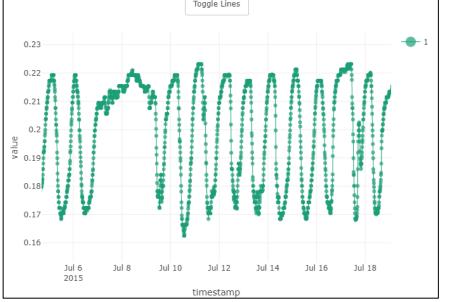
Fig. Examples of band and point dendrometers.

Usage Isolating growth and reversible tree-water deficit shrinkage

Fig. Example of a method to extract growth and drought stress indicators.


Source: Zweifel (2015) doi: https://doi.org/10.1111/pce.12613


[09/02/2021]


Sap flow Data

[09/02/2021]

1

[18/21]

Sap flow *Thermal dissipation probes to obtain water use*

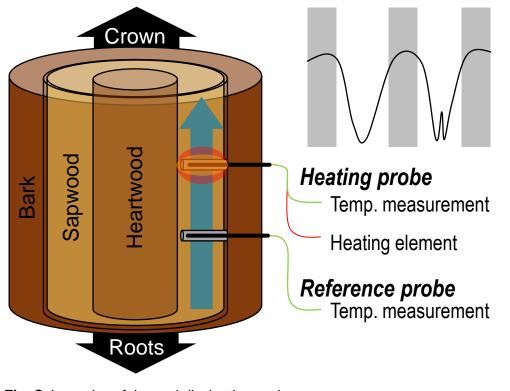
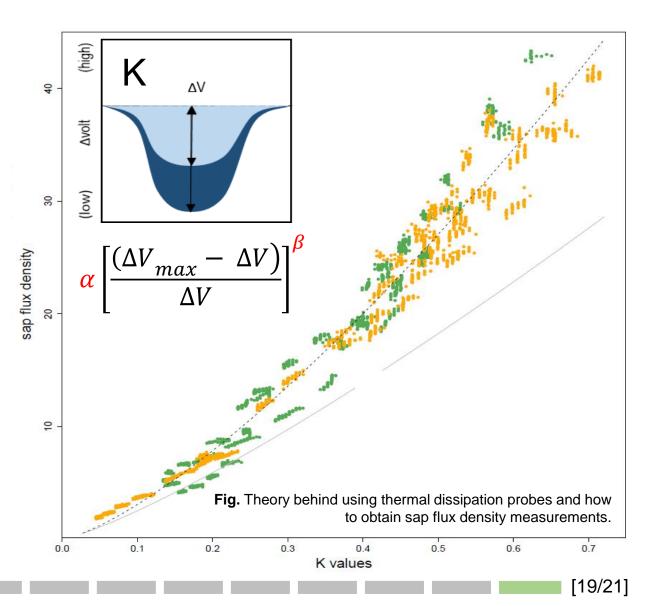
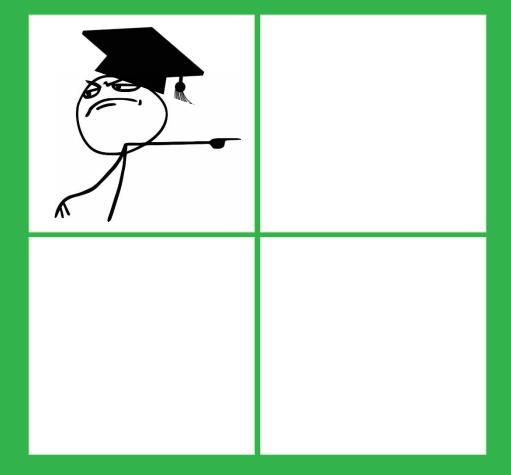
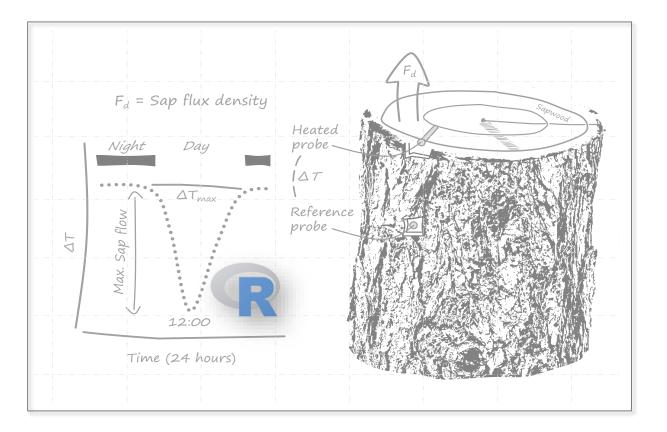




Fig. Schematics of thermal dissipation probes.

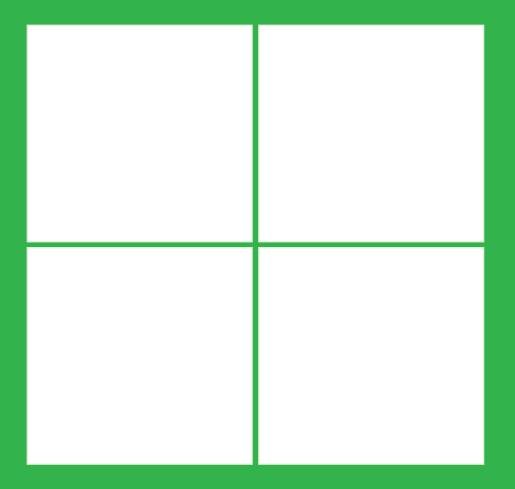
[09/02/2021]



¥.

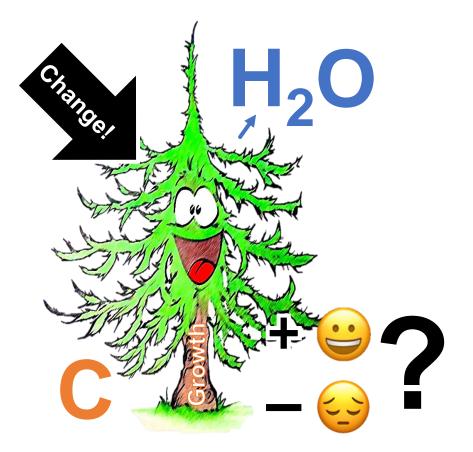
Goal? Make methods for data processing in ecological research more accessible, save time and standardize workflows.

University of Helsinki *Environmental Data Science*


Course

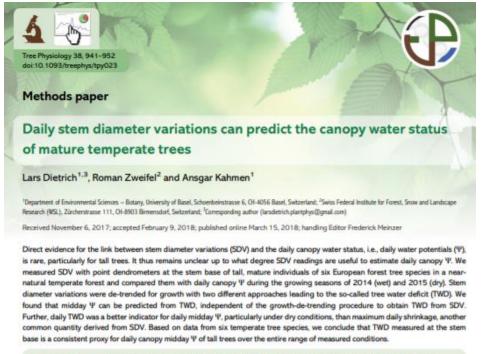
Introduction Typical data issues Programming solutions Monitoring examples (Sap flow + Dendrometers)

Assignments 01_datacleanr 02a_treenetproc 02b_trex

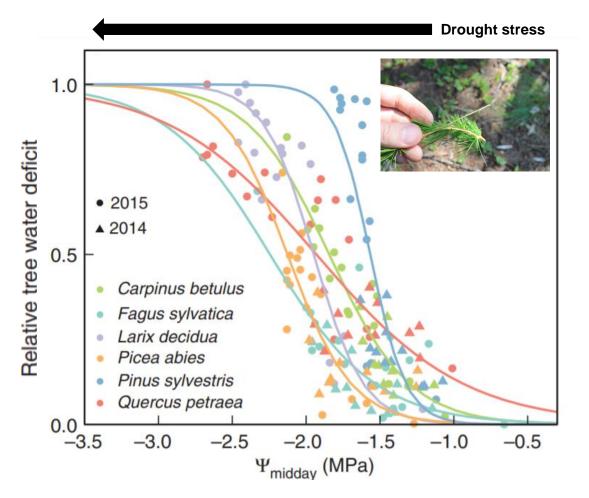

¥.

Why these measurements? Forests are anchor points in the global water and carbon cycle

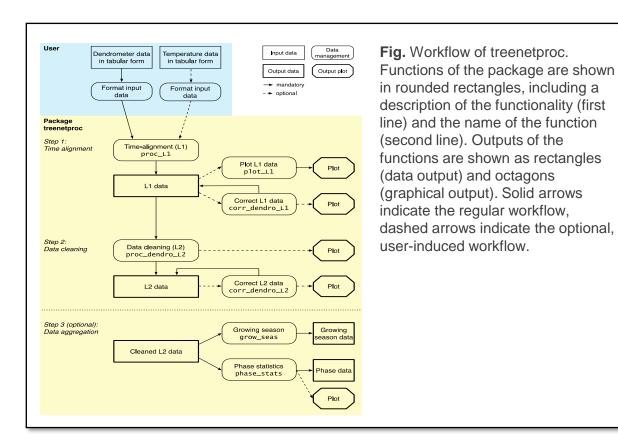
Biosphere - atmosphere gas Gross primary Evapotranspiration exchange productivi Flux tower 0 Leaf respiration Terrestrial LIDAR Quantitative Forest structure Cell number, size and density wood anatomy Tree volume Stem respiration Intra-annual growth branch / root dendromete Soil respiration Sap flow Ground radar Belowground biomass -Soil water


Fig. Schematic of monitoring sites which aim at consistent observations of processes that determine carbon allocation and water use.

Source: Babst et al. (2021) doi: https://doi.org/10.1016/j.tplants.2020.10.002



Dendrometers Stem radius changes of trees provide information on canopy water status



Keywords: drought, mature trees, maximum daily shrinkage, stem diameter variations, tree water deficit, water potential.

Fig. Example of relevant literature related to using dendrometer measurements.

Dendrometers *Structure of the treenetproc R package and accessibility*

Availability

The R package treenetproc and all source code is available on GitHub (https://github.com/treenet/treenetproc). In the R software (Team, 2019), the package can be installed with the following commands:

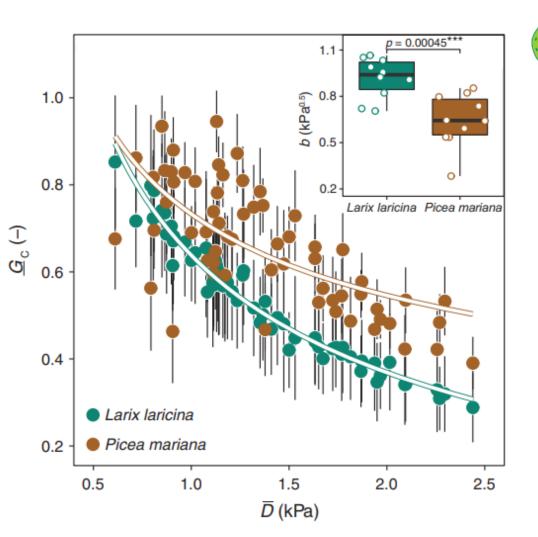
install.packages("devtools")
library(devtools)
devtools::install_github("treenet/treenetproc")

Link

An R tutorial on the use of treenetproc is accessible via this link: <u>https://deep-tools.netlify.app/2020/11/21/treenetproc-intro/</u>

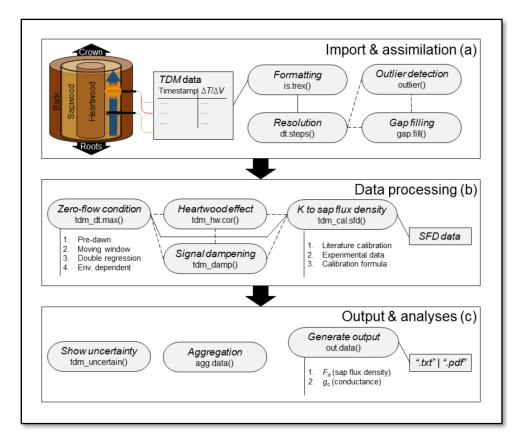
Structure

The general workflow of treenetproc is composed of three main steps including multiple functions [Fig.]. In step 1 (time alignment), the raw data of dendrometer is aligned to user-defined, regular time steps (L1 data). In step 2 (data cleaning), outliers and shifts in the L1 data are detected and corrected. In step 3, the L2 data is analyzed, and several derived variables are calculated.


References

Zweifel et al. (2016) doi: https://doi.org/10.1111/nph.13995

Sap flow *Thermal dissipation probes can extract stomatal behavior*


Fig. Example of relevant literature related to using sap flow measurements.

Sap flow *Structure of the TREX R package and accessibility*

Availability

The R package TREX and all source code is available on GitHub (<u>https://the-hull.github.io/TREX</u>). In the R software (Team, 2019), the package can be installed with the following commands:

install.packages("devtools")
library(devtools)
devtools::install_github("the-Hull/TREX")

Link

An R tutorial on the use of treenetproc is accessible via this link: <u>https://deep-tools.netlify.app/2020/11/23/trex-intro/</u>

Structure

The general workflow of TREX is composed of three main steps including multiple functions [Fig.]. In step 1 (import & assimilation), the raw sap flow data and the associated auxiliary meteorological data are imported in R and the consistency of the time series object is tested and if necessary corrected (i.e., regular time steps of time series objects, outlier detection, gap filling). In step 2 (data processing), zero-flow conditions can be derived with several approaches, and corrections can be applied (i.e., to heartwood correction and dampening). Then, sap flux density can be estimated using user-specific or literature values of the calibration parameters. In step 3 (output & analyses), the uncertainties associated with the sap flow pre-processing assumptions can be quantified with state-of-the-art statistical methods, the temporal resolution of the generated data can be adjusted, and the crown conductance to water can be estimated

References Peters *et al.* 2020 doi: https://doi.org/10.1111/2041-210X.13524