Programming with

]ava-

A Primer

‘—..__.....—-"'_____,
E. BALAGURUSAMY

How a unigque opportunity to access the Web Resources!

[Lok for the Genuineness Cerlificate inside the book]

;

[scratch the silver ink on the Genuineness Cerificate 1o find your Unigue Access Number®]

'

[Accass the website }

http:/fwww.mhhe.com/balagurusamyljavale

v

L Click on the First Time Users Link in the OLC menu on your left]

'

[At the botlom of the text appearing on your Right-Hand- Side, find Register Now

and click on the Student link
[Mow click on tha link that says: | have a registration code that came with my book. J

'

{ Type in your Unique Access Numbear when asked to enter your code J

!

{ Create your Personalized Account by selecting your username and password J

'

L Click on the Student Edition Link in the OLC menu on your left J

'

[Login in using your parsonalized username and password]

* Thig numbar s for one fime uso and s self destructible

Presented By: http://www.ebooksuit.com

Programming with

TAVA

m"ﬁM'ME
r '—"_"_"_'_‘.' RS - _ i

-....._.. e E—— .___ y

i GENUINENESS CERTIFICATE g

This is to certify that this book is an authentic and genuine

T

: puh]mlt:mn of Tata MolGraw-Hill]"ul:]uhm.g 'l:-nmpinr Limiated

Tata McGraw-Hill Publishing Company Ltd. ﬁ
7, West Patel Nagar, New Delhi - 110 008, India

4 Piwinrose af oy MlCardn- il { ueii

R T W MMHM

Presented By: http://www.ebooksuit.com

About the Author

E Balagurusamy is Chairman, EBG Foundation. Earlier, he was the Vice Chancellor, Anna Univer-
gity, Chennai. He is a teacher, trainer, and consultant in the fields of Information Technology and
Management. He holds an MLE. (Hons) in Electrical Engincering and Ph. D. in Systems Engineening
from the Indian Institute of Technology, Roorkee. His areas of interest include Object-Ornented Software
Engineering, Electronic Business, Technology Management, Business Process Re-engineering, and
Total Quality Management.
A prolific writer, he has authored a large number of research papers and several books. His best
selling books, among others include:
Programming in BASIC, 3/e
Programming in ANSI C, 3/e
Object-Oriented Programming with C+ +, 3/e
Programming in C#
» Numerical Methods, and
s Reliability Engineering
A recipient of numerous honours and awards, he has been listed in the Directory of Who's Who of
Intellectuals and in the Directory of Distinguished Leaders in Education.

Presented By: http://www.ebooksuit.com

Programming with

JAVA

A Primer
Third Edition

E Balagurusamy
Chairman

ERG Foundation

K F
N

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

MeGraw-Hill Offices

New Delhi New York St Louis San Francisco Awuckland Bogotd Caracas
Kuala Lumpur Lisbon London Madnd Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokvo Toronto

Presented By: http://www.ebooksuit.com

7
—=l| Tata McGraw-Hill

Published by the Tata McGraw-Hill Publishing Company Limited,
7 West Patel Nagar, New Delhi 110 (08

Programming with Java - A Primer, 3/e

Copyright © 2007, by Tata McGraw-Hill Publishing Company Limited.

Mo part of this publication may be reproduced or distnbuated 1n any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permis-
sion of the publishers. The program listings {if any) may be entered, stored and executed in a computer system,
but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,
Tata MeGraw-Hill Publishing Company Limited.

First reprint 2007
DOLCRADLERCDEX

ISBN 0-07-(41713-9

Head - Higher Education: 5 Ragharhaman
Executive Publisher: Fibha Mahajan
Editonial Executive: Shalini Jha

Editorial Services Manager: Mini Narayanan

Deputy Ceeneral Manager - Marketing: Mickae! J. Cruz
Asst. Product Manager: Bijn Gramesan

Asst. General Manager - Production: 8 L Dogra
Manager - Production: P I Pandita

Information contained in this work has been obtained by Tata McGraw-Hill, from sources belicved o be
| reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any
errors, omissions, or damages arising out of use of this information, This work is published with the
understanding that Tata McGraw-Hill and itz authors are supplying information bul are not attempting 1o
render engineering or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, A1-B, DDA Market, Paschim Vihar, New Delhi 110 063, and printed at
Ciopson Papers Lid,, Noida

rhe MeGrow-Hill Compares

Presented By: http://www.ebooksuit.com

Dedicated o

Dr V Krishnamurthy
Chairman
National Manufacturing Compeliliveness Council
New Delhi

This oOne

Presented By: http://www.ebooksuit.com CE1-YOD-PJBL

Presented By: http://www.ebooksuit.com

Contents

Preface o the Thing Edition XIX
Preface o the First Edition X
Acknowledeements cxi
1. Fundamentals of Object-Oriented Programming 1
1 1 Intraduction 1
1.2 Object-Oriented Paradigm 2
1.3 Basic Concepts of Object-Oriented Programming 3

Objects and Classes 3

Data Abstraction and Encapsulation 4
Inheritance J

Polvmorphism 5

Dyvnamiic Binding 6

Messape Communication &

L4 Benefits of OOP i

1.5 Applications of O0OP ®

1.6 Summary 9
Review Ouestions 9

2. Java Evolution 11

2.1 Java History I

2.2 Java Features 12

Compiled and fntevpreted 13
Platform-Independent and Portable 13
Ohject-Oriented 13
Bobust and Secune 13

Nistribited 13

Simple, Small and Familiar 14

Presented By: http://www.ebooksuit.com

wili

']fll“l.frﬂ'i'[[[ﬁ':f an ! ﬂ[[ff[:[:'[[.]fi' t !
High Performance 14

Dvnamie and Extensible 14

Ease of Development 14
Scalability and Performance 14
Monitoring and Manageability 15
Degktop Client 15

|]

Java gnd C++ 16
24 Java and Internet

17

L5 Java and World Wide Web

1%

2.6 Web Browsers

19

Ei'.'!t Eﬂ|'f['.l'{!
Netscape Navigator 20
Internet Explorer 20
2.7 Hardware and Software Reguirements

20

2.8 Java Support Systems

20

2.9 Java Environment

21

Java Development Kit 21
Application Programming Interface 22
2.10 Summary

23

Review CUuestions 23

Overview of Java Language

11 Introduction

24

25

3.2 Simple Java Program
Opening Brace 26
The Main Line 26
The Output Line 26
131 More of Java

27

LUse of Math Functions 28
a rs 0%
3.4 An Application with Two Classes

28

29

3.5 Java Program Structure
t !:I:-“ﬂl E:“! :|“ e E;E::.“'!”I '!!|
Package Statement 30
Import Statements 30
Interface Statements 30
Class Definitions 30
Mein Method Class 10

Presented By: http://www.ebooksuit.com

?g] I:I!{E I”k NS

30

Jovg Chargcter Sef 31
Keyvwordy 32
fdentifiers 32
Literaly 33

Operatars 33
Separators 33

317 Jave Statements

3.8

34

Implementing a Java Program

35

Creating the Program 35
Compiling the Program 37
Running the Program 37
Machine Newral 38

19 Java Virtual Machine
3,10 Command Line Arpuments

3B

39

311 Programming Style

41

3.12 Summary

Constants, Variables, and Data Types

41

Review Questions 42

41 Tntroduction
42 Constanis

4.3

43

43

Integer Constanis 43
Beal Constants 44
Single Character Constants

String Constants 45

Backslash Character Constants

Yanables

4.4

Diata Tvpes

RIE

fnteger Types 47
Floating Poinr Tvpes 47
Character Tvpe 48
Boolean Tvpe 48

4.0

48

Oiving Values o Vanables

49

4.7

Azxsignment Slatemeni 49
Scope of Variables

5l

4.5

Svmbolic Constants

52

4.9

Modifiability 52
Understandability 52

53

Tvpe Casting
I - Conversi 33

4,10 Getting Values of Vanables

33

Presented By: http://www.ebooksuit.com

. e imgﬁ
4.11 Standard Default Values 57
4.12 Summary 57

Review (luesiions 57
Debugging Exercises 58

5. Operators and Expressions 60
5.1 Introduction 60
5.2 Anthmetic Operators &0

Inteper Arithmetic 6/
5.3 Relational Operators 62
5.4 Logical Operators 64
5.5 Assignment Operators 65
5.6 Increment and Decrement Operators 6
5.7 Conditional Operator 67
5.8 Bitwise Operators HE
5.9 Special Operators i1}

Instanceof Operaior 68

Dot Operator 69
5.10 Arithmetic Expressions H
5.11 Ewvaluation of Expressions 69
5.12 Precedence of Arithmetic Operators M
5.13 Type Conversions in Expressions 71

Automatic Tvpe Conversion 71

Casting a Value 72

Generic Tvpe Casting 73
5.14 Operator Precedence and Associativity T4
3,15 Mathematical Functions 16
5.16 Summary 77

Review Ouestions 78

Debugwing Exercises 800

6. Decision Making and Branching 81
6.1 Introduction g1
6.2 Decision Making with If Statement 82
6.3 Simple If Statement &3
6.4 The If Else Statement %5
6.5 Mesting of If....Else Statements 27
6.6 The Else If Ladder 20
6.7 The Swilch Statement 93
6.8 The 7 : Operator 97
6.9 Summary 98

Review (Ouestions 98
Debugging Exercises 101

Presented By: http://www.ebooksuit.com

Cortorts a

7. Decision Making and Looping 105
7.1 Imroduction 105
12 The While Statement 107
13 The do Statement 108
14 The for Statement L1

Additional Features of for Loop 112
Nesting of for Loops 114
The Enhanced for Loop 115
7.5 Jumps in Loops 17
Jumping Out of a Loop 117
Skipping a pari of a Logp 118
7.6 Labelled Loops 119
7.7 Summary 121
Review Ouestions 121
Debugping Exercises 123

8. Classes, Objects and Methods 126
1 Introduction 126
8.2 Defining a Class | 26
83 Fields Declaration 127
8.4 Methods Declaration 127
8.5 Creating Objects 130
#.6 Accessing Class Members 131
87 Constructors 133
.8 Methods Overloading 134
29 Stanic Members 135
8.10 Nesting of Methods | 36
B.11 Inheritance: Extending a Class 137

Defining a Subclass 138
Suhelaes Conctructor 40
8.12 Ovemniding Methods 142
213 Final Vanables and Methods |43
£ 14 Final Clusses 143
‘inalis 5 144
B16 Abstract Methods and Classes 144
#.17 Methods with Varargs 145
B 15 Visibihitv Control 146

piblic Access {47
frienmaly Accexs 147
protected Access 147
private Access 147

Presented By: http://www.ebooksuit.com

xii -im_ Hents
private protected Access 147
Rules of Thumb 148
8.19 Summary 148
Review Ouestions 149
Debugging Exercises 130
9. Arrays, Strings and Vectors 153
91 Introduction 153
9.2 One-dimensional Arrays 153
9.3 Creating an Array 153
Declaration of Arravs {33
Creation of Arrays 135
Initialization of Arravs 156
Array Length 157
94 Two-dimensional Arrays 158
Fariable Size Arravs 1061
9.5 Strings 162
String Arrays 162
String Methods 163
StringBuffer Class 164
9.6 Vectors 166
9.7 Wrapper Classes 167
Awtoboxing and Unboxing 70
9.8 Enumerated Types 172
99 Annotations 173
9.10 Summary 176
Review Chiestions 170
Debugging Exercises 178
10. Interfaces: Multiple Inheritance 181
10,1 Introduction 181
0.2 Defining Interfaces 182
10,3 Extending Interfaces 183
10,4 Implementing Interfaces 184
10,5 Accessing Interface Variables 186
10,6 Summary 188
Review Questions [89
Debugring Exercises 189
11. Packages: Putting Classes Together 192
L1 Introduction 192
11.2 Java APl Packages 193
11.3 Usmg System Packages 194
11.4 Naming Conventions 195
11.5 Creating Packages 1935

Presented By: http://www.ebooksuit.com

Confents xiil
11.6 Accessing a Package 196
11.7 Using a Package 197
11.8 Adding a Class 1o a Package 201
11.9 Hiding Classes 202
11.10 Static Import 203
11.11 Summary 204
Review Questions 204
Debueoing Exercizes 205
12. Multithreaded Programming 207
121 Iniroduction 207
12.2 Creatng Threads 208
12.5 Extending the Thread Class 210
Declaring the Class 210
fmplementing the vuni{) Method 210
Starting New Thread 211
An Example of Using the Thread Class 211
124 Stopping and Blocking a Thread 213
Stopping a Thread 213
Blocking a Thread 24
12.5 Life Cycle of a Thread 214
Bunmable Stape 215
Running State 216
Rlswdesd g T
Dead Stare 27T
126 Using Thread Methods 217
12.7 Thread Exceptions 219
12,8 Thread Priority 220
12.9 Svnchronization 223
12.10 Implementing the ‘Runnable’ Interface 224
12.11 Summary 225
Review Quesiions 226
Debugeing Exercises 220
13. Managing Errors and Exceptions 230
131 Introduction 230
13.2 Tvpes of Errors 230
Compile-Time Errors 230
Bun-Time Frrors 23]
13.3 Exceptions 232
134 Syniax of Exception Handling Code 234
13.5 Multiple Catch Statements 234
13.6 Using Finally Statement 238

Presented By: http://www.ebooksuit.com

Xiv ‘Contents
13.7 Throwing Our Own Exceptions 239
135 Using Exceptions for Debugging 240
13.9 Summary 241
Review Questions 241
Debugeing Exercises 241
14. Applet Programming 244
14.1 Introduction 244
Local and Remote Applets 244
14.2 How Applets Differ from Applications 245
14.3 Preparing to Write Applets 246
4.4 Building Applet Code 247
14.5 Applet Life Cycle 249
Imitialization State 249
Running State 250
Idle or Stopped State 250
I!!:::!“! 5“[[5' '!Iitl
Lisplay State 251
146 Creating an Executable Applet 251
14.7 Designing a Web Page 251
Comment Section 252
Head Section 252
Hody Section 253
4.8 Applet Tag 253
149 Adding Applet to Himl File 254
14.10 Running the Applet 255
14.11 More About Applet Tag 158
14.12 Passing Parameters to Applets 257
14.13 Aligning the Display 259
14.14 More About Html Tags 261
14.15 Displaying Mumerical Values 261
14.16 Getting Input from the User 2613
Program Analvsis 265
14.17 Summary 265
Review Ouestions 265
Debugging Exercises 266
15. Graphics Programming 270
15.1 Imtroduction 270
15.2 The Graphics Class 270
15.3 Lines and Rectangles 272
154 Circles and Ellipses 274
15.5 Drawing Arcs 275
15.6 Drawing Polygons 277

Presented By: http://www.ebooksuit.com

“Cantents XV
15.7 Line Graphs 279
15.8 Using Control Loops in Applets 281
15.9 Drawing Bar Charts 282
15.10 Summary 2584
Review Questions 285
Debugging Exercises 283
16. Managing Input/Qutput Files in Java 287
1651 Imtroddnetion 27
16.2 Concept of Streams 2BE
16,3 Stream Classes 280
6.4 Byte Stream Classes 291
Inpuit Stream Classes 29)
Chitput Stream Classes 292
16.5 Character Stream Classes 294
Reader Stream Classes 294
Hriter Stregam Claseery 203
6.6 Using Streams 205
16.7 Other Useful 'O Classes 296
16.8 Using the File Class 297
16.9 Input/Output Exceptions 297
1610 Creation of Files 298
16.11 ReadingWniting Characters 300
16.12 ReadingWriting Bytes 302
16.13 Handling Primitive Data Types A6
16.14 Concatenating and Buffering Files 310
16.15 Random Access Files 312
16.16 Interactive Input and Output 114
Simple Input and Outma 314
Crraphical Input and Cutput 317
16.17 Other Stream Classes 323
Chject Streams 323
Piped Streams 323
16,18 Summary 324
Review Uniestions 325
Debugying Exercises 326
17. Assertion and Design by Contract 329
7.1 Introduction 129
17.2 Design by Contract 129
17.3 Implementing Assertion 330

Compiling the Assert Statement 331
Enabling and Disabling Assertions 331

Presented By: http://www.ebooksuit.com

xvi

174 Assertion Rules 332

17.5

Checking the Method Arguments 332

Using Assertion in the Default Case of the Switch Statement 332

Make Use of an Assertion Descriptive 333

Avoid Processing in an Assertion Condition 334

Avoid Catching Assertion Related Exception 334

Avoid Evaluating more than one Condition in an Assert Siatement 335

Creating a Java Program Using Assertion 136

Debugging Exercises 336

18 Java Collections 341
18] Introduction 341
182 Owerview of Interfaces 341

The Collection Interface 342
The Set Interface 343

The List Interface 343

The SortedSet Interface 344
The Queue Interface 345

The Map Interface 345

The SortedMap Interface 346
The Iterator Interface 346

183 Overview of Classes 3147

18.4

The AbstraciCollection Clasy 347

The Abstracelist Clacs 347

The ArravList Class 348

The LinkedList Class 349

The HashSet Clase 351

The TreeSet Claxs 352

The Vector Class 352

The Stack Clage 353

The Hachinhle Clave 354

Overview of Algorithms 355

The Sort Algorithm 336

The Shuffle Algorithm 356
Manipulating Algorithms 356
The Search Algorithm 356
Debugging Exercises 338

Appendices

Appendix A: Java Language Reference 364

Appendix B: Java Kevwords 371

Appendix C: Differences Between Java and C/C++ 374
Appendix D: Bit-level Programming 378

Appendix E: Java AP! Packages 384

Presented By: http://www.ebooksuit.com

Bibliowraphy

Appendix F: Java Classes and Their Packages 39

Appendix G: Whatk New in Java 1] and Java 2 300
Appendix H: Deprecated Classes and Methoas 410

Appendix I: Statistics of Java Packages 419
Appendix J: § CJ P Exam Model Questions 422
Appendix K: Points io Remember 455
Appendix L: Common Coding Evrors 458
Appendix M: CGlossary of Java Terms 460
Appendix N: Projects 468

xvil

484

{ndex

483

Presented By: http://www.ebooksuit.com

Presented By: http://www.ebooksuit.com

Preface to the Third Edition

Sun Microsystems has added many improvements and enhancements to Java since its release in 1995,
Java 2, released in 1999, incorporated a mumber of new features to improve its performance. The latest
release of Java is J25E 5.0 (Java 2 Standard Edition, Version 5.0). J25E 5.0, released in 2004, enhances
the power and scope of the language by incorporating several important features such as generics,
enhanced for loop, varable arguments in functions, boxing/unboxing, enumerations and static import.

In this third edition, the book incorporates not only the major updates of JZSE 5.0 but also improves
the content wherever necessary. Debugging is an important dnill in enhancing the programming skall of
a leamer. A sechion titled “Debugging Exercises™ has been included at the end of each chapter to
provide an opportumity to test the understanding of language features. This edition also includes two
new chapters on Assertion and Java Collections.

E BaLacurusamy

Presented By: http://www.ebooksuit.com

Preface to the First Edition

Java is vet another computer language but with a difference. It 1s the only language that is purely
object-oriented. Javas designers have borrowed the best features of many existing languages such as C
and C++ and added a few new features to form a simple, easy-to-leamn and object-oriented language. It
is the most complete programming language available today. It i1s also a secure language, making it
well-suited for Intemet programming. One of the important reasons for Java's success, apart from its
object-orientation, is the amazing functionality it adds to the World Wide Web.

Java has two lives, one as a stand-alone computer language for general-purpose programming and
the other as a supporting language for Intemnet programming. The general-purpose programs are known
as applications and programs written for Internet are known as applets. Till recently, C++ has been
considered as an industry standard language for object-oriented programming. Now the battle between
Java and C+ + has begun. We must get ready for an industry starving for Java programmers.

This book is for novice as well as experienced programmers. While the book assumes that the
reader’s ultimate goal 15 to develop Java programs, both applications and applets, it does not assume
any significant knowledge of programming on the part of the reader. If the reader is a C or C++
programmer, he or she may probably be able to read through some of the initial chapters quickly.
However, a novice reader will need to go through the whole book carefully.

This book comprehensively covers all aspects of Java language. Beginning with an introduction to
the language and its relationship with the Internet and World Wide Web, it explores Java's object-
oriented features, and then moves on to discuss advanced topics that are unique to Java.

The concept of learning by example has been stressed throughout the book. Each major feature of
the language is treated in depth followed by a complete program example to illustrate its use, Wherever
necessary, concepts are explained pictorially to facilitate better understanding.

The book contains a large number of example programs. All programs have been tested and,
wherever possible, the nature of output has been discussed. These programs also demonstrate the
~ general principles of a good programming style. This book has all that a reader needs to start
programming in Java right away.

Finally, this book is for everyone who is either excited about Intemet or interested in Java
Programming.

E BalLacUurusamy

Presented By: http://www.ebooksuit.com

Acknowledgements

MNo book 15 created entirely by an individual. Many people have helped to create this book and each of
their contribution has been valuable. The timely completion of this book is mainly due to the interest
and persuasion of late Prof, N K Venkatasubramanian who was not only my teacher and colleague but
also a good friend and guide. His confribution will be remembered forever.

[would like to thank many other individuals at PSG Institute of Management who have contributed
greatly to the success of this project. Thanks are due to G P Raja, S Lalitha, K Balakrishnan, S Saravanan,
I} R Pratibha, and G Nrithya for their valuable assistance m preparing the manuscript.

The idea of this book was planted by my wife, Sushila, while reading an article on Java in The Hindu
newspaper. My special thanks are due to her not only for the idea but also for the encouragement and
unstinted support throughout the wntng of this book.

Finally, I wish to thank the publishing professionals at Tata McGraw-Hill for bringing out the book
m 1ts present form in record time.

E BaLacurusamy

Presented By: http://www.ebooksuit.com

Presented By: hitp://www.ebooksuit.com

Fundamentals of
Object-Oriented Programming

F .
=)
f‘j 1.1 Introduction

One characteristic that 1s constant in the software industry today is the “change”. Change 15 one of the
most critical aspects of sofiware development and management. New tools and new approaches are
announced almost every day. The impact of these developments is often very extensive and raises a
number of issues that must be addressed by the software engineers. Most important among them are
maintainability, reusability, portability, security, integrity, and user friendliness of software products,

To build woday's complex software it is just not enough to put together a sequence of programming
statements and sets of procedures and modules. We need to use sound construction techniques and
program structures that are easy o comprehend, implement and modify in a wide variety of situations.

Since the invention of the computer, many programming approaches have been tried. These include
techniques such as modular programming, top-down programming, bottom-up programming and
structured programming. The primary molivation in each case has been the concemn to handle the
increasing complexity of programs that are reliable and maintainable. These techmiques became
popular among programmers over the last two decades.

With the advent of languages such as C, structured programming became very popular and was the
paradigm of the 1980s, Structured programming proved to be a powerful tool that enabled programmers
to write moderately complex programs fairly easily. However, as the programs grew larger, even the
structured approach failed to show the desired results in terms of bug-free, easy-to-maintain, and
reusable programs.

Object-Orniented Programming (OOP) is an approach to program organization and development,
which attempis to eliminate some of the pitfalls of conventional programming methods by incorporating

Presented By: http://www.ebooksuit.com

the best of structured programming features with several new concepis. It is a new way of organizing
and developing programs and has nothing to do with any particular language. However, not all
languages are suitable to implement the OOP concepts casily. Languages that support OOP features
include Smalltalk, Objective C, C++, Ada and Object Pascal. C++, an extension of C language, is the
most popular OOP language today. C++ is basically a procedural language with object-oriented
extension. Java, a pure object-oriented language, is one of the recent languages added to this list, the
latest one being C#.

=
pie
el]

1.2 Object-Oriented Paradigm

The major objective of object-oriented approach is to eliminate some of the flaws encountered in the
procedural approach. OOP treats data as a critical element in the program development and does not
allow it to flow freely around the system. li ties data more closely to the functions that operate on it and
protects it from unintentional modification by other functions. OOP allows us to decompose a problem
into a number of entities called Objects and then build data and functions (known as methods in Java)
around these entities. The combination of data and methods make up an object (see Fig. 1.1).

(=50
T

Object = Data + Methods

The data of an object can be accessed only by the methods associated with that object. However,
methods of one object can access the methods of other objects. Some of the features of object-oriented
paradigm are;

* Emphasis is on data rather than procedure.
Programs are divided into what are known as Objects.
Data structures are designed such that they characterize the objects.
Methods that operate on the data of an object are tied together in the data structure.
Data is hidden and cannot be accessed by external functions.
Objects may communicate with each other through methods.
New data and methods can be easily added whenever necessary.
Follows bottom-up approach in program design.

Ohject-oriented paradigm 15 the most recent concept among programming paradigms and still it
means different things to different people. It is therefore important to have a working definition of
object-oriented programming before we proceed further.

Presented By: http://www.ebooksuit.com

Our definition of object-oriented programming is; Object-oriented programming is an approach
that provides a way of modularizing programs by creating partitioned memory area for both
data and functions that can be used as templates for creating copies of such modules on demand.
This means that an object is considered to be a partitioned area of computer memory that stores data
and a set of operations that can access the data. Since the memory partitions are independent, the
objects can be used in a variety of different programs without modifications.

-y

1.3 Basic Concepts of Object-Oriented
Programming

As mentioned earlier, object-oriented is a term, which is interpreted differently by different people. It
is therefore necessary to understand some of the concepts used extensively in object-oriented
programming. We shall now discuss the general concepts of OOP which form the heant of Java

language.

Objects and Classes

Objects are the basic runtime entities in an object-onented system. They may represent a person, a
place, a bank account, a table of data or any item that the program may handle. They may also represent
user-defined data types such as vectors and lists. Any programming problem is analyzed in terms of
objects and the nature of communication between them. Program objects should be chosen such that
they match closely with the real-world objects. As pointed out earlier, an object takes up space in the
memory and has an associated address like a record in Pascal, or a structure in C.

When a program is executed, the objects interact by sending messages to one another. For example,
‘customer” and ‘account’ are two objects in a banking program, then the customer object may send a
message to the account object requesting for the balance. Each object contains data and code to
manipulate the data, Objects can interact without having to know the details of each other’s data or
code. It is sufficient to know the tvpe of message accepted and the type of response returned by the
objects. Although different authors represent them differently, Fig. 1.2 shows a notation that is
popularly used to represent an object in object-oriented analysis and design.

We just mentioned that objects contain data and code to manipulate that data. The entire set of data
and code of an object can be made a user-defined data rype using the concept of a class. A class may be
thought of as a *data type’ and an object as a *vanable’ of that data type. Once a class has been defined,
we can create any number of objects belonging to that class. Each object is associated with the data of
type class with which they are created. A class is thus a collection of objects of similar type. For
example, mango, apple and orange are members of the class fruit. Classes are user-defined data types
and behave like the built-in types of a programming language. For example, the syntax used to create
an object is no different than the syntax used to create an integer object in C. If fruit has been defined
as a class, then the statement

fruit mango®

will create an object mango belonging to the class fruit.

Presented By: http://www.ebooksuit.com

Person Obyect
Mame Data
S
BasicPay
Salary () Methods
Tax ()
WEIgENY Reprosentaton of an object

Data Abstraction and Encapsulation

The wrapping up of data and methods into a single unit (called class) is known as encapsulation, Data
encapsulation is the most striking feature of a ¢lass. The data is not accessible to the outside world and
only those methods, which are wrapped in the class, can access it. These methods provide the interface
berween the object’s data and the program. This insulation of the data from direct access by the program
is called data hiding. Encapsulation makes it possible for objects to be treated like ‘black boxes’, each
performing a specific task without any concemn for internal implementation (see Fig. 1.3).

information “n” Data Informafion “out”
- and
Mathod

'YFigN3 " Encapsulation—Objects as “black boxes'

Abstraction refers to the act of representing essential features without including the background
details or explanations. Classes use the concept of abstraction and are defined as a list of abstract
attributes such as size, weight and cost, and methods that operate on these attributes. They encapsulate
all the essential properties of the olyects that are 1o be created. Encapsulation is one of the three OOP
principles, the other two being inheritance and polymorphism,

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of another
class. Inheritance supports the concept of hierarchical classification. For example, the bird robin is a
part of the class flying bird, which i1s again a part of the class bird. As illustrated in Fig. 1.4, the
principle behind this sort of division is that each derived class shares common characteristics with the
class from which it is derived.

Presented By: http://www.ebooksuit.com

s B R—
% MR
Bird
Adtrabates: A il stes:
.-_.-'f "H-x .-';.),
_.-" 'H.H r "\-‘\.
I S y I y
Rabin Swallow | Penguin Wil
—e e e | ————
Fars B
i w0

SEGy Proporty mhertonc

In OOP, the concept of inheritance provides the idea of reusability. This means that we can add
additional features to an existing class without modifying it. This is possible by deriving a new class
from the existing one. The new class will have the combined features of both the classes. Thus the real
appeal and power of the inheritance mechanism is that it allows the programmer to reuse a class that is
almost, but not exactly, what he wants, and to tailor the class in such a way that it does not introduce
any undesirable side effects into the rest of the classes. In Java, the derived class is known as ‘subclass’.

Mote that ecach subclass defines only those features that are unique to it. Without the use of
inhertance, each class would have to explicitly include all of its features.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism means the ability to take more than
one form. For example, an operation may exhibit different behaviour in different instances. The
behaviour depends upon the types of data used in the operation. For example, consider the operation of
addition. For two numbers, the operation will generate a sum. If the operands are strings, then the
operation would produce a third string by concatenation. Figure 1.5 illustrates that a single function
name can be used to handle different number and different types of arguments. This is something
similar to a particular word having several different meanings depending on the context.

Presented By: http://www.ebooksuit.com

Shape
Diraw [)
Jl"'... ‘ lu.
Circle Object Box Object . Triangle Object |
Draw {circla) Draw {box) | Draw ma-uh]__[

frﬁ]-! Pol -

Polymorphism plays an important role in allowing objects having different internal structures to
share the same external interface. This means that a general class of operations may be accessed in the
same manner even though specific actions associated with each operation may differ. Polymorphism is
extensively used in implementing inheritance.

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response o the call.
Dynamic binding means that the code associated with a given procedure call is not known until the
time of the call at runtime. It is associated with polymorphism and inheritance. A procedure call
associated with a polymorphic reference depends on the dynamic type of that reference.

Consider the procedure “draw™ in Fig. 1.5. By inheritance, every object will have this procedure, Its
algorithm is, however, unique to each object and so the draw procedure will be redefined in each class
that defines the object. At run-time, the code matching the object under current reference will be
called.

Message Communication

An object-oriented program consists of a set of objects that communicate with each other. The process
of programming in an object-oriented language, therefore, involves the following basic steps:

1. Creating classes that define objects and their behaviour.
2. Creating objects from class definitions.
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the same way as
people pass messages to one another as shown in Fig. 1.6. The concept of message passing makes it
easier to talk about building systems that directly model or simulate their real-world counterparts.

Presented By: http://www.ebooksuit.com

" FigiA8 Network of objects communicating between them

A message for an object is a request for execution of a procedure, and therefore will invoke a
method (procedure) in the receiving object that generates the desired result, as shown in Fig. 1.7.

i \\ ™ y)
Sending | | o Message | Recerving
Oject e — Object
5 Y

Message passing involves specifying the name of the object, the name of the method (message) and
the information to be sent. For example, consider the statement
Employee.salary (name);
Here, Employee is the object, salary is the message and name is the parameter that contains
information.
Employee.salary (name);

Object ‘—I ‘ L Information

Message

Objects have a life cycle. They can be created and destroyed. Communication with an object is
feasible as long as it is alive.

Presented By: http://www.ebooksuit.com |__ ;-’II-.’. r [I;;-Jh-'-;:: matel I-:-Il

@ 1.4 Benefits of OOP

OOFP offers several benefits to both the program designer and the user. Object-orientation contributes
to the solution of many problems associated with the development and quality of software products.

The new technology promises greater programmer productivity, better quality of software and lesser
maintenance cost. The principal advantages are:

s Through inheritance, we can eliminate redundant code and extend the use of existing classes.

= We can build programs from the standard working modules that communicate with one another,
rather than having to start writing the code from scratch. This leads to saving of development
time and higher productivity.

* The principle of data hiding helps the programmer to build secure programs that cannot be

invaded by code in other parts of the program.

[t is possible to have multiple objects to coexist without any interference.

It is possible to map objects in the problem domain to those objects in the program.

It is easy to partition the work in a project based on objects.

The data-centered design approach enables us to capture more details of a model in an

implementable form.,

Object-oriented systems can be easily upgraded from small to large systems.

» Message passing techniques for communication between objects make the interface descriptions
with external systems much simpler,

+ Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented system, their importance
depends on the type of the project and the preference of the programmer. There are a number of issues
that need to be tackled to reap some of the benefits stated above. For instance, class libraries must be
available for reuse. The technology is still developing and current products may be superseded quickly.
Strict controls and protocols need to be developed if reuse is not to be compromised.

- A software that is easy to use is hand fo build. Tt is hoped that the object-oriented programming
languages like C++ and Java would help manage this problem.

1.5 Applications of OOP

OOP is one of the programming buzzwords today. There appears to be a great deal of excitement and
interest among software engineers in using OOP. Applications of OOP are beginning to gain
importance in many arcas. The most popular application of object-oriented programming, up to now,
has been in the area of user interface design such as windows. There are hundreds of windowing
systems developed using QOP technigues.

Real-business systems are often much more complex and contain many more objects with
complicated attributes and methods, OOP is useful in this type of applications because it can simplify
a complex problem. The promising areas for application of OOP includes:

& Real-time systems
¢ Simulation and modelling
» Object-oriented databases

Presented By: http://www.ebooksuit.com

Hypertext, hypermedia and expertext

Al and expert systems

MNeural networks and parallel programming
Decision support and office automation systems
CIM/CAD/CAD system

It is believed that the richness of OOP environment will enable the software industry to improve not
only the quality of software systems but also its productivity. Object-oriented technology is certainly
changing the way software engineers think, analyze, design and implement systems today.

r‘;ﬁ 1.6 Summary

Java is an object-oriented language. It enables us not only to organize our program code into logical
units called objects but also to take advantage of encapsulation, inheritance, and polymorphism. In this
chapter, we have introduced the basic concepts of object-oriented programming which include

= Encapsulation,
s Inhentance, and
* Polymorphism

We also discussed briefly the benefits and applications of object-oriented programming approach.

“ Key Terms

Structured Programming, Object-Oriented Paradigm, Class, Object, Method, Abstraction, Elmpuﬂm
Data Hiding, Inheritance, Reusability, Polymorphism, Dynamic Binding.

ReviEw QUESTIONS

kb e—=s

1.1 What do vou think are the major issues facing the software industry today?
1.2 Brefly discuss the software evolution during the period from 1950 1o 1995,
1.3 What is ohject-oriented programming? How is it different from the procedure-oriented programrming?
1.4 How are data and methods organized in an object-oriented program?
1.5 What are the unigue advantages of an objeci-orienied programming paradigm?
1.6 Dhistinguish between the following terms:
(a) Objects and classes
(b} Data abstraction and data encapsulation
(¢} Inheritance and polymorphism
(d) Dynamic binding and message passing
1.7 What kinds of things can become objects in OOP?
1.8 Describe inheritance as applied to OOF.
1.9 List a few areas of application of OOP technology.
.10 State whether the following statements are TRUE or FALSE
{a) In conventional, procedure-onented programming, all data are shared by all functions.
(b} The main emphasis of procedure-oriented programming is on algorithms rather than on data.

Presented By: http://www.ebooksuit.com

10

{e) One of the striking features of object-oriented programming is the division of programs into objects
that represent real-world entities,
(d) Wrapping up of data of different types into a single unit is known as encapsulation.
(e} Ome problem with OOP iz that once a class is created, it can never be changed.
(f) Inheritance means the ability to reuse the data values of one object by other objects.
{g) Polymorphism is extensively used in implementing inheritance.
(h)} Object-oniented programs are executed much faster than conventional programs.
(i) Object-oriented systems can scale up better from small to large.
(j) Objeci-onented approach cannot be used 1o create databases,

Presented By: http://www.ebooksuit.com

Chapter

Java Evolution

2.1 Java History

Java is a general-purpose, object-oriented programming language developed by Sun Microsystems of
USA in 199]. Oniginally called Oak by James Gosling, one of the inventors of the language, Java was
designed for the development of software for consumer electronic devices like TVs, VCRs, toasters
and such other electronic machines. The goal had a strong impact on the development team to make the
language simple, portable and highly reliable. The Java team which included Patrick Naughton
discovered that the existing languages like C and C+ + had limitations in terms of both reliability and
portability. However, they modelled their new language Java on C and C++ but removed a number of
features of C and C++ that were considered as sources of problems and thus made Java a really simple,
reliable, portable, and powerful language. Table 2.1 lists some important milestones in the development
of Java.

1990 Sun Microsystems decided to develop special software that could be used to manipulate consumer
electronic devices. A team of Sun Microsystems programmers headed by James Gosling was formed to
undertake this task. _

1991 Afier exploning the possibility of using the most popular object-oriented language C++, the team
announced a new language named “Oak™.

1992 The team, known as Green Project team by Sun, demonstrated the application of their new language to
control a list of home appliances using a hand-held device with a tiny touch-sensitive screen.

{Continued)

Presented By: http://www.ebooksuit.com

Table 2.1 (Continued)
Year Development

1993 The World Wide Web (WWW) appeared on the Internet and transformed the text-based Internet into a
graphical-rich environment, The Green Project team came up with the idea of developing Web applets
(tiny programs) using the new language that could run on all types of computers connected 1o Internet.

1994 The team developed a Web browser called “HotJava™ to locate and run applet programs on Internet.
Hotlava demonstrated the power of the new language, thus making it instantly popular among the
Internet wsers.

1995 Ok was renamed “Java™, due to some legal snags. Java is just a name and is not an acronym. Many
popular companies including Netscape and Microsoft announced their support to Java.

1996 Java established itzelf not only as a leader for Intemel programming but also as a general-purpose,
object-onented programming language. Sun releases Java Development Kit 1.0,

1 9T Sun releases Java Development Kit 1.1 (JDK 1.1).

1998 Sun relases the Java 2 with version 1.2 of the Software Development Kit (SDK 1.2).

1999 Sun releases Java 2 Platform, Standard Edition (J25E) and Enterprise Edition (J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J28E with SDK 1.4 was released.

2004 J2SE with JDK 5.0 (instead of JDK 1.5) was released. This is known as J25E 5.0.

The most striking feature of the language is that it is a platform-neurral language. Java is the first

programming language that is not tied to any particular hardware or operating system. Programs
developed in Java can be executed anywhere on any system. We can call Java as a revolutionary
technology because it has brought in a fundamental shift in how we develop and use programs. Nothing
like this has happened to the software industry before.

.

2.2 Java Features

The inventors of Java wanted to design a language which could offer solutions to some of the problems
encountered in modern programming. They wanted the language to be not only reliable, portable and
_ distributed but also simple, compact and interactive. Sun Microsystems officially describes Java with
the following attnbutes:

Java 2 Feahres Additional Features of J2SE 5.0
* Compiled and Imerpreted * Ease of Development

+ Platform-Independent and Portable & Scalability and Performance

» Object-Oriented » Monitoring and Manageability

¢ Robust and Secure s Deskiop Client

* [hstmbuted o Core XML Support

Familiar, Simple and Small s Supplementary character support
* Multithreaded and Interactive » JDBC RowSet

High Performance

o [Dynamic and Extensible

Presented By: http://www.ebooksuit.com

~ Java Evolution 13

Although the above appears to be a list of buzzwords, they aptly describe the full potential of the
language. These features have made Java the first application language of the World Wide Web. Java
will also become the premier language for general purpose stand-alone applications.

Compiled and Interpreted

Usually a computer language is ¢ither compiled or interpreted. Java combines both these approaches
thus making Java a two-stage system. First, Java compiler translates source code into what is known as
bytecode instructions. Bytecodes are not machine instructions and therefore, in the second stage, Java
interpreter generates machine code that can be directly executed by the machine that is running the
Java program. We can thus say that Java is both a compiled and an interpreted language.

Platform-independent and Portable

The maost sigmficant contribution of Java over other languages is its portability. Java programs can be
easily moved from one computer system to another, anywhere and anyviime, Changes and upgrades in
operating systems, processors and system resources will not force any changes in Java programs. This
15 the reason why Java has become a popular language for programming on Internet which
interconnects different kinds of systems worldwide. We can download a Java applet from a remote
computer onto our local system via Internet and execute it locally. This makes the Internet an extension
of the user’s basic system providing practically unlimited number of accessible applets and
applications.

Java ensures portability in two ways. First, Java compiler generates bytecode instructions that can
be implemented on any machine. Secondly, the size of the primitive data types are machine-
independent.

Object-Oriented

Java is a true object-oriented language. Almost evervthing in Java is an object. All program code and
data reside within objects and classes. Java comes with an extensive set of classes, arranged in
packages, that we can use in our programs by inheritance. The object model in Java is simple and casy
to extend.

Robust and Secure

Java is a robust language. It provides many safeguards 1o ensure reliable code. It has sirict compile time
and run time checking for data types. It is designed as a garbage-collected language relieving the
programmers virtually all memory management problems. Java also incorporates the concept of
exception handling which captures series errors and eliminates any risk of crashing the system.

Security becomes an important issue for a language that is used for programming on Internet. Threat
of viruses and abuse of resources are everywhere. Java systems not only verify all memory access but
also ensure that no viruses are communicated with an applet. The absence of pointers in Java ensures
that programs cannot gain access to memory lecations without proper authorization.

Distributed

Java is designed as a distributed language for creating applications on networks. It has the ability to
share both data and programs. Java applications can open and access remote objects on Internet as
easily as they can do in a local system. This enables multiple programmers at multiple remote locations
to collaborate and work together on a single project.

Presented By: http://www.ebooksuit.com

14 Programming with Java: A Primer
Simple, Small and Familiar

Java is a small and simple language. Many features of C and C+ + that are either redundant or sources
of unreliable code are not part of Java. For example, Java does not use pointers, preprocessor header
files, goto statement and many others. It also eliminates operator overloading and multiple inheritance.
For more detailed comparison of Java with C and C++, refer to Section 2.3,

Familiarity is another striking feature of Java. To make the language look familiar to the existing
programmers, it was modelled on C and C++ languages. Java uses many constructs of C and C++ and
therefore, Java code “looks like a C++" code. In fact, Java is a simplified version of C++.

Multithreaded and Interactive

Multithreaded means handling multiple tasks simultaneously. Java supports multithreaded programs.
This means that we need not wait for the application to finish one task before beginning another, For
example, we can listen to an audio clip while scrolling a page and at the same fime download an applet
from a distant computer. This feature greatly improves the interactive performance of graphical
applications.

The Java runtime comes with tools that support multiprocess synchronization and construct
smoothly running interactive systems.

High Performance

Java performance is impressive for an interpreted language, mainly due to the use of intermediate
bytecode. According to Sun, Java speed is comparable to the native C/C++. Java architecture is also
designed to reduce overheads during runtime. Further, the incorporation of multireading enhances the
overall execution speed of Java programs.

Dynamic and Extensible

Java is a dynamic language. Java is capable of dynamically linking in new class libranes, methods, and
objects. Java can also determine the type of class through a gquery, making it possible to either
dynamically link or abort the program, depending on the response.

Java programs support functions written in other languages such as C and C++, These functions are
known as native methods. This facility enables the programmers to use the efficient functions available
in these languages. Native methods are linked dynamically at runtime.

Ease of Development

Java 2 Standard Edition (J25E) 5.0 supports features, such as Generics, Enhanced for Loop,
Autoboxing or unboxing, Typesafe Enums, Varargs, Static import and Annotation. These features
reduce the work of the programmer by shifting the responsibility of creating the reusable code to the
compiler. The resulting source code is free from bugs because the errors made by the compiler are less
when compared to those made by programmers. Thus, each of the linguistic features is designed to
develop Java programs in an easier way.

Scalability and Performance

J2SE 5.0 assures a significant increase in scalability and performance by improving the startup time
and reducing the amount of memory used in Java 2 runtime environment. For example, the introduction

Presented By: http://www.ebooksuit.com

of the class, data sharing in the Hotspot Java Virtwal Machine (JVM) improves the startup time by
loading the core classes from the jar files into a shared archive. Memory utilization is reduced by
sharing data in the shared archive among multiple JVM processes. In the earlier versions, the data was
replicated in each JVM instance.

Monitoring and Manageability

Java supports a number of APIs, such as JVM Monitoring and Management APl, Sun Management
Platform Extension, Logging, Monitoring and Management Interface, and Java Management
Extension (JMX) to monitor and manage Java applications. For example, Java provides JVM
Monitoring and Management API to track the information at the application level and JVM level when
deploying a large application. Java provides tools, such as jconsole, jps, jstat, and jstatd to make use of
monitoring and management facilities. For example, GUI based tool called jeonsole is used to monitor
the J¥'M.

Desktop Client

J2SE 5.0 provides enhanced features to meet the requirements and challenges of the Java desktop
users. It provides an improved Swing look and feel called Ocean. This feature is mainly used for

developing graphics applications that require OpenGL hardware acceleration.

Miscellaneous Features
In addition to the above features, J28E 5.0 supports the features such as:

Core XML Support JISE 5.0 adds a powerful XML feature to the Java platform. Java contains
some special packages for interface, to instantiate Simple APl for XML (SAX) and Document Object
Maodel (DOM) parsers to parse an XML document, transform the content of an XML document, and
validate an XML document against the schema.

Supplementary Character Support Java adds the 32-bit supplementary character support as
part of the Unicode 4.0 support. The supplementary characters are encoded with UTF-16 values to
generate a different character called, surrogate codepoint,

JDBC RowSet Java supporis JDBC RowSet to send data in a tabular format between the remaote
components of a distributed enterprise application. JDBC RowSet contains CachedRowSet and
WebRowSet objects. The CachedRowSet object is a JavaBean component which acts like a container.
This object contains a number of rows of data, which are retrieved from the database. The data stored
in the CachedRowSet can be directly accessed without connecting to the database or any other data
source. The rows of data that are rerrieved from the database can be synchronmized later. The

WebRowSet object can operate without being connected to the database or data source. The
WebRowSet object uses XML format to read and write the rowset.

@ 2.3 How Java Differs from C and C++

Although Java was modelled after C and C++ languages, it differs from C and C++ in many ways.
Java does not incorporate a number of features available in C and C++. For the benefit of C and C++

programmers, we point out here a few major differences between C/C++ and Java languages.

Presented By: http://www.ebooksuit.com

Java and C

Java 15 a lot like C but the major difference between Java and C is that Java 18 an olyect-oriented

language and has mechamsm to define classes and objects. In an effort to build a simple and safe
language, the Java team did not include some of the C features in Java.

Java does not include the C umque statement keywords sizeof, and tyvpedel.

Java does not contain the data types struct and union.

Java does not define the type modifiers keywords aute, extern, register, signed, and unsigned.

Java does not support an explicit pointer type.

Java does not have a preprocessor and therefore we cannot use # define, # incluode, and # ifdefl

statements.

o Java requires that the functions with no arguments must be declared with empty parenthesis and
not with the veid keyword as done in C.

Java adds new operators such as instanceof and ===,

» Java adds labelled break and continue statements.

Java adds many features required for object-oriented programming.

Java and C++

Java is a true object-onented language while C++ is basically C with object-oriented extension. That is
what exactly the increment operator + + indicates. C++ has maintained backward compatibility with C.
It is therefore possible to write an old style C program and run it successfully under C++. Java appears
to be similar 1o C++ when we consider only the “extension™ panrt of C++, However, some object-
oriented features of C++ make the C++ code extremely difficult to follow and maintain.

Listed below are some major C+ + features that were intentionally omitted from Java or significantly
maodified.

Java does not support operator overloading.

Java does not have template classes as in C++,

* Java does not support multiple inheritance of classes. This 15 accomphished using a new feature
called “interface™.

Java does not support global variables. Every variable and method is declared within a class and
forms part of that class.

Java does not use pointers.

s Java has replaced the destructor function with a finalize{) function.

* There are no header files in Java,

Java also adds some new features, While C++ is a superset of C, Java is neither a superset nor a
subset of C or C++. Java may be considered as a first cousin of C++ and a second cousin of C as
illustrated in Fig. 2.1. A more detailed discussion on the differences between C++ and Java is available
in Appendix C. '

Presented By: http://www.ebooksuit.com

17

JEVE

SFGIZY Overlapping of C. C++, and Java

L
e

Lo

2.4 Java and Internet

Java is strongly associated with the Intermet because of the fact that the first application program
written in Java was HotJava, a Web browser to run applets on Internet. Internet users can use Java to
create applet programs and run them locally using a “Java-enabled browser” such as Hotlava. They
can also use a Java-enabled browser to download an applet located on a computer anywhere in the
Internet and run it on his local computer (see Fig. 2.2). In fact, Java applets have made the Internet a
true extension of the storage system of the local computer.

ﬁm Downloading of applets via Intermet

Presented By: http://www.ebooksuit.com

18

Internet users can also set up their Web sites containing Java applets that could be used by other
remote users of Internet. The ability of Java applets to hitch a nde on the Information Superhighway
has made Java a unique programming language for the Internet. In fact, due to this, Java is popularly
known as Internet language.

g 2.5 Java and World Wide Web

World Wide Web (WWW) 15 an open-ended information retrieval system designed to be used in the
Internet’s distributed environment. This system contains what are known as Web pages that provide
both information and controls. Unlike a menu-driven system where we are guided through a particular
direction using a decision tree structure, the Web system is open-ended and we can navigate to a new
document in any direction as shown in Fig. 2.3. This is made possible with the help of a language
called Hypertext Markup Language (HTML). Web pages contain HTML tags that enable us to find,
retrieve, manipulate and display documents worldwide.

" Figi23' Web structure of information search

Java was meant to be used in distributed environments such as Intemet. Since, both the Web and
Java share the same philosophy, Java could be easily incorporated into the Web system. Before Java,
the World Wide Web was limited to the display of still images and texts. However, the incorporation of
Java into Web pages has made it capable of supporting animation, graphics, games, and a wide range of
special effecis. With the support of Java, the Web has become more interactive and dynamic. On the
other hand, with the support of Web, we can run a Java program on someone else’s computer across the
Internet.

Java communicates with a Web page through a special tag called <APPLET=. Figure 2.4 illustrates
this process. The figure shows the following communication steps:

1. The user sends a request for an HTML document to the remote computer s Web server. The Web
server 15 a program that accepts a requesl, processes the request, and sends the required
document.

2. The HTML document is returned to the user’s browser. The document contains the APPLET
tag, which identifies the applet.

Presented By: http://www.ebooksuit.com G L-l|.'§ '_'r' [Ii-.jr-l-.'.-;:: matel I-:-Il

dov Evaton 1

3. The corresponding applet bytecode is transferred to the user’s computer. This bytecode had been
previously created by the Java compiler using the Java source code file for that applet.

4. The Java-enabled browser on the user’s computer interprets the bytecodes and provides output,

5. The user may have further interaction with the applet but with no further downloading from the
provider’s Web server. This is because the bytecode contains all the information necessary to

interpret the applet.
User's Compatar Ramaote Computar
Byiecode plet Source]
Bt] Gode

: --_-""'--,____ I -
Java h k

Wb "‘\\ HTML [Bytecode
Browser o Diocunment kil

. |
\\ - b
.\-\-h — — e — AT T .-
H'\-
. |_ Applet Tag | |
k \\ |
Request !
HTML Documesnt {
, {
W, . - |
x ‘
- |
Dutput Wl Sarver |
| [
USER]
L% -

fm: Java's interaction with the wab

% 2.6 Web Browsers

As pointed out earlier, the Internet is a vast sea of information represented in many formats and stored
on many computers. A large portion of the Internet is organized as the World Wide Web which uses
hypertext. Web browsers are used to navigate through the information found on the net. They allow us
to retrieve the information spread across the Internet and display it using the hypertext markup language
(HTML). Examples of Web browsers, among others, include:

* Hotlava

» Netscape Navigator

» Internet Explorer

HTML documents and <APPLET> tags are discussed in detail in Chapter 14.

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

- R b

HotJava

HotJava is the Web browser from Sun Microsystems that enables the display of interactive content on
the Web, using the Java language. HotJava is written entirely in Java and demonstrates the capabilities
of the Java programming language.

When the Java language was first developed and ported to the Internet, no browsers were available
that could run Java applets. Although we can view a Web page that includes Java applets with a regular
browser, we will not gain any of Java’s benefits. HotJava is currently available for the SPARC/Solaris
platform as well as Windows 95, Windows NT and Windows XP. So far as being a Web browser goes,
it 15 nothing special and does not offer anything special that most other Web browsers don't offer. Its
biggest draw is that it was the first Web browser to provide support for the Java language, thus making
the Web more dynamic and interactive.

Netscape Navigator

Netscape Navigator, from Netscape Communications Corporation, is a general-purpose browser that
can run Java applets. With versions available for Windows 95, NT, Solans and Apple Macintosh,
Netscape Navigator is one of the most widely used browsers today.

Metscape Navigator has many useful features such as visual display about downloading process and
indication of the number bytes downloaded. It also supports JavaScript, a scripting language used in
HTML documents.

Internet Explorer

Internet Explorer is another popular browser developed by Microsoft for Windows 95, NT and XP
Workstations. Both the Navigator and Explorer use tool bars, icons, menus and dialog boxes for easy
navigation. Explorer uses a just-in-time (JIT) compiler which greatly increases the speed of execution.

g 2.7 Hardware and Software
Requirements

Java is currently supported on Windows 95, Windows NT, Windows XP, Sun Solaris, Macintosh, and
UNIX machines. Though, the programs and examples in this book were tested under Windows 95, the
most popular operating system today, they can be implemented on any of the above systems.

The minimum hardware and software requirements for Windows 95 version of Java are as follows:

* [BM-compatible 486 system * A hard drive

* Minimum of 8 MB memory A CD-ROM drive

* Windows 95 software s A Microsoft-compatible mouse
. .

A Windows-compatible sound card, if necessary

g 2.8 Java Support Systems

It 15 clear from the discussion we had up to now that the operation of Java and Java-enabled browsers

on the Internet requires a variety of support systems. Table 2.2 lists the systems necessary to support
Java for delivering information on the Internet.

Presented By: http://www.ebooksuit.com

PR S TLATY T RN S AT L S A .

Support Svstem Deseriplion

Intermet Connection Local computer should be connected to the Intemnet.

Web Server A program that accepts requests for information and sends the required documents.

Web Browser A program that provides access to WWW and runs Java applets.

HTML A language for creating hypertext for the Web.

APPLET Tag For placing Java applets in HTML document.

Java Code Java code is used for defining Java applets.

Byiecode Compiled Java code that is referred to in the APPLET tag and transferred o the user
computer.

@ 2.9 Java Environment

Java environment includes a large number of development tools and hundreds of classes and methods.
The development tools are part of the system known as Java Development Kit (JDK) and the classes
and methods are part of the Java Standard Library (JSL), also known as the Application Programming
Interface (API).

Java Development Kit

The Java Development Kit comes with a collection of tools that are used for developing and running
Java programs, They include:
= appletviewer (for viewing Java applets)
javac (Java compiler)
java (Java interpreter)
javap (Java disassembler)
javah (for C header files)
o javadoc (for creating HTML documents)
e jdb (Java debugger)

B s r::. BT = " ‘."-.:.1
~=!"-'LE_' A ik e i‘ e A

appletviewer Enables us to run Java applets (without actually using a Java-compatible browser).

Jjava ' Java interpreter, which runs applets and applications by reading and interpreting bytecode files.

javac The Java compiler, which translates Java sourcecode to bytecode files that the interpreter can
understand.

javadoc Creates HTML -format documentation from Java source code files.

javah Produces header files for use with native methods.

javap Java disassembler, which enables us to convert byvtecode files into a program description.

jdb Java debugger, which helps us to find errors in our programs.

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

22 * Pograming win ov: A Priner

The way these tools are applied to build and run application programs is illustrated in Fig. 2.5. To
create a Java program, we need to create a source code file using a text editor. The source code is then
compiled using the Java compiler javac and executed using the Java interpreter java. The Java
debugger jdb is used to find emrors, if any, in the source code. A compiled Java program can be

converted into a source code with the help of Java disassembler javap. We learn more about these tools
as we work through the book.

Taxl Editor

Java
Source javadoc - HFT;L .
Code - e A |

— - e e o

|
evac |

JEVE
Class] - jEvah - Hlfﬁ
Fibe

Fig.-2.5 FProcess of building and running Java application programs

Application Programming Interface

The Java Standard Library (or API) includes hundreds of classes and methods grouped into several
functional packages (see Appendix G). Most commonly used packages are:

s Language Support Package: A collection of classes and methods required for implementing
basic features of Java.
Utilities Package: A collection of classes to provide utility functions such as date and time
functions.
Input/Output Package: A collection of classes required for input/output manipulation.

Networking Package: A collection of classes for communicating with other computers via
Internet.

AWT Package: The Abstract Window Tool Kit package contains classes that implements
platform-independent graphical user interface.
* Applet Package: This includes a set of classes that allows us to create Java applets,

The use of these library classes will become evident when we start developing Java programs.

- =

Presented By: http://www.ebooksuit.com

| e Evolton, 23

210 Summary

In this chapter, we have introduced a brief history of Java and its salient features. Java is a pure object-
oriented language introduced by Sun Microsystems of USA and has a number of characteristics that
make it suitable for Internet programming. We have discussed briefly how Java can be incorporated
into the World Wide Web system with the help of Web browsers.

We have also brought out some of the fundamental differences between Java and C/C++ languages.
Finally, we discussed the environment required and various tools available for implementing Java
programs.

* Key Terms

Olalk, Intermet, World Wide Web, Applets, Package, Platform-neutral, Multithread, Bytecode, Dyvnamic
linking, Native methods, HTML, Web browser, Applet tag, Web server, HotJava, Netscape Navigator,
appletviewer, java, javac, javap, javah, javadoe, jdb.

ReviEw QuEsTIONS

2.1 Why is Java known as platform-neutral language?

22 How is Java more secured than other languages?

2.3 What is multithreading? How does it improve the performance of Java?

2.4 List at least five major differences between C and Java.

2.5 List st least five major C++ features that were intentionally removed from Java.

2.6 How is Java strongly associated with the Internet?

27 What is World Wide Web? What is the contnbution of Java to the World Wide Web?

2.8 What is Hypertext Markup Language? Describe its role in the implementation of Java applets.
29 Describe the various systems required for Internet programming?

2.10 Describe with a flowchart, how various Java tools are used in the application development.

Presented By: http://www.ebooksuit.com

Overview of Java
Language

~
‘g 3.1 Introduction

Java is a general-purpose, object-oriented programming language. We can develop two types of Java
programs:

s Stand-alone applications
* Web applets

They are implemented as shown in Fig. 3.1. Stand-alone applications are programs written in Java
to carry out certain tasks on a stand-alone local computer. In fact, Java can be used to develop programs
for all kinds of apphications, which earlier, were developed using languages like C and C++, As pointed
out earlier, HotJava itself 15 a Java application program. Executing a stand-alone Java program involves
two steps:

. Compiling source code into bytecode using javae compiler

2. Executing the bytecode program using java interpreter.

Applets are small Java programs developed for Internet applications. An applet located on a distant
computer (Server) can be downloaded via Internet and executed on a local computer (Client) using a
Java-capable browser. We can develop applets for doing everything from simple animated graphics to
complex games and utilities. Since applets are embedded in an HTML (Hypertext Markup Language)
document and run inside a Web page, creating and running applets are more complex than creating an
application.

Stand-alone programs can read and write files and perform certmin operations that applets cannot
do. An applet can only run within a Web browser.

Presented By: http://www.ebooksuit.com

Java
Source
1/
‘ E-urnpllﬂ' |
"H
/ T Application
Tg.rp-a - " Typu
- - “H"'-\.
o N
= - ,-f" "HH
."/r Java enabled Jaa
\Wiﬂmwsar _Intnfpralsi’/
.. .'\.__l—.'-__—-[. - -
Cutpud Chutpud I

Fig. 3.1 Two ways of using Java

In this chapter, we shall consider some simple apphication programs, which would demonstrate the
general structure of Java application programs. We shall also discuss here the basic elements of Java
language and steps involved in executing a Java application program. Creation of applets will be
discussed later in Chapter 14.

3.2 Simple Java Program

The best way to leamn a new language is to write a few simple example programs and execute them. We
begin with a very simple program that prints a line of text as output.

Program 3.1 A simple Java program

class SampleOne
{

public static void main (String args[1}

{

}
)

Program 3.1 is perhaps the simplest of all Java programs. Nevertheless, it brings out some salient
features of the language. Let us therefore discuss the program line by line and understand the unique
features that constitute a Java program.

System.out.printin(”Java is better than C++.7)

Presented By: http://www.ebooksuit.com

26 Programming with Java: A Primer
Class Declaration
The first line
class Samplelne
declares a class, which is an object-oriented construct, As stated earlier, Java is a true object-oriented
language and therefore, everything must be placed inside a class. class is a keyword and declares that

a new class definition follows. SampleOne is a Java identifier that specifies the name of the class to be
defined.

Opening Brace

Every class defimition in Java begins with an opening brace “{"™ and ends with a matching closing brace
“1", appearing in the last line in the example. This is similar to C++ class construct. (Note that a class
definition in C+ + ends with a semicolon.)

The Main Line

The third line
public static wvoid main (String args[])

defines a method named main. Conceptually, this is similar to the main{) function in C/C++. Every
Java application program must include the main{) method. This is the starting point for the interpreter
1o begin the execution of the program. A Java application can have any number of classes but only one
of them must include a main method to initiate the execution. (Note that Java applets will not use the
main method at all.)

This line contams a number of keywords, public, static and void.

Public: The keyword public 15 an access specifier that declares the main
method as unprotected and therefore making it accessible to _all
other classes. This 15 similar to the C++ public modifier.

Static: Next appears the keyword static., which declares this method as one
that belongs to the entire class and nmot a part of any objects of
the class. The main must always be declared as static since the
interpreter uses this method befpre any objects are created. More
about static methods and variables will be discussed later 1in
Chapter 8.

Void: The type modifier wvoid states that the main method does not return
any wvalue {(but simply prints some text to the screen.)

e

All parameters to a method are declared inside a pair of parentheses. Here, String args| | declares a
parameter named args, which contains an array of objects of the class type String.

The Output Line
The only executable statement in the program is
System.out.printin(™Java 1s better than C++_"):

This is similar to the printf{) statement of C or cout << construct of C++. Since Java is a true object
oriented language, every method must be part of an object. The println method is a member of the out
object, which 15 a static data member of System class. This line prints the string

Java is better than C++.

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

 Overview of Jave Language 27

to the screen. The method println always appends a newline character to the end of the string. This
means that any subsequent output will start on a new line. Note the semicolon at the end of the
statement. Every Java statement must end with a semicolon. (Saving, compiling, and executing a Java
program are discussed in Section 3.8)

% 3.3 More of Java

Assume that we would like to compute and print the square root of a number. A Java program to
accomplish this 15 shown in Program 3.2. This is a slightly complex program. This program when
compiled and run produces the output

y = 2.23807

Program 3.2 A Java program with multiple statements

l."t

* More Java statements

* This code computes sguare root
o |

import java.lang.Math:

class SquareRoot

public static void main{String args[1)

{ double x = & : f/ Declaration and initialization
double y: ff Simple declaration
y = Math, sqrtix}

} system.out. printin{®y = ° + y):

The structure of the program is similar to the previous one except that it has more number of
statements. The statement

double » = 5
declares a variable x and initializes it to the value 5 and the statement
double y;

merely declares a variable y. Note that both of them have been declared as double type variables.
{(double is a data type used to represent a floating point number. Data types are discussed in the next
chapter).

The statement

y = Math.sqrti{x):

invokes the method sqrt of the Math class, computes square root of x and then assigns the result to the
vanable y. The output statement

system.out.printin{y =" + y}:

displays the result on the screen as
y = 2.23607

Presented By: http://www.ebooksuit.com

= " PIOUG WR f Friner

Note the use of + symbol. Here, the + acts as the concatenation operator of two strings. The value of ¥
is converted into a string representation before concatenation.

Use of Math Functions

Note that the first statement in the program is
import java.lang.Math:
The purpose of this statement 15 to instruct the interpreter o load the Math class from the package
lang. (This statemnent is similar to #include statement in C.) Remember, Math class contains the sqrt
method required in the program.

Comments

Java permits both the single-line comments and multi-line comments available in C++. The single-line
comments begin with // and end at the end of the line as shown on the lines declaring x and y. For
longer comments, we can create long multi-line comments by starting with a /* and ending with a */ as
shown at the beginning of the program.

y

3.4 An Application with Two Classes

Both the examples discussed above use only one class that contains the main method. A real-life

application will generally require multiple classes. Program 3.3 illustrates a Java application with two
classes,

Program 3.3 A program with multiple classes

class Room

{
float length:

float breadth;
void getdata(float a, float b)

length = a:
breadth = b;:
}
}
class RoomArea
{
public static void main (5tring args[1}
{
float area:
Room rooml = new Room(}; // Creates an object rooml
rooml _getdata(ld. 10): /f Assigns wvalues to length and breadth
area = rooml.length * rooml. breadth:
System,.out.printin ("Area =" + area):
}
}

Presented By: http://www.ebooksuit.com i L—“Il-: VI |':-J|'-|-'-;:: matel I-:'Il

29

Program 3.3 defines two classes Room and RoomArea. The Room class defines two variables and
one method to assign values to these variables. The class RoomArea contains the main method that
initiates the execution,

The main method declares a local variable area and a Room type object room1 and then assigns
values to the data members of Room class by using the getdata method. Finally, it calculates the area
and prints the results. Note the use of dot operator to access the variables and methods of Room class.
Classes and methods are discussed in Chapter 8. The use of the keyword new is explained later in this

Chapter.

iy

3.5 Java Program Structure

As we have seen in the previous examples, a Java program may contain many classes of which only
one class defines a main method. Classes contain data members and methods that operate on the data
members of the class, Methods may contain data type declarations and executable statements. To write
a Java program, we first define classes and then put them together. A Java program may contain one or
more sections as shown in Fig. 3.2

Documentation Section Suggested
Package Statement - Optional
[mport Statements Optional

i Interface Statements Optional

|

{ Class Definitions : Optional

Main Method Class

{

Main Method Definition
y - Essential

Figi32: General structure of a Java program

Documentation Section

The documentation section comprises a set of comment lines giving the name of the program, the
author and other details, which the programmer would like to refer to at a later stage. Comments must
explain why and whar of classes and how of algorithms. This would greatly help in maintaining the

Presented By: http://www.ebooksuit.com

30 Programming with Java: A Primer

program. In addition to the two styles of comments discussed earlier, Java also uses a third style of
comment **....* known as documentation comment. This form of comment 15 used for generating
documentation automatically.

Package Statement

The first statement allowed in a Java file is a package statement. This statement declares a package
name and informs the compiler that the classes defined here belong to this package. Example:
package student;

The package statement is optional. That is, our classes do not have to be part of package. More about
packages will be discussed in Chapter 11.

Import Statements

The next thing after a package statement (but before any class definitions) may be a number of import
statements. This is similar to the #include statement in C. Example:

import student. test:

This statement instructs the interpreter to load the test class contammed in the package student.
Using import statements, we can have access to classes that are part of other named packages. More on
import statements in Chapter 11.

Interface Statements

An interface is like a class but includes a group of method declarations. This is also an optional section
and 15 used only when we wish to implement the multiple inhentance feature in the program. Interface
15 & new concept in Java and 15 discussed mn detail in Chapter 10.

Class Definitions

A Java program may contain multiple class definitions. Classes are the primary and essential elements
of a Java program. These classes are used to map the objects of real-world problems. The number of
classes used depends on the complexity of the problem.

Main Method Class

Since every Java stand-alone program requires a main method as 115 starting point, this class 15 the
essential part of a Java program. A simple Java program may contain only this part. The main method
creates objects of various classes and establishes communications between them. On reaching the end
of main, the program terminates and the control passes back to the operating system.

g 3.6 Java Tokens

A Java program is basically a collection of classes. A class is defined by a set of declaration statements
and methods containing executable statements (see Fig. 3.3). Most statements contain expressions,
which describe the actions carmied out on data. Smallest individual units in a program are known as
tokens. The compiler recognizes them for building up expressions and statemenis.

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

Tokens
[7
Declaration statement
e me A O°F Variables
Saction
| Declaration statement
Tokens
Mathod 1 /
(T e
Tekiins
Method 2 / Section
o
e et L.'.,

- Fig. 3.3 - Elements of Java class

In simple terms, a Java program is a collection of tokens, comments and white spaces. Java language
includes five types of tokens. They are:
* Reserved Keywords
|dentifiers
« Literals
o Operators
e Separators

Java Character Set

The smallest units of Java language are the characters used to write Java tokens. These characters are
defined by the Unicode character set, an emerging standard that tries to create characters for a large
number of scripts worldwide,

The Unicode is a 16-bit character coding system and currently supports more than 34,000 defined
characters derived from 24 languages from America, Europe, Middle East, Africa and Asia (including
India). However, most of us use only the basic ASCII characters, which include letters, digits and

Presented By: http://www.ebooksuit.com

a: A Pri
punctuation marks, used in normal English. We, therefore, have used only ASCII character set (a
subset of UNICODE character set) in developing the programs in this book.

Keywords

Keywords are an essential part of a language definition. They implement specific features of the
language. Java language has reserved 50 words as keywords. Table 3.1 lists these keywords. These
keyvwords, combined with operators and separators according to a syntax, form definition of the Java
language. Understanding the meanings of all these words is important for Java programmers.

Since keywords have specific meaning in Java, we cannot use them as names for variables, classes,
methods and so on. All keywords are to be written in lower-case letters. Since Java is case-sensitive,
one can use these words as identifiers by changing one or more letters to upper case. However, itis a
bad practice and should be avoided.

R b s | e Skt A

abstract assert boolean break
byte case catch char
class COnSI continue default
do double clse I
extenids final finally float
for goto if implements
import instanceof int interface
long native new package
private protected public retum
short static strictfp super
switch synchronized this thirow
throws transient ry void
volatile while

Note: We should also not attemipt 1o use the boo] ean values true and false ornul] as names in our programs,

Identifiers

Identifiers are programmer-designed tokens. They are used for naming classes, methods, variables,
objects, labels, packages and interfaces in a program. Java identifiers follow the following rules:

1. They can have alphabets, digits, and the underscore and dollar sign characters.

2. They must not begin with a digit.

3. Uppercase and lowercase letters are distinct.

4. They can be of any length.

Identifier must be meaningful, short enough to be quickly and easily typed and long anﬂugh to be
descriptive and easily read. Java developers have followed some naming conventions,
= Names of all public methods and instance variables start with a leading lowercase letter.
Examples:
average
aum

Presented By: http://www.ebooksuit.com i L-*Il-: r [I:t-Jh-'-;::: mater |-:-||

Overview of Java Language 33

* When more than one words are used in a name, the second and subsequent words are marked
with a leading uppercase letters, Examples:
dayTemperature
firstDayOfMonth
totalMarks

All private and local variables use only lowercase letters combined with underscores. Examples:

length
batch_strength

s All classes and interfaces start with a leading uppercase letter (and each subsequent word with a
leading uppercase letter). Examples:
student
HelloJava
Vehicle
MotorCycle
Variables that represent constant values use all uppercase letters and underscores between words.
Examples:
TOTAL
F_MAX
PRINCIPAL AMOUNT
They are like symbolic constants in C.
It should be remembered that all these are conventions and not rules. We may follow our own
conventions as long as we do not break the basic rules of naming identifiers.

Literals

Literals in Java are a sequence of characters (digits, letters, and other characters) that represent constant
values to be stored in variables. Java language specifies five major types of literals. They are:

Integer literals
Floating_point literals
Character literals
String literals
Boolean literals

Each of them has a type associated with it. The type descnibes how the values behave and how they
are stored. We will discuss these in detail when we deal with data types and constants in the next
chapter.

Operators

An operator is a symbol that takes one or more arguments and operates on them to produce a result.
Operators ar¢ of many types and are considered in detanl in Chapter 5.

Separators

Separators are symbols used to indicate where groups of code are divided and arranged. They basically
define the shape and function of our code. Table 3.2 lists separators and their functions.

Presented By: http://www.ebooksuit.com

Name What it is used for

parentheses () Used to enclose parameters in method definition and invocation, also used for defining precedence
in expressions, containing expressions for flow control, and surrounding cast fypes.

braces { } Used to contain the values of automatically initialized arrays and to define a block of code for
classes, methods and local scopes

brackets [] Used to declare array types and for dereferencing array values

semicolon ; Used to separate statements

COmma , Used to separate consecutive identifiers in a variable declaration, also used to chain statements
together inside a *for” statement

period . Used to separate package names from sub-packages and classes; also used to separate a variable
or method from a reference variable.

g 3.7 Java Statements

The statements in Java are like sentences in natural languages, A stalement 15 an executable
combination of tokens ending with a semicolon { ;) mark. Statements are usually executed in sequence
in the order in which they appear. However, it is possible to control the flow of execution, if necessary,
using special statements. Java implements several types of statements as illustrated in Fig. 3.4 and
described in Table 3.3. They are considered in depth as and when they are encountered.

R A W

Remarks
Empty Statement These do nothing and are wsed during program Same as C and C++
development as a place holder.
Labelled Any Staternent may begin with a label. Such labels Identical to C and C++ except
Statement must not be keywornds, already declared local their use with jump statements
variables or previously used labels in this module.
Labels in Java are used as the arguments of Jump
statements, which are described later in this list.
Expression Most statemenis are expression statements. Same as C++
Statement Jova has seven types of Expression statements:
Assignment, Pre-Increment, Pre-Decrement,
Post-Increment, Post-Decrement, Method Call
and Allocation Expression.
Selection These select one of several control flows. There are ™ Same as C and C++
Statement Three types of selection statements in Java: if, if-else,
and switch.

(Continued)

Presented By: http://www.ebooksuit.com |__ ;-“II-: r [|i.-.]h-.'.-§:: mater I-:-Il

35

Table 3.3 (Continued)

Statement Deseription Remarks
Iteration These specify how and when looping will take place. Same as C and C++
Statement There are three types of iteration statements; while, except for jumps and labels
do and for.
Jump Jump Statements pass control to the beginning or end € and C++ do not use labels with
Statement of the current block, or to a labeled statement. Such jump statements

labels must be in the same block, and continue labels
must be on an iteration statement. The four types of
Jump statement are break, continue, return and

throw.
Synchronization These are used for handling issues with Now available in C and C++
Statement multithreading.
Guarding Cuarding statements are used for safe handling of Same as in C++ except finally
Statement code that may cause exceptions (such as division statement.

by zero). These statements use the keywords try,

catch, and finally,

gﬁ 3.8 Implementing a Java Program

Implementation of a Java application program involves a series of steps. They include:

» Creating the program
» Compiling the program
Running the program

Remember that, before we begin creating the program, the Java Development Kat (JDK) must be
properly installed on our system.

Creating the Program

We can create a program using any text editor. Assume that we have entered the following program:

Program 3.4 Another simple program for testing

class Test

{

public static void main (String args[1)

{
System.out .printin(“Hellow!"):
System.out.printin{"Welcome to the world of Java."):
System_out _printin(“Let us Tearn Java.):

Presented By: http://www.ebooksuit.com

"Fig:34" Classification of Java statements

We must save this program in a file called Test.java ensuring that the filename contains the class
name properly. This file is called the source file. Note that all Java source files will have the extension
java. Note also that if a program contains multiple classes, the file name must be the classname of the
class containing the main method.

Presented By: http://www.ebooksuit.com C- 0 p}, ri g h t e d m ﬂtﬂ ri 'r._'ll

v of sava Language. 57
Compiling the Program
To compile the program, we must run the Java Compiler javae, with the name of the source file on the
command line as shown below:
Javac Test. java

If everything is OK, the javac compiler creates a file called Test.class containing the bytecodes of
the program. Note that the compiler automatically names the bytecode file as

<classname> .class

m Implementation of Java programs

Running the Program

We need to use the Java interpreter to run a stand-alone program. At the command prompt, type
java Test

Now, the interpreter looks for the main method in the program and begins execution from there.
When executed, our program displays the following:

Presented By: http://www.ebooksuit.com G L-l|.'§ r [Ii-.jh'.l_',':: matel I-:-Il

38 -.w o0 H*l'-‘g#ﬂh‘lr-
Hello!
Welcome to the world of Java.
Let us Tearn Java.

Mote that we simply type “Test™ at the command line and not “Test.class™ or “Test java™.
Machine Neutral

The compiler converts the source code files into bytecode files. These codes are machine-independent
and therefore can be run on any machine. That is, a program compiled on an IBM machine will run on
a Macintosh machine,

Java interpreter reads the bytecode files and translates them into machine code for the specific
machine on which the Java program is running. The interpreter is therefore specially written for each
type of machine. Figure 3.5 illustrates this concept.

el

3.9 Java Virtual Machine

All language compilers translate source code into machine code for a specific computer. Java compiler
also does the same thing. Then, how does Java achieve architecture neutrality? The answer is that the
Java compler produces an intermedia code known as bytecode for a machine that does not exist. This
machine is called the Java Firtual Machine and it exists only inside the computer memory. It is a
simulated computer within the computer and does all major functions of a real computer. Figure 3.6

illustrates the process of compiling a Java program into bytecode which is also referred to as virtual
machine code,

Java Java Wirbual
Program) Compiler - Machine
Source Gode Bytecode

Fig.36. Frocess of compilation

The virtual machine code is not machine specific. The machine specific code (known as machine
code) is generated by the Java interpreter by acting as an intermediary between the virtual machine and
the real machine as shown in Fig. 3.7. Remember that the interpreter 15 different for different machines.

_ Java Machinee
Bylecoda Interpreter Code
Wirtual Machine Real Blachine

Fig3T . Process of converting bytecode into machine code
Figure 3.8 illustrates how Java works on a typical computer. The Java object framework (Java API)

acts as the intermediary between the user programs and the virtual machine which in turn acts as the
mtermediary between the operating system and the Java object framework.

Presented By: http://www.ebooksuit.com

39

Raal Maching

Operating System

Java Virtual Machine

Java Obpect Framewors [AF])

@&

5 m Layers of interactions for Java programs

310 Command Line Arguments

There may be occasions when we may like our program to act in a particular way depending on the
input provided at the time of execution. This is achieved in Java programs by using what are known as
command line arguments. Command line arguments are parameters that are supplied to the application
program at the time of invoking it for execution. [t may be recalled that Program 3.4 was invoked for
execution of the command line as follows:

java Test

Here, we have not supplied any command line arguments. Even if we supply arguments, the program
does not know what to do with them.

We can write Java programs that can receive and use the arguments provided in the command line.
Recall the signature of the main() method used in our earlier example programs:

public static void main (String args[1)

As pointed out earlier, args is declared as an array of strings (known as string objects). Any
arguments provided in the command line (at the time of execution) are passed to the array args as its
elements. We can simply access the array elements and use them in the program as we wish. For
example, consider the command line

java Test BASIC FORTRAN C++ Java

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

This command line contains four arguments. These are assigned to the array args as follows:
BASIC — args [0]
FORTRAN ——— args [1]
C++ — args [2]
Java — args [3]

The individual elements of an array are accessed by using an index or subscript like args| i |. The
value of 1 denotes the position of the elements inside the amay. For example, args| 2 | denotes the third
element and represents C++. Note that Java subscripis begin with 0 and not 1. (Arrays and sirings are
discussed in detail in Chapter 9.)

Program 3.5 Use of command line arguments

f*&

* This program uses command 1ine
* arguments as input.

*f

Class ComLineTest

public static void main (String args[1)
{
int count. i=0:
String string:
count = args.length;
System.out.printin{”Number of arguments = " + count);:
while (1 < count)
{
string = args[i]:
i =1+ 1;
System.out.printin(i+ ° :© 7 + “Java 18~ + string+ "!7};

Program 3.5 illustrates the use of command line arguments. Compile and run the program with the
command line as follows:
java ComLineTest S5Simple Object Oriented Distributed Robust
Secure Portable Multithreaded Oynamic
Upon execution, the command line arguments Simple, Object Oriented, etc. are passed to the
program through the array args as discussed earlier. That is the element args| 0 | contains Simple,
args| 1 | contains Object Ornented, and so on. These elements are accessed using the loop variable i as
an index like
name = args[i]
The index i is incremented using a while loop until all the arguments are accessed. The number of
arguments is obtained by statement
count = args.length:

Presented By: http://www.ebooksuit.com

Overview of Java Language 41
The output of the program would be as follows:
Number nf arguments = 8
» Java 1s Simple!
: Java 15 Object Oriented!
: Java is Distributed!
. Java 15 Robust!
. Java 15 Secure!
. Java is Portable!
: Java 15 Multithreaded!
» Java is Dynamic!

MNote hclw the output statement concatenates the strings while printing.

o = O N e fed PO

g 3.11 Programming Style

Java is a freeform language. We need not have to indent any lines to make the program work properly.
Java system does not care where on the line we begin typing. While this may be a license for bad
programming, we should try to use this fact to our advantage for producing readable programs.
Although several alternate styles are possible, we should select one and try to use it with total

Cconsistency.
For example, the statement
System.out.printin(~Java is Wonderful!™)
can be writien as
System.out . printin
{("Java is Wonderful!™);
Of, EVEn as
system
out
printin
(
"Java is Wonderful!”
¥
In this book, we follow the format used in the example programs of this chapter.

B 3.12 Summary

Java is a general-purpose, object-oriented language. In this chapter, we have discussed some simple
application programs to familianze the readers with basic Java structure and syntax. We have also
discussed the basic elements of the Java language and steps involved in creating and executing a Java
appheation program.

Presented By: http://www.ebooksuit.com

il
32
33
34
33
6
A7
KR
9

Describe the structure of a typical Java program.

Why do we need the import statement?

What is the task of the main method in a Java program?

What is a token? List the various types of tokens supported by Java.

Why can’t we use a keyword as a variable name?

Enumerate the rules for creating identifiers in Java.

What are the conventions followed in Java for naming identifiers? Give examples.
What are separators? Describe the various separators used in Java.

What is a statement? How do the Java statements differ from those of C and C++7

3,10 Describe in detail the steps involved in implementing a stand-alone program.
311 What are command line arguments? How are they useful?
3.12 Java is freeform language. Comment.

Presented By: http://www.ebooksuit.com C DD'}.-" r-i 'Q htE"d i atE'ri al

Constants, Variables,
and Data Types

4.1 Introduction

A programming language is designed to process certain kinds of dara consisting of numbers, characters
and strings and to provide useful output known as information. The task of processing data is
accomplished by executing a sequence of instructions constituting a program. These instructions are
formed using certain symbols and words according to some rigid rules known as symtax rules (or
grammar). Every program instruction must conform precisely to the syntax rules of the language.

Like any other language, Java has its own vocabulary and grammar. In this chapter, we will discuss
the concepts of constants and variables and their types as they relate to Java language.

g 4.2 Constants

Constants in Java refer to fixed values that do not change during the execution of a program. Java
supports several types of constants as illustrated in Fig. 4.1.

Integer Constants

An integer constant refers to a sequence of digits, There are three types of integers, namely, decimal
integer, actal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional minus sign. Vahd
examples of decimal integer constants are:

123 -321 0 b54321

Presented By: http://www.ebooksuit.com

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,
15 750 20,000 $1000
are illegal numbers,

JAne COMSTANTS
Mumeric Constants Character Constants
Integer Real Character Siring
Constants Constants Constants Constants

_Fig. 4.1 Java constants

An octal integer constant consists of any combination of digits from the set 0 through 7, with a
leading 0. Some examples of octal integer are:

037 0 0435 0551
A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer (hex integer). They
may also include alphabets A through F or a through {. A letter A through F represents the numbers 10
through 15. Following are the examples of valid hex integers.

oxe 0X9F Oxbcd 0x
We rarely use octal and hexadecimal numbers in programming.
Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,
heights, temperatures, prices, and so on. These quantities are represented by numbers containing
fractional parts like 17.548. Such numbers are called real (or floating poinf) constants. Further
examples of real constants are:

0.0083 -0,75 43516
These numbers are shown in decimal rotation, having a whole number followed by a decimal point
and the fractional part, which is an integer. It is possible that the number may not have digits before the
decimal point or digits after the decimal point. That is,
215, o5 =71
are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value
215.65 may be written as 2.1565¢2 in exponential notation. €2 means multiply by 107, The general
form is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is an
integer with an optional plus or minus sign. The letter e separating the mantissa and the exponent can

Presented By: http://www.ebooksuit.com

Constanis, Variables, and Data Types 45

be written in either lowercase or uppercase. Since the exponent causes the decimal point 1o “float”, this
notation is said to represent a real number in floating point form. Examples of legal floating point
consiants are:

0.65e4 12e-2 1.5e +5 3.18E3 -1.2E-1

Embedded white (blank) space 15 not allowed, in any numenc constant.
Exponential notation is useful for representing numbers that are either very large or very small in

magnitude. For example, 7500000000 may be wntten as 7.5E9 or 75ER. Similarly, —0.000000368 15
equivalent to —3.68E-7,

A floating point constant may thus comprise four parts:

* a whole number
» a decimal point
a fractional part
* an exponent

Single Character Constants
A single character constant (or simply character constant) contains a single character enclosed within
a pair of single quote marks. Examples of character constants are:
ij'l -|x'- l:" [
Mote that the character constant *5° is not the same as the number 5, The last constant is a blank
space.
String Constants
A siring constant is a sequence of characters enclosed between double quotes. The characters may be
alphabets, digits, special characters and blank spaces. Examples are:
“Hello Java™ “1997" “WELL DONE" “r." “5+3" “Xr

Backslash Character Constants

Java supports some special backslash character constants that are used in output methods. For example,
the symbol “n’ stands for newline character. A list of such backslash character constants is given in
Table 4.1. Note that each one of them represents one character, although they consist of two characters.
These characters combmations are known as escape sequences.

Table 4.1 _Backslash Character Con

Cansiant Meaning
Ab° back space
et form feed
“An’ new line

Ar' carriage renim
% honzontal tab
B single quote
T double quote
AN backslash

Presented By: http://www.ebooksuit.com

46 PO WA e A Frimar

4.3 Variables

A variable 15 an identifier that denotes a storage location used to store a data value. Unlike constants
that remain unchanged during the execution of a program, a variable may take different values at
different times during the execution of the program, In Chapter 3, we had used several vanables. For
instance, we used variables length and breadth to store the values of length and breadth of a room.
A variable name can be chosen by the programmer in a meaningful way so as to reflect what it
represents in the program. Some examples of variable names are:
* average
» height
e total_height
* classStrength
As mentioned earlier, variable names may consist of alphabets, digits, the underscore{) and dollar
characters, subject to the following conditions:
1. They must not begin with a digit.
2. Uppercase and lowercase are distinct. This means that the vanable Total is not the same as total
or TOTAL.
3. It should not be a keyword.
4. White space is not allowed,
5. Vanable names can be of any length.

g 4.4 Data Types

Every vaniable in Java has a data type. Data types specify the size and type of values that can be stored.
Java language is rich in its data fypes. The variety of data types available allow the programmer to
select the type appropriate to the needs of the application. Data types in Java under vanous categories
are shown in Fig. 4.2. Primitive types (also called inirinsic or buili-in types) are discussed in detail in

DATA TYPES IN JAVA

l

| !
Brimative e -Prisnifive
{Inbrinusic) (Derived)
. I
S S T i
Numeric | | Mon-numeric | Classes I Arrays
1 |
§ ' 1 s

" Fig.4.2 ' Data types in Java

Presented By: http://www.ebooksuit.com

Constants Vaies waData Tpes a

this chapter. Derived types (also known as reference types) are discussed later as and when they are
encountered.

Integer Types

Integer types can hold whole numbers such as 123, -96, and 5639. The size of the values that can be
stored depends on the integer data type we choose. Java supports four types of integers as shown in

Fig. 4.3. They arc byte, short, int, and long. Java does not support the concept of unsigned types and
therefore all Java values are signed meaning they can be positive or negative, Table 4.3 shows the
memory size and range of all the four integer data

R R -

Tipe Size Minimum value H.qum value

byte One byte 128 127

short Two bytes ~32, 768 32, 767

int Four bytes -2, 147, 483, 648 2, 147, 483, 647

long Eight bytes -9, 223, 372, 036, 854, 775, BOR 9, 223, 372, 036, B34, 775, 807

It should be remembered that wider data types require more time for manipulation and therefore it is
advisable to use smaller data types, wherever possible. For example, instead of storing a number like
50 in an int type variable, we must use a byte variable to handle this number. This will improve the
speed of execution of the program.

We can make integers long by appending the letter L or | at the end of the number. Example:

123L or 1231

Floating Point Types

Integer types can hold only whole numbers and therefore we use another type known as floating point
type to hold numbers containing fractional parts such as 27.59 and —1.375 (known as floating point
constants). There are two kinds of floating point storage in Java as shown in Fig. 4.4,
The Noat type values are single-precision numbers while the double types represent double-
precision numbers. Table 4.4 gives the size and range of these two types.
Floating point numbers are treated as double-precision quantities. To force them to be in single-
precision mode, we must append { or F to the numbers, Example:
1.23fF
7.56923e5F

Presented By: http://www.ebooksuit.com

Tipe Size Minimm value Maximum value
float 4 bytes 3.4e-038 3. 4e+D38
double 8 bytes 1.7e-308 1.7e+ 308

-Fig- 44 Floating point dala types

Dwouble-precision types are used when we need greater precision in storage of floating point
numbers. All mathematical functions, such as sin, cos and sgri return double type values.

Floating point data types support a special value known as Not-a-Number (NaN). NaN is used to
represent the result of operations such as dividing zero by zero, where an actual number is not
produced. Most operations that have NaN as an operand will produce NaN as a result.

Character Type

In order to store character constants in memory, Java provides a character data type called char. The
char type assumes a size of 2 bytes but, basically, it can hold only a single character,

Boolean Type

Boolean type is used when we want to test a particular condition during the execution of the program.
There are only two values that a boolean type can take: true or false. Boolean type is denoted by the
keyword boolean and uses only one bit of storage.

All comparison operators (see Chapter 5) return boolean type values. Boolean values are often used
in selection and iteration statements. The words true and false cannot be used as identifiers.

4.5 Declaration of Variables

In Java, variables are the names of storage locations. After designing suitable variable names, we must
- declare them to the compiler. Declaration does three things:

1. Tt tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

3. The place of declaration (in the program) decides the scope of the vanable.
A variable must be declared before it is used in the program.

A variable can be used to store a value of any data type. That 1s, the name has nothing to do with the

type. Java allows any properly formed vanable to have any declared data type. The declaration
statement defines the type of variable. The general form of declaration of a vanable 1s:

Presented By: http://www.ebooksuit.com

St Vol i D s ~

type variablel, variable?, variableN:

Variables are separated by commas. A declaration statement must end with a semicolon. Some valid
declarations are:

int count :
float X, 0¥:
double pi:

byte b;

char cl. ¢2. c3:

g 4.6 Giving Values to Variables

A variable must be given a value after it has been declared but before it is used in an expression. This
can be achieved in two ways:

1. By using an assignment statement
2. By using a read statement

Assignment Statement
A simple method of giving value to a variable is through the assignment statement as follows:

variableName = value:

For example:
initialvalue = 0:
finalValue = 100:
¥es = "x':
We can also siring assignment expressions as shown below:
X =y =7 =10
It is also possible to assign a value to a variable at the time of its declaration. This takes the form:

type variableName = value:

Examples:
int finalValue = 100 ;
char yEes = txT
double total = 75.36;

The process of giving initial values to variables is known as the initialization. The ones that are not
initialized are automatically set to zero.
The following are valid Java statemenis:

float =, y, z: [/ declares three float variables
int m =5 n = 10: // declares and initialises two int variables
int m, n = 10; !/ declares m and n and initialises n

Presented By: http://www.ebooksuit.com

50 Programming witdava: A Frimer
Read Statement

We may also give values to vanables interactively through the keyboard using the readLine() method
as illustrated in Program 4.1.

Program 4.1 Reading data from keyboard
import java.io.DatalnputStream;

class Reading

{
public static woid main{String args[])
{
Datalnputitream in = new DatalnputStream{System.in);
int intNumber = 0:
float floatNumber = 0.0f:
try
{
System.out.printin{“Enter an Integer: ~};
intNumber = Integer.parselnt{in.readLine());
System.out.printin{"Enter a float number: 7);
floatNumber =
Float .valuelf(in.readLine()) .floatValue{);
}
catch (Exception e) {]
System.out.printin{”intNumber = ° + intNumber):
System_out.printini floatNumber = ° + floatNumber):
]
}

The interactive input and output of Program 4.1 are shown below:
Enter an integer:
123
Enter a float number:
123.45
intNumber = 123
floatNumber = 123.45
The readLine() method (which s invoked using an object of the class DatalnputStream) reads
the input from the keyboard as a string which is then converted to the corresponding data type using the
data type wrapper classes. See Chapter 9 for more about wrapper classes.

Mote that we have used the keywords try and catch to handle any errors that might occur during the
reading process. Java requires this. See Chapter 13 for more details on error handling.

Presented By: http://www.ebooksuit.com i L—“Il-: VI |':-J|'-|-'-;:: matel I-:'Il

e ——

ﬂ:
'g 4.7 Scope of Variables

Java variables are actually classified into three kinds:

o jmstance variables,
» ¢lass vanables, and
¢ [ocal variables,

Instance and class variables are declared inside a class. Instance variables are created when the
objects are instantiated and therefore they are associated with the objects. They take different values
for each object. On the other hand, class variables are global to a class and belong to the entire set of
objects that class creates. Only one memory location is created for each class variable. Instance and
class variables will be considered in detail in Chapter 8.

Variables declared and used inside methods are called Jocal variables. They are called so because
they are not available for use outside the method definition. Local variables can also be declared inside
program blocks that are defined between an opening brace | and a closing brace }. These vanables are
visible to the program only from the beginning of its program block to the end of the program block.
When the program control leaves a block, all the varniables in the block will cease to exist. The area of
the program where the vanable 15 accessible (1.e., usable) i1s called its scope.

We can have program blocks within other program blocks (called nesting) as shown in Fig. 4.5,

{
lockl
int x = 0: wloc
{ Block?
int m = 5;
I }
{ Block3
int m = 10;
1
}

- Fig.48 " Nested program blocks

Presented By: http://www.ebooksuit.com

52 Programming with Java: A Primer

Each block can contain its own set of local vanable declarations. We cannot, however, declare a
vanable to have the same name as one in an outer block. In Fig. 4.5, the vanable x declared in Blockl
is available in all the three blocks. However, the variable m declared in Block2 is available only in
Block2, because it goes out of the scope at the end of Block2. Similarly, m is accessible only in Block3.

Mote that we cannot declare the vanable x again in Block2 or Block3 (This is perfectly legal in C
and C++).

B 48 Symbolic Constants

We often use certan unique constants i a program. These constants may appear repeatedly in a number
of places in the program. One example of such a constants is 3.142, representing the value of the
mathematical constant “pi”, Another example is the total number of students whose mark-sheets are
analysed by a “test analysis program’. The number of students, say 50, may be used for calculating the
class total, class average, standard deviation, etc. We face two problems in the subsequent use of such

programs. They are:

1. Problem in modification of the program.
2. Problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations
of the number 50 to 100 o process the test resulis of another class. In both the cases, we will have to
search throughout the program and explicitly change the value of the constant wherever it has been
used. 1f any value is left unchanged, the program may produce disastrous outputs,

Understandability

When a numeric value appears in a program, its use 15 not always clear, especially when the same value
means different things in different places. For example, the number 50 may mean the number of
students at one place and the *pass marks™ at another place of the same program. We may forget what a
certain number meant, when we read the program some days later.

Assignment of a symbolic name to such constants frees us from these problems, For example, we
may use the name STRENGTH to denote the number of students and PASS MARK 1o denote the
pass marks required in a subject. Constant values are assigned to these names at the beginning of the
program. Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect
of causing their defined values to be automatically substituted at the appropriate points. A constant is
declared as follows:

| final type symbolic-name = value;

Valid examples of constant declaration are:

final int STREMGTH = 100:
final 1int PASS MARK = 50;
final float PI = 3.14159:

Presented By: http://www.ebooksuit.com

53

MNote that:

1. Symbolic names take the same form as variable names. But, they are written in CAPITALS to
visually distinguish them from normal variable names. This is only a convention, not a rule.

2. After declaration of symbolic constants, they should not be assigned any other value within the
program by using an assignment statement. For example, STRENGTH = 200; is illegal.

3. Symbolic constants are declared for types. This is not done in C and C++ where symbolic
constants are defined using the # define statement.

4. They can NOT be declared inside a method. They should be used only as class data members in
the beginning of the class.

@ 4.9 Type Casting

We often encounter situations where there is a need to store a value of one type into a variable of
another type. In such situations, we must cast the value to be stored by proceeding it with the type name

in parentheses. The syntax is:

type variablel = (type) variabled;

The process of converting one data type to another is called casting.

Examples:
int m = &0
byte n = (byte)m;

long count = {longlm;

Casting is often necessary when a method returns a type different than the one we require.

Four integer types can be cast to any other type except boolean. Casting into a smaller type may
result in a loss of data. Similarly, the float and double can be cast to any other type except boolean.
Again, casting to smaller type can result in a loss of data. Casting a floating point value to an integer
will result in a loss of the fractional pan. Table 4.5 lists those casts, which are guaranteed to result in no
loss of information.

.) Tablé45 Casts thatResults in No Loss of Information - . .-
To

From
byte short, char, int, long. float. double
chort int, long, float. double
char int. long., float. double
int long. float. double
Tang float, double
float double
Automatic Conversion

For some types, it is possible to assign a value of one type to a variable of a different type without a
cast. Java does the conversion of the assigned value automatically. This is known as aufomatic type

Presented By: http://www.ebooksuit.com

54 Frogremiming with Jave: A Primer
conversion. Automatic fype conversion is possible only if the destination type has enough precession
to store the source value. For example, int is large enough to hold a byte value. Therefore,

byte b = 75:

int a = b:
are valid statements,

The process of assigning a smaller type to a larger one is known as widening or promofion and that

of assigning a larger type to a smaller one is known as narrowing. Note that narrowing may result in
loss of information.

Program 4.2 illustrates the creation of variables of basic types and also shows the effect of type
COnVersions.

Program 4.2 Creation and casting of variables

class TypeWrap

{

public static void main(5tring args[])

{
System.out.printin{"Variables created”):
chart ¢ = "x°;
byte b = &0
short 5 = 1996:
int 1 = 123456789:
Tlong 1 = 1234567654321L;
float f1 = 3. 142F:
float f2 = 1.Z2e-=5F:
double d2 = 0.000000987;
System.out.printin(® ¢ = " + ¢):
System,out printin(™ b = " + Db):
system.out.printin{™ 5 = " + 5};
System.out.printin(™ 1 = " + 1)
System.out.printin(® 1 = 7 + 1};
System.out_printin{® fl = = + fl):
System.out _printin(® f2 = 7 + f2);
System.out.printin(™ d2 = = + d2);
System.out .printin(™ 7J;
System.out .printin{"Types converted™);
short sl = (shortlb;
short s2 = (shortl)i: // Produces incommect result
float nl = (float)l:
int ml = {int)fl; // Fractional part is lost
system.out.printin{(® (short}b = ° + s51);
system.out.printin{(® (short)i = " + sZ};
System.out _printin{” (flpoat)l = ° + nl);
system.out _printin(™ (int) 1l = ~ + ml);

}

}

Presented By: http://www.ebooksuit.com G L-l|.'§ '_'r' [Ii-.jr-l-.'.-;:: matel I-:-Il

55

o =

Output of Program 4.2 is as follows:
Variables created

cC =X

b = 50

s = 19%

i = 123456789

1 = 1234567654321
fl = 3.142

f2 = 1.2e-005

dz = 9.87e-007

Types converted
{short)b = 50
(short)i = -13035
(float)]l = 1.23457e+012
fint)fl = 3

Note that floating point constants have a default type of double. What happens when we want to
declare a float variable and mnitialize it using a constant? Example:
float x = 7.56;
This will cause the following compaler error;

“Incompatible type for declaration. Explicit cast needed to convert
double to float.”
This should be written as:

float = = 7_56F:

.

= 410 Getting Values of Variables

A computer program is written to manipulate a given set of data and to display or print the resulis. Java
supports two output methods that can be used to send the results to the screen.

« print() method ff print and wait

« printin() method // printa line and move to next line

The print() method sends information into a buffer. This buffer is not flushed until a newline {or

end-of-line) character is sent. As a result, the print({) method prints output on one line until a newline
character is encountered. For example, the statements

System.out.print (“Hello "}):
System. out . print{~Java!”)}:

will display the words Hello Java! on one line and waits for displaying further information on the same

line. We may force the display to be brought to the next line by printing a newline character as shown
below:

System.out.print ('\n");:
For example, the statements

System.out.print{ “Hello"};
system.out.print(“\n~);
system.out.print{ Java!):

Presented By: http://www.ebooksuit.com

56 - Programming with Java: A Primer

will display the output in two lines as follows:

Hellao
Java!

The println{) method, by contrast, takes the information provided and displays it on a line followed

by a line feed(camage-returm). This means that the statements
System.out _printin{ Hello™)
System._out.printin{ Java'!”):
will produce the following output:
Hello
Java!
The statement

System.gut printin{):

will print a blank line. Program 4.3 illusirates the behaviour of print{) and println{) methods.

Program 4.3 Getting the result fo the screen

class Displaying
{
public static void main(String args(]}
{
system.out .printin(Screen Display™):
for(int 1 = 1; 1 == 9; i++)
{

for (imt Jj = 1: J == i; J++)

System.out, print{® "):
System.out.print(i):

}

System.out.print{~\n~):

System.out.printin{~Screen Display Done™):
}
}

Program 4.3 displays the following on the screen:
screen Display

(T I T T
WD DD] O LN GO R
WD 02~ O U1 b L

WD O d O LR

T- 3. I

T R

Lo

WO o

5
f
Fi
8
9
Screen Display Done

Presented By: http://www.ebooksuit.com

Copyrighted maierial

@ 411 Standard Default Values

In Java, every variable has a default value. If we don't initialize a variable when it is first created, Java
provides default value to that variable type automatically as shown in Table 4.6.

float o.0f

double 0.0d
char null character
boolean false
reference naull

g 412 Summary

This chapter has provided us with a brief description of Java constants and variables and how they are
represented inside the computer. We have also seen how the variables are declared and initialized in

Java.

Converting one type of data to another is often necessary during implementation of a program. We
have discussed how data type conversion is achieved in Java without loss of accuracy.

All programs must read, manipulate and display data. We discussed briefly how values are assigned
to variables and how the results are displayed on the screen. These concepts will be applied for
developing larger programs in the forthcoming chapters.

f“ Key Terms

Data, Information, Syntax, Constants, Variables, Integer, Decimal, Octal, Hexadecimal, Real constants,
Floating point constants, Chamacter constants, Backslash chamcters, Reference types, Boolean, NaN,
Initialization, Scope, Instance variables, Class variables, Local variables, Nesting, Casting, Widening,
Narrowing.

Review QUESTIONS

4.1
4.2
4.3
4.4

What is a constant?

What 15 a vanable?

How are constants and variables imporiant in developing programs?
List the eight basic data types used in Java. Give examples.

Presented By: http://www.ebooksuit.com G L-l|.'§ r [I{.jh'.l.';::: matel I-:-Il

4.5
4.6
4.7
4.8

49
4.10

4.11

4.12

4.135

What is scope of & vaniable?
What is type casting? Why 15 it required in programming?
What 15 initialization? Why is it important?
When dealing with very small or very large numbers, what steps would you take to improve the accuracy
of the calculations?
What are symbolic constants? How are they useful in developing programs?
Which of the following are invalid constants and why?
00,0001 S*1.5 RS 75.50
+ 1000 T545E-2 “15.75"7
~45.6 —L45e(+4) 0000001234

Which of the following are invalid variable names and why?
Minimum first. Mame nl+nd
doubles 3rd-row HNE
float Sum Total Total-Marks
Find errors, if any, in the following declaration statements:
Int x;
float length, HEIGHT:
double = p,q;
character C1;
final nt TOTAL;
final pi = 3.142;
long int m;
Write a program o determine the sum of the following harmonic series for a given value of n:
1+ 12+ 1/3+..+1/n
The value of n should be given interactively through the keyboard.
Write a program to read the price of an item in decimal form (like 75.95) and print the output in paise (like
7595 paise).
Write a program to convert the given temperature in fahrenheit to celsius using the following conversion
formula
_F-32
1.8
and display the values in a tabular form.

C

DesvuccinGg EXERCISES

4.1

42

The following code resulis in compile time error, Identify the error.
public static void display()

{
int x = 123456:

float f = 100.12:
System.out _printin{ Float Value = " + f):

}

The following code results in compile time error, Identify the ermor.

Presented By: http://www.ebooksuit.com i L—“Il-: VI |':-J|'-|-'-;:: matel I-:'Il

43

4.4

4.5

 Constants, Variables, and Data Types 59

public static void display(x)
{ a

int ¥y;

if (x = 10)

{

¥ o= X

!)

System out.printin{“Value of ¥ =" + y):
}

What modification should be done to the following code so that the value of the vanable pie is not
miadifiable?
public static wvoid calculate()
{
float pie = 3.14T;
System.out.printin(“Value of Pie = " + pie):

}
The following code results in compile time error while storing the values of int varable to a byte variable.
Identify the problem with the code and provide the solution,
public static void convert()
{
int i = 1245;
byte b = i;
System.out . printin{“Value of Byte Variable b = ° + b);
f
Identify the error in the following code.

Class Scope
{

public static wvoid main (string args[])

{

int m = 10:

int m = 20;
!

}
}

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

Operators and
Expressions

iy

5.1 Introduction

Java supports a rich set of operators. We have already used several of them, such as =, +, —, and *. An
operator is a symbaol that tells the computer to perform certain mathematical or logical manipulations.
Operators are used in programs to manipulate data and variables. They usually form a part of
mathematical or logical expressions.
Java operators can be classified into a number of related categories as below:
Arithmetic operators
Relational operators
Logical operators
Assignment operators
Increment and decrement operators
Conditional operators
Bitwise operators
Special operators
In this chapter, we discuss each one of these categories with illustrations.

80 = oh M Bl b=

g 5.2 Arithmetic Operators

Arithmetic operators are used to construct mathematical expressions as in algebra. Java provides all
the basic arithmetic operators. They are listed in Table 5.1. The operators +, —, *, and / all work the

Presented By: http://www.ebooksuit.com

* Operstors and Exressions 61
same way as they do in other languages. These can operate on any buili-in numeric data type of Java.
We cannot use these operators on boolean type. The unary minus operator, in effect, multiplies its
single operand by ~ 1. Therefore, a number preceded by a minus sign changes its sign.

Cperator Meaning

+ Addition or unary plus

- Subtraction or unary minus

" Multiplication

/ Division

o Modulo division (Remainder)

Arnthmetic operators are used as shown below:

a-b a+b
a*b al/b
a%b —a*h :
Here a and b may be variables or constants and are known as operands.
Integer Arithmetic

When both the operands in a single arithmetic expression such as a + b are integers, the expression is
called an infeger expression, and the operation is called integer arithmetic. Integer arithmetic always
yields an integer value. In the above examples, if a and b are integers, then for a= 14 and b= 4 we have
the following results:

a-b = 10

a+b = |8

a*b = 56

a/b = 3 (decimal part truncated)
a%b = 2 (remainder of integer division)

a'b, when a and b are integer types, gives the result of division of a by b after truncating the divisor.
This operation is called the integer division.
For modulo division, the sign of the result is always the sign of the first operand (the dividend). That is

-14 % 3 = -2
-14 % -3 = -2
14 % -3 = 2

(Note that module division is defined as: a%b = a— (a’'b)*h, where a'b is the integer division.)
Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may
assume values either in decimal or exponential notation. Since floating point values are rounded to the
number of significant digits permissible, the final value is an approximation of the correct result.
Unlike C and C++, modulus operator % can be applied to the floating point data as well. The
floating point modulus operator returns the floating point eguivalent of an integer division. What this

Presented By: http://www.ebooksuit.com

62 - Frogramming wih Java: A Priver

means is that the division is carried out with both floating point operands, but the resulting divisor is
treated as an integer, resulting in a floating point remainder. Program 5.1 shows how arithmetic
operators work on floating point values.

Program 5.1 Floating point arithmetic

class FloatPoint
{

public static void main(String args[])

t
float a = 20.5F. b = & 4F:
System.out.printin{” a = " + a);
System.out.printin{® b = " + b);
System out.printin{” a+b = " + (a+b)):
System.out.printin{® a-b + (a-bl):
System.out .printin(” a*b + (a*b)):
System. out.printin(™ a/b = = + {a/b)):

System.out.printin(” aib {akb)):

The output of Program 5.1 is as follows:

a=20.5
b==64

a+bh = 26.9
a-b = 14.1
a*b = 131.2
a/b = 3.20313
ath - 1.3

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mived-mode
arithmetic expression. If either operand is of the real type, then the other operand is converted to real
and the real arithmetic is performed. The result will be a real. Thus

15/10.0 produces the result 1.5
whereas
15710 produces the result 1

More about mixed operations will be discussed later when we deal with the evaluation of
EeXpressions.

% 5.3 Relational Operators

We often compare two quantities, and depending on their relation, take certain decisions. For example,
we may compare the age of two persons, or the price of two items, and so on. These comparisons can

Presented By: http://www.ebooksuit.com

be done with the help of relational operarors. We have already used the symbol *<" meaning ‘less
than'. An expression such as

a<borx<?2

containing a relational operator is termed as a relarional expression. The value of relational expression
is either true or false. For example, if x = 10, then

X< 20 is true
while

20 = x is false.

Java supports six relational operators in all. These operators and their meanings are shown in
Table 5.2.

Table 5.2 Relational Operators

Clperator) Meaning

< i5 less than

== 15 less than or equal to

> is greater than

= 15 greater than or equal to
== is equal to

Jo is not equal to

A simple relational expression contains only one relational operator and is of the following form:

L ae-1 relational operator ae-2

ae—I and @e—2 are arithmetic expressions, which may be simple constants, variables or combination
of them. Table 5.3 shows some examples of simple relational expressions and their values.

[FE T =

[0 er TableS3 Relational Expressions
Expression
4.5 == 10
45<-10
—35 ==
10=T+5
a+b==c+d TRUE*

* Only if the sum of values of 2 and b is equal to the sum of values of ¢ and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic
expressions will be evaluated first and then the results compared. That is, arithmetic operators have a

higher priority over relational operators. Program 5.2 shows the implementation of relational
operators.

Presented By: http://www.ebooksuit.com

Copyrighted material

64 e I A Friber .
Program 5.2 Implementation of relational operators
class RelationalOperators

{
public static void main{String args[])
{
float a = 15.0F. b = 20,75F, ¢ = 15.0F;
System_out _printin{® a = " + a);:
System. out _printIn{® b = " + b):
System.out _printin{” ¢ = " + ¢);
System.out.printin{™ a < b is ~ + (a<b));
System.out.printin{® a = b is 7 + (a=b));
System. out.printin(® a == ¢ 15 " + (a==C));
System. out printin{™ a <= c 15 " + (a<=C)):
System_out.printin(” a >= b is " + (a==h));
System_out printIn(™ b !'= ¢ 15 ° + (bl=c});
System.out.printIn{® b == a+c is " + (b=ea+c));
}
}
The output of Program 5.2 would be:
a=15
b = 20.75
c=15 .

g = b is true

a>b is false

g == 15 true

g <= 15 Ltrue

a>=h 15 false

a != ¢ is true

b == a+c 15 false

Relational expressions are used in decision statements such as, if and while to decide the course of
action of a nnning program. Decision statements are discussed in detail im Chapters 6 and 7.

@ 5.4 Logical Operators
In addition to the relational operators, Java has three logical operators, which are given in Table 5.4.

1 logical NOT

Presented By: http://www.ebooksuit.com |__ L—,'|.'J r [I'{.jr-l-.'.-,':: matel |-:-||

The logical operators && and | | are used when we want to form compound conditions by combining
two or more relations. An example is:
a >0 & x=—10

An expression of this kind which combines two or more relational expressions is termed as a logical
expression or a compound relational expression. Like the simple relational expressions, a logical
expression also yields a value of true or false, according to the truth table shown in Table 5.5. The

logical expression given above is true only if both a > b and x = 10 are true. If either (or both) of them
are false the expression is false.

op-1 op -2 op-1d&&op-2 op-I|lop-2
true frue true frue
true false false true
false truc false true
false false falsi false

Note:
o op-I && op-2 is true i both ap- 1 and op- 2 are true and false otherwise.
e op—1 || op—2 is false if both op—1 and op-2 are false and true otherwise.
Some examples of the usage of logical expressions are:

1. if (age=55 && salary<l000)
2. 1f (number<{ || number=100}

g 5.5 Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. We have seen the
usual assignment operator, ‘=", In addition, Java has a set of *shorthand” assignment operators which
are used in the form

v Op= exp;

where v is a variable, exp is an expression and op is a Java binary operator. The operator op = is known

as the shorthand assignment operator.
The assignment statement

v op= exp:

15 equivalent to
v = v oplexp):

with v accessed only once. Consider an example
X o+= y+l:

This is same as the statement
¥ o= x+{y+l);

Presented By: http://www.ebooksuit.com

66 Programming wih Java: A Primer
The shorthand operator += means *add y+1 to X" or “increment x by y+1°. For y = 2, the above
statement becomes

% += 3

and when this statement 15 executed, 3 1s added to x. If the old value of x 1s, say 5, then the new value
of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 5.6.

1] AN W

= Ak T S 25.6 Sho . . R
Statement with simple Stctentent with
assignment operator shorthand operator
a = a+l a += 1
a = a-1 a -= 1
a = a*(n+l) a *= n+l
a = afln+l) a /= n+l
a = a%hb a %= b

The use of shorthand assignment operators has three advantages:
1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.
3. Use of shorthand operator results in a more efficient code.

5.6 Increment and Decrement
Operators

Java has two very useful operators not generally found in many other languages. These are the
increment and decrement operators.

++ and -

The operator ++ adds 1 to the operand while ——subtracts 1. Both are unary operators and are used
in the following form:
+4m: or m++:
==m; Qar M==
+4m; s equivalent tom=m + 1; (or m+= 1;)
——m; s equivalent tom=m - 1: {or m —= 1;)
We use the increment and decrement operators extensively in for and while loops. (See Chapter 7.)
While ++m and m++ mean the same thing when they form statements independently, they behave
differently when they are used in expressions on the right-hand side of an assignment statement.
Consider the following:
m = 5
y = +Hn
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statement as
m=5;
¥y = M+

Presented By: http://www.ebooksuit.com |__ ;-’II-.’. r [I;;-Jh-'-;:: matel I-:-Il

then, the value of y would be 5 and m would be 6. A prefix operator first adds | to the operand and then
the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value
to the variable on left and then increments the operand. Program 5.3 illustrates this.

Program 5.3 Increment Operator lllustrated

class IncrementOperator
{
public static void main(String args[])
{
intm= 10, n = 20;
System.out.printin(*" m =" + m);
System_ out.printin{® n = " + n):
system.out.printin{® ++m = ~ + ++m);
system.out.printin{® n++ = = + m+);
System.out.printin{" m =" + m);
System_out.printin{®" n =" + n):

Output of Program 5.3 is as follows:
m= 10
n=20
++#m = 11
n++ = 20
m= 11
n=>~21

Similar is the case, when we use ++ {or - —) in subscripted variables. That is, the statement
ali++] = 10

is equivalent to

alil = 10
i = j+]

g 5.7 Conditional Operator

The character pair 7 : is a ternary operator available in Java. This operator is used to construct
conditional expressions of the form

expl 7 expd : expld

where expl, exp2, and expd are expressions.
The operator 7 : works as follows: expl is evaluated first. If it is nonzero (true), then the expression
expl is evaluated and becomes the value of the conditional expression. If expl i1s false, exp3d is

Presented By: http://www.ebooksuit.com

o Virreiracning W A Frimer

evaluated and its value becomes the value of the conditional expression. Note that only one of the
expressions (either exp or expd) is evaluated. For example, consider the following statements:
a = 10;
b = 15;
x={a>hb)?a:hb:
In this example, x will be assigned the value of b. This can be achieved using the if...else statement
as follows:
if{a > b)
X o= a:
else
x = b

g 5.8 Bitwise Operators

Java has a distinction of supporting special operators known as bitwise operators for manipulation of
data at values of bit level. These operators are used for testing the bits, or shifting them 1o the right or
left. Bitwise operators may not be applied to float or double. Table 5.7 lists the bitwise operators. They
are discussed in detail in Appendix D.

Operator Meaning

& bitwise AND

! bitwise OR

- bitwise exclusive OR

~ one’s complement

= chift left

e shift right

o shift right with zero fill

& 5.9 Special Operators

Java supports some special operators of interest such as instanceof operator and member selection
operator {.).

Instanceof Operator

The instanceof is an object reference operator and returns frue if the object on the left-hand side is an
instance of the class given on the right-hand side. This operator allows us to determine whether the
object belongs to a particular class or not.
Example:

person instanceof student
is frue if the object person belongs to the class student; otherwise it is false.

Presented By: http://www.ebooksuit.com 0 L—-I-; VI |':-J|'-|-'-;:: matel I-:'Il

Dot Operator

The dot operator {.) is used to access the instance variables and methods of class objects. Examples:

personl.age I Reference to the variable age
personl.salary()} [/ Reference to the method salary()

It is also used to access classes and sub-packages from a package.

% 5.10 Arithmetic Expressions

An arithmetic expression is a combination of variables, constants, and operators arranged as per the
syntax of the language. We have used a number of simple expressions in the examples discussed so far.
Java can handle any complex mathematical expressions. Some of the examples of Java expressions are
shown in Table 5.8, Remember that Java does not have an operator for exponentiation.

ab-c a*b-c
(m+n)(x+y) (m+n)*(x+y)
ab

— a*hic

c
Ixct+2x+1 Fextx+2%+1
X, Q wy+e

¥

% 5.11 Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

variable = expression:

variable is any valid Java variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-hand side. All
variables used in the expression must be assigned values before evaluation is attempted. Examples of
evaluation statements are

X = a*b-c;

¥ = bic*a:

Z = a-blc+d:

The blank space around an operator is optional and is added only to improve readability. When these
statements are used in program, the variables a,b,c and d must be defined before they are used in the
CXPTEssIons.

Presented By: http://www.ebooksuit.com

n * Progranming it dove: A Primr

fg 512 Precedence of Arithmetic
Operators

An arithmetic expression without any parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinct prionty levels of anthmetic operators in Java:

High priority * /X
Low priority + -
The basic evaluation procedure includes two left-to-right passes through the expression. During the
first pass, the high pnionty operators (if any) are apphed as they are encountered.
During the second pass, the low prionity operators (if any) are applied as they are encountered.
Consider the following evaluation staternent:
x = a=Df3 + ¢*2-]
When a =9, b= 12, and ¢ = 3, the statement becomes
x = 9-12/3+3%2-1
and is evaluated as follows:

First pass
Stepl: x = 9-d4+3%2-] (12/3 evaluated)
Stepd: x = 9-4+6-1 (3*2 evaluated)
Second pass
Stepd: x = H+6-] (0-4 evaluated)
Stepd: x = 11-1 (5+6 evaluated)
StepS: x = 10 (11-1 evaluated)

However, the order of evaluation can be changed by introducing parentheses into an ﬂpr:aamn
Consider the same expression with parentheses as shown below:

9-12/{3+3)%(2-1)

Whenever the parentheses are used, the expressions within parentheses assume highest prionty. If
two or more sels of parentheses appear one after another as shown above, the expression contained in
the lefi-most set is evaluated first and the right-most in the last. Given below are the new steps.

First pass
Stepl: 9-12/6%(2-1)
Step2: 9-12/6%1
Second pass
stepd: 9-2*1
Stepd: 9-2
Third pass
Steph: 7

This time, the procedure consists of three lefi-to-nght passes. However, the number of evaluation
steps remain the same as 5 (i.¢., equal to the number of arithmetic operators).

Presented By: http://www.ebooksuit.com

*Oporsors and Exprossions n

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward
from the innermost set of parentheses. Just make sure that every opening parentheses has a matching
closing one. For example

9-(12/(3+3)*2)-1 = 4
whereas
9=((12/3)+3*2)=]1 = =
While parentheses allow us to change the order of priority, we may also use them to improve

understandability of the program. When in doubt, we can always add an extra pair just to make sure
that the priority assumed is the one we require.

=
-8

513 Type Conversions in
Expressions

Automatic Type Conversion

Java permits mixing of constants and vanables of different types in an expression, but during
evaluation it adheres to very strict rules of type conversion. We know that the computer, considers one
operator at a time, involving two operands. If the operands are of different types, the “lower” type is
automatically converted to the *higher’ type before the operation proceeds. The result is of the higher
tvpe.

If byte, short and int variables are used in an expression, the result is always promoted to int, to
avoid overflow, If a single long is used in the expression, the whole expression is promoted to long.
Remember that all integer values are considered to be int unless they have the 1 or L appended to them.
If an expression contains a fleat operand, the entire expression is promoted to Moat. If any operand is
double, result is double. Table 5.9 provides a reference chan for type conversion.

Table 59 Automatic Type Conversion Chart

char byte short inf long Moat double
char int int int int long float double
byie int it int int long float double
short int int int int long float double
imt int init int int long ot double
long long long long long long float double
MNoat float float float float float float double

double double double double double double double double

The final result of an expression is converted to the type of the variable on the left of the assignment
sign before assigning the value to it. However, the following changes are introduced during the final
assignment.

1. Moat to int causes truncation of the fractional part.
2. double to Moat causes rounding of digits.
3. long o int causes dropping of the excess higher order bits.

Presented By: http://www.ebooksuit.com

72

Casting a Value

We have already discussed how Java performs type conversion automatically. However, there are
instances when we want to force a type conversion in a way that is different from the automatic
conversion. Consider, for example, the calculation of ratio of females to males in a town.

ratio = female number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part
of the result of the division would be lost and ratio would not represent a comect figure. This problem
can be solved by converting locally one of the variables to the floating point as shown below:

ratio = (float)female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of
the expression, Then using the rule of automatic conversion, the division is performed in floating point
mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female_number. And
also, the type of female_number remains as int in the other parts of the program.

The process of such a local conversion is known as casting a value. The general form of a cast is:

(type_name) expression

where type-name is one of the standard data types. The expression may be a constant, variable or an
expression. Some examples of casts and their actions are shown in Table 5.10,

Examples Action

x = {inmt) 7.5 7.5 15 converted to integer
by truncation

a = (int)2].3/01nt)4.5 Evaluated as 21/4 and the
result would be &

b = (double) sum/n Division is dome in
floating point mode.

y = (int) (a+h) The result of a + b is
converted to integer,

Zz = (int) a+b a 15 converted to integer
and then added to b.

p = cost ((double)x) Converts x to double before

using it as parameter.

Casting can be used to round-off a given value to an integer. Consider the following statement:
x = (int) (y+0.5):

If y is 27.6, y + 0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of
course, the expression being cast is not changed.

When combining two different types of variables in an expression, never assume the rules of
automatic conversion. It is always a good practice to explicitly force the conversion. It is more safer.

Presented By: http://www.ebooksuit.com

73

For example, when y and p are double and m 13 int, the following two statements are equivalent.
Y = pm;
y = p+{double)m;
However, the second statement is preferable.
Program 5.4 illustrates the use of casting in evaluating the equation

= 1
a3t
f=]

Program 5.4 [ustration of use of casting operation

class Casting

{
public static void main{String args[]}
{
float sum;
int i;
sum = 0.0F:
for(i = 1; 1 == 10; i++)
{
sum = sum + 1/(float)1;
System.out.print(™ i = " + 1);
System.out print(® sum = © + sum):
}
}
}
Program 5.4 produces the following output:
i=1 sum = 1
i=Z sum = 1.5
i=3 sum = 1.83333
i=4 sum = 2.08333
i=5 sum = 2.28333
i=8 sum = Z.45
i=7 sum = 2 59786
i=8 sum = 2.71786
i=9g sam = 2.B2897
i=10 sum = 2 _97R97

Generic Type Casting

Generics is one of the significant enhancements to Java by J2SE 5.0 programming language. Generics
eliminates the need of explicit type casting in collections. A collection is a set of interfaces and classes
that sort and manipulate a group of data into a single unit. For further information on collections, refer

to Chapter 18.
To retrieve elements from a collection, we need to typecast the elements, because each element in a
collection is considered to be an object. Also, typecasting is an unsafe operation because the compiler

Presented By: http://www.ebooksuit.com

Z * Proramming i Jov: A Primer

cannot check the wrong casts. The compiler throws an exception if the casts fail at runtime. When
using generics, the compiler inserts type casts at appropriate places to implement type casting.
Therefore, the typecast becomes implicit rather than explicit. Generics also determines the typecast
errors at compile fime rather than run time. Now, collections can contain objects of only one type.
Using Generics, we can specify the type information of data using a parameter. The type information
specifies the class and hierarchy of classes and interfaces to which the object belongs. The syntax to
declare a generic class is:

class SampleGenericClass <T=

{
}

Here, <T> indicates that the SampleGenericClass class is of generic type. Program 5.5 illustrates
the use of generic type in the ArrayList collection.

Program 5.5 [Nustration of use of generic type in collections.

import java.util_*:
public class Arraylistcollection
{
ArrayList<Integer= 1ist = new Arraylist<Integer=();
Numberinglist(1ist);
int total = 0;
[terator<Integer> iter=11ist.iterator(};
while (iter. hasNext()})
{
Integer val=iter.next():
total = total + val;
]
System. out . printin{ The Total Amount is “+total):
private static void Numberinglist(ArrayList<Integer> list})

list_add(new Integer(l)):
list. add(new Integer{Z}):

}
}

Program 5.5 produces the following output:
The Total Amount is 3

5.14 Operator Precedence and
Associativity

Each operator in Java has a precedence associated with it. This precedence is used to determine how an
expression involving more than one operator 15 evaluated. There are distinct levels of precedence and
an operator may belong to one of the levels. The operators at the higher level of precedence are

Presented By: http://www.ebooksuit.com

evaluated first. The operators of the same precedence are evaluated either from left to right or from
right to left, depending on the level. This is known as the associativity property of an operator.
Table 5.11 provides a complete lists of operators, their precedence levels, and their rules of association.
The groups are listed in the order of decreasing precedence (rank | indicates the highest precedence
level and 14 the lowest). The list also includes those operators which we have not yet discussed.

Table 5.11 Summary of Java Operators

75

Aﬁnmﬂaﬂuﬂy.

Operator Description Rank
. Member selection Left to right 1
£ Function call

[] Array element reference

- Unary minus Right to left 2
+ ok Increment

-— Decrement

! Logical negation

- Ones complement

{type) Casting

il Multiplication Left to right 3
! Division

i Modulus

+ Addition Left to right 4
- Subtraction

€ Left shift Left to right 8
= Right shift

L Right shift with zero fill

< Less than Left to right 6
et Less than or egual to

> Greater than

. Greater than or egual to

instanceof Type comparison

- Equality Left to right 7
1= Inequality

& Bitwise AND Left to right B
- Bitwize XOR Left to right 9
| Bitwise OR Left to right 10
&4 Logical AND Left to right 11
| | Logical DR Left to right 12
1: Conditional operator Right to left 13
= Assignment operators Right to left 14
op= Shorthand assignment

It is very important to note carefully, the order of precedence and associativity of operators. Consider
the following conditional statement:

if{x == 10+15 && y<10)
The precedence rules say that the addition operator has a higher priority than the logical operator (&&)

Presented By: http://www.ebooksuit.com

Copyrighted material

7 * Programming with daa: A Prior
and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first. This is
equivalent to:
if(x == 25 && y<10)
The next step is to determine whether x is equal to 25 and vy is less than 10, [f we assume a value of 20
for x and 5 for y, then
¥ == 25 1% FALSE
¥ < 10 1s TRUE
Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and then
x == 25 1s tested.
Finally we get:
if(FALSE && TRUE)
Because one of the conditions is FALSE, the compound condition is FALSE.

=

N

£ 5.45 Mathematical Functions

Mathematical functions such as cos, sgrt, log, etc. are frequently used in analysis of real-life problems.

Java supports these basic math functions through Math class defined in the java.lang package.

Table 5.12 lists the math functions defined in the Math class. These functions should be used as follows:
Math. function_name()

Example:
dgouble y = Math.sqrt(x);

&inix) Rewms the sine of the angle x in radians

Cos(x) Rewms the cosine of the angle x in radians

tan(x) Retums the tangent of the angle x in radians

asin(y) Returns the angle whose sine is v

acos(y) REeturns the angle whose cosine is v

atan{y) Retumns the angle whose tangent is y

atan2(x,y) Returns the angle whose tangent is x'y

powix.y) Returns x raised to v (x%)

expix) Returns ¢ raised to x (e*)

logix) Returns the natural logarithm of x

SO Returns the square root of x

ceil{x) Returns the smallest whole number greater than or
equal to x. (Rounding up)

floorx) Returns the largest whole number less than or
equal to x (Rounded down)

rini{x) Retums the truncated value of x.

round(x) Retumns the integer closest to the argument

abs{a) Returns the absolute value of a

maxia,b) Retwms the maximum of a and b

muinfab) Returmns the minimum of a and b

Note: x and v are double type parameters. a and b may be ints, longs, floats and doubles.

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

Opeeionyfrd Exprpasions. n
{;’5 516 Summary

We have discussed all the basic data types and operators available in Java and also seen their use in
expressions. Type conversions and order of precedence of operators during the evaluation of
expressions have been highlighted. Program 5.6 winds up our discussions by demonstrating the use of
different types of expressions.

Finally, it is important to note that all Java types have fixed sizes. There is no ambiguity and all Java
types are machine-independent.

Program 5.6 Demonstration of Java expressions

class ExpressWrap
{
public static void main{String args[])

{

/1 Declaration and Initahzation
inta=10 b=5 ¢c=8.d=2:
float x = 6.4F, v = 3.0F;

{1 Order of Evaluation
int answerl = a * b +cC / d:
int answer? = a * (b + ¢c) / d:

/I Type Conversions

float answerd = a / c:

float answerd = (float) a / c;
float answerh = a / y;

A Maodulo Operations
int answerg = a ¥ ¢;
float answer? = x ¥ y;

/! Logic Operations

boolean booll = a > b && ¢ > d;
boolean bool2 = a < b & ¢ = d;
boolean boold =a <b || c > d:
boolean boold = | {a — b == £);

System.out .printin(~Order of Evaluation™):
system.out.printinf a *b+cCc /f d =" + answerl);
System.out printin{™ a * (b +c) f d =" + answerd);

System. out .printIn{“Type Conversion”);

System.out printIn(® a / ¢ = " + answerd):
System.out.printin{” (float) a / c = " + answerd):
System.out .printIn(™ a / ¥y = 7 + answerh);

{ Continued)

Presented By: http://www.ebooksuit.com

78 Programming with Java: A Primer
Program 5.6 (Continued)

System.out.printin{“Modulo Operations™):
System.out.printIni® a % ¢ = " + answer6):
System.out.printin{® x ¥ y = " + answer7):

System.out.printin{Logical Operations™);

System.out printin(* a>b 88 c > d = " + booll):
System_out.printin(® a < b 88 ¢ > d = " + bool2):
System.out .printin{ a <b || c > d =" + bool3);
System.out.printIn(™ ! (a = b == ¢} = " + bool4):

—t

Program 5.6 outputs the following:

Order of Evaluation
d*b+c/d=54
a*{b+c)/d=85

Type Conversions
ajfec=1
(float) a /f c = 1.25
a/y=3133333

Modulo Operations
alc=2
xiy=10.4

Logical Operations
a>b &k ¢>d = true
a<b&c=>d-= false
a<b||e>d=true
! {a=b == ¢} = true

5.1 Which of the following arithmetic expressions are valid?

(a) 25/3%2 (b) +9/4+5

() 7.5%3 (d) 14%3+7%2
{e) -14% 3 | () 15.25+-5.0
(g) (5/3)*3+5%3 (h) 21 % (int)4.5

Presented By: http://www.ebooksuit.com C DD'}.-’ r-i 'Q htE"d M Ei’[E'ri Eil

32

5.3

54

5.5

5.6

5.7

3.8

3.9

* perators and Exprssions 7o

Write Java assignment statements to evaluate the following equations:
211,115
my + m;

{a) Area=mr + 2rrh (b) Torgue =

(c) Side= ya®+b’-2abcos(x) (d) Energy=mass (mﬂm * height + YOIt
Identify unnecessary parentheses in the following arithmetic expressions.

(a) (x~{y 5)y+z)% 8)+ 25

(b) ((x-y)*p)+q

{e) (m*n)+(-xfy)

(d) xA{3*v)

Find errors, if any, in the following assignment statements and rectify them.

(a) x=y=z=0.5 2.0- 3575

(b) m=++a®* 3}

(e} y = sqri(100);

(d) p*=xly;

(e) 8=/5;

(N a=b++-c*2

Determine the value of each of the following logical expressions ifa= 5 b= 10 and ¢ = -6

(a) a~b&&a<c
b) a<b&&a>c

(c) a=c|b=>a
(d) b>15&&c<0]a=0

(e) (2.0=100 && b2.0!=0.0) || c<0.0

The straight-line method of computing the yearly depreciation of the value of an item is given by
Purchase price — Salvage value

Years of service

Write a program to determine the salvage value of an item when the purchase price, vears of service, and
the annual depreciation are given.

Write a program that will read a real number from the kevboard and print the following output in one line:

Depreciation =

Smallest integer The given number Largest integer
not less than not greater than
the number the number

The total distance travelled by a vehicle in t seconds is given by

distance = ut + {at’)/2
where u is the initial velocity (metres per second), a is the acceleration (metres per second”). Write a
program 0 evaluate the distance travelled at regular intervals of time, given the values of ¥ and a, The
program should provide the flexibility to the user to select his own time intervals and repeat the

calculations for different values of w and a.
In inveniory management, the Economic Order Quantity for a single item is given by

EDQ'-“ 2* demand rate * setup costs
holding cost per item per unit time
and the optimal Time Between Orders

Presented By: http://www.ebooksuit.com C L—,'|.'J Wl I'{.jr-l-.'.-,':: matel |-:-||

510

TBO = j' 2 * setup cosls
\'dmwﬂ rate*holding cost per item per wnit time
Write a program o computer EOQ) and TBO, given demand rate {items per unit time), setup costs (per
order), and the holding cost (per item per unit time).
For a certain electrical circuit with an inductance L and resistance R, the damped natural frequency is
given by

]
1 R
Frequency = E_E

It is desired 1o study the variation of this frequency with C (capacitance). Write a program to calculate the
frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.

DeBuGcGInG EXERCISES

In the following code the expected value is 8, but it prints the value 2. What would you modify in the code
to obtain the expected value?

public static void calculatel)

{
int 1 = 47 + 45 - 48 - §;
int j=5+5-8+ 2
int ans = i ¥ j:

System_out printin{“Value of Ans = ~ + ans):

}
In the following code the expected value is 78 bat it retums the value 39, What would you modify in the
code o obtain the expected value?
public static void calculate()
{
int ans = 42 + 45 — 48 - 5 - 15 + 20 * 2:
system.out . printin{~Value of Ans = = + ans);

}
The following code results in compilation error. Debug the code and rectify the problem.
public static void calculate(}

{
int ans = (2 (+5 - B) (+ 5 - 5) + 10) * 2;
system.out . printin(“Value of Ans = © + ans);
}
In the code given below, what should be changed to obtain the value of 40,0 for X7
public static void calculate()
{
double x = Math.rint(40.6);
double y = Math, abs(40.6):
System.out.printin(~Value of X is = " +x + " and ¥ i5 =" + y):

}

Presented By: http://www.ebooksuit.com E 0 p}. ri g h t a d M 'r_-itlj ri F_-'ll

Decision Making and
Branching

o o

‘Z 61 Introduction
A Java program is a set of statements, which are normally executed sequentially in the order in which
they appear. This happens when options or repetitions of certain calculations are not necessary.
However, in practice, we have a number of situations, where we may have to change the order of
execution of statements based on certain conditions, or repeat a group of statements until certain
specified conditions are met. This involves a kind of decision making to see whether a particular
condition has occurred or not and then direct the computer to execule certain statements accordingly.
When a program breaks the sequential flow and jumps to another part of the code, it is called
branching. When the branching is based on a particular condition, it is known as conditional
branching. If branching takes place without any decision, it 15 known as unconditional branching.
Java language possesses such decision making capabilities and supports the following statements
known as conirol or decision making statements.

1. if statement
2. switch statement
3. Conditional operator statement

In this Chapter, we shall discuss the features, capabilities and applications of these statements which
are classified as selection statements.

Presented By: http://www.ebooksuit.com

82

 Programmung it Jave: A Primer

e
*{@ 6.2 Decision Making with If Statement

The if statement is a powerful decision making statement and 15 used to conirol the flow of execution
of statements. It is basically a rwo-way decision statement and is used in conjunction with an

expression. [t takes the following form:

It allows the computer to evaluate the expression first and then, depending on whether the value of
the expression (relation or condition) is “true’ or *false’, it transfers the control to a particular statement.
This point of program has two paths to follow, one for the frue condition and the other for the false

if (test expression)

condition as shown in Fig. 6.1.

Entry

wat False
EnpTE SO i

|Trul

GBS Twoway branching

Some examples of decision making, using if statement are:

1.

2.

The if statement may be implemented in different forms depending on the complexity of conditions

to be tested.

if (bank balance is zera)
borrow money

if (room is dark)
put on lights

. if [code is 1)

person is male

. if (age is more than 55)

person is retired

1. Simple 1f statement

2. if..else statement

3. Nested if. .else statement
4. else 1f ladder

Presented By: http://www.ebooksuit.com

% 6.3 Simple If Statement
The general form of a simple if statement is

if(test expression)

{

statement-block:

}

statement—x:

The ‘statement-block’ may be a single statement or a group of statements. If the fest expression is
true, the statement-block will be executed; otherwise the statement-block will be skipped and the
execution will jump to the statemeni-x.

It should be remembered that when the condition is true both the statement-block and the statement-
x are executed in sequence. This is illustrated in Fig. 6.2,

\ Entry

et statement

"WFigi82" Flowchart of simple if control

Consider the following segment of a program that is written for processing of marks obtained in an
entrance examination.

{

marks = marks + bonus marks:

System. out . printin(marks):

Presented By: http://www.ebooksuit.com

84 Programming with Java: A Primer
The program tests the type of category of the student. [fthe student belongs to the SPORTS category,

then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks
are not added.

Consider a case having two test conditions, one for weight and another for height. This is done using
the compound relation
if (weight < 50 && height = 170) count = count +1;
This would have been equivalently done using two if statements as follows:
if(weight<50)
if(height=170)
count = count+l:

If the value of weight is less than 50, then the following statement is executed, which in tumn is
another if statement. This if statement tests height and if the height 15 greater than 170, then the count
is incremented by 1. Program 6.1 illustrates the implementation of the above statement.

Program 6.1 Counting with if statement

class I[fTest
{
public static void main{String argll)
{
int 9. count, countl, count?:
float[] weight = { 45.0F., 55.0F, 47.0F, 51.0F, 54.0F };
float[] height = { 176.5F, 174 2F, 168.0F, 170.7F. 169.0F };
count = 0
countl = 0:
count2 = 0:
for (i = 0: 1 <= 4: q4+)
if{weight[1] < 50.0 && height[i] = 170.0)
{

countl = countl + 1:
}

count = count + 1; // Total persons
}
count2 = count - countl:
System.out.printin(“Number of persons with ...7J;
System.out.printin{“Weight<b0 and height>170 = ° <+countl):
System.out.printin("Others = " + count2):

The output of Program 6.1 will be;
Number of persons with .
Weight = 50 and height = 170 = 1
Others = 4

Presented By: http://www.ebooksuit.com |__ ;-’II-.’. r [I;;-Jh-'-;:: matel I-:-Il

o~
> 4 6.4 The If...Else Statement

The if...else statement is an extension of the simple if statement. The general form is

if{test expression)
{ True-block statement(s)
é1se

False-block statement(s)
itatement-x

If the test expression is true, then the true-block statement(s) immediately following the if statement,
are exccuted; otherwise, the false-block statemeni(s) are executed. In either case, either true-block or
falve-block will be executed, not both, This is illustrated in Fig. 6.3. In both the cases, the control is

transferred subsequently to the stafemeni-x.

Entry

Trua Flge
e I
\ |
Trse-binck Falsa-block
Stataments Statements

ey —
1

Fig.83 . Flowchart of if....else control

Let us consider an example of counting the number of boys and girls in a class. We use code | fora
boy and 2 for a girl. The program statements to do this may be written as follows:

iflcode == 1)

boy = boy + 1:
if{code == 2)

girl = girl + 1:

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

b * Programmig it Jovs: A Priner
The first test determines whether or not the student is a boy. If ves, the number of boys is increased
by | and the program continues to the second test. The second test again determines whether the

student is a girl. This is unnecessary. Once a student is identified as a boy, there is no need to test again

for a girl. A student can be either a boy or girl, not both. The above program segment can be modified
using the else clause as follows:

iflcode == 1)

boy = boy + 1:
else

girl = girl + 1;
A

to the statement xxx, after skipping the else part. If the code is not equal to 1, the statement boy = boy
+ 1; 15 skipped and the statement in the else part girl = girl + 1; is executed before the control reaches
the statement xxx.

Program 6.2 counts the even and odd numbers in a list of numbers using the if...else statement.
number| | is an array variable containing all the numbers and number.length gives the number of
elements in the array,

Program 6.2 Experimenting with if....else statement
class IfElseTest

{
public static void main{5tring args[])
{
int number(] = { 50. 65, 5&6. 71. Bl }:
int even = 0, odd = 0;
for (int 1 = 0; 1 < number.length: 9i++)

it ((number[i] ¥ Z) == 0} // Decide even or odd
'l

}

else

':

}
}

system.out.printin("Even Numbers : ° + gven +
 0dd Numbers : ° + odd);

evenn += 1. // counting EVEN numbers

odd += 1. // counting ODD numbers

Output of Program 6.2:
Even Numbers : 2 Odd MNumbers : 3

Presented By: http://www.ebooksuit.com

m & 87

% 6.5 MNesting of If....Else Statements

When a senes of decisions are involved, we may have to use more than one if....else statement in nested
form as follows:

if (test conditionl)
{

if (test condition?)
{

statement-1l: ——y
}

mm— -1 1)

{

statement-2; ——
}

1
= glse

{

}
statement-x;

statement-3; —

The logic of execution is illustrated in Fig. 6.4. If the condition-1 is false, the statement-3 will be
executed; otherwise it continues to perform the second test. Ifthe condition-2 true, the statement-1 will
be evaluated; otherwise the statement-2 will be evaluated and then the control is transferred to the
statement-x.

A eommercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The
policy is as follows: A bonus of 2 per cent of the balance held on 315t December is given to every one,
irrespective of their balances, and 5 per cent is given to female account holders if their balance is more
than Rs 5000, This logic can be coded as follows:

if (balance = 5000)
bonus = 0.05 * balance;
else
} bonus = 0.0 * balance:

else

bonus = 0.02 * balance:
'

Presented By: http://www.ebooksuit.com

balance = balance + bonus:

Entry

. Me_‘-e Flowchart of nested if....else statements

When nesting, care should be exercised to match every if with an else. Consider the following
alternative to the above program (which looks right at the first sight):

if(sex is female)
if(balance = 5000)
bonus = 0.05 * balance:
else
bonus = (.02 * balance;
balance = balance + bonus:

There is an ambiguity as to over which if the else belongs to. In Java an else 15 linked to the closest
non-terminated if. Therefore, the else is associated with the inner if and there is no else option for the
outer if. This means that the computer is trving to execute the statement

balance = balance + bonus:

without really calculating the bonus for the male account holders.
Consider another alternative, which also looks cormrect:

Presented By: http://www.ebooksuit.com ¥ L-“II': r [I:‘.-.Il.-l-'-;:: mater I-:-Il

Decision Making and Branching. 89

if(sex is female)

{
if (balance = 5000)
bonus = 0.05 * balance:
|
else
bonus = 0.02 * balance:
balance = balance + bonus:

In this case, else is associated with the outer if and therefore bonus is calculated for the male account
holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is
not calculated because of the missing else option for the mnner if.

Program 6.3 employs nested if....else statements to determine the largest of three given numbers.
Program 6.3 Nesting if...else statements

class I[fEl1seNesting

public static wvoid main(String args[])

{
int a = 325, b = 712, ¢ = 478:
System.out.print{"Largest value 1is : "):
if (a > b)
{
if (a = c)
system.out . printin(a);
}
else
ﬂ
system.out _printin(c);
}
}
glse
if {(c = b)
{ |
System_out.printinic):
}
else
{ |
System.out.printin{b);
}
}
}
}
Output of Program 6.3:

Largest wvalue 1s : 712

Presented By: http://www.ebooksuit.com i L-*Il-: r [I:t-Jh-'-;::: mater |-:-||

% 6.6 The Else If Ladder

There is another way of putting ifs together when multipath decisions are involved. A multipath
decision is a chain of ifs in which the statement associated with each else is an if. It takes the following
general form:

if (conditionl)
statement-1:

else if {(condition2)
statement-2;

else if (condition3)
statement-3:

aaaaaaaaaaaaaaaaaaaaaaaa

else if {(condition n)
statement-n:

else
default-statement;

statement-x: ¥

This construct is known as the else if ladder. The conditions are evaluated from the top (of the
ladder), downwards. As soon as the true condition 15 found, the statement associated with it 1s executed
and the control is transferred to the statement-x (skipping the rest of the ladder). When all the n
conditions become false, then the final else containing the defauli-statement will be executed. Figure
6.5 shows the logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done
according to the following rules:

Average marks Grade

80 to 100 Honours

60 w 79 First Division
50 w 59 Second Division
40 w 49 Third Division
0w 39 Fail

This grading can be done using the else if ladder as follows:

if(marks > 79)
grade = “Honours :

Presented By: http://www.ebooksuit.com

DS Mebiog and Braching | o

else 1ftmark5 > BQ)
gr'ade = "First Division™:

else ifi(marks > 49)
grade = “Second Division”:

else if(marks = 39)
grade = "Third Division™;

else
grade = “Fail™;
System,out . printin{ "Grade:

+ grade);

Presented By: http://www.ebooksuit.com G 0 p}. ri Q |.-| t e d i 'r_-itlj ri F_-'ll

if (code == 1}

colour = “RED":
else if (code == 2)
colour = “GREENT:

else if (code == 3)
code = "WHITE":

glse
colour = “Yellow":

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results
can be obtained by using nested if....else statements.

ificode != 1)
if (code != £)
if (code !'= 3}
colour = “YELLOW™:

else
colour = “WHITE":
else
colour = “GREENT:

else
colour = “RED™:

In such situations, the choice of the method is left to the programmer. However, in order to choose
an if structure that is both effective and efficient, it is important that the programmer is fully aware of
the various forms of an if statement and the rules governing their nesting.

Program 6.4 demonstrates the use of If....else ladder in analysing a mark list.

Program 6.4 Demonstration of else if ladder

class Elselfladder
{

public static void main(String args(])

{
int rollNumber[] = { 111, 222, 333. 444 };
int marks[] = { 81, 75, 43, 58 }:
far (int 1 = 0; 1 =< rollNumber. length; i++)

if (marks[i] = 79)
System.out.printin(rolINumber[i] + "~ Honours™):
else if (marks[i] = 5%9)

(Continued)

Presented By: http://www.ebooksuit.com

Decision Meking and Eranching 93

Program 6.4 (Continued)

System.out.printin(rol TNumber[i] +
else if (marks[i] > 49)
System.out _printin{rol INumber[1] + ° II Division™):
glse
System. out _printin(rol INumber[1] + © FAIL"):

I Division™):

}
}
!
Program 6.4 produces the following output:
111 Honours
222 1 Division
333 FAIL

444 I1 Division

@ 6.7 The Switch Statement

We have seen that when one of the many alternatives is to be selected, we can design a program using
if statements to control the selection. However, the complexity of such a program increases
dramatically when the number of altematives increases, The program becomes difficult to read and
follow. At times, it may confuse even the designer of the program. Fortunately, Java has a built-in
multiway decision statement known as switch. The switch statement tests the value of a given variable
(or expression) against a hst of case values and when a match is found, a block of statements associated
with that case is executed. The general form of the switch statement is as shown below:

switch (expression)
{
case value=1:
block-1
break -
case value-2:
block -2
break :
default
default-block
break
!
statement —x;

The expression is an integer expression or characters. value-J, valuwe-2 ... are constants or constant
expressions (evaluable to an integral constant) and are known as case labels. Each of these values
should be unique within a switch statement. block-1, block-2 are statement lists and may contain
zero or more statements. There is no need to put braces around these blocks but it 15 important to note
that case labels end with a colon ().

Presented By: http://www.ebooksuit.com

[
—_

When the switch is executed, the value of the expression is successively compared against the
values value-/, value-2, If a case 15 found whose value matches with the value of the expression,
then the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit
from the switch statement, transferring the control to the statemeni-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does
not match with any of the case values. If not present, no action takes place when all matches fail and the
control goes to the statement-x.

The selection process of switch statement 15 illustrated in the flowchart shown n Fig. 6.6.

i1

~| block1 |—
ENpression = ‘
vialpe-2 R)

| ¥
(Mo match) default default i

" Fig-88B " Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is
illustrated below:

index = marks/1l0:
switch(index)

{

{Continued)

Presented By: http://www.ebooksuit.com

Program (Continued)

case 10:

case 9:

case 8:
grade = “Honours™:
break -

case 7:

case 6:
grade = "First Division™;
break:

case 5:
grade = "Second Division™:
break:

case 4:
grade = “Third Division :
break:

default:
grade = “Fail":
break:

!

System.out.printin{grade);

Mote that we have used a conversion stalement
index = marks/10:

where, index is defined as an integer. The variable index takes the following integer values.

Marks Index

100 10
- 99
- B9
- 79
- 69
- 39
- 49
- 39
- 29
- 19
9

The segment of the program illustrates two important features. First, it uses empty cases. The first
three cases will execute the same statements

grade = “Honours":
break:

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where
marks is less than 40,

cB2EL822EE
I R T -

=
|

Presented By: http://www.ebooksuit.com |__ ;-“II-: r [|i.-.]h-.'.-§:: mater I-:-Il

LM

Program 6.5 illustrates the use of switch for designing a menudriven interactive program.

Program 6.5 Testing the switch ()

class CityGuide

{

public static void main(3tring args[])

{

char choice;

system.out.printin{ Select your choice’™);
System.out.printin(®™ M -= Madras™);
System_out.printin(®™ B -> Bombay™):
system.gut.printin{® C —= Calcutta™);
System.out.print{"Choice --->").
System.out. flushi):

try
{
switch (choice = (char) System.in_read(})
{
case 'M':
case 'm’: System. out.printin(”Madras : Booklet 57):
break:
case 'B':
case 'b’: System.out.printin(”Bombay : Booklet 97):
break:
case ‘C7;
case "C°: System.out.printIn{“Calcutta: Bookletlh™);
break
default: System.out.printin(Invalid Choice (IC)7};
}
}
catch (Exception e)
{
System.out.printIn{"I/0 Error™):
!
}
}
Output of the Program 6.5:
Runl
Select your choice
M ———> Madras
B ———> Bombay
L ===> Calcutta
Choice =-=> m
Madras Booklet 5

Presented By: http://www.ebooksuit.com

Copyrighted material

" Decision Making and Branching o7

Runs

select your choice
M ——=> Madras
B —-> Bombay

C —= Calcutta
Choice —= M
Madras : Booklet 5
T X
Select your choice

M ——> Madras

B —-—> Bombay

C —= Calcutta
Choice ——= ¢
Calcutta : Bookletls

% 6.8 The 7?7 : Operator

The Java language has an unusual operator, useful for making two-way decisions. This operator is a
combination of ? and :, and takes three operands. This operator is popularly known as the conditional
operator. The general form of use of the conditional operator is as follows:

conditional expression T expression] : expression

The condirional expression is evaluated first. If the result is true, expression/ is evaluated and 1s
returned as the value of the conditional expression. Otherwise, expression? is evaluated and its value 15
returned. For example, the segment

if (x< D)
flag = 0:
else
flag = 1:
can be written as
flag = (x=<0) 70 : 1:
Consider the evaluation of the following function:
y=150c+3 forx <=2
¥y=2x4+5 for x = 2
This can be evaluated using the conditional operator as follows:
y o= {x=>2) ? (2*x+5) : (1.5%x+3):

The conditional operator may be nested for evaluating more complex assignment decisions. For
example, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the
number of products sold in a week, her weekly salary is given by

{ dx + 100 for x < 40
salary = | 300 for x = 40
{ 4.5x + 150 for x = 40

Presented By: http://www.ebooksuit.com

% PR R
This complex equation can be written as
salary = (x!= 40} 7 ((x<40} 7 (4*x+100) : (4.5%*x+150)) : 300:
The same can be evaluated using if....else statements as follows:
if (x == 40)
if (x<4l)
salary = 4*x+100;
else
salary = 300:
else
salary = 4 5%x + 150;
When the conditional operator is used, the code becomes more concise and perhaps, more efficient.
However, the readability is poor. It is better to use if statements when more than a single nesting of
conditional operator is required.

| 6.9 Summary

We have discussed in this chapter the features of the following selection statements supported by Java:
« if statement
* swilch statement
+ 7 pperator statement
We have seen the various forms of application of these statements and discussed how they can be
used to solve real-life problems. Control execution is an extremely important tool in programming.
The concepts discussed here will be certainly useful in developing complex systems.

“ Key Terms

Decision Making, Branching, Control, Conditional Branching, Ladder, Selection, Switch, Conditional
Operator.

ReviEw annon

6.1 Determine whether the following are true or false:

{a) When if statements are nested, the last else gets associated with the nearest if without an else.
(b) Ome if can have more than one else clause,
{c) A switch statement can always be replaced by a series of if..else statements.
id) A switch expression can be of any type.
{e) A program stops its execution when a break statement in encountered.
6.2 Inwhat ways does a switch statement differ from an if statement?
6.3 Find errors, if any, in each of the following segments:

(m) 1T (x+y = 2 K& y=0)

Presented By: http://www.ebooksuit.com

6.4

6.5

6.6

6.7

6.8

(b) 1f(code>1):
a = b+
else
a =1
(c) if (p=0) || (g=0)

The following is a segment of a program;
X = 1;
y = 1:
if{n=0)
Xo= x+]l:
¥ o= y-1:
What will be the values of x and v if n assumes a value of (a) 1 and (b) 0.
Rewrite each of the following without using compound relations:
{a) ifigrade<=59 && grade==5()
second = second + 1
(b) if(number=100 || number<()
system.out . print{"0ut of range™):
else
Sum = sum + number:
(c) 1F{(Ml=60 && MZ2=60 || T=200)
y=1:
else
y=0.
Write a program to find the number of and sum of all integers greater than 100 a