## ----echo=knitr::is_html_output()-------------------------------------------- #| code-summary: "Load libraries" source("code/setup.R") ## ---------------------------------------------------------------------------- #| eval: false #| code-fold: false # grDevices::hcl.colors(3, palette="Zissou 1") # detour(penguins_sub[,1:4], # tour_aes(projection = bl:bm)) |> # tour_path(grand_tour(2), fps = 60, # max_bases=20) |> # show_scatter(alpha = 0.7, # axes = FALSE) ## ---------------------------------------------------------------------------- #| message: false #| code-summary: "Code to make confusion matrix" load("data/penguins_sub.rda") detourr_penguins <- read_csv("data/detourr_penguins.csv") table(penguins_sub$species, detourr_penguins$colour) ## ---------------------------------------------------------------------------- #| eval: false #| code-fold: false # # Use a random starting basis because the # # first two variables make it too easy # strt <- tourr::basis_random(10, 2) # detour(multicluster, # tour_aes(projection = -group)) |> # tour_path(grand_tour(2), # start=strt, fps = 60) |> # show_scatter(alpha = 0.7, # axes = FALSE) ## ---------------------------------------------------------------------------- #| eval: false #| echo: false # data("fake_trees") # # # Original data is 100D, so need to reduce dimension using PCA first # ft_pca <- prcomp(fake_trees[,1:100], # scale=TRUE, retx=TRUE) # ggscree(ft_pca) # detour(as.data.frame(ft_pca$x[,1:10]), # tour_aes(projection = PC1:PC10)) |> # tour_path(grand_tour(2), # fps = 60, # max_bases=50) |> # show_scatter(alpha = 0.7, # axes = FALSE) # # ft_sb <- read_csv("data/fake_trees_sb.csv") # table(fake_trees$branches, ft_sb$colour)