{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python Fundamentals: Iteration and Visualization\n", "# SOLUTIONS" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Recall that pandas is frequently imported with the alias pd\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | country | \n", "year | \n", "pop | \n", "continent | \n", "lifeExp | \n", "gdpPercap | \n", "gniPercap | \n", "
|---|---|---|---|---|---|---|---|
| 0 | \n", "Afghanistan | \n", "1962 | \n", "10267083.0 | \n", "Asia | \n", "31.997 | \n", "853.100710 | \n", "NaN | \n", "
| 1 | \n", "Afghanistan | \n", "1967 | \n", "11537966.0 | \n", "Asia | \n", "34.020 | \n", "836.197138 | \n", "NaN | \n", "
| 2 | \n", "Afghanistan | \n", "1972 | \n", "13079460.0 | \n", "Asia | \n", "36.088 | \n", "739.981106 | \n", "NaN | \n", "
| 3 | \n", "Afghanistan | \n", "1977 | \n", "14880372.0 | \n", "Asia | \n", "38.438 | \n", "786.113360 | \n", "NaN | \n", "
| 4 | \n", "Afghanistan | \n", "1982 | \n", "12881816.0 | \n", "Asia | \n", "39.854 | \n", "978.011439 | \n", "NaN | \n", "