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What this book is
● A compendium of one or two hundred architectural patterns.
● A classification (taxonomy) of architectural patterns.
● The first large generic pattern language since volume 4 of Pattern-Oriented Software

Architecture.
● A step towards the ubiquitous language of software architecture.
● Knowledge should be free. (Let’s all love FOSS!)

What this book is not
● A review of modern technologies.
● A cookbook (decision tree) of ready-made recipes.
● A guide through system design interviews.
● A detailed pattern catalogue.
● A polished commercial-grade textbook.

Opentowork
I am looking for a good job supportive of this book. If I don’t find any, the book will be

abandoned.

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Taxonomy_(biology)
https://en.wikipedia.org/wiki/Pattern_language
https://www.dremio.com/wiki/ubiquitous-language/
https://en.wikipedia.org/wiki/Free_and_open-source_software
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About this book
When I was learning programming, there was GoF. The book promised to teach software

design, and it did to an extent with the example provided. However, the patterns described
were mere random tools that had little in common. After several years, having reinvented
Hexagonal Architecture by the way, I learned about POSA. The series had many more
intriguing patterns, and promised to provide a system of patterns or a pattern language, but
failed to build an intuitive whole. Then there were several specialized pattern books for DDD
and microservices. There was the Software Architecture Patterns primer by Mark Richards.
Its simplicity felt great, but it had only 5 architectural styles, while his next book,
Fundamentals of Software Architecture, dived too deep into practical details and examples
to be easy to grasp.

Now, having leisure thanks to the war, burnout, unemployment and depression I got a
chance to collect architectural patterns from multiple sources and build a taxonomy of
architectures. My goal was to write the very book I lacked in those early years: a shallow but
intuitive overview of all the software and system architectures used in practice, their
properties and relations. I hope that it will be of some help both to novice programmers as a
kind of a primer on the principles of high-level software design and to adept architects by
reminding them of the big picture outside of their areas of expertise.

The book is mostly technology-agnostic. It does not answer practical questions like
“Which database should I use?” Instead it inclines towards the understanding of “When
should I use a shared database?” Any specific technologies are easy to google can be found
over the Internet somewhere in the Noosphere.

This book started as a rather small project to prove that patterns can be intuitively
classified (These nightmarish creatures can be felled! They can be beaten!) but grew into a
multifaceted compendium of a hundred or so architectures and architectural patterns. It is
grounded in the idea that software and system architecture evolves naturally, as opposed to
being scientifically planned. Thus, the architectures may exhibit fractal features, just like
those in biology – just because the set of guidelines and forces remains the same for most
systems ranging from low-end embedded devices to world-wide banking networks.
Moreover, in some cases we can see the same approaches applied to hardware design.

The idea of unifying software and system architecture is heretical, I am aware of that.
Still, the industry is in the stage of alchemy these days: the same things are sold under
multitudes of names, being remarketed or reinvented every decade. If this book manages to
provide a set of guidelines, similar to those of biology (a bat is a mammal, thus it should run
on its four, while ostriches, as birds, must fly to Europe each spring), I will be happy with
that. Science makes progress funeral by funeral.

The latest version of the book is available for free on github. As there is none who
practiced all the known architectures, it should be full of mistakes. I rely on your goodwill to
correct them and improve the text. Any critical reviews are warmly welcome, please email
me or connect on LinkedIn. An early version of each chapter is available on Medium as well.

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://www.oreilly.com/content/software-architecture-patterns/
https://github.com/denyspoltorak/publications/blob/main/ArchitecturalMetapatterns
mailto:descri@gmail.com
mailto:descri@gmail.com
https://www.linkedin.com/in/denyspoltorak/
https://medium.com/itnext/the-list-of-architectural-metapatterns-ed64d8ba125d


Structure of the book
The first chapter explains the main idea that makes this book different from others. The

following chapters of the first part touch several general topics which are referenced
throughout the book.

Further four parts iterate over clusters of closely related architectural patterns, starting
with the simplest one, namely Monolith, then heading towards more complex systems that
may be derived from Monolith by repeatedly dissecting it with interfaces. Each chapter there
describes a cluster of related patterns with its benefits, drawbacks, known names and
subtypes, adds in few references to books and websites, and summarizes the ways the
patterns can be transformed into other architectures.

The sixth part of the book is analytics – the fruits of the classification of patterns from the
earlier parts. It will probably grow in future releases.

Finally, there are appendices. Appendix B is the list of books referenced, Appendix E
contains many detailed evolutions of patterns, and Appendix I is the index of patterns found
in the book.

The architectural religions
There are several schools of software architecture:
1. The believers in SOLID.
2. The followers of eight qualities, five views and as-many-as-one-gets certifications.
3. The aspirants to the nameless way of patterns.

In my opinion:
1. SOLID is a silver bullet that tends to produce a DDD-layered kind of Hexagonal

Architecture. It lacks the agility of pluralism found with evolutionary ecosystems.
2. Architectural frameworks are overcomplicated thus hard to understand and inflexible.
3. Patterns are a kind of toolbox a mechanician is often seen carrying around. A skilled

craftsman knows best uses of his tools, and can invent new instruments if something
is missing in the standard toolset. However, the toolset’s size should be limited for the
tools to be familiar to the practitioner and easily carried around.

It is likely that those approaches are best used with systems of various sizes: SOLID is
aimed at stand-alone application design while the heavy frameworks and certifications suit
distributed enterprise architectures. In such a worldview patterns span everything in between
the poles.

What’s wrong with patterns
Too much information is no information or, as they say, what is not remembered never

existed. There are literally thousands of patterns described for software and system
architecture. Nobody knows them all and nobody cares to know (if you say you do, you must
have already read the Pattern Languages of Programs archives. Have you? Neither I).
Hundreds of patterns are generated yearly in conferences alone, not to mention books and
software engineering websites. Old patterns get rebranded or forgotten and reinvented. This
is especially true for the discrepancy between the pattern names in software architecture
and system architecture. The new N-tier is the old good Layers under the hood, isn’t it?

https://en.wikipedia.org/wiki/SOLID
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://en.wikipedia.org/wiki/Enterprise_architecture_framework#Types_of_enterprise_architecture_framework
https://en.wikipedia.org/wiki/Software_design_pattern
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://hillside.net/index.php/past-plop-conferences
https://datatracker.ietf.org/doc/html/rfc1925


This undermines the original ideas that brought in the patterns hype:
1. Patterns as a ubiquitous language. Nowadays similar, if not identical, patterns bear

different names, and some of them are too obscure to be ever heard of (see the
PLoP archives).

2. Patterns as a vessel for knowledge transfer. If an old pattern is reinvented or
plagiarized, most of the old knowledge is lost. There is no continuity of experience.

3. Pattern language as the ultimate architect’s tool. As patterns are re-invented, so are
pattern languages. At best, we have domain-specific or architecture-limited (DDD,
microservices) systems of patterns. There is no the unified vision which pattern
enthusiasts of old promised to provide.

Have we been fooled?

TLDR
Compare Firewall and Response Cache. Both represent a system to its users and

implement generic aspects of the system’s behavior. Both are proxies.
Take Saga Execution Component and API Composer. Both are high-level services that

make series of calls into an underlying system – they orchestrate it. Both are orchestrators.
It’s that simple and stupid. We can classify architectural patterns.

https://hillside.net/index.php/past-plop-conferences
https://hillside.net/index.php/past-plop-conferences


Metapatterns
Is there a way to bring the patterns to order? They are way too many, some obscure,

others overly specialized.
We can try. On a subset. And the subset should be:
● Important enough to matter for the majority of programmers.
● Small enough to fit in one’s memory or in a book.
● Complete enough to assure that we don’t miss anything crucial.
Is there such a set? I believe so.

Architectural patterns
[POSA1] defines three categories of patterns:
● Architectural patterns that deal with the overall structure of a system and functions of

its components.
● Design patterns that describe relations between objects.
● Idioms that provide abstractions on top of a given programming language.

Architectural patterns are important by definition (“Architecture is about the important
stuff. Whatever that is”). Point 1 (importance) – checked.

Any system has an internal structure. When its developers talk about “architectural style”
[POSA1] or draw structural diagrams that usually boils down to a composition of two or three
well-known architectural patterns. Choosing architectural patterns as the subject of our study
lets us feed on a large body of books and articles that describe similar designs over and over
again. Moreover, as soon as a system does not follow the latest fashion, it is widely
advertised as a novelty (or its designers are labeled as old-fashioned and shortsighted), thus
we may expect to have heard of nearly all of the architectures which are used in practice.
Point 3 (completeness) – we have more than enough examples to analyze.

To organize a set of patterns we rely on the concept of

Design space
Design space [POSA1, POSA5] is a model that allocates a dimension for each choice

made while architecting the system. Thus it contains all the possible ways for a system to be
designed. The only trouble – it is multidimensional, probably infinite and the dimensions
differ from system to system.

There is a workaround – we can use a projection from the design space into a 2- or
3-dimensional space which we are more comfortable with. However, projecting is a loss of
information. Counterintuitively, that is good for us – similar architectures that differ in small
details become identical as soon as the dimensions they differ in disappear. If we could only
find 2 or 3 most important dimensions that apply equally well to each pattern in the set that
we want to research, that is architectural patterns, which cover all the known system
designs.

https://martinfowler.com/architecture/


Structure defines architecture
Systems tend to have an internal structure. Those that don’t are derogatively called “Big

Balls of Mud” for their peculiar properties. Structure is all about modules, their roles and
interactions. Many architectural styles, e.g. Layers or Pipeline, are named after their
structures, while others, like Event-Driven Architecture, highlight some of its aspects, hinting
that it is the structure that defines principal properties of a system.

I am not the first person to reach such a conclusion. Metapatterns – clusters of patterns
of similar structure – were defined shortly after the first collections of design patterns had
appeared but they never made a lasting impact on software engineering. I believe that the
approach was applied prematurely to analyze the [GoF] patterns, which make quite a
random and incomplete subset of design patterns, resulting in an overgeneralization. I intend
to plot structures of the complete set of architectural patterns, group patterns of identical
structure together (resulting in metapatterns), draw relations between the metapatterns and
maybe show how a system’s structure defines its properties. Quite an ambitious plan for a
short book, isn’t it?

Our set of architectural patterns is still not known to be complete, is not small and,
moreover, the way structural diagrams are drawn differs from source to source – we cannot
compare them unless we make up a universal

The system of coordinates
Inventing a generic coordinate system to fit any pattern’s representation, from Iterator to

Half-Sync/Half-Async, may be too hard, but we surely can find something for architectural
patterns, as all of them share the scope, namely the system as a whole. Which dimensions
an implementation of a system would usually be plotted along?

1. Abstractness – there is the high-level business logic and there are low-level details. A
single highly abstract operation unrolls into many lower-level ones: Python scripts run
on top of a C runtime and assembly drivers; orchestrators call API methods of
services, which themselves run SQL queries towards their databases which are full
of low-level computations and disk operations.

2. Subdomain – any complex system manages multiple subdomains. An OS needs to
deal with a variety of peripheral devices and protocols: a video card driver has very
little resemblance to an HDD driver or to the TCP/IP stack. An enterprise has multiple
departments, each operating a software that fits its needs.

3. Sharding – if several instances of a module are deployed, and that fact is an integral
part of the architecture, we should represent the multiple instances on the structural
diagram.

We’ll draw the abstractness axis vertically with higher-level modules positioned towards
the upper side of the diagram, the subdomain axis horizontally, and sharding diagonally.
Here is an (arbitrary) example of such a diagram:

http://www.laputan.org/mud/
http://www.laputan.org/mud/
https://softwareresearch.net/fileadmin/user_upload/Documents/publications/conference_proceedings/C010.pdf


(A structural diagram for CQRS, adapted from Udi Dahan’s article, to introduce the notation)

Map and reduce
Now that we have the generic coordinates which seem to fit any architectural pattern, we

can start mapping our set of architectural patterns into that coordinate system – the process
of reducing the multidimensional design space to the few dimensions of structural diagrams
which we were looking for. Then, after filtering out minor details, our hundred-or-so of the
published patterns should yield a score of clusters of geometrically equivalent diagrams –
just because there are very few simple systems that one can draw on a plane before
repeating oneself. Each of the clusters will represent an architectural metapattern – a
generalization of architectural patterns of similar structure and function.

Let’s return for a second to our requirements for classifying a set of patterns. The
importance (point 1) of architectural patterns was proved before. The reasonable size of the
resulting classification (point 2) is granted by the existence of only a few simple 2D or 3D
diagrams (metapatterns). The completeness of the analysis (point 3) comes from, on one
hand, the geometrical approach which makes any blank spaces (possible geometries with
no known patterns) obvious, on the other – from the large sample of architectural patterns
which we are classifying.

Godspeed!

An example of metapatterns
Let’s consider the following structure:

https://udidahan.com/2009/12/09/clarified-cqrs/


It features two (or more in real life) high-level modules that communicate with/via a
lower-level module. Which patterns does it match?

● Middleware – a software that provides means of communication to other
components.

● Shared Database – a space for other components to store and exchange data.
● Model-View-Controller – a platform-agnostic business logic with customized means

of input and output.

My idea of grouping patterns by structure seems to have backfired – we got three distinct
patterns with similar structural diagrams. The first two of them are related – both implement
indirect communication, and their distinction is fading as a middleware may feature a
persistent storage for messages while a table in a shared database may be used to
orchestrate services. The third one is very different – primarily because the bulk of its code,
that is business logic, resides in the lower layer, leaving the upper-level components a minor
role.

Notwithstanding, each of the patterns we found is a part of a distinct cluster:
● Middleware is also known as (Message) Broker [POSA1, POSA4, EIP, MP] and is an

integral part of Message Bus [EIP], Service Mesh [FSA], Event Mediator [FSA],
Enterprise Service Bus [FSA] and Space-Based Architecture [SAP, FSA].

● Shared Database is a kind of Shared Repository [POSA4] (Shared Memory, Shared
File System) and the foundation for Blackboard [POSA1, POSA4], Space-Based
Architecture [SAP, FSA] and Service-Based Architecture [FSA].

● Model-View-Controller [POSA1, POSA4] is a special kind of Hexagonal Architecture
(aka Ports and Adapters, Onion Architecture and Clean Architecture) which itself is
derived from Plugins [PEAA] (Add-ons, Plug-In Architecture [FSA] or Microkernel
Architecture [SAP, FSA]).

Our tipping a single geometry of structural diagrams revealed a web of 20 or so pattern
names that spreads all around. With such a pace there is a hope of exploring the whole
fabric which is known as pattern language [GoF, POSA1, POSA2, POSA5].

There are three lessons to learn:
● The distribution of business logic is a crucial aspect of structural diagrams.



● Metapatterns are interrelated in multiple ways, forming a pattern language.
● Each metapattern combines several well-established patterns.

What does that mean
Chemistry got the periodic table. Biology got the tree of life. This book strives towards

building something of the kind for software and system architecture. You can say “That
makes no sense! Chemistry and biology are empirical sciences while software architecture
isn’t!” Is it?

https://en.wikipedia.org/wiki/Periodic_table
https://en.wikipedia.org/wiki/Tree_of_life_(biology)


Part 1. Foundations
This part defines some ideas which are used occasionally later in the book. Feel free to

skip (through) it as you probably know most of them quite well.

Modules and complexity
This chapter is loosely based on A Philosophy of Software Design by John Ousterhout

and my article.

Any software system that we encounter is very likely to be too complex to comprehend
all at once – the human mind is incapable of discerning a large number of entities and their
relations. It tends to simplify reality by building abstractions: as soon as we define the many
shiny pieces of metal, glass and rubber as a ‘car’ we can tell ‘highways’, ‘parkings’ and
‘passengers’ – we live in a world of abstractions which we create. In the same way the
software we write is built of services, processes, files, classes, procedures – modules that
conceal the swarm of bits and pieces we are powerless against. Let’s reflect on that.

Concepts and complexity
Any system comprises concepts – notions defined in terms of other concepts. For

example, if you are implementing a phonebook, you deal with first and second names,
numbers, sorting and search, which one must always keep in mind for any
phonebook-related development task – just because requirements for the phonebook are
described in terms of those concepts and their relations.

In the code high-level concepts are embodied as services, modules or directories while
lower-level concepts match to classes, API methods or source files.

Concepts are important because it is their number (or the number of the corresponding
classes and methods) that defines the complexity of a system – the cognitive load
developers of the system face. If programmers grasp in detail the behavior of a component
they work on they tend to become extremely productive and are often able to find simple
solutions for seemingly complex tasks. Otherwise the development is slow and requires
extensive testing because people are unsure of how their changes affect the system’s
behavior.

https://blog.pragmaticengineer.com/a-philosophy-of-software-design-review/
https://medium.com/itnext/introduction-to-software-architecture-with-actors-part-1-89de6000e0d3
https://www.quora.com/What-are-some-habits-of-10x-programmers
https://realmensch.org/2017/08/25/the-parable-of-the-two-programmers/
https://realmensch.org/2017/08/25/the-parable-of-the-two-programmers/


Figure 1: Complexity correlates with the number of entities.

Modules, encapsulation and bounded context
Let’s return to our example. As you implement the phonebook you find out that sorting

and search are way more complex than you originally thought. Once you prepare to enter
the international market you are in deep trouble. Some telephony providers send 7-digit
numbers, others use 10 digits, still others – 13 digits (with either “+” or “0” for the first
character). German has “ß” which is identical to “ss” while Japanese uses two alphabets
simultaneously. Once you start reading standards, implementing all the weird behavior and
responding to user complaints you feel that your phonebook implementation is drowning in
the unrelated logic of foreign alphabets full of special cases. You need encapsulation.

Enter modules. A module wraps several concepts, effectively hiding them from external
users, and exposes a simplified view of its contents. Introducing modules splits a complex
system into several, usually less complex, parts.

https://en.wikipedia.org/wiki/Alphabetical_order#Language-specific_conventions


Figure 2: Dividing a system into modules, bounded contexts highlighted.

The diagram has several points of notice:
● Modules create new concepts for their public APIs.
● The API entry points add to the complexity of both the owner module and its clients.
● The total number of concepts in the system has increased (from 18 to 22) but the

highest complexity in the system has dropped (from 18 to 15).

Here we see how introducing modularity applies the divide and conquer approach to
lessen the cognitive load of working on any part of a system at the cost of a small increase in
the total amount of work to be done.

In our phonebook example the peculiarities (including case sensitivity) of the
locale-aware string comparison and alphabetical sorting of contact names should better be
kept behind a simple string comparison interface to relieve the programmer of the
phonebook engine of the complexity of supporting foreign languages.

Modules represent bounded contexts [DDD] – areas of the knowledge about a system
that operate distinct sets of terms. In the case of phonebook the collation and case
sensitivity do not matter for the phonebook engine – they are defined only in the context of
language support. On the other hand, matching a contact by number is not defined in the
language support module – that term exists only in the phonebook engine. It is the
complexity of the current bounded context that a programmer struggles with.

Apart of dividing a problem into simpler subproblems modules open the path to a few
extra benefits:

● Code reuse. A well-written module that implements something generic may be used
in multiple projects.

● Division of labor. Once a system is split into modules and each module is assigned a
programmer, development is efficiently parallelized.

● High-level concepts. Some cases allow for merging several concepts of the original
problem into higher-level aggregates, further reducing the complexity:

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm


Figure 3: Merged two API concepts of the green module.

For example, the original definition of a phonebook contained first name and second
name. Once we separate the language support into a dedicated module, we may find out
that various locales differ in the way they represent contacts: some (USA) use ‘first name +
second name’ while others (Japan) need ‘second name + first name’. If we want to abstract
ourselves from that detail, we should use a new concept of full name which conjoins first and
second names in a locale-specific way. Such a change actually simplifies some of the
phonebook’s representation logic and code as it replaces two concepts with one.

Coupling and cohesion
We need to learn a couple of new concepts in order to use modules efficiently:
Coupling is a measure of the number (density) of connections between modules relative

to the modules’ sizes.
Cohesion is a measure of the number (density) of connections inside a module relative to

the module’s size.

The rule of thumb is to aim for low coupling and high cohesion, meaning that each
module should encapsulate a cluster of related (intensely interacting) concepts. This is how
we have split the system in figures 2 and 3. Now let’s see what happens if we violate the
rules:



Figure 4: The upper modules are tightly coupled.

Splitting a cohesive module (a cluster of concepts that interact with each other) yields
two strongly coupled modules. That’s what we wanted, except that each of the new modules
is nearly as complex as the original one. Meaning, that we now face two hard tasks instead
of one. Also, the system’s performance may be poor as communication between modules is
rarely optimal, and we’ve got too much of that.

Figure 5: The lower module has low cohesion.

What happens if we put several clusters of concepts in the same module? Nothing too
evil for small modules – the module gets higher complexity than each of its constituents, but



lower than their sum. In practice, multiple unrelated functions are often gathered in a ‘utils’ or
‘tools’ file or directory to alleviate operational complexity.

Development and operational complexity
What we discussed above is structural or development complexity – the number of

concepts and rules inside a bounded context. However, we also need to understand
operations and components of the system as a whole, leading to operational or integration
complexity:

● Does this new requirement fit into an existing module or does it call for a dedicated
one?

● Which libraries with known security vulnerabilities do we use?
● Is there any way to cut our cloud services cost?
● 1% of requests time out. Would you please investigate that?
● My team needs to implement this and that. Do we have something fit for reuse?
● What the **** is that global variable about?
● Do we really need this code in production?
● I need to change the behavior of that shared component a little bit. Any objections?
When there are hundreds or thousands of modules deployed nobody knows the

answers. That’s similar to the case of one needing to do something under Linux: hundreds of
tools are pre-installed and thousands more are available as packages, but the only real way
forward is first googling for your needs, then trying two or three recipes from the search
results to see which one fits your setup. Unfortunately, Google does not index your
company’s code.

Composition of modules
A module may encapsulate not only individual concepts, but also other modules. That is

not surprising as an OOP class is a kind of module – it has public methods and private
members as well. Hiding a module inside another one removes it from the global scope,
decreasing the operational complexity of the system – now it is not the system’s architect but
the maintainer of the outer module who must remember about the inner module. On one
hand, that builds a manageable hierarchy in both the organization and the code. On the
other hand, code reuse and many optimizations become nearly impossible as internal
modules are hardly known organization-wide:

https://news.ycombinator.com/item?id=18442941


Figure 6: Composition of modules prevents reuse.

If the functionality of our internal module is needed by our clients, we have two bad
options to choose from:



Forwarding and duplication

Figure 7: Forwarding the API of an internal module.

We can add the API of a module we encapsulate to our public API and forward its calls
to the internal module. However, that increases the complexity and lowers the cohesion of
our module – now each client of our module is also exposed to the details of the methods of
the module we have encapsulated even if they are not interested in using it.



Figure 8: Duplicating an internal module.

Another bad option is to let the clients that need a module that we encapsulate duplicate
it and own the copies as their own submodules. This relieves us of any shared responsibility,
lets us modify and misuse our internals in any way we like, but violates a couple of rules of
common sense.

Both approaches, namely keeping all the modules in the global scope and encapsulating
utility modules through composition, found their place in history [FSA]. Service-Oriented
Architecture was based on the idea of reuse but fell prey to the complexity of its Enterprise
Service Bus which had to account for all the interactions (API methods) in the system. In
reaction, the Microservices approach turned the tide in the opposite direction: its proponents
disallowed sharing any resources or code between services to enforce their decoupling.

Summary
Complexity is the number of concepts and their relations that one should remember to

work efficiently. A module hides some concepts from its users but creates new concepts (its
interface). Coupling is the measure of dependencies between modules, while cohesion is the
same for concepts inside a module. We prefer low coupling and high cohesion to group
related things together.

Having too many modules is a trouble for the system’s maintainers. A module may
contain other modules. When a client wants to use a submodule, the wrapping module may
extend its interface to forward client’s requests to the submodule or the client may deploy a
copy of the submodule for its use. Both approaches gave rise to prominent architectures.

https://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


Forces, asynchronicity and distribution
Many systems rely on asynchronous communication between their components or are

distributed over a network. Why is dividing a system into modules not enough in real life?

Requirements and forces
Any system is built to meet a set of (explicit or implicit) requirements. As a bare

minimum, you as a programmer must have a dim vision of how your software is expected to
operate. As a maximum, business analysts bring you several volumes of incomprehensible
documentation they wrote for the sole purpose of making you practice [DDD].

Some requirements are functional, others are non-functional.

Functional requirements describe what the system must do: a night vision device must
be able to represent heat radiation as a video stream; a multiplayer game must create a
shared virtual world for users to interact with over a network; a tool for formatting floppies …
well, must format floppies.

Non-functional requirements, also known as forces, define expected properties of the
system and it is said that they drive architectural decisions [POSA1, POSA5]. They may be
formulated or implied: our game should be fast enough and stable enough. A medical
application should be extremely well-tested. An online shop should provide an easy way to
add new goods. Notice all those “fast enough”, “stable enough”, “well” and “easy”.
Sometimes they form an SLA with numbers: your service should be available 99.999% of the
time.

Let’s take an example.
A night vision surveillance camera may spend seconds compressing its video stream to

limit the required network bandwidth – this kind of a system sacrifices low latency in favor of
low traffic. The device will need a fast CPU (probably a DSP) and lots of RAM to store
multiple frames for efficient compression.

A night vision camera of a drone should have moderately low latency as the drone (and
probably its operator) uses the video stream for navigation. Thus it should send out every
frame immediately, except that it may still spend some time compressing the frame to JPEG
to achieve a balance between latency and bandwidth. Pushing for extremely low latency of
the camera does not help much because the whole system is limited by the delay of the
radio communication and the human in the loop.

Night vision goggles or helmets are stringent on latency to the extent which no ordinary
digital system satisfies, thus expensive analog devices have to be used.

Here we see how non-functional requirements – namely, latency, bandwidth and cost –
impact all the stuff down to the hardware. The same happens with multiplayer games: while
a chess client is a simple web page, a fighting tournament or a first-person shooter is very
likely to need a client-installed application that processes much of the game logic locally
while relying on a highly customized network protocol to decrease the latency.

Another example is the choice of programming language: you can quickly write your
system in Java or Python sacrificing its performance or you can spend much more time with

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Service-level_agreement
https://ntrs.nasa.gov/api/citations/20050192646/downloads/20050192646.pdf
https://gloomgroup.com/blogs/night-vision-info/night-vision-digital-vs-analog


C or C++ and manual optimization to achieve top performance at the cost of the
development speed.

Conflicting forces
We see that forces influence architecture. That becomes way more interesting when a

system is shaped by conflicting forces – the ones that while opposing each other still need to
be met by the architecture.

Remember how old Windows used to freeze on formatting a floppy or when it
encountered one with a bad cluster? Let’s see how such things could have happened
(though the real cause was a bit different it also came from the modules’ sharing a context).

The system implements the function it was made for – it formats floppies. However, while
the low-level module is busy interacting with the hardware, all the modules above it have no
chance to run as they have called into the driver and are waiting for it to return. The modules
are there, with the code separated into bounded contexts (the UI does not need to care
about sectors and FATs) but all of them share non-functional properties – latency in this
case. Either the UI is responsive or the floppy driver runs a long-running action. We need the
UI and the driver to execute independently.

https://sudonull.com/post/124038-Why-did-Windows-95-freeze-when-formatting-a-floppy-disk


Asynchronous communication
If the modules cannot communicate directly (call each other and wait for the results

returned) how should they interact? Through an intermediary where one of the modules
leaves a message for another. Such an intermediary may be a message queue, a pub/sub
channel or even a data record in a shared memory. The sender posts its message and
continues its routine tasks. The receiver checks for incoming messages whenever it has a
free time slot. Behold multithreading in action!

Distribution
Once modules run independently, we can separate them into processes and even

distribute the processes over multiple computers. That is required to address fault tolerance
and high availability and solve conflicts around scaling or locality.

Consider a web site. Most of them follow the 3-tier architecture:
● Frontend that runs in users’ browsers.
● Backend that runs on the business owner’s servers.
● Database that usually runs on a single powerful server.
This pervasive division makes quite a lot of sense.

https://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture


Websites are accessed by many users simultaneously. Any business owner wants to pay
less for his servers, thus as much work as possible is offloaded to the users’ web browsers
which provide unlimited resources for free (from the business owners’ viewpoint). Here we
have a nearly perfect scalability – the business owners pay only for the traffic.

Other parts of the software are business-critical and should be protected from hacking.
Such are kept on private servers or in a cloud. This means that the business owners pay for
the servers while they may scale their application by flooding it with money.

The deepest layer – the database – is nontrivial to scale. Distributed databases are
expensive and consume a lot of traffic. And they scale only to an extent. It often makes more
sense to buy or rent top-tier hardware for a single database server than to switch over to a
distributed database.

This is a good example of how the physical distribution of the system solves the
scalability, security and cost conflict by choosing the best possible combination of the forces
for each module. Whatever is not secure scales for free. Whatever does not scale gets
expensive goods. Whatever remains is in between.

Another example comes from IoT – a fire alarm system. They tend to use 3 tiers as well:
● Sensors (smoke or fire detectors) and actuators (fire suppression, sirens, etc.).
● A field gateway – a kind of a router the sensors and actuators are connected to.
● A control panel – some place where operators drink their coffee.
Sensors and actuators are cheap and energy-efficient but dumb devices. They do not

react to events unless explicitly commanded. The control panel is where all the magic
happens, but it may be unreachable if the network is damaged or the wireless
communication is jammed. Field gateways stand in between: they collect information from
the sensors, aggregate it to save on traffic, communicate with the control panel and they can
even activate the actuators if the control panel is unreachable. In this case a part of the
business logic is installed in the dedicated devices which are located within the controlled
building.



Here reliability conflicts with accuracy: a human operator makes an accurate estimate of
the threat and chooses an appropriate action, but it is not granted that we can always reach
the operator. Thus to be reliable we add an inaccurate but trustworthy fallback reaction.

A similar pattern may be found with robotics, drones or even computer hardware (e.g. a
HDD): dedicated peripheral controllers supervise their managed devices in real time while a
more powerful but less interactive central processor drives the system as a whole.

The goods and the price
Let’s recollect what we found out.

Modules make it easier to reason about the system, enable development by multiple
teams in parallel and resolve some conflicts between forces. For example, development
speed against performance or release frequency against stability are solved by choosing a
programming language and release management style on a per module basis.

The cost is the loss of some options for performance optimization between modules and
the extra cognitive load while debugging a module you are unfamiliar with.

Asynchronous communication is a step forward from modules that solves more conflicts
of forces. It addresses latency and multitasking.

We pay for that with context switches and the need to copy and serialize data which is
transferred in messages, which makes communication between the participating modules
slower. Debugging asynchronous communication becomes non-trivial as one cannot
single-step from the message sender into the message handler.

Distribution builds on asynchronous communication (as networks are asynchronous) and
decouples the participant modules in such forces as scalability, security or locality. It
separates release cycles of the modules involved and makes it possible for the system to
recover from failures of some of its components.

The price? Even slower communication between the now distributed modules (networks
are quite slow and unreliable) and extremely inconvenient debugging as you need to
connect to multiple components over the network.



We see that the more isolated our modules become, the more forces are decoupled and
the more flexible is the resulting system. But the very same decoupling devastates
performance and makes debugging into a nightmare.

Any moral? There is one, even a few.
1. Do not overisolate. Go asynchronous or distributed only if you are forced to.

Especially if you are actively evolving your system. Especially in an unfamiliar
domain.

2. Cohesive logic goes together. If you split it among asynchronous or distributed
components, it may be very hard to debug.

3. Modules that intercommunicate a lot go together. Distributing them may kill
performance and even break consistency of the data.

https://martinfowler.com/bliki/MonolithFirst.html


Control and processing software
This chapter is too long and vague. It should be rewritten.

Software systems differ in many aspects and use a variety of styles. Still, not every
approach fits every kind of system. There is a distinction which is probably more drastic than
that between frontend and backend but is rarely if ever discussed. I mean the one between
control and data processing.

That topic is elusive for a reason: software and mixed (hardware + software) systems fill
the continuum of qualities between real-time control and one-off data processing. As we
cannot analyze or even imagine all the existing kinds of programs, we’ll look into a few
diverse (and seemingly random) examples at each end of the spectrum and generalize the
observations. Hopefully, that would improve our understanding of everything in between.

Control and interactive systems
Some systems exist to control the physical or digital reality: an autopilot makes sure that

the aircraft is stable and on its course, gateways integrate distinct parts of the Internet, Tetris
and Arkanoid were among the first computer games invented. Let’s investigate each case.

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Autopilot
https://en.wikipedia.org/wiki/Gateway_(telecommunications)


Autopilot

Figure 1: Autopilot.

A basic autopilot stabilizes a vehicle it controls. It receives inputs from multiple sensors,
aggregates them to update the modeled state (tilts, elevation and speed) of the vehicle,
compares the observed and (pilot-defined) target states and sends requests to actuators to
compensate for any difference. Rinse and repeat many times per second. Essentially, its job
is to keep the observed state of a physical vehicle as close as possible to the values input by
pilots.

There is a second, slower feedback loop in the system: the observed state is reported to
the pilots (or a guidance system) who may change the target state via their controls, for
example to start a climb or descent. The new target state becomes the one the autopilot
follows.

https://en.wikipedia.org/wiki/Autopilot
https://en.wikipedia.org/wiki/Aircraft_principal_axes


Telephony

Figure 2: VoIP gateway.

A VoIP gateway connects several analog phones forming a telephony network and
integrates the latter with IP telephony servers. It maintains multiple states: a model of phone
hardware per connected phone, a model or two per call in the system and, probably, a model
per session with an IP server. The models of the phone port hardware and of the server
connections provide feedback loops to the parties they control while each model of a call
connects two (or three for a conference call) lower-level models. Some of the models are
created and destroyed as calls come and go, and there are no explicit target and observed
states – an event that comes from a user of a local phone spreads a wave of changes
through the corresponding analog phone, generic call and its other side (analog phone or IP

https://en.wikipedia.org/wiki/VoIP_gateway
https://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/rhanmer0/PLoP2001_rhanmer0_1.pdf


call) states to the hardware on the other side of the call. Thus all the states in a telephony
system are intermediaries that adapt and connect hardware devices.

When a model receives an event, it chooses a reaction that matches its current state.
For example, a model for an analog phone can react to an incoming call in the following
ways:

● If the phone is idle (on-hook), a ringing pattern will be generated.
● If the phone is already in a single voice call, a call waiting tone will sound.
● If the phone is in a voice call and also has a waiting call, the incoming call will be

rejected as there is no way for the user to discern between two waiting calls.
● If the phone is dialing an outgoing call, the incoming call fails as well.
● Otherwise the phone is in a transient state (connecting or disconnecting a call) and

the incoming call should wait for a second and then retry.
In any case the model of analog phone responds to the call model with a call status

(ringing, rejected or retry) and many branches initiate interactions with the line card’s
hardware. As we see, a single kind of event (an incoming call) causes various reactions
depending on the current state of the component (phone model), some of them arranging for
chains of further events (the incoming call will eventually be accepted or released).

Game

Figure 3: Tetris.

An action game maintains a model of the game world which changes on timer (physics
and AI moves) and on user input (player’s actions). The keys the user presses are
meaningless without seeing the picture generated on the screen from the game or UI model:
the reaction to a keypress is defined by the state of the game or the menu item highlighted
on the screen.

Similarities and differences
Let’s list shared features of the systems inspected:
● Each case is real-time. Latency is among the main driving forces: a delay in the

stabilization of a plane may cost lives, a delay in accepting or releasing a call makes
the user unhappy, a lagging game may not sell well.



● Each case runs one or more feedback loops. There are no predefined scenarios, the
systems just react to events that change from run to run.

● The loops process incomplete inputs: the meaning and handling of each input event
is defined by the current state of the system which emerged from the past events and
is in some way updated with the current one.

● Each system relies on one or more models that store and control the system’s state
and constitute the core of its feedback loops and the system itself.

Other details differ:
● The number, roles and lifetimes of models and associated feedback loops.
● The number of parallel scenarios a system is involved in (multiple calls in telephony).
● Latency requirements (very stringent for autopilot).
● Nature of inputs (data from sensors comes in streams while other events are

one-off).

Digging into the code
Other subtle details appear in the code. Let’s dive into Tetris:

A basic implementation of the game contains 4 states:
● Playing the game, where the user controls pieces.
● Demo, where the game is played by the computer.
● Game over, which shows the high scores table.
● Menu that allows the player to start a new game, show help or quit the game.
Each state handles the 4 arrows and an action (enter/space/rotate) button. Each state

uses a timer. However, the reaction to the events differs from state to state:
● In the playing state left and right arrows try to move the piece in the corresponding

direction. If the move fails, the game beeps. The down arrow moves the piece down
repeatedly till the move fails, then lands it. The up arrow just beeps as it is not
possible to move the piece up. The action button rotates the piece. The handler of
the periodic timer can do many things depending on the current state of the game:

○ If there is a piece on the board, it moves down and lands if the move is
impossible.

○ If there is no piece, the game checks for full rows, deletes them and adds the
number of deleted rows to the current score, which may increase the game
speed if the score becomes higher than a threshold.

○ If there are no full rows, a new piece is generated and put to the board. If
there is not enough free space for it, switch to the game over screen.

● The demo state aborts (goes to the menu) on any button. The timer handler first calls
an AI to move the piece if there is one on the board, then follows the logic of the
timer from the playing state, except that the game over condition leads to the menu
state (closes the demo) instead of the game over state (high scores table).

● The game over state leads to the menu on any key or on timeout.
● The menu state uses keys to select and run items of the menu while on timeout the

game enters the demo mode.



Figure 4: Call graph for Tetris.

The call graph is messy. 5 keys (arrows and spacebar) and a timer cause 10+ lower-level
actions, and there is no correlation between an input and its result. Instead, the main
decision comes from the current state of the application, as shown in color.

Such a code is probably the only place where the State [GoF] / Objects for States
[POSA4] pattern naturally belongs. It is likely to have much branching via polymorphism
(interfaces or dispatch tables) and conditionals (if, switch).

A telephony gateway is suitable for another insight:

Figure 5: Control flow in a VoIP gateway.



The input comes from a low-level code (system interfaces or drivers), goes all the way up
(becoming more abstract) to a high-level module which reacts to it by calling into other
lower-level modules that return the transformed event back to the system level. This is a kind
of orchestration (coordination of subsystems) which is called Mediator [GoF]: the call object
organizes behavior of the modules it manages by interconnecting them and reinterpreting
their messages, but it does not create tasks for them on its own.

In general, it is common to see control and interactive systems built of one or more
proactors [POSA2] (often called actors) – single-threaded non-blocking stateful modules that
communicate via events. Each proactor may contain one or more models synchronized
among themselves. Shared-nothing (single-threaded logic) and non-blocking interactions
with the OS and other modules leave few if any points that can delay processing of events
(unless the system is overloaded) to assure that the latency is predictably low and the whole
system is real-time.

Data processing systems
Data processing systems belong to the opposite side of the spectrum. A network video

recorder or a digital video recorder receives, analyzes, compresses and stores video
streams from multiple surveillance cameras. A single scientific calculation takes a week. A
data analyst runs several hours-long queries and compares the results obtained to build a
marketing strategy.

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Network_video_recorder
https://en.wikipedia.org/wiki/Network_video_recorder
https://en.wikipedia.org/wiki/Digital_video_recorder


Video recorder

Figure 6: Video surveillance.

A surveillance video recorder receives video streams from multiple cameras,
compresses each stream and writes it to a file in a permanent storage, at the same time
composing all the streams into one for the security guard. It may also provide motion
detection in pre-selected sectors of the camera views and upload pictures of detected
intruders to a cloud. As video compression is computationally heavy, the system may employ
dedicated (co)processors.



Scientific computation

Figure 7: Scientific calculation.

A quantum chemistry computation takes a list of coordinates of atoms in a molecule as
an input. It populates atomic orbitals with electrons and repeats the loop of: optimizing the
density of electrons over the voxels of the system, calculating forces that act on the nuclei
and moving the nuclei in the directions of the forces. As soon as the atom positions stabilize
(the forces become small), a final more detailed calculation may be done to better estimate
the density of the electron cloud. One iteration is hours-long while the entire process may
take a week.



Database query

Figure 8: Database.

An analyst uses SQL queries that process sales records over the past couple of years to
get insights into optimizing the business. Several queries may be run simultaneously if the
database server has enough resources.

Each query goes through a pipeline of multiple preparation steps (e.g. parse, optimize,
compile) that create a binary object which encapsulates an algorithm for execution of the
user’s query. When the query object is run, another pipeline comes to motion: indices of
several database tables are joined, the filtered indices are streamed to tables’ storages to
read in the queried record fields from the file system, the streams of records flow to the
query object to be merged and streamed to the client.

Common features
We can deduce the following shared tropes:
● Data processing is expected to be slow and resource-intensive. If we can purchase a

more powerful system, we are likely to use the extra power to increase throughput
(connect more cameras, calculate larger molecules, analyze sales data over the past
decade) instead of just running the current tasks faster. Time is a secondary
constraint.



● Each process is a pre-defined sequence of known steps – the ideal subject for
imperative or functional programming.

● The input defines the task: the video frame bears the information to be compressed,
the coordinates of the atoms in the molecule describe the substance of the
calculation, the SQL query is the task for the database.

● The state is temporary, limited to the duration of query processing. Though codecs
may need to cache a few video frames for efficient compression, that is not strictly
necessary. A quantum calculation that uses enormous amounts of RAM produces a
couple of small files. The usefulness of a SQL query is inverse of the length of its
output.

What’s in the code
A closer look at the code is likely to reveal nested foreach loops: the video compression

needs to process every pixel in each block of the frame; the chemical computation iterates
over voxels, atoms and orbitals; the SQL join merges table indices and reads fields of each
record in the resulting dataset. As all the elements are processed uniformly and the size of
the dataset is known beforehand, the calculations can often be parallelized over CPU cores,
uploaded to a SIMD (TPU / GPU / AVX) or DSP processor or even to a distributed
map/reduce framework.

The code is more or less linear, with static branching (the control flow does not change
for the duration of the task) implemented through Strategy [GoF] or inheritance. Pipes and
Filters [POSA1, POSA4] (aka Pipeline) pattern is almost exclusive to data processing as it is
an abstraction for streaming.

High-level orchestration emerges as the Facade [GoF] pattern: the database sessions on
the diagram above or an engine of a software for chemical calculations receives a task from
a user, interprets it, calls into multiple components of the system it manages and returns the
results to the user. The system components are passive and the whole process is driven by
the facade.

Data processing applications rarely care about latency: blocking calls and sharing data
between threads are abundant. It is common to have a thread per task, with some of the
tasks coming from the system’s clients while others being internal (maintenance) activities.
Request processing usually builds around Reactor [POSA2] (blocking threads) or
Half-Sync/Half-Async [POSA2] (coroutines).

The middle ground
Hitherto, we have looked into both ends of the control / processing dichotomy. How are

the opposites mixed in the middle? To answer that we should find out why their specific
aspects emerge.

The origin of the distinction
First and foremost, let’s summarize the differences between control and processing

systems:
Control Processing



Programming paradigm Event-driven / reactive Procedural / functional
The code is Non-blocking Blocking
Code has many Branches Foreach loops
Performance means Latency Throughput
The system runs An infinite loop A batch of tasks
Decisions rely on State (models) Input (task)
State is Permanent (model) Temporary (task’s variables)
Inputs are Updates for the model Complete tasks
Synchronized unit is Model Task
Thread synchronization Messages (shared nothing) Mutexes (shared data)
A prominent pattern is State Pipeline
The central orchestrator is Mediator Facade

We can see that many aspects of control systems are complicated: event-driven and
non-blocking code is hard to read, branches and state machines obscure the logic, keeping
the system’s state up-to-date and self-consistent is non-trivial. They have more than one
root.

Some of the properties are requisite for controlling a system. Those include the main
loop, state-based decisions with much branching and the central role of a mediator.

Others support real-time nature: messaging and non-blocking calls assure that the
latency is predictable. The use of models to cache the last known state of components is
often an optimization that improves latency (by removing redundant communication) and
consistency (local decision-making does not care about CAP).

In contrast, the peculiarities of processing systems mostly simplify the code but fit only
processing of a large volume of uniform data: a foreach loop treats all the elements of a
container uniformly, temporary state means that tasks are unrelated, while pipelining relies
on both preconditions.

Let’s mix!
We have identified the following qualities that shape the software:
● Control nature – the system runs an eternal feedback loop.
● Real-time nature – the system must predictably quickly react to events.
● Data processing nature – the system operates a large volume of uniform data.
Let’s make new combinations.

Nothing special
Most basic applications are neither interactive nor process a lot of data. A command line

utility is likely to feature some branching, some loops, blocking calls and no multithreading.

Control but not real-time
In some cases tasks are slow and non-cancelable while the controlled (sub)system can

execute one task at a time. In that case the code may employ branching, states and run a
main loop, but is likely to block on calls to the hardware. Any incoming tasks wait in a queue

https://en.wikipedia.org/wiki/CAP_theorem


for the hardware to complete whatever it is busy with at the moment. Examples include
writing to hard drives or flash, communication buses or even scheduling physical
transportation (elevators).

Real-time but not control
Highly loaded services may apply optimizations similar to those of real-time systems.

Non-blocking calls reduce the number of threads in the system and minimize the penalty for
switching between tasks. CQRS views let a service cache subsets of data from other
services to avoid calling them [MP].

Real-time data processing
A few cases, like computer vision and rendering in games, require real-time processing

of data streams. They are likely to employ both pipelines and non-blocking calls, often with
multithreading (a thread per CPU core) managed through custom schedulers and/or thread
pools.

Composition
As we discussed in the previous chapter, conflicting forces are resolved by using

modules. Modules may differ in coding practices and conventions, and – if they
communicate asynchronously – in latency and throughput as well. Therefore a system may
embrace both interactive and data processing components to get the benefits of each quality
without reverting to complicated (if possible) techniques for achieving both in the same piece
of code.

Online store as an example
Consider an online store:

Figure 9: Online store.

The frontends are soft real-time interactive applications with main loops, event handlers
and non-blocking interaction. The backends are likely to be of a mixed kind that utilizes
much branching and blocking calls. They differ among themselves as the admin backend for
analytics is supposed to be slow because of its complex database queries and its logic may
be quite linear, while the backend for customers needs to respond quickly and check for
many errors and corner cases. The database is the most complicated component as it must



support both quick and long-running queries simultaneously. The system is composed of
distributed modules of every possible style and they flawlessly fit together, yielding their
benefits to the users.

Revisiting a database
The database (figure 8) tries to follow the same approach. See those Query objects?

They are separate modules that vary in latency. Each Query runs its pipeline on an isolated
snapshot of the database [DDIA] to assure that no write may ever change the queried data.
The isolation of both query state and the data the query operates on allows for the code of
queries (which constitutes much of the codebase) to be written in a relatively straightforward
way while whatever is around it (the data structures for snapshots, synchronization with the
file system, scheduler) needs much attention to avoid race conditions and deadlocks while
juggling tasks of wide range of latencies. Applicable hackarounds include fine-grained
locking (or its extreme case – atomic data structures) and fibers / continuations / coroutines
which are hard to write correctly and even harder to comprehend in a large codebase.

And in the silicon
The internals of software execution reveal the same pattern of separate components for

control and processing: CPUs entail pipelines for instructions and state machines for cache
coherence; compilers are pipelined but many of the steps involve large dispatch tables or
visitors [GoF]; OS threads are stateful but are run on mostly stateless CPU cores.

Summary
We looked into several examples of real-time control and data processing systems,

identified their common features and discussed ways to combine them: either within a single
module or as separate components of an asynchronous system.

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Cache_coherency_protocols_(examples)
https://en.wikipedia.org/wiki/Cache_coherency_protocols_(examples)


Arranging communication
As a project grows, it tends to become subdivided – into services, modules or whatever

you call the components – by subdomains (or bounded contexts, if you prefer the [DDD]
convention). However, there remain system-wide use cases which require collaboration from
many or all of the modules – otherwise the components don’t constitute a system. Let’s
consider the ways to coordinate them.

Orchestration
The straightforward way is through adding a coordinating layer on top of the services:

The good thing is that your orchestrator has explicit code for each use case it covers,
and every running scenario will have an associated thread, coroutine or object, so that you
should be able to attach to the orchestrator and debug any use case step by step. Neither
you have to worry about keeping the state of the services consistent as they are passive and
all the changes come from the orchestrator. It is also the default approach for desktop
applications, where it is faster to call into an orchestrated module and return than to send it a
message.

The bad thing about orchestration in distributed systems is that it doubles the
communication overhead: two messages per service are involved as direct calls between
processes are not possible.

Roles
In a backend that serves client requests an orchestrator takes the role of facade [GoF] –

a module that provides and implements a high-level interface for a multicomponent system.
It sends requests to the underlying services and waits for their confirmations – the mode of
action that can be wrapped with RPC. The state of each scenario that the facade runs
resides in the associated thread’s or coroutine’s call stack (for Reactor [POSA2] or

https://en.wikipedia.org/wiki/Remote_procedure_call


Half-Sync/Half-Async [POSA2] implementations, correspondingly) or in a dedicated object
(for Proactor [POSA2]).

Facade also supports querying the services in parallel and collecting the data returned
into a single message – the Splitter and Aggregator patterns of [EIP]. That reduces latency
(and resource consumption as the whole task is completed faster) for scatter or gather
requests when compared to sequential execution.

Embedded and system programming – the areas that deal with automating control of
hardware or distributed software – employ orchestrators as mediators [GoF] – components
that keep the state of the whole system (and, by implication, any hardware it may manage)
consistent by enacting a system-wide reaction to any drastic change in a single component.
A mediator operates in non-blocking fire-and-forget mode which is more characteristic of
choreography, to be discussed in the next chapter. This also means that you will not be able
to debug a use case as a thread – because there are no predefined scenarios in control
software!

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/scatter-gather.html
https://medium.com/itnext/control-and-processing-software-9011fee8bc66
https://medium.com/itnext/control-and-processing-software-9011fee8bc66


Such a difference may be rooted in the direction of the control and information flow: in
backend it comes as a high-level command while control systems react to low-level events.

Dependencies
By default an orchestrator depends on each service it manages – this means that a

change in a service’s interface or contract – caused by fixing a bug, adding a feature or
optimizing performance – requires corresponding changes in the orchestrator. That is
acceptable as the orchestrator’s client-facing high-level logic tends to evolve much faster
than the business rules of the lower layer of domain services [DDD], so that the team behind
the orchestrator, not restricted by other modules depending on it, will likely release way more
often than any other team. However, as the number of the domain services and the lengths
of their APIs increases, so does the amount of information that the orchestrator’s team must
remember and the inflow of changes they must integrate in the code. For a large project the
amount of work to support the orchestration layer may paralyze the development – that was
a major reason behind the decline of enterprise SOA [FSA] where ESB used to orchestrate
all the interactions in the system, including those between domain services and utility layer
components.

Another option, which appears in Plugins and develops in Microkernel and Hexagonal
Architecture, stems from dependency inversion: the orchestrator defines an SPI for every
service. That makes each service depend on the orchestrator so that the single
orchestrator’s team does not need to follow the updates of the multiple services’ APIs – it
initiates the changes at its own pace instead. However, with that approach the design of an
SPI requires coordination from the teams on both sides of it and the once settled interface is
hard to change. The most famous example of modules that implement SPIs are OS drivers.

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Service_provider_interface


Furthermore, some domains develop the idea into Hierarchy: when the services
implement related concepts, they may match a single SPI, making the orchestrator simpler
(as there is no more need to remember multiple interfaces). That is the case with telecom or
payment gateways and it may also be found with the tree of product categories in online
marketplaces.

All kinds of orchestration allow for an easy addition of new use cases which may even
involve new services as that changes nothing in the existing code. However, removing or
restructuring (splitting or merging) already integrated services requires much work within the
orchestrator, except for Hierarchy where all the services implement the same interface,
which means that the code in the orchestrator does not depend (much) on any specific child.

Mutual orchestration
In some systems there are several services that have their own kinds of clients (e.g.

employees of different departments). Each of the services tries hard to process its clients’
requests on its own but occasionally still needs help from other parts of the system. That
creates a paradoxical case where several services orchestrate each other:



As each of the services depends on APIs of the others, any change to any interface or
composition of such a system requires consent and collaboration from all the teams as it
impacts the code of all the services.

In real life the services are likely layered, with their upper layers acting as both internal
and external orchestrators. Layering isolates interdependencies to the relatively small
application layer services and resolves to an extent the seemingly counterintuitive case of
mutual orchestration as now there is an explicit, though fragmented, orchestration layer.



Summary
Orchestration represents use cases as a code which allows an orchestrated system to

support many complex scenarios. Dealing with errors is as trivial as properly handling
exceptions. The approach trades performance for clarity.

Choreography
Another option to integrate services is to build a pipeline which passes every client’s

request through the chain of modules:

In that case there is no dedicated owner for workflows of the requests – the state of each
request consists of its type, data and position in the pipeline. Debugging is mostly limited to
reading logs as there is no module to connect to for stepwise request processing. Neither is
there a single piece of code to define each of the system-wide use cases – their logic
emerges from the structure of event channels between the services and from messages that
each involved event handler sends. Consistency of the services’ states is left for the services
to take care of as there is no overseeing central component.

On the bright side, there is no communication overhead of response messages as there
are no responses – the processing cost is single message per service, half of that with an
orchestrated architecture. However, a message in a choreographed system is likely to be
longer than the corresponding one with an orchestrator as it needs to carry the entire
request’s state as there is no orchestrator that distributes parts of the payload to the services
involved.

Latency may also be suboptimal as parallelizing execution of a request is easier said
than done for there is no place (Aggregator [EIP]) to collect multiple related messages,
which also means that there is no associated cost in resources (RAM and CPU time) for
storing the fragments. Please note that an aggregator, when added, starts to orchestrate the
system – it stands between the client and services and meddles with the traffic and logic. It
spends resources to store the received messages for aggregation, and the messages start
forming request/confirm pairs.



Still another trouble with choreography comes from its weakness in error processing.
When a service in the middle of the request processing pipeline encounters an error, it
cannot generate its normal output to be sent downstream. One option for it is to fill in a null
(or error) value but then each receiver of the message should remember to check for null
and know how to deal with the input error. Another way is to add a dedicated error channel
for each service to push failed requests into, but that complicates the system’s structure.
Moreover, a failure in the middle of processing a request may cause the services to end up
with inconsistent data if no special attention (a new kind of request to compensate the
original one) is paid to roll back the partial change. Please note that all of that is conveniently
handled by an orchestrator.

Early response
The ordinary mode of action for a pipeline – sending the final results of processing to the

client – requires either for the tail of the pipeline to send data to its head or for existence of a
stateful intermediate component – gateway – to receive the client’s request, forward it to the
head of the pipeline, wait on the pipeline’s tail for the processing result and return it to the
client. That is necessary because most clients would open a single connection which is
impossible to share between multiple modules, namely the (receiving) head and (sending)
tail of the pipeline.



The gateway, if used, may parallelize processing of scatter or gather requests by turning
into an API gateway which is a kind of orchestrator. Which means that the system changes
its paradigm from choreography to orchestration.

It is possible to avoid both adding the gateway and the cyclic dependency if the client
does not immediately need the final results of processing their request. In such a case the
service that receives the original request does its (first) step of processing, sends the
response to the client, then notifies services down the pipeline. Though such a use case
seems to be unlikely, it happens in real life, for example, with pizza delivery. As soon as a
buyer fills in their contact details and pays for the food, the order can be confirmed and
forwarded to the kitchen. When it is ready it’s forwarded to the delivery, and finally the
physical goods appear at the buyer’s door.

Early response allows for choreography in its purest form: with extensibility, high
performance but also high latency. A similar approach may be used in Service-Based
Architecture [FSA] (aka macroservices) for communication between the services (bounded
contexts) as they may only need to notify each other of events without waiting for responses.

Dependencies
A pipeline may be built with downstream or upstream dependencies or with a shared

schema.
If services communicate through commands, each service depends on all the direct

destinations of its commands as it must know their APIs. This mode of communication is
mostly used with actors that power embedded, telecom, messengers and some banking
systems. Downstream dependencies make it easy to add input chains (upstream services
that deal with various hardware or external components) while changing anything at the
output end of the pipeline is going to break the input parts that send messages to the
component changed.

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/scatter-gather.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography
https://en.wikipedia.org/wiki/Actor_model


Upstream dependencies come from the publish/subscribe model where each service
spreads notifications about what it does to any interested subscriber. This way of building
systems is common with Event-Driven Architecture [FSA] which is used in high-load
backends. Extending or truncating the already implemented request processing tree is as
easy as adding/removing subscribers to existing events but creation of a new event source
will require changes in the downstream components. The addition of downstream branches
supports new customer experience and analytical features that the business is hungry for.

The final option is to have the entire pipeline use a single message format (Stamp
Coupling [SAHP]), usually with a field dedicated to each service. This way a service depends

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern


only on the message header (with the list of the fields and a record id) and the format of the
single field it reads (stores data) from or writes (retrieves data as Content Enricher [EIP]) to.
That works well for system-wide queries but binds all the services to the schema of the
message, in a way similar to relying on a shared database (to be discussed in the next
section). Such an architecture decouples the services to the extent that any of them can be
freely added or removed, together with the message field(s) it fills or reads.

A peculiar feature of choreography is the ability to cut and cross-link pipelines with
compatible interfaces by changing a single service (or even system config if you rely on
communication channels). That gives much flexibility – as long as you can comprehend all
the dependencies (and channels) in the system, which becomes non-trivial as it grows.

Multi-choreography
It is very common for a service to participate in several pipelines, especially if it owns a

database – as there should be a use case that fills in the data and at least one other use
case that reads from the database. This means that such a service depends on multiple
interfaces that often belong to multiple services, coupling components of the system and
making it resist future structural changes.



Summary
Overall, choreography seems to be a lightweight approach that prioritizes throughput

over latency and is suitable for highly-loaded scenarios of limited complexity. A
choreographed system will likely become unintelligible if it is made to support more than a
few use cases.

There is a decent overview from Microsoft.

Shared data
The final option is integration through shared data:

The shared data is a “blackboard” available for each service to read from and write to. It
is passive (is used by the services) and does not contain any logic except for the data
schema, which represents a part of domain knowledge. That makes communication through
shared data an antipode of orchestration, which also features a shared component, but an
orchestrator is active (uses services) and contains business logic, not data.

Shared data can be used for storage, messaging or both:

Storage
The most common case of shared data is storage (usually a database, sometimes a file

system) for a (sub)domain that has functionally independent services that operate on a
common dataset. For example, a ticket purchase service and a ticket return service share a
database of ticket details. The ticket purchase service reads in free seats and fills in ticket
data for purchases. The ticket return should be able to find all tickets bought by a user and
delete the user data from seats returned. The only communication between the purchase
and return services is the shared database of tickets or seats, so that one of them sees the
changes made by the other the next time it reads the data.

https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography


With this model the services don’t depend on each other – instead, they depend on the
shared (domain) data format and the database technology. Thus, it is easy to add, modify or
remove services but hard to change the data structure or database vendor.

Services often need to coordinate their actions.
Most commonly, services with a shared database rely on a messaging middleware to

notify each other about their actions. Users of our ticketing system want to be notified
(through email, SMS or an instant message) when a free seat that they are interested in
appears. We’re not going to complicate either of the existing services with integration with
instant messengers, so we create a new notification service, which must track each returned
ticket to see if any user wants to buy it. This is easily implemented by the return service
publishing and the notification service subscribing to a ticket return event.



Another case is found with data processing pipelines where an element may periodically
read new files from a folder or new records from a database table to avoid implementing
notifications. This increases latency and may cause a little CPU load when the system is
idle, but is perfectly ok for long-running calculations.

Finally, there is a rarely used option of an external scheduler that selects which services
should run based on the data available. This is known as the Blackboard pattern and
something similar happens in 3D game engines. The scheduler (which is an orchestrator, by
the way) is needed when CPU (or GPU or RAM) resources are much lower than what the
services would consume if all of them run in parallel, thus they must be given priorities, and
the priorities change based on the context which is regularly estimated from the data.



Messaging
The other, not as obvious, use case for shared data is messaging, which is implemented

by the sender writing to a (shared) queue (or log) while the recipient waits to read from it.
Queues can be used for any kind of messages: request/confirm pairs, commands or
notifications. Each service may have a dedicated queue (either input for commands mode,
or output for notifications), a pair of queues (messages from the service’s output are
duplicated by an underlying distributed middleware to input queues of their destinations),
there may be a queue per communication channel or a single queue for the entire system,
with each message carrying destination id (for commands) or topic (for notifications).

The use of shared data for messaging turns the datastore into a middleware. The
dependencies are identical to those in choreography – each service depends on APIs of its
destinations for commands or its sources for notifications.

There should be a means for the recipient of a message to know about its arrival so that
it starts processing the input. Usually a messaging middleware implements a method to
receive a message for the service to block on. However, very low latency applications, like
HFT, may busy loop reading the shared memory so that the service starts processing the
incoming data immediately on its arrival, skipping the OS scheduler. This is the fastest
means of communication available in software.

Full-featured
Finally, some (usually distributed) datastores implement data change notifications. That

allows for the services to communicate through the datastore in real-time, removing both the
need for an additional middleware and interdependencies of the services. Such a system
follows the Shared Repository pattern of [POSA4] which was rectified as Space-Based

https://en.wikipedia.org/wiki/High-frequency_trading


Architecture [SAP, FSA]. In our example the free seats notification service subscribes to
changes in the seats data in the database, this way it does not need to be aware of the
existence of other services at all. We can also split the email part of the ticket purchase
server to a separate entity which would track purchases in the database and send a
printable version of each newly purchased ticket to the buyer’s mail address which is found
in the ticket details in the database.

Summary
Communication through shared data is best suited for data-centered domains (for

example, ticket purchase). It allows for the services to be unaware of each other’s existence,
just as they are with orchestration, but the structure of the domain data becomes hard to
change as it is in use throughout the code. Shared data may also be used to implement
messaging.

Comparison of the options
We have briefly discussed three communication metapatterns: orchestration,

choreography and shared data. Let’s see when it makes sense to use each of them.
Orchestration is built around use cases. They are easy to program and add, no matter

how complex they become. Thus, if your (sub)domain is coupled, or your understanding of it
is still evolving, this is the way to go, as you will be able to change the high-level logic in any
imaginable way.

Shared data is all about… er… domain data. If you really (believe that you) know your
domain, and it deals with coupled data – this is your case. You may even add an
orchestrator if there are use cases that involve multiple subdomains. The business logic is
going to be easy to extend while changes in the data schema will likely break much of the
code.

Choreography pays off with weakly coupled domains and few simple use cases. It has
good performance and flexibility, but lacks the expressive power of orchestration and
becomes very messy as the number of tasks and components grows. It works best with
independent teams and delayed processing – when the user does not wait for an immediate
result of their action.

There is advice from Microsoft which makes perfect sense: use choreography for
communication between bounded contexts (subdomains) but revert to orchestration (or
maybe shared data) inside each context. Indeed, subdomains are likely to be loosely
coupled while most user requests don’t traverse subdomain boundaries – which kindles
hope that their interactions are few and not time-critical. If we follow the advice, we get

https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography


Cell-Based Architecture (WSO2 definition), which collects the best of two worlds:
orchestration and/or shared data for strongly coupled parts and choreography between
them.

By the way, you could have noticed the odd cases:
● An orchestrator in a control system does not run scenarios and its mode of action

resembles choreography.
● A choreographed system may use a shared message format, which makes it

resemble a system with shared data, even though no shared database is present.
● A shared database may be used to implement messaging for an orchestrated or

choreographed system.
Those probably mean that our distinction between the modes of communication is a bit

artificial and there is some deeper model to look for.

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md


Part 2. Basic Metapatterns
Basic metapatterns are both widespread stand-alone architectures and building blocks

for more complex systems. They comprise the single-component monolithic architecture and
the results of its division along each axis of coordinates (abstractness, subdomain and
sharding):

Monolith

Monolith is a single-component system, the simplest possible architecture. It is easy to
write but hard to evolve and maintain.

Includes: Reactor, Proactor, Half-Sync/Half-Async.

Shards

Shards are multiple instances of a monolith. They scale but usually require an external
component for coordination.

Includes: Shards and Amazon Cells, Replicas, pool of stateless instances, create on
demand.



Layers

Layers contain a component per level of abstractness. The layers may vary in
technologies and forces and scale individually.

Includes: Layers and Tiers.

Services

Services divide the system by subdomain, often resulting in parts of comparable size to
be assigned to dedicated teams. However, a system of services is hard to synchronize or
debug.

Includes: Service-Based Architecture, Modular Monolith (Modulith), Microservices,
device drivers, actors.

Pipeline

Pipeline is a kind of Services with unidirectional flow. Each service implements a single
step of request processing. The system is flexible but may grow out of control.

Includes: Pipes and Filters, Choreographed Event-Driven Architecture, Nanoservices,
Data Mesh.



Monolith
Let’s take a look at the simplest possible metapattern – Monolith – and see what it can

teach us about.

Keep it simple, stupid! If you don’t need a modular design, why bother?
Known as: Monolith.
Variants:
By the internal structure:
● True Monolith / Big Ball of Mud,
● (misapplied) Layered Monolith [FSA],
● (misapplied) Modular Monolith [FSA] (Modulith),
● (inexact) Plugins [FSA] and Hexagonal Architecture.
By the mode of action:
● Reactor [POSA2],
● Proactor [POSA2],
● (inexact) Half-Sync/Half-Async [POSA2],
● (inexact) (Re)Actor-with-Extractors.
Structure: A monoblock with no strong internal modularity.
Type: Main, root of the hierarchy of metapatterns.

Benefits Drawbacks
Rapid start of development Quickly deteriorates with project growth
Easy debugging Hard to develop with multiple teams
Best latency Does not scale
Low resource consumption Lacks support for conflicting forces
The system’s state is self-consistent Any failure crashes the entire system

References: Big Ball of Mud for a philosophical discussion, my article and [POSA2] for
the subtypes of Monolith, Martin Fowler’s discussion on starting development with monolith,
[MP] for the definition of monolithic hell and a post describing the first-hand experience of it.

We distantiate ourselves from the system architecture’s definition of Monolith as a single
unit of deployment as our main focus lies with the internal structure of systems. Instead, we

http://laputan.org/mud/
https://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf
https://hillside.net/plop/plop97/Proceedings/pyarali.proactor.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/PLoP-95.pdf
http://ithare.com/multi-coring-and-non-blocking-instead-of-multi-threading-with-a-script/3/
http://www.laputan.org/mud/
https://itnext.io/introduction-to-software-architecture-with-actors-part-2-on-handling-messages-940c62cb06dc
https://martinfowler.com/bliki/MonolithFirst.html
https://livebook.manning.com/book/microservices-patterns/chapter-1/25
https://news.ycombinator.com/item?id=18442941


will use the old definition of monolithic application as a cohesive lump of code containing no
discernible components.

Monolith is non-modular (not divided by interfaces) along all the structural dimensions. Its
thorough cohesiveness is both its blessing (single-stepping debugging, system-wide
optimizations) and its curse (messy code, no scalability of development and deployment,
zero flexibility).

Performance
On one hand, monolithic applications provide perfect opportunities for performance

optimizations as every piece of code is readily accessible from any other. On the other hand,
if the application is stateful, the state must be protected from race conditions, thus the
performance benefit of using multiple CPU cores is limited. Furthermore, large monoliths
may become too messy for the programmers to identify and too complicated and fragile for
them to implement any drastic measures towards better performance.

Overall, tiny monoliths provide the best latency and throughput per CPU core. Larger
performance-critical projects may need to partition the code into layers or services so that
any manually optimized part remains small enough to be manageable. Higher throughput is
attainable through distributing the software over multiple computers: sharding employs
multiple copies of the whole system while a pipeline may run each step of data processing
on a separate server.

Dependencies
Even though Monolith is a single module, thus there are no dependencies among its

parts (actually, everything depends on everything), it may depend on external components or
services which it uses. Those dependencies tend to cause vendor lock-in or make the
software OS- or hardware-dependent. Hexagonal Architecture (or MVC as its variant) is the
way to decouple a monolithic implementation from its dependencies.

Applicability
Monolith is good for for the cases where the introduction of modularity causes more

trouble than help:
● Tiny projects. The project is relatively small (below 10 000 lines) and the

requirements will never change (e.g. you need to implement a library for running a
specific mathematical calculation or interfacing a well-established communication
protocol).

● Ultra optimization. You already have a working and thoroughly optimized system, but
you still need that extra 5% performance improvement achievable through merging
all the components together.

● Low latency. If you need ultra low latency for the entire application, any
asynchronous communication between its modules is not a viable option. Example:
high-frequency trading.

● Prototyping. You are writing a prototype in a domain that you are not familiar with,
gathering requirements in the process. The chances for a correct initial identification
of weakly coupled subdomains to be converted to modules are quite low, while it is
worse to have wrong module boundaries than to have no modules at all. At the later
stages of the project, when you will know the domain much better, and your users will

https://martinfowler.com/bliki/MonolithFirst.html


have approved the initial implementation, you will be able to split the system into
modules in a correct way, if and when that will be needed. Nevertheless, you may
already know enough to apply Layers or Hexagonal Architecture which keep the
business logic monolithic while isolating it from periphery and 3rd party libraries.

● Quick and dirty. You are out of time and money, and need to show your customers
something right now. No time to think, no money to perfect the code, no day after
tomorrow.

Monolith should be avoided when we need modules:
● Incompatible forces. There are conflicting forces (non-functional requirements) for

different subsets of functionality. They require splitting the system into (usually
asynchronous) modules with each of the modules specifically designed to satisfy its
own subset of the forces. Your main tool is the careful selection of appropriate
technologies and architecture on a per module basis. That may allow the project to
satisfy all the non-functional requirements even if the task looks impossible on the
initial consideration.

● Long-running projects. The project is going to evolve over time, while you think you
can predict the general direction of the future changes. Modularity brings flexibility,
and the flexibility you will need.

● Larger code bases. The project grows above average (100 000 lines of code). If you
don’t split it into smaller modules now, it will get into monolithic hell, with development
and debugging slowing down year after year, till it reaches the terminal stage. Slow
development is a waste of money, both in salary and in time to market.

● Multiple teams. You have multiple teams to work on the project. Inter-team
communication is hard and error-prone, while merging several teams together is
known to greatly reduce the programmers’ productivity (it peaks for teams of 5 or less
members). Explicit interfaces between modules will formalize the interdependencies
of the teams, lowering the communication overhead.

● Fault tolerance. Your domain requires fault tolerance which is really hard if not
impossible for large monolithic applications.

● Resource-limited. Your project is too resource-hungry for commodity hardware. Even
if you buy the best server for its needs right now, it is going to crave for more
tomorrow (or on the next Black Friday).

● Distributed setup. Your project needs to use multiple hardware devices. One of
common examples is a web service containing frontend and backend.

https://livebook.manning.com/book/microservices-patterns/chapter-1/25
https://news.ycombinator.com/item?id=18442941


Relations

Monolith:
● Can be extended with Proxy, Hexagonal Architecture or Plugins.
● Yields Layers, Services or Shards if divided along the abstractness, subdomain or

sharding dimensions, correspondingly. All the known architectures are combinations
of those three metapatterns.

● Is the bird’s-eye view of any architecture.

Variants by the internal structure
Monoliths are the atoms to create more complex architectures from, the opaque building

blocks, each of which satisfies a consistent set of forces. Any individual component of a
more complex architecture either is monolithic or encapsulates another architectural pattern,
and any architecture looks monolithic to its clients.



Thus, there exists a misunderstanding because software architecture inspects internals
of applications at the level of modules or even classes while system architecture deals with
distributed systems and operates deployment units which tend to contain multiple modules
or even applications. Each of the branches of architecture calls its atomic unit “monolith”,
leading to the term sticking both to a module that cannot be subdivided, as in [GoF] and
[POSA1], and to a (sub)system that must be deployed together, as in modern literature.

As we aspire to build a unified classification for both distributed and local systems, we
must treat components of both kinds in the same way, whether they are distributed services,
co-located actors or in-process modules. Thus, for the scope of the current book, we follow
the definition from [GoF]: “Tight coupling leads to monolithic systems, where you can't
change or remove a class without understanding and changing many other classes”. Still, we
need to account for a couple of misnomers from system architecture:

True Monolith, Big Ball of Mud

A true monolith has no clear internal structure. If it has any components, they are so
tightly coupled that the entire thing behaves as a single cohesive module. This is what we
explore in the current chapter.

(misapplied) Layered Monolith

http://laputan.org/mud/


When they say “layered monolith” [FSA], that means a non-distributed application with
layered structure, which is a proper Layers architecture, and will be discussed in the
corresponding chapter. It is called “monolith” for the sole reason that it is not distributed.
Nevertheless, Layers resemble Monolith in many aspects, including easy debugging and the
danger to outgrow the zone of comfort for developers.

(misapplied) Modular Monolith (Modulith)

A “modular monolith” [FSA] is a single-process application subdivided into modules that
correspond to subdomains. If the modules communicate via in-process messaging, the
architecture is nearly identical to coarse-grained actors, thus it is a monolith only in name.
Modulith is a kind of Services ("If it walks like a duck and it quacks like a duck, then it must
be a duck") – it supports development by multiple teams, and the asynchronous variant is
hard to debug. The relation to Monolith is mostly restricted to the inability to scale individual
parts of the system.

(inexact) Plugins and Hexagonal Architecture

Plugins [FSA] and Hexagonal Architecture extend a (sub)system with external modules.
They can be applied to a monolith without drastically changing its properties – it still remains
relatively easy to write and debug but hard to support when overgrown. Therefore, we will
not currently discuss these modifications, mainly because each of them got a dedicated
chapter.

Variants by the mode of action
Let’s take a look inside a monolith.
Any software module reacts to incoming events or data and produces outgoing events or

data. There are several basic ways to implement that cycle:

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Duck_typing


Single-threaded Reactor (one thread, one task)

In Reactor [POSA2], a single thread waits for an incoming event or data packet,
processes it with blocking calls to the underlying OS, hardware and external dependencies
and returns the result, rinse and repeat.

That makes sense when the module owns and provides access to a hardware
component which cannot do several actions at once, for example, a communication bus or a
HDD firmware which does a single read or write at any given moment.

https://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf


Multi-threaded Reactor (a thread per task)

A reactor [POSA2] may employ multiple threads by having a pool of them waiting for a
request or data to come. The event activates one thread, which becomes dedicated to
processing it by doing several blocking calls and, finally, sending back a response. When the
request processing is completed, the thread returns to the pool of idle threads to wait for the
next event to process.

This is the default simple&stupid implementation of backend services. Its pitfalls include
contention on shared resources, deadlocks and high resource consumption by the OS-level
threads.

Proactor (one thread, many tasks)

In Proactor [POSA2], a single thread processes all the incoming events, both from the
module’s clients and from the hardware or dependencies it manages. When an event is
received, the thread goes through a short piece of corresponding business logic (event
handler) and usually initiates one or more non-blocking actions, such as sending messages
to other components, writing to registers of the managed hardware or initiating an async I/O.

https://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf
https://hillside.net/plop/plop97/Proceedings/pyarali.proactor.pdf


Then the thread is ready to process any further events. As the thread never blocks, it is able
to serve multiple interleaved tasks.

This approach is good for real-time systems where thread synchronization is largely
forbidden because of the associated delays and for reactive control applications which
mostly adapt to the environment instead of running pre-programmed scenarios. The
drawback is very poor structure of the code and debuggability as any complex behavior is
broken into many independent event handlers.

(inexact) Half-Sync/Half-Async (coroutines or fibers)

Half-Sync/Half-Async [POSA2] originally described the interaction between user space
and kernel threads in operating systems and was (later?) rebranded as coroutines and
fibers. A single thread or a thread pool with a thread per CPU core processes all the
incoming events, with the execution thread(s) switching call stacks. Every incoming request
is allocated a call stack which stores the state (local variables and methods called) of
processing the request. When it needs to access an external component, the runtime saves
the request’s stack, does a non-blocking call, and the execution thread returns to its original
stack to wait for an event to come while the request processing stack remains frozen till the
current action completes asynchronously. Then the runtime switches the execution thread
back to the stored request’s stack and continues processing the request till it is completed
and the stack is deleted.

This makes programming and debugging tasks as easy as with Reactor (procedural
style) while retaining the low resource consumption and high performance of Proactor.
Coroutines and fibers are used in highly efficient game engines and databases. Though
Half-Sync/Half-Async contains two layers (is not truly monolithic), I believe it belongs next to
Reactor and Proactor which make up its upper and lower layers, correspondingly.

The state of the art
These patterns are not widely known, and programmers tend to mix them together, for

better or for worse. One is likely to encounter a heavily multithreaded big ball of mud where
some threads serve user requests while others are dedicated to periodic service routines.

https://www.dre.vanderbilt.edu/~schmidt/PDF/PLoP-95.pdf
https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine
https://docs.seastar.io/master/tutorial.html#coroutines


Moreover, people tend to call any event-driven service Reactor, causing confusion
among those who discern between the three patterns above.

(inexact) (Re)Actor-with-Extractors (phased processing)

As a bonus, let’s review an unconventional execution model that fits gamedev or other
kinds of simulation with many interacting objects.

We have a long-running system where each simulated object has complex behavior that
depends on objects around it. The common wisdom proposes two ways to implement it:

● Actors (asynchronous messaging, reactive programming) – each actor (simulated
object) runs single-threaded and wakes up only to process incoming messages.
While processing a message, an actor may change its state and/or send messages
to other actors. The entire actor’s data is private and there are no synchronous calls
between the actors. The good thing is that actors are very efficient in highly parallel
tasks as they use no locks in their code. The bad thing is that actors have no way to
synchronize their states: you can only request another actor to tell you about its
state, and its response may become outdated even before you start processing it.
Also, any complex logic that involves multiple actors is dispersed over several event
handlers.

● The opposite option is to have the simulated objects access each other
synchronously. This allows for complex logic that depends on states of multiple
objects, but gets in trouble with changing the objects’ states from multiple threads:
you need to protect them with those inefficient locks and you get those dreadful
deadlocks as the outcome.

Here we have two bad options to choose from. However, it is the simulated nature of the
system that saves the day: we can stop the world to get off. The objects’ querying each other
and their changing their states needs neither happen at the same time nor obey the same
rules!

The simulation runs in steps. Each step consists of two phases:
● Query phase (extraction), when the object states are immutable, thus the objects can

communicate synchronously with no need for locks. In this phase each object
collects information from its surroundings (other objects), plans its actions and posts
them as commands to its own message queue. I suppose that objects may also send
commands to each other in this phase.

● Command phase (reaction), when each object executes its planned (queued) actions
that change its state, but cannot access other objects.

Each phase lasts till every object in the system completes its tasks scheduled for the
phase. The phase toggle is supervised by a scheduler which runs the objects on all the

http://ithare.com/multi-coring-and-non-blocking-instead-of-multi-threading-with-a-script/3/
https://doc.akka.io/libraries/akka-core/current/typed/guide/actors-intro.html


available CPU cores. The entire process resembles the game of Mafia with its public daily
conversations and covert nightly actions.

(Re)Actor-with-Extractors is a perfect example of earning benefits of two architectures
without paying their drawbacks. It utilizes both the lockless parallelism of actors-style
shared-nothing and the simplicity of synchronous access in shared-memory by alternating
between those modes through application of the CQRS principle to the time dimension.

Evolutions
Every architecture has its drawbacks, and tends to evolve in a variety of ways to address

them. Below is a brief summary with more information available in Appendix E.

Evolutions to Shards
One of the main drawbacks of monolithic architecture is its lack of scalability – a single

running instance of your system may not be enough to serve all its clients no matter how
much resources you add in. If that is the case, you should consider Shards – multiple
instances of a monolith. There are following options:

● Self-managed shards – each instance owns a part of the system’s data and may
communicate with all the other instances (forming a mesh).

● Shards with a load balancer – each instance owns a part of the system’s data, with
an external component to select a shard for a client.

https://en.wikipedia.org/wiki/Mafia_(party_game)
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-memory_architecture
https://en.wikipedia.org/wiki/Command_Query_Responsibility_Segregation


● A pool of stateless instances with a load balancer and a shared database – any
instance can process any request, but the database limits the throughput.

● A stateful instance per client with an external persistent storage – each instance
owns the data related to its client and runs in a virtual environment (i.e. web browser
or an actor framework).

Evolutions to Layers
Another drawback of Monolith is its… monolithism. The entire application exposes a

single set of qualities and all its parts (if they ever emerge) are deployed together. However,
life awards flexibility: parts of a system may benefit from being written in varying languages
and styles, deployed with different frequency and amount of testing, sometimes to specific
hardware or end users’ devices. They may need to vary in security and scalability as well.
Enter Layers – a subdivision by the level of abstractness:

● Most monoliths can be divided into 3 or 4 layers of different abstractness.



● It is common to see the database separated from the main application.

● Proxies (e.g. Firewall, Cache, Reverse Proxy) are usual additions to the system.

● An orchestrator adds a layer of indirection to simplify the system’s API for its clients.

Evolutions to Services
The final major drawback of Monolith is the cohesiveness of its code. The rapid start of

development begets a major obstacle as the project grows: every developer needs to know
the entire codebase to be productive, the changes made by individual developers overlap
and may break each other. Such a distress is usually solved by dividing the project into
modules along subdomain boundaries (which tend to match bounded contexts). However,
that requires much work, and good boundaries and APIs are hard to design. Thus many
organizations prefer a slower iterative transition.

● A monolith can be split to services right away.

https://martinfowler.com/bliki/BoundedContext.html


● A new feature may be added or a weakly coupled part separated as a service.

● Some domains allow for sequential data processing best described by pipelines.

Evolutions with Plugins
The last group of evolutions does not really change the monolithic nature of the

application. Instead, its goal is to improve the customizability of the monolith:
● Vanilla Plugins is the most direct approach which relies on replaceable bits of logic.

● Hexagonal Architecture is a subtype of Plugins that is all about isolating the main
code from any 3rd party components it uses.



● Scripts is a kind of Microkernel – yet another subtype of Plugins – which gives users
of the system full control over its behavior.

Summary
Monolith is the best architecture for rapid prototyping by a small team and it usually

grants the best performance to costs ratio. However, it does not scale, lacks any flexibility
and becomes intolerable as the amount of code grows.



Shards

Attack of the clones. Solve scalability in the most straightforward manner.
Known as: Shards, Instances, Replicas [DDS].
Variants:
By isolation:
● Multithreading,
● Multiple processes,
● Distributed instances.
By state:
● Persistent slice: Sharding / Shards [DDS] / Cells (Amazon definition) / Partitions

[DDIA],
● Persistent copy: Replica [DDS],
● Stateless: Pool [POSA3] / Instances / Replicated stateless services [DDS] / Work

Queue [DDS],
● Temporary state: Create on Demand.
Structure: A set of functionally identical subsystems which usually don’t

intercommunicate.
Type: Implementation.

Benefits Drawbacks
Good scalability It’s hard to synchronize the system’s state
Good performance

References: [POSA3] is dedicated to pooling and resource management; [DDS] reviews
shards, replicas and stateless instances; [DDIA] covers sharding and synchronization of
replicas in depth; Amazon promotes full-system sharding as Cell-Based Architecture.

Shards are multiple and in most cases independent instances of a component (or
subsystem) that the pattern is applied to. They provide scalability, often redundancy and
sometimes locality at the cost of slicing or duplicating the component’s state (writable data),
which obviously does not affect inherently stateless components. Most of this pattern’s
specific evolutions look for a way to combine several shards at the logic or data level.

https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html


Performance
Shards retain the performance of the original subsystem they scale (a monolith in the

simplest case) as long as they run independently. Any task that involves intershard
communication has its performance degraded by data serialization and network
communication. And if multiple shards need to synchronize their states you are on the horns
of a dilemma: damage data consistency through write conflicts or kill performance with
distributed transactions [FSA].

Shared Repository is a common solution to let multiple shards access the same dataset.
However, it does not solve the performance vs consistency issue (rooted in the CAP
theorem) but only encapsulates its complexity inside a third-party component. Which is not
bad at all.

Dependencies
You may need to take care that all the shards are instances of the same version of your

software or at least that their interfaces are backward- and forward-compatible.

Applicability
Shards share the properties of the pattern they are applied to (Monolith for a single

component, Layers for an application or Cell for a system of services). The peculiarities,
owing to the Shards’ scalability, are listed below:

Shards are good for:
● High or variable load. You need to scale your service up (and sometimes down). With

Shards you are not limited to a single server’s CPU and memory.
● Survival of hardware failures. A bad HDD or failing RAM does not affect your

business if there is another running instance of your application. Still, make sure that
your load balancer and internet connection are backed up.

● Improving worst case latency. If your service suffers from latency spikes, you can run
a few replicas of it in parallel, broadcasting every user request to all of them and
returning the fastest response. Adding a single replica turns your p90 into p99.

● Improving locality. A world-wide Internet service wins in latency and costs by
deploying an instance of its system to a local data center in each region it operates
in. And the most responsive code runs in your client’s browser!

● Canary Release. It is possible to deploy one instance of your application with
updated code along with stable old instances. That tests the update in production.

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Forward_compatibility
https://dzone.com/articles/mastering-latency-with-p90-p99-and-mean-response-t
https://martinfowler.com/bliki/CanaryRelease.html


Shards’ weak point is:
● Shared data. If multiple instances of your application need to modify the same data,

no instance properly owns the data, which means that you need help from an
external component (a data layer, implying Layers and Space-Based Architecture or
other kind of Shared Repository).

Relations

Shards:
● Modifies a Monolith or any kind of component or a subsystem.
● Can be extended with Middleware, Shared Repository, Proxies or Orchestrator.
● Is the foundation for Mesh.

Variants by isolation
There are intermediate steps between a single-threaded component and distributed

Shards, which gradually augment the pros and cons of having multiple instances of a
subsystem:

Multithreading
The first and very common advance towards scaling a component is running multiple

execution threads. That helps to utilize all the available CPU cores or memory bandwidth but
requires protecting the data from simultaneous access by several threads, which in turn may
cause deadlocks.

Benefits Drawbacks
Limited scalability More complex data access

Multiple processes
The next stage is running several (usually single-threaded) instances of the component

on the same system. If one of them crashes, others survive. However, sharing data among
them and debugging multi-instance scenarios becomes untrivial.

Benefits Drawbacks
Limited scalability Untrivial shared data access
Software fault isolation Troublesome multi-instance debugging

http://ithare.com/multi-threading-at-business-logic-level-is-considered-harmful/


Distributed instances
Finally, the instances of the subsystem may be distributed over a network to achieve

nearly unlimited scalability and fault tolerance by sacrificing consistency of the whole
system’s state.

Benefits Drawbacks
Full scalability No shared data access
Full fault isolation Hard multi-instance debugging

No good way to synchronize state of the
instances

Variants by state
Sharding can often be transparently applied to individual components of a data

processing system. That does not hold for control systems where decisions are made based
on the current state, which must be accessible as a whole, thus the main business logic that
owns the model (last known state of the system) cannot be sharded.

Many kinds of shards require an external coordinating module (Load Balancer) to assign
tasks to the individual instances. In some cases the coordinator may be implicit, e.g. an OS
socket or scheduler. In others it may be replicated and co-located with each client (as an
ambassador [DDS]).

Shards usually don’t communicate with each other directly. The common exception is
Mesh (including distributed databases and actor systems) which explicitly relies on
communication between the instances.

There are several subtypes of sharding that differ in the ways they handle state:

Persistent slice: Sharding, Shards, Cells (Amazon definition),
Partitions

Shards [DDS] own non-overlapping parts of the system’s state. For example, a sharded
phonebook (or DNS) would use one shard for all contacts with initial “A”, another shard for
contacts with initial “B” and so on. A large wiki or forum may run several servers, each
storing a subset of the articles. This is the proper sharding, which is also called partitioning
[DDIA] in the world of databases.

https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding


Cells, according to the Amazon terminology, are shards of a whole system deployed to
several data centers, each serving local users. The locality improves latency and saves on
internet traffic while having multiple instances of the system up and running improves
availability. The downside of the approach is its complexity and amount of traffic needed to
keep the cells in sync.

It usually takes a stand-alone sharding proxy [DDS] – a kind of load balancer – to route
client’s requests to the shard that owns its data. However, there are other options [DDIA]:

● The sharding proxy may be deployed as a client-side ambassador [DDS] to avoid the
extra network hop. This approach requires a means for keeping the ambassadors
up-to-date with your system’s code.

● You can publish your sharding function [DDS] and the number of shards in your
public API to let your clients choose the shard to access without your help. That may
work for internal clients implemented by your or neighbor team.

● Finally, each shard may be able to forward client requests to any other shard –
making each shard into a sharding proxy and an entry point to the resulting mesh. If
your client accesses a wrong shard, their request is still served, though a little slower.
This may improve customer experience for sharded databases [DDIA].

Sharding solves scaling of an application both in regard to the number of its clients and
to the size of its data. However, it works well only if each client’s data is independent from
other clients. Moreover, if one of the shards crashes, the information it owns becomes
unavailable unless replication has been set up as well.

Persistent copy: Replica

Replicas [DDS] are identical copies of a stateful (sub)system. Replication improves the
system’s throughput (as each replica serves client requests) and its stability (as a fault in
one replica does not affect others which may quickly take up its clients). Replicas may also
be used to improve tail latency, if you have enough money to send each request to all the
replicas – and use the first response that you receive. Mission-critical hardware runs in three
copies and relies on majority voting for computation results.

The hard part comes from the need to keep the replicas’ data in sync. The ordinary way
is to let the replicas talk to each other on each data update. If the communication is
synchronous, it may greatly slow down the processing of the request, while if it is
asynchronous the system suffers data conflicts when multiple clients change the same value
simultaneously. The synchronization code is quite complex, thus you will likely use a
ready-made Space-Based Architecture framework instead of writing one on your own.

https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy


Another option found in the field is to keep the replicas only loosely identical. That
happens with caches, where each replica is a stand-alone cache for its subset of clients
[DDS]. As clients often send similar requests, the content of the cache replicas is mostly,
though not completely, identical, thus they are interchangeable.

And if your traffic is read-heavy, you may turn to Polyglot Persistence by discerning
between derived read-only followers and a single fully-functional leader [DDIA]. The
followers serve only read requests while the leader both updates its data and broadcasts the
changes to all the followers. And if the leader dies, one of its followers is elected for the new
leader. In some cases the code of the service itself may be separated into write (command)
and read (query) services (CQRS).

Finally, you can mix sharding and replication so that the data of each shard is replicated
in whole to identical components [DDS] or intermixed piecemeal with copies of data from
other shards all over the system [DDIA]. That achieves fault tolerance for huge volumes of
data which are impossible to store unsharded.

Stateless: Pool, Instances, Replicated stateless services, Work
Queue

A predefined number (pool [POSA3]) of instances (workers) is created during the
initialization of the system (Work Queue [DDS]). When the system receives a task, a load
balancer assigns to one of the idle instances from the pool. As soon as the instance finishes
its task it returns to the pool. The instances don’t store any state while idle, thus they are
also called Replicated Stateless Services [DDS]. A well-known example is FastCGI.

The approach allows for rapid allocation of a worker to any incoming task, but it uses a
lot of resources even when there are no incoming requests to serve, and the system still
may be overwhelmed by a peak load. Moreover, a shared database is usually required for
persistent storage, limiting the pattern’s scalability.

Many cloud services implement dynamic pools, the number of instances in which
changes with the load: if all the current instances are busy serving user requests, new
instances are created and added to the pool. If some of the instances are idle for a while,
they are destroyed. Dynamic pooling often comes with Mesh, as in Microservices or
Space-Based Architecture.

https://en.wikipedia.org/wiki/FastCGI


Temporary state: Create on demand

An instance is created for serving an incoming request and is destroyed when the
request processing is finished. On creation it is initialized with all the client-related data to be
able to interact with the client without much help from the backend. Examples include
running web pages in the clients’ browsers or client-dedicated actors in backends of instant
messengers.

This provides perfect elasticity and flexibility of deployment at the cost of slower session
establishment but usually relies on an external shared layer for persistence: Instances of a
frontend are initialized from and send changes to a backend which itself uses a database.

Evolutions
There are two kinds of evolutions for Shards: those intrinsic to the component sharded

and those specific to Shards pattern. All are summarized below while Appendix E provides
more details on the second kind.

Evolutions of a sharded monolith
When Shards are applied to a single component, which is a monolith, the resulting

(sub)system follows most of the evolutions of Monolith:
● Layers allow for the parts of the system to differ in qualities (forces) and deployment,

3rd party components to be integrated and the code to become better structured.
● Services or Pipeline help to distribute the work among teams and may decrease the

project’s complexity if the division results in loosely coupled components.
● Plugins and its subtypes, namely Hexagonal Architecture and Scripts, make the

system more adaptable.



There is a benefit of such transformations which is important in the context of Shards: in
many cases the resulting modules can be scaled independently, arranging for a better
resource utilization by the system (when compared to scaling a monolith). However, scaling
individual modules often requires load balancers or a middleware to distribute internal
requests among the scaled instances.

Evolutions that share data
The issue peculiar to Shards is that of coordinating the deployed instances, especially if

their data becomes coupled. The most direct solution is to let the instances operate a shared
data:

● If the whole dataset needs to be shared, it can be split to a shared repository layer.

● If data collisions are tolerated, Space-Based Architecture promises low latency and
dynamic scalability.



● If a part of the system’s data becomes coupled, only that part can be moved to a
shared repository, causing each instance to manage two stores of data: private and
shared.

● Another option is to split a service that owns the coupled data and is always
deployed as a single instance. The remaining parts of the system become coupled to
that service, not each other.

Evolutions that share logic
Other cases are better solved by extracting the logic that manipulates multiple shards:
● Splitting a service (as discussed above) yields a component that represents both

shared data and shared logic.
● Adding a middleware lets the shards communicate to each other without keeping

direct connections. It also may do housekeeping: error recovery, replication and
scaling.



● A load balancer decouples clients from the knowledge about the existence of the
shards.

● An orchestrator calls multiple shards to serve a user request. That relieves the
shards of the need to coordinate their states and actions by themselves.

Summary
Sharding makes any kind of component scalable and more fault tolerant. It does not

change the nature of the component it applies to and usually relies on a load balancer or
middleware to manage the multiple instances it generates. Its main weakness appears when
the shards need to intercommunicate.



Layers

Yet another layer of indirection. Don’t mix the business logic and implementation details.
Known as: Layers [POSA1, POSA4], Layered Architecture [SAP, FSA, LDDD], Multitier

Architecture, N-tier Architecture [LDDD].
Variants: Co-located or distributed, synchronous or asynchronous communication, open

or closed, the number of layers.
By isolation:
● Synchronous layers / Layered Monolith [FSA],
● Asynchronous layers,
● A process per layer,
● Distributed tiers.
Examples:
● Domain-Driven Design (DDD) Layers [DDD],
● Three-Tier Architecture,
● Embedded Systems.
Structure: A module per level of abstractness.
Type: Main, implementation.

Benefits Drawbacks
Rapid start of development Quickly deteriorates with project growth
Easy debugging Hard to develop with more than few teams
Good performance No solution for force conflicts between

subdomains
Development teams may specialize
Encapsulation of business logic
Allows to resolve conflicting forces
Deployment to a dedicated hardware
Layers with no business logic are reusable

References: [POSA1] and [FSA] provide in-depth discussions of layered applications;
[DDD] promotes the layered style and most of the architectures in Herberto Graça’s
Software Architecture Chronicles are layered. The Wiki has a reasonably good article.

https://herbertograca.com/2017/07/03/the-software-architecture-chronicles/
https://en.wikipedia.org/wiki/Multitier_architecture


Layering a module creates interfaces between its various levels of abstractness
(high-level logic, low-level logic, infrastructure) while retaining the monolithic cohesiveness
inside each of the levels. That both allows for easy debugging inside each individual level
(no need to jump into another programming language or re-attach the debugger to a remote
server) and provides enough flexibility to assign development teams, tools, deployment and
scaling policies on a per level basis. Though the code is slightly better than for Monolith,
thanks to the separation of concerns, still one of the upper layers may grow too large for
efficient development.

Splitting a system into layers resolves conflicts of forces between its abstract and
optimized parts: the top-level business logic changes rapidly and does not require much
optimization (as its methods are called infrequently), thus it can be written in a high-level
programming language. Contrariwise, infrastructure, being called thousands of times every
second, has stable workflows but must be highly optimized and extremely well tested.

Many patterns have one or more of their layers split by subdomain, resulting in a layer of
services. That causes no penalties as long as the services are completely independent (the
original layer had zero coupling between its subdomains), which happens if each of them
deals with a separate subset of requests (as in Backends for Frontends) or is choreographed
by an upper layer (as in Polyglot Persistence, Hexagonal Architecture or Hierarchy) – which
boils down to the same “separate subset of subrequests” under the hood. However, if the
services that form a layer need to intercommunicate, you immediately get the whole set of
troubles with debugging, sharing data and performance.

Performance
The performance of a layered system is shaped by two factors:
● Communication between layers is slower than that inside a layer. Components of a

layer may access each other’s data directly, while accessing another layer involves
data transformation (as interfaces tend to operate generic data structures),
serialization and often IPC or networking.

● The frequency and granularity of events or actions increases as we move from the
upper more abstract layers to the low-level components that interface an OS or
hardware.

That give rise to the following optimizations that decrease the number of interlayer calls:



Caching: an upper layer tends to model (cache last known state of) the layers below it.
This way it can behave as if it knew the state of the whole system without querying the
actual state which is stored in the hardware below all the layers. Such an approach is
universal with control software – the systems that operate physical devices. For example, a
network monitoring suite shows you the last known state of all the components it observes
without actually querying them – it is subscribed to notifications and remembers what each
device has reported.

Aggregation: a lower layer collects multiple events before notifying the layer above it to
avoid being overly chatty. An example would be an IIoT field gateway that collects data from
all the sensors in the building and sends a single report to the server once in a while. Or take
a data transfer over a network where a low-level driver collects multiple data packets coming
from the hardware and sends an acknowledgement for each of them while waiting for a
datagram or file transfer to complete. It notifies its user only once when all the data has been
collected and its integrity confirmed.

Batching: an upper layer forms a queue of commands and sends it as a single job to a
layer below it. This takes place in drivers for complex low-level hardware, like printers, or in
database access as stored procedures. [POSA4] describes the approach as Combined
Method, Enumeration Method and Batch Method patterns. Programming languages and
frameworks may implement foreach and map/reduce which allow for a single command to
operate on multiple pieces of data.



Strategy injection: an upper layer installs an event handler (hook) into the lower layer.
The goal is for the hook to do basic pre-processing, filtering, aggregation and decision
making to deal with the majority of events autonomously while escalating to the upper layer
in exceptional or important cases. That may help in such time-critical domains as
high-frequency trading.

Layers can be scaled independently, as exemplified by the common web applications
that comprise a highly scalable and resource-consuming frontend, somewhat scalable
backend and unscalable data layer, or by an OS (lower layer) that runs multiple user
applications (upper layer).

Dependencies
Usually an upper layer depends on the API (application programming interface) of the

layer directly below it. That makes sense as the lower the layer is, the more stable it tends to
be: a user-facing software gets updated on a daily or weekly basis while system drivers may
not change for years. As every update of a component may destabilize other components
that depend on it, it is preferable for a quickly evolving component to depend on others, not
be dependent upon.

Some domains, such as hardware or telecom, require polymorphism of their lower
layers. In that case an upper layer (e.g. OS kernel) defines an SPI (service provider
interface) which is implemented by every variant of the lower layer (e.g. a device driver).
That allows for a single implementation of the upper layer to be interoperable with any
subclass of the lower layer. Such an approach engines Plugins, Microkernel and Hexagonal
Architecture.

There may also be an adapter layer between your system’s SPI and an external API
which is called Anticorruption Layer [DDD], Database Abstraction Layer / Database Access
Layer [POSA4] / Data Mapper [PEAA], OS Abstraction Layer or Hardware Abstraction Layer,
depending on what it adapts.

https://en.wikipedia.org/wiki/Database_abstraction_layer


A layer can be closed (strict) or open (relaxed). A layer above a closed layer depends
only on the closed layer right below it – it does not see through it. Contrariwise, a layer
above an open layer depends on both the open layer and the layer below it. The open layer
is transparent. That helps smaller layers that encapsulate one or two subdomains: if such a
layer were closed, it would have to copy much of the interface of the layer below it just to
forward there the incoming requests which it does not handle. The optimization of the open
layer has its cost: the team that works on the layer above an open layer needs to learn two
APIs, which may have incompatible terminology.

If you ever need to scale (run multiple instances of) a layer, you may notice that a layer
which sends requests naturally supports multiple instances, with the instance address being
appended to each request so that its destination layer knows where to send the response.
On the other hand, if you need multiple instances of an interior layer, you’ll need a load
balancer to dispatch requests among its instances.



Applicability
Layers are good for:
● Small and medium-sized projects. Separating the business logic from the low-level

code should be enough to work comfortably on codebases below 100 000 lines in
size.

● Specialized teams. You can have a team per layer: some people, who are proficient
in optimization, work on the high load infrastructure, while others talk to the
customers and write the business logic.

● Deployment over a specific hardware. The frontend instances run on the client
devices, the backend needs RAM, the data layer needs HDD and security. There is
no way to unite them into a single generic module.

● Flexible scaling. It is common to have hundreds or thousands of frontend instances
being served by several backend processes that use a single database.

● Real-time systems. Hardware components and network events often need the
software to respond quickly. This is achievable by splitting the time-critical code from
normal priority calculations. See Hexagonal Architecture and Microkernel for
improved solutions.

Layers are bad for:
● Large projects. You are still going to enter the monolithic hell if you reach 1 000 000

lines of code.
● Low-latency decision making. If your business logic needs to be applied in real time,

you cannot tolerate the extra latency caused by the interlayer communication.

Relations

Layers:
● Can be applied to the internals of any module, for example, layering Services results

in Layered Services.
● Can be altered by Plugins or extended with an orchestrator, proxy and/or shared

repository to form an extra layer.



● Can be implemented by Services resulting in layers of services in Service-Oriented
Architecture, Backends for Frontends or Polyglot Persistence.

Variants by isolation
There are several grades of layer isolation between unstructured Monolith and

distributed Tiers. All of them are widely used in practice: each step adds its specific benefits
and drawbacks to those of the previous stages, and at some point it makes sense to reject
the next deal.

Synchronous layers, Layered Monolith
First you separate the high-level logic from low-level implementation details. You draw

interfaces between them. The layers still call each other directly, but at least the code has
been sorted out into some kind of structure, and you can now employ two or three dedicated
teams, one per layer. The cost is quite low – the interfaces stand in the way of aggressive
performance optimizations.

Benefits Drawbacks
Structured code Lost opportunities for optimization
Two or three teams

Asynchronous layers
The next step you may decide to take isolates the layers’ execution threads and data.

The layers will communicate only with in-process messages, which is slower than direct
calls, and is harder to debug, but now each layer can run at its own pace – which is a must
for interactive systems.

Benefits Drawbacks
Structured code No opportunities for optimization
Two or three teams Some troubles with debugging
The layers may differ in latency

A process per layer
Next, you may run each layer as a separate process. You’ll have to devise an efficient

means of communication between them, but now the layers may differ in technologies,
security, frequency of deployment and even stability – a crash of one layer does not affect
the others. Moreover, you may scale a layer to saturate the available CPU cores. You pay
with even harder debugging, lower performance and you’ll have to think of error recovery, as
if one of the components crashes, then others are likely to remain in an inconsistent state.

Benefits Drawbacks
Structured code No opportunities for optimization
Two or three teams Troublesome debugging
The layers may differ in latency Some performance penalty
The layers may differ in technologies Need error recovery
The layers are deployed independently
Software security isolation
Software fault isolation
Limited scalability



Distributed tiers
Finally, you may separate the hardware the processes run on – going all out for

distribution. That allows for fine-tuning system configuration, running parts of the system
close to its clients, physically isolating the most secure components and scalability limited
only by your budget. The price is paid in performance and debugging experience.

Benefits Drawbacks
Structured code No opportunities for optimization
Two or three teams Even worse debugging
The layers may differ in latency Definite performance penalty
The layers may differ in technologies Need error recovery
The layers are deployed independently
Full security isolation
Full fault isolation
Full scalability
Layers vary in hardware setup
Deployment close to clients

Examples
The notion of layering seems to be so natural to our minds that most of the known

architectures are layered. Not surprisingly, there are multiple approaches to assigning
functionality to and naming the layers:

Domain-Driven Design (DDD) Layers

[DDD] recognizes four layers with the upper layers closer to the user:
● Presentation (User Interface) – the user-facing component (frontend, UI). It should be

highly responsive to the user's input.
● Application (Integration, Service) – the high-level scenarios that build up on the API

of the domain layer. It should be easy to change and deploy. See Orchestrator.



● Domain (Model, Business Logic) – the bulk of the mid- and low-level business logic.
It should usually be well-tested and performant.

● Infrastructure (Utility, Data Access) – the utility components devoid of business logic.
Their stability and performance is business-critical but updates are rare.

For example, in an online banking system comprises:
● the presentation layer is the frontend;
● the application layer knows the sequences of steps for payment, card to card transfer

and viewing the client’s history of transactions;
● the domain layer contains the classes for various kinds of cards and accounts;
● the infrastructure layer with the database and libraries for encryption and interbank

communication.
We will often use this naming convention while describing more complex architectures,

some of which have all the four layers, while others merge several layers together or omit
the frontend and concentrate on the components that contain the business logic.

In practice you are much more likely to meet the derived DDD-style Hexagonal
Architecture than the original DDD Layers.

Three-Tier Architecture

Here the focus lies with distribution of the components over heterogeneous hardware
(tiers):

● Presentation (Frontend) tier – the user-facing application that runs on a user’s
hardware. It is very scalable, responsive but insecure.

● Logic (Backend) tier – the business logic which is deployed on the service provider’s
side. Its scalability is limited mostly by the funding committed, security is good and
latency is high.

● Data (Database) tier – the service provider’s database that runs on a dedicated
server. It is not scalable but is very secure.

In this case the division into layers resolves the conflict between scalability, latency,
security and cost as discussed in detail in the chapter on distribution.

As we can see, the tiers don’t directly map to the DDD layers: for example, encryption
libraries belong to the (lowest) infrastructure layer of DDD but to the (middle) application tier.



Embedded systems

Bare metal and micro-OS systems that run on low-end chips use a different terminology,
which is not unified among domains. A generic example involves:

● Presentation – the UI engine used by the HMI. It may be a 3rd party library or come
as a part of the SDK.

● Human-Machine Interface (HMI aka MMI) – the UI and high-level business logic for
user scenarios, written by a value-added reseller.

● Software Development Kit (SDK) – the mid-level business logic and device drivers,
written by the original equipment manufacturer.

● Hardware Abstraction Layer (HAL) – the low-level code that abstracts the hardware
interface to enable code reuse between hardware platforms.

● Firmware of Hardware Components – usually closed-source binary pre-programmed
into chips by chipmakers.

● Hardware.
It is of note that in this approach the layers form strongly coupled pairs. Each pair is

implemented by a separate party of the supply chain, which is an extra force that shapes the
system into layers.

An example of such a system can be found in an old phone or digital camera.

Evolutions
Layers are not without drawbacks, which may cause the system to evolve. A summary of

such evolutions is below while the details are reserved for Appendix E.

Evolutions that make more layers
Not all the layered architectures are equally layered. A monolith with a proxy or database

has already stepped into the realm of Layers but is far away from reaping all its benefits.
Such a kind of system may continue its journey in a few ways that were earlier discussed for
Monolith:

● Employing a database (if you don’t use one) lets you rely on a thoroughly optimized
state-of-the-art subsystem for data processing and storage.

● Proxies are similarly reusable generic modules to be added at will.

https://en.wikipedia.org/wiki/Value-added_reseller
https://en.wikipedia.org/wiki/Original_equipment_manufacturer


● Implementing an orchestrator on top of your system may improve programming
experience and runtime performance for your clients.

It is also common to:
● Have the business logic divided in two layers.

Evolutions that help large projects
The main drawback (and benefit as well) of Layers is that much or all of the business

logic is kept together in one or two components. That allows for easy debugging and fast
development in the initial stages of the project but slows down and complicates work as the
project grows in size. The only way for a growing project to survive and continue evolving at
a reasonable speed is to divide its business logic into several smaller, thus less complex
modules that match subdomains (bounded contexts) [DDD]. There are several options for
such a change, with their applicability depending on the domain:

● The middle layer with the main business logic can be divided into services leaving
the upper orchestrator and lower database layers intact for future evolutions.



● Sometimes the business logic can be represented as a set of directed graphs which
is known as Event-Driven Architecture.

● If you are lucky, your domain makes a Top-Down Hierarchy.

Evolutions that improve performance
There are several ways to improve performance of a layered system. One we have

already discussed for Shards:
● Space-Based Architecture co-locates the database and business logic and scales

both dynamically.

Others are new:
● Merging several layers improves latency by eliminating the communication overhead.



● Scaling some of the layers may improve throughput.

● Polyglot Persistence is the pattern for using multiple specialized databases.

Evolutions to gain flexibility
The last group of evolutions to consider is about making the system more adaptable. We

have already discussed the following evolutions for Monolith:
● The behavior of the system may be modified with plugins.
● Hexagonal Architecture allows for abstracting the business logic from the

technologies used on the project.
● Scripts allow for customization of the system’s logic on a per client basis.

There is also a new evolution that modifies the upper (orchestration) layer:



● The orchestration layer may be split into backends for frontends to match the needs
of several kinds of clients.

Summary
Layered architecture is superior for medium-sized projects. It supports rapid

development by two or three teams, is flexible enough to resolve conflicting forces and
provides many options for further evolution, which will likely be needed when the project
grows in size and complexity.



Services

Divide and conquer. Gain flexibility through decoupling subdomains.
Known as: Services, Domain Services [FSA and SAHP, but not DDD].
Variants: Pipeline got a dedicated chapter. Many modifications are listed under Evolution.
By isolation:
● Synchronous modules: Modular Monolith [FSA] (Modulith),
● Asynchronous modules: Modular Monolith (Modulith) / Embedded Actors,
● Multiple processes,
● Distributed runtime: Function as a Service (FaaS) (including Nanoservices) /

Backend Actors,
● Distributed services: Service-Based Architecture [FSA] / Space-Based Architecture

[FSA] / Microservices.
By communication:
● Direct method calls,
● RPCs and commands (request/confirm pairs),
● Notifications (pub/sub) and shared data,
● (inexact) No communication.
By size:
● Whole subdomain: Domain Services [FSA],
● Part of a subdomain: Microservices,
● Class-like: Actors,
● Single function: FaaS [DDS] / Nanoservices.
By internal structure:
● Monolithic service,
● Layered service,
● Hexagonal service,
● Scaled service,
● Cell (WSO2 definition) (service of services).
Examples:
● Service-Based Architecture [FSA],
● Microservices [MP, FSA],
● Actors,
● (inexact) Nanoservices (API layer),

https://medium.com/design-microservices-architecture-with-patterns/microservices-killer-modular-monolithic-architecture-ac83814f6862
https://medium.com/design-microservices-architecture-with-patterns/microservices-killer-modular-monolithic-architecture-ac83814f6862
https://medium.com/itnext/introduction-to-software-architecture-with-actors-part-1-89de6000e0d3
https://www.bmc.com/blogs/serverless-faas/
https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22
https://volodymyrpavlyshyn.medium.com/actors-actor-systems-as-massively-distributed-scalability-architecture-5e40f5ea9e86
https://en.wikipedia.org/wiki/Remote_procedure_call
https://volodymyrpavlyshyn.medium.com/actors-actor-systems-as-massively-distributed-scalability-architecture-5e40f5ea9e86
https://en.wikipedia.org/wiki/Function_as_a_service
https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22
https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://volodymyrpavlyshyn.medium.com/actors-actor-systems-as-massively-distributed-scalability-architecture-5e40f5ea9e86


● (inexact) Device Drivers.
Structure: A module per subdomain.
Type: Main.

Benefits Drawbacks
Supports large codebases Global use cases are hard to debug
Multiple development teams and technologies Poor latency in global use cases
Forces may vary by subdomain No good way to share state between services

The domain structure should never change
Operational complexity

References: [FSA] has a chapter on Service-Based Architecture; [MP] is dedicated to
Microservices.

Splitting a monolith by subdomain allows for mostly independent development,
deployment and properties of the resulting components. However, the subdomains must be
loosely coupled, and if they are of comparable size, the partitioning can greatly reduce the
total complexity of the project’s code by cutting accidental dependencies between the
subdomains. Moreover, if one of the services grows to an unmanageable size, it can often
be further partitioned by sub-subdomains to form a cell. This flexibility is paid for by the
complexity and performance of use cases that need collaboration from multiple subdomains.
Another issue to remember is that the boundaries between services are nearly impossible to
move at later project stages, as the services grow to rely on different technologies and
implementation styles, thus this metapattern assumes perfect practical knowledge of the
domain and relatively stable requirements.

Performance
Interservice communication is relatively slow and resource-consuming, therefore it

should be kept to a minimum.

The perfect case is when a single service has enough authority to answer a client’s
request or process an event. That case should not be that rare as a service covers a whole
subdomain while subdomains are expected to be loosely coupled (by definition).



Worse is the one when an event starts a chain reaction over a system, likely looping
back a response to the original service or changing the target state of another controlled
subsystem.

In the slowest scenario a service needs to synchronize its state with multiple other
services, usually via locks and distributed transactions.

Multiple instances of an individual service may be deployed to improve throughput of the
system. However, such a case will likely need a middleware or load balancer to distribute
interservice requests among the instances and a shared repository to store and synchronize
any non-shardable (accessed by several instances) state.

Dependencies
When we see a service to request help from other services and receive the results

(confirmation), that service orchestrates the services it uses. Services often orchestrate each
other because the subdomain a service is dedicated to is not independent of other
subdomains. A service depends on any services that it uses.

Another way for services to communicate is choreography – when a service sends a
command or publishes a notification and does not expect any response. This is
characteristic of pipelines, covered in the next chapter. Right now we should note that
orchestration and choreography may be intermixed, in which case a service depends on all
the services it uses or subscribes to.

If the system relies on notifications (services publish domain events), it is possible to
avoid interservice queries (pairs of a read request and confirmation with the data retrieved)
by storing the data received in notifications to CQRS (or materialized) views [MP], which can
reside in memory or in a database. The views can be planted inside every service that needs
data which belongs to other services or can make a dedicated query service [MP]. Though
the main goal of materialized views is to resolve distributed joins, they also remove
dependencies in the code of services and optimize out interservice queries, simplifying APIs
and improving performance. Further examples will be discussed in the chapter on Polyglot
Persistence.

https://martinfowler.com/bliki/MemoryImage.html


In general, a large service should wrap its dependencies with an anticorruption layer
[DDD], following Hexagonal Architecture. The layer consists of adapters between the internal
domain model of the service and the APIs of the components it uses, which isolate the
business logic from the external environment, granting that no change in the interface of an
external service or library may ever cause much work to the team that writes our business
logic.

Applicability
Services are good for:
● Large projects. With multiple services independently developed, the project may

grow well above 1 000 000 lines of code and still be comfortable to work on as no
single service grows unreasonably large or complex.

● Specialized teams. Each service would often be developed by a dedicated team that
invests its time in learning its subdomain. This way none needs to have a detailed
knowledge of the full set of requirements, which is important for large domains.

● Varied forces. In system and embedded programming multiple components of wildly
varying behaviors need to be managed. Each of them is controlled by a dedicated
service (called “driver”) which adapts to the specifics of the managed subsystem.

● Flexible scaling. Some services may be under more load than others. It makes sense
to deploy multiple instances of heavily loaded services.

Services should be avoided for:
● Cohesive domains. If everything strongly depends on everything, any attempt to cut

the knot with interfaces is going to make things worse. Unless the project is already
dying because of its huge codebase, in which case you have nothing to lose.

● Unfamiliar domains. If you don’t understand the intricacies of the system you are
going to build, you may misalign the interfaces, and when the mistake will come to
light, the architecture will be too hard to change [LDDD]. Coupled services may be
worse than a monolith.

https://martinfowler.com/bliki/MonolithFirst.html


● Quick start. It takes effort to design good interfaces and contracts for the services,
and managing multiple deployment units is not free of trouble. Debugging will be an
issue.

● Low latency. If the system as a whole should react to events in real time, services
should be avoided. However, individual services can provide low latency for local use
cases (when a single service has enough authority to react to the incoming event).

Relations

● The division by subdomain can be applied to Layers to form Service-Oriented
Architecture (layers of services); to Proxy, Orchestrator or API Gateway to make
Backends for Frontends; to a (shared) database to yield Polyglot Persistence.

● Services can be extended with a proxy, orchestrator, middleware or shared
repository.

● Each service can be implemented by layers (resulting in a layered service),
hexagonal architecture or a cell.

Variants by isolation
Division by subdomain is so commonplace and varied that no universal terminology

emerged over the years. Below is my summary, in no way complete, of several dimensions
of freedom for such systems. Each section lists well-known architectures it applies to.

First and foremost, there are multiple grades between cohesive Monolith and distributed
Services. You should choose where to stop as the benefits of the next steps (color-coded
below) may not outweigh their drawbacks for your project. I list the most common options
while a few more esoteric architectures can be found in Volodymyr Pavlyshyn’s overview.

Synchronous modules: Modular Monolith (Modulith)
The first step to take when designing a large project is division of the codebase into

loosely coupled modules that match subdomains (bounded contexts [DDD]). If successful,
that opens up development by a team per module. The entire application still runs as a
single process, thus it is easy to debug, the modules can share data, and any crash kills the
whole system. You pay by drawing the boundaries which will be hard to move in the future.

Benefits Drawbacks
Multi-team development Subdomain boundaries are frozen

https://volodymyrpavlyshyn.medium.com/monoliths-microlith-moduliths-self-contained-systems-a-system-of-systems-nano-services-cf3e9e1869c0


Asynchronous modules: Modular Monolith (Modulith), Embedded
Actors

The next step is separating the modules’ execution threads and data. Each module
becomes a kind of actor that communicates with other components through messaging. Now
your modules don’t block each other’s execution and you can replay events at the cost of
nightmarish debugging and no clean way to share data between or synchronize the state of
the components.

Benefits Drawbacks
Multi-team development Subdomain boundaries are frozen
Event replay No good way to share data or synchronize

state
Some independence of module qualities Hard to debug

Multiple processes
There is also an option of running the system components as separate binaries, which

lets the components vary in technologies, allows for granular updates and addresses
stability (a web browser does not stop when one of its tabs crashes) but adds the whole
dimension of error recovery and half-committed transactions.

Benefits Drawbacks
Multi-team development Subdomain boundaries are frozen
Event replay No good way to share data or synchronize

state
Independence of component qualities and
technologies

Hard to debug

Single-component updates Needs error recovery routines
Software fault isolation Data inconsistencies after partial crashes
Limited granular scalability

Distributed runtime: Function as a Service (FaaS) (including
Nanoservices), Backend Actors

Modern distributed runtimes create a virtual namespace that may be deployed on a
single machine or over a network. They may redistribute the running components over
servers in a way to minimize network communication and may offer distributed debugging.
With actors, if one of them crashes, that generates a message to another actor which may
decide on how to handle the error. The convenience of using a runtime has the dark side of
vendor lock-in.

Benefits Drawbacks
Multi-team development Subdomain boundaries are frozen
Event replay No good way to share data or synchronize

state
Independence of component qualities and
technologies

Hard to debug

Single-component updates Needs error recovery routines
Full fault isolation Data inconsistencies after partial crashes
Full dynamic granular scalability Vendor lock-in

https://en.wikipedia.org/wiki/Actor_model
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Actor_model


Moderate communication overhead
Moderate performance overhead caused by
the framework

Distributed services: Service-Based Architecture, Space-Based
Architecture, Microservices

Fully autonomous services run on dedicated servers or virtual machines. This way you
employ resources of multiple servers, but the communication between them is both unstable
(leading to several kinds of artifacts [MP]) and slow, and debugging tends to be very hard.
Mesh-based (Microservices and Space-Based) architectures provide dynamic scaling under
load.

Benefits Drawbacks
Multi-team development Subdomain boundaries are frozen
Event replay No good way to share data or synchronize

state
Independence of component qualities and
technologies

Very hard to debug

Single-component updates Needs error recovery routines
Full fault isolation Data inconsistencies after partial crashes
Full dynamic granular scalability High communication overhead

Variants by communication
Services also differ in the way they communicate, which influences some of their

properties:

Direct method calls
When components run in the same process and share execution threads, one

component can call others. This is blazingly fast and efficient, but you should take care to
protect the module’s state from simultaneous access by multiple threads (and yes,
deadlocks do happen). Moreover, it is hard to know what the module which you call is going
to call in its turn – thus no matter how much you optimize your code, its performance
depends on that of other components, often in subtle ways.

RPCs and commands (request/confirm pairs)
If a service calls into another service or requests it to act and return results (this is how

method calls are implemented in distributed systems) it has to store the state of the scenario
it is executing for the duration of the call (till the confirmation message is received). That
takes resources: the stored state is kept in RAM, and the interruption and resumption of the
execution wastes CPU cycles on context switch and the resulting cache misses. Blocked
threads are especially heavy, while coroutines or fibers are more lightweight but still not free.

Another trouble for distributed systems comes about with error recovery: if your
component did not receive a timely response, you don’t know if your request was executed
by its target – and you need to be really careful about possible data corruption if it is
executed twice [MP].

https://en.wikipedia.org/wiki/Remote_procedure_call


On the bright side, orchestration tends to be human- and debugger-friendly as it keeps
consecutive actions together in the code. Thus, synchronous interaction is the default mode
of communication in many projects.

Notifications (pub/sub) and shared data
A service may do something, publish a notification or write results to a shared datastore

for other services to process, and forget about the task it has completed its role in.
Choreography is resource-efficient, but you need to look into multiple pieces of code spread
over several services to see or debug the whole scenario.

(inexact) No communication
Finally, some kinds of services (device drivers and Nanoservices) never communicate

with each other. Strictly speaking, such services don’t make a system – instead, they are
isolated monoliths which are managed by a higher-level component (OS kernel for drivers,
client for nanoservices).

Nevertheless, it is a fun fact, that as soon as the services don’t communicate, the main
drawbacks of the Services architecture disappear:

● There is no slow and error-prone interservice communication (they never
communicate!).

● It’s not hard to debug multi-service use cases (there are no such scenarios!).
● The services don’t corrupt data on crash (there are no distributed transactions).

Variants by size
Last but not least, the simplest classification of subdomain-separated components is by

their size:

Whole subdomain: Domain Services
Each domain service [FSA] of Service-Based Architecture [FSA] implements a whole

subdomain. It is the product of full-time work of a dedicated team. A project is unlikely to
have more than 10 of such services (in part because the number of top-level subdomains is
limited).

Part of a subdomain: Microservices
Microservice enthusiasts estimate the best size of a component of their architecture to be

below a month of development by a single team. Such a size allows for a complete rewrite
instead of refactoring if the requirements change. When a team completes one microservice
it can start working on another, probably related, one, while still maintaining its previous
work. A project is likely to contain from tens to few hundreds of microservices.

Class-like: Actors
An actor is an object with a message-based interface. They are used correspondingly.

Though the size of an actor may vary, as does the size of an OOP class, it is still very likely
to be written by a single programmer.

https://volodymyrpavlyshyn.medium.com/actors-actor-systems-as-massively-distributed-scalability-architecture-5e40f5ea9e86


Single function: FaaS, Nanoservices
A nanoservice is a single function (FaaS [DDS]), usually deployed to a serverless

provider. Nanoservices are used as API method handlers or as building blocks for pipelines.

Variants by internal structure
A service is not necessarily monolithic inside. As a service is encapsulated from its users

by its interface, it can have any kind of internal structure. The most common cases are:

All of them can be intermixed in a single system.

Monolithic service

A service with no definite internal structure, probably small enough to allow for complete
rewrite instead of refactoring – the ideal of proponents of Microservices. It’s simple&stupid to
implement but relies on external sources of persistent data. For example, device drivers and
actors usually get their (persisted) config during initialization. A monolithic backend service
may receive all the data it needs in incoming requests, query another service or read it from
a shared database.

https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22
https://en.wikipedia.org/wiki/Function_as_a_service


Layered service

The service is divided into layers. The approach is very common both with backend
(micro-)services, where at least the database is separated from the business logic, and with
device drivers in system programming, where hardware-specific low-level interrupt handlers
and register access are separated from the main logic and from the high-level OS interface.

Layering provides all the benefits of the Layers pattern, including support for conflicting
forces, which may manifest, for example, as the ability to deploy the database to a dedicated
server in backend or as a very low latency in the hardware-facing layer of a device driver.

Another benefit comes from the existence of the upper integration layer which may
orchestrate interactions with other services.

Hexagonal service

All the external dependencies of the service are isolated behind generic interfaces.
This is the application of Hexagonal Architecture which both ensures that the business

logic does not depend on technologies selected and protects from vendor lock-in. Highly
recommended for long-living projects.



Scaled service

There are multiple instances of a service. In most cases they share a database (though
sometimes the database may be sharded together with the service that uses it) and get their
requests through a load balancer.

Cell (WSO2 definition) (service of services)

The service is split into a set of subservices, and all the incoming and outgoing
communication goes through a cell gateway which encapsulates the cell from its
environment. A cell may deploy its own middleware and/or share a database among its
components.

Cell-Based Architecture (according to WSO2, as opposed to Amazon's alias for Shards)
appears when there is a need to recursively split a service, either because it grew too large
or because it makes sense to use several incompatible technologies for its parts. It may also
be applied to group services if there are too many of them.

Examples
Services pervade advanced architectures which either build around a layer of services

that contains the bulk of the business logic (Proxy, Orchestrator, Middleware and Shared
Repository) or use small services as an extension of the main monolithic component
(PlugIns and Hexagonal Architecture). Polyglot Persistence, Backends for Frontends and

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html


Service-Oriented Architecture go all out partitioning the system into interconnected layers of
services. Hierarchy and Mesh require the services to implement or use a polymorphic
interface to simplify the components that manage them.

Examples of Services (a system divided by subdomain) include:

Service-Based Architecture

This is the simplest use of services where each subdomain gets a dedicated component.
A Service-Based Architecture [FSA] tends to consist of few coarse-grained services, some of
which may share a database and have little direct communication. An API gateway is often
present as well.

Microservices

Microservices [MP, FSA] are usually smaller than Service-Based Architecture, with their
multiple services per subdomain and strict decoupling: no shared database, independent
(and often dynamic) scaling and deployment. Even orchestration and distributed transactions
(sagas) are considered to be a smell of bad design.

Microservices fit loosely coupled domains with parts that drastically vary in forces and
technologies. Any attempt to use them for an unfamiliar domain is calling for trouble. Some
authors insist that the “micro-” means that a microservice should not be larger in scope than
a couple of weeks of a team’s programming. That allows for rewriting one from scratch
instead of refactoring. Others oppose that too high granularity makes everything
overcomplicated. Such a diversity of opinions may mean that the applicability and the very
definition of Microservices varies from domain to domain.

https://medium.com/swlh/stop-this-microservices-madness-8e4e0695805b
https://martinfowler.com/bliki/MonolithFirst.html
https://dwmkerr.com/the-death-of-microservice-madness-in-2018/


This architecture usually relies on a service mesh for middleware where common
functionality, like logging, is implemented in co-located sidecars [DDS]. A layer of
orchestrators (called integration microservices) may be present, resulting in Cell-Based
Architecture or Backends for Frontends.

Dynamically scaled pools of service instances are common thanks to the elasticity of
hosting in a cloud. Extreme elasticity requires Space-Based Architecture, which puts a node
of a distributed in-memory database in each sidecar.

Actors

An actor is an entity with private data and a public message queue. They are like objects
with the difference that actors communicate only by sending each other asynchronous
messages. The fact that a single execution thread may serve thousands of actors makes
actor systems an extremely lightweight approach to asynchronous programming. As an actor
is usually single-threaded, there is no place for mutexes and deadlocks in the code, and it is
possible to replay events. Non-blocking Proactors are very very good for real-time systems.

Actors have long been used in telephony (which is the domain where real-time
communication meets complex logic and low resources) and with the invention of distributed
runtimes (e.g. Erlang/OTP or Akka) they found their place in messengers and banking,
where there is a need to interconnect millions of users while providing personalized
experience and history for everyone. Every user gets an actor that represents them in the
system by communicating both with the other actors (forming a kind of Mesh) and with the
user’s client application(s).

If we apply a bit of generalization, we can deduce that any server or a backend service is
an actor as its data cannot be accessed from outside while asynchronous IP packets are its
only means of communication. Services of Event-Driven Architecture closely match the
definition of actors.

https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md
https://volodymyrpavlyshyn.medium.com/actors-actor-systems-as-massively-distributed-scalability-architecture-5e40f5ea9e86
https://martinfowler.com/eaaDev/EventSourcing.html


(inexact) Nanoservices (API layer)

Though Nanoservices are defined by their size (a single function), not system topology, I
want to mention their specific application from Diego Zanon’s book Building Serverless Web
Applications. That example is interesting because it comprises a single layer of isolated
functions (each handling a single API method) which may share functionality by including
code from a common repository. As nanoservices of this kind never interact, the common
drawbacks of Services (poor debugging and high latency) don’t apply to them.

(inexact) Device Drivers

An operating system must run efficiently with any set of hardware components that come
from different manufacturers. It is impossible to predict all the combinations beforehand.
Thus it employs a service (called driver) per hardware device. A driver adapts a
manufacturer- and model-specific hardware interface to the generic interface of the OS
kernel, thus allowing for the kernel to operate the hardware it controls without the detailed
knowledge of its model. Internally a driver is usually layered:

● The lowest layer, called hardware abstraction layer (HAL), provides a
model-independent interface for a whole family of devices from a manufacturer.

● The next layer of a driver is likely to contain manufacturer-specific algorithms for
efficient use of the hardware.



● The third layer, if present, is probably busy with high-level tasks which are common
for all devices of the given type and may be implemented by the kernel programmers.

The whole system of kernel, drivers and user applications comprises the Microkernel
pattern which is the common architecture for bridging resource consumers and resource
providers. As the drivers don’t need to coordinate themselves (this is done by the kernel),
they don’t really make a system of Services and thus don’t have the corresponding
drawbacks.

Evolutions
Services, just like the other basic metapatterns, are subject to a wide array of evolutions,

which are summarized below and detailed in Appendix E.

Evolutions that add or remove services
Services work well when each service matches a subdomain and is developed by a

single team. If those premises change, you’ll need to restructure the services:
● A new feature request may emerge outside of any of the existing subdomains,

creating a new service or a service may grow too large to be developed by a single
team, calling for division.

● Two services may become so strongly coupled that they fare better if merged
together, or the entire system may need to be glued back into a monolith if the
domain knowledge changes or if interservice communication strongly degrades
performance.

Evolutions that add layers
The most common modifications of a system of services involve supplementary

system-wide layers which compensate for the inability of the services to share anything
among themselves:

● A middleware knows of all the deployed service instances. It mediates the
communication between them and may manage their scaling and failure recovery.



● Sidecars [DDS] of a service mesh make a virtual layer of shared libraries for the
microservices it hosts.

● A shared database simplifies the initial phases of development and interservice
communication.

● Proxies stand between the system and its clients and take care of shared aspects
that otherwise would need to be implemented by every service.

● An orchestrator is the single place where the high-level logic of all use cases resides.



Those layers may also be combined into combined components:
● Message Bus is a middleware that supports multiple protocols.
● API Gateway combines Gateway (a kind of Proxy) and Orchestrator.
● Event Mediator is an orchestrating middleware.
● Enterprise Service Bus (ESB) is an orchestrating message bus.
● Space-Based Architecture employs all the four layers: Gateway, Orchestrator,

Shared Repository and Middleware.

Evolutions of individual services
Each service starts as a monolith or layers and may undergo corresponding evolutions:
● Layers help to reuse 3rd party components (e.g. a database), organize the code,

support conflicting forces and the upper layer of the service may orchestrate other
services.

● A cell is a subdivision of a service into several services that share an API gateway
and may share a database or a middleware. All the components of a cell are usually
deployed together. That helps to deal with overgrown services without increasing the
operational complexity of the system – but only if the cell’s components are loosely
coupled.

● A service may use a load balancer or a load balancing middleware to scale. The
instances usually persist to a shared database.

● Polyglot Persistence or CQRS may be used inside a service to improve the
performance of its data layer.

● Materialized views [DDIA] or a query service [MP] help reconstruct the state of other
services from event sourcing.

● Hexagonal Architecture isolates the business logic of the service from external
dependencies.

● In rare cases Plugins or Scripts help to vary the behavior of a service.

Summary
Services are mostly dedicated to subdividing a large codebase into modules of

manageable size, each assigned to a dedicated team. They may vary in technologies and
quality attributes. However, services have a hard time cooperating in anything, from sharing
data to debugging, and come with an innate performance penalty. There are options
between Monolith and distributed Services with milder benefits and drawbacks.



Pipeline

Never return. Push your data through a chain of processors.
Known as: Pipeline [DDS].
Variants:
By scheduling:
● Stream processing [DDIA] / Neartime system [DDIA],
● Batch processing [DDIA, DDS] / Offline system [DDIA].
Examples:
● Pipes and Filters [POSA1, POSA4] / Workflow System [DDS, DDIA],
● Choreographed (Broker Topology) Event-Driven Architecture (EDA) [SAP, FSA,

DDS],
● Data Mesh [LDDD],
● Function as a Service (FaaS) [DDS] / Nanoservices (pipelined).
Structure: A module per step of data processing.
Type: Main.

Benefits Drawbacks
It is very easy to add or replace components Deteriorates as the number of scenarios

grows
Multiple development teams and technologies Poor latency
Good scalability Significant communication overhead
The components may be reused
The components may be tested in isolation

References: Pipes and Filters is defined in [POSA1] and is the foundation for part 3
(“Derived Data”) of [DDIA]. [DDS] overviews all kinds of pipelines in general while [FSA] has
a very deep chapter on Event-Driven Architecture.

Pipeline is a variation of Services with no user sessions [DDS], unidirectional data flow
and quite often a single message type per communication channel (which thus becomes a
data stream). As processed data does not return to the module that requested the
processing, there is no common notion of request ownership or high-level (supervisor,
application) and low-level (worker, domain) business logic. On one hand, as all the
components are equal and know nothing about each other (the interfaces are often limited to
a single entry point), it is very easy to reshape the overall algorithm. On the other hand, the
system lacks the abstractness dimension, thus any new use case builds a separate pipeline

https://martinfowler.com/articles/data-mesh-principles.html
https://en.wikipedia.org/wiki/Function_as_a_service
https://increment.com/software-architecture/the-rise-of-nanoservices/


which may easily turn the architecture into a mess of thousands of intrinsically interrelated
pieces as the number of scenarios grows.

Performance
As any task for a pipeline is likely to involve all (or most of, if branched) its steps, there is

no way to optimize away the communication. Thus, latency tends to be high. However, as its
components are often stateless, multiple instances of individual services or entire pipelines
can be run in parallel, making Pipeline a highly scalable architecture.

Another point of notice is that a local pipeline naturally spreads the load among available
CPU cores without any explicit locks or thread synchronization.

Dependencies
There are three ways to build communication in a pipeline, with different dependencies:
● Commands make each service depend on the services it sends messages to. It is

easy to add a new input to such a pipeline.
● With publish/subscribe each service depends on the services it subscribes to. That

case favors downstream branching with multiple sinks.
● The services may share the message schema in which case all of them depend on it,

not on each other. That allows for reshuffling the services.

See the Choreography chapter for more detailed discussion.

Applicability
Pipeline is good for:
● Experimental algorithms. This architecture allows for the data processing steps both

to be tested in isolation and connected into complex systems with no changes in the
code.

● Easy scaling. Pipelines tend to evenly saturate all the available CPU cores without
any need for custom schedulers. Stateless services can run distributed, thus the
pipeline’s scalability is limited only by the data channels.

● Tailoring projects. Many pipeline components are abstract enough to be easily
reused, greatly lowering the cost of serial development of customized projects once
the company builds a collection of common reusable services.

Pipeline does not work for:
● High number of use cases. The number of components and their agglomerates is

going to be roughly proportional to the number of supported use cases and will easily
overwhelm any developer or architect if the number of scenarios grows with time.



● Low latency. Every transfer of a data packet between services takes time, not in the
least measure because of data serialization. Moreover, the next service is likely to be
busy processing its previous data packets or has to wait on the OS scheduler.

Relations
Pipeline:
● Is a kind of Services with unidirectional communication and often single input type.
● Is involved in CQRS, Polyglot Persistence with derived databases and MVC.
● Can be extended with a proxy, middleware or shared repository.

Variants by scheduling
A pipeline may be always active or run once in a while:

Stream processing, Neartime system
Stream processing [DDIA] is when the pipeline components (jobs, processors, filters,

services – whatever you prefer to call them) are actively waiting for input and process each
incoming item immediately. This results in near-real-time (neartime) latency [DDIA] but the
pipeline uses resources even when there is nothing to process.

Batch processing, Offline system
Batch processing [DDIA, DDS] happens when a batch of input items is collected in a

storage, then the pipeline is run (often by a scheduler) to process it. Such a mode of action
is called offline [DDIA] as the processing results are delayed. However, the company saves
on resources as the pipeline is active only for brief periods.

Examples
Pipelines may be local or distributed, linear or branched (usually trees, but cycles

happen in practice), they may utilize a feedback engine to keep throughput of all their
components uniform by slowing down faster steps or scaling out slower ones. In some
systems pipes (channels) or filters (services) persist data. Pipes may store the processed
data in files or databases to enable error recovery and event sourcing. Filters may need to
read or write to an (often shared) database if the data processing relies on historical data.
Moreover, transferring data through a pipe may be implemented as anything ranging from a
method call on the next filter to a pub/sub framework.

Such a variety of options enables the use of pipelines in a wide range of domains.
Notwithstanding, there are few mainstream types of pipeline architectures:



Pipes and Filters, Workflow System

Pipes and Filters [POSA1, POSA4] usually names a linear local system, which often runs
in a single process to avoid the overhead of data serialization. It may range from a Unix shell
script that passes file contents through a series of utilities to a hardware pipeline for image
processing in a video camera. The filters tend to be single-purpose (handle one type of
payload) and stateless. In some cases a filter may use a dedicated hardware. The entire
pipeline often operates on a single data format (Stamp Coupling [SAHP]).

Though most often a filter waits for data to appear in its input pipe, processes it and
pushes to its output pipe, allowing for multiple filters to run in parallel, some implementations
may let the source push the data through the entire pipeline, with each filter directly calling
the next filter in the line, or the sink pull the data by making direct upstream calls [POSA1].
That removes the need for pipes but is limited to a single CPU core.

Workflow [DDIA, DDS] is sometimes used as a modern name for a similar stepwise
processing, which often stores intermediate results in a file or database and may run
distributed. However, the same word generally describes the sequence of high-level steps in
a use case [PEAA], which is also called application or integration logic.

Examples: Unix shell pipes, processing of video streams, many types of hardware.

Choreographed (Broker Topology) Event-Driven Architecture (EDA)

Event-Driven Architecture (EDA) means that the system is built of services which use
events to communicate in a non-blocking way. The idea is similar to the actor model of
telecom and embedded programming. Thus, EDA itself does not define anything about the
structure of the system (except that it is not monolithic).

In practice, there are two kinds of Event-Driven Architectures:

https://en.wikipedia.org/wiki/Actor_model
https://theburningmonk.com/2020/08/choreography-vs-orchestration-in-the-land-of-serverless/


● Choreography / broker topology – the events are notifications (usually via pub/sub)
and the services involved form tree-like structures, which matches our definition of
Pipeline.

● Orchestration / mediator topology – the events are request/confirm pairs, and usually
there is a single entity that drives a use case by sending requests and receiving
confirmations, which corresponds to our Services metapattern with the supervisor
being an orchestrator, discussed in the chapter of its own.

An ordinary choreographed Event-Driven Architecture [SAP, FSA, DDS] is built as a set
of subdomain services (similar to the parent Services metapattern). Each of the services
subscribes to notifications from other services which it uses as action/data inputs and
produces notifications that other services may rely on. For example, an email service may
subscribe for error notifications from other services in the system to let the users know about
troubles that occur while processing their orders. It will also subscribe to the user data
service’s add/edit/delete notifications to keep its user contacts database updated.

The example shows several differences from a typical Pipes and Filters implementation:
● The system supports multiple use cases (e.g. user registration and order

processing).
● Services have multiple entry points (e.g. a mail service may expose an order error

handler and user created handler).
● A notification that a service produces may have many subscribers or no subscribers

(nobody needs to act on our sending a mail to a user).
Those points translate to the difference in structures: while Pipes and Filters is usually a

linear chain of subdomain services, EDA entails multiple branched (and sometimes looped)
event flow graphs over a set of subdomain services.

Pipelined Event-Driven Architecture (often boosted with event sourcing) works well for
highly loaded systems of moderate size as larger projects are likely to grow forbiddingly
complex graphs of event flows and service dependencies. The architecture’s scalability is
limited by the services’ databases and the pub/sub framework.

Event-Driven Architecture may use a gateway as a user-facing event source and sink
and a middleware for an application-wise pub/sub engine. Front Controller [SAHP] or Stamp
Coupling [SAHP] can be used if it is important to know the state of the requests that are
being processed by the pipeline.

Examples: high performance web services, IoT.

Data Mesh

First and foremost, Data Mesh [LDDD, SAHP] is not a Mesh, but rather a Pipeline. This
architecture applies CQRS on the system level: it separates the interfaces and channels
through which the services change their state (matching commands or OLTP in CQRS) and

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://martinfowler.com/articles/data-mesh-principles.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://en.wikipedia.org/wiki/Online_transaction_processing


the ones used to retrieve their data (similar to queries or OLAP). That results in two
overlapping systems, operational and analytical, that share most of their nodes.

The operational system is an ordinary Microservices or Event-Driven Architecture.
The analytical system contains Data Product Quanta (DPQ) – services that provide

convenient access (streaming, replaying and possibly querying) to parts of the system’s
data. The DPQs are assembled into a graph akin to Event-Driven Architecture. There are
three kinds of DPQs [SAHP]:

● A source-aligned (native) DPQ (sDPQ) coupled to an operational service and
streams (or provides queries into) the service’s data. It is likely to be implemented as
a reporting database.

● An aggregate DPQ (aDPQ) merges and transforms inputs from several sources
(sDPQs or aDPQs). It is similar to Query Service.

● A fit-for-purpose (custom-made) DPQ (fDPQ) is an end-user (leaf application) of the
data mesh’s data. It may collect a dataset for machine learning or let a
business-analyst do their research. fDPQs tend to be short-lived one-off projects.

There is a pragmatic option to allow operational services to resort to the analytical
system’s DPQs instead of duplicating the functionality already present in the DPQs to query
methods and CQRS views in the operational services.

Function as a Service (FaaS), Nanoservices (pipelined)

A nanoservice is, literally, a function as a service (FaaS) [DDS] – a stateless (thus
perfectly scalable) component with a single input. They can run in a proprietary cloud
middleware over a shared database and are chained into pipelines, one per use case. The
code complexity stays low, but as the project grows, the integration will quickly turn into a
nightmare, with hundreds or thousands of interconnected services.

Nanoservices are good for rapid development of small elastic/scalable applications. The
supported load is limited by their shared database, the project evolvability – by the
complexity of scenarios. As any use case is going to involve many asynchronous steps,
latency is not a strong side of Nanoservices.

Evolutions
Pipeline inherits its set of evolutions from Services. Filters can be added, split in two,

merged or replaced. Many systems employ a middleware (a pub/sub or pipeline framework),
a shared repository (which may be a database or a file system) or proxies.

There are a couple of pipeline-specific evolutions, with more details available in
Appendix E:

● The first service of the pipeline can be promoted to Front Controller [SAHP] which
tracks the status updates for every request it handles.

https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Function_as_a_service
https://increment.com/software-architecture/the-rise-of-nanoservices/


● Adding an orchestrator turns Pipeline into Services. As the high-level business logic
moves to the orchestration layer, the filters don’t need to interact directly, the
interfilter communication channels disappear and the system becomes identical to
Orchestrated Services.

Summary
Pipeline not only divides the code into smaller modules but is also very flexible: its

components are easy to add, remove or replace. Multiple use cases can be built over the
same set of services. Scalability is good. Event replay helps debugging. However,
operational complexity restricts the architecture to smaller domains with a limited number of
use cases.



Part 3. Extension Metapatterns
These patterns extend services, shards or even a monolith with a layer that provides an

aspect or two of the system’s behavior and often glues other components together.

Middleware

A middleware is a layer that implements communication between instances of the
system’s components and may also manage the instances. This way each instance is
relieved of the need to track other instances it deals with.

Includes: (Message) Broker, Deployment Manager.

Shared Repository

A shared repository stores the system’s data, maintains its integrity through transactions
and may support subscriptions to changes in subsets of the data. That lets other system
components concentrate on implementing the business logic.

Includes: Shared Database, Blackboard, Data Grid of Space-Based Architecture, shared
memory, shared file system.



Proxy

A proxy mediates between the system and its clients, transparently taking care of some
generic functionality.

Includes: Full Proxy and Half-Proxy; Sidecar and Ambassador; Firewall, Response
Cache, Load Balancer, Reverse Proxy, various adapters, including Anticorruption Layer,
Open Host Service, XXX Abstraction Layers and Repository.

Orchestrator

An orchestrator implements use cases as sequences of calls to the underlying
components, which are usually left unaware of each other’s existence.

Includes: Workflow Owner, Application Layer, Facade, Mediator; API Composer,
Scatter-Gather, MapReduce, Process Manager, Saga Execution Component, Integration
(Micro-)Service.

Combined Component
Several patterns combine functionality of two or more extension layers.
Includes: Message Bus, API Gateway, Event Mediator, Enterprise Service Bus, Service

Mesh, Middleware of Space-Based Architecture.



Middleware

The line between disorder and order lies in logistics. Use a shared transport.
Known as: (Distributed) Middleware.
Aspects:
● Message Broker [POSA1, POSA4, EIP, MP],
● Deployment Manager [SAP, FSA].
Variants: Implementations differ in many dimensions.
The following combined patterns include Middleware:
● (with Adapters) Message Bus [EIP],
● (with Proxies) Service Mesh [FSA, MP],
● (with Orchestrator) Event Mediator [FSA],
● (with Orchestrator and Adapters) Enterprise Service Bus (ESB) [FSA].
Structure: A low-level layer that provides connectivity.
Type: Extension.

Benefits Drawbacks
Separates connectivity concerns from the
services

May become a single point of failure

Transparent sharding of components May increase latency
Available off the shelf A generic middleware may not fit specific

communication needs
References: [EIP] is all about it. [POSA4] has a chapter on Middleware. However, those

books are old, while technologies change every year. There is a Wikipedia article as well.

Extracting transport to a separate layer relieves the components that implement business
logic of the need to know addresses and statuses of each other’s instances. An
industry-grade 3rd party middleware is likely to be more stable and provide better error
recovery than anything your company can afford implementing on its own.

Middleware may function:
● As Message Broker [POSA1, POSA4, EIP, MP] – provide a unified means for

communication and implement some cross-cutting concerns like persisting or logging
messages.

https://www.confluent.io/learn/enterprise-service-bus/
https://en.wikipedia.org/wiki/Middleware_(distributed_applications)


● As Deployment Manager [SAP, FSA] – collect telemetry and manage service
instances for error recovery and dynamic scaling.

As Middleware is ubiquitous and does not affect business logic, it is usually omitted from
structural diagrams.

Performance
Middleware may negatively affect performance, compared to direct communication

between services. Old implementations (star topology) relied on a broker [POSA1, POSA4,
EIP] that used to add an extra network hop for each message and was limiting scalability.
Newer mesh-based variants may not have that drawback but are very complex and may
have consistency issues (according to the CAP theorem).

A more subtle drawback is that the transports supported or recommended by the
middleware may be suboptimal for some of the interactions in the system, causing the
programmers to hack around the limitations or build higher-level protocols on top of the
middleware.

Both cases can be alleviated by adding means of direct communication between the
services to bypass the middleware, or by using multiple specialized kinds of middleware.
However, that adds to the complexity of the system – the very issue the middleware
promised to help with.

Dependencies
Each service depends on the middleware. However, each service also depends on the

APIs of the services it communicates with.

You may decide to use an anticorruption layer [DDD] against your middleware just in
case you may need to change its vendor in the future.

Applicability
Middleware helps:
● Multi-component systems. When several deployed instances of services need to

intercommunicate, they must know addresses (or have channels to) each other. As
the number of services grows, so does the amount of information that each service
needs to track. Even worse, services sometimes crash or are being redeployed,
requiring complicated algorithms that queue messages to deliver them in order once
the service is alive again. It makes all the sense to use a dedicated component that
takes care of that.

https://en.wikipedia.org/wiki/CAP_theorem


● Dynamic scaling. It is good to have a single component that manages routes for
interservice messaging to account for newly deployed (or destroyed) service
instances.

● Blue-green deployment, canary release, dark launching or traffic mirroring. It is easier
to switch, whether fully or in part, to a new version of a service when the
communication is centralized.

● System stability. Most implementations of middleware guarantee message delivery
with unstable networks and failing components. Many persist messages to recover
from failures of the middleware itself.

Middleware hurts:
● Critical real-time paths. An extra layer of message processing is bad for latency.

Such messages may need to bypass the middleware.

Relations

Middleware:
● Extends Services, Service-Oriented Architecture or in rare cases Shards or Layers.
● Can be built into a hierarchy or merged with other extension metapatterns into

several kinds of combined components.
● Is closely related to Shared Repository. A persistent middleware employs a shared

repository.
● Is usually implemented by a mesh or microkernel (which is often based on a mesh).

Variants by functionality
There are several dimensions of freedom for a middleware, some of them may be

configurable:

By addressing (channels, actors, pub/sub)
Systems vary in the way their components address each other:
● Channels (one to one) – components that need to communicate establish a message

channel. Once established a channel accepts messages on its input side and
transparently delivers them to its output side. Examples: Linux pipes and private
chats.

● Actors (many to one) – each component has a public mailbox. Any other component
that knows its address or name may push a message into it. Examples: e-mail.

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/DarkLaunching.html


● Publish/subscribe (one to many) – a component can publish events to topics. Other
components subscribe to the topics and one or all of the subscribers receive copies
of a published event. Examples: IP multicast and subscriptions for e-mail
notifications.

By flow (notifications, request/confirm, RPC)
Control flow may employ one or more of the following approaches:
● Notifications – a component sends a message about an event that occurred and

does not really care of the consequences or wait for a response.
● Request/confirm – a component sends a message that requests another component

to do something and send back the result. The sender may execute other tasks
meanwhile. A request must include a unique id which will be sent back in the confirm
so that the middleware knows which of the ongoing requests the confirm matches.

● Remote procedure call (RPC) is usually built on top of a request/confirm protocol.
The difference is that the sender blocks in the middleware while waiting for the
confirm, so that for the application code sending the request and receiving the
confirm looks like an ordinary method call.

By delivery guarantee
If the transport (network) or the destination fails, a message may not be processed, or

may be processed twice. A Middleware may promise to deliver messages:
● Exactly once. This is the slowest case which is implemented with a distributed

transaction. If the network, middleware or the message handler fails, there is no side
effect, and the whole process of delivering and executing the message is repeated.
The exactly once contract is used for financial systems where money should never
disappear or duplicate during a transfer.

● At least once. On failure the message is redelivered, but the previous message could
have been processed (and only the confirmation was lost), thus there is a chance for
a message to be processed twice. If the message is idempotent [MP], meaning that it
sets a value (x = 42) instead of incrementing or decrementing it (x = x + 2), then we
can more or less safely process it multiple times (x = 42; x = 42; x = 42;) and use the
relatively fast exactly once guarantee.

● At most once. If something fails, the message is lost and never reprocessed. This is
the fastest of the three guarantees, which fits monitoring applications, like weather
sensors – it is not too bad if a single temperature measurement is lost as you receive
hundreds of them every day.

● At will (no guarantee). As with the bare UDP transport, a message may disappear,
become duplicated or come out of order. That fits real-time streaming protocols
(video or audio calls) where it is acceptable to skip a frame while a frame coming too
late is of no use at all. Each frame contains its sequential number, and it is up to the
application to reorder and deduplicate the frames it receives.

By persistence
A middleware with a delivery guarantee needs to store messages whose delivery has not

been confirmed. They may be:
● Written to the database of the broker.

https://blog.bytebytego.com/p/at-most-once-at-least-once-exactly
https://docs.confluent.io/kafka/design/delivery-semantics.html
https://docs.confluent.io/kafka/design/delivery-semantics.html
https://en.wikipedia.org/wiki/User_Datagram_Protocol#Reliability_and_congestion_control


● Persisted in a distributed database in brokerless (Mesh) systems.
● Replicated over an in-memory mesh storage.
The last cases involve a sibling metapattern, Shared Repository.

By structure (Microkernel, Mesh, Broker)

A middleware may be:
● Implemented by an underlying operating or virtualization system (see Microkernel).
● Run as a mesh of identical modules co-deployed with the distributed components.
● Rely on a single broker [POSA1, POSA4, EIP] for coordination.
The last configuration is simpler but features a single point of failure unless multiple

instances of the broker are deployed and kept synchronized.

Examples of merging Middleware and other metapatterns
There are several patterns that extend Middleware with other functions:

Message Bus

Message Bus [EIP] employs an adapter per service to let the services intercommunicate
even if they differ in protocols. That helps to integrate legacy services without much changes
to their code but degrades performance as up to two protocol translations per message are
involved.



Service Mesh

Service Mesh [FSA, MP] is a smart mesh-based middleware that manages service
instances and employs a co-located proxy (called sidecar [DDS]) per deployed service. The
sidecars may provide protocol translation and cover cross-cutting concerns such as
encryption or logging. They make a good place to deploy shared libraries.

The internals of Service Mesh are discussed in the Mesh chapter.

Event Mediator

Event Mediator [FSA], pervading Event-Driven Architectures and Nanoservices, melds
Middleware (used for delivery of messages) and Orchestrator (coordinating high-level use
cases). Messages arrive to services and are responded to without any explicit component on
the other side – they appear “out of thin middleware” which has incorporated the bulk of
high-level business logic.

Slightly more details on Event Mediator are provided in the Orchestrator chapter.



Enterprise Service Bus (ESB)

Enterprise Service Bus (ESB) [FSA] is a mixture of Message Bus and Event Mediator,
Enterprise Service Bus blends Middleware and Orchestrator and adds an adapter per
service as a topping. It was used to connect components that originated in incompatible
networks of organizations that had been acquired by a corporation.

See the chapter about Service-Oriented Architecture.

Evolutions
A middleware is unlikely to be removed (though it may be replaced) once it is built into a

system. There are few evolutions as a middleware is a 3rd party product and is unlikely to be
messed with:

● If the middleware in use does not fit the preferred mode of communication between
some of your services, there is an option to deploy a second specialized middleware.

● If several existing systems need to be merged, that is accomplished by adding yet
another layer of middleware, resulting in a bottom-up hierarchy (bus of buses).

https://www.confluent.io/learn/enterprise-service-bus/


Summary
Middleware is a ready-to-use component that provides a system of services with means

of communication, scalability and error recovery. It is very common in backend systems.



Shared Repository

Knowledge itself is power. Sharing data is simple (& stupid).
Known as: Shared Repository [POSA4].
Aspects:
● Data storage,
● Data consistency,
● Data change notifications.
Variants:
● Shared Database [EIP] / Data Domain [SAHP] / Service-Based Architecture [FSA],
● Blackboard [POSA1, POSA4],
● Data Grid of Space-Based Architecture [SAP, FSA] / Replicated Cache [SAHP],
● Shared memory,
● Shared file system,
● (inexact) Stamp Coupling [SAHP].
Structure: A layer of data shared among higher-level components.
Type: Extension for Services or Shards.

Benefits Drawbacks
Implements data access and synchronization
concerns, thus eliminates data views and
sagas

A single point of failure

Helps saving on hardware, licenses, traffic
and administration

All the services depend on the schema of the
shared database

Quick start of a project Limits scalability
A single database may not fit the needs of all
the services equally well

References: [DDIA] is all about databases; [FSA] chapters on Service-Based
Architecture and Space-Based Architecture.

Shared Repository builds communication in the system around its data. This is natural
for data-centric domains and multiple instances of a stateless service, but may also greatly
simplify development of ordinary services that need to exchange data. It covers the following
concerns:

https://hillside.net/plop/plop97/Proceedings/lalanda.pdf
https://en.wikipedia.org/wiki/Space-based_architecture


● Storing the entire domain data.
● Keeping the data self-consistent by providing atomic transactions for use by the

application code.
● Communication between the services (if the repository supports notifications on data

change).
The drawbacks are the extensive coupling (it’s hard to alter a thing which is used

throughout the entire system) and limited scalability (even a distributed database strives
against distributed locks and the need to keep its nodes’ data in sync).

Performance
A shared database with consistency guarantees (ACID) is likely to lower the total

resource consumption compared to a database per service (as the services don’t need to
implement and keep updated materialized views [DDIA, MP] of other services’ data) but
increase latency and it may become the system’s performance bottleneck. Moreover, the
services lose the ability to use database technologies which best fit their tasks and data.

Another danger lies with locking records inside the database. Different services may use
different order of tables in transactions, hitting deadlocks in the database engine which show
up as transaction timeouts.

Non-transactional distributed databases may be very fast when colocated with the
services (see Space-Based Architecture) but the resource consumption becomes very high
because of the data duplication (each instance of each service gets a copy of the entire
dataset) and simultaneous writes may corrupt the data (cause inconsistencies or merge
conflicts).

Dependencies
Normally, each service depends on the repository. If the repository does not provide

notifications on data changes, the services may need to communicate directly, in which case
they also depend on each other through choreography or mutual orchestration.

https://en.wikipedia.org/wiki/ACID


The dependency on the repository technology and data schema is dangerous for
long-running projects as both of them may need to change sooner or later. Decoupling of the
code from the data storage is done with yet another layer of indirection which is called
Database Abstraction Layer (DAL) / Database Access Layer [POSA4] / Data Mapper
[PEAA]. The DAL, which translates between the data schema and database’s API on one
side and the business logic’s SPI on the other side, may reside inside each service or wrap
the database:

However, the DAL does not remove the shared dependencies, it only adds some
flexibility. It seems that there is a peculiar kind of coupling through a shared component: in

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Database_abstraction_layer


our case one of the services may need to change the database schema or technology to
better suit its needs, but is unable to do that because other components rely on (and profit
from) the old schema and technology. Even deploying a second database, private to the
service, is often not an option, as there is no convenient way to keep the databases in sync.

Applicability
Shared Repository is good for:
● Data-centric domains. If most of your domain’s data is used in every subdomain,

keeping any part of it private to a single subdomain service will be a pain in the
system design. Examples include ticket reservation and even the minesweeper
game.

● A scalable service. When you run several instances of a service, like in
Microservices, the instances are likely to be identical and stateless, with the service’s
data being pushed out to a database which is accessed by all the instances.

● Huge datasets. Sometimes you may need to store a lot of data. It is unwise (meaning
expensive) to stream and replicate it between your services just for the sake of
ensuring their isolation. Share it. If the data does not fit in an ordinary database,
some kind of Space-Based Architecture (which was invented to this end) may
become your friend of choice.

● Quick simple projects. Don’t over-engineer if you won’t live long enough to need the
flexibility. You may also save a buck or two on the storage.

Shared Repository is bad for:
● Quickly evolving complex projects. As everything flows, you just cannot devise a

stable schema, while changing the database schema breaks all the services.
● Varied forces and algorithms. Different services may require different kinds of

databases to work efficiently.
● Big data with random writes. Your data does not fit on a single server. If you want to

avoid write conflicts, you must keep all the database nodes synchronized, which kills
performance. If you let them loose async, you get collisions. You may want to first
decouple and shard the data as much as possible, then turn your attention to esoteric
databases, specialized caches and even tailor-made middleware to get out of the
trouble.

Relations

Shared Repository:

https://en.wikipedia.org/wiki/Space-based_architecture#History


● Extends Services, Service-Oriented Architecture, Shards or occasionally Layers.
● Is a part of a persistent middleware or Nanoservices.
● Is closely related to Middleware.
● May be implemented by a mesh.

Variants
Shared Repository is a sibling of Middleware. While a middleware assists direct

communication among services, a shared repository grants them indirect communication
through access to an external state which usually stores all the data of the domain.

A shared repository may provide a generic interface (e.g. SQL) or a custom API (with a
domain-aware adapter / ORM over the database). The repository can be anything ranging
from a trivial OS file system or a memory block accessible from all the components to an
ordinary database to a mesh-based distributed tuple space:

Shared Database, Data Domain, Service-Based Architecture

Shared Database [EIP] or Data Domain [SAHP] is a single database available to several
services. The services may subscribe to data change triggers in the database or directly
notify each other about domain events. The latter is often the case with Service-Based
Architecture [FSA] which consists of large services dedicated to subdomains.

Blackboard

Blackboard [POSA1, POSA4] was used for non-deterministic calculations where several
algorithms were concurring and collaborating to gradually build a solution from incomplete
inputs. The control (orchestrator) component schedules the work of several knowledge
sources (services) which encapsulate algorithms for processing the data stored in the

https://itnext.io/a-practical-guide-to-modular-monoliths-with-net-59da23c01137
https://hillside.net/plop/plop97/Proceedings/lalanda.pdf


blackboard (shared repository). The approach has likely been superseded by convolutional
neural networks.

Example: several use cases are mentioned on Wikipedia.

Data Grid of Space-Based Architecture (SBA), Replicated Cache

Space-Based Architecture [SAP, FSA] is a service mesh (mesh-based middleware with a
proxy per service instance) that also implements a tuple space (shared dictionary). It may
not provide a full-featured database interface, but has very good performance, elasticity and
fault tolerance, while some implementations may allow for dealing with datasets which are
much larger than anything digestible by ordinary databases. Its drawbacks include write
collisions and costs (huge traffic for data replication and lots of RAM to store the replicas).

The main components of the architecture are:
● Processing Units – the services that contain the business logic. There may be one

class of processing units, making SBA look like Shards or multiple classes in which
case SBA becomes similar to Microservices with a shared database.

● Data Grid (Replicated Cache [SAHP]) – a mesh-based in-memory database. Each
node of the data grid is co-located with a single instance of a processing unit,
providing it with very fast access to the data stored. Changes to the data are
replicated across the grid by its virtual data replication engine which is usually
implemented by every node of the grid.

● Persistent Database – an external database which the data grid replicates. Its
schema is encapsulated in the readers and writers.

● Data Readers – components that query the persistent database for any data which is
not currently available in the data grid. Most cases see readers employed on starting
the system to read the entire contents of the database into the memory of the nodes.

● Data Writers – components that replicate changes done in the data grid to the
persistent storage to assure that no updates are lost if the system is shut down.
There can be a pair of reader and writer per class of processing units (subdomain) or
a global pair that processes all read and write requests.

https://en.wikipedia.org/wiki/Blackboard_system
https://en.wikipedia.org/wiki/Space-based_architecture
https://en.wikipedia.org/wiki/Tuple_space


This architecture provides nearly perfect scalability (high read and write traffic) and
elasticity (new instances of processing units are created and initialized quickly as they
replicate the data from already running units with no need to access the external database).
For smaller datasets the entire database is replicated to every node of the grid. Still,
Space-Based Architecture also allows to process datasets that don’t fit in memory of a single
node by assigning each node a part of the dataset.

The drawbacks of this architecture are:
● Structural and operational complexity.
● Somewhat inconvenient interface of the tuple space (no joins or other complex

operations).
● High traffic for data replication among the nodes.
● Unavoidable data collisions when multiple users change the same piece of data

simultaneously.

Shared memory

Several actors (processes, modules, device drivers) communicate through one or more
mutually accessible data structures (arrays, trees or dictionaries). Accessing a shared object
may require some kind of synchronization (e.g. taking a mutex) if it is not based on atomic
variables. Notwithstanding that communication via shared memory is the archenemy of
(shared-nothing) messaging it is actually used to implement messaging: high-load
multi-process systems (e.g. web browsers) rely on shared memory mailboxes for messaging
between their constituent processes.

https://codescoddler.medium.com/concurrency-made-simple-the-role-of-atomic-variables-8327b9b35023
https://codescoddler.medium.com/concurrency-made-simple-the-role-of-atomic-variables-8327b9b35023
https://www.scylladb.com/glossary/shared-nothing-architecture/


Shared file system

As a file system is a kind of shared dictionary, writing and reading files can be used to
transfer data between applications. A data processing pipeline that stores intermediate
results in files benefits from the ability to restart its calculation from the last successful step
as the files are persistent [DDIA].

(inexact) Stamp Coupling

Stamp Coupling [SAHP] happens when a single data structure passes through the entire
pipeline, with separate fields of the data structure targeting individual processing steps.

A choreographed system with no shared databases does not provide any way to
aggregate related data spread over multiple services. If we need to collect everything known
about a user or a purchase, we pass a query message through the system, and every
service appends to it whatever it knows about the subject (just like post offices add their
stamps to a letter). The unified message becomes a kind of virtual shared repository the



services (Content Enrichers according to [EIP]) write to. This also manifests in the
dependencies: all the services depend on the format of the query message, as they would
on the schema of a shared repository, instead of depending on each other, as is usual with
pipelines.

Evolutions
Once a database appears, it is unlikely to go away. I see the following evolutions to

improve performance of the data layer:
● Shard the database.

● Use Space-Based Architecture for dynamic scalability.

● Divide the data into a private database per service.

● Deploy specialized databases (Polyglot Persistence).



Summary
Shared Repository aids to implement a system of services quickly by simplifying their

interactions at the cost of freezing its data model and possibly limiting its performance.



Proxy

Should I build the wall? A layer of indirection between your system and its clients.
Known as: Proxy [GoF].
Aspects:
● Routing,
● Offloading.
Variants:
By transparency:
● Full Proxy,
● Half-Proxy.
By placement:
● Separate deployment,
● On the system side: Sidecar [DDS],
● On the client side: Ambassador [DDS].
By function:
● Firewall,
● Response Cache / Read-Through Cache / Write-Through Cache / Write-Behind

Cache / Cache [DDS],
● Load Balancer [DDS] / Sharding Proxy [DDS] / Cell Router / Messaging Grid [FSA] /

Scheduler,
● Dispatcher [POSA1] / Reverse Proxy / Ingress Controller / Edge Service /

Microgateway,
● Adapter [GoF, DDS] / Anticorruption Layer [DDD] / Open Host Service [DDD] /

Gateway [PEAA] / Message Translator [EIP, POSA4] / API Service / Cell Gateway /
(inexact) Backend for Frontend / Hardware Abstraction Layer (HAL) / Operating
System Abstraction Layer (OSAL) / Platform Abstraction Layer (PAL) / Database
abstraction layer (DBAL or DAL) / Repository [PEAA, DDD].

● (with Orchestrator) API Gateway [MP].
See also Backends for Frontends (multiple API Gateways).

https://community.f5.com/kb/technicalarticles/what-is-a-proxy/282718
https://www.enjoyalgorithms.com/blog/read-through-caching-strategy
https://www.enjoyalgorithms.com/blog/write-through-caching-strategy
https://www.enjoyalgorithms.com/blog/write-behind-caching-pattern
https://www.enjoyalgorithms.com/blog/write-behind-caching-pattern
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/cell-routing.html
https://traefik.io/blog/reverse-proxy-vs-ingress-controller-vs-api-gateway/
https://traefik.io/blog/reverse-proxy-vs-ingress-controller-vs-api-gateway/
https://medium.com/knerd/api-infrastructure-at-knewton-whats-in-an-edge-service-51a3777aeb41
https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md
https://backendless.com/what-is-api-as-a-service/
https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Operating_system_abstraction_layer
https://en.wikipedia.org/wiki/Operating_system_abstraction_layer
https://en.wikipedia.org/wiki/Database_abstraction_layer
https://en.wikipedia.org/wiki/Database_abstraction_layer
https://martinfowler.com/eaaCatalog/repository.html


Structure: A layer that pre-processes and routes user requests.
Type: Extension.

Benefits Drawbacks
Separates cross-cutting concerns (such as
auth, logging, client protocols) from the
services

A single point of failure

Decouples the system from its clients Most proxies degrade latency
Low attack surface
Available off the shelf

References: Half of [DDS] is about the use of proxies. See also: [POSA4] on Proxy;
Chris Richardson and Microsoft on API Gateway; Martin Fowler on Gateway, Facade and
API Gateway.

A proxy stands between a (sub)system’s implementation and its users. It receives a
request from a client, does some pre-processing, then forwards the request to a lower-level
component. In other words, a proxy takes care of some aspects of the system’s
communication with its clients by serving as yet another layer of indirection that collects
common concerns which otherwise would have been intermixed with the business logic in
the underlying components. It may also decouple the system internals from changes in the
public protocol. The main functions of a proxy include:

● Routing – a proxy knows addresses of the instances of the system’s components and
is able to forward a client’s request to a matching shard or a service that can handle
it. Clients need to know only the public address of the proxy. A proxy may also
respond on its own if the request is invalid or there is a matching response in the
proxy’s cache.

● Offloading – a proxy may implement generic aspects of the system’s public interface,
such as authentication, authorisation, encryption, request logging, web protocol
support, etc. which otherwise would need to be implemented by each of the
underlying services. That allows for the services to concentrate on what they are for
– the business logic.

Performance
Most kinds of proxies trade latency (the extra network hop) for some other quality:
● Firewall slows down the processing of good requests but protects the system from

attacks.
● Load Balancer and Dispatcher allow for the use of multiple servers (with identical or

specialized components, correspondingly) to improve the system’s throughput but
they still degrade the minimum latency.

● Adapter adds compatibility but its latency cost is higher than with other proxies as it
not only forwards the original message but changes the payload, which involves data
processing and serialization.

Cache is a bit weird in that aspect. It improves latency and throughput for repeated
requests but degrades latency for unique ones. Furthermore, it is often colocated with some
other kind of proxy to avoid the extra network hop between the proxies, which makes
caching almost free in terms of latency.

https://microservices.io/patterns/apigateway.html
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://martinfowler.com/articles/gateway-pattern.html
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway


Dependencies
Proxies widely vary in their functionality and level of intrusiveness. The most generic

proxies, like firewalls, may not know anything about the system or its clients. A response
cache or adapter must parse the messages, thus it depends on the communication protocol
and message format. A load balancer or dispatcher is aware of both the protocol and system
composition.

In fact, proxies tend to have those dependencies configured on startup or through their
APIs, thus there is no need to change the code of the proxy each time something changes in
the underlying system.

Applicability
Proxy helps:
● Multi-component systems. Having multiple types and/or instances of services means

there is a need to know the components’ addresses to access them. A proxy
encapsulates that knowledge and may also provide other user-facing functionality as
an extra benefit.

● Dynamic scaling or sharding. The proxy both knows the system structure (which
instances of services exist) and delivers user requests, thus it is the place to
implement sharding (when a service instance is dedicated to a subset of users) or
load balancing (when any service instance can serve any user) and even manage
the size of the service instance pool.

● Multiple client protocols. The proxy as the endpoint for the system’s users may
translate multiple external (user-facing) protocols into a unified internal
representation.

● System security. Though a proxy does not make the system more secure, it takes
away the burden of security considerations from the services which implement
business logic, improving the separation of concerns and making system
components more simple and stupid. An off-the-shelf proxy may be less vulnerable
compared to in-house services.

Proxy hurts:
● Critical real-time paths. It adds an extra hop in request processing, increasing latency

for thoroughly optimized use cases. Such requests may need to bypass the proxy.

Relations



Proxy:
● Extends Monolith or Layers (forming Layers), Shards or Services.
● Can be extended with another proxy or merged with an orchestrator into an API

gateway.
● A gateway per service is employed by Service Mesh, Enterprise Service Bus and

Hexagonal Architecture.
● Is a special case (single user-facing service) of Backends for Frontends.

Variants by transparency
A proxy may either fully isolate the system it represents or merely help establish

connections between clients and servers. This matches closed and open layers as a proxy is
a layer between a system and its clients.

Full Proxy

A full proxy processes every message between the system and its clients. It completely
isolates the system and may meddle with the protocols but is resource-heavy and impairs
latency. Adapters and response caches are always full proxies.

https://community.f5.com/kb/technicalarticles/what-is-a-proxy/282718
https://community.f5.com/kb/technicalarticles/what-is-a-proxy/282718


Half-Proxy

A half-proxy intercepts, analyzes and routes the session establishment request form a
client but then goes out of the loop. It may still forward the subsequent messages without
looking into their content or even help connect the client and server directly, which is known
as Direct Server Return (DSR). This approach is faster and much less resource-hungry but
also less secure and flexible than that of Full Proxy. A firewall, load balancer or reverse
proxy may act as a half-proxy. IP telephony servers often use DSR: the server helps call
parties find each other and establish direct media communication.

Variants by placement
As a proxy stands between a (sub)system and its client(s), we can imagine a few ways to

deploy it:

Separate deployment: Standalone

We can deploy a proxy as a separate system component. This has the downside of the
extra network hop (higher latency) on the way of each client’s request to the system and
back but is unavoidable in the following cases:

https://www.haproxy.com/glossary/what-is-direct-server-return-dsr


● The proxy uses a lot of system resources, thus it cannot be colocated with another
component. This mostly affects Firewall and Cache.

● The proxy is stateful and deals with multiple system components, as a load balancer
for stateless instances, reverse proxy or API gateway.

On the system side: Sidecar

We can often co-locate a proxy with our system when it is not distributed. That avoids the
extra network delay, traffic, operational complexity and does not add any new hardware only
to fail at the most unlucky moment. Such a placement is called Sidecar [DDS] and is
applicable to adapters and reverse proxies.

It should be noted that Sidecar – co-locating a generic component and business logic –
is more of a DevOps approach than an architectural pattern, thus we can see it used in a
variety of ways [DDS]:

● As a proxy between a component and its clients.
● As an extra service that provides observability or configures the main service.
● As a layer with general-purpose utilities.
● As an adapter for middleware.

Service Mesh (Middleware for Microservices) makes heavy use of the last kind of
sidecars.



On the client side: Ambassador

Finally, a proxy may be co-located with a component’s clients, making an ambassador
[DDS]. The use cases include:

● Low-latency systems with stateful shards – each client should access the shard that
has their data, which the proxy knows how to choose.

● Adapters that help client applications use an optimized or secure protocol.

Variants by function
Proxies are ubiquitous in backend systems as using one or several of them frees the

underlying code from the need to provide a boilerplate non-business-logic functionality. It is
common to have several types of proxies deployed sequentially (e.g. API gateways behind
load balancers behind a firewall) with many of them pooled to improve performance and
stability. It is also possible to employ multiple types of proxies, each serving a dedicated kind
of client, in parallel, resulting in Backends for Frontends.

As proxies are used for multiple purposes, there is a variety of their specializations and
names. Below is a very rough categorization, complicated by the fact that many real-world
proxies implement several categories at once.



Firewall

Firewall is a component for white- and black-listing network traffic, mostly to protect
against attacks. It is possible to use both generic hardware firewalls on the external
perimeter as the means for brute force (D)DoS protection and more complex access rules at
a second layer of software firewalls that protects critical internal data and services from
unauthorized access.

Response Cache, Read-Through Cache, Write-Through Cache,
Write-Behind Cache, Cache

If the system often gets identical requests, it is possible to remember its responses to
most frequent of them and return the cached response without fully re-processing the
request. The real thing is more complicated because users tend to change the data which
the system stores, necessitating a variety of cache refresh policies. A response cache may
be co-located with a load balancer or it may be [DDS] sharded (each cache processes a
unique subset of requests) and/or replicated (all the caches are similar) and thus require a
load balancer of its own.

It is called Response Cache because it stores the system’s responses to requests of its
users or just Cache [DDS] because it is the most common kind of cache in system
architecture.

If the cached subsystem is a database, we can discern between read and write requests:



● Read-Through Cache is when the cache is updated on a miss of a read request but
is transparent to or invalidated by write requests.

● Write-Through Cache is when the cache is updated by write requests that pass
through it.

● Write-Behind is when the cache aggregates multiple write requests to later send
them to the database as a batch, saving bandwidth and possibly merging multiple
updates of the same key.

Load Balancer, Sharding Proxy, Cell Router, Messaging Grid,
Scheduler

Here we have a hardware or software component which distributes user traffic among
multiple instances of a service.

● A sharding proxy [DDS] selects a shard based on some data which is present in the
request (OSI level 7 request routing) for a system where each shard owns a part of
the system’s state, thus only one or a few of the shards have the data required to
process the request.

● A load balancer [DDS] of a pool of instances or messaging grid [FSA] of
Space-Based Architecture evenly distributes the incoming traffic over identical
request processors (OSI level 4 load balancing) to make sure that no instance of the
underlying system is overloaded. In some cases it needs to be session-aware
(process OSI level 7) to make sure that all the requests from a client are forwarded to
the same instance of the service [DDS].

● It may forward read requests to read-only replicas of the data while write requests
are sent to the master database (CQRS-like behavior).

● A cell router chooses a data center which is the closest to the user’s location.
Load balancers are very common in high-load backends. High-availability systems

deploy multiple instances of a load balancer in parallel to remain functional if one of the load
balancers fails. CPU-intensive applications (like 3D games) often post asynchronous tasks
for execution by thread pools under the supervision of a scheduler. A similar pattern is found
in OS kernels and fiber or actor frameworks where a limited set of CPU-affined threads is
scheduled to run a much larger number of tasks.

https://www.enjoyalgorithms.com/blog/read-through-caching-strategy
https://www.enjoyalgorithms.com/blog/write-through-caching-strategy
https://www.enjoyalgorithms.com/blog/write-behind-caching-pattern
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/OSI_model
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/cell-routing.html


Dispatcher, Reverse Proxy, Ingress Controller, Edge Service,
Microgateway

Reverse Proxy, Ingress Controller, Edge Service or Microgateway is a router that stands
between the Internet and the organization’s internal network. It allows clients to use a public
address of the system without knowing how and where their requests are processed. It
parses a user request and forwards it to an internal server based on the request’s body. A
reverse proxy can be extended with a firewall, SSL termination, load balancing and caching
functionality. Examples include Nginx.

Dispatcher [POSA1] is a similar component for a single-process application. It serves a
complex command line interface by receiving and preprocessing user commands only to
forward each command to a module which knows how to handle it. The modules may
register their commands with the dispatcher at startup or there may be a static dispatch table
in the code.

You could have noted that Dispatcher or Reverse Proxy is quite similar to Load Balancer
or Sharding Proxy – they differ mostly in what kind of system lies below them: Services or
Shards.

https://traefik.io/blog/reverse-proxy-vs-ingress-controller-vs-api-gateway/
https://medium.com/knerd/api-infrastructure-at-knewton-whats-in-an-edge-service-51a3777aeb41
https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md


Adapter, Anticorruption Layer, Open Host Service, Gateway, Message
Translator, API Service, Cell Gateway, (inexact) Backend for Frontend,
Hardware Abstraction Layer (HAL), Operating System Abstraction Layer
(OSAL), Platform Abstraction Layer (PAL), Database abstraction layer
(DBAL or DAL), Repository

Adapter [GoF, DDS] is a mostly stateless proxy that translates between an internal and
public protocol and API formats. It may be co-located with a reverse proxy. When it adapts
messages, it may be called Message Translator [EIP, POSA4].

As an adapter adapts two ways, it is often found between components (in Hexagonal
Architecture) or between a component and middleware (in Enterprise Service Bus and
Service Mesh).

In [DDD], when one component (consumer) depends on another (supplier), there may be
an adapter in-between to decouple them. It is called Anticorruption Layer [DDD] when owned
by the consumer’s team or Open Host Service [DDD] if the supplier adds it to grant one or
more stable interfaces (Published Languages [DDD]).

Gateway [PEAA] or API Service often implies an adapter with extra functionality, like
Reverse Proxy, authorization and authentication. Cell Gateway is a gateway for a cell.

When a gateway translates a single public API method into several calls towards internal
services, it becomes an API gateway [MP] which is an aggregate of proxy (for protocol
translation) and orchestrator.

An adapter between an end-user client (web interface, mobile application, etc.) and the
system’s API is often called Backend for Frontend. It decouples the UI from the
backend-owned system’s API, giving the teams behind them freedom to work with little
synchronization.

There is also a whole bunch of adapters that aim to protect the business logic from its
environment, the idea which is perfected by Hexagonal Architecture:

● Hardware Abstraction Layer (HAL) hides details of hardware to make the code
portable.

● Operating System Abstraction Layer (OSAL) or Platform Abstraction Layer (PAL)
abstracts the OS to make the application cross-platform.

● Database abstraction layer (DBAL or DAL) attempts to help building
database-agnostic applications by making all databases look the same.

https://backendless.com/what-is-api-as-a-service/
https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Operating_system_abstraction_layer
https://en.wikipedia.org/wiki/Database_abstraction_layer


● Repository [PEAA, DDD] provides methods to retrieve and save an object which is
stored in a database.

API Gateway

API Gateway [MP] is a fusion of Gateway (Proxy) and API Composer (Orchestrator). The
Gateway aspect encapsulates the external (public) protocol while the API Composer
translates the system’s high-level public API methods into multiple (parallel or sequential)
calls to the internal APIs of the component services, collects the results and conjoins them
into a response.

API Gateway is discussed in more detail under Orchestrator.

Evolutions
It usually makes little sense to get rid of a proxy once it is integrated into a system. Its

only real drawback is a slight increase in latency for user requests which may be helped
through creation of bypass channels between the clients and a service that needs low
latency. The other drawback of the pattern, the proxy’s being a single point of failure, is
countered by deploying multiple instances of the proxy.

As proxies are usually 3rd party products, there is very little we can change about them:
● We can add another kind of a proxy on top of the existing one.

https://martinfowler.com/eaaCatalog/repository.html


● We can use a stack of proxies per client, making Backends for Frontends.

Summary
A proxy represents your system to its clients and takes care of some aspects of the

communication. It is common to see multiple proxies deployed sequentially.



Orchestrator

One ring to rule them all. Make a service to integrate other services.
Known as: Orchestrator [MP, FSA], Workflow Owner [FSA] of Microservices, Service

Layer [PEAA], Application Layer [DDD], Wrapper Facade [POSA4], Multi-Worker [DDS],
Controller / Control, Processing Grid [FSA] of Space-Based Architecture.

Aspects:
● Mediator [GoF, SAHP],
● Facade [GoF].
Variants:
By transparency:
● Closed or strict,
● Open or relaxed.
By structure (not exclusive):
● Monolithic,
● Sharded,
● Layered [FSA],
● A service per client type (Backends for Frontends),
● A service per subdomain [FSA] (Hierarchy),
● A service per use case [SAHP] (SOA-style).
By function:
● API Composer [MP] / Remote Facade [PEAA] / Gateway Aggregation / Composed

Message Processor [EIP] / Scatter-Gather [EIP, DDS] / MapReduce [DDS],
● Process Manager [EIP, LDDD] / Orchestrator [FSA],
● (Orchestrated) Saga [LDDD] / Saga Orchestrator [MP] / Saga Execution Component

/ Transaction Script [PEAA, LDDD] / Coordinator [POSA3],
● Integration (Micro-)Service / Application Service,
● (with Gateway) API Gateway [MP] / Microgateway,
● (with Middleware) Event Mediator [FSA],
● (with Middleware and Adapters) Enterprise Service Bus (ESB) [FSA].
Structure: A layer of high-level business logic built on top of lower-level services.
Type: Extension.

https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/scatter-gather.html
https://en.wikipedia.org/wiki/MapReduce
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md


Benefits Drawbacks
Separates integration concerns from the
services – decouples the services’ APIs

Poor latency for global use cases

Global use cases can be changed and
deployed independently from the services

Qualities of the services become coupled to
an extent

Decouples the services from the system’s
clients

API design is an extra step before the
implementation can begin

References: [FSA] discusses orchestration in its chapters on Event-Driven Architecture,
Service-Oriented Architecture and Microservices. [MP] describes orchestration-based sagas
and its Order Service acts as an application service without explicitly defining the pattern.
[POSA4] defines several variants of Facade.

An orchestrator takes care of global use cases (which involve multiple services) thus
allowing each service to specialize in its own subdomain and, ideally, forget about the
existence of all the other services. This way the entire system’s high-level logic (which is
usually subject to frequent changes) is kept (and deployed) together, isolated from usually
more complex subdomain-specific services. Dedicating a layer to global scenarios makes
them relatively easy to implement and debug, while the corresponding development team
that communicates with clients shelters other narrow-focused teams from the disruptions.
The cost of employing an orchestrator is both degraded performance when compared to
basic services that rely on choreography [FSA, MP] (meaning they call or notify each other
directly) and some coupling of the properties of the orchestrated services as the orchestrator
usually treats them in a uniform way.

An orchestrator usually fulfills two closely related roles:
● As a mediator [GoF, SAHP] it keeps the states of the underlying components

(services) consistent by propagating changes that originate in one component over
the entire system. This role is prominent in control software, pervading automotive,
aerospace and IoT industries. The mediator role emerges as Saga in Microservices
[MP].

● As a facade [GoF] it builds high-level scenarios out of smaller steps that are provided
by the controlled services or modules. This role is obvious for processing systems
where clients communicate with the facade, but it is also featured in control systems,
for often a simple event triggers a complex multi-component scenario which is
managed by the system’s orchestrator.

Data processing systems, such as backends, may deploy multiple instances of stateless
orchestrators to improve stability and performance. Contrariwise, in control software the
orchestrator incorporates the highest-level view of the system’s state thus it cannot be easily
duplicated (as any duplicated state must be kept synchronized, introducing delay or
inconsistency in decision-making).



Performance
When compared to choreography, orchestration usually degrades latency as it involves

extra steps of communication between the orchestrator and the orchestrated components.
However, the effect should be estimated on case by case basis, as there are at least the
following exceptions:

● An orchestrator may cache the state of the orchestrated system, gaining the ability to
immediately respond to read requests with no need to query the underlying
components. This is quite common with control systems.

● An orchestrator may persist a write request, respond to the client, then start the
actual processing. Persistence grants that the request will eventually be completed.

● An orchestrator may run multiple subrequests in parallel, reducing latency when
compared to the chain of choreographed events.

● In highly loaded or latency-critical systems the orchestrated services may establish
direct data streams that bypass the orchestrator. A classic example is VoIP where the
call establishment logic (SIP) goes through an orchestrating server while the voice or
video (RTP) streams directly between the clients.

I don’t see how orchestration can affect throughput as in most cases an orchestrator can
be scaled by deploying several instances of it. However, scaling weakens consistency as
now no instance of the orchestrator has exclusive control over the system’s state.

Dependencies
An orchestrator may depend on APIs of the services it orchestrates or define SPIs for

them to implement, with the first mode being natural for its Facade [GoF] aspect and the
second one – for Mediator [GoF].



If an orchestrator is added to integrate existing components, it will use their APIs.
In large projects, where each service gets a separate team, the APIs need to be

negotiated beforehand, and will likely be owned by the orchestrated services.
Smaller (single-team) systems tend to be developed top-down, with the orchestrator

being the first component to implement, thus it defines the interfaces it uses.
Likewise, control systems tend to reverse the dependencies, with their services

depending on the orchestrator’s SPI – either because their events originate with the services
(so the services must have an easy way to contact the orchestrator) or to provide for
polymorphism between the low-level components. See the chapter on orchestration for more
details.

Applicability
Orchestrators shine with:
● Large projects. The partition of business logic into a high-level application

(orchestrator) and multiple subdomain services it relies on provides perfect code
decoupling and team specialization.

● Specialized teams. As an improvement from Services, the teams that develop deep
knowledge of subdomains delegate communication with customers to the application
team.

● Complex and unstable requirements. The integration layer (orchestrator) should be
high-level and simple enough to be easily extended or modified to cover most
customer requests or marketing experiments without any help from the domain
teams.

Orchestrators fail in:
● Huge projects. At least one aspect of complexity is going to hurt. Either the number

of subdomain services and size of their APIs will make it impossible for an
orchestrator programmer to find correct methods to call, or the orchestrator itself will
become unmanageable due to the number and length of its use cases. This can be
addressed by dividing the orchestrator into a layer of services (resulting in Backends
for Frontends) or multiple layers (resulting in Hierarchy). The domain services may
evolve into Cells, which is yet another kind of Hierarchy. It is also possible to go for
Service-Oriented Architecture that has more fine-grained components.

● Small projects. The implementation overhead of defining and stabilizing service APIs
and the performance penalty they cause are unlikely to be worthy of the extra
flexibility that the orchestrator architecture provides for the (unsure) future project
growth.

● Low latency. Any system-wide use case will make multiple calls between the
application (orchestrator) and services, with each interaction adding to the latency.



Relations

Orchestrator:
● Extends Services or rarely Monolith, Shards or Layers (forming Layers).
● Can be merged with a proxy into an API gateway, with a middleware into an event

mediator or with a middleware and adapters into an Enterprise Service Bus.
● Is a special case (single service) of Backends for Frontends, Service-Oriented

Architecture or (2-layer) Hierarchy.
● Can be implemented by Microkernel (as Saga or Script).

Variants by transparency
It seems that an orchestrator, just like a layer, which it is, can be open (relaxed) or closed

(strict):

Closed or strict

A strict or closed orchestrator isolates the orchestrated services from their users – all the
requests go through the orchestrator, and the services don’t need to intercommunicate.



Open or relaxed

An open orchestrator implements a subset of system-wide requests that require strict
data consistency while less demanding requests go from the clients directly to the underlying
services, which rely on choreography or shared data for communication. Such a system
sacrifices the clarity of design to avoid some of the drawbacks of both choreography and
orchestration:

● The orchestrator development team, which may be overloaded or slow to respond, is
not involved in implementing the majority of use cases.

● Most of the use cases avoid the performance penalty caused by the orchestration.
● Failure of the orchestrator does not paralyze the entire system.
● The relaxed orchestrator still allows for synchronized changes of data in multiple

services, which is rather hard to achieve with choreography.

Variants by structure (can be combined)
The orchestration (application [DDD] / integration / composite) layer has several

structural (implementation) options and varies in the amount of functionality and flexibility it
provides:

Monolithic

A single orchestrator is deployed. This option fits ordinary medium-sized projects.

https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md
https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md


Scaled

High availability requires multiple instances of a stateless orchestrator to be deployed. A
mediator (saga, writing orchestrator) may store the current transaction’s state in a shared
database to assure that if it crashes there is always another instance ready to take up its job.

High load systems also require multiple instances of orchestrators because a single
instance is not enough to handle the incoming traffic.

Layered

[FSA] describes an option of a layered event mediator. A client’s request comes to the
topmost layer of the orchestrator which uses the simplest (and least flexible) framework. If
the request is known to be complex, it is forwarded to the second layer which is based on a
more powerful technology. And if it fails or requires a human decision then it is forwarded
again to the even more complex custom-tailored orchestration layer.

That allows the developers to gain the benefits of a high-level declaration language in a
vast majority of scenarios while falling back to hand-written code for a few complicated
cases. The choice is not free as one needs to learn multiple technologies, interlayer



debugging is never easy, and performance will likely be worse than with a monolithic
orchestrator.

A similar example is using an API composer for the top layer, followed by a process
manager and a saga engine.

A service per client type (Backends for Frontends)

If your clients strongly differ in workflows (e.g. OLAP and OLTP, or user and admin
interfaces), dedicated orchestrators is an option to consider. That makes each client-specific
orchestrator to be smaller and more cohesive compared to the unified implementation and
gives more independence to the teams responsible for different kinds of clients.

This pattern is known as Backends for Frontends and has a chapter of its own.

A service per subdomain (Hierarchy)

In large systems a single orchestrator is very likely to overgrow and become a
development bottleneck (see Enterprise Service Bus). Building a hierarchy of orchestrators
may help [FSA], but only if the domain itself is hierarchical. The top-level component may
even be a reverse proxy if no use cases cross subdomain borders or the sub-orchestrators
employ choreography, resulting in a flat Cell-Based Architecture. Otherwise it is a tree-like
Orchestrator of Orchestrators.

https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Online_transaction_processing


A service per use case (SOA-style)

[SAHP] advises for single-purpose orchestrators in Microservices: each orchestrator
manages one use case. This enables fine-grained scalability but will quickly lead to
integration hell as new scenarios are added to the system. Overall, such a use of
orchestrators resembles the task layer of SOA.

Variants by function
Orchestrator is a sibling of Proxy. While specialized Proxy variants take care of generic

aspects such as security or protocols, Orchestrator defines the high-level business logic in
terms of API calls to the underlying services. API Gateway stands in between – it meddles
with API calls just like Orchestrator but also encapsulates cross-cutting concerns like
old-fashioned Proxy.

API Composer, Remote Facade, Gateway Aggregation, Composed
Message Processor, Scatter-Gather, MapReduce

API Composer [MP] is a kind of Facade [GoF] that decreases the system’s latency by
translating a high-level incoming message into a set of lower-level internal messages,
sending them to the corresponding services in parallel, waiting for and collecting the results
into a response to the original message. Such a logic may often be defined declaratively in a
3rd party tool without writing any low-level code. Remote Facade [PEAA] is a similar pattern
that makes synchronous calls to the underlying components – it exists to implement a

https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation


coarse-grained protocol with the system’s clients, so that a client may achieve whatever they
need through a single request. Gateway Aggregation is the generalization of these patterns.

Composed Message Processor [EIP] is a generalization of the above: it uses Splitter
[EIP] to subdivide the request into smaller parts, Router [EIP] to send each part to its
recipient and Aggregator [EIP] to collect the responses into a single message. Unlike API
Composer, it can also address shards or replicas. Scatter-Gather [EIP, DDS] broadcasts a
copy of the incoming message to each recipient, thus it lacks Splitter (though [DDS] seems
to ignore this difference). MapReduce [DDS] is similar but it processes (summarizes) the
results to yield a single value instead of combining (merging) them.

If an API composer needs to conduct sequential actions (e.g. first get user id by user
name, then get user data by user id), it becomes a process manager which may require
some coding.

An API composer is usually deployed as a part of an API gateway.
Example: Microsoft has an article on aggregation.

Process Manager, Orchestrator

Process Manager [EIP, LDDD] (referred simply as Orchestrator in [FSA]) is a kind of
Facade that translates high-level tasks into sequences of lower-level steps. This subtype of
Orchestrator receives a client request, stores its state, runs pre-programmed request
processing steps and returns a response. Each of the steps of a process manager is similar
to a whole task of an API composer in that it generates a set of parallel requests to internal
services, waits for the results and stores them for the future use in the following steps or in
the final response. The use case may branch on conditions.

A process manager may be implemented in a general-purpose programming language, a
declarative description for a 3rd party tool, or a mixture thereof.

A process manager is usually a part of an API gateway, event mediator or enterprise
service bus.

Example: [FSA] provides several examples.

https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/scatter-gather.html
https://en.wikipedia.org/wiki/MapReduce
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation


(Orchestrated) Saga, Saga Orchestrator, Saga Execution
Component, Transaction Script, Coordinator

(Orchestrated [SAHP]) Saga [LDDD], Saga Orchestrator [MP] or Saga Execution
Component is a subtype of Process Manager which is specialized in distributed transactions.

An atomically consistent saga [SAHP] (which is the default meaning of the term)
comprises a pre-programmed sequence of {“do”, “undo”} action pairs. When it is run, it
iterates through the “do” sequence till it either completes (meaning that the transaction
succeeded) or fails. A failed atomic saga begins iterating through its “undo” sequence to roll
back the changes that were already made. Contrariwise, an eventually consistent saga
[SAHP] always retries its writes till all of them succeed.

A saga is often programmed declaratively in a 3rd party saga framework which can be
integrated into any service that needs to run a distributed transaction. However, it is quite
likely that such a service is an integration service as it seems to orchestrate other services.

Saga plays the roles of both Facade by translating a single transaction request into a
series of calls to the services’ APIs and Mediator by keeping the states of the services
consistent (the transaction succeeds or fails as a whole). Sometimes a saga may include
requests to external services (which are not parts of the system you are developing).

Transaction Script [PEAA, LDDD] is a procedure that executes a transaction, possibly
over multiple databases [LDDD]. Unlike Saga, it is synchronous, written in a general
programming language and does not require a dedicated framework to run. It operates
database(s) directly while sagas tend to send commands to services. A transaction script
may also return data to its caller.

Coordinator [POSA3] is a generalized pattern for a component that manages multiple
tasks (e.g. software updates of multiple components) to achieve “all or nothing” results (if
any update fails, other components are rolled back).

Example: [SAHP] investigates many kinds of sagas while [MP] has a shorter description.

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf


Integration (Micro-)Service, Application Service

Integration Service is a full-scale service (often with a dedicated database) that runs
high-level scenarios while delegating the bulk of the work to multiple other services
(remarkably, delegating to a single component forms Layers). Though an integration service
usually has both functions of Orchestrator, in control systems its Mediator role is more
prominent while in processing software it is going to behave more like Facade. Such a
system is closely related to shallow Hierarchy.

Example: Order Service in [MP] seems to fit the description.

Variants of composite patterns
Several composite patterns involve Orchestrator and are dominated by its behavior:

API Gateway

https://github.com/wso2/reference-architecture/blob/master/event-driven-api-architecture.md


API Gateway [MP] is a component that processes client requests (and encapsulates an
implementation of a client protocol(s)) like Gateway (a kind of Proxy) but also splits each
client request into multiple requests to internal services like API Composer or Process
Manager (Orchestrators). It is a common pattern for backend solutions as it provides all the
means to isolate the stable core of the system’s implementation from its fickle clients.
Usually a 3rd party framework implements and colocates both its aspects, namely Proxy and
Orchestrator, thus simplifying deployment and improving latency.

Example: a thorough article from Microsoft.

Event Mediator

Event Mediator [FSA] is an orchestrating middleware. It not only receives requests from
clients and turns each request into a multistep use case (as Process Manager) but also
manages the deployed instances of the services and acts as a medium that transports
requests to the services and receives confirmations from them. Moreover, it seems to be
aware of all the kinds of messages in the system and which service each message must be
forwarded to, resulting in an overwhelming complexity concentrated in a single component,
which does not even follow the separation of concerns principle. [FSA] recommends building
a hierarchy of event mediators from several vendors, further complicating the architecture.

Example: Mediator Topology in the chapter on Event-Driven Architecture of [FSA].

Enterprise Service Bus (ESB)

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway


Enterprise Service Bus (ESB) [FSA] is an overgrown Event Mediator that incorporates
lots of cross-cutting concerns, including protocol translation with an adapter deployed per
service. The combination of its central role in organizations and its complexity was among
the main reasons for the demise of enterprise Service-Oriented Architecture.

Example: Orchestration-Driven Service-Oriented Architecture in [FSA].

Evolutions
Employing an orchestrator has two pitfalls:
● The system becomes slower because too much communication is involved.
● The single orchestrator may be found too large and rigid.

There is a handful of evolutions to counter those weaknesses:
● Subdivide the orchestrator by the system’s subdomains, forming Layered Services.

● Subdivide the orchestrator by the type of client, forming Backends for Frontends.

● Add another layer of orchestration.

https://www.confluent.io/learn/enterprise-service-bus/


● Build a top-down hierarchy.

Summary
An orchestrator distills the high-level logic of your system by keeping it together in a

layer which integrates other components. However, that involves much communication
which impairs performance.



Combined Component
Jack of all trades. Use a 3rd party software that covers multiple concerns.
Aspects: those of the individual components it combines.
Variants:
● Message Bus [EIP],
● API Gateway [MP],
● Event Mediator [FSA],
● Front Controller [SAHP but not PEAA],
● Enterprise Service Bus [FSA],
● Service Mesh [FSA],
● Middleware of Space-Based Architecture [SAP, FSA].
Structure: Two or more (usually) extension patterns combined into a single component.
Type: Extension.

Benefits Drawbacks
Works off the shelf Is yet another technology to learn
Improved latency May not be flexible enough for your needs
Less DevOps effort May become overcomplicated

References: Mostly [FSA], Microsoft on API Gateway.

Two or three metapatterns may be blended together into a combined component which is
usually a ready-to-use framework that tries to cover (and subtly create) as many project
needs as possible to make sure it will never be dropped out of the project. On one hand,
such a framework may provide a significant boost to the speed of development. On the other
– it is going to force you into its own area of applicability and keep you bound within it.

Performance
A combined component tends to improve performance as it removes the network hops

and data serialization between the several components it replaces. It is also likely to be
highly optimized. However, that matters if you really need all the functionality that you are
provided with, otherwise you may end up running a piece of software which is too complex
and slow for the tasks at hand.

Dependencies
A combined component has all the dependencies of its constituent patterns.

Applicability
Combined patterns work well for:
● Series of similar projects. If your team is experienced with the technology and knows

its pitfalls, it will be used efficiently and safely.
● Small- to medium-sized domains. An off-the-shelf framework relieves you of

infrastructure concerns. No thinking, no decisions, no time wasted.
Combined patterns are better avoided in:

https://www.confluent.io/learn/enterprise-service-bus/
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway


● Research and development. You may find that the technology chosen is too limiting
or a wrong fit for your needs when it is already deeply integrated into your code and
infrastructure.

● Large projects. Most of the combined patterns include an orchestrator which tends to
grow unmanageable (requiring some kind of division, see variants of Orchestrator) as
the project grows.

● Long-running projects. You are very likely to run into vendor lock-in as the industry
evolves, leaving obsolete the technology you have chosen and integrated.

Variants
Combined components vary in structure and properties:

Message Bus

Message Bus [EIP] is a middleware that employs an adapter per service allowing
services that differ in protocols to intercommunicate.

API Gateway



API Gateway [MP] is a component that processes client requests (and encapsulates the
client protocol(s)) like a gateway (a kind of Proxy) but also splits each client request into
multiple requests to the underlying services like an API composer or process manager
(Orchestrators).

If the orchestration logic of an API gateway needs to become more complex, it makes
sense to split the component into a separate gateway and orchestrator, rewriting the latter as
a custom application service. When there are multiple types of clients that strongly differ in
workflows and protocols, an API gateway per client type is used, resulting in Backends for
Frontends. Cell-Based Architecture relies on API gateways for isolation of its cells.

Example: a thorough article from Microsoft.

Event Mediator

Event Mediator [FSA] is an orchestrating Middleware. It not only receives requests from
clients and turns each request into a multistep use case (as Orchestrator does) but also
manages the instances of the services and acts as a medium that transports requests to the
services and receives confirmations from them. Moreover, it seems to be aware of all the
kinds of messages in the system and which service each message must be forwarded to,
resulting in an overwhelming complexity concentrated in a single component, which does not
even follow the separation of concerns principle. [FSA] proposes to counter that by using
multiple event mediators over the next dimensions:

● Client applications or bounded contexts, dividing the event mediator’s responsibility
by subdomain.

● Complexity of a use case, with simple scenarios handled by a simple first-line event
mediator and more complicated being forwarded to second- and third-line event
mediators that employ advanced orchestration engines.

strangely resulting in multiple middlewares connected to the same set of services.
The pattern seems to be well established, but obviously it may become quite messy for

larger projects with nontrivial interactions. Such cases may also be solved by separating the
middleware from the orchestrator and dividing the latter into Backends for Frontends.

Example: Mediator Topology in the [FSA] chapter on Event-Driven Architecture.

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway


Front Controller

Front Controller [SAHP but not PEAA] is the name for the first (client-facing) service of a
pipeline in Choreographed Event-Driven Architecture when the service collects information
about the status of each request that it has processed and forwarded down the pipeline. The
status is received by listening to notifications by the downstream services and is readily
available for the front controller’s clients, resembling the function of Query Service.

Enterprise Service Bus (ESB)

Enterprise Service Bus (ESB) [FSA] is a mixture of Message Bus (with adapter per
service) and Event Mediator (built-in orchestrator) that turns this kind of Middleware into a
core of the system. The combination of its central role in organizations and its complexity
was among the main reasons for the demise of enterprise Service-Oriented Architecture.

Example: Orchestration-Driven Service-Oriented Architecture in [FSA], how it is born and
how it dies by Neal Ford.

https://www.confluent.io/learn/enterprise-service-bus/
http://memeagora.blogspot.com/2009/01/tactics-vs-strategy-soa-tarpit-of.html
http://memeagora.blogspot.com/2009/03/triumph-of-hope-over-reason-soa-tarpit.html


Service Mesh

Service Mesh [FSA] is a middleware that employs a sidecar [DDS] (adapter) per service
as a place for cross-cutting concerns (logging, observability, encryption, protocol translation).
A service accesses its sidecar without performance and stability penalties as they are
running on the same machine. The totality of deployed sidecars makes a system-wide
logical layer of shared libraries: though the sidecars are physically separate, they are often
identical and stateless, so that a service that accesses one sidecar may be thought of as
accessing all of them.

The service mesh is also responsible for dynamic scaling (it creates new instances if the
load increases and destroys them if they become idle) and failure recovery of the services.
Last but not least, it provides a messaging infrastructure for the microservices to
intercommunicate.

Middleware of Space-Based Architecture

Space-Based Architecture [SAP, FSA] relies on the most complex middleware known – it
incorporates all 4 extension metapatterns:

● Messaging Grid is a proxy that receives, preprocesses and persists client requests
(as a gateway). Simple requests are forwarded to a less loaded processing unit while
complex ones go to the processing grid.

● Processing Grid is an orchestrator that manages multi-step workflows for complex
requests.



● Data Grid is a distributed in-memory database. It is built of nodes which are
co-located with instances of processing units, making the database access extremely
fast. However, the speed and scalability is paid for with stability – any data in RAM is
prone to disappearing. Thus the data grid backs up all the writes to a slower external
database.

● Deployment Manager is a middleware that creates and destroys instances of
processing units (paired to the nodes of the data grid) just like Service Mesh does for
Microservices (paired to Sidecars [DDS]). However, in contrast to service mesh, it
does not provide a messaging infrastructure because processing units communicate
by sharing data via the data grid, not by sending messages.

The four layers of the Space-Based Architecture’s middleware are reasonably
independent. Together they make a system that is both more scalable and more complex
than Microservices.

Evolutions
The patterns that involve orchestration (API Gateway, Event Mediator, Enterprise Service

Bus) may allow for most of the evolutions of the Orchestrator metapattern by deploying
multiple versions of the component. There is also a special evolution:

● Replace the combined component with several specialized ones

Summary
A combined component is a ready-to-use framework that may speed up the development

but will likely constrain your project to follow its guidelines with no regard to your real needs.



Part 4. Fragmented Metapatterns
There are patterns with no system-wide layers. Some of them incorporate two or three

domains at various abstraction levels, so that a service (limited to a subdomain) in one
domain acts as a layer for another domain.

Layered Services

Layered Services is an umbrella metapattern which highlights implementation details of
Services, Pipeline or Monolith.

Includes: orchestrated three-layered services, choreographed two-layered services,
Command Query Responsibility Segregation (CQRS).

Polyglot Persistence

Polyglot Persistence is about using multiple data stores which differ in roles or
technologies. Each of the upper-level components may have access to any data store. Each
data store is a shared repository.

Includes: specialized databases, private and shared databases, data file, Content
Delivery Network (CDN); read-only replica, Reporting Database, CQRS View Database,
Memory Image, Query Service, search index, historical data, Cache-Aside.



Backends for Frontends

Backends for Frontends has a service (BFF) for each type of the system’s client. The
BFF may be a proxy, orchestrator or both. Each BFF communicates with all the components
below it. The pattern looks like multiple proxies or orchestrators deployed together.

Includes: Layered Microservice Architecture.

Service-Oriented Architecture

SOA has three or four layers of services, each in its own domain. The upper layer
contains orchestrators which are often client-specific, like BFFs. The second layer contains
business rules and is divided by the business subdomains. The lower layer(s) are libraries
and utilities, grouped by functionality and technologies. Each component may use
(orchestrates) all the components below it.

Includes: Segmented Architecture; distributed monolith, enterprise SOA.



Hierarchy

Some domains allow for hierarchical composition where the functionality is spread over a
tree of components.

Includes: Orchestrator of Orchestrators, Bus of Buses, Cell-Based (Microservice)
Architecture (WSO2 version) (Services of Services).



Layered Services

Cut the cake. Divide each service into layers.
Variants:
● Orchestrated three-layered services,
● (Pipelined) Choreographed two-layered services,
● (Pipelined) Command Query Responsibility Segregation (CQRS) [MP, LDDD].
Structure: Domain services, each divided into layers.
Type: Implementation of Services, Pipeline or Monolith.

Layered Services is an umbrella architecture for common implementations of systems of
Services. It does not introduce any special features as the component layers are completely
encapsulated by the services they belong to. Still, as services may communicate through
different layers, we can learn a couple of things by looking into the matter.

Performance
Layered Services are similar to Services performance-wise: use cases that involve a

single service are the fastest, those that need to synchronize states of multiple services are
the slowest.

Remarkable features of Layered Services include:
● Independent scaling of layers of the services. It is common to deploy multiple

instances (the number varies from service to service and may change dynamically
under load) of the layers that contain the business logic while the corresponding data
layers (databases) are limited to single instances.



● The option to establish additional communication channels between lower layers to
drive CQRS (read/write replicas of the same database), materialized views (cached
subsets of data from other services) [DDIA] and event sourcing [MP].

Variants
Layered Services vary in the number of layers and the level at which the services

communicate:

Orchestrated three-layered services



Probably the most common backend architecture has 3 layers: application, domain and
infrastructure [DDD]. The application layer orchestrates the domain layer.

If such an architecture is divided into services, each of them receives its own part of the
application layer, which means that now there are as many orchestrators as services in the
system. Each orchestrator implements the API of its service by integrating (calling or
messaging into) the domain layer of its service and the APIs of other services, making all the
orchestrators interdependent:

Dependencies
The upper (application) layer of each service orchestrates both its middle (domain) layer

and the upper layers of other services, resulting in mutual orchestration and
interdependencies.

The good thing is that the majority of the code belongs to the domain layer which
depends only on its databases. The bad thing is that changes in the application of one
service may affect the application layers of all the services.

Relations
Three-layered services:
● Implement Services.
● Are derived from Layers and Services.
● Have multiple integration (sub)services (orchestrators).

Evolutions
Orchestrated Layered Services may become coupled, which is resolved by merging their

layers:
● A part of or the whole application layer can be merged into an orchestrator.
● Some or all the databases can be united into a shared database or shared as

polyglot persistence.



or by building derived datasets:
● A materialized view inside a service aggregates event sourcing from other services

the owner is interested in.
● A dedicated query service captures the whole system’s state by subscribing to event

sourcing from all the services.

If the services become too large:
● The middle layer can be split into cells.

Choreographed two-layered services



If there is no orchestration, there is no role for the application layer. Choreographed
systems are made up of services that implement individual steps of request processing. The
sequence of actions (integration logic) which three-layered systems put in the orchestrators
now moves to the graph of event channels between the services. This means that with
choreography the high-level part of the business logic exists outside of the code.

Dependencies
Dependencies are identical to those of a pipeline / choreographed services except that

each service also depends on its database.

Relations
Two-layered services:
● Implement Pipeline.
● Are derived from Layers and Pipeline.

Evolutions
If Choreographed Layered Services become coupled:
● The business logic of two or more services can be merged together, resulting in

polyglot persistence.
● Some databases can be united into a shared database or shared as a polyglot

persistence.

Materialized views or query services are also an option:

An overgrown service can be:
● Split in two



Command Query Responsibility Segregation (CQRS)

CQRS [MP, LDDD] is, essentially, a division of a layered application or a service into two
(rarely more) services, one of which is responsible for write access (handling commands) to
the domain data while the other(s) deal with read access (queries), creating a data pipeline
(see the diagram below). Such an architecture makes sense when the write and read
operations don’t rely on a common vision (model) of the domain, for example, the writes are
individual changes (OLTP) that require cross-checks and validation of input, while reads
show aggregated data (OLAP) and may take long time to complete (meaning that forces for
the read and write paths differ). If there is nothing to share in the code, why not separate the
implementations?

The separation brings in the pros and cons of Services: commands and queries may
differ in technologies (including optimal database schemas and engines), forces and teams
at the expense of consistency (database replication delay) and the system’s complexity. In
addition, for read-heavy applications, the read database(s) can be easily scaled.

CQRS has several variations:
● The database may be shared, commands and queries may use dedicated

databases, or the read service may maintain a memory image / materialized view

https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Eventual_consistency
https://martinfowler.com/bliki/MemoryImage.html


[DDIA] fed by the events from the write service (as in other kinds of Layered
Services).

● Data replication may be implemented as a pipeline between the databases (based on
nightly snapshots or log-based replication) or a direct event feed from the OLTP code
to the OLAP database.

It is noteworthy that while ordinary layered services usually intercommunicate through
their upper-level components that orchestrate use cases, a CQRS system is held together
by spreading data changes through its lowest layer.

Examples: Martin Fowler has a short article and Microsoft a longer one.

Dependencies
Each backend depends on its database (technology and schema). The OLTP to OLAP

data replication requires an additional dependency, which corresponds to way the replication
is implemented:

Relations
CQRS:
● Implements Monolith (a whole system or a service).
● Is derived from Layers and Pipeline.
● Is a development of Polyglot Persistence.

Evolutions
● You will usually need a reverse proxy or an API gateway to dispatch commands and

queries to different services.
● If the commands and queries become intermixed, the business logic can be merged

together but the databases are left separate, resulting in Polyglot Persistence.
● Both read and write backends can be split into layers or services.

https://www.dremio.com/wiki/log-based-replication/
https://martinfowler.com/bliki/EagerReadDerivation.html
https://martinfowler.com/bliki/CQRS.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs


● Space-Based Architecture may further improve performance.
● You can use multiple schemas or even kinds of OLAP databases simultaneously

(Polyglot Persistence).

Summary
Layered Services is an umbrella pattern that conjoins:
● Three-layered services where each service orchestrates other services.
● Two-layered services that form pipelines.
● CQRS that separates read and write request processing paths.



Polyglot Persistence

Unbind your data. Use multiple specialized databases.
Known as: Polyglot Persistence.
Aspects: those of the databases involved.
Variants:
Independent storage:
● Specialized databases,
● Private and shared databases,
● Data file / Content Delivery Network (CDN).
Derived storage:
● Read-only replica,
● Reporting Database / CQRS View Database [MP] / Source-aligned (native) Data

Product Quantum (DPQ) of Data Mesh [SAHP],
● Memory Image / Materialized view [DDIA],
● Query Service [MP] / Front Controller [SAHP but not PEAA] / Data Warehouse

[SAHP] / Data Lake [SAHP] / Aggregate Data Product Quantum (DPQ) of Data Mesh
[SAHP],

● Search index,
● Historical data / Data archiving.
● Database cache / Cache-Aside.
Structure: A layer of data services used by higher-level components.
Type: Extension, derived from Shared Repository.

Benefits Drawbacks
Performance is fine-tuned for varied data use
cases

Each database needs to be learned

Less load on each database Muсh more work for the DevOps team
The databases may satisfy conflicting forces More points of failure in the system

Consistency is hard or slow to achieve

https://martinfowler.com/bliki/ReportingDatabase.html
https://martinfowler.com/bliki/MemoryImage.html
https://www.datacore.com/glossary/what-is-data-archiving/
https://www.enjoyalgorithms.com/blog/cache-aside-caching-strategy


References: The original article, the closely related CQRS article, chapter 7 of [MP],
chapter 11 of [DDIA] and much information dispersed over the Web.

You can choose a dedicated repository for each kind of data or pattern of data access in
your system. That improves performance (as each database engine is optimized for a few
use cases), distributes load between the databases and may solve conflicts of forces (like
when you need both low latency and large storage). However, you’ll likely have to hire
several experts to get the best use of and to support the multiple databases. Moreover,
having your data spread over multiple databases makes it the application’s responsibility to
keep the data in sync (by implementing some kind of transactions or making sure that the
clients don’t get stale data).

Performance
Polyglot Persistence is applied to improve performance. That is achieved through the

following means:
● Optimize for specific data use cases. It is impossible for a single database to be good

at everything.
● Redirect read traffic to read-only database replicas. The write-enabled master

database processes only write requests.
● Cache frequently used data to a fast in-memory database to let the majority of client

requests be served without hitting the persistent storage.
● Build a view of the state of other services in the system to avoid querying them.
● Maintain an external index or memory image for use with tasks that don’t need the

historical data.
● Purge old data to a slower storage.
● Store read-only sequential data as files, often close to end users that download them.
Still, the read-write separation introduces the replication lag, which is a pain when data

consistency is important for the system’s clients.

Dependencies
In general, each service depends on all the databases it uses. There may also be an

additional dependency between the databases if they share the dataset (one or more
databases are derived).

Applicability
Polyglot Persistence helps:
● High-load and low latency projects. Specialized databases shine when given fitting

tasks. Caching and read-only replicas unload the main database. External indices
save the day.

https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/CQRS.html
https://medium.com/@Ian_carson/replication-lag-82c736081e32


● Event sourcing. Materialized views maintain current states of the system’s
components.

● Conflicting forces. An instance of a stateless module inherits many qualities of the
database it uses for each request it processes. Thus, if there are several databases,
qualities of a service instance may vary from request to request.

Polyglot Persistence may hurt:
● Small projects. Properly setting up and maintaining multiple databases is not that

easy.
● High availability. Each database your system uses tends to fail in its own crazy way.
● User experience. For systems with read-write database separation the replication lag

between the databases will make you choose between writing synchronization code
to wait for the read database to be updated and risking returning outdated results to
the users.

Relations

Polyglot Persistence:
● Extends Monolith, Shards, Layers or Services.
● Is derived from Layers (persistence layer) or Shared Repository.
● The variant with derived databases inherits from Pipeline and is closely related to

CQRS.

Variants with independent storage
Many cases of Polyglot Persistence use multiple repositories just because there is no

single technology that matches all the application’s needs. The databases used are filled
with different subsets of the system’s data:

https://medium.com/@Ian_carson/replication-lag-82c736081e32


Specialized databases

Databases vary in their optimal use cases. You can employ several different databases
to have the best performance for each kind of data that you persist.

Private and shared databases

If several services or shards become coupled through a subset of the system’s data, that
subset can be put into a separate database which is accessible to all the participants. All the
other data remains private to the shards or services.

Data file, Content Delivery Network (CDN)

Some data is happy to stay in files. Web frameworks load web page templates from OS
files and store images and videos in a content delivery network (CDN) that replicates the
data all over the world so that each user downloads the content from the closest server
(which is faster and cheaper).

https://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/


Variants with derived storage
In other cases there is a single writable database (system of record [DDIA]) which is the

main source of truth while other databases are derived from it. The primary reason is to
relieve the main database of read requests and often support additional qualities: special
kinds of queries, aggregation for materialized views, (full text) search for indices, huge
dataset size for historical data, low latency for an in-memory cache.

The updates to the derived databases may come from:
● the main database as change data capture [DDIA] (which is a log of changes),
● the application after it changes the main database (see caching strategies below),
● another service as event sourcing [DDIA, MP] (a stream of application events),
● a dedicated indexer that periodically crawls the main database or web site.

Read-only replica

Multiple instances of the database are deployed. One of them is the leader [DDIA]
instance that accepts all the writes to the data. The changes are replicated to the other



passive instances which are used for read requests. Distributing the workload over multiple
instances increases the maximum throughput of the system. Having multiple running
replicas greatly improves reliability and allows for nearly instant recovery of database failures
as any replica may quickly be promoted to the leader role to serve the write traffic.

Reporting Database, CQRS View Database, Source-aligned (native)
Data Product Quantum (DPQ) of Data Mesh

It is common wisdom that a database is good for either OLTP (transactions) or OLAP
(queries). Here we have two databases: one optimized for commands (write traffic protected
with transactions) and another one for complex analytical queries. The databases differ at
least in schema (OLAP schema is optimized for queries) and often vary in type (e.g. SQL vs
NoSQL).

A reporting database (or Source-aligned (native) Data Product Quantum of Data Mesh
[SAHP]) derives its data from a write-enabled database in the same subsystem (service)
while a CQRS view [MP] is fed a stream of events from another service from which it filters
the data of interest to its owner service (see the last case on the diagram above). This way
the CQRS view lets its owner service query (its replica of) the data that originally belonged to
other services.

Memory Image, Materialized view

Event sourcing (of Event-Driven Architecture or Microservices) is all about changes.
Services publish and persist whatever events happen in the system, forgoing the current
state in favor of the history of changes. As a result, a service needs to aggregate the history
into a memory image (Materialized View [DDIA]) by loading a snapshot and replaying any
further events to rebuild the current state (which other architectural styles store in
databases) to become up-to-date and start operating.

https://martinfowler.com/bliki/ReportingDatabase.html
https://martinfowler.com/bliki/MemoryImage.html


Query Service, Front Controller, Data Warehouse, Data Lake,
Aggregate Data Product Quantum (DPQ) of Data Mesh

A query service [MP] (or Aggregate Data Product Quantum of Data Mesh [SAHP])
subscribes to events from several full-featured services and aggregates them to its
database, making it a CQRS view of several services or even the whole system. If any other
service or a data analyst needs to process data that belongs to multiple services, it retrieves
it from the query service which has already joined the streams and represents the join in a
convenient way through a single API method.

Front Controller [SAHP but not PEAA] is a query service embedded in the first
(user-facing) service of a pipeline. It collects status updates from the downstream
components of the pipeline to know the state of every request being processed by the
pipeline.

Data Warehouse [SAHP] and Data Lake [SAHP] are analytical databases that connect
directly to and import all the data from the (operational) databases of all the system’s
services. Data Warehouse translates the imported data to its own unified schema while Data
Lake stores the imported data in its original formats.

Search index

Some domains require a kind of search which is not naturally supported by ordinary
database engines. Full text search, especially NLP-enabled, is one such case. Geospatial
data may be another. If you are comfortable with your main database(s), you can set up an
external search index by deploying a product dedicated to the special kind of search that you
need and feeding it updates from your main database.

https://en.wikipedia.org/wiki/Natural_language_processing


Historical data, Data archiving

It is common to store the history of sales in a database. However, once a month or two
has passed, it is very unlikely that the historical records will ever be edited. And though they
are queried on very rare occasions, like audits, they still slow down your database. Some
businesses offload any data older than a couple of months to a cheaper archive storage
which does not allow for changes to the data and has limited query capabilities – in order to
keep their main datasets small and fast.

Database cache, Cache-Aside

Database queries are resource-heavy while databases scale only to a limited extent.
That means that a highly loaded system benefits from bypassing its main database in as
many queries as possible, which is usually achieved by storing recent queries and their
results in an in-memory database (cache-aside). Each incoming query is first looked in the
fast cache, and if it is found then you are lucky to return the result immediately without
turning to the main database.

Keeping the cache consistent with the main database is the hard part. There are quite a
few strategies (some of them treat the cache as a proxy for the database): write-through,
write-behind, write-around and refresh-ahead.

Evolutions
Polyglot Persistence with derived storage can often be made subject to CQRS:

https://www.datacore.com/glossary/what-is-data-archiving/
https://www.enjoyalgorithms.com/blog/cache-aside-caching-strategy
https://www.enjoyalgorithms.com/blog/write-through-caching-strategy
https://www.enjoyalgorithms.com/blog/write-behind-caching-pattern
https://www.enjoyalgorithms.com/blog/write-around-caching-pattern
https://www.enjoyalgorithms.com/blog/refresh-ahead-caching-pattern


● The service that uses the read and write databases is split into separate read and
write services.

Summary
Polyglot Persistence employs multiple specialized databases to improve performance,

often at the cost of implementing transactions in the application or delayed data replication.



Backends for Frontends (BFF)

Hire a local guide. Dedicate an orchestrator to every kind of client.
Known as: Backends for Frontends (BFF), Layered Microservice Architecture.
Aspects:
● Proxy,
● Orchestrator.
Variants: Applicable to:
● Proxies,
● Orchestrators,
● Proxy + Orchestrator pairs,
● API Gateways,
● Event Mediators.
Structure: A layer of integration services over a shared layer of core services.
Type: Extension, derived from Orchestrator and/or Proxy.

Benefits Drawbacks
Clients become independent in protocols,
workflows and, to an extent, forces

No single place for cross-cutting concerns

A specialized team and technology per client
may be employed

More work for the DevOps team

The multiple orchestrators are smaller and
more cohesive than the original universal one

References: The original article and a smaller one from Microsoft. Here are reference
diagrams from WSO2 (notice multiple Microgateway + Integration Microservice pairs).

https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md
https://samnewman.io/patterns/architectural/bff/
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md
https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md


If some aspect(s) of serving our system’s clients strongly vary by client type (e.g. OLAP
vs OLTP, user vs admin, buyer vs seller vs customer support), it makes sense to use a
dedicated component (the titular backend for frontend or BFF) per client type to encapsulate
the variation. Protocol variations call for multiple proxies, workflow variations – for several
orchestrators, both coming together – for API gateways or proxy + orchestrator pairs. It is
even possible to vary the BFF’s programming language on a per client basis. The drawback
is that once the clients get their dedicated BFFs it becomes hard to share a common
functionality between them, unless you are willing to add yet another new utility service that
can be used by all of them (and strongly smells of SOA).

Performance
As the multiple orchestrators of BFF don’t communicate with each other, the pattern’s

performance is identical to that of Orchestrator: it also slows down request processing in the
general case, but allows for several specific optimizations, including the use of direct
communication channels between the orchestrated services.

Dependencies
Each BFF depends on all the services it uses (usually every service in the system). The

services themselves are likely independent, as is common in orchestrated systems.

Applicability
Backends for Frontends are good for:
● Multiple client protocols. Deploying a gateway per protocol hides the variation from

the underlying system.
● Multiple UIs. When you have a team per UI, each of them may want to use an API

which they feel comfortable with.
● Drastically different workflows. Let each client-facing development team own a

component and choose the best fitting technologies and practices.
Backends for Frontends should be avoided when:
● The clients are mostly similar. It is hard to share code and functionality between

BFFs. If the clients have much in common, the shared aspects either find their place
in a shared monolithic layer (e.g. multiple client protocols call for multiple gateways
but a shared orchestrator) or are duplicated. Maybe BFF is a bad choice – use OOD



(conditions, factories, strategies, inheritance) to account for the clients’ differences
within a single codebase.

Relations

Backends for Frontends:
● Extends Services or rarely Monolith, Layers or Shards.
● Is derived from a client-facing extension metapattern: Gateway, Orchestrator, API

Gateway or Event Mediator.

Variants
Backends for Frontends vary in the kind of component that gets dedicated to each client:

Proxies

Dedicating a gateway per client is useful when the clients differ in the mode of access to
the system (protocols / encryption / authorization) but not in workflows.

Multiple adapters match the literal meaning of “Backends for Frontends” – each UI team
(backend, mobile, desktop; or end-device-specific teams) gets some code on the backend
side to adapt the system’s API to its needs by building a new, probably more high-level
specialized API on top of it.

https://www.thoughtworks.com/insights/blog/bff-soundcloud
https://netflixtechblog.com/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d


Orchestrators

An orchestrator per client makes sense if the clients work in the system in completely
unrelated ways, e.g. a shop’s customers have little to share with its administrators.

Proxy + Orchestrator pairs

Clients vary in both access mode (protocol) and workflow. Orchestrators or proxies may
be reused if there are many kinds of clients.



API Gateways

Clients vary in access mode (protocol) and workflow and there is a 3rd party API
Gateway framework which seems to fit your requirements off the shelf.

Event Mediators

[FSA] mentions that multiple event mediators may be deployed in Event-Driven
Architecture to split the codebase and improve stability.

Evolutions
BFF-specific evolutions aim at sharing logic between the BFFs:



● The BFFs can be merged into a single orchestrator if their functionality becomes
mostly identical.

● A shared orchestration layer with common functionality may be added for use by the
BFFs.

● A layer of integration services under the BFFs simplifies them by providing shared
high-level APIs for the resulting cells.

● Sidecars [DDS] of service mesh can share libraries among the BFFs.

Summary
Backends for Frontends assigns a proxy and/or orchestrator per each kind of a system’s

client to encapsulate client-specific use cases and protocols. The drawback is that there is
no good way for sharing functionality between the BFFs.



Service-Oriented Architecture (SOA)

The whole is equal to the sum of the parts. Distributed Object-Oriented Design.
Known as: Service-Oriented Architecture (SOA), Segmented Architecture.
Variants:
● Distributed Monolith,
● Enterprise SOA,
● (misapplied) Automotive SOA,
● Nanoservices.
Structure: Usually 3 layers of services where each service can access any other service

in its own or lower layers.
Type: Main, derived from Layers.

Benefits Drawbacks
Supports huge codebases Very hard to debug
Multiple development teams and technologies Hard to test as there are many dependencies
Forces may vary between modules Very poor latency
Deployment to dedicated hardware Very high DevOps complexity
Fine-grained scaling The teams are highly interdependent

References: [FSA] has a chapter on Orchestration-Driven (Enterprise) Service-Oriented
Architecture. [MP] mentions Distributed Monolith. There is also much (though somewhat
conflicting) content over the Web.

https://en.wikipedia.org/wiki/Object-oriented_design
https://github.com/wso2/reference-architecture/blob/master/reference-architecture-layered-segmented.md
https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22


Service-Oriented Architecture looks like the application of modular or object-oriented
design followed by distribution of the resulting components over a network. The system
usually contains 3 (rarely 4) layers of services where every service has access to all the
services below it (and rarely some in its own layer). The services stay small, but as their
number grows it becomes hard to cognize all the API methods and contracts available for
the component’s use. Another issue comes from the idea of reusable components – multiple
applications, written for different clients with varied workflows, require the same service to
behave in (subtly) different ways, either causing its API to bloat or impairing its usability
(which means that a new customized duplicate service will be added to the system). Use
cases are slow because there is much interservice communication over the network. Teams
are interdependent as any use case involves many services, each owned by a different
team. Testability is poor because there are too many moving (and being independently
updated!) parts. The foundational idea of service reuse failed in practice, but its child
architecture, SOA, still survived in historical environments.

Even though SOA fell from grace and is rarely seen in modern projects, it may soon be
resurrected by low-code and no-code frameworks for serverless systems (e.g.
Nanoservices) – it has everything ready: code reuse, granular deployment and elastic
scaling.

Performance
SOA is remarkable for its poor latency that results from extensive communication

between its distributed components. There is hardly any way to help that as processing a
request usually involves multiple services from all the layers.

Nevertheless, the pattern allows for good throughput as its stateless components can be
scaled individually, leaving the system’s scalability to be limited only by its databases,
middleware … and funding.

Dependencies
Each service of each layer depends on everything it uses. As a result, development of a

low-level (utility) component may be paralyzed because too many services already use it,
thus no changes are welcome. Hence, the team writes a new version of their utility as a new
service, which defeats the idea of component reuse which SOA was based on.



Applicability
Service-Oriented Architecture is useful in:
● Huge projects. Multiple teams can be employed, each handling a moderate amount

of code. However, dependencies between the teams and the combined length of the
APIs in the system may stall the development anyway.

● A system of specialized hardware devices. If there is a lot of different hardware
interacting in complex ways, the system may naturally fit the description of SOA.
Don’t fight this kind of Conway’s law.

Service-Oriented Architecture hurts:
● Fast-paced projects. Any feature requires coordination of multiple teams, which is

hard to achieve in practice.
● Latency-sensitive domains. Over-distribution means too much messaging causing

too high latency.
● High availability systems. Components may fail. A failure of a lower-level component

is going to stall a large part of the system because every low-level component is
used by many high-level services.

● Life-critical systems with frequent updates. SOA is hard to test comprehensively.
Either all the components must be certified with a strict standard and a
comprehensive test suite or any single component update requires re-testing of the
entire system.

Relations
Service-Oriented Architecture:
● Is a stack of layers each of which is divided into services.
● Is often extended with an enterprise service bus (a kind of orchestrating middleware)

and one or more shared databases.

Variants
This architecture was applied mostly during the time when enterprises were expanding

by merging smaller companies and conjoining their IT systems. The systems that resulted
were still heterogeneous and the development experience unpleasant, inclining the popular
opinion towards the then novel notion of Microservices. As everybody has turned from
merging existing systems to failing to apply Microservices in practice, the chance to find a
pure greenfield SOA project in the wild is quite low. Many systems which are marketed as
SOA are strongly modified:

https://goomics.net/374/
https://en.wikipedia.org/wiki/Conway%27s_law


Distributed Monolith

If a monolith gets too complex and resource-hungry, the most simple&stupid way out of
the trouble is to deploy each of its component modules to a separate hardware. The
resulting modules still communicate synchronously and are subject to domino effect on
failure. Such an architecture may be seen as a (hopefully) intermediate structure in transition
to more independent and stable event-driven Services (or Cells).

Enterprise SOA

Multiple systems of Services each featuring an API gateway and a shared database are
integrated, resulting in new cross-connections. Much of the orchestration logic is removed
from the API gateways and reimplemented in an orchestrating middleware called Enterprise
Service Bus (ESB). This option allows for fast and only moderately intrusive integration (as
no changes to the services, which implement the mass of the business logic, are required),
but the single orchestrating component (ESB) often becomes the bottleneck for the future
development of the system due to its size and complexity. It is likely that if the orchestration
were encapsulated in the individual API gateways, the system would be easier to deal with
(making what is now marketed by WSO2 as Cell-Based Architecture).

The layers of SOA are:

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md


● Business Process (Task) – the definitions of use cases for a single business
department, similar to the API gateways layer of BFF.

● Services (Enterprise, Entity) – the implementation of the business logic of a
subdomain, to be used by the tasks.

● Components (Application & Infrastructure, Utility) – external libraries and in-house
utilities that are designed for shared use by the services.

(misapplied) Automotive SOA

Automotive architectures are marketed as SOA, but the old AUTOSAR Classic looks
more like Microkernel (which indeed is similar to a 2-layered SOA with an ESB) while the
newer system diagrams resemble Hierarchy. Therefore, they are treated in the
corresponding chapters.

Nanoservices
It seems that some proponents of Nanoservices take them for a novel version of SOA –

with the old good promise of reusable components. However, as that promise was failing
miserably ever since the ancient days of OOP, it is no surprise that in practice nanoservices
are used instead to build pipelines with little to no reuse.

Evolutions
SOA suffers from excessive reuse and fragmentation. To fix that, first and foremost, each

service of the componentes (utility) layer should be duplicated:
● Into every service that uses it, giving the developers who write the business logic full

control of all the code that they use. Now they have several projects to support on
their own (instead of asking other teams to make changes to their components).

● Or into sidecars [DDS] if you employ a service mesh, resulting in much fewer network
hops (thus lower latency) in request processing, but retaining the inter-team
dependencies.

That removes a large and the most obvious part of the fragmentation, making the ESB (if
you use one) orchestrate only the entity layer.

https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22
https://increment.com/software-architecture/the-rise-of-nanoservices/


After that you may deal with the remaining orchestration. The idea is to move the
orchestration logic from the ESB to an explicit layer of orchestrators:

● Either a monolithic orchestrator over all the services.
● Or Backends for Frontends with an orchestrator per client type (department of an

enterprise) if each client uses most of the services.
● Or go for cells with an orchestrator per subdomain if your clients are

subdomain-bound.
● Or a combination of the above.

Still another step is unbundling middleware, which supports multiple protocols via
adapters:

● If you use a service mesh, the adapter may be put to sidecars [DDS].
● Otherwise there is an option of a hierarchical middleware (bus of buses) if closely

related components share protocols.
Still, the evolution of middleware may not bring any real benefit except for removing the

ESB, which may not be that bad after all, when it is not misused.



In any case the evolutions will likely be very expensive, thus it makes sense to conduct
some of them gradually via a kind of strangler fig approach. Or let the architecture live and
die as it is.

Summary
Service-Oriented Architecture divides each of: integration, domain and utility layers into

shared services. The extensive fragmentation and reuse degrade performance and speed of
development. Nevertheless, huge projects are known to survive with this architecture.

https://martinfowler.com/bliki/StranglerFigApplication.html


Hierarchy

Command and conquer. Build a tree of responsibilities.
Variants:
By structure:
● Polymorphic children,
● Functionally distinct children.
By direction:
● Top-down Hierarchy / Orchestrator of Orchestrators,
● Bottom-up Hierarchy / Bus of Buses / Network of Networks,
● In-depth Hierarchy / Cell-Based (Microservice) Architecture (WSO2 version) /

Segmented Microservice Architecture / Services of Services.
Structure: A tree of modules.
Type: Main or extension.

Benefits Drawbacks
Very good in decoupling logic Global use cases may be hard to debug
Supports multiple development teams and
technologies

Poor latency for global use cases

Components may vary in qualities Operational complexity
Low-level components are easy to replace Slow start of the project

References: None good I know of. Presentation-Abstraction-Control [POSA1, POSA4] is
long dead and buried.

Though not applicable to every domain, hierarchical decomposition is arguably the best
way to distribute responsibilities between components. It limits the connections (thus the
number of interfaces and contracts to keep in mind) of each component to its parent and few
children, allowing for building complex (and even complicated) systems in a simple way. The
hierarchical structure is very flexible as it features multiple layers of indirection (and often
polymorphism), thus making the addition, replacement or stubbing of leaf components trivial.
It is also very fault-tolerant as individual subtrees operate independently.

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering


This architecture is not ubiquitous because few domains are truly hierarchical. Its high
fragmentation results in increased latency and poor debugging experience. Moreover,
component interfaces should be designed beforehand and are hard to change.

Performance
No kind of distributed hierarchy is latency-friendly as many use cases involve several

network hops. The fewer layers of the hierarchy are involved in a task, the better its
performance.

Maintaining high throughput usually requires deploying multiple instances of the root
component, which is not possible if it is stateful (in control systems) and the state cannot be
split to shards. The following tricks may help unloading the root:

● Aggregation (first met in Layers): a node of a hierarchy collects reports from its
children, aggregates them into a single package, and sends the aggregated data to
its parent. That greatly reduces traffic to the root in large IIoT networks.

● Delegation (resembles strategy injection and batching for Layers): a node should try
to handle all the low-level details of communication with its children without
consulting its parent node. For a control system that means that its mid-level nodes
should implement control loops for the majority of incoming events. For a processing
system that means that the mid-level nodes should expose coarse-grained interfaces
to their parent(s) while translating each API method call into multiple calls to their
child nodes.

● Direct communication channels (previously described for Orchestrator): if low-level
nodes need to exchange data, their communication should not always go through the
higher-level nodes. Instead, they may negotiate a direct link (open a socket) that
bypasses the root of the hierarchy.



Dependencies
Usually each parent node provides one (for polymorphic children) or more (otherwise)

SPIs for child nodes to communicate with them through. The interfaces reside on the parent
side because low-level nodes tend to be less stable (new types of them are often added and
old ones replaced).

Applicability
Hierarchy fits:
● Large and huge projects. The natural division by both level of abstraction and

subdomain allows for using smaller modules, ideally behind intuitive interfaces. The
APIs to learn for each team are limited to the few which their component interacts
with directly.

● Systems of hardware devices. Real-world IIoT systems may use a hierarchy of
controllers to benefit from autonomous decision-making and data aggregation.

● Customization. The tree structure provides opportunities for easy customization. A
medium-sized hierarchical system may integrate hundreds of leaf types.

● Survivability. A distributed hierarchy retains a limited functionality even after failure of
multiple nodes.

Hierarchy fails with:
● Cohesive domains. Horizontal interactions (those between nodes that belong to the

same layer) bloat interfaces as they have to go through the parent nodes.
● Quick start. Finding (and proving) a good hierarchical domain model may be hard if

possible at all. Debugging the initial implementation will not be easy.



● Low latency. System-wide scenarios involve many cross-component interactions
which are slow in distributed systems.

Relations

Hierarchy:
● Can be applied to Orchestrator, Middleware or Services.

Variants by structure (may vary per node)
Hierarchy comes in various shapes as it is more of a design approach than a

ready-to-use pattern:

Polymorphic children
All the managed child nodes expose the same interface and contract. This tends to

simplify the implementation of the parent node and resembles inheritance of OOD.
Example: a fire alarm system may treat all the fire sensors as identical devices, though

the real hardware comes from many manufacturers.

Functionally distinct children
The managing node is aware of several kinds of children that vary in their APIs and

contracts, just like with composition in OOD.
Example: an intrusion alarm logic may need to discern between cat-affected IR sensors

and cat-proof glass break detectors.



Variants by direction

Top-down Hierarchy, Orchestrator of Orchestrators

In the most common case Hierarchy is applied to business logic to build a layered
system that grows from a single generic high-level root to a swarm of specialized low-level
pieces. The most obvious applications are protocol parsers, decision trees, IIoT (e.g. the fire
alarm system of a building) and modern automotive networks. A marketplace that allows for
customized search and marketing algorithms within each category of goods available may
also be powered by a hierarchy of category-specific services.

Bottom-up Hierarchy, Bus of Buses, Network of Networks

Other cases require building a common base for intercommunication of several networks
that vary in their protocols (and maybe their hardware). The root of such a hierarchy is a
middleware, generic and powerful enough to cover the needs of all the specialized networks
which it interconnects.

Example: Automotive networks, integration of corporate networks, the Internet.

https://semiengineering.com/managing-todays-advanced-vehicle-networks-design-challenges/
https://www.mdpi.com/1424-8220/21/23/7917
https://en.wikipedia.org/wiki/Internet_service_provider


In-depth Hierarchy, Cell-Based (Microservice) Architecture (WSO2
version), Segmented Microservice Architecture, Services of Services

When several services in a system grow large, in some cases it is possible to divide
each of them into subservices. Each group of the resulting subservices (known as cell) is
hidden behind its own cell gateway and may even use its own middleware. The subservices
in a cell may share a database and may be deployed as a single unit. This keeps the
system’s integration complexity (the length of APIs and the number of deployable units)
reasonable while still scaling development among many teams, each owning a service. If
each instance of the cell owns a shard of its database, the system becomes more stable as
there is no single point of failure (except for the load balancer called cell router). Another
benefit is that cells can be deployed to regional data centers to improve locality for users of
the system. However, that will likely cause data synchronization traffic between the data
centers.

Cell-Based Architecture (Segmented Microservice Architecture) may be seen as a
combination of Orchestrator of Orchestrators and Bus of Buses where the subservices are
leaves of both hierarchies while the API gateways of the cells are their internal nodes.

Example: Systems that contain many microservices.

Evolutions
● The upper component of a top-down hierarchy can be split into Backends for

Frontends.

https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html
https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://github.com/wso2/reference-architecture/blob/master/api-driven-microservice-architecture.md


Summary
Hierarchy fits a project of any size as it evenly distributes complexity among the many

system’s components. However, it is not without drawbacks in performance, debuggability
and operational complexity. Moreover, very few domains allow for application of this
architecture.



Part 5. Implementation Metapatterns
Several patterns emerge in the internal structure of components.

Plugins

The Plugins pattern is about separating the main logic from customizable details of the
system’s behavior. That allows for the same code to be used for multiple flavors or
customers.

Includes: Plug-In Architecture, Add-ons, Strategy, Hooks.

Hexagonal Architecture

Hexagonal Architecture is a specialization of Plugins where every external dependency
is isolated behind an adapter and thus is easy to update or replace.

Includes: Ports and Adapters, Onion Architecture, Clean Architecture;
Model-View-Controller (MVC).



Microkernel

This is another derivation of Plugins, with a rudimentary core component which mediates
between resource consumers (applications) and resource providers. The microkernel is a
middleware to the applications and an orchestrator to the providers.

Includes: operating system, software framework, virtualizer, distributed runtime,
interpreter, configuration file, saga engine, AUTOSAR Classic Platform.

Mesh

A mesh consists of intercommunicating shards, each of which may host an application.
The shards make a fault-tolerant distributed middleware.

Includes: grid; peer-to-peer networks, Leaf-Spine Architecture, actors, Service Mesh,
Space-Based Architecture.



Plugins

Overspecialize, and you breed in weakness. Customize the system through attachable
modules.

Known as: Plug-In Architecture [FSA], (misapplied) Microkernel (Architecture) [POSA1,
POSA4, SAP, FSA], Plugin [PEAA], Add-ons, Strategy [GoF, POSA4], Reflection [POSA1,
POSA4], Aspects, Hooks.

Variants: Hexagonal Architecture and Microkernel got dedicated chapters. Plugins differ
in many ways.

Structure: A monolith is extended with one or more modules which customize its
behavior.

Type: Implementation, extension.
Benefits Drawbacks

Some aspects are easy to customize Testability is poor (too many combinations)
A customized system is relatively light-weight Performance is not optimal
Platform-specific optimizations are possible API design is hard
The custom pieces may be written in a
different programming language or DSL

References: [SAP] and [FSA] mistakenly call this pattern Microkernel and dedicate
chapters to it.

Most systems require some extent of customizability: from the basic codec selection by a
video player to screens full of tools and wizards unlocked once you upgrade your
subscription plan. This is achieved by keeping the core functionality separate from its
extensions, which are developed by either your team or external enthusiasts to modify the
behavior of the system. The cost of flexibility is paid in the complexity of design – the need to
predict which aspects must be customizable and what APIs are good for known and
unknown uses by the extensions. Heavy communication between the core and plugins
negatively impacts performance.



Performance
Using plugins usually degrades performance. The effect may be negligible for in-process

plugins (such as strategies or codecs) but it becomes noticeable if inter-process
communication or networking is involved.

The only case for a plugin to improve performance of a system that I can think up is
when a part of the client’s business logic moves to a plugin in a lower layer of a system. That
is similar to the strategy injection optimization for Layers. A real-world example is the use of
stored procedures in databases and it is also likely that such an approach is good for HFT.

Dependencies
Each plugin depends on the core’s API (for add-ons) or SPI (for plugins) for the

functionality it extends. That makes the APIs and SPIs nearly impossible to change, only to
extend, as there may be many plugins in the field, some of them out of active development,
that rely on any given method of the already published interfaces.

Applicability
Plugins are good for:
● Product lines. The shared core functionality and some plugins are reused by many

flavors of the product. Per-client customizations are largely built of existing plugins.



● Frameworks. A framework is the functional core to be customized by its users. When
shipped with plugins it becomes ready-to-use.

● Platform-specific customizations. Plugins allow both for native look and feel (e.g.
desktop vs mobile vs console) and for the use of platform-specific hardware.

Plugins do not perform well in:
● Highly optimized applications. Any generic code tends to be inefficient. A generic API

that serves a family of plugins is unlikely to be optimized for the use by any of them.

Relations

Plugins:
● Implement Monolith or sometimes Layers.
● Extend Monolith or Layers with one or two layers of services.

Variants
Plugins are highly variable and omnipresent if we take Strategy [GoF] for a kind of plugin:

By the direction of control
The terminology is not settled, but according to what I found over the Web:
● True Plugins are registered with and called by the system’s core, they may call back

into the core or return results – they are parts of the system.
● Addons are built on top of the system’s API and call into the system from outside –

they are more like external adapters for the system.



By abstractness
A system may use plugins that are more abstract than the core, less abstract or both:
● High-level plugins tend to be related to user experience, statistics or metadata. They

use the core in their own business logic. Addons belong here.
● Low-level plugins encapsulate algorithms that are used by the core’s business logic.
● Some customizations require multiple plugins: a high-level user-facing plugin relies

on algorithms or pieces of business logic which are implemented by several
complementary low-level plugins.

By the direction of communication
A plugin may:
● Provide input to the core (as UI screens and CLI connections).
● Receive output from the core (e.g. collection of statistics).
● Participate in both input and output (like health check instrumentation).
● Take the role of controller – the plugin processes events from the core and decides

on the core’s further behavior.
● Be a data processor – the plugin implements a part of a data processing algorithm

which is run by the core.

By linkage
A plugins may be built-in or dynamically selected:
● Flavors in product lines tend to have a single set of plugins (configuration) built into

the application.
● Other systems choose and initiate their plugins at the start according to their

configuration file.
● Still others may attach and detach a plugin dynamically at runtime.

By granularity
Plugins come in different sizes as:
● Small functions or classes built into the core. These are not true architectural Plugins

but rather Strategies [GoF] / Plugins [PEAA].
● Aspects that pervade the system and are accessed from much of the code, like

logging or memory management. Also not true Plugins, but rather Aspects /
Reflection [POSA1, POSA4].

● Modules that are plugged in as separate system components. Such a kind of plugins
matches the topic of this book. Hexagonal Architecture and Microkernel deal with
system-scale components.

By the number of instances
A plugin may be:
● Mandatory (1 instance), like a piece of algorithm used by the core for a calculation.
● Optional (0 or 1 instance), like a smart coloring scheme for a text editor.
● Subscriptional (0 or more instances), like the log output which may go to a console,

the system log, a log file and network connections all at once.

https://en.wikipedia.org/wiki/Aspect_(computer_programming)


By execution mode
Plugins may be:
● Linked as a binary code called from within the core.
● Written in a domain-specific language which is interpreted by the core.
● Communicated with over a network.

Summary
Plugins allow for customization of a component’s behavior at the cost of increased

complexity, poor testability and somewhat reduced performance.



Hexagonal Architecture

Trust no one. Protect your code from external dependencies.
Known as: Hexagonal Architecture, Ports and Adapters.
Variants:
By placement of adapters:
● Adapters on the external component side.
● Adapters on the core side.
Examples:
● (Pipelined) Model-View-Controller (MVC) [POSA1, POSA4],
● Hexagonal Architecture / Ports and Adapters,
● DDD-style Hexagonal Architecture [LDDD] / Onion Architecture / Clean Architecture.
Structure: A monolithic business logic is extended with a set of (adapter, service) pairs

that encapsulate external dependencies.
Type: Implementation.

Benefits Drawbacks
Decouples external dependencies from the
business logic

Suboptimal performance

Facilitates the use of stubs for testing and
development

The vendor-independent interfaces must be
designed before the start of development

Allows for qualities to vary between the
external components and the business logic
The programmers of business logic don’t
need to learn any external technologies

References: The original article; Herberto Graça’s summary, a brief summary of the
layered variant in [LDDD].

https://alistair.cockburn.us/hexagonal-architecture/
https://herbertograca.com/2017/09/21/onion-architecture/
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://alistair.cockburn.us/hexagonal-architecture/
https://herbertograca.com/2017/09/14/ports-adapters-architecture/


Hexagonal Architecture is a variation of Plugins that aims for the total self-sufficiency of
the business logic written in-house. Any 3rd party tools, whether libraries, services or
databases, are hidden behind adapters [GoF] that translate the external module’s interface
into a Service Provider Interface (SPI) defined by the core module and called “port”. The
business logic depends only on the ports that its developers defined – a perfect use of
dependency inversion – and manipulates the interfaces that were designed in the most
convenient way. Free benefits of this architecture include the core’s cross-platform nature,
easy development and testing with stubs, support for event replay and protection from
vendor lock-in. The architecture allows for the external libraries to be switched to another
implementation at a late stage of the project. The flexibility is paid for with a somewhat
longer system design stage and lost optimization opportunities. There is also a high risk to
design a leaky abstraction – an SPI which looks generic but its contract matches that of the
vendor used at the start of the project, making it much harder than expected to change the
vendor.

Performance
Hexagonal Architecture is a strange beast performance-wise. The generic interfaces

(ports) between the core and adapters stand in the way of whole-system optimization and
may add a context switch. But, at the same time, each adapter concentrates all the
vendor-specific code for each external dependency, which makes it a perfect single place for
aggressive optimization by an expert or consultant who has mastered the 3rd party software
but does not have time to learn the details of your business logic. Thus, some opportunities
for optimization are lost while others emerge.

In rare cases the system may benefit from direct communication between the adapters.
However, that requires several adapters to have compatible types, in which case your
Hexagonal Architecture may in fact be a kind of shallow Hierarchy. Examples include a
service that uses several databases that must be kept in sync or a telephony gateway that
interconnects various kinds of voice devices.

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Vendor_lock-in


Dependencies
Each adapter breaks the dependency between the core that contains the business logic

and the adapted component. That makes all the system’s components mutually independent
– and easily interchangeable and evolvable – except for the adapters, which are small
enough to be rewritten as need arises.

Applicability
Hexagonal Architecture benefits:
● Medium-sized or larger modules. The programmers don’t need to learn details of

external technologies and may concentrate on the business logic instead. The size of
the core code becomes smaller as all the details about managing external
components are moved into the adapters.

● Cross-platform development. The core is naturally cross-platform as it does not
depend on any (platform-specific) libraries.

● Long-lived projects. Technologies come and go, your project remains. Be always
ready to change the technologies.

● Unfamiliar domain. You don’t know how much load you’ll need your database to
support. You don’t know if the library you selected is stable enough for your needs.
Be prepared to change the vendors even after the initial release of your product.

● Automated testing. Stubs work great in reducing load on the test server. And stubs
for the SPIs which you wrote yourself are the easiest for you to write.

● Zero bug tolerance. The SPIs allow for event replay. If the business logic is
deterministic, you can reproduce your user’s bugs at your development station.

Hexagonal Architecture is not good for:
● Small modules. If there is little business logic, there is not much to protect, while the

overhead of defining SPIs and writing adapters is high compared to the total
development time.

http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/


● Write-and-forget projects. You don’t want to waste your time on the long-term
survivability of your code.

● Quick start. You need to show the results right now. No time for good architecture.
● Low latency. The adapters slow down the communication. This is somewhat

alleviated by creating direct communication channels between the adapters to
bypass the core.

Relations

Hexagonal Architecture:
● Is a kind of Plugins.
● May be a shallow Hierarchy.
● Implements Monolith or Layers.
● Extends Monolith, Layers or, rarely, Services with one or two layers of services.
● MVC is also derived from Pipeline.

Variants by placement of adapters
One possible variation in a distributed or asynchronous Hexagonal Architecture is the

deployment of adapters, which may reside with the core or with the components they adapt:



Adapters on the external component side

If the team owns the component adapted, the adapter may be placed next to it. That
usually makes sense because a single domain message (in the terms of the business logic)
tends to unroll into a series of calls to the external component. The less messages you send,
the faster your system is.

This resembles Ambassador [DDS] and Open Host Service [DDD].

Adapters on the core side

Sometimes you need to adapt external services which you don’t control. In that case the
only real option is to place their adapters together with your core logic. In theory, the
adapters can be deployed as separate components, maybe in a sidecar [DDS], but that may
slow down the communication.

This resembles Sidecar [DDS] and Anticorruption Layer [DDD].

Examples
Hexagonal Architecture is simple and unambiguous. It does not come in many shapes:



Model-View-Controller (MVC)

Model-View-Controller (MVC) [POSA1, POSA4] abstracts the core (called “model”) from
the user interface, which is divided into input (“controller”) and output (“view”). The pattern
allowed for cross-platform development at the time when there were no cross-platform UI
frameworks and its convenience made it an industry standard – just as it happened to the
more generic Hexagonal Architecture which was defined two decades later. An interesting
detail about MVC is that it features a unidirectional event flow, making it a kind of Pipeline.
This results from the pattern’s omitting low-level dependencies and concentrating on the
means of input (event producer) and output (event consumer).

Hexagonal Architecture, Ports and Adapters

Just like MVC it is based on, the original Hexagonal Architecture (Ports and Adapters)
does not care about the contents or structure of its core – it is all about isolating the core
from the environment. There may be layers or modules or even plugins inside, but the
pattern does not have anything to say about them.

https://alistair.cockburn.us/hexagonal-architecture/


DDD-style Hexagonal Architecture, Onion Architecture, Clean
Architecture

As Hexagonal Architecture built upon the DDD idea of isolating business logic with
adapters, it was quickly integrated back into DDD [LDDD]. However, as it appeared later
than the original DDD book, there is no universal agreement on how the thing should work:

● The cleanest way is for the Domain layer to have nothing to do with the database –
with this approach the application asks the repository (the database adapter) to
create aggregates (domain objects), then executes the business actions on the
aggregates, and asks the repository to save the changed aggregates back to the
database.

● Others say that in practice the logic inside an aggregate may have to read additional
information from the database or even depend on the result of storing parts of the
aggregate. Thus it is aggregate, not application, that saves the changes, and the
logic of accessing the database leaks into the Domain layer.

● Onion Architecture, one of the early developments of Hexagonal Architecture and
DDD, splits the Domain layer into Domain Model and Domain Services. The Domain
Model layer contains classes with business data and business logic, which are
loaded and saved by the Domain Services layer just above it. And the upper
Application Services layer drives use cases by calling into both Domain Services and
Domain Model.

● There is also Clean Architecture which seems to generalize the approaches above
without delving into the practical details – thus the way it saves its aggregates
remains a mystery.

Summary
Hexagonal Architecture isolates a component’s business logic from any external

dependencies by the use of 2-way adapters between them. It protects from vendor lock-in
and allows for late changes of 3rd party components but relies on preliminary API design
and often hinders performance optimizations.

https://en.wikipedia.org/wiki/Domain-driven_design
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html


Microkernel

Communism. Share resources among consumers.
Known as: Microkernel [POSA1, POSA4].
Aspects:
● Middleware,
● Orchestrator.
Variants:
● Operating system,
● Software framework,
● Virtualizer / Hypervisor / Container Orchestrator [DDS] / Distributed runtime,
● Interpreter [GoF] / Script / Domain-Specific Language (DSL),
● Configurator / Configuration file,
● Saga Engine,
● AUTOSAR Classic Platform.
Structure: A layer of orchestrators over a middleware over a layer of services.
Type: Implementation.

Benefits Drawbacks
The system’s complexity is evenly distributed
among the components

The API and SPIs are very hard to change

Polymorphism of the resource providers Performance is suboptimal
Most of the components are independent in
qualities

Latency is often unpredictable

A resource provider can be implemented and
tested in isolation
Each application is sandboxed by the
microkernel



The system is platform-independent
References: Microkernel pattern in [POSA1].

While vanilla Plugins and Hexagonal Architecture keep their business logic in the
monolithic core component, Microkernel treats the core as a thin middleware (“microkernel”)
that connects user-facing applications (“external services”) to resource providers (“internal
services”). The resource in question can be anything from CPU time or RAM to business
functions. The external services communicate with the microkernel through its API while the
internal services implement the microkernel's Service Programming Interfaces (SPIs)
(usually there is a kind of internal service and an SPI per resource type).

On one hand, the pattern is very specific and feels esoteric. On the other – it is
indispensable in many domains, with many more real-life occurrences than would be
expected. Microkernel is used when there are a variety of applications that need to use
multiple shared resources, with each resource being independent of others and requiring
complex management.

Performance
The microkernel, being an extra layer of indirection, degrades performance. The actual

extent varies from a few percent for OSes and virtualizers to an order of magnitude for
scripts. A more grievous aspect of performance is that latency becomes unpredictable as
soon as the system runs short of one of the shared resources: memory, disk space, CPU
time or even hard drive space for deleted objects. That is why real-time systems rely on
“real-time OS”es with rudimentary features or even run on bare metal.

It is common to see system components communicate directly via shared memory or
sockets bypassing the microkernel to alleviate the performance penalty it introduces.

Dependencies
The applications depend on the API of the microkernel while the providers depend on its

SPIs. On one hand, that isolates the applications and providers from each other, letting them
develop independently. On the other hand, the microkernel’s API and SPIs should be very
stable to support older versions of the components which the microkernel integrates.

Applicability
Microkernel is applicable to:

https://en.wikipedia.org/wiki/Real-time_operating_system


● System programming. You manage system resources and services which will be
used by untrusted client applications. Hide the real resources behind a trusted proxy
layer. Be ready to change the hardware platform without affecting the existing client
code.

● Frameworks that integrate multiple subdomains. The microkernel component
coordinates multiple specialized libraries. Its API is a facade [GoF] for the managed
functionality.

● Scripting or DSLs. The microkernel is an interpreter [GoF] which lets your clients’
code manage the underlying system.

Microkernel does not fit:
● Coupled domains. Any degree of coupling between the internal services complicates

the microkernel and SPIs and is likely to degrade performance. The performance
may often be salvaged by introducing direct communication channels between the
services.

Relations

Microkernel:
● Is a specialization of Plugins.
● Is related to Backends for Frontends, which is a layer of orchestrators over a layer of

services: Microkernel adds a middleware in between.
● Is a kind of 2-layered SOA with an ESB.
● The microkernel layer serves as (implements) a middleware for the upper (external)

services and often as an orchestrator for the lower (internal) services.
● May be implemented by Mesh.

Variants
Microkernel appears as many a species:

https://en.wikipedia.org/wiki/Domain-specific_language


Operating system

The original inspiration for Microkernel, operating systems provide a nearly perfect
example of the pattern, even though their kernels are not that “micro-”. Device drivers
(internal services) encapsulate available hardware resources and make them accessible to
user-space applications (external services) via an OS kernel. The drivers for the same kind
of subsystem (e.g. network adapter or disk drive) are polymorphic and need to match the
installed hardware.

Software framework

The microkernel is a facade [GoF] that integrates a set of libraries and exposes a
user-friendly high-level interface. PAM looks like a reasonably good example.

https://docs.oracle.com/cd/E23824_01/html/819-2145/pam-01.html


Virtualizer, Hypervisor, Container Orchestrator, Distributed runtime

Hypervisors (Xen), PaaS and FaaS, container orchestrators (Kubernetes) [DDS],
distributed actor frameworks (Akka, Erlang/Elixir/OTP) use resources of the underlying
computer(s) to run guest applications. A hypervisor virtualizes resources of a single
computer while a distributed runtime manages those of multiple servers – in that case there
are several instances of the same kind of an internal server which abstracts a host system.

Interpreter, Script, Domain-Specific Language (DSL)

User-provided scripts are run by an interpreter [GoF] which also allows them to access a
set of installed libraries. The interpreter is a microkernel, the syntax of the script or DSL it
interprets is the microkernel’s API.

https://shivangsnewsletter.com/p/why-doesnt-cloudflare-use-containers


Configurator, Configuration file

Configuration files may be regarded as short-lived scripts that configure the underlying
modules at the start of the system. The parser of the configuration file is a transient
microkernel.

Saga Engine

A saga [MP] orchestrates distributed transactions. It may be written in a DSL which
requires a compiler or interpreter, which is a microkernel, to execute.



AUTOSAR Classic Platform

The notorious automotive standard, though promoted as SOA, is structured as a
distributed / virtualized microkernel. The application layer comprises a network of software
components spread over hundreds of chips for some reason called electronic control units
(ECUs). The communication paths between the software components and much of the code
are static and auto-generated. A software component may access hardware of its ECU via
standard interfaces.

The microkernel shows up as Virtual Functional Bus (VFB) which, as a distributed
middleware, provides communication between the applications by virtualizing multiple
Runtime Environments (RTEs) – the local system interfaces.

Summary
Microkernel is a ubiquitous approach to sharing resources among consumers, where

both resource providers and consumers may be written by external companies.

https://www.autosar.org/fileadmin/standards/R20-11/CP/AUTOSAR_EXP_VFB.pdf
https://www.reddit.com/r/embedded/comments/leq366/comment/gmiq6d0/
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf


Mesh

Hive mind. Go decentralized.
Known as: Mesh, Grid.
Aspects: similar to Middleware.
Variants: mashes very greatly. Examples include:
● Peer-to-Peer Networks,
● Leaf-Spine Architecture / Spine-Leaf Architecture,
● Actors,
● Service Mesh [FSA, MP],
● Space-Based Architecture [SAP, FSA].
Structure: A system that uses interconnected layered shards as a middleware.
Type: Implementation.

Benefits Drawbacks
No single point of failure Overhead in administration and security
The system is able to self-heal Performance is likely to suffer
Great scalability The mesh itself is very hard to debug
Available off the shelf Unreliable communication must be accounted

for in the code
References: Wiki and [DDIA] on topology and protocols. [FSA] on Service Mesh and

Space-Based Architecture. A long and short article on Service Mesh.

If a system is required to survive faults, all its components must be sharded and
interconnected, which makes a mesh – a network of interacting instances. In most cases the
lower layer of a shard implements connectivity while the business logic resides in the upper
layer(s). Whereas the connectivity component tends to be identical in all the nodes in a
system, the upper components may be identical – forming Shards, or different – forming
Services.

https://en.wikipedia.org/wiki/Peer-to-peer
https://www.geeksforgeeks.org/spine-leaf-architecture/
https://buoyant.io/service-mesh-manifesto
https://en.wikipedia.org/wiki/Space-based_architecture
https://en.wikipedia.org/wiki/Network_topology#Classification
https://buoyant.io/service-mesh-manifesto
https://www.oracle.com/cloud/cloud-native/service-mesh/what-is-a-service-mesh/


Most meshes allow for dynamically adding and removing parts of their networks, as
required for scaling up, scaling down and fault recovery. That is achieved through a flexible
network topology, which has the downside of communication artifacts [MP], i.e. missing or
duplicated requests, a single request being processed by two instances of a service or by
the same instance twice, etc. Moreover, a mesh-mediated communication is likely to be
slower than the direct one.

Performance
In most (all?) implementations the user application is colocated with a node of the mesh,

thus communicating through the mesh does not add an extra network hop (which strongly
degrades performance). However, that holds only when the node knows the destination of
the message it should send – when it has already established a communication channel.
Finding the destination may not always be easy – that often requires consulting registries,
and sometimes – waiting for the network topology to stabilize, which may involve timeouts –
as often seen with torrents. On the other hand, no other architecture is known to seamlessly
support huge networks.

Dependencies
Mesh, as a sharded middleware, inherits dependencies from both of its parent patterns:
● As with Middleware, each service that runs over the mesh depends on the mesh’s

API. The services may also depend on each other or on a shared database, if they
use one to communicate through.

● As with Shards, the nodes of the mesh should communicate through a backward-
and forward-compatible protocol as there will likely be periods of time when multiple
versions of the mesh nodes coexist.

Applicability
Mesh is perfect for:
● Dynamic scaling. Instances of services may be quickly added or removed.
● High availability. A mesh is very hard to disable or kill because it creates new

instances of failed services and finds ways around failed connections.
Mesh fails in:
● Low latency domains. Spreading information through a mesh is slow and sometimes

unreliable.
● Security-critical systems. A public mesh exposes a high attack surface while the

scalability of private deployments is limited by the installed hardware.
● Quick and dirty programming. The possible message duplication may cause evil

bugs if the APIs ignore the risk.

Relations
Mesh:
● Misuses Shards.
● Uses Layers.
● Is a base for running multiple instances of Monolith, Layers or Services.
● Implements distributed Middleware, Shared Repository or Microkernel.



Variants
Meshes are known to vary:

By structure
The connections in a mesh may be:
● Structured / pre-defined – the mesh is pre-designed and hard-wired. This kind of

meshes provides redundancy but not scalability.
● Unstructured / ad-hoc – nodes may be added and removed at runtime, causing

restructuring of the mesh. The flexibility of the structure is the source of artifacts
[MP].

By connectivity
Each node is:
● Connected to all other nodes – a fully connected mesh. Such meshes are limited in

size because the number of interconnections grows as a square of the number of the
nodes. Notwithstanding, they offer the best communication speed and delivery
guarantees.

● Connected to some other nodes. There are many possible topologies with the correct
choice for a given task better left to experts.

By the number of mesh layers
The connected nodes of a mesh may be:
● Identical (one-layer Mesh). A node behaves according to its site in the network.
● Specialized (multi-layer Mesh). Some nodes implement trunk (route messages and

control the topology) while others are leaves (run user applications).

Examples

Peer-to-Peer Networks

https://en.wikipedia.org/wiki/Network_topology#Classification


Peer to peer (P2P) networks are intended for massive resource sharing over unstable
connections. The resource in question may be data (torrents, blockchain, P2PTV), CPU time
(volunteer computing, distributed compilation) or Internet access (Tor). In most applications it
is shared over an unstructured (as participants join and leave) 2-layer (there are dedicated
servers that register and coordinate users) network which is overlaid on top of the Internet.
All the leaf nodes run identical narrowly specialized (i.e. either file share or blockchain but
not both) software which provides the clients with access to resources of other nodes,
working as a kind of distributed middleware.

Examples: torrent, onion routing (tor), blockchain.

Leaf-Spine Architecture, Spine-Leaf Architecture

This datacenter network architecture is a rare example of a structured fully connected
mesh. It consists of client-facing (leaf) and internal (spine) switches. Each leaf is connected
to each spine, allowing for very high bandwidth (by distributing the traffic over multiple
routes) that is almost insensitive to failures of individual hardware as there are always
multiple parallel paths.

Actors

A system of actors may be classified as a fully connected mesh with the actors’ message
queues being the nodes of the mesh. Any actor can post messages to the queue of any

https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/P2PTV
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/Distcc
https://en.wikipedia.org/wiki/Tor_(network)
https://en.wikipedia.org/wiki/Overlay_network
https://www.geeksforgeeks.org/spine-leaf-architecture/


other actor it knows about, as all the actors share a virtual namespace or physical address
space.

Service Mesh

Service Mesh [FSA, MP] is a distributed middleware for running Microservices. It is a
2-layer mesh which contains one or few management nodes (control plane) and many user
nodes (data plane). Each data plane node colocates:

● A mesh engine node that deals with connectivity,
● One or more sidecars [DDS] (proxies where the support of cross-cutting concerns –

the identical code for use by all the services, like logging or encryption – resides),
● A user application (the microservice) which differs from node to node.
The control plane (re-)starts, updates, scales and collects statistics from the nodes of the

data plane.
Service Mesh addresses several weaknesses of naive Services: it provides tools for

centralized management and allows for virtual sharing (through creating physical copies) of
libraries to be accessed by all the service instances. It also takes care of scaling and load
balancing. Ready-to-use Service Mesh frameworks are popular with Microservices
architecture.

https://buoyant.io/service-mesh-manifesto


Space-Based Architecture

Space-Based Architecture [SAP, FSA] is a kind of service mesh with an integrated
shared database (a tuple space – shared dictionary – called data grid) and orchestrator
(called processing grid). The user services are called processing units. They may be
identical (yielding Shards) or different (resulting in Services). The architecture is used for:

● Highly scalable systems with smaller datasets, in which case the entire database
contents are replicated to the memory of each node. This works around the
throughput and latency limits of a normal database.

● Huge datasets, with each node owning a part of the total data. This hacks around the
storage capacity and latency limits of a database.

There are multiple instances of the same data in processing units. Any change to the
data in one unit must propagate to other units. That can be done:

● Asynchronously, causing conflicts if the same data is changed elsewhere
simultaneously.

● Synchronously, waiting for the propagation results and conflict resolution – a kind of
distributed transaction with poor latency.

● Take write ownership of the data before the write. That is not good for latency as well,
but it may be a good choice for an evenly distributed load if the mesh provides
temporary locality of requests, i.e. it forwards requests that touch the same data to
the same node.

The choice of the strategy depends on the domain.
The in-memory data in the nodes is loaded from an external database at the start of the

system and any change in it is replicated asynchronously to the external database. The
persistent database serves as a means of fault recovery and a single source of truth.

https://en.wikipedia.org/wiki/Space-based_architecture
https://en.wikipedia.org/wiki/Tuple_space


Summary
Mesh is a layer of intercommunicating instances of an infrastructure component that

makes a foundation for running custom services in a distributed environment. The
architecture is famous for its scalability and fault tolerance but is too complex to implement
in-house and may incur performance, administration and development overhead.



Part 6. Analytics
This part is dedicated to analysis of the architectural metapatterns, for if the classification

is a step forward from the current state of the art, it should bear fruits to collect.
I had no time to research all the ideas that were gathered while the book was being

written and its individual chapters published for feedback. Some of those pending topics,
which may make additional chapters in the future, are listed below:

● Some architectural patterns (CQRS, Cache, Microservices, etc.) appear under
multiple metapatterns. Each individual case makes a story of its own, teaching both
of the needs of software systems and of uses of metapatterns.

● There are several grades of independence of components between cohesive
Monolith and distributed systems. We may track how a dozen of architectural
qualities of a system change as system components become more and more
isolated.

● A component may be split into subcomponents, so that Services become Layered
Services and Layers become Layers of Services. The effects of such a change on
the system’s qualities should be investigated.

● An architectural quality may depend on the structure of the system. For example, a
client request may be split into three subrequests to be processed sequentially or in
parallel, depending on the topology (e.g. pipeline or orchestrated services), thus it is
topology which defines latency. We may even draw formulas like:

○ L = L1 + L2 + L3 for pipeline,
○ L = MAX(L1, L2, L3) for orchestrated services which run in parallel,
○ L = MIN(L1, L2, L3) for broadcasting the request to replicas and using the first

response received.
Other smaller topics that I was able to look into made the following chapters:



Comparison of architectural patterns
This chapter is a compilation of small articles, each analyzing one aspect of the

architectural patterns included in the book. It shows the value of having the list of
metapatterns to iterate over and analyze.

Sharing functionality or data among services
Architectural patterns manifest several ways of sharing functionality or data among their

components. Let’s consider a basic example: calls to two pieces of business logic need to be
logged, while the logger is doing something more complex than console prints. They also
need to access a system-wide counter.

Direct call
The simplest use of a shared functionality is by directly calling the module that

implements it. This is possible if the users and the provider of the aspect reside in the same
process, as in Monolith or module-based (single application) Layers.

Sharing data inside a process is similar, but usually requires some kind of protection, like
RW lock, around it to serialize access from multiple threads.

Make a dedicated service
In a distributed system you can place the functionality or data to share into a separate

service to be accessed over the network, yielding Service-Oriented Architecture for shared
utilities or Shared Repository / Polyglot Persistence for shared data.

https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock


Delegate the aspect
A less obvious solution is delegating our needs to another layer of the system. To

continue our example of logging, a proxy may log user requests and a middleware –
interservice communication. In many cases either of these kinds of logging reveals the calls
to the methods we need to log – with no changes in the code of the methods!

In a similar way a service may behave as a function: receive all the data it needs in the
input message and send back all its work as the output – and let the database access be the
responsibility of its caller.

Replicate it
Finally, each user of a component can get its own replica. This is done implicitly in

Shards and explicitly in Service Mesh of Microservices for libraries or Data Grid of
Space-Based Architecture for data.

Another case of replication is including the same code in multiple services, which
happens in single-layer Nanoservices.

Summary
There are four basic ways of sharing functionality or data in a system:
● Deploy everything together – messy but fast and simple.

https://datatracker.ietf.org/doc/html/rfc1925


● Place the component in question into a shared service to be accessed over the
network – slow and less reliable.

● Let another layer of the system both implement and use the needed function on your
behalf – easy but generic, thus may not fit your needs.

● Make a copy of the component for each of its users – fast, reliable, but the copies are
hard to keep in sync.

Pipelines in architectural patterns
Several architectural patterns involve a unidirectional data flow – a pipeline. Strictly

speaking, every data packet in a pipeline should:
● Move through the system over the same route with no loops.
● Be of the same type, making a data stream.
● Retain its identity on the way.
● Retain temporal order – the sequence of packets remains the same over the entire

pipeline.
Staying true to all of the above points yields Pipes and Filters – one of the oldest known

architectures. Yet there are other architectures that discard one or more of the conditions:

Pipes and Filters

Pipes and Filters [POSA1] is about stepwise processing of a data stream. Each piece of
data (a video frame, a line of text or a database record) passes through the entire system.

This architecture is easy to build and has a wide range of applications, from hardware to
data analytics. Though a pipeline is specialized in a single use case, a new one can often be
built of the same set of generic components – the skill mastered by Linux admins through
their use of shell scripts.

https://en.wikipedia.org/wiki/Pipeline_(software)


Choreographed Event-Driven Architecture

Relaxing the type and loosening the identity clauses opens the way to Choreographed
Event-Driven Architecture [SAP, FSA], in which a service publishes notifications about
anything it does that may be of interest to other services. In such a system:

● There are multiple types of events going in different directions, like if several
branched pipelines were built over the same set of services.

● A service may aggregate multiple incoming events to publish a single, seemingly
unrelated, event later when some condition is met. For example, a warehouse
delivery collects individual orders till it gets a truckful of them or till the evening
comes and no new orders are accepted.

This architecture covers way more complex use cases than Pipes and Filters does as
multiple pipelines are present in the system and as processing an event is allowed to have
loosely related consequences (as with the parcel and truck).

Command Query Responsibility Segregation (CQRS)

When the data from the events is stored for a future use (as with the aggregation above),
the type and temporal order are ignored but the data identity may be retained. A
CQRS-based system [MP] separates the paths for write (command) and read (query)
requests, making a kind of data processing pipeline, with the database, which stores the



events for an indeterminate amount of time, in the middle. It is the database that reshuffles
the order of the events, as a record it stores may be queried at any time, maybe in a year
from its addition – or never at all.

Model-View-Controller (MVC)

Model-View-Controller [POSA1] completely neglects the type and identity limitations. It is
a coarse-grained pattern where the input source produces many kinds of events that go to
the main block which does something and outputs another stream of events of no obvious
relation to the input. A mouse click does not necessarily result in a screen redraw, while a
redraw may happen on timer with no user actions. In fact, the pattern conjoins two different
short pipelines.

Summary
There are four architectures with unidirectional data flow, which is characteristic of

pipelines:
● Pipes and Filters,
● Choreographed Event-Driven Architecture (EDA),
● Command (and) Query Responsibility Segregation (CQRS),
● Model-View-Controller (MVC).
The first two, being true pipelines, are built around data processing and transformation,

while for the others it is an aspect of implementation – their separation of input from output
yields the pairs of streams.

Dependency inversion in architectural patterns
I am no fan of SOLID – to the extent of being unable to remember what those five letters

mean – thus I was really surprised to notice that one of its principles – dependency inversion
– is quite common with architectural patterns, which means that it is way more generic than
OOP it is promoted for.

Let’s see how dependency inversion is used on the system level.

https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Dependency_inversion_principle


Patterns that build around it

Both Plugins and the derived Hexagonal Architecture rely on dependency inversion for
the same reason – to protect the core, which contains the bulk of the code, from variability in
the external components that it uses. The core operates interfaces (SPIs) which it defines so
that it may not care what exactly is behind an interface.

It is the nature of the polymorphic components that distinguishes the patterns:
● Plugins allow for small pieces of code, typically contributed by outside developers, to

provide customizable parts of the system’s algorithms and decision making.
Oftentimes the core team has no idea of how many diverse plugins will be written for
their product.

● Hexagonal Architecture is about breaking dependency of the core on external
libraries or services by employing adapters. Each adapter depends both on the
core’s SPI and on the API of the component which it adapts. As interfaces and
contracts vary among vendors and even versions of software, while we want it to be
interchangeable, we need adapters to wrap the components to make them look
identical to our core. Besides, stub adapters help develop and test the core in
isolation.

Patterns that often rely on it

A few more metapatterns tend to apply the approach to earn its benefits, even though
dependency inversion is not among their integral features:

https://en.wikipedia.org/wiki/Service_provider_interface


● Microkernel, yet another metapattern derived from Plugins, distributes resources of
providers among consumers. Polymorphism is crucial for some of its variants,
including operating system, but may rarely benefit others, such as software
framework.

● Top-Down Hierarchy spreads responsibility over a tree of components. If the nodes of
the tree are polymorphic, they are easier to operate, and we have dependency
inversion. However, in practice, a parent node may often be strongly coupled to the
types of its children and access them directly.

● In another kind of Hierarchy, namely Cell-Based Architecture (aka Services of
Services), each cell may employ a cell gateway and outbound adapters to isolate its
business logic from the environment – just like Hexagonal Architecture does for its
monolithic core.

Patterns that may use it

Finally, the basic architectures, Layers and Services, may resort to something similar to
dependency inversion to decouple their constituents:

● We often see a higher layer to depend on and a lower layer to implement a
standardized interface, like POSIX or SQL, to achieve interoperability with other
implementations (which is yet another wording for polymorphism).

● A service may follow the concept of Hexagonal Architecture by using an
anti-corruption layer [DDD] or CQRS views [MP] as adapters that protect it from
changes in other system components.

Summary
Many architectural patterns employ dependency inversion by adding:
● an interface to enable polymorphism of their lower-level components or
● adapters to protect a component from changes in its dependencies.
The two approaches apply in different circumstances:
● If you can enforce your rules of the game on the suppliers of the external

components, you merely define an SPI, expecting the suppliers to implement and
obey it.

● If the suppliers are independent and it is your side that adapts to their rules, you
should add adapters to translate between your lovely SPI and their whimsical APIs.

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md


Indirection in commands and queries
We can solve any problem by introducing an extra level of indirection – states the

fundamental theorem of software engineering. We will not investigate how this rule drives
deep learning, at least for now. Instead, let’s concentrate our effort on indirection in
communication between services.

Each component operates its own domain model [DDD] which translates into objects
and/or procedures convenient for use in the component’s subdomain. However, should a
system cover multiple subdomains, the best models for its parts to operate start to
mismatch. Furthermore, they are likely to progressively diverge over time as requirements
heap up and the project matures.

If we want for each module or service to continue with a model that fits its needs, we
have to protect it from the influence of models of other components by employing indirection
– a translator – between them.

Command (OLTP) systems

More often than not our system consists of services that command each other: via RPCs,
requests or even notifications – no matter how, one component makes a call to action which
other(s) should obey.

In such a case we employ an adapter between two services or an orchestrator when
cooperation of several services is needed to execute our command:

● Anticorruption Layer [DDD] is an adapter on the dependent service’s side: as soon as
we call another service, we start depending on its interface, while it is in our interest
to isolate ourselves from its peculiarities and possible future changes. Thus we
should better write and maintain a component to translate the foreign interface,
defined in terms of the foreign domain model, into terms convenient for use with our
code. Even if we subscribe to notifications, we may also want an adapter to transform
their payload.

● Open Host Service [DDD] resides on the other side of the connection – it is an
adapter that a service provider installs to hide the implementation details of its
service from its users. It will typically translate from the provider’s domain model into
a subdomain-agnostic interface suitable for use by services that implement other
subdomains.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Remote_procedure_call


● Orchestrator (API Composer [MP], Process Manager [EIP, LDDD] or Saga
Orchestrator [MP]) spreads a command to multiple services, waits for each of them
to execute it and cleans up after possible failures. It tends to be more complex than
other translators because of the coordination logic involved.

Query (OLAP) systems

There is often another aspect of communication in a system, namely, information
collection and analysis. And it meets a different set of issues which cannot be helped by
mere interface translation.

Each service operates and stores data in its own format and schema which matches its
domain model, as discussed above. When another service needs to analyze the foreign data
according to its own domain model, it encounters the fact that the foreign format(s) and
schema(s) don’t allow for efficient processing – in the worst case it would have to read and
re-process the entire foreign service’s dataset to execute a query.

The solution employs an intermediate database as a translator from the provider’s to
consumer’s preferred data access mode, format and schema:

● CQRS View [MP] resides in the data consumer and aggregates the stream of
changes published by the data provider. This way the consumer can know whatever
it needs about the state of the provider without even making an interservice call.

● Data Mesh [LDDD] is about each service exposing a general-use public interface for
streaming and/or querying its data. Maintaining one often requires the service to set
up an internal reporting database.

● Query Service [MP] aggregates streams from multiple services to collect their data
together, making it available for efficient queries.

Summary
We see that though command-dominated (operational or transactional) and

query-dominated (analytical) systems differ in their problems, the architectural solutions
which they employ to decouple their component services match perfectly:

● Anticorruption Layer or CQRS View is used on the consumer’s side,
● Open Host Service or Data Mesh’s reporting database is on the provider’s side,
● Orchestrator or Query Service deals with multiple providers,
showing that the principles of software architecture are deeper than the CQRS

dichotomy.

https://www.oracle.com/integration/what-is-data-mesh/
https://en.wikipedia.org/wiki/Command_Query_Responsibility_Segregation


Ambiguous pattern names
We’ve seen a single pattern come under many names, as it happens with Orchestrator,

and also one name used for multiple topologies, as with services, which may orchestrate
each other, make a pipeline or be components of a SOA. On top of that, there are several
pattern names that are often believed to be unambiguous while each of them sees
conflicting definitions in the books or over the web. Let’s explore the last kind, which is the
most dangerous both for your understanding of other people and for your time wasted on
arguments.

Monolith

The old books, namely [GoF] and [POSA1], described a tightly coupled unstructured
system, where anything depends on everything, as monolithic, which matched the meaning
of the word in Latin – “single stone”.

Then something evil happened – I believe that the proponents of SOA, backed by the
hype and money they had earned from corporations, started labeling any non-distributed
system as monolithic, obviously to contrast the negative connotation of the word to their
most progressive design.

It took only a decade for the karma to strike back – when the new generation behind
Microservices redefined monolithic as a single unit of deployment – to call the now
obsolescent SOA systems distributed monoliths [MP] because their services often grew so
coupled that they had to be deployed together.



The novel misnomers, Layered Monolith [FSA] and Modular Monolith [FSA], which
denote an application partitioned by abstractness or subdomain, correspondingly, add to the
confusion.

Reactor

People tend to call any event-driven service Reactor. In fact, there are three patterns that
describe threading models for an event-handling system:

● In Reactor [POSA2] each task runs in its own thread and blocks on any calls outside
of the component. That allows for normal procedural programming but is
resource-consuming and not very responsive or flexible.

● Proactor [POSA2] relies on a single thread to serve all the tasks in an interleaved
manner, just like an OS uses a CPU core to run several processes. The resulting
non-blocking code is fragmented (often called callback hell) but can immediately
address any incoming event. This is how real-time control systems are implemented.

● Half-Sync/Half-Async [POSA2] is what we better know as coroutines or fibers – there
are multiple Reactor-like lightweight threads that block on a Proactor-like engine
which turns synchronous calls from the user code into asynchronous internal events.

In most cases we’ll hear of Proactor being called Reactor – probably because Reactor
was historically the first and the simplest of the three patterns, and it is similar in name to
reactive programming which is what we use in Proactor.

http://ithare.com/category/reactors/


Microkernel

Microkernel is another notable case. The mess goes all the way back to [POSA1] which
used operating systems for examples of Plugin Architecture. I believe that it was a
mismatch:

● An operating system is mainly about sharing resources of producers among
consumers, where both producers and consumers may be written by external teams.
The kernel itself does not feature much logic – its role is to connect the other
components together.

● Plugins, on the other hand, extend or modify the business logic of the core – which
alone is the reason for the system to exist and is in no way “micro-” as it got the bulk
of the system’s code. In many such systems plugins are utterly optional – which
cannot be said of OS drivers.

Thus, here we have two architectural patterns of arguably (Microkernel/Plugins of [SAP,
FSA] omit 3 of 5 components of the original Microkernel of [POSA1, POSA4]) similar
structure but very different intent and action known under the same name.



Domain Services

I was told that Domain Services of [FSA] are incorrect – because a domain service is
always limited to the domain layer of [DDD] while those of [FSA] also cover the application
and, maybe, infrastructure.

I believe that both definitions are technically correct, if the difference of the meaning of
domain is accounted for. In [FSA] domain is almost synonymous to a bounded context of
[DDD], while [DDD] more often uses that word for the name of its middle layer that contains
business rules.

Front Controller

[PEAA] defines Front Controller as an MVC derivative for backend. In this pattern
multiple web pages share a request processing component which turns the incoming
requests into commands and forwards them to appropriate page classes.

The one of [SAHP] is much more interesting – it describes an choreographed
event-driven architecture with a query service embedded in the first (client-facing) service.

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff648617(v=pandp.10)?redirectedfrom=MSDN


The front controller subscribes to notifications from downstream services to know the status
of every request it has passed to the pipeline.

Cells

The fresh Cell-Based Architecture also got multiple definitions.
● WSO2 wrote about a cell as a group of services which is encapsulated from the

remaining system by a gateway and adapters and often uses a dedicated
middleware – letting each cell, though internally distributed, be treated by other
components as a single service. That makes designing and managing a large system
a bit simpler by introducing a hierarchy.

● Amazon promotes its cells as shards of the whole system which run in multiple
regions. That grants fault tolerance and improves performance as each client has an
instance of the system deployed to a nearby datacenter, but does not have much
impact on organization and complexity of the code.

The case looks like Amazon’s hijacking and redefining a popular emerging technology,
though I may be wrong about that as I did not investigate the history of the term.

https://github.com/wso2/reference-architecture/blob/master/reference-architecture-cell-based.md
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html


Nanoservices

Nanoservices is another emerging technology, and it seems to have never been strictly
defined. Most sources agree that a nanoservice is a cloud-based function (FaaS), similar to
a service with a single API method but, just as with the old good services, they differ in the
ways they use the technology:

● Diego Zanon in Building Serverless Web Applications proposes a single layer of
nanoservices, each implementing a method of the system’s public API, to be used as
a thin backend.

● Here we have nanoservices built into a pipeline, similar to Choreographed
Event-Driven Architecture [FSA].

● Another article proposes to (re)use them in SOA style.
Nonetheless, there are a couple of sources which call a nanoservice something totally

different:
● There is a concept of nanoservice as a module that can run both as a separate

service and as a part of a binary – allowing for the team to choose if they want their
system to execute as a single process or become distributed. Nano- is because an
in-process module is more lightweight than a microservice. This idea resembles
Modular Monolith [FSA] and actor frameworks.

● And here we got something akin to Space-Based Architecture but it is also called
Nanoservices – as the proposed framework makes them so easy to create that
programmers tend to write many smaller nanoservices instead of a single
microservice.

In my opinion, the disarray happened because the notion of “making smaller
microservices” got hyped but was never adopted widely enough to become an industry
standard, therefore everybody follows their own vision about what smaller means.

https://en.wikipedia.org/wiki/Function_as_a_service
https://increment.com/software-architecture/the-rise-of-nanoservices/
https://medium.com/@ido.vapner/unlocking-the-power-of-nano-services-a-new-era-in-microservices-architecture-22647ea36f22
https://nanoservices.io/docs/docs/building/introduction/
https://en.wikipedia.org/wiki/Actor_model
https://dev.to/siy/nanoservices-or-alternative-to-monoliths-and-microservices-12bb


Summary
A few names of architectural patterns cause confusion as the meaning of each of them

changes from source to source. The current book aims at identifying such issues and
building a cohesive understanding of software and system architecture, similar to the
ubiquitous language of [DDD].



Architecture and product life cycle
In my practice, architecture changes during a product’s lifetime. For R&D, when there is

none with a relevant experience on the team, it starts small, gradually gains flexibility
through fragmentation, grows and restructures itself according to the ever-changing domain
knowledge and business requirements, then solidifies as the project matures, and dies to
performance optimizations and loss of experience as main developers leave. More mundane
projects may omit the first stages (as no research needs to be done), and oftentimes a
project is canceled way before its architecture dies under its own weight. Anyway, let’s
observe the full life cycle.

Infancy (proof of concept) – monolith

A project in an unknown domain starts timid and small, likely as a proof of concept. You
need to write quickly to check your ideas about how the domain works without investing
much time – as you may be wrong here or there making you rethink and rewrite.

Childhood (prototype) – layers

When you have the thing working, you may start reflecting on the rules and the code you
wrote. What belongs where, what is changeable, which tests will you need? At this point you
clearly see the levels of abstractness: the high-level application (integration, orchestration)
logic, the lower-level domain (business) rules and the generic infrastructure [DDD]. Now that
you better know the whats and the hows, you divide the (either old or rewritten from scratch)
code into layers or hexagonal architecture to achieve both structure and flexibility, still
without much development overhead caused by interfaces.



Youth (development of features) – fragmented architectures

As you earn domain experience, you start discerning subdomains (sort of bounded
contexts [DDD]) and isolating them to reduce the complexity of your code. The layered
structure turns to a system of subdomain-dedicated components: modules, services, device
drivers – whatever you used to name them in your career. The actual architecture follows the
structure of the domain, with layered services, services with orchestrator and hierarchy
among the common examples. The fragmentation of the system brings in development by
multiple teams with diverse technologies and styles, reduces ripple effect of changes and
helps testability. However, use cases for the system as a whole become harder to
understand and fix – if only because they traverse the parts of the code owned by multiple
teams – which is not extremely bad given you have enough humanpower.

Adulthood (production) – ad-hoc composition

As the product enters the market, the development will likely slow down with more
attention given to details and user experience. Some (likely, the most active) people are
going to get bored and leave the project, while your understanding of the domain changes
again – based on the user experience and real-life business needs [DDD]. You may find that
some of the components which you designed as independent become strongly coupled –
and you are lucky if they are small enough to be merged together – this is where the
fragmentation pays off. Other parts of the system may overgrow the comfort zone of
programmers and need to be subdivided. The architecture becomes asymmetrical and
pragmatic.



Old age (support) – back to layers

When the active development ceases, you lose even more people and funding as you
drift into the support phase. You are unlikely to retain your best programmers – actually,
you’ll get novices or an outsourced team instead. They will struggle to retain the structure of
the system – with its collection of hacks from the previous years – against progressively
more weird requests from the management and customers – as all their normal desires have
already been satisfied. That will cause many more hacks to be added – and components
merged to allow for the hacks to land – bringing the architecture back to layers, though
heavily oversized this time.

Death (the ultimate release) – monolith

If the project is allowed to die, it may still have a chance of a final release which aims at
improving performance and leaving a golden standard for the generations of users to come.
Heavy optimizations will likely require merging the layers to avoid all kinds of communication
overhead, bringing you back to monolith.

So it goes
Even though I observed the cycle of architecture expanding and collapsing in embedded

software, I believe the forces apply to most kinds of systems. First you need to go fast, and
overly generic interfaces are a burden. Then you need that extra flexibility they provide to
reserve space for future design changes. And as the flow of changes ceases, you may
optimize the flexibility away to make programming easier and the code smaller and faster.
However, the rule is not always applicable: a distributed system will oppose compacting it if it
was written in multiple programming languages or needs several specialized components for
proper operation.



Going back in time
It happens that you need to step back through the life cycle – for example, when the

domain itself changes drastically: a new standard emerges, or the management decides that
your application for washing machines fits coffee machines pretty well, as they are doing the
same three basic things: heating water, adding powder and stirring – but you have never
wrote for coffee machines before, thus you are back to the R&D phase.

In such cases it may be easier to rewrite affected modules from scratch than try to
rejuvenate and refit the old code as you keep your years of experience and what was
originally implemented as an improvised hack will be accounted for in the redesigned
architecture. This means that each time a module is rewritten adds to its longevity as its
architecture more closely fits the domain and requires fewer hacks (which are inflexible and
confusing by definition) to get to production.



Real-world inspirations for architectural patterns
As architectural patterns are usually technology-independent, they must be shaped

mostly by foundational principles of software engineering. And as the same principles are
likely at work at every level of a software system, we may expect similar structures to appear
on many levels of software, given similar circumstances – which is not always attainable, for
the system-wide scope (which means that there are multiple clients and libraries) and
distributed nature (which deals with faults of individual components) of many patterns of
system architecture don’t have direct counterparts in single-process software. Thus we can
expect to observe the fractal nature of more generic patterns, while the narrowly specialized
ones are present at only one or two scopes of software design.

Another thought to consider is that it’s not in human nature to invent something new – we
are much more adept in imitating and combining whatever we see around. That is why it’s so
hard to find a genuine xenopsychology in literature or movies – to the extent that the
eponymous Alien is just an overgrown parasitoid wasp. Hence there is another pathway to
course – looking for the patterns which we know from software engineering in the world
around us, as the authors of [POSA2] did decades ago.

Let’s go!

Basic metapatterns
The basic patterns lay the foundation for any system by paving ways to divide it into

components to conquer its complexity. We are going to observe them all around:

Monolith

Monolith means encapsulation – we use one without looking inside:
● You interact with your dog (or your smartphone) through their interface without

thinking of their internals.
● A function exposes its name, arguments and, probably, some comments. The

implementation is hidden from its users.
● An object has a list of public methods.
● A module or a library exports several functions for use by its clients.
● A program is configured through its command line parameters and managed through

its CLI. We don’t care how the Linux utilities (like top or cat) work – we just run them.
● A distributed system hides behind a web page in your browser – and you never

imagine its complexity, unless you have worked on something of a kind.

https://en.wikipedia.org/wiki/Parasitoid_wasp


Shards

Shards is having multiple instances of something, which often differ in their data:
● A company employs many programmers to accelerate development of its projects.
● Wearing two cell phones from different operators fits the pattern as well.
● This is how they make modern processors more powerful: by adding more cores, not

by running them faster.
● Objects in OOP are the perfect example of having multiple instances that vary in their

data.
● Running several shells in Linux is a kind of sharding.
● A client application of a multi-user online game is a shard.

Layers

Layers is the separation of responsibilities between external and internal components:
● In winter we wear soft clothes on our body, a warm sweater over them and a

wind-proof jacket as the external layer.
● An object comprises high-level public methods, low-level privates and data.
● An OS has a UI which runs over user-space software over an OS kernel over device

drivers over the hardware.
● Your web browser executes a frontend which communicates to a backend which

uses a database.



Services

Services boil down to composition and separation of concerns:
● We have legs, arms and other specialized members.
● A gadget contains specialized chips for the activities it supports.
● [GoF] advocates for an object to incorporate smaller objects (composition over

inheritance).
● Applications often delegate parts of their logic to specialized modules or libraries.
● An OS dedicates a driver to each piece of hardware installed. Moreover, it provides

many tools to its users – instead of tackling all the user needs in the kernel.
● [DDD] describes the way to subdivide a large system into loosely coupled

components.

Pipeline

Pipeline is about stepwise transformation of data:
● The pattern got its name from real-world plumbworks.
● You’ll see similar arrangements in cellular metabolism.
● It is the basis for functional programming.
● Linux command line tools are often skillfully composed into pipelines.
● Hardware is full of pipelines: from CPU and GPU to audio and video processing.
● Finally, a UI wizard passes its users through a series of screens.

Extension metapatterns
An extension pattern encapsulates one or two aspects of the system’s implementation. It

may appear only on design levels that have those aspects:

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Metabolism
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Middleware

Middleware abstracts scaling and/or intercommunication:
● The network of post offices is a middleware – you push the letter into a mailbox – and

it automagically appears at its destination’s door.
● A bus depot may mean a bus garage which deploys as many buses as needed to

service the traffic or a bus station where people come to have a ride, disregarding the
exact bus model they’ll take.

● Hardware is full of other kind of buses that unify means of communication.
● TCP and UDP sockets hide the details of the underlying network.
● An actor framework allows an actor to address another one without knowing where it

is deployed.

Shared Repository

Shared Repository provides data storage and/or data change notifications:
● Everybody in the room may use the blackboard to express and exchange their ideas.
● An internet forum works in a similar way – people post their arguments there for

others to see them and get notified of answers.
● RAM and CPU caches are kinds of shared repositories. CPU caches are kept

synchronized through notifications.
● [GoF] Observer is about getting notified when a shared object changes.
● Several services may share a database.

https://en.wikipedia.org/wiki/Bus_depot
https://en.wikipedia.org/wiki/Bus_(computing)
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Proxy

Proxy isolates a system from its environment by translating between the internal and
external protocols and/or implementing generic aspects of communication:

● You may need a translator to understand foreign people or a secretary to deal with
routine tasks. A local guide combines both roles.

● Hardware (plugs) and software (frameworks) is full of adapters.
● Your Wi-Fi router is a proxy between your laptop and the Internet.
● A compiler is a kind of proxy between source code and bytecode.

Orchestrator

Orchestrator integrates several components by implementing high-level use cases
and/or keeping them in sync:

● A taxi driver orchestrates the car’s internal components.
● [GoF] Facade provides a high-level interface for a system while [GoF] Mediator

manages a system by spreading changes initiated by the system’s components.
● A linker composes a working program out of disjunct modules.

Fragmented metapatterns
A fragmented pattern uses small specialized components to approach a case which is

hard to resolve with more generic means. The high degree of specialization means even
fewer examples:



Polyglot Persistence

Polyglot Persistence is about having multiple containers for data:
● A warehouse or a cargo ship has dedicated storage areas with extra facilities for

combustible, toxic and frozen goods.
● A computer got CPU caches, RAM, flash and hard drives for temporary or permanent

data storage.
● There is the map, list and array – each with its pros and cons. A large class would

often use two or three kinds of containers – not for no reason.

Backends for Frontends

Backends for Frontends is treating clients individually:
● A bank is likely to reserve a couple of employees to serve rich clients.
● A Wi-Fi router has many management interfaces: web, mobile application, CLI and

probably TR-069.
● A multiplayer game may provide desktop and mobile client applications.

https://en.wikipedia.org/wiki/TR-069


Service-Oriented Architecture

SOA applies OOP techniques, including component reuse, to deal with complex
systems:

● That’s what you have inside your car. Many of its internals rely on the car’s battery for
power supply – instead of having a small battery installed inside every component.

● Cities are built in the same way – schools, markets and railways serve multiple
houses.

● It’s the same with user space of operating systems: there is a shared UI framework
which interfaces as-many-as-needed applications, each of which calls into shared
libraries (DLLs).

Hierarchy

Hierarchy distributes system’s complexity over multiple levels:
● This is how large companies and the army are managed.
● Large projects contain services which contain modules which contain classes which

contain methods.

Implementation metapatterns
An implementation pattern exposes peculiar internal arrangements of a component.

Such patterns are deeply specialized:



Plugins

Plugins make the component’s behavior flexible through delegating its parts to small
external additions:

● This is how we use tools for our work – a man becomes a digger when given a
shovel.

● [GoF] Strategy is the thing.

Hexagonal Architecture

Hexagonal Architecture protects the internals of a system from its environment:
● A drill or a screwdriver have exchangeable bits.
● OS Abstraction Layer and Hardware Abstraction Layer in embedded systems or

Anti-Corruption Layer in [DDD] are all about that.



Microkernel

Microkernel shares the goods of resource providers among resource users:
● It’s like a bank that takes money from the rich to distribute them among the poor.
● This is what an OS is for. Its scheduler shares CPU, the memory subsystem shares

RAM while the device drivers provide access to the periphery.
● Cloud services are based on sharing computation resources among clients.

Mesh

Mesh is like grassroots movements – self-organization and survival through redundancy:
● Ants and bees are small, autonomous and efficient. Their strength comes from their

numbers.
● Road networks and power grids don’t collapse if several of their components are

damaged as they are highly redundant.
● Torrents, mobile communications and the Internet infrastructure are known for their

high survivability.

Summary
Architectural patterns have parallels in the natural world, our society and/or different

levels of computer hardware and software. Learning of them helps us to feel the driving
forces behind the patterns and become more flexible and creative in using the patterns we
know and devising new ones.
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Appendix C. Copyright.
Attribution 4.0 International

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the
terms and conditions of this Creative Commons Attribution 4.0 International Public License
("Public License"). To the extent this Public License may be interpreted as a contract, You
are granted the Licensed Rights in consideration of Your acceptance of these terms and
conditions, and the Licensor grants You such rights in consideration of benefits the Licensor
receives from making the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

1. Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed Material
is translated, altered, arranged, transformed, or otherwise modified in a manner
requiring permission under the Copyright and Similar Rights held by the Licensor. For
purposes of this Public License, where the Licensed Material is a musical work,
performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

2. Adapter's License means the license You apply to Your Copyright and Similar Rights
in Your contributions to Adapted Material in accordance with the terms and conditions
of this Public License.

3. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and
Sui Generis Database Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

4. Effective Technological Measures means those measures that, in the absence of
proper authority, may not be circumvented under laws fulfilling obligations under
Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or
similar international agreements.

5. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
limitation to Copyright and Similar Rights that applies to Your use of the Licensed
Material.

6. Licensed Material means the artistic or literary work, database, or other material to
which the Licensor applied this Public License.

7. Licensed Rights means the rights granted to You subject to the terms and conditions
of this Public License, which are limited to all Copyright and Similar Rights that apply
to Your use of the Licensed Material and that the Licensor has authority to license.

8. Licensor means the individual(s) or entity(ies) granting rights under this Public
License.

9. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public
performance, distribution, dissemination, communication, or importation, and to make

https://creativecommons.org/licenses/by/4.0/legalcode.en#s2b
https://creativecommons.org/licenses/by/4.0/legalcode.en#s2b


material available to the public including in ways that members of the public may
access the material from a place and at a time individually chosen by them.

10. Sui Generis Database Rights means rights other than copyright resulting from
Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996
on the legal protection of databases, as amended and/or succeeded, as well as other
essentially equivalent rights anywhere in the world.

11. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

Section 2 – Scope.

1. License grant .
1. Subject to the terms and conditions of this Public License, the Licensor

hereby grants You a worldwide, royalty-free, non-sublicensable,
non-exclusive, irrevocable license to exercise the Licensed Rights in the
Licensed Material to:

1. reproduce and Share the Licensed Material, in whole or in part; and
2. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations . For the avoidance of doubt, where Exceptions
and Limitations apply to Your use, this Public License does not apply, and You
do not need to comply with its terms and conditions.

3. Term . The term of this Public License is specified in Section 6(a) .
4. Media and formats; technical modifications allowed . The Licensor

authorizes You to exercise the Licensed Rights in all media and formats
whether now known or hereafter created, and to make technical modifications
necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to
exercise the Licensed Rights, including technical modifications necessary to
circumvent Effective Technological Measures. For purposes of this Public
License, simply making modifications authorized by this Section 2(a)(4) never
produces Adapted Material.

5. Downstream recipients .
1. Offer from the Licensor – Licensed Material . Every recipient of the

Licensed Material automatically receives an offer from the Licensor to
exercise the Licensed Rights under the terms and conditions of this
Public License.

2. No downstream restrictions . You may not offer or impose any
additional or different terms or conditions on, or apply any Effective
Technological Measures to, the Licensed Material if doing so restricts
exercise of the Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement . Nothing in this Public License constitutes or may be
construed as permission to assert or imply that You are, or that Your use of
the Licensed Material is, connected with, or sponsored, endorsed, or granted
official status by, the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i) .

2. Other rights .
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1. Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights;
however, to the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited extent necessary to
allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from

You for the exercise of the Licensed Rights, whether directly or through a
collecting society under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly reserves any right
to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

1. Attribution .
1. If You Share the Licensed Material (including in modified form), You must:

1. retain the following if it is supplied by the Licensor with the Licensed
Material:

1. identification of the creator(s) of the Licensed Material and any
others designated to receive attribution, in any reasonable
manner requested by the Licensor (including by pseudonym if
designated);

2. a copyright notice;
3. a notice that refers to this Public License;
4. a notice that refers to the disclaimer of warranties;
5. a URI or hyperlink to the Licensed Material to the extent

reasonably practicable;
2. indicate if You modified the Licensed Material and retain an indication

of any previous modifications; and
3. indicate the Licensed Material is licensed under this Public License,

and include the text of, or the URI or hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner

based on the medium, means, and context in which You Share the Licensed
Material. For example, it may be reasonable to satisfy the conditions by
providing a URI or hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the information required
by Section 3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply
must not prevent recipients of the Adapted Material from complying with this
Public License.
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Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of
the Licensed Material:

1. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse,
reproduce, and Share all or a substantial portion of the contents of the database;

2. if You include all or a substantial portion of the database contents in a database in
which You have Sui Generis Database Rights, then the database in which You have
Sui Generis Database Rights (but not its individual contents) is Adapted Material; and

3. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your
obligations under this Public License where the Licensed Rights include other Copyright and
Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of
Liability.

1. Unless otherwise separately undertaken by the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-is and as-available, and makes no
representations or warranties of any kind concerning the Licensed Material, whether
express, implied, statutory, or other. This includes, without limitation, warranties of
title, merchantability, fitness for a particular purpose, non-infringement, absence of
latent or other defects, accuracy, or the presence or absence of errors, whether or
not known or discoverable. Where disclaimers of warranties are not allowed in full or
in part, this disclaimer may not apply to You.

2. To the extent possible, in no event will the Licensor be liable to You on any legal
theory (including, without limitation, negligence) or otherwise for any direct, special,
indirect, incidental, consequential, punitive, exemplary, or other losses, costs,
expenses, or damages arising out of this Public License or use of the Licensed
Material, even if the Licensor has been advised of the possibility of such losses,
costs, expenses, or damages. Where a limitation of liability is not allowed in full or in
part, this limitation may not apply to You.

3. The disclaimer of warranties and limitation of liability provided above shall be
interpreted in a manner that, to the extent possible, most closely approximates an
absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

1. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under
this Public License terminate automatically.

2. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:
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1. automatically as of the date the violation is cured, provided it is cured within
30 days of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.
3. For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor

may have to seek remedies for Your violations of this Public License.
4. For the avoidance of doubt, the Licensor may also offer the Licensed Material under

separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

5. Sections 1 , 5 , 6 , 7 , and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

1. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

2. Any arrangements, understandings, or agreements regarding the Licensed Material
not stated herein are separate from and independent of the terms and conditions of
this Public License.

Section 8 – Interpretation.

1. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material
that could lawfully be made without permission under this Public License.

2. To the extent possible, if any provision of this Public License is deemed
unenforceable, it shall be automatically reformed to the minimum extent necessary to
make it enforceable. If the provision cannot be reformed, it shall be severed from this
Public License without affecting the enforceability of the remaining terms and
conditions.

3. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

4. Nothing in this Public License constitutes or may be interpreted as a limitation upon,
or waiver of, any privileges and immunities that apply to the Licensor or You,
including from the legal processes of any jurisdiction or authority.
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Appendix E. Evolutions.
This appendix details a dozen or two evolutions of metapatterns to show how they

connect together. They probably have some practical value through listing prerequisites,
benefits and drawbacks, but I am not sure of how many readers get through them without
being bored to death. The metapatterns in the main parts of the book include abridged
versions of the sections below.

Duplicate and similar evolutions are omitted, and I did not write the ones for fragmented
metapatterns as you should be able to infer them on your own after reading the book.
Furthermore, I don’t know of any evolutions of implementation metapatterns for some
reason.

Monolith: to Shards
One of the main drawbacks of monolithic architecture is its lack of scalability – a single

running instance of your system may not be enough to serve all its clients no matter how
much resources you add in. If that is the case, you should consider Shards – multiple
instances of a monolith. There are following options:

● Self-managed shards – each instance owns a part of the system’s data and may
communicate with all the other instances (forming a mesh).

● Shards with a load balancer – each instance owns a part of the system’s data, with
an external component to select a shard for a client.

● A pool of stateless instances with a load balancer and a shared database – any
instance can process any request, but the database limits the throughput.

● A stateful instance per client with an external persistent storage – each instance
owns the data related to its client and runs in a virtual environment (i.e. web browser
or an actor framework).

Implement a mesh of self-managed shards

Patterns: Shards, Mesh.
Goal: scale a low-latency application with weakly coupled data.
Prerequisite: the application’s data can be split into semi-independent parts.
It is possible to run several instances of an application (shards), with each instance

owning a part of the data. For example, a chat may deploy 16 servers, each responsible for
a subset of users with specific last 4 bits of the user name’s hash. However, some scenarios



(renaming a user, adding a contact) may require the shards to intercommunicate. And the
more coupled the shards become, the more complex mesh engine is required to support
their interactions, up to the point of implementing distributed transactions, which means that
you will have written a distributed database.

Pros:
● The system scales to a predefined number of instances.
● Perfect fault tolerance if replication and error recovery is implemented.
● Latency is kept low.
Cons:
● Direct communication between shards (the mesh engine) is likely to be very complex.
● Intershard transactions are slow and/or complicated and may corrupt data if

undertested.
● A client must know which shards own their data to benefit from the low latency. A

load balancer ambassador [DDS] may be used on the client’s side.

Split data to isolated shards and add a load balancer

Patterns: Shards, Load Balancer (Proxy), Layers.
Goal: scale an application with sliceable data.
Prerequisite: the application’s data can be sliced to independent self-sufficient parts.
If all the data a user operates on is never accessed by other users, multiple independent

instances (shards) of the application can be deployed, each owning an instance of a
database. A special kind of proxy, called load balancer, redirects a user request to a shard
that has the user’s data.

Pros:
● Perfect static (predefined number of instances) scalability.
● Failure of a shard does not affect users of other shards.
● Canary release is supported.
Cons:
● The load balancer increases latency and is a single point of failure unless duplicated,

unless it is replicated to each client as an ambassador [DDS].

https://martinfowler.com/bliki/CanaryRelease.html


Separate the data layer and add a load balancer

Patterns: Pool (Shards), Shared Database (Shared Repository), Load Balancer (Proxy),
Layers.

Goal: achieve scalability with little effort.
Prerequisite: there is persistent data of manageable size.
As data moves to a dedicated layer, the application becomes stateless and instances of

it can be created and destroyed dynamically depending on the load. However, the shared
database becomes the system’s bottleneck unless Space-Based Architecture is used.

Pros:
● Easy to implement.
● Dynamic scalability.
● Failure of a single instance affects few users.
● Canary release is supported.
Cons:
● The database limits the system’s scalability and performance.
● The load balancer and shared database increase latency and are single points of

failure.

Dedicate an instance to each client

Patterns: Create on Demand (Shards), Shared Repository, Virtualizer (Microkernel),
Layers.

Goal: very low latency, dynamic scalability and failure isolation.
Prerequisite: each client’s data is small and independent of other clients.

https://martinfowler.com/bliki/CanaryRelease.html


Each client gets an instance of the application which preloads their data into memory.
This way all the data is instantly accessible and a processing fault for one client never
affects other clients. As systems tend to have thousands to millions of clients, it is inefficient
to spawn a process per client. Instead, more lightweight entities are used: a page in a web
browser or an actor in a distributed framework.

Pros:
● Nearly perfect dynamic scalability (limited by the persistence layer).
● Good latency as everything happens in RAM.
● Fault isolation is one of the features of distributed frameworks.
● Frameworks are available out of the box.
Cons:
● Virtualization frameworks tend to have a performance penalty.
● You may need to learn an uncommon technology.
● Scalability and performance are still limited by the shared persistence layer.

Further steps
In most cases sharding does not change much inside the application, thus the common

evolutions for Monolith (to Layers, Services and Pipeline) remain applicable after sharding.
We’ll focus on their scalability:

● Layers can be scaled and deployed individually, often to a drastic extent, as
exemplified by Three-Tier Architecture.

● Services allow for subdomains to scale independently, with the help of load balancers
or a middleware. They also kind of scale the data as each service uses its own
database, which is often chosen to best fit its distinct needs.

● Granular scaling can apply to pipelines, but in many cases that does not make much
sense as pipeline components tend to be lightweight and stateless, making it easy to
scale the pipeline as a whole.

There are specific evolutions of Shards that deal with their drawbacks:
● Space-Based Architecture reimplements Shared Repository with Mesh. Its main goal

is to make the data layer dynamically scalable, but the exact results are limited by the
CAP theorem thus, depending on the mode of action, it can provide very high
performance for a small dataset with no consistency guarantees or a reasonable
performance for a huge dataset. It blends the best features of stateful Shards and
Shared Database (thus is an option for either to evolve to) but may be quite
expensive to run and lacks algorithmic support for analytical queries.

● Orchestrator is a mirror image of Shared Database, another option to implement use
cases that deal with data in multiple shards without the need for the shards to

https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
https://en.wikipedia.org/wiki/CAP_theorem


communicate to each other. As orchestrators are stateless they scale well, but if two
orchestrators write to overlapping sets of data, they may corrupt it.

Monolith: to Layers
Another drawback of Monolith is its… monolithism. The entire application exposes a

single set of qualities and all its parts (if they ever emerge) are deployed together. However,
life awards flexibility: parts of a system may benefit from being written in varying languages
and styles, deployed with different frequency and amount of testing, sometimes to specific
hardware or end users’ devices. They may need to vary in security and scalability as well.
Enter Layers – a subdivision by the level of abstractness:

● Most monoliths can be divided into 3 or 4 layers of different abstractness.
● It is common to see the database separated from the main application.
● Proxies (e.g. Firewall, Cache, Reverse Proxy) are usual additions to the system.
● An orchestrator adds a layer of indirection to simplify the system’s API for its clients.

Divide into layers

Patterns: Layers.
Goal: let parts of the system vary in qualities, improve the structure of the code.
Prerequisite: there is a natural way to split the high-level logic from the low level

implementation details and dependencies.
Most systems apply layering by default as it grants much flexibility at very little cost. The

usual set of layers contains: UI, tasks (orchestration), domain (detailed business rules) and
infrastructure (database and libraries).

Pros:
● It is a natural way to specialize and decouple two or three development teams.
● The layers may vary in virtually any quality:

○ They are deployed and scaled independently.



○ They may run on different hardware, including client devices.
○ They may vary in programming language, paradigm and release cycle.

● Most changes are isolated to one layer.
● Layering opens a way to many evolutions of the system.
● The code becomes easier to read.
Cons:
● Dividing an existing application into layers may take some effort.
● There is a small performance penalty.

Use a database

Patterns: Layers, Shared Database (Shared Repository).
Goal: avoid implementing a database.
Prerequisite: the system needs to query (maybe also persist) a large amount of data.
A database is untrivial to implement. While ordinary files are good for small volumes of

data, as your needs grow so needs to grow your technology. Install a database.
Pros:
● A well-known database is sure to be more reliable than any in-house implementation.
● Many databases provide heavily optimized algorithms for querying data.
● You can choose hardware to deploy the database to.
● Your (now stateless) application will be easy to scale.
Cons:
● Databases are complex and require fine-tuning.
● You cannot adapt the engine of the database to your evolving needs.
● Most databases do not scale.
● You are stepping right into vendor lock-in.
Further steps:
● Continue the transition to Layers by dividing the high-level and low-level business

logic.
● Polyglot Persistence improves performance of the data layer.
● CQRS passes read and write requests through dedicated services.
● Space-Based Architecture is low latency and allows for dynamic scalability of the

whole system, including the data layer.
● Hexagonal Architecture will allow you to switch to another database in the future.

https://en.wikipedia.org/wiki/Vendor_lock-in


Add a proxy

Patterns: Layers, Proxy.
Goal: avoid implementing a generic functionality.
Prerequisite: Your system serves clients (as opposed to controlling hardware).
A proxy is placed between your system and its clients to provide a generic functionality

that otherwise would have to be implemented by the system. The kinds of Proxy to use with
Monolith are: Firewall, Cache, Reverse Proxy, Adapter. Multiple proxies can be deployed.

Pros:
● You save some time (and money) on development.
● A well-known proxy is likely to be more reliable than an in-house implementation.
● You can select hardware to deploy the proxy to.
Cons:
● Latency degrades, except for Response Cache where it depends on the history of

requests.
● The proxy may fail, which increases the chance of failure of your system.
● Beware of vendor lock-in.
Further steps:
● Another kind of Proxy may be added.
● Some environments employ a proxy per client, leading to Backends for Frontends.

Add an orchestrator

Patterns: Layers, Orchestrator.
Goal: provide a high-level API for clients to improve developer experience and

performance.
Prerequisite: the API of your system is fine-grained and there are common use cases

that repeat certain sequences of calls to your API.

https://en.wikipedia.org/wiki/Vendor_lock-in


A well-designed orchestrator should provide a high-level API which is intuitive, easy to
use and coarse-grained to minimize the number of interactions between the system and its
clients. An old way to access the original system’s API may be maintained for uncommon
use cases or legacy client applications. As a matter of fact, you perform some programming
on behalf of your clients.

Pros:
● Client applications become easier to write.
● The latency improves.
Cons:
● You get yet another moving part to design, test, deploy and observe. With lots of

extra meetings between development teams.
● The new coarse-grained interface will likely be less powerful than the original one.
Further steps:
● Backends for Frontends use an orchestrator per client type.

Further steps
Applying one of the evolutions discussed above does not prevent you from following

another of them, or even the same one for the second time:
● A layer can be split in two layers.
● A database can be added.
● Multiple kinds of proxies are OK.
● If you don’t have an orchestration layer, you may add one.
Those were evolutions from Layers to Layers.

Another set of evolutions stems from splitting one or more layers into services:
● Splitting a proxy and/or orchestrator yields Backends for Frontends where requests

from each kind of client are processed by a dedicated module.
● Splitting the layer with the main business logic results in Services, possibly

augmented with layers of middleware, shared database, proxies and/or orchestrator.
● Splitting the database layer leads to Polyglot Persistence with specialized storages.
● If all the layers share the domain dimension and are split by it, Layered Services (or

its subtype CQRS) emerge.
● If each layer is split along its own domain, the system follows Service-Oriented

Architecture that is built around component reuse.
● Finally, some domains support Hierarchy – a tree-like architecture where each layer

takes a share of the system’s functionality.



In addition,
● Many domains allow for scaling one or more layers.
● A layer may employ plugins for better customizability.
● The UI and infrastructure layers may be split and abstracted according to the rules of

Hexagonal Architecture (or its subtype Model-View-Controller).
● The system can often be extended with scripts, resulting in a kind of Microkernel.



Monolith: to Services
The final major drawback of Monolith is the cohesiveness of its code. The rapid start of

development begets a major obstacle as the project grows: every developer needs to know
the entire codebase to be productive, the changes made by individual developers overlap
and may break each other. Such a distress is usually solved by dividing the project into
components along subdomain boundaries (which tend to match bounded contexts).
However, that requires much work, and good boundaries and APIs are hard to design. Thus
many organizations prefer a slower iterative transition.

● A monolith can be split to services right away.
● Or only new features may be added as services.
● Or weakly coupled parts of existing functionality may be separated, one at a time.
● Some domains allow for sequential data processing best described by pipelines.

Divide into services

Patterns: Services.
Goal: facilitate development by multiple teams, improve the code, decouple qualities of

subdomains.
Prerequisite: there is a natural way to split the business logic into loosely coupled

subdomains, and the subdomain boundaries are sure to never change in the future.
Splitting a monolith into services by subdomain is risky at early stages of projects while

the domain understanding is evolving. However, this is the way to go as soon as the
codebase becomes unwieldy due to its size.

Pros:
● Supports multiple relatively independent and specialized development teams.
● Lowers the penalty imposed by the project’s size and complexity on the velocity of

development and product quality.
● Each team may choose the best fitting technologies for its service.
● The services can differ in non-functional requirements.
● Flexible deployment and scaling.
● A certain degree of error tolerance for asynchronous systems.
Cons:

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/MonolithFirst.html


● It takes lots of work to split a monolith.
● Future changes in the overall structure of the domain will be hard to implement.
● Sharing data between services is complicated and error-prone.
● System-wide use cases are hard to understand and debug.
● There is a moderate performance penalty for system-wide use cases.

Add or split a service

Patterns: Services.
Goal: stop digging, get some work for novices who don’t know the entire project.
Prerequisite: the new functionality you are adding or the part you are splitting is weakly

coupled to the bulk of the existing monolith.
If your monolith is already hard to manage, but a new functionality is needed, you can try

dedicating a separate service to the new feature(s). This way the monolith does not become
larger – it is even possible that you will move some of its code to the newly established
service.

If you are not adding a new feature but need to change an old one – use the chance to
make the existing monolith smaller by first separating the functionality that you are going to
change. At the very minimum the two-step process lowers the probability of breaking
something unrelated to the changes of behavior required.

Pros:
● The legacy code does not increase in size and complexity.
● The new service is transferred to a dedicated team that does not need to know the

legacy system.
● The new service may be experimented with and even rewritten from scratch.
● The likely faults of the new service don’t crash the main application.
● The new service can be tested and deployed in isolation.
● The new service can be scaled independently.
Cons:
● The new service will have a hard time sharing data or code with the main application.
● Use cases that involve both the new service and the old application are hard to

debug.
● There is a moderate performance penalty for using the service.
Further steps:
● Continue disassembling the monolith.

https://en.wikipedia.org/wiki/Law_of_holes
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Divide into a pipeline

Patterns: Pipeline (Services).
Goal: decrease complexity of the code, make it easy to experiment with the steps of data

processing, simplify the use of multiple CPU cores, processors or computers.
Prerequisite: the domain can be represented as a sequence of coarse-grained data

processing steps.
If you can treat your application as a chain of independent steps that transform the input

data, you can rely on the OS to schedule them and you can also dedicate a development
team to each of the steps. This is the default solution for a system that processes a stream
of a single type of data (video, audio, measurements). It has excellent flexibility.

Pros:
● Nearly abolishes the influence of the total project size on the development velocity.
● The project’s teams become almost independent.
● Flexible deployment and scaling.
● Naturally supports event replay as the means of reproducing bugs or testing /

benchmarking individual components.
● It is possible to provide multiple implementations for each of the steps of the data

processing.
● Does not need any manual scheduling or thread synchronization.
Cons:
● Latency is likely to skyrocket.
● As the number of supported scenarios grows, so does the number of building blocks

for your pipelines. Soon there’ll be none who understands the system in whole.

Further steps
As your knowledge of the domain and your business requirements change, you may be

in need to move some functionality between the services to keep them loosely coupled.
Sometimes you have to merge two or three services together. So it goes.

Systems of services or pipelines are quite often extended with special kinds of layers:
● Middleware helps with deployment, intercommunication and scaling of Services.
● Shared Repository lets Services operate on and communicate through shared data.
● Proxies are ready-to-use components that add generic functionality to the system.
● Orchestrator encapsulates use cases that involve multiple services, so that the

services don’t need to know about each other.
● Finally, there are combined components that implement two or more of the above

patterns in a single framework.



Each service, being a smaller monolith, may evolve on its own. Most of the evolutions of
Monolith are applicable. The most common examples include:

● Scaled (Sharded) Service with a load balancer and shared database to support high
load.

● Layered Service to improve the code structure and decouple deployment of parts of a
service.

● Cell (Service of Services) to involve multiple teams and technologies with a single
service.

● Hexagonal Service to escape vendor lock-in.

Monolith: to Plugins
The last group of evolutions does not really change the monolithic nature of the

application. Instead, its goal is to improve the customizability of the monolith:
● Vanilla Plugins is the most direct approach which relies on replaceable bits of logic.
● Hexagonal Architecture is a subtype of Plugins that is all about isolating the main

code from any 3rd party components it uses.
● Scripts is a kind of Microkernel – yet another subtype of Plugins – which gives users

of the system full control over its behavior.



Support plugins

Patterns: Plugins.
Goal: simplify the customization of the application’s behavior.
Prerequisite: several aspects need to vary from customer to customer.
Plugins create points of access to the system that allow engineers to collect data and

govern select aspects of the system’s behavior without having to learn the system’s
implementation.

Pros:
● The system can be modified by internal and external programmers who don’t know

its internal details.
● Multiple customized versions become much easier to release and support.
Cons:
● Extensive changes may be required to expose the tunable aspects of the system.
● Testability becomes poor because of the number of possible configurations.
● Performance degrades.

Isolate dependencies with Hexagonal Architecture

Patterns: Hexagonal Architecture (Plugins).
Goal: isolate the business logic from external dependencies.
Prerequisite: there are 3rd party or unstable components in the system.
The main business logic communicates with all the external components through APIs or

SPIs defined in the terms of the business logic. This way it does not depend on anything at
all, and any component may be replaced by another implementation or a stub.

Pros:



● Vendor lock-in is ruled out.
● A component may be replaced till the very end of the system’s life cycle.
● Stubs are supported for testing and local or early development.
● It is possible to provide multiple implementations of the components.
Cons:
● Some extra effort is required to define and use the interfaces.
● There is a performance degradation, mostly due to lost optimization opportunities.

Add an interpreter (support scripts)

Patterns: Scripts aka Interpreter (Microkernel (Plugins)).
Goal: allow the system’s users to implement their own business logic.
Prerequisite: the domain is representable in high-level terms.
Interpreter lets the users develop high-level business logic from scratch by programming

interactions of pre-defined building blocks which are implemented by the lower layer of the
system. That provides unparalleled flexibility at the cost of performance and design
complexity.

Pros:
● Perfect flexibility and customizability for every user.
● The high-level business logic can be written in high-level terms, making it fast to

develop and easy to grasp.
Cons:
● Requires much effort to design correctly.
● There may be a heavy performance penalty if the API is too fine-grained.
● Testability may be an issue.

Shards: share data
The issue peculiar to Shards is that of coordinating the deployed instances, especially if

their data becomes coupled. The most direct solution is to let the instances operate a shared
data:

● If the whole dataset needs to be shared, it can be split to a shared repository layer.
● If data collisions are tolerated, Space-Based Architecture promises low latency and

dynamic scalability.
● If a part of the system’s data becomes coupled, only that part can be moved to a

shared repository, causing each instance to manage two stores of data: private and
shared.



● Another option is to split a service that owns the coupled data and is always
deployed as a single instance. The remaining parts of the system become coupled to
that service, not each other.

Move all the data to a shared repository

Patterns: Pool (Shards), Shared Database (Shared Repository), Load Balancer (Proxy),
Layers.

Goal: don’t struggle against the coupling of the shards, keep it simple and stupid.
Prerequisite: the system is not under pressure for data size or latency (addressed by the

further evolutions).
In case a shard needs to access the data owned by any other shard, the prerequisite of

the independence of shards starts to fall apart. Grab all the data of all the shards and push it
into a shared database, if you can (there may be too much data or the database access may
be too slow). As all the shards become identical, you’ll likely need a load balancer.

Pros:
● You can choose one of the many specialized databases available.
● The stateless instances of the main application become dynamically scalable.
● Failure of a single instance affects few users.
● Canary release is supported.
Cons:
● The database limits the system’s scalability and performance.
● The load balancer and shared database increase latency and are single points of

failure.
Further steps:
● Hexagonal Architecture will let you switch to another database in the future.
● Space-Based Architecture decreases latency by co-locating subsets of the data and

the application runtime.
● Polyglot Persistence uses multiple specialized databases, often by separating

commands and queries. That may greatly relieve the primary (write) database.
● CQRS goes even further by processing read and write requests with dedicated

services.

https://martinfowler.com/bliki/CanaryRelease.html


Use Space-Based Architecture

Patterns: Space-Based Architecture (Mesh), Data Grid (Shared Repository), Shards,
Layers.

Goal: don’t struggle against the coupling between the shards, maintain high
performance.

Prerequisite: data collisions are acceptable.
Space-Based Architecture is a mesh of nodes that comprise the application and a

cached subset of the system’s data. A node broadcasts any changes to its data to the other
nodes and it may request any data that it needs from the other nodes. Collectively, the
nodes of the mesh keep the whole data cached in RAM.

Though Space-Based Architecture may provide multiple modes of action, including
single write / multiple read replicas, it is most efficient when there is no write synchronization
between its nodes, meaning that data consistency is sacrificed for performance and
scalability.

Pros:
● Unlimited dynamic scalability.
● Off-the-shelf solutions are available.
● Failure of a single instance affects few users.
Cons:
● Choose one: data collisions or mediocre performance.
● Low latency is supported only for datasets that fit in RAM of a node.
● High operational cost because the nodes exchange huge amounts of data.
● No support for analytical queries.

Add a shared repository for the coupled subset of the data

Patterns: Shards, Polyglot Persistence, Shared Database (Shared Repository), Layers.
Goal: solve the coupling between the shards without losing performance.
Prerequisite: the shards are coupled through a small subset of data.



If a subset of the data is accessed by all the shards, that subset can be moved to a
dedicated database, which is likely to be fast if only because it is small. Using a distributed
database that keeps its data synchronized on all the shards may be even faster.

The approach resembles Shared Kernel of [DDD].
Pros:
● You can choose one of the many specialized databases available.
Cons:
● The shared database increases latency and is the single point of failure.

Split a service with the coupled data

Patterns: Services, Shards.
Goal: solve the coupling between the shards in an honorable way.
Prerequisite: the part of the domain that causes the coupling between the shards is

weakly coupled to the remaining domain.
If a part of the domain is too cohesive to be sharded, we can often move it from the main

application into a dedicated service. That way the main application remains sharded, while
the new service exists as a single instance. In rare cases there is a chance to re-shard the
new service with the key that is different from the one used for sharding the main application.

The approach resembles Shared Kernel of [DDD].
Pros:
● The main code should become a little bit simpler.
● The new service can be given to a new team.
● The new service may choose a database that best fits its needs.
Cons:
● Now it’s hard to share data between the new service and the main application.
● Scenarios that use the new service are harder to debug.
● There is a moderate performance penalty for using the service.

Shards: share logic
Other cases are better solved by extracting the logic that manipulates multiple shards:
● Splitting a service (as discussed above) yields a component that represents both

shared data and shared logic.
● Adding a middleware lets the shards communicate to each other without keeping

direct connections. It also may do housekeeping: error recovery, replication and
scaling.

● A load balancer decouples clients from the knowledge about the existence of the
shards.



● An orchestrator calls multiple shards to serve a user request. That relieves the
shards of the need to coordinate their states and actions by themselves.

Add a middleware

Patterns: Shards, Middleware, Layers.
Goal: simplify the communication between shards, their deployment and recovery.
Prerequisite: many shards need to exchange information, some may fail.
A middleware transports messages between shards, checks their health and recovers

any crashed ones. It may manage data replication and deployment of software updates as
well.

Pros:
● The shards become simpler because they don’t need to track each other.
● There are many good 3rd party implementations.
Cons:
● Performance may degrade.
● Components of the middleware are new points of failure.

Add a load balancer

Patterns: Shards, Load Balancer (Proxy), Layers.
Goal: simplify the code on the client side.
Prerequisite: each client connects directly to the shard that owns their data.
The client application may know the address of the shard that serves it and connect to it

without intermediaries. That is the fastest means of communication, but it prevents you from



changing the number of shards or other details of your implementation without updating all
the clients, which may be unachievable. Use an intermediary.

Pros:
● Your system becomes isolated from its clients.
● You can put generic aspects into the proxy instead of implementing them in the

shards.
● Proxies are readily available.
Cons:
● The extra step increases latency unless you deploy the load balancer as

ambassadors [DDS] co-located with every client.
● The load balancer is a single point of failure unless duplicated.

Move the integration logic to an orchestrator

Patterns: Shards, Orchestrator, Layers.
Goal: isolate the shards from the knowledge of each other.
Prerequisite: the shards are coupled in their high-level logic.
When a high-level scenario uses multiple shards, the way to follow is to extract all such

scenarios into a dedicated stateless module. That makes the shards independent of each
other.

Pros:
● The shards don’t need to care about each other.
● The high-level logic can be written in a high-level language by a dedicated team.
● The high-level logic can be deployed independently.
● The main code should become much simpler.
Cons:
● Latency will increase.
● The orchestrator becomes a single point of failure with a good chance to corrupt your

data.
Further steps:
● Shard the orchestrator (run multiple instances) to support higher load and to remain

online if it fails.
● Persist the orchestrator (give it a dedicated database) to make sure that it does not

leave half-committed transactions on failure.
● Divide the orchestrator into Backends for Frontends if you have multiple kinds of

clients or workflows.



Layers: make more layers
Not all the layered architectures are equally layered. A monolith with a proxy or database

has already stepped into the realm of Layers but is far away from reaping all its benefits.
Such a kind of system may continue its journey in a few ways that were earlier discussed for
Monolith:

● Employing a database (if you don’t use one) lets you rely on a thoroughly optimized
state-of-the-art subsystem for data processing and storage.

● Proxies are similarly reusable generic modules to be added at will.
● Implementing an orchestrator on top of your system may improve programming

experience and runtime performance for your clients.

It is also common to:
● Have the business logic divided in two layers.

Split the business logic in two layers

Patterns: Layers.
Goal: let parts of the business logic vary in qualities, improve the structure of the code.
Prerequisite: the high-level and low-level logic are loosely coupled.
It is often possible to split a backend into integration (orchestration) and domain layers.

That allows for one team to specialize in customer use cases while the other one delves
deep into the domain knowledge and infrastructure.

Pros:
● You get an extra development team.



● The high-level use cases may be deployed separately from the main domain logic.
● The layers may diverge in technologies and styles.
● The code may become less complex.
Cons:
● There is a small performance penalty.

Layers: help large projects
The main drawback (and benefit as well) of Layers is that much or all of the business

logic is kept together in one or two components. That allows for easy debugging and fast
development in the initial stages of the project but slows down and complicates work as the
project grows in size. The only way for a growing project to survive and continue evolving at
a reasonable speed is to divide its business logic into several smaller, thus less complex,
components that match subdomains (bounded contexts [DDD]). There are several options
for such a change, with their applicability depending on the domain:

● The middle layer with the main business logic can be divided into services leaving
the upper orchestrator and lower database layers intact for future evolutions.

● Sometimes the business logic can be represented as a set of directed graphs which
is known as Event-Driven Architecture.

● If you are lucky, your domain makes a Top-Down Hierarchy.

Divide the domain layer into services

Patterns: Services, Shared Database (Shared Repository), Orchestrator.
Goal: make the code simpler and let several teams work on the project efficiently.
Prerequisite: the low-level business logic comprises weakly coupled subdomains.
It is very common for a system’s domain to consist of weakly interacting bounded

contexts [DDD]. They are integrated through high-level use cases and/or relations in data.
For such a system it is relatively easy to divide the domain logic into services while leaving
the integration and data layers shared.

Pros:
● You get multiple specialized development teams.
● The largest and most complex piece of code turns to several smaller modules.
● There is more flexibility with deployment and scaling.
Cons:
● Future changes in the overall structure of the domain will be harder to implement.
● System-wide use cases become somewhat harder to debug as they use multiple

repositories.
● Performance may degrade, especially if the services and the orchestrator are not

co-located.



Further steps:
● Continue by splitting the orchestrator and database to reach the Layered Services

architecture.
● Divide the orchestrator (by the type of client) into Backends for Frontends.
● Use multiple databases in Polyglot Persistence.
● Scale well with Space-Based Architecture.

Build event-driven architecture over a shared database

Patterns: Event-Driven Architecture (Pipeline (Services)), Shared Database (Shared
Repository).

Goal: untangle the code, support multiple teams, improve scalability.
Prerequisite: use cases are sequences of loosely coupled coarse-grained steps.
If your system has a well-defined pipeline for processing every kind of input request, it

can be divided into several services, each hosting a few related steps of multiple use cases.
Each service subscribes to input and publishes its output events.

Pros:
● The code is divided into much smaller (and simpler) segments.
● It is very easy to add new steps or use cases as the structure is extremely flexible.
● You open a way to have several almost independent teams, one per service.
● You get flexible deployment and scaling as the services are stateless, but you need a

middleware for that.
● The architecture naturally supports event replay as the means of reproducing bugs or

testing / benchmarking individual components.
● There is no need for explicit scheduling or thread synchronization.
Cons:
● The system is hard to debug.
● You are going to live with high latency.
● You may end up with too many components which are interconnected in too many

ways. Any change in a component or subscription may break a seemingly unrelated
use case.

Further steps:
● Add a middleware that supports scaling and failure recovery.
● Split the shared database by subdomain to move closer to Microservices.
● Scale with Space-Based Architecture.
● Move the logic of use cases to an orchestrator.



Build a top-down hierarchy

Patterns: Top-Down Hierarchy (Hierarchy).
Goal: untangle the code, support multiple teams, earn fine-grained scalability.
Prerequisite: the domain is hierarchical.
Splitting the lower layers into independent components with identical interfaces simplifies

the managing code and allows the managed components to be deployed, developed and run
independently of each other. Ideally, the mid-layer components should participate in
decision-making so that the uppermost component is kept relatively simple.

Pros:
● Hierarchy is easy to develop and support with multiple teams.
● It is easy to modify or exchange individual components.
● The components scale, deploy and run independently.
● The system is quite fault tolerant.
Cons:
● It takes time and skill to deduce good interfaces.
● There are many components to administer.

Layers: improve performance
There are several ways to improve performance of a layered system. One we have

already discussed for Shards:
● Space-Based Architecture co-locates the database and business logic and scales

both dynamically.

Others are new and thus deserve our attention:
● Merging several layers improves latency by eliminating the communication overhead.
● Scaling some of the layers may improve throughput but degrade latency.
● Polyglot Persistence is the name for using multiple specialized databases.



Merge several layers

Patterns: Layers or Monolith
Goal: improve performance.
Prerequisite: the layers share programming language, hardware and qualities.
If your system’s development is finished (no changes are expected) and you really need

that extra 5% performance improvement, you can try merging everything back into a
Monolith or 3-tier (front, back, data).

Pros:
● Enables aggressive performance optimizations.
● The system may become easier to debug.
Cons:
● The code is frozen – it will be much harder to evolve.
● Your teams lose the ability to work independently.
Further steps:
● Shard the entire system.

Shard individual layers

Patterns: Layers, Shards, Load Balancer (Proxy).
Goal: scale the system.
Prerequisite: some layers are stateless or limited to the data of a single client.
Multiple instances or layers can be created, with their number and deployment varying

from layer to layer. That may work seamlessly if each instance of the layer that receives an
event which starts a use case knows the instance of the next layer to communicate to.
Otherwise you will need a load balancer.

Pros:
● Flexible scalability.
● Better fault tolerance.
● Co-deployment with clients.



Cons:
● More complex operations (more parts to keep an eye on).
Further steps:
● Space-Based Architecture scales the data layer.
● Polyglot Persistence improves performance of the data layer.

Use multiple databases

Patterns: Layers, Polyglot Persistence.
Goal: let parts of the business logic vary in qualities, improve the structure of the code.
Prerequisite: there are isolated use cases for or subsets of the data.
If you have separated commands (write requests) from queries (read requests), you can

serve the queries with read-only replicas of the database while the main database is
reserved for the commands.

If your types of data or data processing algorithms vary, you may deploy several
specialized databases, each matching one of your needs. That lets you achieve the best
performance for widely diverging cases.

Pros:
● Best performance for all the use cases.
● Specialized data processing algorithms out of the box.
● Replication may help with error recovery.
Cons:
● Someone will need to learn and administer all those databases.
● Keeping the databases consistent takes some effort and the replication delay may

negatively affect UX.
Further steps:
● Serve read and write requests with different backends according to Command-Query

Responsibility Segregation (CQRS).
● Separate the backend into services which match the already separated databases.

Layers: gain flexibility
The last group of evolutions to consider is about making the system more adaptable. We

have already discussed the following evolutions for Monolith:
● The behavior of the system may be modified with plugins.
● Hexagonal Architecture allows for abstracting the business logic from the

technologies used on the project.
● Scripts allow for customization of the system’s logic on a per client basis.



There is also a new evolution that modifies the upper (orchestration) layer:
● The orchestration layer may be split into backends for frontends to match the needs

of several kinds of clients.

Divide the orchestration layer into backends for frontends

Patterns: Layers, Backends for Frontends aka BFFs.
Goal: let each kind of client get a dedicated development team.
Prerequisite: no high-level logic is shared between client types.
It is possible that your system has different kinds of users: buyers, sellers and admins; or

web and mobile applications, etc. It may be easier to support a separate integration module
per kind of client than to keep all the unrelated code together in the integration layer.

Pros:
● Each kind of client gets a dedicated team which may choose best fitting technologies.
● You get rid of the single large codebase of the integration layer.
Cons:
● There is no good place to share any code between the BFFs.
● There are more components to administer.



Services: add or remove services
Services work well when each service matches a subdomain and is developed by a

single team. If those premises change, you’ll need to restructure the services:
● A new feature request may emerge outside of any of the existing subdomains,

creating a new service.
● A service may grow too large to be developed by a single team, calling for division.
● Two services may become so strongly coupled that fare better merged together.
● The entire system may need to be glued back into a monolith if the domain

knowledge changes or interservice communication strongly degrades performance.

Add or split a service

Patterns: Services.
Goal: get one more team to work on the project, decrease the size of an existing service.
Prerequisite: there is a loosely coupled (new or existing) subdomain that does not have a

dedicated service (yet).
If you need to add a new functionality that does not naturally fit into one of the existing

services, you may create a new service and probably get a new team for it.
If one of your services has grown too large, you should look for a way to subdivide it

(probably through a cell stage with shared orchestrator and database) to decrease the size
and, correspondingly, complexity of its code and get multiple teams to work on the resulting
(sub)services. However, that makes sense only if the old service is not highly cohesive –
otherwise the resulting subsystem may be more complex than the original service.

Pros:
● You get an extra development team.
● The complexity of the code decreases (if splitting) or does not increase (if adding).
● The new service is independently scalable.
Cons:
● You add to the operations complexity by creating a new system component and

several inter-component dependencies.
● There is a new point of failure, which means that bugs and outages become more

likely.
● Performance (or at least the efficiency) of the system will deteriorate because

interservice communication is slow.
● You may have a hard time debugging use cases that spread over the old and new

service.



Merge services

Patterns: Services, Monolith or Layers.
Goal: accept the coupling of subdomains and improve performance.
Prerequisite: the services use compatible technologies.
If you see that several services communicate to each other almost as intensely as they

call their internal methods, they probably belong together.
If your use cases have too high latency or you pay too much for the CPU and traffic, the

issue may originate with the interservice communication. No services, no pain.
Alternatively, if the domain knowledge changes, you may have to merge much of the

code together only to subdivide it later along updated subdomain boundaries. Which means
lots of work for no reason.

Pros:
● Improved performance.
● It becomes easy for parts of the merged code to access each other and share data.
● The new merged service or monolith is easier to debug.
Cons:
● The development teams become even more interdependent.
● There is no good way to vary qualities by subdomain.
● You lose granular scaling by subdomain.
● The merged codebase may be too large for comfortable development.
● If something fails, everything fails.

Services: add layers
The most common modifications of a system of services involve supplementary

system-wide layers which compensate for the inability of the services to share anything
among themselves:

● A middleware knows of all the deployed service instances. It mediates the
communication between them and may manage their scaling and failure recovery.

● Sidecars [DDS] of a service mesh make a virtual layer of shared libraries for the
microservices it hosts.

● A shared database simplifies the initial phases of development and interservice
communication.

● Proxies stand between the system and its clients and take care of shared aspects
that otherwise would need to be implemented by every service.

● An orchestrator is the single place where the high-level logic of all use cases resides.

Those layers may also be combined into combined components:
● Message Bus is a middleware that supports multiple protocols.

https://martinfowler.com/bliki/MonolithFirst.html


● API Gateway combines Gateway (a kind of Proxy) and Orchestrator.
● Event Mediator is an orchestrating middleware.
● Enterprise Service Bus (ESB) is an orchestrating message bus.
● Space-Based Architecture employs all the four layers: Gateway, Orchestrator,

Shared Repository and Middleware.

Add a middleware

Patterns: Middleware, Services.
Goal: take care of scaling, recovery and interservice communication without

programming it.
Prerequisite: the communication between the services is uniform.
Distributed systems may fail in a zillion ways. You want to ruminate neither on that nor on

heisenbugs. And you probably want to have a framework for scaling the services and
restarting them after failure. Get a 3rd party middleware! Let your programmers write the
business logic, not infrastructure.

Pros:
● You don't invest your time in infrastructure.
● Scaling and error recovery is made easy.
Cons:
● There may be a performance penalty which becomes worse for uncommon patterns

of communication.
● The middleware may be a single point of failure.
Further steps:
● Use a service mesh for dynamic scaling and as a way to implement shared aspects.

Use a service mesh

Patterns: Service Mesh (Mesh, Middleware), Proxy, Services.

https://en.wikipedia.org/wiki/Heisenbug


Goal: support dynamic scaling and interservice communication out of the box; share
libraries among the services.

Prerequisite: service instances are mostly stateless.
Microservices architecture boasts dynamic scaling under load thanks to its mesh-based

middleware. It also allows for the services to share libraries in sidecars [DDS] – additional
containers co-located with each service instance – to avoid duplication of generic code
among the services.

Pros:
● Dynamic scaling and error recovery.
● Available out of the box.
● Provides a way to implement shared aspects (cross-cutting concerns) once and use

the resulting libraries in every service.
Cons:
● Performance degrades because of the complex distributed infrastructure.
● You may suffer from vendor lock-in.

Use a shared repository

Patterns: Shared Repository, Services.
Goal: let the services share data, don’t invest in operating multiple databases.
Prerequisite: the services use a uniform approach to persisting their data.
You don’t really need every service to have a private database. A shared one is enough

in many cases.
Pros:
● It is easy for the services to share and synchronize data.
● Lower operational complexity.
Cons:
● All the services depend on the database schema which becomes hard to alter.
● The single database will limit the performance of the system.
● It may also become a single point of failure.
Further steps:
● Space-Based Architecture scales the data layer but it is a simple key-value store.
● Polyglot Persistence uses several specialized databases.



Add a proxy

Patterns: Proxy, Services.
Goal: use a common infrastructure component on behalf of your entire system.
Prerequisite: the system serves its clients in a uniform way.
Putting a generic component between the system and its clients helps the programmers

concentrate on the business logic rather than protocols, infrastructure or even security.
Pros:
● You get a select generic functionality without investing development time.
● It is an additional layer that isolates your system from both its clients and attackers.
Cons:
● There is a latency penalty caused by the extra network hop.
● Each proxy may be a single point of failure or at least needs some admin oversight.
Further steps:
● You can always add another kind of Proxy.
● If there are multiple clients that differ in their protocols, you can employ a stack of

proxies per client, resulting in Backends for Frontends.

Use an orchestrator

Patterns: Orchestrator, Services.
Goal: have the high-level logic of use cases distilled as intelligible code.
Prerequisite: the use cases comprise sequences of high-level steps (which is very likely

to be true for a system of subdomain services).
When a use case jumps over several services in a dance of choreography, there is no

easy way to understand it as there is no single place to see it in the code. It may be even
worse with pipelined systems where use cases are embodied in the structure of event
channels between the services.



Extract the high-level business logic from the choreographed services or their
interconnections and put it into a dedicated service.

Pros:
● You are not limited in the number and complexity of the use cases anymore.
● Global use cases become much easier to debug.
● You have a new team dedicated to the interaction with the customers, so that the

other teams are free to study their parts of the domain or work on improvements.
● Many changes in the high-level logic can be implemented and deployed without

touching the main services.
● The extra layer decouples the main services from the system’s clients and from each

other.
Cons:
● There is a performance penalty because the number of messages per use case

doubles.
● The orchestrator may become a single point of failure.
● Some flexibility is lost as the orchestrator couples qualities of the services.
Further steps:
● If there are several clients that strongly vary in workflows, you can apply Backends

for Frontends with an orchestrator per client.
● If the orchestrator grows too large, it can be divided into layers, services or both, the

latter option resulting in a top-down hierarchy.
● The orchestrator can be deployed as multiple instances and can have its own

database.

Pipeline:
Pipeline inherits its set of evolutions from Services. Filters can be added, split in two,

merged or replaced. Many systems employ a middleware (a pub/sub or pipeline framework),
a shared repository (which may be a database or a file system) or proxies.

There are a couple of pipeline-specific evolutions:
● The first service of the pipeline can be promoted to Front Controller [SAHP] which

tracks the status updates for every request it handles.
● Adding an orchestrator turns Pipeline into Services. As the high-level business logic

moves to the orchestration layer, the filters don’t need to interact directly, the
interfilter communication channels disappear and the system becomes identical to
Orchestrated Services.



Promote a service to Front Controller

Patterns: Front Controller (Polyglot Persistence), Pipeline.
Goal: allow for clients to query the state of their requests.
Prerequisite: request processing steps are slow (usually depend on human action).
If request processing steps require heavy calculations or manual action, clients may want

to query the status of their requests and analysts may like to see bottlenecks in the pipeline.
Let the first service in the pipeline know the state of all the running requests by subscribing
to status notifications from other services.

Pros:
● The state of each running request is readily available.
Cons:
● The first service in the pipeline depends on every other service.
Further steps:
● The front controller may be further promoted to Orchestrator if there is a need to

support many complex scenarios.

Add an orchestrator

Patterns: Orchestrator, Services.
Goal: support many use cases.
Prerequisite: performance degradation is acceptable.
When an orchestrated system is extended with more and more use cases, it is very likely

to fall into an integration hell when nobody understands how its components communicate.
Extract the communication into a dedicated service.

Pros:
● New use cases are easy to add.
● Complex scenarios are supported.
● The domain services don’t depend on each other.



● You get a single client-facing team, others are not under pressure from the business.
● It is easier to run actions in parallel.
● Global scenarios become debuggable.
● The services don’t need to be redeployed when the high-level logic changes.
Cons:
● The number of messages in the system doubles, thus its performance may degrade.
● The orchestrator may become a bottleneck or a single point of failure.
Further steps:
● If there are several clients that strongly vary in workflows, you can apply Backends

for Frontends with an orchestrator per client.
● If the orchestrator grows too large, it can be divided into layers, services or both, the

latter option resulting in a top-down hierarchy.
● The orchestrator can be deployed as multiple instances and can have its own

database.

Middleware:
A middleware is unlikely to be removed (though it may be replaced) once it is built into a

system. There are few evolutions as a middleware is a 3rd party product and is unlikely to be
messed with:

● If the middleware in use does not fit the preferred mode of communication between
some of your services, there is an option to deploy a second specialized middleware.

● If several existing systems need to be merged, that is accomplished by adding yet
another layer of middleware, resulting in a bottom-up hierarchy (bus of buses).

Add a secondary middleware

Patterns: Middleware.
Goal: support specialized communication between scaled services.
Prerequisite: the system relies on a middleware for scaling.
If the current middleware is too generic for the system’s needs, you can add another one

for specialized communication. The new middleware does not manage the instances of the
services.

Pros:
● Supports specialized communication with no need to write code for tracking the

instances of services.
Cons:



● You still need to notify the new middleware when an instance of a service is created
or dies.

● There is an extra component to administer.

Merge two systems by building a bottom-up hierarchy

Patterns: Bottom-up Hierarchy (Hierarchy, Middleware).
Goal: integrate two systems without a heavy refactoring.
Prerequisite: both systems use middleware.
If we cannot change the way each subsystem’s services use its middleware, we should

add a new middleware to connect the existing middlewares.
Pros:
● No need to touch anything in the existing services.
Cons:
● Performance suffers from the double conversion between protocols.
● There is a new component to fail (miserably).

Shared Repository:
Once a database appears, it is unlikely to go away. I see the following evolutions to

improve performance of the data layer:
● Shard the database.
● Use Space-Based Architecture for dynamic scalability.
● Divide the data into a private database per service.
● Deploy specialized databases (Polyglot Persistence).

Shard the database

Patterns: Shards, Shared Repository.
Goal: improve performance of the database.
Prerequisite: the data is shardable (consists of independent records).



If your database is under heavy load, but the data which it contains covers independent
entities (users, companies, sales) you can deploy multiple instances of the database, with a
subset of the data in each instance. Your services will need to know which instance to
access – probably by hashing the primary key [DDIA]. There is a good chance that you’ll still
need several smaller tables to be replicated to all the instances.

Modern distributed databases support sharding out of the box, but an overgrown table
may still impact the performance of the database.

Pros:
● Unlimited scalability.
● You don’t need to change your database vendor.
● Failure of a single database instance affects few users.
Cons:
● You need to take care of many instances of the database.
● The application or a custom script may have to synchronize shared tables among the

instances.
● There is no way to do joins or run aggregate functions (such as sum or count) over

multiple shards – all that logic moves to the services that use the database.
Further steps:
● Polyglot Persistence or CQRS may be used to pre-calculate aggregates to another

database deployed for analytical purposes (reporting database).
● Space-Based Architecture may be cheaper as it scales dynamically. However, in its

default and highly performant configuration it is prone to write collisions.

Use Space-Based Architecture

Patterns: Space-Based Architecture (Mesh, Shared Repository).
Goal: scale throughput of the database dynamically.
Prerequisite: data collisions are acceptable.
Space-Based Architecture duplicates the contents of a persistent database to a

distributed in-memory cache which is co-located with the services managed by its
middleware. That makes most database access operations very fast unless one needs to
avoid write collisions. The mesh middleware autoscales under load both the services and the
associated data cache, granting nearly perfect scalability. However, the architecture is costly
because of the amount of traffic and CPU time spent on replicating the data over the mesh.

Pros:
● Nearly unlimited dynamic scalability.
● Off-the-shelf solutions are available.
● Very high fault tolerance.

https://martinfowler.com/bliki/ReportingDatabase.html


Cons:
● Choose one: data collisions or poor performance.
● Low latency is guaranteed only when the entire dataset fits in the memory of a node.
● High operational cost because the nodes will send each other lots of data.
● No support for analytical queries.

Move the data to private databases of services

Patterns: Services or Shards, Layers.
Goal: decouple the services or shards, remove the performance bottleneck (shared

database).
Prerequisite: the domain data is weakly coupled.
If the data clearly follows subdomains, it may be possible to subdivide it accordingly. The

services will become choreographed (or orchestrated if they get an integration layer) instead
of communicating through the shared data.

Pros:
● The services become independent in their persistence and data processing

technologies.
● Performance of the data layer, which tends to limit the scalability of the system, will

likely improve thanks to the use of smaller specialized databases.
Cons:
● The communication between the services and the synchronization of their data

becomes a major issue.
● Joins of the data from different subdomains will not be available.
● Costs are likely to increase because of data transfer and duplication between the

services.
● You will have to administrate multiple databases.
Further steps:
● Materialized views [DDIA] or a query service [MP] help a service access and join

data which is owned by other services.

Deploy specialized databases

Patterns: Polyglot Persistence.



Goal: improve performance of the data layer.
Prerequisite: there are diverse data types or patterns of data access.
It is very likely that you can either use specialized databases for various data types or

deploy read-only replicas of your data for analytics.
Pros:
● You can choose one of the many specialized databases available on the market.
● There is a good chance to significantly improve performance.
Cons:
● It may take quite an effort to learn the new technologies to use them efficiently in your

system.
● Someone needs to see to the new database(s).
● You’ll likely need to work around the replication lag [MP].

Proxy:
It usually makes little sense to get rid of a proxy once it is integrated into a system. Its

only real drawback is a slight increase in latency for user requests which may be helped
through creation of bypass channels between the clients and a service that needs low
latency. The other drawback of the pattern, the proxy’s being a single point of failure, is
countered by deploying multiple instances of the proxy.

As proxies are usually 3rd party products, there is very little we can change about them:
● We can add another kind of a proxy on top of the existing one.
● We can use a stack of proxies per client, making Backends for Frontends.

Add another proxy

Patterns: Proxy, Layers.
Goal: avoid implementing generic functionality.
Prerequisite: you don't have this kind of a proxy yet.
A system is not limited to a single kind of proxies. As a proxy represents your system

without changing its function, proxies are transparent, thus they are stackable.
It often makes sense to colocate software proxies or use a multifunctional proxy to

reduce the number of network hops between the clients and the system. However, in a
highly loaded system proxies may be resource-hungry, thus in some cases colocation strikes
back.

Pros:



● You get another aspect of your system implemented for you.
Cons:
● Latency degrades.
● More work for admins.
● Another point of possible failure.

Deploy a proxy per client type

Patterns: Proxy, Backends for Frontends.
Goal: let the aspects of communication vary for different kinds of clients.
Prerequisite: your system serves several kinds of clients.
If you have internal and external clients, or admins and users, you may want to differ the

setup of proxies for each kind of client, sometimes to the extent of physically separating the
network communication paths, so that each kind of client is treated according to its
bandwidth, priority and permissions.

Pros:
● It is easy to set up various aspects of communication for a group of clients.
Cons:
● More work for admins as the proxies are duplicated.

Orchestrator:
Employing an orchestrator has two pitfalls:
● The system becomes slower because too much communication is involved.
● The single orchestrator may be found too large and rigid.

There is a handful of evolutions to counter those weaknesses:
● Subdivide the orchestrator by the system’s subdomains, forming Layered Services.
● Subdivide the orchestrator by the type of client, forming Backends for Frontends.
● Add another layer of orchestration.
● Build a top-down hierarchy.



Subdivide to form layered services

Patterns: Three-Layered Services (Layered Services, Services, Layers).
Goal: simplify the orchestrator, let the service teams own the orchestration, decouple

forces for the services, improve performance.
Prerequisite: the high-level (orchestration) logic is weakly coupled between the

subdomains.
If the orchestration logic mostly follows subdomains, it may be possible to subdivide it

accordingly. Each service gets a part of the orchestrator that mostly deals with its subdomain
but may call other services when needed. As a result, each service orchestrates every other
service. Still, a large part of the orchestration becomes internal to the service, meaning that
fewer calls over the network are involved.

Pros:
● You subdivide the large orchestrator codebase.
● Performance is improved.
● The services become more independent in their quality attributes.
Cons:
● You lose the client-facing orchestration team – now each service’s team will need to

face its clients.
● The service teams become interdependent (while having equal rights), often causing

slow development and suboptimal decisions.
● There is no way to share code between different use cases or even take a look at all

of them at once.
Further steps:
● Materialized views [DDIA] or a query service [MP] help a service access and join the

data owned by other services, further reducing the need for interservice
communication.



Subdivide to form backends for frontends

Patterns: Backends for Frontends, Orchestrator.
Goal: simplify the orchestrator, employ a team per client type, decouple qualities for

clients.
Prerequisite: clients vary in workflows and forces.
When use cases for clients vary, it makes sense for each kind of a client to have a

dedicated orchestrator.
Pros:
● The smaller orchestrators are independent in qualities, technologies and teams.
● The smaller orchestrators are … well, smaller.
Cons:
● There is no good way to share code between the orchestrators.
Further steps:
● You may want to add client-specific proxies and, maybe, co-locate them with the

orchestrators to avoid the extra network hop.
● Adding another shared orchestrator below the ones dedicated to clients creates a

place for sharing functionality among the orchestrators.
● If you are running microservices over a service mesh, sidecars [DDS] may help to

share generic code among the orchestrators.

Add a layer of orchestration

Patterns: Orchestrator, Layers.
Goal: implement simple use cases quickly, while still supporting complex ones.
Prerequisite: use cases vary in complexity.



You may use two or three orchestration frameworks that differ in complexity. A simple
declarative tool may be enough for the majority of user requests, reverting to custom-tailored
code for rare complex cases.

Pros:
● Simple scenarios are easy to write.
● You retain good flexibility with hand-written code when it is needed.
Cons:
● Requires learning multiple technologies.
● More components mean more failures and more administration.
● Performance of complex requests may suffer from more indirection.
Further steps:
● Divide one or more of the orchestration layers to form Layered Services, Backends

for Frontends or Hierarchy.

Form a hierarchy

Patterns: Top-Down Hierarchy (Hierarchy).
Goal: simplify the orchestrator and, if possible, the services.
Prerequisite: the domain is hierarchical.
If an orchestrator becomes too complex, some domains (e.g. IIoT or telecom) encourage

using a tree of orchestrators, with each layer taking care of one aspect of the domain,
serving the most generic functionality at the root.

Pros:
● Multiple specialized teams and technologies.
● Small code base per team.
● Reasonable testability.
● Some decoupling of quality attributes.
Cons:
● Hard to debug.
● Poor latency unless several layers of the hierarchy are colocated.

Combined Component:
The patterns that involve orchestration (API Gateway, Event Mediator, Enterprise

Service Bus) may allow for most of the evolutions of the Orchestrator metapattern by
deploying multiple versions of the component. There is also a special evolution:

● Replace the combined component with several specialized ones



Divide into specialized layers

Patterns: Layers.
Goal: break out of vendor lock-in [DDD], gain flexibility.
Prerequisite: you have lots of free time.
If you feel that the combined component your system relies on does not cover all your

needs or is too expensive or unstable then you may want to get rid of it by replacing it with
generic single-purpose tools or a homebrewed implementation that will always adapt to your
needs.

Pros:
● It’s free.
● You’ll own your code.
● Anything you write will fit your needs for as long as you spend time supporting it.
Cons:
● Takes lots of work.
● Performance may become worse because there will be more components on the

requests’ path and also because the industry-grade framework that you used could
have been highly optimized.



Appendix F. Format of a metapattern.
The descriptions of most metapatterns follow the same format:

Diagram
The structural diagram (in abstractness-subdomain-sharding coordinates) of a typical

application of the metapattern. Please note that in practice the number and types of
components and their interactions may vary:

● Even though most diagrams show 3 layers or services, there are many 2-layered or
4-layered systems, while the number of services may often be greater than 10.

● Extension metapatterns add a layer (or a layer of services) to an existing system,
which is shown as services, but may instead comprise shards, layers or even a
monolith.

● There are several kinds of Hierarchy or Mesh that differ in their topologies. Only one
is shown.

● The components of metapatterns may communicate in various ways, including
in-process calls, RPC or asynchronous messaging. Only one of them is shown.
Optional communication pathways may appear as dashed arrows.

Abstract
Motto and the design goal.
Known as: the list of aliases for the basic metapattern.
Aspects: an optional list of roles the component may have.
Variants: one or more lists of special or notable architectures or patterns that derive from

or implement the current metapattern.
Structure: a one-line description of the structure of the metapattern.
Type: Root, main, extension or implementation.
● The root of all the metapatterns is Monolith, as any system both looks monolithic to

its clients and comes about through division of the continuous (monolithic) design
space.

● Main metapatterns (Layers, Services and few others derived from them) stay at the
core of any architecture.

● An extension adds components to an architecture, built around a main metapattern,
to modify its properties.

● An implementation metapattern shows the internal structure of a component that is
usually treated as monolithic. Many of them implement Middleware.

A short table of benefits and drawbacks.
References: some articles and books that relate to the topic.

Then follow two or three paragraphs of main facts and ideas about the metapattern.



Performance
This section discusses performance of the metapattern in scenarios of various extent:

usually simple requests or events, that relate to a single subsystem, are processed way
faster than those that touch multiple components.

There are two kinds of performance: latency and throughput. Low latency is possible only
if few components are involved as inter-component communication, especially in distributed
systems, increases latency. Contrariwise, throughput depends on the number of components
that work in parallel, thus it scales together with the system.

The section may also discuss optimization techniques that apply to the metapattern.

Dependencies
Some components of the metapattern depend on others of its components. If a

component changes, everything that depends on it may need to be re-tested with the
updated version. If a component’s interface changes, all the components that depend on it
must be updated. Thus, components that quickly evolve should depend on others, not the
way around.

Some patterns, like Hexagonal Architecture, use adapters to break dependencies. An
adapter depends on components on both its sides, making the components themselves
independent of each other. The adapters are small enough to update quickly and may easily
be replaced with stubs for testing or running a component in isolation.

Applicability
Here follows a list of kinds of projects that may benefit from applying the architecture

under review, and another list of those which it is more likely to hurt.

Relations
An optional sequence of diagrams, showing the (extension or implementation)

metapattern applied to various kinds of architectures, followed by a list of relations between
the current and other metapatterns.

Variants and examples
A metapattern usually unites many variations of several patterns. Here we have a section

per dimension of variability and a section for well-known variants of the pattern.
On some occasions I had to include several variants that do not properly belong to the

metapattern under review, just to avoid confusion with terminology and point the reader to
the correct chapter. For example, Modular Monolith has a module per subdomain, thus it
belongs to Services rather than Monolith. Still, when the chapter on Monolith did not mention
it, I was blamed for misunderstanding the monolithic architecture. Such patterns are marked
as (misapplied) or (inexact).

I tried to show the difference between synonymous names for each variant or example
whenever I could identify one.



Evolutions
A brief summary of possible changes to the architecture under review. Each change

leads to a new architecture which usually represents another metapattern.
Appendix E discusses many evolutions in greater detail:
● A diagram that shows the original and resulting structure.
● The list of patterns, present in the resulting architecture. More general forms of each

pattern are given in parentheses, i.e. Pattern (Metapattern (Parent Metapattern)).
● The goal(s) of the transition.
● The prerequisites that enable the change.
● A short description of the change and the resulting system.
● Lists of pros and cons of the evolution.
● An optional list of metapatterns that the resulting system may evolve into and their

benefits in the context of the current evolution.



Appendix G. Glossary.
Abstractness – the scope of information that a concept operates. Highly abstract

components describe the system’s behavior in less words.
Action – an act of a system that changes its environment.
API (application programming interface) – a set of methods or messages that a

component provides to its clients.
Application – the most abstract layer that usually integrates components of a less

abstract layer.
Architectural pattern – a way to structure a system or a part of a system to achieve

desirable properties (address a set of forces).
Architectural style – see architecture.
Architecture – the structure of a system. It comprises components and their interactions.
ASS diagram – a structural diagram with abstraction, subdomain, sharding for

coordinates.
Asynchronous communication – the mode of communication when the sender of the

request message does not stop the execution of the scenario to wait for the confirmation
message.

Attack surface – the amount of components and functionality that faces an external
network (potentially exposed to hackers).

Availability – the percentage of time that the system is operational (satisfies its users).
Bounded context – a subset of requirements and code that shares a set of concepts.

Usually consists of internals of a component and APIs of all the other components it uses.
Business logic – the thing that users pay for. It is the heart of the business and is usually

the largest part of a project. You cannot buy the business logic, only implement it.
Choreography – a kind of workflow in which components at the same abstraction level

cooperate to implement a use case.
Client – an external component or system that makes use of a component or system in

question.
Cohesion – the density of logical connections among entities inside a component.
Colocated – running in the same address space (process) on the same hardware.
Communication – transfer of data or signals in a system.
Complexity – the cognitive load caused by the quantity of entities (concepts or modules)

and their relations that a programmer needs to operate.
Component – an encapsulated part of a system. It exposes an API to the system's

clients and/or other components of the system.
Concept – a notion of an element of a system's behavior, usually present in

requirements.
Contract – the informal rules of the behavior of a component expected by its clients.
Control – a kind of system that supervises physical entities or external programs.
Coupling – the density of logical connections between components.
Cross-cutting concern – a functionality that should be present in multiple components.
Debugging – trying to force the code to behave correctly from a user’s point of view.
Design – the planning for the best way to write code.
Design – see architecture.
Design space – the multitude of possible ways to design a given project.



Development – running a project for its users. Usually involves intermixed design,
implementation, debugging and testing phases.

Development complexity – the complexity of internals of a component and APIs they
reference – the contents of a bounded context.

Distributed – spread over multiple computers that communicate via a network.
Domain – the whole of knowledge (including requirements) that is needed to build a

system.
Domain – the middle layer of a system that contains the bulk of its business logic.
Event – a signal that has some meaning for a system or a component. Events may carry

data.
Fault tolerance – the ability of a system to remain (at least partially) operational if one or

more of its components fail (become inaccessible due to a hang, crash or a hardware
failure).

Forces – expected properties of a system (such as its stability or response time) which
are crucial for the system to be built, deployed and used successfully.

Functional requirements – the requirements that describe inputs and outputs of a
system, but not its speed or stability.

Global use case – a use case that involves most of the components of a system. Such
scenarios are deeply affected by the system’s structure.

Implementation – the process of writing code.
Infrastructure – the lowest layer of a system that provides general-purpose functionality

(tools) to its upper layers.
Input – events or data that a system reacts to.
Integration – see orchestration.
Integration complexity – the complexity of understanding how individual components

interact to make a system.
Interactions – the kinds and routes of communication among components of a system.
Interface – see API.
Latency – the delay between a system’s receiving input and producing a corresponding

output.
Messaging – communication via sending short pieces of data.
Method call – invocation of an interface method (or procedure) of a component by

another component.
Metapattern – a cluster of patterns that have similar structural diagrams and address

related issues.
Module – a colocated component.
Non-functional requirements (NFRs) – see forces.
Notification – an event that one component sends to another component(s) to inform

them of a change.
Operational complexity – see integration complexity.
Orchestration – a kind of workflow where a single dedicated component (orchestrator)

makes use of (usually multiple) less abstract components. Facade [GoF] is a good example.
Output – actions or data that a system produces.
Pattern – a documented approach (blueprint) for solving a recurrent programming issue.
Pattern Language – a set of interrelated patterns intended to cover most aspects of

designing systems in a target domain.
Performance – the ratio or the system’s speed to the resources it consumes.
Processing – transformation of input data into output data.



Project – the process of making a system.
Pub/sub (publish/subscribe) – a mode of communication when one component

(subscriber) receives a subset of notifications from another component (publisher). It is the
subscriber that chooses which notifications it is interested in.

Qualities – the properties a component or (sub)system manifests to satisfy the forces.
Real-time – a force that requires the system to respond to incoming events immediately.
Request/confirm – a pair of messages between two components (Requestor and

Executor). The request describes the action that the requester component wants the
executor component to run (R => E). The confirm describes the results of the execution (R
<= E).

Requirements – a set of rules that describes the correct (expected) behavior of the
system.

Resources – CPU, memory, network bandwidth and other stuff that costs money.
Scaling – ability to increase performance of a system by providing it with more resources.
Scenario – see use case.
Service – a distributed component.
Sharding – deploying multiple instances of a component.
Single point of failure – a software or hardware component which if fails makes the whole

system non-operational. High-availability systems should avoid single points of failure.
SPI (service provider interface) – a set of methods or messages that a component

expects to be supported by the components it uses.
State – data that a component keeps between processing its inputs.
Structural complexity – see development complexity.
Structural diagram – a graphical representation of the structure of a (sub-)system that

shows components and their interactions.
Stub – a very simple implementation of a module that allows other components that use

it to run without starting the original module. Stubs are used to implement modules
concurrently or test them in isolation.

Subdomain – a distinct cohesive part of the domain knowledge.
Synchronous communication – the mode of communication when the requesting

component waits for the results of its request to another component before continuing to run
its task.

System – a self-sufficient set of communicating components that were brought together
or implemented to satisfy its users (by running use cases).

Task – a high-level sequence of execution steps. Similar to use case or scenario.
Team – few programmers and testers that work on a component. Teams of more than 5

members lose productivity to communication overhead.
Testing – checking how satisfactory the system behaves.
Throughput – the amount of data a system can process per unit of time.
Use case – a behavior expected by system’s users. A system is implemented to run use

cases.
User – a human that uses a system and usually pays well if satisfied with its behavior.
Vendor lock-in – a pitfall when a system relies on an external provider so much that it is

impossible to change the provider. It is similar to falling prey to a monopoly.
Workflow – a sequence of actions (messages or method calls) required to implement a

use case.



Appendix H. History of changes.
​0.1 (2020) – Description of my semisynchronous proactor architecture for a VoIP gateway,
published by dou.ua. Got very positive feedback and lots of comments from the community.

0.2 (2020) – The same in a more official style for the PLoP’20 conference.

0.3 (2021) – Comparison of choreography and orchestration for dou.ua. No impact.

0.4 (2022) – A series of 5 articles that looked into local and distributed architectures by
applying the actor model. Positive feedback at dou.ua, but the series was interrupted by the
war.

0.5 (2023) – The same series in English, published by ITNEXT and upvoted by
r/softwarearchitecture.

0.6 (2023) – I attempted to rebuild the series for InfoQ but the first article was rejected as
impractical (technology-agnostic).

0.7 (09-2024) – Chapters from this book, published by ITNEXT. Some of them got boosted
by Medium.

0.8 (11-2024) – The complete book as a pdf. Clients were changed to mid-brown. Detailed
evolutions were moved to the appendix. Rejected by Manning (the free license and color
diagrams make the book unprofitable) and O’Reilly (it would get in the way of their
bestsellers).

0.9 (12-2024) – Integrated patterns from [DDS, LDDD, SAHP] and Internet sources, mostly
affecting Shards, Pipeline, Proxy, Orchestrator and Hexagonal Architecture. Added diagrams
for Polyglot Persistence with derived storage and detailed evolutions for Pipeline.
Downgraded analytical chapters to sections and added a couple of new ones. Extended the
ambiguous patterns chapter. Improved the structure of the variants sections of metapatterns:
now each synonym has a short description. Fixed alignment of text and figures.

http://www.hillside.net/plop/2020/papers/poltorak.pdf
https://medium.com/itnext/introduction-to-software-architecture-with-actors-part-1-89de6000e0d3
https://medium.com/itnext/the-list-of-architectural-metapatterns-ed64d8ba125d


Appendix I. Index of patterns and architectures.
Actors (architecture)
Actors (as Mesh)
Actors (backend)
Actors (embedded systems)
Actors (scope)
Adapter
Add-ons
Aggregate Data Product Quantum (Data Mesh)
Ambassador
Anticorruption Layer
API Composer
API Gateway
API Gateway (as Orchestrator)
API Gateway (as Proxy)
API Service (adapter)
Application Layer (Orchestrator)
Application Service
Aspects (Plugins)
Automotive SOA (as Service-Oriented Architecture)
AUTOSAR Classic Platform (as Microkernel)
Backend for Frontend (adapter)
Backends for Frontends (BFF)
Batch Processing
Big Ball of Mud
Blackboard
Bottom-up Hierarchy
Broker (Middleware)
Broker Topology Event-Driven Architecture
Bus of Buses
Cache (read-through)
Cache-Aside
Cell (WSO2 definition)
Cell Gateway (WSO2 Cell-Based Architecture)
Cell Router (Amazon Cell-Based Architecture)
Cell-Based Architecture (WSO2 version)
Cell-Based Microservice Architecture (WSO2 version)
Cells (Amazon definition)
Choreographed Event-Driven Architecture
Choreographed two-layered services
Clean Architecture
Combined Component
Command Query Responsibility Segregation (CQRS)
Composed Message Processor
Configuration File



Configurator
Container Orchestrator
Content Delivery Network (CDN)
Control (Orchestrator)
Controller (Orchestrator)
Coordinator (Saga)
CQRS View Database
Create on demand (temporary instances)
Data archiving
Data Domain
Data File
Data Grid (Space-Based Architecture)
Data Lake
Data Mesh
Data Product Quantum (DPQ)
Data Warehouse
Database Cache
Database Abstraction Layer (DBAL or DAL)
Dependency Inversion
Deployment Manager
Device Drivers
Direct Server Return
Dispatcher (Proxy)
Distributed Middleware
Distributed Monolith
Distributed Runtime (client point of view)
Distributed Runtime (internals)
Domain-Driven Design (layers)
Domain Services (scope)
Domain-Specific Language (DSL)
Edge Service
Embedded systems (layers)
Enterprise Service Bus (ESB)
Enterprise Service Bus (as Middleware)
Enterprise Service Bus (as Orchestrator)
Enterprise Service-Oriented Architecture
Enterprise SOA
Event-Driven Architecture (EDA)
Event Mediator
Event Mediator (as Middleware)
Event Mediator (as Orchestrator)
FaaS
FaaS (pipelined)
Facade
Firewall
Flavors (Plugins)
Front Controller (query service of a pipeline)
Full Proxy



Function as a Service
Gateway (adapter)
Gateway Aggregation
Grid
Half-Proxy
Half-Sync/Half-Async
Hardware Abstraction Layer (HAL)
Hexagonal Architecture
Hexagonal Service
Hierarchy
Historical Data
Hooks (Plugins)
Hypervisor
In-depth Hierarchy
Ingress Controller
Instances
Integration Service
Integration Microservice
Interpreter
Layered Architecture
Layered Microservice Architecture (Backends for Frontends)
Layered Monolith
Layered Service
Layered Services (architecture)
Layers
Leaf-Spine Architecture
Load Balancer
MapReduce
Materialized View
Mediator
Memory Image
Mesh
Message Broker
Message Bus
Message Bus (as Middleware)
Message Translator (adapter)
Messaging Grid (Space-Based Architecture)
Microgateway
Microkernel
Microkernel (Plugins)
Microkernel Architecture (Plugins)
Microservices (architecture)
Microservices (scope)
Middleware
Model-View-Controller (MVC)
Modular Monolith
Modulith
Monolith



Monolithic Service
Multitier Architecture
Multi-Worker
Nanoservices (API layer)
Nanoservices (as runtime)
Nanoservices (pipelined)
Nanoservices (scope)
Nanoservices (SOA)
Native Data Product Quantum (sDPQ)
Neartime system
Network of Networks
N-tier Architecture
Offline system
Onion Architecture
Open Host Service
Operating System
Operating System Abstraction Layer (OSAL or OAL)
Orchestrated saga
Orchestrated three-layered services
Orchestrator
Orchestrator of Orchestrators
Partition
Peer-to-Peer Networks
Pipeline
Pipes and Filters
Platform Abstraction Layer (PAL)
Plug-In Architecture
Plugins
Polyglot Persistence
Ports and Adapters
Pool (stateless instances)
Proactor
Process Manager
Processing Grid (Space-Based Architecture)
Proxy
Published Language
Query Service
Reactor (multi-threaded)
Reactor (single-threaded)
(Re)Actor-with-Extractors
Read-Only Replica
Read-Through Cache
Reflection (Plugins)
Remote Facade
Replica
Replicated Cache
Replicated Stateless Services (instances)
Reporting Database



Repository
Response Cache
Reverse Proxy
Saga Engine (Microkernel)
Saga Execution Component
Saga Orchestrator
Scaled Service
Scatter-Gather
Scheduler
Script
Search Index
Segmented Microservice Architecture
Service-Based Architecture (architecture)
Service-Based Architecture (shared database)
Service Layer (Orchestrator)
Service Mesh
Service Mesh (as Mesh)
Service Mesh (as Middleware)
Service of Services
Service-Oriented Architecture (SOA)
Services
Services of Services
Sharding (persistent slices of data)
Sharding proxy
Shards
Shared Database
Shared Databases (Polyglot Persistence)
Shared File System
Shared Memory
Shared Repository
Sidecar
Software Framework (Microkernel)
Source-aligned Data Product Quantum (Data Mesh)
Space-Based Architecture (as Mesh)
Space-Based Architecture (as Middleware)
Specialized Databases
Spine-Leaf Architecture
Stamp Coupling
Strategy (Plugins)
Stream Processing
Three-Tier Architecture
Tiers
Top-down Hierarchy
Transaction Script
Virtualizer
Work Queue
Workflow System
Workflow Owner (Orchestrator)



Wrapper Facade (Orchestrator)
Write-Behind Cache
Write-Through Cache


