O R E

AVA

Volume II—Advanced Features

ELEVENTH EDITION

CAY S. HORSTMANN

Core Java, Volume lI—Advanced Features

Eleventh Edition

Cay S. Horstmann

@ Pearson

Chapter 1 Streams

In this chapter

» 1.1 From Iterating to Stream Operations

« 1.2 Stream Creation

*1.3The filter, map, and flatMap Methods
* 1.4 Extracting Substreams and Combining Streams
« 1.5 Other Stream Transformations

+ 1.6 Simple Reductions

« 1.7 The Optional Type

+ 1.8 Collecting Results

« 1.9 Collecting into Maps

« 1.10 Grouping and Partitioning

» 1.11 Downstream Collectors

» 1.12 Reduction Operations

* 1.13 Primitive Type Streams

« 1.14 Parallel Streams

Streams provide a view of data that lets you specify computations at a higher
conceptual level than with collections. With a stream, you specify what you want to

have done, not how to do it. You leave the scheduling of operations to the

implementation. For example, suppose you want to compute the average of a certain

property. You specify the source of data and the property, and the stream library can
then optimize the computation, for example by using multiple threads for computing

sums and counts and combining the results.

In this chapter, you will learn how to use the Java stream library, which was introduced

in Java 8, to process collections in a “what, not how” style.

1.1 FROM ITERATING TO STREAM OPERATIONS

When you process a collection, you usually iterate over its elements and do some work
with each of them. For example, suppose we want to count all long words in a book.

First, let’s put them into a list:

var contents = new String(Files.readAllBytes (

Paths.get ("alice.txt")), StandardCharsets.UTF 8); // Read

List<String> words = List.of (contents.split ("\\PL+"));

// Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;

for (String w : words) {

if (w.length() > 12) count++;

With streams, the same operation looks like this:

long count = words.stream/()

.filter(w -> w.length() > 12)

.count () ;

Now you don’t have to scan the loop for evidence of filtering and counting. The method
names tell you right away what the code intends to do. Moreover, where the loop
prescribes the order of operations in complete detail, a stream is able to schedule the

operations any way it wants, as long as the result is correct.

Simply changing stream into parallelStream allows the stream library to do the

filtering and counting in parallel.

long count = words.parallelStream()

.filter(w -> w.length() > 12)

.count () ;

Streams follow the “what, not how” principle. In our stream example, we describe what
needs to be done: get the long words and count them. We don’t specify in which order,
or in which thread, this should happen. In contrast, the loop at the beginning of this
section specifies exactly how the computation should work, and thereby forgoes any

chances of optimization.

A stream seems superficially similar to a collection, allowing you to transform and

retrieve data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying collection

or generated on demand.

2. Stream operations don’t mutate their source. For example, the £i1ter method does
not remove elements from a stream, but it yields a new stream in which they are not

present.

3. Stream operations are lazy when possible. This means they are not executed until
their result is needed. For example, if you only ask for the first five long words instead

of all, the £i1ter method will stop filtering after the fifth match. As a consequence,

you can even have infinite streams!

Let us have another look at the example. The st ream and parallelStream methods
yield a stream for the words list. The £i1ter method returns another stream that
contains only the words of length greater than twelve. The count method reduces that

stream to a result.

This workflow is typical when you work with streams. You set up a pipeline of

operations in three stages:
1. Create a stream.

2. Specify intermediate operations for transforming the initial stream into others,

possibly in multiple steps.

3. Apply a terminal operation to produce a result. This operation forces the execution

of the lazy operations that precede it. Afterwards, the stream can no longer be used.

In the example in Listing 1.1, the stream is created with the stream or
parallelStream method. The filter method transforms it, and count is the

terminal operation.

In the next section, you will see how to create a stream. The subsequent three sections

deal with stream transformations. They are followed by five sections on terminal

operations.
Listing 1.1 streams/CountLongWords.java
1 package streams;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Cay Horstmann

6 w5/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import java.io.*;

import java.nio.charset.*;
import java.nio.file.*;
import java.util.*;

public class CountLongWords

public static void main(String[] args) throws IOExcep

var contents = new String(Files.readAllBytes (

Paths.get ("../gutenberg/alice30.txt"™)),

List<String> words = List.of (contents.split ("\\PL+

long count = 0;

for (String w : words)

if (w.length() > 12) count++;

System.out.println (count);

27

28 count = words.stream().filter(w -> w.length() >
29 System.out.println (count) ;
30
31 count = words.parallelStream().filter(w -> w.len
32 System.out.println (count);
33
34
<, 4

Jjava.util.stream.Stream<T> 8

e Stream<T> filter (Predicate<? super T> p)
yields a stream containing all elements of this stream fulfilling p.
e long count ()

yields the number of elements of this stream. This is a terminal operation.

java.util.Collection<E> 1.2

edefault Stream<E> stream/()

edefault Stream<E> parallelStream/()

yields a sequential or parallel stream of the elements in this collection.

1.2 STREAM CREATION

You have already seen that you can turn any collection into a stream with the stream
method of the Collection interface. If you have an array, use the static Stream.of

method instead.

Stream<String> words = Stream.of (contents.split ("\\PL+"));

// split returns a String[] array

The o f method has a varargs parameter, so you can construct a stream from any

number of arguments:

Stream<String> song = Stream.of ("gently", "down", "the", "str

Use Arrays.stream(array, from, to) tomake astream from a part of an array.

To make a stream with no elements, use the static St ream. empty method:

Stream<String> silence = Stream.empty();

// Generic type <String> is inferred; same as Stream.<Stri

The St ream interface has two static methods for making infinite streams. The
generate method takes a function with no arguments (or, technically, an object of the
Supplier<T> interface). Whenever a stream value is needed, that function is called to

produce a value. You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate (Math::random) ;

To produce sequences suchas 0 1 2 3 . . .,usethe iterate method instead. It
takes a “seed” value and a function (technically, a UnaryOperator<T>) and repeatedly

applies the function to the previous result. For example,

Stream<BigInteger> integers

= Stream.iterate (BigInteger.ZERO, n -> n.add(BigInteger.ON

The first element in the sequence is the seed BigInteger.zERO. The second element

is f (seed), or 1 (as a big integer). The next element is f (f (seed)), or 2, and so on.

To produce a finite stream instead, add a predicate that specifies when the iteration
should finish:

var limit = new BigInteger ("10000000") ;
Stream<BigInteger> integers
= Stream.iterate (BigInteger.ZERO,
n -> n.compareTo(limit) < O,

n -> n.add(BigInteger.ONE)) ;

As soon as the predicate rejects an iteratively generated value, the stream ends.

Finally, the Stream.ofNullable method makes a really short stream from an object.
The stream has length o if the object is nul1 or length 1 otherwise, containing just the
object. This is mostly useful in conjunction with f1atMap—see Section 1.7.7, “Turning

an Optional Into a Stream,” on p. 22 for an example.

A number of methods in the Java API yield streams. For example, the
Pattern class has a method splitAsStream that splits a CharSequence by
a regular expression. You can use the following statement to split a string
into words:

Stream<String> words = Pattern.compile("\\PL+").splitAsStream(content:

14

The sScanner. tokens method yields a stream of tokens of a scanner.
Another way to get a stream of words from a string is

Stream<String> words = new Scanner(contents).tokens();

The static Files.lines method returns a Stream of all lines in a file:

try (Stream<String> lines = Files.lines(path)) {

Process lines

If you have an Iterable that is not a collection, you can turn it into a stream
by calling

StreamSupport.stream(iterable.spliterator(), false);

If you have an Iterator and want a stream of its results, use

StreamSupport.stream(Spliterators.spliteratorUnknownSize(

iterator, Spliterator. ORDERED), false);

0 Caution

It is very important that you don’t modify the collection that is backing a
stream while carrying out a stream operation. Remember that streams don’t
collect their data—that data is always in a separate collection. If you were to
modify that collection, the outcome of the stream operations would be
undefined. The JDK documentation refers to this requirement as
noninterference.

To be exact, since intermediate stream operations are lazy, it is possible to
mutate the collection up to the point when the terminal operation executes.
For example, the following, while certainly not recommended, will work:

List<String> wordList = . . ;
Stream<String> words = wordList.stream();
wordList.add("END");

long n = words.distinct().count();

But this code is wrong:

Stream<String> words = wordList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));

/I ERROR--interference

The example program in Listing 1.2 shows the various ways of creating a
stream.

10

11

12

13

14

15

16

17

18

Listing 1.2 streams/CreatingStreams.java

package streams;

/**

* @version 1.01 2018-05-01

* @author Cay Horstmann

*/

import

import

import

import

import

import

import

Jjava.

Jjava.

Jjava.

Jjava.

java.

Jjava.

Jjava.

io.I0Exception;

math.BigInteger;

nio.charset.StandardCharsets;

nio.file.*;

util.*;

util.regex.Pattern;

util.stream.*;

public class CreatingStreams

public static <T> void show (String title,

Stream<T> s

19

20

21

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

38

final int SIZE = 10;

List<T> firstElements = stream

1imit (SIZE + 1)

.collect (Collectors.tolList ());
System.out.print (title + ": ");
for (int i = 0; 1 < firstElements.size(); i++)
{
if (i > 0) System.out.print("™, ");

if (i < SIZE) System.out.print(firstElements.ge

else System.out.print("...");

System.out.println();

public static void main(String[] args) throws IOExcept

Path path = Paths.get ("../gutenberg/alice30.txt");

var contents = new String(Files.readAllBytes (path),

StandardCharsets.UTF 8);

39

40

41

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

Stream<String> words = Stream.of (contents.split ("\

show ("words", words);

Stream<String> song = Stream.of ("gently", "down",

show ("song", song);

Stream<String> silence = Stream.empty();

show ("silence", silence);

Stream<String> echos = Stream.generate(() -> "Echo

show ("echos", echos);

Stream<Double> randoms = Stream.generate (Math::ran

show ("randoms", randoms) ;

Stream<BigInteger> integers = Stream.iterate(Bigln

n -> n.add(BigInteger.ONE)) ;

show ("integers", integers);

Stream<String> wordsAnotherWay = Pattern.compile ("

58

contents) ;

59 show ("wordsAnotherWay", wordsAnotherWay)
60
61 try (Stream<String> lines = Files.lines(path, Stan
62 {
03 show ("lines", lines);
64 }
65
66 Iterable<Path> iterable = FileSystems.getDefault ()
67 Stream<Path> rootDirectories = StreamSupport.strea
08 show ("rootDirectories", rootDirectories);
69
70 Iterator<Path> iterator = Paths.get ("/usr/share/
71 Stream<Path> pathComponents = StreamSupport.stre
72 iterator, Spliterator.ORDERED), false);
73 show ("pathComponents", pathComponents);
74
75
< [—— »

Jjava.util.stream.Stream 8

e static <T> Stream<T> of (T... values)

yields a stream whose elements are the given values.

e static <T> Stream<T> empty ()

yields a stream with no elements.

e static <T> Stream<T> generate (Supplier<T> s)

yields an infinite stream whose elements are constructed by repeatedly invoking the

function s.
e static <T> Stream<T> iterate (T seed, UnaryOperator<T> f)

e static <T> Stream<T> iterate (T seed, Predicate<? super T>

hasNext, UnaryOperator<T> f)

yields a stream whose elements are seed, £ invoked on seed, f invoked on the
preceding element, and so on. The first method yields an infinite stream. The stream of
the second method comes to an end before the first element that doesn’t fulfill the

hasNext predicate.
e static <T> Stream<T> ofNullable(T t)9

returns an empty stream if t is null or a stream containing t otherwise.

java.util.Spliterators 8

estatic <T> Spliterator<T> spliteratorUnknownSize (Iterator<?

extends T> iterator, int characteristics)

turns an iterator into a splittable iterator of unknown size with the given

Icharacteristics (a bit pattern containing constants such as Spliterator.ORDERED).

java.util.Arrays 1.2

e static <T> Stream<T> stream (T[] array, int startInclusive, int

endExclusive) 8

yields a stream whose elements are the specified range of the array.

java.util.regex.Pattern 1.4

e Stream<String> splitAsStream(CharSequence input) 8

yields a stream whose elements are the parts of the input that are delimited by this

pattern.

java.nio.file.Files 7

estatic Stream<String> lines (Path path) 8
estatic Stream<String> lines (Path path, Charset cs)8

yields a stream whose elements are the lines of the specified file, with the UTF-8

icharset or the given charset.

java.util.stream.StreamSupport 8

e static <T> Stream<T> stream(Spliterator<T> spliterator,

boolean parallel)

Yields a stream containing the values produced by the given splittable iterator.

java.lang.Iterable 5

e Spliterator<T> spliterator ()8

yields a splittable iterator for this Tterable. The default implementation does not

split and does not report a size.

java.util.Scanner 5

epublic Stream<String> tokens ()9

yields a stream of strings returned by calling the next method of this scanner.

Java.util.function.Supplier<T> 8

*T get()

supplies a value.

1.3 THE FILTER, MAP, AND FLATMAP METHODS

A stream transformation produces a stream whose elements are derived from those of
another stream. You have already seen the fi1ter transformation that yields a new
stream with those elements that match a certain condition. Here, we transform a

stream of strings into another stream containing only long words:

List<String> words = . . .;

Stream<String> longWords = words.stream().filter(w -> w.lengt

4| | »

The argument of filter isa Predicate<T>—that is, a function from T to boolean.

Often, you want to transform the values in a stream in some way. Use the map method
and pass the function that carries out the transformation. For example, you can

transform all words to lowercase like this:

Stream<String> lowercaseWords = words.stream().map(String::to

4| | »

Here, we used map with a method reference. Often, you will use a lambda expression

instead:

Stream<String> firstLetters = words.stream() .map(s -> s.subst

The resulting stream contains the first letter of each word.

When you use map, a function is applied to each element, and the result is a new stream
with the results. Now, suppose you have a function that returns not just one value but a
stream of values. Here is an example—a method that turns a string into a stream of

strings, namely the individual code points:

public static Stream<String> codePoints (String s) {

var result = new ArrayList<String>();
int i = 0;
while (i < s.length()) {

int j = s.offsetByCodePoints (i, 1);

result.add(s.substring (i, Jj)):

return result.stream();

This method correctly handles Unicode characters that require two char values

because that’s the right thing to do. But you don’t have to dwell on that.
For example, codePoints ("boat") is the stream ["b", "o", "a", "t"].

Now let’s map the codePoints method on a stream of strings:

Stream<Stream<String>> result = words.stream().map(w —-> codeP

You will get a stream of streams, like [. . . ["y", "o", "u", "r"], ["b",
"o", "a", "t"], . . .].Toflatten it outto asinglestream [. . . "y", "o",
"g", "r", "b", "o", "a", "t", . . .],usethe flatMap method instead of
map:

Stream<String> flatResult = words.stream().flatMap(w -> codeP

// Calls codePoints on each word and flattens the results

You will find a f1atMap method in classes other than streams. It is a general
concept in computer science. Suppose you have a generic type G (such as
Stream) and functions £ from some type T to G<U> and g from U to G<v>.
Then you can compose them—that is, first apply £ and then g, by using
flatMap. This is a key idea in the theory of monads. But don’t worry—you
can use flatMap without knowing anything about monads.

Jjava.util.stream.Stream 8

e Stream<T> filter (Predicate<? super T> predicate)
yields a stream containing the elements of this stream that fulfill the predicate.
e <R> Stream<R> map (Function<? super T,? extends R> mapper)

yields a stream containing the results of applying mapper to the elements of this

stream.

e <R> Stream<R> flatMap (Function<? super T,? extends Stream<?

extends R>> mapper)

yields a stream obtained by concatenating the results of applying mapper to the

elements of this stream. (Note that each result is a stream.)

1.4 EXTRACTING SUBSTREAMS AND COMBINING STREAMS

The call stream.1imit (n) returns a new stream that ends after n elements (or when
the original stream ends if it is shorter). This method is particularly useful for cutting

infinite streams down to size. For example,

Stream<Double> randoms = Stream.generate (Math::random) .limit (

yields a stream with 100 random numbers.

The call stream . skip (n) does the exact opposite. It discards the first n elements. This
is handy in our book reading example where, due to the way the sp1 it method works,

the first element is an unwanted empty string. We can make it go away by calling skip:

Stream<String> words = Stream.of (contents.split ("\\PL+")) .ski

The stream. takeWhile (predicate) call takes all elements from the stream while the

predicate is true, and then stops.

For example, suppose we use the codePoints method of the preceding section to split
a string into characters, and we want to collect all initial digits. The takeWhile

method can do this:

Stream<String> initialDigits = codePoints (str).takeWhile (

s —> "0123456789" .contains (s));

The dropWhile method does the opposite, dropping elements while a condition is true
and yielding a stream of all elements starting with the first one for which the condition

was false. For example,

Stream<String> withoutInitialWhiteSpace = codePoints(str).dro

s => s.trim().length() == 0);

4| | »

You can concatenate two streams with the static concat method of the St ream class:

Stream<String> combined = Stream.concat (

codePoints ("Hello"), codePoints ("World"));

// Yields the stream ["H", nen, "l", "l", "O", "W", "O", "

4| | »

Of course, the first stream should not be infinite—otherwise the second wouldn’t ever

get a chance.

Jjava.util.stream.Stream 8

e Stream<T> limit (long maxSize)

yields a stream with up to maxSize of the initial elements from this stream.

e Stream<T> skip(long n)

yields a stream whose elements are all but the initial n elements of this stream.
e Stream<T> takeWhile (Predicate<? super T> predicate) 9

yields a stream whose elements are the initial elements of this stream that fulfill the

predicate.
e Stream<T> dropWhile (Predicate<? super T> predicate) 9

yields a stream whose elements are the elements of this stream except for the initial

lones that do not fulfill the predicate.

e static <T> Stream<T> concat (Stream<? extends T> a, Stream<?

extends T> Db)

|yie1ds a stream whose elements are the elements of a followed by the elements of b.

1.5 OTHER STREAM TRANSFORMATIONS

The distinct method returns a stream that yields elements from the original stream,

in the same order, except that duplicates are suppressed. The duplicates need not be

adjacent.

Stream<String> uniqueWords

= Stream.of ("merrily", "merrily", "merrily", "gently").dis

// Only one "merrily" is retained

For sorting a stream, there are several variations of the sorted method. One works for
streams of Comparable elements, and another accepts a Comparator. Here, we sort

strings so that the longest ones come first:

Stream<String> longestFirst

= words.stream() .sorted (Comparator.comparing (String::lengt

As with all stream transformations, the sorted method yields a new stream whose

elements are the elements of the original stream in sorted order.

Of course, you can sort a collection without using streams. The sorted method is

useful when the sorting process is part of a stream pipeline.

Finally, the peek method yields another stream with the same elements as the original,
but a function is invoked every time an element is retrieved. That is handy for

debugging:

Object[] powers = Stream.iterate(l.0, p -> p * 2)

.peek (e -> System.out.println ("Fetching " + e))

.1imit (20) .toArray ()

When an element is actually accessed, a message is printed. This way you can verify

that the infinite stream returned by i terate is processed lazily.

&

When you use a debugger to debug a stream computation, you can set a

breakpoint in a method that is called from one of the transformations. With
most IDEs, you can also set breakpoints in lambda expressions. If you just
want to know what happens at a particular point in the stream pipeline, add

.peek(x ->{

return; })

and set a breakpoint on the second line.

Jjava.util.stream.Stream 8

e Stream<T> distinct ()

yields a stream of the distinct elements of this stream.

e Stream<T> sorted()

e Stream<T> sorted (Comparator<? super T> comparator)

yields as stream whose elements are the elements of this stream in sorted order. The
first method requires that the elements are instances of a class implementing

Comparable.
e Stream<T> peek (Consumer<? super T> action)

yields a stream with the same elements as this stream, passing each element to

action as itis consumed.

1.6 SIMPLE REDUCTIONS

Now that you have seen how to create and transform streams, we will finally get to the
most important point—getting answers from the stream data. The methods that we
cover in this section are called reductions. Reductions are terminal operations. They

reduce the stream to a nonstream value that can be used in your program.

You have already seen a simple reduction: the count method that returns the number

of elements of a stream.

Other simple reductions are max and min that return the largest or smallest value.
There is a twist—these methods return an Optional<T> value that either wraps the
answer or indicates that there is none (because the stream happened to be empty). In
the olden days, it was common to return null in such a situation. But that can lead to
null pointer exceptions when it happens in an incompletely tested program. The
Optional type is a better way of indicating a missing return value. We discuss the
Optional type in detail in the next section. Here is how you can get the maximum of a

stream:

Optional<String> largest = words.max (String::compareTolIgnoreC

System.out.println("largest: " + largest.orElse(""));

The findFirst returns the first value in a nonempty collection. It is often useful when
combined with filter. For example, here we find the first word that starts with the

letter Q, if it exists:

Optional<String> startsWithQ

= words.filter(s -> s.startsWith("Q")) .findFirst():;

If you are OK with any match, not just the first one, use the findAny method. This is
effective when you parallelize the stream, since the stream can report any match that it

finds instead of being constrained to the first one.

Optional<String> startsWithQ

= words.parallel().filter(s -> s.startsWith("Q")) .findAny (

| |

If you just want to know if there is a match, use anyMatch. That method takes a

predicate argument, so you won’t need to use filter.

boolean aWordStartsWithQ

= words.parallel () .anyMatch(s -> s.startswith("Q")):

There are methods al1Match and noneMatch that return t rue if all or no elements

match a predicate. These methods also benefit from being run in parallel.

Jjava.util.stream.Stream 8

e Optional<T> max (Comparator<? super T> comparator)
e Optional<T> min (Comparator<? super T> comparator)

yields a maximum or minimum element of this stream, using the ordering defined by

the given comparator, or an empty Optional if this stream is empty. These are

terminal operations.
e Optional<T> findFirst ()
e Optional<T> findAny ()

yields the first, or any, element of this stream, or an empty Optional if this stream is

lempty. These are terminal operations.
e boolean anyMatch (Predicate<? super T> predicate)
eboolean allMatch (Predicate<? super T> predicate)

e boolean noneMatch (Predicate<? super T> predicate)

returns t rue if any, all, or none of the elements of this stream match the given

predicate. These are terminal operations.

1.7 THE OPTIONAL TYPE

An Optional<T> object is a wrapper for either an object of type T or no object. In the
former case, we say that the value is present. The Optional<T> type is intended as a
safer alternative for a reference of type T that either refers to an object oris null. But it

is only safer if you use it right. The next three sections shows you how.

1.7.1 Getting an Optional Value

The key to using Optional effectively is to use a method that either produces an

alternative if the value is not present, or consumes the value only if it is present.

In this section, we look at the first strategy. Often, there is a default that you want to use

when there was no match, perhaps the empty string:

String result = optionalString.orElse("");

// The wrapped string, or "" if none

You can also invoke code to compute the default:

String result = optionalString.orElseGet (() -> System.getProp

// The function is only called when needed

Or you can throw an exception if there is no value:

String result = optionalString.orElseThrow(IllegalStateExcept

// Supply a method that yields an exception object

java.util.Optional 8

T orElse (T other)

yields the value of this Optional, or other if this Optional is empty.
T orElseGet (Supplier<? extends T> other)

yields the value of this Optional, or the result of invoking other if this Optional is

lempty.

e <X extends Throwable> T orElseThrow (Supplier<? extends X>

exceptionSupplier)

yields the value of this Optional, or throws the result of invoking

exceptionSupplier if this Optional is empty.

1.7.2 Consuming An Optional Value

In the preceding section, you saw how to produce an alternative if no value is present.

The other strategy for working with optional values is to consume the value only if it is

present.

The i fPresent method accepts a function. If the optional value exists, it is passed to

that function. Otherwise, nothing happens.

optionalValue.ifPresent (v -> Process V) ;

For example, if you want to add the value to a set if it is present, call

optionalValue.ifPresent (v -> results.add(v));

or simply

optionalValue.ifPresent (results::add);

If you want to take one action if the Optional has a value and another action if it

doesn’t, use i fPresentOrElse:

optionalValue.ifPresentOrElse (
v -> System.out.println("Found " + v),

() —> logger.warning ("No match"));

java.util.Optional 8

evoid ifPresent (Consumer<? super T> action)
if this Optional is nonempty, passes its value to action.

evoid ifPresentOrElse (Consumer<? super T> action, Runnable

emptyAction) 9

if this Optional is nonempty, passes its value to action, else invoke emptyAction.

1.7.3 Pipelining Optional Values

In the preceding sections, you saw how to get a value out of an Optional object.
Another useful strategy is to keep the Optional intact. You can transform the value

inside an Optional by using the map method:

Optional<String> transformed = optionalString.map (String::toU

| | »

If optionalString is empty, then transformed is also empty.

Here is another example. We add a result to a list if it is present:

optionalValue.map (results::add);

If optionalValue is empty, nothing happens.

This map method is the analog of the map method of the Stream interface
that you have seen in Section 1.3, “The filter, map, and flatMap
Methods,” on p. 11. Simply imagine an optional value as a stream of size
zero or one. The result again has size zero or one, and in the latter case, the
function has been applied.

Similarly, you can use the £i1ter method to only consider Optional values that
fulfill a certain property before or after transforming it. If the property is not fulfilled,

the pipeline yields an empty result:

Optional<String> transformed = optionalString

.filter (s -> s.length() >= 8)

.map (String: :toUpperCase) ;

You can substitute an alternative Optional for an empty Optional with the or

method. The alternative is computed lazily.

Optional<String> result = optionalString.or(() -> // Supply a

alternatives.stream() .findFirst()) ;

If optionalString has a value, then result is optionalString. If not, the

lambda expression is evaluated, and its result is used.

java.util.Optional 8

e <U> Optional<U> map (Function<? super T,? extends U> mapper)

yields an Optional whose value is obtained by applying the given function to the

value of this Optional if present, or an empty Optional otherwise.
e Optional<T> filter (Predicate<? super T> predicate)

yields an Optional with the value of this Optional if it fulfills the given predicate, or

an empty Optional otherwise.

e Optional<T> or (Supplier<? extends Optional<? extends T>>

supplier) 9

yields this Optional if it is nonempty, or the one produced by the supplier otherwise.

1.7.4 How Not to Work with Optional Values

If you don’t use Optional values correctly, you have no benefit over the “something or

null” approach of the past.

The get method gets the wrapped element of an Optional value if it exists, or throws

aNoSuchElementException if it doesn’t. Therefore,

Optional<T> optionalValue = . . .;

optionalValue.get () .someMethod ()

is no safer than

T value e e e

value.someMethod () ;

The isPresent method reports whether an Optional<T> object has a value. But

if (optionalValue.isPresent()) optionalValue.get () .someMethod

< | | »

is no easier than

if (value !'= null) wvalue.someMethod() ;

Java 10 introduces a scarier-sounding synonym for the get method. Call
optionalValue.orElseThrow () to make explicit that the method will throw
a NoSuchElementExceptionif the optionalValue is empty. The hope is
that programmers will only call that method when it is absolutely clear that
the Optional is never empty.

Here are a few more tips for the proper use of the Optional type:
« A variable of type Optional should never be null.

» Don’t use fields of type Optional. The cost is an additional object. Inside a class,

using null for an absent field is manageable.

« Don’t put Optional objects in a set, and don’t use them as keys for a map. Collect the

values instead.

java.util.Optional 8

T get ()
eT orElseThrow () 10

yields the value of this Optional, or throws a NoSuchElementException ifitis

lempty.
e boolean isPresent ()

returns true if this Optional is not empty.

1.7.5 Creating Optional Values

So far, we have discussed how to consume an Optional object someone else created. If
you want to write a method that creates an Optional object, there are several static
methods for that purpose, including Optional.of (result) and

Optional.empty (). For example,

public static Optional<Double> inverse (Double x) {

return x == 0 ? Optional.empty() : Optional.of(l / x);

The ofNullable method is intended as a bridge from possibly nul1 values to optional
values. Optional.ofNullable (obj) returns Optional.of (obj) if obj is not

null and Optional.empty () otherwise.

java.util.Optional 8

estatic <T> Optional<T> of (T value)
estatic <T> Optional<T> ofNullable (T value)

yields an Optional with the given value. If value is null, the first method throws a

NullPointerException and the second method yields an empty Optional.
estatic <T> Optional<T> empty ()

yields an empty Optional.

1.7.6 Composing Optional Value Functions with flatMap

Suppose you have a method f yielding an Optional<T>, and the target type T has a
method g yielding an Optional<U>. If they were normal methods, you could compose
them by calling s . £ () .g (). But that composition doesn’t work since s . £ () has type

Optional<T>, not T. Instead, call

Optional<U> result = s.f().flatMap(T::q9);

If s. £ () is present, then g is applied to it. Otherwise, an empty Optional<U>is

returned.

Clearly, you can repeat that process if you have more methods or lambdas that yield
Optional values. You can then build a pipeline of steps, simply by chaining calls to

flatMap, that will succeed only when all parts do.

For example, consider the safe i nverse method of the preceding section. Suppose we

also have a safe square root:

public static Optional<Double> squareRoot (Double x) {

return x < 0 ? Optional.empty () : Optional.of (Math.sqgrt (x)

Then you can compute the square root of the inverse as

Optional<Double> result = inverse (x).flatMap (MyMath::squareRo

or, if you prefer,

Optional<Double> result

= Optional.of (-4.0).flatMap (Demo: :inverse) .flatMap (Demo: :s

If either the inverse method or the squareRoot returns Optional.empty (), the

result is empty.

You have already seen a f1atMap method in the Stream interface (see
Section 1.3, “The filter, map, and flatMap Methods,” on p. 11). That

method was used to compose two methods that yield streams, by flattening
out the resulting stream of streams. The Optional. flatMap method works
in the same way if you interpret an optional value as having zero or one

elements.

java.util.Optional 8

e <U> Optional<U> flatMap (Function<? super T,? extends

Optional<? extends U>> mapper)

yields the result of appying mapper to the value in this Optional if present, or an

lempty optional.

1.7.7 Turning an Optional Into a Stream

The st ream method turns an Optional<T> into a St ream<T> with zero or one

elements. Sure, why not, but why would you ever want that?

This becomes useful with methods that return an Optional result. Suppose you have a

stream of user IDs and a method

Optional<User> lookup (String id)

How do you get a stream of users, skipping those IDs that are invalid?

Of course, you can filter out the invalid IDs and then apply get to the remaining ones:

Stream<String> ids 5 o of

Stream<User> users = ids.map (Users::lookup)

.filter (Optional::isPresent)

.map (Optional::get) ;

But that uses the i sPresent and get methods that we warned about. It is more

elegant to call

Stream<User> users = ids.map (Users::lookup)

.flatMap (Optional: :stream) ;

Each call to st ream returns a stream with o or 1 elements. The f1atMap method

combines them all. That means the nonexistent users are simply dropped.

In this section, we consider the happy scenario in which we have a method
that returns an Optional value. These days, many methods return null
when there is no valid result. Suppose Users.classicLookup (id) returns
a User object or null, not an Optional<User>. Then you can of course
filter out the null values:

Stream<User> users = ids.map(Users::classicLookup)

filter(Objects::nonNull);

But if you prefer the f1atMap approach, you can use

Stream<User> users = ids.flatMap(

id -> Stream.ofNullable(Users.classicLookup(id)));

or

Stream<User> users = ids.map(Users::classicLookup)

flatMap(Stream::ofNullable);

The call Stream.ofNullable (obj) yields an empty stream if obj is null or
a stream just containing ob7 otherwise.

The example program in Listing 1.3 demonstrates the Optional API.

Listing 1.3 optional/OptionalTest.java

1 package optional;

2

3/

4 * @version 1.01 2018-05-01

5 * @author Cay Horstmann

6 */

7

8 import Java.io.*;

9 import java.nio.charset.*;
10 import java.nio.file.*;
11 import Java.util.*;

12

13 public class OptionalTest

14 {
15 public static void main(String[] args) throws IOExcep
16 {

17 var contents = new String(Files.readAllBytes (

18

19

20

21

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

Paths.get ("../gutenberg/alice30.txt")), Stan

List<String> wordList = List.of (contents.split ("\\

Optional<String> optionalValue = wordList.stream()

.filter(s -> s.contains ("fred"))

.findFirst () ;

System.out.println (optionalValue.orElse ("No word

Optional<String> optionalString = Optional.empty

String result = optionalString.orElse ("N/A");

System.out.println ("result: " + result);

result = optionalString.orElseGet (() -> Locale.g
System.out.println("result: " + result);

try

result = optionalString.orElseThrow(IllegalS

System.out.println ("result: " + result);

catch (Throwable t)

37

38

39

40

41

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

t.printStackTrace() ;

optionalValue = wordList.stream()

.filter(s -> s.contains ("red"))

findFirst () ;

optionalValue.ifPresent (s -> System.out.println

var results = new HashSet<String>();

optionalValue.ifPresent (results::add);

Optional<Boolean> added = optionalValue.map (resu

System.out.println (added) ;

System.out.println(inverse(4.0).flatMap (Optional

System.out.println(inverse (-1.0) .flatMap (Optiona

System.out.println (inverse (0.0).flatMap (Optional

Optional<Double> result?2 = Optional.of (-4.0)

.flatMap (OptionalTest::inverse) .flatMap (Optio

System.out.println (result?);

57 }

58

59 public static Optional<Double> inverse (Double x)

60 {

61 return x == 0 ? Optional.empty () : Optional.of (1l
62 }

63

64 public static Optional<Double> squareRoot (Double x)
65 {

66 return x < 0 ? Optional.empty () : Optional.of (Mat
67 }

68 }

4| »

java.util.Optional 8

e <U> Optional<U> flatMap (Function<? super T,Optional<U>>

Imapper) 9

yields the result of applying mapper to the value of this Optional, or an empty
IOptional if this Optional is empty.

1.8 COLLECTING RESULTS

When you are done with a stream, you will often want to look at the results. You can

call the i terator method, which yields an old-fashioned iterator that you can use to

visit the elements.

Alternatively, you can call the forEach method to apply a function to each element:

stream.forEach (System.out: :println);

On a parallel stream, the forEach method traverses elements in arbitrary order. If you
want to process them in stream order, call forEachOrdered instead. Of course, you

might then give up some or all of the benefits of parallelism.

But more often than not, you will want to collect the result in a data structure. You can

call toArray and get an array of the stream elements.

Since it is not possible to create a generic array at runtime, the expression
stream.toArray () returns an Object [] array. If you want an array of the correct

type, pass in the array constructor:

String[] result = stream.toArray (Stringl[]::new);

// stream.toArray() has type Object|]

For collecting stream elements to another target, there is a convenient collect
method that takes an instance of the Col1lector interface. A collector is an object that
accumulates elements and produces a result. The Collectors class provides a large
number of factory methods for common collectors. To collect the stream elements into

a list, use the collector produced by Collectors.toList ():

List<String> result = stream.collect (Collectors.toList());

Similarly, here is how you can collect stream elements into a set:

Set<String> result = stream.collect (Collectors.toSet());

If you want to control which kind of set you get, use the following call instead:

TreeSet<String> result = stream.collect (Collectors.toCollecti

Suppose you want to collect all strings in a stream by concatenating them. You can call

String result = stream.collect(Collectors.joining());

If you want a delimiter between elements, pass it to the joining method:

String result = stream.collect(Collectors.joining ("™, "))

If your stream contains objects other than strings, you need to first convert them to

strings, like this:

String result = stream.map (Object::toString) .collect (Collecto

If you want to reduce the stream results to a sum, count, average, maximum, or
minimum, use one of the summarizing(Int|Long|Double) methods. These methods
take a function that maps the stream objects to numbers and yield a result of type
(Int|Long|Double)SummaryStatistics, simultaneously computing the sum,

count, average, maximum, and minimum.

IntSummaryStatistics summary = stream.collect (

Collectors.summarizingInt (String::length));

double averageWordLength = summary.getAverage (),

double maxWordLength = summary.getMax () ;

The example program in Listing 1.4 shows how to collect elements from a stream.

Listing 1.4 collecting/CollectingResults.java

10

11

12

13

14

15

16

17

18

19

package collecting;

/**

* @version 1.01 2018-05-01

* @author Cay Horstmann

*/
import java.io.*;
import java.nio.charset.*;
import java.nio.file.*;
import java.util.*;
import java.util.stream.*;

public class CollectingResults

public static Stream<String> noVowels () throws IOExce

var contents = new String(Files.readAllBytes (

Paths.get ("../gutenberg/alice30.txt")),

20

21

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

38

39

StandardCharsets.UTF 8);

List<String> wordList = List.of (contents.split ("\\

Stream<String> words = wordList.stream();

return words.map (s -> s.replaceAll ("[aeiouAEIOU]",

public static <T> void show (String label, Set<T> set)

System.out.print (label + ": " + set.getClass() .getN

System.out.println("["

+ set.stream() .limit (10) .map (Object::toString

.collect (Collectors.joining (", ")) + "]

public static void main(String[] args) throws IOExcept

Iterator<Integer> iter = Stream.iterate(0, n -> n +

.1terator () ;

while (iter.hasNext())

System.out.println(iter.next ());

40

41

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

58

Object[] numbers = Stream.iterate(0, n -> n + 1).1

System.out.println("Object array:" + numbers); //

try

var number = (Integer) numbers[0]; // OK

System.out.println ("number: " + number);

System.out.println ("The following statement thr

var numbers2 = (Integer[]) numbers; // Throws e

catch (ClassCastException ex)

System.out.println (ex) ;

Integer[] numbers3 = Stream.iterate(0, n -> n + 1)

.toArray (Integer[]::new);

System.out.println ("Integer array: " + numbers3);

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

15

76

77

78

Set<String> noVowelSet = noVowels ()

.collect (Collectors.toSet());

show ("noVowelSet", noVowelSet) ;

TreeSet<String> noVowelTreeSet = noVowels () .collec

Collectors.toCollection (TreeSet: :new)) ;

show ("noVowelTreeSet", noVowelTreeSet) ;

String result = noVowels().limit (10) .collect (
Collectors.joining());
System.out.println("Joining: " + result);
result = noVowels () .limit (10)
.collect (Collectors.joining (", "))
System.out.println ("Joining with commas: " + res
IntSummaryStatistics summary = noVowels () .collec

Collectors.summarizingInt (String::length))

double averageWordLength = summary.getAverage () ;

double maxWordLength = summary.getMax () ;

79 System.out.println ("Average word length: " + ave

80 System.out.println ("Max word length: " + maxWord
81 System.out.println ("forEach:");

82 noVowels () .1imit (10) . forEach (System.out: :println
83 }

84 }

< | | 4

Jjava.util.stream.BaseStream 8

e Tterator<T> iterator ()

yields an iterator for obtaining the elements of this stream. This is a terminal

loperation.

Jjava.util.stream.Stream 8

evoid forEach (Consumer<? super T> action)

invokes action on each element of the stream. This is a terminal operation.
e Object[] toArray()

e <A> A[] toArray(IntFunction<A[]> generator)

yields an array of objects, or of type A when passed a constructor reference A[] : : new.

These are terminal operations.
e <R,A> R collect (Collector<? super T,A,R> collector)

icollects the elements in this stream, using the given collector. The Collectors class

has factory methods for many collectors.

java.util.stream.Collectors 8

e static <T> Collector<T,?,List<T>> toList ()

estatic <T> Collector<T,?,List<T>> toUnmodifiablelList () 10
estatic <T> Collector<T,?,Set<T>> toSet ()

estatic <T> Collector<T, ?,Set<T>> toUnmodifiableSet () 10
yields collectors that collect elements in a list or set.

e static <T,C extends Collection<T>> Collector<T,?,C>

toCollection (Supplier<C> collectionFactory)

yields a collector that collects elements into an arbitrary collection. Pass a constructor

reference such as TreeSet : :new.

e static Collector<CharSequence, ?,String> joining()

e static Collector<CharSequence, ?,String> joining (CharSequence

delimiter)

e static Collector<CharSequence, ?,String> joining (CharSequence

delimiter, CharSequence prefix, CharSequence suffix)

yields a collector that joins strings. The delimiter is placed between strings, and the
prefix and suffix before the first and after the last string. When not specified, these are

lempty.

estatic <T> Collector<T,?,IntSummaryStatistics>

summarizingInt (ToIntFunction<? super T> mapper)

e static <T> Collector<T,?,LongSummaryStatistics>

summarizingLong (ToLongFunction<? super T> mapper)

e static <T> Collector<T,?,DoubleSummaryStatistics>

summarizingDouble (ToDoubleFunction<? super T> mapper)

yields collectors that produce an (Int|Long|Double)SummaryStatistics object,
from which you can obtain the count, sum, average, maximum, and minimum of the

results of applying mapper to each element.

IntSummaryStatistics 8
LongSummaryStatistics 8
DoubleSummaryStatistics 8

* long getCount ()

yields the count of the summarized elements.
e (int|long|double) getSum ()

e double getAverage ()

yields the sum or average of the summarized elements, or zero if there are no

lelements.
e (int|long|double) getMax ()
e (int|long|double) getMin ()

yields the maximum or minimum of the summarized elements, or

((Integer|Long|Double).(MAX|MIN) VALUE if there are no elements.

1.9 COLLECTING INTO MAPS

Suppose you have a St ream<Person> and want to collect the elements into a map so
that later you can look up people by their ID. The Collectors. toMap method has

two function arguments that produce the map’s keys and values. For example,

Map<Integer, String> idToName = people.collect (

Collectors.toMap (Person: :getlId, Person::getName));

In the common case when the values should be the actual elements, use

Function.identity () for the second function.

Map<Integer, Person> idToPerson = people.collect (

Collectors.toMap (Person: :getId, Function.identity()));

If there is more than one element with the same key, there is a conflict, and the
collector will throw an T11legalStateException. You can override that behavior by
supplying a third function argument that resolves the conflict and determines the value
for the key, given the existing and the new value. Your function could return the

existing value, the new value, or a combination of them.

Here, we construct a map that contains, for each language in the available locales, as
key its name in your default locale (such as "German"), and as value its localized name

(such as "Deutsch").

Stream<Locale> locales = Stream.of (Locale.getAvailablelLocales
Map<String, String> languageNames = locales.collect (
Collectors.toMap (
Locale: :getDisplayLanguage,
loc -> loc.getDisplayLanguage (loc),

(existingValue, newValue) -> existingValue));

We don’t care that the same language might occur twice (for example, German in

Germany and in Switzerland), so we just keep the first entry.

In this chapter, | use the Locale class as a source of an interesting data set.
See Chapter 13 for more information about working with locales.

Now suppose we want to know all languages in a given country. Then we need a
Map<String, Set<String>>.Forexample, the value for "Switzerland" isthe set
[French, German, Italian].At first, we store a singleton set for each language.
Whenever a new language is found for a given country, we form the union of the

existing and the new set.

Map<String, Set<String>> countryLanguageSets = locales.collec
Collectors.toMap (
Locale::getDisplayCountry,
1 -> Collections.singleton (l.getDisplayLanguage()),
(a, b) => { // Union of a and b
var union = new HashSet<String>(a);
union.addAll (b) ;

return union; 1}));

You will see a simpler way of obtaining this map in the next section.

If you want a TreeMap, supply the constructor as the fourth argument. You must
provide a merge function. Here is one of the examples from the beginning of the

section, now yielding a TreeMap:

Map<Integer, Person> idToPerson = people.collect (
Collectors.toMap (
Person: :getld,

Function.identity (),

(existingValue, newValue) -> { throw new IllegalStatekxc

TreeMap: :new)) ;

For each of the toMap methods, there is an equivalent toConcurrentMap
method that yields a concurrent map. A single concurrent map is used in the
parallel collection process. When used with a parallel stream, a shared map
is more efficient than merging maps. Note that elements are no longer
collected in stream order, but that doesn’t usually make a difference.

The example program in Listing 1.5 gives examples of collecting stream results into

maps.

Listing 1.5 collecting/CollectingIntoMaps.java

1 package collecting;

2

3 / H

4 * @version 1.00 2016-05-10
5 * @author Cay Horstmann

6 */

-

8 import java.io.*;

9 import java.util.*;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

277

28

import jJava.util.function.

import java.util.stream.*;

* .
’

public class CollectingIntoMaps

public static class Person

private int id;

private String name;

public Person (int id,

this.id = 1id;

this.name = name;

public int getId()

String name)

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

return id;

public String getName ()

return name;

public String toString()

return getClass () .getName () + "[id=" + id + ",n

public static Stream<Person> people ()

return Stream.of (new Person (1001, "Peter"), new Per

new Person (1003, "Mary"));

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

public static void main(String[] args) throws IOExcept

Map<Integer, String> idToName = people () .collect (

Collectors.toMap (Person: :getld, Person::getNa

System.out.println ("idToName: " + idToName) ;

Map<Integer, Person> idToPerson = people().collect

Collectors.toMap (Person::getlId, Function.ide

System.out.println ("idToPerson: " + idToPerson.get

+ idToPerson) ;

idToPerson = people().collect (

Collectors.toMap (Person::getId, Function.ide

existingValue, newValue) -> {

throw new IllegalStateException|() ;

}, TreeMap::new));

System.out.println ("idToPerson: " + idToPerson.g

+ idToPerson) ;

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Stream<Locale> locales = Stream.of (Locale.getAva

Map<String, String> languageNames = locales.coll

Collectors.toMap (

Locale::getDisplaylLanguage,

1 -> l.getDisplayLanguage (1),

(existingValue, newValue) -> existingValue

System.out.println ("languageNames: " + languageN

locales = Stream.of (Locale.getAvailablelLocales()

Map<String, Set<String>> countryLanguageSets = 1

Collectors.toMap (

Locale::getDisplayCountry,

1 -> List.of(l.getDisplayLanguage()),

(a, b) -> { // union of a and b

Set<String> union = new HashSet<>(a);

union.addAll (b) ;

return union;

1))

System.out.println ("countryLanguageSets: " + cou

88 }

4| |

java.util.stream.Collectors 8

estatic <T,K,U> Collector<T, ?,Map<K,U>> toMap (Function<? super
T,? extends K> keyMapper, Function<? super T,? extends U>

valueMapper)

estatic <T,K,U> Collector<T, ?,Map<K,U>> toMap (Function<? super
T,? extends K> keyMapper, Function<? super T,? extends U>

valueMapper, BinaryOperator<U> mergeFunction)

estatic <T,K,U,M extends Map<K,U>> Collector<T,?,M>
toMap (Function<? super T,? extends K> keyMapper, Function<?
super T,? extends U> valueMapper, BinaryOperator<uU>

ImergeFunction, Supplier<M> mapSupplier)

estatic <T,K,U> Collector<T, ?,Map<K,U>>
toUnmodifiableMap (Function<? super T,? extends K> keyMapper,

Function<? super T,? extends U> valueMapper) 10

estatic <T,K,U> Collector<T, ?,Map<K,U>>
toUnmodifiableMap (Function<? super T,? extends K> keyMapper,
Function<? super T,? extends U> valueMapper, BinaryOperator<U>

ImergeFunction) 10

e static <T,K,U> Collector<T, ?,ConcurrentMap<K, U>>
toConcurrentMap (Function<? super T,? extends K> keyMapper,

Function<? super T,? extends U> valueMapper)

estatic <T,K,U> Collector<T,?,ConcurrentMap<K, U>>
toConcurrentMap (Function<? super T,? extends K> keyMapper,
Function<? super T,? extends U> valueMapper, BinaryOperator<U>

ImergeFunction)

estatic <T,K,U,M extends ConcurrentMap<K,U>> Collector<T,?,M>

toConcurrentMap (Function<? super T,? extends K> keyMapper,
Function<? super T,? extends U> valueMapper, BinaryOperator<U>

ImergeFunction, Supplier<M> mapSupplier)

Yield a collector that produces a map, unmodifiable map, or concurrent map. The
keyMapper and valueMapper functions are applied to each collected element,
yielding a key/value entry of the resulting map. By default, an
IllegalStateException is thrown when two elements give rise to the same key.

You can instead supply a mergeFunction that merges values with the same key. By

default, the result is a HashMap or ConcurrentHashMap. You can instead supply a

mapSupplier that yields the desired map instance.

1.10 GROUPING AND PARTITIONING

In the preceding section, you saw how to collect all languages in a given country. But
the process was a bit tedious. You had to generate a singleton set for each map value
and then specify how to merge the existing and new values. Forming groups of values

with the same characteristic is very common, and the groupingBy method supports it

directly.

Let’s look at the problem of grouping locales by country. First, form this map:

Map<String, List<Locale>> countryToLocales = locales.collect (

Collectors.groupingBy (Locale: :getCountry)) ;

The function Locale: : getCountry is the classifier function of the grouping. You can

now look up all locales for a given country code, for example

List<Locale> swissLocales = countryToLocales.get ("CH");

// Yields locales de CH, fr CH, it CH and maybe more

A quick refresher on locales: Each locale has a language code (such as en
for English) and a country code (such as US for the United States). The
locale en_US describes English in the United States, and en IE is English in
Ireland. Some countries have multiple locales. For example, ga_IE is Gaelic
in Ireland, and, as the preceding example shows, the JDK knows at least
three locales in Switzerland.

When the classifier function is a predicate function (that is, a function returning a
boolean value), the stream elements are partitioned into two lists: those where the
function returns t rue and the complement. In this case, it is more efficient to use

partitioningBy instead of groupingBy. For example, here we split all locales into
those that use English and all others:

Map<Boolean, List<Locale>> englishAndOtherLocales = locales.c
Collectors.partitioningBy (1l -> l.getLanguage () .equals ("en"

List<Locale> englishLocales = englishAndOtherlLocales.get (true

If you call the groupingByConcurrent method, you get a concurrent map
that, when used with a parallel stream, is concurrently populated. This is
entirely analogous to the toConcurrentMap method.

java.util.stream.Collectors 8

e static <T,K> Collector<T, ?,Map<K, List<T>>>

groupingBy (Function<? super T,? extends K> classifier)

estatic <T,K> Collector<T, ?,ConcurrentMap<K,List<T>>>

groupingByConcurrent (Function<? super T,? extends K>

classifier)

yields a collector that produces a map or concurrent map whose keys are the results of

applying classifier to all collected elements, and whose values are lists of elements

with the same key.

e static <T> Collector<T, ?,Map<Boolean,List<T>>>

partitioningBy (Predicate<? super T> predicate)

yields a collector that produces a map whose keys are t rue/false, and whose values

are lists of the elements that fulfill/do not fulfill the predicate.

1.11 DOWNSTREAM COLLECTORS

The groupingBy method yields a map whose values are lists. If you want to process
those lists in some way, supply a downstream collector. For example, if you want sets

instead of lists, you can use the Collectors. toSet collector that you saw in the

preceding section:

Map<String, Set<Locale>> countryToLocaleSet = locales.collect

groupingBy (Locale: :getCountry, toSet()));

In this example, as well as the remaining examples of this section, | assume
a static import of java.util.stream.Collectors.* to make the
expressions easier to read.

Several collectors are provided for reducing collected elements to numbers:

« counting produces a count of the collected elements. For example,

Map<String, Long> countryToLocaleCounts = locales.collect (

groupingBy (Locale::getCountry, counting()))

counts how many locales there are for each country.

« summing(Int|Long|Double) takes a function argument, applies the function to the

downstream elements, and produces their sum. For example,

Map<String, Integer> stateToCityPopulation = cities.collect (

groupingBy (City::getState, summingInt (City::getPopulation)

computes the sum of populations per state in a stream of cities.

« maxBy and minBy take a comparator and produce maximum and minimum of the

downstream elements. For example,

Map<String, Optional<City>> stateTolargestCity = cities.colle
groupingBy (City::getState,

maxBy (Comparator.comparing (City::getPopulation))));

produces the largest city per state.

The collectingAndThen collector adds a final processing step behind a collector. For

example, if you want to know how many distinct results there are, collect them into a
set and then compute the size:

Map<Character, Integer> stringCountsByStartingletter = string
groupingBy (s -> s.charAt(0),

collectingAndThen (toSet (), Set::size)));

The mapping collector does the opposite. It applies a function to each collected

elements and passes the results to a downstream collector.

Map<Character, Set<Integer>> stringlLengthsByStartinglLetter =

groupingBy (s -> s.charAt(0),

mapping (String::length, toSet())));

Here, we group strings by their first character. Within each group, we produce the

lengths and collect them in a set.

The mapping method also yields a nicer solution to a problem from the preceding

section—gathering a set of all languages in a country.

Map<String, Set<String>> countryTolanguages = locales.collect

groupingBy (Locale: :getDisplayCountry,

mapping (Locale: :getDisplaylLanguage,

toSet())))

There is a £1atMapping method as well, for use with functions that return streams.

If the grouping or mapping function has return type int, long, or double, you can
collect elements into a summary statistics object, as discussed in Section 1.8,

“Collecting Results,” on p. 25. For example,

Map<String, IntSummaryStatistics> stateToCityPopulationSummar

groupingBy (City::getState,

summarizingInt (City::getPopulation)));

Then you can get the sum, count, average, minimum, and maximum of the function

values from the summary statistics objects of each group.

The £iltering collector applies a filter to each group, for example:

Map<String, Set<City>> largeCitiesByState
= cilties.collect(
groupingBy (City::getState,
filtering(c -> c.getPopulation() > 500000,

toSet()))); // States without large cities have e

There are also three versions of a reducing method that apply general
reductions, as described in the next section.

Composing collectors is powerful, but it can also lead to very convoluted expressions.

The best use is with groupingBy or partitioningBy to process the “downstream’

B

map values. Otherwise, simply apply methods such as map, reduce, count, max, or

min directly on streams.

The example program in Listing 1.6 demonstrates downstream collectors.

Listing 1.6 collecting/DownstreamCollectors.java

1 package collecting;

10

11

12

13

14

15

16

17

18

19

20

21

22

/**

* @version 1.00 2016-05-10

* @author Cay Horstmann

*/

import static

import

import

import

import

Jjava.]

Jjava.

Jjava.

Jjava.

java.util.stream.Collectors.*;

nio.file.*;

util.*;

util.stream.*;

public class DownstreamCollectors

public static class City

private String name;

private String state;

private int population;

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

38

39

40

41

public City(String name, String state,

this.name = name;

this.state = state;

this.population = population;

public String getName ()

return name;

public String getState ()

return state;

public int getPopulation ()

int populat

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

58

59

60

61

return population;

public static Stream<City> readCities(String filename)

return Files.lines (Paths.get (filename)) .map(l -> 1.

.map(a -> new City(a[0], all], Integer.parsel

public static void main(String[] args) throws IOExcept

Stream<Locale> locales = Stream.of (Locale.getAvaila

locales = Stream.of (Locale.getAvailablelLocales());

Map<String, Set<Locale>> countryToLocaleSet = local

Locale::getCountry, toSet())):

System.out.println ("countryToLocaleSet: " + country

locales = Stream.of (Locale.getAvailablelLocales());

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Map<String, Long> countryToLocaleCounts = locales.

Locale: :getCountry, counting()));

System.out.println ("countryToLocaleCounts: " + cou

Stream<City> cities = readCities("cities.txt");

Map<String, Integer> stateToCityPopulation = ci

City::getState, summingInt (City::getPopul

System.out.println ("stateToCityPopulation: " +

cities = readCities("cities.txt");

Map<String, Optional<String>> stateToLongestCit

.collect (groupingBy (

City::getState,

mapping (City: :getName,

maxBy (Comparator.comparing (St

System.out.println ("stateToLongestCityName: " +

locales = Stream.of (Locale.getAvailablelLocales (

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Map<String, Set<String>> countryToLanguages = 1

Locale::getDisplayCountry,

mapping (Locale: :getDisplayLanguage, toSet

System.out.println ("countryToLanguages: " + cou

cities = readCities("cities.txt");

Map<String, IntSummaryStatistics> stateToCityPo

.collect (groupingBy (City::getState,

summarizingInt (City::getPopulation)

System.out.println(stateToCityPopulationSummary

cities = readCities("cities.txt");

Map<String, String> stateToCityNames = cities.c

City::getState,

reducing ("", City::getName, (s, t) -> s.1

+ ", " A)
cities = readCities("cities.txt");
stateToCityNames = cities.collect (groupingBy (Ci

mapping (City: :getName, joining (", "))));

101 System.out.println ("stateToCityNames: " + state

102 }

103 }

4| »

java.util.stream.Collectors 8

epublic static <T,K,A,D> Collector<T, ?,Map<K, D>>
groupingBy (Function<? super T,? extends K> classifier,

Collector<? super T,A,D> downstream)

yields a collector that produces a map. The keys are the results of applying
classifier to all collected elements. The values are the results of collecting

lelements with the same key, using the downstream collector.
estatic <T> Collector<T, ?,Long> counting ()
yields a collector that counts the collected elements.

estatic <T> Collector<T,?,Integer> summingInt (ToIntFunction<?

super T> mapper)

e static <T> Collector<T, ?,Long> summingLong (ToLongFunction<?

super T> mapper)

e static <T> Collector<T, ?,Double>

summingDouble (ToDoubleFunction<? super T> mapper)

yields a collector that computes the sum of the values of applying mapper to the

Icollected elements.

estatic <T> Collector<T, ?,0ptional<T>> maxBy (Comparator<? super

T> comparator)

estatic <T> Collector<T,?,0ptional<T>> minBy (Comparator<? super

T> comparator)

yields a collector that computes the maximum or minimum of the collected elements,

using the ordering specified by comparator.

estatic <T,A,R,RR> Collector<T,A,RR>
collectingAndThen (Collector<T,A,R> downstream, Function<R,RR>

finisher)

yields a collector that sends elements to the downstream collector and then the

finisher function to its result.

e static <T,U,A,R> Collector<T,?,R> mapping (Function<? super T,?

extends U> mapper, Collector<? super U,A,R> downstream)

yields a collector that calls mapper on each element and passes the results to the

|downstream collector.

estatic <T,U,A,R> Collector<T,?,R> flatMapping (Function<? super
T,? extends Stream<? extends U>> mapper, Collector<? super

U,A,R> downstream)

yields a collector that calls mapper on each element and passes the elements of the

results to the downstream collector.

estatic <T,A,R> Collector<T,?,R> filtering(Predicate<? super T>

predicate, Collector<? super T,A,R> downstream)

yields a collector that passes the elements fulfilling the predicate to the downstream

Icollector.

1.12 REDUCTION OPERATIONS

The reduce method is a general mechanism for computing a value from a stream. The
simplest form takes a binary function and keeps applying it, starting with the first two

elements. It’s easy to explain this if the function is the sum:

List<Integer> values = . . .;

Optional<Integer> sum = values.stream() .reduce((x, y) —-> x +

< | | »

In this case, the reduce method computes v, + v; + U, + . . ., where the v; are the
stream elements. The method returns an Optional because there is no valid result if

the stream is empty.

In this case, you can write reduce (Integer: :sum) instead of reduce ((x,

y) > x + y).

More generally, you can use any operation that combines a partial result x with the next

value y to yield a new partial result.

Here is another way of looking at reductions. Given a reduction operation op, the
reduction yields v, op v, op v.0p . . ., where v; op v;, ; denotes the function call op(v;,
vi; 1). There are many operations that might be useful in practice, such as sum, product,

string concatenation, maximum and minimum, set union and intersection.

If you want to use reduction with parallel streams, the operation must be associative: It
shouldn’t matter in which order you combine the elements. In math notation, (x op y)
op z must be equal to x op (y op z). An example of an operation that is not associative is

subtraction. For example, (6 —3) — 2+ 6 — (3 — 2).

Often, there is an identity e such that e op x = x, and you can use that element as the
start of the computation. For example, 0 is the identity for addition. Then call the

second form of reduce:

List<Integer> values = . . .;

Integer sum = values.stream() .reduce (0, (x, y) -> x + V)

// Computes 0 + vg +v; +v, +

The identity value is returned if the stream is empty, and you no longer need to deal

with the Optional class.

Now suppose you have a stream of objects and want to form the sum of some property,

such as all lengths in a stream of strings. You can’t use the simple form of reduce. It
requires a function (T, T) -> T, with the same types for the arguments and the
result. But in this situation, you have two types: The stream elements have type
String, and the accumulated result is an integer. There is a form of reduce that can

deal with this situation.

First, you supply an “accumulator” function (total, word) -> total +
word.length (). That function is called repeatedly, forming the cumulative total. But
when the computation is parallelized, there will be multiple computations of this kind,
and you need to combine their results. You supply a second function for that purpose.

The complete call is

int result = words.reduce (0,
(total, word) -> total + word.length(),

(totall, total2) -> totall + total2);

In practice, you probably won’t use the reduce method a lot. It is usually
easier to map to a stream of numbers and use one of its methods to
compute sum, max, or min. (We discuss streams of numbers in Section 1.13,
“Primitive Type Streams,” on p. 43.) In this particular example, you could
have called words .mapToInt (String: :length) .sum(), which is both
simpler and more efficient since it doesn’t involve boxing.

There are times when reduce is not general enough. For example, suppose
you want to collect the results in a Bitset. If the collection is parallelized,
you can'’t put the elements directly into a single BitSet because a BitSet
object is not threadsafe. For that reason, you can’t use reduce. Each
segment needs to start out with its own empty set, and reduce only lets you
supply one identity value. Instead, use collect. It takes three arguments:

1. A supplier to make new instances of the target object, for example a
constructor for a hash set

2. An accumulator that adds an element to the target, such as an add
method

3. A combiner that merges two objects into one, such as addall

Here is how the collect method works for a bit set:

BitSet result = stream.collect(BitSet::new, BitSet::set, BitSet::or);

Jjava.util.Stream 8

e Optional<T> reduce (BinaryOperator<T> accumulator)
T reduce (T identity, BinaryOperator<T> accumulator)

e <U> U reduce (U identity, BiFunction<U,? super T,U>

accumulator, BinaryOperator<U> combiner)

forms a cumulative total of the stream elements with the given accumulator
function. If identity is provided, then it is the first value to be accumulated. If
combiner is provided, it can be used to combine totals of segments that are

accumulated separately.

*<R> R collect (Supplier<R> supplier, BiConsumer<R,? super T>

accumulator, BiConsumer<R,R> combiner)

icollects elements in a result of type R. On each segment, supplier is called to provide
an initial result, accumulator is called to mutably add elements to it, and combiner

is called to combine two results.

1.13 PRIMITIVE TYPE STREAMS

So far, we have collected integers in a St ream<Integer>, even though it is clearly

inefficient to wrap each integer into a wrapper object. The same is true for the other

primitive types double, float, long, short, char, byte, and boolean. The stream
library has specialized types IntStream, LongStream, and DoubleStream that store
primitive values directly, without using wrappers. If you want to store short, char,

byte,and boolean, use an IntStream, and for float, use a DoubleStream.

To create an IntStream, call the IntStream.of and Arrays.stream methods:

IntStream stream = IntStream.of (1, 1, 2, 3, 5);

stream = Arrays.stream(values, from, to); // values is an int

As with object streams, you can also use the static generate and iterate methods.
In addition, IntStream and LongStream have static methods range and

rangeClosed that generate integer ranges with step size one:

IntStream zeroToNinetyNine = IntStream.range (0, 100); // Uppe

IntStream zeroToHundred = IntStream.rangeClosed (0, 100); // U

The CharSequence interface has methods codePoints and chars that yield an
IntStream of the Unicode codes of the characters or of the code units in the UTF-16

encoding. (See Chapter 1 for the sordid details.)

String sentence = "\uD835\uDD46 is the set of octonions.";

// \uD835\uDD46 is the UTF-16 encoding of the letter , uni

IntStream codes = sentence.codePoints ()

// The stream with hex wvalues 1D546 20 69 73 20

When you have a stream of objects, you can transform it to a primitive type stream with

the mapToInt, mapToLong, or mapToDouble methods. For example, if you have a

stream of strings and want to process their lengths as integers, you might as well do it

inan IntStream:

Stream<String> words = . . .;

IntStream lengths = words.mapToInt (String::length);

To convert a primitive type stream to an object stream, use the boxed method:

Stream<Integer> integers = IntStream.range (0, 100) .boxed()

Generally, the methods on primitive type streams are analogous to those on object

streams. Here are the most notable differences:
« The toArray methods return primitive type arrays.

» Methods that yield an optional result return an OptionalInt, OptionalLong, or
OptionalDouble. These classes are analogous to the Optional class, but they have

methods getAsInt, getAsLong, and getAsDouble instead of the get method.

« There are methods sum, average, max, and min that return the sum, average,

maximum, and minimum. These methods are not defined for object streams.

» The summaryStatistics method yields an object of type
IntSummaryStatistics, LongSummaryStatistics, or
DoubleSummaryStatistics that can simultaneously report the sum, count, average,

maximum, and minimum of the stream.

The Random class has methods ints, longs, and doubles that return
primitive type streams of random numbers. If you need random numbers in
parallel streams, use the SplittableRandom class instead.

The program in Listing 1.7 gives examples for the API of primitive type streams.

Listing 1.7 streams/PrimitiveTypeStreams.java

1 package streams;

2

3/

4 * @version 1.01 2018-05-01

5 * @author Cay Horstmann

6 */

.

8 import java.io.IOException;

9 import java.nio.charset.StandardCharsets;
10 import java.nio.file.Files;
11 import java.nio.file.Path;
12 import jJava.nio.file.Paths;
13 import java.util.stream.Collectors;
14 import java.util.stream.IntStream;
15 import Jjava.util.stream.Stream;
16
17 public class PrimitiveTypeStreams

18 {

19

20

21

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

public static void show(String title, IntStream strea

final int SIZE = 10;

int[] firstElements = stream.limit (SIZE + 1) .toA

System.out.print (title + ": ");

for (int 1 = 0; i < firstElements.length; i++)

if (1 > 0) System.out.print(", ")

if (i < SIZE) System.out.print(firstElements]

else System.out.print("...");

System.out.println();

public static void main(String[] args) throws IOExce

IntStream isl = IntStream.generate(() -> (int) (M

show ("isl1l", isl);

IntStream is2 = IntStream.range (5, 10);

38

39

40

41

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

show ("is2", 1is2);

IntStream is3 = IntStream.rangeClosed (5, 10);

show ("1is3", 1s3);

Path path = Paths.get ("../gutenberg/alice30.txt"
var contents = new String(Files.readAllBytes (pat
Stream<String> words = Stream.of (contents.split (

IntStream is4 = words.mapTolInt (String::length);

show ("is4", is4);

var sentence = "\uD835\uDD46 is the set of octon

System.out.println (sentence);

IntStream codes = sentence.codePoints ()

System.out.println (codes.mapToObj (c -> String.fo

Collectors.joining()))
Stream<Integer> integers = IntStream.range (0, 10
IntStream is5 = integers.mapTolnt (Integer::intVa

show ("is5", 1s5);

58 }

< |

Jjava.util.stream.IntStream 8

estatic IntStream range(int startInclusive, int endExclusive)

estatic IntStream rangeClosed(int startInclusive, int

endInclusive)

yields an IntStream with the integers in the given range.
estatic IntStream of (int... wvalues)

yields an IntStream with the given elements.

eint[] toArray()

yields an array with the elements of this stream.

eint sum()

e OptionalDouble average ()

e Optionallnt max ()

e OptionalInt min ()

e IntSummaryStatistics summaryStatistics()

yields the sum, average, maximum, or minimum of the elements in this stream, or an

lobject from which all four of these results can be obtained.
e Stream<Integer> boxed()

yields a stream of wrapper objects for the elements in this stream.

java.util.stream.LongStream 8

e static LongStream range (long startInclusive, long

endExclusive)

e static LongStream rangeClosed(long startInclusive, long

endInclusive)

yields a LongStream with the integers in the given range.
e static LongStream of (long... values)
yields a LongStream with the given elements.

elong[] toArray ()

yields an array with the elements of this stream.

e long sum{()

e OptionalDouble average ()

e Optionallong max ()

e OptionallLong min ()

e LongSummaryStatistics summaryStatistics ()

yields the sum, average, maximum, or minimum of the elements in this stream, or an

lobject from which all four of these results can be obtained.
e Stream<Long> boxed/()

yields a stream of wrapper objects for the elements in this stream.

java.util.stream.DoubleStream 8

e static DoubleStream of (double... values)
yields a DoubleStream with the given elements.

e double[] toArray()

yields an array with the elements of this stream.

e double sum/()

e OptionalDouble average ()

e OptionalDouble max ()

e OptionalDouble min ()

e DoubleSummaryStatistics summaryStatistics()

yields the sum, average, maximum, or minimum of the elements in this stream, or an

lobject from which all four of these results can be obtained.
e Stream<Double> boxed ()

yields a stream of wrapper objects for the elements in this stream.

java.lang.CharSequence 1.0

e IntStream codePoints () 8

yields a stream of all Unicode code points of this string.

java.util.Random 1.0

e IntStream ints ()

e IntStream ints (int randomNumberOrigin, int randomNumberBound) 8

e IntStream ints(long streamSize) 8

e IntStream ints(long streamSize, int randomNumberOrigin, int

randomNumberBound) 8

e LongStream longs () 8

e LongStream longs (long randomNumberOrigin, long

randomNumberBound) 8
e LongStream longs (long streamSize) 8

e LongStream longs (long streamSize, long randomNumberOrigin,

long randomNumberBound) 8
e DoubleStream doubles () 8

e DoubleStream doubles (double randomNumberOrigin, double

randomNumberBound) 8
e DoubleStream doubles (long streamSize) 8

e DoubleStream doubles (long streamSize, double

randomNumberOrigin, double randomNumberBound) 8

yields streams of random numbers. If st reamsSi ze is provided, the stream is finite
with the given number of elements. When bounds are provided, the elements are

between randomNumberOrigin (inclusive) and randomNumberBound (exclusive).

java.util.Optional(Int|Long|Double)8

e static Optional(Int|Long|Double)of ((int|long|double) value)
yields an optional object with the supplied primitive type value.
e (int|long|double) getAs(Int|Long|Double) ()

yields the value of this optional object, or throws a NoSuchElementException ifitis

lempty.

e (int|long|double) orElse ((int|long|double) other)

e (int|long|double) orElseGet ((Int|Long|Double)Supplier other)
yields the value of this optional object, or the alternative value if this object is empty.

evoid ifPresent ((Int|Long|Double)Consumer consumer)

If this optional object is not empty, passes its value to consumer.

java.util.(Int| Long|Double)SummaryStatistics 8

* long getCount ()

e (int|long|double) getSum ()
e double getAverage ()

e (int|long|double) getMax ()
e (int|long|double) getMin ()

yields the count, sum, average, maximum, and minimum of the collected elements.

1.14 PARALLEL STREAMS

Streams make it easy to parallelize bulk operations. The process is mostly automatic,
but you need to follow a few rules. First of all, you must have a parallel stream. You can

get a parallel stream from any collection with the Collection.parallelStream()

method:

Stream<String> parallelWords = words.parallelStream()

Moreover, the parallel method converts any sequential stream into a parallel one.

Stream<String> parallelWords = Stream.of (wordArray) .parallel (

< | | »

As long as the stream is in parallel mode when the terminal method executes, all

intermediate stream operations will be parallelized.

When stream operations run in parallel, the intent is that the same result is returned as
if they had run serially. It is important that the operations are stateless and can be

executed in an arbitrary order.

Here is an example of something you cannot do. Suppose you want to count all short

words in a stream of strings:

var shortWords = new int[1l2];

words.parallelStream() . forEach (

s -=> { if (s.length() < 12) shortWords([s.length()]++; });

// ERROR—race condition!

System.out.println (Arrays.toString (shortWords)) ;

This is very, very bad code. The function passed to forEach runs concurrently in
multiple threads, each updating a shared array. As you saw in Chapter 14 of Volume I,
that’s a classic race condition. If you run this program multiple times, you are quite

likely to get a different sequence of counts in each run—each of them wrong.

It is your responsibility to ensure that any functions you pass to parallel stream
operations are safe to execute in parallel. The best way to do that is to stay away from
mutable state. In this example, you can safely parallelize the computation if you group

strings by length and count them.

Map<Integer, Long> shortWordCounts

= words.parallelStream()

.filter(s -> s.length() < 12)

.collect (groupingBy (

String::length,

counting()));

By default, streams that arise from ordered collections (arrays and lists), from ranges,

generators, and iterators, or from calling Stream. sorted, are ordered. Results are

accumulated in the order of the original elements, and are entirely predictable. If you

run the same operations twice, you will get exactly the same results.

Ordering does not preclude efficient parallelization. For example, when computing
stream.map (fun), the stream can be partitioned into n segments, each of which is

concurrently processed. Then the results are reassembled in order.

Some operations can be more effectively parallelized when the ordering requirement is
dropped. By calling the St ream.unordered method, you indicate that you are not
interested in ordering. One operation that can benefit from this is Stream.distinct.
On an ordered stream, distinct retains the first of all equal elements. That impedes
parallelization—the thread processing a segment can’t know which elements to discard
until the preceding segment has been processed. If it is acceptable to retain any of the
unique elements, all segments can be processed concurrently (using a shared set to

track duplicates).

You can also speed up the 1imit method by dropping ordering. If you just want any n

elements from a stream and you don’t care which ones you get, call

Stream<String> sample = words.parallelStream() .unordered() .11

As discussed in Section 1.9, “Collecting into Maps,” on p. 30, merging maps is
expensive. For that reason, the Collectors.groupingByConcurrent method uses
a shared concurrent map. To benefit from parallelism, the order of the map values will

not be the same as the stream order.

Map<Integer, List<String>> result = words.parallelStream() .co

Collectors.groupingByConcurrent (String: :length)) ;

// Values aren’t collected in stream order

Of course, you won't care if you use a downstream collector that is independent of the

ordering, such as

Map<Integer, Long> wordCounts

= words.parallelStream/()
.collect (
groupingByConcurrent (
String::1length,

counting()));

Don’t turn all your streams into parallel streams with the hope of speeding up their

operations. Keep these issues in mind:

» There is a substantial overhead to parallelization that will only pay off for very large

data sets.

» Parallelizing a stream is only a win if the underlying data source can be effectively

split into multiple parts.

« The thread pool that is used by parallel streams can be starved by blocking operations

such as file I/O or network access.

Parallel streams work best with huge in-memory collections of data and

computationally intensive processing.

6 Tip

Prior to Java 9, parallelizing the stream returned by the Files.lines
method made no sense. The data was not splittable—you had to read the
first half of the file before the second half. Now the method uses a memory-
mapped file, and splitting is effective. If you process the lines of a huge file,
parallelizing the stream may improve performance.

By default, parallel streams use the global fork-join pool returned by
ForkJoinPool.commonPool. That is fine if your operations don'’t block and
you don’t share the pool with other tasks. There is a trick to substitute a
different pool. Place your operations inside the submit method of a custom
pool:

ForkJoinPool customPool =. . ;

result = customPool.submit(() ->

stream.parallel().map(. . .).collect(. . .)).get();

Or, asynchronously:

CompletableFuture.supplyAsync(() ->

stream.parallel().map(. . .).collect(. . .),

customPool).thenAccept(result -> . . .);

If you want to parallelize stream computations based random numbers, don’t
start out with a stream obtained from the Random. ints, Random. longs, Or
Random.doubles methods. Those streams don'’t split. Instead, use the ints,
longs, or doubles methods of the SplittableRandom class.

The example program in Listing 1.8 demonstrates how to work with parallel
streams.

Listing 1.8 parallel/ParallelStreams.java

1 package parallel;

10

11

12

13

14

15

16

17

18

19

20

21

/**

* @Qve

* @au

*/

import

import

import

import

import

import

public

pub

rsion 1.01 2018-05-01

thor Cay Horstmann

static java.util.stream.Collectors.*;

Jjava.io.*;

java.nio.charset.*;

java.nio.file.*;

Java.util.*;

java.util.stream.*;

class ParallelStreams

lic static void main(String[] args) throws IOExcep

var contents = new String(Files.readAllBytes (

Paths.get ("../gutenberg/alice30.txt")),

Stan

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

38

39

40

41

List<String> wordList = List.of (contents.split ("

// Very bad code ahead

var shortWords = new int[10];

wordList.parallelStream() .forEach(s ->

if (s.length() < 10) shortWords[s.length (

System.out.println (Arrays.toString(shortWords)) ;

// Try again--the result will likely be differen

Arrays.fill (shortWords, O0);

wordList.parallelStream() .forEach(s ->

if (s.length() < 10) shortWords[s.length (

}) i

System.out.println (Arrays.toString(shortWords)) ;

// Remedy: Group and count

Map<Integer, Long> shortWordCounts = wordList.pa

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

.filter (s -> s.length() < 10)

.collect (groupingBy (String::length, counting

System.out.println (shortWordCounts) ;

// Downstream order not deterministic

Map<Integer, List<String>> result = wordList.par

Collectors.groupingByConcurrent (String: :lengt

System.out.println(result.get (14));

result = wordList.parallelStream().collect (

Collectors.groupingByConcurrent (String: :lengt

System.out.println(result.get (14));

Map<Integer, Long> wordCounts = wordList.paralle

groupingByConcurrent (String::length, counting

61 System.out.println (wordCounts) ;

62 }

63 }

<« I ——,

java.util.stream.BaseStream<T,S extends BaseStream<T,S>> 8

*S parallel()

yields a parallel stream with the same elements as this stream.

S unordered/()

yields an unordered stream with the same elements as this stream.

Jjava.util.Collection<E> 1.2

e Stream<E> parallelStream() 8

yields a parallel stream with the elements of this collection.

In this chapter, you have learned how to put the stream library of Java 8 to use. The

next chapter covers another important topic: processing input and output.

Chapter 2 Input and Output

In this chapter

« 2.1 Input/Output Streams

» 2.2 Reading and Writing Binary Data

« 2.3 Object Input/Output Streams and Serialization
« 2.4 Working with Files

2.5 Memory-Mapped Files

« 2.6 File Locking

« 2.7 Regular Expressions

In this chapter, we will cover the Java Application Programming Interfaces (APIs) for
input and output. You will learn how to access files and directories and how to read and
write data in binary and text format. This chapter also shows you the object
serialization mechanism that lets you store objects as easily as you can store text or
numeric data. Next, we will turn to working with files and directories. We finish the
chapter with a discussion of regular expressions, even though they are not actually
related to input and output. We couldn’t find a better place to handle that topic, and
apparently neither could the Java team—the regular expression API specification was

attached to a specification request for “new I/O” features.

2.1 INPUT/OUTPUT STREAMS

In the Java API, an object from which we can read a sequence of bytes is called an input
stream. An object to which we can write a sequence of bytes is called an output stream.

These sources and destinations of byte sequences can be—and often are—files, but they

can also be network connections and even blocks of memory. The abstract classes

InputStreamand OutputStream form the basis for a hierarchy of input/output

(I/0O) classes.

These input/output streams are unrelated to the streams that you saw in the
preceding chapter. For clarity, we will use the terms input stream, output
stream, or input/output stream whenever we discuss streams that are used
for input and output.

Byte-oriented input/output streams are inconvenient for processing information stored
in Unicode (recall that Unicode uses multiple bytes per character). Therefore, a
separate hierarchy provides classes for processing Unicode characters that inherit from
the abstract Reader and Writer classes. These classes have read and write operations
that are based on two-byte char values (that is, UTF-16 code units) rather than byte

values.

2.1.1 Reading and Writing Bytes

The InputStream class has an abstract method:

abstract int read()

This method reads one byte and returns the byte that was read, or -1 if it encounters
the end of the input source. The designer of a concrete input stream class overrides this
method to provide useful functionality. For example, in the FileInputStream class,
this method reads one byte from a file. System. in is a predefined object of a subclass
of InputStream that allows you to read information from “standard input,” that is, the

console or a redirected file.

The InputStream class also has nonabstract methods to read an array of bytes or to
skip a number of bytes. Since Java 9, there is a very useful method to read all bytes of a

stream:

byte[] bytes = in.readAllBytes();

There are also methods to read a given number of bytes—see the API notes.

These methods call the abstract read method, so subclasses need to override only one

method.

Similarly, the OutputStream class defines the abstract method

abstract void write (int b)

which writes one byte to an output location.

If you have an array of bytes, you can write them all at once:

byte[] values = ...;

out.write (values) ;

The transferTo method transfers all bytes from an input stream to an output stream:

in.transferTo (out) ;

Both the read and write methods block until the byte is actually read or written. This
means that if the input stream cannot immediately be accessed (usually because of a
busy network connection), the current thread blocks. This gives other threads the
chance to do useful work while the method is waiting for the input stream to become

available again.

The available method lets you check the number of bytes that are currently available

for reading. This means a fragment like the following is unlikely to block:

int bytesAvailable = in.available();

if (bytesAvailable > 0)

var data = new byte[bytesAvailable];

in.read (data) ;

When you have finished reading or writing to an input/output stream, close it by calling
the c1ose method. This call frees up the operating system resources that are in limited
supply. If an application opens too many input/output streams without closing them,
system resources can become depleted. Closing an output stream also flushes the buffer
used for the output stream: Any bytes that were temporarily placed in a buffer so that
they could be delivered as a larger packet are sent off. In particular, if you do not close a
file, the last packet of bytes might never be delivered. You can also manually flush the
output with the f1ush method.

Even if an input/output stream class provides concrete methods to work with the raw
read and wri te functions, application programmers rarely use them. The data that

you are interested in probably contain numbers, strings, and objects, not raw bytes.

Instead of working with bytes, you can use one of many input/output classes that build

upon the basic TnputStreamand OutputStream classes.

java.io.InputStream 1.0

e abstract int read()

reads a byte of data and returns the byte read; returns -1 at the end of the input

stream.
eint read(bytel] Db)

reads into an array of bytes and returns the actual number of bytes read, or -1 at the

lend of the input stream; this method reads at most b . 1ength bytes.
e int read(bytel[] b, int off, int len)
e int readNBytes (bytel[] b, int off, int len) 9

reads up to 1en bytes, if available without blocking (read), or blocking until all values

have been read (readNBytes). Values are placed into b, starting at of £. Returns the

actual number of bytes read, or -1 at the end of the input stream.
ebyte[] readAllBytes () 9

yields an array of all bytes that can be read from this stream.

e long transferTo (OutputStream out) 9

transfers all bytes from this input stream to the given output stream, returning the

number of bytes transferred. Neither stream is closed.
e long skip(long n)

skips n bytes in the input stream, returns the actual number of bytes skipped (which

may be less than n if the end of the input stream was encountered).
eint available()

returns the number of bytes available, without blocking (recall that blocking means

that the current thread loses its turn).
evoid close ()

Icloses the input stream.

evoid mark (int readlimit)

puts a marker at the current position in the input stream (not all streams support this
feature). If more than readlimit bytes have been read from the input stream, the

stream is allowed to forget the marker.
e void reset ()

returns to the last marker. Subsequent calls to read reread the bytes. If there is no

lcurrent marker, the input stream is not reset.
e boolean markSupported()

returns t rue if the input stream supports marking.

java.io.OutputStream 1.0

e abstract void write(int n)

writes a byte of data.

evoid write (byte[] b)

evoid write (byte[] b, int off, int len)
writes all bytes, or 1en bytes starting at of £, in the array b.
evoid close ()

flushes and closes the output stream.

evoid flush()

flushes the output stream—that is, sends any buffered data to its destination.

2.1.2 The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole zoo of more

than 60 (!) different input/output stream types (see Figures 2.1 and 2.2).

Let’s divide the animals in the input/output stream zoo by how they are used. There are
separate hierarchies for classes that process bytes and characters. As you saw, the
InputStreamand OutputStream classes let you read and write individual bytes and
arrays of bytes. These classes form the basis of the hierarchy shown in Figure 2.1. To
read and write strings and numbers, you need more capable subclasses. For example,
DataInputStreamand DataOutputStream let you read and write all the primitive
Java types in binary format. Finally, there are input/output streams that do useful stuff;
for example, the ZipInputStreamand ZipOutputStream let you read and write

files in the familiar ZIP compression format.

For Unicode text, on the other hand, you can use subclasses of the abstract classes
Reader and Writer (see Figure 2.2). The basic methods of the Reader and Writer

classes are similar to those of InputStreamand OutputStream.

abstract int read/()

abstract void write (int c)

The read method returns either a UTF-16 code unit (as an integer between 0 and
65535) or -1 when you have reached the end of the file. The write method is called
with a Unicode code unit. (See Volume I, Chapter 3 for a discussion of Unicode code

units.)

InpulSsrean

[| l |

Aisdia Bytadrray Fils Pipad Filtar Saquance SaringHuffar Objact
InputStream InpulStrean InpulStesam InpulSiream InputSireanm InpuiStoean InpulSiream Inpl Siresm
——

| (aaanas raannet f

Butlzred Checked Cipher Dhigerst infiaier LineMumber F;‘WE:I_: Pushback
i I i I I i
npusSiraam it Saam InputStneam InputSiream npiil Stream InpailStream In-nu!Slr\etam npuiSiraam
L= L
IrautSinaam

i

Data ccinbaiang s
InputSiraam Objectinput

gl
(R (gt

Y T
L
H]

Zip
InputStream

=% inlefacesa
Datalnpus

il

Randeem
AccansFilg

Jar
InputStream

== inberface ==
ﬂmulﬁlmml ObjectOulput
0

I L

i

H

'

'

i

i

i

BytaArmay Fla Filter Piged | O i
OulputSirsam OutpulStneam CutputSiraam CutpulStream OufautSiream :
i

'

'

| I A mE |

' l Chala I
PririlSiream OutputStraam

l

Buffarsd Checked Clpnar Digest Dieflaer
CutputSiraam CutputSiream CutputSiraam CusputStraam OutpulStream
GTIP
OulputStream

g 15

Jar
OulputZiream

Figure 2.1 Input and output stream hierarchy

There are four additional interfaces: Closeable, Flushable, Readable, and

Appendable (see Figure 2.3). The first two interfaces are very simple, with methods

void close () throws IOException

and

void flush()

respectively. The classes InputStream, OutputStream, Reader, and Writer all

implement the Closeable interface.

Resader

Bultered CharArray FiltarFeadar InpulStream PipedReader SiringReadar
Reader Reader Reader

Pushback FileReader
Reader I I

Wirites

LinaMNumber
Reader

OutputStraam
Writer

Butfered CharArray FilterWriter

PipadWriler PrintWriler StringWriter
Writer Writer

LUy [HE

Figure 2.2 Reader and writer hierarchy

% Note

The java.io.Closeable interface extends the

java.lang.AutoCloseable interface. Therefore, you can use the try-with-
resources statement with any Closeable. Why have two interfaces? The
close method of the Closeable interface only throws an I0Exception,
whereas the AutoCloseable.close method may throw any exception.

OutputStreamand Writer implement the Flushable interface.

The Readable interface has a single method

int read (CharBuffer cb)

The CharBuf fer class has methods for sequential and random read/write access. It
represents an in-memory buffer or a memory-mapped file. (See Section 2.5.2, “The

Buffer Data Structure,” on p. 132 for details.)

QOutput
Siream i

U —— e e
Flushabie

String
Builder

<<intarfaces==
Appendable

eF == ===

= nterfape =
Readabls

Figure 2.3 The Closeable,Flushable,Readable,and Appendable

interfaces

The Appendable interface has two methods for appending single characters and

character sequences:

Appendable append (char c)

Appendable append (CharSequence s)

The CharSequence interface describes basic properties of a sequence of char values.

It is implemented by String, CharBuffer, StringBuilder, and StringBuffer.

Of the input/output stream classes, only Writer implements Appendable.

java.io.Closeable 5.0

evoid close()

icloses this C1oseable. This method may throw an TOException.

java.io.Flushable 5.0

evoid flush()

flushes this Flushable.

java.lang.Readable 5.0

e int read(CharBuffer cb)

attempts to read as many char values into cb as it can hold. Returns the number of

values read, or -1 if no further values are available from this Readable.

java.lang.Appendable 5.0

e Appendable append(char c)

e Appendable append (CharSequence cs)

appends the given code unit, or all code units in the given sequence, to this

Appendable; returns this.

java.lang.CharSequence 1.4

e char charAt (int index)

returns the code unit at the given index.

eint length ()

returns the number of code units in this sequence.

e CharSequence subSequence (int startIndex, int endIndex)

returns a CharSequence consisting of the code units stored from index startIndex

to endIndex - 1.
e String toString ()

returns a string consisting of the code units of this sequence.

2.1.3 Combining Input/Output Stream Filters

FileInputStreamand FileOutputStream give you input and output streams
attached to a disk file. You need to pass the file name or full path name of the file to the

constructor. For example,

var fin = new FileInputStream("employee.dat");
looks in the user directory for a file named employee.dat.

&

All the classes in java.io interpret relative path names as starting from the
user’s working directory. You can get this directory by a call to

System.getProperty ("user.dir").

0 Caution

Since the backslash character is the escape character in Java strings, be
sure to use \\ for Windows-style path names (for example,
C:\\Windows\\win.ini). In Windows, you can also use a single forward
slash (C: /Windows/win.ini) because most Windows file-handling system
calls will interpret forward slashes as file separators. However, this is not
recommended—the behavior of the Windows system functions is subject to
change. Instead, for portable programs, use the file separator character for
the platform on which your program runs. It is available as the constant string

java.io.File.separator

Like the abstract InputStreamand OutputStream classes, these classes only

support reading and writing at the byte level. That is, we can only read bytes and byte

arrays from the object fin.

byte b = (byte) fin.read();

As you will see in the next section, if we just had a DataInputStream, we could read

numeric types:

DataInputStream din = . . .;

double x = din.readDouble ()

But just as the FileInputStream has no methods to read numeric types, the

DatalInputStream has no method to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some input
streams (such as the FileInputStream and the input stream returned by the
openStream method of the URL class) can retrieve bytes from files and other more

exotic locations. Other input streams (such as the DataInputStream) can assemble

bytes into more useful data types. The Java programmer has to combine the two. For
example, to be able to read numbers from a file, first create a FileInputStreamand

then pass it to the constructor of a DataInputStream.

var fin new FileInputStream("employee.dat");

var din = new DatalInputStream(fin);

double x = din.readDouble ()

If you look at Figure 2.1 again, you can see the classes FilterInputStreamand
FilterOutputStream. The subclasses of these classes are used to add capabilities to

input/output streams that process bytes.

You can add multiple capabilities by nesting the filters. For example, by default, input
streams are not buffered. That is, every call to read asks the operating system to dole
out yet another byte. It is more efficient to request blocks of data instead and store

them in a buffer. If you want buffering and the data input methods for a file, you need

to use the following rather monstrous sequence of constructors:

var din = new DatalnputStream

new BufferedInputStream

new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because we
want to use the DataInputStream methods, and we want them to use the buffered

read method.

Sometimes you’ll need to keep track of the intermediate input streams when chaining
them together. For example, when reading input, you often need to peek at the next
byte to see if it is the value that you expect. Java provides the PushbackInputStream

for this purpose.

var pbin = new PushbackInputStream

new BufferedInputStream (

new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

int b = pbin.read();

and throw it back if it isn’t what you wanted.

if (b !'= '"<'") pbin.unread(b);

However, reading and unreading are the only methods that apply to a push-back input
stream. If you want to look ahead and also read numbers, then you need both a

pushback input stream and a data input stream reference.

var din new DatalnputStream

pbin new PushbackInputStream

new BufferedInputStream (

new FileInputStream("employee.dat"))));

Of course, in the input/output libraries of other programming languages, niceties such
as buffering and lookahead are automatically taken care of, so it is a bit of a hassle to
resort, in Java, to combining stream filters. However, the ability to mix and match filter
classes to construct truly useful sequences of input/output streams does give you an
immense amount of flexibility. For example, you can read numbers from a compressed

ZIP file by using the following sequence of input streams (see Figure 2.4):

var zin = new ZipInputStream(new FileInputStream ("employee.zi

var din = new DatalInputStream(zin);

read !

Y

read

read

Eg

tmmmmmemaa

Figure 2.4 A sequence of filtered input streams

(See Section 2.2.3, “ZIP Archives,” on p. 85 for more on Java’s handling of ZIP files.)

java.io.FileInputStream 1.0

eFileInputStream(String name)
eFileInputStream(File file)

icreates a new file input stream using the file whose path name is specified by the name
string or the file object. (The File class is described at the end of this chapter.) Path

names that are not absolute are resolved relative to the working directory that was set
when the VM started.

java.io.FileOutputStream 1.0

e FileOutputStream (String name)

e FileOutputStream (String name, boolean append)

e FileOutputStream(File file)

e FileOutputStream(File file, boolean append)

icreates a new file output stream specified by the name string or the £i1e object. (The
File class is described at the end of this chapter.) If the append parameter is true,
an existing file with the same name will not be deleted and data will be added at the

lend of the file. Otherwise, this method deletes any existing file with the same name.

java.io.BufferedInputStream 1.0

e BufferedInputStream (InputStream in)

icreates a buffered input stream. A buffered input stream reads bytes from a stream

without causing a device access every time. When the buffer is empty, a new block of
Idata is read into the buffer.

java.io.BufferedOutputStream 1.0

e BufferedOutputStream (OutputStream out)

Icreates a buffered output stream. A buffered output stream collects bytes to be written

without causing a device access every time. When the buffer fills up or when the
stream is flushed, the data are written.

java.io.PushbackInputStream 1.0

e PushbackInputStream (InputStream in)
e PushbackInputStream (InputStream in, int size)

lconstructs an input stream with one-byte lookahead or a pushback buffer of specified
size.

e void unread (int Db)

pushes back a byte, which is retrieved again by the next call to read.

2.1.4 Text Input and Output

When saving data, you have the choice between binary and text formats. For example, if
the integer 1234 is saved in binary, it is written as the sequence of bytes 00 00 04 D2
(in hexadecimal notation). In text format, it is saved as the string "1234". Although
binary I/O is fast and efficient, it is not easily readable by humans. We first discuss text

I/0 and cover binary I/O in Section 2.2, “Reading and Writing Binary Data,” on p. 77.

When saving text strings, you need to consider the character encoding. In the UTF-16
encoding that Java uses internally, the string "José" is encoded as 00 42 00 6F 00
73 00 E9 (in hex). However, many programs expect that text files are encoded in a
different encoding. In UTF-8, the encoding most commonly used on the Internet, the
string would be written as 42 6F 73 C3 A9, without the zero bytes for the first three

letters and with two bytes for the é character.

The OutputStreamiiriter class turns an output stream of Unicode code units into a
stream of bytes, using a chosen character encoding. Conversely, the
InputStreamReader class turns an input stream that contains bytes (specifying

characters in some character encoding) into a reader that emits Unicode code units.

For example, here is how you make an input reader that reads keystrokes from the

console and converts them to Unicode:

var in = new InputStreamReader (System.in);

This input stream reader assumes the default character encoding used by the host
system. On desktop operating systems, that can be an archaic encoding such as
Windows 1252 or MacRoman. You should always choose a specific encoding in the

constructor for the TnputStreamReader, for example:

var in = new InputStreamReader (new FileInputStream("data.txt"

See Section 2.1.8, “Character Encodings,” on p. 75 for more information on character

encodings.

The Reader and Writer classes have only basic methods to read and write individual

characters. As with streams, you use subclasses for processing strings and numbers.

2.1.5 How to Write Text Output

For text output, use a PrintWriter. That class has methods to print strings and
numbers in text format. In order to print to a file, construct a PrintStream from a file

name and a character encoding:

var out = new PrintWriter ("employee.txt", StandardCharsets.UT

To write to a print writer, use the same print, println, and printf methods that

you used with System. out. You can use these methods to print numbers (int,
short, long, float, double), characters, boolean values, strings, and objects.

For example, consider this code:

String name = "Harry Hacker";
double salary = 75000;

out.print (name) ;

out.print (' ');

out.println(salary);

This writes the characters

Harry Hacker 75000.0

to the writer out. The characters are then converted to bytes and end up in the file

employee. txt.

The print1n method adds the correct end-of-line character for the target system
("\r\n" on Windows, "\n" on UNIX) to the line. This is the string obtained by the call

System.getProperty ("line.separator").

If the writer is set to autoflush mode, all characters in the buffer are sent to their
destination whenever print1n is called. (Print writers are always buffered.) By default,
autoflushing is not enabled. You can enable or disable autoflushing by using the

PrintWriter (Writer writer, boolean autoFlush) constructor:

var out = new PrintWriter(
new OutputStreamWriter (
new FileOutputStream ("employee.txt"), StandardCharsets.U

true); // autoflush

The print methods don’t throw exceptions. You can call the checkError method to

see if something went wrong with the output stream.

Java veterans might wonder whatever happened to the PrintStream class
and to System.out. In Java 1.0, the PrintStream class simply truncated all
Unicode characters to ASCII characters by dropping the top byte. (At the
time, Unicode was still a 16-bit encoding.) Clearly, that was not a clean or
portable approach, and it was fixed with the introduction of readers and
writers in Java 1.1. For compatibility with existing code, System. in,
System.out, and System.err are still input/output streams, not readers and
writers. But now the PrintStream class internally converts Unicode
characters to the default host encoding in the same way the PrintWriter
does. Objects of type PrintStream act exactly like print writers when you
use the print and println methods, but unlike print writers they allow you
to output raw bytes with the write (int) and write (byte[]) methods.

java.io.PrintWriter 1.1

e PrintWriter (Writer out)

e PrintWriter (Writer writer)

lcreates a new PrintWriter that writes to the given writer.

e PrintWriter (String filename, String encoding)
e PrintWriter (File file, String encoding)

creates a new PrintWriter that writes to the given file, using the given character

encoding.

evoid print (Object obj)

prints an object by printing the string resulting from toString.
evoid print (String s)

prints a string containing Unicode code units.

evoid println(String s)

prints a string followed by a line terminator. Flushes the output stream if it is in
autoflush mode.

evoid print (char[] s)

prints all Unicode code units in the given array.
evoid print (char c)

prints a Unicode code unit.

evoid print (int 1)

evoid print(long 1)

evoid print (float f)

evoid print (double d)

evoid print (boolean Db)

prints the given value in text format.

evoid printf (String format, Object... args)

prints the given values as specified by the format string. See Volume I, Chapter 3 for

the specification of the format string.
e boolean checkError ()

returns t rue if a formatting or output error occurred. Once the output stream has

lencountered an error, it is tainted and all calls to checkError return true.

2.1.6 How to Read Text Input

The easiest way to process arbitrary text is the Scanner class that we used extensively

in Volume I. You can construct a Scanner from any input stream.

Alternatively, you can read a short text file into a string like this:

var content = new String(Files.readAllBytes (path), charset);

But if you want the file as a sequence of lines, call

List<String> lines = Files.readAllLines (path, charset);

If the file is large, process the lines lazily as a St ream<String>:

try (Stream<String> lines = Files.lines (path, charset))

You can also use a scanner to read tokens, strings that are separated by a delimiter. The

default delimiter is white space. You can change the delimiter to any regular expression.

For example,

Scanner in = ...;

in.useDelimiter ("\\PL+") ;

accepts any non-Unicode letters as delimiters. The scanner then accepts tokens

consisting only of Unicode letters.

Calling the next method yields the next token:

while (in.hasNext ())

String word = in.next();

Alternatively, you can obtain a stream of all tokens as

Stream<String> words = in.tokens () ;

In early versions of Java, the only game in town for processing text input was the
Buf feredReader class. Its readLine method yields a line of text, or null when no

more input is available. A typical input loop looks like this:

InputStream inputStream = . . .;

try (var in = new BufferedReader (new InputStreamReader (input$S

String line;

while ((line = in.readLine()) != null)

do something with line

Nowadays, the Buf feredReader class also has a 1ines method that yields a
Stream<String>. However, unlike a Scanner, a Buf feredReader has no methods

for reading numbers.

2.1.7 Saving Objects in Text Format

In this section, we walk you through an example program that stores an array of
Employee records in a text file. Each record is stored in a separate line. Instance fields
are separated from each other by delimiters. We use a vertical bar (|) as our delimiter.
(A colon (:) is another popular choice. Part of the fun is that everyone uses a different
delimiter.) Naturally, we punt on the issue of what might happen if a | actually occurs

in one of the strings we save.

Here is a sample set of records:

Harry Hacker|35500(11989-10-01
Carl Cracker|75000(11987-12-15

Tony Tester|38000|/1990-03-15

Writing records is simple. Since we write to a text file, we use the PrintWriter class.
We simply write all fields, followed by either a | or, for the last field, a \ n. This work is

done in the following writeData method that we add to our Employee class:

public static void writeEmployee (PrintWriter out, Employee e)

out.println(e.getName() + "|" + e.getSalary() + "|" + e.ge

To read records, we read in a line at a time and separate the fields. We use a scanner to

read each line and then split the line into tokens with the String.split method.

public static Employee readEmployee (Scanner in)

String line = in.nextLine();

String[] tokens = line.split ("\\[|");

String name = tokens[0];

double salary = Double.parseDouble (tokens[1]);

LocalDate hireDate = LocalDate.parse (tokens[2])

int year = hireDate.getYear();

int month = hireDate.getMonthValue () ;

int day = hireDate.getDayOfMonth () ;

return new Employee (name, salary, year, month, day);

The parameter of the sp1it method is a regular expression describing the separator.
We discuss regular expressions in more detail at the end of this chapter. As it happens,
the vertical bar character has a special meaning in regular expressions, so it needs to be
escaped with a \ character. That character needs to be escaped by another \, yielding

the "\\ | " expression.

The complete program is in Listing 2.1. The static method

void writeData (Employee[] e, PrintWriter out)

first writes the length of the array, then writes each record. The static method

Employee[] readData (BufferedReader in)

first reads in the length of the array, then reads in each record. This turns out to be a bit

tricky:

int n = in.nextInt();

in.nextLine(); // consume newline

var employees = new Employeel[n];
for (int i = 0; 1 < n; i++)
{

employees|[i1] = new Employee();

employees[i].readData (in) ;

The call to next Int reads the array length but not the trailing newline character. We
must consume the newline so that the readData method can get the next input line

when it calls the next1.ine method.

Listing 2.1 textFile/TextFileTest.java

1 package textFile;

import java.io.*;

import java.nio.charset.*;

import java.time.*;

import java.util.*;

/**

* @version 1.15 2018-03-17

10

11

12

13

14

15

16

17

18

* @author Cay Horstmann

*/

public class TextFileTest

public static void main (Stringl[]

throws IOExcept

var staff new Employee[3];

staff[0] new Employee ("Carl Cracker", 75000,

staff[1] new Employee ("Harry Hacker", 50000, 1989

staff[2] new Employee ("Tony Tester", 40000, 1990,

22

23

24

25

26

277

28

29

30

31

32

33

34

35

36

37

38

39

40

/*k*

// save all employee records to the file employee.d

try (var out = new PrintWriter ("employee.dat", Stan

writeData (staff, out);

// retrieve all records into a new array

try (var in = new Scanner (

new FileInputStream("employee.dat"), "UTF-8"))

Employee[] newStaff = readData (in);

// print the newly read employee records

for (Employee e : newStaff)

System.out.println(e);

41

42

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

58

59

60

* Writes all employees in an array to a print writer

* (@param employees an array of employees

* @param out a print writer

*/

private static void writeData (Employee[] employees,

// write number of employees

out.println (employees.length);

for (Employee e : employees)

writeEmployee (out,

/**k

e);

* Reads an array of employees from a scanner

* @param in the scanner

* (@dreturn the array of employees

*/

private static Employee[]

readData (Scanner in)

Prin

61

62

63

64

65

66

67

68

69

70

71

12

73

74

75

76

777

78

79

// retrieve the array size

int n = in.nextInt();

in.nextLine(); // consume newline

var employees = new Employee[n];
for (int 1 = 0; i < n; 1i++)
{

employees|[i1] = readEmployee (in) ;

return employees;

/**

* Writes employee data to a print writer

* @param out the print writer

*/

public static void writeEmployee (PrintWriter out,

out.println(e.getName () + "|" + e.getSalary()

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

/**

* Reads employee data from a buffered reader

* @param in the scanner

*/

public static Employee readEmployee (Scanner in)

String line = in.nextLine();

String[] tokens = line.split ("\\[|");

String name = tokens[0];

double salary = Double.parseDouble (tokens[1l])

LocalDate hireDate = LocalDate.parse (tokens[2]);

int year = hireDate.getYear();

int month = hireDate.getMonthValue () ;

int day = hireDate.getDayOfMonth () ;

return new Employee (name, salary, year, month, day);

< |

2.1.8 Character Encodings

Input and output streams are for sequences of bytes, but in many cases you will work
with texts—that is, sequences of characters. It then matters how characters are encoded
into bytes.

Java uses the Unicode standard for characters. Each character or “code point” has a 21-
bit integer number. There are different character encodings—methods for packaging

those 21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code point into a
sequence of one to four bytes (see Table 2.1). UTF-8 has the advantage that the
characters of the traditional ASCII character set, which contains all characters used in

English, only take up one byte each.

Table 2.1 UTF-8 Encoding

Character Range Encoding

Bi.:7F Oaga5a4333;813;

80...7FF 118a,gagaga78; 10asayazara;ay

860...FFFF 1110258143133 1031131530353785 1035353337313

10668, ., 10FFFF 111103;5310815 193173158158 148138 1031131530353785 1035223337313

Table 2.2 UTF-16 Encoding

Character Range Encoding
B EPEF d15814313917911319309g 373gd54d39781dy
16008, .. 10FFFF 118110byqb1g by7bys315814813812811879 1181118035 373535843332813

where Digbghi7bi = 32310318317315 - 1

Another common encoding is UTF-16, which encodes each Unicode code point into one
or two 16-bit values (see Table 2.2). This is the encoding used in Java strings. Actually,
there are two forms of UTF-16, called “big-endian” and “little-endian.” Consider the 16-
bit value 0x2122. In big-endian format, the more significant byte comes first: 0x21
followed by 0x22. In little-endian format, it is the other way around: 0x22 0x21.To
indicate which of the two is used, a file can start with the “byte order mark,” the 16-bit
quantity OxFEFF. A reader can use this value to determine the byte order and discard
it.

0 Caution

Some programs, including Microsoft Notepad, add a byte order mark at the
beginning of UTF-8 encoded files. Clearly, this is unnecessary since there
are no byte ordering issues in UTF-8. But the Unicode standard allows it, and
even suggests that it's a pretty good idea since it leaves little doubt about the
encoding. It is supposed to be removed when reading a UTF-8 encoded file.
Sadly, Java does not do that, and bug reports against this issue are closed
as “will not fix.” Your best bet is to strip out any leading \uFEFF that you find
in your input.

In addition to the UTF encodings, there are partial encodings that cover a character
range suitable for a given user population. For example, ISO 8859—1 is a one-byte code
that includes accented characters used in Western European languages. Shift-JIS is a
variable-length code for Japanese characters. A large number of these encodings are

still in widespread use.

There is no reliable way to automatically detect the character encoding from a stream of
bytes. Some API methods let you use the “default charset”—the character encoding
preferred by the operating system of the computer. Is that the same encoding that is
used by your source of bytes? These bytes may well originate from a different part of the
world. Therefore, you should always explicitly specify the encoding. For example, when

reading a web page, check the Content-Type header.

The platform encoding is returned by the static method
Charset.defaultCharset. The static method
Charset.availableCharsets returns all available Charset instances, as a
map from canonical names to Charset objects.

0 Caution

The Oracle implementation of Java has a system property file.encoding
for overriding the platform default. This is not an officially supported property,
and it is not consistently followed by all parts of Oracle’s implementation of
the Java library. You should not set it.

The StandardCharsets class has static variables of type Charset for the character

encodings that every Java virtual machine must support:

StandardCharsets.UTF_8
StandardCharsets.UTF 16
StandardCharsets.UTF 16BE
StandardCharsets.UTF 16LE
StandardCharsets.ISO 8859 1

StandardCharsets.US ASCII

To obtain the Charset for another encoding, use the static forName method:

Charset shiftJIS = Charset.forName ("Shift-JIS") ;

Use the Charset object when reading or writing text. For example, you can turn an

array of bytes into a string as

var str = new String(bytes, StandardCharsets.UTF 8);

&

As of Java 10, all methods in the java. io package allow you to specify a
character encoding with a Charset object or a string. Choose the

StandardCharsets constants, so that any spelling errors are caught at
compile-time.

0 Caution

Some methods (such as the String (byte[]) constructor) use the default
platform encoding if you don’t specify any; others (such as
Files.readAllLines) use UTF-8.

2.2 READING AND WRITING BINARY DATA

Text format is convenient for testing and debugging because it is humanly readable, but
it is not as efficient as transmitting data in binary format. In the following sections, you

will learn how to perform input and output with binary data.

2.2.1 The Datalnput and DataOutput interfaces

The DataOutput interface defines the following methods for writing a number, a

character, a boolean value, or a string in binary format:

writeChars
writeByte
writelInt
writeShort
writelLong
writeFloat
writeDouble

writeChar

writeBoolean

writeUTF

For example, writeInt always writes an integer as a 4-byte binary quantity regardless
of the number of digits, and writeDouble always writes a double as an 8-byte binary
quantity. The resulting output is not human-readable, but the space needed will be the
same for each value of a given type and reading it back in will be faster than parsing

text.

There are two different methods of storing integers and floating-point
numbers in memory, depending on the processor you are using. Suppose,
for example, you are working with a 4-byte int, say the decimal number
1234, or 4D2 in hexadecimal (1234 = 4 x 256 + 13 x 16 + 2). This value can
be stored in such a way that the first of the four bytes in memory holds the
most significant byte (MSB) of the value: 00 00 04 D2. This is the so-called
big-endian method. Or, we can start with the least significant byte (LSB) first:
D2 04 00 00. This is called, naturally enough, the little-endian method. For
example, the SPARC uses big-endian; the Pentium, little-endian. This can
lead to problems. When a file is saved from C or C++ file, the data are saved
exactly as the processor stores them. That makes it challenging to move
even the simplest data files from one platform to another. In Java, all values
are written in the big-endian fashion, regardless of the processor. That
makes Java data files platform-independent.

The writeUTF method writes string data using a modified version of 8-bit Unicode
Transformation Format. Instead of simply using the standard UTF-8 encoding,
sequences of Unicode code units are first represented in UTF-16, and then the result is
encoded using the UTF-8 rules. This modified encoding is different for characters with
codes higher than 0xFFFF. It is used for backward compatibility with virtual machines

that were built when Unicode had not yet grown beyond 16 bits.

Since nobody else uses this modification of UTF-8, you should only use the writeUTF
method to write strings intended for a Java virtual machine—for example, in a program

that generates bytecodes. Use the writeChars method for other purposes.

To read the data back in, use the following methods defined in the DataInput

interface:

readInt

readShort

readlLong

readFloat

readDouble

readChar

readBoolean

readUTF

The DataInputStream class implements the DataInput interface. To read binary
data from a file, combine a DataInputStream with a source of bytes such as a

FileInputStream:

var in = new DatalnputStream(new FileInputStream ("employee.da

« I, >

Similarly, to write binary data, use the DataOutputStream class that implements the

DataOutput interface:

var out = new DataOutputStream(new FileOutputStream ("employee

« [—————. >

java.io.Datalnput 1.0

e boolean readBoolean ()

*byte readByte ()

e char readChar ()

e double readDouble ()

e float readFloat ()

eint readInt()

e long readLong ()

e short readShort ()

reads in a value of the given type.

evoid readFully(bytel] Db)

reads bytes into the array b, blocking until all bytes are read.
evoid readFully (byte[] b, int off, int len)

places up to 1en bytes into the array b, starting at of £, blocking until all bytes are

read.

e String readUTF ()

reads a string of characters in the “modified UTF-8” format.
eint skipBytes (int n)

skips n bytes, blocking until all bytes are skipped.

java.io.DataOutput 1.0

evoid writeBoolean (boolean b)

evoid writeByte (int Db)

e void writeChar (int c¢)

*void writeDouble (double d)
evoid writeFloat (float £f)
evolid writeInt (int 1i)

evoid writelLong(long 1)

e void writeShort (int s)
writes a value of the given type.
evoid writeChars (String s)
writes all characters in the string.
evoid writeUTF (String s)

writes a string of characters in the “modified UTF-8” format.

2.2.2 Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. Disk files
are random-access, but input/output streams that communicate with a network socket
are not. You can open a random-access file either for reading only or for both reading
and writing; specify the option by using the string "r" (for read access) or "rw" (for

read/write access) as the second argument in the constructor.

var in = new RandomAccessFile ("employee.dat", "r");

var inOut = new RandomAccessFile ("employee.dat", "rw");

When you open an existing file as a RandomAccessFile, it does not get deleted.

A random-access file has a file pointer that indicates the position of the next byte to be
read or written. The seek method can be used to set the file pointer to an arbitrary byte
position within the file. The argument to seek is a 1ong integer between zero and the

length of the file in bytes.

The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces. To read and write from a random-access file, use methods such as
readInt/writelInt and readChar/writeChar that we discussed in the preceding

section.

Let’s walk through an example program that stores employee records in a random-
access file. Each record will have the same size. This makes it easy to read an arbitrary
record. Suppose you want to position the file pointer to the third