UNIT -1

POWER SYSTEM NETWORK MATRICES

GRAPH THEORY

- The geometrical interconnection of the various branches of a network is called the *topology* of the network.
- The connection of the network topology, shown by replacing all its elements by lines is called a *graph*.

DEFINITIONS

- Connected Graph
- Sub-graph
- Loop
- Cutset
- Tree
- Co-Tree

EXAMPLE

ORIENTED GRAPH

BASIC CUTSETS

BASIC LOOPS

INCIDENCE MATRICES

Element–node incidence matrix:

• The incidence of branches to nodes in a connected graph is given by the element-node

EXAMPLE

$\begin{array}{ccccccc} Branches \\ Nodes & 1 & 2 & 3 & 4 & 5 \\ a & \begin{bmatrix} -1 & 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & -1 \\ d & \begin{bmatrix} 0 & -1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \end{array}$

PRIMITIVE NETWORKS

Fig.2 Representation of a primitive network element (a) Impedance form (b) Admittance form

PRIMITIVE NETWORKS

- v_{pq} = voltage across the element p-q,
- e_{pq} = source voltage in series with the element pq,
- i_{pq} = current through the element p-q,
- j_{pq} = source current in shunt with the element pq,
- z_{pq} = self impedance of the element p-q and
- y_{pq} = self admittance of the element p-q.

PERFORMANCE EQUATION

 $v_{pq} + e_{pq} = z_{pq}i_{pq}$ (in its impedance form)

 $i_{pq} + j_{pq} = y_{pq}v_{pq}$ (in its admittance form)

BUS ADMITTANCE(Y BUS) MATRIX

- Y BUS can be formed by 2 methods
- 1.Inspection method
- 2.Singular transformation

YBUS =
$$\begin{pmatrix} Y_{11} & Y_{12} \bullet & Y_{1n} \\ Y_{21} & Y_{22} \bullet & Y_{2n} \\ Y_{n1} & Y_{n2} \bullet & Y_{nn} \end{pmatrix}$$

INSPECTION METHOD

For n bus system

Diagonal element of Y BUS

$$Y_{ii} = \sum_{ij}^{n} y_{ij}$$

• Off Diagonal element of Y BUS

$$Y_{ij} = -y_{ij}$$

SINGULAR TRANSFORMATION METHOD

$Y BUS = A^T [y] A$

Where [y]=primitive admittance

A=bus incidence matrix

FORMATION OF ZBUS

p is an existing bus in the partial network and *q* is a new bus; in this case *p*-*q* is a **branch** added to the p-network

• Both *p* and *q* are buses existing in the partial network; in this case *p*-*q* is a **link** added to the p-network

ADDITION OF BRANCH P-Q

ADDITION OF LINK P-Q

