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Abstract

A simultaneous sensitivity analysis assesses how sensitive an inference of a non-zero treat-
ment effect is to an unobserved confounder with a specified relationship to the treatment
and response. Gastwirth et al. (1998) develops a method of simultaneous sensitivity analysis
that can be used after 1:1 matching; Small et al. (2009) modifies the method so that it can
be applied after 1:k and full matching. This paper describes the commands pairsimsens
and arsimsens, which implement, respectively, the analyses of Gastwirth et al. (1998) and
Small et al. (2009) in Stata. The .ado and .hlp files for the software presented in the paper
are provided in a .zip file in the supplementary materials.
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1. Introduction

Unlike in a randomized experiment, in an observational study subjects are not assigned
to treatments randomly. This presents a challenge for drawing inferences about whether
a treatment has an effect on subjects’ responses. Particularly problematic are unobserved
confounders: unmeasured covariates that may impact both whether a subject is treated
and what his response is after treatment. A sensitivity analysis may be used to assess
how inferences would change if there existed a confounder with a hypothesized relationship
to treatment and/or outcome. Foundational work in sensitivity analysis is reviewed in
Rosenbaum (2002, 105-170).

A primal sensitivity analysis considers a confounder that has an analyst-specified associ-
ation with assignment to treatment, assuming a near-perfect relationship with the response
(e.g., Rosenbaum, 2010, 65-94). A dual sensitivity considers a confounder that has an
analyst-specified association with the response, and assumes a near-perfect relationship
with assignment to treatment. I discuss below the simultaneous sensitivity analysis, which
allows the researcher to specify a confounder’s relationship to both treatment and response
(Gastwirth et al., 1998). Note that the primal and dual sensitivity analyses are special
cases of the simultaneous sensitivity analysis. Primal sensitivity analysis for matched pairs
is implemented in Stata by Gangl (2004) (for continuous responses) and by Subramanian
and Overby (2014) (for binary responses).1

1. For a recent overview of software available for other, less closely related, types of sensitivity analysis, see
Liu et al. (2013, 572).

c⃝2015 Daniel Lempert.



Simultaneous Sensitivity Analysis

Stratification of subjects via matching on covariates is a central tool of observational
studies; subjects may be stratified into pairs via 1:1 matching, or into larger strata via 1:k
or full matching (Hansen, 2004; Hansen and Klopfer, 2006; Rosenbaum, 1991; Rosenbaum,
2010, 163-186). Gastwirth et al. (1998) develops a method of simultaneous sensitivity
analysis that can be used after pair matching. Small et al. (2009) significantly modifies
the method so that it can be applied after 1:k matching (matching with a fixed number
of controls) and full matching (in which strata consist of one treated subject, one control
subject, or both). After sketching relevant results in Gastwirth et al. (1998) and Small
et al. (2009), I introduce the Stata commands pairsimsens and arsimsens, which allow
the user to assess how sensitive an inference of a non-zero treatment effect is, after pair or
full matching.

2. Methods

In this section, I review randomization inference and introduce the notation and assump-
tions that are common to the sensitivity analyses presented in Gastwirth et al. (1998) and
Small et al. (2009). Then, I describe the results used in pairsimsens and arsimsens from
Gastwirth et al. (1998), and consider the applications to the McNemar Test (for binary
responses) and Wilcoxon’s signed rank test (for ordinal or continuous responses) after pair
matching. Last, I describe the central result in Small et al. (2009), and the application to
the aligned-rank test after full matching.

2.1 Randomization Inference and Simultaneous Sensitivity Analysis: Notation
and Assumptions

Matching on observed covariates x constructs I matched sets, i = 1, . . . , I each containing
ni ≥ 2 units, of which mi are treated and ni − mi are controls. In each set, mi = 1 or
mi − ni = 1, or both. Let Zij = 1 if unit j in set i is treated and Zij = 0 if it is control.
rCij is the response that unit j in set i would exhibit if placed in the control group—call
rCij “response under control.” rTij is the response that would be exhibited if unit j in set
i were exposed to treatment. Only one of rCij or rTij is observed for a given unit: call
this Rij—response under treatment assignment actually received (e.g., Rosenbaum, 2010,
21-63). Let rCi be the ni-dimensional vector of responses under control in group i, and
rC = [rTC1, . . . , r

T
CI ]

T . Define Ri, R, Zi, and Z analogously.

Fisher’s (1935) null hypothesis of no treatment effect states that rTij = rCij , ∀ i, j (im-
plying rCij = Rij). If treatment assignment within sets is random, this hypothesis can be
assessed via randomization inference. In an observational study, there is no random assign-
ment; however, by matching on all relevant pre-treatment covariates x, we assume that the
probability of assignment to treatment within matched groups is equal. (Rosenbaum, 2010,
65-90). Randomization inference can then proceed by “shuffling” treatment assignment,
taking every permutation of each Zi while holding rCij fixed, and calculating a test statistic
t(Z, rC), for each of these equiprobable shuffles, thereby determining a null distribution
of the test statistic. The null hypothesis is tested by calculating a significance level: the
proportion of the time t(Z, rC) is greater than or equal to the observed test statistic. For
larger data sets, calculating t(Z, rC) for every possible treatment assignment is impracti-

75



Lempert

cal, so computational shortcuts to calculate significance levels have been developed (e.g.,
Rosenbaum, 2010, 21-63).

But randomization inference requires that all relevant pre-treatment covariates have
been taken into account when constructing the matched sets. A sensitivity analysis is
useful when this requirement may not hold. In general, a sensitivity analysis allows the
analyst to describe what the null distribution could look like—and thus, how inference
should change—in the presence of an unmeasured pre-treatment covariate, or confounder.
Assumptions and some notation for simultaneous sensitivity analysis follow, drawing very
heavily on the exposition in Gastwirth et al. (1998) and Small et al. (2009), to which I refer
the reader for important detail and more general results.

Consider a binary confounder uij .
2 Assume that uij is the relevant confounder, in that,

for every subject, treatment assignment is conditionally independent of response under
control, given the observed covariates and uij . Let ui be the ni-dimensional vector of uij
in group i, and u = [uT

1 , . . . ,u
T
I ]

T .
In a simultaneous sensitivity analysis, two sensitivity parameters are specified. The

sensitivity parameter γ describes the strength of the relationship between uij and assignment
to treatment, and the sensitivity parameter δ describes the relationship between uij and
response under control, as follows. Assume the following holds in the population before
matching: letting βi(z) be an unknown function and αi(uij) be a normalizing constant,

Pr(Zij = z |xij , uij) = exp{αi(uij) + βi(z) + γzuij}. (1)

Since the treatment considered is binary, αi(uij) can be computed; letting βi = βi(1)−
βi(0) be an unknown number, (1) may be written as,

Pr(Zij = 1 |xij , uij) =
exp(βi + γuij)

1 + exp(βi + γuij)
, (2)

and Pr(Zij = 0 |xij , uij) = 1− Pr(Zij = 1 |xij , uij).
Assume further that in the population, letting ζi(uij) be a normalizing constant and

κi(r) an unknown function,

Pr(rCij = r |xij , uij) = exp{ζi(uij) + κi(r) + δruij}. (3)

Any number of outcome models, including the logit, multinomial logit, Poisson, normal,
and gamma can be written in the form of (3) (see Gastwirth et al., 1998, 909). Note that
βi and κi vary with i because they are functions of xi. An implication of this model is that
Γ = eγ is, for any pair of observations with the same values of the observed covariates, but
with different values of the confounder, the maximum ratio of the odds that one is treated,
to the odds that the other is treated (e.g., Rosenbaum, 2002, 106-109). Also, if responses

2. This assumption is not as limiting as it might seem at first glance. For 0 ≤ uij ≤ 1, Wang and Krieger
(2006) show that for matched pairs, ni = 2, the values of uij that maximize the null distribution of
the test statistic are uij = 0 or 1. Thus, for matched pairs, assuming that uij is binary is just as
conservative as assuming 0 ≤ uij ≤ 1. The restriction that 0 ≤ uij ≤ 1 is just a restriction on the scale
of the unobserved covariate, a restriction needed if the numerical scale on the sensitivity parameters γ
and δ is to have any meaning (Rosenbaum, 2002, 109). Small et al. (2009, 208-209) show a result related
to that of Wang and Krieger (2006): that for matched sets with three subjects, ni = 3, the values of uij

that maximize the null distribution of the test statistics are uij = 0 or 1.
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Simultaneous Sensitivity Analysis

are binary, ∆ = eδ is, for any pair of observations with the same values of the observed
covariates, but with different values of the confounder, the maximum ratio of that odds that
one has higher response, to the odds that the other has the higher response. If responses
are not binary, and one unit has response r and the other r∗ > r, the maximum ratio is
e(r

∗−r)δ (see the discussion in Gastwirth et al., 1998, 909-910, 916). Note that this is the
model for the population before matching; in the sample after matching—as detailed in
Sections 2.2, 2.3, 3.4 and 3.9—inference for continuous responses will be based not on the
responses themselves, but ranks associated with the responses, adjusted to lie in [0, 2].

I next describe simultaneous sensitivity analysis for matched pairs, then for matching
with multiple controls or full matching. To simplify discussion, below (and in the software)
I restrict attention to Γ ≥ 1 and ∆ ≥ 1—that is, a confounder (weakly) positively associated
with both treatment and response.3

2.2 Simultaneous Sensitivity Analysis for Matched Pairs

Consider now the case where all strata consist of matched pairs (i.e., ni = 2 and mi = 1,
∀ i), such that xij = xik, ∀ i. Following Gastwirth et al. (1998), but slightly modifying
notation so as to be consistent with Small et al. (2009), let rCi(j) and Zi(j) denote the order
statistics for the responses under control and treatments in pair i, so that rCi(2) ≥ rCi(1)

and Zi(2) ≥ Zi(1); let r̃C and Z̃ be the I × 2 matrices consisting of the rCi(j) and Zi(j).
Define Ai so that Ai = 1 if the treated observation in matched pair i has the (strictly)
higher response, and Ai = 0 otherwise; let qi ≥ 0 be any function of (r̃C , Z̃). Let pi be the
probability that in pair i, the treated subject has the higher response.4 Last, let χ(E) = 1
if event E occurs, and = 0 if it does not, and B be the set that consists of the 2I distinct
vectors of length I that have coordinates 0 or 1.

Consider test statistics of the form T = t(Z, rC) =
∑

Aiqi. (As relevant below, McNe-
mar’s statistic and the Wilcoxon signed rank statistic are of this form.) For such statistics,
Gastwirth et al. (1998) shows that the probability of obtaining test statistic T ≥ s, under
the null, given confounding, is:

pr(T ≥ s|Z̃, r̃C) =
∑
b∈B

χ

(
I∑

i=1

biqi ≥ s

)
I∏

i=1

pbii (1− pi)
1−bi , (4)

for any number s. Given a binary confounder and treatment dose, with specified γ ≥ 0 and
δ ≥ 0, Gastwirth et al. (1998) shows that (4) is maximized when pi = π̄iθ̄i+(1− π̄i)(1− θ̄i),
with

π̄i ≡
1

1 + exp{−γ(zi(2) − zi(1))}
=

Γ

Γ + 1
, θ̄i ≡

1

1 + exp{−δ(rCi(2) − rCi(1))}
. (5)

3. This is justified as follows. The ultimate quantity of interest will be the maximum probability of obtaining
the observed test statistic, under the null, for specified Γ and ∆. If one of Γ and ∆ is less than 1, this
probability is the same as for Γ = ∆ = 1. If both Γ and ∆ are less than 1, this probability is the same
as for 1/Γ and 1/∆ (see Gastwirth et al., 1998, 913).

4. This probability is calculated as follows. Let πi ≡ 1
1+exp{−γ(zi(2)−zi(1))}

and θi ≡ 1
1+exp{−δ(rCi(2)−rCi(1))}

.

Then, pi = pr(Ai = 1|Z̃, r̃C) = πiθi + (1− πi)(1− θi).
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In large samples, (4) is approximated by:

1− Φ

 s−
∑

piqi√∑
pi(1− pi)q2i

 . (6)

2.3 Simultaneous Sensitivity Analysis after Matching with Multiple Controls
or Full Matching

Now consider matched sets constructed after matching with multiple controls or full matching—
strata may consist of more than two subjects, but may not contain more than one of both
treated and control observations. As above, the ultimate quantity of interest is the max-
imum probability of obtaining the observed test statistic T = t(Z, rC) = ZTq under the
null, for specified γ and δ. The key step in approximating this probability is finding, for
each group i, the values of uij that maximize µi, the expectation of the null distribution
(Gastwirth et al., 2000; Small et al., 2009). A formal presentation of the approximation,
from Small et al. (2009, 205-206), follows.

For any vector w, define Orb(w) as the set containing every vector that can be obtained
by permuting the coordinates of w. Let r⃗Ci be the vector of rCi’s coordinates arranged in
increasing order. In set i, for k = 0, . . . , ni, define ũk as the vector with k zeros followed by
ni − k ones. Small et al. (2009, 205-206), relying in part on Gastwirth et al. (2000), show

µik =
∑

zi∈Orb(Zi)

∑
ri∈Orb(⃗rCi)

zTi qi(r,m)
exp(γũT

k zi)∑
bi∈Orb(Zi)

exp(γũT
k bi)

exp(δũT
k ri)∑

wi∈Orb(⃗rCi)
exp(δũT

kwi)

and

σ2
ik =

∑
zi∈Orb(Zi)

∑
ri∈Orb(⃗rCi)

{
zTi qi(r,m)− µik

}2 exp(γũT
k zi)∑

bi∈Orb(Zi)
exp(γũT

k bi)

exp(δũT
k ri)∑

wi∈Orb(⃗rCi)
exp(δũT

kwi)
,

with r = [⃗rC1, . . . , r⃗C,i−1, ri, r⃗C,i+1, . . . , r⃗CI ]
T . Call

µimax = max
k∈{0,1,...,ni}

µik

Ai = {k : µik = µimax}

σ2
imax = max

k∈Ai

σ2
ik.

Then, the maximum probability of obtaining test statistic T ≥ s, under the null, given
confounding, is approximated by:

Pr(T ≥ s | r⃗C ,m,X,u) = 1− Φ

s−
∑I

i=1 µimax√∑I
i=1 σ

2
imax

 . (7)
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2.4 Minimum Hodges-Lehmann Point Estimate

Informally, the Hodges-Lehmann point estimate τ̂ is the quantity τ that, when subtracted
from the observed responses of treated subjects, gives the test statistic that would be
obtained if the null hypothesis were true. The formal definition is more complicated, since
there may be no such τ , or there may be infinitely many such τ . Thus, to be more precise,
let ¯̄t be the expectation of the test statistic t(Z,R) if the null hypothesis is true. The
Hodges-Lehmann estimate is defined as,

τ̂ ≡ inf{τ : ¯̄t > t(Z,R− τZ)}+ sup{τ : ¯̄t < t(Z,R− τZ)}
2

. (8)

Essentially, if there is no exact solution, τ̂ is the average of the smallest τ that is too large,
and the largest τ that is too small (Rosenbaum, 2002, 47-50).

The minimum Hodges-Lehmann point estimate τ̂min is the value of τ that, when sub-
tracted from the observed responses of treated subjects, gives the maximum possible expec-
tation of the test statistic, if the null hypothesis holds, given a confounder with specified Γ
and ∆.5 Note that τ̂min for Γ = ∆ = 1 is just τ̂ (Rosenbaum, 2002, 147-148).

3. The Commands: Description and Applications

In this section, I describe the commands pairsimsens and arsimsens, explaining the syn-
tax, options, output, and saved results. I also illustrate applications, by replicating selected
results from Gastwirth et al. (1998) and Small et al. (2009).

3.1 Preliminaries for pairsimsens

Each stratum must consist of exactly two subjects: one treated and one control. Data
should be organized such that each subject is an observation. (If data is organized such
that each observation is a stratum, see the Stata command reshape.) pairsimsens requires
Stata 9 or newer.

3.2 Syntax for pairsimsens

pairsimsens response [if ] [in ], treat(treatment ) str(stratum ) [gam(# ) del(# )

mcnemar wsignedrank hlestimate]

3.3 Options for pairsimsens

treat(treatment ) takes as its input the name of the treatment variable, which should be
a 0/1 variable, such that 1 indicates that an observation is treated, and 0 indicates that an
observation is control. Note that this option is required.

str(stratum ) takes as its input the name of the variable that indicates the stratum to
which an observation belongs. This should be an integer variable, and there should be
exactly two observations in each stratum: one treated and one control. This option is also

5. This is guaranteed to be the minimum estimate for statistics where ¯̄t is a decreasing function of τ ; all
statistics considered here satisfy this criterion.
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required.

gam(# ) takes as its input the value of Γ for the hypothesized unobserved confounder. Recall
that Γ = eγ . If this option is not specified, the default value of 1, indicating no confounding
relationship, is used.

del(# ) takes as its input the value of ∆ for the hypothesized unobserved confounder. Recall
that ∆ = eδ. If this option is not specified, the default value of 1, indicating no confounding
relationship, is used.

mcnemar specifies that McNemar’s test statistic is to be used in conducting the sensitivity
analysis. If this option is specified, the response should be dichotomous. Specifically, it
should be a 0/1 variable, such that 1 indicates the positive outcome.

wsignedrank specifies that the Wilcoxon signed ranked test is to be used in conducting the
sensitivity analysis. This option should be specified for ordinal or continuous responses.

hlestimate returns the minimum Hodges-Lehmann point estimate, given Γ and ∆. If this
option is specified, wsignedrank should also be specified.

3.4 Output and Applications for pairsimsens

Gastwirth et al. (1998, 911-912) describes a case-referent (Rosenbaum, 2002, 7-8) study that
assessed whether a certain brand of tampon caused toxic shock syndrome. Both exposure
to treatment and response are binary, so McNemar’s (1947) test is appropriate to test the
null hypothesis of no treatment effect (Rosenbaum, 2002, 31). Ties (concordant pairs of
responses) are discarded. McNemar’s test statistic is simply the number of pairs where the
treated observation has the positive outcome; i.e., T = t(Z, rC) =

∑
Aiqi, with qi = 1, ∀ i.

The data for this example is reproduced in gkr98-tab1.dta (all .dta and .do files
are included as supplementary material). In the example, for all seven of the pairs where
outcomes differed and exactly one subject was exposed to the brand of tampon in question,
the subject who had toxic shock was exposed. The output for pairsimsens, with the
mcnemar option specified, is shown below. The specified values of Γ and ∆, and the number
of discordant matched pairs in the data are displayed, along with the (exact) maximum
probability of obtaining at least the observed test statistic (here, 7), under the null.

. pairsimsens resp, treat(treat) str(strat) g(1) d(1) mcnemar

SIMULTANEOUS SENSITIVITY ANALYSIS FOR MCNEMAR TEST

Gamma: 1

Delta: 1

Discordant Matched Pairs: 7

max[p(t>=7|u)]: .0078125
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Were this a randomized experiment, the probability that exposure to treatment is with-
out effect would be .0078. To evaluate sensitivity of this result to an unobserved confounder
(and to display the results compactly), run the file gkr98-tab1-rep.do. Replicating Table
1 in Gastwirth et al. (1998, 911), this gives:

-----------------------------------------------------------------

| Delta

Gamma | 1 2 3 4 1.701e+38

----------+------------------------------------------------------

1 | .0078125 .0078125 .0078125 .0078125 .0078125

2 | .0078125 .016334 .02298357 .0279936 .05852766

3 | .0078125 .02298357 .0372529 .04902228 .13348389

4 | .0078125 .0279936 .04902228 .06722989 .2097152

1.701e+38 | .0078125 .05852766 .13348389 .2097152 1

-----------------------------------------------------------------

As Gastwirth et al. (1998, 912) explains, the inference of a non-zero effect is not sensitive
to (for example) a confounder that doubled the odds of both exposure and toxic shock: for
Γ = ∆ = 2, the maximum p is .016. However, a confounder that quadrupled the odds of
both exposure and toxic shock would cast the inference into doubt: for Γ = ∆ = 4, the
maximum p is .067.

Gastwirth et al. (1998, 915-918) also describes a study in which lead levels in the blood
(measured in µg/dl) of matched pairs of children were compared. In each pair there was
one treated child, whose parent worked in a certain battery manufacturing factory, and
one control child, whose parents worked elsewhere. With matched pairs, where treatment
is binary, and response is continuous, the Wilcoxon (1945) signed-rank test is appropriate
to test the null hypothesis (Rosenbaum, 2002, 32). The test statistic is the ranks of the
absolute differences in responses for each pair, summed over all pairs in which the treated
observation has the higher response. That is, T = t(Z, rC) =

∑
Aiqi, with qi the rank of

rCi(2) − rCi(1) from 1 to I.
Gastwirth et al. (1998, 915-916) recommends, and pairsimsens implements, the fol-

lowing modification. In the definition of θ̄i, given in (5), replace rCi(2) − rCi(1) with 2qi/I.
Note that approximately half of all pairs have 2qi/I between 0 and 1, and approximately
half have 2qi/I between 1 and 2. This allows ∆ to be conveniently interpreted as the max-
imum odds that, for the pair with the median value of rCi(2) − rCi(1), the observation that
has the higher value of the unobserved confounder also has the higher response (for other
advantages of this approach, see Gastwirth et al., 1998, 915-916).

The data for the example is reproduced in gkr98-tab4.dta. The output for pairsimsens,
with the wsignedrank and the hlestimate options specified, is shown below. In addi-
tion to the specified Γ and ∆, the output gives

∑
piqi (“Expectation”),

∑
pi(1− pi)q

2
i

(“Variance”), T−
∑

piqi√∑
pi(1−pi)q2i

(“Deviate”), the (approximated) maximum probability of ob-

taining at least the observed test statistic (here, 499) under the null (“max[p(t>=499|u)]”),
and the minimum Hodges-Lehmann point estimate (“min[H-L Point Estimate]”).

. pairsimsens resp, t(treat) s(strat) g(1) d(1) hle ws
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SIMULTANEOUS SENSITIVITY ANALYSIS FOR WILCOXON S-R TEST

Gamma: 1

Delta: 1

Expectation: 264

Variance: 2858.625

Deviate: 4.395307544374739

max[p(t>=499|u)]: 5.53080153576e-06

min[H-L Point Estimate]: 15.5

Assuming no confounding, the standardized deviate is 4.40, the associated p-value is 5.531×
10−6, and the Hodges-Lehmann point estimate is 15.5. To evaluate the impact of an un-
observed confounder on the inference of a non-zero effect, and on the minimum Hodges-
Lehmann point estimate, run gkr98-tab4-5-rep.do. This gives, for selected values of Γ
and ∆, the minimum standardized deviate (replicating Table 4 in Gastwirth et al. (1998,
916)), the associated p-values, and the minimum Hodges-Lehmann point estimates (repli-
cating Table 5 in Gastwirth et al. (1998, 918)):

. table Gamma Delta, contents(mean dev)

------------------------------------------------------

| Delta

Gamma | 1 3 5 1.701e+38

----------+-------------------------------------------

1 | 4.3953075 4.3953075 4.3953075 4.3953075

3 | 4.3953075 3.0825899 2.7865236 2.2244857

5 | 4.3953075 2.6927099 2.2980715 1.4805171

1.701e+38 | 4.3953075 1.9127413 1.2050303

------------------------------------------------------

. table Gamma Delta, contents(mean pval)

------------------------------------------------------

| Delta

Gamma | 1 3 5 1.701e+38

----------+-------------------------------------------

1 | 5.531e-06 5.531e-06 5.531e-06 5.531e-06

3 | 5.531e-06 .00102604 .00266384 .01305789

5 | 5.531e-06 .0035437 .01077886 .06936765

1.701e+38 | 5.531e-06 .02789059 .11409581

------------------------------------------------------

. table Gamma Delta, contents(mean hle)

------------------------------------------------------

| Delta
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Gamma | 1 3 5 1.701e+38

----------+-------------------------------------------

1 | 15.5 15.5 15.5 15.5

3 | 15.5 11 10 8.5

5 | 15.5 10 8.5 5.5

1.701e+38 | 15.5 7 4

------------------------------------------------------

As Gastwirth et al. (1998, 916-918) explains, the inference of a non-zero effect, in this
example, is quite robust, even in the presence of substantial unobserved confounding. Even
a confounder that quintupled both the odds of exposure to treatment and the odds the
exposed subject would have the higher response in a pair, would not affect the inference
of a non-zero effect (for Γ = ∆ = 5, p = .011). There would, however, be a substantial
decrease in the estimated minimum effect size: for such a confounder, the minimum Hodges-
Lehmann estimate is 8.5µg/dl, compared to the estimate of 15.5µg/dl without confounding.
Nor does a confounder that almost perfectly predicts which observation in a pair has the
higher response threaten inference, if it only triples the odds of exposure (for ∆ = ∞ and
Γ = 3, p < .05). But a confounder that near-perfectly predicts which of a pair has the
higher response and quintuples the odds of exposure would threaten inference (for ∆ = ∞
and Γ = 5, p > .05)—although in this case, the minimum Hodges-Lehmann estimate is
5.5µg/dl, it is not significantly different from 0.

3.5 Saved Results for pairsimsens

The following saved results are available after pairsimsens.

After both mcnemar and wsignedrank:

r(dev), the standardized deviate.

r(del), the value of ∆ specified.

r(gam), the value of Γ specified.

r(tsobs), the observed test statistic.

r(pval), the maximum probability that the null holds.

After mcnemar only :

r(apval), the maximum probability that the null holds, approximated based on the stan-
dardized deviate. (Only for purposes of comparison; in applications, r(pval) should be
used.)
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r(p), pi, with pi = π̄iθ̄i+(1− π̄i)(1− θ̄i). (Note that pi is constant across i for the McNemar
Test.)

r(dmp), the number of discordant matched pairs.

After wsignedrank only :

r(hlr), the minimum Hodges-Lehmann point estimate, rounded to three decimal places.

r(hle), the minimum Hodges-Lehmann point estimate. (Because pairsimsens calculates
the two terms in the numerator of (8) with error on the order of 10−6, r(hlr), not r(hle),
is reported in the program’s output.)

r(sig2),
∑

pi(1− pi)q
2
i , with pi = π̄iθ̄i + (1− π̄i)(1− θ̄i).

r(mu),
∑

piqi, with pi = π̄iθ̄i + (1− π̄i)(1− θ̄i).

r(retmat), an I × 5 matrix, where the first column is the stratum number, the second
is the adjusted rank 2qi/I, the third is θ̄i, the fourth is π̄i, and the fifth is pi, with pi =
π̄iθ̄i + (1− π̄i)(1− θ̄i).

3.6 Preliminaries for arsimsens

Data should be organized such that each observation is a subject; each stratum should have
exactly one control observation, exactly one treated observation, or both; responses should
be ordinal or continuous. arsimsens requires Stata 9 or newer. A computational shortcut
used by arsimsens is described in Appendix A.

3.7 Syntax for arsimsens

arsimsens response [if ] [in ], treat(treatment ) str(stratum ) [gam(# ) del(# )

verbose hlestimate]

3.8 Options for arsimsens

treat(treatment ) takes as its input the name of the treatment variable, which should be
a 0/1 variable, such that 1 indicates that an observation is treated, and 0 indicates that an
observation is control. Note that this option is required.

str(stratum ) takes as its input the name of the variable that indicates the stratum to
which an observation belongs. This should be an integer variable, and there should not be
more than one of both treated and control observations in a single stratum. This option is
also required.

gam(# ) takes as its input the value of Γ for the hypothesized unobserved confounder. Recall
that Γ = eγ . If this option is not specified, the default value of 1, indicating no confounding
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relationship, is used.

del(# ) takes as its input the value of ∆ for the hypothesized unobserved confounder. Recall
that ∆ = eδ. If this option is not specified, the default value of 1, indicating no confounding
relationship, is used.

verbose shows the progress of the program’s execution, by displaying the stratum for which
µimax and σ2

imax is being calculated.

hlestimate gives the minimum Hodges-Lehmann point estimate, for the specified Γ and
∆.

3.9 Output and Applications for arsimsens

Small et al. (2009, 206-208) considers the effect of military service on smoking. The treat-
ment is a binary indicator of veteran status, and the outcome is “pack-years:” the number
of years that the subject has smoked cigarettes, multiplied by the number of packs per
day smoked. After full matching on a set of covariates, subjects are stratified into groups
of two, three, or four. When some strata contain more than two subjects, with a binary
treatment dose, and a continuous outcome, the Hodges-Lehmann (1962) aligned-rank test is
an appropriate test of the null hypothesis (Lehmann 1975; Rosenbaum 2002, 139). Hodges
and Lehmann (1962) define the aligned rank as the rank of the aligned responses, where
the aligned response is each observation’s response minus the mean response in its stratum.
The test statistic ZTq is the sum of the aligned ranks for the treated observations.

Small et al. (2009, 208) recommends, and arsimsens implements, the following modi-
fication (see also Gastwirth et al., 1998, 915-916): replace each rCij with its aligned rank,
divided by half the maximum of the aligned ranks. Then, let q(rC) = rC . This modifi-
cation means that approximately half of all observations have rCij between 0 and 1, and
approximately half have rCij between 1 and 2. In turn, this allows ∆ to be conveniently
interpreted as the maximum odds that, for the “average pair” of observations in the same
stratum, the observation that has the higher value of the unobserved confounder also has
the higher response; the average pair of observations is average in the sense of having an
average difference in responses: one observation has aligned rank at the 25th percentile and
the other at the 75th.

The data for the example is reproduced in Smalletal.dta. The output for arsimsens
is shown below. In addition to the specified Γ and ∆, the output gives

∑I
i=1 µimax

(“Expectation”),
∑I

i=1 σ
2
imax (“Variance”),

T−
∑I

i=1 µimax√∑I
i=1 σ

2
imax

(“Deviate”), the maximum prob-

ability of obtaining at least the observed test statistic (here, 1347.3) under the null (“max
[p(t>=1347.3|u)]”), and the minimum Hodges-Lehmann point estimate (“min[H-L Point

Estimate]”).

. arsimsens resp, t(tr) s(strat) gam(1) del(1) hle

SIMULTANEOUS SENSITIVITY ANALYSIS FOR ALIGNED RANK TEST
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Gamma: 1

Delta: 1

Expectation: 1273.335325877381

Variance: 347.4356434880523

Deviate: 3.968060923335258

max[p(t>=1347.29849595064|u)]: .0000362299060822

min[H-L Point Estimate]: 2.857

In the absence of confounding, the probability of obtaining at least the observed test
statistic, given the null, is p = .00004, and the Hodges-Lehmann point estimate is 2.857. To
evaluate the impact of an unobserved confounder on the inference of a non-zero effect, and
on the minimum Hodges-Lehmann point estimate, run smalletal-rep.do. This gives, for
specified values of Γ and ∆, the maximum probability that the null holds (replicating Table
5 in Small et al. (2009, 208)), as well as the minimum Hodges-Lehmann point estimates:

. table Gamma Delta, contents(mean pval)

----------------------------------------------------------------------------

| Delta

Gamma | 1 1.1 1.2 1.5 2.5 1.701e+38

----------+-----------------------------------------------------------------

1 | .00003623 .00003623 .00003623 .00003623 .00003623 .00003623

1.1 | .00003623 .00004983 .00006622 .0001316 .00046241 .00363386

1.2 | .00003623 .00006628 .00011257 .0003906 .0032933 .06463972

1.5 | .00003623 .00013385 .00040034 .00428191 .11298419 .92932353

2.5 | .00003623 .00054009 .00418381 .14281653 .98001349 1

1.701e+38 | .00003623 .01397183 .27702887 .99979383 1 1

----------------------------------------------------------------------------

. table Gamma Delta, contents(mean hle)

----------------------------------------------------------------------------

| Delta

Gamma | 1 1.1 1.2 1.5 2.5 1.701e+38

----------+-----------------------------------------------------------------

1 | 2.857 2.857 2.857 2.857 2.857 2.857

1.1 | 2.857 2.667 2.6 2.5 2.333 1.6

1.2 | 2.857 2.6 2.5 2.4 1.667 .5

1.5 | 2.857 2.5 2.4 1.6 0 -.333

2.5 | 2.857 2.286 1.6 0 -1 -7

1.701e+38 | 2.857 1.143 0 -2.5 -10.5 -37.143

----------------------------------------------------------------------------

As Small et al. (2009, 208) explains, the inference that military service affects smoking
behavior is somewhat sensitive to an unobserved confounder. For example, a confounder
that increased by 20% both the odds of serving in the military, and the odds of having the
higher number of pack-years (for the average pair of observations), would not threaten the
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inference of a non-zero effect (for ∆ = Γ = 1.2, p = .0001). But, a confounder that increased
the odds of serving in the military by 50%, and the odds of having higher pack-years by
150%, would call the inference into doubt (for Γ = 1.5, ∆ = 2.5, p = .113); in fact, the
minimum Hodges-Lehmann point estimate for such a confounder is 0.

3.10 Saved Results for arsimsens

The following saved results are available after arsimsens.

r(hlr), the minimum Hodges-Lehmann point estimate, rounded to three decimal places.

r(hle), the minimum Hodges-Lehmann point estimate. (Because pairsimsens calculates
the two terms in the numerator of (8) with error on the order of 10−6, r(hlr), not r(hle),
is reported in the program’s output.)

r(sumvar imax),
∑I

i=1 σ
2
imax.

r(summu imax),
∑I

i=1 µimax.

r(del), the value of ∆ specified.

r(gam), the value of Γ specified.

r(tsobs), the observed test statistic.

r(dev), the standardized deviate.

r(pval), the maximum probability that the null holds

4. Summary

This paper has presented software that allows for simultaneous sensitivity analysis in Stata.
The analysis can be performed after full, 1:k, or pair matching, for a binary treatment dose,
and both ordinal/continuous and binary responses. For a hypothesized confounder with
user-specified relationship to treatment and to response, the maximum probability that
the null holds, and the minimum Hodges-Lehmann point estimate may be obtained. The
.ado and .hlp files for the software presented in this paper are provided in a .zip file in the
supplementary materials.
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Appendix A

Consider the problem of calculating µik in (7). (The calculation of σ2
ik is parallel.) Even

noting that the denominators can be factored out, the straightforward method of computing
µik requires approximately ni!(ni) + ni! + ni calculations, which is impractical for larger
strata. I describe here the computational shortcut arsimsens uses, which makes feasible
the calculation of µik for sets of (essentially) any size.

Below, I suppress the subscript i to reduce clutter, and introduce the following modifi-
cation in terminology, which will be convenient in subsequent discussion: define k as n− k,
so that ũk is the vector with k ones followed by n − k zeros. Also, since the two are the
same in the application, write zT r for zTq(r,m). The basic approach will be to re-write
the formula for µk in (7) so that each sum, except one, is expressed as (a multiple of) an
elementary symmetric polynomial, which can be more quickly calculated.

Define
a =

∑
r∈Orb(⃗rC)

∑
z∈Orb(Z)

zT r exp(γũT
k z) exp(δũ

T
k r). (9)

Then, the formula for µk given in (7) can be written as

µk =
1∑

w∈Orb(⃗rC) exp(δũ
T
k w)

1∑
b∈Orb(Z) exp(γũ

T
k b)

a. (10)

Define y1 = exp(γr⃗C1), y2 = exp(γr⃗C2), and so on, for y1 . . . yn. Let ek(y1, y2, . . . , yn)
be the kth elementary symmetric polynomial,

∑
1≤j1<j2<...jk≤n yj1 . . . yjk . Then, the first

denominator in (10) can be written as∑
w∈Orb(⃗rC)

exp(δũT
k w) = k!(n− k)! ek(y1, . . . , yn). (11)

This is useful since it is fast to compute ek(y1, . . . , yn) for k = 0, 1, . . . , n recursively.
arsimsens uses the “Summation Formula” (see Baker and Harwell, 1996, 176-178).6 The
second denominator can be calculated analogously.

Now, let Sn be the set of all permutations of any n elements, and Sn × Sn the set of all
pairs (π, π′) of permutations. Divide Sn × Sn into classes based on the value of ρ ≡ π−1π′;
thus, there are n! classes, with each class D containing n! permutation pairs. Then,

a =
∑
D

∑
(π,π′):

π−1π′=ρD

π′(Z)Tπ(⃗rC) exp(γũ
T
k π

′(Z)) exp(δũT
k π(⃗rC)). (12)

Note that within a class, π′(Z)Tπ(⃗rC) is constant, and that in each class there is one
pair (π, π′) in which π is the identity permutation (such that π(⃗rC) = r⃗C). Also, π−1π′ = ρ
means that π′ = πρ. Thus, (12) can be written

a =
∑
D

ρD(Z)
T r⃗C

∑
(π,π′):

π−1π′=ρD

exp(ũkπ(γρ(Z) + δr⃗C)). (13)

6. For pseudocode, see Rehman and Ipsen (2011, 101).
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Denote by Zρ(j) the jth coordinate of ρ(Z) and let y1 = exp(γZρ(1) + δr⃗C1), y2 =
exp(γZρ(2) + δr⃗C2), and so on, for y1, . . . yn. Then,

a =
∑
D

ρD(Z)
T r⃗C k!(n− k)! e(y1, . . . , yn). (14)

And because, with full matching, there are only n distinct permutations of Z, computing
(14) requires calculating only n summands.
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