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1 Preliminary Definitions

The grammar presented in this document uses the following two “special” ter-
minal symbols, which affect the process of transforming an input sequence of
characters into a sequence of regular (i.e., not “special”) terminal symbols:

• whitespace is a nonempty sequence of space (U+20), horizontal tab (U+9),
line feed (U+A), or carriage return (U+D) characters, and

• a comment is a sequence of characters that starts with the % (U+25)
character and does not contain the line feed (U+A) or carriage return
(U+D) characters.

2 General Definitions

〈nonNegativeInteger〉 ::= a nonempty finite sequence of digits between 0 and 9

〈quotedString〉 ::= a finite sequence of characters in which ‘’ (U+22) and \ (U+5C)
occur only in pairs of the form \‘’ (U+5C, U+22) and \\ (U+5C, U+5C),
enclosed in a pair of ‘’ (U+22) characters

〈languageTag〉 ::= @ (U+40) followed a nonempty sequence of characters match-
ing the langtag production from [2]

〈nodeID〉 ::= a finite sequence of characters matching the BLANK NODE -
LABEL production of [3]

〈fullIRI 〉 ::= an IRI as defined in [1], enclosed in a pair of 〈 (U+3C) and 〉
(U+3E) characters

〈prefixName〉 ::= a finite sequence of characters matching the as PNAME NS
production of [3] and not matching any of the keyword terminals of the
syntax

〈abbreviatedIRI 〉 ::= a finite sequence of characters matching the PNAME LN
production of [3] and not matching any of the keyword terminals of the
syntax

〈simpleIRI 〉 ::= a finite sequence of characters matching the PN LOCAL pro-
duction of [3] and not matching any of the keyword terminals of the syntax

〈IRI 〉 := 〈fullIRI 〉 | 〈abbreviatedIRI 〉 | 〈simpleIRI 〉
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3 Including additional input files

Inclusion of additional input files (both local and distributed) allows to organize
the ontology in a modular fashion. To specify the input file the following format
should be applied:

〈includeExternalFile〉 ::= ‘\input’ ‘{’ 〈INPUT FILE 〉 ‘}’

〈INPUT FILE 〉 ::= 〈URL〉 | 〈ABSOLUTE FILEPATH 〉

Please note that this command may occur anywhere inside the ontology docu-
ment.

4 Ontologies

〈ontologyDocument〉 ::= 〈defaultPrefixDeclaration〉? 〈prefixDeclaration〉* 〈Ontology〉

〈defaultPrefixDeclaration〉 ::= ‘\ns’ 〈fullIRI 〉

〈prefixDeclaration〉 ::= ‘\ns’ 〈prefixName〉 〈fullIRI 〉

〈Ontology〉 ::= ‘\begin’ ‘{’ ‘ontology’ ‘}’ 〈ontologyIRIs〉 (〈directlyImportsDocument〉
| 〈ontologyAnnotation〉 )* 〈axioms〉 ‘\end’ ‘{’ ‘ontology’ ‘}’

〈ontologyIRIs〉 ::= [ ‘[’ 〈ontologyIRI 〉 [ ‘,’ 〈versionIRI 〉 ] ‘]’ ]

〈ontologyIRI 〉 ::= 〈IRI 〉

〈versionIRI 〉 ::= 〈IRI 〉

〈directlyImportsDocument〉 ::= ‘\import’ 〈IRI 〉

〈ontologyAnnotation〉 ::= 〈Annotation〉

〈axioms〉 ::= 〈Axiom〉*

Please note that prefixes: owl:, rdf:, rdfs:, xml: and xsd: are built-in and
should not be explicitly declared.

Example 4.1. The following code show an example of an ontology document,
written with the proposed syntax.

% Default namespace

\ns <http ://www.example.com/ontology1#>

\begin{ontology}[<http :// www.example.com/ontology1 >]

\import <http :// www.example.com/ontology2 >
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\a{rdfs:label, "An example "}

% These are comments and they will be skipped

% during parsing

% insert axioms below

Child \cisa owl:Thing

\end{ontology}

5 Annotations

5.1 Annotations of Ontologies, Axioms, and other Anno-
tations

〈Annotation〉 ::= ‘\a’ ‘{’ 〈AnnotationProperty〉 ‘,’ 〈AnnotationValue〉 ‘}’ 〈annotationAnnotations〉

〈annotationAnnotations〉 ::= [ ‘[’ 〈Annotation〉 ( ‘,’ 〈Annotation〉 )* ‘]’ ]

〈AnnotationValue〉 ::= 〈AnonymousIndividual〉 | 〈IRI 〉 | 〈Literal〉

5.2 Annotation Axioms

〈AnnotationAxiom〉 ::= 〈AnnotationAssertion〉
| 〈SubAnnotationPropertyOf 〉
| 〈AnnotationPropertyDomain〉
| 〈AnnotationPropertyRange〉

5.2.1 Annotation Assertion

〈AnnotationAssertion〉 ::= 〈AnnotationSubject〉 ‘\a’ ‘{’ 〈AnnotationProperty〉
‘,’ 〈AnnotationValue〉 ‘}’ 〈axiomAnnotations〉

〈AnnotationSubject〉 ::= 〈IRI 〉 | 〈AnonymousIndividual〉

Example 5.1. The following axiom assigns a human-readable comment to the
IRI a:Person.

a:Person \a{rdfs:label, "Represents the set of all people ."}

Since the annotation is assigned to an IRI, it applies to all entities with the
given IRI. Thus, if an ontology contains both a class and an individual a:Person,
the above comment applies to both entities.
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5.2.2 Annotation Subproperties

〈SubAnnotationPropertyOf 〉 ::= 〈subAnnotationProperty〉 ‘\aisa’ 〈superAnnotationProperty〉
〈axiomAnnotations〉

〈subAnnotationProperty〉 ::= 〈AnnotationProperty〉

〈superAnnotationProperty〉 ::= 〈AnnotationProperty〉

5.2.3 Annotation Property Domain

〈AnnotationPropertyDomain〉 ::= 〈AnnotationProperty〉 ‘\adomain’ 〈IRI 〉 〈axiomAnnotations〉

5.2.4 Annotation Property Range

〈AnnotationPropertyRange〉 ::= 〈AnnotationProperty〉 ‘\arange’ 〈IRI 〉 〈axiomAnnotations〉

6 Entities, Literals, and Anonymous Individuals

6.1 Classes

〈Class〉 ::= 〈IRI 〉

Example 6.1. Classes a:Child and a:Person can be used to represent the set of
all children and persons, respectively, in the application domain, and they can
be used in an axiom such as the following one:

Each child is a person.

a:Child \cisa a:Person

6.2 Datatype

〈Datatype〉 ::= 〈IRI 〉

Example 6.2. The datatype xsd:integer denotes the set of all integers. It can
be used in axioms such as the following one:

The range of the a:hasAge data property is xsd:integer.

a:hasAge \drange xsd:integer
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6.3 ObjectProperty

〈ObjectProperty〉 ::= 〈IRI 〉

Example 6.3. The object property a:parentOf can be used to represent the par-
enthood relationship between individuals. It can be used in axioms such as the
following one:

Peter is a parent of Chris.

a:parentOf(a:Peter, a:Chris)

6.4 DataProperty

〈DataProperty〉 ::= 〈IRI 〉

Example 6.4. The data property a:hasName can be used to associate a name
with each person. It can be used in axioms such as the following one:

Peter’s name is “Peter Griffin”.

a:hasName(a:Peter, "Peter Griffin ")

6.5 AnnotationProperty

〈AnnotationProperty〉 ::= 〈IRI 〉

Example 6.5. The comment provided by the following annotation assertion
axiom might, for example, be used by an OWL 2 tool to display additional in-
formation about the IRI a:Peter.

This axiom provides a comment for the IRI a:Peter.

a:Peter \a{rdfs:comment, "The father of the Griffin family

from Quahog ."}

6.6 Individual

〈Individual〉 ::= 〈NamedIndividual〉 | 〈AnonymousIndividual〉
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6.6.1 Named Individuals

〈NamedIndividual〉 ::= 〈IRI 〉

Example 6.6. The individual a:Peter can be used to represent a particular
person. It can be used in axioms such as the following one:

Peter is a person.

a:Person(a:Peter)

6.6.2 Anonymous Individuals

〈AnonymousIndividual〉 ::= 〈nodeID〉

Example 6.7. Anonymous individuals can be used, for example, to represent
objects whose identity is of no relevance, such as the address of a person.

Peter lives at some (unknown) address.

a:livesAt(a:Peter, _:a1)

This unknown address is in the city of Quahog and...

a:city(_:a1, a:Quahog)

...in the state of Rhode Island.

a:state(_:a1, a:RI)

6.7 Literals

〈Literal〉 ::= 〈typedLiteral〉 | 〈stringLiteralNoLanguage〉 | 〈stringLiteralWithLanguage〉

〈typedLiteral〉 ::= 〈lexicalForm〉 ‘[’ 〈Datatype〉 ‘]’

〈lexicalForm〉 ::= 〈quotedString〉

〈stringLiteralNoLanguage〉 ::= 〈quotedString〉

〈stringLiteralWithLanguage〉 ::= 〈quotedString〉 ‘[’ 〈languageTag〉 ‘]’

Example 6.8. “1”[xsd:integer] is a literal that represents the integer 1.
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Example 6.9. “Family Guy” is an abbreviation for “Family Guy@”[rdf:PlainLiteral]
– a literal with the lexical form “Family Guy@” and the datatype rdf:PlainLiteral
– which denotes a string “Family Guy” without a language tag.

Furthermore, “Padre de familia”[@es] is an abbreviation for the literal “Padre
de familia@es”[rdf:PlainLiteral], which denotes a pair consisting of the string
“Padre de familia” and the language tag es.

Example 6.10. Even though literals “1”[xsd:integer] and “+1”[xsd:integer] are
interpreted as the integer 1, these two literals are not structurally equivalent
because their lexical forms are not identical. Similarly, “1”[xsd:integer] and
“1”[xsd:positiveInteger] are not structurally equivalent because their datatypes
are not identical.

6.8 Entity Declarations and Typing

〈Declaration〉 ::= 〈Entity〉 〈axiomAnnotations〉

〈Entity〉 ::= 〈Class〉 ‘\c’
| 〈Datatype〉 ‘\dt’
| 〈ObjectProperty〉 ‘\o’
| 〈DataProperty〉 ‘\d’
| 〈AnnotationProperty〉 ‘\a’
| 〈NamedIndividual〉 ‘\i’

Example 6.11. The following axioms state that the IRI a:Person is used as a
class and that the IRI a:Peter is used as an individual.

a:Person \c

a:Peter \i

7 Property Expressions

7.1 Object Property Expressions

〈ObjectPropertyExpression〉 ::= 〈ObjectProperty〉
| ‘(’ 〈InverseObjectProperty〉 ‘)’

7.1.1 Inverse Object Properties

〈InverseObjectProperty〉 ::= ‘\oinvof’ 〈ObjectProperty〉
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Example 7.1. Consider the ontology consisting of the following assertion.

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)

This ontology entails that a:Stewie is connected by the following object prop-
erty expression to a:Peter:

(\oinvof a:fatherOf)

7.2 Data Property Expressions

〈DataPropertyExpression〉 ::= 〈DataProperty〉

8 Data Ranges

〈DataRange〉 ::= 〈Datatype〉
| 〈AtomicDataRange〉
| ‘(’ 〈NonAtomicDataRange〉 ‘)’

8.1 Atomic Data Ranges

〈AtomicDataRange〉 ::= 〈SequenceDataIntersectionOf 〉
| 〈SequenceDataUnionOf 〉
| 〈DataOneOf 〉

8.1.1 Sequence Intersection of Data Ranges

〈SequenceDataIntersectionOf 〉 ::= ‘\drandof’ ‘{’ 〈DataRange〉 ( ‘,’ 〈DataRange〉
)+ ‘}’

Example 8.1. Example 8.4 can be rewritten with the sequence-style notation:

\drandof{xsd:nonNegativeInteger, xsd:nonPositiveInteger}

8.1.2 Sequence Union of Data Ranges

〈SequenceDataUnionOf 〉 ::= ‘\drorof’ ‘{’ 〈DataRange〉 ( ‘,’ 〈DataRange〉 )+
‘}’

Example 8.2. Example 8.5 can be rewritten with the sequence-style notation:

\drorof{xsd:string, xsd:integer}
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8.1.3 Enumeration of Literals

〈DataOneOf 〉 ::= ‘\droneof’ ‘{’ 〈Literal〉 ( ‘,’ 〈Literal〉 )* ‘}’

Example 8.3. The following data range contains exactly two literals: the string
“Peter” and the integer one.

\droneof {"Peter", "1"[ xsd:integer ]}

8.2 Non-atomic Data Ranges

〈NonAtomicDataRange〉 ::= 〈DataIntersectionOf 〉
| 〈DataUnionOf 〉
| 〈DataComplementOf 〉
| 〈DatatypeRestriction〉

8.2.1 Intersection of Data Ranges

〈DataIntersectionOf 〉 ::= 〈DataRange〉 ‘\drand’ 〈DataRange〉

Example 8.4. The following data range contains exactly the integer 0:

(xsd:nonNegativeInteger \drand xsd:nonPositiveInteger)

8.2.2 Union of Data Ranges

〈DataUnionOf 〉 ::= 〈DataRange〉 ‘\dror’ 〈DataRange〉

Example 8.5. The following data range contains all strings and all integers:

(xsd:string \dror xsd:integer)

8.2.3 Complement of Data Ranges

〈DataComplementOf 〉 ::= ‘\drnot’ 〈DataRange〉

Example 8.6. The following complement data range contains literals that are
not positive integers:

9



(\drnot xsd:positiveInteger)

In particular, this data range contains the integer zero and all negative inte-
gers; however, it also contains all strings (since strings are not positive integers).

8.2.4 Datatype Restrictions

〈DatatypeRestriction〉 ::= 〈Datatype〉 ‘\drres’ 〈DatatypeRestrictionExpression〉

〈DatatypeRestrictionExpression〉 ::= ‘{’ 〈constrainingFacet〉 〈restrictionValue〉
( ‘,’ 〈constrainingFacet〉 〈restrictionValue〉 )* ‘}’

〈constrainingFacet〉 ::= 〈IRI 〉

〈restrictionValue〉 ::= 〈Literal〉

Example 8.7. The following data range contains exactly the integers 5, 6, 7,
8, and 9:

(xsd:integer \drres{xsd:minInclusive "5"[ xsd:integer], xsd:

maxExclusive "10"[ xsd:integer ]})

9 Class Expressions

〈ClassExpression〉 ::= 〈Class〉
| 〈AtomicClassExpression〉
| ‘(’ 〈NonAtomicClassExpression〉 ‘)’

9.1 Atomic Class Expression

9.1.1 Propositional Connectives and Enumeration of Individuals

〈AtomicClassExpression〉 :: = 〈SequenceObjectIntersectionOf 〉 | 〈SequenceObjectUnionOf 〉
| 〈ObjectOneOf 〉
| 〈ObjectSomeValueFrom〉 | 〈ObjectAllValueFrom〉 | 〈ObjectHasValue〉
| 〈ObjectMinCardinality〉 | 〈ObjectMaxCardinality〉 | 〈ObjectExactCardinality〉
| 〈DataSomeValueFrom〉 | 〈DataAllValueFrom〉 | 〈DataHasValue〉 |
| 〈DataMinCardinality〉 | 〈DataMaxCardinality〉 | 〈DataExactCardinality〉

Sequence Intersection of Class Expressions

〈SequenceObjectIntersectionOf 〉 ::= ‘\candof’ ‘{’ 〈ClassExpression〉 ( ‘,’ 〈ClassExpression〉
)+ ‘}’
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Example 9.1. Example 9.17 can be rewritten with the sequence-style notation:

\candof{a:Dog, a:CanTalk}

Sequence Union of Class Expressions

〈SequenceObjectUnionOf 〉 ::= ‘\corof’ ‘{’ 〈ClassExpression〉 ( ‘,’ 〈ClassExpression〉
)+ ‘}’

Example 9.2. Example 9.18 can be rewritten with the sequence-style notation:

\corof{a:Man, a:Woman}

Enumeration of Individuals

〈ObjectOneOf 〉 ::= ‘\ooneof’ ‘{’ 〈Individual〉 ( ‘,’ 〈Individual〉 )* ‘}’

Example 9.3. Consider the ontology consisting of the following axioms.

The Griffin family consists exactly of Peter, Lois, Stewie, Meg, Chris, and
Brian.

a:GriffinFamilyMember \ceq \ooneof{a:Peter, a:Lois, a:

Stewie, a:Meg, a:Chris, a:Brian}

Quagmire, Peter, Lois, Stewie, Meg, Chris, and Brian are all different from
each other.

\ialldiff{a:Quagmire, a:Peter, a:Lois, a:Stewie, a:Meg, a:

Chris, a:Brian}

The class a:GriffinFamilyMember now contains exactly the six explicitly listed
individuals. Since we also know that a:Quagmire is different from these six in-
dividuals, this individual is classified as an instance of the following class ex-
pression:

(\cnot a:GriffinFamilyMember)

9.1.2 Object Property Restrictions

Existential Quantification

11



〈ObjectSomeValuesFrom〉 ::= ‘\oexists’ ‘{’ 〈ObjectPropertyExpression〉 ‘}’ ‘{’
〈ClassExpression〉 ‘}’

Example 9.4. Consider the ontology consisting of the following axioms.

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)

Stewie is a man.

a:Man(a:Stewie)

The following existential expression contains those individuals that are con-
nected by the a:fatherOf property to individuals that are instances of a:Man;
furthermore, a:Peter is classified as its instance:

\oexists{a:fatherOf }{a:Man}

Universal Quantification

〈ObjectAllValuesFrom〉 ::= ‘\oforall’ ‘{’ 〈ObjectPropertyExpression〉 ‘}’ ‘{’ 〈ClassExpression〉
‘}’

Example 9.5. Consider the ontology consisting of the following axioms.

Brian is a pet of Peter.

a:hasPet(a:Peter, a:Brian)

Brian is a dog.

a:Dog(a:Brian)

Peter has at most one pet.

\o[<=1]{a:hasPet }{a:Peter}

The following universal expression contains those individuals that are con-
nected through the a:hasPet property only with individuals that are instances of
a:Dog – that is, it contains individuals that have only dogs as pets:

\oforall{a:hasPet }{a:Dog}

The ontology axioms clearly state that a:Peter is connected by a:hasPet only
to instances of a:Dog: it is impossible to connect a:Peter by a:hasPet to an indi-
vidual different from a:Brian without making the ontology inconsistent. There-
fore, a:Peter is classified as an instance of the mentioned class expression.
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The last axiom – that is, the one stating that a:Peter has at most one pet –
is critical for the inference from the previous paragraph due to the open-world
semantics of OWL 2. Without this axiom, the ontology might not have listed
all the individuals to which a:Peter is connected by a:hasPet. In such a case
a:Peter would not be classified as an instance of the mentioned class expression.

Individual Value Restriction

〈ObjectHasValue〉 ::= ‘\ohasvalue’ ‘{’ 〈ObjectPropertyExpression〉 ‘}’ ‘{’ 〈Individual〉
‘}’

Example 9.6. Consider the ontology consisting of the following axioms.

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)

The following has-value class expression contains those individuals that are
connected through the a:fatherOf property with the individual a:Stewie; further-
more, a:Peter is classified as its instance:

\ohasvalue{a:fatherOf }{a:Stewie}

9.1.3 Object Property Cardinality Restrictions

Minimum Cardinality

〈ObjectMinCardinality〉 ::= ‘\o[>=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈ObjectPropertyExpression〉
‘}’ [ ‘{’ 〈ClassExpression〉 ‘}’ ]

Example 9.7. Consider the ontology consisting of the following axioms.

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)

Stewie is a man.

a:Man(a:Stewie)

Peter is Chris’s father.

a:fatherOf(a:Peter, a:Chris)
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Chris is a man.

a:Man(a:Chris)

Chris and Stewie are different from each other.

a:Chris \idiff a:Stewie

The following minimum cardinality expression contains those individuals that
are connected by a:fatherOf to at least two different instances of a:Man:

\o[>=2]{a:fatherOf }{a:Man}

Since a:Stewie and a:Chris are both instances of a:Man and are different
from each other, a:Peter is classified as an instance of this class expression.
Due to the open-world semantics, the last axiom – the one stating that a:Chris
and a:Stewie are different from each other – is necessary for this inference:
without this axiom, it is possible that a:Chris and a:Stewie are actually the
same individual.

Maximum Cardinality

〈ObjectMaxCardinality〉 ::= ‘\o[<=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈ObjectPropertyExpression〉
‘}’ [ ‘{’ 〈ClassExpression〉 ‘}’ ]

Example 9.8. Consider the ontology consisting of the following axioms.

a:hasPet(a:Peter, a:Brian)

Peter has at most one pet .

\o[<=1]{a:hasPet }{a:Peter}

The following maximum cardinality expression contains those individuals
that are connected by a:hasPet to at most two individuals:

\o[<=2]{a:hasPet}

Since a:Peter is known to be connected by a:hasPet to at most one individ-
ual, it is certainly also connected by a:hasPet to at most two individuals so,
consequently, a:Peter is classified as an instance of this class expression. The
example ontology explicitly names only a:Brian as being connected by a:hasPet
from a:Peter, so one might expect a:Peter to be classified as an instance of the
mentioned class expression even without the second axiom. This, however, is
not the case due to the open-world semantics. Without the last axiom, it is
possible that a:Peter is connected by a:hasPet to other individuals. The second
axiom closes the set of individuals that a:Peter is connected to by a:hasPet.
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Example 9.9. Consider the ontology consisting of the following axioms.

Meg is a daughter of Peter.

a:hasDaughter(a:Peter, a:Meg)

Megan is a daughter of Peter.

a:hasDaughter(a:Peter, a:Megan)

Peter has at most one daughter.

\o[<=1]{a:hasDaughter }{a:Peter}

One might expect this ontology to be inconsistent: on the one hand, it says
that a:Meg and a:Megan are connected to a:Peter by a:hasDaughter, but, on the
other hand, it says that a:Peter is connected by a:hasDaughter to at most one
individual. This ontology, however, is not inconsistent because the semantics of
OWL 2 does not make the unique name assumption – that is, it does not assume
distinct individuals to be necessarily different. For example, the ontology does
not explicitly say that a:Meg and a:Megan are different individuals; therefore,
since a:Peter can be connected by a:hasDaughter to at most one distinct individ-
ual, a:Meg and a:Megan must be the same. This example ontology thus entails
the following assertion:

a:Meg \ieq a:Megan

One can axiomatize the unique name assumption in OWL 2 by explicitly
stating that all individuals are different from each other. This can be done by
adding the following axiom, which makes the example ontology inconsistent.

Peter, Meg, and Megan are all different from each other.

\ialldiff{a:Peter, a:Meg, a:Megan}

Exact Cardinality

〈ObjectExactCardinality〉 ::= ‘\o[=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈ObjectPropertyExpression〉
‘}’ [ ‘{’ 〈ClassExpression〉 ‘}’ ]

Example 9.10. Consider the ontology consisting of the following axioms.

Brian is a pet of Peter.

a:hasPet(a:Peter, a:Brian)

Brian is a dog.

a:Dog(a:Brian)
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Each pet of Peter is either Brian or it is not a dog.

\oforall{a:hasPet }{( \ooneof{a:Brian} \cor (\cnot a:Dog))}(a:

Peter)

The following exact cardinality expression contains those individuals that are
connected by a:hasPet to exactly one instance of a:Dog; furthermore, a:Peter is
classified as its instance:

\o [=1]{a:hasPet }{a:Dog}

This is because the first two axioms say that a:Peter is connected to a:Brian
by a:hasPet and that a:Brian is an instance of a:Dog, and the last axiom says
that any individual different from a:Brian that is connected to a:Peter by a:hasPet
is not an instance of a:Dog; hence, a:Peter is connected to exactly one instance
of a:Dog by a:hasPet.

9.1.4 Data Property Restrictions

Existential Quantification

〈DataSomeValuesFrom〉 ::= ‘\dexists’ ‘{’ 〈DataPropertyExpression〉 ‘}’ ‘{’ 〈DataRange〉
‘}’

Example 9.11. Consider the ontology consisting of the following axioms.

Meg is seventeen years old.

a:hasAge(a:Meg, "17"[ xsd:integer ])

The following existential class expression contains all individuals that are
connected by a:hasAge to an integer strictly less than 20 so; furthermore, a:Meg
is classified as its instance:

\dexists{a:hasAge }{(xsd:integer \drres{xsd:maxExclusive

"20"[ xsd:integer ])}

Universal Quantification

〈DataAllValuesFrom〉 ::= ‘\dforall’ ‘{’ 〈DataPropertyExpression〉 ‘}’ ‘{’ 〈DataRange〉
‘}’

Example 9.12. Consider the ontology consisting of the following axioms.

The ZIP code of :a1 is the integer “02903”.

a:hasZIP(_:a1, "02903"[ xsd:integer ])
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Each object can have at most one ZIP code.

a:hasZIP \dfunc

In United Kingdom and Canada, ZIP codes are strings (i.e., they can contain
characters and not just numbers). Hence, one might use the following universal
expression to identify those individuals that have only integer ZIP codes (and
therefore have non-UK and non-Canadian addresses):

\dforall{a:hasZIP }{xsd:integer}

The anonymous individual :a1 is by the first axiom connected by a:hasZIP
to an integer, and the second axiom ensures that :a1 is not connected by
a:hasZIP to other literals; therefore, :a1 is classified as an instance of the
mentioned class expression. The last axiom – the one stating that a:hasZIP is
functional – is critical for the inference from the previous paragraph due to the
open-world semantics of OWL 2. Without this axiom, the ontology is not guar-
anteed to list all literals that :a1 is connected to by a:hasZIP; hence, without
this axiom :a1 would not be classified as an instance of the mentioned class
expression.

Literal Value Restriction

〈DataHasValue〉 ::= ‘\dhasvalue’ ‘{’ 〈DataPropertyExpression〉 ‘}’ ‘{’ 〈Literal〉
‘}’

Example 9.13. Consider the ontology consisting of the following axioms.

Meg is seventeen years old.

a:hasAge(a:Meg, "17"[ xsd:integer ]})

The following has-value expression contains all individuals that are connected
by a:hasAge to the integer 17; furthermore, a:Meg is classified as its instance:

\dhasvalue{a:hasAge }{"17"[ xsd:integer ]}

9.1.5 Data Property Cardinality Restrictions

Minimum Cardinality

〈DataMinCardinality〉 ::= ‘\d[>=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈DataPropertyExpression〉
‘}’ [ ‘{’ 〈DataRange〉 ‘}’ ]

Example 9.14. Consider the ontology consisting of the following axioms.
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Meg’s name is “Meg Griffin”.

a:hasName(a:Meg, "Meg Griffin ")

Meg’s name is “Megan Griffin”.

a:hasName(a:Meg, "Megan Griffin ")

The following minimum cardinality expression contains those individuals that
are connected by a:hasName to at least two different literals:

\d[>=2]{a:hasName}

Different string literals are distinct, so “Meg Griffin” and “Megan Griffin”
are different; thus, the individual a:Meg is classified as an instance of the men-
tioned class expression.

\d[>=2]{a:hasName}

Maximum Cardinality

〈DataMaxCardinality〉 ::= ‘\d[<=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈DataPropertyExpression〉
‘}’ [ ‘{’ 〈DataRange〉 ‘}’ ]

Example 9.15. Consider the ontology consisting of the following axioms.

Each object can have at most one name.

a:hasName \dfunc

The following maximum cardinality expression contains those individuals
that are connected by a:hasName to at most two different literals:

\d[<=2]{a:hasName}

Since the ontology axiom restricts a:hasName to be functional, all individuals
in the ontology are instances of this class expression.

Exact Cardinality

〈DataExactCardinality〉 ::= ‘\d[=’ 〈nonNegativeInteger〉 ‘]’ ‘{’ 〈DataPropertyExpression〉
‘}’ [ ‘{’ 〈DataRange〉 ‘}’ ]

Example 9.16. Consider the ontology consisting of the following axioms.

Brian’s name is “Brian Griffin”.

a:hasName(a:Brian, "Brian Griffin ")
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Each object can have at most one name.

a:hasName \dfunc

The following exact cardinality expression contains those individuals that are
connected by a:hasName to exactly one literal:

\d [=1]{a:hasName}

Since the ontology axiom restricts a:hasName to be functional and a:Brian
is connected by a:hasName to ”Brian Griffin”, it is classified as an instance of
this class expression.

9.2 Non-atomic Class Expression

〈NonAtomicClassExpression〉 ::= 〈ObjectIntersectionOf 〉 | 〈ObjectUnionOf 〉 |
〈ObjectComplementOf 〉 | 〈ObjectHasSelf 〉

9.2.1 Propositional Connectives

Intersection of Class Expressions

〈ObjectIntersectionOf 〉 ::= 〈ClassExpression〉 ‘\cand’ 〈ClassExpression〉

Example 9.17. Consider the ontology consisting of the following axioms.

Brian is a dog.

a:Dog(a:Brian)

Brian can talk.

a:CanTalk(a:Brian)

The following class expression describes all dogs that can talk; furthermore,
a:Brian is classified as its instance.

(a:Dog \cand a:CanTalk)

Union of Class Expressions

〈ObjectUnionOf 〉 ::= 〈ClassExpression〉 ‘\cor’ 〈ClassExpression〉

Example 9.18. Consider the ontology consisting of the following axioms.

Peter is a man.

a:Man(a:Peter)
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Lois is a woman.

a:Woman(a:Loid)

The following class expression describes all individuals that are instances of
either a:Man or a:Woman; furthermore, both a:Peter and a:Lois are classified
as its instances:

(a:Man \cor a:Woman)

Complement of Class Expressions

〈ObjectComplementOf 〉 ::= ‘\cnot’ 〈ClassExpression〉

Example 9.19. Consider the ontology consisting of the following axioms.

Nothing can be both a man and a woman.

a:Man \cdisjoint a:Woman

Lois is a woman.

a:Woman(a:Lois)

The following class expression describes all things that are not instances of
a:Man:

(\cnot a:Man)

Since a:Lois is known to be a woman and nothing can be both a man and a
woman, then a:Lois is necessarily not a a:Man; therefore, a:Lois is classified as
an instance of this complement class expression.

Example 9.20. OWL 2 has open-world semantics, so negation in OWL 2 is
the same as in classical (first-order) logic. To understand open-world semantics,
consider the ontology consisting of the following assertion.

Brian is a dog.

a:Dog(a:Brian)

One might expect a:Brian to be classified as an instance of the following class
expression:

(\cnot a:Bird)

Intuitively, the ontology does not explicitly state that a:Brian is an instance
of a:Bird, so this statement seems to be false. In OWL 2, however, this is not
the case: it is true that the ontology does not state that a:Brian is an instance
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of a:Bird; however, the ontology does not state the opposite either. In other
words, this ontology simply does not contain enough information to answer the
question whether a:Brian is an instance of a:Bird or not: it is perfectly possible
that the information to that effect is actually true but it has not been included
in the ontology.

The ontology from the previous example (in which a:Lois has been classified
as a:Man), however, contains sufficient information to draw the expected con-
clusion. In particular, we know for sure that a:Lois is an instance of a:Woman
and that a:Man and a:Woman do not share instances. Therefore, any additional
information that does not lead to inconsistency cannot lead to a conclusion that
a:Lois is an instance of a:Man; furthermore, if one were to explicitly state that
a:Lois is an instance of a:Man, the ontology would be inconsistent and, by defi-
nition, it then entails all possible conclusions.

9.2.2 Object Property Restrictions

Self-Restriction

〈ObjectHasSelf 〉 ::= ‘\ohasself’ 〈ObjectPropertyExpression〉

Example 9.21. Consider the ontology consisting of the following axioms.

Peter likes Peter.

a:likes(a:Peter, a:Peter)

The following self-restriction contains those individuals that like themselves;
furthermore, a:Peter is classified as its instance:

(\ohasself a:likes)

10 Axiom

〈Axiom〉 ::= 〈Declaration〉 | 〈ClassAxiom〉 | 〈ObjectPropertyAxiom〉
| 〈DataPropertyAxiom〉 | 〈DatatypeDefinition〉 | 〈HasKey〉
| 〈Assertion〉 | 〈AnnotationAxiom〉

〈axiomAnnotations〉 ::= [ ‘[’ 〈Annotation〉 ( ‘,’ 〈Annotation〉 )* ‘]’ ]

10.1 Class Expression Axioms

〈ClassAxiom〉 ::= 〈NonSequenceClassAxiom〉 | 〈SequenceClassAxiom〉
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10.1.1 Non-sequence Class Expression Axioms

〈NonSequenceClassAxiom〉 ::= 〈SubClassOf 〉 | 〈EquivalentClasses〉 | 〈DisjointClasses〉
| 〈DisjointUnion〉

Subclass Axioms

〈SubClassOf 〉 ::= 〈subClassExpression〉 ‘\cisa’ 〈superClassExpression〉 〈axiomAnnotations〉

〈subClassExpression〉 ::= 〈ClassExpression〉

〈superClassExpression〉 ::= 〈ClassExpression〉

Example 10.1. Consider the ontology consisting of the following axioms.

Each baby is a child.

a:Baby \cisa a:Child

Each child is a person.

a:Child \cisa a:Person

Stewie is a baby.

a:Baby(a:Stewie)

Since a:Stewie is an instance of a:Baby, by the first subclass axiom a:Stewie
is classified as an instance of a:Child as well. Similarly, by the second subclass
axiom a:Stewie is classified as an instance of a:Person. This style of reasoning
can be applied to any instance of a:Baby and not just a:Stewie; therefore, one
can conclude that a:Baby is a subclass of a:Person. In other words, this ontology
entails the following axiom:

a:Baby \cisa a:Person

Example 10.2. Consider the ontology consisting of the following axioms.

A person that has a child has either at least one boy or a girl.

a:PersonWithChild \cisa \oexists{a:hasChild }{(a:Boy \cor a:

Girl)}

Each boy is a child.

a:Boy \cisa a:Child
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Each girl is a child.

a:Girl \cisa a:Child

If some object has a child, then this object is a parent.

\oexists{a:hasChild }{a:Child} \cisa a:Parent

The first axiom states that each instance of a:PersonWithChild is connected
to an individual that is an instance of either a:Boy or a:Girl. (Because of the
open-world semantics of OWL 2, this does not mean that there must be only one
such individual or that all such individuals must be instances of either a:Boy or
of a:Girl.) Furthermore, each instance of a:Boy or a:Girl is an instance of
a:Child. Finally, the last axiom says that all individuals that are connected
by a:hasChild to an instance of a:Child are instances of a:Parent. Since this
reasoning holds for each instance of a:PersonWithChild, each such instance is
also an instance of a:Parent. In other words, this ontology entails the following
axiom:

a:PersonWithChild \cisa a:Parent

Equivalent Classes

〈EquivalentClasses〉 ::= 〈ClassExpression〉 ‘\ceq’ 〈ClassExpression〉 〈axiomAnnotations〉

Example 10.3. Consider the ontology consisting of the following axioms.

A boy is a male child.

a:Boy \ceq (a:Child \cand a:Man)

Chris is a child.

a:Child(a:Chris)

Chris is a man.

a:Man(a:Chris)

Stewie is a boy.

a:Boy(a:Stewie)

The first axiom defines the class a:Boy as an intersection of the classes
a:Child and a:Man; thus, the instances of a:Boy are exactly those instances that
are both an instance of a:Child and an instance of a:Man. Such a definition con-
sists of two directions. The first direction implies that each instance of a:Child
and a:Man is an instance of a:Boy; since a:Chris satisfies these two conditions,
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it is classified as an instance of a:Boy. The second direction implies that each
a:Boy is an instance of a:Child and of a:Man; thus, a:Stewie is classified as an
instance of a:Man and of a:Boy.

Example 10.4. Consider the ontology consisting of the following axioms.

A mongrel owner has a pet that is a mongrel.

a:MongrelOwner \ceq \oexists{a:hasPet }{a:Mongrel}

A dog owner has a pet that is a dog.

a:DogOwner \ceq \oexists{a:hasPet }{a:Dog}

Functional-Style Syntax – Each mongrel is a dog.

a:Mongrel \cisa a:Dog

Peter is a mongrel owner.

a:MongrelOwner(a:Peter)

By the first axiom, each instance x of a:MongrelOwner must be connected via
a:hasPet to an instance of a:Mongrel; by the third axiom, this individual is an
instance of a:Dog; thus, by the second axiom, x is an instance of a:DogOwner.
In other words, this ontology entails the following axiom:

a:MongrelOwner(a:DogOwner)

By the fourth axiom, a:Peter is then classified as an instance of a:DogOwner.

Disjoint Classes

〈DisjointClasses〉 : = 〈ClassExpression〉 ‘\cdisjoint’ 〈ClassExpression〉 〈axiomAnnotations〉

Example 10.5. Consider the ontology consisting of the following axioms.

Nothing can be both a boy and a girl.

a:Boy \cdisjoint a:Girl

Stewie is a boy.

a:Boy(a:Stewie)

The axioms in this ontology imply that a:Stewie can be classified as an in-
stance of the following class expression:

(\cnot a:Girl)
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Furthermore, if the ontology were extended with the following assertion, the
ontology would become inconsistent:

a:Girl(a:Stewie)

Disjoint Union of Class Expression

〈DisjointUnion〉 ::= 〈Class〉 ‘\cdisjunion’ 〈disjointClassExpressions〉 〈axiomAnnotations〉

〈disjointClassExpressions〉 ::= ‘{’ 〈ClassExpression〉 ( ‘,’ 〈ClassExpression〉 )*
‘}’

Example 10.6. Consider the ontology consisting of the following axioms.

Each child is either a boy or a girl, each boy is a child, each girl is a child, and
nothing can be both a boy and a girl.

a:Child \cdisjunion {a:Boy, a:Girl}

Stewie is a child.

a:Child(a:Stewie)

Stewie is not a girl.

(\cnot a:Girl)(a:Stewie)

By the first two axioms, a:Stewie is either an instance of a:Boy or a:Girl.
The last assertion eliminates the second possibility, so a:Stewie is classified as
an instance of a:Boy.

10.1.2 Sequence Class Expression Axioms

〈SequenceClassAxiom〉 ::= 〈SequenceEquivalentClasses〉 | 〈SequenceDisjointClasses〉

Sequence Equivalent Classes

〈SequenceEquivalentClasses〉 ::= ‘\calleq’ ‘{’ 〈ClassExpression〉 ( ‘,’ 〈ClassExpression〉
)+ ‘}’ 〈axiomAnnotations〉

Example 10.7. Example 10.3 can be rewritten with the sequence-style notation:

\calleq{a:Boy, (a:Child \cand a:Man)}
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Sequence Disjoint Classes

〈SequenceDisjointClasses〉 : = ‘\calldisjoint’ ‘{’ 〈ClassExpression〉 ( ‘,’ 〈ClassExpression〉
)+ ‘}’ 〈axiomAnnotations〉

Example 10.8. Example 10.5 can be rewritten with the sequence-style notation:

\calldisjoint{a:Boy, a:Girl}

10.2 Object Property Axioms

〈ObjectPropertyAxiom〉 ::= 〈NonSequenceObjectPropertyAxiom〉 | 〈SequenceObjectPropertyAxiom〉

10.2.1 Non-sequence Object Property Axioms

〈NonSequenceObjectPropertyAxiom〉 ::= 〈SubObjectPropertyOf 〉 | 〈EquivalentObjectProperties〉
| 〈DisjointObjectProperties〉 | 〈InverseObjectProperties〉 | 〈ObjectPropertyDomain〉
| 〈ObjectPropertyRange〉 | 〈FunctionalObjectProperty〉 | 〈InverseFunctionalObjectProperty〉
| 〈ReflexiveObjectProperty〉 | 〈IrreflexiveObjectProperty〉 | 〈SymmetricObjectProperty〉
| 〈AsymmetricObjectProperty〉 | 〈TransitiveObjectProperty〉

Object Subproperties

〈SubObjectPropertyOf 〉 ::= 〈subObjectPropertyExpression〉 ‘\oisa’ 〈superObjectPropertyExpression〉
〈axiomAnnotations〉

〈subObjectPropertyExpression〉 ::= 〈ObjectPropertyExpression〉 | 〈propertyExpressionChain〉

〈propertyExpressionChain〉 ::= ‘\ochain’ ‘{’ 〈ObjectPropertyExpression〉 ( ‘,’
〈ObjectPropertyExpression〉 )+ ‘}’

〈superObjectPropertyExpression〉 ::= 〈ObjectPropertyExpression〉

Example 10.9. Consider the ontology consisting of the following axioms.

Having a dog implies having a pet.

a:hasDog \oisa a:hasPet

Functional-Style Syntax – Brian is a dog of Peter.

a:hasDog(a:Peter, a:Brian)
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Since a:hasDog is a subproperty of a:hasPet, each tuple of individuals con-
nected by the former property expression is also connected by the latter property
expression. Therefore, this ontology entails that a:Peter is connected to a:Brian
by a:hasPet; that is, the ontology entails the following assertion:

a:hasPet(a:Peter, a:Brian)

Example 10.10. Consider the ontology consisting of the following axioms.

The sister of someone’s mother is that person’s aunt.

\ochain{a:hasMother, a:hasSister} \oisa a:hasAunt

Lois is the mother of Stewie.

a:hasMother(a:Stewie, a:Lois)

Carol is a sister of Lois.

a:hasSister(a:Lois, a:Carol)

The axioms in this ontology imply that a:Stewie is connected by a:hasAunt
with a:Carol; that is, the ontology entails the following assertion:

a:hasAunt(a:Stewie, a:Carol)

Equivalent Object Properties

〈EquivalentObjectProperties〉 ::= 〈ObjectPropertyExpression〉 ‘\oeq’ 〈ObjectPropertyExpression〉
〈axiomAnnotations〉

Example 10.11. Consider the ontology consisting of the following axioms.

Having a brother is the same as having a male sibling.

a:hasBrother \oeq a:hasMaleSibling

Stewie is a brother of Chris.

a:hasBrother(a:Chris, a:Stewie)

Chris is a male sibling of Stewie.

a:hasMaleSibling(a:Stewie, a:Chris)

Since a:hasBrother and a:hasMaleSibling are equivalent properties, this on-
tology entails that a:Chris is connected by a:hasMaleSibling with a:Stewie – that
is, it entails the following assertion:
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a:hasMaleSibling(a:Chris, a:Stewie)

Furthermore, the ontology also entails that that a:Stewie is connected by
a:hasBrother with a:Chris – that is, it entails the following assertion:

a:hasBrother(a:Stewie, a:Chris)

Disjoint Object Properties

〈DisjointObjectProperties〉 ::= 〈ObjectPropertyExpression〉 ‘\odisjoint’ 〈ObjectPropertyExpression〉
〈axiomAnnotations〉

Example 10.12. Consider the ontology consisting of the following axioms.

Fatherhood is disjoint with motherhood.

a:hasFather \odisjoint a:hasMother

Peter is Stewie’s father.

a:hasFather(a:Stewie, a:Peter)

Lois is the mother of Stewie.

a:hasMother(a:Stewie, a:Lois)

In this ontology, the disjointness axiom is satisfied. If, however, one were to
add the following assertion, the disjointness axiom would be invalidated and the
ontology would become inconsistent:

a:hasMother(a:Stewie, a:Peter)

Inverse Object Properties

〈InverseObjectProperties〉 ::= 〈ObjectPropertyExpression〉 ‘\oinv’ 〈ObjectPropertyExpression〉
〈axiomAnnotations〉

Example 10.13. Consider the ontology consisting of the following axioms.

Having a father is the opposite of being a father of someone.

a:hasFather \oinv a:fatherOf

Peter is Stewie’s father.

a:hasFather(a:Stewie, a:Peter)
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Peter is Chris’s father.

a:fatherOf(a:Peter, a:Chris)

This ontology entails that a:Peter is connected by a:fatherOf with a:Stewie –
that is, it entails the following assertion:

a:fatherOf(a:Peter, a:Stewie)

Furthermore, the ontology also entails that a:Chris is connected by a:hasFather
with a:Peter – that is, it entails the following assertion:

a:hasFather(a:Chris, a:Peter)

Object Property Domain

〈ObjectPropertyDomain〉 ::= 〈ObjectPropertyExpression〉 ‘\odomain’ 〈ClassExpression〉
〈axiomAnnotations〉

Example 10.14. Consider the ontology consisting of the following axioms.

Functional-Style Syntax – Only people can own dogs.

a:hasDog \odomain a:Person

Brian is a dog of Peter.

a:hasDog(a:Peter, a:Brian)

By the first axiom, each individual that has an outgoing a:hasDog connection
must be an instance of a:Person. Therefore, a:Peter can be classified as an
instance of a:Person; that is, this ontology entails the following assertion:

a:Person(a:Peter)

Domain axioms in OWL 2 have a standard first-order semantics that is
somewhat different from the semantics of such axioms in databases and object-
oriented systems, where such axioms are interpreted as checks. The domain
axiom from the example ontology would in such systems be interpreted as a
constraint saying that a:hasDog can point only from individuals that are known
to be instances of a:Person; furthermore, since the example ontology does not
explicitly state that a:Peter is an instance of a:Person, one might expect the
domain constraint to be invalidated. This, however, is not the case in OWL 2:
as shown in the previous paragraph, the missing type is inferred from the domain
constraint.

Object Property Range
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〈ObjectPropertyRange〉 ::= 〈ObjectPropertyExpression〉 ‘\orange’ 〈ClassExpression〉
〈axiomAnnotations〉

Example 10.15. Consider the ontology consisting of the following axioms.

The range of the a:hasDog property is the class a:Dog.

a:hasDog \orange a:Dog

Brian is a dog of Peter.

a:hasDog(a:Peter, a:Brian)

By the first axiom, each individual that has an outgoing a:hasDog connection
must be an instance of a:Person. Therefore, a:Peter can be classified as an
instance of a:Person; that is, this ontology entails the following assertion:

a:Dog(a:Brian)

Range axioms in OWL 2 have a standard first-order semantics that is some-
what different from the semantics of such axioms in databases and object-oriented
systems, where such axioms are interpreted as checks. The range axiom from
the example ontology would in such systems be interpreted as a constraint say-
ing that a:hasDog can point only to individuals that are known to be instances
of a:Dog; furthermore, since the example ontology does not explicitly state that
a:Brian is an instance of a:Dog, one might expect the range constraint to be
invalidated. This, however, is not the case in OWL 2: as shown in the previous
paragraph, the missing type is inferred from the range constraint.

Functional Object Properties

〈FunctionalObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\ofunc’ 〈axiomAnnotations〉

Example 10.16. Consider the ontology consisting of the following axioms.

Each object can have at most one father.

a:hasFather \ofunc

Peter is Stewie’s father.

a:hasFather(a:Stewie, a:Peter)

Peter Griffin is Stewie’s father.

a:hasFather(a:Stewie, a:Peter_Griffin)
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By the first axiom, a:hasFather can point from a:Stewie to at most one dis-
tinct individual, so a:Peter and a:Peter Griffin must be equal; that is, this
ontology entails the following assertion:

a:Peter \ieq a:Peter_Griffin

One might expect the previous ontology to be inconsistent, since the a:hasFather
property points to two different values for a:Stewie. OWL 2, however, does not
make the unique name assumption, so a:Peter and a:Peter Griffin are not nec-
essarily distinct individuals. If the ontology were extended with the following
assertion, then it would indeed become inconsistent:

a:Peter \idiff a:Peter_Griffin

Inverse-Functional Object Properties

〈InverseFunctionalObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\oinvfunc’
〈axiomAnnotations〉

Example 10.17. Consider the ontology consisting of the following axioms.

Each object can have at most one father.

a:fatherOf \oinvfunc

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)

Peter Griffin is Stewie’s father.

a:fatherOf(a:Peter_Griffin, a:Stewie)

By the first axiom, at most one distinct individual can point by a:fatherOf
to a:Stewie, so a:Peter and a:Peter Griffin must be equal; that is, this ontology
entails the following assertion:

a:Peter \ieq a:Peter_Griffin

One might expect the previous ontology to be inconsistent, since there are two
individuals that a:Stewie is connected to by a:fatherOf. OWL 2, however, does
not make the unique name assumption, so a:Peter and a:Peter Griffin are not
necessarily distinct individuals. If the ontology were extended with the following
assertion, then it would indeed become inconsistent:

a:Peter \idiff a:Peter_Griffin
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Reflexive Object Properties

〈ReflexiveObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\oreflex’ 〈axiomAnnotations〉

Example 10.18. Consider the ontology consisting of the following axioms.

Everybody knows themselves.

a:knows \oreflex

Peter is a person.

a:Person(a:Peter)

By the first axiom, a:Peter must be connected by a:knows to itself; that is,
this ontology entails the following assertion:

a:knows(a:Peter, a:Peter)

Irreflexive Object Properties

〈IrreflexiveObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\oirreflex’ 〈axiomAnnotations〉

Example 10.19. Consider the ontology consisting of the following axioms.

Nobody can be married to themselves.

a:marriedTo \oirreflex

If this ontology were extended with the following assertion, the irreflexivity
axiom would be contradicted and the ontology would become inconsistent:

a:marriedTo(a:Peter, a:Peter)

Symmetric Object Properties

〈SymmetricObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\osym’ 〈axiomAnnotations〉

Example 10.20. Consider the ontology consisting of the following axioms.

If x is a friend of y, then y is a friend of x.

a:friend \osym
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Brian is a friend of Peter.

a:friend(a:Peter, a:Brian)

Since a:friend is symmetric, a:Peter must be connected by a:friend to a:Brian;
that is, this ontology entails the following assertion:

a:friend(a:Brian, a:Peter)

Asymmetric Object Properties

〈AsymmetricObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\oasym’ 〈axiomAnnotations〉

Example 10.21. Consider the ontology consisting of the following axioms.

If x is a parent of y, then y is not a parent of x.

a:parentOf \oasym

Peter is a parent of Stewie.

a:parentOf(a:Peter, a:Stewie)

If this ontology were extended with the following assertion, the asymmetry
axiom would be invalidated and the ontology would become inconsistent:

a:parentOf(a:Stewie, a:Peter)

Transitive Object Properties

〈TransitiveObjectProperty〉 ::= 〈ObjectPropertyExpression〉 ‘\otrans’ 〈axiomAnnotations〉

Example 10.22. Consider the ontology consisting of the following axioms.

If x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z.

a:ancestorOf \otrans

Carter is an ancestor of Lois.

a:ancestorOf(a:Carter, a:Lois)

Lois is an ancestor of Meg.

a:ancestorOf(a:Lois, a:Meg)

Since a:ancestorOf is transitive, a:Carter must be connected by a:ancestorOf
to a:Meg – that is, this ontology entails the following assertion:

a:ancestorOf(a:Carter, a:Meg)
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10.2.2 Sequence Object Property Axioms

〈SequenceObjectPropertyAxiom〉 :: = 〈SequenceEquivalentObjectProperties〉
| 〈SequenceDisjointObjectProperties〉

Sequence Equivalent Object Properties

〈SequenceEquivalentObjectProperties〉 ::= ‘\oalleq’ ‘{’ 〈ObjectPropertyExpression〉
( ‘,’ 〈ObjectPropertyExpression〉 )+ ‘}’ 〈axiomAnnotations〉

Example 10.23. Example 10.11 can be rewritten with the sequence-style nota-
tion:

\oalleq{a:hasBrother, a:hasMaleSibling}

Sequence Disjoint Object Properties

〈SequenceDisjointObjectProperties〉 ::= ‘\oalldisjoint’ ‘{’ 〈ObjectPropertyExpression〉
( ‘,’ 〈ObjectPropertyExpression〉 )+ ‘}’ 〈axiomAnnotations〉

Example 10.24. Example 10.12 can be rewritten with the sequence-style nota-
tion:

\oalldisjoint{a:hasFather, a:hasMother}

10.3 Data Property Axioms

〈DataPropertyAxiom〉 ::= 〈NonSequenceDataPropertyAxiom〉 | 〈SequenceDataPropertyAxiom〉

10.3.1 Non-sequence Object Property Axioms

〈NonSequenceDataPropertyAxiom〉 ::= 〈SubDataPropertyOf 〉 | 〈EquivalentDataProperties〉
| 〈DisjointDataProperties〉

| 〈DataPropertyDomain〉 | 〈DataPropertyRange〉 | 〈FunctionalDataProperty〉

Data Subproperties

〈SubDataPropertyOf 〉 ::= 〈subDataPropertyExpression〉 ‘\disa’ 〈superDataPropertyExpression〉
〈axiomAnnotations〉

〈subDataPropertyExpression〉 := 〈DataPropertyExpression〉

〈superDataPropertyExpression〉 := 〈DataPropertyExpression〉
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Example 10.25. Consider the ontology consisting of the following axioms.

A last name of someone is his/her name as well.

a:hasLastName \disa a:hasName

Peter’s last name is “Griffin”.

a:hasLastName(a:Peter, "Griffin ")

Since a:hasLastName is a subproperty of a:hasName, each individual con-
nected by the former property to a literal is also connected by the latter property
to the same literal. Therefore, this ontology entails that a:Peter is connected to
“Griffin” through a:hasName; that is, the ontology entails the following asser-
tion:

a:hasName(a:Peter, "Griffin ")

Equivalent Data Properties

〈EquivalentDataProperties〉 ::= 〈DataPropertyExpression〉 ‘\deq’ 〈DataPropertyExpression〉
〈axiomAnnotations〉

Example 10.26. Consider the ontology consisting of the following axioms.

a:hasName and a:seLlama (in Spanish) are synonyms.

a:hasName \deq a:seLlama

Meg’s name is “Meg Griffin”.

a:hasName(a:Meg, "Meg Griffin ")

Meg’s name is “Megan Griffin”.

a:seLlama(a:Meg, "Megan Griffin ")

Since a:hasName and a:seLlama are equivalent properties, this ontology en-
tails that a:Meg is connected by a:seLlama with “Meg Griffin” – that is, it entails
the following assertion:

a:seLlama(a:Meg, "Meg Griffin ")

Furthermore, the ontology also entails that a:Meg is also connected by a:hasName
with “Megan Griffin” – that is, it entails the following assertion:

a:hasName(a:Meg, "Megan Griffin ")
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Disjoint Data Properties

〈DisjointDataProperties〉 ::= 〈DataPropertyExpression〉 ‘\ddisjoint’ 〈DataPropertyExpression〉
〈axiomAnnotations〉

Example 10.27. Consider the ontology consisting of the following axioms.

Someone’s name must be different from his address.

a:hasName \ddisjoint a:hasAddress

Peter’s name is “Peter Griffin”.

a:hasName(a:Peter, "Peter Griffin ")

Peter’s address is Quahog, Rhode Island.

a:hasAddress(a:Peter, "Quahog, Rhode Island "})

In this ontology, the disjointness axiom is satisfied. If, however, one were to
add the following assertion, the disjointness axiom would be invalidated and the
ontology would become inconsistent:

a:hasAddress(a:Peter, "Peter Griffin ")

Data Property Domain

〈DataPropertyDomain〉 ::= 〈DataPropertyExpression〉 ‘\ddomain’ 〈ClassExpression〉
〈axiomAnnotations〉

Example 10.28. Consider the ontology consisting of the following axioms.

Only people can have names.

a:hasName \ddomain a:Person

Peter’s name is “Peter Griffin”.

a:hasName(a:Peter, "Peter Griffin ")

By the first axiom, each individual that has an outgoing a:hasName connec-
tion must be an instance of a:Person. Therefore, a:Peter can be classified as an
instance of a:Person – that is, this ontology entails the following assertion:

a:Person(a:Peter)
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Domain axioms in OWL 2 have a standard first-order semantics that is
somewhat different from the semantics of such axioms in databases and object-
oriented systems, where such axioms are interpreted as checks. Thus, the do-
main axiom from the example ontology would in such systems be interpreted
as a constraint saying that a:hasName can point only from individuals that are
known to be instances of a:Person; furthermore, since the example ontology does
not explicitly state that a:Peter is an instance of a:Person, one might expect the
domain constraint to be invalidated. This, however, is not the case in OWL 2:
as shown in the previous paragraph, the missing type is inferred from the domain
constraint.

Data Property Range

〈DataPropertyRange〉 ::= 〈DataPropertyExpression〉 ‘\drange’ 〈DataRange〉 〈axiomAnnotations〉

Example 10.29. Consider the ontology consisting of the following axioms.

The range of the a:hasName property is xsd:string.

a:hasName \drange xsd:string

Peter’s name is “Peter Griffin”.

a:hasName(a:Peter, "Peter Griffin ")

By the first axiom, each literal that has an incoming a:hasName link must be
in xsd:string. In the example ontology, this axiom is satisfied. If, however, the
ontology were extended with the following assertion, then the range axiom would
imply that the literal “42”[xsd:integer] is in xsd:string, which is a contradiction
and the ontology would become inconsistent:

a:hasName(a:Peter, "42"[ xsd:integer ])

Functional Data Properties

〈FunctionalDataProperty〉 ::= 〈DataPropertyExpression〉 ‘\dfunc’ 〈axiomAnnotations〉

Example 10.30. Consider the ontology consisting of the following axioms.

Each object can have at most one age.

a:hasAge \dfunc
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Meg is seventeen years old.

a:hasAge(a:Meg, "17"[ xsd:integer ])

By the first axiom, a:hasAge can point from a:Meg to at most one distinct
literal. In this example ontology, this axiom is satisfied. If, however, the ontol-
ogy were extended with the following assertion, the semantics of functionality
axioms would imply that “15”[xsd:integer] is equal to “17”[xsd:integer], which
is a contradiction and the ontology would become inconsistent:

a:hasAge(a:Meg, "15"[ xsd:integer ])

10.3.2 Sequence Object Property Axioms

〈SequenceDataPropertyAxiom〉 ::= 〈SequenceEquivalentDataProperties〉
| 〈SequenceDisjointDataProperties〉

Equivalent Data Properties

〈SequenceEquivalentDataProperties〉 ::= ‘\dalleq’ ‘{’ 〈DataPropertyExpression〉
( ‘,’ 〈DataPropertyExpression〉 )+ ‘}’ 〈axiomAnnotations〉

Example 10.31. Example 10.26 can be rewritten with the sequence-style nota-
tion:

\dalleq{a:hasName, a:seLlama}

Disjoint Data Properties

〈SequenceDisjointDataProperties〉 ::= ‘\dalldisjoint’ ‘{’ 〈DataPropertyExpression〉
( ‘,’ 〈DataPropertyExpression〉 )+ ‘}’ 〈axiomAnnotations〉

Example 10.32. Example 10.27 can be rewritten with the sequence-style nota-
tion:

\dalldisjoint{a:hasName, a:hasAddress}

10.4 Datatype Definitions

〈DatatypeDefinition〉 := 〈Datatype〉 ‘\dtdef’ 〈DataRange〉 〈axiomAnnotations〉
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Example 10.33. Consider the ontology consisting of the following axioms.

a:SSN is a datatype.

a:SSN \d

A social security number is a string that matches the given regular expression.

a:SSN \dtdef (xsd:string \drres{xsd:pattern

"[0 -9]{3} -[0 -9]{2} -[0 -9]{4}"})

The range of the a:hasSSN property is a:SSN.

a:hasSSN \drange a:SSN

The second axiom defines a:SSN as an abbreviation for a datatype restriction
on xsd:string. In order to satisfy the typing restrictions the first axiom explicitly
declares a:SSN to be a datatype. The datatype a:SSN can be used just like any
other datatype; for example, it is used in the third axiom to define the range of
the a:hasSSN property. The only restriction is that a:SSN supports no facets
and therefore cannot be used in datatype restrictions, and that there can be no
literals of datatype a:SSN.

10.5 Keys

〈HasKey〉 := 〈ClassExpression〉 ‘\key’ 〈HasKeyExpression〉 〈axiomAnnotations〉

〈HasKeyExpression〉 ::= ‘{’ [ 〈ObjectPropertyExpression〉 ( ‘,’ 〈ObjectPropertyExpression〉
)* ] ‘}’ ‘{’ [ 〈DataPropertyExpression〉 ( ‘,’ 〈DataPropertyExpression〉 )* ]
‘}’

Example 10.34. Consider the ontology consisting of the following axioms.

Each object is uniquely identified by its social security number.

owl:Thing \key {}{a:hasSSN}

Peter’s social security number is “123-45-6789”.

a:hasSSN(a:Peter, "123 -45 -6789")

Peter Griffin’s social security number is “123-45-6789”.

a:hasSSN(a:Peter_Griffin, "123 -45 -6789")

The first axiom makes a:hasSSN the key for instances of the owl:Thing class;
thus, only one individual can have a particular value for a:hasSSN. Since the
values of a:hasSSN are the same for the individuals a:Peter and a:Peter Griffin,
these two individuals are equal – that is, this ontology entails the following as-
sertion:
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a:Peter \ieq a:Peter_Griffin

One might expect the previous ontology to be inconsistent, since the a:hasSSN
has the same value for two individuals a:Peter and a:Peter Griffin. However,
OWL 2 does not make the unique name assumption, so a:Peter and a:Peter -
Griffin are not necessarily distinct individuals. If the ontology were extended
with the following assertion, then it would indeed become inconsistent:

a:Peter \idiff a:Peter_Griffin

10.6 Assertion

〈Assertion〉 ::= 〈NonSequenceAssertion〉 | 〈SequenceAssertion〉

〈sourceIndividual〉 ::= 〈Individual〉

〈targetIndividual〉 ::= 〈Individual〉

〈targetValue〉 ::= 〈Literal〉

10.6.1 Non-sequence Assertion

〈NonSequenceAssertion〉 ::= 〈SameIndividual〉 | 〈DifferentIndividuals〉 | 〈ClassAssertion〉
| 〈ObjectPropertyAssertion〉 | 〈NegativeObjectPropertyAssertion〉 |
| 〈DataPropertyAssertion〉 | 〈NegativeDataPropertyAssertion〉

Individual Equality

〈SameIndividual〉 ::= 〈Individual〉 ‘\ieq’ 〈Individual〉 〈axiomAnnotations〉

Example 10.35. Consider the ontology consisting of the following assertion.

Functional-Style Syntax – Meg and Megan are the same objects.

a:Meg \ieq a:Megan

Meg has a brother Stewie.

a:hasBrother(a:Meg, a:Stewie)

Since a:Meg and a:Megan are equal, one individual can always be replaced
with the other one. Therefore, this ontology entails that a:Megan is connected by
a:hasBrother with a:Stewie – that is, the ontology entails the following assertion:

a:hasBrother(a:Megan, a:Stewie)
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Individual Inequality

〈DifferentIndividuals〉 ::= 〈Individual〉 ‘\idiff’ 〈Individual〉 〈axiomAnnotations〉

Class Assertions

〈ClassAssertion〉 ::= 〈ClassExpression〉 ‘(’ 〈Individual〉 ‘)’ 〈axiomAnnotations〉

Example 10.36. Consider the ontology consisting of the following assertion.

Brian is a dog.

a:Dog(a:Brian)

Each dog is a mammal.

a:Dog \cisa a:Mammal

The first axiom states that a:Brian is an instance of the class a:Dog. By the
second axiom, each instance of a:Dog is an instance of a:Mammal. Therefore,
this ontology entails that a:Brian is an instance of a:Mammal – that is, the
ontology entails the following assertion:

a:Mammal(a:Brian)

Positive Object Property Assertions

〈ObjectPropertyAssertion〉 ::= 〈ObjectPropertyExpression〉 ‘(’ 〈sourceIndividual〉
‘,’ 〈targetIndividual〉 ‘)’ 〈axiomAnnotations〉

Example 10.37. Consider the ontology consisting of the following assertion.

Brian is a dog of Peter.

a:hasDog(a:Peter, a:Brian)

Objects that have a dog are dog owners.

\oexists{a:hasDog }{owl:Thing} \cisa a:DogOwner

The first axiom states that a:Peter is connected by a:hasDog to a:Brian. By
the second axiom, each individual connected by a:hasDog to an individual is
an instance of a:DogOwner. Therefore, this ontology entails that a:Peter is an
instance of a:DogOwner – that is, the ontology entails the following assertion:

a:DogOwner(a:Peter)

41



Negative Object Property Assertions

〈NegativeObjectPropertyAssertion〉 ::= ’ !’ 〈ObjectPropertyExpression〉 ‘(’ 〈sourceIndividual〉
‘,’ 〈targetIndividual〉 ‘)’ 〈axiomAnnotations〉

Example 10.38. Consider the ontology consisting of the following assertion.

Meg is not a son of Peter.

!a:hasSon(a:Peter, a:Meg)

The ontology would become inconsistent if it were extended with the following
assertion:

a:hasSon(a:Peter, a:Meg)

Positive Data Property Assertions

〈DataPropertyAssertion〉 := 〈DataPropertyExpression〉 ‘(’ 〈sourceIndividual〉 ‘,’
〈targetValue〉 ‘)’ 〈axiomAnnotations〉

Example 10.39. Consider the ontology consisting of the following axiom.

Functional-Style Syntax – Meg is seventeen years old.

a:hasAge(a:Meg, "17"^^ xsd:integer)

Objects that are older than 13 and younger than 19 (both inclusive) are
teenagers.

\dexists{a:hasAge }{(xsd:integer \drres{xsd:minInclusive

"13"[ xsd:integer], xsd:maxInclusive "19"[ xsd:integer ]})}

\cisa a:Teenager

The first axiom states that a:Meg is connected by a:hasAge to the literal
“17”[xsd:integer]. By the second axiom, each individual connected by a:hasAge
to an integer between 13 and 19 is an instance of a:Teenager. Therefore, this
ontology entails that a:Meg is an instance of a:Teenager – that is, the ontology
entails the following assertion

a:Teenager(a:Meg)

Negative Data Property Assertions

〈NegativeDataPropertyAssertion〉 := ’ !’ 〈DataPropertyExpression〉 ‘(’ 〈sourceIndividual〉
‘,’ 〈targetValue〉 ‘)’ 〈axiomAnnotations〉
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Example 10.40. Consider the ontology consisting of the following axiom.

Meg is not five years old.

!a:hasAge(a:Meg, "5"[ xsd:integer ])

The ontology would become inconsistent if it were extended with the following
assertion:

a:hasAge(a:Meg, "5"[ xsd:integer ]}

10.6.2 Sequence Assertion

〈SequenceAssertion〉 ::= 〈SequenceSameIndividual〉 | 〈SequenceDifferentIndividuals〉

Sequence Individual Equality

〈SequenceSameIndividual〉 ::= ‘\ialleq’ ‘{’ 〈Individual〉 ( ‘,’ 〈Individual〉 )+
‘}’ 〈axiomAnnotations〉

Example 10.41. Example 10.35 can be rewritten with the sequence-style nota-
tion:

\ialleq{a:Meg, a:Megan}

Individual Inequality

〈SequenceDifferentIndividuals〉 ::= ‘\ialldiff’ ‘{’ 〈Individual〉 ( ‘,’ 〈Individual〉
)+ ‘}’ 〈axiomAnnotations〉

Example 10.42. Consider the ontology consisting of the following axioms.

Peter is Meg’s father.

a:fatherOf(a:Peter, a:Meg)

Peter is Chris’s father.

a:fatherOf(a:Peter, a:Chris)

Peter is Stewie’s father.

a:fatherOf(a:Peter, a:Stewie)
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Peter, Meg, Chris, and Stewie are all different from each other.

\ialldiff{a:Peter, a:Meg, a:Chris, a:Stewie}

The last axiom in this example ontology axiomatizes the unique name as-
sumption (but only for the four names in the axiom). If the ontology were
extended with the following axiom stating that a:fatherOf is functional, then
this axiom would imply that a:Meg, a:Chris, and a:Stewie are all equal, thus
invalidating the unique name assumption and making the ontology inconsistent.

a:fatherOf \ofunc

11 Sample Ontology

In this section a sample ontology is outlined.

% define base namespace for this ontology

\ns <http :// basenamespace.owl#>

% define additional custom namespaces

% to refer to concept/property/object defined in a given

namespace use a prefix notation ns:name, e.g., owl:Thing,

owl:Nothing

\ns ns1: <http ://www.namespace1.com/ns1#>

\ns ns2: <http ://www.namespace2.com/ns2#>

\begin{ontology}

% import ontologies

\import <http :// www.firstontology.org/first.owl >

\import <http :// www.firstontology.org/second.owl >

% now you can specify the axioms of the ontology

Person \cisa owl:Thing

Person \a{rdfs:label, "Person "}

Person \a{rdfs:comment, "This is a class for representing

people "}

Person \cisa \candof{\d[>=1]{ hasName}, \d[=1]{ hasSurname},

\dexists{hasSex }{Sex}, \d[=1]{ hasAge }}

% if some already existing ontologies are required to be

reused without cutting -and -pasting them into the current

ontology, the input command can be used

\input {/ input.txt}

% hasName, hasSurname, and hasAge are datatype properties

hasName \ddomain Person

hasName \drange xsd:string

hasName \a{rdfs:comment, "Person ’s name"}

hasSurname \ddomain Person
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hasSurname \drange xsd:string

hasSurname \a{rdfs:comment, "Person ’s surname "}

hasAge \ddomain Person

hasAge \drange xsd:integer

% let us define another datatype property by enumerating

possible values

hasHairColor \ddomain Person

hasHairColor \drange \droneof {" Blonde", "Brown", "Red"}

% if we have another property hasLastName, we can define it

as equal to the property hasSurname

hasLastName \deq hasSurname

% sex can be defined as a concept containing two objects,

male and female

Sex \ceq \ooneof{M, F}

M \a{rdfs:label, "Male"}

F \a{rdfs:label, "Female "}

Father \cisa Person

Child \cisa (Person \cand \oexists{hasFather }{ Father })

% if we want to reuse some concept defined in the other

namespace

Father \cisa ns1:Father

ns1:isFatherOf \oinv hasFather

% property has father is functional

hasFather \ofunc

% let ’s populate the ontology with some individual data

Person(john)

% to express the fact that john and johny both refer to the

same individual one can use the object equality construct

john \ieq johny

hasName(john, "John")

hasSurname(john, "Wild")

hasAge(john, "35"[ xsd:integer ])

hasSex(john, M)

Child(katty)

% to express the fact that john is different from katty one

can use the object difference construct

katty \idiff john

hasName(katty, "Katty")

hasName(katty, "Wild")
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hasSex(katty, F)

hasAge(katty, "3"[ xsd:integer ])

% John is Katty ’s father

hasFather(katty, john)

\end{ontology}

46



References

[1] M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Iden-
tifiers (IRIs). RFC 3987 (Proposed Standard), see http://www.ietf.org/

rfc/rfc3987.txt, January 2005.

[2] A. Phillips and M. Davis. BCP 47 – Tags for Identifying Languages. BCP 47
Standard, see http://www.rfc-editor.org/rfc/bcp/bcp47.txt, Septem-
ber 2006.

[3] Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf.
Latest version available as http://www.w3.org/TR/rdf-sparql-query/,
January 2008.

47

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.w3.org/TR/rdf-sparql-query/

	Preliminary Definitions
	General Definitions
	Including additional input files
	Ontologies
	Annotations
	Annotations of Ontologies, Axioms, and other Annotations
	Annotation Axioms
	Annotation Assertion
	Annotation Subproperties
	Annotation Property Domain
	Annotation Property Range


	Entities, Literals, and Anonymous Individuals
	Classes
	Datatype
	ObjectProperty
	DataProperty
	AnnotationProperty
	Individual
	Named Individuals
	Anonymous Individuals

	Literals
	Entity Declarations and Typing

	Property Expressions
	Object Property Expressions
	Inverse Object Properties

	Data Property Expressions

	Data Ranges
	Atomic Data Ranges
	Sequence Intersection of Data Ranges
	Sequence Union of Data Ranges
	Enumeration of Literals

	Non-atomic Data Ranges
	Intersection of Data Ranges
	Union of Data Ranges
	Complement of Data Ranges
	Datatype Restrictions


	Class Expressions
	Atomic Class Expression
	Propositional Connectives and Enumeration of Individuals
	Sequence Intersection of Class Expressions
	Sequence Union of Class Expressions
	Enumeration of Individuals

	Object Property Restrictions
	Existential Quantification
	Universal Quantification
	Individual Value Restriction

	Object Property Cardinality Restrictions
	Minimum Cardinality
	Maximum Cardinality
	Exact Cardinality

	Data Property Restrictions
	Existential Quantification
	Universal Quantification
	Literal Value Restriction

	Data Property Cardinality Restrictions
	Minimum Cardinality
	Maximum Cardinality
	Exact Cardinality


	Non-atomic Class Expression
	Propositional Connectives
	Intersection of Class Expressions
	Union of Class Expressions
	Complement of Class Expressions

	Object Property Restrictions
	Self-Restriction



	Axiom
	Class Expression Axioms
	Non-sequence Class Expression Axioms
	Subclass Axioms
	Equivalent Classes
	Disjoint Classes
	Disjoint Union of Class Expression

	Sequence Class Expression Axioms
	Sequence Equivalent Classes
	Sequence Disjoint Classes


	Object Property Axioms
	Non-sequence Object Property Axioms
	Object Subproperties
	Equivalent Object Properties
	Disjoint Object Properties
	Inverse Object Properties
	Object Property Domain
	Object Property Range
	Functional Object Properties
	Inverse-Functional Object Properties
	Reflexive Object Properties
	Irreflexive Object Properties
	Symmetric Object Properties
	Asymmetric Object Properties
	Transitive Object Properties

	Sequence Object Property Axioms
	Sequence Equivalent Object Properties
	Sequence Disjoint Object Properties


	Data Property Axioms
	Non-sequence Object Property Axioms
	Data Subproperties
	Equivalent Data Properties
	Disjoint Data Properties
	Data Property Domain
	Data Property Range
	Functional Data Properties

	Sequence Object Property Axioms
	Equivalent Data Properties
	Disjoint Data Properties


	Datatype Definitions
	Keys
	Assertion
	Non-sequence Assertion
	Individual Equality
	Individual Inequality
	Class Assertions
	Positive Object Property Assertions
	Negative Object Property Assertions
	Positive Data Property Assertions
	Negative Data Property Assertions

	Sequence Assertion
	Sequence Individual Equality
	Individual Inequality



	Sample Ontology

