ABCRanger

A fast and scalable random forest library for ABC model choice and parameter estimation

F.-D. Collin ² A. Estoup ¹ J.-M. Marin ² L. Raynal ²

¹CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier ²Université de Montpellier, CNRS, IMAG UMR 5149

January 13, 2020

Outline

Bayesian context

Definitions and goal Bayes Theorem Introduction to ABC

Posterior Methodologies

Workflow Posterior methodologies Software and demos

Thoughts and Perspectives

Reference

Approximate Bayesian Computation

It is defined by :

- Bayesian Inference context
- Likelihood-free inference method

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bayesian Inference

"If I believe in some model and I have some new data, what is the probability of this model, knowing this new data?". Baye's Theorem gives the answer :

$$P(\Theta|Y) = rac{P(Y|\Theta) * P(\Theta)}{P(Y)}$$

Where :

Y the data, observations, evidence and so on.

- ⊖ the *model* (hypothesis) we want to run
- $P(\Theta)$ the prior probability
- $P(\Theta|Y)$ the posterior probability
- $P(Y|\Theta)$ the likelihood
 - P(Y) the marginal likehood

Likelihood free

- P(Θ) is the easy part, P(Y) should be too (and sometimes we can bypass it).
- Computing the *likelihood* $P(Y|\Theta)$ is the name of the game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Often we can't have a function for the likelihood, or it is intractable, too complex and so on.

Enter the Likelihood-free Kingdom and ABC (Approximate Bayesian Computation).

Given an observed data, the basic idea of ABC is to approximate the likelihood of a parametrized model with selected simulations, by comparing the observed data and simulated ones via computed *summary statistics*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The table of summary statistics for simulated data is called

the reference table .

ABC schema

Simulated data

AbcRanger is a software for ABC posterior methodologies. It gets the output from an ABC run and provides :

Model choice: Simulate data for several models and choose the best model to fit our data

Parameter estimation: Simulate data for one model and infer one or several parameters for this model given the observed data

ABC workflow with AbcRanger

Ocompute simulations with several models, and the reference table with model-indexed lines using a simulator (DIYAC, PyABC etc.)

Random Forest setup :

- Choose a parameter t of the model
- Train a regression RF on reftable with the t as target
- Evaluate local/posteriors on observed data
- Estimator for posterior PDF for the parameter (discretized but obtainable via kde)

Model Choice

Two staged RF setup:

- 1. Classification :
 - Train a classification RF with the models (classes) as target
 - Eval the RF on observed data to get votes and chosen model
- 2. Regression :
 - Using the previous RF, get the classified/misclassified on the training set as 0,1 and train a new regression RF with this as target

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Evalute the obtained RF on the observed data to get the posterior probability of the chosen model

AbcRanger details

- Written in C++, http://github.com/diyabc/abcranger, code and binaries (mac/windows/linux)
- Python frontend in the final stage (demos running)
- R frontend WIP
- optimized for large, high dimensional reference table without (too much) memory limits: more than 10^{e5} columns and 10^{e6} rows.

Under the hood, a new RF implementation

Since ABC procedures only use trained Random Forests on a known set of observations, we have altered the random forest training computation by using only a subset of in-memory trees at a time and accumulating the required outcomes (predictions and statistics). Memory footprint is vastly improved and there is no performance cost.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Demo time

- https://github.com/diyabc/abcranger/blob/master/ testpy/Parameter%20Estimation%20Demo.ipynb
- https://github.com/diyabc/abcranger/blob/master/ testpy/Model%20Choice%20Demo.ipynb

Conclusion

1. Thoughts:

nice integration of ML techniques in a model-based approach...

- In although the objective there is not better "predictions" or "score" as in ML but easy and accurate posteriors
- 2. Perspectives:
 - deeper integration in ABC pipeline like the Elfi python package
 - On the RF side, ongoing project LeafLitter intends to pursue that line even further: for a growing tree, only encountered leaves are stored. Thus, the memory footprint of the trees becomes negligible, and their growing could finally be parallelized at full scale.

References

- [1] L. Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001.
- [2] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. *Classification and Regression Trees.* The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984.
- [3] Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate bayesian computational methods. *Statistics and Computing*, 22(6):1167–1180, 2012.
- [4] Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. Reliable abc model choice via random forests. *Bioinformatics*, 32(6):859–866, 2015.
- [5] Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. ABC random forests for Bayesian parameter inference. *Bioinformatics*, 35(10):1720–1728, 10 2018.
- [6] Marvin N Wright and Andreas Ziegler. Ranger: a fast implementation of random forests for high dimensional data in c++ and r. arXiv preprint arXiv:1508.04409, 2015.