{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis of Ficus RAD-seq data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Table of contents\n", "[Software installation (conda)](#Required-software) \n", "[The assembled RAD data](#The-assembled-data-sets) \n", "[Phylogenetic analysis (raxml)](#Analysis-BPP) \n", "[Plot results](#Plots)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Required software\n", "All required software can be installed locally using *conda*. I assume here that you already have `ipyrad` installed using conda. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## conda install toytree -c eaton-lab\n", "## conda install ipyrad -c ipyrad \n", "## conda install bpp -c ipyrad " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ipyrad v.0.6.20\n" ] } ], "source": [ "## import packages\n", "import ipyrad as ip\n", "import ipyrad.analysis as ipa\n", "import numpy as np\n", "import toyplot\n", "import toytree\n", "import glob\n", "\n", "## print ipyrad info\n", "print \"ipyrad v.{}\".format(ip.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cluster setup\n", "see more information on ipyparallel setup here. " ] }, { "cell_type": "code", "execution_count": 181, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "host compute node: [40 cores] on tinus\n" ] } ], "source": [ "## print ipyparallel cluster information\n", "import ipyparallel as ipp\n", "ipyclient = ipp.Client()\n", "print ip.cluster_info(ipyclient)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assembled data sets" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " loading Assembly: pharma_dhi_s4\n", " from saved path: ~/Documents/Ficus/analysis-ipyrad/pharma_dhi_s4.json\n", " loading Assembly: america_dhi_s4\n", " from saved path: ~/Documents/Ficus/analysis-ipyrad/america_dhi_s4.json\n" ] } ], "source": [ "## create subsampled pharma-clade branch\n", "pharma = ip.load_json(\"analysis-ipyrad/pharma_dhi_s4.json\")\n", "america = ip.load_json(\"analysis-ipyrad/america_dhi_s4.json\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis BPP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Pharmacosyceae clade" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## a tree hypothesis (guidetree) (here based on tetrad results)\n", "newick = \"((((glabrata, insipida), yoponensis), maxima), tonduzii);\"\n", "\n", "## a dictionary mapping sample names to 'species' names\n", "imap = {\n", " \"glabrata\": [\"B133_glabrata\", \"A97_glabrata\", \"B134_glabrata\", \"B131_glabrataXmaxima\"],\n", " \"insipida\": [\"A95_insipida\", \"B127_insipida\", \"C15_insipida\", \n", " \"B128_insipida\", \"B127_insipida\", \"A95_insipida\"],\n", " \"yoponensis\": [\"C45_yoponensis\", \"C47_yoponensis\", \"C46_yoponensis\"],\n", " \"maxima\": [\"A94_maxima\", \"C17_maxima\", \"B119_maxima\", \"B120_maxima\"],\n", " \"tonduzii\": [\"C48_tonduzii\"],\n", " }\n", "\n", "## loci must have data for at least N samples in each species.\n", "minmap = {\n", " \"glabrata\": 4,\n", " \"insipida\": 4,\n", " \"yoponensis\": 3,\n", " \"maxima\": 4, \n", " \"tonduzii\": 1,\n", " }" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | count | \n", "mean | \n", "std | \n", "min | \n", "25% | \n", "50% | \n", "75% | \n", "max | \n", "
|---|---|---|---|---|---|---|---|---|
| theta_1glabrata | \n", "760.0000 | \n", "0.0011 | \n", "0.0001 | \n", "0.0008 | \n", "0.0010 | \n", "0.0010 | \n", "0.0012 | \n", "0.0016 | \n", "
| theta_2insipida | \n", "760.0000 | \n", "0.0011 | \n", "0.0001 | \n", "0.0008 | \n", "0.0010 | \n", "0.0010 | \n", "0.0011 | \n", "0.0017 | \n", "
| theta_3maxima | \n", "760.0000 | \n", "0.0038 | \n", "0.0003 | \n", "0.0030 | \n", "0.0036 | \n", "0.0038 | \n", "0.0040 | \n", "0.0046 | \n", "
| theta_5yoponensis | \n", "760.0000 | \n", "0.0020 | \n", "0.0002 | \n", "0.0016 | \n", "0.0019 | \n", "0.0020 | \n", "0.0021 | \n", "0.0025 | \n", "
| theta_6glabratainsipidayoponensismaximatonduzii | \n", "760.0000 | \n", "0.0157 | \n", "0.0008 | \n", "0.0135 | \n", "0.0152 | \n", "0.0157 | \n", "0.0162 | \n", "0.0181 | \n", "
| theta_7glabratainsipidayoponensismaxima | \n", "760.0000 | \n", "0.0015 | \n", "0.0009 | \n", "0.0001 | \n", "0.0008 | \n", "0.0013 | \n", "0.0020 | \n", "0.0051 | \n", "
| theta_8glabratainsipidayoponensis | \n", "760.0000 | \n", "0.0019 | \n", "0.0012 | \n", "0.0001 | \n", "0.0010 | \n", "0.0016 | \n", "0.0024 | \n", "0.0070 | \n", "
| theta_9glabratainsipida | \n", "760.0000 | \n", "0.0132 | \n", "0.0019 | \n", "0.0079 | \n", "0.0120 | \n", "0.0132 | \n", "0.0143 | \n", "0.0191 | \n", "
| tau_6glabratainsipidayoponensismaximatonduzii | \n", "760.0000 | \n", "0.0030 | \n", "0.0002 | \n", "0.0024 | \n", "0.0029 | \n", "0.0030 | \n", "0.0031 | \n", "0.0036 | \n", "
| tau_7glabratainsipidayoponensismaxima | \n", "760.0000 | \n", "0.0030 | \n", "0.0002 | \n", "0.0024 | \n", "0.0029 | \n", "0.0030 | \n", "0.0031 | \n", "0.0036 | \n", "
| tau_8glabratainsipidayoponensis | \n", "760.0000 | \n", "0.0029 | \n", "0.0002 | \n", "0.0024 | \n", "0.0028 | \n", "0.0030 | \n", "0.0031 | \n", "0.0036 | \n", "
| tau_9glabratainsipida | \n", "760.0000 | \n", "0.0011 | \n", "0.0002 | \n", "0.0008 | \n", "0.0010 | \n", "0.0010 | \n", "0.0011 | \n", "0.0016 | \n", "
| lnL | \n", "760.0000 | \n", "-69160.9028 | \n", "43.5274 | \n", "-69280.3200 | \n", "-69189.8015 | \n", "-69157.8950 | \n", "-69129.9325 | \n", "-68997.7510 | \n", "