{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Spherically symmetric waves\n", "\n", "Spherically symmetric three-dimensional\n", "waves propagate in the radial direction $r$ only so that\n", "$u = u(r,t)$. The fully three-dimensional wave equation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial^2u}{\\partial t^2}=\\nabla\\cdot (c^2\\nabla u) + f\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "then reduces to the spherically symmetric wave equation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "$$\n", "\\begin{equation}\n", "\\frac{\\partial^2u}{\\partial t^2}=\\frac{1}{r^2}\\frac{\\partial}{\\partial r}\n", "\\left(c^2(r)r^2\\frac{\\partial u}{\\partial t}\\right)\n", "+ f(r),\\quad r\\in (0,R),\\ t>0\n", "\\thinspace . \n", "\\label{_auto1} \\tag{1}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assume that the wave velocity $c$ is constant. One can easily show\n", "that the function $v(r,t) = ru(r,t)$ fulfills a standard wave equation\n", "in Cartesian coordinates. To this end, insert $u=v/r$ in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{1}{r^2}\\frac{\\partial}{\\partial r}\n", "\\left(c^2(r)r^2\\frac{\\partial u}{\\partial t}\\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "to obtain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "r\\left(\\frac{d c^2}{dr}\\frac{\\partial v}{\\partial r} +\n", "c^2\\frac{\\partial^2 v}{\\partial r^2}\\right) - \\frac{d c^2}{dr}v\n", "\\thinspace .\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The two terms in the parenthesis can be combined to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "r\\frac{\\partial}{\\partial r}\\left( c^2\\frac{\\partial v}{\\partial r}\\right),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is recognized as the variable-coefficient Laplace operator in\n", "one Cartesian coordinate. The spherically symmetric wave equation in\n", "terms of $v(r,t)$ now becomes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "$$\n", "\\begin{equation}\n", "\\frac{\\partial^2u}{\\partial t^2}=\n", "\\frac{\\partial}{\\partial r}\n", "\\left(c^2(r)\\frac{\\partial v}{\\partial t}\n", "-\\frac{1}{r}\\frac{d c^2}{dr}v\\right) + rf(r),\\quad r\\in (0,R),\\ t>0\n", "\\thinspace . \n", "\\label{_auto2} \\tag{2}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the case of constant wave velocity $c$, this equation reduces to\n", "the wave equation in a single Cartesian coordinate:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "$$\n", "\\begin{equation}\n", "\\frac{\\partial^2u}{\\partial t^2}=\n", "\\frac{\\partial}{\\partial r}\n", "\\left(c^2(r)\\frac{\\partial v}{\\partial t}\\right)\n", "+ rf(r),\\quad r\\in (0,R),\\ t>0\n", "\\thinspace . \n", "\\label{wave:app:rsymm:Cart} \\tag{3}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That is, any program for solving the one-dimensional wave equation\n", "in a Cartesian coordinate system can be used to\n", "solve ([3](#wave:app:rsymm:Cart)), provided the source term is\n", "multiplied by the coordinate. Moreover, if $r=0$ is included in the\n", "domain, spherical symmetry demands that $\\partial u/\\partial r=0$ at\n", "$r=0$, which means that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial u}{\\partial r} = \\frac{1}{r^2}\\left(\n", "r\\frac{\\partial v}{\\partial r} - v\\right) = 0,\\quad r=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "implying $v(0,t)=0$ as a necessary condition. For practical applications,\n", "we exclude $r=0$ from the domain and assume that some boundary\n", "condition is assigned at $r=\\epsilon$, for some $\\epsilon >0$." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }