{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from IPython.display import display, HTML, IFrame\n", "from ipywidgets import interact,fixed\n", "import pandas as pd\n", "from mpl_toolkits import mplot3d\n", "from mpl_toolkits.mplot3d import axes3d\n", "from matplotlib.patches import FancyArrowPatch\n", "from mpl_toolkits.mplot3d import proj3d\n", "\n", "plt.rcParams[\"figure.figsize\"] = [12, 9]\n", "\n", "from numpy.linalg import norm\n", "from numpy import cos,sin,tan,arctan,exp,log,pi,sqrt" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "notes" } }, "source": [ "$\\newcommand{\\RR}{\\mathbb{R}}$\n", "$\\newcommand{\\bv}[1]{\\begin{bmatrix} #1 \\end{bmatrix}}$\n", "$\\renewcommand{\\vec}{\\mathbf}$\n" ] }, { "cell_type": "markdown", "metadata": { "hide_input": true, "slideshow": { "slide_type": "slide" } }, "source": [ "## Announcements\n", "\n", " - Quiz 3 in recitation this week. \n", " - Curves, tangents\n", " - Motion\n", " - Arc length\n", " - Homework 4 posted, due 2/18\n", " - Midterm 1 - 2/20\n", " - Through HW4 (partial derivatives)\n", " - Some review materials posted to Canvas\n", " - Review on Tues." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# One-minute Review\n", "\n", "A **scalar field** (e.g., $f(x,y)$) is a function of several variables. Its **domain** is the subset of input values in $\\RR^n$; its **image** is the set of output values in $\\RR$.\n", "\n", "**Level sets** (\"curves\" for functions of 2 variables) are sets of input points associated to a particular output. For example, contour lines on a topographical map.\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Level Curves" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "99b9d87db8024d88889355e6cd6c8892", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=0.505, description='lev', max=1.0, min=0.01), Dropdown(description='pr…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = lambda x,y: x*y\n", "g = lambda x,y: x*sin(y)\n", "h = lambda x,y: sqrt(4-x**2-y**2)\n", "k = lambda x,y: log(x**2+y**2)\n", "l = lambda x,y: exp((x-y)*log(2))\n", "\n", "\n", "@interact\n", "def _(lev=(0.01,1.),prob={\"1\":[f,r\"$z = x y$\"],\"2\":[g,r\"$z = x \\sin(y)$\"],\"3\":[h,r\"$z = \\sqrt{4-x^2-y^2}$\"],\"4\":[k,r\"$z = \\ln (x^2+y^2)$\"],\"5\":[l,r\"$z = 2^{x-y}$\"]},angle=(-90,120,6),vangle=(0,90,6)):\n", " func,fs = prob\n", " fig = plt.figure(figsize = (12,6))\n", " ax = fig.add_subplot(121,projection='3d')\n", " ax.view_init(vangle,angle)\n", " for c in 'xyz':\n", "# getattr(ax,f\"set_{c}lim\")([-1,1]); \n", " getattr(ax,f\"set_{c}label\")(f\"${c}$\",size=16)\n", " x = y = np.linspace(-1,1,400)\n", " X,Y = np.meshgrid(x,y)\n", " if func == h:\n", " x = np.linspace(0,2*pi,100)\n", " y = np.linspace(0,1.99,100)\n", " x,y = np.meshgrid(x,y)\n", " X = y*cos(x)\n", " Y = y*sin(x)\n", " ax.set_zlim3d([0,4])\n", " else:\n", " X = 5*X\n", " Y = 5*Y\n", " Z = func(X,Y)\n", "# ax.set_autoscale_on(True)\n", " ax.plot_surface(X,Y,Z,alpha=.3,cmap='viridis',rcount=75,ccount=75);\n", " k = np.max(Z)*(lev)+(1-lev)*np.min(Z)\n", " ax.contour(X,Y,Z,offset=k,levels=[k],colors=['red'])\n", " fig.suptitle(fs,fontsize=17)\n", " ax2 = fig.add_subplot(122)\n", " cp = ax2.contour(X,Y,Z,cmap='viridis');\n", " # fig.colorbar(cp); # for colorbar reference\n", " ax2.clabel(cp,fmt='%1.1f'); # inline counour labels.\n", " cp2 = ax2.contour(X,Y,Z,levels=[k],colors=['red'])\n", " ax2.clabel(cp2,fmt='%1.1f'); # inline counour labels." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Lecture 08\n", "\n", " - Objectives\n", "\n", " - Explore limits and continuity of $f(x,y)$.\n", " - Define partial derivatives\n", " - Estimate partial derivatives from contour maps and tables.\n", " \n", " - Resources\n", " - Content\n", " - Stewart: §14.2—3\n", " - New Strang: [§4.2](https://cnx.org/contents/oxzXkyFi@5.30:2YObsFkq@7/4-2-Limits-and-Continuity)\n", " - [Slides](https://e2000.columbiajupyter2.org/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fdrewyoungren%2Fmvc-sp20&urlpath=tree%2Fmvc-sp20%2Fslide_notebooks%2Fmvc-L08.ipynb) via JupyterHub\n", " - Visualization\n", " - [CalcPlot3D](https://www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/)\n", " - Practice\n", " - Mooculus: [Continuity](https://ximera.osu.edu/mooculus/calculus3/continuityOfFunctionsOfSeveralVariables/digInContinuity) [Partial Derivatives](https://ximera.osu.edu/mooculus/calculus3/partialDerivativesAndTheGradientVector/digInPartialDerivatives)\n", " - Extras\n", " - CalcBLUE: [Partial Derivatives](https://youtu.be/3QqfUIbQpfg)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Limits\n", "\n", "Consider a function $f:\\RR^n \\to \\RR$ as mapping vectors to scalars. We write $$\\lim_{\\vec x \\to \\vec p} f(\\vec x) = L$$ if $|f(\\vec x) - L|$ can be made arbitrarily small by making $|\\vec x - \\vec p|$ sufficiently small. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Limits in $\\RR^2$\n", "\n", "Consider a function $f:\\RR^2 \\to \\RR$ as mapping vectors to scalars. We write $$\\lim_{(x,y) \\to (a,b)} f(x,y) = L$$ if $|f(x,y) - L|$ can be made arbitrarily small by making $\\sqrt{(x-a)^2+(y-b)^2}$ sufficiently small. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Examples\n", "\n", "See [This screencast](https://youtu.be/EQUBHl3X7oU) for a few more/more detail. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "51cd3e549c4943dc8def36f7f88a5371", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=0.505, description='lev', max=1.0, min=0.01), Dropdown(description='pr…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = lambda x,y: (x**2 + y**2)\n", "g = lambda x,y: x*y/(x**2 + y**2)\n", "h = lambda x,y: x*y/sqrt(x**2 + y**2)\n", "\n", "\n", "@interact\n", "def _(lev=(0.01,1.),prob={\"1\":[f,r\"$z = x^2 + y^2$\"],\"2\":[g,r\"$z = \\frac{xy}{x^2 + y^2}$\"],\"3\":[h,r\"$z = \\frac{xy}{\\sqrt{x^2+ y^2}}$\"]},angle=(-90,120,6),vangle=(0,90,6)):\n", " func,fs = prob\n", " fig = plt.figure(figsize = (12,6))\n", " ax = fig.add_subplot(121,projection='3d')\n", " ax.view_init(vangle,angle)\n", " for c in 'xyz':\n", "# getattr(ax,f\"set_{c}lim\")([-1,1]); \n", " getattr(ax,f\"set_{c}label\")(f\"${c}$\",size=16)\n", " x = y = np.linspace(-1,1,400)\n", " X,Y = np.meshgrid(x,y)\n", " Z = func(X,Y)\n", "# ax.set_autoscale_on(True)\n", " ax.plot_surface(X,Y,Z,alpha=.7,cmap='viridis',rcount=75,ccount=75);\n", " k = np.max(Z)*(lev)+(1-lev)*np.min(Z)\n", " ax.contour(X,Y,Z,offset=k,levels=[k],colors=['red'])\n", " ax.set_title(fs)\n", " ax2 = fig.add_subplot(122)\n", " cp = ax2.contour(X,Y,Z,cmap='viridis');\n", " # fig.colorbar(cp); # for colorbar reference\n", " ax2.clabel(cp,fmt='%1.1f'); # inline counour labels.\n", " cp2 = ax2.contour(X,Y,Z,levels=[k],colors=['red'])\n", " ax2.clabel(cp2,fmt='%1.1f'); # inline counour labels." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Rates of Change\n", "\n", "Limits went well. Let's try derivatives as a limit of a difference quotient. \n", "\n", "$$ \\lim_{\\langle x,y\\rangle \\to \\langle a,b \\rangle} \\frac{f(x,y) - f(a,b)}{\\langle x,y\\rangle - \\langle a,b \\rangle}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "# Blech!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "**One cannot divide by vectors!**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## A sensible question\n", "\n", "A group of hikers follows a curving path up a mountain ridge. How steep is their path at the halfway point?\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1fe161826d244d2aad89db715ea66201", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=12, description='angle', max=120, min=-90, step=6), IntSlider(value=42, …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = lambda x,y: exp(-4*(y-sin(x))**2)*(1-np.abs(x+pi/2)/5)\n", "\n", "\n", "\n", "@interact\n", "def _(func=fixed(f),angle=(-90,120,6),vangle=(0,90,6)):\n", " fig = plt.figure(figsize = (12,6))\n", " ax = fig.add_subplot(111,projection='3d')\n", " ax.view_init(vangle,angle)\n", " for c in 'xyz':\n", "# getattr(ax,f\"set_{c}lim\")([-1,1]); \n", " getattr(ax,f\"set_{c}label\")(f\"${c}$\",size=16)\n", " x = np.linspace(-4,4,601)\n", " y = np.linspace(-2,2,301) \n", " X,Y = np.meshgrid(x,y)\n", " Z = func(X,Y)\n", " ax.plot_surface(X,Y,Z,alpha=.6,cmap='ocean',rcount=100,ccount=100);\n", " t = np.linspace(-pi/2,pi/2,100)\n", " X = t\n", " Y = t/pi - 1/2 - t*(t**2-pi**2/4)/5\n", " Z = func(X,Y)\n", " ax.plot(X,Y,Z,lw=6,color='r',alpha=1)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Partial Derivatives\n", "\n", "We start by considering \"one direction at a time\".\n", "\n", "The **partial derivative** of a function $f(x,y)$ with respect to $x$ at the point $(a,b)$ is $$f_x(a,b) = \\lim_{h\\to 0} \\frac{f(a+h,b) - f(a,b)}{h}.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "\n", "The **partial derivative** of a function $f(x,y)$ with respect to $y$ at the point $(a,b)$ is $$f_y(a,b) = \\lim_{h\\to 0} \\frac{f(a,b+h) - f(a,b)}{h}.$$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "hide_input": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1e3f61ab1e124548b57b51030ca2c34a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=12, description='angle', max=120, min=-90, step=6), IntSlider(value=42, …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = lambda x,y: exp(-4*(y-sin(x))**2)*(1-np.abs(x+pi/2)/5)\n", "\n", "\n", "\n", "@interact\n", "def _(func=fixed(f),angle=(-90,120,6),vangle=(0,90,6),var=['x','y']):\n", " fig = plt.figure(figsize = (12,6))\n", " ax = fig.add_subplot(111,projection='3d')\n", " ax.view_init(vangle,angle)\n", " for c in 'xyz':\n", "# getattr(ax,f\"set_{c}lim\")([-1,1]); \n", " getattr(ax,f\"set_{c}label\")(f\"${c}$\",size=16)\n", " x = np.linspace(-4,4,601)\n", " y = np.linspace(-2,2,301) \n", " X,Y = np.meshgrid(x,y)\n", " Z = func(X,Y)\n", " ax.plot_surface(X,Y,Z,alpha=.6,cmap='ocean',rcount=100,ccount=100);\n", " t = np.linspace(-pi,pi,100)\n", " X = t\n", " Y = np.zeros_like(X)\n", " if var == 'y':\n", " X,Y = Y,X\n", " ax.set_xlim([-4,4])\n", " ax.set_ylim([-2,2])\n", " Z = func(X,Y)\n", " ax.plot(X,Y,Z,lw=6,color='r',alpha=1)\n", " " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "\n", "##### Other notation\n", "\n", "All of these are equivalent. \n", "\n", "$$f_x = \\frac{\\partial f}{\\partial x} = \\partial_x f = f^{(1,0)}$$\n", "\n", "and there are many more. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Computing $\\frac{\\partial f}{\\partial x}$\n", "\n", "In practice, we compute partial derivatives by **treating all variables except the variable in question as constant**." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "#### Example\n", "\n", "Compute:\n", "\n", " 1. $\\displaystyle \\frac{\\partial}{\\partial x} \\left( x^2y - \\sin(x-2y) \\right)$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " 2. $\\displaystyle \\frac{\\partial}{\\partial y} \\left( x^2y - \\sin(x-2y) \\right)$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " 3. $\\displaystyle \\frac{\\partial}{\\partial z} \\left( \\frac{z^2 \\tan^{-1}(\\sqrt{x^2+1})}{\\cosh(xy)} \\right)$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Higher Order Derivatives\n", "\n", "Since the partial derivative of a function is a function, we can iterate the process. \n", "\n", "$$f_{xx} = \\frac{\\partial^2 f}{\\partial x^2}$$\n", "$$f_{xy} = \\frac{\\partial^2 f}{\\partial y \\partial x}$$\n", "\n", "etc." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Interpretation \n", "\n", "The case of a second derivative of a single variable easily relates to the one-variable case and the concept of **concavity**. A function $f$ for which $f_{xx} > 0$ is said to be \"concave up in the $x$-direction\". " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "### Example: Heat Equation\n", "\n", "The temperature at time $t$ at position $x$ along a straight bar is given by a function $u(t,x)$. The evolution of the temperature distribution is governed by the **heat equation** $$u_t = u_{xx}.$$\n", "This is a **partial differential equation** or **PDE**, but don't let it intimidate you. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "One could interpret this equation as stating, \"Where the temperature distribution is concave down, the bar will cool; where it is concave up, the bar will warm.\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c4ddc378f3fe46faa27fc89954c6c013", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=0.1, description='t', max=7.0, min=0.1), Output()), _dom_classes=('wid…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "u = lambda x,t: exp(-x**2/t)/sqrt(2*pi*t)\n", "@interact(t=(.1,7))\n", "def _(t=.1):\n", " x = np.linspace(-3,3,100)\n", " plt.plot(x,u(x,t)+u(x-2,t+1/2),color='k',lw=3)\n", " plt.ylim([0,1.5])\n", " plt.ylabel(\"temp\")\n", " plt.xlabel(\"position\")\n", " y = np.linspace(0,1.5,10)\n", " x,y= np.meshgrid(x,y)\n", " plt.pcolormesh(x,y,u(x,t)+u(x-2,t+1/2),vmin=0,vmax=.6,cmap='rainbow')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false, "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHhJJREFUeJzt3Xu0XFWB5/Hvj4QbEBDtCb5IMCyI0lFRNAYdx0cj2LHbSexp7AGfrLGlbc0SZXAaxh7aRl0jOq09a6SXXgVBBZHGR2cw8lLxtRpMFASSkDYEIVdwMII8lpJrwm/+qHOxKOpW1c2tU3VO3d9nrbuoc84+Z++qW/yy7z77nCPbREREfew17AZERMTMJLgjImomwR0RUTMJ7oiImklwR0TUTII7IqJmSg1uST+TdJOkGyRtKLOuiIhhkrRS0hZJWyWdPk2Zv5C0SdJGSRe1bHu8pJ9L+kS3uub3q9Ed/JHtHQOoJyJiKCTNA84BjgMmgPWS1tre1FRmKXAG8BLb90p6UsthPgB8p5f6MlQSETF7K4CttrfZngQuBla3lHkbcI7tewFs3z21QdILgCcDV/ZSWdk9bgNXSjLwKdvjrQUknQycDDCP+S/Yb/4TS25S/3ifsWE3oVS799Gwm1AZ8x4a7SuM9dDksJswI/fv+uUO2wfN5hgvfcU+vveeh3squ/Gm320EHmpaNd6SZwcD25uWJ4CjWw7zDABJPwDmAe+3fbmkvYB/AN4EvLKX9pQd3C+xfWfxJ8FVkm6x/d3mAsWbHwc4cO8n+d8vfF3JTeqfySMWDbsJpbrvsAXDbkJlHHjrzmE3oVRjt0wMuwkzcvkv/un22R7j3nse5stfX9hT2SMOuesh28s7FGnXy2n9134+sBR4BbAI+J6kZwNvBNbZ3i711lkqNbht31n8925JX6Xx58R3O+8VVZDQfrT7Dlsw8uEdszIBLG5aXgTc2abMtbZ/B9wmaQuNIH8x8FJJ7wD2B8YkPWi77QlOKHGMW9J+kg6Yeg28Cri5rPoiIoZoPbBU0qGSxoATgLUtZb4G/BGApIU0hk622X6D7UNsLwFOAz7XKbSh3B73k4GvFl3/+cBFti8vsb6IiKGwvUvSGuAKGuPX59neKOksYIPttcW2V0naBOwG3mv7V3tSX2nBbXsb8Nyyjh8RUSW21wHrWtad2fTawKnFz3THOB84v1tdmQ4YEVEzCe54jJyYbC+fS1RFgjsiomYS3BERNZPgjoiomQR3PErGcTvL5xNVkOCOiKiZBPcs1O3+DhHt5HtcPwnuiIiaSXBHRNRMgjsekRNvvcnnFMOW4I6IqJkEd0REzSS4IyJqJsEdEVEzCe4AcsJtpvJ5xTAluCMiaibBHRFRMwnuiIg+kLRS0hZJWyU95mG/kk6S9EtJNxQ/f9m07RBJV0raLGmTpCWd6irzYcFzwtgtE0wesWjYzYjYI7lPSX9ImgecAxwHTADrJa21vaml6Jdsr2lziM8BH7J9laT9gYc71Zced+RE2x7K5xZNVgBbbW+zPQlcDKzuZUdJy4D5tq8CsP2g7d902ifBHRExewcD25uWJ4p1rf5c0o2SLpW0uFj3DODXkr4i6XpJHy168NPKUElEzEn37n4cl97//B5Lf32hpA1NK8Ztjzctq81Obln+v8AXbe+U9HbgAuAYGjn8UuAo4A7gS8BJwLnTtSbBHRHR3Q7byztsnwAWNy0vAu5sLmD7V02LnwbObtr3etvbACR9DXgRHYI7QyUREbO3Hlgq6VBJY8AJwNrmApKe2rS4CtjctO8TJR1ULB8DtJ7UfJT0uCMiZsn2LklrgCuAecB5tjdKOgvYYHst8C5Jq4BdwD00hkOwvVvSacA3JQn4EY0e+bQS3HNcZkbMzn2HLeDAW3cOuxlRAbbXAeta1p3Z9PoM4Ixp9r0KOLLXujJUEhFRMwnuiIiaSXBHRNRMgrsPctlw1FG+t/WV4I6IqJkE9xyWGSX9kc8xBi3BHRFRMwnuiIiaSXBHRNRMgjsiomYS3BERNVN6cEuaV9wc/LKy64reZSZEf+XzjEEaRI/7FH5/+8KIiJilUoNb0iLgT4HPlFlPFeQqtKiTfF/rrewe9z8C/40uTyyOiIjelRbckl4D3G37R13KnSxpg6QNkw//tqzmRESMjDJ73C8BVkn6GY1H1R8j6QuthWyP215ue/nYXvuW2JyIiNFQWnDbPsP2IttLaDx/7Vu231hWfRERc0XmcUdE1MxAgtv2NbZfM4i6orvMOS5HPte5TdJKSVskbZV0eodyx0uypOXF8t6SLpB0k6TNkto+l7JZetwREbMkaR5wDvBqYBlwoqRlbcodALwLuK5p9euABbafA7wA+CtJSzrVl+COiJi9FcBW29tsT9KYkLG6TbkPAB8BHmpaZ2A/SfOBfYFJ4P5Olc3vS5MjImrm/l37cNUvjuix9NcXStrQtGLc9njT8sHA9qblCeDo5iNIOgpYbPsySac1bbqURsjfBTwOeI/tezq1JsHdR2O3TDB5xKJhNyOio1w1uUd22F7eYbvarPMjG6W9gI8DJ7UptwLYDTwNeCLwPUlX2942XWUJ7oiI2ZsAFjctLwLubFo+AHg2cI0kgKcAayWtAl4PXG77d8Ddkn4ALAemDe6McUdEzN56YKmkQyWN0bh2Ze3URtv32V5oe0lxbcu1wCrbG4A7aFygKEn7AS8CbulUWYI7ImKWbO8C1gBX0Lgb6iW2N0o6q+hVd3IOsD9wM41/AD5r+8ZOO2SoZI7JXONy3XfYAg68deewmxFDYHsdsK5l3ZnTlH1F0+sHaUwJ7Fl63BERNZPgjoiomQR3RETNJLgjImomwd1nubghqizfz9GQ4I6IqJkEd0REzSS455DM4Y4YDQnuiD7LP5BRtgR3RETNJLgjImomwR0RUTMJ7hJkrmxUUb6XoyPBHRFRMwnuiIiaSXBHRNRMgjsiomYS3BERNZPgniNyNd9g5fOeeyStlLRF0lZJp3cod7wkS1retO6MYr8tkv64W1155mRExCxJmkfjob/HARPAeklrbW9qKXcA8C7guqZ1y2g8Ff5ZwNOAqyU9w/bu6epLj7skmTMbVZLvY+lWAFttb7M9CVwMrG5T7gPAR4CHmtatBi62vdP2bcDW4njTSo87Iuakycn5/GzioF6LL5S0oWl53PZ40/LBwPam5Qng6OYDSDoKWGz7Mkmntex7bcu+B3dqTII7IqK7HbaXd9iuNuv8yEZpL+DjwEkz3bedBHdExOxNAIublhcBdzYtHwA8G7hGEsBTgLWSVvWw72NkjDsiYvbWA0slHSppjMbJxrVTG23fZ3uh7SW2l9AYGllle0NR7gRJCyQdCiwFftipsvS4IyJmyfYuSWuAK4B5wHm2N0o6C9hge22HfTdKugTYBOwC3tlpRgkkuCMi+sL2OmBdy7ozpyn7ipblDwEf6rWuDJWUKFOwogryPRw9Ce6IiJpJcEdE1EyCOyKiZkoLbkn7SPqhpJ9I2ijp78uqKzrLDY+GI597lKXMWSU7gWNsPyhpb+D7kr5h+9puO0ZExPRKC27bBh4sFvcufjpexhkREd2VOsYtaZ6kG4C7gatsX9emzMmSNkjaMPnwb8tszlBkKlYMU75/o6nU4La92/bzaFx7v0LSs9uUGbe93Pbysb32LbM5EREjYSCzSmz/GrgGWDmI+iIiRlmZs0oOkvSE4vW+wLHALWXVFxExV5Q5q+SpwAXFI332Ai6xfVmJ9UVEzAllziq5ETiqrONHRMxVXYdKJD1D0jcl3VwsHynpb8tvWkREtNPLGPengTOA38EjPekTymzUqMmUrBiGfO9GVy/B/TjbrU9j2FVGYyIiortegnuHpMMornqUdDxwV6mtioiIafVycvKdwDhwhKSfA7cBbyy1VRERMa2uwW17G3CspP2AvWw/UH6zYq564OnqWuaA23PLm6geSSuB/03jmZOfsf3hlu1vp9ER3k3jPk4n294k6Tjgw8AYMAm81/a3OtXVNbiLi2jeDCwB5hePlsf2u2b2tiKm10tgt5ZNgEdVFNernAMcB0wA6yWttb2pqdhFtj9ZlF8FfIzG1eQ7gP9o+87itiBXAAd3qq+XoZJ1NB4lfxPw8AzfTxTGbplg8ohFw25G5cwksKfbNwH+WJlRMnArgK3FCAWSLgZW03hyOwC2728qvx/FeUPb1zet3wjsI2mB7Z3TVdZLcO9j+9Te2x/Rm9mEdutxEt5RsoWSNjQtj9seb1o+GNjetDwBHN16EEnvBE6lMSxyTJt6/hy4vlNoQ2/B/XlJbwMuo/FwBABs39PDvhFt9Su0m4+X8I6Z0KRYcMdYr8V32F7e6XBt1j3mC2n7HOAcSa8H/hZ4yyMHkJ4FnA28qltjepkOOAl8FPhX4EfFz4aOe0R00O/QLvu4ET2YABY3LS8C7uxQ/mLgtVMLkhYBXwXebPvWbpX10uM+FTjc9o4eykZ0VHa4pucdQ7IeWCrpUODnNK4uf31zAUlLbf+0WPxT4KfF+icAXwfOsP2DXirrpce9EfhNb22PqqnSA2sH1SOuUs+7Sp9/lMf2LmANjRkhm2ncDXWjpLOKGSQAa4oHp99Ao0M8NUyyBjgc+B+Sbih+ntSpvl563LuBGyR9m0ePcWc64AxlZkkMQmaUDIftdTRm4TWvO7Pp9SnT7PdB4IMzqauX4P5a8ROxxwbdC86QSYyyXq6cvGAQDYnRNayhi4R3jKppg1vSJbb/QtJNPHZai20/t9ymRUREO5163FPjMZuB9zatF/CR0loUI2XYJwrT645RNG1w2566devhtm9v3ibpiFJbFSNh2KE9JeEdo2ba6YCS/roYJnmmpBubfm4DbhxcE0dLzvhHmfL9mhs6DZVcBHwD+J/A6U3rH8jl7tFNVXrbU9LrjlHSaajkPuA+4MTBNSciIrrp5crJiBmpWm97SlXbFTFTCe6IiJpJcA/BKJ9Aqnqvturtm41R/l7FoyW4IyJqJsEdEVEzCe7om7oMQ9SlnRHTSXBHRNRMgntIRu1EUt16sXVrbzej9n2KzhLcERE1k+COiKiZBHfMWl2HHera7qgmSSslbZG0VdLpbbafKmlTcbO+b0p6esv2x0v6uaRPdKsrwR0RMUuS5gHnAK8GlgEnSlrWUux6YLntI4FLeexzDT4AfKeX+hLcQ5QTStEP+R5Vwgpgq+1ttieBi4HVzQVsf9v2b4rFa4FHnhwu6QXAk4Ere6kswR2zUvfhhrq3PwZmoaQNTT8nt2w/GNjetDxRrJvOW2ncNhtJewH/wKOfNNZRL095j4gYOfMmmck92nfYXt5he7seQNuDS3ojsBx4ebHqHcA629ul3joSCe6IiNmbABY3LS8C7mwtJOlY4H3Ay23vLFa/GHippHcA+wNjkh60/ZgTnFNKGyqRtFjStyVtlrRR0ind94o6GZVhhlF5HzFU64Glkg6VNAacAKxtLiDpKOBTwCrbd0+tt/0G24fYXgKcBnyuU2hDuWPcu4D/avsPgRcB72xzlnXOy4mlmI18f6rB9i5gDXAFsBm4xPZGSWdJWlUU+yiNHvU/S7pB0tppDtdVaUMlxVPi7ypePyBpM43B+k1l1RkRMSy21wHrWtad2fT62B6OcT5wfrdyA5lVImkJcBRwXZttJ0+dqZ18+LeDaE70wagNL4za+4nRVnpwS9of+DLwbtv3t263PW57ue3lY3vtW3ZzIgbqwFt3di8UMUOlBrekvWmE9oW2v1JmXXVW5jhlgmN0ZXx77ipzVomAc4HNtj9WVj0REXNNmT3ulwBvAo4pzqDeIOlPSqwvBmRUx4NH9X3F6ClzVsn3aX81UUREzELuVVIRGa+Mmcj3ZW5LcEdE1EyCO2Zk1MeBR/39xWhIcEdE1EyCO6JmMr4dCe4Kyf+QEdGLBHdERM0kuKNnc+XE3Vx5n1FfCe6KyXBJdJLvR0CCOyKidhLcERE1k+COiKiZBHcFZRwz2sn3otokrZS0RdJWSY952K+kl0n6saRdko5v2XaIpCuLh6tvKp4aNq0Ed/Rkrs206Mf7zUMs5g5J84BzgFcDy4AT2zwc/Q7gJOCiNof4HPDR4uHqK4C725R5RIJ7DkiARJRuBbDV9jbbk8DFwOrmArZ/ZvtG4OHm9UXAz7d9VVHuQdu/6VRZaffjjtgTOw+Z7FpmwR1jA2hJxKMslLShaXnc9njT8sHA9qblCeDoHo/9DODXkr4CHApcDZxue/d0OyS4K2rslgkmj1g07GYMTC+B3Vp2LgV4xrf7b95DnslfoztsL++wvd3Ymns89nzgpcBRNIZTvkRjSOXc6XbIUEkM3UxCux/7RZRgAljctLwIuHMG+15fDLPsAr4GPL/TDgnuGJqdh0zOOnz7cYyIPlgPLJV0qKQx4ARg7Qz2faKkg4rlY4BNnXZIcFfYKP953O+wHeXwHuXvwagoesprgCuAzcAltjdKOkvSKgBJL5Q0AbwO+JSkjcW+u4HTgG9KuonGsMunO9WXMe7oqt9TAcsK2Z2HTPZ13PuBp4sDbu91mDLmOtvrgHUt685ser2exhBKu32vAo7sta70uGOgyu4Zj3LPO2JKgrvi8mfy3Jbff7ST4I6BGVRvOL3uGHUJ7jli2FdPDjpMhx3ew/68Y7QluCMiaibBXQN1H+ccVu932L3u2ar77z3Kk+COUg07PIddf0QZEtwRETWT4K6JOv7ZXJXeblXaMRN1/H3H4CS4o6O59gCFiDpIcM8hg5yiVrVe7p62Z0/+4Zrt55zednST4K6R/A8dEZDgjoionQR3zdSh1121YZIpVW1Xszr8fmP4EtwRETWT4I6IqJkEdw1V+c/pqg9HlN2+2cwoqfLvNaqltOCWdJ6kuyXdXFYdMXO5a11E/ZXZ4z4fWFni8SMiKkPSSklbJG2VdHqb7QskfanYfp2kJcX6vSVdIOkmSZslndGtrtKC2/Z3gXvKOv5cV8U/q6s+TDKliu2s4u8zeidpHnAO8GpgGXCipGUtxd4K3Gv7cODjwNnF+tcBC2w/B3gB8FdToT6doT8sWNLJwMkA++y1/5BbE1WxZNEvH7PuZxMHDaElET1ZAWy1vQ1A0sXAamBTU5nVwPuL15cCn5AkwMB+kuYD+wKTwP2dKht6cNseB8YBDtz7SXmk9gyM3TLB5BFtHxpdS+3CerrtoxTi6W2PhIOB7U3LE8DR05WxvUvSfcC/oxHiq4G7gMcB77HdcbRi6MEdg3fgrTu577AFfT3mbIYfugV2p332NMB3HjLJgjvG9mjf6eTEb73oocmZ/KO5UNKGpuXxotP5yOHa7NPaEZ2uzApgN/A04InA9yRdPdV7byfTAWuu7r21PQntfu4/bHX//c0hO2wvb/oZb9k+ASxuWl4E3DldmWJY5EAa5wFfD1xu+3e27wZ+ACzv1JgypwN+EfhX4JmSJiS9tay6op76Fbp1D+8YCeuBpZIOlTQGnACsbSmzFnhL8fp44Fu2DdwBHKOG/YAXAbd0qqy0oRLbJ5Z17Ki/foftkkW/HKlx76iXYsx6DXAFMA84z/ZGSWcBG2yvBc4FPi9pK42e9gnF7ucAnwVupjGc8lnbN3aqL2PcI2BPTlKWMc7dq7J6yMMM7z0Z384wyWixvQ5Y17LuzKbXD9GY+te634Pt1neSMe6YtZmcmCx7WGMmx6/ifO6IXiS4R0Qdem8Zi/69Ovy+oroS3NHRAbfXb2p9P/+BqOP7j9GX4B4hM+3FDXLe8aB724Osb6afY3rbMVsJ7oiImklwj5gq9uaGNbZdxTH1Kv5+on4S3HPcbIdL5vrMjFzmHsOQ4B5BVerVDbvX263+Qf7DU6XfS9RbLsCJSjnuKR2v9AXgql8cMYCWRFRXetwjqgq9u5n0to97yi09hfZMy860HWWpwu8jRkeCO4Y6TjvTEG7dd5gyvh3DkuAeYf3q5ZV1EUo/gnc2wd9Nv953etvRbwnuEddraPS799hteKLfYdvteP0eLun180poRxkS3BERNZPgngOq1usra2hj2GPerar2ucfoSHDPEb2EyCBOtpUdroMI714+p4R2lCnzuKMnB9xuHnh6u2ed9m4moXr843/8mHWX3v/8nuuZ7Vzv3BUwqizBPYf08qScfjwZZ09PBLYL6+m29xrizfrxhJz0tqMKMlQyxwwrVDr1to9//I+7hvZM9xnWeHdCOwYhwR1DNdPA7vf+M5ELbqITSSslbZG0VdLpbbYvkPSlYvt1kpY0bTujWL9F0h93qyvBPQd16xVOF1Dtxn0X3DG2x+3oV+jO5jjt2r+n49vpbc9dkubReFr7q4FlwImSlrUUeytwr+3DgY8DZxf7LqPxxPdnASuBfyqON60E9xy1p+G9J9oNW/S7p9zueP0cLun2eSS057wVwFbb22xPAhcDq1vKrAYuKF5fCrxSkor1F9veafs2YGtxvGnJrs7Zc0kPAFuG3Y4ZWAjsGHYjZqhuba5beyFtHoRn2j5gNgeQdDmN992LfYCHmpbHbY83Het4YKXtvyyW3wQcbXtNU5mbizITxfKtwNHA+4FrbX+hWH8u8A3bl07XmKrNKtlie/mwG9ErSRvq1F6oX5vr1l5ImwdB0obZHsP2yn60pdBurmxrr3i6Mr3s+ygZKomImL0JYHHT8iLgzunKSJoPHAjc0+O+j5LgjoiYvfXAUkmHShqjcbJxbUuZtcBbitfHA99yY6x6LXBCMevkUGAp8MNOlVVtqGS8e5FKqVt7oX5trlt7IW0ehEq11/YuSWuAK4B5wHm2N0o6C9hgey1wLvB5SVtp9LRPKPbdKOkSYBOwC3in7d2d6qvUycmIiOguQyURETWT4I6IqJlKBbekD0i6UdINkq6U9LRht6kbSR+VdEvR7q9KesKw29SNpNdJ2ijpYUmVnQLW7RLiqpF0nqS7i/m6lSdpsaRvS9pcfB9OGXabupG0j6QfSvpJ0ea/H3abhqFSY9ySHm/7/uL1u4Bltt8+5GZ1JOlVNM4O75J0NoDtvxlyszqS9IfAw8CngNNsz3pObL8Vl/z+G3AcjelS64ETbW8aasM6kPQy4EHgc7afPez2dCPpqcBTbf9Y0gHAj4DXVvwzFrCf7Qcl7Q18HzjF9rVDbtpAVarHPRXahf3oMgm9CmxfaXtXsXgtjTmYlWZ7s+2qX6HayyXElWL7uzRmC9SC7bts/7h4/QCwGTh4uK3qzA0PFot7Fz+Vz4l+q1RwA0j6kKTtwBuAM4fdnhn6L8A3ht2IEXEwsL1peYKKh0qdFXeqOwq4brgt6U7SPEk3AHcDV9mufJv7beDBLelqSTe3+VkNYPt9thcDFwJrOh9tMLq1uSjzPhpzMC8cXkt/r5c2V9yMLwOOPSNpf+DLwLtb/uqtJNu7bT+Pxl+3KyRVfliq3wZ+AY7tY3ssehHwdeDvSmxOT7q1WdJbgNcAr3RFThrM4HOuqhlfBhwzV4wTfxm40PZXht2embD9a0nX0LgVai1OCPdLpYZKJC1tWlwFVOux3W1IWgn8DbDK9m+G3Z4R0sslxDELxYm+c4HNtj827Pb0QtJBUzO3JO0LHEsNcqLfqjar5MvAM2nMeLgdeLvtnw+3VZ0Vl68uAH5VrLq2BjNh/gz4P8BBwK+BG2x3ferGoEn6E+Af+f0lxB8acpM6kvRF4BU0bhX6/4C/s33uUBvVgaT/AHwPuInG/3MA/932uuG1qjNJR9K4p/U8Gh3PS2yfNdxWDV6lgjsiIrqr1FBJRER0l+COiKiZBHdERM0kuCMiaibBHRFRMwnuqCxJb5f05uL1Sc13i5T0GUnLhte6iOHJdMCoheIKuUreyTBi0NLjjlJIWlLcp/yC4l7ll0p6nKRXSrpe0k3F/asXFOU/LGlTUfZ/FeveL+k0SccDy4ELi3u17yvpmql7iUs6sTjezVO31i3WP1jctOwnkq6V9ORhfBYR/ZbgjjI9Exi3fSRwP3AqcD7wn20/h8a9cv5a0h8AfwY8qyj7weaD2L4U2AC8wfbzbP92alsxfHI2cAzwPOCFkl5bbN6PxpWszwW+C7yttHcaMUAJ7ijTdts/KF5/AXglcJvtfyvWXQC8jEaoPwR8RtJ/AmZyz5cXAtfY/mVxX/QLi2MCTAKXFa9/BCzZ0zcSUSUJ7ihTTydQisBdQeMuda8FLp9BHe1u/zrld013a9zNEO6GGVGGBHeU6RBJLy5enwhcDSyRdHix7k3Ad4r7QR9Y3Nzo3TSGPFo9ABzQZv11wMslLSwed3Yi8J1+vomIqkkPJMq0GXiLpE8BPwVOofF4t3+WNJ/GrVs/CfwB8C+S9qHRg35Pm2OdD3xS0m+BqX8MsH2XpDOAbxf7rrP9L+W9pYjhy3TAKEXxKKzL6vDQ3Ii6yVBJRETNpMcdEVEz6XFHRNRMgjsiomYS3BERNZPgjoiomQR3RETN/H9YmSLc63zg3QAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "u = lambda x,t: exp(-x**2/t)/sqrt(2*pi*t)\n", "\n", "x = np.linspace(-3,3,100)\n", "t = np.linspace(.4,5,150)\n", "x,t = np.meshgrid(x,t)\n", "plt.contourf(x,t,u(x,t));\n", "plt.ylabel(\"time\")\n", "plt.colorbar()\n", "plt.xlabel(\"position\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Mixed partials\n", "\n", "A quantity like $\\frac{\\partial^2 f}{\\partial x \\partial y}$ is a little harder to wrap ones head around. \n", "\n", "Compute all mixed partials of the following funtions:\n", " \n", " 1. $f(x,y) = xy^3 - y \\sin x$\n", " 2. $r(x,t) = \\frac{x}{x+t}$\n", " 2. $u(p,q) = e^{-p\\sqrt{q}}$\n", " " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Clairaut's Theorem\n", "\n", "If all mixed partials of a function $f$ exist and are continuous in a neighborhood of a point, then $$ \\frac{\\partial^2 f}{\\partial x \\partial y} = \\frac{\\partial^2 f}{\\partial y \\partial x}.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Here is a quick illustration justifying Clairaut's Theorem. \n", "\n", "Suppose you connect 4 points in space, each at a different height and directly over the corner of a square (side length $\\Delta s$). \n", "\n", "##### Exercise\n", "Compute the **differences of the slopes** on opposite sides of the square," ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2a99abc57c9642c5b5b5117bf7f44725", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=12, description='angle', max=120, min=-90, step=6), IntSlider(value=42, …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "@interact\n", "def _(angle=(-90,120,6),vangle=(0,90,6),b=(.5,4.5)):\n", " fig = plt.figure(figsize = (8,8))\n", " ax = fig.add_subplot(111,projection='3d')\n", " ax.view_init(vangle,angle)\n", " for c in 'xyz':\n", "# getattr(ax,f\"set_{c}lim\")([-1,1]); \n", " getattr(ax,f\"set_{c}label\")(f\"${c}$\",size=16)\n", "\n", " ax.plot([0,0,1,1,0],[0,1,1,0,0],[2,1,3,b,2],'r')\n", " ax.set_xlim([-.1,1.1])\n", " ax.set_ylim([-.1,1.1])\n", " ax.set_zlim([0,5])\n", " x = y = np.linspace(-.1,1.1,60)\n", " x,y=np.meshgrid(x,y)\n", " ax.plot_surface(x,y,(1-y)*((1-x)*2+b*x) + y*((1-x)+3*x),alpha=.5,cmap=\"viridis\")\n", " ax.text(1,0,b+.2,\"$B$\",fontsize=14)\n", " ax.text(0,0,2+.2,\"$A$\",fontsize=14)\n", " ax.text(0,1,1+.2,\"$C$\",fontsize=14)\n", " ax.text(1,1,3+.2,\"$D$\",fontsize=14)\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "#### Quick exercise\n", "\n", "Compute $g_{zzxw}$ for $$g(w,x,y,z)= w^2 x^3 y z^2+\\sin \\left(\\frac{x y}{z^2}\\right).$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Estimating Partials\n", "\n", "Below is a contour plot of a function $f(x,y)$. Estimate the partial derivatives $\\frac{\\partial f}{\\partial x}$ and $\\frac{\\partial f}{\\partial y}$ at each labeled point. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAJCCAYAAADp1TKRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4HOd57/3v7GwvWLRF7x0sINhJsVNdlGR1R5KVSC6y4xI7yXsSn8i5UhzHaSevc855Y1uOu2XLalaXbMk2e0UjCtGI3vsC29vM+8eCiChTpiQCWJTnc117gRzMLm4MgN3fPvM890iqqiIIgiAIgiBcG02sCxAEQRAEQVgJRKgSBEEQBEGYByJUCYIgCIIgzAMRqgRBEARBEOaBCFWCIAiCIAjzQIQqQRAEQRCEeXDNoUqSJKMkSWclSTovSVKTJEl/Nx+FCYIgCIIgLCfStfapkiRJAiyqqrolSdIBx4Evqqp6ej4KFARBEARBWA601/oAajSVuWf/q5u9iY6igiAIgiCsKtccqgAkSZKBaqAI+P9UVT1zhX0eBx4HMBqNm3Nyct7z8e75op7hboWTL4Uv277xoMyG/VpmJlSOPBtiYlBkt/dLURQ0GjGFbjGJY774ls8xV1E1AVSND1XygRQBVYccSot1YR/Y8jnm74+CQkAKEpACRAijQ0+cYot1WZdZacf8vQTUCF41jEcNo6BglfQkagwxqaWtrW1cVVXH1fa75tN/lz2YJMUDvwC+oKpq43vtV1paqra2tv7O9s7pZ7Dosmmd+i4F9o+SZb1x7nO9rlcZ8Z4iy3oTo77TmLXpFNofRCPpmPI3MeB5G1kykRd3NybtVb/vVefw4cPs378/1mWsKuKYL76lfMwDkUmGPccZ8h5hxHuKiOpDlkykmneSYTlAqnk3Bjk+1mV+YEv5mL9fYSXM+el6jo+d4Px0AxE1Qr4ljz3Ju9ietA2r1hrrEi+zEo75laiqyoXpYV7vb+SN/iaGfNMYNFr2pRVza9Za9qWWYNLqYlKbJEnVqqpuudp+8zJSdYmqqk5Jkg4DtwDvGaquJKIEmA62cXH6p2Rbb70sUAH0uF6hNP4xUsw7cJi2cWTgMfJsdxPGx/mJfyXdvBdXsIvO6Z9TnvhpNFJsDrwgCAJEXyBmghcZ8h5l2HOUyUADoGKUU8ixHSLdvA+HaStyjN55C9Dr7ePY2AlOTZzGFXZh18Vxc+qN7Eq+jixzZqzLWzU6XeO81t/A6/1NdLsn0EoadqUU8sU1B7g+vQyrbvn8jVxzqJIkyQGEZgOVCbgB+OcP+jiyxsBGx1dwBbtonPgPImoQDVokSYM71EtIcZFo3ABARA0QiEyhk220TH2HZONGShM+DsAbPbdSlvBJEKFKEIRFFlH8jPnOMew9zrD3GN7wEADxhnLKEz5NumUfdn0p0fU9Qiy4Q25OTZ7h2NgJerw9yJLMxvhK9jh2sd6+DlmSY13iqjDoneb1/kZe72+keXoYCdiWnMdjRTu5KXMN8XpTrEv8UOZjpCod+OHsvCoN8Iyqqq++3zsragiQ0EjRUkKKB7Mugyl/E8mmjQBMB1oxyaloNdGDPBVoIt5Qijc8gjc0RKb1JgC8oSESDGvwhkew6XPn4VsTBEH4/byhwdkQdZwx3zkiqh9ZMpJi2k5pwidJM+/GpE2JdZmrmqIqNEw3cWz8OLVTdYTVMLnmHB7OeZCdSdux6ZbWnKmVairg5ZeDF3i1r4HqiV4AKhIy+fL6m7k1cy0ppuX/c5iP1X/1wMYPe39FDdEw8Q0kJBym7Qx5D2PQJGA3lMztE4hMY9XlEFZ8aDUmJnx12HT5BCKTSJIWo5wIgDc8jF5OQFGD1/ptCYIgXJGihpjw1zHsPcGI5zgzoQ4ALNos8uLuItW8G4dxizittwQM+0c4PnaC4+MnmQpNYdVaOZCyj72OPeSYs2Nd3qrgDQf5zVArr/Y1cGK0g7CqUGhL5k/KD3Aoax051sRYlziv5nVO1YchSyZybXcy4a9jwPMWNl0+pQkfp8/1OgY5kVTzdSQY1zLhr0VVo6sBJ/x1FMd/DAkNsqSfmz/lCnWh19jQy/Yrfq1R72lapr6D3VCKXV+K3VBCnL4QWdIv2vcrCMLy4wkNMuI9wYj3JGO+s4RVLxJakk2bWB/3EdLMu7Hq8sRpvSXAH/FzbrKKo+PHaXO1IyFRYV/Pw44/YGN8JVpNzF/2VryQEuHkaCev9Tfw9mALvkiINFMcf1S0g0NZ6ymzp67Yv5WY/3ZJkkSicR2JxnWXbXeYtxFRAoBEgqEcWTJydPBTaDVm0s17STJuQpb0TPjrKIl/DIAhz2EyLNdjkK+cfBU1TEQN0T3zCyKqP/r10WLT52PXF2PXl2A3lGDXl2LUrqz0LAjC+xdWfIz7qhjxnWLEewp3qBsAkzaNbNttpJqvw2Hahk5jiW2hAhBdFNDh7uDo+HHOTJzFrwRIM6Zyf9a97EreSYI+IdYlrniqqlI/NcArffW80d/EZNCLXWfkjuz1HMpez5akXDQrNEi9U8xD1Xsxay/v17Ip5a9xBXvwhgdIMe1AkqI9OhymrVSN/jVWXTYRNUCW9ca5+VnvlmbZTZplN6oawR3qZzrYynSgjelgG2O+Kvrcr8/ta5CTZ0PWbNjSF2PT54lVhYKwAqmqgjPYwqj3NKO+M0z4alEIoZEMOIybKYi7jxTzTmy6/BX7Dns5mg5Nc2L8FMfGjjPoH8KgMbAtcQt7HXsothaJn9Ui6HFP8mpfPS/3NdDrmcSg0XIgvYTbs9azJ60YvWZ1TfxfsqHqSmz63N+ZgF6W8ClGvKfwhgcpS4iOZF2NJMlzj5U1O8kdIBCZYjrQznQwGrSmA+10OH+KQih6P7TE6Quw64uJM5TMjm4VY5CTxB+vICwzntAAo74zjHrPMOY7S1BxAhCnL6bQ/iAp5p0kGyuRNcYYVyq8U0SN0OBs5Mj4Mc4764moEYqsRXwi/1G2Jm7BJC/PVWPLyVTAyxsDTbzcW8/5qf65lXufLt3NjRnl2HSr929mWYWqK9FqzGRar5+XxzLICaSYt5Fi3ja3TVFDuII9TAfbmAm2Mx1oY9R3ll73a3P76DXx0YBlKCFOX0Scvpg4fcHcakVBEGLPHx5nzHeOUd9Zxnxn8YYHATDKDtLMu0kx7yDFtB2jNjnGlQpXMuIf4ejYcY6Pn8QZchKnjeOm1BvY69hNhikj1uWteIFImMPDbbzcW8/RkXbCqkJJXAp/vvYGbs9eT5opLtYlLgnLPlQtNI2kw24owm4oumx7IOKcDVntTAfbmQlepGvm+bm5WiBh0WVFR7X0hbNhqwirLuc9T08KgjB//OFJJvzVjPmqGPOdwxXqAkCnsZJs3EJx/CM4TNvEKb0lLKgEOTdZzdGxY7S4WucmnT/ieJjK+Aox6XyBqapKzUQfL/ed582BC8yE/DiMVv6wcDt35FRQZl9+l1VaaOI38kMyyPE4TFtxmLbObVPVCJ7wANOBi8zMBq3p4EUGPYcBBQANOmz6/NmQVTgXuMza9Ll5YoIgfHC+8CgBUy21YycZ91XjCnUC0RXGycaN5NruxGHaSryhDEk0eFzSejy9HBk7xqmJ03gjXhwGB/dl3cOu5OtIFJPOF1yfZ4qXes/zcl89fZ4pTLKOGzPKuTOngh2OfGTxWvWeRKiaR5IkY9XlYNXlkMnBue0Rxc9MqIuZ4EVmgh3MBC8y7q+5bGK8LJmiYUtXQJy+ENts4DJr00TYEoR3UVUVd6iXCX8tE/46xv01eEJ9kAx9LjOJxkpybIdwmLYQbygXC0yWAW/Yy+nJsxwZPUq3twedpGVL4mb2OfZSaitBI54HF5Qr5OeN/iZe7quneqIXCdjuyOezZfu4MaMci1a0Hno/RKhaBLLGSIKhnARD+WXbQxEXM6HO2aDVgSvYwajvNL3u/25I/99hKx+bvgCbvoA4XT4WXZZ4ty2sGhElgDPQzESgnglfLZP+8wSUKSA6pzHJWElB3H30XICDOx8Sp9iXCVVVaXdf5MjYUc5OVhFUgmSbsvhYzkNcl7wDi1a0rFhIEVXh1GgnL/ae5+3BFgJKmHxrEn+65iB3ZFeQbr5yz0fhvYlnnhjSyTaS5A0kzV7T8JJgZJqZYCeu2cDlCnYy6jt32eR4DTqs+jxsunxs+jxsujxs+gKsuhwxQV5Y1lRVxRseZNJfz2SggUl/A85ACyrR5r8WXTaplt0kGTeQZKycnRMVHcUYCB4WgWoZcIVcHB8/yZGxYwz5hzBqjFyXtJN9jj3kW0QT1YXW6Rrnxd46XuqtZ9Tvwq4zck9uJXflVLI+IUMc/2sgnn2WIL1sJ9m0ce7ah5eEIi5coS5mgl24Ql24gl04A80MeN7m0pwtALM2HasuH5s+F6suD5suh4g8haoq4lSisOT4wxNMBS4wFWiK3vyNc+0NZMlIgmENxfEfI9FYQaJhg2jMu0wpqkLzTAuHx45SPVVDRI1QaCngE/mPsi1xK0Z59S7DXwwzQT9vDDTyQk8d9VMDyJLEntRi/irnFg6klaCXRRyYD+IoLiM62UaiXEGiseKy7RElgDvUiyvUjSvYiTvUgyvUTc9MHWHVG90pA17u+hesumysury5uV9WffSjXpMg3p0IC0pVVfyRMZyBFpyB5tlbC77IyOweEjZdPmmWvSQa1pFoXE+cvlDMh1rmnEEnx8ZPcGTsGGOBMSyyhetTDrDPsYcsc1asy1vRIqrC6bEuftFTN3d6rzguhb9YdyO3Z1fgMFpjXeKKI0LVCiBrDNHO74biy7ZfehFzBbupaXqLjHwDrlAPzmALg57foBKZ21ensWLRZWPV5WDRZmPVZWPRZWHRZWGUHSJwCR9IRA3iCna9o+1IG9OB1rl5UCBh1eWSbNpEvKGcBMMa4g3l76t5r7D0KapC/XQDR0aPUuesR0GhzFbKvVl3szlhE3qNCMoLqc8zxQs9tbzUe54h3wx2nZF78zZyd04la+PTxfP5AhKhagWTJAmTNgWTNgWjx0tF8v65zylqCG9oEFeoF0+oF3eoD3eojyl/EwPhty8LXLJkxKLNxKzLjAYtbSZmXQYWbSYWXaZ4IVzFFDWEJ9TPTHB2/l+og+nARdyh3rk5UBpJj01XQJplL/GGUuz6MuyGEnHdvBVoIjDJ0bFjHB0/zmRwkjhtHLek38Q+x17SjKmxLm9F84VD/GrwAi/01HF2vBsNErtSC/kf627iYHopBnF6b1GIo7xKaSQdVn0u1ndd9gdmA1d4CHeoD0+oH0+oD094EE+onzHfOSKq77L99Zp4zLoMzNp0LNoMzLp0TNo0zNoMzNo0dJo48c5oGVNVlaDixB3qxR2Mnlp2h3pwBbtwh/rmwhOAWZtJnL6QdMt+7Poi7IYSrLpcMXl8BVNQqJmq5fDoEeqnGwFYG7eGh3I+ysb4StGgcwGpqkrD1CAv9NTyWn8j7nCAHEsCX1xzgLtyKkWX8xgQv+3C79BIurk5V+8WfYGdwhMaxBsewBMawBsexBMaZCbYwbD3OIoauOw+smScDVmpmLRps6NnqRjllNl/O8ScrhhT1BC+8Ojsz3MAd6g/GqjD0WAdUlxz+0poseiysOnySLfsn21mW4hNly9Wnq4iY4Fxjo4d4y3jr/G1+4jX2bk94zb2OfbiMIhL/SwktxLihxdP83xPLe0zoxhlLTdnrOWevEq2JuWK59IYEqFK+EAkScIgJ2KQE0lk3e98XlVVApFJvOFhfOFBvOERfOHh2f+PMOM9gT8yAaiXPy5ajNpkTLIDo9aBQU7CKCdh1CbP/jsRg5yEQU4UL9wfkKKG8Ecm8YdH8YVH8UeiH6M/k2G8oSF8kTHeuYJUQsaszcCiyyTBum42ZOdG59zpMsTk8VUqrISpc57n8NhRGqebAMhUM7i3+G42xFcgi955C0ZRVU6NdfJcdy1vT18g3KCyPiGDv6u8nduy1mHVGWJdooAIVcI8kyQJozYJozYJWHvFfaIv8hOzL/Ij+MJj+CPj+MOj+CPjuIM9jEdq5pbVv5ssGTHICejlePSaBAxyPHrZjl5jn90Wh05jQy/b0Wni0Gms6GQbsrQyOgJHlABBZYaQMkMwMk1QmSYQmSIYmSIwd5vEH5kgEB4noDh5d4jVoMOkTcWkTcVh2opZl45Zm455dp6cSZsqTtkJc8YCYxwePcqx8RNMh6ZJ0CVwZ8bt7HPsoeFUA5sSNl79QYQPZcg7zQu9dbzQU8ugdxq7zsQeQwZf2nUHJXYxT22pEc+awqLTSDrM2jTM2t9/Mc5L4SsQmSQQnsAfmSQQmfjvAKE4CUacuEM9BJVpwor7939ddGg1FnQaK1qNGa3GglYyIWtM7/hoRNYYkSUDGsmALOnRSHo0km7uJqFFI8lIaGa72ktIaIB3DrmrhAwXGfNZUdUIKgqKGkYljKKGUdQQihpEUYNE1AARNUhE8RNRfYRVPxHFR1jxEla9hBQ3YcVDSHETUty/c3r1naKBMzqqZ9FmkGiswCgnY9I6MM6OAprkVAxyvOhZJlzVRGCC73X9kKaZCwBsiK9gv2MvFfHrxajUAgopEY4Mt/Nsdw3HRy6ioLLTUcCfrb2BG9PLOHnsuAhUS5QIVcKSdVn4eh8j24oaIhhxEVKiozehiIug4iKkuGaDifsdAcVDWPESUJxEwkOEVd9sqIne5kUKHBv8IHeQkCUjWo0JWTKh1ZjRaSwYNPFYdVloNTb0GhtajRX93EicHb1sx6CJxyAnIGtEA0Xh6iaDk0wGJsk0Z2KSTaiqesV5ODadjenQNB/JvIN9jj0k6kXj1YXU75niue4anu+pYzzgJsVo41Mlu7g3bxPZFnEh6eVAhCphxdBIOozaRIxc2xO/qqqzI0hBFDUwN6oUUUNzI00qkbkRKFVVuDQf6dJJNgk4f76BysrKuRGt6AiXFgkt8tzIlz46KqYxoEEnJpgKC0pRFd4c/hWvD71Bma0UBZU/Kf7ce/7e6TV6/mH93y1ylatLUInw26FWnumu5uRoJxok9qYVc3/eJvamFqPViBHl5USEKkF4F0mSkCUDMgbA9qEfRxfw4zBtnb/CBOFDmAm5kCUZi9aMN+ylznmef6/8V/QaPf/34jf51fBbXJe8E6tWdNdeTH2eKZ7truaFnjomAh7STXF8vnw/9+ZuFK0QlhhVVa++0ywRqgRBEFaoYd8wX274Ch/Pf5RdyTuxaC3IkoZB3xB5llz2Je+hfrqRbk8P6+xXXlgizJ/Q7KjUz98xKnUgvYT78zazO7UQWcxzXDJCkQin+vt4rb2VptGRq99hlghVgiAIK1Szq5UcczbusBtXyIWKSp45jyH/MHmWXAqs+bS52xn2j7A2bo04/bxABrxOnu2u4fnuWsYD7rlRqftyN5IqRqWWjLCicHo2SP2yox2n349Vp+eGgkJee5+PIUKVIAjCCqOoChpJg07SUhG/ngHfIEP+YcpspVh1Vkb8I/giPixaCxatBXfYLQLVPIuoCkeHL/LzriqOjrQjIbEntYiP5m9hb1qRGJVaIhRV5dxAP6+2t/LmxXYmfF4sOh3XFxRyqKiUvbl5GLRa/t/3+XgiVAmCICxDzuA0b4/8munwDBX2dWxN3DL3OY2kIayEqXbW8vG8P+KXw28xFhijPK6MbFMWTTMXOO+sZ0fSdhJ0CZyaOR3D72RlGfO7eb6nhme6ahjyTZNssPLp0j3cn7eZDLM91uUJROdInR8Z5pW2Fl5vb2PE48ao1XIwr4BDJaUcyMvHqP1wDY5FqBIEQVhm2lzt/LD7J6yJK2dz/Eae7nsGs2xmTVw5kiShqApajZZ0Yxo2nY1kQzKvD71J9VQt92bdTYmtmGf7XsAf8XN8/CQHUw7E+lta1lRV5dxED093VvH2YDMhVWGHI5+/XB+9mLFOI3p6xZqqqrRMjPNKawuvtrfQPzODXiOzLy+P20v2cTCvAIv+2htEi1AlCIKwzCQbkvlk/mPkW/MAaHW3cdHdwVr7mrlTfx3uTmqn6uj3DjDoH0InaSm3lZJjzibHnI0syTRON3F9ygF2Ju+I7Te0TLlDAV7qO8/TnVVcdI1h1xl5qGAbH83fTL5NXP9wKeh2TvFKWwuvtLZwcWoSWZLYlZ3LF7dfx40FRcQZ5vfyPiJUCYIgLDPxOjuJ+gQiagRZkknWJ9Pn6weip/4ACq0FFFoLKLOVstuxi18Nvx1t+hmcJFGfSGX8BirjN8Ty21i22mZG+WnnWV7prccbCbE2Pp2vbbqTWzPXYfqQp42E+TPidvNqeysvtzbTMLtyb1tGFl+t3MQthcUkmc0L9rVFqBIEQVhmLgWnS5eKOT1xhnuy7vqd/T5Z8PG5f2+IX48v4hdd0T+kkBLh7cEWftp5jqqJHvQamduy1vFg/lYqEjNjXd6qN+338+bFNl5ua+F0fx8qsC4llb/avY9DxaWk2z58z8EPQoQqQRCEZazT3YVZa6bYWjS3rdfbx1TQyYb49XOjWalGca24D2PU7+LZrmp+3l3NmN9Nljme/2ftDdyTu5EEw8KNeAhX5w+H+E1XJy+1NnOku5ugEiEvPoHPb9vBR0rLKUhY/DcQIlQJgiAsQSP+EY6MHWNrwpa5uVPvdOl6fb3ePoqshbjDHn418haltlJCSogMU/SC5eLCxx+cqqrUTfbzk86z/GrgAmFVYU9qEV/duI09qUVoRPuJmIkoCqf6+3iptZlfdrTjDgZJsVh4uGIDd5aWU5GSGtP2ICJUCYIgLBEhJUTNVC2Hx45wYaYFDRoSdAlXDFWXXjjeHP4l/kiAemcDhdYCiq2FmLViBOXD8EdCvN7fyE86ztI8PYxNZ+Chgq08WLCVPGtSrMtbtVRV5cLYKC+1NvNyWwujHg9WnZ6bi4q5q6ycHZnZyEvkGokiVAmCIMTYoG+II2NHOT5+EnfYTbI+iXsy72KvYzcJ+oT3vF9ICbElYTP51jw2J2xaxIpXliHvNE93VfFMdzXOoI8im4O/rTzEHdkVmLXXvsxe+HAGXTO81NrMiy3NtE9OoNNo2Jebz11l5RzML/jQvaQWkghVgiAIMRCIBDg3Vc2R0aO0uduRJZmN8ZXsd+xlrX3N3GT030en0XFf9j2LUO3Ko6oq1RO9/KTjLG8PNaOqcCC9lEcKt7EtOU90mI8RVyDAGxfbeLGlmdMDfQBsTs/g7/dfz6HiUhJMphhX+PuJUCUIgrCIejy9HBk7yqmJ03gjPlINqTyQfR+7k6/DrhMdtxdaIBLm9f5GftxxhubpYew6I39UtJOHCraSaY6PdXmrUlhRON7bwwstTbzV0UEgEiYvPoEvbb+Ou8rKybEvn5+LCFWCIAgLzBv2cmbyLEfGjtHl6UYnadmSuIV9jj2U2UrFqMgiGPW7eLqzip93VTEZ9FJkc/B3lbdzR3aF6C0VI81jo7zQcoGXWpsZ93qJNxq5b81a7ilbQ2Va+rL8uxChShAEYQGoqkqbu50jo8c4N1VFUAmSbcriYzkPsTN5O1atNdYlrgpNU4P8sOMMb/Y3ElYV9qeV8EjhdnY48pfli/ZyN+b18FJLM79ouUDz+Bg6jYYDeQXcXb6G/bn5GLTLO5Ys7+oFQRCWGGdwmhMTJzk6doxh/whGjZHrknayz7GHfIuYq7MYIqrCrwdb+FHHGaonejFr9Xw0fwsfK9xOrlU0P11sgXCYX3d18nxzE0d7uoioKhWpafztvoPcUVK25OdJfRAiVAmCIFyjsBKmfrqRY2PHqHPWo6BQYi3mjvxDbE3cgkGe3+uLCVfmDgV4rruGn3SeZcDrJNMcz1+uv4l7czdi0xljXd6qoqoqDaMjPHehkVfaWpkO+Em1WPnUpq3cU76GosSV2aJChCpBEIQPadA3yLGxE5yYOMl0aAa7Lo5b0m9ib/Ie0mebbwoLb8Dj5McdZ3iupwZPOMjmpBz+Yt1NXJ9Rivw+VlEK8+fS6b3nLjTSNjmBQdZyY2Eh95WvY1d2zpLpJ7VQRKgSBEH4AKKTzs9xbOw4HZ5OZElmg309exx7qLCvQ6sRT6uLpXaijx9ePM1bg81oJIlbMtfyaNEO1iZkxLq0VSUUifDb7k6eu9DEb7s7iagqG9PS+YcDN3B7SSlxhtUzSij++gVBEK5CURWaZ1o4Nn6cqskaQmqIDFMGH82+n13JO0UrhEUUURXeHmzh++2nOD/VT5zOyGPFO/lY4XbSTHGxLm9VaZsY59kLjbzY0syEz4vDbOETm7ZwX/naFXt672piEqpCUghXyIVNtzhXjRYEQfgwhn3DHB8/yYmJU0wGJzHLZvY4drE7eRcFFrF6bDF5wkFe6KnlRxdP0+91km1J4ImKW7g7dyMW0fV80bgCAV5rb+WZpkbqRobQajRcn1/IfWvWsi83H+0KP713NTEJVTPSDJ+v/RLJ+iTyLLnkWfLIM+eSZ8kVQUsQhJjyhD2cnTzH8fGTXHR3ICGx3r6OP8i+n40JG9FrRE+jxTTqd/FUx1me7qpiJuRnY2I2f7H+Jg6mi/lSi0VVVc4NDvDshUZeb2/FFw5TkpjEE3v2c1dpOUlmca3JS2ISquLUOD6afT/dnm66PT1UTdXMfS5JnxgNWZbc2aCVR5wIWoIgLKBLq/dOjp+kznmekBomc/b03s6k7b/3+nvCwrg4M8b320/ySl89YVXhhoxyHivaycak7FiXtmqMe7280NzEMxca6JyawqrT85HSch5Yu54NqWlipPYKYhKqdKqO29Jvmfu/J+yl19tLl6d7LmhVvyNoJeoT3xGyojcxh0EQhGuhqiqdni5OjJ/i7ORZXGE3Nq2N/Sn72J28i1xzjnjRWGSqqnJuvIfvtp/k6Eg7RlnL/fmb+aPCHeSI/lKLIjJ7yZinmxr4dVcHYUVhc3oG/3LDNm4rLsWsEyO1v8+SmKhu0ZopjyujPK5sbps37KVnLmj10OPtoWaqdu7zCboEci055FlyyTfnkWvJEe8mBUG4qmH/CKcmTnNq/AwjgRF0kpaNCRvZlbSTdfa1YvVeDERUhbcGm/lu20kanYMk6s18oXw/D+ZvJcEgTi0thiGXi2cvNPLMhQYGXS4SjSb+aMORwsXPAAAgAElEQVRGPrp2/aqddP5hLNlnD/MVgpYv4qPH0xsdzfL20O3p5byzHhUVALvOTp45hzxLNGTlmfNI1CeId5uCsMo5g9OcnTzLyYkzdHm6kJAos5Vye8atbEnYjFkrXrhjwR8J8YueOn5w8RS9nilyLYn8XeXt3JlTgVEWIyILLawoHOnu4meN9Rzu6UJRVXZl5/A/d+3jxsIi9LIc6xKXnSUbqq7EJJsoiyulLK50bps/4qfX2zd72rCXbm839dONc0HLprWSa84l15JL3mzQchiSRdAShBXOE/ZQPVXD6YmzXJhpRkUl15zDR7PvZ0fSNhL14nRSrDiDPn7WeY6fdJxhMuilIiGTP197A9dnlInJ54tg0DXDM02NPNPUwLDHjcNs4TObt/HA2nXk2ONjXd6ytqxC1ZUYZSMltmJKbMVz2wKRAH2+/uhpQ08P3d4e3hz+JRE1AoBZNpFjjp46jAauHNKNaWjEH7MgLGshQpwcP82ZybM0TDcSUSOkGFK4I+MQO5K2k2kSTSFjacg7zQ8vnubZ7mq8kRB7U4v5ZMkutiSJ+WsLLaIoHO7p4mcN0VEpVVXZk5PH3+w/yMG8AnRiVGpeLPtQdSUG2UCRtZAia+HctpASot87QLe3hx5vL92eHn498ltCaggAvUZPtimLPEsuOeYcci05ZJky0Ynl08JVHDx4kN/+9rdz/4+Pj2fnzp08+uijsStqFfFH/Jx31nN28hy1pvNEOiMk6hO4MfV6diRuJ8+SK16wY6xjZozvzq7kU1E5lLWeTxRfR4k9NdalrXgjbjfPXGjg6cYGhtyuuVGpP1i3nqw4seBrvq3IUHUlOo2OfGse+da8uW0RNcKgb4geTzRo9Xh7OTF+il8r0RdIWZLJNGVEQ9Zs0MoxZ2OSV84VtYVrV1tbyz/+4z/y2GOPoSgKra2tPPDAA0QiER544IFYl7ci+SI+6pz1nJusot7ZQEgNEa+zUxIu4p6KuymyFoqR5yWgbrKf/2o7wa+HWjDKWv4gfwuPFu8k0yxOMS0kRVU52dfLTxvO81bnRSKzc6W+snc/N+QXilGpBbRqQtWVyJJMtjmLbHMWu9kFRC9HMRoYo9fbS7enl15vL/XOBo6Pn5i7X4ohhVxzNrmWXHLM2eSac7Dr7OLd8CrU0dGB0+lk//79pKVFL6CbkZHBunXr8Pv9Ma5uZXGH3NQ666iaqqFxuomwGiZeZ2efYw9bE7dQYivm6JGjl00FEBafqqqcHOvkydbjnB3vxq4z8tmyvXysYLtYybfAnH4fz11o4qeN9XQ7p0gwGvn4xs08uK6CvHixOn4xrOpQdSUaSUOaMZU0YyrbErcC0ScJZ8g5OyG+Jxq4vL2cm6qeu1+cNo4cczY5lmxyTNnkWnJINaYiS+IdwUpWXV2NVqulsrISgFAoxLPPPsu5c+f46le/GuPqlr+JwAQ1U3VUT9XQ6mpDQSFJn8j1KQfYkrhZjEgtIYqq8vZgM0+2HafJOUSK0cZfrruJ+/M3i8vILLD6kWF+0lDHK62tBCJhNqdn8CfbdnBrUQkGrXiZX0ziaL8PkiSRoE8gQZ/AhviKue3esJdeb9/sLXr68FfDbxNWwwDoJB1Z5ixyzFlkz45oZZuzxOnDFaS6uppIJILD4QDA5/MRHx/PL37xC3SiSd4HpqoqPd5eap111E7V0ePtBSDDlMGh9FvZnLBJzJFaYiKqwos9dXyn7QSd7nFyLIn8/cY7+Eh2BXpZvMQsFH84xKttrfyk4Tz1I8OYdTruKV/Dx9ZvoNyREuvyVi3xG38NzFrz77R4CCthBv1D0aDl6aXP10fVZA1Hxo7N7ZOsT54LWjnmbLLNWTgMDvGOexmqrq7mnnvu4Z/+6Z8AmJiY4G/+5m94/PHH+fa3vx3j6paHQCRA80wLdc7z1DnrmQpNISFRZC3kgez72By/kTRTWqzLFN7FHwnxfE8t/zlzlsmaAGX2VP5t673ckrlGtEVYQH3T0zwz1M+ffe9JnH4/RQmJ/O2+g9xVtoY4gyHW5a16IlTNM61GGz0NaM6G5OuA6LvvqdAUvd4++rz9sx/7qHWen+unZdAYyDJlkjU7xyvblEWWOROr1hrLb0e4itraWr7yla9QVFQEQFFREV/+8pc5cOAA3d3dsS1uCRvxj1DvbOT8dD0tMy2E1DBGjYF19rVUxt/FhvgK4nRxsS5TuAJPKMDTXVX84OIpxgMeCuQ4vrbzHvalFosRxAWiqConenv4UX0tv+nqRAJuKizmkYpKdmRli+O+hIhQtQgkSSJRn0iiPpHK+A1z2wORAAO+QXq9ffT7+un3DlA1Wc2RsaNz+yToEsgyZ86FrCxTJummDPSi1UPMdXV1MTk5ycaNGy/b3tnZCURbKwhRvoiP5plWGqcbaZhuYjQwCkCqIZUDKQeojK+gxFYsWpgsYdNBHz/pPMuPL55mOuRnp6OA/1W2B09DF/vTSmJd3orkCgR4vrmJH9fX0eWcIslk5rNbt5Pv8nLPTTfFujzhCkSoiiGDbKDAmk+BNX9uW3RUy0m/t59+3wB93j76fQM0z7TMzdWSkEgzppJpioasTHMGWaZMUgwp4rpli6i6OrpQIS0tjeHhYbxeL6dOneLLX/4yDz/8MCkpq3deQ1gJ0+npomnmAk3TF+hwd6KgoNfoKbeVcXPajay3ryPVuHqP0XIxEfDww4un+GnnOTzhIAfSSvhM6V4qEjMBOCx1x7bAFahjcoIf1dfxQnMTnlCIytR0/v2m27i1qBiDVsvhw4djXaLwHsQr8BITHdVKIFGfQEX8+rntETXCiH+EPu8AA76B2cDVT/VUzdwpRFmSSTemkWnKIMOUQebsLcUgXrgWwqVQVV5eDoDdbqeoqIivfvWrfOITn+D48eOxLG9RRdQI3Z4eWmZaaHa10upqI6gEkZDIs+RyW/otrLOvpchaKEajlolRn4vvtZ/k591VBCJhbs5cy2dK91AqGnYuCEVVOdLTxQ/rajna241eI3N7SSmPbNjIhlQxp3C5EKFqmZAlmYzZsARb57YHlSBDviH6fQMM+AYZ8A3S6enm7GTVZWHLarTS0H6BDFM6GcZ00k3ppBvTMMhiYuOH9fWvf52vf/3rsS4jJoJKkE53F62uNtpc7bS7LxJQAkB0pd6e5N2siSujLK5UzAtcZga90/xX23Ge66lFURVuz6rg06W7ybclx7q0FckdDPJ8cyM/PF9Ht3OKFIuFP91xHQ+u20CyWfT1Wm5EqFrm9Bo9uZboBaPfKRAJMOgfYtA3xIBvkIa+evp9/dRM1aKgzO2XpE8k3ZhOuimNdGMaabO3BH28WI0oANFT0pPBKS66O7jo7qDD3UG3t2fuWppZpkx2J19Hqa2UsrgS7Dpx6YvlqM8zxXfajvNiTx0AH8nZwOOle8i2iKaRC6Fvepofnq/lmQsNuINBKlPT+cbNt3FrUYnoeL6MiVC1QhlkA/mWPPIteQCkdCSxv2I/ISXEiH+UIf8QQ/5hBn1DDPmGODZ2HP/sSANEw1qaMZVUYypphlRSjSmkGdNINaZg09rEapMVzB120+3pocvTTaeni053J87QNBDtvZZvzeOWtJspsRZRZCsUI1HLXLd7gidbj/Ny33k0kob78zfzieJdZJhFOJ5vqqpybnCA79VV81bHRWSNhluLSnischOVaemxLk+YByJUrTI6jS66itCcedn2S13jh/zDDPmGGfaPMOwfptfTS/VkzWWjWybZRIrBQYoxhRRDCikGB6nGFByGZBL1iWKEa5mIjkBNzjWw7fH20uPpZTw4PrdPqiGVNXHlFFgLKLIUkm3OEoshVogu1zjfbD3Ga30N6DQyDxVs5ZPFu0kx2WJd2ooTjER4ra2V79dV0zg2SrzRyGe2bOORikrSrOJ4ryTi2VEALu8avyau/LLPhZUw48EJhv3DjPpHGQ2MMewfodfTR81U7dxpIIjO30rSJ+EwJJNsSI5+1CeRZEgi2ZBEvE6cVlxs7wzMA75BBrwDs3PwBvBGfEB0RWmKIYVCaz4HLfvJM+eSZ8nForXEuHphvnXMjPGt1mO83t+IXpb5w6LtfLx4Fw6jGHGcb06/j6ca6vlxfS2jHg9FCYl87eCN3FVajklccWFFEqFKuCqtRjt3PcR3i6gRJoNTc2FrLDDO+OzHmqlaXGHXZfvLkkyiPoEkfRKJ+gQS9IkkzX5M0MeToEsgTmdb1sHrqaee4oknnuALX/gCjz76KF/72td4+OGHF/RrqqqKK+xmNDDKqH+MkcAII/5Rhv3RUUffbHgCMMtmskyZ7EjaTrY5e64Hmrh80sp2cWaMb7Ye5Y3+RkyyjkeLd/Lx4utIMojgPN+6nFN8v7aa55qb8IfD7MnJ5Z+vv5m9uXli6sQKJ0KVcE1kScYxOyK19gqfD0QCjAcnGA9MMDH7cTI4wURgkjZXO1Mh52UjXZce066LI14XT7zOjl0fj10Xh11nJ04bR5zORpwujjitDZNsWlJPUk899RSPP/44Xq8XgJ6eHh5//HGAawpWvoiP6eA0UyEnk8EpJoOTTAYnmQhMMh4cZzwwMbf6DqIjT4n6BNKMaVyXtJN0UxoZxnQyTOnE6+KX1DETFlb7zCjfbDnKmwNNmLR6Plmyi8eKriPBIFaWzSdVVakaGuC/aqp4u7MDnUbmI2XlPFa5ibJkR6zLEz6EcZeHt+svcqF/5H3fR4QqYUEZZMNcv6wrUVSFmdAMU0Enk6FJpoJOpoJTOEPTOINORgPjtLs7fmfE6xJZkrFprVjnbhbMWgsW2YxFa8EsmzHLJkxaEybZhFFjxCgbMclGDBoDOo1uXkfFnnjiiblAdYnX6+WJJ57goYceIqgE8St+/BE/vogfX8SHJ+zFG/HgDkdvrrALd8jFTNjFdGiGmdDMZYHpEotsIcmQSKohhbVxa2bDbXSum8PgEF33V7mLM2P8Z8uRaJiSdSJMLZCIovDLjna+U1PF+ZFh4o1GPrd1B49sqMRhFqOAy43T4+Ot+nZ+WdfGuY5+FFWlIDXxfd9fhCohpjSShnh9PPH6ePLJe8/9wkoYV9jFTGiGmZCL6fAMrpALV9gdDSFhN+6wmyH/MO6wB2/YQ2i2A/3V6DV6dJIu+lGjQ6vRopVktJIWWZKRJRmNJCGhmQtgEtJcHzBFVVBRiKgK5V9Zz1ptBbJOpiXzIve8+ACyQUZr0PLYuU/N3ee9yJKMVWvFprURp7NSaCkgThdHvC4uepx08SToE0jSJ4oeY8IVdcyM8Z/vOM0nwtTC8IZCPHehke/WVtM3M02uPZ6/338995avFfOllhmXL8BvGi/yZl0bp9t6CSsKucnxfPL6bdxSWUJxejLSXz76vh5LhCphWdBqtHMT6d+voBLCG/bii/jwRryzo0M+/BE/ASWAXwkQiAQIKkGCSoiQEiSkhggpYcJqmIgaIaKGiagKISUyG54uxSIVkNAQPY2mkTTIkowOGY/TixJUyLPnMVw9RCQQxqw387lPfw6DxjA3UmaSo6NnZtmMWWvGqrVg1BjFqTnhQ+l0jfOfLUd4XYSpBTXh9fKj+lp+XF+H0+9nU1o6f7VnHzfkFyJrlu9c0NXGFwxx5EInb9S2crylm2A4QmZiHI/s28StlaWUZTo+1HOxCFXCiqXX6NDr7cSzeP12nqp5ise/GJ1Tdfu/3cr/+eo3MJvNPPnkk9ybdfei1SGsHl2uCb7ZeoTX+hoxylo+UbyLjxeLMDXfepxOvlNbxfMXmghEwtxYUMinNm1lS0bm1e8sLAmhcISTbT28XtPKb5s68AVDJNvMPLCzgls2llKRk3bNb2pFqBKEeXRpMvoTTzwBQG5u7qKs/hNWn173JN9sPcrLvfXoZZlHi3bwiZJdJIrVfPOqcXSEb1Wd5c2OdrSShrvKyvnUpi0UJibFujThfVAUlequAV6vaeGt+namvX7iTAZu21TKbRvL2FyQOa8jjCJUCcI8e/jhh3n44Yc5fPgw3d3dsS5HWGEGPE6+2XqUF3vr0EoyjxRu55Mlu0gWfabmjaqqnOzv5dtV5zje14NVr+dTm7bw6IZNpFrFcV7qVFWlZWCM12tbeL22ldFpNya9joPrCrltYyk7S3LRaRfmUkAiVAmCICwDQ95pvt16jOd7atFIEg/mb+VTpbtJMYqO3PNFUVV+1XGRb1WfpX5kGIfZwl/u2sOD6zYQZxALQ5a6vgknr9e08lpNC12jk2g1GnaV5fLnt+9h/9pCzIaFX0AgQpUgCMISNup38WTrMZ7prgFV5f68TTxeuoc0U1ysS1sxQpEIL7U28+3qc3RMTZJrj+drB2/knrI1GLTiZXIpm3L7+OX5Nl6tbuZ8zxAAmwoy+dje67mpoph4y+I2NRa/LYIgCEvQRMDDf7Ud52edVURUhbtyNvCZsr1kmuNjXdqK4Q+HeKapkSdrzjHoclGe7OB/33KIW4tKxEq+JcwfCnO4qYPXqls43tJNWFEoSkvii7ft4tCmMtITYveGQ4QqQRCEJcQZ9PG99hM81XEWfyTMnTkV/HHpXnKs778BofD7uQIBnmo4z3drq5nwedmcnsHf77+BA3n5oqXJEqUoKlWd/bxS1cxb9e14AkFS7FYe2buRQ5vLKc1YGl3rRagSBEFYIqYCXm5+63/jDgW4NWsdny/bR74tOdZlrRhOv48f1NXyg/M1zAQC7MnJ5XNbd7AtMyvWpQnvoXNkgleqm3m1uoVhpwuLQc+NFcUc2lTG1qKsJTeiKEKVIAjCEpFgMPOZ0r3sTi2iJC4l1uWsGONeL9+treIn9XV4QiFuKijij7duZ0NqWqxLE65g0u3ljdpWXqlupqlvBFkjsbMklz89tJsD6wox6Zdux3oRqgRBEBbYVMBLSImQYrr6Sr2PF1+3CBWtDiNuN0/WnONnjfUEwmEOlZTyua07KE0So39LTTAc5uiFLl6qusDx5ug8qbIMB//jzn3ctqmUZNvy6L8mQpUgCMICCSsK/6vpLd7ob6LUnsaB9BL+IH8LEO2lI+bvLIwhl4tvV5/l6aYGIorCR0rL+ezW7RQkiHlpS4mqqjT1jfBS1QXeqG1l2usn2WbmY3s3cseWNZSkL7/we82hSpKkbOBHQBqgAE+qqvof1/q4giAIy12na4w+zxSHb/0zmqYG+U7bCQwaLXfmVCBLS2suyEow4JrhW1VnebapEQWVe8rW8Nmt28mxixWTS8nYjJtXq1t46VwTHSOT6LUyB9cVcueWNewsyUUrL9+/jfkYqQoDf66qao0kSTagWpKkt1RVvTAPjy0IgrBsBJUIh4daybEmUmZPQyNp6PVMEVYU1iZkcDC9lObpIeonB9iYlC1Gq+bJgGuGb1ad5dmmBgDuW7OOP96yjay4xbvup/D7BcNhjlzo4sWzTZxo7SaiqFTmpfPX913PLZUlxJmMsS5xXlxzqFJVdQgYmv23S5KkZiATEKFKEIQV71Iwera7hp92nqXA5qB+sp9/2XIP+bZktibncmasi12phexIyafTNUbrzAgViZlitOoavTtM3b92PX+8ZRuZNtEYdaloGRjlxXNNvFbdgtPrJ8Vu5bEDW/jI1rXkORJiXd68k1RVnb8Hk6Q84CiwTlXVmXd97nHgcQCHw7H5mWeembevK1yd2+3GKq5ZtajEMV98sTzmP/C0sFnnYL0+iRd9nUhI3GrM4S1/H1pJwwFDJnpJ5rB/gHHFz33mQhRVRbPMR6piccwng0FeGxvm6OQ4AHsTkznkSCNRr1/UOmJlqT+3eIJhqgamON07Qf+MD61GYn2anR3ZSZQ5bMvyd/7AgQPVqqpuudp+8zZRXZIkK/A88KV3ByoAVVWfBJ4EKC0tVffv3z9fX1p4Hw4fPow45otLHPPFF6tj3uueJL3VSWpiNkUpBUxUd3NXzga2ppeS6Cri7cEW/PEObsqpIH16hH84/wb79y5+nQthMY/5iNvNt6rP8rO2C6ioPLB2PZ/dun3VjUwtxecWRVE53d7LL8428pvGDoLhCOWZKfzP63dwaFMZdvPKOL13NfMSqiRJ0hENVE+pqvrCfDymIAjCUjTonSbDbCeiKnOn73KsiexOKeTMeDffbjvGzRlr6HSN8fpAI09U3MqOlHz+sf5NgkqYX/TUsT+tZEWMUi2Wca+Xb1Wd5amG80RUhXvL1/L5rTvIjFtdYWopGpqa4cWzTbx47gKDUzPEmQzct2M9d29bS1nm6uu1Nh+r/yTgu0Czqqr/fu0lCYIgLD0nRjr4Wv0bKKrKKzd8Fp1G5tL0CUmSOJS9HrveRJLBwhfXHATgseM/osk5yB3Z0dV+tRN93J69ngcLtsbyW1k2nH4f36mp4gd1NQQiEe4uW8MXtu0Qq/liLBSOcPhCJ8+faeRkazeqCjuKc/jSod0cXFeIQbd6uzXNx3e+C3gEaJAkqW5221+pqvr6PDy2IAjCktA+M8ofFu2gZqKPH1w8xadKdqOgXjbZvMs9QbLBSlCJoNfIlNlTmQn6AdiTWsSe1KJYlb+suAIBvl9Xw3/VVuEJBrm9pIwvbt8p+kzFWPfYFC+cbuClqmYm3V5S7VYev2E7d29bS2aiWGkJ87P67zggxrAFQVjRHirYilYjU2hz8I/1b/BwwTbMWj2qqs6Fq2xLAk93VjHin2Hc7+GCc4h/37Y51qUvG/5wiB/X1/GtqrNM+f3cVFjEl7ZfR1ny0rhY7moUCIV5q76d5880UtXRj6yR2L+2kHu2r2NXae6Su/ZerK3eMTpBEIQPQC9Hny63JudSHJfC99pP8vny/URUFe3sC8v+tBIyTHZe72+kxJ7C1zbdKfpQvQ/BSIRnLzTyf8+eZsTjZm9OHn+2cxcV4tp8MdMxPMFzZxp4+dwFZnwBspPsfPG2Xdy1dS3JccvjkjGxIEKVIAjCB/Rg/lb+pu5VHi/dg14j4w0HOTHagcNoozIxixJ7aqxLXBYUVeXl1ha+cfoEvTPTbE7P4D9uOcS2zKxYl7YqBUJhflXfznOn6qnpGkQra7h+XRH37ljH9qIcNBrxBuFqRKgSBEF4l9/X6VxRVTYmZbPTkc8/N/ySAmsyiQYLdr2JNfHpi1zp8qSqKr/t7uLfTh2nZXyM8mQH373zbvbn5ouRvRjoGp3kudMNvHTuAtNePznJ8fzZ7Xu4c8sakmzmWJe3rIhQJQiCMMsTCvCjjjOcGevie7v/8IotDzSSRFhRmAh4eKO/iTtzKvjrDbdh1q6OxpPXqnpogH85cYxzgwPk2uP5xs23cXtJmWgvschCkQi/aezg2ZP1nLnYh1aj4cC6Qh7YWcG2omwxKvUhiVAlCMKq5w0H+WnnOb7bfgJn0MfBtFLcoQBx+is3LHy1rx6DrOXXt3yJNJPolfR+tE9M8K8nj/F2VwcOs4WvHriBB9asQyfLsS5tVRmecvHs6QZeONPAuMtLRkIcf3LrLu7eJuZKzQcRqgRBWLX8kRA/76rmO23HmQh42J1SyJ+sOcD6hMzfe7+P5GzgrtzKRapyeRtyufjGmZM839yEWafjz3fu4rHKzZh1uliXtmooisqpth6ePnmeoxe6UFHZU5bPR6+rYFdZnljBN49EqBIEYdUJRMI8113Dt9uOMeZ3s8ORz/8pP8DGpOz3dX8x7+fqZgIBvlV1lu/X1aCqKo9u2MTntm4nwWSKdWmrxrTXz4vnmnjmZD29404SrSY+fnAL9+1YL/pKLRARqgRB+P/Zu+/4qqv7j+Ovu+/NuNl7L0ICCYEAAQIk7CWIilurVmuH2l+H0ta2P+2vtcNWWzsd1brQujd7JCQhgYQMVsgki+x5k9zc/f39EUi1ioIm3IzzfDzu43u5ubn3cy8Z75zvOZ8zZVjsNt6qL+HpylxahwzM9YngD/OuYb5vpLNLmzQsdjvbjpfx1yP59JhMXBmfwA8XphOqF7/EL5fypnb+nVfG9pLTmKw2ZkcG8501C1mVHItaKX7tjyXx7gqCMOlZHHbeqS/hqYocWoYMzPYO4zepm0nzjRSjTqNEkiR2VFfyaF4ODYY+0sPC+XH6Umb4i/YSl4PVZmfPsSpezSultK4FnVrJhtTp3JieQnywaJ56uYhQJQjCpGVx2Hm3vpQnK3JoGepjllcov5y9iUX+0SJMjaKi5rP8JjebktYW4n18ef7Ka1gaEenssqaE9r4B3iw4zhv5x+jsNxLm48HWKzO4cl4iet1nL7QQxo4IVYIgTDrnw9RTlTk0G/tI9grhF7OvYLF/jAhTo6i+t5e/1ddw9NhRAlzd+O2K1VyTMENMfB5jkiRRVt/CtpwS9pRVYZccLJ4exY3ps0iPjxTtEJxIhCpBECYNq+Tg1dpCnqnMpWXIQLJXCA+niDA12vpMJv5ypICXjpUgB76Xtoi75swVK/rGmNVmZ2dZJU/mVNLwYSluWjU3LJ7FjekphPt6Ors8ARGqBEGYBEx2K2/WFfO3vsP0lllI8Q7lF7M3ijA1yqznJqH/+Ug+fSYT1ybOZIEkZ3PaQmeXNql19g/yxqFjvJZ/jK5+I/6uGn569XI2pibgqhVNZ8cTEaoEQZiwBm0WXj9TxHNVh+g0DxKj1PNY2vUs9BPbnYwmSZLYX1fLb3Kzqe3pIT0snAeXZJLg60dWVpazy5u0Tp9t56WDJewoqcBqt7MkIYqbF6dgbjnD8vRZzi5P+AwiVAmCMOH0W01sqz3CC9UF9FqGWOAXxWPxSzGerGORf7Szy5tUKrs6+dXBLHIb64ny9OKZKzazPEpM9B8rdoeD7FNneOlgMUU1TejUKq5ZMJObFqcQ5e8NQFZrnXOLFC5IhCpBECaMLvMgL1UXsK22kAGbmaUBcXwrfslI084s6pxb4CTSPWTkTwWHeOXEMdzUan62JJNbk1PEtjJjxGi28M6Rk2zLKaGxq48gL3d+cMUSrlkwU6zim0BEqBIEYXvRsjMAACAASURBVNxrNvbxr6pDvFlfjNluY3VwInfHLybRM8jZpU06VrudV06U8ceCQwxaLNycNIvvpS0SndDHSGtvP6/klvJmwXH6h8wkRwTx3fXprEyKQ6kQqygnGqeEqkHJRnlvKzF6P9Ry8VePIAifrcrQzj8r8/io6TgyZGwKS+auaelEufs6u7RJKaehjl8dzKKqu4v0sHB+vnQZ03zEez0WypvaeSH7KLtKK3FIEiuTY7l16RxSIoOdXZrwFTglVHU5hrj6wFOoZHJi9H4keAQx3SOABM/ho7tKDHUKwlQlSRJHuxp4tuoQWa2V6BQqbo6ez+2xCwlyEVudjIWGvl4eycliT20N4XoPntpwJSujxcrJ0SZJErmn63gh6yiHqxtx0ai4YfEsblkyW+zFN0k4JVQFKVx5bN41lPe2crqvlYNtVbzTUDry8VAXz5GAleARSIJnEAFad/ENLgiTmF1ysLf5NM9VHeJYz1m81C7cOz2Dm6Ln46VxcXZ5k5LRauXJoiM8XVyIUi7n/oWLuXN2KhqxP9yosthsbC+u4IXso1S3duHv4cb3Nyxmy8IkMV9qknHKd44KOetDZ7I+dObIbe2mfk73tlLe10r5ueOe5vKRj3uqdUz3CCTBI3D46BlIlJsvStG5VxAmtEGbhXfqS3ix5jCNgz2Eu3rx81nruSo8BZ1SNJMcC+f36XskJ5uWgX6ujE/gR+lLCHRzd3Zpk0r/kJk38o/xck4JHYZB4oJ8+fWNa1ibEo9KKaa+TEbj5s8Rf607/oHuLA2MG7lt0Gqm0tDOqb4WTve2crqvjW21R7A47ACo5Qri9P4jYSvBM5B4fQCuKo2zXoYgCBep2djHtprDvFFfTL/VzGzvMO6fsZIVwdNRyMQfS2OlqquLh7P3k9/UQIKvH39au555waHOLmtSaesb4OWDxbyRf5xBs4UFceH88vrVLIqPEGdcJrlxE6o+i6tKw2yfsJHl0gA2h4Pagc5zIWt4RGtfy2neqi8ZuU+4qxfTz41onR/VEqcPBcH5zs+XernmCHuay5HJYFVwArfFLiTFW/xiH0v9ZjN/OZLP82UluKrU/CJzBTfNTBb79I2i2rZuns8q4oOj5TgcEqtnxXHHsrkkhgY4uzThMhnXoeqzKOVypun9mab3ZxPJwPAP6jZT/8gcrfOX3Z9x+nC6RwDx547R7mL1oSBcDkM2K9ubTrCt9gjlfa3oVVpuj1vIzdHzCRaTz8eUJEl8UHmaX+dm0zE4yHUzknhg0WK8dWKe2mg5Vt/CcweK2H+iGrVCwTVpSdyWOYcwH7Ef31Qz4ULVZ5HJZATq9ATq9CwLmjZy+4DVTEVfG6cNrSOnD1+tLcLssAGMrD6c7hFIvEfA8FEfICbFCsIoqR/o5rUzRbxdX0Kf1cQ0vT+/SLmCjWHJYr7UZVDV1cVDWfsoONtIkn8AT224klmBorfXaJAkifzKBp7dX8iR6kb0Og3fWJHGzUtS8HYTv0OmqkkRqi7ETaUh1TecVN/wkdtsDgd1A11U9A2HrApDG7lt1bzbUDZyn0Cdnnh9wCdGtcLdvMU8D0G4CFaHnQMtFfz7zFHyO2pRyuSsDJ7OjdHzmOcj5pRcDoMWC38pLOC5kqO4qtT8atlKrp+RJE71jQKHQ2L/iWr+ub+Qk41t+OlduX/jUrYsSBKbGwuTO1R9FqVcTqzej1i9HxvCkkZu7zQNDI9q9bVSYWjjdF8bee012CQHAFqFkji9P/H6AOLPha14fQB6tVgOKwgAdQNdvFVXwrsNpXSaBwnS6bkvIZMtkXPw14pVZZeDJEnsrq3m/7IP0DLQz5bEGfxo0VJ8XMTIyVdltdvZWVLBP/cXUtvWTZiPBw9du5JNcxNQixYUwjniK+EcX60bvlo30gNiRm6z2G1U93eMhK1KQzt7W07z5scmxQfpPIZDlt6faR4BxOsDiHDzEa0ehCnBaLOw++wp3qovpairHoVMRkbANK6NmsOSgFgxunsZNfb18XD2fg7U1RLv48uf120gNSjE2WVNeBabjXcLT/Hc/kLOdhuIC/LldzevY/WsaWIbGeFTRKj6HGqFkkTPoE/sLyZJEu2mfir62oYvhuFjblv1yKiWWq4g9tyo1jS9P3Eew9d9tW7OeimCMGockkRhZx3vNRxjV/MpjDYL4a7efC9xOVeFp+CvE6NSl5PFbuefxUX8tbAAhUzGg4szuD1ljvjD7isaslh5s+A4zx8oot0wSHJ4ID/enElGYrQ4hS1ckAhVl0gmkxGg0xOg03+ip5bFbqOmv5OKcyNaFYY2cv6rU7y32oVpHgHEnVu9GKf3J1bvj6tSnIcXxr/KvjY+aDzOR03HaRky4KpUszYkkavCU0j1CRe/aJzgyNkmfn5gL1XdXayOieWhpcsJcheh9qsYNFl47VAZL2QX0z1gZG5MKL+6cQ0L4sTXuPDFRKgaJWqFkgTP4Z5YH9dtHhwOWX1tVBnaqTS08WZdMUN268h9wly9iHP3J07vR5xHAHHufkS6+4p2D4LTnenvYufZk2xvOkF1fwcKmYx0/1h+OGMly4OmixV8TtIzNMRv8w7yxqkThLjreWbjZlZExXzxJwoX1D9k5tW8Ul7MLqbPaGLRtAjuXjWf1GjRP024eCJUjTFvjSsL/KJY4Bc1cptDkmgc7KHK0H4uaA0fs9sqsUsSAEqZnAg3H+L0fsTq/YlzHz6Gu3qLYX1hTNUYOtjdXM7u5lOc7msDINUnnJ/PWs+akER8NK5OrnDqkiSJ9yrK+dXBLPrMJu5Oncd35y/ERSXC7ZdlGDKxLaeUlw4W0z9kZklCFN9alUZyhGg9MZU5HBLl1a3kHKmiuq7joj9PhConkMtkRLh5E+Hmzcrg6SO3W+w2zgx0jYStakMHJ3tb2HX2FNK5+6jkCiLdfIh19yNG7zd8dPcjws0blRjZEr4Eu+TgWPdZ9rdUsK/lNGcGugCY7R3Gj5JWszZkBoE6vZOrFOp7e/nZgT3kNTaQEhDEIytWkeDr5+yyJizDkIltB0t46WAJ/SYzy2bE8K3VaaL7+RRms9kpOdlIdkEVOYXVdPUMolDImT0j7Is/+RwRqsYRtUJ5rl3DJ7+ph2xWagc6qTK0U2PooLq/gxO9zew8e3IkbCllcsJdvYl29yVG70eMuy/R7n5EufngIuZsCf+lzzLEofZaDrZVcbC1im6LEaVMzjzfSG6Omc/KoOkEiCA1Lljtdv5ZUsSfDxegUsj5ReYKbk6ahVzM7/lS/jtMrUiK5Zsr00gI9Xd2aYITmMxWDpfWcbCgiryjNQwMmtFqlKSlRLE0LY6FqdHo3bQ88fDFPZ4IVROATqlihmcQMzw/ORx9PmzVGDqo6e+gpr+Tmv4ODrRWjJxGhOG2D55WOXllQ0S5+xLl5kOUu6/YD3EKsTkcHO85y6H2GvLaaynrbsKBhIdKx5KAWDID41gSECf6ro0zZa0t/GT/Hk53drAmJo6HM5YT4CZWEX8ZAyYzL+eU8GL28Gm+5TNj+PbqBUwPEWFqssnKr8Tf151pUf4olRc+g/PaB0U8/UouZosNvZuWJfNiWZoWx/xZEWg0X+6UughVE9iFwpbFYad+oIva/k7ODHRS299JWfMZ3m4oxWizjNzPRaEiws2HyHOX4VOSw9c91brL/XKEUWRzOCjva6Gws54jHXUUddUzaLMgA2Z6BXN3/GKWBMSS7BUq5uiNQ4MWC48V5PFCaTEBrm48uWETq2PivvgThU8xmi28klvK81lH6TOayJwRzXdWLxQjU5NQS3sff3h6D0ajBX9fPb7ertx3+7IL3j882Jv1y2eSkRZHyoywUek7JkLVJKSWK4g717LhvKysLDIyMmg39VPb30ndQBd1A12cGejiRG8zu86ewsF/Rrc8VLqReV/hrt6EuXoR7upNuJs33moXMcI1zhgsJo71NFHa3URxVyNl3Y0Yz60wjXLz4YqwJBb6RTPfN1LsbTnOZded4WcH9nK238DNSbPYumgJ7hqNs8uacExWG68dKuO5/YV0DwyxJCGKe9YsYEZY4Bd/sjAhZB+uQiGXsXheLAC1DZ3IkPGPX99Ea4eBX/15Oycqm5k5LfgzP39hajQLU6NHtSYRqqaQj/fYWuj/yS8ki91Gk7GX+nNhq36gm/rBbo52NfBh4/GPxa3hEa5QVy/CXL0JdfEk1NWTEBdPQly9CHHxFH23xtiA1czpvlZO9rZwsreFEz1nRyaXy5ExzcOfzRHDvaPm+kaILWImiO4hI786mMW7FeXEeHnz+pYbmBssOqJfKovNxlsFJ3hm3xE6DIMsiAvn3nWLmCVW800aPX2DPPT4h0gSBPnrKTpWz/fuXIHZYiM63Jchk4VAPz0zpgVzrPws4cHe6N0uz9QGEaoEYHiSfLS7L9Huvp/62PnA1TDYTeNgz8ilfqCLQ+01n+i5BeCp1hHs4kmwzoMgF4+RY6BOT5DOAx+tq9i+5CJY7DbqBrqo7u+g2tBB5bk+Z42DPSP38dO6keQZwqbwZJK9Qkn2CsFNJUY1JhJJkviwqoJfZO3HYDFz3/wFfGduGhqxn9wlsdkdfHC0nCd3F9DcY2BOdAiP3rKeuTGiz9Rk09TSi5+3Oz//n/UA3Pzd5zh++iwACoWcXsMQOq2amfHBHCmrw9A/JEKVMH58XuCSJIku8yBNxl7ODvbQbOzjrLGX5qE+zgx0cqi9ZuQ01HkKmQw/rTv+WvfhkTOtO35aN/y17iN7MPpo3PDWuEz68NVvNdFs7KNpsIcmYy+Ng93UD3RTN9BFs7Fv5JSsnOE2HDM8g7g6IoXpHoEkegaJUagJrnWgn/89sI+9Z2pIDgjkNytWizYJl8jhkNh9rJK/7cynrqOHGWEBPHTtShZOEx3QJ7KcI9XsPniK2Eh/rlozC737f+b5lle3EhLkidlsRaNRsWppAntyytm8ZhaFZXW0dhgI8vcgIS6Qt3eWoFZfvqgjQpXwlchkspEglOL96b8IJUmiz2qixdhH65CB1qE+2oYMtJn6aRvqp8bQQUFHLf1W86cfG/BSu+CtcT13ccFT7YKnWoen2gUPtQ4PlRa9Soe7Wou7UoO7SouLUu205eaSJGG0Wei1DtFg6yevvYYes5Eu8yBd5gE6TAO0n3vtrUN9DH5s4QCAm1JDuJs3SV7Do0/R7sPtMaLcfNEoxLfrZCFJEq+fOsGvc7KxOuw8uDiDO1LmoBCLBi6aJEnkVdTz5x15lDe1Exvow59u38jymTEiTE1wDWe7eX9PGSvSp1NyspF/vZHPDZvmEuA73OYlyN+D9/eUjazQW70kgQceeZt7bsvEU+9C6clGZs8Iw9fLja6eQQYGzfj7XJ4/QMVPaWFMyWSycyFI96ktfD5uyGalw9RPh2mATvPwpcs0SLd5kG6LcXi7n752ui2DGCymT0yq/9RzAjqlGlelGp1CjYtShVbxn4tarkAtV6KSK1DJ5chlcpQyOTKZDDkyZDKQJJCQcEgSdsmBXXJgcziwSnYsdjsmuxWzw4bRZmHIbmXQZmbQambAZv5EOwvyikeuqmRyfM6NyEW5+bDQL2r49KiLByEunoS6eOGp1olfCJNcY18fD+7fTV5jA2khofxmxWoiPb2cXdaEUlrXzBPb8yiqaSLEW8+vb1zD+jnTRSidJArL6tBqVKzNnEFyQgg7DpxkT045t1yVBsCC2VE8tS2HhuZuQgI8CQ7wRJKgtqGDmzbP45dPbOevL2TR02tkekwAIQEel612EaqEcUGnVBHuNry68Is4JAmD1USfZQiDdQiDxYTBaqLfamLQNhxsBqxmjDYLRruVoXPBx2K3YbCaMNttWB12rA4bVsdwYHJIDuyS9ImwJgMUMjlymQylTI5SrkAlV4yEMp1ChbtKi7/WHVelBjeVGjfV8IiZh1pHU2Uti+fMw0vtgo/WDQ+VVgSmKcwhSbx8rJRHD+UgA365bCU3zkwWTTwvQU1rF09sz+PAyRq83Vx48KplbFmQhOpzehEJE09okBfHzs2RCg7wJCbCj8OldfQajHjqXVCpFMxKDOXAoUq2rJ+Nq4uGlBmh9PQZSYgN4n++vpz9hypwc9WwaWXyl+459WWIUCVMOPKPjX6NZ1l1Bub6Rji7DGEcqOvt4cd7d3OkuYml4ZE8smIVIe6iY/3Fau3t5++78nmv8BQuGhX3rl3ErUtn46IRK40nI08PF7QaFbUNnUSH+xLop0erUVJT30lqUjgAV61JYceBE/z1hSysNjvdvUbmz4oEICTQk1uvTnNK7SJUCYIgjBG7w8ELZSX8IT8XlVzB71auYUvCDDFieZEMQyb+ua+QV3JKcEhw85LZfGPFfLzcxvcfVMJXE+TvgYe7jpKTjUSH+6J319JrGMLHa3gz916DkdhIP75x02Jeea8QV52alYsTPrd7+uUiQpUgCMIYONPbw9Y9Ozna0kxmZBS/Xr6KQDexWvNiWGw2Xs0r45m9RzAMmbhiTgL3rl1EsLcY3ZvoTGYreUU17M05zd03LyYq7NOryt1dNSQnhPL8G4e4Zt1sggM8aWrpwdvDhbe2F6N317E0LQ6tRsXXr1vkhFdxYSJUCYIgjCKHJPF8aTF/yM9FrVDw+1VruXp6ohiduggOh8TO0gr+vCOPs90GFk2L4PtXLBb7801wNpudI2V17M09Tc6RaoZMVny8XGntMHxmqJLJZCyeF0N2QSUPPvoeJyuaWZs5A3c3LRtXJaNWjd/oMn4rEwRBmGDqe3t5YO9OiprPsjwymkeWrxIbIF+kwpomHvvgICcb25ge7MdTd1/NongxJ3Gicjgkjp8+y56ccg7kV9LXP4S7m5aVi6ezanECsxJDUXzBXns/+vZqqura8fFyG2mJMJ4DFYhQJQiC8JWdX9n3u7yDKOVidOpS1HX08PgHORw4WUOAhxu/umE1G1MTkcvFezcR1TZ0sPtgOXtyymnr7EejVrJ4XiyrlkwnLSUKleri5z0plQoSYifW9kIiVAmCIHwFjX19/GjvLgrONpIREclvVqwWc6cuQu/gEE/uKeC1vGOoVQq+uy6dWzPmoB3nIxHCp7V39bMnp5zdB8upqe9AIZcxb1Ykd9+0hCXzY3HRTZ1VmuKrVxAE4UuQJIlXTxzj17nZyJHxmxWruS5xphid+gJWm51X88p4ck8BgyYLWxYk8e01C/B1d3V2acIlGBg0k324kl3Zpyg52YgkQWJcEN+/cznL0+Px8pia/58iVAmCIFyilv5+frJvNwcb6lgUFs7vVq4Rfae+gCRJHDhZy2MfHKShs5f0+Aju37SU2MBPT1QWxiebzc7h0jp2ZZ8it6gGi8VGaKAnd1y3iNVLEggNEjsDiFAlCIJwkSRJ4t3T5TycvR+bw84vMldwc9Is0RX9C1S2dPLoe1kcrmokyt+bv9+1mSUJUc4uS7gIkiRRUdPGzuxT7M0tp9cwhIe7jiuWz2RNxgwS4wLF6OzHiFAlCIJwETqNRn62fw+7a6tJDQrmD6vWEeHp6eyyxrWegSH+uvMQbxYcx12n4cebM7luUTIqhfObNAqfr72rn90HT7Ez6yR1Td2olArS58WwNiPxkiecTyUiVAmCIHyBM709XPv6qwxYLPxk8VK+npIqNu/9HFa7ndcPHeNvu/Ixmi3cuHgW3169EA8XrbNLEz6HyWwlu6CKHVknOXq8HkmCpOkh3P/NVSxfFI/eTfz/fRERqgRBEL5AhIcnG6bFc3PSLKb5iDlAnye/sp7fvZtFTVs3C6eF86MrM4kJ9HF2WcIFSJLEsfKzbD9wggP5lRiHLAT567l9y0LWZCSKeVKXSIQqQRCELyCXyfhF5gpnlzGune3u4/fvH2Tf8WpCfTx44o5NLJsRLebbjFOtHQZ2Zp1kR9ZJzrb2otOqWLZwGuuWzWRWQqjoE/YliVAlCMKUJkkSMpls5ChcGovdwT925fPs/kLkchnfXZfO1zLmoBH9psYds9lK9pFqtu8/MXJ6b/aMMG7fsoCMBdOmVD+psSK+6gVBmLJeOV7GkM3G6uhYQvXDLRFEuLo451skPHKgnO4hC2tTpvHDK5YS6CUan44nkiRxuqaVj/adYG/uaQaMZoL89dxx3SLWZc4gyN/D2SVOKiJUCYIw5dgdDrbu3UVzv4HkgEB+lXOAzMhobpiRJALVRWjo7OW372aRU36GQDctz357C/Njw5xdlvAxvQYju7JP8dH+E9Q2dKJRK8lcMI31y2cye0aYOL03RkSoEgRhyhmwWBi0WHj1musB2F1TxaHGBt49Xc5VCYlOrm78MlltPLvvCM/uL0KtVHD/pqWE2g0iUI0TdruDwmP1fLjvOLmF1dhsDhLiArn/m6tYmT4dN1eNs0uc9ESoEgRhSjDZrGiVKgA8tFo6jIO8eeoEWxJnsigsAqPVSlFLM7MCA4n28nZytePPwVO1/PqdA5ztNrB+9nTu37QEP70bWVlZzi5tymtt7+OjAyf4aP8J2jv78XDXcc3a2WxYMZPocD9nlzeliFAlCMKkt72qgmeKi0jyDyBU78HdqfO4NXk2eY31LA6PINDNnST/AE51tNNpNIpQ9TGtPf389r0s9h2vJsrfm39+6xrS4sKdXdaUZ7PZyS2s4f29xygsqwNgXnIk996WyeJ5MajFQgGnEO+6IAiTliRJ/LWwgH1navlx+lKUcjn37viAzMgoFoWFUdHVwasnjvH9BenEePvQPTTE6c4O5oeEOrt0p7Pa7Ww7WMLfdxcgSRL/sz6d2zJSUSlFJ21namrpYVdeE4+/9BTdvUb8vN247ZoFXLEiiUAx6dzpRKgSBGHSGrLZCHRz57lNV+GtcwFgc3wCVV1dbJgWz/KoaF4qK+Wx/FzumZdGj8mEXiO6RpfVt/B/b+ylsqWTjMQofnLVMkK8xS9sZ7Fa7Rw8UsX7e45x9HgDchmkz41l46ok0lKiUChEd//xQoQqQRAmLReViszIKDy1OhyShFwm40xvDwl+/gDMCw4lyM2dR3Ky+fp77zDd15fN0xOcXLXzGIZMPPFRHm8UHMNf78afbt/I8pkxYkWkk5xt7eX9PcfYfuAEPX1GAv303HVjOt7afjZdsdrZ5QmfQYQqQRAmDZskAcMtE87vzefn4gqA49zHdCoVM86FKovdTqjegz+uWYfV7sBd49zVUaWlpfz+978nOzubzs5OgoKCSE9PZ+vWrSQnJ4/Z80qSxK6ySn73bhbdA0PcvGQ2965ZhKtWNIO83Gw2O3lFNby7u4zCsnoUchmL5sZw5epZzEuOQKGQi8UB45gIVYIgTAq/yc2mrOEMK1mGQi7/VBNP+bnrXUYjAa5u7Kut4Y3yE/xj/Sa0ShVaJ/80fP7557nrrrv42te+xmuvvUZYWBh1dXU8/fTTPPHEEzz77LNj8rzN3QZ+9fZ+csrPkBjqz9/u2kxiaMCYPJdwYW2dBj7Yc4wP9h2nq2cQf1937rohnQ3LZ+LnIxqqThQiVAmCMKFJksSjh3IobW2hz2bl6aOF3J06Dwn475NWHcZBmvv7eSQnizO9PXxr7vxxcWorPz+fu+66i9///vd8//vfH7k9PDycpUuX0t3dPerPaXc4eCW3lL/sOATAA5syuGlxCkoxP+eycTgkCsvqeHdXGXlHa5AkibSUKB74ZgoL54i5UhORCFWCIExoMpmMO1LmcGtyCvtz83j59CmWhEeQ4OeP3eFALpONBCeb3YHBbEajVPLyVdeiUoyPlWw//OEPSUtL+0Sg+jhv79Ft8VDR3MHDr+/hRGMbSxKi+Pk1ywny0o/qcwgXZugfYvuBk7y7q5Sm1l489TpuunIem1YlExzg6ezyhK9AhCpBECY8f1c3AEJ1Oq5JSORXOdlsu/rakXlVALU93YS463n6iiuZHRTsrFI/paqqivz8fF599dUxfy6z1cZTew/zr/1F6F00PHrLetamTBsXo3VTQUVtG2/vKGFP7mksFhtJ00P4+g3pZC6IE32lJgnxvygIwqTyteTZFDWf5Y8FeXx/QTpdRiO5jfVIEkR5eo2rQAVQXFwMwNy5c8f0eUrOnOWh1/dypr2bTXMTeGBTBp6uujF9TgEsVhsHDlXy9s4STla2oNUoWZuRyFVrU4iL9Hd2ecIoE6FKEIRJRaNU8nDGCr750XvUdHfjodVy5+zUcdsl3Wg0AuDm5jY2j2+28MT2PF7NKyXIU8+T37iK9OmRY/Jcwn90dPXz3u4y3ttzjJ4+I2HBXnz3jmWsWzYDd1fRC22yEqFKEIQJ5+P7+H0WmQzaBwdwU6n5yZIMQtzH73yhmTNnApCdnc3111//qY8bjUZcXFy+1GMXVDbw8Bt7aO4xcGN6Cv+zPh0XjWiTMFYkSeJ4RTNvflRM9uEqHA4HC+dEs2X9HOYmRyCXi9Osk50IVYIgTBh2h4PnSo/yTHER711/C0Hun15qLkkSTxYd4espqdydOs8JVV6aefPmsX79eu677z6GhoZIT09HJpNRXFzMM888w0MPPcTixYsv6TH7h8w89uFB3io4QaSfF89/5zrmRIeM0SsQzBYb+/NO88b2Eipr23Bz1XDthjlctSaFkEAx8XwqEaFKEIQJobanm617dlLc2sKq6JgLLv2XyWT8fOmyT0xSH+/efvttnnjiCR5//HHuuece1Go10dHRbNiw4ZLnWuWdruOh1/fQYRjkjsxUvrN2EVoxCXpMdPYM8N6uMt7ZVUqvYYjIUB/uv3slazIS0YnGqVOS+E4TBGFcszsc/Ku0mMfy89AqlTy+ej1Xxk//3BVrEylQAWg0GrZu3crWrVu/9GP0D5n5w/sHefvICaIDvHn8titIjggaxSqF8ypq23j9w6PsyzuN3T58iu/aDanMTQ4XKymnOBGqBEEYt2q6u/jxvt0cbWlmRVQ0jyxfNdI+QfiPQxX1PPT6Htr7Brhj2VzuWbMQCzmjgQAAIABJREFUjRidGlV2u4Pcwmpe/7CYsvImdFoVm1fPYsv6OYQGeTm7PGGcEN91giCMOzaHg2dLivhjwSF0ShWPr17HlfEJYhTgvxjNFh77IIfX848R5e/NS/ddL0anRplxyMJH+0/wxkdHaW7rI8hfz323Z7JheRJurs7dK1IYf0SoEgRhXDnd2cGP9u7ieHsbq2Ni+WXmSvxcXZ1d1rhTVNPEz/69i+YeA7dlpHLvOjF3ajS1dRp4a3sJ7+85xoDRTFJ8MN+5NYPF82PFVj7CBYnvQEEQxgWzzcbfiw7zj6IjeGg0/GXtFayPE92+/5vZauPPO/J46WAxId4eYmXfKKusbePfHxSxL68CJImMBdO4fuNcZkwTI4DCFxuVUCWTyZ4DrgDaJUmaORqPKQjC1HG05Sw/2bub6p5uNscn8POly/DSTe1u39u2beOnP/0pDQ0NhIeH88gjjzA7YyUPvrKTmrZurl+UzA+uWCL6To0CSZIoKDnDv98v4ujxBnRaFVvWzebaDXMI9PdwdnnCBDJaI1XPA38FXhylxxMEYQroN5v5/aEcth0vI8jdnec2XU1mZJSzy3K6bdu2cffdd490W69vaGTrk9vwLW7HV+8quqKPEqvVzt7ccl59v4jahk78vN349q1L2bQqWXQ9F76UUQlVkiQdlMlkkaPxWIIgTA27a6p4OGs/bYMD3DZrNj9cuBhXtRh1AfjpT386EqjUnr6Err0Jl+BIzA0VvP3Cn/BwEb/wv4pBo5n39hzjjQ+P0tE9QEy4Lz+9bx0r06ejUimcXZ4wgckkSRqdBxoOVR9e6PSfTCa7G7gbwM/PL/X1118flecVLs7AwMCY7S0mfDbxnn+2bouFbc0NlBj6CNXquC00ghiX0ZmIPlne86NHjyJJUGWEIwYZcmCBp0S0DlJTU51d3idMpPd8wGjlUGkbR453YLLYiQp1Z8mcQOLC9RNq7t5Ees8ni2XLlh2VJOkLO/FetlD1cfHx8VJFRcWoPK9wcbKyssjMzHR2GVOKeM8/yWq380JZCX86fAhJkviftEXckTIHlWL0RgYmy3seNS0BR8Ii9LEzGaivpGnXq9gG+oiIiKCurs7Z5X3CRHjPz7b28up7hWw/cAKrzU7GgmncvHkeCbETc/L5RHjPJxuZTHZRoUqs/hMEYcwVNjfxvwf2UdHVybLIaH6RuZxQvZgA/Flyys8QcNW36DeZacl6l67iHEDCxcWFRx55xNnlTShVZ9p5+Z0jHMivQCGXszZzBjddOY+wYNGsUxgbIlQJgjBmOoyDPJqXw1vlJwlyc+fJDZtYFR07oU61XC4mq40/fpjDK7mlxAb6cL2XxBPv1dMtg/DwCB555BFuvvlmZ5c5IRw7fZaX3iogv/gMOq2KGzbN5borUvH1EqfMhLE1Wi0VXgUyAV+ZTNYEPCRJ0rOj8diCIEw8Vrudl4+X8ceCPMw2G99Knc+98xfgolI5u7RxqbKlkx+9vJ3q1i5uWTqb761fjEal5Pt33ebs0iYMSZIoLKvnxbcKKD3VhKdex103pnP12tno3cTEfuHyGK3VfzeOxuMIgjDx5TXW88vsA1R2d7E0PJL/zVhGtJe3s8salyRJ4pXcUh7/MAd3nYZ/fOMqFotWCZfE4ZDIK6rhhTfzOV3Thp+3G9+9YxkbVyah04rVpMLlJU7/CYIwKup6e/ht7kF211YTrvfgqQ1XsjI6Rpzqu4DuASP/+9pusk+dYUlCFL+8fjU+7i7OLmvCsNsdZBVU8uKbBdQ0dBIc4MHWb61mbWYiarFdj+Ak4itPEISvpM9k4m+FBbxQVoJKoeD+hYu5c3YqGqX48XIhBZUN/OSVHfQZzfx4cyY3LU4R4fMi2ewO9uWe5oU3C2ho7iYixJuf3beOlUsSxJ58gtOJn3qCIHwpFrudbcfL+MuRfPpMJrYkzuSHC9PxdxWTgS/Earfzt535PHegkCh/b568+2rig/2cXdaEYLM72J19ihffKqCptZeYcF/+74cbyUiLQyHClDBOiFAlCMIlcUgSH1VV8NihXBoMfaSHhfOTxRkk+vk7u7Rxramrjx9t28Gx+hauWTCTH12ZiU4tJu5/kfNh6oW3Cjjb2su0KH8e2XolS+bFIpeL0T1hfBGhShCEiyJJEjkN9fzhUA4nOtqZ7uvHvzZdzdKISHHq6gvsLqvk4df3AvD7W9ezNiXeyRWNfzabnV0HT/HiW4c529pLfEwAv/3xVaTPjRZfb8K4JUKVIAhf6MjZJh7Pz+NIcxMh7noeX72OTfEJyMUvt89lstr4/XvZvJ5/jOTwQH53y3pCfUTT089jszvYk1PO82/kizAlTDgiVAmCcEHFLc38qeAQuY31+Lm48nDGcm6YmYx6FLeWmaxq27q5/6WPqGrp5I7MVO5bnz6qW/JMNna7g32HKvjX64dobO4hLsqf3/54M+lzxQpSYeIQoUoQhE8pbG7iL4cLyG2sx0en4yeLl3JLUgo60bzzonxQdIpfvrUfrUrJ3+/azJKEKGeXNG45HBIHD1fxz3/nUdfURUyEH49svZKl80XnfWHiEaFKEARgeM5UbkM9fys8zJHmJnx0Lvw4fSm3JKeITugXachi5TfvHOCdIydJjQ7hd7esJ8BDrIb8LJIkkV9cyz9fzaPyTDsRId784gdXsGxhvJiALkxYIlQJwhRnczjYWV3J00cLOdHRTqCrGz9fuowbZiSJkalLUNvWxQ9f/Iiati6+sXI+31m9UPRNuoDiEw08/UouJyqaCQ7w4Kf3rWP1kgTRGkGY8ESoEoQpasBi4Y1TJ3i+tJhGQx9Rnl78ZvkqNk9PFI07L9EHR8v55Zt70alVPPmNq1kUH+Hsksal09WtPPVKDoVl9fh5u/HAN1exYflMlEox10yYHMRPTkGYYhr7+njxWAmvnTzOgMVCalAwDy7JYFV0rFjNd4lMVhu/ffcAbxWcYE50CI+K032fqb6pi2dezSWroApPvY57b8vkqjWz0GjESKgwuYhQJQhTgEOSyKmv46VjpRyoq0Uuk7Eudhpfn51KSmCQs8ubkBo6e/nhCx9yurmDu1bM4541i8Tpvv/S3tXPc68dYvuBE2jUSu64biE3bJyLq4vG2aUJwpgQoUoQJrGOwUHeLD/Bv08cp9HQh4/OhXvmLeCmpGQC3dydXd6EtfdYFT9/bTcKuZy/3XklSxOjnV3SuGIYMPHy24d5c0cJkkPimnWz+do1C/DyEBtGC5ObCFWCMMlY7XYO1tfxxqkT7K+rxeZwkBYSyv2LFrMmJk70mPoKrHY7f/wwl5cOFpMUHsgfbt1AsLfe2WWNG2aLjbd2lPDS24cZGDSxemkid92QTpC/aHgqTEw2q5225p6Lvr8IVYIwCUiSxKmOdt6tKOe9inI6jUZ8dC7ckTKH62ckEe3l7ewSJ7zW3n4eeOkjSutauGlxCvdvXIpKTLAGhntN7T54imdezaWts5+02ZF865alxEWK/SCFiaW/z8ipskbKSxs4VdZAxfGmS1qVKkKVIExgZ3p7+LDyNB9UnKa6pxuVXM6yqGi2JMwgIyJKdPAeJQWVDWx9eTtmm03s3fdfahoNvLD1JarOtBMfE8CD964jNSnc2WUJwheSJImmuk7Kyxo4WdLAqdIGGs90ACBXyImJD2TN1akkzgrnnfX/e1GPKUKVIEwwtT3d7KiuYmd1JSc72gGYHxzKL1PmsCFuGp5anZMrnDwcDol/7j/CX3ceItrfm8dv20h0gBj1A6ht6OQfL2WTX3yGQD89D31vAyvSp4vGncKYMhktKFUKlKpL/4PRYrFRfaqZkyX1nCpt4FRpPX09RgDc9DoSZoWxfMMsEmeHEz8jFK2L+pKfQ4QqQRjnHJLEsbZW9tRWs6emmuqebgBmBwbx4OIM1sdNI9hdzOsZbX1GEz99dSfZp86wfvZ0Hrp2BS6aS/8hO9l09w7y7GuH+GDvMVy0atakh7L13i1o1OLXiTB2Sg/X8PI/9tPe2sfG69PIWJuEf5AnkiRdcDujfsMQp0obOFlSz8nieipPnsVqsQEQHO7D/KXxJM4KJ3F2BGFRvsjlX331rvguEIRxqM9kIq+xngN1Z8iqO0PXkBGFTMb8kFBuSprFmpg4gtzF6r2xUt7Uzvdf+IC2vgEevGoZN6TPmvL70JktNl7/8CgvvX0Ys8XG1WtTuP3ahZQWHxGBShg1Nqudo/nVZO04hn+gB5tuXICPv57jRXWkZUznqlsW8eLf9/HyP/bzg/+7+nND1Zv/yuG1Zw+iUMqJnR7MphvSSJwdQWJKOF4+Y9NPTnwnCMI4YLHbKW1tIa+xntyGesraWnFIEh4aLUsiIlgeGUNmZKQ4tXcZvHPkJI+8tQ9PVx3P33MdsyKmdh8vSZLYf6iCf7x0kNYOA4vnxfCdr2UQHixOgwqj53w4On60jndfPsTcxdNInhuJu6cLnW0GWs/2cNWti1CqFKy/Zi5b73wW4HNHl1ZvnsOcRbHEzwxFq7s8o8wiVAmCE5htNsraWilsbqKgqZGjLc2YbDbkMhnJ/oHcMy+NJeGRpAQGoRyFIWnhi5mtNn5zrjt6WmwYj966Hm+3qd1XqaK2jT8/d4Cy8iZiIvx44uHrxCR04Stpa+6hp3OA6clhn7hdJpNhHDRzaP8pbrw7k+S5USMf8/JxpbGuA1d3LQCBod64e7hQdaqZuMTgCz5XSIQvIRG+Y/NCLkCEKkG4DNoGBihpbaGktZnilmaOt7VhcdgBiPfx5foZSSwMDWNBaBh6jdbJ1U49zd0GfvDih5xsbOPO5fO4d+3U7o7e3TvI06/k8tH+43i463jgm6u4YkWS2PBY+NIsFhtP/W47pUdqCI3wJTYhmFvvWfGJ+7i4ajh8sIJ1W+bxxr9yaG7o4sqbFxIZG4C7fjhEBYUOj5AGBHtSfqyBuMTgzz0FeLk5JVT122xsr6rEW6fDS6fDW6vDU6sVy7+FSaHDOMjJ9nY+aGvh3x++x7G2VloHBwBQyxXM9PfntpTZzA0KYW5wCF46cUrPmfIr69n60nZsDgd/un0jK5JinV2S01itdt7cUcy/Xs/HYrVx/ca53L5lIW6uYlsZ4avpbO3jbH0nz37wfQDu3PhHFixLGBlpcjgcyOVyomIDeO6Pu0hJiyEkwpeX/76fq7+WzqLlCZwsrmduehwurhpipgfRWNvhzJf0mZwSqrqsFu7d8cGnbndXa/DSavHU6fDSavHS6kaue2o/ffTUanFRqcZNQhWmFpPNSnV3N1VdXVR0dXC6s5Pyzg46jIMj94n09GJ+aCizAoJICQgk0c8fjVIMEI8XkiTx9N4j+Opd+ePtG4n083J2SU5zuOQMTzx3gIbmbhalRnPv7Zli3pQwasqPNTI9OYze7kE8vV1JXRRHUW4l0dMCUHysiW5IpC9lR2rZcvtiAN7dls+ud45y1w/W8NSj2znwURlLVs+ks83AkjUzAcZVBnDKT/cwrY4PbryVbtMQvUMmuk1D9AwN0WMavvQOmegaGqKmp5veIRMDVssFH0stV+Ch1eKl1eKh1eJ5/qjR4nEueHlqtOi1Gjw05z6u0eKu0SAfR/8RwvjkkCRaB/qp6+2lrreH2p4eanu7qe3uptHQh3Tufmq5glhvb5aER5Do588MP3+6KipZv2LF5z6+4FwymYw/3LoBnVo5ZdslNLf18pd/ZZFTWE1ooCePPngVi1JjnF2WMEmcH4GyWmyYTdaRPmaz5kdzaN8pTENWXN0VOOwScjksXjmDw9mnRz5fq1Ohc1Hj7uHCdXcu5ZnHdvLutnwSZoUxc3aEs17WBTklVClkMhL8Ln77AovdTp/JNBy4PnbsNQ3RYzLRZzKN/Luhrw9Dexs9JhMmm+2CjykD3DXDQctDo0Gv1aJXa/DQatFrNOg1w0cPjQZ3jWb4NrUWd40ad7VGjJBNEnaHg/bBQVoG+mnuN9Dc30+ToY9Gg+HcsQ+L3T5yf61SSaSnF8kBgVyVkEictw9x3r5Eenp+6vR1VnXN5X45wn85P9fi8+Zc+LhPzcnoZrOVl989wrZ3C1HIZXzz5iVcvzEVtUqMpAqj5/zqvDkLYynIOs1A/xB6TxemJ4Xy72eyRubpnW/mmZgSzvwl8fzz8Z309w1xpqqVBx7ZAkB4tD9bf3Mt7vrxO2ViQnz3qBUK/Fxd8XN1vaTPM9ts9JpM9JmHQ5fBbKLPbP7PddPwv/vMJgwmE+0DAyP//vgv0s+ikMlw12hwV2twUw8HrfOBy02txm3k+PGLBle1GleVCleVeuS6QqzuGlUOSaLfbKZryEj30BBdQ0Y6jUY6jYN0GI10DA7QPjhI28AAHcZB7JL0ic/30GgJ1euJ9fZhRVQ0YR6eRHp6EunpRZCbuxjhnABONbXxRv5x3LRqbstIxdNVh1Ih/t/Oyy2s4Ynn9tPS3seK9HjuuS0Tfx/R90wYfZIkUXniLCUF1Wh1aqpONhMc5oOPvx7joJnBARNaFzUHtpcRlxhCaKQvdz+wjp1vFQFw4zcyCAz9z2no8RyoYIKEqi9Lo1QS4OZGgNulN/ky22wYLGYMJhMGs5l+iwWDefj68L/N9J+7vf/cv5v7+xmwdDFgGb7d5nBc1HNplcqRoKVTqXBVqdCpVLicPyqHj7qRoxLtyEX1setKNAoFGqUSjUKJWqFAo1SgVig/FRzGG0mSsNjtmO12TDYrQ1YbQzYrQ1Yrg1YrRqsFo9VKv8XCoMUy8v4bLGb6TGb6zSZ6zf8ZtbzQ6/XSavFzdSPA1ZVYbx8C3dwIcnMn0M2dYHd3Qtz1uGvEpNyJrLGzlx+9vIO7VszjVFM7f/wol4XTwlmbEj+lV/QBtLT38adn95NXVENkqA9/fvg65ogWCcKXYLfZqTrVjN3uYMbnnIY7klPJzreKCI30ZdGKRPa9X4JCKae5oYv5S+NH+kcNGEwMGc3A8Gn5dVvmXZbXMdomdaj6KjRKJX5KJX4ulzY6dt75kNBvsTBgMTNwLgwMWIePg1brueN//j1ktWK0Whm0WhiyWukaGsJosWC0WTHZbAxZrV8pHMlPlKCSK1Ap5KjlCpQKOUq5HJVcgVIuRyGXo5TJho9yOXKZDIVs+CiTyZDLGL7O8F/85wdsJAkkpJGjQwKH5MAhSTgkCZvDgd3hwOpwYDt3sdjtWB324SBls2Ox27iUV6aUy3FXq9FrtLir1XhotQS5u6PXDC9w8NLp8NHp8NLq8HFxwc/FFW+dTqwwnQJaevsJ9/XkynkzuHLeDN4+fIJTTe24aNQsnzk15wpZrXZefb+QF94sQC6X8Z1bl3LdFakoleL7Qbg4kiRRV9VG6eFaSo/UcvzoGYwDZpLnRfHos3de8PPmL5lG2tL/bECu0SjZ8VYRCoWcG76RMdJ7auMNaWP+Gi4HEarGiEwmGx4xUirxdRmdORv/Gc2xjYzkmGy24dEd6/B1i92OyW7DfO52i304sFRU1xAaHo7FbsPicGC120eCjtXxn+s2uwO7JOGQHNgc0kg4sjvsSNJwYILh8PSJ14sM2bnQBaCQDQczmUyGq2w4sKnOhTWlQo5aoUAlVwyPpp0bXVMrFJ8YedMph0frzl9cz59GVanRKpViTpswon/ITGFNE3IgOSIIs81GQWUDC86NUL2Rf4xTTW2kRAZNuYaexScaeOzpvdSf7SYjLY7vfn0ZAb5ir0jhi7U191BSUDMcpA7X0Ns9vLI5ONyHjLVJpMyPYda8qM99jPNzGu02B0qVgrSM6aRlTL8c5TuFCFUTyMeDmv4Sz1Bl9RvJXJg+NoUJghMV1TTx6PvZLJsRQ6zCgcPhID0+kqO1TUT4eRLkpWdJQiQPv76XdSnxUyZU9fQZ+fuL2ezIOkmQvwe/f/BqFqZGO7ssYRzr7zNSduQMJQU1lByuobmhCwAvXzdmL4xldlo0KWkx+Ad5XtLjymSykYnok50IVYIgTFhGs5VXckv41qoFLJ8ZQ1ZWFi4aNfNjw/io+DQ7SyvZsiCJ6AAfYoN8qGrtJCbQx9lljylJkth+4AR/eyEbo8nCrVencduWBWg1KmeXJowzVquNU6UNlOTXUFxQTdXJZiRJQueiJnluFBuvT2P2ghgiYv3FmYGLJEKVIAgTls1hp7V3gPT4CKw2OzsrW2lRlrIqOY7F0yPJPV3HD174kBVJsWSfrOW6hcnOLnlMNTR384en9lB8opGk6SE88M1VRIdf3r3PhPFLkiQaz3RQfKiao/nVHCs8M9w7SiFnenIoN39rGSlp0UxPCpsyI0ujTYQqQRAmJEmS0Ou0zI0OIfd0HW8WHMfF7qCiuYNDlfXcv3EpW6/M4PkDRbT3DfDXOzczPeTi++NNJFarnVfeK+SFN/NRq5Q88M1VbFyZPNJoUZi6DL1GSgpqOJpfRfGhajrbDMDwZsOrN89hzsJYkudF4eom9hwdDSJUCYIw4Xy8madapWRXWSURfp4s8PQiMzOTH2/bwbacUh68ehm3L5vr5GrH1qmqFn73913UNHSSuXAa37tzOb5el95GRpgc7DY7FSfOUpRXydG8aipPnkWSJNzctaSkxZD6zVhmL4wlMGTqbsk0lkSoEgRhQnjn8AnMNjvLZsbg4+Yy0szzaxlz+NWb+2np6adFMTxvaGlCFE3dfeNq9/rRNmSy8M9X83hjezE+nq789sebWTxv6m4GPZV1thkoyqukKK+KkoIaBvtNyOUy4pOGT+nNWRRL/IyQT+yxJ4wNEaoEQRj3fvTyDtr6+okJ8KGopolZkUHcsGgWKqUCvU7LN1bO550jJ8mqrafxvWz2Ha/m1zetmbSB6ujxBn73j100t/WxefUsvnXLUtxcRdPaqcJud1BWWEtRbhWFuZXUVbUB4OPvTvrKROamT2P2gphx3318MhKhShCEcW3QZMHucPD8PdcBkH2qloLKBl7PP8bNS2YDEBfkyzdWzOe9PQPIPd158b7rCfCYfKfABo1m/vZiNu/vOUZooCd//b/rSZkR5uyyhMugq91AYW4lhTmVFOZWYDHvR6lUMGN2OHd+fw2p6XFExQVM2j8kJgoRqgRBGNdctWoau3p5+/AJrk6bycJp4djsDvIrGyiqaWJuTChGsxU3rZpIL1cyM+Y4u+QxcbjkDL97cjed3QPcuGkud96QLtokTGJ2u4OK400cyamgMKeSmtMtAPgG6ElIDeTK6zJISYvBRYxQjisiVAmCMO7dvTKNvcermBURREygD0nhgRxvaKX9/9m777gqy/4P4J/D3gICgiIiKoiAe4uKA/feK7WhlZUtn9IsbamZZsMy08qyzJy4RQEF90IEBXEgS9l7c9b9+0N7fj3PU4kKXOec+/N+vfqjtHM+ryPcfLzu6/5exWXIKS7DjrNxGN89QHTMOlFWXo2vf47EgYir8HR3xLfLpsHP2010LKoDZSWViD5zG+dPJOLSqVsoKaqAkbERfNs2xdOvBqNrbx94tmqEqKgo9AxqIzou/QWWKiLSeZ1buON2Vj62n43Dy0N6wqWBDZo42iEmJQPDOrbG+G4BcLW3RaLooLXsYmwqVqwLRV5BGaaP6YpnJveEuRkv24bkbkoezkcl4lxUIuJj0qDVaGFnb4XOga3QrU9rdOzZknuj9Ai/O4lI5zWwssCwDj7YdiYOb/16CO+O74/I+DsIaOYKAHB1sBWcsHZVVimx7pcTCAm9Ao/GXJ0yJBq1BglX0nAuMhHnom7gXmoeAMCzVSNMero3uvbxgU+AO4yNjQQnpcfBUkVEeqGpkz3eGNEbK/dGYmP4Bbg52OGF4O6iY9W6uMR7WLb2MDKyizB5RCfMnRYIc+6d0msV5dWIPn0L5yITceHkDZQWV8LU1BgBXZpj9PTu6Nrbh3OjDARLFRHpDSMjBRaN7Qe1RgsTA/ubvEqlwQ/bTuO3vRfRyMkWaz/gk336rCCvFOciE3H22HVcOZ8ElUoD2waW6NrbB92DWqNTr1bcZG6AWKqISKeExd1CRkEJZgV1+tvfY2iF6k5aHj788iBup+RixIAAzH+6H6wszUTHokd0LzUPZyKu48zxBCTG3YUkSXBt4oARU7qhRz9f+LX34ABOA8dSRUQ6QaXR4IuDp7A56jLaNXPD9N4dDK48/TetVsLOQ5ex/tcTsLI0wycLxyKwSwvRsaiGJElCUmImTkck4ExEAlKTcgAALX0bY8a8/ujZzxeenB0lKyxVRCRcdnEZFmw+gCspmZjSqx3eGtXX4AtVXkEZln19GBdjU9GzkxcWzhsMR3tr0bHoIbRaLRKv3sXpsHicCo9HdkYRjIwU8O/kiRcmDEfP/r5wcbMXHZMEYakiIqHO3kzFwi2HUalU49MZwzC0g4/oSHXu5IXb+GTdEVRVq7Dg+WCMDm7L1QwdptFoER+TilNh8TgdEY/8nFKYmBijQ/cWmDInCD36+cLekYWYWKqISBCNVosNYefxbdg5eLk4YtO8kfBq5Cg6Vp2qrlZh7U+R2HM0Ft7NXbD0teFo5t5QdCz6CxqNFteiU3Dy6DWcjkhAYX4ZzMxN0DnQG4ED26Bbn9awtrUQHZN0DEsVEdW7vNJyLNoSinO30jCyky/eHT8AVgY+NiApNRdL1xxAyt18TB3VGXOn9YapKTct65I/VqROHLmG0+HxKMwvg7mFKbr28UHgQD907eMNSys+sUd/j6WKiOrVxaS7ePvXQyipqMIHk4IxtqufQd/6kiQJe4/G4qufImFjZYY1701A1/aeomPRA1qtFolxdxEZGodTYfEoyC2FuYUpuvT2Rp/BAega6A0LKz6JSTXDUkVE9UKj1eL7iItYd+QsPJzs8e2csfBp7Cw6Vp0qLa/CynVHEHnuFrp18MS7rwyFQwPuvRHtj6f2Ig/H4cSRq8jJLIapmQm69PZG38EB6NbHh0WKHgtLFRHVuT/f7hvWoTWWTBgAawvD/qECUUk6AAAgAElEQVSVcCsTS9fsR05+GeY91QdTRnWBkZHhrsjpg3upeYg8HIfIw1eRnpwLYxMjdOzREjNfHoge/XxhbcM9UvRkWKqIqE6dv5WGt7ccRlllNd6fOBDjuvkb/O2+HQcvY90vUXBysME3H0+Bv3dj0bFkqzC/DFGhV3H8YCxuXLsLhUIB/07NMGZGD/QO9oedvZXoiGRAWKqIqE6oNVp8e/QcNkach6ezIzY8Px7ebk6iY9Wp0vIqrPjmCE6cv4XALi3wzstDYcfVj3pXVanE2ePXcexALKLP3oZWo4WXjyuee2MI+g4JgLNrA9ERyUCxVBFRrcsqLMXbWw7hcnIGRndpg3fG9jf4p/tu3snGu6v3ITuvFC/PCsLkkZ0MekVO12i1Wly9lILw/TE4HZ6AivJqOLs2wITZgeg/vB08WzYSHZFkgKWKiGpVxNXbWLLtKNRaLVZMG4IRnXxFR6pz+8Pj8Pn3EWhga4mvP5yMgNZNREeSjYy0fITti0HEgSvIySiClbU5Agf5YeDIDvDv2AxGRoY9mZ90C0sVEdWKKpUaq/dFYduZOLRxd8GnM4ahmbOD6Fh1qrpahTXfR+DgsWvo3LYZlr42HA4NuEenrlWUV+Pk0WsI23sZ1y6nwshIgQ7dW+LpV4LRo78vLHgYNQnCUkVET+xWZh7e+vUQbmflY3ZQJ8wf2gumJoY92DIjuwjvrtqHm8k5mDWhO56Z1BPGBn5eoUiSJCHhShqOhETjxJFrqKpUokkzJ8yeH4yBIzvAqZGd6IhELFVE9PgkScLvp2Oxev8J2FqaY/2csejV2lN0rDp34UoKln5+AJIkYeWisejVuYXoSAarqKAcEftjELo7GunJubC0MkPfIQEYPLYTfNs15b410iksVUT0WPJLK7Bk21GcuJ6M3r7N8dHkQWhoa9i3viRJwpY9F7Dht1No7t4Qy94aDXc3w77FKYJWq0XshWQc3nURZyKuQ63WwLddU7z+wVj0GezPo2JIZ7FUEdEjO3E9Ge/9fhRlVdVYOCYI0wLbG/yKQWWVEsu/DsXxszcxoJcPFs4bDEsDH2Ba34oKyhG29zIO77qEjLR82NhZYuSUbhg8rhOf3iO9wFJFRDVWqVRhzYGT+P10LFq6NsTGFwx/9hRwf//UopV7kZyehxef6oNpo7sYfImsL3/slTqw7TxOhcVDpdLAv2MzzHixHwIH+sHMwEdxkGFhqSKiGkm4m42FW0KRnFOAGX064LVhgTA3NfxLyOWraXh39T5oJQmr3hmHbh2ai45kEKoqlDh+KBb7t53HnRtZsLIxx9CJXTB8Ylc0a+EiOh7RYzH8KyIRPRG1RotNxy9h3ZGzcLSxxIbnx6GHdzPRsepFSOgVfPHjMTR1s8eKt8eiaWPun3pSmXcLsP/38zgaEo2y0io093bF/CWj0X9YOx5iTHqPpYqI/lZ6XhHe2RqKKymZGNLeG++OH4AGVoZ/7IparcFXm45jd+gV9OzkhaWvDYc1N0c/NkmSEHvhDvZsOYvzUTdgZKxA4EA/jJzSDX4dmvFWKhkMlioi+h+SJGHH2Tis3n8CJkbG+GT6UAzv2Fp0rHpRUlaFJZ/tx6W4VEwd1RkvzOjD+VOPSalUI/JQLHb/cgYpt7LRwMEKU+b0xfCJXTlXigwSSxUR/Yfs4jIs3R6G04kp6OHtgQ8nD4Krva3oWPXiXlYR/rVsNzJyirDopcEY3j9AdCS9VFxYjoM7LmD/1vMozC+DZ6tGeP2Dseg3rC03npNBY6kiIgD3V6cOXE7EipDjUKk1eGdsP0zu2Q5GRvK4NRN7/S7eWbkXkiThiyUT0d6vqehIeifrbgF2/3IGR0KiUV2lQpdAb4yd2RMdurXgLT6SBZYqIkJeaTk+2hmBY9eS0N7TDR9PGWzw5/b92dGT17Hi61C4uthh1TvjONDzESUlZmL7jydw8ug1GBkZod/wthg/K5CzpUh2WKqIZEySJBy5chPLdh9DhVKFN0b0xsy+HWFsJI89RJIkYfOu89i49RTa+7lj+b9Gw87WUnQsvXHtcgq2r4/BnYRwWFmbY9zMXhg7oycaunC/FMkTSxWRTOWXVmDZ7giExd2Gf9NGWDZ1MLwaNRQdq96oNVp8tiEM+8OvYlAfXyycNxhmMpi79aQkSULM+SRs/S4SV6NTYGVjitmvDMSIyd1gY8dCSvLGKwiRzEiShNArN7F89zGUV6vw6rBemB3UGSYyesKtolKJJZ/tx7mYZMwc3x1zpvbinp+HkCQJ0adv4df1x5EYlw4nFzu88PZwWDtXIHhQkOh4RDqBpYpIRnJLyvDxrmM4di0JAR6u+GjyILRwlc/qFAAUFJXjX8t341ZyDv71fDBGD2onOpJOkyQJ0Wdu49d1EUi8ehcubg3wyrujEDymI8zMTBAZGSk6IpHOYKkikgFJkrD3YgJW7YtClUqN14cHYmbfTrJanQKAu5mFeOOjncgvLMeKt8egV+cWoiPptNiLd/Dz1+FIiEmDi1sDzF8yGsGjO8CUt0mJ/hK/M4gMXEZBCT7cGY7TN1LRsXljvD8pGM1dHEXHqnc37mTjzY92QpKArz6YDD9vN9GRdNaNa3fx01dhiDmXhIYutnh58UgMHteJZYroIfgdQmSgtFoJv5+JxRcHTwEAFo3thykymjv1Z9FX07Bo5R7YWpvj8yUT4dFEfqWyJtKTc/Hz2nCcCo9HAwcrzFkwFCMmdYW5BQd2EtUESxWRAbqTnY+l28NwJSUTvVp7Ysn4AWjsKM/H3KPO3cT7nx+Eu5s91rw3Ac4N5TEd/lEU5pfh13XHcHj3JZibm2D6C/0wflYgrKx53iHRo2CpIjIgSrUaP0RcxIaIC7A2N8PyqYMxopOvbJ9sOxBxFZ+uPwrflq5Y9c44zqD6L9VVKuzefBrbfzwBpVKN4RO7YNrz/eDQ0EZ0NCK9xFJFZCBiku/h/R3huJNdgKEdfPD26CA0tLUSHUuYbfsvYe1PkejazhPL3hoFSwsz0ZF0hiRJiAq9ih8+P4LcrGL07O+LZ14bDHdPJ9HRiPQaSxWRniutrMYXB09h+9k4uDnY4pvnxqCPb3PRsYSRJAmbdpzFj9vOIKh7Kyx5bTiHev7J7esZ+PaTg4iPSUWL1m741/IJaNtZvl8vRLWpVq40CoViCIAvARgD+F6SpE9q43WJ6O9JkoSwuFv4ZE8k8ksrMKNPB7wypCeszOW7IiNJEtZtjsLWfZcwNMgPb88bLLuxEX+ntLgCP68Nx8EdF2Fnb4VXl47BoDEdYczPh6jWPHGpUigUxgC+ARAM4C6AiwqFYp8kSQlP+tpE9NcyCkqwPOQYohKS4dvEBWufGQ2/pvI+vFarlXAgKg3nr+Zi7JD2eP3ZAbJ80vG/SZKEsH0x+GFNKEqLKzFqanc8Na8/j5QhqgO1sVLVFcBtSZLuAIBCofgdwGgALFVEtUyt0WLLyRh8c+QsAGDBqD6YHthB9qsxWq2EVd8dxfmruZg6qjPmzewr2835f5Z2JwdrP9qHq9EpaNPeAy8vHgkvH87nIqorCkmSnuwFFIoJAIZIkvTcg39/CkA3SZJe/q/fNxfAXABwdnbutH379id6X3o0ZWVlsLHhEz31qbY/85TCcvwel457JZXwb2SHif5N4Wgl31t9f9BqJYREpCAmMR892zXE0N6esi9UapUWZ8OScTYsBWbmxug3qhXadm8MRR2s3PHaUv/4mde/fv36RUuS1Plhv682Vqr+6rv0f5qaJEkbAGwAAB8fHykoKKgW3ppqKjIyEvzM61dtfebFFVX46tBp7Dh3E852Nvh81ggMCGgp++IAABqNFsu/DkVMYj6endwTzV2Usv86v3H1LtYs2Y3UpBwEDW2LF94aBvs6HJHAa0v942euu2qjVN0F0PRP/+4OIKMWXpdI1iRJwoHLiVi97wSKyisxvXcHvDy4J6w5GgDA/xeqIycSMHdaIGaO7y7rw32V1Sr8su4Ydv18Co7Otvjg66fQrY+P6FhEslIbpeoigFYKhaI5gHsApgCYVguvSyRbd7ILsGz3MVy4nY4AD1esnzMWvu4uomPpDI1Gi+Xf/GehkrNbCRlYtXgn0pJyMGRcJ8x5cyisbS1ExyKSnScuVZIkqRUKxcsAjuD+SIUfJUmKf+JkRDJUqVRhY/gFbIq8BEszU7w3vj/Gdw+AsZG8N6L/mVYrYeW3R3AkKgFzpsq7UGk0Wmz/4QR+XX8M9o7W+HjdTHQO9BYdi0i2amVOlSRJhwAcqo3XIpKryPgkfLInEvcKSjCqsy/eGNFH1hPR/8r9p/zCcOh4PJ6Z3BOzJsi3UGVnFOLTRTsRH5OKvkMC8PLikbBtwK8XIpE4ZphIsHsFxfgkJBKRCXfQopEjfpw3EV1auIuOpXMkScIXP0Rgf3gcZo7vjmcm9RQdSZhT4fH4YmkItFoJ/1o+Af2Ht+ODC0Q6gKWKSBClWo1Nx6OxMfw8jIyM8MaI3pjRpwNMjY1FR9M5kiTh219PYHfoFUwZ1RlzpvYSHUkIpVKN7z8Lxb6t5+Dt3wQLV05C46YNRcciogdYqogEOJ2YghUhx5GaV4Tgtq3w1qi+cHWwFR1LZ/286xx+23MRYwa3w0syHeyZnVGIZQt+x81r9zD2qZ545rVBMOWZhkQ6hd+RRPUos7AEn+6NQvjV22jmZI/v5o5DT59momPptJ2HLuP7racxuG8bvPHcQFkWqsvnbuOTt7ZDrdbgvc+nodeANqIjEdFfYKkiqgdKtRo/R17GxojzkCTglaE9MTuoE8xM+C34Tw5HxuOLH46hT7dWWPTSENmd5SdJEnZvPo0fPj+Cps2dseSLaWjSzEl0LCL6G7yiE9WxP9/qGxDQEm+N6ovGjnaiY+m8UxeT8Mk3oegU4IGlrw2X3fmGSqUaX32wB+H7ryBwoB/e/HgcLK3MRccion/AUkVURwoqlHjtp/2IeHCrb/2csejV2lN0LL0Qm3AXS9bsh7dXI6x4ewzMzeR1qSoqKMeHr29BQkwaZrzYH9Nf6CfL255E+kZeVyqielCtUmNT5CVsOJ4AExNjvDqsF2b27chbfTWUlJqLtz8JgauTHVYtHgcrS3kdy3MvNQ/vztuM/JwSLPp0MvoOCRAdiYhqiFd5olp0IuEOPtkTifT8YrR3s8enz46HmwNv9dVUVm4J3vx4FyzMTbHmvfGwt5PXMMvEuHQsfeUXAMDK75+Fb7umD/k/iEiXsFQR1YL0vCKs3BuJqIRkNHdxxIbnx6E6I5mF6hGUlFZiwcc7UVmlxLqPp8LVpYHoSPXq0qmb+OiNrXB0ssGy9bPR2IPzp4j0DUsV0ROoVKrwfcRFbDp+CaYmDwZ49u4AUxNjRGYki46nN6qVaixauRf3sorx2Xvj0aKZs+hI9erE0Wv4dOEONGvpgo+/nQWHhjaiIxHRY2CpInoMkiQh/OptrNoXhczCUgzv2BpvjOgNlwb8YfiotFoJy78ORez1u1j62nB09PcQHalehe29jM+XhsC3nQc+/PopWNtaiI5ERI+JpYroEd3JzseKkEicu5UGbzcnrHhpCDp58ay+x7Xht5OIOJ2IF2b0RnBvX9Fx6tWRkGh88f4etO/mhaVfToeFzDblExkaliqiGiqrqsb6o+ex5WQMLM1NsWhsP0zq0VZ285Nq04GIq/g15AJGBbfF9DFdRcepV0f3ROPzpSHo3KsVlnwxDWbmpqIjEdETYqkieghJknAg+jrWHDiJ/LIKjO3ij1eH94KjjbyeTKtt0VfTsOq7MHRt54k3nhsgqzlMxw/G4vOle9CpJwsVkSFhqSL6B9fv5mBFyHHEpGQgwMMVa58ZDX8PV9Gx9F5aRgHeXb0PTd0c8OGbI2FiYiw6Ur05F5mIVe/uQkBnTxYqIgPDUkX0F4rKK/F16BlsPxsHB2tLfDgpGKO7+Mnu7Lm6UFJWhbdXhMDYSIFP3xkLG2v5HL1yLToFyxb8jpa+bnj/qxkwt2ChIjIkLFVEf6LRarHr/DV8deg0yqqqMS2wPeYN7gE7Sz6RVRvUGi2WrtmPzJxifPn+JDRuZC86Ur1JuZ2NpfN/hWsTB3z0zUxYyahMEskFSxXRA1dSMrA85Diu381BJ68meGdcf3i7OYmOZVC+3RyFi7GpWPjiYLTzlc8TkwV5pVjy0maYmZvg429nooGDtehIRFQHWKpI9vJKy/HFwVPYezEBLnbWWDl9KIZ28JHVxun6cPj4NWw7EI0JwzpixED5nGdXXaXC+/N/RXFhBVb/NAeNGjuIjkREdYSlimRLpdHg99OxWHfkLKpUajzTrzOeD+4GK3POCqptibezsOq7MHQK8MDLs4NEx6k3kiTh86UhuBWfgfc+n4pWbRqLjkREdYilimTp4u10LA85jttZ+ejV2hMLxwTB05krCHWhsLgc73y6F4721vjgjRGymuu16+fTiDwch1kvD0TP/m1ExyGiOsZSRbKSVVSKz/afQOiVm2jiaIcvZo9Ef/8WvNVXR9QaLZZ8dgBFpZVYv2wq7O3kM9sr7lIyfvziCAIH+mHKnL6i4xBRPWCpIllQqTXYfOIyvgs7D61WixcHdccz/bvAwpTfAnXpu19PICY+HYtfGQpvr0ai49SbwvwyrHhrGxp7NMQbH41jaSeSCf5EIYN35kYqVoQcR0puIfr5tcBbo/vCvWED0bEMXtT5W9i67xLGDG6HoUF+ouPUG61Wi1WLd6K8tArL18/m6AQiGWGpIoOVUVCCT/dFIeLqbXg42WPdc2PQ27e56FiycC+rCMu/Pgzflq6Y/3Q/0XHqVcgvZ3D5zG288t4oNPfm9H0iOWGpIoNTrVLj56hobAy/AACYP7QXZgV1hJkJv9zrQ7VSjfdW74ORkRE+enMkzGR0izX5ZhZ++ioMPfv7YtiELqLjEFE9k8/VjmThVGIKVoQcR1peEQYGtMS/RvVFY0c70bFkZe2m47iZnIOVi8bC1UU+t1nVKg1Wv7sLNnaWmL9kDPdREckQSxUZhD/f6vN0dsB3c8ehp08z0bFkJ+J0IvYcjcXUUZ3Rq3ML0XHq1fZNJ5CUmIklX0yDvSMnphPJEUsV6TWlWo2fIu/f6lMogFeH9cLMvrzVJ0JGdhE+XX8Uft5ueH56b9Fx6lV6ci62fheJvkMCOI+KSMb4k4f01pkbqVi++xhS84oQ3LYl3hoVBFcHW9GxZEmt1uD9zw9CAQXef30ETEyMRUeqN5IkYe3H+2BuaYYX3h4uOg4RCcRSRXonq7AUn+6LRFjcbTRzssf6OWPRq7Wn6Fiy9sO2M0i4lYkP3xwJNxntowKAyENxiLuYjPlLRsOhoY3oOEQkEEsV6Q2VRoNfT8Tg26PnoNVq8fKQnni6Xyfe6hPs8rU0/BpyHsP7+6N/Tx/RcepVZUU1vv88FK38mmDIuE6i4xCRYPxpRHrhYtJdLN99DLez8hHUxgsLxwahiaO8VkR0UUlZFT5eexhNXB3w6jP9Rcepdzs2nUR+TikWfzYVRkbyOdOQiP4aSxXptLzScqzZfxL7o6+jiaMd1j4zCkF+8nqqTJet2RiO/MJyrF8+FVaWZqLj1Kv8nBLs+vk0+g4JQJt2HqLjEJEOYKkinaTRarHz3FV8eeg0KpUqzBnQFXMGdoWlmanoaPRAxOlEhJ9KxHNTe8G3pZvoOPVuy3fHoVFrMXt+sOgoRKQjWKpI5yTczcZHOyNwLT0bXVs2xbvj+6O5i6PoWPQneQVlWL0hHG1auWHG2G6i49S7zLsFOBISjaHju8DNnV+bRHQfSxXpjLKqanwdegZbT8XCwcYSK6YNwfCOrTmZWsdIkoRP1h2BUqnGe/OHwcRYfnuJtm6MhLGxEabO6Ss6ChHpEJYqEk6SJByJvYlP90Yhr7Qck3q0w/xhPWFnaSE6Gv2FgxHXcC4mGa892x9NGzuIjlPvsjMKEbH/CoZP6oqGLjwCiYj+H0sVCZWeX4Rlu4/jdGIKfJu44KunR8Hfw1V0LPob2XklWPvzcXTwa4pxQzqIjiPErs2noYACE2cHio5CRDqGpYqEUKk1+DkqGuuPnoOxsRHeHt0XUwPbw5iPpessSZLw6fqj0Gi0WDhvMIyM5HdbtrS4Akd2R6Pf8LZwdrUXHYeIdAxLFdW7mOR7+GBHOJKyCxDctiXeHtMPjRpwErWuC41KwPmYFLz2bH80kWmhOLzrEqqrVBj3VC/RUYhIB7FUUb0prqjC5wdPYte5a3BzsMXXz45G3zZeomNRDRQUleOrTccR0LqJbG/7aTRaHNh2Hu27eqG5N29RE9H/YqmiOidJEkKv3MTKvZEoKq/ErL6dMG9wD1iZc+aUvvjyx2OoqlJh4YuDZHnbDwAunLiBnMxizP3XMNFRiEhHsVRRnbpXUIyPdx3DqcQU+DVthG+fGwtfdxfRsegRnIlOQsTpG3h2ck80c28oOo4wobsuwcHJBt37thYdhYh0FEsV1Qm1RostJ2PwzZEzABTciK6nKquU+GxDODzdG8pyyOcf8nNLcfHUTUx4ujdMTI1FxyEiHcVSRbXu+t0cLN0Rhut3c9C3TXMsHtcfbg6c56OPftx2Btl5pfjm4ykwlXGZOH4wFlqthEGjO4qOQkQ6jKWKak2lUoVvj57D5qho2FtbYvXM4RjUthUnouuppNRcbD8QjZEDA9DO1110HKGOH4qFj7873D2dREchIh3GezEG6vr167CwsECHDvXzpNa5m2kYv/oXbDp+CWO6+GHvW7MwuJ03C5WekiQJn20Mh421BV6Y0Ud0HKHSk3ORlJiJoKFtRUchIh3HlSoD9eqrr+KNN97A6tWroVQq6+x9iiuq8Nn+Ewi5EA8PJ3v88OIEdG3ZtM7ej+pHaFQC4q7fw8IXB6OBraXoOEKdDo8HAAQG+wlOQkS6jitVBmj37t3QaDR46623oFKpkJCQUCfvE3H1NsZ8+jP2XUrA0/06Y9eCp1ioDEBZeTW+/SUKbVq5YVh/f9FxhDsdkYDWAe5wdm0gOgoR6TiuVBmYyspKLFiwALt27YK9vT0aN26MmJgYNG/evNbeI6+kHMtDjiEs7jZaN3bGN8+NQRv3RrX2+iTWpu1nUFhcgU8XjZPtTKo/5GWX4FZCBp5+NVh0FCLSAyxVBuaTTz5BYGDgv/dS+fn54cqVK7VSqiRJwv7o61i5JxJVKjVeHdYLs4I6wdRYvk+FGZqUu/nYeTgGIwa0ReuWnBp+8dRNAEC3PpxNRUQPx1JlQFJSUrB27VrExsb++7/5+/sjOjoaY8eOfaLXziosxYe7InDyejI6eDbG+5OC4dXI8Ukjkw6RJAlrfzoOS3NTzJ0WKDqOTog+fQtOjezQrCUH1hLRw7FUGZDXX38dhYWF/7EqJUkSbGxsIEnSY72mJEnYdf4aVu87Aa2kxcIxQZjSqx2HeBqgc5eTcT4mBa/MDoJDAyvRcYTTaLS4cuEOevb35VOsRFQjLFUG4ujRo4iKikJ0dDTMzMz+/d8TExMxceJEZGZmPvJrZhSUYOn2MJy7lYauLZvi/UkD0bShfW3GJh2h1mjxzeZIuLs5yPbA5P9250YWykoq0b4bD/0mopphqTIAKpUKr776Kt5880107PifE589PDwAALdu3arx62m1Enaei8NnB04CAN4b3x8TureV/aZlQ7YvLBYpdwuw/K3Rsp6c/mfXolMAAG07s1QRUc2wVBmAL7/8Erm5uZg/f/7//JqdnR1cXV2RlJRUo9f68+pU91Ye+GBSMBo78ogZQ1ZeUY0ft51Bez939O7aUnQcnREfk4pGje3h1Ihf/0RUMyxVBmDBggVYsGDB3/56ZmYmIiMj//E1JEnCznNXsXr/CQDAexMGYGL3AO4lkYEtey6iqKQSL88M4p/3n1yPS0PbzrU3ioSIDB9LFSGrsBRLt4fhzM1UdGvZFB9OHsTVKZnIKyjDtv2XMKBXa45Q+JP8nBLk55TCJ4DDbImo5liqZEySJOy7lICVe6Kg1mqxeFx/TOrBvVNysmnHWag1Wo5Q+C+3EjIAAK3aNBachIj0CUuVTOWVluPDHRE4Hp+Ejl5N8PHkQWjqxCf75CQ9oxAHwuMwalA7NHHln/2fJSVmQKFQwMuHq3dEVHMsVTIUHncLH+6MQHm1EgtG9sGMPh04d0qGvv/9NExNjTF7Qg/RUXRO8s1suDV1hKWVuegoRKRH+JPUwG3ZsgWenp6Ijo6GZytvTFn2LV7/+QBcHWyx/fXpmBXUiYVKhpJSc3HsTCImDOuIhg7WouPonLQ7OfDkFHUiekRcqTJgW7Zswdy5c1FRUYHMasA8aAqu5ZUjsLEt1s6fwjP7ZOz730/DytIM00Z3ER1F56hVGtxLy0ePfr6ioxCRnmGpMmCLFy9GZbUSrn1H40i+ESS1Cnd+X4sycwVM//W86HgkyM072Th54TaemdwTdraWouPonOyMQmjUWjTxdBIdhYj0DEuVAcupVKPF9Ndh4eSG1lYSdn31GSS1CmmcRSRrP24/Axtrc0wa3kl0FJ2UmV4AAGjszgPDiejRcDONAdJqJWw6fgle016DsYU1UnZvQHd7CZJaBeD/j64h+bl5JxunLiZhysjOsLHmJuy/kp1RBABwZakiokfElSoDk1VYisW/H8GF2+nwcbTC0c0rUVaQ9+9ft7KywrJlywQmJJF+2nkONlbmmDCs48N/s0zlZBbB2MQIDk42oqMQkZ5hqTIgoVdu4MOdEVBrtPhwUjDGdPXDb14NsHjxYgBAs2bNsGzZMkyfPl1wUhLhTlouTpy/hdkTunOV6h/kZZegobMtjI25kE9Ej4alygCUVymxYs9x7L2YgLYerlgxfSg8HgzynD59OqZPn47IyEikpKSIDUpCbd51HpYWppg0gnup/kl+bgkcnXlMExE9OpYqPXctLQtvbzmMu/nFmDuwG14Y1I2jEuh/3FjmsnQAACAASURBVMsqwrEzNzB5RCc+8fcQRQXlcON+KiJ6DCxVekqrlbAp8hK+PnwGzg2s8cOLE9C5hbvoWKSjtu69CGMjI0we2Vl0FJ1XXFiO1gH8XiKiR8dSpYdyS8qw6LdQnL+VjuC2rbB04kA0sLIQHYt0VEFROQ4dv4YhQX5wcuTm638iSRLKiith28BKdBQi0kMsVXrmxPVkvLv1CCqVKiydOBDju/lDwblT9A92HY6BSq3B1NFcpXoYZbUaKpUGNnb8SwoRPTqWKj2hUmvwxaFT2Bx1Gd5uTlj11DB4NWooOhbpuMoqJUJCryCwS0t4NOY+oYepKK8GAFjy6UgiegwsVXogPa8I//r1EOLTszGlVzu8ObIPLEz5R0cPdzgyHiVlVZgyiqtUNVFZ8aBUWZoJTkJE+og/mXVc6JUb+GBHOBQKBT6fNQID27YSHYn0hFYrYfuBy/Bt5Yq2rZuIjqMXlNVqAIC5hangJESkj1iqdFS1So1P90Zh+9k4tG3mhlUzhqGxI2fnUM2dvXwHdzML8f7rI7jvroZUSg0AwNSMl0YienS8cuig1NxCLNh8EIkZuXg6qBNeGdaLs6foke04eBnOjjYI6s7VzZrSqO+XKmMTTlMnokfHUqVjQmNu4P0d4TAxNsI3z45GnzZeoiORHkpOz8OluFTMnRYIExMW8prSShIAwIgre0T0GFiqdIRSrcaqfSfw++lYtGvmhlVPDYObA2/30ePZHXoFZqbGGDmwrego+uV+p4LCiKWKiB7dE5UqhUIxEcD7AHwBdJUk6VJthJKbewXFeHPzQcSnZ2Nm3454bXggb/fRYyuvqEZoZDz69/KBA4dYPpoHXUrSSmJzEJFeetKVqmsAxgH4rhayyNKJhDtY9FsoJAn4YvZIDAhoKToS6bkjJxJQWaXCuCEdREfRO8bG9/dSaTRawUmISB89UamSJOk6AD5Z9Bg0Wi2+OXIWG8MvoHVjZ6yZNQJNnexFxyI9J0kS9h6JhbdXI/i2dBUdR++Ymt5fIVarWaqI6NHV254qhUIxF8BcAHB2dkZkZGR9vbXOKa1W4efLqbiRV4oeHg0xwb8xkq5dQVIdvmdZWZmsP3MRRHzmaZllSErLw+h+zRAVFVWv760LnvQzz88uBwDEXomDyjinllIZNl5b6h8/c9310FKlUCjCAfzVX3kXS5K0t6ZvJEnSBgAbAMDHx0cKCgqq6f9qUK6mZWHZzwdQUFaBDyYFY1w3/3p538jISMj1MxdFxGe+bO1hWFma4aVnR8NKhlPBn/Qzz8kswsZlZ+HVvCWCgjiFviZ4bal//Mx110NLlSRJA+sjiKGTJAk7z13FipBIONtZ45dXJqONeyPRsciAlJVX49iZGxgS5CfLQlUbLB58blUVSsFJiEgfcaRCPahWqbF893HsvnANvXya4ZPpQ2FvbSk6FhmY8FPXUa1UY8SA+ln9NERWDw5SrnhwBiAR0aN40pEKYwGsBeAM4KBCobgiSdLgWklmILIKS/Haz/sRn56NuQO7Yd7g7jA24rRmqn0HIq6ihYcTWrfgBvXHZWJqDHMLU5SXVImOQkR66Emf/gsBEFJLWQzOxaS7WLD5AKpVGnz59Cj0928hOhIZqKTUXCQmZWP+0/34NO4TsrWzRGlJpegYRKSHePuvDkiShK2nY/Hp3kg0bWiPL+eNglcjR9GxyIAdjoyHsbERgnv7io6i92ztrVBSVCE6BhHpIZaqWlatUuPjXcew52I8gtp4Yfm0IbC1NBcdiwyYWqNF2Inr6NnRixPUa4G9ozWKCspFxyAiPcRSVYtyisvw+k/7EZeWheeDu2HeoB4w4hliVMcuxaUiv6gcQ4LaiI5iEOwb2iAzPU10DCLSQyxVteRqWhZe3bQPZVVKrJk1AsFtW4mORDJx9EQCbG0s0KOTl+goBsHRyRYFeaWQJIn704jokfAxtFpwIPo6Zn+zHWYmxvh1/hQWKqo3FZVKnDh/C/17+sDMlH9Hqg0NXWyhrFajtJib1Yno0fAq/AS0WglfHT6NH45dROcW7lgzcwQcbDh/iurPqUtJqKpWIziwtegoBsO5UQMAQF52MezsuUeNiGqOpeoxlVcpsfC3w4iMv4OJPQKwaEw/mJoYi45FMhN+8jpcnGzR1tdddBSD4ex6v1RlZxTBy8dNcBoi0icsVY/hXkExXvlxH+5k52PR2H6YFthedCSSoZLSSlyITcGEYR35QEQtatTEAcD9UkVE9ChYqh7RlZQMvLppP1RqDdY9NxY9fZqJjkQydeL8bajVWgzsxVt/tcne0RrmFqbIulsgOgoR6RmWqkdw6HIi3tt2FI0a2ODreRM50JOEOnb2BtxcGsCnBQ/mrk0KhQKNPRoiI52liogeDUtVDUiShPVh57HuyFl09GqCL2eP5IHIJFRJaSWir6Zh8shOfOy/DjTxaIjkW9miYxCRnuFIhYdQqtV4Z2so1h05i1GdfbHx+XEsVCTcqYtJ0Gi06NfDW3QUg+Tu6YTMuwVQqdSioxCRHuFK1T8oKq/Eqz/tx+U79/DK0J6YM6ArVwVIJ0Sdv4VGTrZo3cJVdBSD1NTLGVqNFhlpBWjWwkV0HCLSE1yp+hvpeUWY8dXvuJqahU9nDMPcgd1YqEgnVFQqcTE2BX26teLXZB3x8LpfpFKTcgQnISJ9wlL1F66kZGD6V7+juKIKP7w4HkM7+IiORPRv568kQ6nSoE83Tu6vKx5ezjAyUiCV+6qI6BHw9t9/ibh6G2//egguDWzw7ZyxaObsIDoS0X84dSEJdjYWCGjdRHQUg2VuYQq3pg2RfCtLdBQi0iMsVX+y5WQMVu6NRICHG9Y+MwqONjyignSLWqPFmct30KuzF0yMudBcl7x8XHHz2l3RMYhIj/CqjPtn+H22/wQ+2ROJfn4t8P0L41moSCddS7yH0rIqBHZuKTqKwWvR2g3ZGUUoLeHBykRUM7IvVUq1Ggu3HMZPkdGY0qsd1swaAUszU9GxiP7Smeg7MDExQpd2nORf11r6NgYAJF3PEJyEiPSFrEtVWVU15m3cg8NXbuD14YF4Z2w/GBvJ+iMhHXcm+g7a+brD2spcdBSD5+13f8/azfh7gpMQkb6Q7Z6q3JIyzNu4B7ez8rF86mCM7NxGdCSif5SZU4yUu/kYOTBAdBRZsLO3gpu7A25c5b4qIqoZWZaqtLwizP1uFwrKKvH1s6PRq7Wn6EhED3U+JhkA0L1Dc8FJ5MMnoCmuRaeIjkFEekJ297oS7mbjqbW/o6JahR9fnMBCRXrjfEwKXJ3t4NGEB3nXF992TZGXU4KczCLRUYhID8iqVF24nY6n1+2AhakpNr8yGf4ePOKD9INarUH0tTR0be/JKer1qE17DwBAwpU0wUmISB/IplSFx93CCxtC0NjBDptfmQxPDvUkPRJ/MxMVlUp0a+8pOoqseHm7wsLSjKWKiGpEFnuqQi7E4/3tYfD3cMW658aggZWF6EhEj+RSXCqMjBTo4O8hOoqsGJsYo037prjKfVVEVAMGv1K1Oeoylmw7iu6tPLDx+fEsVKSXLsWlwqdFI9jZ8Ou3vvl38kTyzSyUFFWIjkJEOs5gS5UkSfgm9AxW7YtCcNtWWPvsKFiZc6gn6Z+KSiUSbmWicwAHforQtvP9py25WkVED2OQpUqrlbBybyTWh53HuK7+WPXUMJiZyOJOJxmg2IS70GgldArgrT8RfALcYW5hitgLd0RHISIdZ3BNQ6PV4oMd4Qi5EI+n+nTEv0b14dNSpNcuX0uDqYkxAnwai44iS6amJgjo5ImYc0mioxCRjjOolSqVRoOFWw4j5EI8XgjuxkJFBiEmPh1+3m4w5+1rYTp0b4H05FzkZhWLjkJEOsxgSpVSrcYbPx9A6JWbeGNEb7w0pCcLFem9svJq3EzOQQe/pqKjyFrHHi0BAJfP3hachIh0mUGUqkqlCvN/3IfI+Dt4Z2w/PN2vs+hIRLXi6o170GoltGepEsqzVSM0dLHFpdO3REchIh2m96WqolqJl3/YizM3U/HhpGBMDWwvOhJRrYm7fg/GxkZo04rT/0VSKBTo1KsVLp+9DY1aIzoOEekovS5V5VVKvLgxBJeS7mL51CEY281fdCSiWhV3/R68vVxgaWEmOorsdQ30QXlpFaerE9Hf0ttSVVpZjec37EZsaiZWzhiKEZ18RUciqlVKlRrXb2eibesmoqMQgA49WsDExBjnT9wQHYWIdJRelqqSyio8v2E34tOzsfqp4RjS3kd0JKJad/NODpQqDQJ8WKp0gbWNBQI6e+J8FEsVEf01vStVxRVVmPvdbly/l4M1s0ZgYNtWoiMR1YmrN+4BAPxbcz6Vruge1Brpybm4m5InOgoR6SC9KlV/rFDdzMjD57NGoJ9/C9GRiOpM/M1MuDrbwcnBRnQUeqBHv/vbDM4euy44CRHpIr0pVSWV91eobmTk4vPZIxDkx0JFhi3hZib8vLlKpUtc3OzR0rcxTkfEi45CRDpIL0pVaWU1nn9QqL6YPRJ923iJjkRUp/IKy5CTXwo/bzfRUei/BA5sg8SrdzldnYj+h86XqrKqarywMQSJGblYM3MECxXJQsLNTACAb0vOp9I1gcH3R7ecDudqFRH9J50uVRXV9+dQJTx4yo97qEgurt/OgrGRAt7NXURHof/i7umE5t6uOBF2TXQUItIxOluqKpUqvPTDXlxNy8LKGUMxIKCl6EhE9eZGUja8mjnzEGUd1WeQPxJi0pCbVSQ6ChHpEJ0sVdUqNV7dtA+X79zD8qlDMKidt+hIRPVGkiQkJmXBx6uR6Cj0N/oMvn8L8MRR3gIkov+nc6VKpdbgjZ8P4OzNNHwwKRjDOrYWHYmoXmXnlqCkrIqlSoc1aeaEVn5NEHkoVnQUItIhOlWq1BotFv52GCeuJ+O98f0xpquf6EhE9e5Gcg4AwJulSqf1G9YWtxIykJ6cKzoKEekInSlVWq2EpduP4mjsLSwY1QeTerYTHYlIiFt3smFkpECLZk6io9A/6Ds4AEZGChznahURPaATpUqSJCwPOY59l67jpSE9MKtvJ9GRiIS5lZILj8YOsOAmdZ3W0MUO7bt5IWL/FWi1WtFxiEgH6ESp+urwaWw7E4vZQZ3w/MBuouMQCXU7JQctPTlKQR8MGNkB2RlFiL+cKjoKEekA4aXqx2MX8X3ERUzsEYA3RvSGQqEQHYlImJKyKmTnlaKlp7PoKFQDvfq3gaWVGcL2xYiOQkQ6QGip2nE2Dp8fPIUh7b2xeFx/FiqSvTup9zc9t2jGUqUPLKzM0HuwP04evYbKimrRcYhIMGGl6kjsTXy0KwKBrT2xfOoQGBsJXzQjEu5Oeh4Alip9Mmh0R1RWKHHyKCesE8mdkCZTpdZg4ZbD6ODZGGtmjYCpibGIGEQ6505aHmyszOHsaCM6CtWQX4dmcPd0QmhItOgoRCSYkFKVV66El4sj1j47GpZmfMKJ6A8p6flo3rQhb4XrEYVCgcFjOyEhJg1pd3JExyEigYSUKjNjI3w3dxzsLC1EvD2RTpIkCcnp+fBs2lB0FHpEwaM6wMTEGId3XRIdhYgEElKqXGzM4WRnLeKtiXRWUUkFiksr4enOUqVv7BvaoHu/1gjfFwNltUp0HCIShLvDiXREyt0CAGCp0lPDJ3ZFaXElTobxkGUiuWKpItIRqfful6pmLFV6qV3X5mjSrCEObDsvOgoRCcJSRaQj0u8VwNzMBC4NbUVHocdgZGSE4ZO64npsOpISM0XHISIBWKqIdER6ZiGaNnaAkRGf/NNXwaM7wtzCFPt/Pyc6ChEJwFJFpCPSMgrh7uYgOgY9AVs7S/Qf3g7HD8WhtLhCdBwiqmcsVUQ6QK3RIjOnGE1ZqvTeyKndUV2lQuguDgMlkhuWKiIdkJVTDI1GC3c3e9FR6Al5ebuibZfm2L/tHDRqjeg4RFSPWKqIdMC9rCIAgLsrV6oMwZjpPZCTWYwzx66LjkJE9YilikgH3H1Qqpq4cqXKEHTr2xpu7g4I+fWM6ChEVI9Yqoh0QEZ2EczNTNDQgScNGAJjYyOMnt4TCVfScD02XXQcIqonLFVEOiAjuxhuLg14kLIBGTSmI6xtLbBr8ynRUYionrBUEemArNwSNG7UQHQMqkVW1uYYPrELzkQkICM9X3QcIqoHLFVEOiAzpxiNnO1Ex6BaNnpaDxgZGWH3Zu6tIpIDlioiwcrKq1FWXg03liqD09DFDv1HtsPRPdEoKigXHYeI6hhLFZFg2XklAMCVKgM1cXZvqJQa7Nt6VnQUIqpjLFVEgv27VDmxVBmips2d0aO/L/b9dg4V5dWi4xBRHWKpIhIsJ68UAODKlSqDNfmZPigrrcLB7RdERyGiOsRSRSRYdl4pjI2N4NDASnQUqiM+Ae5o380LuzefhrJaJToOEdURlioiwXILStHQwRrGxvx2NGRT5wahML8MoSE8aJnIUPEqTiRYbn4ZnB1tRMegOta2c3O06eCBHT+ehEqlFh2HiOoASxWRYHkFLFVyoFAoMG1uP+RmFSN8b4zoOERUB1iqiATLKyyDE0uVLHTq2RI+/u74/fsoqFUa0XGIqJaxVBEJVFWtQnmFEg0dWKrkQKFQYPqL/ZCdUYSwfVytIjI0LFVEAuUX3p+y7eRgLTgJ1Zcugd7w9m+CrRsjubeKyMA8UalSKBSrFApFokKhiFMoFCEKhcK+toIRyUF+0f1S5WjPUiUXCoUCT704ADkZRTi657LoOERUi550pSoMgL8kSW0B3ASw6MkjEclHIUuVLHUObIXWbZti64ZIKJVcrSIyFE9UqiRJOipJ0h9XhHMA3J88EpF8/LFS5WDPwZ9yolAoMOvlgcjLLsHhnRdFxyGiWmJSi6/1DIBtf/eLCoViLoC5AODs7IzIyMhafGt6mLKyMn7m9awmn3lM7D0AQGzMRRgbKeohlWHTp69zSZLg0dIBm78Jg2XDCpiZG4uO9Fj06TM3FPzMdddDS5VCoQgH4PoXv7RYkqS9D37PYgBqAFv+7nUkSdoAYAMA+Pj4SEFBQY+Tlx5TZGQk+JnXr5p85tG3wmFnU4gB/fvVTygDp29f5y72Xnhz1kYU3jXB5Gf7io7zWPTtMzcE/Mx110NLlSRJA//p1xUKxSwAIwAMkCRJqq1gRHJQVFwBezve+pMrvw7N0KW3N3b8eBLDJ3aFjZ2l6EhE9ASe9Om/IQDeBjBKkqSK2olEJB9FJZVowB+ksvb0/GCUlVZhx6aToqMQ0RN60qf/vgZgCyBMoVBcUSgU62shE5FslJRWwt6WpUrOvHzcEDS0LfZsOYv8nBLRcYjoCTzp038tJUlqKklS+wf/vFBbwYjkoLisCna2FqJjkGAzXx4AtVqDLd8dFx2FiJ4AJ6oTCVRSWokGXKmSvcZNG2L4xK4I3R2N9ORc0XGI6DGxVBEJUl2tglKlga0NV6oImDY3CObmJvjpqzDRUYjoMbFUEQlSUlYFALBjqSIA9g1tMOHp3jgdkYD4mFTRcYjoMbBUEQlSWn6/VNlYmwtOQrpi/FO94Ohsi42fhYITaoj0D0sVkSCl5dUAAFtrrlTRfRZWZpj50gAkxqXjZFi86DhE9IhYqogEKXtQqrhSRX8WPLojPFs1wqYvjvCwZSI9w1JFJEh5xYNSZcVSRf/P2NgIcxcMRebdQuz77ZzoOET0CFiqiAQpr1ACAKyszAQnIV3TsUdLdOntja0bI1FUUC46DhHVEEsVkSDllVypor83580hqKxQ4pdvIkRHIaIaYqkiEqS8QgkjIwXMzR56rjnJkIeXC0ZM6orDuy4i+WaW6DhEVAMsVUSCVFapYGVpBoVCIToK6ain5vWHlY0Fvlt1iCMWiPQASxWRIBVVSliam4qOQTrMtoEVZr40AFfO38HZ49dFxyGih2CpIhKkslIJSwtuUqd/NnxiFzRr4YINqw5DWa0SHYeI/gFLFZEgVdUqWFpypYr+mbGJMV54eziy7hVi58+nRMchon/AUkUkSGW1irf/qEY6dG+BwIF+2Pb9CeRmFYmOQ0R/g6WKSJDqajXM+OQf1dCcBUMAABtWhwpOQkR/h6WKSJBqpRoWXKmiGmrU2AGTnu2Dk0evIeZckug4RPQXWKqIBLlfqrhSRTU3cXYg3NwdsG7FAahUPBeQSNewVBEJUq1Uw8yUpYpqzszcFC8sHIH05Fzs+eWs6DhE9F9YqogEUSrVMDM1Fh2D9Ey3Pj7oHtQav64/xk3rRDqGpYpIEKWKG9Xp8bzw9nAAwPqVhwQnIaI/Y6kiEkSl0sDUhCtV9Ohcmzhg6py+OB2RgIsnb4qOQ0QPsFQRCaDRaKHRSrz9R49t3KxANG3ujG+W70d1FSetE+kClioiAdRqDQDAhCtV9JjMzEzw8rsjkXWvEFs3RIqOQ0RgqSISQqXWAgBMTPgtSI+vXRcvDBzZHjt/OoXUpBzRcYhkj1d0IgHUmvsrVdxTRU/quTeHwtLaDGs/2gutVis6DpGssVQRCaDWPFipMua3ID0Ze0drPPv6YFy7nIojIZdFxyGSNV7RiQTQaiUAgDFLFdWCQWM6IqCTJ35YE4rC/DLRcYhki1d0IgE0D1aqjI34LUhPzsjICPOXjEZ1lQrrVx4UHYdItnhFJxLg36WKK1VUS5o2d8aUOX0RFXoVF07eEB2HSJZ4RScS4I/bfwojheAkZEgmPtMHHi1csPajfagorxYdh0h2WKqIBNBK90uVkYKlimqPmZkJXls6BnnZJfhpbZjoOESyw1JFJMC/V6rYqaiWtWnvgZFTumH/1vNIuJImOg6RrLBUEQnxR6liq6LaN3t+MJxd7fDF+yFQKtWi4xDJBksVkQB/zGjk7T+qC1bW5pj/3mik3cnFb98dFx2HSDZYqogEYqeiutI50BsDR7bHjk0nkZSYKToOkSywVBERGajn3xoGuwZWWLNkN9Qqjeg4RAaPpYqIyEDZNrDCS4tHIikxEzs2nRQdh8jgsVQRCfRgsgJRnQkc6Ic+g/2xZf1xpNzKFh2HyKCxVBEJ8MfpNFq2KqoH8xaNhLWtOT5bshsaNW8DEtUVlioiIe7vUJdYqqge2Dta46XFo3Ar/h52/HRKdBwig8VSRSSAkdEfpUpwEJKNPoP80XuQP7Z8e4y3AYnqCEsVkQB/zKfi7T+qTy+9MxJWNhZY/e4uPg1IVAdYqogE+GOlSqvRCk5CcmLvaI1X3huF29czsO2HKNFxiAwOSxWRAP8uVVquVFH9Chzoh37D2uK3DZG4lZAhOg6RQWGpIhLA2Pj+t55Gy5Uqqn/zFo1AAwdrfPbuLp4NSFSLWKqIBPh3qeLtPxLAtoEVXnt/DFJuZ+OXbyJExyEyGCxVRAIYG7FUkVhde/tg6PjO2PnTKcTHpIqOQ2QQWKqIBPhjpUrNUkUCzVkwFI0a22P14p2oKK8WHYdI77FUEQlgasJSReJZWZtjwbLxyLpXhI2rD4uOQ6T3WKqIBDAxNgYAqNUsVSSWf0dPTJgdiMO7LuF8VKLoOER6jaWKSACTP1aqeA4b6YCnXhqA5t6u+HxpCIoKykXHIdJbLFVEAigUCpiaGEPJqdakA8zMTPD2iokoL63Clx/s4ZmURI+JpYpIEBMTI6i4UkU6wrNVI8x+dRDOHr+O0N3RouMQ6SWWKiJBzExNWKpIp4yd0QPtu3lh/cqDuJeaJzoOkd5hqSISxMzUGCre/iMdYmRkhAUfT4CpmQlWLtrBQ5eJHhFLFZEgZmYmUKp4RAjpFqdGdpi/ZDRuXruHLd8dFx2HSK+wVBEJYmZqzHPXSCf1GeSP4NEdsO37KFyLThEdh0hvsFQRCWJmZoJqlirSUS8uHIFGTRzw6Ts7UFZSKToOkV5gqSISxNzMhCMVSGdZWZvj7RUTkZdTirUf7+OYBaIaYKkiEsTczARV1SrRMYj+Vuu2TfHUi/0RFXoVEfuviI5DpPNYqogEsTAz5e0/0nmTnu2DgM6e+Gb5fo5ZIHoIlioiQczMTFBVxZUq0m3/1979x1pd13Ecf77u5XIO94diA4P4kVZEIiOaRmua04mImQIjB80tV1vMP5w/CkPASVowFSxnrc2cCjXTFCxdP5yiOWVGqIwKApKsJvSDkBAuIHS57/64h6LG9Vw653w/93zP67Gd7X7v/dyd1967P977fD+f76e5uYkvL/k0zQOauf2mx/ind6ya9cpNlVkixYIXqlt9GDpsMDfcOoPXNu1g+T2rU8cx67fcVJklUiy0cNBrqqxOnHPhOC69YhKrVqzh1ZdeSx3HrF9yU2WWSLHQ4oXqVlfm3HgJ733/qSxdsJLdu/aljmPW77ipMktk0KAWurq66fL5f1YnCsUW5t85iwP7D7Fs4Uq6u7tTRzLrV9xUmSXSWhwIwAEvVrc6ctqYd3P1vEtZ/4vf89iDL6aOY9avuKkyS2RQsQWAg28fTpzE7MRcMvNsPjFlPCu+9Sw7/rAndRyzfsNNlVkixcLRpsozVVZfJHH9oumcOuxknli+kX0+xsYMcFNllkzroJ7bf56psnrU1lFk/tJZdO49xDduedzH2JjhpsosmaNN1YGDnqmy+jR2/EjOv+wDvPTcZp58eG3qOGbJDUgdwKxR/aep8kyV1a+PXjCa/bubuG/ZU5zx4dF88MwRqSOZJeOZKrNE/r37z02V1TFJfOlrMzllSDtL5j5Cp9dXWQNzU2WWSFurmyrLh5MGtzL/zlns/Otb3P2VH3l9lTUsN1VmibSVbv91HjiUOIlZ5cZNHM3nrr2INas3eX2VNSw3VWaJDBw4gObmJva7qbKcmHnVOXzsvLHct+wptm7cnjqOWebcVJklIon21oJnqiw3mpqamLt4Ju8a2rO+ys+vskbjpsosobbWgV5TZbnScXIrC5bOZtfOvdx18yqvr7KG4qbKLKH21gKd+z1TZfnyoQmjCg+y8gAABItJREFU+MIXp7L2+S2sXL4mdRyzzLipMkuorbXAPjdVlkPTrvw4504+kwfveYaN6/+YOo5ZJtxUmSXU3lbwQnXLJUnccNsMho04hSU3/oB/vNmZOpJZzVXUVEn6qqRfS9og6WlJ76lWMLNG0NFe9O0/y6229iI33zWbzr0HuWPeoxw50p06kllNVTpTtTQiJkTERODHwC1VyGTWMDpaC+zb/3bqGGY1876xw7lm4WVsWPc63/v2s6njmNVURU1VROw95rIN8DYPsxMwYvhgTh81hO5u/+pYfk2ZfhYXzziLdS9s5fAhHyBu+aVKt7tKWgx8FngLuCAi/t7LuDnAnNLleGBjRW9sJ2oIsCt1iAbjmmfPNc+ea5491zx7YyOio9ygsk2VpNXAsON8aWFEPHHMuPlAMSIWlX1T6ZWIOLvcOKse1zx7rnn2XPPsuebZc82z19eaDyg3ICIm9/E9vw/8BCjbVJmZmZnlTaW7/8Ycc3k5sKWyOGZmZmb1qexMVRm3SxoLdAN/Aq7u4/d9p8L3tRPnmmfPNc+ea5491zx7rnn2+lTziheqm5mZmZmfqG5mZmZWFW6qzMzMzKogWVPlI26yJ2mppC2luv9Q0uDUmfJO0hWSNknqluQt0DUiaaqkrZK2SbopdZ5GIOkBSTsl+ZmDGZE0StLPJW0u/V25LnWmvJNUlLRO0q9KNb/1HcenWlMl6aSjT2SXdC0wLiL6utDd/g+SpgDPRUSXpDsAImJe4li5JukMejZy3AvMjYhXEkfKHUnNwO+Ai4DtwMvAZyLit0mD5Zyk84BO4LsRMT51nkYgaTgwPCLWS+oAXgWm+2e9diQJaIuITkktwBrguohYe7zxyWaqfMRN9iLi6YjoKl2uBUamzNMIImJzRGxNnSPnJgHbIuL1iDgMPAJMS5wp9yLiBWB36hyNJCL+EhHrSx/vAzYDI9Kmyrfo0Vm6bCm9eu1Xkq6pkrRY0hvAlfgw5qx9HvhZ6hBmVTACeOOY6+34H43lnKTTgI8Av0ybJP8kNUvaAOwEnomIXmte06ZK0mpJG4/zmgYQEQsjYhTwEHBNLbM0inI1L41ZCHTRU3erUF9qbjWl43zOM9+WW5LagVXA9f9z18dqICKORMREeu7uTJLU6+3uSh/+WS6Ij7jJWLmaS7oK+BRwYfghZVVxAj/nVhvbgVHHXI8E/pwoi1lNldb1rAIeiojHU+dpJBGxR9LzwFTguBs0Uu7+8xE3GZM0FZgHXB4RB1LnMauSl4Exkk6XNBCYDTyZOJNZ1ZUWTd8PbI6Ir6fO0wgkDT26U17SIGAy79CvpNz9twr4ryNuImJHkjANQtI2oAC8WfrUWu+4rC1JM4BvAkOBPcCGiLg4bar8kfRJ4G6gGXggIhYnjpR7kh4GzgeGAH8DFkXE/UlD5Zykc4EXgd/Q878TYEFE/DRdqnyTNAFYQc/flibg0Yi4rdfxvgNkZmZmVjk/Ud3MzMysCtxUmZmZmVWBmyozMzOzKnBTZWZmZlYFbqrMzMzMqsBNlZmZmVkVuKkyMzMzq4J/AXK8RROvhYYKAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x720 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "X = Y = np.linspace(-3,3,400)\n", "X,Y = np.meshgrid(X,Y)\n", "Z = (1.5**Y*Y - X) / sqrt(X**2 + Y**2 + 1)\n", "plt.figure(figsize=(10,10))\n", "cs = plt.contour(X,Y,Z)\n", "pts=np.column_stack([[-2,-.8],[-1,2.17],[.57,1]])\n", "plt.scatter(pts[0],pts[1],color='k')\n", "for i,ch in enumerate(\"ABC\"):\n", " plt.text(pts[0,i]-.1,pts[1,i]+.1,\"${}$\".format(ch),fontsize=14)\n", "plt.grid(True)\n", "plt.clabel(cs,fmt=\"%1.2f\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Does this make your estimates more or less accurate?" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "hide_input": true, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAJCCAYAAADp1TKRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWeQHGd65/lLV7662nv4hm00vCMMYUkABECCJDjDGXJczGiMRjMauZVWo5V2VyEpNuI+3MWd4nZjV7Er3V1IQwMaeO+9b6C74V2jvavu8pWV+d6HLIAgBnSDzmqQzF9ERVVnZeb7orrQ+c/ned7/IwkhcHBwcHBwcHBweDLkoZ6Ag4ODg4ODg8NXAUdUOTg4ODg4ODgMAo6ocnBwcHBwcHAYBBxR5eDg4ODg4OAwCDiiysHBwcHBwcFhEHBElYODg4ODg4PDIPDEokqSJI8kSSclSbogSVKDJEn/aTAm5uDg4ODg4ODwZUJ6Up8qSZIkwC+EiEqSpAGHgT8UQhwfjAk6ODg4ODg4OHwZUJ/0BMJSZdHsj1r24TiKOjg4ODg4OHyteGJRBSBJkgKcAWqAfxRCnHjMPj8Gfgzg8XhmDh8+fDCGdvicmKaJLDsldLnE+cxzj/OZPxmylEFVYmhKDFnSyZgeEumyTz1m8D9zgaxEUeQokpwAVNKpHF4vJBPkGEKOgqSD8CDppTkbXkgZDDlORk4ABqqRh2oGPraPvd9zgS6l0aUkupQGCYJGIbJQbBrvk9HJkJLSpEhjSiZe4SEgfDmfB8DVq1e7hRAln7XfE6f/PnYyScoH3gN+IYS49En7jR8/Xly5cmXQxnX4bPbv38+SJUuGehpfK5zPPPc4n/kXRxgdkNyKSG4G/aK1UZuD5F0LnpVIcsGnHj8Yn7kQBonUEaLxt4kltiBEAlUdRdD3GgHfBjR12BOd/7MwhU53/BCt0Y10xw8gyJDnmkxFcD3l/hdwKZ/+GTwpiUw/1yJ7uNK/g67UVWQUhvvnMj60kpH+eSiy62P7D/b33BQmt2JNnOs7RH34GEkzTlDNZ1rBQmbkP0uldyRWpY+9CCG4HW/maPdpjnafpjvdiyapTC+oY37xLGbk1+FWXJ99okFENzPcjnUwLq/6jBBi1mftPyiRqvsIIcKSJO0HVgGfKKocHBwcHIYOYfZBciciuQXSJwABai1S8M/B8wKSUpGTeaT160TjbxGJv4thtCJLeQR8rxL0vYbbNdv2C3kkfYXWyHu0RTehm724lGKGh75LZeAlAq5xto5tCJ070RNcGdjBnehxTDIUu2tYUPJzxuYtx6faK+QAOpLNnO07xLm+Q4T1blyym7rQPKYXLKImMBlZyk10qiXRztHuUxzpPk1bsgNFkpkSmsQ3h7/IrIKp+FRvTuZxn5Shc7r3Gge66jnc1UjGzHzuY59YVEmSVALoWUHlBVYA/+VJz+vg4ODgMHgIMw6pvYjkJkgdAjKgjAT/z5G8a5HU0TmZh2GGicU/IBJ/i1T6LCDj9SwhGPprfN7nkSV7L6C6EaYttoXWyEYi6UYkNEp8S6kMrqfIuwhZGtRYw2/RnbzO5YHtXB3YTdLox6sUUFfwMuPzVlLsGWPr2ABRvZ/z4cOc6TtAS+IWMjJjg1NZXfEGtXmzcCke2+cA0J3q5Wj3aY50n+J2vBkJiUl541hbuYK5hdMJaoHPPskgkjJ0TvZeYV9HPUe7G4kbKQKql4Ulk1hcMoVd/MPnOs9gfHsqgH/O1lXJwFtCiM2DcF4HBwcHhydAiDSkDlmpvdReEAmQy8H3PSu9p07KUVonQyJ5gEj8LeKJHQhSaOoECkN/Q8D3Cqpib82SEAY9iaO0RjfSGduDQCfomsj4wr+kPLA2R+m93Vzu30536jqypDHKP5/xoZUM98+xPSKkm2maBs5wpu8AVwbOYWJS5R3Fi5XfZ2r+AoJavq3j3yeiRznee5YjXadoilwDoCYwku+OfI1nimZS6MrNPO7zsJA60t1IwkgR0nwsLZvKktI6ZhTUoMlfTCYNxuq/emD6k57HwcHBweHJESID6RNWai+5E8QASPngWW8JKW0mkpSbYv60fplI7C2i8XcxzE5kuYBg4E2CvtdwaVNsF3Rx/Q6tkfdojX5AymhHk0NU571OVeBlgu6Jto5tCoO7sZNc7t/G7egxTDKUuMexqPSXjM1bjkfJs3V8IQR34lc403uAC+GjJM04Ia2QZ0vWMaNwMeUee+vU7pM0Upzpq+dw90kuhBswhEmlt5xvDHuRBUWzKPfmbhEAPCykLnCku+mBkFpeNpWlpVOZXjAGVf7dRa69cU4HBwcHB9sRwgT9bFZI7QCzGyQ/uFcgedeAawGWjaD9GEYP0fh7ROJvkdYvAio+z3KC/m/g86xAkuwtNM6YMTpjO2mJvEs4dQaQKfYuZHzwLyjxLUW2efze1B0u92/j6sAu4kYvXiWfuoL1TAitpshtf4q1N9XBmb6DnOk7QG+6A012Uxeay8yCxYwJ1OakTipjGlzsb+Jw90lO9V4gZaYochXwQsVyFhbPYYSvOicR0vs8LrUX0nysKJvGktIpTyykHsYRVQ4ODg5fQoQQkLmESGyF5FYw2wA3uJdaQsq9GEnKTX2MEDrx5F4isd8QT+4GdFzaZIpCf0vAtx5FKbZ5fEF/6jytkY20x7ZiiDg+dQQ1BX9MReBFPOqn20I8KWkjxvXIfpr6t9KRbERGYURgHhPyVjE8MA/F5jqtpJHgYv9xzvTu52asEQmJMYFaVpS9yuTQPDyK/YXeQghuRG9zqPskR7tPM5CJ4Fd8LCyezYLi2UzMG4ucowgpWKv2TvdeY2/HeQ53NRIzkoQ0H8sGKSL1STiiysHBweFLgiWkriKSWyG5BYy7gAruRUiePwH3MiQ5dwW+qXQj+cX/D3fa/gDT7EGRiwkFfkjQ/w1cmr3pNYC00UNr9ANaIxuJ6TdQJB9l/lVUBl8h3z3D1miIEIK2RD1N/du4ETlARiQpcI1gfsnPGJe3Ap9aaNvYYNkg3Iw1cqZ3P/X9x9HNFMWuClaWv86MgmcpcH2mpdKg0J7s4nDXSQ53n6At2YkmqcwomMKikjlMy69Fk3MTIQUrQnau7wZ7Oy9wsPMikUyCgOplcWkdy8qmMqOgxhYh9TCOqHJwcHB4yhGZ65DcZkWljBuADK55SP6fgOc5JDl3Bb6G0U00vpFI/G3S+iWCIQWvexUB3zfweZbanmY0RYaexCFaIxvpiu9HkCHknsbE4v9Muf8FVNlv6/hRvYsrAzu53L+dfv0emuxjXN4KJoRWU+aZaHtaqyfVwVXPCY41vUWf3oVH9jI9fyGzCpcywjcuJ2m1iB7lWM8ZDnWd4Gr0JhISE/PG8lLVSuYWzsipBYIhTC6Gb7G34wL7O+sJ6zF8iptFJbUsK5vGrMKxX7jY/ElwRJWDg4PDU4jI3M6acm6DzBVAAm0Wkv9NcK9Esjml9rG5iDTx5J5sem8PkMGtTaUo/++5cLaYZ59dZ/sc4vodWiIbaYu+T8roRJMLGZ73HSqDrxBw1dg6tiEy3Ikeo6l/K3djJxGYVHqnMLPoTcYEF6PJ9qZZU9n03ulseg8PjHNPZVXFt6gNzcElu20dHyBt6pztq+dQ1wnOhS9hCJNh3kq+PfxlFhTPpthtb2TuYYQQNA00s6fjPPs6L9CdGsAjazxTPInlZVOZWzQBt5K7CNnDOKLKwcHB4SlBZO5CcntWSDVYG7UZSMG/stzNFXtrgx4llb5EJP4bovGNmGYvilxKKPDjbHpvPACmud+28Q0zSWd8Ny2Rd+hLnsAqOl/EhOBfUexbgmxzVCycbqapfyuX+3eQMPrwq8VML/wWE0OrCbmqbB37/uq9U717uRA+RtpMUuQqZ1X5t0hddrF62lpbx78/h6vRmxzsOs6x7jPEjDgFWojV5ctYVDI35wXnN6Pt7Ok4x56O87QmenHJKnOLxrOsbBrziyfhzbHb+uNwRJWDg4PDEGIJqR1ZIZVtRKFNRQr+e/CsRlLKczofw+gmEn+XaPwt0noj4MLvXUnQ9028nsVINhddA0RSTbRE36UtuomMOYBXraam4FdUBNbbXnSum0luRg7S2L+FtkQ9EjIjA88wMfQCw/1zbV8916/3crb3AKf69tGdasMlu5maP59ZBUsZ6Z+AJEnsb9pv6xw6kl0c6jrJwa7jdKS6cMsuZhdO49mSedSFJuS04Lw10cOejvPsbj/PrVg7iiQzs6CG7416jkUltQRy7Lb+WTiiysHBwSHHWEJqGyK5/aGIVF22TcwqJMXeKMhvzUekiCV2EY2/TTy5Fyu9N42i/L+3Vu99Rv+/wUA3I7RHt9ASeYdIugFZclHqe46q4AYKPHNs99bqSl6jqX8LVwd2kzZjhLQq5hX/HuNDK/GrRbaOnTF1mgbOcqp3L1ci5xAIRvknsqz0ZepC83DnYPVePJPgWM8ZDnYd53LkOhIStXnjeLX6BeYUTcebI6d1gJ7UAPs669nTfo6GgbsA1IVG8qtx61laNpUCV27d1r8IjqhycHBwyAEiczMbkdoOmSZrozbFElLulUhq9aCPaZpxZNmHEOIT0zTR+Ca6w3+OafahyGWEAj8h6H/tQXrPTiwrhHPci7xNR2w7pkgS0MYxvvAvqQisQ1PsLcBPGzGuRfbQGN5MV+oaiqQxOrCYSflrqPROtT211ZG8x6nevZzpO0AsM0CeWsCS0vXMKlxCibvS1rHBWkFY39/Ewc7jnOw9jy50Kj1lvD58PYuK5+S0TiqWSXKw6xK72s9ytvc6JoKaQAU/GfMCy8umUe61X9g/jtZ4mIt9LZ97/yERVZoSQaRPgjoRSQ4OxRQcHBwcbMWyP7gGqR2I5A7IXLXe0GYgBf8iWyM1eBGp+8LJNAfoDv8H0nojHtcsCkJ/jvIpqwM1dThe97ME/d/E634WKQfmkGmjj7boB7RE3nlghVAReJGq4AbyXJNtt0LoTDbR2L+FawN7yYgkha7RLCz9BePyVtjudJ4yEtSHj3Gydy934leQUZgUmsnswuWMC05FycHn35Jo50DnMQ51n6A3Hcav+FhaOp/FJfMYExiZszop3cxwvOcyu9vPc6S7gbSZodJbyBsjl/Fc2XRGBnJbQ3iftng/O1sb2d7SwIW+e6hfIEo6JKLKo/Uiet8EQCgjQJuEpNaCVmu9zkGo2cHBwWGwsYTURURyJyR3gXELa9XeTKTgr7NCavBrpAyj+4HBZjy5D0lyUVnyAd3hX9Mf+UcCvm/g0sY+9li3ayplRf910Of0KEKY9CaP0xJ5h87YbgQ6IfdUJhX/LWX+1bZbIaSMKFcHdtHYv5me1E1UyUNN3lJqQ2sptdkKQQhBc/w6J3v3cD58hLSZpNRdxZqK7zCj4Nmc9N6LZeIc7TnNgc5jXItajZSn5dfyvZGvMbNgSs78pExhcqn/Drvaz7Kvo56BTJyQ5mdN5RyeK59Obd6InBa/36c90c/Olka2tzZwvvceABND5fxq0nJWVk5iJH/zuc4zJKIqmqpGKvjvoDci9EugX7SKNLMIuRK0iUjaJLgvtuTSJ/qgReoI6BdAHQeuGUhy7sKaDg4OX12sXnunEaldkNyddTZXwDUXyf99q1WMYo8RYyyxnYHoP5Mx2igr+q+4tAkkUodR5GJk2Ud+8PeJJT4kntz1iaLKbpKZTtqi79ESeZdEphn1fv+94AaCrnG2ji2EoD3ZQGN4Mzci+8mIFCXusSwu+yPGBpfjUuwVcrFMhHN9BznZu4f2ZDOa7GZqaD5zipYxwjfedvFgCpOL/Zc50HnsQXqv2lvBmyNeYWHxXApcIVvHf5jbsQ52tZ9lV/s52pN9eGSNhSWTea58OrMLx9luyvk4OhIDDyJS53qbAZiQFVLPV05iZOCL19INiagSQkFyL7baKNzfZoZBb4RMI0JvBL0BkdoLCGsHuRihTgKtNiu2JoHy+ZZzCpEGEUWYPZB413oE/xxJHWnXP9HBweErjBBJSB3NCqk9IMJYLWIWInl+ZbWKsdmQ0zB6iSU2kxd4M9tTz/Iq8rjmkEyfAsCljSWtjyWROoxh9uWk4BxACIPuxGFaIm/THd+PwKDAM4cxBb+k1Pccis2+SikjypWBnTSGN9ObvpU16HyeSflrKPXYWysmhOBmrJETPbu51H+CjNCp9o7hleofMy1/AR7FZ+v4YK3eO9B5jP1dx+hJ932U3it9hjH+3EWCelMRdnecZ2f7Ga5GWpCRmFU4lh+OXsmiksn4VPv9tR6lJxVlZ0sj21oaONNzBwGMzyvjlxOXsqqqlpGBJ/N/e2oK1SU5H9zzwT3/IaEVswo69UZExhJaxI4iyGQPykNok5Dci5H8P/yUs2vgXobsWQmA2fdTSJ8AdeSDOgQhTIj/L0TqIMj5SN7XrTvNIQhDOjg4PH0IMwypA4jkbkgfAhEHKWC1hvE8B66FSDansB4uONcz18kY7fi9awAwzDCKnI+qVILIkNZv4NLGoCrVyJIXPXMbxWWvqEpm2miJbKQ18i5Jow2XXMSI0PepDG7Ar420dWwhBB3JJhrDm7ge2WdFpTzjWVL2J4zNW44m27uCLprp50zvAU707qY71YZH9jGncBlzilZQ6R1p69gAKSPNyd5z7Os8SsPAFSQkpoQm8uaIV5lVOBVXjtJ7KUPncFcDO9rPcKr3KoYwGRes4g/GvsjysqkUue2tWXsc4XSc3a1NbGtp4ETXLUwEY4Il/HzCElZV1TI6OHiR5KdGVD0OSfaDaxa4Zn0ktETKKvjUGxB6gxXZylzj06SP9UdIQ4i01SFdcoPkRwjzo2W68f8XkbmD5P8RmN2I+P9CUqpBrUZkriPi7wAZJN8bSOooe//hDg4OTwUicxdSe6yoefo0YIBcCp71SJ4V4Jpj/U2xAdOME4n/G6nUaTyeRQR9r3/sJs8we/G4ZhGO/CPR+Pu41LH4fWtwa9ORlaJsym8MqlJOSm8gX/mFLfMUGHTG9lhRqcQhwKTIu4BxwT+nxLcU2abP5z4pI8q1gd009G+iJ3UTTfIyLu85avPXUeKxN71oCpMb0QZO9OyiYeAkhjAY6Z/A8tJXqcufZ7vT+f0mxvu6jnKk+xQJI0mZu5hvDnuRZ0vm5Wz1nilMLoRvsaPtDPs764kbKUrcIV4fvpiV5TOHpOA8pqfY036ZbfcucaTzBhlhMtxfyI/HLWJ1dS1j8+yZ01Mtqh6HJLlBq7M8Xb7wsS5E4n3QL0Pov3zc90RygSQhuRcCIPr/HPL+o/U6/GdI3hcRZhci9t8g+Fc5bVrq4OCQG4QwQD9viajk3myfPaxaTP+PkdzLrL89NnsmZTItdPb+HFWtIuB/jd7+fwAEQd+Gh0ScRMa4B4ZCZcm7JNOn6Y/8D/KD+fg9K+js/RVB3wYyRjsSLhhk086E3kJL9B0yVf/Khc5+XEoxo0K/R1VwA15t8O0hHqUreZVL4Q+5NrCHjEhSfL9WKm8FLtneFFtED3O6bz8ne3bTk+7ApwR4pmgVc4uWU+YZZuvYAAlSbGnbw76OIzQnWnHJGvOKZrK0ZD4T8mpyZs7ZHO9ie9sZdrWfpT3Zh1dxs6S0jufLZzK9YHROTUIBkobOgfarbGu5xIH2a6TMDBXeEN8dM48XqiczMVRhe/bpSyeqfleE2YuI/RPoDUgF/zeS5Pm4d4trPsR/g9m9DpRK8P8ESSlHxN8GtQbJ/wMkwOxaCSIJOKLKweGrgDAjkDqESO2H1AEQfYAKrtlIvtet+ih1eE7nJMsFFIb+Go97BgAZo51k6iR5/m8jRAZJUvG4ZhGNf4AkqchyHj7PMiKxtzDMDgK+V8gLfIeuvj8mrV+mMPRXyNKTFyWbQqc7vp97kbfpSRwGJKT0JKZU/h3FvsXINrut62aS65F9NIQ/pDN5GVVyU5O3jNrQOko9E2xfwXcjeonjD0WlRvkn8nz5N5kcmosm2xuRs1bNXWFv5xFOuM5i3japCYzkR6O/zYKi2TlrYhzRE+ztOM/29jM09N95UCf1ozGreLZkMp4ct4rJmAbHum6y9d4ldrc1EcukKXL72TByBqurJjOtsDqn4u5rIaqE3oBIbLSsGvL/LyQ5YNVQYQIqInMDkdiM5H0JXDMRsX9Gcs21hJhxG8k11zqP0QnuhZYDsrJ4SP9NDg4OvxuW7cF1SB9ApA5A+gyQASkf3M8iuZdaz0PooSdJXtyu6Q9u/FzqWKLxd7LvqQghUJQifJ4lJNNnSKUbcLtqAYEkWVGaUOBnBP1voMhPLqYS+j1aIu/QEt1I2ujCrZQxOv9nVAZf5cThq5TWLnniMT6N3tQdGvs3caV/BykzSoFrBAtLf8H4vOdxK/be4MYyEU737udE7y66U214FT/zi1Yxt+g5Sj32O9/3pPrY33WMfZ1H6Er14Fd81Bo1fHfGNxnuz43zfsY0ON17jW1tpx/4SY3yl/GzmjU8Vz6dYnfuVhGCJTDP995jy72L7GhpoDcdJ6i6WVlZywvVk5lbMgolx1Gy+3zlRZUwBxDhPwYxAIFfgdmLkHzZ8H32Q0/uBlLgfQVJzgN1NCK1B0kZBiIF95uYmn1A7pd9Ojg4PBnCjEL6GCJ1CFIHwWy13lDHg/8H2bTetJwYX34e7kdchLBWP/dH/wcB3ysPtt1/P+DbAMj0DfxvpPUGvJ6leNxzH5xDeYLolCl0uuL7aIm8TU/iCCBR7F1Edd43KfIueigqdfV3HuPTMITOzcghGsKbaE2cR0ZlTPBZJuWvs93tXAjB7dhljvfs4mL/cTJCZ4RvPMuHvcqU/HloNtdKZUyDc+GL7O04wrnwJQSCyaEJfGv4emYXTuPowSM5EVS3ox1sazvFjvaz9KYjhDQf6yrnsqpiFuOCVTlfyHW1v4PN9y6y9d5FWhP9uGWVpRXjeaFqMs+WjcWlDL2kGfoZ2I0UQAr9A2SuIfR6iP8Gyf8DhKSBMMCzGtTh1h/aLCJzBUmbAaSx7mCzd6xGCyBbhaqPQRitIJcg2dw53cHB4dMRwrRWDqcOIVKHQT+L9X/ZD65nkNw/syxdctys+IsiSRJ6phnTDONzL36wzTC60TO38bhnEfRvwO2ajqqUIQ9CrWdcb6Yl8g6t0Y2kjW7cSjmj839OVfAVPGrFE5//s4jonTSGN9HYv4WE0UeeVsG84t9jQmg1PtXm1YtGnLN9BznWs5OOZDMe2cucwuXMK3qOcq/9KeDOZDd7Ow+zr/MoYX2AAi3E+qqVLC1dQJnHHq+zR4noCfZ0nGNb22maBppRJJl5RRNYVTGL+cUT0eTcyobWeJgt9y6y+d5Frg10okgS80vH8MuJy1heMQG/lntbhk/jKy+qJEkG1wzL8JNvPtguzF4wOq0f3Kusnly930dkXYlxL0ZSRyLSZ8D3HeuY5HbLI0t5fCGi6PmWtXJQrQF1ApI23roTVscjKU/mfeHg4PDpCKOdstBRzPBmSB8Bs8d6Q52QjUYtzkajclvz8UkYZphYfDOmGCA/+Pu/9f79iFRav4RLq0VRSuiP/k80dVTWQb0IIQwkScGljXmiuXwUlXorG5WSKfEtoSq4gWKv/a1rhDBpjp+hIfwBt6PHABjhn0dt/osM98+2fWFAa+I2x3p2cq7vIGkzRZV3NK9W/5Tp+Qtw2dxIOGManOm7wO6Ow1zst3pCTs+fzLKyBcwoqMtJ2xpDmJztvc62tlMc7LpE2swwOlDOz8eu5bmyGRS6c5sK708n2NnayKbmek733AFgWmE1fzXlBVZV1VLotte65En4youqT0KSC+EhV3Up/39HGG1Wry513IM7WMn3OqL/1wh1tBWpyvuLx678E0IgBf8UkWkC/QqkjyCS7330vlz4kcBSx4E6FtSxSDavUnFw+KoizAFIn0Ckj0PqKBg3GF8BpAvBtcBayetaaJub+e+CECniyT1E4u8ST+wG0ri16YQCP/utVMr9n8MD/ycZo5Vk+gSqUo3PswSfZ8mgzCeht9ASeZuW6LsPRaX+gKrgq3hU+6N4SWOAy/3baQh/SL/eglfJZ3rht6jNX0tQs3d83UxTHz7G8Z6d3IlfRZU0puUv5Jni5xnmq7F1bLAMOvd2HmFf51H69QGKXAW8Wr2GpaXzc2aF0JroYVvraba1naYzFSaoellTOYcXKmbnPL2XNjIc6LjKpuZ6DnRcQzcNRgWK+MWEpawdVscw/9B1Qbmfhv88fG1F1eOQlApQHglve7+JpIwG4w74f/qJ7W0kSQLvOiTWPdgmzF5LYGWuIjJXIHMF4v+GIHn/KIQyLCuwxmXF1jhQRzopRAeHRxBmFPQzVjP29HHLDBgT8Fhedr4NnK53MWveG7ZHNr4IQpgkU8eJJjZmI1P9KHIJeYHvEvRtwKVN+cSLlxBpvJ5n0dTRBHyvIA3C6rqPR6WOAhLFvsVUB197pFbKPjoSl2kIf8C1yF4MkabcO5k5xT9gdGARis2r6HpSHZzo2cXJ3r3EjQjF7grWVX6fmQWL8an2Fr0/HJWq729EQmJmQR3LyhYyPX9yTlappQydA531bGk7xbm+G0hIzC4cy8/GrmFhcS1uJXfXHlOYnO25y6bmena0NjKgJyly+/nWqNmsra6jNr9yyAy4ddPgWPsdtty5zKXe9s99nCOqPgNJUsH9DPDMFz9WLrSOdT/zkHmpAUazZWCauYrQr2Y72VutHCw0hDrKimSpY0GtsYSXMvypKaR1cLCbj0TUKUifAv0ikAE00KaA/2dI7vmgTX2Q0oul9j8VgkoIQVpvIhp/l2jifQyjFUny4fe+QMD3Cl73os8lkCTJRWHoLwZlTo9GpTxKRU5rpTJmmuuRvVwKf0Bn8jKa5GVC3ipq81+k2PNk6cvPwhQmVyLnOda9nSuR80hI1IZmM69oJTWBybZfuLtTvezpOMzezsOEs1Gp16rXsbR0PkXu3LQOujJwjy2tJ9ndcY5oJkmlt5Afjn6eVRWzKfPY39D5YW5Hu/nwbj2b7tXTEg/jVTRWVExk3bApzCsZNSR9AAEM0+R4x10232liR/MV+lIJApqL5VWfv2+mI6pyjCQpoI60Hjz/kNhKQ+aGVVCfyQpmoUqVAAAgAElEQVSt9HlEcstDR7sfEls1WbE1Jiu2nF+lw5cbYXSBftaqY0yfhkwj921P0OrA/yPL3sQ1A0nKjSfPF0XP3CUaf49o/D30zBVAxedZQiD0H/B5nkfOcbr/I1+ptx5awfcs1XnfpNi7KCc3aQN6Ow3hD2nq30LSGCDfNZyFpb9gQt5K2xsaxzMRTvXu41jPTnrTHQTVfJaXvcrcohWEtC/eLPeLYLmMN7Cr4xBn+y4CML1gMivKFuUsKhXR4+xsP8fW1pNci7biklUWl9axpmIO03JszhlOx9ne0sAHdy9woe8eMhLPlI7mFxOXWgXnQ9AHEMAUgtNd99h8u5Gtdy/Tk4zjUzVWVI9lzYiJLK4cjVtR+T8+5/mG6EpsDs2wTzGS5AJtImgTP+YUb/U/vA6Z64jMtay/zhlEctNDe2kIdSQoY0Adg6SOAXU0qKOe2ouPw9cbIYxsu6nziPRZ0M+BcTf7rgdcU61IlGs2uKY/1d/jjNFBLL6JaOJ9UukzgNXUOC//Hwh416Eo9l68H8dHUamHfaV+P1srZX9Uyio8P82lvg+4HTuGhMTIwALq8tdT5Ztue2ToXvwmR7u3cz58mIzQGeWfyKrybzE5NAfV5h544fQA+zqPsKfzEF2pXkJaHuurVrG8bCElbvu/C0IIzodvsrn1BAc6L5I2M4wNVvFH419mRdl0glru/i+lzQyHOq7z4d0L7O+4im4ajM0r5U9qn2NddR2l3tz3AYTsZ9TTyubbTWy9e5n2eAS3orKsqoa1IyaytGoMXvV3+54Miahyue9wt+0Z3K463NoUXK4puF11Oeug/mXC6n84FVxTHxFbUSuyZdxAZG5khVcjpHYiHhKtQq4CdRRjSl2IeCsooyzBJZc6zaIdcoYw2kGvR+gXIH0BMpeshsQAcjFo05F83wJtlnVj8ZSs0PskDLOPWGIr0fj7JFNHAROXVkth3l/i961HU+1vVfIoj49KLaIq+A2Kfc/mpFYqZUS53L+dS+EP6Nfv4VUKmFn4BpPy1xHUHm9FM1hkTJ2L/cc52r2dO/GraLKbmQWLmV+8igrvCFvHFkLQFLnOzvYDnOw9iyFMavPG88aIV5ldMC0n6azeVIRtbafZ3HqSlkQ3AdXDCxWzWVM5h/F59rcNuo8Qgsb+Nt6/e54t9y4STicocvv59qjZvDhsKhNC5UNy7RFCcDncxabbjWy63ci9WD8uWeHZytH8xfSlLK+uITAI9gxDIqoMowC3azKp9AViiY8iLqoyHLdrSlZoWYJLUYau4v9pRpIDltjiEbElUpC5nRVctxCZm5C5SXn+dcTA3odO4EcoI0EdBcpIq0m0OsJ6LQ/N3YPDVwNhdFuiSW9E6BetWigza1+CBtoEy2hXmwraDFCqvxQC3zQjxBI7iCU+IJ7cD2RQ1VHkB39FwPcSLs3e5r2fxG9HpcpzGpUC6End4lLf+1wZ2ElGJCn31DK7+HuMCTxre+F5v97LiZ5dHO/ZRTTTT7Grghcrv8/MwiV4bU8vJjjUfYKd7Qe5l2jFr/hYVb6UFWWLqPTav3rSFCane6+xqeUEh7sbMITJlPxRfH/UChaX1uW0ZUxXMsLm5ou833yeawOduGSFZRUTeGnYVBaUjhmyOqk7kT4+zAqpa/3dKJLEgvKR/OGUhTw/bBx5rsG1zBgaUZXJp6zov1uvjV5S+kXS6XpSej2pdD2xxOaPJqhU49LqPhbVUp+iJdJPG1bD6fHWAx4IroP797F40UTIiixh3LLEl34eklsQfLRkVMiFoIy0arXUEaCMsLy51GEgFXwpLoAO9vPRoosmhH7ZMtvUGx8SUFiRUdc8JG1KthH6JOs7+iXBNGPEk7uIxj8gkdyHIIWiVBIK/DgrpOqG5P/D43rwPd7t3M45GNyKHuZ24T/TePs2iuRibN5y6vLXU+KxV2AKIbgTv8qR7m1cDB9HYDI+OJ0FxasZG5xie63Q3XgLO9sPcKjrBEkzxSj/cH465jvML5qNOwdCZkAk+Zdbe9jceoL2ZB8hzceGYQtZWzmXEX57I4IPkzYy7G+/yvt3z3Oo8xqGEEwrrOZvpq5lVVUtIdfQpO0741E232nkg9uN1Pe0ATC7dBh/O2clq4dPoMhjX23jkFc3K0ohPmUxPs9HvfQMM0w6femByErrl4gnt310jFyO21WXFVuTcWt1KEruLfO/XEiW95ZSDu75vx3dMpohcwuMO4jMbau+JX0CkXz/kdMEEMpwUKpBGYakDsu+rgKlCkmy1yjPIfcIIcBsf6i272rWKuQ6PLAHUay0smseklYL2mRQJz7W0+1p576QiiU2E0/uQYgkilxGMPAmAe+LuF2zhmyF4eN78P0+lcFX8KqVOZlDPNNHU/8WLoU/JJbpQlNCPFP8Yybmv4BHsbcHnG6muRA+ypHurbQkbuGRfSwoXsX84lUUue2NDGVMg1O959jRfoCmyDU0SeWZ4lmsLFvMmMBI268/hjA51XOVTa3HOWI2Yt4UzCio4SdjXmBR6WRcOXI6v5/ee++Old7r1xOUeYL8oGYBLw+fxqjg0Bhd96cSbLt7hU13GjnWfgcB1BaU8e9nLGPtiIlU+nOTgRlyUfU4FDkfr2chXs/CB9tMM5KNaF0ipV8klb5IPLmH+0XvslyAW5uSFVvWs6qMcITW50CS3NmVhJbh3ccFVxIyzZbIMu4ijLvWz5nrWRuI9MfOJeSSBwILpRIp+4xcaf38JbzIfl0QIpH9Xd+yopmZm9nXN0DEPtpRLrYsPnyvW95q2gRrReqXKAL1KKYZIZ7cTTSxmURiL4IkilxK0Pct/L51eFxzh0xIPc7t3FrB942cRaUAOpNXqO97l+uR/ZhCp9o3g2dLf8ntM2mm1y6zdex+vYdj3Ts50bOLmBGhzF3Ny1W/x4yCRbgVe6Mh4XQ/uzsOs7vjIH16P6XuYt4Y/gpLSueTp9n/96wnNcDWtlNsarGiUvman/nSKH42bwPDfLnL2vSmYmxurmfj3XNczab3VlRM5OUR05hXMnpIGhinjAx77l3ng9sN7G+5Qdo0GBUs5Jd1C1k3chJjQrlfJPJUiqrHIctBvO75eN3zH2wzzThpvSkrti6S0usJR/4boFvHSHm4XJNxa5MfpBA1dYxjP/AFkCQPaGOtB48KLtNK9Rgt2cc9hNFsvdbrIbkTkf1dPDhGCloGq3IZKOVW9Ewus5pWy2WglDopRpuwfl89YLRakUmjOfv7aobMHSsa9TByuVVz5305a+Ex1lpd+gkGuF82DDNMPLGTWGIrieR+K7UnlxH0fzsrpGYPqS9cXL+b7cH33kO+UrlzOwerqfGNyAEu9r1HR7IRTfIyKbSGyfnrKXRbxd932G/L2EII7savcbh764MU36S8WcwvXm27t5QQgqvRm+xo28/x3rMYwmBafi0/Ln+Tafm1tqcXhRCc7bvBhy3HONh1CUOYzCio4ac1a1hUUsuRg4dzIqgypsGRzhu8d/cce9uukBEmdfmV/PXUNbxQNZm8IUjvGabJic67vH+rge13rxDRU5R4/Lw5bgYvjaqlrnBoCuHv86VWF7Lsw+Oeicc988E2IVKk9Suk0vWW2NIvMRD9lwcu5pLkwaVNwqVlxZarDpc2AdlJW31hJEm20olKOWD9Dj4uugwwu8Bosy7kZpvVdNpotx6ZRsT9/mwfQ0PIxaCUgFwCcpHVqFouAqUo+3O2zZAUcgxRyfqcmd1gdFmfudlprbgz2i2xZLRZj0cii8jFVvrWNRdJHWnVz6kjswsWvnpRxYzRQTyx3RJSqaNABkWpJBj4LgHv2iFN7QGYIk1nbA8tkbfpTR5DQqHYt5iq4Gs585UCiGd6aQhvoiH8IXGjl5BWzcLSP2BC3irbvaUypk59/3GOdG2hOXHjoRTfaorcZbaOnTbSHOk5zY72/dyK3cWreFhZvpjnyxZT4bV3bIB+Pcb2ttN82HKC5ngXeaqPV4ct5KWqeTmNSt2J9vDe3fO8f/c8nckIBS4f3x49h1eGT2dcyP7P4VGEEDSFO3n/ZgOb7jTSHo8Q0FysHDae9aNqeaZsBIo89Ka/8CUXVY9DktzWCkLXlAfbhMigZ66TSlsiK5W+SDT+HhHxL9k9FDR1LG7XZFxaLW6tDpdrMopsb33AVx1JUh4SXdOtbY/sY4mBLjA6wOwAowuRfba237OK6c3ejxXTPzQKQgqBXAByPsghkELWaylorWSU8kAOghQEOQBSACQ/SD6QvE+FA/d9hEiDiIIZzT4PgBjIPvcjzD4ww9lHrxV5MntB9D/mbArIpVYUUJsEnueQsmlYlGFWDdzXoPdkWr9BPLGNWHL7Ax8pTR1NfvCn+LxrcGtThzwyGkvf5F7kbdqiH6CbfXiUCsbk/5LK4Ct41NxdxDoSjdT3beRG5AAmGYb751CX/0pOmhpH9X6O9+7iWPcOIpkwxe4K1lf9kJkFi21P8XWnetnZfoC9nYeJZGJUeyv40ahvs6hkDh6bGyoLIWgcuMv7946xr/MCaTPD5NAIvjfpdRaXTslZ25hEJs2u1ibevXOWUz13kJFYVFbDr6esZnH5uJzVbD1Ma2yAD2418P6tS1zt70aVZBZXjubXM5ezoqoGz+/oJWUnXzlR9TgkScWlTcClTQBeA6wvcsa4+5HQ0i+RSB4mGn/nwXGqMsyKaLkmP4hsKUrFkP8B/iohSa6ParDub3vMfkJkwOx7SEj0gNlniQzRl32v3xJj4rr1s4g9Vob91rklL0hewAuSJ/twg+QCXCBpgAaSCqjZZwlQQJIfmbEAYQIm48pbMMNbgQyIDKCD0IE0iBSIZPYR/+j5kXTpb6NmxWO+FbHTJoBclG0QXpIVUfcjfMVfyyieECap9FliyR3EEzvQM9cAcGlTKMj7d/i9q9HU8UP+/9gwk3TEttMSeYdw6gwSGiW+ZVQHX6PQOy9nvzsrxbef+r6NdCYv45L9TC54icn568l32e9v1Ja4w+HuLZzrs4w6xwensaD4BcYFp9qaZhNCcCVyg61teznVex6BYFbBFFZVLKU2z/7vR8JIs6f9HO+1HONapAWf4uaFitm8VDWPMcHcLDoAaAy38e6ds2xurieSSTHcX8ivJi1n/bCpQ2LOGUmn2N58hfduXuJ4h1VwPrOkir+ds5I1IyZQ4H66bwS/FqLqcUiShKaOQFNHAGsfbDeM7ocK4i/91spDqyDeimi5tEm4XZPR1BqnAbLNSJJqiYVH7DQ+7c+eEAaICJgRK9ojYtkIUCQrZOKWY72IfSRwSIJIgMgKH2JgprOi6L44MrAWSBggjN8eWFIAhQJ/GtK+rCjLijHJBbitKJmcb4m5hx7SgyhaAGR/Nup2P9qWD5J/yMXA04hpxkikDlJY+i/cbfslhtkFqHjdz5AX+B5+z0pUNXcGiJ9GJNVES+Qd2mKbyJgRvOpwxhb8CRXB9biV3K2cejTFl68NY1HpLxkfWonL5gimKUwuR85xuGsL16MX0WQ3swuXsqD4BUo9VZ99gidAN3WOdp9ma/tebsea8Ss+1lQuZ2X5kpw4njfHu3jv3lG2t50mmkkyOlDOH49/mefLZ+BTc1OGEtWTbL53kXdun6Wxvw23rPJc5UQ2jJjB7GL7VzI+SsY0Odx2i/duXWJn81WSRoaRwQJ+NWUR60fVMjz45TEG/9qKqk9CUYrxKUvxeZY+2GaaUdJ6Iym9IZs+vMRA9H8iSGX3cOHSxmVTh5MsweWa5DjEDzGSpICUjep80j42jn9i/36WLFli4whfb/TMbeLJPcQTe0imjiJI4fP78Lifx+99Dq9n+VOTwtfNCO3RLbRE3iGSbkCWXJT6nqMq+BoFnjk5vYh1JC5zMbyR6wP7sim+uUwpeIVhPvvryVJGgjN9BzjctZXudBshrYjVFW8wt3A5PjVo69h96X52dRxkd8dB+vWIleIb/W0WFc/Fo9i7cjVjGhzraeK9e0c53XsNVVJYUlrH+ur51IVyI2KEEJzvbebtO2fZ0dJAwtAZn1fGr6esZm31lCHxlGrs62DjzUt8cKuB7mSMkMvDq6PreHV0HdOKK4f8BjKcTLDz1nUudnV87mMcUfU5kOUAHvccPO45D7ZZdVo3SOsNpNINpPUGEsk9ROO/ebCPolTi0iZ+JLS0SWjq6K9lSsbB4UkxRZJk6hjx5D4Syb3omRsAaOoY8gLfw+d5nhPHEyxZsmKIZ2ohhCCcOkNL5B06YjswRZKANo7xhb+mIrAWTflksT/YGCLDzcgB6vs2Wqv4ZB+1+S9SV7CefJf9LXXC6W6Odm/nRO9uEkaMYb4avl3+K+ry56LYvBr7ZvQOW9v2crTnNKYwmV4wmdXly6gLTbD9oh1OR9ncepL37x2jMxWmxB3iR6NXsaZyNkXu3KTWwuk4m5rreev2GW5EuvCpLtZW17Fh5Ewm5+deuHQlYnx4u4F3b16kqa8TTZZZUjmGV0fXsaRqDG5laGXJQCrFrtvX2XT9Mofv3SFjmgzP+/w3Z46o+h2x6rTG49LGE/C98mB7xugkrTeQ1puygquRRPIAkMke58Gljs+uQJyYfZ4wJE1XHRyeZoQQ6JnrJJIHiKf2k0wdQYgkEm487mfIC/wAn2c5mjryoaP2D9FsPyKV6aIt+iEt0XeJ67dQJD8VgRepCm4gzzW4VgBCmJ8ZXepINLG99a+JZbqzq/h+wYS8lbav4gNojt/gUNcm6sPHEAjqQvNYVLKWEX57HddNYXKq9wJb2/ZwOXIdj+zmubJnWV2+lHKv/Y7jTQPNbGw+wt6O8+jCYEZBDb8c9yLziyflpF2LEIKzvXd5+/YZdrQ0kjIz1BVU8Z+nrWN19WT8am495VJGhr0t13n3xkX2t97AEIIpRRX8p9nPs3bERAptdDj/PMT1NHvu3GTT9cvsv3uLtGFQFczjh1NmsrZmPJOLy5Df/PHnOpcjqgYZVSlFVUo/lj60bB6ukdYbs4LrMrHkTiLxf32wjyKXZkXW/cd4NG0csjQ0Nv8ODkOBYXSTSB0mkTxEInWAjNECgKqOIuh/A597KR73M8hP2apFU2ToSRyiJfIu3fH9CAxC7unUFv89Zf6VKIM8345EE5fC7xPUKqjNX4tf/eRarHzXMEo841gS+hOG++fYnuIzhUHTwFkOdm3iVqwJt+xlQckLLCheTaHLXkETzyTY13WU7W376Ex1U+Iu4jsjNrCsdAE+1d6/pWkzw/6OC2y8d5TGgbt4FTdrq+bycvV8Rvpzs4KzP53gw+YLD6JSAdXNKyOms2HEDCbm56YP5H2EEFzqbeedmxf58FYD4XSSMm+AH02cy6uj6xibPzTO6/dJGRkO3r3NpuuX2X37BvGMTqnPzxuTprKuZgLTy363RWmOqMoBls2DtYrwYTJG1wORZUW2Gh+p1ZLR1JFo6vgHqxdd2vhsCtEpjHf48mOaAyRSx0mmjpBIHSatNwKWca/HvYD84C/xepagqcOHeKaPJ5q+QWt0I23RD0kb3biUYoaHvkdV4FX8rtG2jBnP9HKi+58YEZjHQLqNE13/RG3+S5R5Jzx2f7cS4IWqv7NlLg+TNpKc7tvPoa4t9KTbKdBKWFv5PeYULsOj2CuCO5PdbGvfy77OoySMJBOCNbw54lVmF9q7ghCgO9XPhy3H+bDlOL3pKMN8JfzhuJdYVTELfw4Kz4UQ1Pfd4ze3TrOtpeFBVOpvp7/I6qrJ+NTcNVUGK733/q1LvHvzIlfCXbhkheeHjWPDmCksLB85pH5SGdPkWMtdNl2/zPab1xhIpyjweFk/bhLrasYzp6L6iefniKohRFVKUJUl+DxLHmyzarVuZ4XWZfTMZdL6FeLJHdxvyQMamjo6K7LGoanjsmJrlOMW7/BUY5oDJFMnSaSOkUwdJaXXAyYSbtzuWRTk/Xu8nkW4tSlPbe2hbkboiG6jNbqR/tQFJFSKfYupDLxCsW8R8iDf8KSNGHGj74G9QUeiEYHJ1IINpI0YTf3buB7ZQ7F7NIqc2wsoQFKKsa3t/+N4zy4SRozhvrGsrvg2taE5KDb/Dq9GbrK5dTcne88hSxLzimaypmIFYwIjbB0XoLH/Lu80H2JfZz2mEMwrmsCrwxYwq3Cs7UIOIKan2HSvnt/cOs2VgQ58qouXhk/lGyNnMSnHUSndNNjXcoO3b9Szr+W61Vi5uJK/m7OKtSMnkucaOnNtIQTnO9v54FoTm69fpjsRJ6C5eH5UDetqJrCwegSaMnjfU+cK/JRh1WrV4NJqeNjqwRRJdP0G6cxldP1K1jX+PLHEh/DAjUlDU8dkVyKOQ1PH4tLGoqn23DE7OHwWGaODZOoUyfQJkqkTpPUGrJsDFx7XNPKDv8LrXoDbPeOp7moghElv8gStkffojO/CFEn8Wg1jC/8dlYEXcdlQExnR2znV/c90JJsoco/GJQdYUv7HFLpHIaGQyITxqvmUeicQHmimJXGe4f45n33iQaItcYeDXZs4GzoEnYLJoTksKlnHSP94W8e9Xy+1uW0XVyM38Ss+Xqx8nlXlSyh027viOmMa7O+s553mwzQO3MWveHilegEvV8+n2pebdNbV/g7+NX6VP9txlFgmzfi8Mv566hrWVU/Br+W2VupauJu3b9Sz8dZFepJxSjx+fjRxLhvG1FETGtr03vW+Hj641sQH15q4O9CPS1FYNnw0L42dyNIRo2wzDh0aUSUnSRt9uBTHcuDzIkse3K5a3K7aj203zTh65hpp/QrpzDV0/SqpdD2xxCY+ElsyFcNLae+egqaOQdNqcKk1aOoYp0DeYdAQIkNabySZPkMqfZpk6gwZ4w5gLdBwu2aSH/wjvO5nsiLq6a8XjOm3aYu8T1v0Q5JGG6ocpDLwEpXBVwe96PxhDKFzO3qMoFbOorJfAvD27Z9wL3aGEs948l1VNMdPMy5vBSGtijytgr7UHdtFlRCCa9F6DnZt4mrkAprsZniqlten/Zgit739CJNGkn2dx9jWtoeOVDdl7mK+P/KbLC19xnbX83A6xoctx3m/5SjdqQGqvcX84bj1rK6YmRNvqbSRYWdrI/92+zRne+6iIrFm2BReHzWLKQXVOV3BF0mn2HynibdvXOBcdyuqJLO8uoYNY6awpHIM6hCm99qiETZdv8z715po7O5EliQWVA3nFzOfYeWoseS57RedQyKqhNrJgbvz8aiV5LlqyXPXEsw+O0LriyHLPtyuqbhdUz+23RQJdP1mVnBdpbXtKBmjmUTywEM1W5aZqaaOyT5GZ9OKY1DVkV+Ki57D0GB1JLhNKn2BVPocyfQ50vpFhLB6bCpyGW73TPJc38fjnotbm/ylqQPUjX7aY9toi35Af+o8IFPkXcDYwJ9S4luGIg/+RVQI8bELoyJpVPqmUega8aCwfFRwIeH0PWu7ezSt8QuMDS7DpxYQz/SRp9knajKmzoXwUQ52baIteYegms+q8m8xr+g5Th4+Y6ug6kv3s719H7vaDxIz4owLjOaNEa8wu3Ca7Wm2m9F23mk+xM72s6TNDLMKx/JnEzYwt2h8TlJ8LfEwb90+zbu3z9KbjjPMX8Cf1j5HaXOctTOfs338+wghON11j7euX2DLncskDJ2aUBF/OWMZL4+eTLHH/pWkn0R/Ksm2G1d5/1oTJ1qbEcDU0nL+ZsH/z96bh0dxnvnad1V19d7a9x3tQhI7GDDGgA3YxoB3J3bixInjyTpJJrlyknFmMplMJpkzOUvOme/MZLcd7xsGgxfAtjAYzCKEhPZ937dW70tVfX+0kMHGiR2rW8LRfV11tVRdXfWq1V31q+d9nt+zhR35RSSZIzu2ORFVQjCJgtjvMuWvY8pXx7D70MxzC0JrdhAF0yWRrZqqCsqKN6FpCkGll0CgBX+wjcD04vEewak+fdEeBCQpFb0uD51uEfLMkoNOlz2vp2oWmF00TSEQbJ+2CKnFH6jB569Bne43KGBEry/HZvksRv0KDPqV6KTI3j1/XFQtwJjnGAPOfYy430DV/KHpvdjvkGLdhVEXnqq1CX8358afQS+aWGTdQJr53ZujeMOimZ+Dqp8Bdw3FKd9DFCTSzcvodVVSO7mX8thbUbXgB/TG/Hh4FTcnxw5zbPQA9sA4ycZM7sz8KstjNqATwyuSe939vNR/mKOjJ1E1lTVxy7g5bSuFtvCmM6iayqmxZp7peYsz4y0YRJkbUldxR8YGcqzhr+JTNZV3Rjp4ov0UFYPNAGxKKeTTuatZl5iLKIhU9FWEfRwAo14XL7TX8nTrOdqnxrHKenYvKuWuvCVzas7pU4JUdHfwYnM9r3e241cVcqNj+dbq9ewuKCEneu40w9xM/6lGcmK+OPNrQJnC4W9gylfLlL+WKV/9pUJLSg2JLEPptOBa/JFzGCa8lUx6z2LTFxFtWIoszQ+n5UgjCNJMex4zl5okqqqTQLB9Wmh1TP/cgcu9D1WbvGRbSUpFlrLR6XKQdVnodFnIUuhREpOuqAvqAu+iKGPTU8kN0xWpoUXTPNNbyOjlEizmXRjkJRj0S9HLxVdMFOpiNE1jyn+eAec+Bp0vE1AnkMVY0m13k2bdjU2/OKyf4wb7y1SPP0tR1DYMko0TI7/i2uS/I8GY/75tXcER9JIVixzKU4nVZ7Ek9naqJ57l/MQezLo4lsTe9r7X/aXYA2McG3mZk2OH8Koe8qyl3JbxNxTblof1PdE0jYapFl7qP8TZyfPoRZnrkjawI+16UoyJf34HHwOv4ue1gUqe7TlGt3uYBEMUD+bdyM70q4iWwx/tcAS8vNh9jic7TtPpHCNOb+aBwg3clbOSNHPkjGJVTePoQAdPt1ZzuLeZgKqyMjGd/75uBzuyiyNeTXgBTdOoHOznheZ6DrQ1Yfd5STCZuad0KbcWlrAkMWVeXHfmRaK6LEURZ7qKONNVM+tCQqt+WmjVT0e0Ds88b5BSpjl3fP4AACAASURBVKNZJcQYVxBvWveB+1e1IAFlEk+wj0nvGXp4gsK474Wt5PlKRRStGPRLMOiXvO85RZ0gEOwiGOyYFlxdBIOdeLxv4lQvtfAXMKLTpaOTMtHpMtFJGeh06chSBjopHUlKWahSnENC0co+AsFWAoG26c4AzfiDzajq2Mx2ohiLXi7BZrkHg1yOXi5DLxeEmmBfwbgDXQw49zPofAl3sAtR0JNo3kKqdRfxpg2zXr33QSQaCtmW9iPiDDkA9LjOYA/0kWDMf990YK/7LAmGfPSiGbu/D5ucQpp5CfGGXDzKxKy5og96ujkyso+qiWNoqCyJWcfGxF1kmvNmZf8fhKqpnByv4qW+g7S5urDprNyZsZNtKdcSJVvDeuxR3xR7eo+zr+8E9oCbIlsGPyz9NJuTliCL4T9PtUwN82THKfZ2V+NRAiyNzeDnK2/lhrRS9BF0Fx9wTfFsWw3PtNXQ57ITazBxX9Eq7s5bOqeeUh2TE+xprmNPcwM9DjtGnY7tiwq4paCEazJz5jSH63LM2ytbSGitJc60dmZdQHXg8DUw5a/D4atjyl/HiPsN4k1X/0lRJSCRYN5IkuU6AGqGv82Y5+0PFFX9jhcx6BKJM66fF8p3PiCJsUj6WNAve99zquYhGOwhGOwhoHQRDPYSVEK/uzzVqOrEe14hIknJ6KQ0dFIqkpR60c/J6KQUJCl5IafrY6Cq7pn/QUDpJhDsJBjsJBDsIBjsuTSvTohClguxGLcjywXTnQJKkMTkT8zn3xccYcj1CgOuA0z5agCBWOMacmIeIMm8DVmKTMuQi4k1ZCMJMorqRxL1GKVoPIr9sts2TR0k07yKwwP/yqCnjq2p/0CyqRiDZMUgfTzRoWka7a56Kob30uSoQhYNrEvYxjWJN4fdrNOv+Hlz5DgH+g8z5BslxZjIA4vu4drEteil8Ir3NucAz3S/xaHBKhRNZUPiYu7M3MjSmEVh/9wrmsqbA0083n6Sk6Od6EWJmzLKuWfRaspiw9tQ+mKCqkpFfxtPtpyjor8NVdO4OiWH76/YzNaMgjlrGTPp9bC/rYkXmuo5O9SPAFydkc03V63jhtxCrPr5e2M3b0XV5ZBFG3GmNcSZ3q1wCaouAurlT0QXEAQBARlV8yMKegRkdKINTVNmvHAu3Bl22n9P5+RvSTJfR7RhGTrBgjc4yJDrVQREkq03RbST/JWAKJhmbBwuR+gC30dQ6SUY7COo9BNU+lGUfvyBBoLe1y+aXrp4v9FIUiKSlIwkJiFJCUhiQmidmIAkxiNJcUhiPIJg/cQIgD+Fpqmo6jiKOkpQGUJRhggqgyjK4PT7Gnp/VXX8ktcJgmk6J64As3Ebspw7U6AgiQmfyPcuoNgZdh9m0HmAce9JQMWmL6Eg9rukWHdg1IW3Wu3PIU1HxCRRj6IFGfTWsSzuLoBL/h+OwCCOwBB97nOUxuzk+tS/n5Xjq5pCrf0UR4b30uNpw6qLZnvKp1gXvy3szY2dARevDR3h1YE3mQo6yLfmcG8EzDo1TePMeAtPdx/h1HgzRlFmZ/pV3Jl5TUQsESb9bp7vquLJ9lP0e+ykmqL59uLruCN7BbGGyCVUD7imeLq1mmfaqhlwO0g0Wvjy4rXcnb+ULNvc5CMFFIWK7g5eaK6byZMqikvgB2s3srughBRreD+Ts8UVJaouh060oBM/3IdRFPQMuQ5i952jOP6Hl5gLCoLAgHMfvuAICaYNxJpWz0wD1I38AJu+BK8yiCvQSUHcdz70MRcIVSjqxZBn1uXQNA1Vm0JRBt4jFIZQ1GGCyhA+fxWKOoymuT/gKDKSGIsoxiCJMYhiLKIYjShGIQrRiKIttAg2RNGCKFgRBDOiaAk9CiYEwQDow54zommemUXVXKiqA1VzoqpOVM2Oqk6hqnZUdRJFHUdRJ0JCShlFUccA5X37FYUodLp0JCkNg345Oik9lOs2k+f2yRRO70UTvKGpPdfLjLmPoRHApMtkUcyDpFhuxqoP7zTWX0q38x3iDblE60NRiqDqo8d1GknUk25axs6MfyPuosT1j0NA9XFm/AhvjexjzD9EvD6F2zIeZGXsRmQxvCXnY74JDgwc5vDQMXyqj+UxZexK20ZJVEFYP58BNcgbQ9U81X2ENucAcXobX8q7gd3p64iSw9/yqGVqmMfbT7KvpxqvEmR1fDbfL7+BTSmFEekFCKCoKkf623mipYo3+9vQNI0NqYv4x1VbuS4jHzlC47gYTdOoGx3m+aY69rU0MOb1EG808ZmyZdxWuJjShCsvP/eKF1UfloDqoNv+MBPe0yxN/r/IUtRMM1JN07D7quh37KU08V9oHf9f6MQoREHPgPMAkmihMP57ABzr2U6u+uUFUTWLCIKAJEQjidHo5cu32riAqrpR1DEUZWQ6YnNhGUNVJ6aFyCRBpQc1UBcSKNrURxiNiCAYEDAgCPpQAragR0ACdNO5YAIgICACAnfdfpLjb78bGYqK1rFypY1//HEK3QNmNM2PpvlCj3g/5DgkRDEKSYxDFOPQSZkY9MumI3SJ0xG8pNBUqZg873rhRZKg6mLUXcGQ61WCmRXUjgQxSMlkRt1LivWmsPpJfVjemyP17vrQOWjC30OKcTGj3laqJ56jIOo69JKVRGMhkqifFUHlDjo4MXaQt0dfwRm0k2nK48bseymLXoMYZufzXvcA+/oPcmz0FJqmcXXCanalbSPLEt6pLmfQw0t9J3mu5xgjPjuLLMn8oOQurktZjj7M+VKqpnJksIU/tr/DOyMdGEQdOzOXcG/uGoqiIxclHXY7ebqtmqdaz9HvmiJhOir1qYJlZFojlwB/MSNuF3tbGniusZbG8VH0osT1OXncXlTKxsycWXU4/zg4/X5eb22jdnDoz288zV+FqHL4Gul3voAkmFma9H+QpRg0TUVDQUBk1PMWg879LEv+/wABQdBjkXMJqi5c/hbiTRsA8CtjxJuuxhlowRCmEusF/jSiaEYUzci6D5+Yq2kKquZAU53TESEHquZC09yoqhtNc6FqXrRLFj8a/mlBFAAUNIKgBQF1unxdA02lrtbBDx5ayqc+XYCqQVuriwcfeJP/+QsXv/391mlxdkGoGUNRMdGMIJgQBetFkTMrkhiNKEYjCJY5FwLzmaDqZMRdwbDrNUY9R1E1H3opEdGxgRVFDxBjWB72xsF/Dk3T6Peco2biBWxyChuSvva+bQRBRNUUzk++gIhEjD6TRdYNZFlWz9o4Jv2jvDWyn1Pjh/GrPopsy9mUtJtcS3irGwFaHB3s7XuV0xPV6EWZrckb2ZF6HUnG8E61DXsnea7nGPv63sGt+FgZm8/3Su5gTVxR2P9mV8DHnu5zPNZ+km7XOCmmKL69+DruzFlJjD4yNz+apnF8sIvHWs5yuKeFoKZydUoOD624jq2ZBXMSlfIrCm90tfFsYy0V3R0omsbSpBR+cs317MwvIsY4P3JoPYEAFe0d7G9soqK9HV9QIcX24fMWP/GiKqA6OD/yHfzKJAVx30HRfMiETmahSAP4lVFGPUc4M/BZBEFC0Xx4g4NoWhBFc2PUpU5vN4Eo6FE1/xz+RQt8VARBQhJiQJz9u7K2tjbs9qfYueM/WVIaKpZYVgb/8cvN2CdUkuJ+OevH/GvFr0yEIlLuQ4x73kbV/OilRNJtd5Bs3k6McQVH2o8Sa1w5p+MMqB6apw5zfmIP4/4OjFIUScYPbt2iaAGKoraTaVlFuvn9hSB/KUPeHiqG91I1cQzQWBZ7Ndcm7ibVFN6+eJqmcd7ewIt9r1E31YRFMnN7+k3ckLqZKDm8eTGdziGe7K7g0GAVqqayJXkpd2ddS1FURliPC9DnmuCx9lM833UWZ9DHsrgMvlmyhevTSiImYuw+D8+1n+fx5io6HOPE6I3cX7yaTxcsY1FUXETG8F7qR4d5trGWvS0NjHs9JJktPLB0FXcWl5EfOz86evgVhaMdnRxobOL11jZcgQAJZjN3LylnR1ERy9PTkL7yNx9qX594UaUTLJQk/DNOfzMT3tP0TD1GdvT9SNOVZfGm9aTbbifddjs+ZZTmsX/DGWhhyneeGOMKAGQxVBnkDQ4AAgbp8lGqhtF/QifasOmLseqLscg587Yp7AKzQ2VlJTqdjmXLQhfDQCDAs88+y+nTp/nJT34yx6O78vEE+xlxvcGI+3UmvKfRUDBKqWTY7ibJsn1eRKQuYPf3Uzv5Io32V/CpThIM+WxO+R4Fti3o/kSukiwaWZv4wKyNo9PVRMXwi9RPnZmp5NuYuJNYfXh9nkI9+c7xYt+rtLu6iZWj+Uz27VyffA2mMLeRqZns4ImuNzk+2oBBlNmdvpY7szaSZgqvkNA0jarxHh5tO8Hh/kYEAW5IL+WzeWtZEht+IXeB82MD/LH5LPs66/EpQVYkpPP18pvZkV0yJxV8k14Pe1saeKaxlrrRYfSixNZFedxRVDZvbBCCqsrJ7h72NzbxWnMLUz4fMUYjN5cUc3NxEWsyM5D+gnF+4kWVIIjEGlcSa1xJJp8GQnkMfmUUrzKEKJhm8h0MUgKSaCY76n7SbLsBaBj7MRm20OtGPUcwSMmYdO/PA9A0lSlfPQ5/IxoBINSvzyoXYDMUY9UXYdMXY9MXoRPD67uyQOSorKxEURQSE0MXLI/HQ0xMDHv27EGWrzxDzLlG0zQc/npG3G8y4n4Dh78BAIucS070AyRZtobdlPOjoGkq3a7TnJ/cQ7frFCIiubaNlMfcSoopcrlcmqbR6DjLm8Mv0ulqxCxZ2Zp8F+sTtmPRhdcuQkGlYvg4e/sP0u8ZJMWYyIO5n2Fj4lXIYXRdVzWV46MNPNH1JrX2LqJlM/cv2sqtGVcTow9vzmtAVTjUX88jrSc4P9lPlGzkCwXruSd3DSmmyBhL+5Qg+zvr+WPzWarHBjDrZG7PLefeguUsjgu/8/t7UVSVY71dPNNYy6GOVvyqQllCMj/esIVdBSXEzoPpPU3TqOof4KWGRl5pambU7cYiy2wtyOfmkiKuzs7+2Plcn3hRdTkEQcSgS3pfXpSmqaRYdlyShJ5i2UHLxC+w6Rcz6a1iWfJ/IEvvn0YSBJGr0p9B1fy4/O04/I04/I04/U0Muw7S53h2ZluTLuMSkWXVF2PSpc+bO+4FPjyVlZXcdttt/PznPwdgbGyMH/3oRzz44IP86le/muPRXRkoqodx70lG3BWMuivwKUOAQIxhOQWx3yXRsgWLPDuVb7OFT3HSaH+V2sm92AO9mKU4VsXfR2nMzVh0kbNcUTSF6snjVAzvYdDbQ4ycwK60+1kTtwV9mKNDfjXAm8Nv86x+P442N9nmDL5Z8ABr41eE1RYhqCocHqriia4KOl1DpBhj+WbhLexIW40xzN5WzoCXZzvP8sf2dxj0TJFtieMfltzE7qxlEXMa73VO8qy9i7974RwTPg/50fH80+qt3LqojCh95NuH9UzZebaxlueaaul3Oog1mrindCl3FZexOGF+5B63jI6xr6GB/Q1N9Njt6CWJzXm57CwuYlPuIoyzeAP8VymqPghBEC/xwALIjLoHvSsOT6CH0oR/mcmv+iBEQY/NUIzN8G4Vm6Zp+JShS4SWw9/EiPsNmO7XJQlmrPpCrPpCbPpCrPoirHLhnJgSLvDhqaqq4oc//CH5+aHWIvn5+Xz/+99n8+bNdHZ2zu3g5jHuQBejnmOMuo8w4T2JqvmRBDPxpqtJNG8mwbzxI7eiigSj3jZqJ1+keeowQc1LsrGUNQmfJ9e2ccZ3KhL4VR9nxt/kyMg+JvwjJBszuTvz6yyLvRopzN0KvIqXQ0Nvsb//MJOBKZK1eL5acj/LY8IbmfMqfg70n+Kp7iMMeSfJtabwD6X3sDlpSdhtCfrdkzzWfpJnOytxBf2sjs/mh0tuYlNKYUQaK2uaxrHBTh5tquSNvlbQNLZlFXFf4UrWJmdFPHLrU4Ic7GjlmYbzHOvtAuCazBweWr+J63Py5sw09GL6pxzsb2jkpYZGGkZGEAWB9dlZfGP9WrYW5GMzhMc+ZO7/8nmOTrSQbrv9Y+1DEASMuhSMuhQSzZtm1iuqB2egBae/GYe/CYe/kSHXa/Q5npnZxiClYNUXYNMXYpFDj2Y5FynMfjIL/Hk6OjoYHx9n+fLll6xvb28HICZmbsqV5yNB1cm45yRjnmOMed7GE+wBwKzLJsP2KRLMG4k1rkachy1wFNVPm/Mt6ib3MeA5jyToKYi6jvKYW0g0Xt7wNly4g05OjL3GsdGXcQWnyDYXsjvtCxRHhTc6BOAMunh1oIJXBt/AGXRRFl3MN9K/yEhVPytiy8N2XEfAzQu9x3mu5xj2gIvy6Bz+rug21sYXh11M1E/284fWE7zaVwuE8qU+l7cuYq7nDr+P59vP88fmStqnxok3mvlK6TpyR73ctnF7RMZwMU1jIzzdWMue5nomvB7SbVF8a/V67igqI9029wGASY+HV5tb2FvfwOnePgCWpabyj9dt5qaiQhIs4bdCWhBVc4gkmog2LCHa8G6vvVBUa3gmmuX0t+AMNDNuf2cmVwtEzHIWVrkQq74Aqz4fi1yAWc5GXOipFzEqKysBSElJYXBwELfbzYkTJ/j+97/PvffeS1LS/Ah9zwWq5mfKV8uY5zhjnuNM+WrQUJAEM7HGNWRHf4540wbMcngr0T4OjsAQdZMv0WA/gEeZJEpOY13ilymJvhFjhCPI9sA4R0f2887YIfyqlyLbcrYk3UqOJfzCYirgYH//YQ4OHcGjeFkZu4Rb02+kwBaakq1gICzHHfc5eKbnKC/2Hset+FgbX8xncrawJCa8U8GapnF0uJU/tLzNydFOLDo9n8ldy2fzropYY+M2+xiPNlfyfNt5XEE/yxLS+F9X7+TGrGIMko6KioqIjAPAHfCzv7WJJxtqqBoaQBZFti0q4O6ScjZkZCPOcX6jLxjkjbZ29tY3cKS9g4CqkhcXx7c3rOfm4mKyYyN7c7twBZ5nhKJayRh1ySSYN86sV7UA7kAnTn/rRdGtRobdh7gwhSggY5EXYdHnY5XzsejzsMr5mOTZaba6wKVcEFUlJSUAREdHk5+fz09+8hO++MUvcuzYsbkcXkRRtSAOfwMTnpOMe08y4a1E1TyAQJShnJzoB4gzrSPGuHxeRqMuoGkqPe4z1E7upcv5DhoaOZZ1lMXeQqZ5ZcTzHkd9A1QM76Vy4giaprI05mo2JYXfFgFgwm/npf6DHBp6i4AaZG38Sm5Nv4FsS3ir2oa8EzzZdYT9/ScJqAqbkpbwmZzNFNjCGx3yq0Fe6a3l963HaZkaJtlo4zulW7krZyU2Ofy5Sqqm8VZ/Ow83neFIfzt6UWJHdgmfK1rJ0oS0sB//vdSODPFkfQ17WxpwBvzkx8bxw/WbuK1wMXGmuTUbVjWN0729vFjXwKvNLTh8PpIsFj67Yjm7F5ewOClxzopZFkTVFYIoyNNRqQLgxpn1iurBFWjH6W/BFWjF6W/F7qtmyPXyzDYCMlpqAtVDL2LR52KR87DKuZjlHCRx7isyrlR+9rOf8bOf/WyuhzEnKKoHu+88dl8VE97TTHqrUKZbCFnkPNKttxJruoo445rLFnbMNzzBSRrtr1Bn389UoB+TFMvyuE9TGnMzNjnyPQL73B28ObyH8/Z3kAQdq+M2sylxN3GG8Fd1jfrG2dv3Gm8Ovz3daHgNt6bfQJopvO9Dj3uExzvf5LXB0M3K9pSV3JuzmUxzeK0gXAEfz3ZV8mhbKPm8ICqJf11xCzdllIXddR3AGQhN8T3SWEmHY5xEo4VvL7mGTxcsJ9EU2c4dTr+fl1obebK+mpqRIQySjh15hdyzeCkrU9LmvOq2dWyMF+sa2NfQQP+UA4sss72wgN2LS1iblfkXWSDMNgui6gpHEk1EGUqJMpResj6ounAFOnD5W3EF2ugaOInD3zAd2VJntjPq0rDIizDLi7DIOdOPizBIyQvViAsAoekQb7Afu68au6+GSV8VDl99yGEesMoFpFlvIca4iljjKgy68F4EZ4uQ43k1dZMv0e54C5UgaaalXJXwhYgnnl8YT7urnjeH99DsqMYomtiUtJsNCTuwyeEXpkPeEfb2vUbFyAkArk1cy+70G0gxhvf/2e4c5LHO13ljqBqdKLE7fR2fzr6WZGN4G/uOep38sf0dnmo/jSPoY01CDj9aejMbk8Pbh/ACPc5JHmmq5JnWahwBH0vjU/nfV+/ixqxi9BFu01I7MsTj9dXsa2nAFQhQFJfAP23Ywq2Fi4k2RL6i8GLGXG5eamzkxboGaoeGkASBDTnZfPeaDVyfn49ZP7+sa+ZEVPl0o7wx8G8kGgtJNBaRYMj7k+Z4C3x0dKKFaEMZ0YYyAPpqKthQuglF9eEJduEKtOPyd4SEV6CdSe8LM5EGAFEwYZazQ0JLl41ZzsEsZ2OWs5HF2Dm/Y1kgfPiVCRy+eqb8tdPRqBr8yggAomAgSl9GdvT9xBiXE21Yhl6am672fylexU6j/TXqJ/czGejBIFopi93N4uidxBkin+OlaioNU5W8ObyHbncLVl00N6bcw9qEbZik8EcqBj3DvND3CkdHTiIKItclbWB3+nYSDOE1zmx29PFIx2GOjtRikgzcnX0td2duJM4QXtf1btc4f2g5zp7uKgKqwta0xXyhYH1EzDo1TePUcA9/aDzNod4WRARuzCri/uLVLE+MTPL7BTyBAC+1NfJ4XTXVw4MYdTp25BVxz+KlrEhOndNz/IU8qRfq6nmrPdTSpjQ5iYc2b+Lm4iISrfO39+6ciCoBkS7XSRqnXp35PVafQ5KxcFpoFRJvyEMW51YhfxKRRMOMdQMXfS5DCfIjuAMhoeUOdOIOdDLlq2fYdQgNZWZbnWjDpMvELGdh0mVhljMx6bIwyRkYpeQFF/krBE3T8CoDoaIIXwMOfwNT/ga8wb6ZbcxyDnHGtcQYlxJtWIZVX4gY4QjObHAhKlU/uZ9251soWoBkYylb4v8bebZNc3KuUbQg5ybepmJkL0PeHmL1idya/gCr4jYji+HPO+v3DPFC78scGz2FTtCxPWUTu9K2EmcIr0iut3fzaOdhjo82YNUZ+VzO9dyRtYFoObwXyobJAX7X8jav9tUhiSK3ZC7l/oL15FjD7yvmVxQOdDXw+8bT1I4PEqM38uXSdXymYDmplsgWPbSMj/J4fQ3PN9Xh8PsoiI2fF1EpTdM4NzDAntp69jc2MeXzkWy18MXVK7mldDGFCZHzf/s4zImo0gfj+Hze87iCowx7mxjxNTPibb6M0MqeFlkFJBoKSTDmIy/kAIWFUIJ8EkZdEnGmqy55TtX8eIJ9uANdeALduANduIM9lxVcAjJGXSomXQYmOR2TLgOjLg2TLg2jLg2DlLgguiKMpmn4lRGcgbbpCGXrTFVpUHXMbGfWZRNtKCfDdjdRhjKi9KVXvE+aOzhOo/01GuwHsAf60IsWSqJ3UBqzk3hD7pyMya/6OD3+Bm8Nv8REYIQUYyafyvpblsasR4rAd6PPM8gLvS/z9uhpZFHHTanXsSttKzH68DqBn5/s4JGOw5wabyZKZ+aLudu5PfNqrLrwntPPjHbxm5ajHB1qxazT8/n8ddyXt5YkU/g/25M+D0+0VPFoUyVDHid5UfH89KobuHVRGSZdBH3NFIVX21t4rO4cpwZ60YsSN03nSq1OTZ/TqFT/lIMX6+t5sa6e9vEJjDod2wryubV0Meuzs+ZFntRHYc5yqgRBwConYpUTybVtAEInf2dwhBFv84zQ6nadomnqtQuvIlafRYKhYDqqVUSCMR+9OLeVCJ90REEfqiq8jKu1qgXwBgfxBHvwBHrxBLvxBPvwBPoYdr1OQB2/ZHsBHQZdMkZdKkYpdca/yyClYNQlY9Aloxfjruh8rscff5yHHnqIb3zjG3z+85/npz/9Kffee29Yj6lpGgF1HHegG0+wB/cF8TsdcQxqzpltdWIUVrmAFMuOaWf/kNnsxZ0ErmRUTaHbdZIG+8t0Ok+goZJqWsKq+PvIs107Z6kGMx5TIwdwKQ6yzUXszvgixbblETGQ7HX383zvy5wYq0Qvytycdj0707YSLYdXXJybaOeRjkNUTrQSI1v4m7ybuDVjHWZd+KIimqbx1lALv2k+ytnxHmL1Zv62ZAufXrSaaH34b8w7psb5feNpnm87j0cJcHVKDj9fexMb03IjakHQ67DzZH0NTzecZ9TjJisqmu+v3cidxWXEz2EFnycQ4FBLK8/X1nO8qwsNWJ2RzgOrV3FjUWHYjDkjwbxKVBcEAZuchE1OukRouZUxRrzNDHubGfW20O85R4vj8IVXEaPPINHw7tRhoqEAfQRyERYIVSWa5UzMciZc5lwVVF14gwN4g/14gv14g/14g4N4g/1M+s7icw1f5L8VQkCHQUrEoEtELyVikBIueoy/aIlDEizzKr/r8ccf58EHH8TtDuWndXV18eCDDwJ8LGGlqG68yhC+4DA+ZQhvcGj6vXz3fb04Jw4EjLpULPIiUo27McuLsMp5WORc9NLclRuHk0l/D0O2wzza9h+4lTFMUizL4u6iOOpGYg1ZczauqcAEx0YOcGLsID7VQ7FtOZuTbmWRtSQix79UTOnZlbaNm9OuJ0oOb+7SuYk2/tBxiKqJNuL0Vr6afzO7M9ZhCmMrGUVTOdTfwK+bj9JoHyTFFMXfl9/I7dnLMYW5jYymaVSO9PGbhpMc6mlGFiVuWVTK/cWrKY6NnGedqmkc7enkj7XneKM7ZES8JTuXz5Yu45rMnDnzlbowvff8+Tr2Nzbh9PvJiI7i6+vXcmvpYrLmoVnymNPNwfoW6vqHP/Rr5pWouhyCIGDRJWCxJpBjXT+z3h0cD00dTke1+j3VtDhen3k+Ws64aOqwgARjIUYpvCeRBd6PTrRg1edj1edf9vlQc+uxacEwgE8ZSSbmeQAAIABJREFUxhccmREQnkAPk96zBNSJy75eQEYvxSJLschiDLIYjSxFI4tR6MQodKJt+tGKTrSgE6xIogWdaEYSTIiCcVajYg899NCMoLqA2+3moYce4p577kHVvAQ1F4rqIqi6CKoOAqp9+nGKgDJBQJnAr07gV8bxK2P4ldH3CKYQOjEaky4Ns5xNnGkdZl0mJjkjlN+mS0f6K8hJ9ClO2hxHaJx6lUFPLVgEso1rKYm+kWzrurC3bPlTjPkGqRjZR+V4BYoWZEnMejYn3UKaKScix79YTBlEPbvTt7Mj9Xqi5PA2dD830cYf2g9RNdlGnN7G1wt2sSv9qrD25QuoCgd6z/Ob5qN0OMfIscbz0+W72ZFZHnZbBEVVea2nmd80nOTcaD8xeiNfK1vPfUUrSTSF972+GLvPy7ONtTxeV02HfYJ4o4mvLF/DPYuXzqnb+YjTxYv19TxXW0fb2DgmWcf2ggJuLy/lqszMOTcPfS+Tbi+HGlp4+XwTpzp6UTWN3IQPX7Qx70XVB2HWxZFjXUeOdd3MOndwnBFvCyO+Fka8zQx66mh1vDHzvE1OmRFYiYYCEo0FmHXhrXBZ4E8Tam4dikoxXal4OVQtcJHIGMevjOJXJwgo4/iVCQLqBAHFjivQRsBnJ6DY3xcB+yBEwYgkGBEFw/SiRxRkBEFGRIcg6BAQAfEy+WAamqagoaKh8K1fgKzPRicLpKU/y6Nv5WE0ChhMIoc7y7jYzuKy7wcyshSDXgwJxWhDOfrpCJ1BSgpNkUrJGHRJn5jpuo+Kqin0us/SZH+VducxFM1PjD6LdYl/w2itha3FO+d0fH3uDipGXqRm8gSiILEqbjObEncRb4iM39XlI1NbIyCm2vlDx8HpyFRITO1OX4tBCl/ukF8J8kJ3Fb9reZs+9yRFUcn8j9V3sC1tMVKYp1TdQT/PtZ3ndw2n6HZOkm2N4Z9Xb+P2vPKINVcGaBgb4dHaKl5srscTDLIiOY1vrlrHjXmFc9aDz68oVLS181xtHUemq/dWpKXxr9u3zsvpPYfXx+uNbbx8vokTbd0EVZWsuBi+dM1qbiovoiApHvGbn/9Q+7piRdXlMOviyLZeRbb13URrr2IPCS1vMyO+Fka9LbQ7j777Gik+FM2aFloJxkKsuk/m9MiVjCjIM07zHxZF9RFUpwiqjtCiuQiqThTVjaK5UFQPiuZBUT2omg9F86JqflTNh0oQTQugaUFULYBGEA0FTb1IFE1/RgREBCQEQUJAz8Soh6BfI84Sz/nT3Xg9KgbZyt986SsXRcmmI2diFPKFaJoUhU6wLnz2PoBRbxtNUwdpmXodtzKGQbRRHH0DxVHbSTKWIAgCFWrFnIxtxmNqaA/NzpDH1LWJu9iQuIMoOTKWE32eQZ7vOcDxsTMRFVNd2jjfPPtfM2LqGwW72BVmMeVVAjzbWcnvWt5m2OtgSWw6Dy25kWuTC8P+/Rnzunm06QyPNlUy6feyPCGNH6zYwtaMgoglVQc1lQNtTTxyvopTA70YJB23FJTw2bJllCWG3yD2g2gdG+PZmlr21Ncz7vaQZLHwwJpV3F5WSm7c/ApgePwBjjR3cOB8E2+1dOAPKqRG27hv3XJuKi9icWrSX/RZ+kSJqsthlKLJtKwi07JqZp1PcTLqa2XU28qIL5Sn1e06hTYdRTBKUSQYCkk05pMwHdGKltOv6OTpv0Yk0YAkJmIgcmaUTb7H+ftvhHKqfvGLb/Pv330Zs9nMr3/9P8iPC2+y+icRR2CYVscbNE8dYszXjohElvUqiqK2kWNZhxQB64E/haqp1E+doWL4xTnxmAIY8Azx/LQ1gl6U2Zm2lZ1pW8OeM1Vn7+L37Qc5rTYT57JGJDLlDvp5quM0f2g9zpjPxer4bP51xS2sS8wNu5jqdkzwm4ZTPNtWg08Jcn1GAV8uXcvKxPD7W11gzOPmqfoaftt6nonGs2Taovn7dddyV3EZMca5qYx3+f280tTMMzW1nO3vRyeKbMnL5c7yMq5ZlINuHlXvBRSF423dHKhp5PXGNtz+AAlWM3evKufGsiKWZX58f65PvKi6HAbJSrp5GenmZTPrAqqXMV87o9MRrRFvC9Xjz6FOu0bLgol4Y950NKuABEM+cYaciLsuLzC/uZCM/tBDDwGQnZ0dkeq/TxJexU674yjNU4fp99QAGsnGEq5J+lvybVsw6cJb+v9hCKoBqiaPcWR4L8O+PuL0ydMeU5uQI1RdOOgd4YXeA7w1chJZ1HFz6vXsTA9/NV/jVA+/bz/IO2ONxMgWtgslfGf9Z8KaM+UK+Hii4xQPt55gwu9mXWIuXynayKqEnLAd8wJ144P8V907vNzdiE4QuWVRGQ8uvoq86PiwH/sCtSNDPFJbxd6WBvyKQqnFxr9vvZnNWYvmxHJA0zRqBgd5pqaW/Q2NuAIBcuNi+f61G7mltIQEy/xJTVBVjcruPg7UNPJafQuTbi/RJgM3lRexo7yI1TkZs/oe/lWKqsshi0ZSTItJMS2eWadoAcZ9nYx4m6cjWy002F8hOLkHABEdsYZsEgz5JBjzQ4+GfAxS5JITF5h/3Hvvvdx7771UVFTQ2dk518O5IvApTjqcx2h1vEmvqxIVhRh9JmviP09B1HVE6yPrNv1BeBUPJ8cOc2x0P/bAOKnGbO7J+hblMWsj4jF1gQ5XN39f83MkQeKm1C3sStsWdp+pVkc/v28/yLHROqJ0Zh7Mu5HbMq7m1LETYRNUzoCXx9pP8UjrCewBDxuS8vlq8bUsiwtvk3hN0zgx1MV/1p3g2EAnNtnAl0qu4v7iVSSbI1PwFFRVDna08PD0FJ9ZJ3NXcRmfK1tOX00tm3LyIjKOi7F7veytb+Dp6vM0jY6GXNiLi7irvIwV6XPfG/ACmqbRODjC/ppGXj7fxOCUE5OsY3NxHjeXF3F1fg56XXi+rwui6k8gCfJ0vlXBzDpNU7EH+hjxtjDqa5uZOnzXSwui5DQSDHkzYivekL+Qp7XAAu/BpzjpdB6nzXGEbvdpVC2ATU5hadxdFNi2EG/ImzffGUdgkrdHX+HE2Gt4FBd51lLuyPgKhbalszZGd9CDT/UT+yHEUY45k7uydnFt4lri9OEtRe9yDfP79oO8OVyNVWfii7nbuSNzA5Yw+kxdEFMPtx5nKuDl2uQCvlJ8bdhbyaiaxqGeZv5f3QlqxgZINFr4b8s3cU/BcqL0kammtfu8PFVfwyO1VfQ7HWTaovnh+k3cWVw243je92f2MZtomsaZvj6eqj7Pq83N+IIK5SnJ/PPW69hZUjyvks57J+zsr2lkf00jbSPj6ESRDfnZfHfbNWwuzotIn8AFUfUREQSRGH0mMfpMCtgys/5C5eGor5VRXwuj3rZLEuINYhQJxjwSDHnETwuuWEP2wvThAn9VeIJ2Ol3HaXe8RY+7ElULYNUlUR6zmzzbZpKnE87nC2O+QY6M7OPMtC1CafQaNiXtJstc8Odf/CFRNZWne/ZxZPgEi6xZLI8pY1vKtUDogna590MQBG5Nv2HWxnA5+j1jPNxxiIMDZzFIeu7LuY67szZik8NnGvleMbU5pZCvFm+iNCYtbMeEkCXDvo46/rPuHdqmxsi2xvDTq27g9tzyiFXQtU2M8/D5szzXVIsnGGRtWiY/2rCF67Pz5mSKb8Lj4cW6Bp6qqaFtbByrXs8dZWXcvaScxcmR8936c0y4Pbxa28z+mkbOdvcDsDIrjR/t3ML20kJizZHNNVsQVbPE5SoP/aqbMW8bY762abHVRu3kPhTND4CIRIw+mwRjHvGG3OklD7MUN68uLAss8HGYCgzS6XybDufb9Lur0VCx6ZKnhdSmaSE1f5JZAbrdLRwZ3ket/SSiILEy9lquTdpFomH2L+79nkF63f3816p/o8PVzQu9r6AXZa5JvCqiU4oXGPZO8mjn6xzoP4UkiNyZdQ33Zm8mRh++tAZXwMdj7Sd5eHqaL1JiyhsM8ExbDb+qf4d+1xTFMUn8nw27uTGrOCIJ1pqmcbyvm9/VVPJGVzt6UWJ3YQn3l69gcULkhcuFqNST52p4tbkFv6KwLDWVn9+wjZuKiiIS6fkweANBKpraeammgbeaOwmqKnmJcXz7+qvZUV5Eeuzc5V0uiKowohfNpJrLSTWXz6xTNQW7v49RX+u02Gqjz32O5qlDM9sYpegZgXVBbMXpc+asvcYCC3wUNE1l2NtIp+sdOhxvM+4PuTrH6rNZEXcPubZrSDAUzLsbB1VTaXJUUTG8lw5XA0bRzKak3VydcNOs2iKomsqZ8WpSjElkWdIRBZFB7whBVWGRJYs1ccvocPXQ4uigOCr/A6NVs82k38ljXW/yYu9xVE1jZ9pV3LfoOhIM4btAuYN+nmg/xe9b32bS7+Ha5AK+VryJstjw5tA5Az4ea67itw0nGfO6WZmYzr+s2c6mtMhMOfuUIPtaGvldTSWNYyMkmMx8a9V67i1dSqI58knedq+XPXX1PFn9blTqriVlfGrJEoqTIlc9/adQVY3Tnb3sq2ngYF0LTp+fJJuF+9Yt5+YlxRSnzI8UmwVRFWFEQSLWkEWsIeuS6UOvMsWYr50xXxtjvg7GfG3UT75EUPMBIS+kaH068fpc4gyLQkLLsIgoORVxoUHxAnOMT3HS666ky/kOXa6TeJQJBERSTWWsT/wKi6xXz5tk8/cSVANUTRzlyMg+hn19xMjx3Jz2OdbEXYdRmp2pgwvCqGL4OK8MvEmKKZEOZw9fzr+PHHMGpVGF1E41siymlPLoYvo8A3S5eymwLQp7tMoV9PJ09xGe7j6KT/GzLXUFn1+0jTRT+HyFvEqApzvO8Jvmo4z73WxIyufrJZvCnjM16fPwcOMZHm46g93v5ZrURXytbD1rkjIjckGe8Hp4rO4cj5yvYtTjpjgugf++eTu78ksw6iJ7Ob5QwffkuRr2NzbhDQZZmprCz27Yxo55FJVqHxlnX3UD+6obGLA7MOtltpcWsHNJCWsWzW7l3mywIKrmCUYp6n02D6qmMBXonxZboWXU10qb8y1AA0AnGIjVZxFnWBRa9DnEGXKw6pLnhWpf4JOJqimMeJvpcZ+h23WKIU89GioG0UaWZQ051nVkWlZjlOauPcafwx108s7YId4efQVHcIJUYzafyvoGS2PWz3p7mwvfxbqpZm7PuIk18ct5unsfVRPnybdkEyVH0enqocRWQIw+mlh9DEPeESRBQtXUsDRc9ikB9vQe5/GuN7AH3FybWM4X87aTYwmfeaRfCfJc11l+3XyUYa+DdYm5fL14E8vjw9ubcdTr4ncNp/hj01lcQT9bMwr4Wtl6liaEd3rxAp32CX5XXcmzTbV4g0E2ZubwpaWr2JCRHfHztNsf4KXGRp44V03d0DBmWebW0sV8aukSSudJrtSEy8PLtU3sPVfP+b4hREHg6vxsvrN1A1uK8zDNE8F3ORZE1TxGFKSZpPg827Uz6wOqh3FfF+P+dsZ9nYz7OuhxVdI0dXBmG1k0h8SWPodYQzYOwxRT/iJscvK8y19ZYP6jaRoT/m763efodVfS567CpzoBSDQWsSL+XrLMq0k2LZ73kdMx3xDHRg9wevwN/KqPAusS7k76GgXWJWG9wA17RxEQmAo6GfWN0+xoY0PiGvxqgLLoIk6NV3FqvIprEq9icVQhb4+eRtO0WRdUQVXhlYEzPNxxiBGfndVxhXwp7waKo8JnUxBQFfZ1V/P/mo4w4LGzMj6Lf191O6vD7DM15Hbwm/qTPN5ShU8JclN2CV8rW09JhBocVw728etzZzjY0RJqsFxYwgNLV1EYlxCR419M69gYT56r4YW6ehw+H4UJ8fzT9VvYvbhkXlTw+YMKR5o72HuuniPNHQRVleKURL63fSM7lhSRZLsyrIoWRNUViCyaSDYVk2wqvmS9V5liwtfFuL+DcV8nE/4uul2naZx6FeLgsY4n0QkGYvRZxOqzQ9OQ0z9H69MXKhEXmCEkoroY8NTQ566mz12FRwk1tbbqksm1bSTDvJIM8wpMuvnXXf69aJpGl7uZoyMvUWs/hSiILIvZwMbEnaSasmf9eCO+MRIN8ZdEmZKMCSyJLqF+qpkX+15hVexS+jyDHBv9DV9Y9ClKo4t4pONZVDSODJ9gaUwpGhoCsyP0NE2jYriG37a/Ro97hNKoLH5Y+mmWx4bP70jVVF7pq+P/NrxJt2uc8th0frJ8V9gd0AdcU/xX/Ts81XIORVPZvaiUr5auj4hhp6ppHOxo5dfnTnN2qJ9og5GvrriKz5WvICnC+VIBReH11jYeO1fNO909yJLEjYUF3LNsKSvnga+UpmnUDwyzp6qeA+cbmXR7SbCa+eza5exaVkJxyvzI5/oofGxRJQhCJvAokEKoW+yvNU375cfd7wIfHaMU9b7EeACv4uCNd/aQUxrPhL+TCX83A57ztDgOz2wjIBIlpxGrz5qJjoWWDExS7Jx/+RYIL0HVz4i3iUFvPYOeWgY85/EqdiDUHzPDvIJ083LSzcuIkuf+ZPxhUTSFWvtJjo7sp9vdgkmysClpN+sTbiRanv2coZrJeh7ufIagqvA/l/0InahD00JT9YIgsCFxDVGyFZts5dNZtwDw0/pf0ubsZGPiWkQEGh1trIgt5+a062dtXJXjLfyq9WUaHb3kWJL51yWf5+qExWH7P2qaRsVgM79seJ3mqWEKo5L4j6s+xeaUorB+dvpdU/xn3Qmeaa1G1TRuyy3nq2XryLaFv/+iNxhkT3M9vzl3mnb7BJm2aH68YQt3FpdhliPbTmnE6eLpmvM8WV3DkNNJelQU37lmA3eVlxFvCZ8lxocen8PF/ppG9lTV0TI8hl4ncX1JPruXlrA+LxuddOXOpsxGpCoIfEfTtLOCINiASkEQDmmaVj8L+15gFjBKNsyBLBbHbLpkfUD1MOHvZsLXzaS/m0l/DxP+bnrcp1G0wMx2etFCtJxOtD6DGH060XIG0foMouV0jFLUFXOBXSCEpqlM+HsY9jYy4m1iyNvAqLd1piVTlJxGtmUtqaZy0sxLp/teXln/Y3fQyanx1zk++gqTgTHi9cnckv5FVsVuQi+Fz8Sx1zPADSmbaXa081L/IW7NuBGNS6fwBrzDxMjRBNQAsiiTbc7AEXQBsDy2nOWx5R+0+49M01Qvv2p7mTPjLSQbY/jB4rvZlrICKYwpACdHOvjf9a9TPdFLtiWOX6y6nRvSS8OSF3aBPped/6w9wTNt1QDckbuEr5atI8Ma/iiq3eflsbpq/lBTyajHTXliMv+x9WZuyC2MaN87TdOo6h/gj1VVvNrUQkBV2ZCTzY+3Xsfm3LlpZ3Mx/qBCRVM7e6rqONraiaJqLMtM5ce7ruOG0kKiTJExVw03H1tUaZo2AAxM/+wQBKEBSAc+UFQFBB/D3j4SDCnzPv/ik4wsmkgyFpFkLLpkvaopOAPDTAZ6mPT3Munvwe7vZchbT6vjTS4kyUNIcEXJaUTLaUTpU4mS06aXFKxy8qwn/C7w0Qiqfib8nTMNxC/4pQVUNwA6wUiisZClcXeQbCwlxbQYs25+dZP/KDjFCfb0/pbKiQr8qo9cSym70r/A4qiVETnXbE3eiCRIZJnT+V3Hk9yYuhmjZETTtBlxlWSI5+DgW9gDduwBBy2ODr5V+MCsjqPXPcpv217ljeFqomUzXy/Yye70dWFtdnx+oo9f1r/O8ZF2UkxR/HjZTm7JWoYshu99f6+YuitvKV8uXUeGNfw+RYNOB7+rqeSJ+mpcgQDXZObwlWVrWJcemUrCC3gDAfY3NvHo2XPUDw9jMxi4d/ky7l22lEVx4Y/Q/TkaBobZU1XHSzWh6b0km4X716/k1uWl5CbO73PNsN3JoeoWGvuGP/RrhAuh6dlAEIQc4C2gTNO0qfc89yDwIEDy4tiV9z1xHZImExVMIFpJJEpJJDqYiEWNReTKDf3NV5xOJ1brx0/0UwkS0E3glybwS+P4dWP4pcmZdQjquxtrArIShazETC/RFz2GFvETnNY3W+/5h0EliF83hk83il83gk83glcexi+NgTA9/aTKGIMpGAMpmAKpGAPpGIIJCFf4901DY0TXTaexhlG5G1ETSfUXssi3hChl7nIyXtedwKZZWaOUo6Jecl4bEyZpEbswoGepUjRr5zyn5qNCa+GM1o2EyHphEVcLuRjDmC/Z7hjldXGQqsAoVkFmuyGLjYY05DCK2PGgjwOOPo64Qhe7jZYkdtjSideFP+F6wOfl5bFBjtvH0NBYExXHjfEpZBsjN63mdDrxy3reHB7h6OgozqBCmsnIdUmJXBUfh1Ga22CFKxDk9NAEx/vH6HF60AkCSxOjWZcaT0mcDXEeR76nvAHODUxS1TdB+7gLDUi1GTn4z1+t1DRt1Z97/ayJKkEQrMAR4Keapr3wp7bNL87Tnjr+W3rd7fR52un3dhFQQ35MsqAn1ZRNhimXdFMu6eZcko0ZHzvi0f7/s3fe8XXV9f9/3j2y996rSZM0Tdsk3XuyNygKiqDi+OpX+bm/+lXBhX4VZKiICojIEqF0Qdt0ZY9m77137t7n/P5IGimzQE+SQp6Px+lNb+69n3tP7j3ndd/j9TY30m1pIUIXS5w+Fb1yfoZiLhYKCwvZsmWLpGsIogeLewyjaxijawiTawiDcwizewSjaxiLe5w3RrkAdAp/vJUheKlCZi6VwW/YgtArA9HIL80U48Xe5w6PGdPsvjW6hjC4BjA4BzC4BjC7RhE5J2hl+KoiZo1jEwjUJBKsSZpN413aAuqN2DwWKidPUDRxiHHHED5Kf8JNqdyy6i68VQvnqHyOVlMnf+x4ip9lfweVXIXD46TW0IifypdUn8SLupbV7eDZ3pP8o/cETsHF5ZF53J6wkyCNdJYWIzYjDzUX8mJPFVqlmtuT1nJ78lq8VdKlcUatZh5uKOIfbWcRRJEbk1dwd+Zaoryk/3vXjQ3zcFUphzrbUCuU3Lgsk7tyVhPjO3+NGuccz+8/dISz0wZEYHtSIp9etZKCmPmNkL0ZQRAp6erlhaoGXm9qx+n2kB4ewnWrMrksaxn++sWb3ps0Wzla286hs61UdvQjiCJJYYHszkljV04KiWFByGSyCxJVFyVMIJPJVMALwN/fS1ABKEQlqwO3sjpwKzDreeMYnBNZA7YuKqZOUDQxM6RYIVMSoY0jSpdAlD6RSF08EdpYVBfoMO4R3Vg9ZgyucXqsLZRMvMZlEZ8iVLs4zQgvVeQyBT6qcHxU4USR85bfe0QXZtcoZvcYJtcIZvfoG/4/zJC1DodgeuvjokSvDESnDECn8EevCJj7WavwRavwQ6fwQ6PwRavwQS33vmTSyqIo4hKs2DzT2DwGrO5JrO4JrJ5JLO4JLO6xuX3kFCzn3Vcj98ZPHU24NgM/310zHZ2zjQYfZff9YXsfxeOH51J8sfoUbo79Ktl+BZw+eWZRCCpRFEn1SSTbP50ne14gSheOr9IbL6WeBK+LZ13gFjy8OljGX7qOMOk0sykkk7uS9hLrJZ1lgMFp47G20zzVUYpHFNikjuIn228hSCNdVHbcbuHRhhKeaq3CLXi4PimbL2euk7xmShRFSgb7eLi6jFN93fioNdydm89nsnIJnsdOPofbzf7mFv5WWU3j6Ch6hYI71qzikzk5RPktrBfckMHEi1UNvFjdwOC0ET+dhutzM7luVSYZEYvD9+rtMFrtHK1r51B1C2XtfXgEkfjQAO7cmcfunFSSwz+Y7cXF6P6TAX8GmkRR/M0HeQy5TEGYNoYwbQyrmPFjEkSBcccQA7YuBm1dDNi6qDUUUzo507EmR06oNpooXQLJ3lmsCtz8zo+PgnTfXDL98gB4svt+2sy1bxFVLcazVE4VopAp2Rx6FeFa6XxbPo4oZCr81FHv6qztFhyzYmIci3scq2dyVmj8Z5twdGBzT88VVr8darkXark3arkXGoUXarkXKrkelVyHWq5DKdehlGlQyjWoZFrkMhUKmQqFTI1CpkIuUyKXKZCjAJlstq195l8REBEQRQERAUH0IIguPKIbj+jEIzpxCw4mvBqoGO/FKVhxClZcghWnYMEhmHF4TDg8ZuyCEeENTQH/QTYTxVOF4qeOJkq/Em9VGL6zotVXFX7JRvA+CB7RTd10KcUTh+myNKGQKcnxX8+64L3E6KWzBHgv3smYUyaTIYgC0y4jReMVbAzJ546Em9FepCJ5URQ5Pd7AH9oP0GsdI8svnp9k3UaWf/xFefy3w+Fx8VRnGX9qPYXJZefy6Gy+kr6V9vIayQTVtMPGHxtL+VtLBXaPm2sSMvlq1npiJe7mE0WRYz2dPFRVStXIIME6Pd8q2Mity3PwUc/fF5Yxs4W/n63h6ZoaJq02UoKD+OmuHQSMj7N786Z5ex5vxuXxcLylk+cr6znd3o0owtrEWP575wZ2LEtCo1qcZR0Wu5PChg4OVrdQ1NKD2yMQE+THZ7atYU9OKikRwR/6mHoxXvl64FNAnUwmOzt73XdFUTzwYR5ULpMTqo0iVBvFyoANwKx3jmuMAWvXXESrxXQWu8f6rqJKJpOhQIlbcKGUz5w8dQovBNEzF9HosbRyZvwAK/zXM+4comryBNvCrkOr0DHlHOPs1GkAcgM34aeS3uvk44pSrsFPHYmf+t2djkVRxClYsHsM2D0GbB7DjFARTNg9JhweI07BMiNiPBas7gmcQj8uwYZLsOIS7bw5FXnR8YWRiRnX+/8IOi80Cm8C1HFoFN5oFX5zkTatwm8u5alTBFwy0TYpmXKOUTZxlLLJY5jcUwSqQ9kXcSurA7fgrVy4iNSwbZTn+vfjElz8d9rn3/Y2p8ZKUclUPJR7H0GaiycCGg29PNy2n1pDF7H6UMntETyiwP6+Wh5oOs6QzcDGsGS+nrGDZX7hALRLsKbJ6eAvzeU81lSG2eXgivgMvpq1QXKeUy2/AAAgAElEQVSfKY8gcKirjYeqSmkcHyXKx5efbNzODcsy0Srnz8evcWSUv1ZW8UpzC26Phy1Jidyeu5J1cbEz444KC+ftubyR7okpnq+s56XqRiYsVsJ9vfnCpnyuzV1O9AIOMX43HC43p5q6OFjdwsmGThxuD+H+Pnxy40r2rkwjPTr0on52Lkb332m4SO5074FMJiNQHUqgOpQs//xz6+MSnRd0f6VcRe10MX3Wdq6NvvO8k1b55DGW++XNibNfNH2FDSGXoVXoeKb3QRK80jG4Jnh95AUuj/gUmos0E2yJD4ZMJkOj8Eaj8MaP95/GFUURj+jCLdpxC47ZCJNrbhNFDwIeBNGDiGfuPiDO1iXJkCFHhmwusnXu8lwErPhMOVs37VgSR+8Tj+ihxVhNycRrtJiqAUjzyWFt8OdJ88lZ0P057pjkhf5XKRwtRilXsDd82ztGqzaFFLA5dO1FW3vQNsEf2g9yfLSGQLU330i7lssi81BK2F13ZrSd++tfo8U4QqZ/JPfmXkVByMWtB3sjdreLJ1ureKShmCmHjV0xqXw9eyPLJHZAdwsCL7c18VBVKR3TkyT6B3L/1j1clZKOap6KvgVR5FhHJ3+pqKS0rx+9SsXN2Vnctmol8QEL18XncLl5ramdZyvqKO/uRyGXsSUtkRtWZbEhOW7BrRreDrdHoLStl4PVLRyra8dsdxLoreea/Ez25qaxIi4SuVwa2bI4Y3TvA5lMhlr23uFYq9vMqbH9dFmauS3+HrQK/Vykato5gck9TZw+FZgpgNUq9MiRUzV1Cm+lH3sibgFmxJYzzL4kqi5xZDIZSpkaJWqQ6JipEDVLgup9MOkcpXziGBVTxzG4JvFR+rM19Bryg3YQoF5YZ+Upp4F/DRzk6MhMxHp3+GaujtqDv/qdv51frG+/BpeFJ7qO8q/+IpQyObcn7ODm2M3oldIV/jZOD/GbhtcoGuskWu/Pr1dfz+6oDMm8ppweD8911PBg3RlGbGY2RiTwjRWbJJ/N5/R4eLGlgYerS+k1GlgWFMLvd17O3sTUeRMLVqeLF+ob+FtVFd1T00T4+PCtzRu5MTsLP+3CFXe3j07wXGUd/z7bhMFmJybAj6/vWM/VKzMW5cgYQRCp6RnkYFULh2tamTLb8Naq2Z6VzN7cZeQlx8yLqeglL6ouhEFbFxWThWgUOj4d/030Sm8EUZhL/ow7BtHK9eiUM2+UUXs/IZoIjO5JxhwDpPhkA2ByTZPms4Ihey8+qoX3/1hiiUsdl+CkwVBO+eQx2s11AKT65HBV1GdJ91214D5nRpeZlwcOc2i4EAEPW0LWcW30PoI10vvrOAU3L/Sd5snuo1jdDvZFruGzibsI1kiXZhmyGnig6Rgv99Xgq9Lxnaw93JSwGrVcmr+DIIq80t3Ib2pO0mueZnVINL/dcBUFYdIOWHZ43DzbVMcj1WUMmk1kh4Txgz1b2RGfNG91iqNmM09UneUfNTUY7A5WRITzuysuY3dqyryahr4Rh8vNkcY2/llRR2XPACqFnO3pydywKpOChFjJojsfhrahcQ5UNXOwqoXBKSMapYLNyxPZl7uM9cvi572+6yMvqmweC0/3/A6Lx8S+8E/iFOzo8T7vG5dTcOCt9MUjzhQ+91k78FUF4hbcuATnXA2VxWNCIVPO3W6JJZZ4/4iiyICtk4rJQqqnT2HzWPBXBbM97HrWBG5d8KgUgMVtZf/g6xwYOopDcLIxJJ/roy8jTCv9cxNFkeOjtfyh/QBD9knyg5bxxeTLSPQOl2xNs8vOY21n+Ft7MSIin01Zz50pG/BVSxORF0WRwsEOfll9gubpUdIDQnl86w1siZRW1Njdbv7ZVMsj1WUMW8zkhkVy3+ZdbI6Jnzcx1To2zp8rKnm5sQm3ILArJZk71qwmN0raqNy70T0xxXMVdbxY3cC01U5soB/f2LmBa1YuJ8h74cfavJnhaRMHq1o4UNVMy+AYCrmMgtQ4vrR3Ldsyk/HSzu9YoDfykRdVGrmO62O+wLC9j25rM2cmDrEp5ApUMjUgssw3lxh98kxX4axnV7OxipyA9fio/HEJTnSKmdbZaec4yGT4KJeiVEss8X4xuCapnjpF5dQJRux9KGUqlvvlkRe4jSTvTEnHmFwoNo+dA0PH2D/4GlaPjYKgXG6IvoJofcS8rF833c3Dba/QYOwlyTuCX+fcyZqgVMnWcwsenu+p4qHmQiYcFi6LzuJrGduJ0ktnVVA51s8vqgspH+0j1tuf362/ksvjMyQ1hLS73TwzK6ZGLGbWhEdx/7a9rI+KnRcxJYoixb19PFZewcmubnQqJTetyOL2VbkLVi/l8ng41tzBM+W1lHT2oZTL2bYskZvWZC/KqJTRZuf1mnZerWqmoqMPUYTM2HC+fc0WduekEuQzv8Oq34mPvKiSy+TEey0j3msZBUE7gZk3uNk9jcE1iUKmxEflT4Q2lid7fo2X0pcgTThpPivxUfnTZWlkffBeABqN5QSqwwhUv33R5CPt/4Narpn10YonUhe/NIpniY81do+VekMpVVOn6DDXIyISp0/l2ui7yPZbi165OGoz7B4Hh4cLeWXwCCa3hdUBK7gh5grivaLnZf2ZIvQDHB+tJUjty7fSb2BPxGrJZvSJosjJkTZ+1XCETtM4q4PieKTgE2QGSOfd1zY9zq/OFvJafxvBWi9+vGYXNyXnoJawENzudvGPxjoeqS5l1GohLyKa/9u+j7WR82OU6RYEDra08qeyChpHRwnW6/nvDev5RE42/rqFqcsdMph4tqKO5yvrGDdbifDz4b+2r+Pa3OWLrlbK5fZwurmb/ZVNnGjoxOn2EBfizxd2FbAvdxlxIYsvwPGRF1Vvh0wmw0cVcF5d1J6IT5ATsJFxxyCpPjmoZ80TcwM288rg34jUxdFv7WR72HVveyIQRZEgdTgDtk7azXV4xJmOMZVMTbgulghtHJG6BCJ1cYRr49AuFbov8RHFJThpMVVzduoMjcYK3KKLIHUY28KuJTdgEyGahUtzvBmnx8lrIyf59+BhDC4TOf7LuSHmCpK94+dlfZPLxlPdR3m+7zQKmZzbE3bOFqFL54XUahjhl/WHKRrrJM4rkAfybmJ7xDLJRMaQxchva0/xfGcdXko138zZzGeWrUavlC5Fcy7N91DVjJjKj4zmdzsuY22UtLVa57A6XTxXV8fjFVUMGI0kBQZy3+6dXJWRjkY5/6ddQRAp7uzlH+U1HG/uRERkU0oCN63JZlNK/KLq4BNFkdqeYfZXNnH4bAvTFjsB3jquX5vF5avSWR4Ttqj9+T6WouqdCNfGvMXwc13wHvxVwYw7h7gx5u539KiSyWTcGHs3AG7BxahjgCFbDwO2Lobs3dQbSimbPDp3+0B1GBHaWCJ08URo44jQxRKoDlsUKZAllni/uAUXbeZaaqeLqTeU4RBseCl9WRO4jdyATcTqUxbVgdApuDg2cpqXBg4x5TKQ6beMb8ZcedHHx7wTbsHDK4OlPN55BKPLyt6I1dyRuJsQrXRF6BMOMw82Hef57iq8VRrJi9CNTjuPNpTweHM5oijymbTVfClrHQEa6Wp0nB4PzzbX8VBlKUMWE3kR8yumJq02nqiq5qnqs0zb7ayKiuQH27eyLSlxQebdGWx2/lXdyDPlNfRMTBOg13HHhtXctDqLqEXmKzUwaeDVymZeqWiiZ2wKjVLB1qxkrliVTkFa7LxZW3xYlkTVe6CWa8gJWP++7qOUq4jUzaT/zjnEi6KIwTXBoL2HYVsPg7Zuhuw9NBorEGf7ENVyDeHaWMK1M5GtcN3Mz14fszmFS1waOAUHraYa6g0lNBoqsAs2dAovsv0LWOG/niTvTBSLLPXtElwcHy3ipYFDTDinSPdJ4Sspn2W5X9q8rC+KIiUTzTzctp8e6ygr/ZP4UuoVpPpIl3Zzetw82VnKH1pOYve4+ERiHncv24y/Whpx4/R4+HtbFQ/WnWHKYeOq+OV8M2eTpCNlXB4PL7Y28kBlMQMmI6vCI7l/2x7WzVPN1IDByJ8rKni2th6728325CTuWrOaVdELMwqtaWiUp8tq2F/bjN3lZmVMBF/aUsDu5SmoFyBS9k6YbA5eq2njlYpGKjsHAFidFM1nt61m54oUvLWX3ritxbN3P+LIZDL81cH4q4PJ8F01d71TcDBi72doVmQN2XqpN5SdF9XyUQYQoY2dE1nh2ljCtFEXPPtwiSUuFla3iUZjJQ2GMlpNNbhEJ3qFN1n+BWT5rSXZOxOlfP6cpy8Ut+Dm+GgR/xo4yIRzijSfJL6YfBuZvmnzFkHrMA/xUNsrVEy2Ea0L5t7s29gQvFyy9UVR5OhQM79qOEKfZYotYanck7mLBJ8PNtPsQtZ7tbeZX1UX0mueZn14PN9euZXMIOm6Fj2CwMvtzfy2vIge4zQrQsO5b9NONs1TN1/r+Dh/LC3nlaZm5DIZV2Wk87m81SQHzf/UDafbw2uNbfy99CzVfUPoVEouz17GJ/JWkL6IZvB5BIHStj7+XdbAsbp2HG4P8aEBfGXfei7LXUZk4MLOMvywLImqBUYt1xCjTzpvfpkoihjdUwzbehm2z2xD9l6Kxg/hnp0TJ0NGkCZ8VmBFz17GEKKJWHBvnyU+OoiiyKijnyZjFU3GSrotzYiI+KmCWBO4lQy/NSR5L1+07zm34KZwrJh/9R9k3DlJqncin0/6FNl+6fMmpqacZv7ceZj9A6V4KbV8JeVKro5ei0qitBtAi2GYn9cdonS8m2SfEB5b9ynWhUo3I7FyrJ97K49SPT5Imn8If912I5siEiXbx4Iocqizld+Un6F9apKM4FD+vPcatsVJt+YbqR4c5NHSco62d6BXqfh07ko+u2YVET7zn1UYNZl5tryOf1bUMm62Ehvoz7f2bOaalRn46RbOPPTNdI1M8nJ5I69UNjFqMOOr03BV3nKuXJNBVmz4oioP+DAsziPhxxyZTIafKhA/VSBpvjlz13tEDxOO4TmhdW5rMJTNpRAVMgXBmkjCNNGzQ6qjCdVGI8yOWlliiffC5rHQYa6nxVRDq+ksU84xACK18WwNvYblfnlE6+bn5PVBcQtujo8V8VL/IcadkyR7J3Bn0idZ4SfdjLw3c86884muo9gFJ9dEr+P2xJ34qaRr/Z5yWHig6TjPdVfio9Lyg+x93BC/SrJRNj2mKR6aaKHicDGhOm9+UbCP6xKzJCt8FkWRwt4u7i87TcP4KMkBgTy86wr2JKZKXrMkiiJFPb08WlpGcW8f/lotX1lXwKdzVxKwAJ18NX1DPFV6lsMNrbg8AhtT4rk1P4cNyfGLxg7BaLNzuLqVf5c3UtszhEIuY/2yeP7fVZvZkpm4qFKRF4uP3iv6CKOQKeaGTGfzn5liLsHBqH2QEUcfI/Y+hu199Ns6qTOUzIktmb+cyuaXCdVEEaqNJkwbTYgmihBN5FIn4scct+Cix9pKu7mODlM9vdY2BATUci0p3llsDb2GZT65+KsX/yBxDx6ODJ+Yq5lK9k7gc4mfIMdfujTbmxFFkRNjdTza/iqDtkkKgpZxd8rlxHuFSbamS/DwTFc5DzUXYnE7uCVxDV9atkWyuimDw8aD9UU80VKBTISvZW/gzox8STv6ygb7+VXpKcqHB4j19eM32/ZyVUq65J1rgihytL2DR0vLqBkaJtTLi+9s2czNK7LwUs+vyaTT7eZQQxuPVLTQfawaL42am9dk84n8HOKDFoe9wLn03kuz6T2n20NSeBDfuHITl+UuI9h3cfhJXQiCINLQNURTz+gF32dJVH0EUMk1ROkTiNInnHe9U3AwZh9kxNFPecsZdP4KRu0DNBmrzotc+amCCNVEEqKJnBFa2pmf/VRBS92IH0FcgpNeaxtdliY6zY30WFtxCQ5kyIjWJ7E59CpSfVYQp09dlPVRb4fT4+To6GmeU+/H0mUj1TuRu5JundfIFECraYAHW1+mZrqTBK8w7s/5HHlB0hbBF412cF/dQTpN46wLSeTbWXtI9pWmhsYlePh7azW/qz2FwWnnhqQVrLUquTp7oyTrATSMj/Kr0lMU9nYRqvfip5t2cOOyLEn9rWBGHBxqbePh4lJaxseJ8fPjJzt3cG1mxrzbIkyYrTxTXssz5TWMm62E6TV8/7KtXJ2TgZdm4dzD30j/xDT/Lmvk3+WNDE+b8NVpuDY/k6vyMsiIXtw2CG9EEERqOwY5WtnKsco2RqbMaFQX/l5bElUfYdRvEFtGu4ct8VuAmcjEhHOEUfsAY45BRh39jNkHqJo6iV2wzd1fKVMRrIkgRBNBsCaCYPXspSYCb6XfJfMh+bhjcE3Sa2mjx9pCj6WFflsnHtGNDBnh2ljyAreR7J1FonfG3PSASwW7x8HrI6d4ZfAI0y4jEWIIX8u4iyw/6XyX3o4Jh5HHOg9zYLAcX5Web6Rdy2WReZKl3QD6LVP8sv4wrw81E+MVwO/zb2ZruDSF96Iocnygg3urjtJpnGR9eDzfXbWNjIAwCgsLL/p6AN2GKX5ddoZX2pvx02j5dsEmbstciU4lrdB3CwKvNDbzSGkpnZNTJAUG8qt9e7gifdm8z+RrGhrlyZJq9te24PJ42JgSz6cLVuLs72Jbfs57P4DE2J1ujta18WJpA+XtfchksC4tnm9cuZEty5Pmfe7eB8UjCNS0D/J6xYyQGjdYUCsVrM2M5+5rN7BpRSK+j37tgh7r0njFS1xUlHIVYbMpwDciiiIm9zRjjkHGHIOMO4YYcwwyZO+lwVBxXnRLLdcSpA4jSBM+dxmoDiVIHYa/OnjRFi5/1DG5phi0ddNv66Tf2kGftR2jewqYEcnRukTWB+8l0SuDeK9li8bR/P1icVs5NFzIwaGjmNwWMn3T+K+UzzFaPUi2f/q8PQ+Hx8Vzfad4svsYTsHFDbEbuS1+Bz4q6VLqNreTx9pO8+e2Myhkcr6WsZ3bkgrQKKQRG63TY/y08iinhrpI8AnkT1uuZ3tUsmSiddRi5oHKYp5pqkMll/Ol3HzuylmDn0baomunx8NLDY08UlJGn8FAekgID1x5OXtSU+bVY8ojCBS2dPFEcRVl3f3oVEquX5XJpwpySAieGeRdONA9b8/nzYiiSFP/KC+W1nOwqgWT3UFUoC9f3ruOK1dnEB5waVgAeQSB6taBmYhUVTsTBgsalYJ1WQlsX5XKhuwEvHXvv8N+6cy3xBwymQxfVQC+qgCSvJef9zuP6GHaOca4Y4hxxzATzmHGHcOM2PtoMlaeN2Rahgw/VRCB6lAC1CGzWygBqmAC1CH4qYIumbTSYsUlOBixD8zW0M00LAzYujC7DXO3CVZHkOi9nBh9MrH6ZKJ0iZf8fje4jBwYOsbh4UJsHju5/llcE713zrRzlMF5eR7n6qYeaXuVIfsk64MzuDvlcmL00g1cFkWRI4ON/KL+MMM2I5dFZ/KN5TsJ10lj4jjlsPJ/Nad4uq0aL5WGH6zazq2pqyRLu5mcDv54tpzHaipwCQI3p2fx1VVrCfWSVvg73G5eqG/g0dIyBo0mssLD+N62LWxPmt9mDKvTxb+qG3iiuIreSQMRfj58c9dGrl+VuSi6+IxWO69WNvNiaT0tg2NolAp2rkjh6rxMVidFL5ri+HfDIwicbRuYi0hNGK1o1Eo2vEFI6T/kMOYlUbXEBaGQKWaiUppw3lwhIogCRtcUk84RJpwjTDlHmZzd2s11GF1TcwXz5/BW+uGvCsZfHYSf6twWiK8qcEbYKQPQfMwL6N2CiynXGJOOmf16LoI4Zh9k2jX+ho5PJaGaKNJ8cmZHIc0Yz15qqbx3Y8wxwSuDr3Fs5Axu0U1e4Equid5Dgtf8OGW/kfPrpsL5zco7WR0o3dBjgHbjKPfVHaRkrIs03zB+uepaVgfHS7KWWxB4qrWK39aewuxy8ImUlXwteyOBWgnNQhtqeLCymEm7jcuT0/hm3gbi/aQtvHa43TxXV8+jpWUMm8zkRETwk5072JQwPx5X5xgxmvl76VmerajFYHOQHR3O13asZ2d6CkrFwta0iqJIZccAL5TU8VptG063h/ToUL533Tb25qbhuwjE3ntxrkbqtfIWjs6m9s4JqZ1r0liflYBOc/G+bC6IqHLInPRY+onSRUhac7DE/CCXyfFXB+GvDiKRjLf83i24MLgmmXKNMe0cY9o1wbRznGnnOGP2QdpNdefVcp1DI9fho/THW+WHj9IfH6UfXko/vJW+eJ3bFD7olT7oFd6XTBRGFEUcgg2L24jRNYXRPTVz6Zpk2jXOtHOCadc4RtfkeWJULdcQookkziuV1ZqthGtjCNPGEKQJX3TO5ReLXusALw8coWiiHIBNwQVcGbWbSJ10nXTvxKTDxGOdh3h1HuumLC4HD7UU8lRHKXqlmu9n7+NGCS0STg918ZOK12k1jLM+PJ7/Wb2DVH9pom+iKPJqRwu/LD1Fr9HAuqhYvl2wiexQ6cxC4a1ialVUJD/fs5v1cfPjvn6OpqFR/lJUycG6VgRRZGdGMretzWVl7MLPxpwwWXm5vJEXS+vpGZvCR6vhmvxMrs3PJD168RiJvhOiKNLQNcyR8haOVrTOFZuvy0pg15o0NmQnXlQh9UYWRFQZZWb+X+1PUcqUROsjSNDHEOcVQ7xXNHH6aPTKj3eE4qOGUq4iSBNGkOadT4R2jw2DawLTm0SGyT2NyWVgxN5Hu7sOm8fyjo+hlmvQKbzQKbzQKrzQyvVoFTo0Cj0auRa1XIN69lIl16CSqVHKVahkKhQyJQqZErlMgUKmQIYcmUyGjJmD7Iy4ERFEEQEPgujBI3rwiG7cgguX6MQlOHAJThyCHYfHRoeundHeRmweMzaPBZvHgtVjwuw2npcuPYdCpsRfFUyAOphk70wC1CEEqWdr1TTh+Cj9PxbNAaIo0mRq55WBI1RN16GRq9kVtoXLI3cQrAmc9+fj8Lh4vu80T3YfxTFPdVOiKHJgoJ5f1h9mzG7muriVfD1jB4EaaaKPvaYp7q06xpG+VmK9/fnD5uvYGS3dvMbSwT7uKz5BzegwywKD+etl17FZYhd0h9vN83UNPFJaOiemfrFnN+vmUUyJosjp9h4eP1NBSWcferWKW/JW8Om1K4le4Fl8giBS2tbLCyV1HKvvwO0RWJkQyed2rGHXilR06sX9pVUURVr6xnitrIXXKloYHDeiVMhZmxnPl6/byKacJLw+ZGrvQlgQURUo+PHVlDvotvTRbemjcqqO42NFc78P0wTPiax4rxji9TEEqj8eJ5SPK1qFDq3ircXzb8YjurG4TZjdBixuE1aPCavbhNVjxuoxY3NbsAsWrG4LJvc0444h7IIVh2DHJTjm6dXM1JUpNEqmzD6zQs+bAHUIUYrE8yJt51KdPqoA9Arvj/V73CN6KJuo5pXB1+iw9OCj9OaG6CvYHb4ZH9X8F9SLosipsXoeats/b3VTAG3GUe6tPUDZeDfL/SN4IO9mVgS+++fig2J1O3mkvpg/NpailMu5J2czd6TnoVFIc2pon5rg5yUneb27gwgvH+7fuodrUjMk9Zpyejy8WN/AQ8WlDJlM5EbOv5hyuj0cqGvm8TOVtI1OEOrjxX/v3MCNq7MWvF5qwmThpbIGXiipp3/CgJ9eyy0bcrg2P5Ok8MXvTdc9NMnhsmaOlLfQMzyFQiEnPz2WO69Yy5aVSfjo53f/LoioUqBgffAa1gevAWYOXtMu45zI6rb20WPpp2yyeu4+PkpvErxiiPOKJl4/I7gideFLPkofMxQy5Vwx/ftFEAVcggOn4MAlOmciTIITl+jEI7rPiz4BiAiIooiIeF7kSi6T/yeqhQKlXI1KrkYlm7mciYppOXHiBFu2bLnIe+Cjh91j5/hoMQeGjjLqGCdCG8odCbewOWQtGsXCePC0mwZ5sO1lqqc6SPAK49c5d7ImSNq6KYvLwcMtJ3iyowS9Us0PV1zO9fG5KCQ4xomiyIHeZu6tPMqQ1cRV8Rl8O3cb4XppOrfGrRZ+V1HM04016JQq7snfyB3ZuWiV0kU/3ILASw2N/L64hH6DkZyICO7bvZMN8XHzJqZMdgfPVtTxRHEVoyYLqWHB/Oza3ezLTEOtXLiUvSiKlLf381xxLUfr2nF7BFYnRfOlPevYkZ286K0QhieMHC5r4XBZM619Y8hksCothk/uXMW2VSn4ey9ctmtR7DmZTEaA2o8AtR8rAzLnrrd57PRY+umx9tM1K7gODh3HPXvSU8lUxOojiT8ntrxiiNVHoVMs/uK5JeYfuUyORqH72BfALxbGHBMcGjrOsdEzWD0zhp2firuO1YErFuzL0pTTzGMdh9g/WIavSsfXUq/myqgCSeumRFHk8GAjv6g7xIjdxPVxuXw9YzsBEqX62qbH+VHFEYqGe0gPCOW3G64iLzRGkrXsbjd/qavkocpSbG4Xn8hYwX+tXkuwXromCo8g8GpzCw8UFdM9NU1WeBj/u2P7vBagjxrNPFFSzT/LazE7nBQkxHDv1btYnzx/gu7tMFjsvFzRyLNFtfSMTeGr03DLhhyuL8giIWz+U+vvhymTldcrWjlU2kxN+0yXb2ZiON+4eQs7V6cS7L847GEWhah6J3QKLct8k1nmmzx3nVvwMGgbpts6I7J6LP2UTlZzdPQ0MJN2CdMGE6c/J7Rm6rSC1AEf69TKEkssBkRRpMnYxqHh45RP1gCQH5TLZRHbSfFJeI97S4fD4+KF/tM82XUMu+Dk+pgN3J6wAx+VNB1v5+gyjXNv7QGKxjpJ9wvnt3k3siJQGoFjdjn4Xe1p/tpcgV6l5sdrdnFLykpJDC1FUWR/Rws/LznJgMnI9rhEvrN2M8kB0qWTRFHkSFs7vz1TRNv4BMtCgnnk6ivZkZw0b8f+rvFJ/ny6kpdrGvEIIruXp3DHhtUsj5z/xopziKJIbc8wzxbVcPhsKxF/SkgAACAASURBVE63h5z4CO7auZud2alo1YtXBljsTo5XtXOkrJnSxh48gkhiZBB3X7OeXXlpRIf4L/RTfAuLd2++A0q5glivKGK9otgUUgDMvGkmnFMzIsvaT4+ln25LH6WTVXP381F6zdRp6WciWnH6mfThUvfhEktIj8PjpGiinINDx+mx9uOl0HNZ5Hb2hG9dkOLzc4iiyMmxeh6erZtaF5zOF5MvJ85L2g4nu8fFH1pO8ue2M+gUKr6XvZebE9ZIlup7pbuRe6uOMWYzc2PyCu7J2UKQRBYJZ0eG+EnRcSqHB0kPCuGXV9zA+ug4SdaC2b9hdzf/d6qI+pEREgMD+N0Vl7E3Tfohy+eoGxjmjyfLOdrcjlqh4PpVWXxmXS4xgQt30rc6nByoaubZolqaB8bw0qi5Om85N67LJjVS2rrAD4PL7aG4vpuDJU2crOnA4fIQGezLp/esYXdeGsnRi/e5wyUoqt4OmUxGsCaQYE0gqwNXzF3/xvThuajW4eETuEQXwFz3YZw+erZWa+bSW/nR8fdZYomFZMg2wmsjpygcLcLisRKrj+KuxE+yITh/weqlztFmGuD3ra9QPT1/dVMAJ4Zbubf2AP3Waa6IzuaezF0Ea6VJXbRNj/M/5YcpGeklKzCcP2y+jpxgaVr2h80mfll6ihdbGwnW6fnFlt1cn7Zc0iL0iv4Bfn3qNOX9A0T7+fLLvbu5MiN9XsbJiKJIcWcvfzpZTklXH75aDZ/flM+t+TkEeUsb4Xw3ukYm+WdRDS+XN2K2O0mNCOb712/jstz0eel++yCIokhN+yCHSpt5raIFg9mOn7eWKzdksic/neykiEsm0/SREFXvxNulDz2ihyHbCF1zUa0Bzk7Xc2KseO42QeoA4mbThucuw7UhS0XxSyxxAbgFNxVTNRwdOU2toQmFTE5e4Ep2hm0iwzd1wQ+O58/pm5+6KYBhm4Gf1R7itaEmEr2D+cv628gPkSblaXE5ebDuDH9uKsNLpeanebu5OTlHEoHjFAQeqCjmkepSPKLI3SvzuTs3H2+1dCfwptExfnPqNMc7uwjx8uJHO7ZxY7b0Q5ZhxnrgaHMHfzxZRv3gCCE+XtyzayM3rclesOHGbo/AiYZOnjlzltK2PpQKObtWpHLT+mxy4iMX/DP3TnQPTXKwtIlDJc0MjBvQqJVszklib346a5fHoVzAYv4PykdaVL0dCpmCaH0k0fpINpI/d/2000D3bOpwTmxNNSAgAKCRq4nRRxKrjyJ2TmxF4aVcuG8kSyyxmBiyjXBs9AwnxooxuEwEqQO4IfoKtodtIEC9sB48MFM39WzfSZ7qPo5LcM/6TW2XvG7KLXh4qrOUB5uOI4gi/5W+jc+krEMtv/iHX1EUOdLXyo8rXmfQauSGpGy+tXKrJKm+c+adP+yoZ8LtZF9iKt9Zu4kYX+lSXj1T0/zuTBEvNzXjq9Fwz6YNfDpX+iHLMCNcXq1r5k+nyukYmyQ20I//vXI7V+dkoFYuzKl0wmTlxdJ6niuqZXjaRLi/D1/Zt55r8zMJ8lmc56ZJo5UjZc0cKGmisXsEuUzGmvRY7rxyLVtzkxdtNO1C+diJqnfCX+1HjtqPHP//zLxzCi76rUP0WPvptfbTaxmgfPIsx0bPzN0mWB1InFc0sfoo4vRRxHpFE6ENXYpqLfGxwO6xUzJRxfHRIppN7ciRsyogi+1hG1nhn7EoPgeiKHJ05Cx/6DjAiH2aDcHL+WLKZZL7TQHUTPbxo7P7aTGOsCkshe9l7yXGS5oasj7zND8qP8KxgQ7S/EN4bsOnWB0qjb9V4/goPzp9jLKhfmI1Oh667CYKIqUpsAcYt1j4fXEJz9TUoZTL+UJ+HnfmrcZPK32nt9Pt5qWzjfzpVDn9U0ZSw4K5/4Z97M5YuDEyPVMWvvv0IQ5Xt+LyeChIjeXb12xhU0bigo+2eTscLjcnz3bwanEjxfXdeASR1JgQvnbjZvbkpS2azr2LwZKoehfUchWJ3rEkev9nvpgoiky5DPRY+um1DsxFtqqn6ueiWiqZihh9BLH66Jmien0UsfpI/FS+C/VSlljioiGIAo3GVk6OlVI6UYVdcBChDeWW2KvZFFJAoHrxdOTUG7p5qG0/DYYeUrwj+c7Km8gNTH7vO35IDE4bv208yrPdFYRqffhd3o3siEiXJA3j9Hh4rKmUB+vOIJfJ+G7uNj6zbI0kdUVTdhu/LjvN0421+Gu03Ld5J+Ejk5IJKrPTyWNlFTxeUYnD7eam7Cy+vK6AUG/pT8I2p4vnKut4/EwlI0Yz2VHhfGfvFrakJi7I8GCX28ORmjaePlVNXe8weo2K6woyuXnDChLDFp9J57k6qVeLG3mtvBWzzUFYgDef2r2avQXpJEUFL/RTlIQlUfU+kclkBKr9CVT7n+ep5RRcDNiGZsXWIL3Wfqqn6yl8g1O8n8qHmFmBFauPIkY3k4bUKjQL8VKWWOKCEUWRHusARePlnB4vY8I5hU6hpSBoFVtD15HmM39t6xfCoG2SP7Qf4PhoDYFqH76VfgN7IlZL0l33RkRR5NX+On5Rf5gph5VPJRXwlWVb8VJJ8xkvG+3j+6WHaDOMsycmjR+s3kGk18X/8uYRBJ5urOH+sjOYnQ4+nbmSr69Zh59GS+Fo4UVfz+nx8ExNLb8vLmHSamNvWir/vWE9CYHSDlkGsDicPFNey1/OVDJhsbI6Lor7rtnF2sT5nQ14jgmTheeK6ni2qIZxk5W4kACuy4zmG5+4Em/t4jt39I9Nc6C4iVeLGxkYM6DTqNiam8zl65azKi1a0saFxcCSqLpIqOUqErxiSfCKPe/6aaeRPtsgvdYBei0D9FoHODpyGofgBGZ8tUI1QcToI4nRR81eRhKpDUMpQc3FEku8H4ZsIxRNVHBmvJwB2zBy5Kzwz+CTcdeyOmDFgnfwvRmb6OKR9ld5vvcUcpmc2xN2cHPsFvRK6U8+PeYJflLzKkVjnWT5R/KHtbeS4R8hyVpTDis/rzrOsx21RHn58diW69kenSLJWuVD/fzPqaM0TYyxLiqWH67fSlqQdEOWD7a2cf/JU/ROG8iPieZb124iO0LaIcsAZruDv5fW8NfiSqatdtYlxfKFzfmsiZcmhfpeNPaN8NSpag5Vt+D2CGxMT+CWDTmsS4vj5MkTi0pQWexOXq9oZf+ZBqrbBpDJYM2yWO66ci1bVyajv8TrpN4PS2dtifFX++Kv9iXLb9ncdYIoMGofnxNbfdZB+qyDVL0hhaiQyYnQhhOjjyBaF0mMPoIYfSRh2hAUskuvI2KJS4d+6xClk1WUTFTRax0AIN0nhb0J28gPWomvSppRJh8Gt+Dh3wPF/Ek4jq3Hze6IXO5M3EuIVvoCeafg5vG2Ih5tOYFKruD72fu4KUGaqJgoirzU1cBPK1/H4LTz+YwCvpq9Hr3y4p+0Rq0WflZ8gn+1NhLp7cNDu65gX6J03ZuV/QP8rPAkZ4eGSA0O4rHrrmZzQoLk0SGT3cGTJdU8UVyFweZgU0oCX9yST06MNIL43fAIAsfqOnjqZBXVXYPoNSpuXJvNzRtyiA+VPkr3fhAEkcqWPl4pauBYZRt2p5vYsADuvmY9+9ZmEB64+I4T7wdRFGnqGOFkWRttPWMXfL8lUbUAyGVywnWhhOtCWROYM3e9S3AxaBuZEVmzgqvD3EPxROXcbZQyJZG6MKJ1ETNdjLoIonThhGtDl4xMl/hACKJAq6mTyqlaKiZrGLSPIENGqk8in46/gfzAlQtq0PlunBt6/Gj7Afpt4yQQxHfX3Eqa7/xEFyonevjR2f10mMbYFZnBd7L2EKaTpnayxzTF98sOcXqom5XBkdybv5f0gItvUuoWBJ6or+b/ys/gcHv4cm4Bd+fmoVdJE23ompziVydPcaStnTBvL362ZxfXLpd2yDKA0WafFVPVGO0OtqYlcveWfDKjpI+KvRmTzcG/Sut5+vRZBieNRAX6cs9Vm7k6bzk+usUTkQIYGDOwv6iB/UWNDE0Y8dKp2VuQzhXrl5OVeOn4Sb0dbreH6sZ+Tpa3c7K8nbFJMwq5jJXLL7xmcElULSJUctWMVYPX+ScEu8fBgG2Yfusg/bYh+q1DtJu7KZqomLuNQiYnXBtK1KzIOrdF6sLQLs1CXOJNmF0WagyNnJ1u4OxUA0a3CYVMznLfNPZEbGVNYM6iKjh/O+qmu3mkfT/1hh7i9KH8YsVnsdcNz4ugmnZa+b+G13mup4oInR8PF9zClvA0SdZyCR7+3FTGb2tPo5Yr+PGaXXwyNVcSt/DyoX5+cPJ1mifH2RQTz/9u2E6CvzQRkkmrjYeKS/j72Ro0CgVfW7+Oz65ehV4trT2Cye7gieJq/lZchcnuYPuyJL64JX9BRsn0T0zz1MlqXiprwOpwsTopmv931WY2L09cVLVHNoeLoxWtvFLUQGVL/1x670vXrmfLymS0Ev/NpMTucFFa082JsnbOVHZistjRqJUU5MSzKS+F9bkJ+HrrePB/LuzxlkTVJYBWoSHJO44k7/NHPdg9DgZtIwzYhuizDjJgG6bPOkjFZM1cGhFmzEx1KjVdXSNE6sKI1IUTpQ0jQO1/SX+rWOLCcQse2s1d1BmaqDU00WbqQkTEW+nFCr8MVgVms9I/E71y8Q+b7rOO8cf2g5wYqyNI7cs9y65nb8RqlHIFhbIRSdcWRZEDA/X8vO4Q004rtyev5cvLtkqSfgM4Oz7Id0oO0jw9yp6YNH64Zifh+oufVhm3WvhZyUleaGkgytuHR3dfxe6EZEmODw63myerz/JQcSkWp5ObsrP46rq1hHhLO8nCbHfwZMlZ/lpUiXFWTN29tYCMCGlHEr0ZURQ52z3IE4VVHKtvRyGTsyc3jVs3rSQjeuFmBL4djd3D/OtkHUfKWrDYncSE+vPFq9dz2dp0woMu3W52s9VBUVUnhaVtlJztwu5w4+OlZePqJDblJZOXHYdW88GE4pKouoTRKjRvsXyAGUfrYfsoA7bhua3Z3sbx0SIcgmPudhq5hghdKJHaMCJ0YURoQ2c2XdiSqekljkf00GXupdHYRpOxjUZjK3bBgQwZiV6xXBu9jxz/5SR7xy8KL6kLYcJh5G9dr/PKYClquZI7EndxY+xmdPNULN9vmeLHNfs5PdpBln8kf1x7K+kSFaJbXE5+XXOCvzZXEKrz5g+br2NXzMUfoeMRBP7RVMsvS05hc7v44so8vrKqQJJU37mBxz8vPEmfwcCmhHi+vWUTqcHSttZbHE6eLj3Ln89UYrDZ2ZqWyJe2Fsx7ZMrtETha18bfCquo7x3GV6fhs9vWcPP6HMLm0aepe3iSSaOV1JgQvHUaRFF8R/H8r5N1HCxpYufqNK7csJyclKhL9ov4tNHKqYoOCkvbqKjrxeX2EBzgxb7Ny9mcl8LKjOiL4uC+JKo+gijlyjnX+HMUDhSyed1mJp3TDNpHGLQNM2QbZcg+Qru5m+KJSkTEudv7KL0J14YQrg0lTBtCuDaEMG0IYdpgfJU+l+wH66OKxW2lzdRFq7mTVlMHbaYu7LMCOlIbxsaQfLL80lnul3rJzba0uO0803OCf/aewCV6uDKqgNvidxComZ9CWJfg4YmOYh5qLkQuk/PdrL3ckijN8GOAE4MdfK/0MAMWA7emruSenC34qi9+Cr9+bITvnXyNmtFh1kbG8JNNO0gOkMbvqGFklHuPF1LW109KcBCPX38tmxLiJVnrHHaXm2fKavjT6XImLTY2pSTwlW0F814zZXU4ebG0nqdOVjM4aSQ22J/vXruVK9csR/8BoyEfBLdH4C8HSnm+sJbc1GicLje/uvvKd/Xc+vxV6/ivGzbhvcjqui6U8SkzJ8raKSxt42xjHx5BJCLEl+v35LAlP4XlKZEX3XNsSVR9jJDJZARpAgjSBJzXjQgzRfIj9nGG7CMM20cZto8xbB+j2dTG6fGy8wSXVq4hVBtMqCaYMG0wIZpgQrVBhGiCCNUELdVwSYzVbaPH2k+nuYcOSw+d5l6G7DNpLxky4vTRbAopIMM3hXTfFPwXwYiYD4LD4+Jf/UU81X0Mo9vK1tAVfC5p97w4oZ+jdqqfH1a/QotxhO0Ry/he9l7CddLsz0m7lZ9Uvs5LXQ0k+Qbx7K5bWRN68U01zU4nvyk/w1/rqgjU6vjt9n1clSKNMemY2cKvT5/mhboG/HU6frxzOzdmZ0k68Njp9vB8VT2PnihlzGRhbWIsX9m2lpWx0gySfifGjGaePnWWZ4tqMdkcrEyInPd6KavdOWdnYDDbKGno4fCvPw/Ad//4Ks8crebydRn4er39MTvY79L6AgYwMm6ksKydwpJWalsGEEWIjQzgk1flsTU/hdSEUEmDAkuiaglgpkg+Wh9BtP6t6Qyn4GLMMcGIfWxuG3VMMGwfo87QNOe5dQ4fpRfBmiCCNYGEaAIJVgcSpAmYvQzET+VzyaScFhKn4GLINkK/bYgB69CMg791gFHH+NxtgtQBJHrFsikkn1SfRJK849Fd4qLWLXg4PFzJ451HGHMYWBOYyl1Je+etow/A4nLwu6ZjPN1ZRrDWmwfybmJHZLoka4miyP6eJn5UfgSTy8FXs9Zzd+Y6NIqLe3gWRZHDXW386PQxRixmPrl8Bffkb8RPc/HfLw63m79WVvFwSRlOt5vPrl7Fl9cV4KORLuLh9gi8XNPEQ4UlDE4bWRUbyf3X7yMvYX59prpGJvlrYSX7K5pwCx62ZSZz+9bVrIifP4uGY5VtHChpxOZws29tOttXpRDoq0elVNDaN0ZqTAiXr8uguL6H5t5R8tJj3/tBFzFDY0aOl7RyvKSVhrYhAJJig7njhnVsLUglIXr+HOeXRNUS74larprrJnwzoihicJkYc0ww6hhn1DHBuGOCccckg7Zhaqcb3yK6FDI5/io/gtQBBKj9CVD7zW7++Kt88VP54q/yxVfl/ZEXXxa3lTHHxOz+m2DYdi5KOMqYY2IuQihDRoQ2lCTvOLaFrifOK5pEr9hLNgr1dgiiwPGRWh7vOkKfdYx03xi+l3HzvIyVeSPHhpr5ae0BRmxGbk5Yw9cztuOtkkaoDltNfL/0EEcH2skOiuAXBftYJoFNwoDJyA9PHeX1ng7Sg0J4ZPdVrAy7+Cd5URQ52tHJfccL6Z02sD05ie9s2UR8gHQeS4IgcqSxjQeOFdE1PkVmZBj/e8V21ifHzWuZwtmuQf5yvILj9R1oVUquyV/OpzevIjZkfrtoXy1u5HBpM9duzsbPS8tTRypxuT3sXJNGWkwo3UOTpMaEsDw+nLNtg/QMT7JmWcwlV9IxNGrgeEkrx0paaWwfBiA1IZQv3LKBLfkpxEYujA3Mkqha4kMhk8nmDE5TfBLe8ntRFLG4rYw7p5hwTjLumGTKOc2Ec5pJxxR9tkFqDY3YPPa3PjYyfJTe+Kp88FP54KPywkfpjbfSCx+lF94qb7wUOryUeryUevQKHXqFDq1Cs2BiTBRFbB47ZreFMdkktdONGFwmjC4TBpeJKZeBSec0U85pJp3Tb3ndOoWWCG0oyd7xbAzJn/Ej00UQrgtFLb9025bfDVEUOT3ewOOdR+gwD5HgFc692bexIXj5vB7oR21G7qs7yJH/z955h7dVn234lmRJlrz3HvGKVzziOF4ZjrMHIYS9UlZpS/t1QNlQKC0to7SF0gKlpdCSsmf2djzivZM4drz33pK1z/eHgxlNIATJdkB3Ll2KpbN0dHTOc97f+z5vVy3hjp78MflKElwt09NOEATeaqjid+WH0ZuMPLAwi1sik80+LGQwmXitpoJnivMQEHggbTm3xCVZZPjt9MAgjx/JJq+llVA3V1698nKWBAd99YwXiCAI5De08qeD+Zzs7iPUw5XnrrmEVVEz1zLJZBLIrW3mlcMlVDR34aS05YdrUrlmSTyu9jNb7GM0mZCIxcwP8GDR/AC8zphvNnQO0Nk/ilIuxcVRQVvvMGqNDid7BfYKGWMq7awLKoPRhI1E/KVJ8zC1v9/cWcqhgnpqG6eE1Px5nvzwuiVkpUbg7z37BqlWUWXFoohEIuyldthL7Qi2O3cYXmPUMqIbZUQ/xqh+jBH9GCO6McYMU2JkXD9Bm6qTcYOKCYPqczleZ8NWLEcukZ95lmErliMTS5GKpcjEUmzENtiIJNiIbJCIJIhFYkSIznj/iAABkyAgICAIJgyCEYNgxCgY0Zv06Ex6tCYdOpMejVHD5Gce09smA2r3T2+TRCTBWeqIq8wZP4UPC5yicJe74CF3w0PujofcFQcb+1k/wc0UgiBQMFjLK037qR/vxE/hzq9iriPLK35GRbFJMPF2Sxl/PHEQvcnIz6KyuDk8HZmF2kR1TIxwX+Ee8ntaSPUK5Pep6wl2MP9d9fH+Xu4/up+a/l4yA+fxm6WrCHA0f2Rz0mjkd0eO8u/yChRSKQ9lZXJ9QjxSieXMiCvbu/nTgTyKWzrwc3bkia1r2RQXOWO5Snqjkb0VdfzrcCkNPYP4ujhy32WZbFkcOyPJ52qtgT+8cYQxtYZl8aGsWhQx/dnD/KdyDj8RWdUNXSxPnLLHiAjwoOB4C3nVzaxZPB93JzuOVjZafHvPRX55Ex8dqMJGIuGWK9MIC/ryfEmxWMT+/FOIRSJ+dN1SVqRG4O89t/z0rKLKypzAViKfdpn/KkyCCbVxkgmDGpVBjcqgQmVQo54WNpOojZNojTo0Ji1aoxaNSYfepEetn0Rn0qM3GTCeEUkGwfCpgDojpsQiEdP/RCJsRBIkIgk2Ism0MJOJZSglClxlzigktmcecuxs7LC3UdJyqpmUhBScpQ44Sh2wkyi/M4LpyxAEgcLBU7zafIDasXZ8Fa7cH301q70SZ7wrwOmxPh6t3EHFUDupHvN4JH4TQfaWyb8wCQKv15fzZMURRIj47eK1XBueaHYTz0m9nj+XHuMfVaW42Cr4y+pNbAqdb/ZjzyQIfHjiJL+tPsG4wcBVcQu4c2kGbkrLRWga+wf508F8DtU24man5MENmVy1KA6ZGUrhzweNzsAHRcd5LbuMruExwrzdePy6taxLnG9REflZBEGg4PQANnYubEiN4m8f5GMyCWQlhWMj+VRUSsRiJia1TEzqplvGLJofgE5v5Pn38hgYVbG3qJZt65JnZLu/iFZn4P19laxIjUBqI+Ff7xVySdYCUhOCvzRi9cKvr0FhO3ej9lZRZeWiQywSY29jN+etAbJP6ol2tEyT24sRQRDIHzjJa80HqRvvwNvWhXuirmSdd9KMiymtUc9Ldbn843Qe9lI5v1+4hc0B8RYTvS3jQ9xbsJvivnaW+szj96nr8bMzf9Qor6OVB47up21slGuiFnB/2nKLJKIf7+3l1wcPU9HVTYidHa9dexULvC1nVdAzOs7zRwr5oOIECpmUn2alsy0tETv5zHiUjU9qeSu/itdzKhiaUJMQ7MP9W1ewLNryvQm/iEgkorx5iBfuWUuglwsanYGS2jZcHBQkRwV+TpAcb+pGrdURGzKVPyeRiMlMDEMutaHkVBu3bUplWUKoxbe5vqWPt3ZOtVu7fF0i0WHeVJzswMPVnk0rYoEpQ87/7ig5I6rgXLt1LgsqmCVRpceIxqjDdo51uLdixYr5MQomcvpqeL3lMKcnuvBVuHJv1JWsnQUxBVDU38yjlTtoVQ2xOSCOe2LX4iq3jEA3mky8VlfK05VTzZafStvIFSELzH4hHtVq+O2xbN45dZx5Ti68sfkq0vzMX9E1MjnJH/OO8UZlFa5KJU+sW4PrQL/FBNXYpIaXc0v4T2EFJgFuTE3kB8sW42I3M87/QxNqtudU8GZeFeMaLenzg7ht1WKSQmbXBHOepz1lde0EermwIMSHlp4hyus7SP5CFd+R8gYuWxbHobJ63suu5pqViSxLCCUtNpi02OAZ2VaD0cR7eyvw8XTC1VnJ9o9LuGJdIh6u9tMJ5gCbVsTy9zfzUKm12CkvTl8smCVR1c8Ea7Mfwk/hxjx7b0LsvAmx92aevTf+CndrY2ArVr4FGExGDvSUs731CG3qfgKUHrM2zAdT/fqePr6fD9oqCbBz4R/pN5Luabm79OaxIe4p2EVpfwdZfmE8nrLOIi1m9jTW83DuQYY1k9yRmMJPF6Via2Peu3mTIPDe8RM8dTSXUY2GbQsT+VlGGo62tmRnZ5t1XQA6g4H/Flfz4tEixjQaNsVF8rOsdPxcZqbatW90gteyy3inoBqt3sCquHBuXZk8J9rImEwC/q5KmroGAXBzsiPIy4Xy+k6GxtS4Ok4Nvw6Pq8mpaiS3uonEcD+2rUsmNcZyhQPnoqVjkIbWAe7/4VoAnB0UvLe3gt/eeQmj45O0dA4S7OeGXGZDVJg3B47VsWVV3Fcmrc9VZkVUuaDke/NW0TzRQ5Oqh/z+E5jOJPdKRRKC7DyZZ+/NvE/Elp03XrbOF5y82jjexb+aD+Bp68zVgcvwsp39CgErVr6tqA1adnYV83ZbDn3aEcId/Ph17A0s81xgMRfyL0MQBHZ0VPNkzT7G9RpuC8/gjshMbCWWGUYwmky8WlfKHyqPIpPY8If0TWydF2v2C0SfWsWvcg6yt/k0se5evLbpCmLczW/HUNvXzyMHDlHe1UWSny+PrlpJlKdlDFhNJoE9x+v408F8OkfGyAgN4q41S4iaof58nUOjvHK4lA+LTmASTGxYGMmtK5MJ8Zo5n6OvQiwW4e+qpHFUR+XpThLC/ZDLbBgYVeGolFNe34GzvQIvVwe+t34x61Iicba3XGRPNanjwwNVjIypuXRVPP7ezp8TRAE+Luj0BvoGx/F0cyAqzIdDBfU0tg2wKn0+7++r4s5bsgBIigmkb2Ac4KIUVDBLokqBlFtC1kz/rTXqaVX30TTRTdNED82qXqqGmznQU/HpPBIZwXZe00Ir2M6LEHtv3GSOX7nzjQgku0bwj6a9q5BiHgAAIABJREFULPNYgJety1lVcJ9mBCepHfIzJ9uLVSlbsTIbDGrHeL/jGB92HGPcMEm8cwh3RW4l1S1y1n5HrRODPFa1i4L+JuJd/Pl1wiVEOFku2tAyPsTdxz6NTv0uZR1eZo5OCYLA+/UneSz/CJMGPfekLOX2hGSz2ySMa7U8m1/Af8orcLS15cn1a7ksJtrsifWfUNLSwdP7cqjp7CXS24N/bNtKRtjMRFba+kf4x6FidpbWggguWxzDzVnJ+LvNng+cwWiiuWuQ8ID/FbDezrYI9o68squI536+FYlYjMlkwsZGQlvvMF4uDtjZyrhmZaJFt9FkEvjzvw6jNxiJDvPhV3/eyaM/3fA/HlGxEb4cK29iy+p4HO1tiQr1oqiymcvXJfLrv+ym/EQ7CVH+NLYNcPm6BItus6WZE4nqcomUCAc/Ihz8Pvf6hGGS5jMiq3milyZVNwUDtezuLpmext5GwQafRfwkYvM5lx9q70OwnRe7uksIUE417/zkJP+JcNrZWcTR/hq6J4dRSGQ8Gns9fkp3TIKJXs0IbnJHi5VYW7FyMdMw3sXb7Tkc6qnEIJhY6hHDdUEriHaaPZdmncnAK6fzebEuB6lYwsNxG7hq3iKLRcpMgsC/68p4suIIUrHEYtGprokxHjh6gOy2ZpK8fXkyc63Z+/UJgsDe+tP89vAR+iZUXBsfx51LM3BWWCba0TwwzDP7czl0qhEvR3t+v3Utm+OizN6T7azr7hvi5YPF7C47hVQi5qr0OG7KWoS388z0lTwbQ2NqPsip4f2jVUxodOx5+vbpVjOfYCMRc+PKRZxs6eUHT79NR/8ov7wmE4AtSxfM2LaOTUwyPDbJvbevwsPVgY6eYT44UM1Pblw2bfFgYyMmPtKPwwV1bFkdj63cBpFIhFgsxtfTies3J/PevkqeeGk/4cGe+HnNLYuEr8ucVgn2NgoWOM9jgfPnTSVHdBM0q3ppmuihRdWDj+LLTyoSkZg2VR8GkwE3uePn3hOJRJwcbWNHVxHPLvwhthIZ9eOdeNhOfbFvt+WS23+cHs0wl/mnc21Q5qwMYVixMpcwCiYKB07xbnsuZcMN2IqlbPJL4YqAJTPam+9slA+28UjlDhrH+1njG80DC9bhqXD86hkvkI6JEe4p2E1BbyuZviH8PnWD2XOnBEHgrdoafnssG6Ng4pGMLLbFJpjdl6ltZIRHDx4mp7mFaE9P/rZlM/E+lmmvMqye5IXsQt4orkZmI+HnKzPYlpaIQmb56q7m3iFeOlDE3oo6ZDYSbli+kJsyk3B3nL2K4tqWXt48VMH+kjr0BiOLowK5emUictm5L9O/uXUdHQOjBHvPjnt4V98YXm4OqCZ1eACXrorjb9tz6egZIcjXFUEQkIjFLFscxn8+KqbseBtJsYE0tQ2QkhAMwLLkMMKDPbFTSHG04DDlTDGnRdW5cJbZkyizJ9Hl/JNMOycHcZJO/WBMgmk6P0tl0JDdV81KrwTG9ZPIxdLpiFmHeoD3O/L5b9q9iEQibi95jvU+i/5HmFmx8l1hVK9id1cJH3Qco0czjIfciR+GbeAS3xQcpDPrIP1FRnRqtqvryM/NxlfhxAup17HcO8Ji6xMEgTcaKvld2WFEIngidQNXhcaZPTrVOT7Gfdn7yO1oJdU3gKdWrCXQ0bx38zqjkX+WlPF8QQE2YgkPZ2VyfWKCRZzXdQYjbxRX8cLRQsY1Oq5MiuUnWWm421te0DT1DvLS/iL2VtZhK5XyvcwktmUm4eYwO8euwWDkcHkDbx6qoLqxC6VcypalsVydlUiwz1cLJRsbyawJKgBvD0f6BsdRqadakYUGeiAWiWjrGiLI13X6t6C0lXHtxiT25Jzk8Rf2EeTrSsS8T/PkfDy+PdfUi1JUXQgtql58FFMHn8Cnw37Dugk61AP0a0fJ7z+JjVjCzyIuxU/pTulQPWnuUdiIJYzr1cQ5BXNyrI2lHrGz+2GsWJlBBEHg+GgLH3cWcaSvCp3JQIJzCHeEb2KJe8ysV+sKgsCO9mqeOr6PEZ2am8PSuSNyOXY2livL7lKNcV/hbnK7m8nwDubJtA1m950SBIE3a2t4/Fg2JkHgN0tXcX1MvNlzmso6OnnowEFODwyyNjyMh1euwNvB/MNfgiBwpK6Jp/bl0Do4QkZoEPesW0aEl7vZ1/VFmnuHeHF/4bSYumVFMtsyk3CZpcjIyPgk7+dU8252FX3DE/h7OHHXNZlckh6D/UVkJ+DqpMTH04mTDd34ezvj5KBgXoAbRZUtLF0Uhkqt5UhhPZuyFrBxRSzpSaGMjKkJCbD8dz5bfGdE1ZBunATnEGBqOFAQpqoNh3XjGAQjGa7RbPRdzGvNB3m3PY/vh66nXzvGPLuppFatyYCjVMmgdgywJrFb+fYzqldxoKeCHZ2FNKt6UUrkrPdZxBb/dELtLTMk9HVpHh/gsapdFA00E+fixw/l0dwQu+arZ7xABEHg/ebj/LrkAEbBxGPJa7ghYqFFcqfuy95PTnsL6X6BPJm51uwtZsY0Gp7OyeONqmp8HR146bJLWRlmGYuJ+t4Bfr8nm8KmdkLcXXnphi0si/jfXqHmpqVvmL8fKGR3eR1yqQ03r1jE9zIXzZqYaugc4M2D5ewprEWrN5ISHcT9N6wiY8G8GckhMydjExpyik/T2TuCUiGjqKqFNUui8PVyZmBoqoJPqZBxurV/urefq5MSV6fZjWh/XQwGI+0dQ+c9/bdeVO3rLuODjmPUjXeQ6RlHgksoDlIlijPGo25yJ7xsnZnvMNWXzkVmj9aop087gsaow0U2dcemMmhQGbWEys59MbEamlq52DEKJkqH6tndVUJe/wn0gpFIB3/uibyCLK8ElBaM/nwdNEY9f6/L5Z8N+diKbfhV/EauDE4i92iOxdY5oFHxYNFe9rfXs8jDnz+kbyLIwbz2LIIg8E7dcX6TfwSjSeA3S1dyfUyCWaNTnySiP3boCINqNTcnLeTnS9Kxk5n/3DWsmuS5w8d4u7QGB1sZD2zI5JrkOIu3dOkYHOHF/UXsLK1FJpWwLXMhN61YNONNjmGqQu7Y8WbeOFhB0clW5DIbNqRFc+2qhYT4zh2rhq+D0WTirV1ldPePcc3GJPQGI//dUcrenJO0dQ/zh3svA6Zyln9xc9Ysb+3XZ3RUTVFJEwVFjZSUNWM0ms573m+9qFrhFY+/0p0WVS/VI82UDZ1GJBIxYdCw3mcRvgpXTILAqfEOQu19yO0/QYrbfELtfWia6CbdPRqANnUfgiDgdyYp/mx3pj8u/St92lGC7bwIVHoQZOdFsJ0nQXaeeMidZrRJrBUr54sgCNSPd3Kgt4JDPZUM6sZwkirZ4p/OBp9FhDr4zvYmfo7c3tP8tmo37ephLvGP4+7YNbjb2lt0nXvb6niwaA8Teh33L8zi1shksyeJ96kmuP/ofg61NrHYx58/ZK0ze+5U9/g4jx48zKGGRqI9PXl56xZivc1vMaE3GnmzpJrnDxeg0um4bnE8P16RhrPS/C1zPkvP8DgvHSjko+KTSMQirl+WyC1Zi3BzmPkEdI1Wz67CWt44UE5LzxDuTnbccVkGW5fHWdQ36pug0eo5WtzAnpwTrFsazbpl0WedTiIW8/2rMz73mpODgpExNSnxwdjMUC9GcyEIAs0tAxQUNVBQ1MjJ2k4EAVxd7Vi+dD6pi0PZ+/Fd57Wsb72okoltiHEKIsYpiI2+i6dfN5iM07kgG30X8++Wg7zbnstS91jWeicB4Kd0p3Gii1inIN5tz2ODTzJBduc+AW3yS+H0eCetqj6O9tUwZiiafs9WLCXQzpNApSdBdh5nnr3wV7pbrRqszAotql6ye6s51FtJq7oPG5GENPdIVnsvJMM9GukcOy671CM8UbOXg92nCLZ345WMbaR6hFh0nWM6DY+U7OfD5hPEunrzTPomIpzNX924s+EUD+UcZNJg4OH0Fdwct9Cs0SmTIPBGZTVP5eRiNJm4d/lSbl6UZJFE9ILGNh7ffYTG/iHSQwO5b/1ywj0tm0MzOK7i5YPFvHOsBgGBK9IWcNuqxXg6WVZsn42BURVvH67kvaNVjE5oiAz05LFb17E6eT7SOSg2BEGguq6T3dknOFRQj3pSh5e7w3SKzFfNazQJ2EjExITPjZSA80WnM1BR1UpBUSOFRY309k2l9kSEe/O9GzJIXRxKeJj31x6WnVtnzRnks8m10U6BPBF/C/D5ysAbg1fyZO3b7OgsYrnnAlZ6JXxpUu5l/unT/xcEgRG9ilZVL62qPlrVfbSp+qgZbeZg76empmJE+ChcCVR6EnhGbAUqPQi088RZamfN27JiNgRBoEXVS07/cY70VdE00YMIEQucg/ll4OVkesbhOMsVfGdDZzLwn8ZC/nbqKAICP49eyU2hacgklj195XY3c2/BLvomJ/jZgiX8eEE6UjMn5Y9oJnk49xA7Gk6R4OnDM1nrCXUxbzVX09AQD+47QElHJxlBgfxmzSoCnc3vBdQ5PMqT+3I4cLKBABcnnr92M1mRIRY9h42qNLx6pJTteRXoDUYuTY7h9tUp+LrOfDVZQ+cA2/eXsbfoFAajkWXxoVy/JonE8NntE3guegfG2H30JLuzT9DZO4JCLmVFWgQblseQEOV/XmJCJBJhI5l7n+1cjIyoKSxu5FhhAyVlzWg0emzlUpIWBnPDtWmkpoTi7vbNijS+s6LqXHx2iM7L1pk/Jt4OTOWafB1/KpFIhIvMHheZPQlfsH6YNOpoU/XRru6nVdVHm7qfNnUfZcOn0ZkM09PZ2ygIVHoQoHQnQOlJgNKdQKUHfkp3a+6WlfPCYDJyYrSV/IGT5PafoHNyAIA4p3n8LOJSlnsuwF0+e67RX0VBfxOPV+2maWKALO/53B+3Hj+lZc0B1QYdT5Qf4T/15YQ6uvH+uu8R52YhryaNhuy2Zn65eAk/TFxs1siRwWTiHyWlPJdfgK2NDU+sW8PlsTFmv8DrjCb+eqSQl3OLEYtE/GxlOjenJyGXWu7yotbqeD2ngteOlDGh1bI+MZIfrU0lyGNmW5AJgkDpqXb+s6+UY8dbkMts2LI0lmtXLSTQa+61Q9Pqpob3dmWfoLSmFUGAhTEB3HJFKstTwv/HZPRiRxAE2toHOVbQQH5hw/Swnru7PWtWxpCWGsbChCBkX+IF9nWxiqrzxJyGnwqJjPmO/sx39P/c68Yz7u3t6j7aVFNCq109QPlwI/t6yj83rYfciQClB/5Kd/wV7tPPPgrX6TY7Vr6bDGrHKB6qp3DgFCVD9UwYJrERSUhyDeOawGVkeMTgPse91rrVozx1fB/7uk4SoHSxuOfUJ1T0d3LnsR20jA9za2Qyv0xYbvbmxJ9lnrMLeTd8Hye5eXONavv6uW/vPk709rE2IpxHV2bhYWYfqE8sEh4rqmVQo2N9bAR3r12Gj5Pl3Mh1BgPvHKvh5YPFDE2oWREbyo/XpRPhO7Ml+gajiYOldfxnXxl1bX24Oij54ZZ0rsiMn3P5UoIgcKqpl51HjnMw/xTjKi3eHo7cfHkaGzJj8PWcuzdVF4LRaKLmRAfHCho4VthAZ9cwAOFhXmy7PoOMtHDCQj0tFj20iqo5hEQkxlfhiq/ClRS3yM+9pzZo6ZgcoEM9QLu6nw51P+3qAbJ7qxkzqKenEyHC09YJf4U7fkp3/BRu+Cnc6BXGmDTqpqserXx7mDBMUjPSQslQPWVDp2lW9QLgKnNgmUcsqW6RLHILx95mbp3sz4bWqOdfDcd4uT4PkyDwf5EruCU83eI3Cjqjkedq8njhRAHeSgf+u+o60rzN03fOJAhfmh9lTkGlNRh4obCIF4tKcLK15fnNm1g33/xitG1ohMd3ZZNzuhkfO1tevekKUkICzL6eTzCaTOwpr+P5vcfoGhojOSyAZzdsJj54ZvN4JrV6PsqtYfuBcroHxwjyduGhbatZnxZl0cjchTAypmZfbi07jxynsW0AmdSGzJRwNq2IYWFM4EVn4fBlTGp0lJQ2k3fsNEXFjYyNa5BKJSTEBXLl1mTSUkLx9JyZG8m5dRRYOSdKG/lZ+yMCjOnVdKgH6JgcoFM9QOfkIB3qAY721TCqV01P99fsXFxlDvgqXPFTuOGjcDsj4tzwsXXFTe5grVC8CBjUjnFitJWqkWaqRppoGO/ChIBMbEOc8zzWeCexyDWccAffi+b7FASBwz11PFmzlw71CKt9orgndg1+dpYfQqkb6efO/B2cHO7lytA4HkpaiaPswoXOiYE+3jlVg4fCjlvjF2FrM3WatbS3XU1PD/fu2Uf9wCCXRkfxUFYmLmbu16fRG3g5t5h/5JUilUi4d+0yArRjFhNUgiCQW9vMs7vyOd09QJS/J49cuYrUiMAZzVMaHlfz1qEK3jlSxahKQ3yYL7+8dgVL40LmlDgxmQRKalrZcaiGnJIGDEYTUaHe3PP9VaxMn4+DnWWrL2eS4REVxwobyD92mrKKVnQ6Aw72tqSlhpGeGkZyUjDKWTBStYqqbwGOUiXRToFnbWA7rp+ka3KQ/aU5OId40akepGtykPLhRgZ6KhD4tMJDJrbBy9YF7zMPH4Xr9N9ets64yR2tfQ9nGJVBw+nxTurHOzk52sbJsTZ6NFPh7E8qW7fNW0m8cwixTsEX5dDv6bE+njq+j/y+RkIdPPhnxjbSLFzVB1PRj1dOlfCHyqM4SOW8tPxy1gR8s6hOw/AgP9m/g+8nLKKgs51f5x1mzbwwVgRZLmFbazDwl2OFvFxcgrudkpe3bmFFqPn339H6Zh7fdYT24VE2LpjPPWuX4eloT3Z2ttnXBVDV0s2fd+ZS1tRJoLszT924gTXxETMqYjr7R3l9fykf559AqzOQmRjKjWuTiQ+bWzYjvQNj7Mo+wc4jx+npH8PR3pbL1yawKWsBoYHfHvfyzq5h8gtOk5d/muMnOxAE8PJy5JIN8SxJj2BBrD8Syexeo6yi6luOg1TBfKk/3WJfMoMzP/eezmSgVzNM1+QgPZPDdGmG6JkcontyiNPjnYx8JsoFU8OTHnInPG2d8ZQ7n3l2wsPWCU+5M+5yR1xk9hdNdGQuYRRM9EwO0aTqoWmim6aJHhomumlX909P4yl3JsYpiCsClhDtFEiEg/9FbccxolPzfO0R3mopxc5Gzn2xa7k2ZLHZK+zORvvECHcd20lJXzur/cP5Xep63G2/ec5R88gw0e4eXBcdz5XzY3m1ppzCrnacbRUkepl/qKqmp4e7d++jYXCQy2NjeHDFchxtzRuN6B4d53e7szlY20CIuyv/uulyUkP+9wbOXLT0DfPsrjwO1TTg5qDkwcuz2Joaa3HD0M/S0NHPa3tK2F9Sh0gkYkNaFNvWJp9XP76ZwmAwklfWxI7DNRRWNiMIkBwXxB3XL2VZchiyOTYceSEIgkBDYx+5+fXkF5ymqXnqfBga4jkj+VEXwsW/161cMDKxDQFKDwKUZ/fdmTTq6NUM0zM5TK9mmD7tCL2aqceJ0Vay+6oxCMbPzWMjkuAmd8Bd5oib3BF3uRNucgdcZQ64yRxxlTvgIp2qipztnnEzjVEwMaAdpWtyiM7JQbrUg7SfqfzsUA+g/8y+9FW4Emrvwxrvhcx38CfCwQ9XueUSgGcSncnAm00l/K3uKCqDlquDF/HjyExc5JY3aBQEgbcbq/lN6UHEIhF/SNvI1pAF3+ik3D0xjqtCgVxiQ5ynN6/WlHNioI8Yd0/WhUTw9qkayno6me/qhlJqnpxGndHIXwsKebGwGHc7Jf+4fAuZIeaNTumNRl4vrOT5IwWYBIFfrMrgpvQkZBbyWhocV/PS/kLeLahBJpVwx9o0tmUuRCmfuTzQqoYuXt1dTG51Ewq5lGtWLuS61Qvxcp07v72OnmH2FnTwh+1/Z2hUjYerPTdtTWXjithvRdK50WjiZG0XOfl15ObX09s7hlgsIjbGnx//IIuM9HB8vC1bAfxNsIoqK+dEIZERbOdF8DkMT02CiWHdBP3aUfq1o/RpRhnQjjKgHWNQN0abup/y4QYmDJqzzu9oo8RZZo+zzA4nqR3OUjucZXY42ChxkipxlNrhIFVgb6PAwUaBvVSBrVg6p+5KYEokjOlVjOpUjOhVDOrGGdKOU2k6Sc7xTvo0o/RpR+jXjmIUPm13MFWY4EaA0oMUt0gC7TwJsfMm2M5rzrSDMSeCIHCgq5ZnTh6gXTVMukcI9y5YS7ij+R29z0b/pIoHivZwsOM0aV5BPJW2EX/7b3YReijnAOW93cxzcmZVcBjr5oWzyMePYx2thDi5EODoRLynD++cOs5t8YvM8jlO9vZxz569nOofYGtMNA9lZZo9OlXR1sWjOw5R3ztAZsQ8Hty4An8Xy1yw1Vo9r+eU88rhErR6A1ekxfHDNSkz5oIuCAJFJ1t5ZVcx5fUdONnb8oNL07hqRQJOc6SST28wklvSwIcHqymtaUMsgoykUDaviiM1Idjs7v4zjcFgpKKqjdy8evIKTjM8rEIqlbBoYTDbrs8gPSUMZ+e556F3NqyiysoFIxaJcZNPRaQiOXeiqtaonxIaujEGteOM6CYY0o0zrJtgRK9iRDdBu7qfGl0z44bJzwmPLyIRiVFK5NjZ2KKQyFFKZNhKZCgkcuQSKXKxFJnYBrlEilRkg1QsQSq2QSISIxGJEZ95/qwsE5iq0DIKJkyCCYNgRG8yoDcZ0Zn06EwGJo1aJo06NEYdKqN2qhekQcOEQcOkUXvWbbVBjOfY1FBpnPM8POXOeCtcposEPOVO35loXeVQO384cYDywTZCHTx4Me16lnqGzZhA3tdWxwNn2sw8lLSSmyOTv7Fj+a7GOjrHx9h95TbyOlp5LO8wfvaORLi6U9nbze6mei6fH8Oq4FD+Wl5ITX8PCzy8L3h9BpOJl4qK+cuxQlwUCos0QB6b1PDHg/m8XVqNl4M9f7n2ElZGhlrkezKaTOwsreUvu/PpG1OxckEYP92YwTzPmRliM5kEcqoaeWVXESdbevF0secXVy1n6/I4FPK5kZvY0TPCx4eq2ZV9guFRNV7uDnz/qnRcbce5dJPlGofPBFqtntLyFnLy6jlWeJqJCS22tlJSkkNYtmQ+Kckh2NldfDeXVlFlxeLIJdJpq4ivQhAEVEYNY3o1o3o1E/pJJgyTjBumnlUGLerPiJlPhM6IXoXWqEdr0qMz6dEa9egF45cKtK/CRjQlyGRiGxRnxJutRIZSIsdN6YC9jQJ7G1scpXY4SZU4Se1wktlNDXXKHSjJLWRF+ooLXv+3gebxAf588hAHumtxk9vxSPwmLg9KnDExOabT8OvSA7zfdJxYV2/+mH4J4c7mSdy1k8qwl8kRBIEl/kF8b8FC3qit5keJi9EaDOxrbqBfrcJdocRoMuGu+OrIS2VlJU8//TRHjx5lYGAAHx8fMjIyuPb2H/DP1jaqe3rZFDmfR1ZlmbWyTxAE9p6o53e7sxlSTXJjaiI/zUrHzkJDb4X1bfxxRw6nOvuJDfTmqW0bWRjyv5XNlsBoMnGgpJ5XdhXR1DWIv4cTD21bzYa0qDmRh/RJrtSHB6sormpFLBKRkRTCpaviSDkTlbJUcYClmZzUUVjcSE5ePYXFjWg0euzt5WSkhbM0I4JFC4ORzxFBe6HM/hFkxcpnEIlEZ8SKAl/FN+/gPhV5MmEwGTAKAiZMGE3/K7Q+iWB98pCKJd844X6uDVPOJL2TY7xYl8O7rWXIJVL+L3IF28JSsZvBYc287mbuOdNm5v8WZPCT2AxkZkx2lkskuNoqaBkdYZ6zC9fHxFPe28WOhlPctXgJkW4e/PdkFVV93fxu+Rp87L88L+fVV1/ltttuY9u2bbz11lsEBATQ1NzMA08+yQ13303oDdt49pKNbIycb7bPANA1MsZjOw9ztL6ZaB9PXrxhCzG+lhmSbe4b4pmPc8g52YyviyNP3riBdQkRM/JbMRiM7Ck6xb92F9HWO0KIrxu/uW09q5PnYzPLFWMAfYPjfHyomo8P1TAwrMLTzZ7brkrnkqxYPOZQTtfXRa3WUlDUyNHcOopKmtDpDLg4K1mdFcOyJREkxAdedA2YvwyrqLLyrUYsEiMTiS/qKrmLiWGtin+czue/TcUYBRNXBy/iR5HLcZPPXGPbSYOeJyqO8O+6MkIcXXl37TYS3M1TAv9ZI89F3n68WVvDkbYmXBUxOMltuXvxEq7+6C22RsQQ7e7JIxlZ51W1VlBQwG233cbTTz/NL37xCwC6x8d5paCYvhWr2OThzjNXbMXT3nz70Wgy8XphJc8dPoYgCNy7bjk3pCRYRGCMqjS8sL+At/OrkUtt+PmmJVy/NHFGDDP1BiM7j53gX7uL6RoYIyLAgyd/tIkVieGz7jFlMgmUHm/l/X1V5Jc1YhIEUhPmcff340hLDJkTYu9CmFBpKShs4GhuHcWlTej1Rtxc7dm4Lo5lS+ezIGb2rQ8shfVKY8WKlW/MmG6SfzcW8lpjAWqDjs0B8dwRuZwAu5ktQW/UjvPYrldoHh/i5shF3JOQ+Y3bzDyadxiljZR7UpdOCyqTICCVSLglbiHPlRbgbWfPsoB5eNs7kOjlg6N8KiJ3vjYAd911FykpKdOC6uOTtTx68DAGk4nfrlnF1XHfrELxi9T19PPwRweo6exlaXgwj1yyEj9n8ztO641G3s6v5oV9BUxodFyetoA71qbh5mD5pGOd3sDHeSf4155ieofGiQ724u5rs1gSN2/Wo8hjExp2Z5/ggwNVtHcP4+yg4NpLFrFldfxFW8E3MaHh2BkhVVLWjF5vxN3dns0bE1i+NJKYaL9ZF7EzgVVUWbFi5YIZ12v4d2Mh/24oYNygZbVPFD+JWkG4o+eMbofWaODZ6jxe7D+Oj50j21ddS7p38DdaptFk4r6j+2keGWbSoGeBhxfrQyMwmkzT1Vbxnj5cMT+Wou523qtIQ0Q1AAAgAElEQVQ7wZhWi5OtLY6y8x/mPH36NAUFBbzxxhuMajQ8cuAQO0/Vkejrwx82rCfIxXzl41q9gReOFvHPvFIcFXL+cOUGNsRaZvgtr7aFpz86SnPfEKkRgdx96XLCfSxvRKnTG/go7ziv7i6md3iCuFAfHtq2mtSYoFkXU3VNvby3r5ID+afQ6gzEzffl1ivTyEwJnxP5XF8XlUpLfsFpsnNOUVLWjMFgwtPDgUsvSSRzaSRRkb7fCSH1WS6+b9GKFSuzzohOzfamYv7TWMiYXsMqn0h+NH85Uc4z24sNoHa4jzvzd3BqpI+lSk/+uvEGHL6GqDkXErGYmxYsxMfOnqq+Hp4uziPJxw9Ppd10Xp5ELGZ9aASZgfM42t4CCKwL+Xqu7OXlU83SJT6+bHz13wyo1PxiSTo/SFmMjRlL5SvaunjowwM0DQyxOT6K+9Yvx0VpfsuAlr5hnv7oKLm1zQS6O/PcrZtZHm05R/lP+F8x5cvDN60lJXpmW9p8Eb3ByJHCet7dW8Hx+m5s5TasWxbN1jXxhAfP7M2HOZic1HGssIEjR09ND+15uDuwZfNCViyLJHL+d09IfRarqLJixcp5M6CZ4LXGAt5oLkFt0JHlPZ87IjOJngUxZTCZePFEAc/V5OEkU/DPzCsRN3SYRVB9Qoz71EVvRVAIBZ1t/CrnIC+uu3Q6UqUzGjk12E+cpzfrQsIvaB2j4+MA3H3oMBFBQbxz/TUs8L5w64UvotLqePZQPq8XVeLj5MjLN17GkvBgsy3/EyY0Wl7aX8T23ArkNjbctXkZ1y1JQGrhJGS9wcjH+Sd4ZVcRvUPjxIf58qub17I4anbFVP/QBB8drOLDA9UMjaoJ8HHhZ9/LZENmzEXXg0+r1VNY3MSRo7UUFjei1Rpwd5sa2stcFkl01HdjaO98sIoqK1asfCWtE4O82lDAh22V6E1G1vnFcHvEUiKcZsa484s0jA5w17GdVA92sykoiscWr8FFriS7ocNi6/xxUio/2vcx/6ou5+a4hXSOj5Hf0YqH8sJNKusHBvh329Q2JxkNvL7tBhTSz+eAqdVqlMoLy0EqaGzj4Y8O0DkyxvUpCfxiVYbZbRJMgsBHJSf48848hibUbEmO4acbMyxu3mkwGNl57CT/3FVE9+AYcaE+PPy9NbMamRIEgeP1Xby9p4LsotOYTCbSEkO4Yl0Ci+OCLyrhodMZKC1v4cjRWvILGpic1OHirGTdmgWsWB7Fghj/i+rzzBRWUWXFipVzUj3cwSun8znQVYuNWMKlAfHcEp5OsP3sNGk1mkz881QJz1QexU4q4y9Lt7ApKGpG1u0kt+W3y1bx4/07yOtoIcDRiR8kLP5Kq4SzIQgCr1dU8cTRo9h5eZGSmUnuy3/nrfAwMjIyEIlElJeX8/LLL/PII4+wZMmSr7X8CY2Wp/fn8nZpDcFuLrx+61UkBZnfB+pkey9/zqunZbiSBYHe/OXWS4kNNF+U7WwYTSb2FJ7iHzsK6OgfJWaeNw/cuGpWc6Z0egOHjtXxzp4KTjX1Yq+Uc+X6RLauScB/DrdU+SJGo4nK6jYOZ9eSk1fHxIQWRwdbspZHsmJ5FAnxgd/aqj1zYRVVVqxY+Rx6k5GDXbX8p6mQyqEOHGzk3BaxhBtCUvCwnT2/nMbRQe4p2EX5QCer/cN5PGUdHoqZs2oAkIrF9Kgm8LN35M7kJdNVfl+HQbWa+/bs40hTM8vnBfPk+rU43HYLzz77LH/84x/58Y9/jEwmIyQkhI0bN7Jo0ddrb5N3uoVffXyQ3rEJbslI4v+y0rE1cxL08MQkf9mdz3tFNdjLbPjNtWu4JCnaopELk0ngUFk9L350jNaeYSICPPjjTy5labzl87XOxeCIig/2V/HBgSqGR9UE+7nyy9tWsm5ZNErbmetZ+E0QBIHaum4OHznJkZxTDA2pUChkLEkPJyszikULg79VPlKWZlZEVa9JzX1l7xNo5zr1sJ96dpIqZr06w4qV7yoDmgneay3nrZZSeibHCLBz4f4F69gamIiddPbaRRhNJl45VcIzVTnYSmz4U8YlXBocY5FzxYhmEie57VmXLQgCf6so5qdJadwct/CClp/b3MI9e/YxqtHwq5UruDExYXpd99xzD/fcc88Fb/u4RsuTe3N4r/w4oR6u/Pe2q4kPMG+um9Fk4v3C4zy3O58JjZYbli0kVmlgfXKMWdfzWQRBIK+6mRc+zKe+vZ8QX7dZ95mqa+rl7d3lHMg/hcFoIn1hCFdtSCR5wexXGJ4ver2R//w3n0NHaunqHkEqlZC6OJSszCjSUkIvemdzczI+Nnne085apKp4oIWP26s/95qj1JZAO1cC7FwI+ERw2bkSaOeCh63DBR+srzYc42BXLZFOPvwydjW2EuvBYsUKTF2wygbbeLO5hP1dJzEIJlLc5/Fw3EaWeYcj+Yau8t+UhtEB7i7YReVAl8WjU0fbmrnr8B5+kZzB9THx//O+SCTiN0tXXVBFns5o5JmcPP5ZWkaYmxv/umIrkZ4e5thsAI41tvLQhwfoHZvgtiWL+MmKNLMba9a09vD4e4c42dFHcqg/91++gjBvd4u2TCmra+ev7+dR3diNn4cTj926jrUpkbPSQNhoMpFX2shbu8qprO1AaStly+p4rlyfSICPy4xvz9noHxhnUq0jMHCqG4UgCOe8btrYiMnNP42vjzM3XJvG0owI7O0vrgR6SzExrqGyrIXy4iYqS5sZHVGd97yzIqq8xEoOr70TjVFPu2qYdtUQbaoh2lXDtKmGOD7Sxf6ukxgFYXoehUSKv53LtOgK/Izo8lY4fmkvsUA7VzYFxPFiXQ4Pxq0/6zSCIKAXjLzTUsYqnyi8FOY3wrNiZa4wqJ3go7Yq3m+toGliAAcbOdfOS+bqeYsIcTDfxf5CMZhM/P1kIc9W56G0kfLnjM1sDo62SBRAZzTyTHEeL1WWEOHiRrLPuXOPLkRQNQ8N8/OduzjR28d18XE8sGI5tlLz3NiptDqe3pfDW6U1zHN3YfttV5Ng5ujUqErDc7vzeLewBncHO564YT3rE+dbNCJT29LLXz/Io/BEK54u9jxw4yo2Z8TMyjCUWqNj15HjvLW7nK7eUbzcHfjJjcvZvHIB9sq50fB3fFzDX144SM3xDiLn+xAZ4c3VV6Z86XckEon4+19vQiq1Du0ZDEZqj3dQXtxEWVET9bVdmEwCtgop8QuD2XhZEu8fOL9lzWpOla1ESrij51mNAvUmI92To7RNDE2LrtaJIZonBsjtPY3OZJye9pp5i/hV/KZzrifLJ5JToz34KJwQiURnVe8ikYgnqvfybks5bnJ71vlNhbMPdtXy78ZCvBSO/DRqxYw7RFuxYi50RgM5vaf5uL2K7J56DIKJRNcAfpO4mQ1+sShs5kYOyMnhXu4r2E3NUA/rAyP5dfIaPM6jGfGF0D42wk8O7KSqr4fro+N5OOObO7B/lg+On+SRg4eQSSS8sGUzq8PDzLbs0pYO7v9gH50jY9ycnsRPV5o3d0oQBD4uOckfd+QyNqnhhmUL+dHaVOxtLSckWnuGeeHDfA6W1uNkb8vPr1zGFSvisZXN/OhC3+A47+yp4KOD1UyotcRG+HDH9ctYlhw2J9rHTExopiNLQ8MTqFRa3vj3DxkaVvGzu7YTG+NPTPSXFyd8VwWVIAh0tA1SVtREeXETVeUtTKp1iMUi5kf7cu1NS1i4OISoWP9Phfx157fsOZuoLhVLpiNRX8QkmOjTjE9HtoLsvrrxbtN4P86yKaM7AQERn4oqtUFHTu9p+jUTXBW8CFfZVPnyiZEu/nLqCI8lbKZ4oJkX6nL43cItZvqEVqxYHpNgomKonZ3tNezpPM6YXoOb3I4bQ1PZGpRI6ByISn2C1mjg+Zp8XjxRiJPclueXbmGjBSv7djSc4oGj+wERf1tzCRtCzdeoeEKn45EDh/joZC2LA/x5ZuN6fBzMk+Sv1Rt49tAxXi0ow9/Zif/cYv7KvoaeAX777mHKmzpJCPbhwctXMt/PcsdK3/A4L+8o5OO848ikNty2KYUb1i7CXjHzkaC65l7e2FHGoYI6BJPAitRwrt6YRGyEefpHfhP6+8f4eFclh48cJ7dgjK2XJhET7UddfQ9BgW5oNHpcXezIyozio50VXymqvkuMjaqpKGmmrKiJsuJG+nvHAPD1d2Hl2gUsXBxCwqJ52Dt8syFQs4gqkUj0CrAJ6BMEIdYcy/wyxCIx3gonvBVOJLsHn9c8XepRvBVTPZWEL7yX39dAQV8j20JT+bCtEieZApVBS25vA6t8Iol39cdBKufXlTtRG3Qo58gdvRUrZ8MkmKge7mRv5wn2dZ6gVzOOrcSGlT5RbA6II80j5EuHy2eDsv4O7i3YTePYIFtDYnkoaSUucsv0h5vU63ks/whv1FaT6OXDc6s2EeBovn5rx3t6+dmOXbSPjvKzjDTuSE25oByg7du38+CDD9LW1kZgYCCPP/44iVmruefdPTT2D3FNchy/XLPUrL5Tkzo9f99fxGvZZdjZynj0qtVsWRxjsYTwCbWW1/aW8N+D5RiNJq7IjOfWTam4Olq+N+BnEQSBoqoW/rujlNKaNpS2Uq5Ym8BVGxbiM4d68b35bjFarYFrr4xgYtKJHbsrcXOzx9FRQVv7EDLZ1CV9w7p47r7/LSY1OhQXSRWiuflkSK+0sJHy4qkhPUEAewdbEpKCufZ7S0hKCcXHz7z5cOaKVL0KPA/820zLMzsd6mH8lFN+IYIgYMSERCTmYFctp0Z7eTh+I53qERQSGT4KJwa1KkZ1alI85gGgMRqIcvbh5Eg3i9yDZvOjWLHyP+hMBkoGWjjUfYrD3XX0acaRiiUs9Qzjl/6xZHpFzGoF37kY02l4ujKb7fUV+Ng58mrWVSz3DbXY+uqHBvjJ/h2cHh7kR4mLuTM547ybHn8VgiDwalkFTx3Nwc1OyfZrriTZ3/+ClrV9+3Zuv/121Go1AK1t7fzyn9txrevD3cHOIq7oubXNPP7eYbqGxrg0OZo7L1mGi73529jAlK/TO0eqeGVXEaMqDetSIvnhlnT8PWbW00lvMHIw/xTbPy6lqX0AD1d77rh+KZeuipuTrudbL03C1dWOosJjpKRE8cyz+xCLRCQlBvPiy0do7xgkKNAdL09HlEoZxSXNLF86/0sT1r9N9HSNUFrUSFlhIxWlzahVWsQSEZHRftx423KSUkKJiPRFYmO54VuziCpBEHJEIlGwOZZlKVQGLYvcpsTQZ+/Sp6oQq+hSjzCoVaE16ulQj6AzGTAKAi4yu+n5RUwNS8LZqyr2dp5AZdDip3TGT+mMt8JpenorVsxN3+QYuX0N5PY2cKyvkQmDFoVEyhLPMFb6RpLlPR976dy7MHzC3rY6HinZz4BGxc2RydwZvww7qWXuqgVB4M3aGn6dfxh7qYzXNl3BsoBgsy1/eHKSe/fs43BjEyvDQnli3RpcFBcuSB588MFpQSV1ccd3y3Uo/IPRNdfx0Ut/xllpvu91YEzFUx9ms7eynnmerrxyx5UsCrswMfhVmEwC+0vq+NsHeXQNjJESHcT/XbGUyMCZ7YGnmtTx0cFq3t5dRt/gBCEB7jz843Wsyoi0eFudL6O7Z4Q33ynGxVnJyhXRBPi7YjIJ05FCP9+pqIrRaMLd3YGx8Um0OgNSqYS42ACyc05x+ZZF2NvbkpQYzPCZqrVvq6DSaPRUl7dQWthIaVEjHa2DAHh6O5G5OoZFKaFmGdL7OogE4YuDYRe4oClRtfNcw38ikeh24HYADw+PpLffftss6/0qjmo7ydV20W1SEWXjwibbeTiIZSiQoBRL0QpGuo0qRgUdR7WdDJk0LJf7ESRxoEjXS4bMh0AbB4p1vXQZVSyR+eAuOfvJ8unxcpqNY59+ZsBZJMdVbIureOrZTWyLq9gWlzN/y0Uz8wOemJjA3n5mjRK/65h7n2sFIw2GEU4ZhqnTD9NhmjphOolkxErdiJO6Md/GBdkMHVMXyoBBw/aRFio1wwRIldzkEkqIzDz76Wz7XG008GpPK8Vjw8TYOfB93xCczZiMfnp8gpebmhnTG7giwI+Vnh7f+CJWVlaGIECdHgonRYiBDIVAqAySkpLMst0mQaCgdZCPa7vQGU2sDfdmZZgn0q+ZhH2+x3lj7zg7yjrpGFLj66JgY6If831ntsp6XK3nWHUfRcf70eiMzPO1Z1miNxGBjrMuPCYnDXywoxEPdwUuLnKKS3u5dVs0cvnnYx8mk4BareJ0o5rWtnE2bwxBLBbR16+muKwXuVyCm4stldX9XLElDEfHuRehvlAEQWCgT01T/TBN9cO0NY9gNAjY2IgJDHEiJMKFkAhX3DzM73m5YsWKMkEQvtKJd8ZE1WeZP3++UFdXZ5b1fhU6o4F29TAdqmFOjfYQ6eSN1mhgSKfissAE5J/xrPpd9R6inX3YEpgAwGWHX+DJpK1EOHnxw4LtrPGNZnNA3DnzUfQmI72TY3Soh+lSj9KpHqHrk8fkKD2To5+ziQBwkSnxUTjho3TC90yemI/Saeo1hSPutvaIzeAVlJ2dTWZm5jdejpXz55vu83G9hoqhdsoGWykbbKN6qAODYEIqlpDg4s8SrzCWeYUT4eg16xeE80FvMvLP2mKerc5DLBLxs7il3By5yKzR3C/u86q+bv7vwE46x8e4c/ESfpS4GLGZ9pVJEPh7cQl/ys3H19GRv2zeRKy3eXohBs+PwpCQhsP8Baia6un++A0M46MEBQXR0tLyjZff3DvEr985SHlTJ8mh/jx85SqCPS8st+SrjvOWniGeezeXnMpGvFzs+dFlS9iQGjWjxp0dPSO8saOUXdnH0RuMZKZEcP3mZKLDLNtS5+vQ3jHE8y8c5MnHrwLg0d9+SNR8H668fPH/7Kvs7GzyCsdZsTySjLRPG3mPjqp5/c0CBgcnWJ0VQ1qq+apNZ4tJtY7K0maKCxooKWigr2cUgMBgd5JSQ0lOC2NBfCD/z955h0V1p234ZmYYem8CKqCAglgQUBAUsPcWjRpTNm3TTdxNz2aTTd3dlE2yyW56M9FYEmNXLIAiSBHpvUvvdfrM+f5A/dxskk0yQ9O5r4vrMDr8zplhOOc5b3leM/OB7RA1MTH5RaJq2Hb/GQqpWMJ4GxfG27gQPcr/R59zWVjOcPbGwcwSnaBDZCLidt9ZPJW5F1tTc+yklsx3n/izBb6mIjGjrRwYbfXjJyetoKNZ3kODvOuK0KqXddIg76Kqt43k5nLkWvV//IzERISruQ2jLPtF1igLO9zMbRllYYubRf/W0cxqyE0ajeiHVtBR0dNKTkctOe215HTUUdrdjA4BiYmIAHt3bvONIMJlHMGOY4aN/cEvJa35In9OO0ZxZwsLx/jz59D5eFoNXAGwThD4JDuDv6Wewc3Sip2rNhL6M/5Tv5Y2mYzHDh/ldGUVSyf48/KiBdj8hpE1P8bpkkqcb7qXXqWKprh9dKSeBgQsLS15+eWX9VpbrdHy6al0PjyehoVUwl829BeiD4Qo7+iR8eH+FL5LzMHczJQH1kaxaX7woNojlFY189W+dE4mFyMWi1gaM4mbVoQOG7POq6mr72DsWCeamrtxc7VlxbJp7D94gdbWHlxdbdFqdVfm7nV0KlAq1Tg4WPHpF2dQKNSsWxOKq6st9909d0QPOhYEgYvVbaSnlJGWXEpeVg1qtRYLSynBYT5svC2KsPDxuLkPz5mK17yo+iVcPqHM9/jP9u0VY6YwxXE09bJO/GxdsZXqV7QpNhH1R6Es7ZjuNPa//l8QBLrUchrl3TTKu2iQddFw6ftGeTfZ7bXEKQpRX+XR1b+uCS7mNria2+BmbouLuQ1uFv2PXS599enU102x4nCnT6OkvKeF0q5mCrsaKOhqoLir6YqgtjU1Z7KDJ/PcJxLi7MVUh9EjtuO0Rd7Lq5nx7K3Mw8PKlg+ib2DhmB+/uTEUrbI+Ho0/SkJNJYt8/Ph77CLszAxXU5FeW8sjBw7TIZfzl/nzuGnaFIP8XSnUGt6IO8NXqVn4uToRaynw9vYqOk1g7FgvXn75ZTZv3vyb18+tbuS5nXGUNbaxeJo/T6yJwcnG8P5fKrWGb05e4JNDqSiUatZGT+H3KyNwsBm8jr7c4jq+2JtGcmYFluambFoRwoZlITg7DL8SiMvn5VFudtTXdyKTKQEICfbmq+0pNDV34+pq+x+DjLNyWjmbUkefTIXvOFdWr5yOq2t/KnUkCiqFQk32+UrSU8pJSy6lsb4TAC8fF1atDyNslh9BU8eOCF8tQ1kq7ABiAGcTE5Na4DlBED4xxNpDiYmJCd7WTnhb/28fLEPtz15qib3Ukol2Px6W1gk6OlQymuTdNMi7aZZ306ToubKt6G3lXEsFPRrlf/3sMwfO4WxmjbO5NS7mNle+dzKzwtmsf+t06bGlWGoUYHogCAJdOiUZrdVU9bZS0dtKVU8bZT3N1Mo6rzzPSiIlwM6ddV7TCbR3Z4rDaLysHQ2S8h1K1DotX5Vk8o/sMyi1Gh4ImsUDQbOwMGAt04+R39fNY7u/pEup4MXZ87l50lSDfY51gsAHqem8lXSW0XZ27N68iUluhimwLmlq5dHdhyltbuOW8GD+uCAKM1MJW++4Te+1ZUo1/zqazFenL+Bsa8U7d64kZpLhOywFQSDhQhlv7T5NXUsXkZN9eGT9HHw8Buf8KQgCaTnVfLk3lQsFtdjZmHP3hkhuWDQN22E8fuXy59PbyxkrKzOKSxtxdrLBxsYcd3c70s9XMjloNHX1HRyNy+XO383B39eexYsiiJg5cJ2yA01DXQepZ0tJSy4lO7MKtUqLmbkp00K8ufHmWYRF+A7baNTPYajuv02GWMfI/0ZkIsLJzBonM2sC7X/ajE6mUdGi6KFF0UuLoofkvAvYjXajRdFLq7KX6t42Mttq6FDJfvTnzcUSHKVWOJr1fzlILXEws+zfXhJ+9lIL7C5tbU3N/6M+7VpHqVXTouilWdHTH1WUd1+KLHZysa+DWlkHCq0GklIAMBNJ8LJ2JMjBk7VewfjZuuFr48IYK4cRL6B+yOn6Cl48f4KyrjbmuPvwXNgCxtkO7IVVrdXyZvpZ3q8pYbyDI18su4FAZ8N1lLXL5Dx2+AiJBk73CYLA16lZvBZ3BltzMz68ZQ2zDWiVkFpaw192naC2rYv1EZPZumL2gDiiF9U08+Y3CWSW1DLOw4l3t64lfJK3wffzYwiCQNL5cj7/NpXC8kZcHK15+LYYVs6bgsUA19kYis5OGfGJhXR1yaiv7yAjs5LY6ADcXO1wduqPrrm52uJxSWR4eliPOEGl1ejIz71IalIJqWdLqalqBcBzjCPL14YyI8KXydO8kJqN7ATayD56Iz+JpUSKl7UTXpeibBZlrcQExfzX89Q6LW3KXtqVfbQq+2hT9NKm7KNd1Ue7so92pYxWRS+l3c10qmT/VfN1NeZiCbam/QLL1tQca1NzbEzNsTE1w1pihpXEDGvT/q2VRIqlRIqlWIq52BQLiRQLsSlmYgnmYlOkIvGAio3Lsx4VGjVyrZo+jZI+jYpejZI+tZIutZxulYIutZwulZwOVf970f8+9dKtVvzXmjYSM9wt7Rhr5Uik63gU9W3MnTaDcdbOuFvaXXPi6YdUdrfz8vmTnKwrw8vano9i1jHP03fAI54Xu7vYcuIgF5oaiLZ35v0bNmNhoNl6AJl19Ww5cJA2mWHTfe19Mp7ZG0dCSSXR/j68vHohTtaGSZH1KpS8uf8Me87l4uViP2A2CW1dfew+V03a15nYWVnw5M3zWD178qCMcdHqdCScK+WLvamUVbfg4WbHk/csYEn0pCG1RfghcrmKrm45o9x+vIZQrdayc08aPT1ybrs5kq4uObu/S2f3d+moVFpefXEdAGKxiCWLpgzmoetNd5eM9JRyUs+WkHGunN4eBRKJiMnBXixdPZ2Zs/zwHDs4kczBwiiqrnNMReIr7vS/BLlGRYdKRqdKTqdKRpdKfkV4dKsVdKnk9KgVdKsVtCp6qexppVejpEetQCPoftWxSUViTEVipCIJppe+F5uIkJiIEItEiDBBZGKCyaWtgIAg9I8hEuhPlWoEHVpd/1al06DSavu3l3zI/hciTLCTWuBgZomT1ApfW1fCzXxwNr9cs2bd37FpYftfnlAJbQnMdvP7iZWvHTqVct7JTWJbcSZmYglPBMdy+8RQzMQDf3rZX1rEM6f7R828u2A51rWNBhNUgiDwaUYmr50+g7uNDbs3byTIzTDdfSnlNTzx3VG65AqeWRrD5pnTDCY+kwqr+Mvu47R09XFbTAgPLJ6FudSwvwu1Rss3Jy/w8cFzyBUqbpofwl0rZmJjQP+sn0Kj1XHibBFf7E2luq4dL09Hnn1wCQsiJw6LmXzQ/9kpKW3k4JFsTsYXEjx1LC//5YYffa6pqZh77or5j39zdrZBo9ESMPH/sxEjoRxDEARqqlpJTSrhXFIJBbm16HQC9g5WREZPZGakH9NnjMPS6tqxefghRlFl5FdhIZFiIZHiYfnrc90qraY/EqRRItOo6NOokGtVyDVqZJe2Kp0GhVaNUqtBqdOg1vWLILVOi1qnRSvo0FwSSTpBAAR0goDu0jxHE+jfmvQ3BohNREhE/VupSHJJqEkwE0uwEJteio6ZYiWRXhVFM8PO1BxbqQVWEuk1H2H6rSi1Gr4qyeSd3LP0qpXcOH4qf5g6GxeLgS8G7lOreO7MSfYU5zPdzYO35y9jjK0dCbWNBlm/S6HgiSPHOFFWzkI/X/66eCG25voLBrVWyz9PpfBxUjrjnB356JY1TBhlmJl6PXIlr+9LZG9aPuPcHHljy3KmeLkbZO2rSc6r5I1vEqhu7CBysg+R3hbcuCra4Pv5IRqtjrgzhXz+3TlqGzsZP9aZFx9ZTky4328aAxeci8AAACAASURBVDQQyGRKTpwq4OCRbErLmjAzkxAzZyLLl0z9nz+r0wkIgoBYLMLP1zDifTDQaLTkZtVw7ky/kGqo6wDA138Um34XxcxIf/wDPEZkAf1vwSiqjAwaUrEER7EERzPDdxwZGTx0gsD+qnzeyDpNbV8Xs919eCZkHhPsB2c4c15LE1uOH6Syq4OHQsJ5OHQWEgNeVPMam3ho/0Eaenp4Ojaa20OmGyRKUNvRxaO7j5Bd28C6kCCeXhKDhYHsBc4WVfH8rv7o1J1zw7h3UThmpoY9vV9s6uDNXYmcya5grJs9b21ZTdSUcSQkJBh0Pz9Eo9Vx7EwBn3+bSl1TJ37eLrz66Epmh/oOmwt1SWkj+w9lcTK+AIVCzfhxrjz84ALmxwZi/QuL5Ptfy/B4Pf+Lvl4F6SnlpJwpJi25lL5eJaZSMcGhPqzfHMHMKH9cXAfX2HW4YBRVRowY+UUIgsDphgr+diGBwo5mAh3c+HzmYqI9xg3K/nWCwMfZGbyWegYnC0u2r7yRCM//tib5rQiCwPasHF6KT8DJ0oLtG29kuudPN4P8Go7mlfDsvuOYmJjw5o1LWRI0wSDr9iqUvLbvNHtT8xjn5sibW1Yw2cuwhpZypZrPDqex7VgGpmIRW9bNZtP86QNet/RDMeXv48rfHl9FVMj4YZEKkytUnEoo5MChLIpLGjEzkxAbHcCKZdMImOA+LI7RkDQ1dJJypoSUM8XkZFaj1eqwc7AkKjaA8Ch/ps8Yh4XFyLR+MSRGUWXEiJH/SUpjNW9mnyajpZYx1va8HbmS5d6BBnMn/1809/Xyx1NHOFNbzWIfP16NWYiDueGG/fapVDwbd4L9hUXM8fHm9aVLcLTUf32FWsNfjyayMz2HqaPdeWP9EjwdDGN6mlpaw5+/iaOps5c75oZy36IIg0anBEHgVGYpb+5MpKm9hyXhATy8bjbO9gOb3tVodRxPKuSzb/vTfBOGmZiqqm5l/8ELxJ3Io0+mwtvLmS33z2fBvEm/OCo1EhAEgbLiRlLOFJN8upiK0iYAxng5s+6mcMKj/JkYNPo//LOMGEWVESNGfoaM5lr+kXOa5MZqRlna8OKMRdw4fipS8eB1V8VVlvFkwjFkGjWvRi9kY8Bkg15cS1vbeHD/ASrbO/hDVCT3hhtmlE1FSzt/2HWI4qZW7owK5eF5szA1wPsmU6p5+1ASO5Ky8HJx4IuHNjDV27C1U1WN7by2PZ7Ugmr8Rjvz0l1LCPYfmCHLl9HqdJxMLubT3SnUNHTg5+3CXx9bxezQoRdTarWWpOQS9h28QHbORUxNxcyJmsCq5cEETfIc8uMzFFqNjpysapITi0k+XURLUzcikQmBk0dz90PziZg9gdHXWLeeoTGKKiNGjPwHgiCQ2lTDP/POktxYjZO5Jc+GzGOz//RB6ei7jEyt4sWzCewozGGSsytvz1+Gr4NhT+j7Cwp5Ju44lqZSvlh/AxFehkkn7ssq4IWDpzCTSPjg5tXM8fcxyLrZVQ38acdRqls62Tw7mC3LIg1WlwWgUKr55FAq245lYC415dFNsayLmTqgXXU6nUBiWikf706m8mIb48c68+qjK5kTNvB2HP+LltYeDh7O4uCRbNrb+3AfZcfv74xhycLJ2NsPnkP8QKJQqDmfWk5yYjHnkkro6ZYjNZMQMmMct94dw8xIP+wdjHWwvxSjqDJixAjw/zVT7+Ymk9FSi7O5FU9Pn8tm/+BBH5OT3dzAIycOU9XVwb3BM/hDWKRBo2NKjYaX4xPZnpVNqKcnb69chpu1/mktuUrNS4fj+S4zn1AvT15fvxQ3W/3XVWu0vB93jk9OpuNmb83H961jht8Yvde9msSscl7fEU9DWzfLIgLZsm42TnYDdzEVBIGUC5V8uPMsJZXNeHk68sIjy5gbPmFIC9AFQSA75yLfH8jkzNkSBEFgZth4Vi4PZkaozzWR7urplpN6tpSzCUVknCtDqdRgbWNOeJQ/s6InEjLTWB/1WzGKKiNGrnM0Oh0Hqwv4ID+Vos5mRlna8FzoAjb6TsV8gMfK/NixvJd5jn+eP4erpZXBi9EBaru6eGj/QXIbm7g7LJQ/zokySPdgeUsbW3ceoqyljXujZ/JATLhBIjzljW089fVRiuqaWRUWyOOrY7CxMJzPT0NbN6/tiOd0VjnjPJz46PEbBzzVl5l/kQ++SSK3uB4PVzuefWAxC2cHDKk1glyu4vjJfPbuz6SquhVbG3PW3xDGymXBV5zMRzLtbb0kJxaRlFBE9vkqtFodzi42LFoRTGT0BCYHeyEZRqapIxWjqDJi5DqlR6Vkd3k2nxVlUNvXha+dE3+PWMYq70mDWjN1mYrOdraePEx2cyOr/QL4y+x5Bh2EDJBQUcEfDx1BqxP49+qVLPDzNci6+7MLeX7/CSykpnx0y1oifb30XlOnE9iedIG3DiZhZSblH79bwbwphjle6PcX+ur4eT4+cA6ALetmc9P86QN6YS2qaOL9HWdIy67GxdGax++ez/LYoCG9mNfVd/D9gUyOHMulr0+Jn68bj/9hCXNjAjAzGxljbn6K5sYukhIKSYovJD/nIoLQPxZm3U3hRMYEXFf+UYOFUVQZMXKdUd3TwRfFGewuz6FXrSLUZTR/Dl3AvNG+g9bNdzWCIPBVfjavpCQgFUt4d8FylvtONOg+tDodb59N4V/nUglwceHdVSvwctA/+qBQa3jlcDy7z+cR4uXJm+uX4mqAdF9TZy9//uYYKSU1zAn04S8bFuBkY7hUXHZZPa9sO055XRvR08bz2KZYRjkNnK9QVV0bH+1MJv5cCXY25jx0azRrF07FzID1YL8GQRA4n1nFd/vOcy6tHJFIRPTsCaxdFUJggMeQ13LpQ31tO0nxhZyJL6S4oB6Acb5u3HJXNFGxAXj5uIzo1zfcMYoqI0auA7Q6HYn1FXxVkklCfTliExHLvAK4IyCMKU6Gd93+pdT3dvNE/DHO1FYze4w3r8UsYpS1jUH30dYn45GDh0ipucj6yUE8Ny8WcwOMsqlq62DrzkMUNbbw+9lhPDR3lkHSfXHZJbyw6wQqrZZn181jXYThuh27+xS8+10S3yXm4OZowxsPriJ62sAN5m1p7+HjXSkcis/D3EzCHesi2LQ8BCvLoRlTIleoOH4in+/2nae6pg17O0tu3jSLlcun4exk2M/dYHKxupUzp/qFVHlJ/1QB/wAP7rh/LrNjA/Ec4zjER3j9YBRVRoxcwzTJevi2IpcdpVnU9nXhYm7Fg5Mj2ewXjJvl0F1EBEHgu5ICnk86hVan46U589kcONXgd9AZtXU8fOAgnQoFf128kHWTgwyyblx+Kc98H4dYJOL9m1cTbYDuPplSxV/3JvB9Wj5BY9x4ZfMSvF0dDHC0/e/3yfOlvLb9FB09cjYvCOGeVRFYmg9MMXJ3r4Kv9qWx6/AFdDod65YEc9vamTjYDk3HXEtLN3v3Z3LwcDY9vQr8fN148tFlxEZPRGrguYiDRU1VK6dP5nP6VCFV5c0ABE4eze8fWkBUbACjPEZ+HdhIZGR+mowYMfKTqHVa4uvK2VWWTUJ9OVpBYKbrWJ6cHsvCMf6Yioa2GLW5r5enTx/nRFU5YaM8eX3uErzsDHsBEASBTzLO81riGTztbNl90yYC3Vz1Xlel0fLG8TN8mXKBKZ6j+MeGZXjY6582y6lu4KmvjlDb3sVd82dw36Jwg3haATS2dfO3r09xJqeCiWNdefvhNUz0GpjZckqVhm+PXuCLvWn0yhQsiAzg9xsj8XA1jOHpr6WouIHd36WTeKYYQRCYHenPDWtCCQocmd5StTVtJJ7I5/D+87Q0nsbEBCZNGcN9WxcRFRtw3Y6GGUi0Gi1N9Z2/+PlGUWXEyDWAIAjktDWwtzKPg1WFtClluJhbcXfgTNaPn8I426E37BMEge9LC3k+6RQKjYanI6K5c0qIwTu+uhUKnjwaR1xpGYv8fPnrkkXYmOmfbmrs6mHrrkNkXWzg5pnTeGzRHKR6FlhrdTo+PZXBv44m42pnzacPrCdknGE677Q6HbtPZfHe3rMIgsAjN0azcV7wgHhO6XQCcUmFfPBNEk2tPYRP8+a+m2bj562/kP21aLU6zqaUsue7DHLza7GylLJ2VQhrV4UwatTQiDt9qLvYzumT+SSeLLjiaj7a25b7ti5idmwAzkYhZVB6u+UUZdVQcKGawsxqinNq+DUzGY2iyoiREUx5VxuHqgvZX1VAeXcbUpGYeaP9WOMTRIznuCGPSl2msbeHP50+wYnqckJGefD3mMWMdzB8nUeNTMYL276mrqubp2KiuSPUMMOQk8ureXT3EZQajcFm9zV19vL010dIL69l8TR//rR+HrYWhul2rKhv46Uv4sgpbyBikhdP3TIfD+eBERTldT18/tRXlFQ2M8HHlWfuW0ToZP27H38tcrmKw8dy+HZvBg2NXYxys+OBe+exZOFkrKyGpobrt9LU0EniyQISjudTVtwA9Kf27n1kIbPnBpJfkElMzMwhPsqRjyAI1FW1UnihmoLzVRRcqKamrD+VKhKLGDfRnflrQgkIHsvelS/+ojWNosqIkRFGWVcrxy6WcLCqkKLOZkyAMNcx3Bkwg2VeE7GVDp/5Y4Ig8E1hLq+kJKDS6vjTrBhunzzd4NEpQRDYlZvHKwXFOFlZ8fXGGwkd7an3ujqdwIdn0njnVDLjnB15Z+MKxrnoLwZP5Zbx3M7jqDRaXty4kJVhgQYRf2qNls+PpPHpoTQszUx54c7FLAkPGJBUV2VtG+99dZrkzArcnG147qGlLIicOOgt+m1tvXy37zwHDmXR06tgUoAH99wVS9QsvxFl1Nne1kviiXwSjudRmFcHwIRAD37/0ALmzAvE9eooW8EQHeQIR63SUF5YT35GFfnnqyjIrKKrvQ8AazsLAqZ5EbMimMBgL/wnj8biN4hxo6gyYmSYo9XpyGlr4HhtKccuFlPR3Q7AdGdP/hw6n6VjJw5p0flPUd3VyZMJx0ipv0iExxhejVmIt51hCq+vRqZS89yJk+zNL2CSrQ2f3rIZJ0v9C6I7ZQqe/O4oiSWVLJ8ykedXzMPKTL/CbqVaw+v7T7PzbDYBo135281LDVaMXlDVyAufxVFW18qiGRP448ZYHAegMLy9S8Ynu5LZdyIHSwspiyM8eeKBGwbdHqG6ppWde9I4caoAjUZL1Cx/NqybwaRA/cX0YNHTLScpoYiEuDyyM6vQ6QTG+blx+31ziZk/CXdPw/+9XE/09cgpvFBD/vl+EVWScxGlQg2A+1gnQudMYFKIN4Eh3owZ54LIADd7RlFlxMgwpFMpJ6mhklN15STWl9OulCMxETHTbSy3TQhlwWg/3K2GZy2FSqvlo+wM3slIQSoW89fohWww8BDky5S1tfHQ/oOUtbaxZVYEQSqFQQRVQUMzW3YcoLmnlz8ti+WmGfp3JlY0tfH4l4cpaWjl1ujpPLwsClMDmF4q1Ro+3JfCtmMZONlZ8uaDq5gzADYJSpWGXYcz+WJvKkqlmrWLpnHHunCyMtMGTVAJgkBefh3f7E4l+VwZUqmEJYumcOPaMDxHiABRKNSknCkmIS6P9JQyNBodHqMd2fS7KGIWBOHl4zLUhzhiaWno7BdQGf1RqMriRgRBQCQW4RvowZKNM/tF1HRvHF0G5kbUKKqMGBkGKLUaLrTWk9RQyZmGSnLbGhAAe6k50R7jmes5nmiPcdiZWQz1of4s5xvreToxjuL2VpaM8+P5qHm4Welvhvlj7C8o5E9xJzA3lfDZ+huI8vYiISFB73W/y8znLwdP4mhpwZd33Mi0Mfr5eAmCwL70Al757hQWpqa8d9dqZgcaZsBybnk9z392jOrGDlZFBfHIjXOwsTRs+lcQBOJTS3lvWyINLd1EhYzj/pvn4O05eM0POp1ASmoZO3alkl9Qh62tBbfdHMnqFdNHxGBjrUZHZnoFp47lcjaxCIVcjZOLDavWzyB2YRB+E91HZDfiUCIIAjXlzeRnVJKXUUV+RiXNl7r0LKykTJzmxeYH5zEp1IeJU8dibjk4swyNosqIkSFAoVGT3dZAalMNqc01nG+pQ6nVIDYxYaqTB1smRzHbw4dpTh5DOg/tl9KpkPNaahLbC7Jxt7bh4yVrmO89MKaSSo2Gl08lsD07h1BPT95asZRRNvrfdSrVGl46HM+e83mEjxvDG+uX4mil3wW7T6HipT0nOZRZRJjvGF7dvBhXO/1FpkKl5oN9yXwdl4mrgzXvbr2B8EmGLw4vrmzi7c8TyCqsZfxYZ955dt2gFqFrNFpOxBfwza5UqmvacHOzZcv981myaArm5sN7hIwgCJQU1nPyaC4Jx/Pp7OjD2sac2AVBxC4KYvI0rxFV8zXUaLU6KosayE2vIC+9X0h1d/TXQzm42BAU6s2a22cTFOqDz4RRiIdo9NF1L6oEQTDeIRgZUARBoFHWQ1ZbPZktdZxvqSWvvRG1TocJEODgxma/YGa6jSXcbeywKjT/X+gEgT3Fefw15TRdSgV3TAnhDzMisTIdmLvCqo4OHtp/kMLmFn4/I4w/zI40yDDkus5uHvnmIHn1Tdw9O4yH583SW8wW1TXz2JeHuNjaxQOLI7hr/gyDCOSro1Nr5kzm4fVzsDbggGXor5v6YMcZDsbnYWdtweN3z2fFvMmDJvAVCjWHj+Wwa08aTc3djPNx4ZknVhAbPXHYC5GGug5OHsvl1NFcamvaMJWKmRnpz7zFkwmL8B2xZqODjVqloTSvlrz0SnLTKynIrELWqwRg1BhHZsRMJCjUm8kzxuE+1mnYXMeH5Lfbo9NwpKYIBzNLHMwscDSzwN7MYlDav+v7urn/9Hc0yXt5MjiWVT6T0AnClZlnfWoVma11dChkOJpb4m/ngqvlwKQvjFybNMt6ye9o5EB3LTsSvyWrtZ5meS8AUpGYKU7u3BkwgxCX0YS6jMZ+mKf0for81maeO3OSjMY6QkZ58NKcBQQ4DVw9yKGiYp4+dhxTkYgP165m7vhxBln3bFk1j+45jEar45+bVjA/QL+hxYIgsDslh79/n4i9pTkf37+O0PH6e0+p1Bo+3J/Cl0czcHWw5r0/3MDMQMNGjdQaLXuOXuDT3SkoVBo2Lgvh9nURWA/SWJnePiXf78/k270ZdHbJCJrkycMPLiR8xrhhc9H8Mbq75Jw+mc/Jo7nk51wEYEqwF+tvnsXs2ACsbUbOjdJQoZCrKM6+SG5aBXkZlRRl1VwpKh/r60rMimAmh/kwKdQbl1HD1y1+SERVm1bJ/af3/te/25iaYW9mgcMPvuylFjiaW/b/n9QCezPzK8+zEJv+qj82c7GEv4Qt5MOC1CsXOkEQ4NIajbIezjXVUNfbSatChr+9M/cHzcLZ3IpmWS//zk9hf1U+MZ7j2TplNqOth+8v18jAIteoKe9qo7irhaKOZoo7+7ctir4rz/EWHJg1youpTh5MdXYn0MENM/HIvlNtl8t4I+0sOwpzsDcz5++xi1g3IWjAhjErNRpeiU/k66xsgj3ceXvFMjxs9S/S1+kEPk5K562TZxnv4sQ7G1fg46xfsXOvQskLu05wNKuEqInevHTTIhyt9a/5Kapp5vlPjlJW18rq2UE8cmO0waNT57KqeOvzU9TUdxAR7MOW22Lw8hicmXFdXTL27M1g7/5M+vqUzAj1YfPGCKZMHjMo+/8taDRa0pPLOH44m9SzpajVWrzGuXDn/fOIXRSEq9vIMxr9rVwsb6a8sJ5ZC4N+cSROIVdRmFlNTloFuWkVFOdcRKPWYmJiwrgAd5ZsnElQaL+IsnccOYGNITm7j5FYsn/ZHXQo5HQoZXQo5Vd9XXqskFHe1UanSk6vWvWTa0lF4isCy/6S4Hpq+ly8bH785OhobomjuSXmEgl2l9IsV4syZ3NLtkyOvHLhuyfxWw5XF3HrhBDezk3CQmLK+fWP8KfUo+yvKuD+oFkGfGeMDDd0gkCDrJvK7naqejqo6m6nvLuNsq426vq6EC49z0wswc/OmTke45jk6MYkx1G05RWzZO78IT1+Q6LR6fg6P4s305PpVSm5NSiYrWGzsDMbuLvwqo4Otuw/REFzM3eGhvDonCiDjG/pUSh56rtjnCwqZ+nkCbywcr7edglFdc08+sUh6tq7eHhZJLfHhunt2aTR6vjscCofH0zFwdqCt7asJmqKYSJ0l6lv7uKdLxI4nV7G6FH2vPbEaiJDBm7I8tW0t/eyc08a+w9moVSpmR3pz+aNEfj7jRqU/f8WyksaiTuUzam4XLo6ZNg5WLJ8bSgLlk5hvP+oYR1RMxRKhRqzSzVtn79xlPTEIuydrSnNq2XJhpmM9nH52dKaU/sy+cfTe9CotYjEIvwmebL6tqgrkSgrm5EZvYchElViExMCHX757CmVVkunUk6Hql94dV0SYJ0qOZ1KxZXvO5Ryqno6EK5c6n6abpXyiqi6msvdVZdTghqdDgczCwRBoE+tZK5n/8kmfJQXWa311Pd14zFMW9uN/G80Oh0t8l7qZd3U93VT19dNXV8XF3s7qenppK6vC5VOe+X55mIJPraOTHfxZP34KfjaOTPB3gUvG4f/qu1JEJUP9ssZEARBIKGmkpdTEijraCfScyzPRc3F39F5QPe7v6CQZ+NOYCoWGzTdV9rcypYdB7nY0clTS6K5JTxYrwuhIAh8ey6Xv+5NwN7Kgo/vX2eQUTNVje0898lR8isbWTxzIo9tisXO2nAXG6VKzbbv0/lqXzoiEdx7UxQbl4UgNR34y0JLSzc7dqdx6Eg2Go2WebGBbN4YjtfYgf1M/VY62vs4dSyX44eyqShrwtRUTPhsfxYsnUpo+HgkQ1QUPZjU17Sx74skzp8pYd6aEFbdEolKqaa9pZsn3tzEWF83/vnn7zi4PYV7n1n5s2uND/Rg9e+imDJjHIEh3lhZXzvp0RGRh5CKxbhaWhu0tkmuUV8RUD88nQqXBNV7ecm4Wlgz03UsFd3tSMUS3C37BdQoCxsUGjW9auVP7mN7yQU0gg4rUyk2pmZYSaRYmUqxNpVe+d5KIh0R3V0jCZ0g0KNS0KqQ0a6U0aaQ0aboo0XeR4uijxZ5L03yXppkPbQo+tAJ/ynCbaXmjLW2Z6KDKwvH+DPW2h4fW0e8bRxws7QZsDTXcKS4rYWXkhM4U1uNt509Hy5ezQLv8QN6Ny5TqXnxVDy7c/MI9fTkzeVL8bA1jKfM0bwSnvk+DkupKZ/9bh1h3vqJH5lSzUvfnuRgRiGzJnjxyubFeqf7BEFgV3wW7+w5g7mphFfvWcaCMP3H4lzN2cwK/vHZKeqbupgX4c9Dt8bg6jTwBrLNzd1s33WOw0dz0OkEFs6fxOYNEcPSY0qt1pKWXErcoWzSzpai1eqYEOjBg48uIWZBELZ2Izea8mvQ6XSIRCJSTxag1ep46ZM7cXSzRSqVUFncgEajw9bRCoB5q6fz7xf3A/zsOcLLbxR3PrZ0UI5/sBkRosrQKLUa5Bo11pL+cL8AcFWo0sTEhO2lFzhTX8mzofNwtbSmrqULQRCwkPSHPDU6LVpBwPxn6mPezk26Urf1c1iITbE0NcVKIsVCctXWVIqF2BQLiSmWkv6thcQUC7EEc4kp5mIJ5uL+rcWlx2ZXvsSYiSVIRWKkYsl/CYfhhiAIqHU6FFo1Co0GuVaNXKNGplEh06iRXRKwfWoVvWoVvWol3Wol3SoF3SoFXSoFnUoFnSo5XSrFT75eJzNLnC2scLWwZoK9C24W1oyytMHDyhZPKzvcLW2xkY6sOWEDQX1vN/9IT+bb4nysTaU8OyuWW4KmITVA6u3nKGpu4eEDh6hob+e+8Bk8HDnLIN19Gq2Of5xI4tOz55k2xp23NizHzVa/m7TKpnb+8MVBKprauH9RBHcv0L+7r6Wzlxc+O0ZKfjWzgrx59ncLcbE33M1kQ3MXb30ez5mMcrw8HXnnz+sJDRprsPV/iqbmbrZ/k8LhYzkALFk4hZs2hA/LAcdVFc0cO5DFiaM5dHXIcHSy5oZN4SxYNvWaNuYsyKzCxMSEgOD/bH4QiUTUV7dSlF3DH/++AalUglbTH713H+NITVnTlY7MgGAvlHIVLQ2duLhfn/XG16Woulwv5WvXb173w8jDvsp8EurKeXfOapzN+xW4m6UNLYq+Kyf4JnnvpajTT1+AT6++j26Vkj7Nf4qBPrWKXo0KmVp96f/6xUOvWnWViFDRqui7JCzUKLT9W33EkfjrVExFYkxFYqQiMRKRCIlIjKlIhEQkQmwiQmIiQiwSITYxQWwiQnTV9vJ7ZcJ/34XoBAEBAUEAAQGdIKAVBHSCDo1Oh1YQ0Oh0aAQtaq0WtU6HSqdFrdOi1GpQajW/IGn7/0hMRNhIzbCTmmNraoaN1BwPKzsczMwv1dZZ4GRuiaOZ5ZWts4XVsBkwPFzpVMj5V2Yqn+ddAAHunBLC/dNn4mA+sHflgiDwdVY2r8QnYmduzufrbyDS2zCdbW29Mv64+zCplRe5acZUnlgcjVTPdM3RC8U8t/M45lIJH9yzlnB//Y/11PlSXv7yOAq1hic3z+OGmCkGiwiqNVp2HMjgs2/PITIx4f7Ns9mwLMQgju4/R0tLN199c47DR7MBWLpoCps2hDNqmBVx9/UpSTyez9EDFyjKr0MiERE+ewKLlk8ldKYvYsm1m03oaO3hn89+R2NtB17+bqQlFHHb1kVXIlQA9k425GVUUnC+ir2fnUEkFrH6tiimho/HzFxKWX490yL6I9g29pYU51zExd3+urQsuu5E1V8z4zlYXUh9XxdLD33Kw1OisJRIERBYOMafQ9WFbD27n8eDY6nq7qBJ1sMEe1c8rGxpkvXSppAxxtqeXeXZ3OIfgsPPtMObiSW4WEhwwcogxy4IAiqdFoVGjfxStE2h1aDQqlFqNCi0GlSXRIpCiX09jwAAIABJREFUq0F15bGW4vJSPMeORa3TotL2ixn1JZGj0elQ63RXBJBG0KEVdP3CSCegvlRTdFk4/VDYCVwltjBBZGJySYyZIBWZIpaYILkk4sQmIqSXhJypSIypWHwlwiYViS9F4kwxk0gwF0uwNpViIZFiJTHFUtIvYm2lZkhF4uvuj3Ug6VEp+TTnPB9nZ9CrUrF2wiS2hs1itM3AX/w65HKePhrH8bJyon28+fuSxTjpabp5mZzaRh7+5gAdMjmvrl3E6mmBeq2n1mh5Y/9ptidlEezjwd9vWYabnpGkPoWK13fEc+BsPgFebrx49xK8Rxmu6y4z/yKvf3yCqrp2Ymb48fDvYnBzHtg60Na2HrZ/c46DR7IRBIElC6eweVMEbq7Dp/5UEAQKci5yZP8FEk8WoFSo8fJx4fdbFjB/yRTsHQxz3h7u1FW2otXq+NeBR+jrkfPAqrdZsmEGrh79KVlBELC0NsPF3Z5DO86x8b659HTJ2flBPGYWpkQtCiLzbAm+kzywsbNkfKAnnW3/O0NzrXLdiarHg2O4b1I4vRoVHQo5DuYWV9KB0F+4fPvEMMq6WrnQWkevWslnsRsA+MuMhTx57jBKrYZZo7yJ9hhc7xQTE5Mr6b1fe6lLaFEQMy16QI7LyMhFplbxZV4W719Io1OpYJGPH1vDZjFxAP2mrialpoZHDx2hXSbnyZg53BEaYrCatV0Zubx0KB5XGyu2372RQHdXvdZr7Ozh0S8OkVPdwC3R03lkuf6diHkVDfzpo8PUt3Zz+9IZ3LMywmBFz53dMt7ddprDifl4uNrx+pNrmDXdsJ2DP6Sjs48dO1PZd/ACWq2OxQsnc/OmiGEVmerqlHH8cDZH91+gpqoVC0spcxcGsXhlMBMneV53N2tlBXVMnjGOvl4FVjYWBE73Ji2hiCUbZiIWi65Em9zHOiHvU15JD5YX1pN0NJeN981l29tx7HjvJLYOVjTVdXDLlgXAz9dVXatcd6JKZGKCnZkFdmYWeFr99x/6Kp9JrPKZ9KM/O8N1DPuX3E6fRonZpTomI0ZGIn1qFV/mXeCjrAzaFXKix3jzxxlRTHEdnFZ2tVbLW2eT+TA1HR9HBz5cu4ZJbvqJnsso1RpePBTPt5l5RPl68dq6pdjrOQ/vXEkNT2w7jFKj4fVbl7Fwmr9e62l1Oj4/nM6H+5Nxtrfmg8fWE+yvf8cg9EcWjiQW8M9tCfTKVNy6ega/uyEcc7OBO1/19CjYuSeNb7/PQKXSsGDeJG7dHInHMKmrEQSBnMxqDu/LJCm+ELVaS0CQJ1ufXkHM/ElYDNJcuOHE5fSeSqlBKf9/26KpM8dRkleHRq1FLBah1egQSUXMXz2dbe8cv/I8pUzFWF9XrG0tuPmhBWx7O46Wxi5W3xaFzQiYxzhQXHeiSl+kYjFS8fX7gTEysulSKvgqL4uPc87ToZAzZ4w3D4dGEDLKc9COoaK9nT8cPEJeUxMbpkzmmdgYLKWGueC3K1Tc/Mku8uqbuDd6Jg/GhutVPC4IAp+dyuCdw2fxdnXgH79bgY+bfqm5pvYenv34CJkltSwIm8DTt8wz2BDkiw0d/O3D42TmX2TyBA8ev3sB4wfQpkAuV3EmuY7X33mfvj4lc2MCuO3mSMaOGbxhyz9HV6eM44eyObwvk9qaNqxtzFm2JoQlq6bjM94wIn6kcrleanqUH7s+iKe3S46VtTkTp43l8DepSM365YHpJTPP6VH+VJc28fKWr2iu68DazoIb7poDgI29Jfc/t3poXsgwwyiqjBi5DmiW9fFpznm+zs+iR6Virtc4HgqJINjNfdCOQRAEdmTn8Ep8IuYSCe+uXM7iCfpFfK4mpbyGV9OLQSTi3U0rmRegn4Flj1zJn7+J42RuGYun+fP8hgVY6mkQmnChjBc/j0Ol0fL87YtYNivQICkSjUbL9gMZfLonBamphMd/v4CVcyfrbT76U6hUGg4czuLrHSl0dMqYFe7L7bfOxncYCJXLtVIH957n9KkC1CotgZNH89ifVzFnbuAV08rrHZ1OR0FmNekJRZiZSym8UI2bpwOjx7ki61Ui61NiZW3O528eZf6aEEb7uLD2jjnkplfg7GaH+9jhIZyHG0ZRZcTINUx5Rzuf5JxnT3EeGp2OpeP9uS94JpOcB/fi19rXx9PHjnOqvIJILy/+vnQRbtaGsQoQBIFPkjL4x4mzuFma8cmdG/UeN1PW2MrWzw5S19bFY6uiuXmOfgahCpWat3efZnd8NhPHuvLKPcsY62YYb6aCskb+9kEcpdUtxIb7s/X2WJwdBmash04ncDK+gE+/OENjUxfTpoxlzQprbrl5xYDs79fQ16fk5JEcDu49T1V5M5ZWZixdOZ2la0Kuq6iUVqujJOci5QX1LN8c8ZPPO3Mkl8SDWfgGeRI+L5Cju9LQqLUUZtUQs3zqlQiV/+QxWF5lzjk5bGDr8kY6RlFlxMg1hiAInKu/yMfZGZysrkAqFnOD/yTuCQ7D227wTRbjSkp5Ju4EfSoVz8TGcFtIsMGK0fuUKp7ee4y4gjIWT/JjkZOF3oLqWFYxf/7mOJZmpnx0/w16u6NX1rfx1AeHKKtr5eaFITywNsogVgYKpZoPd55l16FMnBys+Otjq5gTpt8w6J9CEATSMir48JNEKipb8PN1Y+uWhYSF+JCYmDgg+/ylVJY3c+DbDE4ezUEuU+E30Z2tTy0nZmEQFhbXR61Ue3M355NKyDhdTObZUnq75IglImJWTMPa9sc71OcsnUL0sqlXHkvNJJzafwE7Byvmrwm5MsNv1oIfrzE28uMYRZURI9cICo2afaVFfJ6bSWFbC47mFjwcGsEtk6bhbDn47eE9SiUvnIxnb34Bk9xceX3pEvycDZcyqGhp56EdB6hq6+DRhbO5IzJErwu8RqvjrUNJfJlwnqne7rxx23Jc7X57xEcQBA6czefv209hLjXl7YfXEDnZ5zevdzWZ+Rd59f046po6WT1/CvffPAdry4ExrS0qbuCDjxPIyqnBw92eZ59aQcycgAFLLf4SNBotyYnF7NuTRu6FGkylYmLmB7FyXSgTAgevPnCo0Gp05KZXkJFYTMaZEioK6wFwcLEhfG4goXMmEDzL9ycFFfR35gmCgFajQ2IqJix6ImHREwfrJVyzGEWVESMjnIvdnXxdkMM3BTl0KhVMdHTm1eiFrPEPwHyIOlSTqqp56mgczb29PBgxk/sjwg3qxh5XUMpT3x3D3FTCp7fdwMxxY/Rar71XxuPbDpNWepENkVN5fFW0XtGkPoWKv351kiPnCgmdOIYX71piEGf0PpmS9746zfcncvB0s+fd525k+iT9XvtPUd/QycefJRKfWIS9nSVb7p/P8qXTMDUdOgPd9rZeDn9/nkPfZ9LW0sMoD3vuenA+i1dMw9bu2m4gam/uJj2xiPTEYtJPF6FSaBBLRAQEe3H7HxcTMnsC4wLcf1Wa2sTEBMkQ/j6vRYyiyoiREYhGp+NkdTnb87M5fbF/vMRCb19+N2U6M91HD5k/TK9Kxd8STrMjO4fxjo7svGkj0zwMVwyv0ep4++RZPk7KYMroUby9YTmj7PSbWVdwsYmtnx+grUfGixsXsmqGfumO0ostPPH+QWqbO7lnVQR3LJtpkPmeaTlVvPp+HC1tvWxaHsLdGyIHxCahp0fBtu3J7N1/HolYzC03RbBh3UysrIZufFNJYT17d6aSeCIfjUZHaPh4HnlyGaHhvldGpFxr6HQ6SnJrSUsoIj2hiLL8OgCcR9kREObOihtjmDZrPFY218cMwpGCUVQZMTKCqO7qZFdRLnuK82nq68XNypotoRFsCJiMh/XQulWnVNfw5NE46ru7uSsshEciZ2FuariL/tXjZjaETubppTFIJfqdwvanF/DC7hM42Vjy5UMbCBzj9pvXEgSB78/k8vqOeGwszfn3o+sImaB/FKlPpuSf2xLZfzKXsR4O/PvFjUz299B73R+iVmvZd/AC274+S0+vgsULJ3PHbbNxHoRByz+GVqMjKaGQvTtTKcitxcJSyrI1oaxaH8boa7TzrK9XQWZSCWnxRWScLqazrReRyORKNCoseiLeE0aRmJhIZEzQUB+ukR/BKKqMGBnm9KlVHK0oZVdRLqn1tYhMTJgzxpsXZs9jntd4gwwc1ocepZK/JZzmm5xcvB3s2XnTRqZ7Gvain3WxgUd2HqRTJueVNQtZE6xfNEmtvTRu5kwWYb5jeO3WpTha//b0kUyh4tVtJziSWsTMQC9evGsJjrb6p6Mycqt5+d/HaGnrZfPKMO66MQIzA3l6XUYQBM6mlPHBx/HU1nUQOt2be++OZfy4oemY6+6Sc2RfJvv2pNPa3I3HaAfu27qIhcunDWm0bKCoq2olLb6Q1PhC8jIq0Wp0WNtZEDpnAjNjAwiJ8r+uzTRHGkZRZcTIMESr05FcV8N3JQUcrShBrtHgZWvPYzOiWDthEu7WQxM9+CEJFRX8Ke4Ezb193B0WysOREQaNTgmCwPa0bP52NBE3W2t23L2RAD3HzbT1yHj8y0Okl9dyS/R0ti6fjUSPFFJFfRtP/PsA1Y0d3Lt6Fncsnal3EbdcoeZfX5/m22NZjHV34P0XNxI0ANGpsvJm/vXhKS5kVTN2jCOvvriOmWGDO37rMnU1bezdlcaxg1koFWqCQ3146LElzJjld02l+LRaHYWZ1aTGF3LuZAG1lS0AePm5sfb2OcyInUjAtLGIB3jYtZGBwSiqjBgZJgiCQGZTAwfKCjlYVkyrXIat1IzV/oGs9Q8kdNTwmUvWJpPx8qkE9hcW4evkxHubVzDV3bBGojKVmuf3n+BAThHR/j787YbF2Fno5zxeUNvEI58eoKNXxis3LWZ5aIBe6x05V8jLXx7H0kzKe3+4gbCAsXqtB5BbXMcL7x6lrqmTG5dO595NUQavnerqkvHJ52c4dDQbayszttw/nxXLphls7uAvRRAE8rJr2LP9HOfOFCORiIldGMQNm8Lx8f3tqdjhhkKm4nxSCedOFpAWX0h3pwyJqZjJM8axfHMEM2MDGDXGcEO0jQwdRlFlxMgQIggC2c2NHKko4VB5MbU93UjFYuaOHcdKv4nM9RqPuZ51Q4ZEEAT25hfwSnwifSoVD0bM5L7wmZgZ+BgrWzt4+JsDlLe088i8SO6eHaZ39OfQ+UKe33kcRxtLvtiygcDRv/2irVJreOObBL5NzCHYz5NX7lmmd3efWqPlk13JfLUvHTdnG957/kaCAw3b2afR9NdNfb4tCZlMxZqV07nt5ihsbAwzJueXotXoOJtYxO6vkykuqMfWzoKbbp/NihvCcHQaGOPSwaazrZfUUwUknyggK7kUlVKDta0FYTETCZ8bQMicCVhZD+77bmTgGT5nayNGrhO0Oh3nG+s5VlnK0YoS6np7kIhERI32YmtYJAu8fbE1G361I1UdHTx3/BRnq6sJ9nDn5UUL8Hc2/Fy5o3kl/GnfcaRiMR/duoZZ4730Wk+j1fHWwTN8mZhJ6PjRvH7bMr3qpxrbunn83wcoqGrilkWhPLA2Sq/0IUDFxVb+8s/DlFa1sDw2iIdvi8HKwL5TmVnVvPPecapr2gid7s0D987D22vg5gL+GAqFmriDWezZnkJjfSceox156LGlLFg2FfNrYHxMfXUrySfySTleQOGFagRBwNXTgSUbZhI+L5CgUB+jhcE1jlFUGTEyCMjUKs7W1nC8qowTVeW0K+RIRWKixlwSUj6+2JkNz7tWpUbDh2np/PtcGlKxmOfnz+WmaVMN5op+GZVGy+txZ9h27gJTR7vzjw3LcNfTLqGrT8Hj2w6RUlLDpqhpPLpqDqZ6+GWdy6/mmY8OodHoeO3+FcRO99Pr+ARBYPeRC/zr69NYWkgHxBW9ubmbf38UT8LpItxH2fHic2uJjPAd1FRyd5eM/XvS2bc7na5OGQFBnvx+y0IiZvuP6HopQRCoLGrgbFweycfzqSppBGB8oAebH5xHxPxJ+Ez8dd5RRkY2RlFlxMgA0apWsi3vAierK0iuq0Gl1WIjlTLXazwLvMcTPdYHG+nwi0hdTUp1DX8+fpLKjg6WT5zA07HRuBpoZt/VNHb1sHXXIbIuNnBL+DQeXTgHqZ71PaUNrTz86X6aOnv5y4YFrJn521vQdTqBzw6n8f6+s4zzcOLv963Ea5R+43BaO3p5+V/HSM2uYtb0cTx93yIcDWhgqVZr2f1dOtu+TkYnCPzulig23TjzyviRwaC1uZs921M4vC8ThVzNzEg/brxlFkFTx45YoSEIAsU5Fzl7LI+zcXk01LQhEpkQGOLNPc+sIGL+JNw8B38clJHhgVFUGTFiIBQaNWkNdSTUVJJYU0l5ZzuUgZetPTdPmsY8r3GEuY82qLP4QNHY08OrCac5VFTMGDs7Pl23ljk+3gOyr6TSKh7/9ihKjYY3b1zKkqAJeq95MqeMp7cfxdpcyqcPrGeq928vou+VKXnu06MkZpWzeOZEnrl1ARZ6Fo6fySjj1X/HIVeqefSueaxZMNWgIiMzq5q3342j5mI7UbP8eOCeeYwaZWew9f8XdTVt7NyWzIkj2egEgdgFQdx4S+SIHWx8uWMv6VguZ+PyaG3sQiwRMS3Cl3V3RTNrwSTsr5FaMCP6YRRVRoz8RrQ6HfmtzSTVVpNUW01GYx3/x955h0dRdn34Tu+990oSEhISCKGF3nsHRewVCxYQlVfEiqAgoqiAihUFQXqvofeW3nvvbZPt8/0R4FVf/YTdTQHmvq65ZnczOfNks+U35znP78hVKowNDOjl7kWMiQWPDxpKgK39HXNVrlCp+P7SZT4/fRaVoGZOn948FROtU5uEG6jUalYdPcua4+cIdHLg0xlj8XfSbgWUWhD4av8Zvtp/li7ernz66Dit+vdlF1cx74sdFFXUMve+gdw3JEqr/6VMrmDVTy1WCUF+zrw9ZzS+HrozsqyqauTLtUc4EpeCu5stH743lV4xATqL/2/kZJWz4YeTHDuUhKGRAaMmdGPqA71xc7/zMjcqlZqkizmc2JvAqYOJ1FQ0YGRsSPd+QTz88gh6Du6M1V3eGudeRaVUUZxTQV5qMXlpJdRVNtzy74qiSkTkFlELAqlVFZwpKuBMcT7nigtpkMsACHFw4qEukcR6+tLTzRMzIyPi4uIItLtznJ+P5eSw+MgxsqqrGRzgz5uDB+Jta9sq56pslPDqpr2czSlgUlQoC8cMxkxLU8smmZx1F3KIL61jfI9QFk4dgomR5h9xhy+l8866/ZgaG/HVvGl0C/LUanxZ+ZUsWrmb7IJK7h/bnafvj8VYi/H9EbVaYOfuq3y9Lg65QsXDs/py//SemLRCG5u/IyO1hPXfHef0sTTMzI2ZOrM3k+/vdcet5FOr1SRfyuP4nmuc3J9ATWUjJqZGRA8IJnZEODEDO2Nu2bGn7EVuHbVaTWleFflpxeSmFJOXVkxeajEFGWUo5cqbx7n5Ot1yTFFUiYj8A3KVisSKMi6WFnG+uJDzJYXUXxdRPta2jAkIore7N709vXE2t2jn0WpObk0NHxw9xtGsbHxsbVk7eSKDA/xb7XznsguYt3kPDVIZH0wczuRu2rmjAxRW1TLn2x1kldbx6oQBzOqveUZJpVazZvsZ1u0+Rxd/Vz6aPQ5nO80L5gVBYNvBeFb+EIeFuTGfLJhMr0g/jeP9lazscj75bD/JKcV0i/Th5TnD8fRoG8+j9JRiNv2QSEbKcSwsTZj1eH8mTo+5o5ob36iROrb7Gif2xlNVVo+xiSExgzrTb2Q4PQaEYHYXOrnfSwiCQGVJLXkpxeSmFpGX0iKe8jNKkTXJbx7n7GWPb4gH3QeH4RPsjk+IG16BrphamPCd3vu3dC5RVImIXKeyScKVshIulxVzqbSYa+WlyFQtVyv+NnaMCQgmxt2TGDdPPKzat8+eLqiTSvnyzDl+vHwFY0NDXh/Qn4e6R7VazZdKrWbN8fN8cfQsPg62fPvwFIJctF/Sfy4jn3k/7EYQBJ7tHcCDA7ppHKuhScqbX+/lVEIOE2K78NoDg7XKJjVIpCxZc5CjZ9OJ6erDW8+Nwt5WNwJcJlPw4/rTbNh0DisrUxbMH8vQwaFtMtWcllzEz98e59ypDEzNDHn4qYFMnB5zx/guCYJAdkoJx3Zf4/jea5QV1mBoZEB0/2Aenx9Bz0GhYkbqDqWuqpG81KKWzFNq8c29pL755jH2Ljb4hLgx6sFYfEM88OnsjnewG+Y6eP2KokrknkSqVJBUWcG18hKulZdypayY/Po6AAz19QlzdGZWWFeiXT3o7uZxR2ei/opCpeLXa/F8duoMdVIpU8LDmBsbi5Nl6/2NlY0S5m/ex5nsfMZFhLBo3BAsTIy1iikIAr+evMrH24/h62THyscmkJ10VeN4OcVVzP1iO0WV9bz+wBCmDIzQSqAkZ5by1qe7KKusZ/bMfjwwXnsD0xtcuZrH8pX7KSquYeTwcJ55chA21mY6if3/kZFawo9fx3HuVAZW1mY8Onsw9i5SRozs3+rn1gXF+VUc23WVozuvUpBVjoGhPlG9A3ng+WH0HhqKZRs8hyK6QS5VkJ9eQk5yEbnJReQkF5KbUkxNef3NYyxtzPHt7M7AKT3wDXHHO9gd387uWNu33rS0KKpE7nqkSiVp1RUkVJSRWFFGfEUZ6dWVKNVqAFwtLIl0dmNWWCRRLm6EO7lganjnGxH+FUEQOJSZxcfHT5BdXUNvby8WDBpIZ+dbrxfQhNNZebz2+z4apDLenTCUqd26aJ1NkSuVfPD7UbaeS2RgmD+LHxiJpakJ2RrGO3Etmze/3oOJkSFr5k0jspOHxmO74T216qdjONhZ8OU7MwgP1jzeH2mUyFi99gi798Xj7mbLsiUz6B7lq5PY/x85WeX8sPYop4+lYWll2pKZmtETCwsT4uLiWv382lBb3ciJPfEc2XGF1Kv5AHSJ9mPCO5OIHRGOjf3dc8F0N3Jj6i4nsZCc6+IpJ7mIwswy1KqWz3BjUyN8gt2IHhyGb6gHPiEt4snexabNFwmJokrkrqJW2kxyVQUplRUkVZaRXFlOZm31TQFla2JKuLMrT3XtQaSLG12dXXGxuLOKaTXhclExS48d51JRMf72dqyZNIHBAa3bOFepUrPq6BnWnjiPv6O9zqb7qhqaeOX7nVzJKebJoTE8N7KPxhkgQRD4fu8Fvtx6kmAvZ5Y9Nx5XB82ndhubZCz+aj9x5zKI7e7Pm8+NxNpSN9mPM2cz+eSz/VTXSJgxLYZHZsW2ugt5UUE1P34dR9zBRMzMW2qmptzfq8NP88mkCs4eTubI9stcOpmOSqnGL9iNx14dxcCxkTi5tc4CDBHtkDXLyUsrISepsGVLLiInuYiGGsnNY5y97PEP86TvmCh8O7vj38UTNz/nDmMiK4oqkTsSmUpJVk01adWVLVtVBalVlZRI/rv01cncgjBHZ4b4BhDm6Ey4kyueVtZ3jL2BLkivrOTTk6c5kJGJk4UF7w8fytTwLhjqt+4HUHFtPfM37+VSfjFTunVhweiBmGu5ug8gpbCcF9ftoKaxiY8eHM3IKM09raQyBe/+cIAD59MYHhPMWw8P16pxcVpOGW9+sovSijqef3AA94/trpPXWl19M6u+OsShI8n4+Try3qLJhATrtnn1X6ksr+fndcfZt/MKRoYGTJ/Vh2mz+nToAnS1Wk3ixVwOb7vEyX0JNDXKcHCxZtIj/Rg8Pgq/kNZ9zkRuHUEQqC6rIzuxRTxlX9+KMstQqwUATMyN8e3sQd+xUfiHeeIX5olfqAcWHXyKVhRVIh0aqVJBVm0NmTVVZNVUkV5dRXpNFXl1NaiEljefkb4+Abb29HT3pLODEyEOTnR2dL6r6qBul8K6OlaeOsO2pGTMjY15sW9vHovujoWxdnVMt8KB5AwWbjuIShD4eOooxkaE6CTu/qtpLPz1ALYWZlo3RC6vaWDuqh2k5pfx3ORYHhnVQysBtPNIAsu/PYyNlRlfvD2DiBDdTPedPJ3BJ5/tp76+mYdn9eWB+3pj1Iq94xrqm9n44ym2bTqPWqVm3KRo7n+0X4e2RijJr+LQ1ksc2naZ8qIazCyMiR0RzuAJ3QiP8e8wGYx7FbVaTXFOBVnxBWQlXN8SC/7k/eTi7YBfqAex47rhF+qBf5gnbn5O6LfyxV9rIIoqkXZHEATKmyRk11aTXVtDdm01WbXVZNdWU1Bfh3D9OH09PXytbelk78iYgCCC7B0JsXfE18ZOq35udxPljY2sPneeX68loK8Hj/foztM9Y7Aza/2rO6lCyZJ9x9h4IZ5wDxeWTRuNt7320yxqtcCX+8+w9uA5ovzc+eSRsThYaS6Yk3JKmbtqO01SOcufm0D/SM3NMWVyJZ+sO8zOI4n0CPfm7RfHYGetfTanoUHK518d4uDhJAL8nfnog+kEtqIbuVymZPvm8/z6/UkkjVIGjwjnoacGdljTTmmTnJP7Ezi45SLx57LR09Mjsk8gD788gj7DwjA1a/2LB5H/RSFXkp9WQmZ8/k0BlZNUSLOkxYrG0MgA72B3YoaFE9DFE/8uXviFeWDZgTOgt4soqkTaBLUgUNEkIa+ultz6mpZ9XQ05dbXk1tbQpFTcPNbU0BB/W3sinF2ZHBRGoJ09gXYO+NrYYWoovmT/jipJE2vOX2D91auo1AJTuoTxfJ9euFlp15D4VkkrrWDe5r1kllfxWN/uvDikr9a9+wAkUjn/+WUfRxKzmBQTxn+mDsZYi9fA/vOpvPvdfhxsLFj18n0EempepF9SXsd/PtlJanYZD0/uyRPT+2CggyvrC5dy+OiTPVRXS3hwZh8enNmn1bJTarXAkf0JfL/mKOWldUT3CuCJ54bi30nzLGBrIQgCqVfzObD5Asf2xNMskeHm7cBDL49g6MRuYp1UGyNtkpOTXEgIKr4pAAAgAElEQVTWdQGVGV9AbmrxTdNMMwsT/MI8GXZ/HwLCvQgI98I72A2jNuw92R7c3X+dSJvSIJdR2FBPQX0d+fW1FDbUXb/dst3wfIIW2wIvKxt8bGzp6eaJn60dvjZ2BNja42Zphf49VPekDVWSJr65cJH1V68hVSqZGNqZ5/v0ajUn9L8iCAI/nb3C8oMnsTY14esHJxHbyVcnsQur6pjz7XZyyqt5beJAZvaL1HiKTq0W+HrnGb7eeZbITh58/Ow47Kw0vzo+H5/LW5/uRq0W+Gj+RGKjtW8FI5UqWPttHFt3XMbH24H3F00mOKj16oCuXsph7cqDZKaXEhjsxtw3xxMVrTtTUl1RVy3h8LZL7N98gfzMckzMjOg/KoLhU3oQFu17T9VIthdSiYysxAIyruaRGZ9PZnwBBeklN+ufrOwsCIzwYuLTgwkM9yYgwgv3O3T6TltEUSVySwiCQLW0meLGeooaGihqqKeosb5l31BPYUMdtTLpn37H0sgYT2sb/GztGOjth7e1Ld7X77tbWrd6sfTdTKVEwtfnL/LLtWvIlCrGhgTzfJ9e+Nu3jZM2QFVjEwu2HuB4Rg4Dg/z4YNJw7C10k8a/mFnIKz/sRK0W+OqpyfQK8tY4llSu4J11+zl4MZ1xfcN4Y9YQjQ09BUFg/Y4LrP7lJL6eDix5dTyertpPkaWll7D4o13kF1QzZWJ3nnxsQKu1mCnKr2LtqkOcOZ6Gs6sNr78ziYHDuujMQ0sXCIJAwvls9mw4x6kDiSgVKkIivXnx/Sn0H91VNOZsReQyBTlJhWRczSP9Sh4Z1/LIT/uvgLJ3sSEwwps+YyIJjPAmMMIbJw87UdxeRxRVIjcFU6mkkdLGBkokDZQ2NlLcWE+ppJGSxgaKGxv+lGkCMDM0xMPKGg9LayJdXPGyssHDyhpva1u8rG2wNTEV32g6pqShgW/OX2RjfAJylYrxnUN4rncv/OzbtvYlLi2bN7cdpEEm480xg5gZ01Vn/+vfTl9jyZY4vBxt+fzxCXg7aZ51q6yTMHfVdpJzS5kztR8PjojWeJzNUgWLV+/n8Ok0hvQOYsHskZhpaWmgUqnZsOkc3/14Ejs781b1nZI0Slm/7jjbfjuPkbEhj84ezJT7emFs0nG+BuprJBzaeok9G89RlFOJpbUZY+7vxcjpMfgGubb38O46VEoV+WklpF/JI/1qLulX8shNKUKpUAFg42hFUKQPfcZE0SnSh6CuPti72rTzqDs2HefdJKJzBEGgVialoklCkqSe6rQkypoaKZNIKJc0UtbUSKmkkQqJBLla9aff1dfTw8XcEjdLK0IdnRjqG4C7pTXuVlZ4WFrjYWUtiqY2JK+mlrXnL7AlMQkBmBDamdm9YvC1a1sx1SxX8PGBE/x6/hrBLo6se0Q33lM3uJxdxPubj9Cvsx9LZo3CykzzjERGQQUvf76N2sZmPn52PAOjAjWOVVJex2sfbyc7v5JnH2hxR9f2tV9eXs/ij3dxLb6AAf2CmfviSKysdO//pFKpObDrKutWH6G+tonhYyJ55JlBODi2Tb3dv3GjVmr3L2c5vjcehVxJ5yhv7ls6nX6jIjBpZS+uewVBECjJrST9Si7pV3JJu5xLVmLBzd53FtZmdIr0YfLsoS0CKspXzEBpgCiq7jAEQaBBLqequYnKZgmVTU1UNEuobJJQ0dxERZPk5lbZ1PRnsZSfDrRMyzmbW+BiYUmMmyfO5ha4WljhZmmJi4UVrhaWOJlbiNNzHYDEsjLWnrvAvvQMDPX1mR4RzlMxPfCwafveg0nFZczfvI/symoe6dONl4b0xUSLvnh/Rzd/D1Y+Np7+oX5aFX2fSsjhjdW7sDAz5pvXZhDio3nh9ZXkAv6zfCdKlZplb0zSSTPk4yfTWLZiHwqlitfmjmbEMO1d5v+O5IQCVi3bR2ZaCWERXsxeMZOgEHedn0cTpM1yju26yo6fz5CdUoyZhQkjpvZg9H09RU8pHdBQKyH9ci6pl3JIvZRD2uXcmyaaxqZGBIZ7MXJWLEFRLQLqXq2B0jWiqGpnboikGmkzVc1NLXtpE9XNzVQ3N1F1/fEbW2VzE3KV6n/i6AEOZuY4mVvgaG5BgK09zhaWOJtb4GRuQVFaBiP6xuJsYYGFkbjcuCMjCAJn8gtYe/4CJ3PzsDQ25smYaB7uFoWzZdv7BSlVar45eYEvjp7F3sKMbx6aTN9An1Y736Au2hV9bz56jY9+OUInLydWvDABZzvNMzLbDl5j+bojeLrasvTVCXi7a1ezJpcr+WrtUbbtvExwkCsLXx+Ph4fus421NRK+/eIw+3ddxdHJitffmcSg4a0j3G6XsqIadq0/w75N52msa8Y32JUX3p3EoHFRmFmItVKaoFKpKUgvIeViNikXcki9lE1BeikAenp6eAe70XtUV4K7+xEc5YtPiDuGreh3di8jiiodolCpqJNJqZVJqZW27GukzdRKm6mRSqmR/eG2tJnq6z9TXG+h8ldMDAxxNDPDwcwcBzNzOtk5tIim6/f/KKLsTc3+38xSXGEpfrYd03NGpAWFSsWetHS+uXCRlPIKHM3Nmd+/H/dHRmBl0j5fNnlVtby+ZR9XC0oY1SWIt8YOwdZcsykqpUqNYSsaMarUanZcKuR4ymViI/xY/NQYzE01u4BQqtR89sNRNu+7Su8oP955cQyW5tr9DwoKq3l38XYys8qZPqUHTzw6QOdWCSqVmr3bL/Pd6iM0SeRMn9WHBx7rj5l5+15ICYJAwoUcdvx4ijOHkkBPjz7Dwhj/YB+6RPt1CLF3JyFtlHPhUCIpF7NJvZhN2uVcmhpaFgpZ21sQ0t2fQVNiCOnuR1A3XyysOrYL+d2EKKr+gkylpF4mo14mo04mpU4mpV4uo14m/cNj//1ZnVxGnbSZWpkUiULxj3EN9PSwMzXD1tQUe1NzfGxsiXJxw9bUDAdTM+zNzLE3NcPO1AwHs5b75oZG4ofNPUCdVMrGawn8dOUqJQ0NBDjYs3jEMCaEdsaknXy51GqBDRfjWbb/OIYGBiybOooxWjij/+eXfRgZGGCgr8f8iQN1Pm0olSlY+M1ejqeUM31wJHPvG6jx9GGDRMrCT3dx/loe94/tzrOz+mvtP3XoSDLLV+7D2NiQxe9OpXdP7S0Y/kpWeimfLtlFWnIxXbv58Pyro/Hxa91m2f+GQq7k2O5rbP3+JNkpxVjZmjP1iQGMfaC36Ct1iwiCQFFWGUnnski5kE3yhaybWSh9fT18Qz0ZNDWGztH+hHT3w93fWfzeaEfuKlElV6lokMtolMtpkMuub/Lrj8mol8tokLU8Vv+H+/XXj62Xyf5nhdtfMTEwxMbEBBsTU2xNTHG3sCLE3hE7U7OWx0xNsTExbRFQ1+/bmphhZWwsvtBF/kRuTQ3fX7rM74lJNCuU9PTy5N1hQxjg79euPl0ldQ38Z+sBzmTn0zfAh/cmDsPNRrMpNEEQWH3gLFKFklfG9ePdTYf5dNdJxkV3JtRLNwaT1fVNvPz5NpJzS5kQ7cn8mYM1jlVYWsurS7dSVFrLG88MZ9zgcK3GJpcr+WLNEXbsukJ4mCcL3xiHk5Nu6+Gam+T8+HUcWzeew9rGnNfensTgEe071ddQ18SeX8+x4+dTVJc34NPJhTnvTWbQ+CjR7fxfUCpUZCXkk3g2k6SzmSSdz6K+qhEAS1tzOkf749vNiTEzhhIU6YNZB29ufa/RrqJKEASalQokCgUShbxlL5cjUchpVMiRyK/vr99u+MNjjTf3sps/+7tao79iYmCIlbEx1sYmWJmYYG1iioeVFVbGLULJ2tgEaxMTrI1NW/Ympthc31sbm4iO3iJaIQgCp/Ly+eHyFeKysjHU12d8aGce6d6Nzs7tm1UQBIGd8am8v/soSpWKt8cNYXp0uFZfznp6epTXNdI7yBsHKws+fGAUX+w7zdGkLKzMTPBy1C5bkVdaw5yVW6isk/Dxs+OhrlDjWAlpRbz20XbUgsDKhVOJCvXSamylZXW88/52UtNLmDEthicfHaDzPnQXzmTy2dLdlJXWMXpiNx5/dghW7dhwtry4hq3fn2Tfb+eRNsnpFtuJV5ZMp1vfTuJF5T8gbZKTdjmHxLOZJJ7JIOVi9s0VeW6+TsQM7UJYz0DCegXiEeCMvr4+cXFxdI3VvJm4SOvRLgqhQNZMl28+Q6KQ3+zr9m+YGhpiaWSMpbExFtf3bhaWWNo53Hzc0tgYK2MTrIxNWm4bmWBl0vKYpZExViYmmBiIokik7WmUy9mWlMxPV66SVVWNg7k5z/XuyczIru1SfP5XKhokvLPzMIdTs4jycuPDySPxcdBc8BRV1+FuZ42enh69g3xIKiijtLYBV1srZvaL5It9Z7iaW4yXoy1qtaCR8eTVjCLmrtqOvr4ea+ZNo4u/G3FxmomqQ6dTef+LfTg7WLH8jcl4uWlXf3j+YjYfLNmJSqXmvUWTiO0TpFW8v1JX28TqT/dzeF8C3r6OfLL6EbpEam6Qqi05aSVs/voYcbuvoacHA8dEMuXx/uIqvr9B0tBM8rksEs9kkHgmg/SreSgVKvT09PAL9WDEzL6E9QygS69OoifUHUi7KAwzfQNmdA7HwsgIc6MWkWRhZISF8Y3bxlj+5b64vF/kTiSjsoqfr1xlW1IyEoWCLi4ufDx6JKODg9qtXuqv7E5I471dR2hWKJg/oj8P9Y7SqoboSEIm83/aw5pnJtPd3xMXWyvOZRYQn1eCtZkpHvY2DIvoxCc7jzMyMhgjDXoEHr6UzsKv9+LqYMVnL07G01kzASgIAj9uPc+aDSfpGuLBklcnYKNFUa9aLfDLhjOs+/EEfr5OvLtwkk5X9wmCQNyhJL5cvo/GBikPPNaP+x/ph3E79VNLuZLH5lUXyYrfi6m5MRMf6svER2LFeqk/IGloJvFMBvGn0kk4lU5WQgFqtYCBoT5BUb5MemYoXXoFEtoz4K5qLHyv0i7vREcjYxb2HdQepxYRaXUUKhUHM7P4MjWd1AuXMTYwYExIMA9EdqWrm2uHmQapbJTw3q4jHEjOJMLTlQ8njcDfSfs2N4IAVmYm7LqYgr2lOV193cgqreJCZiEIMDwyiEFdAth9KYVmueK2RdWGw1dYvuEo4f5ufPL8RGw1FEFKlZrl3x5m+6F4hseGsGD2CI3b1wA0NclYsmwPJ06lM3RwKHNfHImpDo0ra2skfP7xHk4cSSE41J1XFozDL7DtGx/faCHzyxeHuXY2CzMLIx58cRjjHuiDla0oCmTNcpIvZHPteCpXT6aRcTUPtUqNkYkhId39uO+V0XTp3YnO0f6YtvOqTBHd0zEulUVE7gKK6ur5LSGB3+ITqZBIcDA2Zm6/WKZHdMHBvON82QiCwJ7EdN7ffQSJTMErQ/vyaN9ondkdBHs48uCAbpTUNPDt4Qu8f/8IRkYFo1SrOJ6Sw94raVQ2SPC0t8H6NuwZ1GqBz38/wU/7LzIgMoAPnhqNqbFmoqVZqmDhp7s4fTmbhybG8PT9sVqJ3aKiGv7z9u8UFFbz3NODmTJJ83Y4f8fJuFRWLt1FU6OMx54dzLSZfTAwbNvsvSAIXD2dyS9fHCbxYg72zlY89cZYLNxlDB8xtE3H0pFQKVWkX83j6rFUrp1MI/lCFgqZEgNDfYK7+THjpZF0jQ2mc7Q/xqI7/F2PKKpERLRAqVZzNCubDdfiOZ6TC8DAAH9mdo1AyM9jcK+Y9h3gXyivb+S93Uc5lNKSnfpg4nACnR10eo7S2kbyK2p5e8YwFqzfy+y1W3G0MufViQMY060zcUlZGBkaMLzrrdcZKZQq3v1uP3vPpTJ1YFdenTlI4ynK6rom5i3ZQnp2Oa8+MZRJw7tqFOcGly7n8s4H29HTg48/nEG3SN0ZozY2SPli+V4O70sgMMiVV1dNxC/AWWfxb4UbYurnzw+SfDkPBxdrZi+cwIhpPTAxNSIuLq5Nx9PeCIJAYWYZl+NSuHo8hfhT6Tc9ovzDPBn3+EAi+4XQpVeguDLvHkQUVSIiGpBXU8umhES2JCZRLpHgYmnJc717MS28y80WMnEF+e08yv8iCAK/X07io/3HkSuVzBvej0f6dNPaf+mv59DT0yM6wJO4pGwAzEyMOZqYzX19u2Jt1vIFM6Z759uKK5HKefWLHZxPyefZSX15dHSMxlmgwtJaXv7gdyprGvnw1fH0i9a8H6AgCGzbcZlVqw/j4+3A+29PwV2HtUTxl3NZ+s42qiobmPV4f2Y+2g9DDerPtCHxQg4/fLqfxAs5OLra8NyiiQyfGo2xyb2VcWmsa+LKsRQuHUnmclwyFUU1ALj6OjJgUg8i+wUTERuMbQfppyjSfoiiSkTkFpEqFBzMzOK3+ATO5Begr6fHAH8/3o0IZ6C/X4ddTFFcW89b2w9xKiuPaB8P3ps4DF8H7Yunt55LxNBAnyHhgZgZtxjVqtUCEpmc5IIyZq3cgLWZCR/OGslX+8/SO8OHmE63Z1NQVSfhxZVbySisYNGjIxjXN0zj8abllDF38RZUajWfvzWNLkGa98BTqdR89uUhduy6Qp9egfzntbGYa+m4fgOlUsUPa+P47adTuHva8+naxwgJ89BJ7FslM7mIH5bv4+KJdOycrHjmzfGMmhFzz4gpQRDISijgwqFELh1JJuViNmqVGgtrMyL7hXDfK6PpNqAzrj66ayYucncgiioRkf8HQRBIKitnU0IiO1NSqZfJ8LSx5uXYPkzpEoarVce9MlWp1fx6/horDp0CYOHYwdwXHaGRfcEfUahUPL16CzbmpqjUaq7mFBPq5cKUXuHo6+thZWbC6G7BJBeU89b0llobA319ovxvT8QUltfy/IrfqaiTsPz5CcRG+Gs85stJBbz20TYszU1Y9eZ0fD00n/KUSGS888F2LlzK4b5pPXnysQFaP6c3KCmqYfHC30lLLmbU+CieeWlEm7aYKc6r5MdPD3Bs9zUsbcx4fP5oxj7Q+54w7JTUN3M5LpkLh5K4eDiRmvJ6AAIjvJk+ZwTdB4fROdoPgzbOForcWYiiSkTkb6holLA9JYWticmkVVZibGDAyKBOTAvvQk9vr3Z1PL8V0ssqeWv7Ia4VlhAb6MPb44bgYacbz5uqhiYcrMz5+KExAOy/msb5zEJMLqYwNrplam9q7wjo3XK8Wi3Qr7PfbZ0jNb+cFz/dglKl5qu5U4kI0DyrdOx8BotW7sbd2YZP35yKs4PmQri0rI4Fb20mv6CaeS+PZMxI7eqx/sjRA4msXLILfQN93lw8lf6DQ3UW+9+orW7kl1WH2bPhLIZGBsx4ZhBTnxiAZTsaibY2N2qjzh2I58LBRJLOZaJSqrG0MafboFCih4TRfVAo9i6iV5TIrSOKKhGR68iUSuKyc9iSlExcVjYqQaCrmyvvDB3C2M7B2Jh2/KJTuVLJ1ycusOb4eSxNTPhoykjGRoTodCWaubERCfmlXMwqJDrAk97BPiiUauLzSghydyLI3ZHKegm2FmYYGujfdhbnYmoBc1dtx9LchNXzpuHnrnlWaU9cEou/2k/nQFeWvT5JKw+q9IxS3nhrMzKZkqUfTKN7lK/Gsf6ITKrgi+X72LfzCmERXrz+ziRc2sjnSS5TsP3HU2z46gjSZgUjp/XggeeHYu+s21Y6HQW1Wk3qxRzO7L3Kmb3xFGWVAeAb6sGUZ4fRY2gXOvfwF7NRIhojiiqRexpBELhWUsrWpGR2p6ZRK5XiZGHB4z2imdIljAAH7X2b2opLeUUs2nGIrIpqxoQHs2D0QOwtdG/lYG1uyqODotl1MQVfJzscrS2I9HPjWl4J1Y0S0ovhaGImD/SPwtLg9uqM4q5ksmDNbjydbfn8pcm42GueVdq09zIrvjtKjwgflsybgJkWy9kvXMph0XvbsLYyZfmS+/DVUS1NUUE17y3YRHZGGfc/HMtDTw5sE6sEQRA4fSCJb5buprSwmphBnXli/mi82nhlYVsglym4diKN03uucm5fPDUV9RgaGRDRN5iJTw0iZngEzp53zvtcpGMjiiqRe5L82lq2J6ewPTmF3JpaTAwNGN4pkIlhofT18emwRed/R32zlE8OnWLjhXjcbKxYPWsiA4Jub7rtdhkQ6k9pTQM/H7/MC6P74ulgi5O1BVdyipk9ojeeDtaYm9xeHc6Ok4m8/8NBQv1c+HTOJGwtNcsqCYLA91vO8fXGUwyICeSdF8doZep54FAiH32yF18fR5a8PxVHLaYP/8jJuFSWvbcdAwN93v/kfmL6dNJJ3H8jJ7WENYt3cu1sFr5Briz+7gmi+rbNudsKqUTGxSNJnNp1hfMHE2hqkGJmYUKPoV3oPSaSHkO6YHEXT22KtB86EVV6enojgZWAAfCNIAhLdBFXRESXVDc1syctjR3JqVwuLgagp5cnT8X0YFRwEFYmulm91VYIgsDexHQ+3BtHtaSZh3pHMWdwHyxuU8xogqudFSOjgvntTDyv/bSHOaNjOZWay+huIQC3Lah+2n+RlZuO0yvMh49mj8PcVLO/QRAEvlx/nPU7LjKyfygLZo/Q2NRUEAQ2bDrP2m/jiIr04d23JmFpof1rRKVSs+7Lw2xaf4bgUHfe/GBqm0z3NdY388Mn+9mz4SwW1mY89/ZERk2PuWumupobpZw7kMCJHZe4dCQJWbMCawdLYsd1o++YKCL7h4jmmyKtjtaiSk9PzwD4AhgGFAIX9PT0dgiCkKxtbBERbWlWKDiSlc325BSO5+SiVKsJcnRgbr9YJoSG4G59Z9aOFNXW8+7OIxzPyKGLuwurZ00kzL1tW5YEezgxf8IAlm6N49sjF+ge4MmMvrdXuC0IAl9uPcV3e84zrEcw7z4+UqNegDdi7TpZwJmECiYP78orjw3ReFWeIAis+TaOjZvOM3hgZ16bO1on/fUa6pv58K0tXDybxdhJ3Xnm5RGt3rdPEASO7rzK1x/uor5GwtgHejPrhWF3RUsZuVTBhcOJHN96kXMH4pE1K3BwtWH4zL7EjosirGfgXSMaRe4MdPFujgEyBUHIBtDT09sATABEUSXSLihUKk7n5bMjJZVDGZlIFApcLC14tHs3JoR2JsTZqb2HqDEKlYqfz15l1dEzALw+cgCzekXq1MTz77hh7PlXTIwMeWv6UJQq9W1nhNRqgY9+OcLmuGtMHhDBaw8M1vjvUKsFln1ziDMJFdw/tjvPPzhA4+J8lUrNis8PsHvvNcaPjeLF54bpxDIhP6eCRfM3UlZSy0uvj2X0xG5ax/w3inIrWbVoK1fPZBIU7sl73z5GYGjbel7pGpVKTfypdOJ+P8+pXVeQ1Ddj42jFsPv6MGBSNKE9A9C/g6bvRe4u9ARB0C6Ant5UYKQgCE9cv/8g0FMQhOf/ctxTwFMATk5O3X/77TetzityezQ2NmJpadnew2g11IJARkMj56truFRTQ6NShbmBAdH2tsTY2xNkZdnmNgi6fs6z6yT8kpZPUaOUcAdrZgR54dDK/kGCIHAkq5z82iYe7u6rs+dQpRbYcDqXK7k1DApzYXSku8YiSK0W2BqXx6XUKvqE2zMm1lcrQbV1ZxZJKdXE9nFncH9PnayczEytZtuvKRga6TNlVihevq27TF+lVHP+QA6ndmViYKjPgMlBRPb31pmf1h9pi88WQRAoz60l6XguKafyaKyRYmxmSFCMJ51jffANd0FfR70r7wTu9s/zjsigQYMuCYIQ/W/H6SJT9Xfv0v9RaoIgrAXWAgQHBwsDBw7UwalFbpW4uDjutuf8xsq9Xalp7E1Lp6xRgpmRIUM7BTI6OJj+fr6YGLbfWgxdPed1zVJWHDzJxkvpuFpb8tl94xjaOUCnNgl/h0yh5N1Nh9iZXMywrp3oG9sPEy0Kvv8Y9/WvdnElt4bnJ8fyyGjN+yOq1Go++HI/l1KreHxab/wdZQwaNEijWHK5kkXvbSMppZqnnxjIfdN6ajyuP7Ltt/Ns/vEE/oEuvP3RDJxdW1dQZSQWsuKNzeSklRA7MpzZb45vVYuE1vxsqSmv5/CmsxzeeJbclGIMjQzoMbQLg6bEEDM8HJN7wJT077gbP8/vFnTxjVMI/LH3hCdQrIO4IiL/gyAIJJWXsyc1nT1paRTW1WNkYMAAP18WdA5hkL8/5sZ3RzGqIAjsik9l6b7j1DS1bSF6RX0jL63bSUJ+Kc+O6M3Tw3vqRMQ1SeXMXbWdi2kFvD5rCFMHam6eeUNQ7TuezFP39eWRyb00bu4rkyl4850tXLyUy8tzRjB+TKTG47o5PpWatZ8fZOuGc/TuH8zr70zCrBVFgEKu5NcvD7NxTRx2DpYs+upheg1pOwNRXaFSqrh4JIn9609x/kACKqWakGg/nv94Jv0ndMfKzqK9hygi8o/oQlRdADrp6en5AUXAfcBMHcQVEQFaxEVKeQV709PZk5pOXm0thvr69PHx5sU+fRjaKeCOW7n3b+RUVvPuziOczSkgwsOVtQ9NItStbTyEEvNLeWndDhqkclY8Mo4hEZo3Hf4jDU1SXly5jcTsEt5+bCRjemv+ha9Sq/nwqwPsO57MkzNaBJWmSKUK/rPod65cy+PVV0YxekSExrH+GHPpoq2cOpbKpBk9eWrOMAxacXoqJ7WEZfM3kp1awtBJ3Xn6P+PuODf0svxK9q8/zYFfT1NVUouNoxUTnhrMiAf64h3k1t7DExG5JbQWVYIgKPX09J4H9tNiqbBOEIQkrUcmck9zQ0jtSUtnb1qLkDLQ06OXtzdP9+zBsE6B2JndWV8at0KTXMHqY+f4/vQlTI2MWDRuMNO6h7d6IfoNdl9KYdHGgzhaWfDTnBkEueumqL+moYkXVmwhs6iSJc+MZXB3zX2R1GqBD1cfYM+xJJ6c3odHp2guqJqlchYs/J34xAJemzuGEcO6aBzrBnW1Tbw171dSk4qY/fIIJs3QzTTi36FSqVv9kXcAACAASURBVNn89TF+/vwgVjZmd1x2SqVUce5AAnu+P87luBQAug8KZfbiGcQMD8eolVdGiojoGp28YgVB2APs0UUskXsXQRBILq9g7/8IKS+ejIlmWKdAHMzv/GXg/8TR1Cze232UkroGJkWF8sqwWBwt22aqQ6VWs3L3Sb4/eonoAE+WPTwGe0vdPNeVtY08+8nvFFXUsvz5CfQN19yYVBAEPv7mEHviknhsam8endpb41hSqeKmoHrj1bEM1UGvvfKyOt6Ys56y0loWfjid2IEhWsf8JypL6/ho3gYSzmcTOzKc59+ehI39nTE1Vl/dyL6fT7H7u2OUF1bj4GbL/XNHM3xmH1y8NG9LJCLS3oiXASLtiiAIJJSWsS89g33p6eTX1v1JSA3v1Al787svI/VHimrq+HDvMQ6nZhHo7MDPj0+nu0/bLXtvlMp47ae9nEjJYUbfrsyfOAAjA914+5RVNzB7+SYqaiWsfHEy0SFe//5L/4AgCHz6/VG2H4rnoYkxPDG9j8ax5HIlC9/dwrWEfBbMH6cTQVWQV8nrc35G0ihj8acPEBHlo3XMf+L80RSWv/YbMpmCV5ZMY+ik7q2+cEEX5KUWs23tEY5sOodcqqBrbDBPvT+NXiMiRD8pkbsCUVSJtDlqQeBKUTH70jM4kJFJUX09hvr69PL24qmYHveEkIKW5sfrTl1izfHz6OvpMXdYLA/36aYzQXMr5FfUMmfddvIranlz6mCm99G8cPyvFFfWMXvZZmolzax6eQpdA901jiUIAqt/PcmmvVeYMbobT98fq3EshULFOx9s5+KlXOa/MkongiorvZTXX/wZPfRY9uVDBAa3Tg2QUqHiu2V72fLdCfxD3Hjj0wfw9O/YvmuCIHDpSDJbVh/iSlwKxqZGDJ7WkwlPDsK3853tmSUi8ldEUSXSJijVas4XFLIvPYODGZlUSCQYGRjQ18ebOX17MyTAH9u7sEbqnziRkcsHe46SV1XLiLBOvDZyAG42uukpd6ucSs1l/k970NfTY/XTk4nppHkW6a8UlNXwzPLNNEnlfPnKVML8XLWK9/2Wc/y07TwTh0Yw5+GBWvlQfbB0J6fPZvLS88MZpYOi9JTEQv7z8i+YmRuz9PMH8fRunemritJaPnxxPSlX8hn3QG+eeH0MxiYdd6WrUqEibssFfv/iALkpxdi72PDwggmMeqgfNg6ix5LI3YkoqkRaDZlSyZn8fPalZ3A4M4uaZilmRoYM8PNjZFAnBvj73XWr9v6NkroGPtwbx8HkTHwd7Pjmocn0DWy9aaK/QxAE1p+4wrLtxwl0deDTx8bj6aA776Tc0mpmL9uEQqlm9bxpBHtrt2rx931X+HrjKUb2D2XeE0M1FlSCIPDJZ/s5diKN2U8NYsK4KK3GBZCcUMCCF9dja2/B0s8fbLUefgkXslk8Zz0yqZw3Pp1J/9G6yyjqGrlMwYFfTrPp8/2UF1Tj29mduaseYcCkaLHwXOSuR3yFi+gUiVzOsZxcDqRncDQ7B4lcjqWxMYMD/BkZ1Il+fr6YGXXcq+vW5LeL8SzZewwBeHloXx7p0w3jNjYnVShVfLjlKJvPJjC4SwCLHxh5282P/z9yS6p5etkm1Go1q1+dRqCHo1bx9p9IYfm6I/SLDmDB7BFaOYJ/ve4Ye/bF8+DMPkyfornh6A2S4gtY8NJ67B0s+eiLh3BqBYNNQRDYtf4MaxbvxNXLniU/PYVPYNv2eLxVZM1y9v18ik2f76eqpJaQaD+eXXIfMcPC74h6LxERXSCKKhGtqWpq4nBmFgczsziVm4dcpcLe3IwxIUEM7xRIb2/vdnU27yhYGBvTJ9CHN0YNxMO27Rs5VzVIeOX7XVzJKebxIT14YVRfnbYtyS6uYvayTQCseXU6/u7aTYOdvJjF+1/spVuYF+++NPa2ewv+kY2bzvHrb+cYPzaKRx/SvB7rBskJ/xVUH3/xEI6tIKgUciVfvbedvRvP03NwZ179eAYWVh1vilwpV7F97RE2rtxHTXk9XXoFMnfVI0T2CxbFlMg9h/hNJ6IRRXX1HMzMZH96BpeKilELAh7W1syM7MqwTgFEe3i0mbdSe3MlvxgTI8N/NeccHR7MmIjWW2L//5FaVM6cb3dQK2lm6YOjGRUVrNP4mUWVzF62CQN9fVbPm4avm71W8a6lFvLmil0E+bmwdP5ETLSYNjpwKJHV38QxaEAIc57VfPrwBumpxSx46Rfs7FtPUDXUNvHe8z+RcD6bGU8P4qGXh3e4JsEqpYpDG8/y7Xu7aKhqJqJvEK+vfYKIvkHtPTQRkXZDFFUit4QgCGRUVXEwI5ODGVkklpUB0MnRgdm9YhjeqROhzk731JWpTKHkja37SS+rxMXakiAXRx7t0x1n678vwm2v5+ZoYhav/7wXa3MTfnhhBp09devMnllUyTMfb8LIUJ81r07H28VOq3jZBZXMX7odVycrlr8xCQstWrtcupLLR5/sJSrSh9fnjdHa1Twvp4IFL67HysqUj754sFUEVWlBNQufWEdpYTWvLruPweO1r/3SJYIgcOFgIt++u4X8tBLcOjmw4OuniezXPhcMIiIdCVFUifwjKrWaK8UlHMpsEVJ5tbUARLq5Mb9/P4YHBeJrp90X6J1MTlUNMqWSXS88TF2zlJWHT7P9ajKTuoW1mWnn/4cgCHxz+AKr9p4i1NOFzx4fj9M/CD5NybqeoTI00Gf1PO0FVVllPa8s/h1jIwM+WTAFW2vNDUizcypY9O5WvL3sefetSRhrWSRdWlzLG3N+xsBAnyWfP4izi+4bI2cmF/HWk9+hkCtZ/P0ThPfw1/k5tCEroYBv3v6dq8dT8Qhw4c3vnkZuUSsKKhGR64iiSuRPSBUKTublcygzkyNZ2VQ3NWN03UPqiR7RDAn0x9ny3l0OfSQ1i8rGJqZHh+NgYU5hTT0ldQ242VgxMqwTR9OyOZdTyJhw3U6v3S7NcgWLNhxg39V0RncL4e3pwzDV8cqrFkG1uWXK79Vp+LhqJ6jqG5t5+YPfkTTJ+fKdGbg7ay5aKiobeP3NTZiZGbPkvWlYWmi3yrSmWsLrc35GKlWw7MuH8fDSbnrz77hyOpP3nvsRS2tTPvxhdocqSK8uq+P797dxaONZrOzMeWbxDMY80h9DIwONm1iLiHQ0VEoVjbUSGmokNFQ30ljTSGNtEwqZ4pZjiKJKhNrmZo5m53AwI5MTubk0K5RYmZgw0N+XoYGB9PfzveesD/5Ko1TGK5v20CST80S/HgiCgIBAv06+nMspYGJkKDF+XqSUVJBbWYNEJm+3sVbUNzLn2x0kF5bx0thYHh0UrfOpx5ziKmYv24yevh6rX52Gr6t2IkOuUPL6xzsoKqtjxX+m0MlX8ynKGw2SGyUyPls+E2ctp+iam+UsnPsrVRX1LPn8Qfw76V7snD6YxIcvrcfTz4n3vnkMR1fdZ8E0QaVSs/eH43z/wXZkzXImPzuU+14ehaXN3dsuSuTOR61WI6lror6qgfqqRuor61v2VQ00VDdSX91IQ3XD9f1/N0ld09/GMzW/9e8/UVTdoxTW1XEoM4uDGZlcLCxCJQi4WFowOSyMYZ0CifHyxLgNnb07OqmlFThZWvDBg5NuPuZkaYGHrTUZZZWkl1US5OJIhKcrH+w5ynODNG/yqw3JhWW8uG4HdU1SPn10PIO6BOj8HHmlLcaeenqwRgeCShAEFn91gKsphbw9ZzTdwrRrZbNk2W4ys8r44O0pBAZoJ4BUKjUfLtxCZloJi5ZOJyxCdwapNzi2+xofzdtAULgn7379KFYdRLBkxufz+bz1pF/JI7J/CM99dD+eWj6fIiKaIJfKqa2op66i/ua+rqKeusp66isbqL2+v3G/vroRtUr9t7H09fWwtLPEyt4SawdL7Fxs8O7sgZVty2NW9pZY2llgZfff25a2Fji6r7+lsYqi6h6hpcdeKYczsziUmUVqRSXQUmj+VM8eDA0MINzVFf17qND8dmiQyVELAgA/nrkMQBd3F4aFBvLLuWtsvZLEayMHEOXtjr2FOWX1jW0+xgNX03nz1/3YWpjx4wszCPHQbUE6QGF5LbOXt/hQrXl1utaCCmDtxlMcOJnCU/f1ZXhsZ61iHTtZxLGTRTzzxEB69wrUKpYgCKxesZ+zJ9N5ft4oevfT/ZTukR1XWD5/I6HdfHln7aOYW7Z/RljaJGf9sl1s+fIQNvaWvLbmcQZM0n22U+TeRRAEJHVNVJfWUlNWS21ZHTVldS23y+uorahv2V+/3VTf/Ldx9A30sXWyxtrRChtHa3xCPbF2sMbm+n0rB0usHayuby23LWzMW3UlrSiq7mJkSiVnCwo4lJHFvuQUai5eQV9Pj+4e7rw+sD9DAwPu6ULzf0KpUv+PJ5JcqcTF2pIVB0+SX11L30Bf5m3ey5LJI5kUFcrSfceZs2EniUVlDAsNxNGy7bINgiCw+sBZvtp/lkhfN1Y8Og4HK90XypdU1fPMsk3I5EpWz5umtQ8VwI7D8fyw5Rzjh4Tz8KSeWsWKO57KsZNFjBwezvSp2pt7bvvtPNs3X2DqzF6Mn9pD63h/5fC2yyx/7Tcievrz9upHMDXXnQmrpiSczmDFiz9SklvByFl9eWzRZKxs23/RhcidgSAINNQ0UlVUTeX1raq4hsqiamrKaqkuqWkRUqW1KOTK//l9fX09rB2tsXOxwdbZhuCYQGydWm7bOlljc327cdvS1qLDiX1RVN1l1EmlxGXncDgzi2M5uUjkciyMjAi2tGBBr14M8Pe7J5oVa0KzXMGKQ6cw1NdnZJcgIjz/268uzN2F3y8noYceH08dibWZKQ1SGetOXWT1rIl8PHUUScVlGBkY0NWrdZrp/h1SuZJFGw+w90oa43uE8ta0Ia3i0l5R28gzyzYhkcr5au5UOnlp38T3clIBH39zmJ5dfbVqPwOQk1vB0mV78PKw5OUXhmv9QXv5fDZrVh6gd/9gnnh+mFax/o4Te+P55PXrgmrNI5hqYRuhCxRyJT9+uJ3fvziEq48jS7e9TETf9l1sIdKxEASB+qoGKgqqKM+vpKKwioqCSiqLqqkorKKysIrKomrk0v8t6rZxtMLezQ57Nzu8Qjywc7HFzsXmD3sbbF1ssXawxOAOLzsRRdVdQEFtHUeyWqb1LhQWoVSrcTQ3/5Oj+ZmTJxnYJbS9h9phUahULNi6H2szU3xcHPkq7iwDg/2Z0aOl4a6nnQ3DQgM5kJRBamklMX6ejOwSRHxhCU1yBebGRkT7erbpmCvrJby4bgcJ+aW8MLovTwzp0SpXbTUNTTy7fDM19U18OXcqIT7a19UUltayYPkOvFxtee9l7dzSGxulLHxnK+YWxkyb3Elr64SSoho+ePN3vHwdeW3RRJ26zgNcOpnOR/M2EBLp05KhamdBVZBRytKnvyUroYDRD/fjyXemYqrlakmROw+lQklFYRXleZWU5VVQlldBeX4l5QWVVORXUp5fiaz5zwtwDI0McPSwx9HTgaAegfSZYN9y38Meh+t7eze7Dt34W9eIouoORC0IxJeUciQrm8OZWaRVttRHBTjY83iP7gwNDKCrm5tYH3Ub1DQ1U1LXyIoZYwFwt7HiRGYeB5MzGRbaUpszMTKUuiYp268lcyY7nz0JaczqFYm5cdt/YKQVVfDCt9upbWrmk0fGMjSiU6ucp14i5blPfqe4qp7PX5pMF3/ts3D1jVLmLdkCwEevTcTyNlbW/BW1WmDxR7soLatjxcf3U1WRqdXYmpvlvD1/I4Ig8PbSGZjrWFykXM3jved+xDvAmXfWtu+UnyAI7P3pJGvf/A0TM2Pe+vEZeo+KbLfxiLQugiBQXVpLSXYZJdlllOaUU5JTRlluBaU55VQWVqFWC3/6HXs3O5y9HfGL8CFmdDecvR1x8nLE2csBJy8HbJ1tOpzTf3sjiqo7BJlSyZn8fA5ltGSkKpuaMNDTI9rTgwWDBjA4wF+sj9ICZytLrM1M2HEthfFdO9PNx4PyBgnncwqI9vXAztwMIwMDHu7TjYzyKk5m5PLx1FF/miJsK+KSsnjtp71YmZnww/O6d0i/gUQqZ87KLeSUVLPihQl0C9I+E6dUqVm4YifFZXWsXDgNTy29rdZvOMOZc1nMeW4Y4WGexMVpLqoEQWDF4p3k5VTw/oqZOveiKsyuYNFT32PvZM173z6OpXX7TcNLm+SsfOUn4n6/QNTAzsz7/BHsO4iNg4h21Fc1UJheTEFaMYXpJRRlFFOUUUpxZinSJtmfjnVwt8PVz5nwfp1x8XHC1c8ZFx8nXHydcPJyvKcyTLpCFFUdmOqmZuKyW7JRJ3LzaFIosDAyYoC/H0MCAxjg54utmVgfpQsEQWBUlyAu5RUxMMgPGzNTgl2dyKqookEqw8LYiIzyKoJdnAh1c/7XPn+tNcafjl1m+c7jhHq6sPKx8TjbtI4Rq0yhZO6q7aTklrF09jh6hfnqJO6X649zISGfBc8MJypUO5F29Vo+3/90kqGDQ5k4TvtWLru3XiLuYBKPzh5MdE/dWlHUVjey8Ml16Ovr8f66x7F3stJp/NuhLP//2DvvqKjOrQ8/gPSuAtIEBEHB3rso9hJ77KYYNZpEY+JNv+nFJKYXExNNTDTGGrtiBRE7ICIi0nvvnWHmfH8gud77xZJw5pwBzrNWlmtpePdmGGZ+s9+9fzuftx/5nqTodBa9/BCznx2nVBuaGIJGIDs5l5Qb6aTGZJB2M4O02Po/S/LL/vz/DFoZ4NjBHueOjvQY0QUnr3Y4eTr8KZ6MTOQfjmhuKKJKx0gsLORkfAIn4xMJz6xfVOxgYc5U384EeHkyoL0rxlpoRG7p6Onp0c/dhZvZeeyJuMGjg3rRw9WR9w+fZlafrpyOTUQPPfyc5PHpUanVfLD7NLsuRDGqmxfvzRuHqZauHevq1Lz03UHCYtN46/Fx+PdsnDVBA0fO3OD3g2HMHNeTSSO7NuqswqIK3lm7H2cnW55bObbRvWQJt7JZ/3kgfQZ4Mnvh4Ead9b/U1tbx7lO/Uphbytpfl+LUvvFTk/+UyLOxvL94A+o6DW9uXUG/0Y37OShoF0EQyEnJIyU6jeTodJKjU0m5Uf+nqvo/03M2dla4dnJm0JR+uHZyxtXHCRcfJ9q529HKUHm/kBLl0ZYZtUZDWEYmJ+MTOJWQSFJREQCd7exYMaAfAV6edHFw0Lmx0eaIs601I308+fxkKO1bW+Nia42JoSGt9PUZ6+ctW14lFdWs+eUgF+PSWBzQl2fGDxa9eboBtUbDG5uOEhKZyEsLApgwUJzhhpiEbD78/ji9/FxZuWh4o87SaAQ++Ogg5eU1fPTew5g2stG7sqKGd1/dhZW1GS+I3JguCAJfv76H6LBkXvpsHp17uIl29t/l8C8hfPPCNpw97Xnjl+U4K0aeOkV1ZQ2JkcnERySTeC2FpOupJEelUln2H4+mts6tcfNzpedEPwaPGUB7Xxfad3LGqo18lU+F/0YRVTJQWasiNCWFE7eFVFFVFYYGBvR3dWFhrx4EeHribN241RoK/4z+HVxZXNOHkzcTiEzL4okhffBoK/6etwclLb+Yp37cS0ZBKe/MHcOUvn5aiyUIAuu2nSbwUixPzxjCTP/uopxbVFrJy+v20drGrH7Sr1XjRqa377rElfBknls1Fs8Ojb+GXf9ZIFkZRXz09UJsbMX1ZDq49TzH94Qx76kAhk8U5/H8uwiCwK8fHmDbJ4fpE+DHSz88gbml0jYgJ7U1KpKupRB7OYGbl+OIC0sk9Ub6n43iFjbmeHRtz6iFw3Dv0h6Pru1x93PF4rZnWFBQEP7+/jJ+Bwp3QxFVEpFbXl4/rZeQyLmUFGrq1FgZG+PfwYPRHb0Y6uGOhZFyv61tckrL+eRYCPP797irn9Sozl4M9/aglb6+rBXCq0mZrNq0H40gsGH5dHp30K5lw4b959l5OpKFY3vz6PjGm2dCfWP6658fori0mu/fnYOtVeNMUW/FZbNp8xmGDvZm0vjGi5Szp2MIPHiVuY8OoVsv90afdycxV1PY8MFB+vl3Yv4zo0Q9+0FRqzV888I2jvwSwph5g1j5yXwMGilqFf4egiCQmZBNzIU4bl6M4+alOBKuJlOnUgNgY2+Nd58ODJ7aD+/ennj1dMfOta1yO9FEUUSVlhAEgdi8/NtCKoHIrGwAXKytmNu9GwGenvRxccawiRudNRVq6+rYfD6C74IvUqfR0NfD5Z4mnXL/XI5GxPLatkDa2Vjy9RNTcbfX7mTn7yfC+eHABR4a4sfKmcNEO3fD72cJu57KayvG4ePRuOum6moV7649gI2NGWueHdfoN53CgnI+X3uQjp0cWfhE464k/5fiwnLeX7mVtg7WrPl4tiyN4KraOj56chNnD4Qze9U4Hnl1ivJGLQG11bXEXk4gOvQmNy7c4sa52D+bx03MjfHp68WM1ZPw6euFT19PRUA1MxRRJSIqtZor6Rkcj4/nRHwCmaX1v0jdHdvx3NDBjPL0pGPbNsovkMSExqfw7qHTJBcUEdDJkxfHDcO1tY3caf0lgiDw/bGLfBt4np4eTnz+2EPYWmj3qubIhRjW/R7EiJ5evLJwtGjPz+BLcWzZd5lpo7szwb/x15brfzhNekYh69bOwaqRdgQN9gnV1SpefGNqo68k//fsT/61nZLCCj7dvkKWBcm1NSree3wDl45F8cRbM5ixQnxXeIV6amtU3DgXS8TJKCKDo7l1OeHPFSwu3o70n9Qb3wHedB7gjZufS5N3DFe4N4qo+gvyyiuws6i/uxYE4Z5vMmU1NZxJSuZkfAJBiUmU1tRg3MqAwW5uPD1wACM6dPjzLAVpySwu5cOjwRy7EU/71jZ8v2Aqw7w95E7rrqjUat7ecYJ9l28wuU9n3nh4lFZWztzJpZhU3vopkD6dXHl36YRGOZvfSXp2Me99G0hnz3asetS/0eddDkti/8EIHp7Rl14iNHufCrzOxdA4lq0aQ3uPxq/cuZODW89zJeQWK16fgpefs6hnPwjqOjUfLdvEpWNRPP3xPCY+Kl7lUaH+PSE5Oo0rgZGEn4gk6kwMNVW16Bvo493Hk2krJ+A3pBO+A72xsVO8v1oaiqi6jUqtZvu1KL4+dwE/B3v6u7qytP/dl6imFhfzxvGTXEhNQ6XRYGtqyuiOXgR4dmCIu7ssLtsK9dTW1fHzuXC+C76IAKwKGMTjg3trXaA0hrKqGtZsPsj5W6ksHzuAJ8cM0HpFMyY5hzVf78OtnS0fr5iMsUij1zW1dbz22QH09ODd1ZMwauS55RU1rPvsCO1dW/P4I0MbnV9xUQXrPztKJz9npj4sTu9YA+mJeWz86DB9hnozaf5AUc9+ENRqDZ88s5nQQxE8+d7DiqASiYrSSsKORXL56FWuBF4lP6MQANdOzoxfHECv0d3oNtwX80b2DCo0fXT3XUbLlFZXE5mVTXfHdliZmFBSXc2hm7Hse2QB5kZGTNm8hb6uzvR0cvrLr7c1NSW7vJxHevckwMuTXk5OGCgGerITFJvIB0eCSS0sZlRnL14aPxxnG92epMwoLOHpH/eRklvEO3PGMKWf9ib8GkjNKWLlF3uwtjDl69UzsDQzEe3sLzcHcSspl49emIqjfeM/qX/7/UnyC8r56rMFGIvg8Lz+s0AqK2p47tXJGIhUmYP6CtG6F7ZjZGLIs+/PkvyaXxAEvnt5O6d3XeLRV6cyZelISeM3N9Ljsrh4MIwLh8KIOhODuk6NubUZvUZ3o+/YHvQe0x1717Zyp6mgY7Q4UVVTV8crgceJLyjA3sICIVzg4wnjqFWrsTQ2Rh89LIyMmObny5mkZFysrP/y+s7S2Jgjjz0iw3eg8FdkFJfy/uHTnLqZiEdbW35YOI0hHd3lTuu+3EjL4akf91Jbp2b9smn079he6zELSyt55rM9CAJ8vXoGdjbiubKfOHeTP45HMv+hvgzp03hX8kuXEzkSGMX8OQPx7fTXH3D+DpfPx3P62HUWPjEcdxHsGO5k5w/BxF5L4+XP59HGQXohv/OrYxz8KZiZT49m9rPjJI/fHMhKzCFo+zmCdoSSGJkCgLufKzOfm0T/ib3xHeitTE8q3JMWJ6quZ+dgZWzM5lkzsDE1Zc5v27mUlo69hTluNjYUVVVhZ2HOwPau/BF9g5yKcqUnSoeprVOz+VwY64MvAvD86CEsGtgLoybwwnc2JpnnNx/E1tyUTStm4eGgfT+s6hoVz329l/zSCr5fMwu3Ru7eu5Os3BI+2nACv46OLJvTeFfyqqpaPv0yELf2bVg0f1Cjz6utreObT47i0r4NsxeJ65qemZLPb9+cZPDYLgybIL0f1YXAa/z87l6GTe3D469Plzx+U6Yot4Tg7ec4ufUMNy/V7470HejN8k8fZdDUvrRzl34llULTpVmKqojMTLZGROJkZcWMLn642dqgEQT09fRIKCyksKqK9NJSYvLycLa2Yqi7O0VVVZTV1JBdXo63XVv8HOzZHB5BlUol97ejcBdC41N47/BpkvKLmsxVXwO7L0Tx3q5TeDm24ZslU7Gz0s4OvzupU2t45YfDRCdl89HyyXTpcHdLib99dp2aN786jEYQeGvVRFGm6TZtDiEnt5QvP52PkVHjX6p2b7tAZnoh738hznkNCILAt2/vo5WhActfmyLauQ9KckwGHy3biFf39jz35SJluvgBqK2u5fz+Kxz7JYgrgZFo1Bo6dHfjibUL8J89CAc3cYcXFFoOzU5UFVRUsulKON3aOVBeW8u6kLO8MGworjb1vR1jvTtibmTEyv0HMW1liEdrW549eIivp0zG3sKCuPwCuju2w9rEhPzKSgor61cE3G8KUEE6skrK+PBoMIHRcU1iqu9ONBqBrw6HsvHUZQb5uLHukYlYmBhrPa4gCHz02ynOXE3ghXkjGdGro6jnxOtWRgAAIABJREFU/7DjHFGxmby1aiJOIvRRxdzMZPfeK0yZ3JOufo03Pc3NKeG3n0IYPLyT6MuSzx6NIizkFstenSz5tV9ZUQVvLVyPqYUJr//yJMaNXNnT3Em8lsKhDcc5ve0sZUUV2Lm0YdbzkwmYPxSPrvKtEFJoPjQ7UXWrIJ/0khK+emgSVSoVm66Esfv6dZ4dUl/utzYxwceuLWM6evGSf73h3/zfdxB4K44ZXfz4+EwIrfT1GOrhThszM1yt698gFEElPyq1ml/OR/DN6fMIwDMjB7J4cB/Rpta0jUqt5o3txzl4JYaZA7ry8owRkpmM/hp4hT3B13hsQj8eHtlD1LPDo9PYsu8Sk0d2ZfTgTo0+T63W8NlXx2jT2oIlj4ljyvnT+lMIgsCyVWNEOa+BmmoVP6w9SIdOjkyWeNpPEAS+eG4L+ZlFfHxgDW0dtWsQ21TRaDRcOhzB7s8OcPV0NEYmhgye1o+xj46gx8guim+Ugqg0jXejv4GtiSn2FhZU1NZibmREl3YOBN6KI7moCHfb+hedU/GJmNwxXj+wfXtOxCcwuXMnlvTrw+awCH6LvMasrl3oZK+UgXWBK8npvH3wFHG5BYzs1IFXJoxoMld9AJU1tTy/+RChN5N5atxAlo7uL5lQPx0ex1e7Qxjd14cV08TtJSqrqOadr4/g0s6WZx8dIcqZ+w9GEBefw+uvPIS5eeOreLduZnLyaBRzHhlMOydxTV/3/nyWvKwSnv9wtuQNzCe2XyD0YASPvz6NTr2bRqVWSmqrazm2OZjdnx0g/VYWdi5teGLtAsY/MRKr1soCYgXt0OxElZmRIXZmZtzIzaWviwtOllZYGRsTm5f/p6jyc7Dni9Dz+DnEoxEEIrOyeLxvbwC6Ozry/ti2mBgqPlO6QH55BR8HhrA/MgZHa0u+mfcQIzuJe32jbfJLK3jqx73cyszj9VmjmDmwq2Sxrydm8dqPR/DzaMcbj40RXch9svEU+UXlfP/uXExNGv87U1hUwcbNIfTu6Yb/sMZXvQRB4Icvj2Nta8bsRUMafd6dFOWXsf37UwwM8KX7AGmfk1nJeax/6Xe6DurIdMUt/b+oKKngwHfH2fP5QYpySvDu48nLW1cxbOYAWjWRqrZC06XZPcPszM2xszDnSnomfV1csDExobSmhrZm9aZsNXV1DHZ3QwA2XQnDytiYCZ186Ofyn74NRVDJj0YjsP3KNT47EUq1SsWyYf1YOqxfkzNVTcotZPn3f1BUUcWXj09hqK90FYWMvBJWf7WXttbmfPr0VExEfuyOh97k2NkYnnh4EL5e4jS9f/9jEDU1KlY+Jc66nIuhcUSGp/D0mvGiVL3uZMtXJ6itqePxFyaIeu790Gg0fPL0ZvQN9FnzzWOiem01Zaoqqtm17gC7PjtAZWkVvcd0Z+5L0+g23Fdp31CQjCYpquILCrAyNsbe4v9PTJkaGtLP1YW1QWd4sn9f7CzMuZmbh8MAC/Zcj6ZWreahzp0Z4u7GYLf2yi+bDnIjK5e39p/kWkY2Azq48vqkkXi01b7dgNikFlfyxlc7QA9+emoWvq6NWyj8dyivqmH1V3tRqzV8uWo6rUV2es4rLGfdjyfx6+jIomn9RTnzxs1Mjp24zrzZA2jv2qbR5wmCwOYNQTi52DJhai8RMvwPuZlFHNt1mXEP98NF5DU39+PollCiL8bz3JeLsHdper8XYqPRaDjx6xk2vfobBZlFDJnen3mvTKdjrw5yp6bQAmkSokojCFzLyuZ4fDzH4+JJLCziuSGDWTHwr1/MB7Zvj5+DPSsPHCIqO5vBbm44WFgwuqMXlsb/+bSqCCrdoqKmli9PnWPLhavYmpny4YxxTO7WqUn+nEJvJvNlaBxtrSz4/snpuNlJ10Ss1mh4dcNhUnKK+PrZ6aJ6UUG9WFn7/TFqVXX8+6lxouwLFASBb747SevW5syfM0CELCE0OJaEW9n86/Upoi5MBti5IRiAh5f6i3ru/SgtLOfnd/fSdVBHRs2Rfg2OrnH9bAzfPvsTceFJdOrnxWvbn6OLCMMSCgr/FJ0VVSq1motp6RyPi+dEfDw55RUY6OnR39WVhT17Msbb655f/9aoAK7n5GBmaIiPXf0nSakmrRT+HoIgcOT6LT48GkxeeQUP9+nG6lGDsTYVb3WKlOy/fIM3tx/HwcKYzStnY2+tfQ+qO/li5xlCo5J4aUEAfTuL79B+8PR1zkcksfqxEbR3EqdScvJ0DDdiMnnhufGYmTX+mk6jEfj1hyBc2rdh5Bhxe9jys0s4uvMSo6b1xt5J2om7zR/sp6K0ihVr5zTJDxtiUZhdxA8vbuHEr2ewc23Dy1tX4T97EPrKqjAFmdEpUVWtUhGSnMKxuHhOxidQWlODSatWDPNwZ3RHL0Z08MDG1PSBzjI0MLjr3j4F3SGtsJi3DpwiNCEFX0d7vpwzme6u4plSSs2vweF8vC+Yfh1dmeFlK7mg2hN8jd+OhzN7ZA9m+ovv7J2TX8oXm4Po5efKjLE9RTmzpkbFho1BdPRyYOxocQRQaNBNkhJyefHNaRi0EveN9o+fQtBoBMmrVCk3MzmyOYSHnvDHvbOzpLF1iVO/hfDV0xupqaxh7svTmPvKdEzNm+YHMIXmh+yiqqymhuDEJALj4glOTKJSpcLaxJhRXp6M7ujFEHc3TJXG8WaHSq3m53PhfBt0AX09PV6d4M/cft2b7FJqQRD45uh5Nhy/yKhuXqxdMJ5zZ89KmkP4rXQ+/O0Ug7q489wcf9HPFwSBdT+eRKPR8Mrysejri1Mp2bMvnLz8Ml55YZIoZwqCwPZfQ3FyaY3/aHGXU1eUV3NkxyWGje+GY/vG9339HbZ8dBATc2PmrZkoaVxdoaK0kq+e/pGTW0LwHejNmk0rcPVpueJSQTeRRVRpBIEd16I4FhdPaEoqKrUaO3Nzpvr5MqajF/1dXZSrumZMeEoGbxw4SXxuAQGdPXltwgjaWTdd35g6tYb3dp9k94XrTO/fhddmBojSZ/R3yCoo5YVvD+BiZ817SydoRZweO3uT0PBEVi7yF8U1HaC0tIrftp+nf78O9OguzlVlxOUkbsVk8uxLk0SfjDu26zJVFTVMfVRce4b7kRCVxtkD4cx9fgJWraWtfuoCsZfjeX/e52Qn5fLIW7OZ+8o0xbRTQSeRRVSlVVbxSuBxXK2tWdizB+O8O9LDyRH9Ftwj0BIoqapm3bEQdoVdb7KeU/9LjaqOl7Yc4WRUPEtG9ePp8YMk73WpqlHx/Nf7qFNr+OTpKViaiX8VUlBcwaebTtHF25FZE8S59gPY+vt5KipqWPq4v2hnbv8llNZtLRg1oZtoZ0K90/v+X87h28sdn26uop59P7Z8dAALazOmLx8laVy5EQSBP744zIYXfqW1ow2fBL1FlyGd5U5LQeGuyCKqbI2M2L9oAZ3t7Vp0s2VLoaER/YMjQRRVVvHYoN48NWIA5sZNe09ZZY2K1T/t5/ytVF6c6s/8YeKJjQdFEATe/imQuPQ8vlg1Dfd22hmx//ynU9TUqnhl+VjRqmB5+WX8sT+cMaO60EEkW4KczHIiriTxxNOjRF2aDBB2Jpbs9EIef2G8qOfej5TYTC4cvcaCFydjYS2uNYYuo9Fo+O65zfzx5WEGT+3L8xtXYGnb8qp0Ck0LWUSVlWErfB3s5QitIDEZxaW8feAUZ+KS8HOy5/uF0/B1bPo/+5KKap7euJeolGzemTOGKf3E7d15UDYfvczxK7d4ZsZQBnXRjrHoufBETp6/xZKHB+HuLF4f0W+/X0CjEXhkgXirc66cy8TYxJDxD4kvcI/tvoJ1a3MGjPQV/ex7cWBjEIbGrZgk0h7EpoCqVsW6x7/l1G9nmb5qIss+WaRM9ik0CWRvVFdontSpNWy5EMFXp88D8NK44czv30PyXiNtkFdazrLv9pCSV8wnj0wioNu97T20xbnrSXyz5yyj+/qwaFwfrcSoqlaxbuNJ3J1bs2BqP9HOzckt5dDRSMaP7YpjO3H28ZUUVxJ9NZexk3tiafVgU8IPSnFhORdPx/DQwkEYilwBuxcVZVWc2nER/2l9sW7TMqo0VRXVvD1zHVcCI1n8/jxmvzhVudFQaDIookpBdKIzc/j3vhPEZOUyrKMHr08e2aSWH9+LzMJSnli/i4KySr5ZMpUB3uL7QD0I6XnFvLrhMB1d7Hj9UfF3+jWwadc5svNK+fat2RiKaKD562/nAFgwd5BoZx7dH0FdnYYps/qKdmYDp/dHUKdSM2aGdsTrXePuukRVRQ0TH28ZVara6lpenfg+0WdvsnrDk0x4IkDulBQU/haKqFIQjWpVHd8GXWBT6BVszUz5fPZExvh2bDafMlPyiliyfjcVNbX8sHwG3dzk8dOqrlXx4vqD6AEfr3gIU2PtWI4kpObz+6FwJo3oQo/OLvf/ggckJ7eUo8eimDShOw724ohtjUbg8L5w2ntY495B/Ovl4EORePo64daxnehn34vTOy/i7uuMT093SePKgSAIfLrkO6LOxPDy1lWMnCvthKWCghg0/bsYhb8kJiYGExMTevaUpnn6YmIaU775lR9CLjOluy8Hn3mEsX7ezUZQ3crM49Gvd1CjquPH5TNlE1SCIPDhllPEpuby1uLxONuJY23wV3HWbTyBuakRK+YPFfXs7TsvAjD3YXHW0QBEhiWRlVFEz/7i/1xy0guJjUxj2ATxzVTvGTetgBuXE/GfJn7lTRfZ+u5uTm4N4bF35yqCSqHJolSqmimrVq3iueeeY926ddTW1motTklVNR8HhrA7/DrtW1uz6ZEZDPSU50pMW0SlZLN8wx5MjAzZtGIGHg7yLbHdHXSNA+eiWTJ5AEO7a29h7JHgG0TGZPDSstHYiLiMubCwnINHIhk7uotoVSqAw/sisLQywcevrWhnNhASGAXA0HHirru5b9x9YQAMm9pb0rhyELQ9lM1vbGfUwmHMfXma3OkoKPxjlEpVM2TPnj2o1WpeeOEFVCoVN27c0Eqc4zfimfTVZvZejWbxkD7sXbGw2Qmqq0mZLP1uN1ZmJvz89MOyCqrriVms+/00g7t6sGSy9pbpllfW8PWWYPw6OjJphLhCYueeK6jVGuaJWKUqLaniXPBNAsZ1o5Wh+C9poYHX6djFWXIH9bMHwvHp5Y6juzh2E7pK+q1M1j3+LV2GdGL1hiebTXVboWWiiKpmRlVVFWvWrGHdunXY2Njg5ORERESEqDHyyytYvf0gK38/gJ2FOduXzmXNmKGYGjWvdUKX49NY9v0e2lqZ8dNTD+PSRjtXbQ9CaUU1r2w4hJ2NBW8vHifaipi/4qdd5ykpq2LN4gBR41RU1HDgUATDhvjg7CzeIuKQ0zdQqdSM1sL1XHFhObGRafSX2EahpKCcWxEp9BN5GbSuIQgCXyzfQCujVrz6+2qMtNQfqKAgFcr1XzNj7dq1DBky5M9eKj8/P65evYqHR+M9jARBYH9kDB8cCaayVsWqgEEsHtKnWa4UCr2ZzLOb9uPSxpoNy2dgZyXfOLsgCLz9cyA5ReVsfHE21hbi2gXcSUpmITuORDBpRFd8OjiIevahI5FUVNYyZ5Z41gwAJ49G4erWFi+fdmRkx4p69pXgWARBoJ9/J1HPvR8RZ2IQBIHeI6QVc1Jz4tczXD0dzar1S2nrJF8VWEFBLBRR1YxITk7mq6++IjIy8s+/69KlC2FhYUyb1rg+hcziUt7cf5KQ+GS6uzjy7tTReNlLex0iFUHRCTz/8yE827Xmu2XTaW0hr4v1L0evEBSRwOqHh9Olg/Ya5AVB4MvNQZgYtWLZHPEMOQHq6tTs+uMK3bu54uMt3veQnVnM9aupPPbkCK1cG10OvomtnSWevk6in30vwk/dwNLWHK/ubpLGlZLSgjK+e34zvgO9mbBEsU5QaB4ooqoZsXr1aoqKiv6rKiUIAhYWFgiC8I/OFASB3eHRrD0ajCAIvDrBn7n9umtlYa8uEBSdwHM/H6STkx3fLZuOlRb26P0drsZl8O0fZxnVx5t5o3tpNdaFq8mcj0jimUXDaW1jLurZZ87Gkpdfxupnxoh77sloAEZo4ZpMo9Fw9Vw8/Ud2ltzNO+p8HN0GeYu+EFqX2P3ZQcoKy1m1fqnilq7QbFBEVTPh2LFjBAcHExYWhpHRf3bq3bx5k1mzZpGVlfW3z8wsLuX1fScITUihv4cr704djYutfH1F2ubktXj+9eshOjnb892yaViZyiuoSsqrePWHw7RrY8Vri0ZrtYG3rk7NV78E4epoy8xx4ttw7NkbhrOTLf37ibtAO+R0DN6dnWjnJI4r+52kxOVQWlxJV5Fzvh/F+WVkp+Qz8dFhksaVkorSSvZ/G8iQ6f3o0K35VuMUWh6KqGoGqFQqVq1axfPPP0+vXv9dzWjfvn4aLy4u7oHPEwSBHVei+CjwDAD/njSSOX26abU5Wm6ORd7ipV+P4OvqwPql07A0NZY1H0EQeGfzMQpKKtj40hwszLSbz76TUSRnFLL2X1NEdU4HuBmbRXRMJk8vF7fxPTe7hNgbmSxeoZ2ro6hLSQB066ednYp3I+5qCgDePZuv2Di84QTlxRXMfmGq3KkoKIiKIqqaAV988QV5eXmsXLny//2blZUV7dq1IyEh4YHOyigu5bW9x7iQmMaADq68O2U0zs24OgVw7OotXtxymG5ujnyzZCoWJvIKKoCdpyMJikjg2YeH4+ehXRfv8soaNu44Ry8/V4b2Eb8qs2dfGGZmRowbLe4V3dmgGACGjOgs6rkNXL+SiJ2jNfYiTio+CHGRKejp6eHZrXnZkzSgrlOz+/OD9Azoik9fefZmKihoC0VUNQPWrFnDmjVr7vrvWVlZBAUF3fMMQRDYFX6dD4+eQRAE3pwcwMN9ujZ7z5iT1+J5acsRurk58u2SaZibGN3/i7RMfHoen+8IZlAXd+ZruY8K4Lf9Vyguq+LphcNF/3mXlFYRdOYmE8d1x9xcXLF64ewt3DzscHbVztRY7LV0Ovdwk/x3IC0uGzsXW8wttTflKSfR52IpyCxixeePyZ2KgoLoKKJKgZzScv697zghccn093DlvanNvzoFt3uofjlEl/YOfLNkqk4IquoaFa9sOIylmTFvPj5O62/ohcUV/H7oCgGDfOgksoUCQODxKFQqNZMn9hD13IryaqIiUpk5TzwT0TspLiwnN6OIyQu0Z7J6N7KS8nDWwv5CXeHiwTBaGRrQe4y0a38UFKRAEVUtGEEQ2Hv1Bh8cCaZOrea1iSOY27d7s+6dauBUVL2g8mvvwLdLp+nElR/AZzuCScws4OvVM2gt4nqYu7Fx53lUdRqWzhbXQgHqn18HD0fi5+tMBw9xXcHDLiaiVmvoP9hb1HMbiL+eAYB3F/EWST8oGYm5DJvaR/K4UnHhUBjdhvtiLsHzW0FBahRR1ULJL6/g9X0nOB2bSB83Z96dOga3NuJPUOkiITeSWHNbUK3XIUEVfDWB3cHXWDi2DwP8tN+knJZVxP6T15g6ujuujuL3DUVGpZGWXshLayaKfvbl8/FYWpnQWUuiJz66XlRJ7U9VUVpFeXElju7i7zDUBfIzCkiNyWD8YsWXSqF5ooiqFsiJmHje2H+C8ppaXhw3nEUDeraI6hTA+dgUVv98gI6Obfl2ie4IqqKySt7bfBxvVztWTBO/avRX/LjjHIaGBjw2QztXaEePRWFmZsTwoT6inisIAuGXE+nRxwODVtrxN0qJz8HeyUbyvqaivFIAWjs0z+v3pOtpAHTsrb1l4AoKcqI4rjVztm7diru7O2FhYbh39Obhdet5ZtsBHCwt2PXkPB4d1KvFCKpLcWms3LgPdztbvl82XXbbhAbq19Aco7yqhrcXjxPd0uCvSEjN48S5m8wa30t0o0+AysoagkNiGTGsEyYm4u5zy0grJC+nlJ59tffGnBqXQ3sv8XvM7kdxXhkANm0tJY8tBak30gFw93OVORMFBe2gVKqaMVu3bmXp0qVUVlaSUQetJszhWnEFQ+0s+WbpXIwkePPWFcITM3h6494/d/nZmOvOZNXu4GuERCby/Bx/vFzE7T26Gxt+D8XMxIj5D2mnd+f0mZtUV6sYP7ab6GeHX0oEoGcf7fhHqdUa0hLz6DFI+nH/kvx6UWXdpnmKquToNGzsrLBuayV3KgoKWkERVc2YV199laqaWuxHPcSRCn00qlpSfvqKakM9jFYtkzs9yYhJz+XpH/fiYG3JD8tnyr7L707Scor4fEcwA/zcmD1SfCfzvyI2KYeQKwk88fAgrLS0nPnYiWhcXVrj21n8nqTI8GTs21nj5KId/6j8rGJUtXW4yjCBV15cCYCFje48R8UkL72Adh7Nd7JRQUERVc2YnGoVbk+sxsTekc5GAnt/+BShTkVqM/eeupOE7AKe/H4PFibGbHhyOm2txL/q+qeoNRre/CkQw1YGvP7oGMmuYX/efQELM2MenqAdD6zsnBKuRaWx+JGholtCCIJAdGQaPfp4aM1uIju9CAAHF+34X92L2hoVAMYiX5nqClXl1ZhYyLv+SUFBmyg9Vc0QtUbDprNXcFv8LK3MzEnb9gODTQWEuvoX7IbVNc2dlLwilqzfhYG+Hj8un4mjrW5dOWw7Hk5kfCZr5o7A3laa65645FyCL8Xz8ISeWlt9c+q203nASF/Rz87KKKKwoJwuPbT3HM5OLwTAUUumoveiproWACNT+T3TtEF1RTWmiqhSaMYolapmRlZJGS/uPsrl5HQ6WZtx8vuPqCjI//PfzczMeO+992TMUBqyi8tY+t1u1BqBTU/Nor2dbtlFJGUW8O0fofj39GTCAO2sWfkrNu48f7tK1VtrMU6cisbP1xnHduI/5tcj66fH/Lppr9E5J70QfQN97Byln8BTVdcBYGTcPCtV1RU1GGt5j6WCgpwolapmRGD0LaZ+8yvRmTm8N3UMf/xrBd998TlubvWeR25ubmzYsIH58+fLnKl2Ka6o4snv91BWVcP6ZdPwbNdG7pT+izp1/bWfqYkhLy8YJdkalITUPM5crq9SWWmpWpCSmk9Scj4j/bUjFG9GZ2BmboybyGaid1KQW4ptWwsMWtAgh1QYmRiiul2NU1BojiiVqmZARU0tHxwJZnf4dbo6O/DxzAl/GnnOnz+f+fPnExQURHJysryJSkB5dQ3LN/xBekEJ65dOw9dF+rH4+7Hl2BWik7J5b+kE2lhL1+P1695LmBobaq2XCiDoTCx6ejB8iLjeVA3E3sjAu7OjVvvPivLKaW0nz/SdgWG9kKtTqWll2PxEnaWtBWVFFXKnoaCgNRRR1cS5lp7Nv3YdIa2omKVD+/L0yIEYGjS/F+MHobq2jpUb9xObkcdnj02mr5fueeEkZhbw/b7zjOjlxZi+2hEef0V6dhEnQmOZM6m31ib+AIJDbtLVz4U2bSxEP7u2po6k+BxmzNWOWWkDRfllsomqBiGlrlPLEl/bWNiak5OcJ3caCgpaQ7n+a6JoNAI/hlxm/o/bUanVbH5sFqtHD2mxgqpOreHFLYcJS0zn3XljGe6ne47NGo3Au5uPYWZiyEvzAyS79gP4bf8VWrXSZ84k7fVSpaYVkJScz/BhnbRyflJCDnV1Grw7O2vl/AaK8suw1oIofBAaRJXq9hRgc8O6jSXFuSVyp6GgoDUUUdUEySurYMmve/jk+FkCOnuyd8UC+rpLv/hVVxAEgQ/2nOL09QRemjqCCb2086beWHYFRXItIYvnZvtLeu1XWFLJ4eAbjB/uR1tb7YmF0PPxAAwZ2FEr5yfcygHA01u7V7oVZdVYWsljDmt+O25FaZUs8bWNi48zhdnFlBcrV4AKzRPl+q+JceZWEi//EUhlrYo3JwfwcJ+uklY8dJFvjp5n5/koFo/sy9yhPeRO5y/JLijl690h9OvcXtJpP4A9gRGo6uq0WqUCCD13i45eDtjba8e6Iik+B1MzI9o5acf0E+p7maorazGzlGfsv8H0s7ykUpb42sbdr/7DX3J0Gl0G6+aHHwWFxqBUqpoItXVqPjwazLIte2lrYc7OZfOY3bdbixdUW86Es+H4Rab378LKidIsIv67CILA+7+eQABee2S0pD+zqmoVuwOvMri3J25O2vNdKigo58bNTIYO9tZajIT4HDw87bXapF5ZXg2AhUyVKgvrBlHVPCtVbrd3/qVEp8mciYKCdlBEVRMgvaiEBRu38/O5cOb2686OpXPxstctmwA5OBZ5i4/3BRPQ1Yt/z5K2R+nvEHgplnPXk3lq+hCc2krrfXQ4OJqSsmoWPNRXq3EuXEpAEGDQAO3syxMEgZTEXDy0vOS4qrJ+3N/ETB7zTevbi5SL80plia9t7Nu3xdLWnJsX4+RORUFBKyjXfzpOYPQt/r3vBABfzJnEGF/t9Ks0NcITM3hl61G6uznywfzxGOjr5ueD0opqPv09CD+Pdswa0V3S2BqNwI7D4fh6taOrj/g7+O7k4uVE7Npa0kFL/lHFRZWUlVbT3r2tVs5vQFVbb75paCTPS2Pb24apBVnFssTXNvr6+nTz9+Pq6etyp6KgoBV0851IgWpVHW8fPMWz2w/h0caWPcvnK4LqNvHZ+azcuA9HWyu+XDwFE5neAB+Er3aHUFJRxSsLR0ku/M6FJ5KWVcScSb21WsWrra3jSngyA/p5ai1O2u0xfFdti6qaBkdzeZ5TJubGWNiYkZdRJEt8KegxogvZyXlkJeXInYqCgugookoHSS4oYs6GbWy7FMljg3rz6+KHcbGVfmWGLpJTXM7yDX9gbNiK75ZNw8Zcnt6XByE5r5w/zkQxb3QvfNrbSx5/++FwHNpY4t9fe31OAFHR6VRV1dK/n/ZsLFJTCgBo76ZdUVUrc6UKoK2TLXmZzVdU9RzZBYDw49dkzkRBQXwUUaVjHL1+i5nf/UZOWTnfLZjKC+PCRFTnAAAgAElEQVSGYaSsywCgorqWZzbupayqhm+XTMO5te4KzTq1hj2X0rC3tWDJ5IGSx09KLyDseirTxnanlYF2f82vhCXTqpU+vXq4aS1GVnohhkYGtNXSZOGfCPV/yNmd5+jelszEXBkz0C7tO7vg3NGRoO2hcqeioCA6iqjSEWrr6njv0GlW7ziEl10b9ixfwHBvD7nT0hnq1Bpe+PUwcVn5rFs0CR9n7e1+E4PtJyPILKri+Tn+mJlI3/S8+2gERoYGTB7ZVeuxwiKS8e3sjKmp9r7PrMxi2jnaanXyD5BXTd3GxbMdWcl5zdZVXU9Pj4D5Q4kMukFuWv79v0BBoQnRKFGlp6c3S09PL1pPT0+jp6fXR6ykWhrpRSXM/3EHWy5eZdHAnvzy+CwcreVZk6GLNJh7hsQk8cr0kQzp7C53Svckt6iM7/edo5OTFSN7Sd8HV1FZw9EzNwgY6IOtlZlWYxUXVxIXn0OfXu5ajZOVUYSjs41WY9yJIFmk/4+LlwN1KjXZKc1XcATMH4ogCJzeplSrFJoXja1UXQemA2dEyKVFEnwriRnrt5JSWMxXcyfz8nh/5brvf/jp9JU/zT1nDeomdzr35fOdZ1BrNEzr6yqLzUPg2Rgqq1VMH6t9I9SIyBQAevfU3tUfQE5WsVZNPxswuH1VqlFrtB7rbrh6twMgJTZLthy0jZNnO3wH+RD40yk0GvkeawUFsWmUqBIEIUYQhFixkmlJqDUavjx5jie37MXJxordT85jVGftePw0ZU5ei+eLQ2cZ18NbZ8097yT8VjrHLsWyaFxf2lgaSx5fEAT2Hb9GRzc7fL3aaT3e1WtpmJoa4ePtqLUYVZW1lJdVY6ftfirA0Oj27r3bDety4OHrgr6+HvHXUmXLQQoeWj6WtNhMwo5Fyp2KgoJoSDbioqentxRYCmBnZ0dQUJBUoXWOsloVP0WnEFNUxsB2rZnj40TCtaskaDFmeXl5k3vMU4sr+SL0Fm42ZoxyNiU4OFjulO6JWiPw+eGb2Jgb4WFeTXl5peSPeWp2OXEpeUwZ3l6Sx+vc+RicHU0JCdFesTo/t35lS15B+n0fz8Y+z4ty63fSXYu8jsZMvgm81s5WXDwVQfsB2heSjeUfP+b2asxbm7HxzS1UmChLlv8OTfH1vKVwX1Glp6d3Avirj7yvCoKw70EDCYKwAdgA4OPjI/j7+z/olzYrrqVn89bvByisrOKdKaOZ2buLJHGDgoJoSo95dnEZ73y+DTsrS356dg5tLKVbQPxP2XHqKlnFVax9chKj+njL8pi/8/URzEyNePrxKZhrsXEcoLCogvyCi0yf0h9//wFaixN2MQG4wjD/AXS7zzVjYx/z/OwSNnCGDh6eWv2e7kfYoGTCTt1g+PDhOrspoIHGPOaZKwv55c0ddGjXkfadnMVNrBnT1F7PWxL3vf4TBGGUIAhd/uK/BxZUCvXsDItiwcYdGOjrs23JHMkEVVOjskbFqk37qaxR8dUTU5qEoCour+K7vaH07eRKQG95TFrLKqo5ef4WYwZ30rqgArgenQ5At66uWo1TWFAOQJs2FlqNA/9ZT1N9e12NXPj0cqcor5Sc1AJZ89A2k54cg7GpEb+v/UPuVBQUREGxVJCA2ro6Xt93nNf3naCvuzM7n5yHr6P0ZpBNAY1G4LVtR7mZkcuHC8fT0VG7Zo9isWH/ecqranl+jr9slYUTobHUquqYHKB9GwWoN/00NDSgo5b38RUX1V/J2UggqswsjNHT06OirFrrse6F34B6YX79QryseWgbW3trJi8fy8ktZ0iLzZA7HQWFRtNYS4Vpenp66cBA4JCenl6gOGk1H7JKyliwcQc7w66zdGhfNiychq2Z7rqAy823gec5cS2e5ycPY5iv9hy6xSQhI5/dQZHM8O+Gl4t8/lkHTkfh5WZHpw7aFTkNXI/OoLOPI0Zadh8vKqzAyLgVZhIsOdbX18fU3IiKcnlFlVsnRyyszYi+2LxFFcDDL0zByNSIX97cIXcqCgqNprHTf38IguAiCIKxIAgOgiCMFSux5sDl5HRmfreVxPwivpwzmdWjh+js4l9dIPBqLBuOX2Ra/y4sHN5L7nQemM92BGNuYsSyKYNkyyEhNY+bCTlMGtFFkkpZdbWKuPgcuvi5aD1WcVEF1jZmklUALaxMKS+pkiTW3dDX18e3nydR5+JkzUMKbO2tmfHsJIK2nyP2ijbHdRQUtI/yDq8FBEHgt0uRPP7zbqxNTdixdC6jfRW7hHtxMyOXf/9+jJ4eTrw2Y6TON+c2cCE6mQvRKSyeNAAbC/kqkEeCb2BgoM+YIZ0kiReXkINarcG3s5PWY5WVVGFlrV0T0zuxsjWntKhSsnh3o8cwHzIScsjLKJQ7Fa0z618PYetgzberNim+VQpNGkVUiUxtXR3/3neCdw6eYrCXG9uXzqWDXWu509JpCsoqWbVpP9ZmJnzyyCQMm4j5qVqj4ctdITi3tWbWiO6y5nHsbAyDenpgo2UH9QZu3jam7OyjPX+qBsrLqrGwNNF6nAZs2lhQXFAmWby70XN4ZwDCg2JkzkT7mFuZsfiD+dw4f4uTW0PkTkdB4R+jiCoRyS0tZ+GmnewOv86yYf34dt4ULE2kN4BsSqjq1Dz38wEKyyr54rGHaGul+5N+DRwIjeZWWh5PTR+CkaFklm//j8vXUskvqmDcMF/JYsbczMTB3orWrbXfPF5eVo2FhdSiqlyyeHfDrZMTrR2sW4SoAhi9aDid+nnx44tbqCiVv1KooPBPUESVSFxLz2bm978Rn1vAF7Mn8eyowdpf/toM+HhfMBFJmbw9dyy+rtI0WItBVY2K9XvP0c3TkdF9vWXN5eiZaCzNTRjcW7rG/thb2XSSoEoFUFEubaXKtq0lRfnlsl9D6enp0XuEL+FBN5rtcuU70dfXZ8UXj1OUU8LPr/0udzoKCv8IRVSJwMFrN1m4aQdGBgZsWzKHMX7y+BQ1NQ5cucHvoZEs8u/N+J4+cqfzt/jteDgFJRWsmiWvOWNldS1nLscTMNBbsmpZWVk1mVnFWrdSaKCqqhYTCXy3Gmjbzpo6lZqSwgrJYt6N/mO7UV5cSfTFltHA3bl/RyYvH8O+b44SFdIyKnQKzQtFVDUCtUbDp8fP8q9dR+jm3I4dy+bi7dA0fJXk5kZaDm/vOEFfTxeenThE7nT+FkVllfxy9DL+PT3p7qX9Ru17EXI5geqaOsYM7SxZzPiEHABJRJUgCFRXqTA1M9R6rAbsHK0ByMuSf3VKL//OtDJqxcXAa3KnIhlPrJ2Pg7sd6xZ/S3VljdzpKCj8LRRR9Q+pqKnlqd/280PIZWb17sLGR2bQ2ly6CaWmTGF5Jc/+dIDWlmZ8/MhEWhk0rafhpkMXqapR8dQ0+cXgsbMxOLS1pJuPdCs+4uKlE1UqlRq1WoOJiXSVKjtHGwDysooli3k3TC1M6DHUh/NHIhEEQe50JMHUwpQ1G1eQGZ/Nxpe2yp2OgsLfomm9m+kImcWlzPtxO2fjk3lt4gjeemgURk1kYk1u1BoNL/56mKLySj57bDKtLZqWEM0uLGNX0DUmD/bDw6mNrLmUlFVx6VoKowb5SNq/F5+YS5vWFtjaaH+oQFVbB4CRsXSDAPZO9aIqJ103rAwGTexBVnIeCdfS5E5FMrr7+zH1mfHs/foIl45EyJ2OgsIDo4iqv0lkWhazN2wjs7iU7xdMY37/Hk3GU0kXWB94gYtxabwyYyS+Lk2nMb2BjQcvALBksnzLdhs4czketVpDwCBpvKkaSErOo4OHNM7xKlV9g7a2XdvvxNLGDHNLE7JSdUNUDZnUi1aGBgT9cVnuVCRlyYcLcO/iysePfUNRjvxVQwWFB0ERVX+Dg9dusuinnZgaGrJtyRwGe7nJnVKT4syNxHrH9H5+TOvf9JZJp2QXsf/sdaYN60q7NlZyp8PJ87E4OVjj4yHdHkm1WkNKaoHkoqqVhJVgPT09nNzakJWmG8uMLW3N6T3Sj+A/rsg+kSglRiZGvPLbs1SUVPLRo1+3qO9doemiiKoHQBAEvj51nn/tOkJ3F0e2L52Ll728Vz9NjfSCYl7ecpROzna8PH2k3On8I77bG4qRYSsWT+wvdyqUlFURFpVKwEAfSSulGRlFqFRqPNylEVV1f4oqaV+qHF3bkJmiG6IKwH96X/Izi7h+vvmvrbkTjy7tWf7Zo1wJjGTb+3/InY6Cwn1RRNV9qK2r4+U/Avkm6ALTevry46Lp2JorC5H/DjWqOp7ffAiATx+dhImEVzliEZ+ex/Ert5gT0JM21vIblJ4NS0CtEfDvL619R3JqPgDubtJ8qNBo6puz9SUeZnDpYEdOeiG1NSpJ496NAeO6Y2phwvFt5+VORXImLRtNwPyhbH5ju9JfpaDzKKLqHhRVVrF48x72XY3hmZEDeW/qGKUh/R+wbv8ZYtJzeXfeWFza2Midzj/i+/3nMTc1YsGY3nKnAkDwpXgc2ljSqYO0fWmpafV9Ru1dJarU3p54k7pv0dXTHo1GICMpX9K4d8PEzIjhU3sTciCcyvJqudORFD09PZ79fhke3drzwfwvyEzIljslBYW7ooiqu5BcUMTcH34nMj2bdTPHs8J/gNKQ/g84GhHL9tBIHvHvzYgunnKn84+4mZrL6fB45o3qhbWMS5MbqKyu5VJkMsP6eUn+nExNK8DezhJTicw4NX+KKknC/YnbbbuI1IRcaQPfg9FzB1FTWUvIvjC5U5EcEzNj3tz9L/T04K0Z66iqaFnCUqHpoIiqvyAyLYt5P2ynpKqanx+dwcRu0k5XNRfS8ot5a8cJerg7snLiYLnT+cdsPHABC1Nj5o3uJXcqAFy8mkytSs3wftI796elFUpXpZIRZ4+26BvokxKnO1WRzn074OLlQODWULlTkQXHDg68/NuzJF9P5cOFX6JWN//VPQpND0VU/Q8nYuJ59OddWBgbsW3JHHq5SWeq2JyoratjzS+HMNDXY+2CCRgaNM1r0/j0PE5HxDN3VE8szaTbP3cvQq4kYGVhQrdO0j83MzKLcHa2lSyewe1eqobeKqkwMjbExaMtiTezJI17L/T09Bi/aCgxlxNJupEhdzqy0HdsD5Z/9hihey+zYc2vcqejoPD/UETVHWy5EMHK3w/g7dCWbUvm4N5GujeP5sYn+0OISc/lnbljcWotv/3AP2XjwYuYGRsyJ6Cn3KkAUKfWcC48kUG9OkjuRF9SWkVZeTXOTtL9Xujr13+ParX04/QePo4k6ZCoAhg1ewCGxq04/PMZuVORjanPjGfaygns+eIQe78+Inc6Cgr/hSKqqP8U/NHRM7x3OIiRnTz5+dGZtGliTt+6xMlr8Ww7e5WFw3s12T4qgISMfE6E3WKOjvRSAUTFZlBaXs3QPtI/rhkZ9U3qUooqg9tWCuo66UVVh06O5GYWU1ZSKXnsu2HV2oKhD/Xm5M6LVJRVyZ2ObCz7ZBGDpvRl/bM/cW5/yzJFVdBtWryoqq1T89Keo/x0LowF/XvwxexJmBpJt7y1uZFdXMYb24/h5+rQ5BYl/y8/Hb6EiZGhzvRSAYSGJdLKQJ9+3d0lj51xexeek6N0E5wNpp91ddL3z3j61V+vxkdnSh77Xjy0ZARV5dUc23pO7lRkw8DAgJe2rKRj7w68N+czokJi5E5JQQFo4aKqvLqGZVv+4MC1m6weNZhXJvhjoN+iH5JGodZoeG1bICq1hrULxmPYhO0n0nKKOHYplpn+3bDRkSoVwLnwRHr6umAu0fTdneRklwDQzsFaspgNO/9qb+8AlBLvLi4AxEXp1s49n57u+PX3Yt8Pp1DLIDZ1BVNzE949+DIObna8NvkD4iOS5E5JQaHliqrcsnIWbdrJleQMPpg2hqXD+imWCY1k48nLXIpL4+XpI3Cza9r9aL8EXqGVgT7zR+uGLxVAZm4JyRmFDOzZQZb4WTkl2NqaY2IiXSW3YeefSgZRZWljhrN7W2J1cJHxtOUB5KQWcO7wVblTkRUbO2vWHvs35tZmvDzuXdJv6VZVUaHl0SJFVUpBMfN/3E5KYTHfzp/C1J5+cqfU5IlMzmR94Hkm9OrElL6+cqfTKPKKyzkQGs1DQ7rQ1sZC7nT+5PztT+IDe3nIEj87u4R2DtIOHbRqpY++vh41NdKLKgDvbq7cjExFEKSdPrwfA8Z1x9Hdjt3fntC53KTG3rUtHx1/HYAXRr1NdrLueIsptDxanKi6kZXL/B+3U15Ty0+PzmRoR3e5U2ryVFTX8vLWozhYW/LqjJFNvuK37UQ4Go3AgrG6U6UCuBSZjKOdFe0d5akC5uWXYW8nrajS09PDxNSIqqpaSeM24NvTjcLcMnIzimSJfzcMDPSZvmIUsWFJRJ1rWfsA/woXbyfWHvs31RXV/CvgLXJT8+ROSaGF0qJE1aWkNBZt2olRKwO2Lp5NN5d2cqfULPhwbxCZhaW8P38clqbGcqfTKMqratgdfI2A3h1xsdOdlTp1dWrCotPo391dFtEqCAK5eaWSiyoAUzMjqipkElW93ACIDkuWJf69GD1nIDZ2luz8MlDuVHQCz+7ufBD4b8oKy1kz8i1y03RjxZBCy6LFiKrjN+J54pc/aGdlwW9PzKaDXWu5U2oWnLgWx95L0SwO6EuvDk3fKHV30DUqqmpZOK6P3Kn8F9fjsqisqpVl6g+grKyampo67OwsJY9tamZEVWWN5HEB3LzbYWZhTHR4iizx74WxqRFTlwZw5VQ08ddS5U5HJ/Dp48mHx/5NaUEZa0a8qQgrBclpEaLqj4hont1+EF9He35d/DDtrKV/Y2iO5JdW8PbOE/i62PPk2AFyp9NoVHVqtp0Ip1/n9vi661YV80pUCvp6evTu4ipL/Lz8MgDs2kr/u2NmZkxFhTyiysBAn8493bh+OVGW+Pdj4mPDMLM04fdPFRPMBnz6erE28DVKC8p43v8NpcdKQVKavajafC6cV/44xoAOrmx6dAa2ZrozHt+UEQSBN7Yfp6pGxQfzxzfZNTR3EnjxJvklFSwcq1tVKoCw62l08nTA0lyeVTkFheUAtGktfeO+haUJZaXyGV1269eB1PhcigvKZcvhblhYmzHtyQBCD0WQoGPWD3LSqV9HPjz+OhXFFTw37HXSYlvmWh8F6Wm2okoQBL4+dZ61R4MZ7evF+vlTMFNMPUVj1/koQmKSWD15KB4OTf8qVRAEthwLw9O5DQP83ORO57+oqKrlelwWvbu0ly2HwsIKAFq3Npc8tqWVKeVl1ZLHbaDbgHr3+qhLulmtmrosAAtrM7Z+fFDuVHQKnz6efHzqTVS1dTw37HUSIpPlTkmhBdAsRZUgCHxwJJhvgi4wvacfn86aiFGrVnKn1WxIzSvm4/3BDPRuz5zBPeRORxQu3kglPiOfBWP66Nz04tWYdNRqDX27ySf2CovqRZUclSpLSxNZRZWXrzOm5kZEXkyQLYd7YWFtxvTlozh/JJLYiGS509EpPLu782nwWxgaG7JmxJtEn4uVOyWFZk6zE1VqjYZ/7zvBrxciWDSwJ+9MGS354tnmjEYj8Pr2YxjqG/DWnDHo6+uWAPmnbDsRThsrM8b285E7lf9H+PVUDFsZ0NXbUbYciooqMDU1ktT4swFLa1PKSqvQaOTxY2plaECXPh24ei5elvgPwkNLR2DV2pxf3t8vdyo6h6uPM5+FvIO1nRUvjn6bi4fD5U5JoRnTrNSGSq3mxd1H2R1+neXD+/PSuOHN5k1fV9gaEkF4YgYvTB1OO5vm0fCfmlNEaFQS04d3w8hQ9yqaETfS6eLtiLGM19fFJZXYWMvTj2hja45GI8jaV9VzsBcZyfnkpBfKlsO9MLc0Zfaz4wkPusG1UKUa8784uNnxWcg7tO/szOtTPuToplNyp6TQTGk2oqq2ro7V2w9xKCqW50cPYWXAIJ27xmnqJOUU8uWhswzz9eChJu6afifbT0bQykCfGf7d5U7l/1FeWcOtpFx6+rrImkdxSSXW1mayxLaxre/jKrl9BSkHvf6PvfsMj6pa2zj+3zPpvfcekpBACE16b9IEEUQRwaOggigqKFgoVpQmYlcEEcFCka4gSBWkd0IICSSQ3ntP5v0wBD3vsVCSrL139u+6/IIiNykzd9Za+1ldQgE4cUC+gzYHP9odFy9HvnprQ6Ofsv5XHN3sWbD7dVr1jmTh+E9Z+eZa7eOkqXOqKFVllVVM+nYTv8bEM2NQT8Z3vUt0JNWpvSzZwsyU2SP7qKawFpWWs+VgNH3vCsPFvuEPYf+bMzHJ1BgMtIwQM0qhVn5+KfbCVqqMZS43R1yp8gt2w9ndTtalyszClNEvDCLm2BUObm3cdwL+HStbS97cNJ3eD3fl69k/sHjCF436UmpN3VN8qSqpqGTiyg0ciE/kzaF9Gd1eHQen5WblvpOcvZrGy/f1xNVOPvfh3aktB6MpLqvggV7y/Lo5E5OMXq+jeYi481RgHP5pZyumVDk6G7/ecnLEjTSQJIk2XUM5eeASVZXyfRPuO6oj/k29WPr6j1SUV4qOI0umZqZMW/40D740jK1LdjLjnncozhdX2DXqouhSVVxewRPfrOdIQhLv3tefEW2ai46kSomZuXz00wF6NAtiQCv5HeS+XTU1BlbvOkWzQA+aB4ktLX/ndEwyTYPcsTAXOw6ksKgMW1sxM7Kcrw8czckSOyeqXfdwigvLiD4pv+nqtfQmeh5/fTipCZlsWbZXdBzZ0ul0jJvzEM9/MYGTv57juS4ztSGhmjqh2FJVWFbO+BU/cupaCvNHDGBIVLjoSKpUU2Mc8mlmasKMEb1Vs+0HcORCIlfTc2W7SlVRWcWF+DRahHkJzVFdXUNxcTm2NmJKlY2tBWbmJmRfn+ouSqvOIZiY6jm8K1pojn/Tplcz2vZqxrcLtpIvw4GlcjJwfG/m/PwqmUnZPNPhFaIPxYqOpFE4RZaq2kJ1Ljmd90YOYmCkelZP5GbN72c4cTmZF4Z0w81ePdt+AGt2n8bJ1oo+bUNFR/lLFy+nU1FZTYumYu9ULCkxXmZsYy3msmxJknBxtSUzvUDIn1/LysacFu2DOLzrguwPOI9/fTilxeV8M1cbsfBvWveOZPHBt7G0seCFnq+xY4W2wqe5fYorVQWlZYz/+kcupGbw/gOD6RcRIjqSaqXmFrBoy346hPpxb7tmouPUqfScQvafvszQrs1lOUYBjJcoAzQPFbtSVXz9MmMrQaUKwNXdnsz0fGF/fq2OfZqRnJDFtXh5bxX5N/Vi8KPd+fnr/Vw5nyQ6juz5h/vw4aE5NOsUyrz/fMRnU7/WDrBrbouiSlVBaRnjV/zIhTRjoeodHiw6kmoZDAbeWruLGoOBWfer52m/Whv2n8WAgWHdIkVH+VvnYlPxdLXD2UHsU4m1K1XWVmbCMri525OZIXalCqBDL+Mokd93ynsLEODhaYOxtrfis1dXy35lTQ7sXex4Z9sMhk7qz7pFW3h18DsU5mrbp5pbo5hSVVuoYtIyWfzAYHo11QpVffrpxEX2X7jC5IGd8XG2Fx2nTlVV17Bh/1k6NQ/Ey0W+f7dzsSk0E/zUH/yxUmVpKa5UubrbkZ1ZSJXg1QMXD3vCWvhycMc5oTluhq2jNWNfHsKZA7HsXX9MdBxFMDE14ekPx/H8FxM4vfscT7d7SbszUHNLFFGqCsvKeXzF+huFqqdWqOpVfnEZ8zfupbmfB6O6yPMQ9504ePYKmXnFsl6lyswpIjOnSBalqqzM+Gi+yFLl7ulATY1BFqtVnfo1J/ZsEunJuaKj/KsBY7sS0tKfL2auoVjgRHqlGTi+Nwv3vE55aQXPdnqVHd9o56w0N0f2pap2bEJ0agaLRmqFqiG8v3U/+SWlzLq/N3qd7L9Ebtn6/WdxtremS2Sg6Ch/K+ZyGgARTTwEJ/lTqRJw718tT28HANJkUGS63G0c3XLwF/mvVun1Op5Z8BD5WYV8PWej6DiKEtExjE+PzyOsXRPmPfIRH0z6ksoKbfaX5p/J+h2ztlCdTU7jvZGDtDNUDeBYfBLrDp3j4W6taertJjpOnUvPKeTAmSsM6dwMExO96Dh/60JcOnqdREiA+M9B2fUhkuYCZ2V5ejkCkJqcJyxDLS9/F4LCvdi/7YzoKDclJMqfwY/1YMuyvcSeku+MLTlydHdg3o5Z3D/1HjZ/up0p3WaRnpgpOpZGxmRbqkorKnlq1UZOJ6WyYMRA+kY0ER1J9Sqrqnlzza94Odkx8e6OouPUi80HzlNjMHBvV/lu/QFEx6cS5OsifOgnQPn1lSpzM3FPSbq42WFioiM1WR4XGnftH8mFk1fJTBVf8m7G2JeH4Ohmx4dTV2lPtd0ivYmeJ+aPZdbaF7gak8zE1i/y+2btjJrmr8myVJVXVvHMd5s5mmiclN6/uTznCKnN8j3HuZKRw6vDe2ElgzfzulZTY2DTgXO0C/fD21W+B9QNBgMXL6fTNNhddBQAKq5fy2ImsFTp9To8vBxJviaPUtVtYAsA9v2kjNUqaztLJrw9krgzV9n05W7RcRSp633t+fT4PDwC3Zg1dC6fv7BC2w7U/A/ZlaqKqmqeX72VA/GJvDW0H4NbNBUdqVFIys7ji18O0TcqhK7h8j1rdCeOX7xGSlYBQ7rI+zqjtKxC8gvLCAuSR6mqrKgCwNRU7Hapt6+TbEqVl78LIc192LNFORcXdxnSmnZ9I/n6nU2kJmhbWLfDK9iD9397i3sm3s3a9zYzpdssUi+ni46lkRFZlaqq6hqmrfuZ3RcvM2twL+5rra6Bk3JlMBiYs243er2OaUN7iI5Tbzb+dg5bK3N6tJL32byL11+kwwJlUqpksFIFxlKVkpRDTY08Zi71GBxF3PlkrsYp401VkiSenj8KnU7HB1NXabOrbpOZhRmTPx7PrDVTuXYxhQmtX2T39wdEx9LIhJDbMfYAACAASURBVGxKVU2NgZkbd7D9/CWm392NUe2iREdqNPacv8xvMQlM6t8Jdwd1XUVTq6iknN0nLtG/fVMszOS9tRl7JQOdJNHE30V0FMD4ww6AiYnYlwsffxfKy6tkMVkdoMfgluh0Ers2nRQd5aa5ejsxbvZ9nNoXw7aVv4mOo2hdh3fgs5PzCWjmy5yH3mfBY59QWqSNrWjsZFGqDAYDc37ew4ZT0TzdsyP/6dxGdKRGo7Sikrnr9xDs4cyDXdRbZHcej6W8sppBHSNER/lXcYkZ+Hs7YS6T8lddXYNOJwmfqu/n7wzA1YQsoTlqObnZ0bpzCLs2nqCmpkZ0nJs2YGwXorqEsWTWOjKS5LGdqlQeAW4s3PM6D71yH798vYcJracRc+SS6FgagWRRqt7feYBVh0/xWOc2PNWjveg4jcqSnUdIyS3g1eG9MNXLd8TAndp6MBp/D0eaBYqf+/RvLiVkEhLgKjrGDdXVNej14l8qfK9/TORSqgB6D2tDZmo+Z49cER3lpul0Op57fwyGGgMfTFmpbQPeIRNTEx59axQLdr9GVUUVz3aewaq31lFdrT1l2RgJf6X8cv9Rvth/lJFtI3mhX1fhPw03JgkZuSzffYx72obTNthHdJx6k5yZz8lLyQzu1Ez2X18FRWWkZxfSxF9mpUoGQ2AdHK2wtbOUVanq0DsCS2tzdq4/LjrKLfHwd+HRmfdyfHc021dq54HqQotuEXx+agHdR3Zk+azvmdJ9NslxqaJjaRqY0FfK1cfOsnDHbwyMDGPW4F6yf8NTm3kb9mBhasKUe7qKjlKvfj58AYD+7eX/JGn8VWNhkFOpMhhA0on/3pQkiYBgVxIvZ4iOcoOFpRndB0Wxf9sZSorKRce5JYMf605UlzC+mLlGexqwjtg4WPPKqud46ZvJJJ6/xoSWL7L50+3aamAjIqxUbTsXy2ubd9I1JIB3ht0ti5+EG5N90cbD6RP6dcDZ1lp0nHpjMBj4+dAFWoV44+lsJzrOv7p8zViqgv3kcUgdwIB83hACg91JiM+Q1ZtUvxFtKS+tZP/Pp0VHuSU6nY4pHz6CpJNYMGk51dXKORcmd71Hd2XJ2feI6BzGB5O+5KX+b5GZlC06lqYBCGkyZVXVTFv3M618vVj8wGDMZHxdiBpVVFUxb8NeAt2cVHlh8p9FJ6STmJbLwI7hoqPclMtXs7C1NsfFUV5PYcplETkgyJWSkgoy0uTxBCBA0yg/fIPd+GWd8qZsu/k4MWnuKKKPxLP2w19Ex1EVVx9n3t02g8kfjyf6wEXGN3+ebV/tltUPBJq6J6RUZZZWEOzqzKejh2IpkyecGpNV+05xNSuPafd2x1TlhfbnQxcwM9HTp60ypvJfvpZFoI+z7LbC5fI+ENjEOLvrsoxmQ0mSRL8RbYk+kUiijHLdrJ4j2tF1SGtWzttM3OmrouOoiiRJ3DPxbj4/vYDgqAAWjvuEGfe8Q1aytmqlVkJKlZlexxdjhmFnaSHij2/UsgqK+WLHYbpFBNK5aYDoOPWquqaGHcdi6RwZiK2V/L/WDAYDV5KyCfBxFh3lv+gkSTY/XQcGGy+YvnxJXuWlz71t0Jvo2Lb6iOgot8w4FPQh7J1tmDdxGWUlFaIjqY5XsAcLdr/GU+8/yund5xnffArblu2SzfeVpu4IKVXuVua4qvgcj5x9+NMByquqeHFod9FR6t3xi0lk5xdztwIOqAPkFpRSUFRGoMxKlaSTZDPF3MraHC8fJ+JlVqocnG3o3Lc5O9cfv3EBtZLYOdkw5cNHuHYpjSWz14qOo0o6nY5hkwcaV61aBrBw/Ke81P8t0hLk8+CF5s5pp8Mbkehr6Ww4ep6Hu7XC39VRdJx6t/1wDNYWZnRpoYy7DBOuH2SV20qVXqeT1U/UwaHuxMemiY7xPwaO6kBRfin7f1bGJcv/X+seEQyf1Jeflu/jwBblTIlXGu8mnsz/dTaTP3mcC7/H8njkFNZ/8JM210oltFLVSBgMBuZt3IuDtSWP91H/gNWqqmp2n7hEt5bBsr+WptbVFON0a39vJ8FJ/ptOJ8nqybAmoR6kJudSVFgmOsp/adE+CJ9AV7Z8+7voKLftkVeGEtrKn/ef+4b0a9q5n/qi0+m4Z0I/vjz3HpHdIvjkua94rvMMLp9JFB1Nc4e0UtVInE3L58TlZCb174itpbnoOPXuSMxVCkrK6XdXmOgoNy0xJRdzMxPcnGxFR/kvJiZ6amoMsilWIeFeAMTFymuwoiRJDB7dkYunr3HpXJLoOLfF1MyE6Z+Pp7q6hnlPLqW6Sls9qU9ufq68veVlXl71LGlXMniq7XSWvryK8lJlzTzT/EErVY1AZVU1G6NTCHZ34r72kaLjNIgdR2OxtjSjfYSf6Cg37WpKDr6ejuhkMGjzz2ovUpZLqQpt6glA7AV5lSqAPsNaY2FlxuZVyl2t8gp0ZfJ7o4k+eplv5m4WHUf1JEmi16guLL3wPn3HdOP7uRt4PHIqR7dpW7BKpJWqRuCHg6fJLC5nyj3dMJHBHW71rbKqmj0n4+jeMhgzUxPRcW7atdRc/Dzld9at9mumSiarFnb2Vnh4ORB7IUV0lP9hbWtJryGt2LvlFAW5xaLj3LYew+7i7tGdWb14O8d+PS86TqNg52TL1KVPsWDXa5iY6nll4BzefOA9slK0S6+VRP3vsI1cQUkZn/9ymDBXW7qEB4iO0yCOX7xGYUk5vdsoYzYVGAtLamYBPjIsVWZmxmJaWSmPUgUQFu5FzPlk0TH+0j0Pd6KivIpta46KjnJHJsx5AP9wL+Y/tYzMZO2NvaFE9WjGZ6cW8MjrD/D7pmOMC3+OHxdv1bZiFUIrVSq3ZOcRCkrLuDfCS3YDJevLzmOxWJmb0qGZv+goNy0tq5Dq6hp8PBxER/kftaWqvLxKcJI/hDXzJiMtn5zsItFR/kdAqAdRHYLZsuqgot8ILazMeHXZE1RWVDNn/BIqK+Tz+Vc7M3NTHp45giVnFxLeMZRPn1/OU3dNJ/r3i6Kjaf6FVqpULDknn2/3n2JI2wi87a1Ex2kQVdU17D4ZR9eoIMwVtPWXnJ4HgLe7DEuVufHjWFEpnzfV8GbeALJdrRo6tjOZqfkc3KHsrTOfYHeef38MMceusPT1H0XHaXS8m3jyzs+vMnP1FAqyCnm28wwWjvuE4rxS0dE0f0MrVSr28c8H0UkwaUAn0VEazMnYJPKLyujVJkR0lFuSlGYsVXJcqTKX4UpVkzBP9HodF85eEx3lL7XrGY6HrxM/frVfdJQ71nVoG4Y+0YuNX+xi/6bjouM0OpIk0W1ER5ZGv8/9U+9hxzf7+HTMSuNsKwWvhKqVVqpUKjYlk60nYhjdrRUeDvJ6RL8+7T4Zh7mpnk7NlTHws1ZKeh5mpia4OMrvpgELc+OcrzIZTQo3tzClSZgH0TIdXaDX6xj2n67EnLpK9IkE0XHu2LjZ9xF+VxCLJq8g8aL8HhBoDKxsLXli/lg+P70Ar6ZufPLcV0xsM43Te5S9Gqo2WqlSqQ9+OoCNhTmP9bpLdJQGYzAY2Hsyjg7NArA0V8bAz1qpGQV4udnJ8tybhYX8ShVARAtfLkanyOapxP+v3/C22Nhbsm7pPtFR7pipmQmvLH0cCytz3nzkc4oLtO0nUfzDfRg1bwiz171ASUEpL/R6jTcfeI/0xEzR0TRopUqVjsUlsS/6CuN63YWdAi4SrisXEtNJzy2iZ6smoqPcsuSMPDzd7EXH+Eu1paq0TF4X7TaL9KWivEqWV9aA8aD3oFEd+H1nNCmJWaLj3DEXT0deWfo4aYmZzH/qK2pq5DG3rDGSJIkuw9qzNHoRY18byeEtx3ks/Fm+nv0DZSXa4FCRtFKlMgaDgfe3/oabvQ0PdW0lOk6D2nsqHr1OoktUkOgotywtswAvmZYqKyszAEpLZbZSFekDwLnT8jxXBTDk4U7oTXSsW6b8s1UAzTuG8Pgb93N4+xm+e+9n0XEaPXNLc8bMup9lMYvpdG87Vr65lseaPsvOlfu00iuIVqpUZs/5y5xJTGVCvw5YmCnn6be6sO9UPFFNvHGwsRQd5ZYUlZRTWFyOh6ud6Ch/ycrKeK1Rscx+AnZxs8PT25Fzp66KjvK3nNzs6HNva3asO0ZuVqHoOHViyPge9B7ZgZVzN3NouzIvj1YbN18XXv32ORbtewMHd3vmjv2QyR1f4dyBGNHRGh2tVKlIdU0NH/50AH9XB+5t10x0nAaVkpXPpaQsurUMFh3llqVlFgDg4SLPUmV9faWqpERe238AzaP8OHf6KgaDQXSUvzV8XHeqKqvZvPKg6Ch1QpIknlnwECFRfsx7cimZ1/JFR9Jc17xLOB8dfodpy58mKzmH57vO5I2RC0mJl+cWuRpppUpFtp28SFxaNpP6d2oU19H82b7TlwHoptCtPwB3F3k+pWlmZoJer6O4WF4rVQDNW/qRn1fCtQT5nlnyCXKlY58INq/6nZIi+X0Mb4e5pRkzV0zEwsqcH+fuoyBHfkNYGyudTkffsd356uIHjJ09kqM/nWRcxHN8NmU5BTnqWC2Vs8b1zqtiVdU1fPbLIUI9XegXpZzrWerKwbNX8HN3xM9dfte8/JuM6y907jJdqZIkCRsbc4pkWKqiWhun5p85mSg4yT8b+WRPivJL2fqdci9a/v9cvRyZuWIChdmlzBm3hCoZXWOkAUtrC8bMvp/llz6k79gerP/gJ/4T8gxrFm6mQmYPnaiJVqpUYuvxCyRm5vFU/47odPJ7LL8+lZZXcizmGp0jlTWbqlZGdhF6vQ4nB/lOvbextqCoqEx0jP/h6e2Ii6stp0/Iu1SFtfCldZcQfly2n3KZjaa4E+Ftg+g/4S5O/3aRL2asFh1H8xecPR2ZsmQCn52cT9MOoXzx4goeC3+OX1ft1w6z1wOtVKlAZVU1n/5yiAgfN3o2V96Zojt1ODqRiqpquipw6w8gM7sQF0dr9Dr5fjva2JjLslRJkkSL1gGcOZEg63NVAA9O7EVedhHbVh8RHaVONe8eyPBJfdm8bC9blu0RHUfzNwIj/Zmz9RXm7piFnbMN7475gEl3vcTR7adk/72jJPJ9FdfctPVHzpGSU8DTAzrLcnhkfTtw9grWFma0CvEWHeW2ZOQU4eYsz/NUtWxtLCiUYakCaNk2gNycYhKvyHv4YeRdQTRvG8iaJXuoUNnlxI/OHEb7u1vw6SurOfarNuFbzlr3juSjI+/y0jeTKcot4pUBbzOtz+vEHLkkOpoqaKVK4Sqqqliy8wgtAzzp3NRfdJwGZzAYOHj2Cu0i/DA10YuOc1uycotwcbQRHeMf2dlZUlAgz1LVqq1x2/fk0SuCk/y7hyb1Jju9gB3rjomOUqf0eh3TP3uMgHBv5oxfQsIFeV50rTHS6XT0Ht2VpRcWM2nxYyScu8YzHV7h9RELSLwgz6uflEIrVQr346FzpOcV8VT/jo1ylSo+OYv03CLFnqcCyMopkuWdf39mZ2tJgUyvJnH3dMDLx5FTx+Rfqlp2akJ4Kz9Wf76bSpWtVlnaWPDaqqewtDZn9uiPyc0oEB1J8y/MzE2595kBfB33EWNnj+TEjjM8ETmFBY99QsZVea/8ypVWqhSsvLKKL3ceoXWQN+1D/ETHEeLA2QQAxZaq0rJKiksrFLBSZUFRcRnV1fI82NqybSCnjydQUy3vsyGSJPHQpD5kpOSx48fjouPUOVcvR15b9RT52UW8PvZTymQ420zzv6xsLRkz+35WxH/EsGcHseu73/hP6GQ+nryM7NRc0fEURStVCrb+yHkyCoqZeHeHRrlKBXDofAIhPi64Osi7lPyd7DzjfB9nB3mvVNnbW2EwQGGhPLcAW7cLoqSkgpQk+a+OtOkaSmikDz+ocLUKICTKn2mfPkbsiQTmP7VMtkVc87/sXeyYsPARlsd+QJ8x3dn06XYeafI0S6Z9Q36W/L+35OCOSpUkSfMlSYqRJOmMJEnrJUlyqKtgmn9WWVXNsl+P0jLAk3ZNfEXHEaK0vJJTcSl0aBYgOspty8krAcBJ5qXKwd447iE3r1hwkr/Wsk0gOp3E5Vj5/1QtSRJjnu1HRnIu29ceFR2nXnQa2JIn3hzBwa2nWDJrreg4mlvk5uvClCUTWHbhfboMb8+ahZsZEzSJr2Z8R2GuNuj1n9zpStUOoLnBYGgBxAIv33kkzc3YdCyatLxCnujbeFepjl+8RmVVNR2aKfeAfvb1kuIs4xlVAA7X8+Xny/NclZ29JaHhXly5lCc6yk1p0zWUiNb+fP/pLirK1TO36s/ufbI39z7Zi41f7GL9Z7+KjqO5Dd5NPHlpxWSWnF3IXQNa8e2cHxkTNIlv3lhDcUGJ6HiydEelymAw/GIwGGrXrw8BPnceSfNvKqurWbLzCM39PBrlE3+1Dp1PxNzMhJYKHaUAkHO9VMl9pcrxeqnKyZXnShVAm/ZBpFwroFCmB+r/TJIkxj53N9npBWz97pDoOPVm/Osj6DyoFUtmreXAlpOi42huk3+ELzN/mMJnJ+cT1aMZK15bzZjAp1j11jqK8+X7miCCSR3+vx4Dfvi7fylJ0hPAEwCurq7s2bOnDv/oxuXw1WxScgq4J8SFvXv33tTvKSoqUt3HfPexCwQ4W/H7gd9ER/lLN/MxP3kmBYBTJ46gl/Ek/JIS42rK0aOn0ZEuOM1f05sXYDDAN8u3ENHCVXScm+Lf1JmVH/6CtUc5ZhZ1+XLccP7t67z9qGCuXLrKO08s4YGZPfANd2u4cCol8vW857PtaDoggP1fH2X5rO/5ft562t0fxV3DWmBhYy4kk5z863exJEk7AY+/+FevGgyGjdf/m1eBKmDV3/1/DAbDF8AXAGFhYYYePXrcTt5Gr7qmhoVzV9DU242nRg656a2/PXv2oKaPeWZeEekrT/Bgv3b06NFWdJy/dDMf86NxO7G3zaV3r54NE+o21dQYeO+jUzg5e9KjR3fRcf5SdVUNq786T2mBuWK+1t0dApky8hNyruh4cGIP0XFuy818nbe/qwNTB81n08JDzN88lYBw5a4uy4Hw1/MeMOqJkcQej2flm2vZ99UR7C0cmfzxeHGZZOJft/8MBkMfg8HQ/C/+qS1UjwCDgdEGbdZ9vfvl9CUSM3N5om+7RnuWCuDIhasAtAtX9iiJvIJSHOzkfZ4KQKeTcHS0kvX2n95ER2CoI0cPxSnm2o3wlv606xnOuqX7KMxX7xkVOycb3lo9GTMLU2Y88CEZSTmiI2nqQGibYN7YMJ1Pjs3lwelDRceRhTt9+q8/MB0YYjAY1PuKIBMGg4GlO48Q5O5Er+ZNRMcR6uiFq9jbWBDio4xtnr+TX1iKg62l6Bg3xcnRhpwceT/5ExzqSE5WEfGxaaKj3LRHnutHUUEp677cJzpKvXL3deatH56htKiMGQ98QKGMC7rm1oS0DsLN79Zei0uLyzix8wwVZeqaZXanT/99BNgCOyRJOiVJ0md1kEnzN367kEBsahaP9boLnYzP39Q3g8HA0ZhrtAnzVfzHIb+wFHuFlCoXZxuysuVdqoLCnAA4dEA595gFhXvR456WbPj6N7LT1T0LKLCZD7O/mUhqQhazR39MWXG56EgaAQwGA/mZBWz6dDvDnP7DwU3qGS1yp0//NTEYDL4Gg6Hl9X8m1FUwzf9auusoHg62DGgdJjqKUNcy8kjPKaRdU2Vv/QHkF5Zhb2shOsZNcXG2IVvmK1U2tmaERXhxREGlCmDss/2orq5h1Uc7REepdy06h/HS5+O4ePwKbz/2hSoHoGr+XnV1NQAeAW7cP3UIvR7qSrmKJu9rE9UV4sTlZE5cTmZsj9aY6pV5cXBduXGeKkLZpcpgMFBQVIqdjUJWqlxsyc8vpULmb4Ltu4RyMTqZXJmvqv2Zp58zg0Z1YPvaY1yLzxAdp951HtyKZxaM5tiu8yx8ejk1NdrUdTUrKyknMfoaAHq9/sZ54JjDl3D2dCSiYyiAYs5C/hOtVCnEsl1HcbS2ZHiHSNFRhDt+MQk3Rxt83ZQ9wL+8ooqKymrsbJSzUgXIfguwY5dQDAY4fFBZq1UPPtULcwtTvlq4TXSUBtF/TBcenTmMveuP8dnLP6jiDVXz1/IzC/h69g9MaP0iV84ZfyhOjL5GxtUsvJp44O5vPI9VW7b+/LWQmZTd8IHvgFaqFCA2JYt90Vd4qGtLLM1MRccRymAwcOKi8TyV0p9+LCw23qNnq5BS5eZqB0BGprzP/QSFuOPmYc/v+y6KjnJLHJxsGPlED37feZ5zR6+IjtMg7n+mH8Mn9WXzsr188+5m0XE09cTd35VZa15g3DujsXexBeDM3mhMTPU0bR8C/FGkDAYDkiRRVVnF6vkbWTDuE56Imsr+dcoYkquVKgVYvvsolmamPNi5pegowiWm5ZJdUEKbMOUP7y8oMh7StbNWxsA81+svhpmZhYKT/DNJkujYJZQTRy5TVqasK2Du/U8XnN3s+HLe1kaxciNJEuNm30f/hzvz3Xs/sebD7aIjaepB7Tmqu+5uia2TDVWVVWSn5uIR6IZPqCfA//yQvOqtdZzZF82r3z7Ho2+NYudKZTwdq5UqmUvNLeDnkxcZ3qE59tbKWNGoT8cuGvfl24Yp/xLp2pUqG6WUKjdjqZL7ShVAx25hlJdXcfLIZdFRbomFpRljnuvHxdPX2P/zGdFxGoQkSTy9YDTd7m3LsjfWs3W5Mt48NTdPf/0ccGVFJa8MeJuxTZ4mMTqJ9oNao9Pp/usHCEmSKMgpZO/qg4x7ZzR2zrb4R/hg7WBFxtVMAFLi09j0yXaykuW3NaiVKplbtf8UAGO6txacRB5OxhrPU3m72ouOcseKS4wrVTZWyijLlhZm2NlakJEh/1LVorU/NrYWHNgbIzrKLeszrA2BYZ58tWCbai9b/v/0eh0vfvIo7fpG8vG079i19rDoSJp6YGpmytwdsxj5wlDiTyXwxv0LKS0uu1Gqah9Y+GX5HnybehPY3O/6rxtIT8jEwc2e7ct3s+K11Zw7cIHJHV9lzw8HhP19/opWqmSssLScdb+fpV9UKJ6OdqLjCGcwGDh5KZlWId6KP08FUHT9MWIbKzPBSW6eu7s96QooVSYmetp3DuHQb7FUVynryTK9XsfjLw0iLSmHjSvk9YZRn0xM9byy9HEiO4Ww8OmvtQuYVUqn03HvMwNYEfcRj88dg6W1BVlJ2RzYcASdzlhJfvryV4Y+PeDG79n+1W5C2wSTk5bHL1/vYeDjfXhl1XM8/eE4UuLldRepVqpkbN2hsxSXV/BIjzaio8hCclY+GblFtApR/nkqgOJS40qVtZUytv8A3N3sSEvPFx3jpnTq1pSC/FLOnk4UHeWWteocQrue4Xz3yS7yZP60ZV0ytzRj9sqnCGsdwLtPfMmRX86KjqSpR1E9mmEwGCgrqSAvw/i6kp2aS0BzX8LaBgGQdCmVEzvPMGLqPXz/znpa925Bi24RAJQVl3F673lh+f+KVqpkqrK6mm/3n6JtsA8Rvu6i48jCqdhkAFqGquMy1uLrK1XWlspZqfK4vlKlhEPUbTsGY2ZuwoHdytsCBBg/bSAV5ZV884H6B4L+mZWNBW989zSBEd689djnnNynzM+f5uZIkoRfU28GPdEXAGdPRxxc7FgybSX71x3ih7kb6DKsPeaWZsQej6f/uF43fu9PX/5K9xEdAWQz60wrVTK14/Ql0vIKGdtDO0tV63R8CrZW5gR5OouOUidKyirQSRLmZiaio9w0Dw97ysoqyc8vFR3lX1lamtG2QzC/7Y2hpkb+JfD/8w12Y/BDHdn2w2GuxKSKjtOgbOyteGv1ZLyD3Hh9zCec+11ZM8c0d2b0zBHoTfVs+2oXPR7oxPApg7l04jKhbYIxv/5D6IXDlyjKK6bnqM4AN7YORZNHCs1/MRgMrNhznAA3R7qFB4mOIxunLiUT1cRL8ff91SoprcDK0kxR58M8PYwDV1PT8gQnuTldeoSTnVlIzPkk0VFuy+in+2Bla8HnczYrYnWwLtk52TBn7XO4ejkya9RHRB+JFx1J00CcPR155qPxvLFhOm36RmFmboq7vyt5WQXYOFgDsHzmd3Qd3gFLmd1IoZUqGTp+OZnopAzGdGutmgJxp/KKSrmSmkNUE3Vs/UFtqVLWMFdPD+NTl0opVR27hmJqqmf/rguio9wWWwcrHn6mL6cPxXPwF3mdHWkIjm52vLv+eZzc7ZnxwIfEHG8cQ1E1RnqTP65ks7S1pKKskme7zGDxxC+wsrNi9KvD//H3i3h6VitVMrRq30kcrC0Y3DZcdBTZOHfZuP3RIthTcJK6U1pWiaWFcs5TgXH7DyAlVRmH1a1tLGjdLoh9u6IVu9Iz+KEOBIR6sGTuFsoVNsy0Ljh7OPDuhudxcLFlxsgPiD2lvAcPNHfO0c2eOVtfYcTzg+lwT1umff008Pf3BV48GsconydZ+vIqMq5lNVhOrVTJTFJ2PrvPxTO8Q2Sjv5Lmz07HpaDXSUQEeIiOUmdKyyuxNFfW59jSwgwnJ2tSUnNFR7lp3fs0IzO9gJjzyaKj3Ba9iZ4JM4aQnpTL2i/3io4jhIunI3M3PI+tozWvjlhM3OmroiNpBOk6vAPtB7bG8vow7L87PmFmYUpkt3BWz9/ImKBJvHH/Ak7vPV/vP1xppUpmvv/tFDpJ4oHOUaKjyMrpuBTC/NwUV0L+SVl5JebmyjmkXsvL04GUVGVs/8EfW4B7dyp3+yyqQzBdB0Sy+vPdpCcrp9DWJVdvJ9798Tms7Cx4efj7XFLgqAxNwwmM9Oe1dS/yddxHjJhyD6d2neOFnq/xRNRUtny+g9LrN1rUNa1UyUhJeQXrD5+nT1QIHg62ouPIRlVVNecT0mgR7CU6Sp0qK6/CQoGrkV6ejiSnKOeN3drGgrYdgtn3a7QinwKsNX76ICRJOcfavgAAIABJREFU4su5W0VHEcbdz4V5G6ZgZWfBK8MXa1uBmn/lEeDG43Mf5ttrnzNlyQT0JnoWT/yCUT5P8unzy0mKTanTP08rVTKy+dgFCsvKGd1Vuzj5z+KSsyivqCJSReepAMorqrBQ4EqVj7cjWVlFirqsuEff5mRlFnL+jHK3jdy8HHlgQk9+23aWkwfjRMcRxt3PhXkbp2Jtb8mrI7Ripbk5FlbmDBjXm0+Pz2PR/je5a0ArNn2yjUebPsv0u9/kwIYjVFdV3/Gfo5UqmTAYDHz32ynCfdxo4a+u8nCnzt44pK6ularyiipFzaiq5e3lCKCo1aoOXUIxNzdhzw7lbgECDB/XDQ9fJz59cyOVFVWi4wjj7uvM3A1TbhSriye0pwI1N0eSJJp3bsqr3z7HqsRP+c8bD3LtQjKv3TefMUGTWPXWOnLSbv+1TStVMvF77FUup+cwumsrRc0taghnL6fibG+Nh5O6tkTLKyoVWap8vI2lKklBZ3ssrczo0CWUfbuiFXcX4J+ZmZsyccYQrsVnsH75b6LjCFVbrGwcrXh5+GJtjpXmljl5ODJ6xnC+ufwxs9e9gG+4N8tnfc9DfhN568H3OLX73C0fbNdKlUx899spnGys6N8qVHQU2Tl3OY3mgR6qK5vlFdWYmSq3VF1LyhGc5Nb06Nec/NwSTh67LDrKHWnXM5yOvSP49uOdZChotbA+uPs6M2/jVJzc7Hj1/g84e1CbvK65dXoTPV2GtWfu9pl8dfED7n26Pyd2nOHF3q/zWPizrFu05ab/X1qpkoGk7Hz2RV9mRMdIzEyU9yZbnwqKy7iankvzIPVtiVZWVWFmqv/3/1BmrKzMcXG2UVypuqtjE6xtzNn1yznRUe7YkzOGgAE+f3uz6CjCuXo5Mm/jVFy9HZk56kNO7dfuCtTcPp8QTya89x++S/qcacufxs7ZlpVvrr3p36+VKhlYffA0OkliRMdI0VFkJzohDYBmgeqZT1WrsrIaUwWuVAH4+jhxLSlbdIxbYmZmQpee4RzcE6P4IZru3o48NKk3B3ec58huZU6Lr0tOHvbM3TAFDz8XZj/0Mcd+VfbZOY145pbm9B3bncUH3mbZhfdv+vdppUqwsooq1h8+T8/mwdoYhb9w7oqxVEX4uwtOUreqa2qorjEocqUKwNfXmavXchQ3pbzX3ZGUlFTw+/5Y0VHu2LBHu+Ib5Mqnb25SfEmsC45udszdMAXfEA9eH/MJB7aeFB1JoxKO7g43/d9qpUqwX07Hkl9Spg37/BsXEtLx93DExspcdJQ6VXX90V0TE2V+C/r5OlFcXE5ubrHoKLekRSt/XFxt+XXbGdFR7pipmQlPvz6MtKQcvv90l+g4smDvbMO765+nSZQfc8YtYc/6o6IjaRoZZb6iq8jqg2cIdHOiXRNf0VFkKTohTXWrVABV159AM9Erc6XK39cZgMSrytoC1Ot19Lo7kmOH4slTWCH8Ky3aB9P73tas/XIviXHpouPIgo29FW+veZaIdsHMn7CMX749KDqSphHRSpVAMckZnElM5f5Okap7sq0uZOYVkZlXTLiK7vurVVVdW6qU+S3o73e9VF1TVqkC6D2gBdXVNYqfWVVr/EuDsLQ254MZP1JTo9xxEXXJysaCN79/hqhuTVn07Ao2fqGt5GkahjJf0VVi9YEzWJiaMKRthOgosnQhwfiTd0SACleqrpcqUxNlrlS5uNhiZWVGYqLySlVgsBvBoR7s/Fn5W4AADk42jJ8+kOgTCWxbrW131bKwMuO1lU/RaVBLPnt1Nd+995PizgBqlEcrVYIUlZWz9UQM/VuFYWdlITqOLMVczUCSINTXVXSUOld9vVTp9cpcoZQkCX8/ZxKvZomOclv6DmxB7IUUEq9kio5SJ/re15YW7YNYNv8ncjILRceRDTNzU1758nF6j2zPinc28dWbG7RipalXWqkSZOvxGEorKhnZqYXoKLIVczUDf3cnrCzMREepc3+UKuV+Cwb4u3AlQZmlqmff5uj0Ejt/Oi06Sp2QJIlnXr+P8rJKPn97k+g4sqI30TPlw0cY9Gg31ny4nY9e/PbG959GU9eU+4quYAaDgTUHzxDu40YzX/VtbdWVmMR0wv3dRMeoF9U1xp+WdTrlfgsG+LuQl19CXl6J6Ci3zNHZhl79IjFR6EiLv+IT5MqDE3ux76czHNmjDcD8M51Ox6S5oxg5+W5++no/855c2qjvTtTUH+W+oivYmcQ0YlOzuL+jdkD97+QUlJCRW0SYnzpLVe2BYp2CP/+BAcZt2YREZa5WTZt9L4880VN0jDp1/xM98Gvixkezf6SkqFx0HFmRJIlHZw5j3Gv3sW/jcd4Y8yllJRWiY2lURitVAqw7dBYrc1MGtGoqOopsxV7LAFBvqTLUrlQpuVS5AHA5QR3nktTAzMyE594eQVZaAcvf2yY6jiyNmNSPZ997mBN7onn1/sUU5StvpVUjX1qpamCFpeVsO3WRAa3CsFbhWaG6EnNV3aWq9qyskleqnJ1ssLO14LJKDnurRXgrf4aM6cSWVb8TfSJBdBxZ6j+mCy8tGU/syQReHLKQnLR80ZE0KqGVqgb204kYyiqqGN5Bu+fvn1xMzMDLxQ47a3U+GVlz/UyVgjsVkiQRGOjKFW2lSnYeef5uXL0ceP+VtVSUa1fY/JWuQ9rwxndPk5aQxZRB80i5nCE6kkYFtFLVwNYfPkeYl6t2QP1fxCZlqnKUwh9qS5WCWxUQFOjG5SuZN0qiRh4src2Z/MYwrl3O1K6w+Qetuofz7obnKS0uZ+rg+cSduSo6kkbhtFLVgGKSM4hOymBY+2aKfzOtT6XllVxNzyXUV51bf/DH9p/SBQe5UlZWSWpanugomv+nTdcwet/bmtVf7CE+OkV0HNkKaxXAgs0vYGpmwrSh73Fqv/bkpOb2aaWqAa07dA4zEz2DWoeLjiJrcUmZGAzqHPr5/ym9XAcHGotvvLZ1IktPvnIPdg5WvPfyGqoqq0XHkS3fEA8W/jQNNx8nZj74Efs2HBMdSaNQWqlqIKUVlfx0PIa+LUKwV+k5oboSm2R8RD/ER/2lSukCA1zQ6SStVMmUrYMVT79+H5cvpLD6i92i48iaq5cj8zdPJbSlP+8+sZRNX2ofL82t00pVA/n1TByFZeXc16G56CiyF5eUibWFGV4udqKj1DulX5lhbm6Kr48TcfHKL1XFxca5TjU1hhtnxJT++QHo1LcZ3QdF8d0nu7hyMVV0HFmzdbBmztpnaX93JJ++/ANfz9moiq8BTcPRSlUDWX/kPD7O9rQJ8hEdRfbikrJo4uOi+K2xf1L7V1PDy3VwkJsqVqqWfvwrGWn56HTSjflhavkanDhzKNa2Fix6eQ3VVdo24D8xtzRjxldP0v/hzny/6GcWTV6hbZ1qbppWqhpAUnYeR+OucW+7Zooe9tgQDAYDl5KyGsHWX22rUn6tCmniTnpGAfkFpaKj3JbaVSlzcxN+3nQCgD07zrP6mwPs/PkMxw7Hi4xXJ+ydrJn02r1cOpfMmiV7RceRPb2JnsnvPczD0waz4/vfeW30x5QWlYmOpVEArVQ1gI1Ho5EkGNI2QnQU2UvPLaKotJxgb2fRUepVbbmuUUGpahJkPKweF58uOMntqd3eGXxfW+IupjFz6ncc+f0SpmYmXDiXxA9f/8buHecEp7xzXfu3oOuASFZ9tFPbBrwJkiQx+sXBPLdoDCf3xTB92CLyMgtEx9LInFaq6llNjYHNRy/QMdQfD0db0XFkLz7ZeEi9ibeL4CT160apUsF8p5AmxplrcXHKLFV6vfFlMPFKJgHBbtwzvC3jJvam78AonnlxIPeN6sCWH9XxNNhTs+/F2taChdNXa1taN+nuhzsze8VErl5M4fkB80iKSxMdSSNjWqmqZ8fik0jJLWDIXdoq1c2oLVVBXupeqdJfL1XVKihV9vZWuLvZEavQUgWQfDWbjauPENHch8iW/ji72mJja3xKNz42jZ791HEDgoOTDc+8cR/x0SnaUNBb0K5fJHM3TKG0uJwpA+dz/nCc6EgamdJKVT3bePQ8NhZm9GreRHQURYhLzsLVwRp7G0vRUeqVTmf81qupqRGcpG6ENHHnkoJLlYOzDelp+XTsFoallRk52UWs/+Ewz45fypmTibRpFyQ6Yp3p3K85PYe04vvPdhF3Pll0HMUIax3Iez9Nw87RmpeHv89vm0+IjqSRIa1U1aOS8gp2nomjX1QoFmYmouMowuXkbIK81L31B3+sVKlh+w8gNMSDa0k5N8YSKI21tTnNo3xZ+NYmXpy0gplTvyPpajaj/tOVeR+NxdPbUXTEOjVx5hDsnaxZMO0HKiqqRMdRDK9AVxb+NI0mLfyYM24JO384JDqSRma0UlWPdpy+RGlFJUPbaVt/N6OmxsCVtBzVb/3BH+d4qqrUsVIVGmI8V6Xk1arJ0wYxZMRdDBzamjfmP8j4SX1o3zkEUE/5rWVrb8Wzb40g8VI6KxfvEB1HUeydbZiz9jn6j+lCZEdtB0Lz37RSVY82HY3Gz8WBlgFeoqMoQkp2PuUVVQQ3glJlcr1UVatk+y80xAOA2EvKPcRrZm5CSFNPevZrjrOrLZZWZjfmVKlxFEq7Hk3pP7Ida7/cy7mjV0THURQLKzMmLxyNu5/6V9U1t0YrVfUkOSefo/FJDLkrQjUDBOvblZQcAAIbQalS20qVo4M1bq62xMQq+1H9yspqft129i//nRonaz/x8mDcfRxZOH01JUXK3LrVaOREK1X1ZOtx403ng9tolyffrMsp2QAEeTkJTlL/TPR6AKqq1fNYe1ioJxdjlbtSBaCTJM6dvkpVVTUVFVXk5RYDUF1V818/HKmlYFlam/PCvAfISMnlizmbRcfRaBRPOz1dDwwGA5uPXaBtsA9eTuq/v66uJKTm4Gxvja2V+i+cNjW5vlJVrY6VKoCmYZ7sPxBLQUEpdnbKfHpTb6Lj2emDAIi7mMqKJXuxsjbHzcOOmmoDLVr7Y2dvRWCwG+YWpoLT1o1mbQIYMb47q7/YQ4feEXTorZ0BrS8Gg0HbuVA5baWqHpy9mkZiZi73tNVWqW7FlbRsAj3Vv0oFf2z/VapoAGNYqPFcldK3AGsFBLtx4XwS99zXhiHD7yIg2I2E+AxemrySLeuPi45Xpx6e3Jegpp4snrGOvOwi0XFUo/r6D03ZaXkc2naaD6asZMGk5RTkaB9jtdJKVT3YejwGcxM9fVqEiI6iGAaDgYTUXAI8GkepkiQJUxM9lSq63DYs1BNA8VuAYHwzNDHR06lrGGdPX8XEVE9eTjG/7YmhWQtffP3Vde7P1MyEFxc8SHFhGYtnrFPN9qYox3dHc3x3NHq9jsK8Yr56cwNnf79E07ZBePg789rDn1BWUiE6pqYeaNt/dayyupptJy/So3kwtpbmouMoRnZBCUWl5QR4qGse0D8xNdGpaqXKxtocP18nYlRwr1ztSmJQiDtffbabPb+cJzjUgycn96VZlJ/gdPUjINSDR1/ozxdztrBt9REGPNBedCTFcvF04N0nl5JwIZmUK5k4utsxcGxXPAOMF8WnJmSpZvCv5r9pK1V17NDFq+QWlzKwdVPRURQlIdX45F+Ap7pWAP6Jqam6VqoAwpt6cSEmRRUrHTOmfMvOn89gbWPOA4905sVZQ2kW5Ud5WSWpybmi49WLoWM706pTEz6fs5nkhCzRcRTJYDDg39SLd398nuT4DKxsLbh7dOcbher7RT+TlpiFlY36z442RtpKVR3bcvwC9lYWdGkaIDqKoiSkXS9VjWqlyoQKFa1UgfGw+vYd50hPL8DDw150nDsy4bm78fFzpqKiCjMzE86dusra734n+VoOTZt5o9PpeHhcN1zd1PMwik6nY8q7I5l4zyLmTf2Ohd8/hYmpXnQsRZEkicqKKuydbfDwd0GSwMnd+L1wfNd5Tu69wMQ5DwDGbebaVVGNOmifzTpUUl7B7vPx9GsZiqmJ9kJ0KxLTcrAwM8HN0VZ0lAZjZqZXXamKaGocdBsdkyI4yZ3z8TOumibEZ/Da9B+YM+tH/ANcmfP+aMY+3gO9TmLtt78LTln3XDzsmfzmfcSeTeLbj3eKjqNIpmYmGAwGrl5MwTfUEysbCy6fS+KHxdvoO6oTARHegHGbuXYbsKK8kmqVrVw3RtpKVR3adTaesooqBmlbf7csMS0XP3dHVU6u/jvmZiZUVKrr3rWgQFfMzU24EJNCrx7qePr1+OF4wsK9eG3uA//161FtAtjx02lBqepX1/4t6DMshh8+203rzqE0vytQdCTFkSSJyI6hfPrS91yLTWX7ygMMebwnPe6768bqX01NDTqdjpN7L7B91QHKSip4+MXBNFHpub3GQFupqkNbT8Tg5WinXUtzGxLTcvFvJE/+1TI3NaFcZZfZmpjoCQvxUMVKFUDC5Qz2/hrN8Ic6/s+vHzsUz6hHughKVv8mzhyKu48T8174jsL8EtFxFOnuhzszad4o3HycmTDnAYaM74mJqZ6amhqqq42FqrSojHef+JI2PSPo91AnFj27gjMHLoqOrrlNWqmqI9mFJRyKTWRAq7BGtdpSFyoqq0jNLsDf3UF0lAZlZqpXXakCiAj35lJcOhUq+LsFBLmhkyR+3XaW1JRcDu67yNSJy3lp8kq8fBxpEuapikP5f8XKxpzpC0eRk1nIR7PWq/bvWd/a9Y2k+7C2tO3d7Mav6XS6G2epLp5MILJjKH1HdaLTwJZEdg4lI0mdD0I0Btr2Xx3ZcTqW6hoDA7Stv1uWnJlPjcHQ+FaqzE0pKVXfrJpmEV58v6aaS3HpNLt+dkTJHnqsGxfOXuPIgUtkZRbQu38Lht5/V6OYjB0W5cvYZ/vx1cJttO0eRt/72oqOpGhrP/6FkoIyxr48hPRr2Xzz7ibMLc1Agsc7zqbzoFbkpudjYWUmOqrmNmmlqo78fPIiwR7OhHppt5bfqsR0409lvm6Na6XK3MyEPBVuq0SEG4vU+ehkVZSqLj2a0qVHU3Kzi3B0trnx6zU1hkaxKj18fHeO/xbLJ29spFmbALz8tde42zViUr8bU9Y3fbmbwtwSXvj4UQAWTPoKSSfx4JSBBEZ4c2DLSVKuZHAlOpmJ7zyArYO1yOiam6Rt/9WB1NwCTl5J0WZT3aZrGXkA+Lk3nnEKABZmJpSWV4qOUeecHK3x9LDnXHSy6Ch1xmAw3ChUNTXGbbDGUKjA+ITaC/MfwMRUz7vPf0elCrZ1RdLpJKoqq9Hr9XQfZlz5Ky4oxd7FlpCW/gRGeLNk9lo2L9uDo5s9bt5OzBj5Afna9UGKoK1U1YFtJ2MB6N8yVHASZbqanou9jQV21o1rGJ6Fuakqz1QBNIvw5sSpRNVcIPvnv0NjKVN/5urhwPNz7ufNSStY/t42Hn9psOhIiiVJEiamelr1COejF1aRlZKL3lRPQnQKQ8b1YPvKA+zbcJxP9szA1tGaqspqMlNytXlhCqGtVNWB7acu0szXHV+XxrV9VVeuZeTh59a4VqnAWKrKVLhSBdA8woecnGJS0/JFR9HUkU59mzH4oY78uGw/R/fGiI6jeK26NWX2yqe4GpuKXq9j1JQB1NQYWPHuJmavmIito3G7L+VKBoW5xZQUlgpOrLkZWqm6Q1cz84hOyqB/qzDRURTrWkYePo3sPBWApYUppWUqLVXNjGepzp1PEpxEU5fGvzSIgDAPFk5fTU5Ggeg4iucX6snUj/7DvU/2pnnHEPasO8rQx3v+15yqeROWEdY6AFfvxvUgj1JppeoObTtlnCfSLypEcBJlKq+sIiO3sNEdUgfjmaqq6hqqVDhFOcDfBWsrM86dV8+5qj+rqqpm1/azXG1k9+OZW5jy0qKHKCupYMG0H7RLgevAn7eWq6qqsXf541aJN//zGa7ejox+UdtuVQqtVN2h7adiaRXohaejeu7/akjJmfkYDI3vyT8ASwvjY9NqPKyu1+toFuHNuWh1rlSVFJezaM5m1qw8KDpKg/Nv4s6Tr97DyYNxrP1yn+g4quLm7cS6T3awct5mFk9ZSWlxObO/eQpAmxOmEFqpugOX07O5lJrF3doB9duWdP3JPx9XZV++ezssLUwBVLsFGNnMhysJWRQWlomOUufs7K3oO6glu7afJTurUHScBtd/ZDu6Dojk60XbSYrXBlXWlbsf7sz414aj1+vpMrgVM796EjBeZ6OGBz4aA61U3YFtJ2PRSRL9orRSdbuSMo0HmRvjmSorS+NKVUmZ+gaAAjRv7gOgqtEKfzb8wfZUVVWzcc0R0VEanCRJPPvWcNw8Hdi85BSFeeqbtyZKu76RjJo6kDa9mmFpY4HBYECn096qlUL7TN0mg8HAL6djaRPkjYudNpTtdiVn5mFlboqDjaXoKA3OSuUrVeFhnpiY6Dhz9proKPXC28+ZTt2asnX9cUpL1FmM/4m1rSUvLx5NUX45i15Zq21P1RNthUpZtFJ1m+LSsrmcnkM/bevvjiRn5ePj5tAoXzhurFSp8KoaMF7DExbiwdlz6ixVAPc/3JHCgjK2bT4pOooQoZE+9Bgexu87z7Ppm8Z3vkyUmuoa1n/2qzaIVYa0UnWbfjll3Prr06KJ6CiKlpJVgLdL4ztPBWB1/aB6sUpLFUBkc18uXkqjXIWH8QEiIn1p1sKXH78/THVV43wSrm3vANr3CufLuVu5dE6dDybIzZXTaXwxcw0v3fseOdosOFnRStVtMG79XaJNsA/OttrW3+0yGAwkZ+Xj1VhLlcpXqgBaRPpSVVXDhZhU0VHqzYjRHUlPzWP/7guiowghSRJT3rkfRxcb5kxeRVGBNqSyvgW39uKVLx8n/nwST/d+m/OH40RH0lynlarbEJ+ezZWMHPpqs6nuSHZBCeUVVXg3wif/AKxVflAdILKZN5IEp1V6rgqgY9cwfPycWbPqYKM9V2TnaM3Li0eTmZbHopfXNNqPQ0PqOrQNi36ejoWVOS8NW8SWZXu0j7sMaKXqNuw4fQlJgj6R2tbfnUjJMi5be7k0zhlf1lbGUlVUUi44Sf2xsbEgOMhN1aVKp5MY8VBHLsWkcup4gug4woS39OfRqQM4uEM7X9VQAiO8WbzjJVp1D+fj6d+z6NlvqFDpgy9KoZWq27Dj9CVaBWpP/d2pP0pV41ypMjM1Qa/XUaLyJ8eiIn2JvpBMZaX6JsfX6jOgBY5O1o1yGOif3fdY1xvnqy6eUW+RlhNbB2teW/UUo6YOZMd3B3lh8HzSr2WLjtVoaaXqFl3JyCEuLVs7oF4HUrKMd4d5OTfOlSpJkrCxMlP1ShVAVAs/ysuriLmo3nNVZuYmDHuwPccOxROn4r/nv5EkianvjsTJzY53nltFYb42v6oh6HQ6xr40hNnfTCT5cgaT+8zhxJ5o0bEaJa1U3aKdZ4wHAvu00M5T3anU7AKcbK2wMDcVHUUYaytzilS+UtUi0heA02euCk5Sv+65ry1W1ub80Mi3vmwdrHj5/YfITi/gvZe081UNqUP/KD7Y8TJO7vbMfOBDVi/epn38G5hWqm7RjtOXiArwxMPB9t//Y80/Ss0uwMO5cX8cbazMKVb5SpW9nSVBga6qPlcFYG1jwT33tWH/rmhSknJExxGqaZQf46cP4tCv0axbqt0P2JC8g91Z9PN0ug5tw1dvbeDN/3xGsfZEZoPRStUtSMrOIyY5Q1ulqiMpjXicQi0bK3PVb/+BcQvw3Hl1n6sCuPeB9uj1Otas+l10FOGGjOlE1wGRfLVwG2ePXhYdp1GxsDZn+ufjeOLN+znyy1km95nDFZVeFyU3Wqm6BX9s/Wnnqe5UTY2BtOxCPBvpeapaNlbmFBarv1S1bOFLWXklMbHqPm/k7GJL30FR/LL1FDnZRaLjCCVJEs++PQJPXyfeff5b8hr5x6OhSZLEsAm9eXf9FMpKKnh+wFz2/HhUdCzVu6NSJUnSm5IknZEk6ZQkSb9IkuRVV8Hk6NezcYT7uOHt1LhXV+pCTkExFVXVWqmyVv/2HxifAAQ4fVrd56oA7h/dieqqGtZ/f0h0FOGsbSx4ZfFoivJLeff5b6mubpxT50Vq3qEJH+58hSaRfsx9cimfvPS9dr1NPbrTlar5BoOhhcFgaAlsAWbVQSZZSs8r4nRCKr212VT/197dhlhRhmEc/1+tm1tmiin4sgtpiCgSBSlBL/RiJhFqL4IRGARKUWRBZOkHSxCMKIo+FaxQYUVgklKBSUr1wdRMydo1LDLfSJM0lwjRvfuwZ2OLXc/amTPPNnP94MDO2Vnm4ubsnJuZeZ4nE0eOd438K3tTNXRIE6dK0FQNG3YxE8aP4usSNFXjWkZwwy1T2LB2Bx2n/kwdJ7kJk8fyyLNz2b31B956ZWPqOKU0YvQwVq17grsfnsGG1i08NedFjh0q93N/9VJTUxURv/fYHAIUdpjB4d9OMnbEpb71l5EzZzuZ2DyytLOpd2sePZzxzZfR2VnYf52/XTv9ChobG0oxGmn+gusY3NTIzz8dSx1lQJh5zzRmzZvGts3tnC7oOpAD3aDGBhauuJelrQvZ336E9a1bUkcqJNV6gpO0ElgAnARujohezyKSFgGLKptTgT01HdjO10jg19QhSsY1z59rnj/XPH+uef4mRUTV4epVmypJm4DRvfxqWUR80GO/Z4CmiFhe9aDSjoi4ptp+lh3XPH+uef5c8/y55vlzzfPX35oPqrZDRMzo5zHfBj4EqjZVZmZmZkVT6+i/nhM2zQbaa4tjZmZm9v9U9UpVFaskTQI6gf3AQ/38u9drPK6dP9c8f655/lzz/Lnm+XPN89evmtf8oLqZmZmZeUZ1MzMzs0y4qTIzMzPLQLKmqmxL3AwEkl6Q1F6p+zpJw1NnKjpJ8yR9K6lTkodA14mkWZL2Ston6enUecpA0mpJRyV5zsGcSGqRtFlSW+V5zL1EAAACjElEQVS8sjh1pqKT1CRpm6TdlZo/d879Uz1TJenS7hnZJT0GTImI/j7obv+BpJnApxFxRtLzABGxJHGsQpM0ma6BHK8BT0bEjsSRCkdSA/A9cBtwENgO3BcR3yUNVnCSbgQ6gDcjYmrqPGUgaQwwJiJ2ShoKfAXM9We9fiQJGBIRHZIagS+AxRHR6+Keya5UlWmJm4EiIjZGRPdKmluB5pR5yiAi2iJib+ocBTcd2BcRP0bEaeBdYE7iTIUXEZ8BXkAuRxFxJCJ2Vn4+BbQB49KmKrbo0lHZbKy8+uxXkj5TJWmlpAPA/RR4MeYB6kHg49QhzDIwDjjQY/sg/qKxgpN0OXA18GXaJMUnqUHSLuAo8ElE9FnzujZVkjZJ2tPLaw5ARCyLiBZgDfBoPbOURbWaV/ZZBpyhq+5Wo/7U3OpKvbznK99WWJIuAdYCj//rro/VQUScjYir6Lq7M11Sn7e7a538s1oQL3GTs2o1l/QAcCdwa3iSskycx+fc6uMg0NJjuxk4nCiLWV1VnutZC6yJiPdT5ymTiDghaQswC+h1gEbK0X9e4iZnkmYBS4DZEfFH6jxmGdkOTJQ0XtKFwHxgfeJMZpmrPDTdCrRFxEup85SBpFHdI+UlXQTM4Bz9SsrRf2uBfyxxExGHkoQpCUn7gMHA8cpbWz3isr4k3QW8CowCTgC7IuL2tKmKR9IdwMtAA7A6IlYmjlR4kt4BbgJGAr8AyyOiNWmogpN0PfA58A1d350ASyPio3Spik3SlcAbdJ1bLgDei4gVfe7vO0BmZmZmtfOM6mZmZmYZcFNlZmZmlgE3VWZmZmYZcFNlZmZmlgE3VWZmZmYZcFNlZmZmlgE3VWZmZmYZ+AuMU7qDpBHv7wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x720 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "X = Y = np.linspace(-3,3,150)\n", "X,Y = np.meshgrid(X,Y)\n", "Z = (1.5**Y*Y - X) / sqrt(X**2 + Y**2 + 1)\n", "plt.figure(figsize=(10,10))\n", "pts=np.column_stack([[-2,-.8],[-1,2.17],[.57,1]])\n", "plt.grid(True,'both')\n", "for i,ch in enumerate(\"ABC\"):\n", " plt.text(pts[0,i]-.1,pts[1,i]+.1,\"${}$\".format(ch),fontsize=14)\n", "cs = plt.contour(X,Y,Z,levels=np.arange(-1,3,.2))\n", "plt.scatter(pts[0],pts[1],color='k')\n", "plt.clabel(cs,fmt=\"%1.2f\");" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "livereveal": { "autolaunch": true }, "rise": { "enable_chalkboard": false, "scroll": true, "theme": "sky", "transition": "concave" } }, "nbformat": 4, "nbformat_minor": 2 }