ELECTRIC DRIVES

Syllabus: Types of electric drives - choice of motor - starting and running characteristics - speed control - Temperature rise - particular applications of electric drives - types of industrial loads - Continuous - intermittent and variable loads - load equalization.

Electrical Drive: The combination of equipments to convert electrical energy into mechanical energy and to provide a control for this process is called 'Electrical Drive'.

The electrical drive mainly consists of Source, Power modulator, Motor, Load and Control unit.

The block diagram of an electrical drive is as shown below

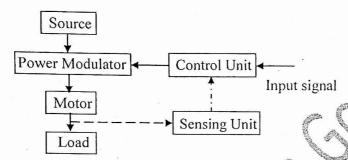


Fig-1. Block diagram of Electrical Drive

Advantages of Electric Drive:

All modern industrial and commercial applications employ electric drive because of the following advantages:

- It is simple in construction and has less maintenance cost.
- Its speed control is easy and smooth.
- It is neat, clean and free from any smoke or flue gases.
- It can be installed at any desired convenient place thus affording more flexibility in the layout.
- ➤ It can be remotely controlled.
- > Being compact, it requires less space.
- > It can be started immediately without any loss of time.
- It has comparatively longer life.

Disadvantages of Electric Drive:

An electric drive system has two inherent disadvantages:

- Initial cost of the system is more.
- > The drive comes to stop as soon as there is failure of electric supply.
- It cannot be used at far off places which are not served by electric supply.

Types (or) Classification of Electric Drives:

The electric drives are classified as three categories:

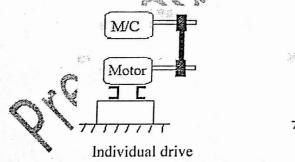
- i) Group drive, ii) Individual drive and iii) Multi motor drive.
- i) Group drive: In group drive, a single motor drives a number of machines through belts from a common shaft. It is also called line shaft drive. These type of drives are used in industrial applications like transportation systems, rolling mills, cementmills etc.

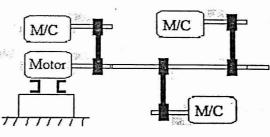
Advantages of group drive are:

Saving in initial cost because one electrical motor is used. For example, practically, a 150-kW motor cost is much less than ten 15-kW motors needed for driving 10 separate machines.

- > The efficiency and power factor of a group drive is more, since this drive runs at full-load.
- > Group drive can be used with advantage in those industrial processes where there is a sequence of continuity in the operation.

Disadvantages: However, group drive is rarely used due to the following disadvantages:


- > This type of drive does not give good appearance and is less safe to operate.
- Any fault occurred in the driving motor, all the driven equipment is idle. Hence, this system is unreliable.
- > Speed control of individual drive is very complex.
- > Noise level at working site is high.
- > More amount of power is lost in energy transmitting mechanism.
- If all the machines driven by the line shaft do not work together, the main motor runs at reduced load. Consequently, it runs with low efficiency and with poor power factor.
- > It is not suitable for constant speed applications like paper and textile industries.
- ii) Individual drive: In the case of an individual drive, each machine is driven by its own separate motor with the help of gears, pulley etc. Examples are domestic applications like Fans, centrifugal pumps, drilling machines, Electric hand tools etc.


Advantages:

- > Since each machine is driven by a separate motor, it can be run and stopped as desired.
- > There is flexibility in the installation because of different machines.
- In case of motor fault, only its connected machine will stop whereas others will continue working without any disturbance.
- > Each operator has full control of the machine which can be quickly stopped if an accident occurs.
- > The absence of belts and line shafts greatly reduces the risk of accidents to the operating personnel.
- Maintenance of line shafts, bearings, pulleys and belts etc. is eliminated. Similarly there is no danger of oil falling on articles being manufactured.

Disadvantage

> The only disadvantage of individual drive is its initial high cost.

Group drive

- iii) Multi-motor drives: In multi-motor drives separate motors are provided for actuating different parts of the driven mechanism. For example, in travelling cranes, three motors are used: one for hoisting, another for long travel motion and the third for cross travel motion.
 - > Multi-motor drives are commonly used in robots, paper mills, rolling mills, rotary printing presses and metal working machines etc.
 - The use of Individual (or) Multi-motor drives introduces the automation in production processes, this result in increase of reliability and more safe in operation.

Unit-1

B. Tech EEE

Factors for selection/choice of motor:

The selection/choice of an electric drive/motor depends mainly on the following factors.

i) Electrical characteristics

- * Starting characteristics
- * Running characteristics
- * Speed control
- * Braking

ii) Mechanical considerations

- * Type of enclosure
- * Type of bearings
- * Method of power transmission

- * Type of cooling
- * Noise level

iii) Size and rating of motors

- * Requirement for continuous, intermittent or variable load cycle
- Overload capac

iv) Steady state operation required

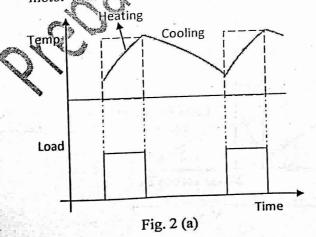
- * Nature of speed-torque characteristics
- * Speed regulation
- * Speed rang

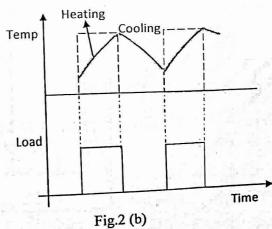
- * Efficiency
- * Duty Cycle
- * Speed fluctuations if any

v) Requirement related to the source

- * Type of source i.e whether it is AC source or DC source
- * Magnitude of voltage, voltage fluctuations, power factor, harmonics and its effects on other loads
- * Ability to accept regenerative power.

vi) Cost


- * Capital cost
- * Running cost
- * Maintenance cost if any


In addition to above factor, life, reliability, environment and location also effects the selection/ choice of an electric drive/motor.

Different Types of Industrial Load:

There are three different types of industrial loads under which electric motors are required to (iii) Variable or fluctuating load. (ii) Intermittent load and work. Those are (i) Continuous load The size of the motor depends mainly on

- (i) The temperature rise (ii) The maximum torque developed by the motor.
- (i) Continuous Load: In such cases, the calculation of motor size is simpler because the loads like pumps and fans require a constant power input to keep them operating. However, it is essential to calculate the KW rating of the motor correctly. If the KW rating of the motor is less than required load rating, the motor will overheat and consequently burn out. If KW rating is more than the required load rating, the motor will operate at lower efficiency and power.
- (ii) Intermittent Loads. The intermittent loads are of two types:
 - (a) In this type of load, motor is loaded for a short time and then shut off for a sufficient long time, allowing the motor to cool down to room temperature as shown in Fig-2 (a). In such cases, a motor with a short time rating is used as in a kitchen mixie.

- (b) In this type of load, motor is loaded for a short time and then it is shut off for a short time. The shut off time is so short that the motor cannot cool down to the room temperature as shown in Fig-2(b). In such cases, a suitable continuous or short-time rated motor is chosen which, when operating on a given load cycle, will not exceed the specified temperature limit.
- (iii) Variable Loads. In the case of such loads, the most accurate method of selecting a suitable motor is to draw the heating and cooling curves as per the load fluctuations for a number of motors. The smallest size motor which does not exceed the permitted temperature rise when operating on the particular load cycle should be chosen for the purpose. However, a simpler but sufficiently accurate method of selection of a suitable rating of a motor is to assume that heating is proportional to the square of the current and hence the square of the load. The suitable continuous rating of the motor would equal the r.m.s. value of the load current.

Load Equalization:

In several industrial drives (like electrical hammers, rolling mills, reciprocating pumps etc) the load fluctuates between wide limits over a span of few seconds. It is required to smooth out the fluctuating loads, otherwise during peak load period it will draw heavy current from the supply and produces large voltage drop, power losses and more cross section area of cables and wires. The process of smoothing out the fluctuations in load is known as load equalization.

The process of load equalization involves the storage of energy during light load and releases stored energy during the heavy load period. The load equalization is achieved by using fly wheel.

Use of Flywheels

In the method of load equalization using fly wheel, the fly wheel is mounted on the motor shaft if the speed of the motor is not reversed. In case of speed reversal, the fly wheel is mounted on motor-generator set. In order that the fly wheel operates effectively, the motor must have drooping speed characteristics, that is, there should be a drop in speed as the load comes to enable flywheel to give up its stored energy. During the light load condition, the motor draws more energy than load required. The surplus energy taken is stored as kinetic energy in the fly wheel and this stored kinetic energy is released during heavy load period. The load torque required, motor torque developed and speed variations w.r.t time is as shown Fig - 3.

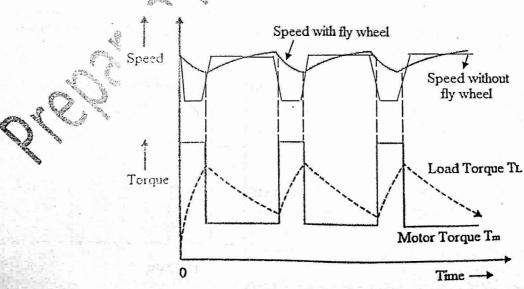


Fig - 3: Torque developed and Speed variations

Heating of Motor or Temperature Rise

In motor, the rise in temperature is mainly due to the heat generated by the losses. expression for this temperature rise is obtained by equating the heat is generated by the losses to the rate at which heat is absorbed by the motor for raising the temperature of motor and the rate of heat dissipation to cooling medium.

Heat generation in motor = Rate of heat absorption by the motor + Rate of heat dissipation to cooling medium.

Assumptions

> Losses remains constant during temperature rise.

> Heat dissipation is proportional to the temperature difference between motor and coolir medium.

> Temperature of cooling medium remains constant.

Let

m = Weight of motor (kg) Q = Heat generated in motor due to power loss;

s = Average specific heat in (Watt - Sec.) to raise the temperature of unit weight through 1°C.

ms = Heat required to raise the temperature of motor through 1°C (Watt - Sec.)

 θ = Temperature rise above cooling medium in °C; θ_f = Final temperature rise in °C

 λ = Rate of heat dissipation from the cooling surface. A = Cooling surface area of motor;

[(Watts/Unit area/°C rise in temperature.) above cooling medium]

A λ = Rate of heat dissipation in Watts /°C rise in temperature for a motor.

Heat generation in motor = Rate of heat absorption by the motor + Rate of heat dissipation to cooling

$$Q = ms \frac{d\theta}{dt} + A \lambda \theta \qquad (1)$$

$$Q - A \lambda \theta = ms \frac{d\theta}{dt} \Rightarrow A \lambda \left(\frac{Q}{A \lambda} - \theta\right) = ms \frac{d\theta}{dt}$$

$$\frac{Q}{A \lambda} = \frac{ms}{A \lambda} \frac{d\theta}{dt}$$

$$\frac{d\theta}{dt} = \frac{dt}{\left[\frac{Q}{A \lambda} - \theta\right]} = \frac{A\lambda}{ms} dt$$

Integrating on both sides we get,

g on both sides we get,

$$ln\left(\frac{Q}{A\lambda} - \theta\right) = -\frac{A\lambda}{ms}t + C \qquad (2)$$

$$\theta = \theta_1. \text{ Substituting the values of } t \text{ and } \theta \text{ in equation } (2)$$

From equation (2), we can get $C = ln\left(\frac{Q}{A\lambda} - \theta_1\right)$

Substitute 'C' in equation (2), we get

$$ln\left(\frac{Q}{A\lambda} - \theta\right) = -\frac{A\lambda}{ms}t + ln\left(\frac{Q}{A\lambda} - \theta_1\right)$$

$$ln\left(\frac{Q}{A\lambda} - \theta\right) - ln\left(\frac{Q}{A\lambda} - \theta_1\right) = -\frac{A\lambda}{ms}t$$

Unit-I

$$ln\left(\frac{\frac{Q}{A\lambda}-\theta}{\frac{Q}{A\lambda}-\theta_1}\right) = -\frac{A\lambda}{ms}t$$

Taking anti logarithm on both sides, $\frac{\frac{Q}{A\lambda} - 0}{\frac{Q}{\lambda\lambda} - 0} = e^{-\frac{A\lambda}{2DS}t}$

$$\frac{Q}{A\lambda} - \theta = \left(\frac{Q}{A\lambda} - \theta_1\right) e^{-\frac{A\lambda}{ins}t}$$

$$\theta = \frac{Q}{A\lambda} - \left(\frac{Q}{A\lambda} - \theta_1\right) e^{-\frac{A\lambda}{ms}t}$$

When, the final temperature rise of θ_f is reached i.e $\theta = \theta_f$, total heat generated is dissipated from the cooling surface. From equation (1) $Q = A \lambda \theta_f \Rightarrow \theta_f = \frac{Q}{A^2}$

Let heat time constant = $\frac{nis}{A\lambda} = \frac{1}{T}$

Then equations (3) becomes, Temperature rise, $\theta > \theta_f$

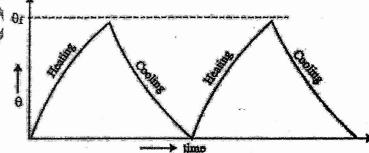
If start form cold, then $\theta_1 = 0$

Temperature rise, 0 = 0; (

Heating Time Constant

Heating time constant of motor is defined as the time required to heat up the motor upto 63.3% of its final temperature rise i.e $\theta = \theta_f(1 - \theta_f)$

At $t = \overline{T}$, $\theta = 0.633 \theta_i$


After time t = T, θ reaches to 63-3 %

t = 2T, θ reaches to 86

t = 3T, θ reaches to 95% of θ_f

t = 4T, θ reaches to 98.2% of θ_f

 $t = 5T_1$ Queaches to 99.3 % of Q_1

Heating finite constant is 90 min for motors upto 20 H.P and 300 min for larger motors. Practically

the heating and cooling time constants of a motor are 1 hour and 2 hours respectively. Final temperature rise attained is 100°C. This motor runs at full load for 30 min and then kept idle for 12 min. and the cycle is repeated indefinitely. Determine the temperature rise of motor after one cycle.

Solve: Heat time constant T = 1 hour = 60min; Motor time constant t = 30min; Final Temp. $\theta_f = 100^{\circ}$ C

We have temperature rise, $\theta = \theta_f \left(1 - e^{\frac{-3}{T}}\right) = 100 \left(1 - e^{\frac{-30}{60}}\right) = 39.34^{\circ}C$

Also $\theta = \theta_0 e^{-T}$: Temperature rise of motor after 1 cycle = 39.34 e^{-120} = 35.6°C

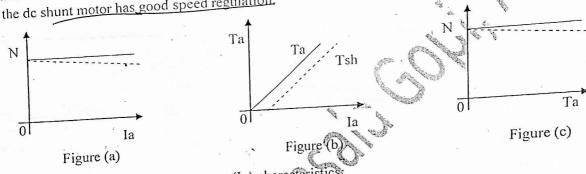
Particular applications of Electric Drives

The motors for different industrial drives/applications are listed as shown in below table with their characteristics.

Type of motor	Characteristics	Industrial drives/applications
		- Laths, Vacuum cleaners
	* Medium starting torque	- Elevators, Conveyers, Grinders
DC Shunt Motor	* Nearly constant speed	- Small printing presses
	ivearry constant speed	-Wood working machines
16.4	7	- Laundry washing machines etc
DC Series Motor	* High starting torque * Variable speed	- Electric Locomotive
		- Steel, Rolling mills
		- Lifts, Cranes, Hoists etc
DC Compound Motor	* High starting torque * Variable speed	- Compresses, Elevators
		- Shearing machines, Conveyers
		- Variable head centrifugal pumps
3 - Ph Synchronous Motor	* Speed remains constant irrespective of load variations	- Motor-Generator set
		- Air compressors
		- Rolling mills
		Paper and Cement industries
Squirrel Cage Induction Motor	* Simple, rugged construction * High overload capacity	- Water pumps, Tube wells, Drills
		- Lathes, Grinders, Fans and Blowers
		- Compressors, Polishers etc
Slip Ring Induction Motor	* High starting torque	
	* More overload capacity	- Lifts, Pumps, Line shafts, Elevators
	* Speed can be changed upto	- Printing presses, Compressors etc
	50% of its normal speeds.	
1 – Ph Synchronous Motor	* Constant speed	- Recording instruments, clocks
		- All kinds of timing devices
1 – Ph Series Motor	High starting torque	- Refrigerators, Vacuum cleaners etc
	* Wide range speed control	
Capacitor Start Induction Motor	* Moderately high starting	- Compressors, Refrigerators
	* Fairly constant speed	- Small portable hoists
	* Moderately high starting	- 31 5-1612 1
	torque	
Sapagito Dutte Team motor	* Fairly constant speed	- Drives requires noise less operation
	* Better power factor	
	* Higher efficiency	
The same who have been	* High starting torque	and the first of the second
Repulsion Motor	* Wide range speed control	- Coil winding machines
	* High speed at heavy loads	
	5	

Prob: A 200V series motor runs at 1000 r.p.m. and takes 20A. Armsture and field resistance is 0.4 Ω . Calculate the resistance to be inserted in series so as to reduce the speed to 800 r.p.m., assuming torque to vary as cube of the speed and unsaturated field.

Ans: Additional resistance required = $6.3 - 0.4 = 5.9 \Omega$


Unit-l

Starting and Running Characteristics:

In DC shunt motor, the field winding is connected across the armature. Since the field current Ish DC Motors: i) DC Shunt Motor: (V/R_{sh}) is constant, the shunt field current is constant.

We have back emf $E_b = \frac{\phi Z N}{60} \frac{P}{A}$, the speed N α E_b/ϕ . Since flux ϕ is constant, the speed N α E_b Speed (N) Vs Armature current (Ia) characteristics:

or speed N α (V - I_aR_a). If I_aR_a is negligible, the speed is constant for all loads as shown in figure (a). But practically the armature current increases with increase of the load. With the increase of I_a , I_aR_a drop increases hence the speed falls slightly. Since there no lot of change in speed from no load to full load, the dc shunt motor has good speed regulation.

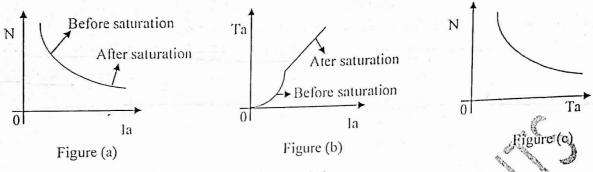
Armature torque (Ta) Vs Armature current (Ia) characteristics

The armature torque of the shunt motor T_a $\alpha \phi Ia.$ Since the flux is constant, T_a α Ia. From above equation, the torque - armature current characteristics are straight line passing through origin as shown in figure (b). From figure (b) it is clear that, the dc shunt motor take more current to start on heavy load. So the shunt motor should not start on heavy load.

Speed (N) Vs Armature torque (Ta) characteristics:

The armature torque is $T_a = 9.55 \frac{E_b I_a}{N}$ i.e $T_a \alpha$ 1/N. When load increases the speed decreases but torque increases as shown in figure (c).

Since the deshint motor runs at constant speed, it is used in line shafts in group drives, lathes, drilling machines, grinders etc.


series motor, the field winding is connected in series with the armature. Since the field ii) DC Series Mo $I_{se} = I_{a}$, the series field current is viable up to pole saturation. After pole saturation the flux is

Speed (N) Vs Armature current (Ia) characteristics:

In dc series motor, the speed N α E_b/ ϕ , or speed N α V – $I_a(R_a+R_{se})/\phi$. When the load increases, the back emf falls due to $I_a(R_a+R_{se})$ drop but flux ϕ increases with increase of I_a upto saturation because φ. Thus before the saturation the speed-current characteristics are hyperbola as shown in figure (a). After saturation flux is constant then the speed N α E_b, or speed N α V – $I_a(R_a+R_{se})$ i.e speed falls.

From figure (a), at no load the flux is minimum hence the speed is very high since N α 1/φ. Therefore a series motor should not run at no load.

Unit-1

Armature torque (Ta) Vs Armature current (Ja) characteristics:

The armature torque of the shunt motor $T_a \alpha \phi l_a$. Since the flux depends on l_a , $T_a \alpha l_a^2$. It is true upto field pole saturation i.e before field pole saturation armature torque proportional to square of the armature current, hence the characteristics are parabola. After saturation, the flux of is constant hence T_a α I_a. Now the characteristics are straight line as shown in figure (b).

Speed (N) Vs Armature torque (Ta) characteristics:

The armature torque is $T_a = 9.55 \frac{E_b I_a}{N}$ i.e $T_a \propto I_a/N$. At no load or light load, I_a is small, torque small but speed is high. As load increases, la increases, torque also increases but speed falls rapidly as shown in figure (c).

Since the dc series motor has high starting torque, it is used in electric traction, cranes, lifts, elevators, sewing machines, fans and air compressors etc.

AC Motors:

i) Induction Motor:

Since the speed of the synchronous motor is constant irrespective of load fluctuations, it has flat speed-torque characteristics. The most of the loads in industry or on power system are 3 - Ph Induction Motors, hence we study here the speed-torque characteristics of 3 - Ph Induction Motors.

The expression for torque developed by the 3-Ph induction motor is

Torque =
$$K \frac{sE_{2s}^2 R_{2s}}{R_{2s}^2 + (sX_{2s})^2} N-m$$
 -----(1)

The torque slip characteristics of a 3-ph induction motor can explain as follows:

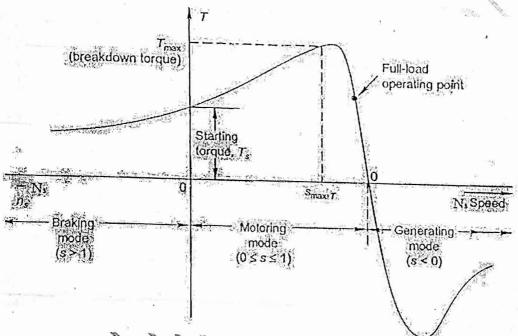
(i) When the rotor speed is equal to synchronous speed i.e $N_r = N_s$, Slip (s) = 0 and from equation (1) the torque is zero.

(ii) When the load on the motor is increases, the speed decreases and slip increases. The value of sX_{2s} is very small compared to R2 and is neglected for constant rotor emf E2.

From equation (1) Torque =
$$K \frac{s R_{2s}}{R_{2s}^2}$$
 \rightarrow Torque α slip(s)

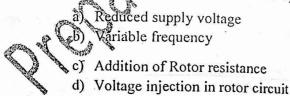
Hence for low value of slip, the torque - slip curve is represented as a straight line

As the load increases further, the speed decreases and slip increases. This result in increasein torque and reaches to maximum when $slip = R_{2s} / X_{2s}$.


(iii) With the increase load beyond maximum torque (Tmax), the slip increases further. Now the value of sX2 is more compared to R2 and R2 is neglected, so

From equation (1) Torque =
$$K \frac{s}{s^2 X_{2s^2}}$$
 or Torque $\alpha \frac{1}{s \ln(s)}$

When s is positive i.e 0 < s < 1: The motor speed lies between zero and synchronous speed and the direction rotation of rotor is same as the stator field. The power P is positive and machine act as motor.


When s is negative i.e s < 0: The rotor rotates in same direction as the stator field but at a speed higher than the synchronous speed. Since the rotor speed is more than the synchronous speed, the machine act as generator.

When s is positive i.e s > 1: The rotor rotate in opposite direction to the direction of rotation of stator field. This indicate that the rotor is decelerating, it is called electrical brake. The torque—speed curves are drawn as shown in below Fig.

Speed Control of 3-Ph Induction Motor:

The rotor speed of $\mathbb{R}^2\mathbb{R}^3$ Induction Motor is given by $N_r = (1 - S)N_s$, Where $N_s = 120f/P$. The torque produced by the induction motor is assumed as constant for speed control of induction motor. From this equation, the speed of motor can be controlled by controlling the stator side or rotor side parameters i.e

Control from Stator side

Control from Rotor side

Reduced supply voltage:

By changing the supply voltage the speed of the induction motor changes. Let the full load torque of the induction motor as $T_{ii} = K \frac{sE_{2s}^2 R_{2s}}{R_{2s}^2 + (sX_{2s})^2}$.

Since the slip is low so $(sX_{2s})^2$ is very low compared to R_{2s}^2 , hence $(sX_{2s})^2$ is neglected. Therefore $T \alpha S E_{2s}^2$, but $E_{2s} \alpha V$. Therefore $T \alpha S V^2$ or for the given torque, slip (S) $\alpha 1/V^2$ i.e as the supply

voltage changes, slip (S) changes which result in change in rotor speed (N_r). This method is simple and easy but it is rarely used because a large change in voltage is required for small change in speed. The torque - slip characteristics for variations voltages are as shown in Fig (a).

Fig. a) Reduced supply voltage control

Fig. b): Addition of rotor resistance control

Variable frequency:

The speed of the induction motor is a function of frequency f and is given by f = NP/120. The variable frequency can be obtained by separate generator or by speed changer. For an induction motor $V\alpha f \phi$ or $\frac{V}{f} = K \phi$. So in order to maintain the constant flux ϕ , $\frac{V}{f}$ should be kept constant. The variable frequency control provides speed control over the range 10:1 to 12:1 with high smooth control.

Addition of Rotor resistance:

This method of speed control is suitable for only slip ring induction motor because in squirrel cage induction motor, the rotor resistance cannot be varied. We know that $Slip = \frac{Rotor culosses}{Rotor input}$. By increasing the rotor resistance, rotor cullosses increases, this result in increase in slip and decrease in speed and vice versa as shown in Fig. (b).

The main advantages this method is by adding additional resistance to rotor circuit

- The starting current drown by the motor is limited.
- Starting torque increases. (ii)
- Speed control is possible.

The disadvantage of this method is that the motor efficiency decreases because of more rotor culosses.

Voltage injection in rotor circuit:

Left the supply voltage, frequency and load torque as constant, the applied voltage $V_1 \approx E_1 = K \phi$ = constant. The induced emf in the rotor is sE_{2S} where 's' is slip and E_{2S} is the rotor induced emf at standstill. The rotor current $I_2 = \frac{sE_{2s}}{\sqrt{R_{2s}^2 + (sX_{2s})^2}}$.

Practically, $R_2^2 >> (sX_2)^2$ therefore current I_2 is in-phase with E_{2S} , so $I_2 = \frac{sE_{2S}}{R_{2s}}$.

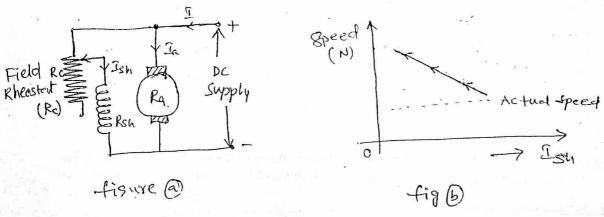
Suppose if an emf E1 (with slip frequency) is in phase opposition with E2s is injected into the rotor, the speed cannot change instantaneously because of rotor inertia and the net rotor emf is E2s - E1. This result in decrease in rotor current, torque and speed. Similarly, if the injected emf is in phase with the rotor induced emf, the speed of the motor increases.

Speed Conhal of IX Motor :-

factors Controlling DC Molor Spred.

We know that ack Emf (Eb): $\frac{d^2 Z \vec{N} \times P/A}{60} = \frac{1.6}{60} = \frac{1.6}{60} \times P/A$ The Back emf (Eb & dN (on)

Special do the DC Motor N & $\frac{Eb}{p}$ (a) N & $\frac{V - Saka}{q}$

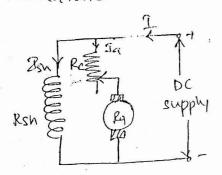

from the stave earrations, the spied can be controlled by varying

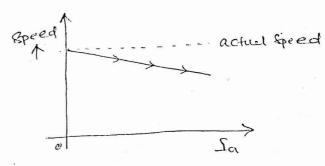
- (i) Flux per pole (4) couled as flux control Method.
- (ii) Armature renistance (Ra) Called as Armature Control method (or)
 Rheatentic Control:
- (11) Applied voltage (V) Colled as voltage control method.

Speed conhol of DC Shunt motor:

(i) Flux control Method:

we have the speed (N) & file It the flux decreases, the speed in normals and vice versa. The flux of the de motor can be changed by changing Ish with the help of shout field Rheostat as shown in figure @.


Juitially the field Rheostet position is in minimum, shout field current Isn = V which is more, hence the shout field fluxbooks more. This should in low speed at starting. It the shout field revisionce is in creased, the shout field current (Isn = V right) decrease hence the speed increases. The speed-current char are as shown in tig (5).


Advantages:

-) Since the Short field Current is Small, the power losses (Isher) are also
- 2) It is efficient method becomes of low power losses
- 3) This method is Easy & Convienment.
- Disadvantages) This method is applicable for only climited range of speed. D) only above actual speeds will get with this method.

Armature (ontil Hethod (or) Kheostetic Hethod &

This unclud is usual when the speech below the actual speechs readired We have NX Eb (on N x V-Saka, but the Eurreut through the shem field well is Constant (hence & is Constant) and applied voltage (V) is Constant. Now by Chauging the amature Current the speed (on be chauged. To change t armature current, a voviable Rheostel is connected in series with the Armature as shown in fig ().

As the armature Rheart- revisionce is increased, P.d across the armature decreased, there by decleasing the motor speed. From the speed larmature whent Char, greater the revisionce in armatare, greater is the fall speed.

Dis Advantages:

- 1) hange amount of power is wasted in external armature resistance.
- i) This method is restricted to get speeds below Its actuallor) Normal
- 3) This speed control method is suitable for small file motors only.

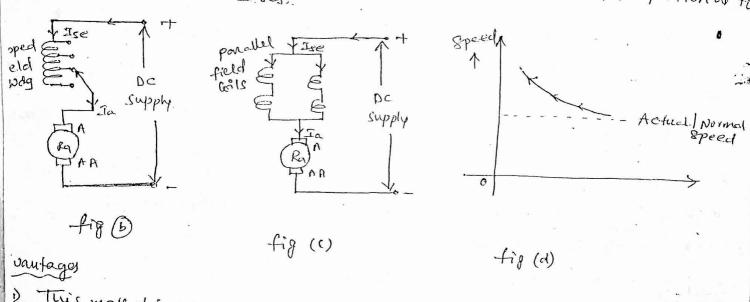
Speed control of OC series Motor: - (i) Field (or) Flux control method: -The variations of field current (or) field flux (psc) in a series motor is obtained

by (i) Field diverter method (ii) Armature diverter method

(iii) Tapped field control method (iv) parallel field Gils Malhor

A variable reinstance which is connected across the series field wdg, as she in figure, is called field diverter. The figure (i) Shows the Connection di gram for field diverter method. By adjusting fine registance of field diverte any distred carrent is allowed through the diverter.

Supply


Hence the flux is decreased and special is increased fine Speed (N) x -1

Teepped field Coupel Nethod:

The Meret states field tomis

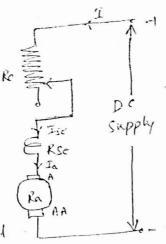
We know the mosnetic flux (\$) = MMF 4 ig (9) turns & Courrent through the walg. It No. of turns are decrarged, the MMF value

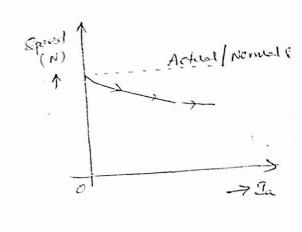
decrarges hence to flux decrages. Since the speed is inversity prapartion of to

This method is e Conomical and Convenient

The power wastage in his method is less, so it is efficient method.

us backs (or) limitations:-


This method will gives the speed above normal/ actual speeds only.


Armature Control (a) Klieceterfic He trad:

we have back enfithant. Speed (N) of the v-In (Ra+RSE). The Convent throws the armature is changed by changing the armature feristance This Can be obtained by placing a Variable sheastat in Senies with a mort as shown in fig (). The figure () shows the varietion in speed wirt to

armature airrent. By Puckenting the sietistance (RC) in feries with the armature, the applied voltage across atmature terminal Can be decreased.

With reduced vollage across. armature, the speed is reduced This wothool mainly suffers

fig(b)

from (i) large amount of power losses

(ii) this method will gives the speech below its normal/actual speech. Prob A 200V de series motor Juns at 1000 rpm end tokes 20A. Combined Yenstance armature & field is 0.4 r. Calculate the resistance to be inserted in ferred to c

fig @

to reduce the speed to 80%, assume torane varies as sandre of the speed.

For senies motor II = Ia, = 20A; Ra+Rse = 0.412; Speed N, = 1000 pp Speed 13 reduced to 80 % i.e N2 = 0.8N, = 0.8 × 1000 = 800 mpm criven teat TXN2 i.e T2 = (N2) but Txx & Ja i.e Taz = 1/1 Ja. from es (0 & () = (\frac{\text{Jaz}}{\text{N_1}})^2 = (\frac{\text{Jaz}}{\text{Ja_1}})^2) \text{ \text{Jaz}} = \frac{N_2}{N_1} \text{ \text{Ja_1}} = \frac{\text{600}}{(000)} \times 20 = 16 A

Back emf Eb = V- Ia, (Ra+Rfe) = 200 - 20x0.4 = 192V (Bb2 = V-Eq2 (Ra+Rge+Rc) = 200-16 (0.4+Rc) = 200 - 6.4 + 1BLC = 193.6-16Rc

but $N \propto \frac{Eb}{\Phi} \Rightarrow \frac{N_1}{N_1} = \frac{Eb_1}{EL_1} \cdot \frac{\Phi_1}{\Phi_2} = \frac{Eb_1}{Eb_1} \times \frac{\Omega_{A_1}}{\Omega_{A_2}}$

193.6+16 Rc , 20