
SERIAL COMMUNICATION

 UNIT III

INTRODUCTION

Serial communication is common method of transmitting data between a computer and a

peripheral device such as a programmable instrument or even another computer. Serial

communication transmits data one bit at a time, sequentially, over a single communication line
to a receiver. Serial is also a most popular communication protocol that is used by many devices

for instrumentation. This method is used when data transfer rates are very low or the data must

be transferred over long distances and also where the cost of cable and synchronization

difficulties makes parallel communication impractical. Serial communication is popular because
most computers have one or more serial ports, so no extra hardware is needed other than a cable

to connect the instrument to the computer or two computers together.

SERIAL AND PARALLEL TRANSMISSION

Let us now try to have a comparative study on parallel and serial communications to
understand the differences and advantages & disadvantages of both in detail.

We know that parallel ports are typically used to connect a PC to a printer and are rarely

used for other connections. A parallel port sends and receives data eight bits at a time over eight

separate wires or lines. This allows data to be transferred very quickly. However, the setup looks
more bulky because of the number of individual wires it must contain. But, in the case of a serial

communication, as stated earlier, a serial port sends and receives data, one bit at a time over one

wire. While it takes eight times as long to transfer each byte of data this way, only a few wires

are required. Although this is slower than parallel communication, which allows the transmission
of an entire byte at once, it is simpler and can be used over longer distances. So, at first sight it

would seem that a serial link must be inferior to a parallel one, because it can transmit less data

on each clock tick. However, it is often the case that, in modern technology, serial links can be

clocked considerably faster than parallel links, and achieves a higher data rate.

SERIAL DATA TRANSMISSION MODES

When data is transmitted between two pieces of equipment, three communication modes
of operation can be used.

Simplex: In a simple connection, data is transmitted in one direction only. For example,
from a computer to printer that cannot send status signals back to the computer.

Half-duplex: In a half-duplex connection, two-way transfer of data is possible, but only in
one direction at a time.

Full duplex: In a full-duplex configuration, both ends can send and receive data
simultaneously, which technique is common in our PCs.

SERIAL DATA TRANSFER SCHEMS

Like any data transfer methods, Serial Communication also requires coordination between the

sender and receiver. For example, when to start the transmission and when to end it, when one

particular bit or byte ends and another begins, when the receiver's capacity has been exceeded,

and so on. Here comes the need for synchronization between the sender and the receiver. A

protocol defines the specific methods of coordinating transmission between a sender and

receiver. For example a serial data signal between two PCs must have individual bits and bytes

that the receiving PC can distinguish. If it doesn't, then the receiving PC can't tell where one

byte ends and the next one begin or where one bit ends and begins. So the signal must be

synchronized in such a way that the receiver can distinguish the bits and bytes as the transmitter

intends them to be distinguished.

There are two ways to synchronize the two ends of the communication.

1. Synchronous data transmission

2. Asynchronous data transmission

Synchronous Data Transmission

The synchronous signaling methods use two different signals. A pulse on one signal
line indicates when another bit of information is ready on the other signal line.

In synchronous transmission, the stream of data to be transferred is encoded and sent

on one line, and a periodic pulse of voltage which is often called the "clock" is put on
another line, that tells the receiver about the beginning and the ending of each bit.

Advantages: The only advantage of synchronous data transfer is the Lower overhead and

thus, greater throughput, compared to asynchronous one.

Disadvantages:
 Slightly more complex
 Hardware is more expensive

Asynchronous data transmission

The asynchronous signaling methods use only one signal. The receiver uses transitions on

that signal to figure out the transmitter bit rate (known as auto baud) and timing. A pulse from

the local clock indicates when another bit is ready. That means synchronous transmissions use

an external clock, while asynchronous transmissions are use special signals along the

transmission medium. Asynchronous communication is the commonly prevailing

communication method in the personal computer industry, due to the reason that it is easier to

implement and has the unique advantage that bytes can be sent whenever they are ready, a no

need to wait for blocks of data to a c c u m u l a t e .

Advantages:

Simple and doesn't require much synchronization on both communication sides.

The timing is not as critical as for synchronous transmission; therefore hardware can be
made cheaper.

Set-up is very fast, so well suited for applications where messages are generated at
irregular intervals, for example data entry from the keyboard.

Disadvantages:

One of the main disadvantages of asynchronous technique is the large relative
overhead, where a high proportion of the transmitted bits are uniquely for control
purposes and thus carry no useful information.

8251-PROGRAMMABLE COMMUNICATION INTERFACE

(USART-Universal Synchronous/Asynchronous Receiver/Transmitter)

INTRODUCTION

A USART is also called a programmable communications interface (PCI). When information

is to be sent by 8086 over long distances, it is economical to send it on a single line. The 8086

has to convert parallel data to serial data and then output it. Thus lot of microprocessor time

is required for such a conversion.

Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert

this into parallel data before processing it. Again, lot of time is required for such a

conversion. The 8086 can delegate the job of conversion from serial to parallel and vice versa

to the 8251A USART used in the system.

The Intel8251A is the industry standard Universal Synchronous/Asynchronous

Receiver/Transmitter (USART), designed for data communications with Intel microprocessor
families such as 8080, 85, 86 and

88. The 8251A converts the parallel data received from the processor on the D7-0 data pins
into serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it

converts the serial data received on RxD (receive data) input into parallel data, and the
processor reads it using the data pins D7-0.

FEATURES

Compatible with extended range of Intel microprocessors.

 It provides both synchronous and asynchronous data transmission.
 Synchronous 5-8 bit characters.
 Asynchronous 5-8 bit characters.
 It has full duplex, double buffered transmitter and receiver.
 Detects the errors-parity, overrun and framing errors.
 All inputs and outputs are TTL compatible.
 Available in 28-pin DIP package.

PIN DIAGRAM

ARCHITECTURE

The 8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for

serial data communication. As a peripheral device of a microcomputer system, the 8251

receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after

conversion. The internal block diagram of 8251A is shown in fig below.

Fig. 5.7 shows the block diagram of 8251 A. The block diagram shows all the elements of a

programmable chip; it includes the interfacing signals, the control register and the status register. The

functions of various blocks are described below:

(A) Data bus buffer: This 3-state, bidirectional buffer is used to interface the 8251A to the system data

bus. Data is transmitted or received by the buffer upon execution of input and output instruction of the CPU

Command words and status information are also transferred through the data bus buffer. The command,

status and data in and data out are separate 8-bit registers to provide double buffering.

The functional block accepts inputs form the control bus and generates control signals for overall

device operation. It contains the control word register and command word register that store the various

control formats for the device functional definition.

For example

If Baud rate equals 220 Baud

TXC equals 220 Hz in the 1x mode.

TXC equals 3.52 KHz in the 16x mode.

TXC equals 14.08 KHz in the 64x mode.

The falling edge of TXC shifts the serial data out of the 8251A.

8251A USART INTERFACING WITH 8086

PROGRAMMING THE 8251A

Prior to starting a data transmission or reception, the 8251A must be loaded with a set of control
words generated by the microprocessor. These control signals define the complete functional

definition of the 8251A and must immediately follow a reset operation (internal or external). The
control words are split into two formats.

1. Mode instruction

2. Command instruction

Mode instruction: Mode instruction is used for setting the function of the 8251A. Mode

instruction will be in "wait for write" at either internal reset or external reset. That is, the writing

of a control word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

• Synchronous/asynchronous mode
• Stop bit length (asynchronous mode)

• Character length
• Parity bit
• Baud rate factor (asynchronous mode)
• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)
The bit configuration of mode instruction format is shown in Figures below. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig. Mode instruction format, Asynchronous mode

Command Instruction: Command is used for setting the operation of the 8251. It is possible
to write a command whenever necessary after writing a mode instruction and sync
characters.

Items to be set by command are as follows:

• Transmit Enable/Disable
• Receive Enable/Disable
• DTR, RTS Output of data.
• Resetting of error flag.
• Sending to break characters
• Internal resetting

• Hunt mode (synchronous mode)

Status Word: It is possible to see the internal status of the 8251 by reading a status word.

The format of status word is shown below.

Fig. Status word

RECOMMENDED STANDARD -232C (RS-232C)

RS-232 (Recommended standard-232) is a standard interface approved by the Electronic

Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-

established standard that describes the physical interface and protocol for relatively low-speed
serial data communication between computers and related devices. RS-232 is the interface that

your computer uses to talk to and exchange data with your modem and other serial devices. The

serial ports on most computers use a subset of the RS-232C standard.

RS-232C is defined as the “Interface between data terminal equipment and data

communications equipment using serial binary data exchange.” This definition defines data

terminal equipment (DTE) as the computer, while data communications equipment (DCE) is

the modem. A modem cable has pin-to-pin connections, and is designed to connect a DTE

device to a DCE device. In addition to communications between computer equipment over

telephone lines, RS-232C is now widely used for direct connections between data acquisition

devices and computer systems. RS-232C cables are commonly available with 4, 9 or 25-pin

wiring. The 25-pin cable connects every pin; the 9-pin cables do not include many of the

uncommonly used connections; 4-pin cables provide the bare minimum connections, and have

jumpers to provide “handshaking” for those devices that require it.

In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous

transmissions are supported by the standard. In addition to the data circuits, the standard defines

a number of control circuits used to manage the connection between the DTE and DCE. Each

data or control circuit only operates in one direction, which is, signaling from a DTE to the
attached DCE or the reverse. Since transmit data and receive data are separate circuits, the

interface can operate in a full duplex manner, supporting concurrent data flow in both directions.

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero

levels for the data transmission and the control signal lines. Valid signals are either in the range

of +3 to +15 volts for logic 0 or the range -3 to -15 volts for logic 1, the range between - 3 to

+3 volts is not a valid RS-232 level. For data transmission lines (TxD, RxD and their secondary

channel equivalents) logic one is defined as a negative voltage, the signal condition is called
"mark." Logic zero is positive and the signal condition is termed "space." The 9-pin RS-232C

standard is shown in figure below.

http://en.wikipedia.org/wiki/Time-series
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Full_duplex

