[Hall	Ticket Number :					.,·							
														R-15
(Code	e: 5G263 B.Tech. Ser	mester S	Supr	olem	ent	arv	Fxaı	mina	ation	ns N	Ον/Γ)ec 2	n19
			ower Sy										<i>7</i> 00 2	-017
			(Electric			-								
		t. Marks: 70 Answer <i>all five</i> units	s by choc	osing	one	que	stion	from	n ead	ch ur	nit (3	5 x 14		e: 3 Hours Marks)
					; [***** UN	**** T_							
1.	a)	Derive the transmis	ssion loss	form	ula o	f a po	ower	gene	rator	syst	em.			7M
	b)	Consider a Two Bubus and load is conto the load a loss of and the load demindremental production of the load of th	nnected to of 15.625 nand if the ction costs	bus2 MW ir	2.If a n inco st o	load urred f rec	of 12 . Det eived	5 MV ermir	V is t	ransr e ger	nitted nerat	d from ion so	plant	1 e
		dF2/dP2 = 0.05 P	88035											7M
						OR								
2.	a)	Derive the express deriving the same.		ss co	effic	ients	and	state	the	assu	mpti	ons m	nade ir	n 7M
	b)	Incremental fuel co dC1/dPG1 = 0.2 F dC2/dPG2 = 0.2 F	PG1 + 40	0.0,	er M	Wh fo	or a p	olant	cons	isting	of tv	vo uni	ts are:	
		Assume that both used to 250 Mw and the 120 MW respective system load varies	maximum ely. How v over the f	and vill the	mini e loa	mum d be	load:	s on e	each etwee	unit a	are to	be 1 units	25 and	d e e
		plant incremental c	costs?		Г									7M
3	a)	Write the optimal se	chedulina	of hy	dro t	E41	I IT–II al sv	5						7M
Ο.	b)						iai oy	otom						7M
	-,	,	ролго.	-		OR								45. da.045
4.		A Two-Plant system at a remote location hours a day. The class C1 = 120 + 45 P	n. The loa	ad is a	500N of the	/IW fo	or 16							
		W2 = 0.6 PGH +				m³/s								
		Loss co-efficient,B2	22 + 0.00	1 M\	W ⁻¹									
		Find the generation operating cost of the				j =		5 Rs.	200	5	pla	nt, an	d daily	y 14M
5.	a)	With the help of nea	t sketch, e	xplair	n abo				of sp	eed-	gove	rning s	system	. 8M
	b)	Write about modeli	ing of exci	tation	sys	tems'	?							6M

OR

Code: 5G263

6.	a)	Write the block diagram representation of steam turbines and approximate linear models.	8M
	b)	Write about the modeling of governor.	6M
		UNIT-IV	
7.	a)	Discuss the merits of proportional plus integral LFC of a system with a neat block diagram.	5M
	b).	with a neat block diagram explain dynamic response and the steady state analysis of isolated power system	9M
		OR	
8.	a)	Explain Tie-line bias control.	4M
	b)	Explain optimal two area load frequency control.	10M
		UNIT-V	
9.	a)	Explain about compensated transmission lines?	8M
	b)	A 3-Phase 5kW induction motor has a power factor of 0.85 lagging. A bank of capacitor is connected in delta across the supply terminal and power factor raised to 0.95 lagging. Determine the KVAR rating of the capacitor in each phase.	6M
		OR	
10.	a)	Write the advantages and disadvantages of different types of compensating equipment for transmission systems?	7M
	b)	Discuss the effects of reactors and capacitors in reactive power control.	7M

Page **2** of **2**

	Hall	Ticket Number:										,		,
ē	aha	· 1C261	! :										R -1	4
	Лах.	Marks: 70 Inswer all five units Explain the following	by choons	ste cal a osing	m C nd E one)pe lect	ration ronic	on a es Er	i nd ngine	Cor eerir	ntrol ng)		Time: 3	
	b)	 i) incremental f ii) Input-Output iii) Input-Output Incremental fuel code dc1/dPG1 = 0.2P cost in Rs/hr for the equal distribution 	operatio operatio st in Rs/ G1 + 40, e optimal	nal ch nal cl MWh dc2/ sche	harac for a dP/0	plan 32 = g of a	tics of tics o	f Hysistin PG2	dro p g of t + 30 d of 1	ower wo u), find	plar nits a	re saving	-	9M 5M
						OR								
2.	a)	Derive the mather different units.	natical de	eterm	inatio	n of	optin	nal a	llocat	ion c	of tota	al load	damong	8M
	b)	The fuel cost of two C1 = 0.1 PG ² 1 + C2 = 0.1 PG ² 2 + If the total demandistribution of the total	25 PG1 - 32 PG2 nd on th	+ 1.6	6 F 2.1	Rs/hr Rs/h ors is	r s 250		√, fin	d th	e ec	onomi	cal load	6M
2	-۱	Cumbain the budge	4h a a l	b	_ محالين		10 T-1 0	<u>4</u>						CNA
3.	a)	Explain the hydro-					or by	dro n	01405	nlon	ło.			6M
	b) c)	Write about increm	•							•				4M 4M
4.	a)	A Two-plant system power station at a stations are: $C_1 = (26 + 0.045)$ $W_2 = (7 + 0.004)$ and $\Upsilon_2 = Rs$. The transmission	remote lose PGT) POPONE PGH) POPONE	ocatio	on is m ³	shov Rs/h m3/s	vn in	fig(1)). Th	e cha	aracte	eristics	s of both	

generation at each station and power received by the load when λ=65 Rs/MWh

Fig 1 Two Plant System

Explain optimal power flows.

6M

		Code	: 4G2
5.	a)	UNIT-III Derive the transfer function of a single area system with a block diagram.	8M
٥.			6M
	b)	Explain the flat frequency control.	Olvi
		OR	
6.	a)	Explain Turbine-speed governing system with a neat diagram?	8M
	b)	Explain the modeling of excitation systems?	6M
		UNIT-IV	
7.	a)	Explain the LFC of an Isolated power system.	8M
	b)	Two Turbo-alternators rated for 110 MW and 210 MW have governor droop characteristic of 5% from No load to Full load. They are connected in parallel to share a load of 250 MW. Determine the load shared by each machine assuming free governor action.	6M
		OR	
8.		Explain LFC of a Two area system in both uncontrolled case and controlled case. UNIT-V	14M
9.	a)	Describe the effect of connecting series capacitors in the transmission system.	6M
	b)	Explain over voltages on sudden loss of loads.	4M
	c)	List out various loads which require compensation.	4M
		OR	
10.		Briefly write about any three of the following	
		a) Shunt compensator	
		b) Thyristor controlled reactor	

c) Thyristor switched capacitor

e) Unified power flow controller.

d) Series compensator

		Hall Ticket Number :	
		Code: 5G263	
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Power System Operation and Control	
		(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	

1.	a)	Explain the significance of equality and inequality constraints in the economic	
355	ω,	allocation of generation among different plants in a system	7M
	b)	A system consists of three generating plants with fuel costs of:	
		$C_1=0.04P_1^2+20P_1+230 Rs./h$	
		$C_2=0.06P_2^2+18P_2+200 Rs./h$	
		$C_3=0.15P_3^2+15P_3+180$ Rs./h Determine the optimum sharing of a total load of 180MW for which each plant	
		would take up for minimum input cost of received power in Rs/MWh.	7M
		OR	7.77.7.
2.	a)	What are Loss coefficients? Derive the expressions for Loss coefficients of a two generator system.	7M
	b)	Draw the flow chart for obtaining optimal scheduling of generating units by neglecting the transmission losses.	7M
2	۵)	UNIT-II Evaluin problem formation and colution procedure of entimal scheduling for hydro thermal plants	7M
3.	a) b)	Explain problem formation and solution procedure of optimal scheduling for hydro thermal plants. A load is fed by two plants, one is thermal and other is a hydro plant. The load is located near	/ IVI
		the thermal plant. The characteristics of the plants are $F_T = 0.04P_T^2 + 25PT + 20 Rs./hr$; $W_H = 0.0012P_H^2 + 7.5P_H$ m3/Sec;	
		$x_H=2.5X10^{-3} Rs./m^3$. Determine the power generation of both plants and load connected, when λ	
		= 20Rs./ MWh.	7M
		OR	
4.	a)	Obtain the modeling of hydro turbine and draw its block diagram. With the help of a flow short, explain the dynamic programming method in unit commitment.	7M
_	b)	With the help of a flow chart, explain the dynamic programming method in unit commitment. UNIT-III Final size and a second representations as a second representation of the bloods of the second representation and the second representations are second representations. Describes its bloods of the second representation of the second r	7M
5.	a) b)	Explain speed governing mechanism. Develop its block diagram. Develop the block diagram of Generator and load.	7M 7M
	D)	OR	7 101
6.	a)	Why is it necessary to maintain constant frequency and voltage profiles in a power system	
		network? Explain.	7M
	b)	Draw and explain the Block diagram of IEEE type-1 excitation system. UNIT-IV	7M
7.	a) b)	Draw the block diagram of single area Load frequency control system. Explain the terms in it. Two generators of rating 125 and 250MW are operated with droop characteristics of 4% and 5%	7M
		respectively from no load to full load. Find the load sharing by each generator if a load of 300MW	71.4
		is connected across the parallel combination of those generators. OR	7M
8.	a)	Show that steady state frequency deviation in a single area LFC is reduced to zero if the Pl controller is reduced.	7M
	b)	Discuss the importance of combined load frequency control and economic dispatch control with a neat block diagram.	7M
		UNIT-V	
9.	a)	What do mean by compensation of a line? Discuss briefly different methods of compensation.	7M
	b)	Explain what you mean by loadability of overhead lines and discuss loadability characteristic of these lines.	7M
		OR	r:IVI.
10.	a)	What is sub synchronous resonance condition? How is it handled in electrical network?	7M
	b)	A 35 kW induction motor has power factor 0.85 and efficiency 0.9 at full load, power factor 0.6 and efficiency 0.7 at half-load. At no-load, the current is 25% of the full-load current and power factor 0.1. Capacitors are supplied to make the line power factor 0.8 at half-load. With these	
		capacitors in circuit, find the line power factor at (i) full load, and (ii) no-load.	7M

		Hall Ticket Number:							}			
	C	ode: 5G263	31	D 35	12.	. 1	,	TILL UF	(5)		R-15	
		III B.Tech	n. II Ser	nest	er Re	egulo	ar Exa	minatio	ons M	ay 20	018	
		P	ower S	•								
		1470	(Electr	ical (and	Elect	ronics	Engine	ering)		T:	
		Max. Marks: 70 Answer all five units	s by cho	osing		:que		m eacl	n unit (5 x 1	Time: 3 Hours 4 = 70 Marks)	
					UNIT	-1						
1.	a)	Explain the following te				0.7.3	1.50					
		(i) heat input – power or cost .	utput cur	ve (ii)	heat	rate i	nput (iii)) increm	ental in	put a	nd (iv) generation	8M
	b)	Obtain the condition for effect of transmission le		ım op	eratio	on of	a powe	r systen	n with	n' pla	ints including the	6M
						OR						
2.	a)	A system consists of tw	vo gener	ating	plant	ts with	n fuel co	osts of:				
		$C_1=0.03P_1^2+15P_1+1.0$										
		$C_2=0.04P_2^2+21P_2+1.4$		اماند		ahi4	L 40014	M of no		ti	on by ooob plant	
		The system operates o The incremental transn	nission l	oss of	f plan	it-2 is	0.15. F	ind the	penalty	facto	r of plant-1.	8M
	b)	Explain various factors	to be co	onside	ered i	in allo	cating	generati	on to d	ittere	nt power stations	6M
		for optimum operation.		7	UNIT-							Olvi
3.		Explain and write the	mathem	-		- 1	on for o	optimal	schedu	ıling d	of Hydro thermal	
		system. Explain any algorithm.			techi	nique				•		14M
1		What is moont by onti-	mal nav	or fla		OR	2 \\/rito	the ear	ıotiono	dooo	ribing on ontimal	
4.		What is meant by option power flow problem. How on control variables.	**								•	14M
				U	JNIT-	-111						
5.	a)	Write the modeling equ of turbine speed govern								elop t	he block diagram	7M
	b)	Construct a Block Diag	ram for	Gene	rator	Load	Model	and find	out the	e tran	sfer function.	7M
						OR						
6.	a)	Derive the first order tu	rbine mo	odel.	Repr	esent	the mo	del in bl	ock dia	gram	-	7M
	b)	Describe various eleme	ents that	are t	o be	consi	dered ir	n modeli	ng of a	n exc	itation system.	7M
2511	.25	905-17 - 1787 158792 <u>15821</u> 60 88 88 818	2		JNIT-		67	574-F325525-7561-6	22 15	-		
7.	a)	Draw the LFC block dia of change in frequency						em. VV rite	e the dy	/nami	c response curve	7M
	b)	Derive the expression f		-	_			draw its	hlock	diagr	am?	7M
	٥,	Denve the expression i	or orian	go III		OR	voi ana	araw ito	DIOOK	alagi	A111 <u>4</u> 1	, 101
8.	a)	Write the state space re	enresen	tation		10071-017-017-0	r sinale	area				7M
Ο.	**************************************	How does load frequer							conom	ic dis	patch	7M
	۷,	non acconcac noque.	,	-	UNIT-		, 00.101	uog o	001.01.1	.0 4.0		
9.	a)	Describe the performan	nce of ur	ncom	pensa	ated t	ransmis	sion line	es.			7M
	b)	Describe the construct	ional fea	tures	of a	sync	hronous	s capaci	tor. Ex	plain	its operation and	
		discuss various applica	tions in	powe	r sys	tem o	peratio	n.				7M
						OR						
0.	a)	Explain the phenomen suggest remedies to over					resona	nce in p	ower s	systen	n operations and	7M
	b)	Explain series and shi impedance loading of		127d							AND ANY OF BEET AND ADDRESS.	35 <u>-</u> 3-514
		voltage profile.				**	*					7M
						***	•					

Page 1 of 1

Code: 4G264							R-14	
	ř						P_1/	
Hall Ticket Number:								

III B.Tech. II Semester Regular Examinations May 2017

Power System Operation and Control

(Electrical & Electronics Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

 a) Give algorithm for economic allocation of generators of thermal system taking transmission losses into account. Give steps for implementing this algorithm with necessary equations.

7M

b) If 100 MW is transmitted from plant-1 to load, which is located at plant-2, loss will be 10 MW. Find required generation and Power received by load when = 25 Rs/MWhr.

$$\frac{dC_1}{dP_1} = 16 + 0.02P_1$$
 Rs/MWhr $\frac{dC_2}{dP_2} = 20 + 0.04P_2$ Rs/MWhr

7M

2. a) Explain the need of economic load dispatch for a given power system

4M

b) Derive the transmission loss formula for a system consisting of n-generating plants supplying several loads inter connected through a transmission networks. State any assumptions are made.

10M

UNIT÷II

a) Derive the cost function of hydrothermal scheduling problem.

7M

b) A two plant system having a thermal station near the load centre and a hydro power station at remote location. The characteristics of both stations are:

$$C_1 = (26+0.045 P_{GT}) P_{GT} Rs/hr$$

 $W_2 = (7+0.004 P_{GH}) P_{GH} m^3 / Sec$
and $_2 = Rs. 4X10^{-4} / m^3$

The transmission loss coefficient, $B_{22} = 0.0025 \text{ MW}^{-1}$. Determine the power generation at each station and the power received by the load when = 65 Rs/MWhr.

7M

OR

 a) Obtain the condition for economic generation of steam and hydro plants for short term scheduling. State any assumptions are made.

7M

7M

b) Discuss the optimal power flow procedures with its inequality constraints and how to handle dependent variables with penalty function.

Page 1 of 2

Code: 4G264

UNIT-III

 Derive Small signal transfer function of speed governing system of steam turbine with a rough sketch.

7M

b) Explain the effect of varying excitation of a synchronous generator.

7M

OR

6. a) Develop the Linearized model of the hydraulic turbine.

7M

b) Making suitable assumptions derive the transfer function of synchronous generator and the steam turbine set.

7M

UNIT-IV

7. a) Explain the necessity of maintaining a constant frequency in power system operation

7M

b) Draw the block diagram of single area LFC system with integral control and prove that the steady state change in frequency is zero.

7M

OR

8. Draw the block diagram for two area load frequency control with integral controller blocks and explain each block.

14M

UNIT-V

9. a) Explain about the losses that occur due to VAR flow I power system.

7M

b) Explain how the generators act as VAR sources in a power network

7M

OR

10. What is a static compensator? Explain with diagrams working principles of various types of static compensators.

14M

Hall Ticket Number: R-11 / R-13 Code: 1G263

III B.Tech. II Semester Regular & Supplementary Examinations May 2016

Power System Operation and Control

(Electrical & Electronics Engineering)

Max. Marks: 70 Time: 03 Hours

Answer any five questions All Questions carry equal marks (14 Marks each)

- Discuss the various factors which will decide the production cost of a thermal plant. 6M
 - The fuel cost curve of two generators are given as under

$$C_A(P_A) = 800 + 45 P_A + 0.01 P_A^2$$

$$C_B (P_B) = 2000 + 43 P_B + 0.003 P_{B^2}$$

and if the total load supplied is 700 MW, find the optimal dispatch with and without considering the generator limits where the limits have been expressed as:

50 MW P_A 200 MW

50 MW P_B 600 MW.

Compare the systems increment at cost with & without generator limits considered.

- What is incremental transmission loss and derive the general transmission loss formula? 6M
 - Two thermal plants are interconnected and following are the incremental production costs of the plants in Rs/MWhr.

$$\frac{dC_1}{dP_1} = 20 + 10P_1$$

$$\frac{dC_2}{dP_2} = 15 + 10P_2$$

Where P1 & P2 are plant powers expressed in p.u. in 100 MVA base.

The transmission loss is given by

$$P_L = 0.1P_1^2 + 0.2P_2^2 + 0.1P_1P_2 \ p.u$$

If the incremental cost of received power is 50 Rs/MWhr, find the optimal generation.

- Discuss the demerits of hydrothermal coordination in optimal generation scheduling. 6M
- Develop the hydroelectric power plant model with necessary block diagram.
- What is unit commitment? Explain how it can be done when only thermal power generators are available.
 - Explain the steady state analysis of an isolated power system.
- What is area control error? Discuss its significance.

b) Determine the area frequency response characteristics and the static frequency error for a system with the following data, when 1% load change occurs.

B = 0.01 P.u MW/Hz

R = 2.5 Hz/P.u MW

Tp = 16 sec

Kp = 100Hz/p.u MW8M

- 6. Derive an expression for steady state change of frequency and the line power transfer of a two area power system. List out the assumptions made. 14M
- Derive the relation between reactive power flow and the voltage of bus. 7M
 - Explain the effect of shunt compensation on the transmission line performance. 7M
- Explain briefly about the reasons for restructuring / deregulation of power industry 7M
 - Discuss briefly the significant benefits of power industry deregulation. 7M

8M

8M

8M

7M

7M

III B. Tech II Semester Regular & Supplementary Examinations May 2015

Power System Operation and Control

(Electrical & Electronics Engineering)

Time: 3 hours

8

a)

b)

Max Marks: 70

Answer any FIVE of the following

All questions carry equal marks (14 Marks each)

* * * * *

7M What is an incremental fuel cost? How is it used in thermal plant operation? 7M Name the components of production cost and explain. 2. a) Give various uses of general loss formula and state the assumptions made for 7M calculating B_{mn} coefficients. The fuel cost for a two unit steam power plant are given by b) $C_1 = 0.1 P_1^2 + 25 P_1 + 1.6$ Rupees/hour $C_2 = 0.1 P_2^2 + 32 P_2 + 2.1$ Rupees/hour Where p's are in megawatt. If there is an error of 1% in the representation 7M of the input data, find the loss in operating economy for a load of 250 MW. 14M 3. Explain about Hydro thermal co-ordination with necessary equations. Derive the small signal transfer function with block diagram of speed governing 7M system. Draw the block diagram of IEEE type-I excitation model and explain. 7M With a first order approximation explain the dynamic response of an isolated area 7M for load frequency control. Develop the model of single control area and obtain its block diagram 7M representation. For two-area load frequency control with gain blocks, derive an expression for steady values of change in frequency and tie line power for simultaneously applied 7M unit step load disturbance inputs in the two areas. 7MExplain load frequency control problem in a Multi-area power system. 7M Explain series and shunt compensation in power system. 7M Compare the different types of compensating equipment for transmission systems.

Write the key issues of the deregulation of the power systems.

Explain about restructuring power system.

7M

Code: 1G263

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: RAJAMPET (AUTONOMOUS)

III B.Tech. II Semester Regular Examinations, June 2014 Power System Operation and Control

(Electrical & Electronics Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE of the following All questions carry equal marks (14 Marks each)

* * * * *

- 7M Discuss about the incremental fuel cost and production cost. a) Explain the various factors to be considered in allocating generation to different b) 7Mpower stations for optimum operation. 7M Derive the transmission loss formula and states the assumptions of the system. A system consisting of two generating plants. The incremental costs in Rs/ MWh with P_{G1}^2 and P_{G2}^2 in MW are $\frac{dC_1}{dP_{G2}} = 0.006P_{G1} + 7.2$ and $\frac{dC_2}{dP_{G2}} = 0.01P_{G2} + 5$ The system is operating on economic dispatch with $P_{G1} = P_{G2} = 330 \text{MW}$ and $\frac{\partial P_L}{\partial P_{G2}} = 0.3$. Find the penalty factor of plant 1. 7M What do you mean by unit commitment problem and discuss various constraints 7M related to UCP.
 - A two-plant system having a steam plant near the load centre and a hydro plant at b) a remote location. The load is 520MW for 15 hrs a day and 330 MW, for 9 hrs a day.

The characteristics of the units are

$$C_1 = 120 + 45 P_{GT} + 0.075 P_{GT}^2 Rs./hr$$

$$w_2 = 0.6 P_{GH} + 0.00283 P_{GH}^2 \text{ m}^3/\text{sec}$$

Loss co-efficient, $B_{22} = 0.001 \text{ MW}^{-1}$

Find the generation schedule, daily water used by hydro plant and daily operating cost of thermal plant for $\gamma_j = 80 \text{ Rs./ m}^3\text{-hr}$

- Draw the block diagram representation of steam turbine and obtain the a) approximate linear model
 - Draw the block diagram of IEEE type-I excitation model and explain. b)
- 7M What are the basic requirements needed for control strategy in LFC system. a)
 - Two generating stations A and B have full load capacities of 200 MW and 70 MW b) respectively. The interconnector connecting the two stations has an induction motor/ synchronous generator (plant C) of full load capacity 20 MW. Percentage changes of speeds of A, B and C are 5, 4 and 3 respectively. The loads on bus bars A and B are 60MW and 35MW respectively. Determine the load taken by the set Cand indicate the direction in which the energy is flowing.

7M

7M

7M

7M

Give a typical block diagram for a two-area system inter connected by a tie line 6. and explain each block. Also deduce relations to determine the frequency of oscillations of tie line power and static frequency drop. List out assumptions made. 14M 5M Explain about shunt compensation 7. a) The load at the receiving end of a three-phase, overhead line is 30 MW, power b) factor 0.82 lagging, at a line voltage of 33 kv. A synchronous compensator is situated at the receiving end and the voltage at both ends of the line is maintained at 33 kV. Calculate the MVAr of the compensator. The line has resistance 5 Ω 9M per phase and inductive reactance (line to neutral) 20 ohm per phase. 7M Write the reasons for deregulation.

Write the key issues of the deregulation of the power systems.

Scanned with CamScanne

				*						
Hall Ticket Number :										
Code : 1G263		1		<u>.</u>			L	ļ	R	-11
Jude . 10203									-	
III D Took II Co	 -4	C	nlan	+	~ m . [nina	 , D.	a a ma h a s	2015	

III B.Tech. II Semester Supplementary Examinations December 2015

Power System Operation and Control (Electrical & Electronics Engineering)

Max. Marks: 70 Time: 03 Hours

Answer any five questions
All Questions carry equal marks (14 Marks each)

- Explain the significance of the heat rate curve and cost curve of thermal power plants with neat diagrams. 8M The fuel cost in Rs/ hr of two units in a plant are given by C1 = C1 (P1) = 1.0 + 25 P1 + 0.25 P₁²C2 = C2 (P2) = 1.5 + 45 P2 + 0.2 P₂²If the total demand on the generators is 250MW, calculate the economic load scheduling of the two units. 6M 6M Derive the expressions for loss coefficients. b) The cost characteristics of two power plants connected together by a transmission line and load at plant 2 are given below. When 100 MW are transmitted from plant-1, the transmission loss is 12MW. $C1 = 0.05 P_1^2 + 15 P1 Rs/hr$ $C2 = 0.06 P_2^2 + 18 P_2 Rs/hr$ = 22 8M Find the optimum generation when 6M What are the advantages of operation of hydro thermal combinations? What is short term hydro thermal scheduling? Explain the difficulties present in the short term hydro thermal scheduling. 8M Explain the block diagram representation of an isolated power system with 7M diagram.
- b) Derive the generator load model and represent it by a block diagram. 7M

 5. a) Discuss in detail the importance of load frequency control. 7M
 - b) Draw and explain the block diagram of the load frequency control for a single area system.
- a) Explain the significance of tie-line bias control in multi-area Load Frequency Control system.
 - b) Two control areas having the following characteristics

Area-1

R1 = 0.01 p.u

B1 = 0.8 p.u

Base MVA = 1000

Area-2

R2 = 0.015 p.u

B2 = 0.9 p.u

Base MVA = 1000

A load change of 150 MW occurs in area -2. Find the tie line power deviation 8M

- 7. a) Discuss the merits and demerits associated with series compensators.
 - b) What is load compensation? Describe briefly different compensation methods in power system.
- 8. a) What is deregulation of electric power system and explain its advantage over normal power systems?
 8M
 - b) What are the key issues in deregulation of power system? 6M

Code : 1G263						-	R-11/R-13
Hall Ticket Number:							

III B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Power System Operation and Control

(Electrical and Electronics Engineering)

Max. Marks: 70

1. a) Explain the following i) Heat rate Curve ii) Input -Output Curve

6M

b) Three power plants of total capacity 425MW are scheduled for operation to supply total load of 300MW. Find the optimum load scheduling if the plants have the following incremental cost characteristics and the generator constraints

$$\frac{dc_1}{dP_{G_1}} = 30 + 0.15P_{G_1} \quad 25 \le P_{G_1} \le 125 \qquad \frac{dc_3}{dP_{G_3}} = 15 + 0.18P_{G_3} \quad 50 \le P_{G_3} \le 200$$

$$\frac{dc_2}{dP_{G_2}} = 40 + 0.20P_{G_2} \quad 30 \le P_{G_2} \le 100$$

incremental disturbance input.

8M

 a) Derive the expression for loss coefficients and state the assumptions made in deriving the same

7M

b) Two power plants are connected together by a transmission line and load is at power plant 2.When 100MW are transmitted from plant 1, the transmission loss is 10MW in the transfer of power from plant1 to plant2. The incremental fuel cost characteristics of plants 1 and 2 are given by

$$\frac{dc_1}{dP_{G_1}} = 13 + 0.1P_{G_1}$$
 Rs/MWh $\frac{dc_2}{dP_{G_2}} = 12 + 0.12P_{G_2}$ Rs/MWh

7M

3. a) Explain in detail about short-term hydro thermal scheduling problem

8M

b) What is the objective of Unit Commitment problem? What are the various items that must be considered while making a unit commitment problem?

6M

4. a) Explain the mathematical modeling of speed governing system

7M 7M

b) Explain IEEE type-1 excitation system with a block diagram

4M

5. a) Explain the necessity of keeping frequency constant in a power system network. b) For a single area load frequency control derive the expression for steady state frequency and prove that $f_{static}=0$ when the incremental control input is equal to

3=.

10M

6. a) What is the importance of tie-line bias control? When can we say that the tie line is weak or strong?

7M

b) Explain the steady state response uncontrolled case of a two area load frequency control system

7M

 What is reactive power and explain the reactive power balance and its effect on system voltage

7M

b) Explain briefly the specifications and objectives of load compensation

7M

8. a) What is the role of modern technology in deregulated power market

7M

b) Explain how deregulation can be implemented in our country?

7M

	Hall Ticket Number :			ı	11			R-11 / R-1
(Code: 1G263						l	K-11 / K-1

III B.Tech. II Semester Supplementary Examinations May 2017

Power System Operation and Control

(Electrical & Electronics Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any **Five** questions

All Questions carry equal marks (**14 Marks** each)

 A power System consists of two, 125 MW units whose input costs are represented by the

equations:

 $C1 = 0.04 P_{1}^{2} + 22 P_{1} + 800 Rupees/hour$

 $C2 = 0.045 P_2^2 + 15 P_1 + 1000 Rupees/hour$

If the total received power $P_R = 200$ MW. Determine the load sharing between them for most economic operation.

Briefly explain about the exact co-ordination equation and derive the penalty factor.

 a) Discuss the demerits of hydrothermal coordination in optimal generation scheduling.

b) Develop the hydroelectric power plant model with necessary block diagram. 8M

What is the need of Reheat type steam turbines for the modern large power systems? Explain with a neat sketch.

An isolated power system has following parameters:

Turbine rated output: 300 mw Nominal frequency: 50 Hz

Governor speed regulation: 0.05 pu

Inertia constant: 5

Turbine time constant: 0.5 sec
Governor time constant: 0.2 sec

Load change: 60 mw

The load varies by 0.8 percent for a 1 percent change in frequency. Determine the steady state frequency deviation in HZ.

 Draw the block diagram of proportional plus integral controller and show the steady state frequency error is zero.

7. a) Explain the working of shunt capacitor as compensator. Why its effect is uniform throughout the line?

b) Why the fixed shunt compensation is preferred for base reactive loads? 7M

 Differentiate the regulated and deregulated power systems with the help of block diagram.

14M

7M

14M

	Ha	all Ticket Number :	
	Co	de: 1G263	
	CO	III B.Tech. II Semester Supplementary Examinations December 2017	
		Power System Operation and Control	
	.	(Electrical and Electronics Engineering) ax. Marks: 70	
	101	Answer any five questions	
		All Questions carry equal marks (14 Marks each)	
1.	a)	What are the advantages of dynamic programming approach for unit commitment problem over priority list method? Explain the dynamic programming approach to solve unit commitment problem.	6M
	b)	The fuel cost of two units are given by C1=0.1P2G1+25PG1+1.6 Rs/hr C2=0.1P2G2+32 PG2+2.1 Rs/hr. If the total demand on the generators is 250MW, find the economical load distribution of the two units.	8M
2.	a)		6M
		The fuel cost function in Rs/hr for two thermal plants are given by	OIVI
	~,	C1=0.004P2G1+9.2PG1+420 Rs/hr C2=0.002P2G2+8.5PG2+350 Rs/hr. Where PG1, PG2 are in MW. Determine the optimal scheduling of generation if the total load is 640.82 MW. Estimate value of =12Rs/MWh. The transmission power loss is given by the expression	
		PL(pu)=0.0346P12(pu)+0.00643P22(pu).	8M
3.	a)	Briefly explain control area concept and control area error.	6M
	b)	An isolated generator and its control have the following parameters: Generator inertia constant=5 second; Governor time constant $g=0.25$ seconds; Turbine time constant $T=0.6$ seconds; Governor speed regulation=0.05 p.u; Load damping constant B=0.8. The turbine rated output is 200 MW at 50 Hz. The load suddenly increases by 50 MW. Find the steady	
	- 1	state frequency deviation.	8M
4.	a)	Derive mathematical formulation of long and short term hydrothermal scheduling.	6M
_	5	Draw the block diagram of IEEE type-1 excitation model and explain its functioning	8M
5.	a)	Explain proportional plus integral control of single area system with neat block diagram. Derive the necessary equations	6M
	b)	An area consists of two generating units rated 400 MVA and 800 MVA with speed regulations 4 % and 5% respectively on their ratings. The units are operating in parallel, sharing 700 MW. Unit 1 supplies 200 MW and unit 2 supplies 500 MW at 1.0 p.u. (50 Hz) frequency. The load now increases by 130 MW. If B=0, find the steady state frequency deviation and new generations. If B= 1.8, find the steady state frequency deviation and new generations.	8M
6.	a)	Draw the block diagram LFC of two area system.	6M
	b)	Give the typical block diagram of two area system interconnected by a tie line .Deduce relations to determine the frequency of oscillations of tie line power and static frequency drop with assumptions made	8M
7.	اد	with assumptions made. What is series compensation? Explain the advantages	6M
<i>,</i> .	100 6	Explain the reason for variations of voltages in power systems and explain any one method to	OIVI
	b)	improve voltage profile.	8M
8.	a)	What is the need of deregulation?	6M
	b)	What is the role of modern technology in deregulated power market?	8M

Code: 4G264		-	-	•			1	R-14	
Hall Ticket Number:									_

III B.Tech. II Semester Supplementary Examinations December 2017

Power System Operation and Control

(Electrical & Electronics Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

 a) Explain the following terms with reference to the power plants: Heat input, Power output curve, Heat rate input, Incremental input, Generation cost and Production cost.

7M

b) The cost curves of two generators may be approximated by second degree polynomials:

$$C_{1} \equiv 0.1 P_{G1}^{2} + 20 P_{G1} + 1$$

 $C_{2} = 0.1 P_{G2}^{2} + 30 P_{G2} + 2$

Where 1 and 2 are constants.

If the total demand on the generators is 200 MW, find the optimum generator settings. How many rupees per hour would be losing if the generators were operated about 15% of the optimum setting?

7M

OR

 a) What are the methods of scheduling of generation of steam plants? Explain their merits and demerits.

7M

b) The incremental production cost of two plants are given by:

$$(IPC)_1 = (0.07)P_1 + 16 Rs./MWh$$

 $(IPC)_2 = (0.08)P_2 + 12 Rs./MWh$

The loss coefficients of the system are given by $B_{11} = 0.001$; $B_{12} = B_{21} = -0.005$ and $B_{22} = 0.0024$. The total load to be met is 150 *MW*, determine the economic operating schedule if the transmission line losses are coordinated and the losses are included but not co-ordinate.

7M

UNIT-II

3. a) Derive the transfer function of an overall excitation system.

7M

b) In a two plant operating system, hydro plant operates for 12 hours during each day and steam plant operates all the day. Characteristics of steam and hydro plants are given below. When both plants are operating, power flow from steam plant is 300MW. Total water used by hydro plant during 12 hrs of operation is 180X10⁶ m³. Determine the generation of hydro power plant & ".[assume constant load, no losses]

$$C_T = 0.3P_T^2 + 20P_T + 5\frac{Rs}{hr}$$

$$W_H = 0.4P_H^2 + 20P_H m^3/sec$$

7M

OR

4. a) What are the advantages of operation of Hydrothermal combinations?

7M

b) Discuss optimal power flow problems with and without inequality constraints. How are these problems solved?

Code: 4G264

UNIT-MI

5. a) Develop the Linearized modeling of a hydraulic turbine.

7M

b) Explain the operation of Speed- Governing System with neat sketch and develop the mathematical model.

7M

OR

6. a) Explain the methods of providing excitation system.

7M

b) Derive the transfer function and block diagram of IEEE Type-1 model.

7M

UNIT-IV

7. a) What is meant by tie line bias control?

4M

b) Two generating stations A and B have the capacities 400MW and 700MW respectively are interconnected by a short line. The percentage speed regulations from no load to full load of the two stations are 2 and 3 respectively. Find the power generation at each station and power transfer through the line if the load on bus of each station is 200MW.

10M

OR

8. a) Derive the transfer function for proportional integral control of a single area system

7M

b) What are the requirements of the control strategy in LFC?

7M

UNIT-V

- 9. a) How the following devices generate/absorb reactive power.
 - i) Synchronous machine
 - ii) Over head lines

7M

iii) Shunt reactor

/ IV

b) What is meant by compensation of line and discuss briefly different methods of compensation

7M

OR

10. a) Compare the different types of compensating equipment for transmission systems.

7M

b) Explain the effect of uncompensated line under no load and load condition.

7M

		Hall Ticket Number:				}					â		
	C	ode: 4G264	als s	iz i	,		'		in in			R-14	
		III B.Tech. II Sei	mest	er S	upp	olem	ento	ary I	Exami	inatior	ns Mo	ay 2018	
				•						Contro			
		Max. Marks: 70	lectr	ical	anc	d Ele	ctron	ICS	Engine	eering)		Time: 3 Hours	
		Answer all five units b	y cho	osin	g on	•	estior *****	n fro	m eac	ch unit (5 x 1		
	758				UNI								
1.	a)	Explain the following term					-					/: - \	
	8278 2 7	(i) heat input – power outpoost .		,,•,,			5. • ş				S. T. fr	serve there are done every	8M
	b)	Obtain the condition for o effect of transmission loss		ım ol	pera	tion c	of a po	owe	r syste	m with	'n' pla	ants including the	6M
W.	121			arens	Wark.	OR		H-1					
2.	a)		gener	ating	pla	nts w	ith fue	el co	sts of:				
		$C_1=0.03P_1^2+15P_1+1.0$ $C_2=0.04P_2^2+21P_2+1.4$											
		The system operates on e	conor	mic c	lisna	tch v	vith 12	OM	W of po	ower de	nerati	on by each plant	
	ы	The incremental transmiss	sion lo	oss c	of pla	nt-2	is 0.1	5. F	ind the	penalty	y facto	or of plant-1.	8M
	b)	Explain various factors to for optimum operation.	be cc	nsiu	erec	ıma	llocati	ng g	genera	נוטוז נט נ	ınere	ni power stations	6M
					UNI	T–II	Ī						1760
3.		Explain and write the ma	athem	atica	al for	mula	tion f	or c	ptimal	sched	uling	of Hydro thermal	
		system. Explain any one	e solu	ution	tecl	nniqu	ie of	sol	ing e	quations	s with	the help of an	4 214
		algorithm.				OB							14M
4.		What is moant by ontima	Lpow	or flo)W C	OR		/rito	the or	uations	doso	ribing an ontimal	
- 1.		What is meant by optima power flow problem. How	7.1						2.5	•		•	
		on control variables.											14M
					UNIT	Γ–III							
5.	a)	Write the modeling equation of turbine speed governing				- Table 1	_		-		elop t	he block diagram	7M
	b)	Construct a Block Diagran	n for (Gene	erato	r Loa OR		del	and fin	d out th	e tran	sfer function.	7M
6.	a)	Derive the first order turbing	ne mo	odel.	Rep	rese	nt the	mo	del in b	lock dia	agram		7M
	b)	Describe various elements	s that	are	to be	con	sidere	ed in	mode	ling of a	an exc	itation system.	7M
				-	UNIT								
7.	a)	Draw the LFC block diagra of change in frequency for						yste	m. Wri	te the d	ynami	c response curve	7M
	b)	Derive the expression for	chang	ge in	tie li	ne p	ower a	and	draw it	s block	diagr	am?	7M
						OR							7
8.	* 1 1 0 × 1	Write the state space repr						–					7M
	b)	How does load frequency	contr	olis	achi UNI		by co	onsid	dering	econom	nic dis	patch.	7M
9.	a)	Describe the performance	of ur	ncom	pen	sated	trans	smis	sion lir	ies.			7M
	b)	Describe the construction	al fea	ture	s of	a syr	chror	nous	capac	citor. Ex	plain	its operation and	
		discuss various applicatio	ns in	powe	er sy	stem	opera	atior	n.				7M
_					75-	OR			P a 1		427	200	
0.	a)	Explain the phenomenon					s res	onai	nce in	power :	syster	n operations and	7M
	b)	suggest remedies to overe Explain series and shun					lines	and	d dieci	ice the	ir off	ect on the surge	/ IVI
	J)	impedance loading of the		1272								SON ANY PROPERTY AND ADMINISTRATION OF THE PROPERTY OF THE PRO	
		voltage profile.		ener etak kili		over end 3 De Tri	r∎ese siurefaille.	eranelle SALA	., -a., i - 24 A.	ుం. అమం •ుం కళకున్న			7M
						*	**						

Page 1 of 1

Hall Ticket Number :

R-11 / R-13

III B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Power System Operation and Control

(Electrical and Electronics Engineering)

Max. Marks: 70

b)

Code: 1G263

Time: 3 Hours

1. a) What is an incremental fuel cost? Explain its significance in thermal plant operation?

The fuel cost functions in Rs./hr. for two thermal plants are given by:

$$C_1 = 400 + 8.4P_1 + 0.006P_1^2$$
; $100 \le P_1 \le 600$
 $C_1 = 600 + 8.93P_2 + 0.006P_2^2$; $60 \le P_2 \le 300$

Where P_1 , P_2 , are in MW. Neglecting line losses and including generator limits, Determine the optimal generation scheduling where $P_D = 820 MW$.

8M

6M

 Given the network in the figure shown along with the currents flowing in the lines and the impedances of the lines in per unit on a 100MVA base. Compute the B. coefficients for the network when the voltage at bus 1 is 1.0 p.u.

Current in line a = 1.5 - j0.3 p.u. Impedance of lines a = 0.01 + j0.06 p.u. a = 0.01 + j0.06 p.u. Current in line c = 1 - j0.2 p.u. b = 0.01 + j0.05 p.u. Load current at bus 2 = 2.5 - j0.5 p.u. c = 0.01 + j0.04 p.u.

14M

6M

3. a) Explain the short term Hydro-thermal scheduling problem with necessary expressions.

 b) A two plant system having a thermal and hydro station interconnected. The characteristic of each station is

$$F = (20 + 0.03P_1)P_1 Rs/h$$

 $W = (8 + 0.002P_2)P_2 m^3 / Sec;$ and $X = Rs 5X10^{-4} / m^3$

The transmission loss coefficient is B_{22} =0.0005, Determine the generation of each station when the system is 50 Rs/h.

8M

4. a) Derive the transfer function model for typical generator load model.

6M

b) Two turbo-alternators rated for 110 MW and 210 MW have a governor droop characteristics of 5% from no load to full load. They are connected in parallel to share the load of 250 MW. Determine the load shared by each machine assuming free governor action.

8M

 Obtain the steady state error in load frequency control with an integral controller in an isolated power system.

6M

b) A 80 MVA synchronous generator operates on full load at a frequency of 50 Hz. A load 40 MW is suddenly removed from the machine. Due to time lag in the governor system, the steam valve begins to operate after 0.3 sec. Determine the change in frequency that occurs in this time. H=4 KW-s/KVA of generator capacity.

Code: 1G263

 a) Discuss the importance of maintaining the load frequency control in an inter connected power system

6M

b) Two areas of a power system network are interconnected by a tie-line, whose capacity is 500 MW, operating at a power angle of 35°. If each area has a capacity of 5000 MW and the equal speed regulation of 3 Hz/pu MW, determine the tie line power deviation for step change in load of 85 MW occurs in one of the areas. Assume that both areas have the same inertia constants of H = 4 sec.

8M

7. a) With relevant equations, prove that the shunt compensation will improve the power transfer capabilities and stability margin.

6M

b) A 3 Phase overhead line has resistance and reactance per phase of 25 and 90 respectively. The supply voltage is 145 kV while the load end voltage is maintained at 132 kV for all loads by an automatically controlled synchronous phase modifier. If the kVAR rating of the modifier has the same value for zero loads as for a load of 50 MW, find the rating of the Synchronous Phase modifier.

8M

8. a) Explain the need for deregulation in Power systems.

6M

b) Explain the deregulation process in power systems and detail about the various operational entities in a deregulated power system.

8M

		Hall Ticket Number :									
		Code: 4G264									
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2018									
		Power System Operation and Control									
		(Electrical and Electronics Engineering)									
		Max. Marks: 70									
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)									
		UNIT-I									
1.	a)	Explain the significance of equality and inequality constraints in the economic									
	J. i. #:	allocation of generation among different plants in a system	7N								
	b)										
		$C_1=0.04P_1^2+20P_1+230 Rs./h$									
		$C_2=0.06P_2^2+18P_2+200 Rs./h$									
		C ₃ =0.15P ₃ ² +15P ₃ +180 Rs./h									
		Determine the optimum sharing of a total load of 180MW for which each plant									
		would take up for minimum input cost of received power in Rs/MWh.	7M								
2	a)	OR a) What are Loss coefficients? Derive the expressions for Loss coefficients of a two genera									
۷.	aj	system.									
	b)	Draw the flow chart for obtaining optimal scheduling of generating units by neglecting the	1 <u></u>								
	•	transmission losses.	7M								
		UNIT-II									
3.	a)	Explain problem formation and solution procedure of optimal scheduling for hydro thermal plants.	7M								
	b)	A load is fed by two plants, one is thermal and other is a hydro plant. The load is located near									
		the thermal plant. The characteristics of the plants are									
		$F_T = 0.04P_T^2 + 25PT + 20 Rs./hr; W_H = 0.0012P_H^2 + 7.5P_H m3/Sec;$									
		$x_H=2.5X10^{-3} Rs./m^3$. Determine the power generation of both plants and load connected, when	71/								
		λ = 20Rs./ MWh. OR	7M								
4.	a)	Obtain the modeling of hydro turbine and draw its block diagram.	7M								
	b)	With the help of a flow chart, explain the dynamic programming method in unit commitment.	7M								
	29	UNIT-III									
5.	a)	Explain speed governing mechanism. Develop its block diagram.									
	b)	Develop the block diagram of Generator and load.									
•	V	OR									
6.	a)	Why is it necessary to maintain constant frequency and voltage profiles in a power system network? Explain.	7M								
	b)	Draw and explain the Block diagram of IEEE type-1 excitation system.									
	D)	UNIT-IV	7M								
7.	a)	Draw the block diagram of single area Load frequency control system. Explain the terms in it.	7M								
15.65	b)	Two generators of rating 125 and 250MW are operated with droop characteristics of 4% and 5%	* 2.5.5								
	~/	respectively from no load to full load. Find the load sharing by each generator if a load of 300MW									
		is connected across the parallel combination of those generators.	7M								
123	<u> </u>	OR									
8.	a)	Show that steady state frequency deviation in a single area LFC is reduced to zero if the Pl	71/								
	ы	controller is reduced. Discuss the importance of combined lead frequency control and economic dispatch control with	7M								
	b)	Discuss the importance of combined load frequency control and economic dispatch control with a neat block diagram.	7M								
		UNIT-V	1001.2.4								
9.	a)	What do mean by compensation of a line? Discuss briefly different methods of compensation.	7M								
	b)	Explain what you mean by loadability of overhead lines and discuss loadability characteristic of									
	5	these lines.	7M								
_\$0.2°	<u> 2</u> 5	OR									
10.	a)	What is sub synchronous resonance condition? How is it handled in electrical network?	7N								
	b)	A 35 kW induction motor has power factor 0.85 and efficiency 0.9 at full load, power factor 0.6									
		and efficiency 0.7 at half-load. At no-load, the current is 25% of the full-load current and power factor 0.1. Capacitors are supplied to make the line power factor 0.8 at half-load. With these									
		capacitors in circuit, find the line power factor at (i) full load, and (ii) no-load.	7N								