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1. Introduction

In the scope of the project for LINGI2146 course, we are required to design a Wireless
Sensor Network (WSN) on top of Contiki solving a common problem such as recording
temperature measures. The main goal of this project is to become familiar with technologies
and concept requisite in the field of mobile and embedded computing.

Instead of solving a common problem, we have decided to build a framework for testing
attacks on the RPL protocaol, i.e. its implementation in Contiki. The interest is that, as shown
in [1], this routing protocol is insecure and can then be tested for multiple vulnerabilities. So,
instead of building an application for a WSN at the data plane, we thus refactor the
underlying goal and make it a security-oriented project, acting at the control plane in the
network layer, as depicted in the following stack.
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Transport
| Layer \ UDP
Network 6LoWPAN H
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Data Link
Layer |IEEE 802.15.4 (MAC)
Physical
Layer IEEE 802.15.4 (PHY)

Figure 1: Contiki network stack (with the attacked layer highlighted)

Formally, the objectives are two-fold :
1. Build a convenient framework for testing a malicious node into Cooja simulations
2. Test and show the effects of some chosen attacks

The remainder of this document is structured as follows :
RPL Attacks : we provide a bit of theory about attacks we want to test
Framework : we explain how the framework is designed and implemented in order to
achieve testing of RPL attacks
Experiments : we provide results on tested RPL attacks
Conclusion

The following conventions apply in the remainder of this document :
e A node in green represents DODAG’s root
e A node in red with a label ‘A’ represents the attacker

e Nodes in yellow with a number as a label are normal nodes
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2. RPL Attacks

This section addresses the taxonomy of RPL attacks as presented in [2] and [3]. It also
mentions the attack we want to test.

2.1. Taxonomy

The taxonomy as explained in details in [3] is shown in the picture hereafter. Some particular
attacks are surrounded by blue frames, indicating the attacks we have chosen to test.

The first category concerns the exhaustion of network resources, meaning that malicious
node’s purpose is to overload the consumption of energy, memory or/and power. This can
be done by forcing the legitimate nodes to perform unnecessary actions to increase the use
of their resources. This may impact on the availability of the network by congesting available
links or by incapacitating nodes and may therefore impact on the lifetime of the network.
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Figure 2: Taxonomy of attacks against RPL networks [2]

This category can be further subdivided in two sub-categories ; direct attacks, in which the
malicious node directly generates the overload disturbing the network, and indirect attacks,
in which the malicious node provokes the other nodes to make them generate the overload.

The second category holds the attacks targeting the RPL network topology. The goal of
these attacks is to disturb the normal operation of the network. These could then cause the
isolation of one or more nodes. This category can also be subdivided in two sub-categories ;
sub-optimisation, meaning that the network will converge to a non-optimal form, inducing
poor performance, and isolation of a node or a subset of nodes, cutting them from the rest
of the network and hence the root node.

The third category covers attacks against the network traffic. These attacks are aimed to
make a malicious node introduce itself inside the network, not disturbing its working. This
leads to information leakage by eavesdropping the traffic or impersonating legitimate nodes.
This category is again subdivided in two sub-categories ; eavesdropping (passively) the
information that is forwarded through the network or misappropriation of a node or a set of
nodes, namely for tampering the legitimate exchanged information.
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2.2. Tested attacks

From the three discussed categories, our goal is to choose a sample of attacks and to test
them. Amongst these, the followings are considered :

Flooding [Resources | Direct attack] : consists of generating a large amount of traffic
through DIS messages, causing nodes within range to send DIO messages (used to
advertise information about DODAG’s to new nodes) and reset their trickle timers
(supposed to increase as the network stabilizes). Note that, if secure DIS are used,
this attack can still be performed using a compromised node.

Mitigation : A simple solution to this attack is to check the link to be bidirectional for
each HELLO message. If no link-layer acknowledgements are received,
the path is assumed to be bad, and a different route is chosen.
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Figure 3: Flooding attack (A means Attacker ; 1... are legitimate nodes)

Version Number Modification [Resources | Indirect attack] [4] : consists of
increasing the version number (which is normally a responsibility of the DODAG’s
root when a global repair is to be performed), hence causing unnecessary graph
rebuildings. Indeed, as the root receives the DIO with an invalid version number, it
updates it and resets its trickle timer (as depicted by the timer in the figure below) for
resending a new DIO. By contrast, normal nodes initiate a global repair (as depicted
by the wrench), that is, they remove their parents and use the received DIO to update
their new parent.

1> oo 1
o
;}\%A}_p_p,/» 3 @ 3‘/_
2 I“' ‘\. 2
1 1/ >

Figure 4: Versioning attack (DIO in black is legitimate; red one has version increased by 1)

Mitigation : A mechanism called VeRa [5] (for Version Number and Rank
Authentication) has been designed by Amit Dvir to prevent a malicious
node from illegitimately increasing the version number, using
authentication mechanisms based on hash operations, but does not seem
to be implemented in ContikiRPL.
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Decreased Rank [Traffic | Misappropriation] : consists of advertising a lower rank to
make the legitimate nodes connect to the DODAG via the attacker ; this can of
course be a basis for sinkhole, blackhole or also eavesdropping attacks.

Mitigation : Several mechanisms can be used together, such as VeRa and TRAIL [7].
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Figure 6: Decreased rank attack (DIO sent contains a better rank).

Blackhole [Topology | Isolation] [6] : aims to drop all the packets that the malicious
node is supposed to forward ; combined with a sinkhole attack, it can be very
damaging as it causes the loss of the whole deflected traffic. This attack can be seen
as a denial-of-service attack. If the position of the node is well chosen, it can isolate
several nodes from the network. The selective forwarding attack (gray hole) is a
variant of this type of attack. With this variant, it is possible to do DoS attacks but the
malicious node selects the packets to forward. This attack has as consequence to
disturb routing paths, it can be used to filter any protocol.
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Figure 5: Blackhole attack (data received from legitimate nodes is dropped)

Mitigation : A solution to counter this attack is to create disjoint paths between the
source and the destination nodes but it is difficult to create this for the
entire network. Another solution is to dynamically select the path to
parents/children. There are different indicators to detect these attacks,
such as rate and frequency of DIO messages, packet delivery ratio, loss
percentage and delay. It is generally difficult to defend against all
selective-forwarding attacks. But the use of encryption and analysis of
application level traffic can be a good solution. Another solution is to make
sure that the attacker will not distinguish the different types of traffic and
then to force him to drop all the traffic or none.
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3. Framework

This section addresses the design, implementation and usage of the framework used to test
some RPL attacks, (so cutely) called RPL Attacks Framework.

3.1. Design Principles

The framework is built in Python upon Contiki and the Cooja simulation tool [8]. It basically
automates simulation creation through a templating API provided by Jinja2. In order to make
the analysis as complete and easy as possible, a simulation is structured as follows :

e Simulation without the malicious node, holding a topology with a root and a
user-defined number of sensors built on a same platform (in our experiments, we
choose the Zolertia Z1 by default).

e Simulation with the malicious node, as it tells, holding the same topology but with
the malicious node that can be built with a different platform (e.g. a Skymote).

Each simulation uses a Javascript to automate data collection through Cooja’s plugins. This
basically collects serial messages, RPL logging, power tracking and nodes relationships.
Root and sensors are compiled such that they execute a dummy application sending Echo
messages marked with the source node’s identifier towards the root. Malicious node’s
compilation can be performed using either a root or a sensor C program. Simulation
execution ends with a parsing of the collected logs in order to retrieve an animated GIF of
DODAG'’s formation.

In order to easily implement attacks, a malicious node can be tuned either by using an
external modified RPL library (thus redefining code sections in the RPL library sources),
by setting RPL configuration constants (only acting on the heading section of node’s source
code) or by modifying single lines in the standard ContikiRPL library. These last two features
are gathered in what we call building blocks. Indeed, some attacks as shown in section 2
can be defined as parts for complex attacks, that is, the famous building blocks. So, a
malicious node can hold several blocks in order to easier implement such an attack.

For easier mass generation of simulations, campaigns can be defined from a set of
parameters gathered in a single file. This set can be partly defined in a “base” simulation
allowing to reuse same parameters for all the tested attacks. This provides a very convenient
way to perform our experiments.

3.2. Implementation

The framework can be used either through Fabric (a library designed to automate
installations through SSH) or through the integrated console (using Python’s built-in cmd
module). This last interface allows to create and run multiple simulations at the same time
using multi-processing.
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It uses a homemade straightforward algorithm to automatically generate a WSN topology
spreading sensor nodes randomly in specific areas around the root and then placing the
malicious node in the surrounding of the root such that we are sure it can have a significant
impact on the network. Roughly, the algorithm separates a range from the root into
quadrants (that are the areas where sensor nodes’ positions can be randomized) and this
range can be stepped if there are too many nodes in order to generate a scattered-enough
topology.

Basically, RPL Attacks Framework contains a core package holding a few sub-packages
and the templates folder, structured as follows :

. core holds the computation logics for creating the
— common simulations in a modularized fashion :
sifidzolicd Q@ common contains independent modules

— helpers.py . ) )
— lexer.py d conf contains the configuration-related code and
[ ermsire.py constants specific to the framework

wsngenerator.py ) . .
EE  utils contains the logics of the framework
constants.py
install. . . . .
Lescantis iy src contains a bit of code for enhancing Cooja :

— it O a modification to add a -hidden option to
behaviors.py

— decorators.py Cooja’s: jar . N
[— helpers.py O a plugin for taking screenshots of the built-in
e sl Visualizer, named VisualizerScreenshot
— rpla.py ! : !
— commands.py Q a script for upgrading msp430-gcc in order to
o ooy extend the supported memory of the MSP430

ST ey emulated hardware
Cooja.java.snippet

e ta templates contains :
— experiment [ the famous building blocks in a JSON file

[ lMakefile d a sample experiments campaign as a JSON file
malicious-root.c d an experiment folder holding simulation (with
mal";dous-sensoﬂc its Javascript), nodes’ templates and a Makefile
root.c . . . . . e
Ceneor g for achieving compilation using Contiki

— Makefile

— script.js . : . :

I leg in every self-respecting project, tests are

— building-blocks. json available for :
| = ST nenti g o [ the creation of a campaign of simulation
L canpatgnpy A the creation of a single simulation (experiment)
— experiment.py [ the setup procedure
— setup.py
— fabfile.py
— main.py
3.3. Usage

Details about the usage can be found at : https://github.com/dhondta/rpl-attacks

The main use case is to make and run a simulation campaign, like the following (assuming
that the interactive console is used :
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user@instant-contiki:rpl-attacks>> prepare sample-attacks
user@instant-contiki:rpl-attacks>> make all sample-attacks
user@instant-contiki:rpl-attacks>> run all sample-attacks

Note : The campaign can be customized in the corresponding JSON file in the configured
experiments folder after the prepare command.

4. Experiments

This section presents some experiments for the attacks chosen in section 2 with their
relevant results using RPL Attacks Framework. First, we give the implemented building
blocks and the base parameters used to generate the simulations.

4.1. Building blocks

Several building blocks were implemented using the features detailed in subsection 3.1. The
available ones are :

"hello-flood": {

"RPL CONF DIS INTERVAL": O,

"RPL CONF DIS START DELAY": O,

"rpl-timers.c": ["next dis++;",

"next dis++; int 1=0; while (i<10) {i++; dis_ output (NULL);}"]
}

This uses two ContikiRPL configuration constants in order to make the malicious node
immediately start sending DIS at a sustained rate.

"increased-version": {
"rpl-icmp6.c": ["dag->version;", "dag->version++;"]

This modifies the related ContikiRPL’s file for increasing the version number on the fly in
order to trigger the global repair.

"decreased-rank": {
"RPL CONF MIN HOPRANKINC": O,
"rpl-private.h": [
["#define RPL MAX RANKINC (7 * RPL MIN HOPRANKINC)",
"#define RPL_MAX RANKINC 0"],
["#define INFINITE RANK Oxffff",
"#define INFINITE RANK 256"]

1,

"rpl-timers.c": ["rpl recalculate ranks();", null]
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This modifies :

e a ContikiRPL configuration constant to set the minimum rank hop to 0 (default is 256)
e 2linesinrpl-private.h

e 1linein rpl-timers.c (removal)

4.2. Simulation base parameters

Each of the simulations presented in the following subsection is based on the following
parameters :

"BASE": { Default parameters :
"simulation": { "area-square-side": 200.0 (meters)
"number motes": 10, "transmission-range": 50.0 (meters)

"target™: "z1" "interference-range": 100.0 (meters)

"Duration": 120 (seconds)

}

As this suggests, such a configuration builds a topology of 10 sensor nodes (so, root node
not included) spread around the root node in a radius of 100 meters (the are square side
divided by 2) and the simulation is run during 2 (virtual) minutes. Note that, e.g. for the
Version Number Attack, the simulation can take a while to finish as the attack generates a
large amount of messages in the collected PCAP and consumes lots of I/O operations).
Nodes are all configured to work as servers and no sensor with RPL. LEAF ONLY set is then
present (this has namely an important influence on the control flow of the ContikiRPL
library).

Note that, thanks to RPL Attacks Framework's features, it is possible to tune the WSN
topology by opening a simulation in Cooja. When the simulation file is overwritten and the
user exits Cooja, the framework automatically updates all simulations in the related
campaign.

4.3. Attacks

As a preliminary note, we can mention that the following attacks do not require any particular
mode or settings on the attacked network, unlike various other attacks (more details in [1] in
Tables 1 and 2). Also note that these attacks mainly affect the availability of all or part of the
WSN. Moreover, the Version Number modification and Blackhole attacks affect the integrity.

Name Flooding
Building Blocks hello-flood
Working While entering the WSN, thanks to the ContikiRPL configuration

constants set with the building block, the malicious node
immediately starts sending DIS messages to its neighbors, then
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triggering DIO messages and trickle timers reset.

Expected Impact No change in DAG, important energy exhaustion.

Results

After running the simulation a few (virtual) minutes, the graph looks like this :

As we can see, the malicious node (in violet) impacts nodes 3, 7 and 10. We can now
illustrate the attack efficiency using this information to compare the power consumption in
the simulation without (on the left) and with the malicious node (on the right).

Power tracking per mote
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T Hl TX
H RX I RX
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N
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As it can easily be observed, nodes 3, 7 and 10 are particularly impacted by the attack in
terms of ON and RX times.

Important note : However, these nodes are not impacted in term of TX time. The reason
is that upon the reception of a DIS, the nodes reset their trickle timers but do not
immediately send a DIO, due to the multicast nature of the sent DIS.

Variant of the attack : Another way of performing a flooding attack can be to unicast DIS
to the neighbors, immediately triggering a DIO in response but not the trickle timer reset.
This behavior can be verified in the ContikiRPL library, inside the file rpl-icmpé6.c, in
dis input (void).

Efficiency Local, important exhaustion of resources.
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Name Version Number modification
Building Blocks increased-version
Working With its modified RPL file, the malicious node increases the version

number before forwarding received DIO messages, thus triggering
unnecessary global repairs.

Expected Impact No change in DAG, important energy exhaustion.

Results

After running the simulation a few (virtual) minutes, an instant screenshot of the graph
without (on the left) and with (on the right) the malicious node gives :

On the graph for the simulation with the malicious node, we can observe that the DAG is
cut in two parts as the screenshot was taken at a time when the DAG was in global repair
state. Note that the malicious node is at an end of the topology.

We can now illustrate the attack efficiency using this information to compare the power
consumption in the simulation without (on the left) and with the malicious node (on the
right).

36 Power tracking per mote 30 Power tracking per mote
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N RX I RX
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N
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.
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By looking at this, we can immediately ascertain that this attack enjoys a strong efficiency

on the whole network as it triggers lots of messages because of the global repair
mechanism.

Efficiency Global, dramatic exhaustion of resources and congestion in the
whole network.
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Name

Decreased Rank

Building Blocks

decreased-rank

Working

With the modified RPL configuration constant, the malicious node
will advertise a better rank than neighbors, causing the DAG to be
modified. This attack does not damage a network, however,
combining with other building blocks could be very effective
because it allows the attacker to suck all the traffics to him.

Expected Impact

DAG changed, legitimate nodes in the neighborhood of the
malicious node have now set it as their parent.

Results

After running the simulation a few (virtual) minutes, an instant screenshot of the graph
without (on the left) and with (on the right) the malicious node gives :

On the left, we can see a typical construction of DODAG (at a time when this is maybe not
stable yet and with potentially non-optimal links such as for 9-4 or 5-10). On the right side,
we easily observe that the traffic is channeled through the attacker node.

Efficiency Potentially dramatic (i.e. for integrity), depending on the malicious
node location, especially when combined with other building blocks
(such as, for example, the attacks addressed in the last test
hereafter).

Name Blackhole

Building Blocks

decreased-rank, drop-messages

Working

The malicious node simply drops the collected application data
plane messages instead of forwarding them.

Expected Impact

DAG changed, legitimate nodes in the neighborhood of the
malicious node have now set it as their parent. The malicious node
drops the received data plane messages.
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Results

The transformation of DODAG causes the same effect as the previous attack but also
operates at the data plane by preventing hijacked messages to come to the malicious’
parent node.

Variants of the attack :
- Sinkhole : by using decreased-rank and by eavesdropping traffic
- Greyhole : by using decreased-rank and selective-forwarding

Efficiency Potentially dramatic (i.e. for integrity), depending on the malicious
node location.

5. Conclusion

Our first goal was to build a convenient framework for testing a malicious node into Cooja
simulations. As shown in the previous section, RPL Attacks Framework seems very
promising as it already handles various interesting features for quickly designed and
implementing malicious nodes.

Our second goal was to test and show the effects of some chosen attacks. Indeed, we have
shown some relevant attacks, uniformly chosen amongst the presented taxonomy, and their
expected results on some relevant WSN topologies.

Possible further improvements, regarding :
e Attack simulation testing :
(trivial) Test more attacks with new building blocks
o Add more WSN topology generation algorithms
o Test a malicious node with some application-level projects from other students
o Make the simulation support multiple malicious nodes
e Framework user-friendliness :
o Refine the console for displaying task progress
o Add more guidance for managing experiments and campaigns
e Framework quality :
o Refinethe .travis.yml (for confirming that the build is passing)
o Increase the code coverage of the tests (and get the Github badge for this)
o Refine the documentation (and publish it on https://readthedocs.orq)

O
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