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Method Paper: Access & Discovery of Documentary Images (ADDI) 

Taylor Arnold and Lauren Tilton 

 

1. Introduction 

Access & Discovery of Documentary Images (ADDI) is a project for LC Lab’s Computing Cultural 
Heritage in the Cloud (CCHC) Initiative.1 The initiative “pilot[s] ways to combine cutting edge 
technology and the collections of the largest library in the world, to support digital research at 
scale.” 2 As a part of this work, LoC released a call for researchers to “use cloud computing 
services to explore the Library’s digital collections at scale.”3 The project supports the library's 
strategic goals to "throw open the treasure chest," "maximize the use of content," "support 
emerging styles of research," and "cultivate an innovation culture" by supporting computational 
experiments to increase access to one of the nation's most important collections of cultural 
heritage.4 We proposed ADDI to explore how computer vision can facilitate access and 
discovery of large image collections, focusing on photography. The project joins two exciting 
projects: “America’s Public Bible: Machine Learning Detection of Biblical Quotations Across LOC 
Collections via Could Computing” led by Dr. Lincoln Mullen, and “Situating Ourselves in Cultural 
Heritage: Using Neural Networks to Expand the Reach of Metadata and See Cultural Data on Our 
Own Terms” led by Andromeda Yelton.5 All of the projects benefited from the incredible support 
and openness of the Library of Congress, particularly LC Labs and the CCHC Team. We hope 
ADDI offers ideas, even a model, and cautions for opening access and interpretation of image 
collections using computer vision. Below we outline the project in further detail, including scope, 
methods, and next steps.  

1.1 Project Goals 

Our project Access & Discovery of Documentary Images (ADDI) adapts and applies computer 
vision algorithms to aid in discovering and using digital collections, specifically photography. 
Rather than treating cultural heritage images as a monolith, whereby computational approaches 

 
1 "Computing Cultural Heritage in the Cloud," Library of Congress LC Labs, 
https://labs.loc.gov/work/experiments/cchc/; “Library Receives $1M Mellon Grant to Experiment with Digital 
Collections as Big Data”, Press Release, October 9, 2019, https://www.loc.gov/item/prn-19-098/. 
2 "Computing Cultural Heritage in the Cloud," Library of Congress LC Labs, 
https://labs.loc.gov/work/experiments/cchc/; “Library Receives $1M Mellon Grant to Experiment with Digital 
Collections as Big Data”, Press Release, October 9, 2019, https://www.loc.gov/item/prn-19-098/. 
3 Manchester, E. (2021). “LC Labs Welcomes Computing Cultural Heritage in the Cloud (CCHC) Researchers!” LC 
Labs Letter. June 20, 2021, https://blogs.loc.gov/thesignal/2021/06/lc-labs-welcomes-computing-cultural-
heritage-in-the-cloud-cchc-researchers/. 
4 "Digital Strategy for the Library of Congress," Library of Congress, https://www.loc.gov/digital-strategy/. For the 
full report, see FY2019-2023 Digital Strategic Plan of the Library of Congress Version 1.1.2; April 26, 2019, 
https://www.loc.gov/static/portals/digital-strategy/documents/Library-of-Congress-Digital-Strategy-v1.1.2.pdf. 
5 Castellanos, S. (2021). "Library of Congress Looks to AI to Help Users Sift Through Its Collection," Wall Street 
Journal, June 24, 2021. https://www.wsj.com/articles/library-of-congress-looks-to-ai-to-help-users-sift-through-
its-collection-11624552197 
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are often developed and applied without attention to the form of cultural heritage in technical 
scholarship, ADDI pursues technical research with computer vision that considers the specificity 
of photography as a medium, social practice, and source of evidence for humanistic inquiry. 

The project focuses on five photography collections from the early 20th century, totaling over a 
quarter of a million photographs held by the Library of Congress (LoC). Specifically, we choose 
the following collections: 

  Detroit Publishing Company (25,172 photos) 
Farm Security Administration-Office of War Information (170,907 photos) 
George Grantham Bain Collection (41,447 photos) 
Harris & Ewing Collection (41,542 photos) 
National Photo Company (35,619 photos) 

The number of photographs in the LoC collections provides a scale that benefits from the use 
of computer vision and speaks to the necessity of experimenting and developing approaches to 
computer vision for access and discovery of images. While collections such as the FSA have 
extensive metadata such as photographer, date, and captions, tens of thousands of images still 
have minimal metadata. Collections like Detroit Publishing Company and the Bain Collection 
often have short captions comprising a short phrase like “In Central Park, New York” or “Harriet 
Quimby."6 A query on the text captions would not convey the action in the first image — children 
sledding and walking with their dog on a snowy day — or the second image — a woman at the 
helm of an early airplane. Adding context to the photos at this scale is a significant and timely 
undertaking, particularly the important and rich metadata generated by subject experts and 
projects such as crowdsourcing initiatives.7 Computer vision is not a replacement for this 
expertise nor the kind of knowledge it produces. At the same time, components of an image like 
people, dogs, and planes are amenable to computer vision. They offer an additional approach to 
metadata to facilitate search, discovery, and analysis of image collections.  

In this document, we assess existing algorithms for generating metadata of historic image 
collections as a public methods paper, identify how generated visual annotations can be 
mapped onto formal features and approaches to studying photography, and develop an 
experimental public interface for search and discovery with the metadata. This work is designed 
to support the LoC’s work to “expand access” and “increase discoverability” to “the largest 
collection of human knowledge ever assembled.”8 It is conducted as a part of the LC Lab’s 
Computing Cultural Heritage in the Cloud Initiative.9 

 
6 Byron, "In Central Park, New York," https://www.loc.gov/pictures/collection/ggbain/item/2001704137/. 
Publishing Company, https://www.loc.gov/pictures/item/2016808726/; "Harriet Quimby," Bain Collection,  
7 For example, LoC undertook a Flickr crowdsourcing project in 2014 that led to important new metadata in the 
Bain Collection. For example, see “Kath. Stinson & Dario Resta” and a field called "Summary" at 
https://www.loc.gov/pictures/collection/ggbain/item/2014701554/. 
8 Library of Congress Strategic Plan: https://www.loc.gov/strategic-plan/ 
9 "Computing Cultural Heritage in the Cloud," Library of Congress LC Labs, 
https://labs.loc.gov/work/experiments/cchc/; “Library Receives $1M Mellon Grant to Experiment with Digital 
Collections as Big Data”, Press Release, October 9, 2019, https://www.loc.gov/item/prn-19-098/. 
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1.2 Our Approach 

The project’s methods are shaped by an approach that brings together data science and digital 
humanities. We draw on two definitions as guides. For data science, we understand the area of 
inquiry as the interdisciplinary study of collecting, analyzing, and communicating data.10 For 
digital humanities, we draw on Kathleen Fitzpatrick’s definition: “a nexus of fields within which 
scholars use computing technologies to investigate the kinds of questions that are traditional 
to the humanities, or…ask traditional kinds of humanities-oriented questions about computing 
technologies”.11 The two fields are increasingly a Venn diagram and mutually constitutive. Their 
interconnectivity is such that recent work is further identifying and articulating these 
connections and shaping hiring across cultural heritage and institutions of higher education.12 
We bring them together through the set-up of this collaboration as well: Arnold identifies as a 
Data Scientist, and Tilton identifies as a Digital Humanist, and vice versa. ADDI sits in the middle 
of the Venn diagram by engaging in the critical use and development of computational methods 
to analyze data to further humanistic inquiry.  

The blend of our expertise and interests led to our method of distant viewing, which guides this 
project.13 The framework offers an approach to computer vision analysis with careful attention 
to how these algorithms are trained to see and view, which we further detail in Section 1.4. Along 
with providing an approach to computer vision for image analysis, distant viewing is an approach 
to access and discovery. Developing annotations about features of a photo offers a way for 
people to explore a collection, particularly when the number of photos is in the tens of 
thousands. The annotations for ADDI provide another layer of information to augment 
discoverability and expand access to “the largest collection of human knowledge ever 
assembled.” 14 

Our work joins an ongoing conversation across the digital humanities, informational retrieval, 
and cultural heritage about facilitating access to a collection, from working within existing 
organizations to remixing collections to introducing serendipity.15 Emerging calls to think about 

 
10 Donohue, D. (2017). “Fifty Years of Data Science," Journal of Computational and Graphical Statistics 26 (4). 
11 Fitzpatrick, K. (2012). “The Humanities, Done Digitally.” Debates in the Digital Humanities, ed. Gold, M. and Klein, 
L. University of Minnesota Press. https://dhdebates.gc.cuny.edu/read/untitled-88c11800-9446-469b-a3be-
3fdb36bfbd1e/section/65e208fc-a5e6-479f-9a47-d51cd9c35e84. 
12 For example, see “The challenges and prospects of the intersection of humanities and data science," White 
Paper from The Alan Turing Institute, https://www.turing.ac.uk/research/publications/challenges-and-prospects-
intersection-humanities-and-data-science. Information schools such as those at the University of Illinois Urbana-
Champaign and the University of Michigan are hiring digital humanities scholars into data science programs. 
13 Arnold, T. & Tilton, L. (2019). “Distant Viewing: Analyzing Large Visual Corpora.” Digital Scholarship in the 
Humanities 34.: i3-i16; Arnold and Tilton, Distant Viewing, The MIT Press (Forthcoming).  
14 Library of Congress Strategic Plan: https://www.loc.gov/strategic-plan/ 
15 Deuschel, T., Heuss, T., B Humm, B., Fröhlich, T. (2014). “Finding without Searching-A Serendipity-based 
Approach for Digital Cultural Heritage." Digital Intelligence, Nantes; Seguin, B. (Spring 2018). “The Replica Project: 
Building a visual search engine for art historians." XRDS 24, 3: 24–29. DOI:https://doi.org/10.1145/3186653; 
Cooper Hewitt Labs, (2013). “All your color are belong to Giv," Cooper Hewitt Labs blog, 
https://labs.cooperhewitt.org/2013/giv-do/; Darms, Lisa. (Fall 2015). “’Radical Archives’ Introduction by Lisa 
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“collections as data” have led to a reframing of library collections.16 By thinking of materials 
such as photographs as data, and images as data more broadly, the range of analytical 
possibilities expands particularly computational methods.17 Ryan Cordell’s Machine Learning + 
Libraries: A Report on the State of the Field for the Library of Congress identifies promising 
machine learning applications, including the possibilities of visual data annotation as an 
emerging direction.18 Our work takes up the call in the report to demonstrate how machine 
learning paired with knowledge about the medium, documentary photography as cultural and 
social practice in our case, can produce annotations that guide publics through the collections 
with attention to the specificities of the medium. In more and more cases, the challenge is not 
if the algorithm finds the features that it is trained to view within the data set; it is whether that 
feature is appropriate, tells us something about the interpretable images, and if that information 
is meant for the intended publics. In other words, it is less and less an accuracy issue (i.e., 
identifying cars) but an analytical issue (i.e., is this a feature that furthers our ability to find and 
interpret the image). To what purposes do we apply computer vision? How does this shape 
which computer vision algorithms we use? Which visual annotations map onto concepts and 
ideas that guide how publics are looking to access and what they are looking to discover? These 
questions guide the methods below. 

Our approach focuses on assessing how well current computer vision algorithms are positioned 
to facilitate access and discovery. We focused on two ways. One is thinking about public 
engagement with the collections, particularly facilitating information retrieval processes such 
as browse, search, and recommendations. For example, we chose to explore face and pose 
detection algorithms as a potential way to identify genres such as portraiture. We also 
approached discovery from another angle: harnessing computational methods to analyze and 
understand the collections to further research on visual culture. For example, we decided to see 
if we could identify ways of seeing in portraiture (see Data Analysis Paper). The two ways are 

 
Darms,” Archive Journal 5, http://www.archivejournal.net/issue/5/archives-remixed/radical-archives/; Masson, 
Eef et al. (2020). “Exploring Digitised Moving Image Collections: The SEMIA Project, Visual Analysis and the Turn 
to Abstraction.,” DHQ: Digital Humanities Quarterly 14, no. 4. This kind of work is also modelled by projects such as 
The Civil War Sleuth project developed by a team at Virginia Tech University 
(https://www.civilwarphotosleuth.com), Newspaper Navigator developed for LC Labs by Ben Lee 
(https://labs.loc.gov/work/experiments/newspaper-navigator/), Photogrammar developed by teams at the 
University of Richmond and Yale University (https://photogrammar.org), PixPlot developed by the Yale DH Lab 
(https://dhlab.yale.edu/projects/pixplot/), Serendip-o-Matic developed by a team during the One Week | One Tool 
Institute sponsored by the NEH (http://serendip-o-matic.com/index.html), and Ukiyo-e Search developed by John 
Resig (https://ukiyo-e.org).  
16 Padilla, T. (2017). “On a Collections as Data Imperative.” UC Santa Barbara. 
https://escholarship.org/uc/item/9881c8sv. 
17 For another example, see our project “Images as Data: Processing, Exploration, and Discovery at Scale” with 
Carol Chiodo and Lidia Uziel (Harvard University) https://collectionsasdata.github.io/part2whole/cohortone/. The 
white paper is available at distantviewing.org. 
18 Cordell, R. (2020). Machine Learning + Libraries: A Report on the State of the Field. Commissioned by LC Labs, 
Library of Congress. July 14, 2020. For another important report, see Padilla, T. (2019). Responsible Operations: 
Data Science, Machine Learning, and AI in Libraries. Dublin, OH: OCLC Research. https://doi.org/10.25333/xk7z-
9g97. For another example of visual annotations in a library workflow, see Lincoln, M, Corrin, J, Davis, E, Weingart, 
S. B. (2020). “CAMPI: Computer-Aided Metadata Generation for Photo archives Initiative." Carnegie Mellon 
University. Preprint. https://doi.org/10.1184/R1/12791807.v2  
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mutually constitutive. How we design information retrieval systems can be guided by and guided 
by our understanding of the collections. Finally, we selected algorithms that are broadly relevant 
to historic still photography and are well studied with popular open-source implementations 
because the CCHC initiative is about the potential for the library and computational researchers 
to use these methods across collections. We did not train custom algorithms, although we 
suggest this as a future direction in Section 6.  

1.3 Overview of Computer Vision Methods Used 

Computer vision offers a computational method for analyzing images. The field focuses on 
using computer algorithms to approximate human visual systems. Training computers to see 
and view has been shaped by tasks from detecting colors and shapes to objects and motion. 
While we more often recognize our encounters with these technologies on our phones, at 
airports, and in cars, these same technologies also shape how we access and learn about the 
sources that impact how we understand the past, present, and future. An important domain is 
access to essential institutions such as the nation's library, the Library of Congress, a timely 
issue amid the challenges of a global pandemic where digital access became the primary form 
of access.  

Access to image collections primarily relies on text to describe the image, which has most often 
been manually imputed by a person. Computers can now analyze the pixels that comprise an 
image and, depending on the algorithm that we select, can provide information about the image. 
Computer vision, therefore, offers an opportunity to look directly at the images. This is an 
exciting development for image collections, particularly large collections, since it allows us to 
analyze the photographs themselves and at a large scale. Computer vision is not a replacement 
for people such as metadata librarians and curators whose expertise is an important guide to 
computer vision applications. The metadata data provided about images such as administrative, 
descriptive, structural, and provenance metadata is necessary and, for the most part, kinds of 
data computer vision cannot generate. Rather, computer vision offers another angle to view the 
images that adds an additional layer of data to help increase access to images.  

A challenge is how to turn how the computer sees an image – as pixels – into a form that is 
amenable to the information retrieval process, such as search, browse, and recommender 
systems. To accomplish this task, we will use what we call "annotations." They are structured 
data produced by computer vision algorithms. Examples include summary numbers, predicted 
categories, bounding boxes, and embeddings. An added benefit is that we can aggregate 
annotations and pair them with existing metadata to conduct data analysis on a collection (See 
Data Analysis Paper). They can also be the basis of a discovery interface, which we demonstrate 
in the ADDI prototype that we address inSection5. 

A key question that we are engaged in by using computer vision is one that is foundational to 
the study of visual culture: what is this an image of?19 From trying to understand the messages 
of a photo to identifying genres and their conventions, this question guides the interpretation. 
Analyzing a single image across a set (as in our case by photo organizations such as the Detroit 

 
19 For a great piece about this topic, see Cara Finnegan’s piece about searching the FSA archive. Finnegan, C. 
(2006) “What is this a picture of? Some Thoughts on Images and Archives”. Rhetoric and Public Affairs 9 (1). 
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Publishing Company) offers a range of interpretations that can be augmented as we shift our 
focus from a few images and zoom out to a larger set and zoom back in again. What we view 
and interpret, using just computer vision or combined with additional information (such as the 
powerful metadata that comes with the FSA collections), then shapes how people understand 
the images, which then can serve as a guide to access and discovery. 

To work through this question, we focused on two kinds of algorithms. The first kind focused on 
identifying elements of an image: faces (face detection), bodies (pose detection), objects 
(object detection), and background elements (region segmentation). In this case, the algorithm 
looked at each image individually. A way to begin to answer the question is through the people 
and objects that comprise the image. Understanding the message of a photo not only often 
involves looking at a single photo but understanding the large ecosystem of images that the 
photo is in conversation with.20 To compare images, the second kind focused on identifying 
similar images (image embeddings). By creating a distance measurement between images, this 
approach allows us to see similar images without having to be explicit about what makes them 
like one another. In this project, we compare within individual collections and across the 
collections (see Data Analysis Paper).  

We applied and adapted three classes of computer vision algorithms to the selected collections. 
The first class of algorithms we used was the face- and pose-detection methods, which are used 
to identify the position of bodies and faces within an image. Competitive open-source 
algorithms exist for pose detection, but these have been trained and applied almost exclusively 
to high-definition images that have clearly defined people fully in the frame.21 The second class 
of algorithms that we used is the classification of images into thing and stuff categories.22 A 
popular task in computer vision research is the identification of specific objects within an image. 
Recently, a newer area of research has evolved to identify regions in an image that contain 
unenumerable "stuff," such as roads, trees, mountains, and the sky. From one perspective, these 
algorithms may be potentially difficult to apply to black and white images as they seem to rely 
heavily on color information. At the same time, they identify many elements of an image that 
should be relatively constant through time and, if feasible, offer an excellent surrogate for the 
study of historic images at scale; we explore this opportunity in Section 4. The third and final 
category of computer vision algorithms is image similarity.23 Given their out-of-the-box power, 
these algorithms have been applied successfully to historic photographs. The novel question 

 
20 Photography and media theory points out how images make meaning through the visual cultures that they draw 
on as well as how they circulate. For example, John Berger calls these "ways of seeing," Stuart Hall theorizes how 
images make meaning as “encoding and decoding," and Marita Sturken and Lisa Cartwright discuss "practices of 
looking." See Berger, J. (1990). Ways of Seeing, Penguin Books; Sturken, M. and Cartwright, L. (2009). Practices of 
Looking: An Introduction to Visual Culture, Oxford University Press; Stuart Hall. (September 1973). “Encoding and 
Decoding in the Television Discourse," Paper for the Council of Europe Colloquy on "Training in the Critical 
Reading of Television Language." 
For an example of a work that thinks about the development and social and cultural impact of a particular genre 
of photography, see Hirsch, M. (1997). Family Frames: Photography, Narrative, and Post Memory. Harvard 
University Press. 
21 Cao, Zhe, et al. (2019). “OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields.” In IEEE 
transactions on pattern analysis and machine intelligence 43.1: 172-186. 
22 Caesar, H., Uijlings, J., & Ferrari, V. (2018). “Coco-stuff: Thing and stuff classes in context." In Proceedings of the 
IEEE conference on computer vision and pattern recognition: 1209-1218. 
23 Barz, B., & Denzler, J. (2019, January). “Hierarchy-based image embeddings for semantic image retrieval." In 
2019 IEEE Winter Conference on Applications of Computer Vision (WACV): 638-647. 
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investigated by this project is the feasibility of pairing image similarity algorithms with the region 
of interest algorithms to find connections between sub-regions of different images, which we 
turn to in Section 4.2. 

In the sections below, these three classes of algorithms are further introduced. After a long 
discussion of their motivations and history, we give references to current state-of-the-art models 
and implementations. Then, we discuss the algorithm’s performance on the selected collections 
and highlight potential areas for application in the discovery and use of digitized collections of 
visual culture. We finish with a discussion of any potential social and ethical issues to the 
application of each algorithm.   

1.4 Our Process 

There are important theoretical and practical challenges to working computationally with digital 
images. Understanding visual materials must consider the ways in which knowledge is produced 
through visual media. Our process focuses on the automated creation of annotations, which are 
structured data produced by computer vision algorithms that describe one or more elements of 
an image. The method that we use to create, explore, and communicate these annotations is 
what we refer to as Distant Viewing.24 This approach is an adaptation of a standard data science 
pipeline that considers the unique ways that images convey meaning. The pipeline breaks the 
process into several discrete steps: collecting the data, creating annotations, exploring the 
annotations, and communicating the results. By breaking the process into concrete steps, we 
can clarify the humanistic and algorithmic assumptions that underlie the study of large 
collections of digitized media. We can integrate, for example, how algorithmic biases in the 
assumptions of standard machine learning algorithms affect the exploratory visualizations. We 
can identify points of tension between loosely defined formal elements, such as composition 
and genre, and the need for computational algorithms to precisely define and delineate labels 
and categories. And, we can understand how the priorities of computer vision research have 
shaped the kinds of data aggregations that can be reliably calculated without direct human 
intervention.  

In this paper, we focus on a discussion of the collection of the data, the creation of computer 
vision annotations, and the communication of results when applying the Distant Viewing 
approach to the five collections of documentary photography outlined above. The exploration 
step is covered in the accompanying Data Analysis paper. 

1.5 Document Outline 

The goal of this document is to be a resource to researchers looking to apply computer vision 
algorithms to collections of photography, with a particular focus on those looking to use 
collections housed at the Library of Congress.25 As a resource, our main goal has been to include 
sufficient references and to document the details about methodology, such as how we choose 

 
24 Arnold, T. & Tilton, L. (2019). “Distant Viewing: Analyzing Large Visual Corpora.” Digital Scholarship in the 
Humanities 34: i3-i16; Arnold, T. & Tilton, L. Distant Viewing, The MIT Press (forthcoming).  
25 The research comes in many forms and occurs at many levels. We define researchers broadly, including library 
staff, domain experts in visual culture, students, and members of the general public interested in exploring and 
learning about computer vision and photography.  
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data formats and programming languages. We have also tried to highlight places for possible 
extensions, outline the methods used in the project, highlight successes, flag areas of difficulty, 
and provide advice for future approaches to computational analyses of large image data 
archives. 

The document is organized around the steps of the data science pipeline. First, we describe the 
technology and data formats used in ADDI. Then, we describe the process of collecting and 
organizing the data. We then proceed to describe each of the classes of algorithms used in the 
analysis. For each method, we describe the algorithms, their uses, and a short history of their 
development. These are followed by a discussion of how the computer vision algorithms provide 
annotations that can be used in applications and then highlight any difficulties we found in the 
results. Finally, we finish by explaining the methods used to communicate the results through 
the interactive visualization application. 

2. Technology  

The following section outlines the technologies used in ADDI, including programming languages, 
software libraries, and data formats, along with the tech stack required for the prototype. All 
decisions were guided by a commitment to open source and open access. All code is available 
at https://github.com/distant-viewing/addi. 

2.1 Programming Languages for Data Analysis 

One of the first decisions to consider when starting a computational project is the choice of 
technologies to use and the formats for storing the input, intermediate, and final versions of the 
project’s data. Making clear decisions about how to organize and manipulate data in the early 
stages can greatly simplify the data analysis process in later stages. In this section, we will 
describe the technologies that we used in this project, along with a brief description of our 
rationale.  

We have decided to use open-source software for all the data collection and analysis in this 
project. There are several reasons for our selection of open-source software. First, we believe it 
is important to understand how our tools are working; ideally, nothing should be hidden within a 
proprietary box that is beyond our ability to understand and critique. When dealing with 
proprietary software, there is often no way to ensure that the code is working as documented. 
Biases and misspecifications are easy to miss, even with open, well-documented code. 
However, at least with open-source software, there is an opportunity to look inside the box. 
Secondly, using open-source software ensures that the methods and techniques that we use 
will be accessible to anyone with some access to moderate computing power without the need 
to attain an expensive software license. While challenges certainly remain in terms of access 
and expertise, using open-source libraries and tools eliminates at least one difficulty in 
replicating and extending our results. Finally, the community of researchers working on state-of-
the-art computer vision algorithms primarily release results as open-source software.26 

 
26 There are many companies that produce and use novel computer vision software for internal use, but these are 
not typically released in any form that can be accessed or purchased for personal use. 
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Therefore, we are not limiting ourselves by our choice of using open-source software; rather, we 
are engaging with many of the most accurate and advanced methods currently available. 

In addition to choosing open-source software, we have specifically chosen to use programming 
languages rather than GUI-based point and click tools for our analysis. There were several 
reasons that this was advantageous for our work. First, it coincides with our desire to make sure 
that results would be reproducible and understandable. By writing the entire analysis pipeline in 
code, we have a reproducible script that explains each step and decision along the way (See our 
GitHub repository at https://github.com/distant-viewing/addi for the code). In addition to 
including extensive comments in the code, this makes it possible for others to have a well-
documented way of understanding what we did in the project. Secondly, even if we did want to 
use a GUI-based tool, there are currently very few options for this approach. Those that do exist 
are proprietary, and therefore not open source. Existing GUI-based tools for computer vision 
typically only work to apply one type of computer vision algorithm and often lag software 
libraries accessible through programming languages in terms of their accuracy and speed.  

Our desire to use an open-source programming language suited for data analysis led us to select 
a mixture of R and Python. Both languages are heavily used within the field of data science. R 
has more libraries for statistical modeling and data visualization, whereas Python is the tool of 
choice for text and image analysis. We primarily used R to collect our dataset by calling the 
Library of Congress API and website (see the next section) and as a helpful scripting language. 
R was also used for the computational analysis presented in our corresponding Data Analysis 
Paper. The Distant Viewing Toolkit (DVT)—the software we built for the analysis of visual 
culture—is written in Python; therefore, we used the language for generating the automatically 
produced computer vision annotations (See our GitHub repository at 
https://github.com/distant-viewing/dvt or the latest version of DVT).27 

2.2 Software Libraries for Data Analysis 

Within the R programming language, we used a collection of standard and popular third-party 
packages. These include dplyr for data manipulation, ggplot2 for data visualization, xml2 for 
parsing XML data, jsonlite for parsing JSON data, and stringi for parsing raw strings.28 The 
choice of a specific Python library for computer vision required some careful consideration. 

There are several libraries for doing computer vision in Python, but these are often difficult to 
install and particularly difficult to install on one machine at the same time.29 Two of the most 
popular low-level libraries at the time of this writing are TensorFlow and PyTorch.30 Slightly 

 
27 Arnold, T. and Tilton, L. (2020). “Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture.” 
Journal of Open-Source Software, 5(45): 1800. 
28 For an overview of these tools, see Wickham, H. and Grolemund, G. (2016). R for Data Science: Import, Tidy, 
Transform, Visualize, and Model Data. O’Reilly Media. 
29 The reason for the difficulty is that each library often requires a very specific version of many other 
dependencies. These will not be the same for different tools, making it hard to work with multiple tools within the 
same runtime environment. 
30 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., and 
Kudlur, M. “Tensorflow: A system for large-scale machine learning.” In 12th USENIX symposium on operating 
systems design and implementation: 265-283; Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., 
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higher-level libraries include Keras and Detectron2.31 Our initial version of the Distant Viewing 
Toolkit was built around TensorFlow. However, as part of this project, we transitioned to working 
with Detectron2. While slightly limiting in the ability to build new models, Detectron2 was found 
to be much easier to install and had a much better set of models ready to use out-of-the-box. 
For our application goals, it was better to be able to apply a wide range of models rather than 
being constrained to those available directly for TensorFlow or the need to build every model 
from scratch. Since we hope that this project might serve as a model and guide to applying CV 
to other image collections, balancing ease of installation and the scope of available models 
shaped our decision making, to realize these goals, we also rebuilt the Distant Viewing Toolkit 
around Detectron2 as a part of this project. 

2.3 Data Formats 

As an additional technological decision, we needed to decide on formats for the data 
constructed from our analysis. Two popular options are the Extensible Markup language (XML) 
and JavaScript Object Notation (JSON).32 These forms have several advantages from the 
perspective of software engineers building reliable internal software and exchanging data 
between a variety of programs running in a diverse technological stack. However, these formats 
are not ideal for data science applications because they break the relational database model.33 
As an alternative, to use the language of Hadley Wickham, we preferred for our data to be stored 
as “tidy data '' in the form of a set of interconnected tables.34 We have chosen to store our data 
in the form of comma-separated value (CSV) files, one of the most common formats that can 
be read by almost all software designed for data science applications. 

For the prototype, we converted the relevant fields of the CSV fields into a JSON format, which 
is more easily manipulated by the JavaScript language (see next section for details). To reduce 
the amount of data that needs to be loaded when a visitor first opens the prototype, the 
annotations are stored with one file for each image. In this way, only one small file needs to be 
loaded to get started; a new file is opened and parsed each time a visitor clicks to a new image. 
The use of flat files, rather than a formal database, makes it possible to serve the entire 
application of GitHub pages. This greatly reduces the cost and potential for bugs in the code 
and possible downtime. To streamline the JavaScript code, we created a single format for 
describing bounding boxes that could be used for the annotations from the face detection and 
two object detection algorithms.  

 
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019). “Pytorch: An imperative style, high-
performance deep learning library." Advances in neural information processing systems, 32: 8026-8037. 
31 Chollet, F. (2018). “Keras: The python deep learning library.” Astrophysics Source Code Library. 
32 For the standards of these formats, see https://www.w3.org/standards/xml/core and https://www.ecma-
international.org/publications-and-standards/standards/ecma-404/. 
33 Technically, it is possible to store tabular, relational data in either XML or JSON. The core difficulty is that it is 
also possible to break this model and that typically becomes overly tempting for anyone using either format. Also, 
there is no uniform way to store tabular data in XML or JSON, making it difficult or impossible to load these 
formats directly with tools such as Excel and Tableau. 
34 Wickham, H. (2014). “Tidy Data.” Journal of Statistical Software. 59(10): 1–23. 
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2.4 Technology for the prototype 

In addition to the data analysis, our project also included building a web-based, interactive, proof-
of-concept application to visualize the automatically generated annotations extracted by our 
computer vision algorithms. To simplify long-term maintenance, we designed the application to 
run locally on a user's machine within their web browsers. Web browsers are built to run code in 
JavaScript, and so this is the language we choose to use for the visualization application.  

Our specific technology stack for the visualization engine uses several popular libraries and 
frameworks in JavaScript. Specifically, we wrote a mixture of code in JavaScript and marked-up 
files in HTML and CSS. These elements were put together within the React.js framework, which 
provides an easy way of building one-page websites that coordinate a mixture of static data and 
user interactions. The ADDI prototype further demonstrates our commitment to open source 
and open access (See our GitHub repository at https://github.com/distant-viewing/addi or the 
codebase.) 

3. Data Collection 

The following section outlines the data collection process. There are two primary kinds of data: 
image and text. We discuss the process of accessing the data, deciding on which file types, and 
organizing the data, including identifying opportunities to streamline the data collection process.  

3.1 Structured Metadata 

The Library of Congress has excellent metadata attached to each of the collections that are part 
of our study. Descriptive metadata such as captions, photographers, and dates offer historical 
context. Structural metadata such as film type provides insight into the materiality of the image 
(i.e., negative or print) as well as the technology that produced the image. Administrative 
metadata such as file formats (i.e., jpeg and resolution) gives technical information that informs 
what kind of computational methods are possible. The metadata offers important context that 
informs the application of computer vision as well as the prototype.  

LoC provides a public API that is available for researchers looking to access this metadata. The 
API currently includes several endpoints for accessing data, including a full-text search of record 
fields and the ability to grab all records from a single collection. When called, the API returns a 
set of up to 150 records, with one record per object (a photograph, in our case). The records 
include links to images at various resolutions and provenance data. Many records contain 
additional information, such as location, date, and title. However, some of these fields are 
missing for some of the images. According to the existing documentation, it was not clear which 
elements of returned JSON objects are required (i.e., always returned by the API) and which were 
optional. We started by trying to use this API but did run into some issues, which we will briefly 
describe here. Note that we are giving a description of our experience using the API in the 
summer of 2021; the API team has generously worked with us through these challenges and is 
in the process of making changes, so some of these issues may no longer apply.  

One challenge is that there were several different sources of documentation for using the Library 
of Congress’ API, and it was not clear which one was the authoritative source of information. At 
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the time, none of the sources referenced one another. First, there was a very brief page contained 
on the loc.gov site titled "JSON/YAML for LoC.gov." This page provided information about 
making a request and the various endpoints. It did not have any tutorials or information about 
the format of the returned data.35 Secondly, there was a website hosted on GitHub pages.36 The 
information was more detailed and very helpful. In addition to the formal specifications, there 
were friendly tutorials that explained how the API was designed and what kinds of data were 
returned. However, this version did not include information about all the available endpoints nor 
provide the rate limits that were included on the main loc.gov site. Finally, there is also the site 
at labs.loc.gov; this is a mixture of the information from the other two sources and was not our 
primary source of information during the project. 

Our initial pipeline for working with the LoC data was adapted from the GitHub pages tutorials. 
Because of the limited information about all the available endpoints, we assumed that it was 
necessary to make an API request that first searched the collection and gave us a list of all the 
available items. Then, we would need to call the API again for every record in the collection. This 
was easy to code, but we quickly ran into issues with the rate limits that were not documented 
on the GitHub site. Given the scale of our requests, this was a huge issue. With some trial and 
error, we determined that it was going to take us several weeks just to query one collection. With 
the need to make some quick progress, we decided to bypass the API and scrape the data 
directly from the Library of Congress website. It took minimal effort to figure out the URL 
scheme, and then we were able to download all the data. Surprisingly, the rate-limiting seemed 
to not apply to the main Library of Congress website. It took several days still because we had 
to fetch each record one by one, but this was still substantially shorter and less complicated 
than working with the API. 

Later in our work, we decided to go back and grab data from the official API. One reason for this 
is that the data on the website is in the MARC record format, which had inconsistent field tags 
for different collections. At this point, we learned about the documentation on the loc.gov site 
and were at first able to get the API working relatively well.37 However, when working with the 
larger FSA-OWI collection, we ran into another issue. We were paginating through the collection 
but learned that the API would only allow us to go a certain depth through the results. We were 
only able to get to about page 700 and around 90,000 images, which is only half of the collection. 
Unfortunately, there was no easy solution to this issue, and we were never able to get the full 
dataset through the official API.38 

The other challenge that we had with the data was determining which of the various version of 
the data on the Library of Congress was the most official version of the record. The easiest way 

 
35 Several helpful changes were made between our collection of the data and the writing of this paper. The 
website now contains much more information about the returned data formats. 
36 https://libraryofcongress.github.io/data-exploration/index.html  
37 There is an endpoint that allows the querying of up to 150 records at once, which significantly reduces the 
number of requests that are needed. 
38 This was not just a buffering or waiting issue. The URL will always fail when requesting too many pages. For 
those interested, here is the query that we were not able to process (at least as of January 2022): 
https://www.loc.gov/collections/fsa-owi-black-and-white-negatives?c=150&fo=json&sp=900. 
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to explain this issue is through an example. For one record, here are four different ways of 
accessing the record’s metadata: 

https://www.loc.gov/item/2017798400/ 
https://www.loc.gov/pictures/collection/fsa/item/2017798400/ 
https://www.loc.gov/pictures/item/2017798400/marc/ 
https://lccn.loc.gov/2017798400/marcxml 
https://www.loc.gov/item/2017798400/?fo=json  

These links are not redirects that point to the same location; each is a different page with slightly 
different fields and formats. Most of these differences are minor, but these small differences 
make it hard to algorithmically compare data from different sources.39 The API has lowercase 
names, and the locations are different formats from the others, for example. Each of the website 
pages is different too. One has each location separated, and the other one does not. One has an 
actual "city" field, and the other does not. In our case, the differences were small but did mean 
that we needed to pay very careful attention to make sure that the differences were a matter of 
differing field names for the same data or the data entry such as capitalizations rather than one 
data set including information that another set did not include. The Prints & Photographs 
Division kindly clarified the difference between the data sources, which we shared would be 
helpful to document to further support future researchers using images as data.40  

Ultimately, we primarily used the data from our initial scraping of the Library of Congress 
website. During the final preparation of the visualizer, we included the data from the API for the 
two collections that were part of the prototype (FSA-OWI color images and the Bain Collection). 
From our workflow, it would have been significantly easier to go to a site or make a request to 
LOC, where we could have received all the data at once. As an example, consider the 
Rijksmuseum’s website, which has a “download” section with zip files with multiple formats for 
the entire collection.41 Similarly, The Metropolitan Museum of Art releases all its open-access 
data as a single CSV file.42 A clear, official, authoritative data set available as a CSV would 
streamline access for data analysis and clarify which version of the data is primary. As data is 
updated, documenting the changes, and providing past snapshots of the data, would also be a 
major asset.43 We are excited to see how the work of LoC’s AWS Dataset Pilot Working Group 
might facilitate streamlined access to the collections as data. 

 
39 As another change during the duration of this project, the JSON returned by the API now has a version number 
which makes keeping track of changes much more manageable.  
40 Thank you to the Prints & Photographs Division team for their time helping us understand the data. Our 
understanding following these conversations is that data behind Prints and Photographs Online Collection 
(PPOC) and LOC.gov is organized slightly differently. This is the result of shifts over time in data management 
and systems serving the data to the public. PPOC was an early pioneer of online digital access and, therefore, 
slightly differently structured than the more recent aggregation of data within LOC that serves LOC.gov. 
41 https://data.rijksmuseum.nl/object-metadata/download/ 
42 https://github.com/metmuseum/openaccess  
43 For example, the FSA collection metadata has been updated based on information such as crowdsourced data 
from Flickr as well as our own work through Photogrammar (Photogrammar.org). As a part of that project, we 
provided metadata for tens of thousands of more photos based on the negatives. For more about, see Arnold, T., 
Maples, S., Tilton, L., and Wexler, L. (2017). “Uncovering Latent Metadata in the FSA-OWI Photographic Archive.” 
Digital Humanities Quarterly 11 (2). http://www.digitalhumanities.org/dhq/vol/11/2/000299/000299.html. LoC 
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3.2 Images 

Once we gathered the structured metadata, there was also the need to download all the images 
associated with our selected collections. Each of the data sources included direct URLs for the 
images, and there did not appear to be any associated rate-limiting that prevented directly 
downloading each of the images with a small script of code. Given the size of the images and 
the number of requests, however, it took several days to download all the files. We used an 
external server to make sure that the process could run slowly and steadily, with extra checks to 
make sure that the files were correctly downloaded.  

The one challenge we had in terms of downloading the images was deciding which of the image 
versions to work with. Most records had two different files in an uncompressed TIFF format as 
well as three or four JPEG images at different resolutions. The TIFF files are very large, but we 
wanted to make sure that we were not losing any important information by using the JPEGs. The 
collection website contains almost no information about the files and how they were created. 
We ran a few experiments by grabbing the largest TIFF file, converting them locally to a JPEG, 
and then comparing the available JPEG images. Once converted to JPEG, it was a similar size 
to the other JPEG versions. Therefore, it appeared that the largest JPEG was either a converted 
TIFF or at least close to it. From this experimentation, we decided to use the largest JPEG image 
for our application.  

For the five collections, the Library of Congress provides one or more archival uncompressed 
TIFF files and several JPEG files of various resolutions. For computer vision algorithms, it is 
usually best to use the highest resolution available. However, we determined the larger archival 
TIFF images were of the same resolution as the compressed JPEG images. Therefore, to 
optimize for storage space and speed, we downloaded and used the largest JPEG. There is no 
need to use the largest file just because it is available if it isn’t necessary. In addition to 
substantially increasing the amount of time that it takes to apply the computer vision models, 
the environmental costs only increase.44  

Thinking of images as data is enabled by understanding digitization decisions. We are greatly 
appreciative of the time that Prints & Photographs staff spent helping us understand the 
digitization histories of the collections. Understanding that part of the FSA-OWI collection, for 
example, was re-scanned with better technologies whereas other parts were not, and when they 
might be, is important for the application of computer vision algorithms. Their knowledge and 
expertise were crucial to ADDI. A new section, "Digitizing the Collection," is being added and 

 
has now added metadata based on the method. They use brackets [ ] to indicate metadata that is based on 
assumptions from the negatives. Another use is related to labor. By providing previous snapshots of the data, one 
can go back and look at the revision history of the LoC. As Ben Schmidt has demonstrated, studying the history of 
MARC records opens analytical possibilities to study how the government shapes public knowledge (see 
https://creatingdata.us/datasets/marc-history.htm). D’Ignazio and Klein discuss his work in Chapter 7: Show Your 
Work of Data Feminism (The MIT Press, 2020) to demonstrate how metadata can be used to acknowledge labor, 
which reveals the amount of work that it takes to create digital collections.  
44 Crawford, K. and Joler, V., “Anatomy of an AI System: The Amazon Echo As An Anatomical Map of Human 
Labor, Data and Planetary Resources.” AI Now Institute and Share Lab, (September 7, 2018) https://anatomyof.ai; 
Dhar, P. “The carbon impact of artificial intelligence." Nature Machine Intelligence 2, 423–425 (2020). 
https://doi.org/10.1038/s42256-020-0219-9. 
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provides incredibly valuable information that contextualizes and situates the collection. A way 
of sharing with the public what has been digitized, what is next to be digitized, and the expected 
timeline, could also help researchers. It would also be useful if the API contained metadata about 
the digital images themselves, such as when they were scanned and what process was used for 
their creation.  

Thinking of images as data amenable to computer vision also brings to the fore questions about 
exactly what to digitize. There are a plethora of considerations when digitizing, including the 
capabilities of the digitization technology, state of the collection, and intended audience. 
Debates ensue, and best practices have changed over time. A major factor when working with 
computer vision is that they are often designed to examine all the pixels in the image. For 
example, the difference between a frame, matte, and the print of a photograph is not accounted 
for (e.g., studio portraits in the Bain Collection). To add one more example, the difference 
between the sprockets and the photographic image produced by the exposure to light is also 
not accounted for (e.g., digitized film negatives from the FSA Black & White collection). To the 
computer, the set of pixels that constitute the image file is the image. If one is interested in 
comparing the features only of the image seen through the lens, for example, one must edit or 
write custom code to remove features such as a frame. In multivalent collections like Bain, 
where there is a mix of studio portraits and news photos, writing a custom algorithm to account 
for various features that we may want to analyze (or not) becomes even more challenging. This 
is also especially pertinent to decisions about over-scanning, a process that helps capture 
information about the materiality of the film. To facilitate images as data for computer vision, 
considering the ways that objects are digitized and how that shapes the ability to do computer 
vision will need to be a consideration in digitization. We delve further into this challenge in 
Section 4 about the algorithms (particularly Section 4.3 on image embeddings) and Section 5 
about the prototype below, as well as demonstrate how these features affect results in the Data 
Analysis paper. 

4. Applying and Assessing Computer Vision Algorithms 

Returning to a key question that we introduced in Section #.#., identifying the components that 
are included such as objects like cars, in focus such as the face of a person, and how much of 
the frame the feature occupies, such as a monument is a way to answer this question. How and 
who we document is not only a major area of study in visual culture studies but the key to 
identifying the kinds of evidence and messages that an image provides. These visual 
annotations may be in a position to support access to the collection through elements such as 
keywords and descriptions that can become a part of features such as search, browse, and 
recommendation, which we discuss in more depth below.  

The following section looks at the three classes of algorithms – Face and Pose Detection, Object 
Detection, Region Segmentation, and Image Embeddings - that we identified as potentially 
amenable to the study of photography collections. We provide a description of the method, 
address relevant social and ethical concerns, discuss the process of applying the algorithms, 
and evaluate the results, including identifying opportunities and remaining challenges. 
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4.1 Face and Pose Detection 

Many formal elements from photography and film theory can be described in terms of the 
locations of bodies within a frame. The framing of an image is often defined explicitly in terms 
of how much of the visual space is framed by a person's face. For example, in film studies, a 
medium close-up shot contains only a subject's head and chest, whereas a medium-long shot 
contains almost all of a subject's body.45 In photography, the close-up of a person is often 
categorized as a portrait and an important and powerful genre in visual culture. Who and how 
people are documented is imbued with cultural, social, and political values. Other formal 
elements, such as an indication of low-angle shots and birds' eye view, are typically described in 
relation to the subjects on the screen. In photography, this is often referred to as camera angle 
and steeped in power relations such as who and what the camera looks up to as well as looks 
down on. They can likewise be inferred by the angle of a person's body in relationship to the 
frame. While many of these formal definitions are grounded in film theory, they can be applied 
to still photography, television, and other forms of visual materials. Face and pose detection 
offer one way to use computer vision to explore composition such as portraiture and framing 
such as angle.  

4.1.1 Method Description 

There has been a significant amount of computer vision research on the location and description 
of people within an image. Beginning with the studies of Woody Bledsoe and Helen Chan Wolf 
in the 1960s, facial recognition has had a particularly long history in computer vision.46 Early 
successes led to further approaches and competitions, such as the eigenfaces of Sirovich and 
Kirby,  the Department of Defense’s Face Recognition Technology program (FERET: 1997-2003), 
and Iris Evaluation Challenge for the National Institute of Standards and Technologies (NIST).47 
Through this government-backed research, increasingly powerful methods were developed to 
consistently identify well-framed faces, at least as well as most human experts by the end of the 
1990s. Within the last decade, the creating of very large training sets and the development of 
deep-learning techniques has produced models, such as Mask R-CNN for face detection and 
VGGFace2 for face recognition, that are able to find and identify faces in a variety of poses and 
lighting conditions.48  

While earlier research primarily focused on the detection and recognition of faces, the success 
of deep learning has allowed for computer vision research to accurately accomplish additional 

 
45 Slightly different definitions exist, but almost all reference the relative size of a subject’s body in the frame. Our 
definitions come from Butler (2018). 
46 Bledsoe, W. W., and Chan, H. (1965). “A Man-Machine Facial Recognition System-Some Preliminary Results." 
Technical Report PRI 19A, Panoramic Research, Inc., Palo Alto, California.  
47 Sirovich, L., Kirby, M. (1987). “Low-dimensional procedure for the characterization of human faces." Journal of 
the Optical Society of America A. 4 (3): 519–524. Doi:10.1364/JOSAA.4.000519; Rauss, P.; Philips, J.; Hamilton, 
M.; DePersia, T. (February 26, 1997). “FERET (Face Recognition Technology) program." In 25th AIPR Workshop: 
Emerging Applications of Computer Vision. 2962: 253–263. Doi:10.1117/12.267831; Phillips, P. J., Bowyer, K. W., 
Flynn, P. J., Liu, X., & Scruggs, W. T. (2008, September). “The iris challenge evaluation 2005”. In 2008 IEEE Second 
International Conference on Biometrics: Theory, Applications, and Systems: 1-8 
48 Cao, Q., Shen, L., Xie,, W., Parkhi, O.M., and. Zisserman, A. (2018). “VGGFace2: A dataset for recognizing face 
across pose and age”. In International Conference on Automatic Face and Gesture Recognition, 
https://arxiv.org/abs/1710.08092. 
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tasks regarding the detection of bodies within an image. Object detection challenges often 
include an object category for "person," which can include any part of a human being and their 
clothing within a frame. A person category was included, for example, in three of the most well-
known image classification tasks: Pascal VOC (2005-2012), ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC, 2010-2018), and Microsoft Common Images in Context (MS 
COCO, 2015-2020). The tasks originally focused on simply detecting whether a person is present 
in an image, while more complex subtasks from MS COCO have addressed locating a bounding 
box for each person and identifying the exact pixels that directly correspond to a person or their 
clothing. Increasingly complex tasks now focus on the identification of the key points within an 
image. Key points are specifically identified pixels that correspond to a particular body part, such 
as the left corner of a subject's eye or the pivot point of their right ankle.49 Accurate models such 
as CMU's OpenPose50 and Facebook AI's Detectron2 exist for identifying over one hundred of 
these points for human bodies, hands, faces, and feet.51 

The confluence of interest in identifying bodies within an image from both humanities 
scholarship and research in computer vision forms a good starting point for building a reusable, 
general-purpose set of annotations for distant viewing. Finding links between our application 
domain and computational models minimizes the gap between the properties of interest in 
disciplines of visual culture and the computational study of digital media. Specifically, we 
propose building a system that locates each person within a frame, estimates the location of 
key points, and makes a prediction about the identity of any detected faces. These can be done 
relatively accurately with currently available systems and, given continued interest within 
computer vision, will be further improved on in the years to come.  

4.1.2 Applications 

It is possible to use the low-level derived data extracted from images to retrieve measurements 
that mirror the formal elements from photography. We can directly map the size of the largest 
detected face relative to the entire image to classify types such as portraits. We often find that 
it can be helpful to modify the exact values based on the aspect ratio of the source material. By 
combining the face sizes with other information about detected people in the image, we can 
build simple models that detect more complex tropes. If we detect that most of an image is 
taken up by a face, it might be labeled as a portrait. When defining these classifications, it is 
useful to ensure that cut-off values are clearly defined. Specifics may change between 
applications and source materials. An application of using the sizes of faces and people is 
further explored in the Data Analysis paper. We show how these metrics can distinguish 
individual collections as well as identify sub-clusters within individual collections. 

 
49 The location of facial key points has a longer history cotemporaneous with facial recognition systems, as early 
models were built on the idea of finding faces vis-à-vis key points. However, the usage of facial key points as an 
important subtask itself is a relatively new concept.  
50 Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2018). OpenPose: Realtime multi-person 2D pose 
estimation using Part Affinity Fields. arXiv preprint arXiv:1812.08008. 
51 Wu, Y., Kirillov, A., Massa, F., Wan-Yen., L., and Girshick, R. (2019). Detectron2. 
https://github.com/facebookresearch/detectron2 
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4.1.3 Evaluation and Challenges 

After applying the pose and face recognition algorithms to the data in our five collections, we 
manually investigated several hundred of the images to determine any patterns of how well (or 
not) each algorithm seemed to perform. As our focus was on a broad qualitative understanding 
rather than a narrowly defined numeric one, we did not perform a formal testing procedure.  

 

Figure 1. Example of results from a face detection algorithm, showing the ability to detect faces at different 
angles to the camera. [2014687262] 

 

Figure 2. Example of results from a face detection algorithm, showing how only a subset of faces are picked 
up in a larger crowd. [2014689609]. 
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The face detection algorithm performed relatively well on all the images that we investigated. 
The algorithm we used almost always detected faces that were relatively clear, not too small, 
and that were oriented no more than 90-degrees away from the camera [Figure 1]. It sometimes 
found very small or rotated faces, but these were less consistent. The algorithm seemed to avoid 
detecting too many faces in one part of the image. Some images of crowds detected many faces 
but only a subset of those that were clearly visible [Figure 2]. Setting a reasonable cut-off score, 
the algorithm made no false detections that we were able to detect in our exploration. When 
faces were detected, the bounding boxes seemed to consistently capture the size of a person's 
head well. It seems that using these detected faces to classify images is a reliable method, 
keeping in mind that it may miss people that are turned significantly away from the camera and 
may miscount large crowds.  

We believe the results are because of the way that face detection is used in many applications. 
It is intended to be the step before face recognition, the process of identifying a person. The 
goal isn’t to find every person; the goal is to find any faces in the image to then identify the 
person. Using this algorithm to provide a tag or keyword for search and browse could provide a 
productive way into a collection, but the specificity of language is important here. This is "faces." 
For a collection like FSA, where an explicit goal of the project became to create a portrait of 
America, offering search by "faces" as a kind of visual trope in the collection (and there is 
perhaps no more iconic photo than Dorothea Lange’s portrait of Florence Owens Thompson 
known as “Migrant Mother“) offers a way to bring together computer vision with the context of 
a photo collection. For future research, we plan to use face detection and then recognition to 
see if this might be a way to identify prominent figures within and across collections. For finding 
people, we discuss in Section 4.2 how region segmentation returns better results and opens 
other possibilities for discovery. 

 

Figure 3. Example of pose detection, showing good performance on a black-and-white image with people 
wearing period specific clothing. [2014693509] 
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Figure 4. Example of pose detection showing the ability to pick up people in the background. Notice, though, 
that the arm of the man in the right middle of the foreground’s arm in confused with the arm of the man in 

the middle of the frame. [2014690917] 

 

Figure 5. Another example of pose detection. Notice that the algorithm trying to find the lower arms, torso 
and legs of the person shown only in portrait. The confidence score for the facial features is much higher 

than the lower features. [2014716249] 
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The pose detection algorithm also performed relatively well on our collection [Figure 3]. As a 
particularly surprising result, it was able to pick up many complete poses from people far off in 
the distance [Figure 4]. In a few cases, we did not initially notice the individuals within the frame 
and thought these were false detections. However, the pose algorithm did pick up some false 
positives, even when selecting a very high confidence level. We noticed three different types of 
relatively common errors. First, it was confused when given an image of a person whose body 
was significantly cut-off by the frame. The algorithm would sometimes try to fit the entire body 
into the clothing even though clearly an individual was only photographed from the waist and up 
[Figure 5]. Secondly, the algorithm would sometimes confuse the body parts of individuals who 
were standing close to one another. For example, it would swap the two arms of people standing 
very close together [Figure 4]. Finally, the algorithm occasionally would detect a pose with very 
high confidence where there was no person to be found. Usually, this was a dark shadow or 
strangely shaped object somewhere in the background. 

Given the number of high-quality poses, it seems that there is a potential to use the detected 
poses in computational work. However, the large number of errors does suggest some caution. 
We suggest that the pose information could be used if combined with the detection of people 
through region segmentation in the next section or when it is known that only one person is in 
the shot. It can be helpful for analyzing angle and framing, which we also explore more in the 
next section. It could also be used in a human-in-the-loop model, where poses are manually 
annotated to indicate whether they are correct or not. 

4.2. Object Detection and Region Segmentation 

Identifying the contents of an image is an important part of analyzing and recognizing what 
information is in a photo. For a person interested in the history of technology or excited about 
fashion, they may want to find all the photos with a car or necklace. Figure 8 offers an example. 
The image title is "Galli-Curci," who was one of the most popular opera singers of the 20th 
century. She is noteworthy for sure, and the relatively intimate photo of her at the piano staring 
into the camera is arresting. For those interested in the history of music, a quick query of her 
name will return the photo. For a person interested in fashion, looking closely at how a musical 
celebrity of the time composed herself for the camera offers a lens into contemporary fashion. 
Object detection offers a way to sort the collection in unexpected ways. 

4.2.1 Method Description 

The identification of objects within an image constitutes one of the most popular and prominent 
tasks in computer vision. Early tasks focused on relatively simple objectives, such as the 
classification of hand-written digits in the MNIST dataset, which used small 28-by-28 black and 
white pixels.52 Tasks such as CIFAR, STL, and ILSVRC, have offered increasingly complex 
objectives that require hundreds or thousands of object categories from higher-resolution 
images. Categories in recent competitions feature highly abstract concepts such as a "grocery 
store" or difficult to distinguish categories such as 200 bird species and 102 categories of 

 
52 Platt, J. C. (1999). “Using analytic QP and sparseness to speed training of support vector machines." In 
Advances in Neural Information Processing Systems: 557-563. 
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flowers.53 Within the confines of each of these specific tasks, novel models have been shown to 
outperform most human annotators. While the resulting models can produce false assertions 
when applied to new corpora, they do tend to produce reasonable and potentially useful 
estimates of certain object types. 

Despite the popularity and seemingly powerful results of object detection algorithms, we have 
found that current state-of-the-art models require careful consideration when used as a general-
purpose set of annotations for the analysis of visual culture. Currently, available models feature 
categories are very specific and only cover a very small number of the object types that could 
be seen within the frame of modern, western-centric film and photography. When considering 
historical or more diverse datasets, the coverage is even worse. For example, the COCO dataset 
contains only three types of fruits (apple, orange, banana), two vegetables (broccoli, carrot), and 
five other food items (cake, donut, pizza, hotdog, sandwich). There are no generic catch-all food 
categories for other items falling outside of these lists. Applying these object detection models 
indiscriminately to a large corpus without understanding its limitations will result in biased 
results. They will find certain kinds of food items, animals, and clothing but will completely 
ignore examples outside of a narrowly curated list of categories. This is particularly important 
to consider when identifying and quantifying objects in a photo and therefore making claims 
about whether a collection does or does not address a certain topic. In general, object detection 
is best understood as about presence. It tells us what a certain algorithm sees but is less 
effective at telling us what is not in the photo, which is a common analytical move in the study 
of visual culture and one that we should approach with caution using computer vision.  

Object detection models do have an important place within the distant viewing framework. Using 
them to detect a small set of specific objects can be very useful. For example, we have found 
that the specific category of "people" is particularly robust when applied out-of-sample and can 
lead to useful ways of recording formal elements. Other categories, such as "vehicles" or 
"televisions," could also be useful for an analysis specifically designed to study these classes 
and when users are aware of the potential limitations. Training a new object detection model for 
specific categories of interest is also possible; while potentially time-consuming, these custom 
models can lead to very useful conclusions. Likewise, applying a model trained on one of the 
relatively exhaustive specialized datasets can be very productive, provided there are relevant 
research questions related to the chosen subcategories.54 

We applied two different algorithms for object detection in the project based on two different 
sets of objects. The first uses the 80 object classes from the COCO dataset. These categories 
cover common objects in modern photography with a particular emphasis on industry 
applications. It includes tagged objects of cars, bikes, and stop signs. We used these categories 
for two reasons. First, this is one of the best-studied collections in computer vision research. If 
any generic algorithms work well on historic documentary photography, it is likely a model based 

 
53 Lin, T., RoyChowdhury, A., & Maji, S. (2015). “Bilinear CNNs for fine-grained visual recognition." arXiv preprint 
arXiv:1504.07889. Nilsback, M. E., & Zisserman, A. (2008, December). “Automated flower classification over a 
large number of classes." In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing: 722-
729. 
54 For a well-known example of a niche tagged image classification dataset, see Welinder P., Branson S., Mita T., 
Wah C., Schroff F., Belongie S., Perona, P. (2010). “Caltech-UCSD Birds 200”. California Institute of Technology. 
CNS-TR-2010-001. 
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on this dataset would be one of the best performing. Secondly, the categories include common 
images in busy street urban scenes. These are featured prominently in several of the news 
journalism collections, and therefore the ways of viewing seemed like they might align with our 
data. The second model we used is called LVIS (Large Vocabulary Instance Segmentation). This 
dataset has 1000 different categories, including very specific and relatively rare objects such as 
a stapler, pineapple, and donut. We applied this algorithm because of its potential, with many 
categories, to provide a serendipitous set of tags that could aid in the search and discovery of 
the collections under consideration. 

For this project, we also worked with an exciting new approach to object detection that was 
recently introduced, called region segmentation. In 2018, a research team from the University of 
Edinburgh and Google AI released a newly hand-tagged version of the COCO dataset that 
contained 91 new categories. The dominant focus of computer vision research at that time had 
been the identification and localization of objects. This, they argued, had overshadowed the 
automatic identification of other categories that constitute the "amorphous background 
regions" within an image.55 They described the existing categories within the COCO dataset as 
consisting only of "thing" categories. That is, these categories consist of objects that have a 
specific size, well-defined shape, concrete parts, and can be enumerated. In other words, what 
has been called objects in object detection algorithms is relabeled as “things” in this approach.  

Region segmentation adds another way of viewing the content of an image. Features of an 
image that are not enumerable are known as regions. Regions that do not correspond to things, 
such as the sky, water, and the ceiling, often compose most of an image, but at the same time, 
they lack the data and models needed for automatically identifying them. The team described 
these regions, in contrast to things, as "stuff." Their work resulted in a comprehensive ontology 
for "stuff" regions. Their approach proposes to split all regions under two super-categories: 
"indoor stuff" and "outdoor stuff." These groups are further divided into mid-level categories, 
which include "water", "ground", "sky", "furniture", and "floor". Finally, these are split into 91 fine-
grained categories such as "sea," "mud," "clouds," and "carpet." The team labeled the entirety of 
the COCO dataset with these classifications. The joint task of identifying these labels alongside 
the "thing" labels, collectively known as the panoptic task, has been one of the primary 
competitions sponsored by the COCO dataset in 2018 and 2019.56 As a result, there are now 
many accurate models for automatically labeling these regions within an image. 

The development of this approach offers a few things. It allows for computational analysis to 
semantically zoom out and move beyond individual objects. This is accomplished by no longer 
needing to be specific about discrete objects but rather working with classes of stuff and entire 
regions of the image at once. This opens the study of compositional elements such as horizon 
and vantage point for our analysis. Categories like indoors and outdoors can matter for 
documentary photography; clouds, water, and sky are useful for environmental photography. 
Information from the entire scene collapsed to general categories can be used to organize and 

 
55 Caesar, H., Uijlings, J., & Ferrari, V. (2018). “Coco-stuff: Thing and stuff classes in context." In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition: 1209-1218. 
56 Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic segmentation. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition: 9404-9413. 
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suggest photos. This helps address the object detection issues above and provides exciting 
areas of application, which we explore in the next section. 

4.2.2 Applications 

The stuff segmentation task offers a sufficiently general-purpose set of annotations for use 
within the distant viewing framework. While no classification scheme can be free of cultural 
assumptions nor account for all possible scenarios, the stuff categories are significantly more 
generic than the object categories. The “stuff” is more likely to be features that are less likely to 
change over time. For example, the design of a phone has changed significantly over time. 
Detecting a phone in our collections using a contemporary algorithm trained on the design of a 
phone in the 21st century will not render great results. However, detecting the sky is possible. 
This is particularly true of the high- and mid-level categories. The higher-level categories avoid 
some of the material-specific designations from the lowest-level categories, such as wood-
flooring, that may not be applicable with images that significantly depart from the available 
training data. By aggregating information about detected stuff categories, we can make 
intelligent guesses about whether an image was taken inside or outside, how the people in the 
image are placed relative to the background, and the location and role of the horizon in framing 
the image. 

There are several ways that we can make use of the stuff-category segmentations to build a set 
of annotations. Our general philosophy is to provide the results of deep learning models in their 
most unaltered format. This approach is unfortunately not very practical when detecting image 
segmentation for larger datasets because the results are too large. Because we need to identify 
the category of each pixel in the image, the segmentation results are of a similar size to the 
original dataset.57 Therefore, we need a way of summarizing the results of the image 
segmentation for downstream processing. A simple approach is to count how many pixels exist 
of each category within the image. This is sufficient for predicting whether the image is inside 
or outside and the general objects that may be present. More information about the spatial 
relationships within the image can be achieved by dividing the image into a course grid system 
and recording the total number of each category that exists in each grid point.58 We will make 
use of this aggregation technique in the following applications. 

4.2.3 Evaluation and Challenges 

As with pose and face detection (see Section4.4), we manually investigated several hundred of 
the images to determine any patterns of how well (or not) the object detection, and region 
segmentation algorithms seemed to perform. We noticed several different patterns across the 
different algorithms but very similar results across the five collections. 

 
57 The current format for image segmentation supported by COCO is, in fact, to store the segmentation as an 
image file where a fixed color is assigned to a specific category. This is a clever approach because the image file 
can be easily opened by most software programs, and it is able to make use of well-researched and supported 
algorithms for image compression. 
58 A third option is to assign each large region to the dominant category, which works well when the grid is made 
to contain a sufficiently large number of columns are rows (such as a 20-by-20 grid). 
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Figure 6. Object detection showing the people detected in a crowd. Notice that not all people are detected, 
but there are many people that are identified, even when obfuscated or very small. [2014681564] 

 

Figure 7. Object detection results on a color FSA-OWI image. It detects the person and some of the oranges, 
but most of the oranges are missed even when setting a very low confidence score. [2017878149] 
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Figure 8. Example showing the LVIS image detection algorithm. It correctly identifies the flower 
arrangement, necklace, and ring in the historic black-and-white photograph. [2014712262] 

 

For the object detection, we found that the detection of people had a very high precision and 
recall [Figure 6]. We noticed very few errors, and most of those were false negatives of small 
individuals in the background. Other object classes produced interesting results while also 
indicating that caution should be used. In many cases, objects were not detected even when 
they were clearly present in the image. For example, one image has dozens of oranges of all the 
same size and color, but the algorithm only detects five of them even when the confidence score 
is set very low [Figure 7]. Also, some types of errors seemed to be the result of objects that were 
only partially present or technological objects (such as cars) that have changed significantly 
from the time period of the photographs to the training data used for the algorithms. In other 
cases, object classes were confused. Usually, these were in understandable ways, such as 
mistaking cows for horses or the front half of a car as a motorcycle. Many object types were not 
included in the vocabulary of the object detection algorithms, meaning that using the resulting 
categories produces a biased version of what is contained in the collection. At the same time, 
the object types do exist; they do often produce very accurate results [Figure 8]. 
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Figure 9. Example of the interactive visualization prototype showing detected poses. The opacity is set to 
dim the image and highlight the annotations. [2014714911] 

The image region segmentation produced stronger results. Despite our initial hesitation that the 
lack of color would be a difficulty for detecting different regions, the algorithm made predictions 
that almost always covered the entire image and were generally reasonable for the depicted 
scene [Figure 9]. As always, when working with automatically generated annotations, care 
should be taken to avoid misinterpreting the results of stuff-segmentation algorithms. There are 
some categories that have some ambiguity between them, such as "dirt" and "sand" or "mat" and 
"rug." Also, the stuff categories were designed pragmatically for the task of assigning all the 
pixels in an image to a fixed set of classifications. The distinction between stuff and things is 
not a sharp epistemological distinction. Several categories overlap between the two, such as 
"furniture" and "door"; the difference in labels is a result of how big an object is within the frame 
of the larger image rather than a fundamental property of the objects themselves. Given time 
constraints for this project, we plan to conduct future work about specific stuff categories such 
as "sky" and "ground." 

There are several applications of region segmentation that we found useful in our data analysis. 
The detection of people in the region segmentation was easier to use for detecting how much 
of an image was taken up by a person. It was good for identifying portraits and for classifying 
portraits based on their scale. Further, we can use segmentation elements for regions such as 
“sky” and “ground” to suggest photos that are outside. Eventually, this could lead to 
classifications for genres, such as environmental photography. Such a method also has 
potential power for formal analysis. A close analysis of Esther Bubley’s photos in DC through 
region segmentation brings attention to her framing. She literally looks up to the built 



 28 

environment of DC, conveying the monumentality of the city and thereby communicating the 
largess and power of the nation's capital. It is literally a place to look up to. 

From our assessment of the object and region segmentation algorithms, we feel that both 
algorithms can be used to make automatically constructed tags or recommendations. However, 
care needs to be used in doing aggregative computational analyses. The use of the people tags 
seems relatively safe, but the counts of other object categories should be considered 
questionable at best. The region image segmentation results can be used in an aggregative 
analysis, though the ambiguities between categories should be accounted for in the analysis. 
We recommend avoiding making claims that may come down to relatively arbitrary distinctions 
between categories—for example, claiming that Photographer A took more photos with dirt 
backgrounds whereas Photographer B preferred sand backgrounds—without carefully 
evaluating the appropriateness of the distinction and the accuracy of the automatic 
identification in a particular application. For an example of how to analyze this data and bypass 
this potential pitfall, see the Data Analysis Paper. 

4.3 Image Embedding 

While the previous algorithms were focused on being explicit about what we're looking for, such 
as people and objects, we also do not always know what we are looking for. Letting the data 
reveal patterns that we expect and did not expect can help guide us to new questions and 
avenues of inquiry. For example, we might see a pattern such as the use of a specific framing 
kind of framing in portraiture and a theme that we didn't expect to be prominent in the collection, 
such as the large focus on sports. Embeddings can also be a way to see within and across 
collections, including a way to introduce serendipity.  

4.3.1 Method Description 

Our previous sets of annotations have been developed by considering features at the 
intersection of things that are of research interest in the study of visual culture and the 
possibilities of existing computer vision algorithms. Systems at this intersection that are able to 
automatically capture elements of humanistic interest are ideal because they ease connections 
between a distant viewing analysis to prior scholarship. By recording explicit features, it is also 
easier to manually validate that the model is behaving as expected across a new corpus and to 
explain the meaning behind observed patterns and outliers based on concrete elements of the 
source material. The meaning of these patterns should ideally be possible without, at least 
initially, having to reference the algorithms that automatically annotated our corpus. The 
downside, however, is that it does not allow us to study features that are difficult to describe 
with an existing computational model, are very specific to a specific domain, or find patterns 
that fall outside of any prior academic study.  

Image embeddings generate annotations that provide a way of finding patterns within a corpus 
without having to make explicit what underlying features are being captured. Embeddings are 
algorithms that place images into a high-dimensional space by assigning any image to an 
ordered collection of numbers. The individual dimensions, or numbers, do not correspond to any 
characteristic. Rather, the embedding produces an oppositional system, where certain unlabeled 
patterns can be seen when we look at relationships between images. For example, similar 
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images will often be placed in a similar position within the embedding. Subsets of images that 
all share a common trait—such as being outdoors, consisting of portraits, or occurring in specific 
locations—generally can be split out from the rest of the set in an easy way. 

A typical approach for building an image embedding consists of a three-step process. We start 
with a large corpus with tagged labels, such as the COCO or ILSVRC collections. Next, we build 
a deep neural network that automatically learns a sequence of transformations that convert the 
original image into a representation of the objects contained within it. We then take images from 
our specific corpus of images and pass them through the neural network. However, instead of 
being concerned about the output of the entire model (i.e., an explicit set of annotations for the 
categories the model was training on), we save the intermediate results from one of the internal 
layers. It turns out that, when using a sufficiently powerful neural network, the internal 
representations provide an excellent image embedding that allows us to view a variety of 
patterns and features, even if the original dataset and supervised learning task differ 
substantially from our corpus of interest. 

It is not necessary to manually retrain a general neural network each time we want to do an 
image embedding. Typically, one takes a published model that has already been built and uses 
it as-is. The only choice is to determine what model to use and which intermediate layer to 
project into. At present, we are aware of no exhaustive comparison of the recommendations 
between different models. Commonly, applications use the second-to-last layer of models 
trained on the ILSVRC dataset. The second-to-last layer is used because it, in theory, contains 
the most semantically rich information as it has passed through all but the final explicit set of 
transformations. However, it is also the most likely to be biased by the dataset used for training. 
Therefore, it may be useful to consider using shallower layers when applying to data such as 
digital scans of artwork.59 Using models trained on the 1000-category ILSVRC dataset has been 
popular because it was for a long time the most well-known image-classification task and 
because it presents perhaps the most diverse set of objects to analyze.60 In our analysis, we 
make use of the penultimate layer of the ResNet-50 model. 61 It is reasonably fast, very popular, 
and generally produces results that can be easily interpreted. Because the goal is to create an 
implicit set of annotations through the image embedding, our general framework should be 
largely unchanged when using a different model or layer. By taking this approach, we have a set 
of annotations that can be used to illuminate connections across the collection of images.  

 
59 There have been several studies looking at the transference of visual style between works of art. We are not 
aware of any existing attempt to use this approach for image embedding, but in theory, this offers an avenue for a 
more specific application of image similarity in the domain of art history. See, for example, Gatys, L. A., Ecker, A. 
S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition: 2414-2423. 
60 There are two other technical reasons that models from ILSVRC continue to be used for image embedding. 
First, popular machine learning libraries such as Keras and PyTorch currently contain implementations of these 
models, making the barrier to their application low. Secondly, the architecture required for the image 
segmentation tasks from the more recent COCO dataset (in contrast to object detection) requires a more 
complicated and harder to directly apply internal architecture. These concerns are likely to change over time; we 
expect to see new waves of popular image embedding algorithms over the coming years. 
61 He, K., Zhang, X., Ren, S. and Sun, J. (2016). “Deep Residual Learning for Image Recognition,” In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition: 770-778. 
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4.3.2 Applications 

As described above, there are two primary sets of applications for image embeddings. They can 
be used as inputs to a subsequent model in a process known as transfer learning. Alternatively, 
they can be used as a way of finding similar images based on images that are close together in 
the embedding space. In our applications, we did not have a specific secondary training 
algorithm to use and focused on the use of embeddings as distance metrics. Image embedding 
distances can be used to build recommendation systems by recommending images that share 
similar features. We eventually implemented these recommendations in the prototype 
visualization system described below and can be explored at https://distant-
viewing.github.io/addi/06_interactive_viz/build/. A list of the fifty nearest neighbors for each 
image in our dataset, both within a collection and across collections, is given in the produced 
metadata. 

Another usage of the image embedding as a distance metric would be to produce a visualization 
of the embedding space. This method has been implemented in several digital humanities tools, 
including PixPlot.62 Such plots were not part of our workflow but would be a good follow-up 
application for future work with these collections. 

4.3.3 Evaluation and Challenges 

Image embeddings offer a powerful way to identify patterns and connections in a corpus that 
we may or may not have expected. This can lead to identifying formal patterns (such as 
portraits) and content (such as baseball) that can then be used to offer entry points into a 
collection. This could be paired with a recommender system that provides audiences a way to 
explore the collection and see patterns for themselves, which we implemented in the ADDI 
Prototype. Another way that we used these results was to see how similar photos were across 
collections (See Data Analysis paper). This could serve as a guide for which collections to put 
in conversation with each other based on visual features.  

 
62 See https://github.com/YaleDHLab/pix-plot. 
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Figure 10. Top two rows show the nearest neighbors to a starting image. It does a good job of finding 
similarly framed portraits in the collection. Bottom row shows five random recommendations from the 

collection for comparison. [Source image is 2014686845] 

 

Figure 11. Top two rows show the nearest neighbors to a starting image. It finds examples of other images 
with orange or other fruit. Bottom row shows five random recommendations from the collection for 

comparison. It is not entire clear how some of the images on the second row relate to the starting image. 
[Source image is 2017878147] 
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The opportunities can also be a challenge. Each of the collections in our set contains many 
images that are very similar. Often these are photos of similar scenes taken from different 
angles or similarly posed individuals taken by the same photographer in the same location. 
Because of these similarities, it is easy to assess whether the image embeddings can associate 
images to others that are very similar [Figure 10]. And, in our visualization prototype, we did find 
that many of the recommendations returned images that were very similar to each other. They 
were so tightly connected that we needed to add a set of random suggestions to the 
recommendation system (see description below) to make sure that users did not get too stuck 
in a part of the collection. The random suggestions are included in the example figures. Finally, 
it was difficult to assess from this collection whether the distance metric would be able to find 
more subtle connections across a more diverse set. We noticed that occasionally some 
recommendations would surface that we could not necessarily explain, though these were the 
minority of cases [Figure 11]. However, it does not mean that another person might not see the 
connections, and therefore sharing the results through a recommender system still offers 
analytical possibilities.  

 

 

Figure 12. Top two rows show the nearest neighbors to a starting image. Notice that the algorithm is heavily 
influenced by the round shape on the images. Bottom row shows five random recommendations from the 

collection for comparison. [Source image is 2014684875] 
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Another challenge for consideration is how to define an image. The image embedding seemed 
to be heavily affected by borders and the shape of images. For example, the algorithm would 
associate images with a round border to other images with a round border [Figure 12]. 
Identifying framing patterns with and across collections is a potential way to organize and remix 
the collection for access and discovery, as well as analyze composition and framing. Are there 
particular ways that certain groups (such as photo studios) framed their portraits? Did this differ 
by place and overtime? Are there patterns to how certain groups were framed that might indicate 
how framing played into visual social cues such as class, race, and status? (See the Data 
Analysis paper for more about the analytical possibilities.) Being able to ask and address such 
questions is opened by the way that the algorithm is viewing (i.e., similarity) and the scale of this 
analysis. This returns to the issue of digitization and data preparation highlighted previously. 
Depending on what one is studying, how an image is defined, such as the inclusion of the frame, 
becomes a key decision and shapes the results of the algorithms.  

4.4 Social and Ethical Concerns 

The usage of face and body recognition systems is not without its challenges. One reason for 
the historic and continued usage of these systems is the numerous applications that exist for 
use with tracking systems from within both the government and industrial applications. The 
importance of these applications can be seen by the heavy governmental resources put into 
face recognition through agencies such as DARPA, IARPA, the U.S. Department of Defense, the 
Department of Homeland Securities' Science and Technology Directorate (S&T), and the United 
Kingdom's Defense and Security Accelerator. The importance of industry applications, such as 
within digital security, marketing, and analytics, is similarly shown by the dominance of teams 
such as Facebook's AI Research, Google AI, Baidu Research, and Microsoft Research, across 
many of the face recognition and pose detection tasks.63 The potential for troubling applications 
of these technologies should not be forgotten and need to be considered when applying 
algorithms and analyzing and releasing the results, particularly when engaged with the analysis 
of sensitive materials. 

While many of the internal applications of face recognition algorithms are likely unknown to the 
public, there have been several recently published applications of this technology that are 
troubling. One research team at Stanford, for example, built an algorithm that attempted to 
distinguish between straight and gay men's profiles.64 Despite the dataset coming from a purely 
observational study, and without citing any scholarship within the fields of gender and queer 
studies, the scholars concluded from their model's predictive power that "faces contain much 
more information about sexual orientation than can be perceived or interpreted by the human 
brain." They further suggested that their results offer strong support that homosexuality is the 
result of genetic and environmental factors that are present before birth. In another study from 
Shanghai Jiao Tong University, researchers tried to build a classifier for predicting whether an 
individual would become a criminal. 65 The authors claimed that their approach was "free of any 

 
63 This dominance is with only the small fraction of results that are publicly available. It is likely that the large 
technology companies have many more models that are released only for internal applications. 
64 Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual 
orientation from facial images. Journal of personality and social psychology, 114(2), 246. 
65 Wu, X., & Zhang, X. (2016). "Automated inference on criminality using face images." arXiv preprint 
arXiv:1611.04135, 4038-4052. 
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biases of subjective judgments of human observers" and was able to "discover very delicate and 
elusive nuances in facial characteristics and structures that correlate to innate personal trails."66 
In addition, there exist many research papers attempting to predict subjective and social 
categories from images such as emotion and gender.67 While most of these studies temper their 
results, there is still the potential for problematic applications of these models in everyday lives 
that may disproportionally affect certain groups of people. Again, these are features that must 
be considered whenever we apply algorithms for face and body detection. 

Even in cases where the goal of a facial recognition model seems relatively straightforward, 
issues often arise from skewed training data and when used in applications that differ from the 
type of data used to build the models. Most computer vision algorithms are trained on modern, 
high-definition inputs. We have found that some face detection models perform particularly 
poorly on older films and television shows that were recorded only in standard definition. Even 
when applying algorithms to modern datasets, biases in training datasets can cause unexpected 
challenges with the application of face recognition algorithms. Joy Buolamwini, the founder of 
the Algorithmic Justice League, analyzed several popular face detection algorithms and found 
that they routinely misclassified darker-skinned subjects.68 Furthermore, they were particularly 
bad at performing the classification of dark-skinned women. Additional computer vision biases 
seen in practice include the inability for some people to unlock their mobile phones and darker-
skinned people having trouble with automatic soap dispensers.69 Careful attention to the results, 
including the training sets, is needed. This is one reason that we propose in Section 6 the 
creation of training data and training algorithms according to features animated by the study of 
photography and the goals of cultural heritage institutions.   

It is challenging (perhaps even impossible) to find an algorithm that does not come with 
cautions. Our general approach has been to explore how we can reimagine how and for whom 
they are used. Yet, we always center the second half of Fitzpatrick’s definition: “ask[ing] 
traditional kinds of humanities-oriented questions about computing technologies." 70 By actually 
using computational techniques to study the images, an added benefit is that the data that we 
are interested in often also illuminates challenges with these algorithms with attention to ethics 
and power. We do not apply these models without a critical perspective, particularly guided by 
attention to ethics and, even more importantly, power. 71 We do not apply these models without 
a critical perspective. This includes asking what ways of viewing the algorithm claims to engage 

 
66 Outside of the numerous socio-economic covariates that could explain any detected signals in the dataset, 
there were also fundamental methodological issues with the paper. For example, the photographs of criminals 
came from a government service, whereas the "law-abiding" individuals were taken from a random crawl of 
personal websites.  
67 Tarnowski, P., Kołodziej, M., Majkowski, A., & Rak, R. J. (2017). “Emotion recognition using facial expressions”. 
Procedia Computer Science, 108: 1175-1184." 
68 Buolamwini, J., & Gebru, T. (2018, January). "Gender Shades: Intersectional accuracy disparities in commercial 
gender classification." In Conference on fairness, accountability, and transparency: 77-91. 
69 Fussell. S. (2019). “How an Attempt at Correcting Bias in Tech Goes Wrong.” The Atlantic, 
https://www.theatlantic.com/technology/archive/2019/10/google-allegedly-used-homeless-train-pixel-
phone/599668/.  
70 Fitzpatrick, K. (2012). “The Humanities, Done Digitally.” Debates in the Digital Humanities, ed. Gold, M. and Klein, 
L., University of Minnesota Press. https://dhdebates.gc.cuny.edu/read/untitled-88c11800-9446-469b-a3be-
3fdb36bfbd1e/section/65e208fc-a5e6-479f-9a47-d51cd9c35e84. 
71 For a more general discussion about the relationship between power and data, see D’Ignazio, C. and Klein, L. 
(2020), Data Feminism, The MIT Press. 
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in and then actually how did it view. We always do our own evaluation of the models within our 
corpus to try to identify any unintended biases that arise because of the differences between 
our corpora and the data used to train the computer vision models. To add, we try to minimize 
the amount of work that is being performed by black-box deep learning models. We use the 
models to detect people, identify faces, and tag their key points. Otherwise, we try to build all 
subsequent models using these extracted features as inputs to an interpretable model. Overall, 
we believe that bringing the perspective of libraries and researchers to assess the use of existing 
models is an important voice in the debates over computer vision and its applications. 

5. Communication  

It can be difficult for non-technical users to assess the performance of computer vision 
algorithms because most annotations are returned in a numerical format that cannot be easily 
related to the source image. For example, while the list of objects found by an object detection 
algorithm can be understood, the exact location of the object in the image will be reported in 
pixel coordinates. Figuring out where these are in relation to the image can be challenging 
without the use of a computer programing language. As one way to address this difficulty, we 
have built a prototype image annotation visualizer as part of the ADDI project. The prototype is 
designed to be a public search and discovery interface. It builds on work on generous interfaces 
and recommender systems for information retrieval, particularly work in the digital public 
humanities.72 The visualizer is available through a web browser. 

Our prototype visualizer was written in JavaScript using the popular React.js framework. This 
framework is specifically designed for single-page applications that update with respect to data 
and user interaction. These features, along with its extensive documentation and active 
community, made it an excellent choice for this project. We used CSS and HTML to control the 
style of the page and tested it on several different computers and operating systems. As 
described in Sections 2.3 and 2.4, we created JSON versions of the tabular CSV files for the 
visualization engine. This format is better suited for the needs of web applications.  

The prototype visualizer is hosted on GitHub pages along with all the annotations and metadata. 
Due to their larger size, the images themselves are linked to the permalinks at the Library of 
Congress.73 We included the Bain Collection and the color FSA-OWI images in the prototype. 
These can be accessed at the following links: 

Bain Collection Visualization 
FSA-OWI Color Images Visualization 

 
72 Arnold, T., Ayers, N., Madron, J., Nelson, R., and Tilton, L. (2020). “Visualizing a Large Spatiotemporal Collection 
of Historic Photography with a Generous Interface.” In 5th Workshop on Visualization for the Digital Humanities; 
Sherratt, T. and Bagnal, K. (2019). “The People Inside.” Seeing the Past: Experiments with Computer Vision and 
Augmented Reality in History, eds Kevin Kee and Timothy Compeau. University of Michigan Press: 11-31; Whitelaw, 
M. (2015). "Generous interfaces for digital cultural collections." Digital Humanities Quarterly, 9 no 1. 2015. 
http://digitalhumanities.org/dhq/vol/9/1/000205/000205.html; Mitchell Whitelaw, M. (2012). "Towards generous 
interfaces for archival collections." In Proceedings of International Council on Archives Congress.  
73 This design was discussed with our contacts at the Library of Congress. At present, there are no known 
restrictions on embedding links from the LoC's collections on a third-party application. 
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Figure 12. Example of the interactive visualization prototype showing detected poses. The opacity is set to 
dim the image and highlight the annotations. [2014714911] 

 

A static screenshot of the visualization is included as a figure in this document [Figure 12]. All 
the other annotation figures in this document were taken from screenshots of the visualization 
prototype. 

The ADDI visualization prototype offers several different kinds of interactivity to visitors. One of 
four different annotations can be turned on to illustrate what the computer vision algorithms 
detected in relation to the image itself. These include a face detection algorithm, an object 
detection algorithm based on the small set of COCO classes, an object detection algorithm 
based on the larger LVIS categories and the detected poses of people in the frame. Clicking on 
a button shows bounding boxes with labels, or in the case of the pose detection, the identified 
body key points and links between them.  

Each of the annotations is accompanied by a confidence score. Visitors can drag a slider to the 
left to include more, possibly less accurate, annotations or right to include only annotations with 
a very high confidence score. This allows visitors to see less confident annotations, which are 
frequently wrong but often interesting when they are correct, while also being able to see the 
annotations with high confidence. The visualization also helps other computational researchers 
choose a cut-off score to use in their own applications. 
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A second slider changes the opacity of a black filter that sits between the image and the 
annotations. Off by default, visitors can make this darker to highlight the annotations. This is 
useful from a practical standpoint when trying to read the annotations on top of a busy image.74 
Additionally, we like to encourage visitors to slowly turn the opacity all the way to the right; when 
the image is entirely obscured, we can see the image the way that the computer vision algorithm 
sees it in terms of just the annotations. This helps highlight was the annotations could identify 
and what they are missing. 

As our goal was to create a tool for a general U.S. public, the visualization prototype includes 
several additional design and information features to explain the components of the prototype 
as well as communicate degrees of authority and precision. There are hover tooltips that explain 
in a few sentences what each of the annotations and sliders is meant to be used for.75 A link to 
the full project site with the project’s full documentation, including this paper, is given at the 
bottom of the screen. We also wanted to be careful to explain which elements in the visualization 
are directly from the carefully curated archival data and which are automatically generated from 
the computer vision algorithms. We do not want the noisy and often inaccurate nature of the 
computer vision algorithm outputs to bring into question the archival information such as the 
title and year. These two groups are distinguished with a horizontal line as well as separate titles 
(Archival Data and Computer Vision Annotations) and tooltips to explain the differences.  

The current version of the visualization algorithm is fully usable and functional but still in the 
prototype phases with limited features. A fuller version of the tool would allow users to search 
the collection by metadata fields and by the computer vision annotations. Also, we include only 
a limited number of archival metadata fields; a more complex interface would be needed to 
display more fields within the limited space of the browser window. Transitions between images 
result in a reload of all the page elements, something that would be ideally updated in a full 
version. Also, while the application implements a full browser history of all previously visited 
images, using the back button requires refreshing the page. We hope to be able to further refine, 
polish, and extend the current prototype in future work.  

6. Conclusion 
The Methods Paper offers an in-depth look into the processes and decisions behind ADDI. 
Computer vision offers a range of approaches to viewing images. Attention to the ways of 
viewing alongside the specificity of the kind of images being viewed guided this project. The 
algorithms that we applied offer opportunities and challenges as outlined above and in 
additional documentation on our GitHub site.76 While all of them have potential uses, image 

 
74 The issue of readability is less of a problem with the black-and-white images because the color of the 
annotations offers a helpful contrast.  
75 Brennan, S. (2016). “Public, First.” Debates in the Digital Humanities, ed. Gold, M. and Klein, L., University of 
Minnesota Press. https://dhdebates.gc.cuny.edu/read/untitled/section/11b9805a-a8e0-42e3-9a1c-
fad46e4b78e5 
76 Many of the points central to our discussion here were dependent on certain technical specifications of the 
underlying models. Where necessary, attempts were made to describe and discuss these features. As our focus 
has been on a high-level description of the challenges and potentials of our approaches, many of the more 
technology choices and details that would be needed to put this system into place were avoided. Readers 
interested in these specific details can consult the code contained in this text's supplemental materials for a 
precise description detailing exactly what models and parameters are used through each of our analyses. 
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segmentation and image embeddings particularly stood out to us as exciting directions for 
search and discovery. The more generalized categories of image segmentation offer a level of 
abstraction that is amenable to search, such as indoor and outdoor. The results with identifying 
people through image segmentation also offer promising data for categorization such as 
individuals and crowds. Finally, image embeddings offer a way to find expected and unexpected 
patterns in the collection. All are amenable to remixing within and across collections to facilitate 
access and discovery.  

As the ADDI Prototype models, making it clear to audiences that they are engaging with 
computer vision results is important. The results are probabilistic and come with uncertainty, as 
we make explicit in the prototype. We want audiences to explore with a productive skepticism 
and ask questions about the results rather than take them for a given. The purpose of the results 
isn't to outright answer the question "what is this an image of?" but to offer what we think might 
be an image. The final answer has animated debates over the meaning of images for centuries, 
and computer vision won’t answer that question. It can only offer potential ways to answer this 
perennial question.  

As we look toward the future, making it clear that the visual annotations are probabilistic and 
generated by algorithms is not just a matter of the design of the visualization platform but also 
the metadata itself. If we are to add such data to images in their metadata records, we argue 
that we need to make it explicit where these annotations come from. This includes extensive 
documentation of data decisions and their sources. We also look towards the possibility of 
developing custom annotations specifically designed for humanistic research. There is 
significant future work ahead to figure out standards and best practices for this practice. 

We end with more immediate future directions for research. We hope other researchers will draw 
on our experience to study images as data. The Library of Congress is doing exciting work to 
streamline access to the data, in part shaped by the experiences and challenges that we 
discussed above as well as those of colleagues involved in the CCHC initiative. We will continue 
to do our part by developing the Distant Viewing Toolkit to lower the barrier to computer vision 
for humanistic inquiry (GITHUB URL). We hope you will reach out to collaborate and share how 
the toolkit can support your research. We also plan to keep delving into these collections to see 
how data analysis can further the study of early 20th century visual culture (See Data Analysis 
Paper). Together, we can harness and remake computer vision for a new purpose: to throw open 
the treasure chest to better understand the past, present, and imagine the future.  
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