UNIT V

STEADY STATE STABILITY ANALYSIS

STABILITY

- The tendency of a power system to develop restoring forces equal to or greater than the disturbing forces to maintain the state of equilibrium.
- Ability to keep the machines in synchronism with another machine

Classification Of Stability

Classification Of Stability

Steady state stability

Ability of the power system to regain synchronism after small and slow disturbances (like gradual power changes)

Dynamic stability

Ability of the power system to regain synchronism after small disturbances occurring for a long time (like changes in turbine speed, change in load)

➤ Transient stability

This concern with sudden and large changes in the network conditions i.e. . sudden changes in application or removal of loads, line switching operating operations, line faults, or loss of excitation.

Steady State Stability Power Limit

• Steady state limit is the maximum power that can be transferred without the system become unstable when the load in increased gradually under steady state conditions.

Transfer Reactance

• steady-state power delivered by a lossless synchronous machine.

$$P_{e} = P_{d} = \frac{|E_{g}||V_{t}|}{x_{d}} \sin \delta$$
$$= P_{\max} \sin \delta.$$

• Where Xd is called transfer reactance

Synchronizing Power Coefficient

• From swing equation

$$M_{(pu)} \cdot \frac{\mathrm{d}^2 \delta}{\mathrm{d}t^2} = (\mathbf{P}_{\mathrm{i}} - \mathbf{P}_{\mathrm{e}}) \,\mathrm{pu}$$

• And

$$P_{e} = P_{d} = \frac{|E_{g}||V_{t}|}{x_{d}} \sin \delta$$

$$= P_{max} \sin \delta.$$

Synchronizing Power Coefficient

• Linearizing the operating point $\Delta P_e = (\frac{\partial P_e}{\partial \delta})_0 \Delta \delta$.

$$M \frac{d^{2}\Delta\delta}{dt^{2}} = P_{i} - (P_{e0} + \Delta P_{e}) = -\Delta P_{e}$$
$$M \frac{d^{2}\Delta\delta}{dt^{2}} + \left[\frac{\partial P_{e}}{\partial\delta}\right]_{0} \Delta\delta = 0$$

• $\frac{\partial P_e}{\partial \delta}$ is called synchronizing power coeffincient.

Power Angle Curve

- Swing equation is $\frac{H}{\pi f_0} \frac{d^2 \delta}{dt^2} = P_m P_e = P_0$
- The power flow equation of a single machine
- connected to infinite bus (SMIB) system is given as

$$P_e = \frac{|E'||V|}{X_{12}} \sin \delta$$

where

$$P_{\max} = \frac{\left| E' \right| \left| V \right|}{X_{12}}$$

Power Angle Curve

- Therefore $P_e = P_{\max} \sin \delta$
- The curve Pe versus à 1s called power angle curve

Methods to improve Stability

- Use of Bundled Conductors
- Use of Double-Circuit Lines
- Operate Transmission Lines in Parallel
- Series Compensation of the Lines
- Series Compensation of the Lines
- High-Speed Excitation Systems
- Fast Switching
- Breaking Resistors
- Single-Pole Switching
- HVDC Links
- Load Shedding