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new co-author in Marc Houben, who was first a student in Bonn and then a lecturer in Popayan.

Over the course of these 6 years, isogeny based cryptography has evolved from a niche topic
into a respectable subfield of public-key cryptography, going through phases of excitement and
of existential doubt. Today isogeny based cryptography is too vast to be taught in a single week
of lectures, hence these notes do not attempt at covering the entirety of known protocols and
attacks. Instead, they are meant to give the bases to enter the field and, hopefully, start doing
exciting research.

Stable version of these notes permanently hosted at https://arxiv.org/abs/1711.04062.
LATEX source code available at https://github.com/defeo/MathematicsOfIBC/.
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Part I

Elliptic curves and isogenies
In this part, we review the basic and not-so-basic theory of elliptic curves. Our goal is to
summarize the fundamental theorems necessary to understanding the foundations of isogeny
based cryptography. A proper treatment of the material covered here would require more than
one book, we thus skip proofs and lots of details to go straight to the useful theorems. The
reader in search of a more comprehensive treatment will find more details [76, 77, 52, 62].

Throughout this part we let k be a field, and we denote by k̄ its algebraic closure.

1 Elliptic curves
Elliptic curves are smooth projective curves of genus 1 with a distinguished point. Projective
space initially appeared through the process of adding points at infinity, as a method to under-
stand the geometry of projections (also known as perspective in classical painting). In modern
terms, we define projective space as the collection of all lines in affine space passing through the
origin.

Definition 1 (Projective space). The projective space of dimension n, denoted by Pn or Pn(k̄),
is the set of all (n+ 1)-tuples

(x0, . . . , xn) ∈ k̄n+1

such that (x0, . . . , xn) ̸= (0, . . . , 0), taken modulo the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if there exists λ ∈ k̄ such that xi = λyi for all i.

The equivalence class of (x0, . . . , xn) is customarily denoted by (x0 : · · · : xn) and called a
projective point. The set of the k-rational points, denoted by Pn(k), is defined as

Pn(k) = {(x0 : · · · : xn) ∈ Pn | xi ∈ k for all i} .

By fixing arbitrarily the coordinate xn = 0, we define a projective space of dimension n − 1,
which we call the hyperplane at infinity ; its points are called points at infinity.

From now on we suppose that the field k has characteristic different from 2 and 3. This has
the merit of greatly simplifying the representation of an elliptic curve. For a general definition,
see [76, Chap. III].

Definition 2 (Weierstrass equation). An elliptic curve defined over k is the locus in P2(k̄) of
an equation

Y 2Z = X3 + aXZ2 + bZ3, (1)

with a, b ∈ k and 4a3 + 27b2 ̸= 0.
The point (0 : 1 : 0) is the only point on the line Z = 0; it is called the point at infinity of

the curve.

It is customary to write Eq. (1) in affine form. By defining the coordinate functions x = X/Z
and y = Y/Z, we equivalently define the elliptic curve as the locus of the equation

y2 = x3 + ax+ b,
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Figure 1: An elliptic curve defined over R, and the geometric representation of its group law.

plus the point at infinity O = (0 : 1 : 0).
In characteristic different from 2 and 3, we can show that any smooth projective curve of

genus 1 with a distinguished point O is isomorphic to a Weierstrass equation by sending O onto
the point at infinity (0 : 1 : 0).

Now, since any elliptic curve is defined by a cubic equation, Bézout’s theorem tells us that
any line in P2 intersects the curve in exactly three points, taken with multiplicity. We define a
group law by requiring that three co-linear points sum to zero.

Definition 3. Let E : y2 = x3+ax+b be an elliptic curve. Let P1 = (x1, y1) and P2 = (x2, y2)
be two points on E different from the point at infinity, then we define a composition law ⊕ on
E as follows:

• P ⊕O = O ⊕ P = P for any point P ∈ E;

• If x1 = x2 and y1 = −y2, then P1 ⊕ P2 = O;

• Otherwise set

λ =

{
y2−y1

x2−x1
if P ̸= Q,

3x2
1+a
2y1

if P = Q,

then the point (P1 ⊕ P2) = (x3, y3) is defined by

x3 = λ2 − x1 − x2,
y3 = −λx3 − y1 + λx1.

It can be shown that the above law defines an Abelian group, thus we will simply write + for
⊕. The n-th scalar multiple of a point P will be denoted by [n]P . When E is defined over k, the
subgroup of its rational points over k is customarily denoted E(k). Figure 1 shows a graphical
depiction of the group law on an elliptic curve defined over R.

We now turn to the group structure of elliptic curves. The torsion part is easily characterized.

Proposition 4. Let E be an elliptic curve defined over an algebraically closed field k, and let
m ̸= 0 be an integer. The m-torsion group of E, denoted by E[m], has the following structure:

• E[m] ≃ (Z/mZ)2 if the characteristic of k does not divide m;
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• If p > 0 is the characteristic of k, then

E[pi] ≃

{
Z/piZ for any i ≥ 0, or
{O} for any i ≥ 0.

Proof. See [76, Coro. 6.4]. For the characteristic 0 case see also Section 3.

When k is not algebraically closed, we write E[m] for the m-torsion subgroup of E(k̄), i.e.
the torsion points in the algebraic closure. E[m] may or may not be fully contained in E(k), it
is easy to see, however, that it will always be contained in a finite extension of k of degree less
than m2.

For curves defined over a field of positive characteristic p, the case E[p] ≃ Z/pZ is called ordi-
nary, while the case E[p] ≃ {O} is called supersingular. We shall see alternative characterizations
of supersingularity in Sections 4 and 7.

The free part of the group is much harder to characterize. We have some partial results for
elliptic curves over number fields.

Theorem 5 (Mordell-Weil). Let k be a number field, the group E(k) is finitely generated.

However the exact determination of the rank of E(k) is somewhat elusive: we have algorithms
to compute the rank of most elliptic curves over number fields; however, an exact formula for
such rank is the object of the Birch and Swinnerton-Dyer conjecture, one of the Clay Millenium
Prize Problems.

2 Maps between elliptic curves
We now focus on maps between elliptic curves. We are mostly interested in maps that preserve
both facets of elliptic curves: as projective varieties, and as groups.

We first look into invertible algebraic maps, that is linear changes of coordinates that preserve
the Weierstrass form of the equation. Because linear maps preserve lines, it is immediate that
they also preserve the group law. It is easily verified that the only such maps take the form

(x, y) 7→ (u2x′, u3y′)

for some u ∈ k̄, thus defining an isomorphism between the curve y2 = x3 + au4x+ bu6 and the
curve (y′)2 = (x′)3 + ax′ + b. Isomorphism classes are traditionally encoded by an invariant,
whose origins can be traced back to complex analysis.

Proposition 6 (j-invariant). Let E : y2 = x3 + ax + b be an elliptic curve, and define the
j-invariant of E as

j(E) = 1728
4a3

4a3 + 27b2
.

Two curves are isomorphic over the algebraic closure k̄ if and only if they have the same j-
invariant.

Note that if two curves defined over k are isomorphic over k̄, they are so over an extension of
k of degree at most 6. An isomorphism between two elliptic curves defined over k, that is itself
not defined over k is called a twist. Any curve defined over a non-quadratically-closed field1 has

1A field is quadratically closed if every element has square root.
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quadratic twists obtained by taking u /∈ k such that u2 ∈ k. The two curves of j-invariant 0 and
1728 also have cubic, sextic and quartic twists.

More general algebraic maps, i.e. non-linear (and thus not necessarily invertible) changes of
coordinates, between elliptic curves are called isogenies.

Definition 7. Let E,E′ be two elliptic curves. An isogeny ϕ : E → E′ is a non-constant
algebraic map of projective varieties sending the point at infinity of E onto the point at infinity
of E′.

Somewhat surprisingly, being algebraic and preserving the point at infinity is sufficient to
make them group morphisms.

Theorem 8. Let E,E′ be elliptic curves defined over a field k and let ϕ : E → E′ be an isogeny
between them. Then:

• ϕ is a group morphism;

• ϕ has finite kernel;

• If k is algebraically closed, ϕ is surjective.

Proof. See [76, III, Th. 4.8].

Two curves are called isogenous if there exists an isogeny between them. We shall see later
that this is an equivalence relation.

Isogenies from a curve to itself are called endomorphisms. The prototypical endomorphism
is the multiplication-by-m endomorphism defined by

[m] : P 7→ [m]P.

Its kernel is, by definition, the m-th torsion subgroup E[m].
Since they are algebraic group morphisms, we can define addition of isogenies by (ϕ+ψ)(P ) =

ϕ(P )+ψ(P ), and the resulting map is still an isogeny. Adding to the set of isogenies E → E′ the
constant map that sends every point of E to the point at infinity of E′, we thus obtain a group,
denoted by Hom(E,E′). Additionally, endomorphisms E → E support composition, distributing
over addition, hence the set of all endomorphisms forms a ring, denoted by End(E).2

Since eachm ∈ Z defines a different multiplication-by-m endomorphism, clearly Z ↪→ End(E).
But can End(E) be larger than Z? The reader will have to wait until Section 7 to know the
answer to this riddle.

3 Elliptic curves over C
To better understand elliptic curves and their morphisms, we take a moment now to specialize
them to the complex numbers.

Definition 9 (Complex lattice). A complex lattice Λ is a discrete subgroup of C that contains
an R-basis of C.

Explicitly, a complex lattice is generated by a basis (ω1, ω2), such that ω1 ̸= λω2 for all λ ∈ R,
as

Λ = ω1Z+ ω2Z.
Up to exchanging ω1 and ω2, we can assume that Im(ω1/ω2) > 0; we then say that the basis has
positive orientation. A positively oriented basis is obviously not unique, though.

2In short, isogenies are the morphisms in the Abelian category of elliptic curves.
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C/Λ

ω2

ω1

Figure 2: A complex lattice (black dots) and its associated complex torus (grayed fundamental
domain).

Proposition 10. Let Λ be a complex lattice, and let (ω1, ω2) be a positively oriented basis, then
any other positively oriented basis (ω′

1, ω
′
2) is of the form

ω′
1 = aω1 + bω2,

ω′
2 = cω1 + dω2,

for some matrix
(
a b
c d

)
∈ SL2(Z).

Proof. See [77, I, Lem. 2.4].

Definition 11 (Complex torus). Let Λ be a complex lattice, the quotient C/Λ is called a complex
torus.

A convex set of class representatives of C/Λ is called a fundamental parallelogram. Figure 2
shows a complex lattice generated by a (positively oriented) basis (ω1, ω2), together with a
fundamental parallelogram for C/(ω1, ω2). The additive group structure of C carries over to C/Λ,
and can be graphically represented as operations on points inside a fundamental parallelogram.
This is illustrated in Figure 3.

Definition 12 (Homothetic lattices). Two complex lattices Λ and Λ′ are said to be homothetic
if there is a complex number α ∈ C× such that Λ = αΛ′.

Geometrically, applying a homothety to a lattice corresponds to zooms and rotations around
the origin. We are only interested in complex tori up to homothety; to classify them, we introduce
the Eisenstein series of weight 2k, defined as

G2k(Λ) =
∑

ω∈Λ\{0}

ω−2k.

It is customary to set
g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ);

when Λ is clear from the context, we simply write g2 and g3.
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Figure 3: Addition (left) and scalar multiplication (right) of points in a complex torus C/Λ.

Theorem 13 (Modular j-invariant). The modular j-invariant is the function on complex lattices
defined by

j(Λ) = 1728
g2(Λ)

3

g2(Λ)3 − 27g3(Λ)2
.

Two lattices are homothetic if and only if they have the same modular j-invariant.

Proof. See [77, I, Th. 4.1].

It is no chance that the invariants classifying elliptic curves and complex tori look very similar.
Indeed, we can prove that the two are in one-to-one correspondence.

Definition 14 (Weierstrass ℘ function). Let Λ be a complex lattice, the Weierstrass ℘ function
associated to Λ is the series

℘(z; Λ) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

Theorem 15. The Weierstrass function ℘(z; Λ) has the following properties:

1. It is an elliptic function for Λ, i.e. ℘(z) = ℘(z + ω) for all z ∈ C and ω ∈ Λ.

2. Its Laurent series around z = 0 is

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k.

3. It satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

for all z /∈ Λ.
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4. The curve
E : y2 = 4x3 − g2x− g3

is an elliptic curve over C. The map

C/Λ→ E(C),
0 7→ (0 : 1 : 0),

z 7→ (℘(z) : ℘′(z) : 1)

is an isomorphism of Riemann surfaces and a group morphism.

Proof. See [76, VI, Th. 3.1, Th. 3.5, Prop. 3.6].

By comparing the two definitions for the j-invariants, we see that j(Λ) = j(E). So, for any
homothety class of complex tori, we have a corresponding isomorphism class of elliptic curves.
The converse is also true.

Theorem 16 (Uniformization theorem). Let a, b ∈ C be such that 4a3 + 27b2 ̸= 0, then there is
a unique complex lattice Λ such that g2(Λ) = −4a and g3(Λ) = −4b.

Proof. See [77, I, Coro. 4.3].

Using the correspondence between elliptic curves and complex tori, we now have a new
perspective on their group structure. Looking at complex tori, it becomes immediately evident
why the torsion part has rank 2, i.e. why E[m] ≃ (Z/mZ)2. This is illustrated in Figure 4a; in
the picture we see two lattices Λ and Λ′, generated respectively by the black and the red dots.
We already defined the multiplication-by-m map of Λ as [m] : z 7→ mz mod Λ. This map is the
same as reducing

C/Λ→ C/Λ′,

z 7→ z mod Λ′

first, and then composing with the homothety Λ = mΛ′.
Within this new perspective, isogenies are a mild generalization of scalar multiplications.

Whenever two lattices Λ,Λ′ verify αΛ ⊂ Λ′, there is a well defined map

ϕα : C/Λ→ C/Λ′,

z 7→ αz mod Λ′

that is holomorphic and also a group morphism. One example of such maps is given in Figure 4b:
there, α = 1 and the red lattice strictly contains the black one; the map is simply defined as
reduction modulo Λ′. It turns out that these maps are exactly the isogenies of the corresponding
elliptic curves.

Theorem 17. Let E,E′ be elliptic curves over C, with corresponding lattices Λ,Λ′. There is a
bijection between the set of isogenies from E to E′ and the set of maps ϕα for all α such that
αΛ ⊂ Λ′.

Proof. See [76, VI, Th. 4.1].
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a

b

z

z mod aZ + bZ

3z

(a) 3-torsion group on a complex torus (red
points), with two generators a and b, and ac-
tion of the multiplication-by-3 map (blue dots).

a

b

z

ϕ(z)

(b) Isogeny from C/Λ (black dots) to C/Λ′ (red
dots) defined by ϕ(z) = z mod Λ′. The kernel
of ϕ is contained in (C/Λ)[3] and is generated
by a. The kernel of the dual isogeny ϕ̂ is gen-
erated by the vector b in Λ′.

Figure 4: Maps between complex tori.

Looking again at Figure 4b, we see that there is a second isogeny ϕ̂ from Λ′ to Λ/3, whose
kernel is generated by b ∈ Λ′. The composition ϕ̂ ◦ ϕ is an endomorphism of C/Λ, up to the
homothety sending Λ/3 to Λ, and we verify that it corresponds to the multiplication-by-3 map.
In this example, the kernels of both ϕ and ϕ̂ contain 3 elements, and we say that ϕ and ϕ̂ have
degree 3. Although not immediately evident from the picture, this same construction can be
applied to any isogeny. The isogeny ϕ̂ is called the dual of ϕ. Dual isogenies exist not only in
characteristic 0, but also for any base field, as we shall see in Section 5.

Under which conditions does an isogeny become an endomorphism? By virtue of the last
theorem, there is a one-to-one correspondence between the endomorphisms E → E and the
complex numbers α such that αΛ ⊂ Λ. In general, the only possible choices are given by α an
integer, corresponding to scalar multiplications. For some lattices, however, something “special”
happens; we shall study this case in Sections 7 and 11.

4 Elliptic curves over finite fields
In this section we shift our attention to elliptic curves defined over a finite field, which are the
main objects manipulated in cryptography. From now on we will use q to denote a power of a
prime p, and Fq do denote a finite field with q elements.

Obviously, the group of rational points of a curve defined over a finite field is finite. Because
every element of F̄q is defined over a finite extension of Fq, the algebraic group E(F̄q) only contains
torsion elements, and we have already characterized precisely the structure of the torsion part
of E.

For curves over finite fields, the Frobenius endomorphism plays a very special role, and governs
much of their structure.

Definition 18 (Frobenius endomorphism). Let E be an elliptic curve defined over a field with
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q elements, its Frobenius endomorphism, denoted by π, is the map that sends

(X : Y : Z) 7→ (Xq : Y q : Zq).

Proposition 19. Let π be the Frobenius endomorphism of E. Then:

• kerπ = {O};

• ker(π − 1) = E(k).

Theorem 20 (Hasse). Let E be an elliptic curve defined over a finite field with q elements. Its
Frobenius endomorphism π satisfies a quadratic equation

π2 − tπ + q = 0, (2)

for some |t| ≤ 2
√
q.

Proof. See [76, V, Th. 2.3.1].

The coefficient t in the equation is called the trace of π. It gives an alternative characterization
of supersingularity.

Proposition 21. An elliptic curve E defined over a finite field of characteristic p is supersingular
if and only if p divides the trace of its Frobenius endomorphism.

By replacing π = 1 in eq. (2), we immediately obtain the cardinality of E as #E(k) =
#ker(π − 1) = q + 1− t.

Corollary 22. Let E be an elliptic curve defined over a finite field k with q elements, then

|#E(k)− q − 1| ≤ 2
√
q.

It turns out that the cardinality of E over its base field k determines its cardinality over any
finite extension of it. This is a special case of Weil’s famous conjectures, proven by Weil himself
in 1949 for Abelian varieties, and more generally by Deligne in 1973.

Definition 23. Let V be a projective variety defined over a finite field Fq, its zeta function is
the power series

Z(V/Fq;T ) = exp

( ∞∑
n=1

#V (Fqn)
Tn

n

)
.

Theorem 24. Let E be an elliptic curve defined over a finite field Fq, and let #E(Fq) = q+1−a.
Then

Z(E/Fq;T ) =
1− aT + qT 2

(1− T )(1− qT )
.

Proof. See [76, V, Th. 2.4].

5 Isogenies
We now look more in detail at isogenies of elliptic curves. We start with some basic definitions.

Definition 25 (Degree, separability). Let ϕ : E → E′ be an isogeny defined over a field k, and
let k(E), k(E′) be the function fields of E,E′. By composing ϕ with the functions of k(E′), we
obtain a subfield of k(E) that we denote by ϕ∗(k(E′)).

13



E : y2 = x3 + x E′ : y2 = x3 − 4x

Figure 5: The isogeny (x, y) 7→
(
(x2+1)/x, y(x2−1)/x2

)
, as a map between curves defined over

F11.

1. The degree of ϕ is defined as deg ϕ = [k(E) : ϕ∗(k(E′))]; it is always finite.

2. ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields
is.

3. If ϕ is separable, then deg ϕ = #kerϕ.

4. If ϕ is purely inseparable, then deg ϕ is a power of the characteristic of k.

5. Any isogeny can be decomposed as a product of a separable and a purely inseparable
isogeny.

Proof. See [76, II, Th. 2.4].

In practice, most of the time we will be considering separable isogenies, and we can take
deg ϕ := #kerϕ as the definition of the degree. Notice that in this case deg ϕ is the size of any
fiber of ϕ (over the algebraic closure). When the kernel of a separable isogeny is cyclic, we will
call it a cyclic isogeny.

Example 26. The map ϕ from the elliptic curve y2 = x3 + x to y2 = x3 − 4x defined by

ϕ(x, y) =

(
x2 + 1

x
, y
x2 − 1

x2

)
,

ϕ(0, 0) = ϕ(O) = O
(3)

is a separable isogeny between curves defined over Q. It has degree 2, and its kernel is generated
by the point (0, 0).

Plotting the isogeny (3) over R would be cumbersome, however, since the curves are defined
by integer coefficients, we may reduce the equations modulo a prime p, then the isogeny descends
to an isogeny of curves over Fp. Figure 5 plots the action of the isogeny after reduction modulo
11. A red arrow indicates that a point of the left curve is sent onto a point on the right curve; the
action on the point in (0, 0), going to the point at infinity, is not shown. We observe a symmetry

14



with respect to the x-axis, a consequence of the fact that ϕ is a group morphism; and, by looking
closer, we may also notice that collinear points are sent to collinear points, also a necessity for a
group morphism.

It is evident that the isogeny is 2-to-1, however, over Fp, we are unable to see all fibers,
because the isogeny is only surjective over the algebraic closure. This is not dissimilar from
the way power-by-n maps act on the multiplicative group k× of a field k: the map x 7→ x2,
for example, is a 2-to-1 (algebraic) group morphism on F×

11, and those elements that have no
preimage, the non-squares, will have exactly two square roots in F112 , and so on.

The defining property of separable isogenies is that they are entirely determined by their
kernel.

Proposition 27. Let E be an elliptic curve defined over an algebraically closed field, and let G
be a finite subgroup of E. There is a curve E′, and a separable isogeny ϕ, such that kerϕ = G
and ϕ : E → E′. Furthermore, E′ and ϕ are unique up to composition with an isomorphism
E′ ≃ E′′.

Proof. See [76, Prop. III.4.12]

Said otherwise, for any finite subgroup G ⊂ E, we have an exact sequence of algebraic groups

0 −→ G −→ E
ϕ−→ E′ −→ 0.

Uniqueness up to isomorphisms justifies the notation E/G for the isomorphism class of the
image curve E′. Conversely, since any non-constant morphism of elliptic curves necessarily has
finite kernel, we have a bijection between the finite subgroups of a curve E and the isogenies
with domain E up to isomorphisms. This correspondence is rich in consequences: it is an easy
exercise to prove the following useful facts.

Corollary 28.

1. Let H and G be finite subgroups H ⊂ G ⊂ E, and ϕ : E → E/G. Then ϕ factors as
ψ ◦ χ, with χ : E → E/H and ψ : E/H → (E/H)/χ(G), up to post-composition by an
isomorphism.

2. Any isogeny of elliptic curves can be decomposed as a product of prime degree isogenies.

3. Let E be defined over an algebraically closed field k, let ℓ be a prime different from the
characteristic of k, then there are exactly ℓ+ 1 isogenies of degree ℓ having E for domain,
up to post-composition with an isomorphism.

Slightly more work is required to prove the following, fundamental, theorem (the difficulty
comes essentially from the inseparable part, see [76, III.6.1] for a detailed proof).

Theorem 29 (Dual isogeny theorem). Let ϕ : E → E′ be an isogeny of degree m. There is a
unique isogeny ϕ̂ : E′ → E such that

ϕ̂ ◦ ϕ = [m]E , ϕ ◦ ϕ̂ = [m]E′ .

ϕ̂ is called the dual isogeny of ϕ; it has the following properties:

1. ϕ̂ has degree m;

2. ϕ̂ is defined over k if and only if ϕ is;
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3. ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂ for any isogeny ψ : E′ → E′′;

4. ψ̂ + ϕ = ψ̂ + ϕ̂ for any isogeny ψ : E → E′;

5. deg ϕ = deg ϕ̂;

6. ˆ̂
ϕ = ϕ.

Computing isogenies. The computational counterpart to the kernel-isogeny correspondence
is given by Vélu’s celebrated formulas.

Proposition 30 (Vélu [85]). Let E : y2 = x3 + ax + b be an elliptic curve defined over a
field k, and let G ⊂ E(k̄) be a finite subgroup. A rational expression for the separable isogeny
ϕ : E → E/G of kernel G is given by

ϕ(P ) =

x(P ) + ∑
Q∈G\{O}

x(P +Q)− x(Q), y(P ) +
∑

Q∈G\{O}

y(P +Q)− y(Q)


for any point P /∈ G, taking the curve of equation y2 = x3 + a′x+ b′ with

a′ = a− 5
∑

Q∈G\{O}

(3x(Q)2 + a),

b′ = b− 7
∑

Q∈G\{O}

(5x(Q)3 + 3ax(Q) + 2b),

as a representative for E/G.

Using Vélu’s formulas, or one of their variants [60, 17, 70], we can represent isogenies and
evaluate them at arbitrary points using a number of field operations polynomial in their degree.
In some favorable cases, an isogeny of degree d can even be represented in constant space and
be evaluated at arbitrary points using only

√
dpolylog(d) operations [3].

We extend this representation to chains of isogenies: we represent each isogeny in the chain
by its kernel, and evaluate it using Vélu’s formulas. Thanks to Corollary 28, any isogeny of
composite degree N can thus be evaluated in time polynomial in log(N) and the largest prime
factor of N .

We would like to abstract the way an isogeny is actually stored and evaluated and only
focus on the cost of its evaluation. This motivates the following definition, where we restrict to
isogenies over finite fields to keep things concrete.

Definition 31 (Isogeny representation). Let E be an elliptic curve defined over a finite field
Fq. An (efficient) isogeny representation of an isogeny ϕ : E → E′ is a deterministic algorithm
which on input an arbitrary point P ∈ E(Fqk) outputs ϕ(P ) using poly(k log(q)) operations.

There is a little ambiguity on what is meant by “algorithm” in the definition. Any model of
computation will be acceptable, as long as it is polynomial-time equivalent to another. In this
text we will informally describe algorithms, sometimes using pseudo-code, without focusing too
much on a detailed complexity analysis.

Remark 32. An isogeny representation of ϕ : E → E′ is enough to compute an equation for
the image curve E′. It is indeed sufficient to evaluate ϕ at all points of order 2 to get the roots
of f(x) in the Weierstrass equation y2 = f(x) of E′.
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6 The Weil pairing
The definition below is given for free modules over a ring. If the reader feels uncomfortable with
rings and modules, they may think of vector spaces over a field instead.

Definition 33. Let M1,M2 be free modules over a commutative ring R. A bilinear form is a
mapping e :M1 ×M2 → R such that:

• e(aP,Q) = e(P, aQ) = a · e(P,Q),

• e(P + P ′, Q) = e(P,Q) + e(P ′, Q),

• e(P,Q+Q′) = e(P,Q) + e(P,Q′),

for all a ∈ R, all P, P ′ ∈M1 and all Q,Q′ ∈M2.
A bilinear form is said to be non-degenerate if:

• e(P,Q) = 0 for all P implies Q = 0, and

• e(P,Q) = 0 for all Q implies Q = 0.

A bilinear form is said to be alternating if M1 =M2 and e(P, P ) = 0 for all P .

If instead of taking values in R, we define a map M1 ×M2 → M3, with the same properties
as above, but taking values in an R-module M3, we talk of a bilinear map, or pairing.

Proposition 34. Let E/k be an elliptic curve defined over a field k, and let m be a positive
integer prime to the characteristic of k. Write µm ⊂ k̄ for the subgroup of m-th roots of unity of
the algebraic closure of k.

There exist a non-degenerate alternating pairing of Z/mZ-modules

em : E[m]× E[m]→ µm,

called the Weil pairing.

The exact definition of the Weil pairing requires more geometric tools than we are willing to
introduce here (see, e.g., [76, 33] for details). For the sake of these notes, it suffices to recall that
the torsion subgroup E[m] is isomorphic to (Z/mZ)2, i.e. is a free module of rank two. On the
other hand, the image group µm only has rank one, thus the Weil pairing is just a bilinear form in
disguise. . . and not just any bilinear form! Indeed, under the constraint of being non-degenerate
and alternating, the Weil pairing is, essentially, the 2 × 2 determinant form, as the following
proposition shows.

Proposition 35. Let M be a Z/mZ module of rank 2, and let (P,Q) be a pair of generators.
Let e be an alternating pairing on M ×M taking values in a multiplicative group G of order m,
and let ζ = e(P,Q). Then

e([a]P + [b]Q, [c]P + [d]Q) = ζ
det

(
a b
c d

)
.

In particular e is non-degenerate if and only if ζ generates G.

It is remarkable that the Weil pairings of isogenous curves are “compatible” in a precise sense.
Indeed, it turns out that the dual isogeny is the “transpose” in the sense of bilinear forms.
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Theorem 36. Let E,E′ be elliptic curves, let ϕ : E → E′ be an isogeny, ϕ̂ : E′ → E its dual,
let m be a positive integer. For any P ∈ E[m] and Q ∈ E′[m]

e′m
(
ϕ(P ), Q

)
= em

(
P, ϕ̂(Q)

)
. (4)

where em and e′m denote the Weil pairing of E and E′ respectively.

Proof. See [76, III.8.2].

Corollary 37. Let ϕ : E → E′ be an isogeny of degree d. For any m,P,Q

e′m
(
ϕ(P ), ϕ(Q)

)
= em(P,Q)d.

There exist algorithms to compute the Weil pairing taking a number of operations over the
field of definition of E[m] polynomial (and even quasi-linear) in log(m). There exist other pairings
defined for elliptic curves over finite fields, which are sometimes faster to compute than the Weil
pairing. However they are all related, and will not make a difference for our purposes, thus we
will ignore them. For a review of known elliptic pairings, addressed to non-specialists, see [36].

7 The endomorphism ring
We come back to the question of determining the structure of End(E). To put the right words on
it, we need to recall some background from algebraic number theory; for an in-depth treatment,
see [53, 86].

A quadratic number field is a quadratic extension K of the rationals; it is called real if there
exists an embedding K ⊂ R, imaginary otherwise. All such fields can be expressed as Q(

√
d) for

some integer d, the Gaussian integers Q(i) being a typical example of an imaginary one.

Definition 38 (Discriminant). Let d be a square free integer, the discriminant of the quadratic
number field Q(

√
d) is d if d = 1 mod 4, and 4d otherwise.

An integer ∆ that is the discriminant of a quadratic number field is called a fundamental
discriminant.

Definition 39. Let α = a+ b
√
d be an element of a quadratic number field.

• Its conjugate is ᾱ = a− b
√
d;

• Its norm is N(α) = αᾱ = a2 − db2;

• Its trace is Tr(α) = α+ ᾱ = 2a.

Proposition 40. Let α be an element of a quadratic imaginary field, then it is a root of the
quadratic polynomial with rational coefficients

x2 − Tr(α)x+N(α).

The elements with integer trace and norm can be seen as a generalization of the ring Z of
integers inside Q.

Definition 41 (Ring of integers). Let K be a quadratic number field, an algebraic integer of K
is an element α ∈ K that is a root of an irreducible monic polynomial with integer coefficients.
The algebraic integers of K form a ring, called the ring of integers of K.
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For example, Z[i] is the ring of integers of Q(i); more generally, if ∆ is a fundamental dis-
criminant, the ring of integers of Q(

√
∆) is Z[δ], where δ = (∆+

√
∆)/2.

Definition 42 (Fractional ideals, orders). Let K be a quadratic number field. A fractional ideal
I ⊂ K is a Z-lattice of rank 2. An order O ⊂ K is a fractional ideal that is also a ring.

Let I ⊂ K be a fractional ideal, its order is the ring

OI = {α ∈ K | Iα ⊂ I}.

When I ⊂ OI we say that I is integral. when I = αOI for some α ∈ K, we say that I is principal.
If there exists another fractional ideal I−1 such that II−1 = OI we say that I is invertible.

It is clear that I is an OI -module, and when it is integral we recover the usual definition of
an ideal of OI . In this case, we will omit “fractional” and simply call I an ideal of OI . Clearly I
is also an O-module for any O ⊂ OI , and we thus say it is a (fractional) O-ideal.

We now generalize the concept of norm to an ideal. We need a technical definition first.

Definition 43 (gcd of rational numbers). For two rational numbers a = m/n, b = r/s, written
such that gcd(m,n) = 1 = gcd(r, s), we define their greatest common divisor as gcd(a, b) :=
gcd(m, r)/ lcm(n, s). By extension, we can also define the gcd of an arbitrary subset of Q, as
long as the least common multiple of the denominators of its elements is finite.

Proposition 44 (Ideal norm). Let I be a fractional ideal. Its norm N(I) is the gcd of the norms
of its elements. An ideal is integral if and only if its norm is an integer.

By these definitions, the ring of integers OK is an order of K: indeed it has (1, δ) as a basis,
i.e., as a set of Z-module generators. It is, in fact, the maximal order of K, i.e. it contains any
other order of K. A more precise statement is the following.

Proposition 45. Let K be a quadratic number field, let OK be its ring of integers, and let
O ⊂ OK be an arbitrary order. The index f = [OK : O] as abelian groups is called the conductor
of O. Then, O can be written as O = Z+ fOK .

We generalize the notion of discriminant to any order.

Definition 46 (Discriminant). Let O be an order with basis (1, δ). Its discriminant is (δ− δ̄)2,
where δ̄ denotes the complex conjugate of δ. It is independent of the choice of a basis.

Proposition 47. Let O be an order, let ∆ be its discriminant and let f be its conductor. Let ∆K

the discriminant of the maximal order, then ∆ = f2∆K . If O,O′ are two orders of discriminants
∆,∆′, then O ⊂ O′ if and only if ∆′|∆.

Because OK is the “most obvious” order of K, (fractional) OK-ideals are often simply called
(fractional) ideals of K.

Proposition 48. Any fractional OK-ideal is invertible.

Quaternion algebras are a 4-dimensional generalization of quadratic number fields: like in
number fields, any element satisfies a quadratic equation; unlike them, they are not fields. The
theory on quaternion algebras is very rich, and possesses deep connections with many objects in
number theory, such as quadratic forms, modular forms, and elliptic curves [51, 86].
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Definition 49 (Quaternion algebra). A quaternion algebra over Q is an algebra of the form

K = Q+ iQ+ jQ+ kQ,

where the generators satisfy the relations

0 ̸= i2 ∈ Q, 0 ̸= j2 ∈ Q, k = ij = −ji.

If i2 = a and j2 = b, we denote such an algebra by
(

a,b
Q

)
.

An arbitrary element of a quaternion algebra can be written as α = t + xi + yj + zk,
where t, x, y, z ∈ Q. The real part of such an element is Re(α) = t, the imaginary part is
Im(α) = xi + yj + zk. The conjugate α is obtained by flipping the sign of the imaginary part;
α = t− xi− yj − zk. The (reduced) norm and trace are defined as

N(α) := αα = t2 − ax2 − by2 + abz2, Tr(α) := α+ α = 2t

respectively.3 This motivates the following definition.

Definition 50. The norm form associated to the quaternion algebra
(

a,b
Q

)
is the polynomial

t2 − ax2 − by2 + abz2 ∈ Q[t, x, y, z].

Let p be a prime number and let K be a quaternion algebra over Q. We say that K is split
at p if K ⊗ Qp

∼= M2(Qp). This is equivalent to the norm form having a non-trivial zero over
Qp. Otherwise, we say that the quaternion algebra is ramified at p.

We say K is ramified at ∞ if the norm form has no non-trivial zero over R. This is equivalent
to a, b being both negative.

The reduced discriminant of a quaternion algebra is the product of the primes at which it
ramifies. For every prime number p, there is, up to isomorphism, a unique quaternion algebra
with discriminant p, which we denote Bp,∞. It ramifies exactly at p and ∞.

Proposition 51. Let p be a prime number, then we can choose the following representations for
the quaternion algebra Bp,∞.

1. Bp,∞ ∼=
(

−1,−1
Q

)
if p = 2;

2. Bp,∞ ∼=
(

−1,−p
Q

)
if p ≡ 3 (mod 4);

3. Bp,∞ ∼=
(

−2,−p
Q

)
if p ≡ 5 (mod 8);

4. Bp,∞ ∼=
(

−r,−p
Q

)
if p ≡ 1 (mod 8), where r ≡ 3 (mod 4) is a prime number that is not a

square modulo p.

Proof. See [66].

From now onward, our main quaternion algebra of concern will be Bp,∞; it turns out to be the
most interesting one in the context of elliptic curves, because it contains all endomorphism rings
of supersingular elliptic curves over fields of characteristic p. However, many of the definitions
and results that follow are equally valid for arbitrary quaternion algebras.

3Although the adjective reduced is technically necessary from a purely mathematical point of view, the terms
reduced norm and norm, and similarly for the trace, are often used interchangably in the context of quaternions.
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Fractional ideals in Bp,∞ are Z-lattices I ⊂ Bp,∞ of rank 4. The (reduced) norm of an
ideal is defined as the gcd of the (reduced) norms of its elements; N(I) = nrd(I) := gcd{N(α) |
α ∈ I}. If I ⊂ J are two fractional ideals, then the index [J : I] as an abelian group equals
(N(I)/N(J))

2. If α1, α2, α3, α4 is a Z-basis for I, then we define the reduced discriminant of I
as discrd(I) := |det(Tr(αiαj))1≤i,j≤4|1/2; it is independent of the chosen basis.

Orders in Bp,∞ are fractional ideals that are also subrings. We say an order O ⊂ Bp,∞ is
maximal if it is not strictly contained in any other order. An order is maximal if and only if
its reduced discriminant is p. Given a fractional ideal I ⊂ Bp,∞, we denote by OL(I) := {α ∈
Bp,∞ | αI ⊂ I} its left order, and by OR(I) := {α ∈ Bp,∞ | Iα ⊂ I} its right order. We say that
I is a fractional left (respectively right) O-ideal if O ⊂ OL(I) (respectively O ⊂ OR(I)). A (left
or right) O-ideal I is called integral if I ⊂ O.

Proposition 52. Let Bp,∞ be represented like in Proposition 51. Then

O =


〈
1+i+j+ij

2 , i, j, ij
〉

if p = 2,〈
1, i, 1+j

2 , i+ij
2

〉
if p ≡ 3 (mod 4),〈

1, i, −1+i+j
2 , 2−i+ij

4

〉
if p ≡ 5 (mod 8),〈

1+i
2 , j+ij

2 , i+cij
r , ij

〉
if p ≡ 1 (mod 8), where c2p = −1 (mod r),

is a maximal order of Bp,∞.

Proof. See [48, Lemmas 2–4] or [89, Lemmas 2.2–3].

The endomorphism ring. We finally have all the necessary language to classify endomor-
phism rings of elliptic curves: they all turn out to be lattices of rank 1, 2 or 4. A more precise
statement is the following.

Theorem 53 (Deuring). Let E be an elliptic curve defined over a field k of characteristic p.
The ring End(E) is isomorphic to one of the following:

• Z;

• An order O in a quadratic imaginary field; in this case we say that E has complex multi-
plication by O;

• Only if p > 0, a maximal order O in Bp,∞; in this case we say that E has quaternionic
multiplication by O. This happens if and only if E is supersingular.

Proof. See [76, III, Coro. 9.4] and [47].

The smallest Q-algebra containing End(E), i.e. End(E)⊗Q, is called the endomorphism alge-
bra of E. For curves over finite fields, this is entirely determined by the Frobenius endomorphism,
which we recall satisfies a quadratic equation π2 − tπ + q = 0. Indeed we already saw that a
curve is supersingular if and only if the characteristic divides the trace t. Otherwise the curve is
ordinary and End(E) must contain an algebraic integer with the same minimal equation, which
has discriminant ∆π = t2 − 4q < 0, and thus End(E) ⊂ Q(

√
∆π).

The minimal polynomial of Frobenius can be computed in polynomial time using Schoof’s
algorithm [72] (see Appendix B), and thus the endomorphism algebra can be determined with
the same complexity. Determining the exact order isomorphic to End(E) is (in general) much
more complicated and we shall come back to it in Sections 10 and 22.
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Example 54. The elliptic curve y2 = x3 + x has supersingular reduction at all primes p =
3 mod 4. Its ring of Fp-rational endomorphisms is generated by π =

√
−p, and it is not maximal

in Q(
√
−p).

The automorphism ι : (x, y) 7→ (−x, iy) is only defined over Fp2 , and anti-commutes with π.
The full endomorphism ring is isomorphic to the maximal order inside Bp,∞ containing both π
and ι.

Exercises
Exercise I.1. Prove Proposition 6.

Exercise I.2. Determine all the possible automorphisms of elliptic curves.

Exercise I.3. Prove Proposition 19.

Exercise I.4. Using Proposition 24, devise an algorithm to effectively compute #E(Fqn) given
#E(Fq).

Exercise I.5. Prove Corollary 28.

Exercise I.6. Prove Proposition 35.

Exercise I.7. Prove Corollary 37.

Exercise I.8. Let K be a complex imaginary number field, Λ ⊂ K a complex lattice, and OΛ

its order as defined in Eq. (5). Prove that OΛ is an order of K.
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Part II

Isogeny graphs
We now look at isogeny graphs: graphs with isomorphisms classes of elliptic curves for vertices,
and isogenies for edges. Depending on the constraints we put on the isogenies, we will get graphs
with different properties. In this part we will study isogeny volcanoes and CM graphs, whereas
Part IV will be devoted to supersingular graphs.

The classification of isogeny graphs was initiated by Mestre [58], Pizer [67, 68] and Kohel [47];
further algorithmic treatment of graphs of ordinary curves, and the now famous name of isogeny
volcanoes, was subsequently given by Fouquet and Morain [32].

8 Isogeny classes
We have previously learned that being isogenous is an equivalence relation,4 it thus makes sense
to speak of the isogeny class of an elliptic curve. Here, we are interested in characterizing these
isogeny classes and their connectivity structure. We will mostly focus on isogeny classes over
finite fields, however we will occasionally mention the complex case.

We start by linking isogeny classes to endomorphism rings.

Theorem 55 (Serre-Tate). Two elliptic curves E,E′ with complex multiplication are isogenous
(over the algebraic closure) if and only if their endomorphism algebras End(E)⊗Q and End(E′)⊗
Q are isomorphic.

In layman terms, this theorem is telling us that two curves with complex multiplication by
O and O′ respectively are isogenous if and only if O ⊂ O′ or O′ ⊂ O; or equivalently if and only
if O and O′ have the same field of fractions.

For supersingular curves, we learned that there exists a unique possibility for End(E) ⊗ Q,
namely the unique quaternion algebra ramified at p and ∞. Then, a similar statement to the
complex multiplication case holds.

Theorem 56. Any two supersingular curves over a field of characteristic p are isogenous (over
the algebraic closure).

In the case of finite fields, we saw that End(E)⊗Q is entirely determined by the Frobenius
endomorphism. We can strengthen the previous theorems as follows.

Proposition 57. Two elliptic curves E,E′ defined over a finite field k are isogenous over k if
and only if #E(k) = #E′(k).

At this stage, we are only interested in elliptic curves up to isomorphism, i.e., j-invariants.
Accordingly, we say that two j-invariants are isogenous whenever their corresponding curves
are.5

4Reflexivity and transitivity are obvious, symmetry is guaranteed by the dual isogeny theorem.
5In some cases we will be interested in elliptic curves up to k-rational isomorphisms, and we will then need

finer invariants to classify them. Likewise, we will say the invariants are isogenous when the corresponding curves
are.
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9 Graphs
We recall some basic concepts about graphs and their spectra. For a comprehensive treatment,
see [84, 82, 39].

Definition 58 (Multigraph). A directed multigraph (or multidigraph or quiver) G is a pair (V,E)
where V is a set of vertices and E ∈ NV×V is a multiset of ordered pairs called edges.

When E is a simple set, i.e. E ∈ {0, 1}V×V , we recover the usual definition of a directed
graph.

The neighbors of a vertex v are the vertices of V connected to it by an edge. A path from
a vertex v to another vertex v′ is a sequence of vertices v → v1 → · · · → v′ such that any two
consecutive vertices are neighbors. The distance from v to v′ is the length of the shortest path
between them; if there is no such path, v′ is said to be at infinite distance from v. The degree of
a vertex is the number of edges departing from it; a multigraph where every edge has degree k is
called k-regular. The adjacency matrix of a finite multigraph G = (V,E) is the |V | × |V | matrix
with columns and rows indexed by the vertices, where the (i, j)-th entry is the multiplicity of
the edge (v, v′).

Definition 59 (Undirected multigraph). A multigraph (V,E) is undirected if E(v, v′) = E(v′, v)
for any v, v′ ∈ V , i.e. if there are as many edges from v to v′ as there are from v′ to v.

A weakly undirected multigraph is called connected if any two vertices have a path connecting
them; it is called disconnected otherwise. A connected component of an undirected multigraph
is a maximal subgraph (i.e. a subset V ′ ⊂ V together with the restriction of E to V ′) that is
connected. The diameter of a connected multigraph is the largest of all distances between its
vertices.

Definition 60 (Spectrum). The spectrum of a finite multigraph is the multiset of the eigenvalues
of its adjacency matrix.

When the multigraph is undirected, the adjacency matrix is symmetric, thus its spectrum is
real. Let (V,E) be k-regular and undirected, and let V ′ ⊂ V be the set of vertices of a connected
component. It is easy to see that the vector having 1’s for the entries corresponding to V ′ and
0’s elsewhere is an eigenvector with eigenvalue k. We can in fact prove a stronger statement.

Theorem 61. Let G be a k-regular undirected multigraph and let λ1 ≥ λ2 ≥ · · · ≥ λn be its
spectrum. Then |λi| ≤ k, and the multiplicity of the eigenvalue k equals the number of connected
components of G.

Proof. See [84, Chap. 3].

Expansion is a way to express how “well connected” the nodes of a graph are. There are
several related definitions of it. We start with the spectral definition, which is simpler to state
and often easier to prove, but whose implications are less obvious. From now on, whenever we
have a multigraph, we denote by λ1 ≥ λ2 ≥ · · · ≥ λn its spectrum.

Definition 62 (Expander graph). Let ε > 0 and k ≥ 1. A k-regular undirected multigraph is
called a (one-sided) ε-expander if

λ2 ≤ (1− ε)k;

and a two-sided ε-expander if it also satisfies

λn ≥ −(1− ε)k.
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A sequence Gi = (Vi, Ei) of multigraphs with #Vi →∞ is said to be a one-sided (resp. two-sided)
expander family if there is an ε > 0 such that Gi is a one-sided (resp. two-sided) ε-expander for
all sufficiently large i.

Ramanujan proved a bound on how large ε can be in an expander family.

Theorem 63 (Ramanujan graph). Let k ≥ 1, and let Gi be a sequence of k-regular undirected
multigraphs on n vertices. Then

max(|λ2|, |λn|) ≥ 2
√
k − 1− o(1),

as n → ∞. A multigraph such that |λj | ≤ 2
√
k − 1 for any λj except λ1 is called a Ramanujan

multigraph.

Another way to characterize expansion is edge expansion, which quantifies how well subsets
of vertices are connected to the whole graph, or, said otherwise, how far the graph is from being
disconnected.

Definition 64 (Edge expansion). Let F ⊂ V be a subset of the vertices of G. The boundary
of F , denoted by ∂F ⊂ E, is the subset of the edges of G that go from F to V \ F . The edge
expansion ratio of G, denoted by h(G) is the quantity

h(G) = min
F⊂V,

#F≤#V/2

#∂F

#F
.

Note that h(G) = 0 if and only if G is disconnected. Edge expansion is strongly tied to
spectral expansion, as the following theorem shows.

Theorem 65 (Discrete Cheeger inequality). Let G be a k-regular one-sided ε-expander, then

ε

2
k ≤ h(G) ≤

√
2εk.

Expander families of multigraphs have many applications in theoretical computer science,
thanks to their pseudo-randomness properties: they are useful to construct pseudo-random
number generators, error-correcting codes, probabilistic checkable proofs, and, as we shall see,
cryptographic protocols. Among their properties, they have short diameter and rapidly mixing
walks.

Proposition 66. Let G be a k-regular one sided ε-expander. For any vertex v and any radius
r > 0, let B(v, r) be the ball of vertices at distance at most r from v. Then, there is a constant
c > 0, depending only on k and ε, such that

#B(v, r) ≥ min((1 + c)r,#V ).

In particular, this shows that the diameter of an expander is bounded by O(log n), where the
constant depends only on k and ε.

A random walk of length m is a path v1 → · · · → vm, defined by the random process that
selects vi uniformly at random among the neighbors of vi−1. If we start from some probability
distribution p on V and walk randomly form steps, the final vertex of the walk will be distributed
like (A/k)mp, where A is the adjacency matrix of the graph. The following theorem tells us
that, for two-sided expanders, this distribution converges exponentially fast in m to the uniform
distribution.
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End(E)

OK

Z[π]

Figure 6: A volcano of 3-isogenies (ordinary elliptic curves, Elkies case), and the corresponding
tower of orders inside the endomorphism algebra.

Proposition 67 (Mixing theorem). Let G = (V,E) be an undirected k-regular multigraph, let
A be its adjacency matrix, and let σ2 = max(|λ2|, |λn|). Then for every distribution p on V and
every m > 0, we have

∥u− (A/k)mp∥1 ≤
√
n
(σ2
k

)m
,

where u denotes the uniform distribution on V .

Proof. See [84, Chap. 21].

Random regular graphs typically make good expanders, but only a handful of deterministic
constructions is known, most of them based on Cayley graphs [57, 13, 39, 84]. In this part we
will encounter a construction based on isogenies which is essentially a Cayley graph. In Part IV
we will introduce a different construction which achieves Ramanujan’s bound.

Definition 68 (Isogeny graph). An isogeny graph is a multigraph whose vertices are isomorphism
classes of isogenous curves, and whose edges are isogenies between them.

Whenever we include an isogeny in an isogeny graph we will always include its dual too,
thus we will usually draw the (multi)graphs as undirected. Figure 6 shows a typical example of
isogeny graph over a finite field, where we restrict to isogenies of degree 3.

Note, however that there is an asymmetry in this definition: because we take isogenies up to
composition with isomorphisms on the right, several distinct isogenies may have the same dual.6
This means that isogeny graphs are not undirected in the sense previously defined, however they
will behave as such for most practical purposes.

10 Isogeny volcanoes
When we restrict to isogenies of a prescribed degree ℓ, we say that two curves are ℓ-isogenous;
by the dual isogeny theorem, this is a symmetric relation. Remark that being ℓ-isogenous is also
well defined up to isomorphism.

Let us start from the local structure: given an elliptic curve E and a prime ℓ, how many
isogenies of degree ℓ have E as domain? Thanks to Proposition 27, we know this is equivalent to

6This can only happen when the automorphism groups of two connected vertices have different sizes, and can
thus only happen at a finite number of vertices.
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Figure 7: Infinite 2-isogeny graph of elliptic curves over C without complex multiplication.

asking how many subgroups of order ℓ the curve has; but then we immediately know there are
exactly ℓ+ 1 isogenies whenever ℓ ̸= p.

For our first example, let us consider a curve E/C without complex multiplication, i.e., such
that End(E) = Z. Its ℓ-isogeny graph, i.e., the connected component of the graph of ℓ-isogenies
containing E, is (ℓ+1)-regular, and cannot have loops, otherwise that would provide a non-trivial
cyclic endomorphism of E of degree a power of ℓ. Hence, the ℓ-isogeny graph of E is an infinite
(ℓ+ 1)-tree, as pictured in Figure 7.

When we think about curves over finite fields, however, some of the isogenies may only be
defined in the algebraic closure, thus we would like to restrict our graphs to those isogenies
that are defined over Fq. Fortunately, we have a Swiss-army-knife to address this question: the
Frobenius endomorphism π. Formally, an isogeny ϕ is Fq-rational if and only if π(kerϕ) = kerϕ,
which suggests looking at the restriction of π to E[ℓ]. Assume ℓ ̸= p, then E[ℓ] is a group of
rank 2 and π acts on it like an element of GL2(Fℓ), up to conjugation. Clearly, the order of π in
GL2(Fℓ) is the degree of the smallest extension of Fq where all ℓ-isogenies of E are defined. But
we can tell even more by diagonalizing the matrix: π must have between 0 and 2 eigenvalues,
and the corresponding eigenvectors define kernels of rational isogenies. We thus are in one of the
following four cases7:

(0) π is not triangularizable over Fℓ, then it has no eigenvalues and E has no ℓ-isogenies.

(1.1) π has one eigenvalue of (geometric) multiplicity one, i.e., it is conjugate to a non-diagonal
matrix

(
λ ∗
0 λ

)
; then E has one ℓ-isogeny.

(1.2) π has one eigenvalue of multiplicity two, i.e., it acts like a scalar matrix
(
λ 0
0 λ

)
; then E has

ℓ+ 1 isogenies of degree ℓ.

(2) π has two distinct eigenvalues, i.e., it is conjugate to a diagonal matrix
(
λ 0
0 µ

)
with λ ̸= µ;

then E has two ℓ-isogenies.
7In the point counting literature, Case (0) is known as the Atkin case, and Case (2) as the Elkies case. See

Appendix B.
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Naturally, the number of eigenvalues of π depends on the factorization of its characteristic
polynomial x2 − tx+ q over Fℓ, or equivalently on whether ∆π = t2 − 4q is a square modulo ℓ.

But what about the global structure? Any curve E/Fq can be seen as the reduction modulo p
of some curve E/Q̄; thus it must inherit the connectivity structure of the isogeny graph of E/Q̄.
However, there is only a finite number of curves defined over Fq, and not all isogenies will be
Fq-rational. Thus, the infinite tree of Figure 7 must somehow “fold” or “be pruned” to fit inside
Fq.

For example, if E/Fq is a supersingular curve, we shall see later that its isogeny graph “folds”
to a finite (ℓ+ 1)-regular graph containing all supersingular curves, up to F̄q-isomorphisms.

For the case of ordinary curves, Kohel [47] introduced a notion of “depth” in the graph. Let
E/Fq have complex multiplication by an order O in a number field K = Q(π). Write OK for the
maximal order of K, then we know that Z[π] ⊂ O ⊂ OK . We have already seen that two elliptic
curves are isogenous if and only if they have the same endomorphism algebra K; Kohel refined
this statement as follows.

Proposition 69 (Kohel [47, Prop. 21]). Let E,E′ be elliptic curves defined over a finite field, and
let O,O′ be their respective endomorphism rings. Suppose that there exists an isogeny ϕ : E → E′

of prime degree ℓ, then O contains O′ or O′ contains O, and the index of one in the other divides
ℓ.

For a fixed prime ℓ, Kohel defines a curve E to be at the surface if vℓ([OK : End(E)]) = 0,
where vℓ is the ℓ-adic valuation. E is said to be at depth d if vℓ([OK : End(E)]) = d; the
maximal depth being dmax = vℓ([OK : Z[π]]), curves at depth dmax are said to be at the floor
(of rationality), and dmax is called the height of the graph of E. Kohel calls then an ℓ-isogeny
horizontal if it goes to a curve at the same depth, descending if it goes to a curve at greater
depth, ascending if it goes to a curve at lesser depth.

But how many horizontal and vertical ℓ-isogenies does a given curve have? The following
theorem gives a complete classification, also summarized in Table 1.

Theorem 70 (Kohel [47]). Let E/Fq be an ordinary elliptic curve, π its Frobenius endomor-
phism, and ∆K the fundamental discriminant of Q(π).

1. If E is not at the floor, there are ℓ+ 1 isogenies of degree ℓ from E, in total.

2. If E is at the floor, there are no descending ℓ-isogenies from E.

3. If E is at the surface, then there are
(
∆K

ℓ

)
+ 1 horizontal ℓ-isogenies from E (and no

ascending ℓ-isogenies).

4. If E is not at the surface, there are no horizontal ℓ-isogenies from E, and one ascending
ℓ-isogeny.

Proof. See [47, Prop. 21], or [80, Lecture 23].

This theorem shows that, away from the surface, isogeny graphs just look like ℓ-regular
complete trees of bounded height, with ℓ descending isogenies at every level except the floor.
However, the surface has a more varied structure:

(0) If
(
∆K

ℓ

)
= −1, there are no horizontal isogenies: the isogeny graph is just a complete tree

of degree ℓ + 1 (in the graph theoretic sense) at each level but the last. We call this the
Atkin case, as it is an extension of the Atkin case in the SEA point counting algorithm.

28



Isogeny types
→ ↑ ↓

vℓ(∆π/∆K) = 0 ℓ ∤ [OK : O] ℓ ∤ [O : Z[π]] 1 +
(
∆K

ℓ

)
ℓ ∤ [OK : O] ℓ | [O : Z[π]] 1 +

(
∆K

ℓ

)
ℓ−

(
∆K

ℓ

)
vℓ(∆π/∆K) ≥ 1 ℓ | [OK : O] ℓ | [O : Z[π]] 1 ℓ

ℓ | [OK : O] ℓ ∤ [O : Z[π]] 1

Table 1: Number and types of ℓ-isogenies, according to splitting type of the characteristic poly-
nomial of π.

(1) If
(
∆K

ℓ

)
= 0, there is exactly one horizontal isogeny ϕ : E → E′ at the surface. Since E′

also has one horizontal isogeny, it necessarily is ϕ̂, so the surface only contains two elliptic
curves, each the root of a complete tree. We call this the ramified case.

(2) The case
(
∆K

ℓ

)
= 1 is arguably the most interesting one. Each curve at the surface has

exactly two horizontal isogenies, thus the subgraph made by curves on the surface is two-
regular and finite, i.e., a cycle. Below each curve of the surface there are ℓ − 1 curves,
each the root of a complete tree. We call this the Elkies case, again by extension of point
counting.

Atkin:
(
∆K

ℓ

)
= −1 ramified:

(
∆K

ℓ

)
= 0 Elkies:

(
∆K

ℓ

)
= +1

Figure 8: The three shapes of volcanoes of 2-isogenies of height 1.

The three cases are summarized in Figure 8. Their looks have justified the name of isogeny
volcanoes for them [32]; in the Elkies case, we call crater the cycle at the surface.

We are left with one last question: how large are these graphs? To address this question, we
shall need the theory of complex multiplication.

11 Complex multiplication
We now introduce a powerful tool for the study of isogeny graphs. Our goal is to characterize
elliptic curves with complex multiplication; to do so, we start from elliptic curves defined over
the complex numbers.

Let K be a quadratic imaginary field and let Λ be a complex lattice such that Λ ⊂ K. Recall
that the order OΛ of Λ is the ring

OΛ = {α ∈ K | αΛ ⊂ Λ}, (5)

i.e. Λ is a fractional OΛ-ideal. Using Theorem 15 we associate to Λ a complex elliptic curve EΛ;
but then, by definition, OΛ ≃ End(EΛ). Said otherwise, EΛ has complex multiplication by OΛ.
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We have thus found a way to construct elliptic curves over the complex numbers with complex
multiplication by a specified order. Conversely, every curve with complex multiplication arises
this way. To show this, we look at the set of all isomorphism classes of elliptic curves with complex
multiplication by a specified orderO, which we will denote by Ell(O). Because homothetic lattices
give rise to isomorphic curves, fractional ideals a and ca will be associated to isomorphic curves
Ea and Eca as long as c ̸= 0. This justifies looking at fractional ideals modulo principal ideals.

Definition 71 (Ideal class group). Let O be an order of a number field K. Let I(O) be the
group of invertible fractional O-ideals, and let P(O) be the group of principal ideals.

The ideal class group of O is the quotient group

Cl(O) = I(O)/P(O).

It is a finite Abelian group; its order is called the class number of O, and denoted by h(O).

When O is the maximal order, Cl(O) is also called the class group of K. The class group is a
fundamental object in class field theory : when O is the maximal order of an imaginary quadratic
number field K, it is isomorphic to the Galois group of the maximal unramified Abelian extension
of K, also called the Hilbert class field of K; more generally, non-maximal orders are connected
to ramified Abelian extensions of K. The next theorem highlights a fundamental connection
between the class group and the modular j-invariant, and thus to elliptic curves with complex
multiplication by O.

Theorem 72. Let O be an order of an imaginary quadratic number field K, and let a1, . . . , ah(O)

be representatives of Cl(O). Then:

• K(j(ai)) is an Abelian extension of K;

• The j(ai) are all conjugate over K;

• The Galois group of K(j(ai)) is isomorphic to Cl(O);

• [Q(j(ai)) : Q] = [K(j(ai)) : K] = h(O);

• The j(ai) are integral, their minimal polynomial is called the Hilbert class polynomial of
O;

• Cl(O) acts freely and transitively on Ell(O), in particular #Ell(O) = h(O).

Proof. See [77, Ch. II] and [52, Ch. 10].

Hence, we have completely characterized all elliptic curves with complex multiplication by
an order O, up to isomorphism; in particular, we now know that j-invariants with complex
multiplication (sometimes called singular j-invariants) are algebraic integers. In the next section,
we shall say more on how Cl(O) acts on the set Ell(O).

Example 73. Let O = Z[i], so that O is the ring of integers of Q(i). It was already proven
by Gauss that Z[i] is a principal ideal domain, and thus that its class group is trivial. Up to
homothety, there is a unique lattice with order Z[i], and one such representative is Z[i] itself.

Recall the definition of the Eisenstein series

G2k(Λ) =
∑

ω∈Λ\{0}

ω−2k.
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But in our case Λ = Z[i], thus iΛ = Λ, hence

G2k(Λ) = G2k(iΛ) = i−2kG2k(Λ) = (−1)kG2k(Λ).

In particular G6(Λ) = −G6(Λ) = 0, hence, by the definition of the modular j-invariant (Theo-
rem 13), j(Z[i]) = 1728.

This shows that that the Hilbert class polynomial of Z[i] is X − 1728, and that the curve
E : y2 = x3 + x is the only curve over C, up to isomorphism, with complex multiplication
by Z[i]. In particular, Z[i] contains a subgroup of units {±1,±i}, which correspond to the four
automorphisms generated by the map

ι : E −→ E,

(x, y) 7−→ (−x, iy).

11.1 Complex multiplication for finite fields
At this point, we have a complete characterization of complex multiplication elliptic curves in
characteristic 0. What happens, then, in positive characteristic p?

There are at least two ways in which we could construct elliptic curves over a finite field with
endomorphism ring larger than Z. One is to start from a complex multiplication elliptic curve
E defined over a number field L, and then reduce at a place8 p over p. We write Ē = E(p) for
the reduction of E at the place p; if we do this carefully (for example, we must avoid singular
reductions), non-trivial endomorphisms of E will descend to non-trivial endomorphisms of Ē.

Theorem 74 (Deuring). Let E be an elliptic curve over a number field L, with complex multi-
plication by an order O ⊂ K. Let p be a place of L over p, and assume that E has non-singular
reduction Ē modulo p. The curve Ē is supersingular if and only if p has only one prime of K
above it (p fully ramifies or remains prime in k).

Suppose that p splits completely in K. Let f be the conductor of O, and write f = prf0,
where p ∤ f0. Then:

• Ē has complex multiplication by the order in K with conductor f0.

• If p ∤ f , then the map ω 7→ ω(p) defines an isomorphism of End(E) and End(Ē).

Proof. See [52, Ch. 13].

Note that p > 2 splits in K if and only if the fundamental discriminant ∆K of K is a square
modulo p, i.e. if the Legendre symbol

(
∆K

p

)
is equal to 1. To cover the case p = 2 with the same

notation, we may use Kronecker’s extension of Legendre’s symbol, which is equal to 1 if and only
if p splits.

Example 75. We have seen that the elliptic curve E/Q defined by y2 = x3 + x has complex
multiplication by Z[i]. Assume p > 2; by virtue of the theorem above, E(p) is supersingular if
and only if (−4/p) = −1, i.e., if and only if p ≡ 3 mod 4.

In particular, this implies that −1 is not a square modulo p, and thus that the automorphism
(x, y) 7→ (−x, iy) does not descend to an Fp-automorphism of E(p). It does, however, descend
to an Fp2-automorphism, showing that End(E(p)) contains is not commutative, but contains a
subring isomorphic to Z[i].

8A place is just a fancy name for a prime ideal of L.
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Another approach is to directly construct a curve E/Fq so that its Frobenius endomorphism
is in the desired order. Recall that the Frobenius endomorphism π satisfies a quadratic equation

π2 − tπ + q = 0,

with discriminant ∆π = t2− 4q ≤ 0. Setting the case ∆π = 0 aside, End(E) necessarily contains
a subring Z[π], isomorphic to an order of Q(

√
∆π). It turns out that these approach is essentially

equivalent to the previous one, as a famous theorem shows.

Theorem 76 (Deuring’s lifting theorem). Let E0 be an elliptic curve in characteristic p, with
an endomorphism ωo which is not trivial. Then there exists an elliptic curve E defined over
a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place p
of L lying above p, such that E0 is isomorphic to E(p), and ω0 corresponds to ω(p) under the
isomorphism.

Proof. See [52, Ch. 13].

12 Isogenies and the CM action
From now on we abbreviate “complex multiplication” by CM. We saw in Theorem 72 that the
class group Cl(O) acts on the set Ell(O) of CM elliptic curves over C with complex multiplication
by O. After having identified Cl(O) with the Galois group of the Hilbert class field, this action
is just the Galois action, however we are still missing an explicit identification.

Additionally, when working with CM curves over a finite field, it becomes clumsy (and even
computationally infeasible) to go back to C in order to identify the curves with the generators
of the Hilbert class field and then act on them by Galois. Instead, we will now give the action of
Cl(O) on Ell(O) explicitly, without any mention of class field theory.

From now on we let O be an order in a number field K, we denote by Ellq(O) the set of
elliptic curves over Fq with CM by O, and we assume that it is non-empty. Because curves in
Ellq(O) are connected exclusively by horizontal isogenies, we will also call it a horizontal isogeny
class.

Let E ∈ Ellq(O), let a be an invertible ideal in O, of norm coprime to q, and define the
a-torsion subgroup of E as

E[a] = {P ∈ E(F̄q) | σ(P ) = 0 for all σ ∈ a}.

This subgroup is the kernel of a separable isogeny ϕa : E → E/E[a]; it can be proven that ϕa
is horizontal, and that its degree is the norm of a. By composing with an appropriate purely
inseparable isogeny, the definition of ϕa is easily extended to invertible ideals of any norm.9

Writing a·E for the isomorphism class of the image of ϕa, we get an action · : I(O)×Ellq(O)→
Ellq(O) of the group of invertible ideals of O on Ellq(O). It is then apparent that endomorphisms
of E correspond to principal ideals in O, and act trivially on Ellq(O). Since the action factors
through principal ideals, it natural to consider the induced action of Cl(O) on Ellq(O). The
main theorem of complex multiplication states that this action is simply transitive.

Theorem 77 (Complex multiplication). Let Fq be a finite field, O ⊂ Q(
√
−D) an order in a

quadratic imaginary field, and Ellq(O) the set of F̄q-isomorphism classes of curves with complex
multiplication by O.

9A more formal treatment encompassing inseparable isogenies will be given in Section 20.
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Number fields Elliptic curves
Order Endomorphism ring
Integral invertible ideal Horizontal isogeny
Integral principal ideal Endomorphism
Conjugate ideal Dual isogeny
Ideal norm Isogeny degree
Ideal class Hom(E,E′)

Table 2: Correspondences of complex multiplication.

Assume Ellq(O) is non-empty, then it is a principal homogeneous space for the class group
Cl(O), under the action

Cl(O)× Ellq(O) −→ Ellq(O),
(a, E) 7−→ a · E

defined above.

Being a principal homogeneous space (also called a torsor) means that, for any fixed base
point E ∈ Ellq(O), there is a bijection

Cl(O) −→ Ellq(O)
Ideal class of a 7−→ Isomorphism class of a · E.

This confirms what we already knew, that #Ellq(O) = h(O). We summarize in Table 2 the
correspondence between ideals and isogenies given by complex multiplication. We now have all
the necessary element to answer our original question on the size of ℓ-isogeny volcanoes.

Corollary 78. Let O be a quadratic imaginary order, and assume that Ellq(O) is non-empty.
Let ℓ be a prime such that O is ℓ-maximal, i.e., such that ℓ does not divide the conductor of O.
All ℓ-isogeny volcanoes of curves in Ellq(O) are isomorphic. Furthermore, one of the following
is true.

(0) If the ideal (ℓ) is prime in O, then there are h(O) distinct ℓ-isogeny volcanoes of Atkin
type, with surface in Ellq(O).

(1) If (ℓ) is ramified in O, i.e., if it decomposes as a square l2, then there are h(O)/2 distinct
ℓ-isogeny volcanoes of ramified type, with surface in Ellq(O).

(2) If (ℓ) splits as a product l · l̂ of two distinct prime ideals, then there are h(O)/n distinct
ℓ-isogeny volcanoes of Elkies type, with craters in Ellq(O) of size n, where n is the order
of l in Cl(O).

But we can extract even more information from the group action. Assume that the Frobenius
endomorphism splits modulo ℓ, i.e., that

π2 − tπ + q = (π − λ)(π − µ) mod ℓ

for two distinct eigenvalues λ, µ of the action of π on E[ℓ]. Associate to λ and µ the prime ideals
a = (π − λ, ℓ) and â = (π − µ, ℓ), both of norm ℓ; then E[a] ⊂ E[ℓ] is the eigenspace of λ, and
E[â] ⊂ E[ℓ] that of µ. Because aâ = âa = (ℓ), the ideal classes a and â are the inverse of one
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Figure 9: An isogeny cycle for an Elkies
prime ℓ, with edge directions associated
with the Frobenius eigenvalues λ and µ.

Figure 10: Graph of horizontal isogenies on
12 curves, with isogenies of three different
degrees (represented in different colors).

another in Cl(O), therefore the isogenies ϕa : E → a · E and ϕâ : a · E → E are dual to one
another (up to isomorphism).

Hence, we see that the eigenvalues λ and µ define two opposite directions on the ℓ-isogeny
crater, independent of the starting curve, as shown in Figure 9. The size of the crater is the
order of (π − λ, ℓ) in Cl(O), and the set Ellq(O) is partitioned into craters of equal size. What
we have here is a very basic example of Cayley graph.

Definition 79 (Cayley graph). Let G be a group and S ⊂ G be a symmetric subset (i.e., s ∈ S
implies s−1 ∈ S). The Cayley graph of (G,S) is the undirected graph whose vertices are the
elements of G, and such that there is an edge between g and sg if and only if s ∈ S.

The graph in Figure 9 is isomorphic to a Cayley graph of Cl(O) for an edge set S = {a, â},
but, unlike the Cayley graph itself, its vertex set is Ellq(O), which is in bijection with Cl(O) only
up to automorphism.10 This graph is sometimes called the Schreier graph of (Cl(O), S,Ellq(O)),
to distinguish it from the proper Cayley graph.

Is this graph, a cycle when seen as an undirected 2-regular graph, an expander? By properly
arranging vertices, its adjacency matrix is circulant with two non-zero entries per row, hence its
eigenvalues are λt = e2iπt/n+ e−2iπt/n for t = 0, . . . , n−1 where n = h(O). In particular λ0 = 2,
and λ1 → 2 as n→∞, proving that cycles are not expanders; and indeed, it is obvious that this
graph has large diameter relative to the number of vertices, contradicting Proposition 66.

It turns out that we can obtain expanders in this way by “gluing many isogeny craters to-
gether”, as represented in Figure 10, by taking just a slightly larger set S ⊂ Cl(O). The following
theorem is an instance of a classic technique to construct expanders from Cayley graphs (see [84,
Chap. 16]).

Theorem 80 (Jao, Miller, Venkatesan [41]). Let O be a quadratic imaginary order, and assume
that Ellq(O) is non-empty. Let δ > 0, and define the graph G on Ellq(O) where two vertices
are connected whenever there is a horizontal isogeny between them of prime degree bounded by
O((log q)2+δ).

Then G is a regular graph and, under the generalized Riemann hypothesis for the characters
of Cl(O), there exists an ε independent of O and q such that G is a two-sided ε-expander.

10Said otherwise, any vertex could be mapped to the identity of Cl(O), and “we forgot which one it was”.
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Exercises
Exercise II.1. Prove that Proposition 57 implies the finite field case of Theorems 55 and 56.
Then, prove the converse.

Exercise II.2. Prove that the dual of a horizontal isogeny is horizontal, and that the dual of a
descending isogeny is ascending.

Exercise II.3. Prove that the height of a volcano of ℓ-isogenies is vℓ(fπ), the ℓ-adic valuation
of the Frobenius endomorphism.

Exercise II.4. Let X2 − tX − q be the minimal polynomial of π, and suppose that it splits as
(X − λ)(X − µ) in Zℓ (the ring of ℓ-adic integers). Prove that the volcano of ℓ-isogenies has
height vℓ(λ− µ).

Exercise II.5. Prove that E[ℓ] ⊂ E(Fq) implies ℓ|(q − 1).

Exercise II.6. Let ω ∈ C be a cube root of unity, the ring Z[ω] is also known as the Eisenstein
integers. Determine all elliptic curves with complex multiplication by Z[ω].

Exercise II.7. Prove that −163 is not a square modulo all odd primes < 41. (Hint: Q(
√
−163)

has class number 1).

Exercise II.8. Find a prime power q and an elliptic curve E/Fq such that the 3-isogeny volcano
of E is the same as the one in Figure 6.
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Part III

Cryptographic group actions
In this part we introduce our first isogeny based cryptographic protocols. We start with the
classic elliptic curve Diffie–Hellman key exchange (ECDH), then we introduce a generalization
of Diffie–Hellman based on the theory of complex multiplication and we present a particularly
efficient instantiation named CSIDH. Finally we discuss security and rapidly survey other schemes
based on complex multiplication.

13 Diffie–Hellman key exhange
Elliptic curves are largely present in modern technology thanks to their applications in cryptog-
raphy. The simplest of these applications is the Diffie–Hellman key exchange, a cryptographic
protocol by which two parties communicating over a public channel can agree on a common
secret string unknown to any other party listening on the same channel.

The original protocol was invented in the 1970s by Whitfield Diffie and Martin Hellman [28],
and constitutes the first practical example of public key cryptography. The two communicating
parties are customarily called Alice and Bob, and the snooping third party is represented by the
character Eve (for eavesdropper). To set up the protocol, Alice and Bob agree on a set of public
parameters:

• A large enough prime number p, such that p− 1 has a large enough prime factor;

• A multiplicative generator g ∈ Z/pZ.

Then, Alice and Bob perform the following steps:

1. Each chooses a secret integer in the interval ]0, p − 1[; call a Alice’s secret and b Bob’s
secret.

2. They respectively compute A = ga and B = gb.

3. They exchange A and B over the public channel.

4. They respectively compute the shared secret Ba = Ab = gab.

The protocol can be easily generalized by replacing the multiplicative group (Z/pZ)× with
any other cyclic group G = ⟨g⟩. From Eve’s point of view, she is given the knowledge of the
group G, the generator g, and Alice’s and Bob’s public data A,B ∈ G; her goal is to recover
the shared secret gab. This is known as the Computational Diffie–Hellman (CDH) problem. An
even simpler problem is the following.

Definition 81 (Discrete logarithm). Let G be a cyclic group generated by an element g. For
any element A ∈ G, we define the discrete logarithm of A in base g, denoted logg(A), as the
unique integer in the interval [0,#G[ such that

glogg(A) = A.

It is clear that if Eve can compute discrete logarithms in G efficiently, then she can solve
CDH. The converse is not true in general, but it is generally assumed to be. At any rate, the
best attacks against CDH use a discrete logarithm solver, this is why we usually say that the

36



Public parameters Finite field Fp, with log2 p ≈ 256,
Elliptic curve E/Fp, such that #E(Fp) is prime,
A generator P of E(Fp).

Alice Bob
Pick random secret 0 < a < #E(Fp) 0 < b < #E(Fp)
Compute public data A = [a]P B = [b]P
Exchange data A −→ ←− B
Compute shared secret S = [a]B S = [b]A

Figure 11: The Diffie–Hellman protocol over elliptic curves

Diffie–Hellman protocol is based on the hardness of the discrete logarithm problem in the group
G.

We know algorithms to compute discrete logarithms in a generic group G that require O(
√
q)

computational steps (see [43]), where q is the largest prime divisor of #G; we also know that
these algorithms are optimal for abstract cyclic groups [75]. For this reason, G is usually chosen
so that the largest prime divisor q has size at least log2 q ≈ 256. However, the proof of optimality
does not exclude the existence of better algorithms for specific groups G. And indeed, algorithms
of complexity better than O(

√
#G) are known for the case G = (Z/pZ)× [43], thus requiring

parameters of considerably larger size to guarantee cryptographic strength.
On the contrary, no algorithms better than the generic ones are known when G is a subgroup

of E(k), where E is an elliptic curve defined over a finite field k. This led Miller [59] and
Koblitz [45, 46] to suggest, in the 1980s, to replace (Z/pZ)× in the Diffie–Helman protocol by
the group of rational points of an elliptic curve of (almost) prime order over a finite field. The
resulting protocol is summarized in Figure 11.

The Elliptic Curve Diffie–Hellman protocol (ECDH) is today a widely adopted standard, used
for example to establish secure TLS connection, the encrypted layer of Internet. Other protocols
built on top of the difficulty of solving the elliptic curve discrete logarithm problem, such as the
ECDSA signing algorithm, are also widely in use today.

In recent years, however, there has been a push to amend cryptographic standards in view of
the threat posed by general purpose quantum computers. It is well known, indeed, that Shor’s
algorithm [74] would solve the factorization and the discrete logarithm problems in polynomial
time on a quantum computer, thus sealing the fate of RSA, ECDH, and any other protocol based
on them.

In the next sections we shall present cryptographic group actions, a generalization of discrete
logarithm groups that is believed to be, in general, resistant to attacks by quantum computers.
The only examples of quantum-resistant cryptographic commutative group actions currently
known are based on the theory of complex multiplication.

14 Cryptographic group actions
In his seminal unpublished work [18], Couveignes defined a generalization of discrete logarithm
groups called hard homogeneous spaces, a fancy name for a group action with some associated
hard computational problem. Group actions had previously been considered by Brassard and
Yung [9], although their focus differs slightly from Couveignes’. We shall follow here the more
modern treatment of [1], where these are called cryptographic group actions.

Below we write (G,X, ·) for the action of a group G on a set X, denoted by x′ = g · x.
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Definition 82 (Effective Group Action). A group action (G,X, ·) is effective if the following
properties are satisfied:

1. The group G is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element
in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group element in
G.

(c) Sampling, i.e., to sample an element g from a distribution on G statistically close to
uniform.

(d) Operation, i.e., to compute gh for any g, h ∈ G.

(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.

(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string
x̂ that canonically represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string
representation is known.11

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G
and any x ∈ X, outputs g · x.

In practice, we will mostly deal with regular group actions, i.e. such that for any x, x′ ∈ X
there is a unique g ∈ G such that g · x = x′. Then, #G = #X. Additionally, we will only
consider Abelian group actions.

Definition 83. Let (G,X, ·) be an effective group action. Define the functions

fx : G→ X,

g 7→ g · x,
πg : X → X,

x 7→ g · x.

The group action is said to be:

1. One-way if the family of functions fx is one-way.

2. Weakly unpredictable if the family of permutations πg is weakly unpredictable, i.e., if given
a list of random pairs (x, πg(x)) it is hard to guess πg(x∗) for a random x∗ not in the list.

3. Weakly pseudorandom if the family of permutations πg is weakly pseudorandom, i.e., if it
is hard to distinguish between a list of random pairs (x, πg(x)) and one of random pairs
(x, π(x)), where π is a uniformly drawn permutation of X.

Discrete logarithm groups are special cases of cryptographic group actions. Indeed, if H is a
group of order n, we let X ⊂ H be the subset of elements of order n, and we let G = (Z/nZ)×.
Then G acts regularly on X, and it is easy to check that one-wayness, weak unpredictability and

11Like a group generator, the origin does not necessarily have a distinguishing mathematical property, and can
be taken arbitrarily.
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weak pseudorandomness correspond to the difficulty of, respectively, discrete logarithm, CDH
and DDH12.

Likewise, we can generalize the Diffie–Hellman key exchange to cryptographic (Abelian) group
actions. The system parameters are the effective group action (G,X, ·) with its origin x0 ∈ X.
A secret key is a random element g ∈ G, and the associated public key is g ·x0. If Alice and Bob
have keypairs (gA, xA) and (gB , xB), respectively, the shared secret is derived as

gA · xB = gAgB · x0 = gBgA · x0 = gB · xA.

Of course, we want to instantiate this protocol with group actions that are not just a discrete
logarithm group in disguise. For example, for the group action of complex multiplication, the
three hardness properties correspond to the following three problems.

Problem 1 (Group action inverse problem, Vectorization). Given two elliptic curves E,E′ with
complex multiplication by an order O, find an ideal (class) a ⊂ O such that E′ = a · E.

Problem 2 (Parallelization, Group action CDH). Let E,E′ be elliptic curves with complex
multiplication by O. Let a ∈ Cl(O). Given (E, a · E,E′), compute a · E′.

Problem 3 (Group action DDH). Let E,E′ be elliptic curves with complex multiplication by
O. Let a ∈ Cl(O). Given a tuple (E, a · E,E′, E′′), decide whether E′′ = a · E′.

Each of these problems appears to be legitimately hard, when the isogeny class is large
enough. We haven’t shown yet that the complex multiplication group action is an effective one,
though. We are going to see there is a catch.

15 Evaluating the CM group action
At the same time as he introduced the formalism of cryptographic group actions, Couveignes also
indicated the complex multiplication group action as a candidate. His ideas were independently
rediscovered by Rostovtsev and Stolbunov [71, 78], who were the first to point out that the
schemes thus obtained are plausibly post-quantum.

However, in order to fulfill the definition of an effective group action, we need to be able to
take an arbitrary element a ∈ Cl(O), an arbitrary curve E ∈ Ellq(O), and to evaluate a ·E. But,
if we do not choose carefully an ideal representative for a, the norm N(a) = deg ϕa may contain
arbitrarily large prime factors, and we do not necessarily have an efficient representation for it.
The best algorithm known for an arbitrary ideal representative has subexponential complexity
in log(q) [42], which overshoots our definition of “efficient”. Instead, following Rostovtsev and
Stolbunov [71], we may define a variant of the key exchange based on walks in a Cayley graph
of Cl(O), which always picks “efficient” ideal representatives.

As an example, let us consider again the action of exponentiation on a discrete logarithm
group. Let H = ⟨g⟩ be a cyclic group of order p, let D = {s1, . . . , sn} ⊂ (Z/pZ)× be a generating
set such that σ ∈ D implies σ−1 /∈ D, and let S = D ∪ D−1 so that S is symmetric as in
Definition 79. Then, (Z/pZ)× acts on H minus the identity by

e · g0 = ge0 for e ∈ (Z/pZ)× and g0 ∈ H \ {1}.

We may thus define the Schreier graph of ((Z/pZ)×, S,H \ {1}), which is isomorphic to the
Cayley graph ((Z/pZ)×, S); an example for p = 13 is given in Figure 12.

12DDH is the decisional variant of CDH: distinguish (g, h, ga, ha) from a random tuple (g, h, ga, hb) of group
elements

39
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g12
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g9
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g10

g7

g1

x 7→ x2

x 7→ x3

x 7→ x5

Figure 12: Schreier graph of the generators of a group of order 13 under the action of S =
{2, 3, 5, 2−1, 3−1, 5−1} ⊂ (Z/13Z)×.

Public parameters A group G of prime order p,
A generating set D ⊂ (Z/pZ)× such that σ ∈ D ⇒ σ−1 /∈ D,
A generator g of G.

Alice Bob
Pick random secret a =

∏
s∈D s

ai b =
∏

s∈D s
bi

Compute public data ga = a · g gb = b · g
Exchange data ga −→ ←− gb
Compute shared secret gab = a · (gb) gab = b · (ga)

Figure 13: Key exchange protocol based on random walks in a Schreier graph.

As already seen, a random walk in this graph is a sequence of random edges starting from
some vertex g0 and ending in some vertex g1. However we see that, because the group action of
(Z/pZ)× is Abelian, the order in which the edges are taken from the set S does not matter for
determining g1: only matters the multiplicity of each s ∈ S. We thus define a non-backtracking
random walk as a tuple of multiplicities (e1, . . . , en) ∈ Zn, associated to the element

e =

n∏
i=1

seii ∈ (Z/pZ)×,

defining the walk g0 → e · g0.
We can now define a key exchange protocol where the secrets are non-backtracking random

walks, and the public data are vertices of the Schreier graph. The protocol is summarized in
Figure 13.

Because ga = a · g = ga, it is evident that this protocol is closely related to the Diffie–
Hellman protocol on the group G, the only difference being that the secret exponents a, b are
drawn from an unusual distribution. While this example instance is of no practical interest, its
instantiation using a Schreier graph of the complex multiplication group action yields a usable
variant of Couveignes’ key exchange. We fix a set S of small norm representatives of ideal
classes of Cl(O), corresponding to small degree isogenies between curves in Ellq(O). Instead
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E0

EA

EAB

E0EB

EAB

Figure 14: Example of key exchange on the isogeny graph of Figure 10. Alice’s path is represented
by continuous lines, Bob’s path by dashed lines. On the left, Bob computes the shared secret
starting from Alice’s public data. On the right, Alice does the analogous computation.

of uniformly sampling secrets from Cl(O), we sample non-backtracking random walks in the
Schreier graph of (Cl(O), S,Ellq(O)), and exchange j-invariants as public data. The walks can
be computed efficiently as a composition of small degree isogenies, as discussed in Section 12.
Using Theorem 80, we know that the graph is an expander as soon as #S ∼ (log q)2, thus we can
approach the uniform distribution on Ellq(O) by taking sufficiently long walks. Hence we have
proved that this mode of sampling secrets can be as good as sampling uniformly from Cl(O),
from a security standpoint. The protocol is illustrated in Figure 14.

16 CSIDH and oriented supersingular curves
Even with the adjustments of the previous section, the protocol is far from practical: in 2012
Stolbunov managed to run a 108 bit secure implementation in around 5 minutes [79]. To under-
stand why, let’s recap how the CM group action is computed. We have a list of primes splitting
in O, which are the norms of the ideals in S. For one such prime ℓ, the Frobenius endomorphism
splits as

π2 − tπ + q = (π − λ)(π − µ) mod ℓ,

where we call λ and µ the eigenvalues of Frobenius modulo ℓ. Thus the ideals in S are (π−λ, ℓ)
and (π − µ, ℓ), corresponding to the two directions on the crater of the ℓ-isogeny volcano (see
Section 12).

A secret key is a product of ideals in S

s =
∏
ai∈S

aeii . (6)

For simplicity, we may assume that the exponents ei are taken in a box [−B,B],13 then the size
of the key space is at most (2B + 1)#S .

On the other hand, the action of s is evaluated by computing ei isogenies of degree N(ai),
for each ai ∈ S, thus at most #S · B isogenies. We see that, for a fixed set S, increasing B
only increases the key space polynomially, while it also increases the running time linearly. On

13Negative values represent the dual direction to (π − λ, ℓ), associated to the ideal (π − µ, ℓ).
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Input: A curve E, its order N = #E(Fq),
a prime ℓ such that (π − 1)(π − q) = 0 mod ℓ with q ̸= 1 mod ℓ.

Output: The curve (π − 1, ℓ) · E.
1. repeat
2. Pick a random point P on E;
3. Set K = [N/ℓ]P ;
4. until K is not the point at infinity;
5. Compute the isogeny ϕ : E → E/⟨K⟩ using Velu’s formulas;
6. return E/⟨K⟩.

Figure 15: Evaluation of the CM group action using a special prime.

the other hand, for a fixed B, increasing #S exponentially increases the key space, while it only
increases the running time linearly. Thus, to strike a balance between security and running time,
we need to use a fairly large set S: values in the hundreds are typical for #S, and all ideals in S
must have different (prime) norms to avoid duplicates. Hence, evaluating the action of s implies
computing up to #S ·B isogenies of degrees as large as a few thousands!

What algorithms do we have at our disposal to compute these isogenies? We have a curve
E/Fq, a prime ℓ and a direction π − λ. Without further assumptions, we need to find a field
extension Fqn such that E[ℓ] ⊂ E(Fqn), then find the null subspace of π − λ, and finally apply
Vélu’s formulas. With the extension degree n generally growing as O(ℓ), it is no surprise that
evaluating one Cl(O)-action takes several minutes. Better algorithms exist, but they still require
O(ℓ3) operations to find the isogeny.

Is it possible to do better? By choosing parameters carefully, we may hope to limit the
degrees of the extensions where the E[ℓ] live, as first proposed in [25]. Suppose, for example,
that π|E[ℓ] acts like

(
1 0
0 q

)
, with q ̸= 1 mod ℓ. In this case, there is an easily recognizable

direction associated to the eigenvalue 1: the corresponding eigenspace is the unique cyclic group
of Fq-rational ℓ-torsion points. A point in this eigenspace can be computed by taking a random
point in E(Fq), and multiplying it by #E/ℓ: there is a (ℓ − 1)/ℓ chance that the result is not
zero, and can thus be used to compute the ℓ-isogeny of direction π − 1 using Vélu’s formulas.
This algorithm is illustrated in Figure 15.

We can do even better. Suppose that π|E[ℓ] acts like
(
1 0
0 −1

)
, then both directions are

recognizable: π − 1 is obtained like before, while π + 1 corresponds to those points such that
π(x, y) = (x,−y), i.e. the points whose x-coordinate is in Fq and whose y-coordinate is in Fq2 .
A simple modification to the algorithm in Figure 15 lets us handle both cases at once.14 This
constraint on π forces two conditions:

1. N(π) = q = −1 mod ℓ,

2. Tr(π) = t = 0 mod ℓ,

and this for each of the norms ℓ in the set S.
The first condition is easy to fulfill: choose a prime q = f ·

∏
i ℓi− 1 for some cofactor f . The

second one is much harder, because it essentially requires to find a curve E/Fq with a specific
trace t. For E an ordinary curve, the best technique at our disposal consists, essentially, in taking
random curves E/Fq and computing #E, until a suitable one is found [25].

14Alternatively, we may note that E[(π + 1, ℓ)] is the image of Ẽ[(π − 1, ℓ)], where Ẽ is a quadratic twist of E.
Then, acting by (π − 1, ℓ) on Ẽ and then computing a twist has the same effect as acting by (π + 1, ℓ) on E.
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Public parameters A set of primes {ℓ1, . . . , ℓm}, a prime q = 4
∏
ℓi − 1,

A supersingular elliptic curve E0 defined over Fq,
For each ℓi the prime ideal li = (ℓi, π − 1),

Alice Bob
Pick random secret (a1, . . . , am) ∈ [−B,B]m (b1, . . . , bm) ∈ [−B,B]m

Compute public data EA = (
∏

lai
i ) · E0 EB =

(∏
lbii

)
· E0

Exchange data EA −→ ←− EB

Compute shared secret EAB = (
∏

leii ) · EB EAB =
(∏

lbii

)
· EA

Figure 16: CSIDH protocol, based on non-backtracking random walks in a supersingular CM-like
graph.

CSIDH. On the other hand, if we enforce the constraints above for enough primes ℓ (it is
enough that

∏
ℓ > 2

√
q), then we effectively force t to be 0, and thus E to be supersingular. We

saw that supersingular curves do not have complex multiplication, but it turns out there still is
a way to define an action of Z[π] on a set of supersingular elliptic curves.

Take a prime field Fq, then any supersingular curve E/Fq has trace 0, i.e. its Frobenius
satisfies the equation

π2 = −q.

Hence Z[π] is a quadratic imaginary order and a subring of End(E); it is, in fact, (almost) the
subring of Fq-rational endomorphism of E.15 Then, Cl(Z[π]) acts on the set of Fq-isomorphism
classes of supersingular curves, like in the CM case. This fact was first observed in [27] and then
leveraged in [10] to define the key exchange protocol CSIDH16, the Commutative Supersingular
Isogeny Diffie–Hellman protocol.

CSIDH uses a prime q of the form 4 ·
∏

i ℓi − 1, and the supersingular curve y2 = x3 − x as
starting point, so that π|E[ℓi] =

(
1 0
0 −1

)
for all ℓi. By cleverly optimizing computations, CSIDH

achieves a key-exchange at the 128 (classical) bits security level in fractions of a second. The
scheme is summarized in Figure 16.

Supersingular curves over a prime field and the CSIDH group action are a special case of
a more general setting called orientations of supersingular curves. Oriented curves are pairs
(E,O ↪→ End(E)), where E is a supersingular curve and O ↪→ End(E) is an embedding of a
quadratic imaginary order inside End(E). As Kohel and Coló showed [15], Cl(O) acts on these
curves like in the CM case, and this was leveraged in [23] to define an analogue of CSIDH, named
SCALLOP, based on orientations by arbitrary orders.

17 Security and quantum computers
We now do a quick review of the security of protocols based on complex multiplication. The
cornerstone of isogeny based cryptography is the isogeny path problem: given isogenous curves E,
E′, find an isogeny of smooth degree between them. CM based protocols are no exception: find
an isogeny walk between E and E′, and the group action inverse problem is solved. Naturally,
the first parameter to look at is the size of the isogeny class of E,E′: too small, and we can find
the isogeny by brute force.

15There are, in fact, two possibilities for EndFp (E), namely Z[π] or Z[(π + 1)/2].
16Pronounced sea-side.
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For simplicity we assume that E and E′ have complex multiplication by a maximal order.
Indeed, if this is not the case, we may use the theory of isogeny volcanoes to find ascending
paths from E and E′ to two curves Ê, Ê′ with complex multiplication by the maximal order.17
Then, we are left with the problem of finding a horizontal isogeny between Ê and Ê′. Since the
horizontal isogeny class of OK is the smallest among all horizontal isogeny classes of curves with
complex multiplication by some O ⊂ OK , this is an easier problem to solve, as first noted by
Galbraith, Hess and Smart [34, 38].

Problem 4 (Horizontal isogeny path problem). Let Fq be a finite field, and let OK be the ring
of integers of a quadratic imaginary field K = Q(

√
−D). Given two elliptic curves E,E′ defined

over Fq with complex multiplication by OK , find an isogeny E → E′ of smooth degree.

The size of the horizontal isogeny class is h(OK); it is known by the class number formula
that this is in O(

√
∆K log∆K), and, for the typical isogeny class18, ∆K = O(q). The best

generic attack against the Horizontal isogeny path problem is a Pollard-rho style algorithm,
performing random walks from E and E′ until a collision is found [35]. Its average complexity
is O(

√
h(OK)), thus O(q1/4) for a typical isogeny class. This justifies choosing a prime q of 4n

bits, for a security level of 2n, and this is indeed and what CSIDH does [10].
However, we must also ensure that the key space covers the whole Ellq(OK), possibly ap-

proaching the uniform distribution. This means that isogeny walks, as in Eq. (6), must be
sampled from a relatively large subset S ⊂ Cl(OK), implying that #S ≫ log q. For efficiency
reasons, practical instantiations take S just large enough: #S ∼ (log q)/2;19 however it will not
go unnoticed that this choice is insufficient to apply Theorem 80. We may as well live with it,
changing our security assumptions to take into account the biased distributions given by random
walks in graphs that are not provably expander families, but behave in practice as such.

Quantum security. The discussion on security would not be complete without surveying
quantum attacks. Indeed, the main selling point of isogeny-based key exchange protocols is their
(conjectured) resistance to quantum algorithms.

Couveignes’ Hard Homogeneous Spaces setting is scarily similar to the Diffie–Hellman key
exchange, which is indeed a special case of it. Shor’s algorithm [74] solves the discrete loga-
rithm problem in polynomial time on a quantum computer, and thus breaks the Diffie–Hellman
protocol. But is there a variant of Shor’s algorithm that also breaks group actions?

Definition 84 (Hidden Subgroup Problem (HSP)). Let f : G→ X be a function from a group
G to a set X. Assume that there is a subgroup H ⊂ G such that f(g) = f(g′) if and only
if g′ ∈ gH. The function f is said to hide the subgroup H, and the hidden subgroup problem
consists in finding generators for H, given access to f .

It is well known that Kitaev’s generalization of Shor’s algorithm [44] solves the hidden sub-
group problem in quantum polynomial time, when G is a finitely generated abelian group.

Definition 85 (Hidden Shift Problem (HShP)). Let f0, f1 : G → X be two injective functions
from a group G to a set X. Assume that there is an element s ∈ G such that f0(g) = f1(gs) for
any g ∈ G. The element s is called a hidden shift for f0, f1, and the hidden shift problem is to
find s, given access to f0 and f1.

17Ascending an ℓ-volcano can be done efficiently as long as ℓ is polynomially sized. However SCALLOP [23]
uses supersingular curves oriented by a non-maximal quadratic order of large prime conductor, a case where it is
not currently known how to efficiently walk to the maximal order.

18Including the isogeny class of trace zero supersingular curves used in CSIDH.
19Additional constraints in CSIDH force #S to grow as (log q)/(loglog q).
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For any group G, the hidden shift problem reduces to the hidden subgroup problem for the
(generalized) dihedral group G⋊C2.20 No generalization of Kitaev’s algorithm is known for non-
abelian groups, but a different family of algorithms, due to Kuperberg [49, 50] and Regev [69],
solves the HShP in subexponential quantum time exp(

√
log#G).

As first noted in [12] and then improved in [7, 40, 8, 63], Kuperberg’s algorithm can be used
to solve the Horizontal isogeny path problem as follows: let E,E′ be the two curves with complex
multiplication by OK , define two functions f0, f1 : Cl(OK) → Ellq(OK) as f0(a) = a · E and
f1(a) = a · E′, then the hidden shift defines a horizontal isogeny between E and E′.

Kuperberg’s algorithm is a game changer for protocols based on complex multiplication:
indeed, to ensure 2n quantum security we need to take log q = O(n2). The actual constant
depends on the variant of Kuperberg’s algorithm, and various parameters such as available
quantum memory; its exact value is still debated [4, 63, 14].

18 Beyond key exchange
The isogeny group action framework can be used to construct many other interesting crypto-
graphic protocols than key exchange. Signature schemes were first sketched by Couveignes [18]
and Stolbunov [79], and then refined in [24, 6].

TODO: this section will be finished at a later time. In the meantime, you can find a survey
on isogeny based signature schemes here [5]

20To reduce HShP to HSP, simply define the function f by f(g, 1) = f0(g) and f(g,−1) = f1(g), so that the
hidden subgroup is generated by (s,−1).
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Part IV

The full supersingular isogeny graph
All isogeny graphs we have seen so far were governed by the theory of complex multiplication,
and these are essentially the only interesting graphs of ordinary curves. We saw two ways of
constructing them: as isogeny graphs of CM curves in characteristic 0, or as graphs of ordinary
curves over finite fields. Deuring’s theorems (Theorems 74 and 76) showed that these two points
of view are essentially the same, while the correspondence between ideals and isogenies presented
in Section 12 gave us an algebraic way to realize the action independently of the base field.

Although we encounter again the same theory in the context of supersingular curves, for
example in the CSIDH group action (Section 16), the general theory of these curves is more
complicated. As we stated in Theorem 53, endomorphism rings of supersingular curves are 4-
dimensional objects, the maximal orders of a quaternion algebra. We have no hope of lifting
these to endomorphism rings of curves in characteristic 0, but Deuring’s lifting theorem gives
us a partial result: for every endomorphism ω ∈ End(E), we can find a curve Ē/C and an
endomorphism ω̄ ∈ End(Ē) above it. Hence the CM theory of Z[ω] still applies to the isogeny
class of E, but only describes a small part it.

Said otherwise, while isogeny graphs of ordinary curves are completely understood as the
reduction modulo p of isogeny graphs of CM curves, supersingular isogeny graphs arise from the
simultaneous reduction and “collision” of several CM graphs of unrelated quadratic orders. This
part is devoted to these graphs, and to the theory of quaternionic multiplication that governs
them.

19 Expander graphs from isogenies
The main object in the study of supersingular isogeny graphs is the following.

Definition 86 (Supersingular ℓ-isogeny graph). Fix a prime ℓ ̸= p, the (full) supersingular
ℓ-isogeny graph is the graph of F̄p-isomorphism classes of supersingular curves with ℓ-isogenies
between them.

In Section 10 we saw how the action of the Frobenius endomorphism on E[ℓ] controls the
number of Fq-rational isogenies, and thus the structure of the volcano. By Hasse’s theorem,
supersingular curves over a prime field Fp necessarily have trace t = 0 and thus Frobenius acts
like a square root of −p, giving an embedding Z[

√
−p] ↪→ End(E) an the CM action used in

CSIDH.
But for supersingular curves over Fp2 the most common21 cases are t = ±2p, and thus

Frobenius acts like ±p, fixing any cyclic subgroup of E[ℓ]. Said otherwise, all isogenies of a
supersingular curve are Fp2 -rational.

Proposition 87. Let E be a supersingular curve defined over a field of characteristic p. Then

• j(E) ∈ Fp2 ;

• There exists an isomorphism (not necessarily Fp2-rational) from E to a curve E′/Fp2 with
trace of Frobenius equal to −2p;

• E′(Fp2) ≃ (Z/(p+ 1)Z)2;
21The only ones, in fact, except if j = 0, 1728.
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Figure 17: Supersingular isogeny graphs of degree 2 (left, blue) and 3 (right, red) on F972 .

• All isogenies and endomorphisms of E′ are Fp2-rational.

Proof. See [80, Lectures 13–14] and [87, § 4].

By the proposition above, the supersingular ℓ-isogeny graph is isomorphic to the graph of
Fp2 -isomorphism classes of curves with trace −2p, and every vertex has out-degree ℓ+1. Mapping
every isomorphism class to its quadratic twist, we see that it is also isomorphic to the graph of
curves with trace 2p. Two examples of such graphs are shown in Figure 17.

Although the graph contains all isogenies with their duals, it is not necessarily undirected.
Indeed the vertices j = 0 and j = 1728 have larger automorphism groups (respectively of order 4
and 6, assuming p > 3) than any other curve, and thus have more outgoing than incoming edges.
Taking p = 1 mod 12 (like in Figure 17) ensures neither curve is supersingular and sidesteps the
problem. But even when p ̸= 1 mod 12, we can prove that the adjacency matrix of the graph
has real eigenvalues and apply all the definitions of Section 9, obtaining a very powerful result.

Theorem 88 (Mestre [58], Pizer [67, 68], Kohel [47]). The supersingular ℓ-isogeny graph is
connected, has real spectrum, its largest eigenvalue is ℓ+1 and every other eigenvalue is smaller
than 2

√
ℓ in absolute value, i.e. it is a Ramanujan graph.

The standard proof of this result involves Hecke operators acting on modular forms and is
beyond the scope of these lecture notes. As explained in [16], these graphs are distant cousins
of Lubotzky–Phillips–Sarnak (LPS) graphs [57, 56], however, unlike those, do not enjoy the
structure of a Cayley graph.

The CGL cryptographic hash function. The mixing properties of expander graphs have
long been used in computer science to produce pseudo-random behavior. In [11], Charles, Goren
and Lauter (CGL) used expander graphs to define cryptographic hash functions.

Their construction assumes a k-regular expander graph is given, with vertices and edges de-
scribed by arbitrary unique labels. As a first attempt, the graph could be seen as a state machine:
for each vertex j, label its outgoing edges from 1 to k (e.g., by ordering them alphabetically).
Then, to hash a k-ary string, start from an arbitrary vertex j0. Read the symbols in the string
one-by-one, advancing from the current vertex j to the next vertex j′ reached by the edge corre-
sponding to the read symbol. This process defines a pseudo-random walk in the expander graph.
The hash is the label of the final vertex of the walk.

The only difference between this description and the actual CGL proposal is that they forbid
backtracking walks. I.e., they use a (k + 1)-regular graph instead, and only label from 1 to k
the outgoing edges of the current vertex, excluding the edge the walk came from (for the first
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Figure 18: Hashing the string 010101 using an expander graph

step, an arbitrary forbidden edge can be chosen). This has the advantage of mixing considerably
faster than backtracking walks. An example with k = 2 is pictured in Figure 18.

For the process to be a good pseudo-random function, the walks need to be substantially
longer than the diameter of the graph. However this is not enough to guarantee a cryptograph-
ically strong hash function. Indeed the two main properties of cryptographic hash functions,
translate in this setting as the following computational problems.

Problem 5 (Preimage resistance). Given a vertex j in the graph, find a path from the start
vertex j0 to j.

Problem 6 (Collision resistance). Find a non-trivial loop (i.e., one that does not track back-
wards) from j0 to itself.

Charles, Goren and Lauter suggested two possible instantiations for the expander graph in
the construction above. The first was based on LPS Cayley graphs, and was broken shortly after
it was introduced [83, 64, 65].

The second was the supersingular 2-isogeny graph of a large prime. Although collision resis-
tance of this proposal has been broken in many instances [29], the general problem of computing
paths and cycles in a supersingular isogeny graph remains hard and is the basis of most of isogeny
based cryptography. We shall come back to it in Section 23.

20 Quaternionic multiplication aka the Deuring correspon-
dence

In Part II we could fully explain the structure of isogeny volcanoes using the theory of complex
multiplication. Quaternionic multiplication, also known as the Deuring correspondence, will help
us understand the structure of supersingular graphs.

For supersingular elliptic curves E, the full endomorphism ring is isomorphic to a maximal
order O in Bp,∞ (the quaternion algebra over Q ramified exactly at p and ∞). We find a
correspondence similar to the imaginary quadratic case, in the sense that (left) ideals of O
correspond to isogenies with domain E, and fractional (left) ideal classes of O correspond to
isomorphism classes of elliptic curves isogenous to E. A major difference is that this no longer
provides a group action on the set of all curves, since the set of fractional ideal classes no longer
admits a group structure. Also, unlike in the CM case, it is very rare for supersingular curves to
have isomorphic endomorphism rings.

Throughout the text, we have seen several characterizations of supersingularity, so let us
recall:

Theorem 89. Let E be a elliptic curve over a field of positive characteristic p. Then the
following are equivalent:

1. E is supersingular.

2. E[p] = {0}.
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3. The map [p] : E → E is purely inseparable.

4. The trace t of πq, the q-Frobenius map, is divisible by p.

5. End(E) is isomorphic to a maximal order in Bp,∞.

For the rest of the section, we denote by E a supersingular curve defined over Fp2 , and by
End(E) = O ⊂ Bp,∞ its endomorphism ring.

Before we dive into the exact relationship between ideals and isogenies that the Deuring
correspondence provides, we need a slightly more precise relationship between isogenies and
subgroups. Recall from Proposition 27 that separable isogenies with domain E correspond to
finite subgroups of E (namely their kernels). The same description can be used to treat general
isogenies, not only separable ones, as long as we keep track of the inseparable degree.

Definition 90 (Separable and inseparable degree). The separable degree of an isogeny φ : E →
E′ is defined as degs(φ) := #ker(φ). The inseparable degree degi(φ) is defined by the equation
deg(φ) = degs(φ) · degi(φ).

The (in)separable degree of an isogeny equals that of the corresponding extension of function
fields (see Definition 25). In particular, the inseparable degree is always a power of p. The
inseparable degree of a separable isogeny is 1, and the inseparable degree of a purely inseparable
isogeny is equal to its degree. The main example of a purely inseparable isogeny is the Frobenius
map E → E(p), (x, y) 7→ (xp, yp), where E(p) denotes the Weierstrass curve whose coefficients
are all raised to the power p. In essence, any other purely inseparable isogeny is a power of the
Frobenius. More precisely, we have the following lemma.

Lemma 91. Let ψ : E1 → E2 be an isogeny of elliptic curves such that degi(ψ) = q. Then there
exists a separable isogeny λ : E

(q)
1 → E2 such that ψ = λ ◦ πq, where q : E1 → E

(q)
1 denotes the

q-Frobenius.

Proof. [76, II, Coro. 2.12]

Where separable isogenies correspond to finite subgroups, arbitrary isogenies correspond to
finite subgroup schemes. Essentially, a subgroup scheme is a generalization of a subgroup that
keeps track of information about inseparability. A precise definition is outside of the scope of
these notes, so for now we will use the following terminology.

Definition 92 (subgroup scheme). A subgroup scheme is a pair (H, pr) where H ⊂ E is a
subgroup and r ∈ Z≥0. The rank is defined as rk(H, pr) := #H · pr. Given two such subgroup
schemes, the scheme-theoretic intersection (H1, p

r) ∩ (H2, p
s) is defined as (H1 ∩H2, p

min(r,s)).
We write (H1, p

r) ≤ (H2, p
s) if H1 ⊂ H2 and r ≤ s.

The scheme-theoretic kernel of an isogeny φ : E → E′, denoted E[φ], is (kerφ,degi φ).

Conversely, to every finite subgroup scheme H ≤ E one can associate an isogeny whose
scheme-theoretic kernel is H; similar to Proposition 27, the codomain E/H of this isogeny is
unique up to isomorphism. The degree of this isogeny equals rkH.

In terms of subgroup schemes, we have the following “factorization theorem” for isogenies.

Proposition 93. Let φ : E1 → E2 and ψ : E1 → E3 be isogenies. If E[φ] ≤ E[ψ] then there
exists an isogeny λ : E2 → E3 such that ψ = λ ◦ φ.

Now we are ready to formulate the Deuring correspondence (compare to Section 12).
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Definition 94. For an integral left O-ideal I, we define

E[I] :=
⋂
α∈I

E[α].

Conversely, to a subgroup scheme H ≤ E, we associate the integral left O-ideal

I(H) := {α ∈ O | H ≤ E[α]}.

To an integral left O-ideal I, we associate the isogeny φI with kernel E[I] (which is unique
up to post-composition by an isomorphism).

Proposition 95. We have rk(E[I]) = N(I). In other words, the isogeny φI has degree N(I).

Theorem 96 (Deuring Correspondence I). The maps defined above induce a bijection{
subgroup schemes

H ≤ E

} I(·)
−−−−−−−−−−→←−−−−−−−−−−

E[·]

{
integral left
O-ideals I ⊂ O

}
We say that two fractional left O-ideals I, J are equivalent if there exists a β ∈ Bp,∞ such

that Iβ = J . In that case we also say that I, J are in the same left ideal class. This happens if
and only if I and J are isomorphic as left O-modules. Every fractional left O-ideal is equivalent
to an integral one.

Proposition 97. Two integral left End(E)-ideals I, J are equivalent if and only if E/E[I] ∼=
E/E[J ].

This proposition is reminiscent of the main theorem of complex multiplication. As a conse-
quence, we have the following “coarser” version of Theorem 96, which is what most people refer
to as the Deuring correspondence.

Theorem 98 (Deuring correspondence II). The bijection in Theorem 96 induces a one-to-one
correspondence{

supersingular elliptic curves over Fp2

up to isomorphism

}
−−−−−−−−−−→←−−−−−−−−−−

{
fractional left
O-ideal classes

}
In summary, the same correspondences between ideals and isogenies given in Table 2 for

complex multiplication also hold for the Deuring correspondence. Unlike in the CM case, left
O-ideal classes do not form a group, though at least we obtain the exact size of the left ideal
class set, and thus of the supersingular isogeny class, thanks to Eichler’s mass formula.

Corollary 99. The number of isomorphism classes of supersingular elliptic curves is equal to

⌊ p
12

⌋
+


0 if p = 1 mod 12,
1 if p = 5, 7 mod 12,
2 if p = 11 mod 12.

There also exists a more precise, functorial statement of the Deuring correspondence, which
we give here for completeness. The reader unfamiliar with categories can safely ignore this
version.
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Lemma 100. Given an isogeny φ : E1 → E2, the pullback map Hom(E2, E1)→ End(E1), ψ 7→
ψ ◦φ is an injective morphism of left End(E1)-modules. In particular, it is an isomorphism onto
the image I(E1[φ]).

Theorem 101 (Deuring correspondence III). The contravariant functor Hom(−, E) defines an
equivalence of categories{

supersingular elliptic curves over Fp2 ,
with isogenies

}
−−−−−−−−−−→←−−−−−−−−−−

{
invertible left End(E)-modules,
with nonzero homomorphisms

}
Endomorphism rings. Using the Deuring correspondence, we were able to count the number
of isomorphism classes of supersingular elliptic curves. Each such supersingular elliptic curve
has an endomorphism ring isomorphic to some maximal order in Bp,∞. We saw that quadratic
number fields have a unique maximal order, so it is natural to ask whether something similar
happens in quaternion algebras. In other words, what is the number of isomorphism classes of
endomorphism rings of supersingular elliptic curves?

We say two maximal orders O,O′ ⊂ Bp,∞ are conjugate if there exists a β ∈ Bp,∞ such that
O′ = βOβ−1. This is equivalent to O and O′ being isomorphic as rings. If I is an integral left
O-ideal, then by the Deuring correspondence we obtain an isogeny φI : E → E′ with kernel E[I].
One can then show that OL(I) = O ∼= End(E) and OR(I) = O′ ∼= End(E′). Such an ideal I is
called a connecting ideal for the orders O and O′. Note that, since OR(Iβ) = β−1O′β for every
β ∈ Bp,∞, ideals equivalent to I indeed have conjugate (hence isomorphic) right orders.

Now suppose that O and O′ are isomorphic. By taking a different representative for the same
fractional ideal class, we then may assume that I is such that O = O′. In other words, I is a
two-sided O-ideal. Just like in the imaginary quadratic case, the two-sided fractional ideals form
a group, and by considering them up to equivalence, we obtain the (two-sided) ideal class group
Pic(O) of O. We have the following result about its structure.

Theorem 102. There is a unique two-sided fractional O-ideal of norm p. It generates the
two-sided ideal class group Pic(O) of O. As an element of this group it has order at most 2.

Under the Deuring correspondence, this special two-sided fractional O-ideal of norm p corre-
sponds to the Frobenius E → E(p). In particular, the group Pic(O) is trivial if and only if E is
defined over Fp, and it is isomorphic to Z/2Z if and only if E is not defined over Fp (recall that
E, being supersingular, is automatically defined over Fp2). We can summarize as follows:

Theorem 103. There is a one-to-one correspondence:{
supersingular j-invariants,

up to the action of Frobenius

}
−−−−−−−−−−→←−−−−−−−−−−

{
maximal orders O ⊂ Bp,∞,

up to conjugacy

}

21 The effective Deuring correspondence
The correspondence between ideal classes of quadratic orders and isogenies let us efficiently eval-
uate the CM action and construct isogeny-based cryptographic schemes, as described in Part III.
We would like to have an analogous collection of algorithms for the Deuring correspondence.

The first step is to establish an efficient representation of an endomorphism ring. Concretely,
for a given curve E0, we seek a basis of End(E0) made of four efficiently represented endomor-
phisms, together with an explicit injection End(E0) ↪→ Bp,∞.

This is easier said than done: ordinary curves have an obvious endomorphism generating
the endomorphism algebra, the Frobenius endomorphism, and finding a corresponding algebraic
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integer amounts to computing its minimal polynomial, or equivalently to counting the number
of points of the curve (see Appendix B). For supersingular curves, on the other hand, it is
in general difficult to find even a single endomorphism. Luckily, some curves have a natural
quaternion representation.

Proposition 104. Let Bp,∞ be represented as in Proposition 51 and let O0 be the maximal
order of Proposition 52. Assuming the generalized Riemann hypothesis (GRH), there exists a
supersingular curve E0 such that End(E0) ≃ O0 and a basis of End(E0) made of efficiently
represented endomorphisms.

Proof. If p = 2, then E0 is the curve y2 + y = x3 with j-invariant 0, (1 + i+ j + ij)/2 is one of
its automorphisms of order 6, i, j and k are automorphisms of order 4.

For all other cases, we follow [29, Proposition 3]. If p ≡ 3 mod 4, then E0 is again y2 = x3+x,
with the automorphism ι : (x, y) 7→ (−x,

√
−1y) for i and Frobenius for j (see Example 54).

For p ≡ 5 mod 8, we choose E0 : y2 = x3 + x2 − 3x + 1 of j-invariant 8000. This curve has
a single point of order 2 defined over Q, generating the kernel of an endomorphism of degree 2,
take its reduction for i. The Frobenius endomorphism corresponds to j.

Finally, for p ≡ 1 mod 8, consider the maximal order O of Q(
√
−r): because q = 3 mod 4,

its class number must be odd (see [61]). By hypothesis
(

r
p

)
=
(

−r
p

)
= −1, thus by Theorem 74

all curves over C with CM by O have supersingular reduction modulo p. Because they are odd
in number at least one of these reductions must be defined over Fp, let it be E0. Finally, let ι
be one of its endomorphisms such that ι2 = −r, then the quaternion i corresponds to ι and j
corresponds to the Fp-Frobenius endomorphism.

Assuming GRH, the smallest r satisfying the conditions of Proposition 51 is in O(log(p)2).
Then all the computations above can be done in time polylog(p), which fits within the budget
of Defintion 31.

From now on we shall call special a supersingular curve produced by the proposition. In
practice, virtually all supersingular isogeny based cryptography uses p = 3 mod 4 and sets
E0 : y2 = x3 + x. We shall thus only focus on this case in the rest of the manuscript.

Having an efficient representation of End(E0) is sufficient, in principle, to efficiently repre-
sent the endomorphism ring of any other curve in the isogeny class. Indeed, from the Deuring
correspondence we have the following description of End(E) for any curve isogenous to E0.

Proposition 105. Let ϕ : E0 → E be an isogeny of supersingular curves and let ι0 : End(E0) ↪→
O0 ⊂ Bp,∞ be a representation of End(E0). The map

ιϕ : End(E) ↪→ Bp,∞

ω 7→ ι0(ϕ̂ ◦ ω ◦ ϕ)
deg ϕ

is injective and ιϕ(End(E)) = OR(I(E0[ϕ])).

Proof. See [86, Lemma 42.2.10].

Said otherwise, we have an explicit representation of End(E) as a subring of Bp,∞ as soon
as we have an isogeny ϕ : E0 → E, but is it an efficient representation? Suppose we have a
quaternion α ∈ Bp,∞ representing an endomorphism of E, and let d = deg ϕ. Applying the
isomorphism backwards we know there exists ω0 ∈ End(E0) such that ι0(ω0) = dβ; then,

ι−1
0 (dβ) = ω0 = ϕ̂ ◦ ω ◦ ϕ
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and
d2ω = ϕ ◦ ω0 ◦ ϕ̂,

and every ω ∈ End(E) can be written this way. Suppose we want to evaluate ω at a point P ∈ E,
we can compute Q such that [d2]Q = P , then

ϕω0ϕ̂(Q) = d2ω(Q) = ω(P ).

Thus we have an efficient representation of ω as long as:

1. ϕ is efficiently represented,

2. we can efficiently “divide by d2”.

Let us start from the case where d is “small”, then Vélu’s formulas provide an efficient repre-
sentation of ϕ. Moreover, if P ∈ E(Fq), a point Q such that [d2]Q = P is defined in an extension
of Fq of degree less than d4 (see Appendix B and in particular Definition 107). Hence, we have
an efficient representation of ω whenever d ∈ polylog(p).

We easily extend this to the case where d is powersmooth, i.e. where d =
∏n

i=1 ℓ
ei
i with the

ℓi coprime and n, ℓeii ∈ polylog(p). Indeed, by Corollary 28, ϕ can be efficiently represented as
a composition of isogenies of degree ℓi. Dividing by d2 is trickier: for each i we can efficiently
compute Qi such that [ℓ2eii ]Qi = P , implying that Q =

∑
iQi satisfies [d2]Q = P . Then we

evaluate ϕω0ϕ̂(Q) as

ϕω0ϕ̂(Q) = ϕω0ϕ̂

(∑
i

Qi

)
=
∑
i

ϕω0ϕ̂(Qi),

involving only computations in extensions of Fq of degree less than ℓ4eii and a final chain of point
additions over Fq.

In summary, whenever we know an isogeny ϕ : E0 → E of powersmooth degree, we have
an efficient representation of End(E). Knowledge of endomorphism rings is contagious! We can
prove that such an isogeny always exists.

Proposition 106. Let E0 be a special curve as defined by Proposition 104, let E be an arbitrary
curve in the same isogeny class, then, assuming GRH, there exists an isogeny ϕ : E0 → E of
degree polylog(p)-powersmooth.

Proof. Thanks to the Deuring correspondence, after fixing an appropriate smoothness bound
B ∈ polylog(p), it suffices to prove that any ideal class of O0 contains an ideal of B-powersmooth
norm. See [89] for details.

Even though ϕ : E0 → E always exists, it is not necessarily easy to compute. We will
come back to the problem of computing isogenies of supersingular curves and its relationship to
computing their endomorphsim rings in Section 23.

22 Signatures based on the Deuring correspondence
TODO: this section will cover the signature schemes GPS [37] and SQISign [26] (see also https:
//sqisign.org/).
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23 Security of supersingular isogeny problems
TODO: this section will cover the security reductions between hard problems in supersingular
isogeny cryptography [88] and in particular the equivalence between the isogeny path problem
and the endormorphism ring problem [89].
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Part V

Other applications
This material used to be part of the first version of these lecture notes, but we decided to discard
it from the main body to focus on the more central topics.

We keep it in this appendix for historical reference, however we do not guarantee its coherence
with the main material.

A Application: Elliptic curve factoring method
A second popular use of elliptic curves in technology is for factoring large integers, a problem
that also occurs frequently in cryptography.

The earliest method for factoring integers was already known to the ancient Greeks: the
sieve of Eratosthenes finds all primes up to a given bound by crossing composite numbers out
in a table. Applying the Eratosthenes’ sieve up to

√
N finds all prime factors of a composite

number N . Examples of modern algorithms used for factoring are Pollard’s Rho algorithm and
Coppersmith’s Number Field Sieve (NFS).

In the 1980s H. Lenstra [54] introduced an algorithm for factoring that has become known
as the Elliptic Curve Method (ECM). Its complexity is between Pollard’s and Coppersmith’s
algorithms in terms of number of operations; at the same time it only requires a constant amount
of memory, and is very easy to parallelize. For these reasons, ECM is typically used to factor
integers having medium sized prime factors.

From now on we suppose that N = pq is an integer which factorization we wish to compute,
where p and q are distinct primes. Without loss of generality, we can suppose that p < q.

Lenstra’s idea has its roots in an earlier method for factoring special integers, also due to
Pollard. Pollard’s (p − 1) factoring method is especially suited for integers N = pq such that
p− 1 only has small prime factors. It is based on the isomorphism

ρ : Z/NZ→ Z/pZ× Z/qZ,
x 7→ (x mod p, x mod q)

given by the Chinese remainder theorem. The algorithm is detailed in Figure 19a. It works by
guessing a multiple e of p− 1, then taking a random element x ∈ (Z/NZ)×, to deduce a random
element y in ⟨1⟩⊕ (Z/qZ)×. If the guessed exponent e was correct, and if y ̸= 1, the gcd of y− 1
with N yields a non-trivial factor.

The p − 1 method is very effective when the bound B is small, but its complexity grows
exponentially with B. For this reason it is only usable when p − 1 has small prime factors, a
constraint that is very unlikely to be satisfied by random primes.

Lenstra’s ECM algorithm is a straightforward generalization of the p− 1 method, where the
multiplicative groups (Z/pZ)× and (Z/qZ)× are replaced by the groups of points E(Fp) and
E(Fq) of an elliptic curve defined over Q. Now, the requirement is that #E(Fp) only has small
prime factors. This condition is also extremely rare, but now we have the freedom to try the
method many times by changing the elliptic curve.

The algorithm is summarized in Figure 19b. It features two remarkable subtleties. First, it
would feel natural to pick a random elliptic curve E : y2 = x3 + ax+ b by picking random a and
b, however taking a point on such curve would then require computing a square root modulo N ,
a problem that is known to be has hard as factoring N . For this reason, the algorithm starts by
taking a random point, and then deduces the equation of E from it. Secondly, all computations
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Input: An integer N = pq,
a bound B on the largest prime factor
of p− 1;

Output: (p, q) or FAIL.
1. Set e =

∏
r prime <B r

⌊logr

√
N⌋;

2. Pick a random 1 < x < N ;
3. Compute y = xe mod N ;
4. Compute q′ = gcd(y − 1, N);
5. if q′ ̸= 1, N then
6. return N/q′, q′;
7. else
8. return FAIL.
9. end if

(a) Pollard’s (p− 1) algorithm

Input: An integer N = pq, a bound B;
Output: (p, q) or FAIL.
1. Pick random integers a,X, Y in [0, N [;
2. Compute b = Y 2 −X3 − aX mod N ;
3. Define the elliptic curve E : y2 = x3−
ax− b.

4. Define the point P = (X : Y : 1) ∈
E(Z/NZ).

5. Set e =
∏

r prime <B r
⌊logr

√
N⌋;

6. Compute Q = [e]P = (X ′ : Y ′ : Z ′);
7. Compute q′ = gcd(Z ′, N);
8. if q′ ̸= 1, N then
9. return N/q′, q′;

10. else
11. return FAIL.
12. end if

(b) Lenstra’s ECM algorithm

Figure 19: The (p− 1) and ECM factorization algorithms

on coordinates happen in the projective plane over Z/NZ; however, properly speaking, projective
space cannot be defined over non-integral rings. Implicitly, E(Z/NZ) is defined as the product
group E(Fp) ⊕ E(Fq), and any attempt at inverting a non-invertible in Z/NZ will result in a
factorization of N .

B Application: point counting
Before going more in depth into the study of the endomorphism ring, let us pause for a while
on a simpler problem. Hasse’s theorem relates the cardinality of a curve defined over a finite
field with the trace of its Frobenius endomorphism. However, it does not give us an algorithm
to compute either.

The first efficient algorithm to compute the trace of π was proposed by Schoof in the 1980s [72].
The idea is very simple: compute the value of tπ mod ℓ for many small primes ℓ, and then
reconstruct the trace using the Chinese remainder theorem. To compute tπ mod ℓ, Schoof’s
algorithm formally constructs the group E[ℓ], takes a generic point P ∈ E[ℓ], and then runs a
search for the integer t such that

π([t]P ) = [q]P + π2(P ).

The formal computation must be carried out by computing modulo a polynomial that vanishes
on the whole E[ℓ]; the smallest such polynomial is provided by the division polynomial ψℓ.

Definition 107 (Division polynomial). Let E : y2 = x3+ax+b be an elliptic curve, the division
polynomials ψm are defined by the initial values

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,
ψ4 = (2x6 + 10ax4 + 40bx3 − 10a2x2 − 8abx− 2a3 − 16b2)2y,
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and by the recurrence

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)ψm for m ≥ 3.

The m-th division polynomial ψm vanishes on E[m]; the multiplication-by-m map can be
written as

[m]P =

(
ϕm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
for any point P ̸= O, where ϕm and ωm are defined as

ϕm = xψ2
m − ψm+1ψm−1,

ωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1.

Schoof’s algorithm runs in time polynomial in log#E(k), however it is quite slow in practice.
Among the major advances that have enabled the use of elliptic curves in cryptography are the
optimizations of Schoof’s algorithm due to Atkin and Elkies [2, 30, 73, 31]. Both improvements
use a better understanding of the action of π on E[ℓ]. Assume that ℓ is different from the
characteristic, we have already seen that E[ℓ] is a group of rank two. Hence, π acts on E[ℓ] like
a matrix M in GL2(Z/ℓZ), and its characteristic polynomial is exactly

χ(X) = X2 − tπX + q mod ℓ.

Now we have three possibilities:

• χ splits modulo ℓ, as χ(X) = (X − λ)(X − µ), with λ ̸= µ; we call this the Elkies case.

• χ does not split modulo ℓ; we call this the Atkin case;

• χ is a square modulo ℓ.

The SEA algorithm, treats each of these cases in a slightly different way; for simplicity, we
will only sketch the Elkies case. In this case, there exists a basis ⟨P,Q⟩ for E[ℓ] onto which π
acts as a matrix M =

(
λ 0
0 µ

)
. Each of the two eigenspaces of M is the kernel of an isogeny of

degree ℓ from E to another curve E′. If we can determine the curve corresponding to, e.g., ⟨P ⟩,
then we can compute the isogeny ϕ : E → E/⟨P ⟩, and use it to formally represent the point P .
Then, λ is recovered by solving the equation

[λ]P = π(P ),

and from it we recover tπ = λ+ q/λ mod ℓ.
Elkies’ method is very similar to Schoof’s original way of computing tπ, however it is consid-

erably more efficient thanks to the degree of the extension rings involved. Indeed, in Schoof’s
algorithm a generic point of E[ℓ] is represented modulo the division polynomial ψℓ, which has
degree (ℓ2 − 1)/2. In Elkies’ algorithm, instead, the formal representation of ⟨P ⟩ only requires
working modulo a polynomial of degree ≈ ℓ.

The other cases have similar complexity gains. For a more detailed overview, we address the
reader to [73, 55, 31, 81].
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C Application: computing irreducible polynomials
In the applications seen in the first part, we have followed an old mantra: whenever an algorithm
relies solely on the properties of the multiplicative group F∗

q , it can be generalized by replacing
F∗
q with the group of points of an elliptic curve over Fq (or, eventually, a higher dimensional

Abelian variety). Typically, the generalization adds some complexity to the computation, but
comes with the advantage of having more freedom in the choice of the group size and structure.
We now present another instance of the same mantra, that is particularly remarkable in our
opinion: to the best of our knowledge, it is the first algorithm where replacing F∗

q with E(Fq)
required some non-trivial work with isogenies.

Constructing irreducible polynomials of arbitrary degree over a finite field Fq is a classical
problem. A classical solution consists in picking polynomials at random, and applying an irre-
ducibility test, until an irreducible one is found. This solution is not satisfactory for at least two
reasons: it is not deterministic, and has average complexity quadratic both in the degree of the
polynomial and in log q.

For a few special cases, we have well known irreducible polynomials. For example, when d
divides q − 1, there exist α ∈ Fq such that Xd − α is irreducible. Such an α can be computed
using Hilbert’s theorem 90, or –more pragmatically, and assuming that the factorization of q− 1
is known– by taking a random element and testing that it has no d-th root in Fq. It is evident
that this algorithm relies on the fact that the multiplicative group F∗

q is cyclic of order q − 1.
At this point our mantra suggests that we replace α with a point P ∈ E(Fq) that has no

ℓ-divisor in E(Fq), for some well chosen curve E. The obvious advantage is that we now require
ℓ|#E(Fq), thus we are no longer limited to ℓ|(q − 1); however, what irreducible polynomial
shall we take? Intuition would suggest that we take the polynomial defining the ℓ-divisors of
P ; however we know that the map [ℓ] has degree ℓ2, thus the resulting polynomial would have
degree too large, and it would not even be irreducible.

This idea was first developed by Couveignes and Lercier [19] and then slightly generalized
in [22]. Their answer to the question is to decompose the map [ℓ] as a composition of isogenies
ϕ̂ ◦ ϕ, and then take the (irreducible) polynomial vanishing on the fiber ϕ−1(P ).

More precisely, let Fq be a finite field, and let ℓ ∤ (q−1) be odd and such that ℓ≪ q+1+2
√
q.

Then there exists a curve E which cardinality #E(Fq) is divisible by ℓ. The hypothesis ℓ ∤ (q−1)
guarantees that G = E[ℓ] ∩ E(Fq) is cyclic (see Exercise II.5). Let ϕ be the degree ℓ isogeny of
kernel G, and let E′ be its image curve. Let P be a point in E′(Fq) \ [ℓ]E′(Fq), Couveignes and
Lercier show that ϕ−1(P ) is an irreducible fiber, i.e., that the polynomial

f(X) =
∏

Q∈ϕ−1(P )

(X − x(Q))

is irreducible over Fq.
To effectively compute the polynomial f , we need one last technical ingredient: a way to

compute a representation of the isogeny ϕ as a rational function. This is given to us by the
famous Vélu’s formulas [85].

Proposition 108 (Vélu’s formulas). Let E : y2 = x3 + ax+ b be an elliptic curve defined over
a field k, and let G ⊂ E(k̄) be a finite subgroup. The separable isogeny ϕ : E → E/G, of kernel
G, can be written as

ϕ(P ) =

x(P ) + ∑
Q∈G\{O}

x(P +Q)− x(Q), y(P ) +
∑

Q∈G\{O}

y(P +Q)− y(Q)

 ;
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Input: A finite field Fq,
a prime power ℓe such that ℓ ∤ (q − 1) and ℓ≪ q;

Output: An irreducible polynomial of degree ℓe.
1. Take random curves E0, until one with ℓ|#E0 is found;
2. Factor #E0;
3. for 1 ≤ i ≤ e do
4. Use Vélu’s formulas to compute a degree ℓ isogeny ϕi :

Ei−1 → Ei;
5. end for
6. Take random points P ∈ Ei(Fq) until one not in [ℓ]Ei(Fq)

is found;
7. return The polynomial vanishing on the abscissas of ϕ−1

i ◦
· · · ◦ ϕ−1

1 (P ).
E0 E1

E2

E3

E4

ϕ0

ϕ1

ϕ2ϕ3

ϕ4

Figure 20: Couveignes-Lercier algorithm to compute irreducible polynomials, and structure of
the computed isogeny cycle.

and the curve E/G has equation y2 = x3 + a′x+ b′, where

a′ = a− 5
∑

Q∈G\{O}

(3x(Q)2 + a),

b′ = b− 7
∑

Q∈G\{O}

(5x(Q)3 + 3ax(Q) + 2b).

Proof. See [20, §8.2].

Corollary 109. Let E and G be as above. Let

h(X) =
∏

Q∈G\{O}

(X − x(Q)).

Then the isogeny ϕ can be expressed as

ϕ(X,Y ) =

(
g(X)

h(X)
, y

(
g(x)

h(x)

)′
)
,

where g(X) is defined by

g(X)

h(X)
= dX − p1 − (3X2 + a)

h′(X)

h(X)
− 2(X3 + aX + b)

(
h′(X)

h(X)

)′

,

with p1 the trace of h(X) and d its degree.

Proof. See [20, §8.2].

The Couveignes-Lercier algorithm is summarized in Figure 20. What is most interesting, is
the fact that it can be immediately generalized to computing irreducible polynomials of degree
ℓe, by iterating the construction. Looking at the specific parameters, it is apparent that ℓ is an
Elkies prime for E (i.e.,

(
D
ℓ

)
= 1), and that each isogeny ϕi is horizontal, thus their composition

eventually forms a cycle, the crater of a volcano.
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D SIDH/SIKE, a defunct key exchange scheme
TODO
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