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1 Introduction

When a player team reasons, she plans to act so as to maximize a team payoff function—for ex-

ample, the sum of all team members’ individual payoffs. In contrast, the individual reasoner, the

conventional rational actor, acts to maximize only his own individual payoffs. This paper investi-

gates the plausibility of team reasoning as an explanation for cooperative behavior, by analyzing

an evolutionary game theoretic model in which the population consists of team reasoners and indi-

vidual reasoners. We find that the degree of ludic diversity—in particular, changes in the mix of

games played—can affect evolutionary outcomes; team reasoning and thus cooperation may thrive,

even under circumstances that, at first glance, may seem unfavorable to each. Our results add to

existing theoretical and empirical work that suggests that team reasoning is a plausible and coherent

mechanism for explaining human decision-making.

2 Team Reasoning

There are two simple games that seem to present a puzzle for individual reasoning based “orthodox”

decision theory (e.g., Bacharach 2006, 35-68; Gold and Sugden 2007, 281-285). First, consider

the Hi Lo (see Table 1). The intuitively compelling choice is Hi, and (Hi,Hi) is the Pareto-optimal

equilibrium. But individual reasoning does not require this choice. A rational player (one who acts

to maximize his expected individual payoffs) playing another rational player, under the assumption

that the players’ rationality is common knowledge, is only entitled to conclude that I should choose

Hi if my opponent selects Hi, and Lo if he chooses Lo (Gold and Sugden 2007, 284). Second, consider

the Prisoners’ Dilemma (PD) (see Table 2). It is well-known that individual reasoning (individual

payoff maximization) mandates the choice of D; yet, many people have the intuition that C is the

correct choice. Team reasoning justifies these intuitions.

Hi Lo

Hi 3; 3 1; 1
Lo 1; 1 2; 2

Table 1. An example of a Hi Lo. Payoffs are listed as (row player; column player).

Bacharach (1999, 2006) and Sugden (1993, 2000) propose team reasoning as an alternative account

of how people make decisions when interacting with others. (There is also a related, though not

1



Cooperate Defect

Cooperate 3; 3 1; 4
Defect 4; 1 2; 2

Table 2. An example of a Prisoners’ Dilemma. Payoffs are listed as (row player; column player).

overlapping, literature in philosophy, including Gilbert (1989), Hollis (1998), Hurley (1989), and

Regan (1980).) When a player team reasons, instead of asking (as in the standard account), “what

should I (as an individual) do?” she asks, “what should we (as a team) do?” (see, e.g. Gold and

Sugden 2007, 285). She answers the latter question by “work[ing] out the best feasible combination

of actions for all members of her team” (Bacharach 2006, 111). It is convenient (though not strictly

required by the theory) to make the simplifying assumption that the “best feasible combination of

actions” is that which leads to the outcome maximizing the sum of team members’ individual payoffs.

Finally, she takes the action that the “best feasible combination of actions” requires of her; in other

words, she chooses the strategy prescribed for her in the team utility maximizing strategy profile.

Team reasoning unambiguously leads to the choice of Hi in the Hi Lo, and the choice of Cooperate

(C) in the PD, since the combination of actions that maximizes combined individual payoffs is (Hi,

Hi) in Hi Lo, and (C,C) in the PD. Thus, team reasoning solves, in the Hi Lo, an equilibrium selection

problem that is theoretically problematic for individual reasoning; in the PD, it leads to an outcome

that is Pareto-preferable to the (D,D) equilibrium outcome that results when individual reasoners

play. In addition to its theoretical appeal, team reasoning is also consistent with much of the observed

cooperative behavior in the lab (e.g., Camerer, Loewenstein and Rabin 2003; Colman, Pulford and

Rose 2008) and in the field (e.g., Heinrich et al. 2005). And evidence from social psychology (see

e.g., Kramer and Brewer 1984) shows that when players’ shared social identity is primed, cooperative

behavior in social dilemmas increases; this is of particular interest since Bacharach (1999, 132-137)

argues that social identification with a co-player will cause one to engage in team reasoning.

Despite its theoretical soundness and supporting evidence, there are still grounds for some skep-

ticism about team reasoning. One ground is that it seems to require behavior that is potentially

self-sacrificial. Is the behavior implied by team reasoning viable in the long run? Scholars across dis-

ciplines have relied on evolutionary theory and models to contest the notion that behavior consistent

with team reasoning is truly viable, or, at the least, cast doubt on team reasoning as a mechanism
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for bringing about such behavior.1 In response, we analyze an evolutionary game theoretic model

that tests (and ultimately shows) the viability of team reasoning as a “strategy.” First, we explain

our modeling decisions.

3 Reasoning, Evolutionary Models, and the Ludic Ecology

In our baseline model, we will consider two types of reasoners: the individual reasoner and the team

reasoner. Does it make sense to consider “types of reasoners” in an evolutionary game-theoretic

context? We suggest, relying on arguments made and reviewed by Bacharach (2006, 96-114), that

it does. Bacharach points out that, in addition to specifying which traits will be evolutionarily

selected, an evolutionary model should also speak to the mechanism that will be favored. A mech-

anism explains a “repertoire of dispositions,” that is, a set of traits—one for each decision-making

context. This leads to a second notable feature of our model. Our players navigate a “ludic ecol-

ogy” (Bacharach 2006, 106) that consists of both a common-interest game (Hi Lo) and a social

dilemma (the PD). As Bacharach (2006, 100) notes, this is in contrast to the “standard models in

bio-evolutionary game theory,” which consider one game at a time, and thus have minimal ludic di-

versity. (Though, of course, we still will not capture the full range of social interactions that humans

engage in, the Hi Lo and the PD are representative of many important decision-making context (see

e.g., Bacharach 2006, 35-42).2) Team reasoning and individual reasoning can serve as mechanisms

for choice in both of these contexts; and importantly, they are both simple mechanisms. Bacharach

(2006, 108) notes that, in general, parsimonious (“low-cost”) mechanisms will be favored over those

that are more complex. Thus, in our baseline model, we will take our competing mechanisms to be

team reasoning and individual reasoning.3 (In an extension, we will explicitly assess the viability of

a more complex, and costly, mechanism.)

1We point out a few representative examples, without implying that these views are unanimously held in any
discipline or subfield. In biology, see Hamilton (1964), Trivers (1971), and Wilson (1975); in economics, see Binmore
(2004) and Gintis, Bowles, Boyd and Fehr. (2003); in political science, see Axelrod (1984) and Bendor and Swistak
(1997); in philosophy, see Pettit (2000) and Skyrms (2003); in psychology, see the discussion in Caporael, Dawes, Orbell
and van de Kragt (1989) and the responses therein, especially by Houston and Hamilton, Krebs, Liebrand, Rachlin,
Tooby and Cosmides, and Vine.

2Substituting the Stag Hunt for the Hi Lo does not qualitatively change the results we present in our baseline model.
3We note that we slightly diverge from Bacharach (2006) here; he calls the mechanism leading to the choice of Hi

in Hi Lo and Cooperate in PD “group identification.” Group identification is said to activate team reasoning, which,
in turn, leads a player to exhibit the traits Hi and Cooperate. Other theorists are more agnostic about the role of
group identification in bringing about team reasoning (Gold and Sugden 2007, 294-304). In any case, our model is
not affected if we replace “team reasoning” with “identifying with one’s co-player as a group member” and “individual
reasoning” with “not identifying with one’s co-player as a group member.”
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Before formalizing the model, we emphasize one more feature of our analysis. We will consider a

population where interactions are one-shot, and random. Given this absence of assortative pairing,

group selection cannot operate (e.g., Sober and Wilson 1998, 23-26, 135-142). This is interesting

because Bacharach (2006, 101-114) hypothesizes that group selection is the means by which team

reasoning may thrive. (See also closely related discussion in Caporael (2007).) By avoiding the

contested concept of group selection, we will be able to place team reasoning on firmer (or at least

alternate) footing.4 We turn now to the model.

4 Team Reasoning and Individual Reasoning: An Evolutionary

Analysis

Symbol Definition

h Proportion of time individual reasoners play Hi in Hi Lo
p Proportion of individual reasoners in population
p∗ Equilibrium proportion of individual reasoners, where W (I) = W (T )
∆p Change in proportion of individual reasoners between time periods

V (i|j) Average payoff to generic type i interacting with type j
W (I) Average payoff to individual reasoner
W (T ) Average payoff to team reasoner
w0 Baseline payoff shared by each type
x Proportion of games that are Hi Lo

Table 3. Definition of symbols used in baseline model.

Consider a population that consists of two types of players: team reasoners and individual rea-

soners. We refer to these below simply as “types.” Suppose that members of the population are

randomly paired to play one-shot variants of two games: Hi Lo, a pure coordination game with

payoffs as given in Table 4, is played x proportion of the time, while the (additive) PD, as in Table

5, is played 1− x proportion of the time. Recall that because the team reasoner asks “what should

we do given our standard of success?” she plays Cooperate in the PD and Hi in the Hi Lo. The

individual reasoner (who asks, “what should I do given my standard of success?”) always defects in

the PD. However, since (Lo, Lo) and (Hi, Hi) are equally valid equilibria for the individual reasoner

in Hi Lo, and thus neither Hi nor Lo are mandated as strategies, suppose that the individual rea-

soner plays Hi with probability h. Table 6 then gives the expected payoffs, V (i|j), for each pairwise

4We do not mean to imply that we are ourselves skeptical of group or multilevel selection; we simply note the
concept is contested (on this point, see Wilson and Sober 1994).
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interaction. (For example, V (I|T ) is the expected payoff to an individual reasoner interacting with

a team reasoner.)

Hi Lo

Hi β;β −γ;−γ
Lo −γ;−γ 0; 0

Table 4. Hi Lo: Played x proportion of the time. β > 0, γ > 0. Payoffs are listed as (row player;
column player).

Cooperate Defect

Cooperate b− c; b− c −c; b
Defect b;−c 0; 0

Table 5. Prisoners’ dilemma: Played 1− x proportion of the time. b > c > 0. Payoffs are listed as (row
player; column player).

Pairing V (i|j) : Expected Payoff

(T|I) −c(1− x) + x(βh− (1− h)γ).
(T|T) (b− c)(1− x) + βx.
(I|T) b(1− x) + x(βh− (1− h)(γ)).
(I|I) x(βh2 − 2γh(1− h)).

Table 6. Expected payoffs for four types of interactions. The table gives payoff to i for interaction i|j.
For example, the first row gives the expected payoff for a team reasoner interacting with an individual
reasoner.

To assess how changes in the set of games played by the population impacts evolutionary out-

comes, we follow standard practice in evolutionary game theory, and use the replicator dynamic

(or proportional fitness rule)(see e.g., Boyd and McElreath 2007). This formula describes how the

proportion of two competing strategies in the population changes from one time period to the next,

as a function of their respective payoffs and initial proportions in the population.5 In general, for

types A and B, where p is the proportion of A types in the population at time t and W (i) is the

average payoff to type i, the change in the proportion of A types between t and t + 1, ∆p, is given

by the difference equation:

∆p = p(1− p) W (A)−W (B)

pW (A) + (1− p)W (B)
. (1)

The average payoffs to our types, W (I) and W (T ), are as follows. Let p stand for the proportion

of individual reasoners in the population. Then, since interactions are random, p is the probability

5See Bendor and Swistak (1997, 295-296) for a behavioral interpretation of the replicator dynamic.
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of interacting with an individual reasoner and 1 − p is the probability of interacting with a team

reasoner.Therefore, the average payoff for each type is the sum of its two pairwise payoffs, weighted

by the probability that each type of interaction occurs, plus a common baseline fitness (w0): W (I) =

p(V (I|I) + (1− p)V (I|T ) + w0 and W (T ) = pV (T |I) + (1− p)V (T |T ) + w0.

Equilibria exist where ∆p = 0—where the proportion of each type is constant from one period

to the next. Clearly, ∆p = 0 when p = 0 or p = 1—i.e., when the population consists of only team

reasoners or only individual reasoners. The interesting question is how the variation in the set of

games played impacts the stability of these equilibria. An equilibrium is called stable if, when the

equilibrium mix of types is disturbed slightly, it returns to the equilibrium value. For example, to

assess whether (and when) the all team reasoner equilibrium (p = 0) is stable, we need to analyze

what happens when a rare individual reasoner enters the population of team reasoners. Substantively,

the key is to notice that whether an “invasion” of individual reasoners is successful depends only on

the two types’ relative success against team reasoners. Thus, the all team reasoner equilibrium is

stable where V (T |T ) > V (I|T ). Solving

(b− c)(1− x) + βx > b(1− x) + x(βh− (1− h)(γ))

for x, the proportion of games that are Hi Lo, we find that the inequality holds where

x >
c

(β + γ)(1− h) + c
.

For relatively high values of x, then, the all-team reasoning equilibrium is stable, and individual

reasoners cannot invade.

We analyze the stability of the all individual reasoner equilibrium similarly, by assessing the two

types’ relative performance against individual reasoners. Where V (I|I) > V (T |I), the all-individual

reasoner equilibrium (p = 1) is stable. The inequality holds where

 x < c
β(1−h)h+γ(1−h)(2h−1)+c if h ≥ γ

β+2γ

∀ x if h < γ
β+2γ

Thus, for relatively low x values—where the PD is played relatively frequently—a population of

6



individual reasoners can resist invasion by team reasoners. Also, note that for very low values of

h—where individual reasoners play Lo frequently—there is no value of x for which team reasoners

can invade. Intuitively, this is because when the population is coordinating (mostly) on a low-payoff

equilibrium, a team reasoner cannot gain advantage in the Hi Lo by playing her role in a higher-payoff

equilibrium. We can see another reason, then, that the choice of strategy in Hi Lo is nontrivial for

individual reasoners: choosing Lo often can actually be advantageous in some evolutionary contexts,

as it forestalls the possibility of invasion by team reasoners for all values of x.

The third case in which ∆p = 0 is where the numerator in the difference equation, W (I)−W (T ),

equals zero. In this case, since the average fitness of each type is the same, the proportion of each

type does not change. Such an equilibrium, where a mix of both types exists, is called an internal (or

polymorphic) equilibrium. Solving the equation W (I) = W (T ) for p—the proportion of individual

reasoners in the population—yields a unique solution:

p∗ =
(1− h)(β + γ) + c− c

x

(1− h)2(β + 2γ)
.

Since p∗ is a proportion, it must be between zero and one. (Whenever p∗ is /∈ (0, 1), there is no

meaningful equilibrium where W (I) = W (T )). For what values is this the case? First, note that

because the denominator is always positive for h < 1 and β, γ > 0, p∗ is greater than or equal to zero

when the numerator is non-negative. This holds if (1 − h)(β + γ) + c ≥ c
x , or solving for x, where

x ≥ c
(1−h)(β+γ)+c . The second requirement is that p∗ ≤ 1. Solving for x, we find the inequality holds

where

x ≤ c

β(1− h)h+ γ(1− h)(2h− 1) + c
.

Note that these constraints are the same as those that determined the stability of the equilibria at

p = 0 and p = 1. Precisely, there exists an internal equilibrium (i.e. where W (I) = W (T ) and

p∗ ∈ (0, 1)) if and only if both the all-individual reasoner and the all-team reasoner equilibria are

stable: when

c

(1− h)(β + γ) + c
< x <

c

β(1− h)h+ γ(1− h)(2h− 1) + c
.

An internal equilibrium thus exists for relatively moderate values of x. The three cases described

are graphed in Figure 1.
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Figure 1. Variation in the set of games played can impact the stability of equilibria. The graph shows
∆p as a function of p, for three values x: (1) where only the all-team reasoner equilibrium (p = 0) is
stable, (2) where only the all-individual reasoner equilibrium is stable (p = 1), and (3) where both the
all-team reasoner (p = 0) and the all-individual reasoner (p = 1) equilibria are stable. The specific
values used to generate the graphs are w0 = 2, b = 2, c = 1, β = 1, γ = 1, h = .5, and x = .4 (only p = 1
stable), x = .6 (p = 0 and p = 1 stable), x = .8 .

In all cases the internal equilibrium is unstable. To see this, note that an internal equilibrium

only exists if the equilibria at p = 0 and p = 1 are stable (and so ∆p is decreasing around p = 0,

where it takes on the value of 0, and ∆p is increasing around p = 1, where it takes on the value

of 0). Because ∆p is continuous in p, the intermediate value theorem implies that ∆p is negative

for p ∈ (0, p∗), and positive for p ∈ (p∗, 1). This means that the internal equilibrium is unstable:

intuitively, if a few “extra” individual reasoners beyond the equilibrium value enter the population

(p > p∗), then this leads to further increases in the proportion of individual reasoners (∆p > 0);

similarly, if a few “extra” team reasoners enter the population, the proportion of team reasoners

increases further. An unstable equilibrium is of interest because it defines the basins of attraction of

two stable equilibria—here, the stable equilibria at p = 0 and p = 1. For initial p values greater than

p∗, the population tends toward the p = 1 (all-individual reasoner) equilibrium; for values of p less

than p∗, the population tends toward the equilibrium at p = 0. Below, we discuss the interpretation

of this baseline model, and consider a few extensions.
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5 Discussion and Extensions

In our baseline model, our central result is that whether team reasoning can emerge over the long

run depends on the relative frequency of the PD and Hi Lo in the following way. There are three

intervals of interest in the frequency that the PD is played. In the first interval, in which the

PD is played “frequently,” individual reasoners will, in the long run, become the sole type in the

population, regardless of their initial proportion in the population. In the second interval, in which

the PD is played “somewhat frequently,” whether individual reasoners emerge as the sole dominant

type depends on whether they exceed an initial threshold proportion. If the initial proportion of

individual reasoners exceeds the threshold proportion, they will emerge as the sole dominant type. If

the initial proportion of individual reasoners is below the threshold proportion, then team reasoners

will emerge in the long run as the sole type. Finally, in the third interval, where the PD is played

infrequently, team reasoners will emerge as the sole type regardless of initial mix of strategies, with

the following caveat. If individual reasoners who coordinate frequently on playing Lo in Hi Lo make

up a very large percentage of the initial population, then individual reasoners will emerge as the sole

dominant type in the long run.

Thus, holding all else constant, the more frequent are Hi Lo games compared to PD interac-

tions, the better team reasoners do. In an environment where coordination is more important than

competition, team reasoning is particularly advantaged. The caveat we note above does qualify this

conclusion a bit. For any mix of games, if a very large percentage of the population coordinates on

Lo, team reasoners will not be successful, and will be driven out of the population in the long run.

Thus, an evolutionary argument suggests the nontriviality of the individual reasoners choice in Hi

Lo: only coordination on Lo by individual reasoners guarantees that team reasoners will not be able

to establish a foothold in a population initially dominated by individual reasoners. We now consider

how this basic account may be modified by re-interpretation and extensions of our model.

A note on the assumption that x is fixed. In our baseline analysis, we have treated x, the

proportion of games that are Hi Lo, as fixed, and found no stable internal equilibrium. But it is

worth noting that x may change between time periods. As the baseline analysis shows, the value

of x impacts the location of the basins of attraction of the equilibria at p = 0 and p = 1. It is

straightforward to see that, in a system that is not at equilibrium, changing the value of x may
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change the sign of ∆p: A system in which ∆p is negative at t, may have ∆p positive at t + 1, if x

decreases between t and t + 1. That is, (depending on changes in x) it is possible that, even in the

absence of a stable internal equilibrium, p reaches neither 0 nor 1.

The h parameter as an error rate. Our baseline model does not consider the possibility that

players make errors. Though in the abstract, the Hi Lo and the PD are simple games, we are

interested in the games as models of real-life interactions. The structure of such interactions will

sometimes be less transparent than our theoretical model suggests. However, we can incorporate

one specific type of player error without complicating the analysis, simply by reinterpreting the h

parameter in the model.

In particular, consider the possibility that, in a given interaction, players may be uncertain about

payoffs. Table 7 models such a situation—the players (correctly) perceive that a is greater than 0,

but the values of y and z are unclear. Note that if y and z are both less than 0, the game is a Hi

Lo, but if y is greater than a and z is less than 0, the game is a PD. We suggest that the choice

for the team reasoner is clearer than it is for the individual reasoner: as long as she perceives that

2a > y+z, she will choose A. But this information is not enough for the individual reasoner, who—in

addition—needs to accurately assess whether y > a and z < 0 (in which case the game is a PD and

he plays B), whether y < 0 and z > a or 0 < y, z < a (in which cases he plays A), or whether y < 0

and z < 0 (in which case the game is a Hi Lo).

A B

A a; a z; y
B y; z 0; 0

Table 7. A game with ambiguous payoffs, a > 0. Payoffs are listed as (row player; column player).

For a concrete example, suppose Player 1 and Player 2 can each choose to (A) go out and hunt

for a resource, splitting the proceeds evenly or (B) sit at home and wait to steal anything the other

player brings back. As long as the effort put into hunting is outweighed by benefit accorded by

securing the prey, it is clear that the strategy profile (A,A) Pareto-dominates (B,B). But Player 1

is an individual reasoner, so he calculates that he will be better off if he stays at home (expending

no effort in hunting), and then steals any prey Player 2 returns with (thereby gaining the resource

regardless). Upon her return from the successful hunt, however, Player 2 takes offense at Player 1’s

attempted theft, and, in the ensuing tussle, both players are grievously injured. Player 1 has just
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mistaken a Hi Lo for a PD. Note also that a team reasoning Player 2 chooses A (to hunt), even if

she makes the same mistake in perception as Player 1.

Such mistakes can be incorporated into our baseline model simply by reinterpreting the h pa-

rameter. Even supposing that individual reasoners always intend to play Hi in Hi Lo, 1− h can be

interpreted as the proportion of time individual reasoners mis-perceive the Hi Lo as a PD.6 Therefore,

the existence of such errors implies that there is always some value of x for which team reasoners

can invade a population of individual reasoners.

Cognitive load. Here, we substitute for the individual reasoner a type—which we call the flexible

reasoner—who team reasons in a Hi Lo (always playing Hi), and reasons individually in a PD (always

defecting). Absent more, it is clear that such a player will do better than the team reasoner (except

when all games are Hi Lo). However, the flexible reasoner’s strategy, which involves switching back

and forth between modes of reasoning, is more complex than that of the team reasoner, and thus

places a greater cognitive load on the flexible reasoner.7

We incorporate the cost that this increased cognitive load takes by subtracting a cost parameter

k > 0, weighted by x(1 − x), from the payoffs of the flexible reasoner. (For example, V (F |T ) is

b(1−x) +xβ− kx(1−x).) The logic is that the more even is the mix of games, the more frequent is

the need to switch modes of reasoning, and therefore, the greater the cognitive load for the flexible

reasoner.

This set-up gives a very simple solution. Regardless of the proportion of the types in the popula-

tion, W (F ) > W (T ) if x < c/k, W (F ) = W (T ) if x = c/k, and W (F ) < W (T ) if x > c/k. Thus, for

any initial p, the population tends toward the all-team reasoner equilibrium if x > c/k, and toward

the all-flexible reasoner equilibrium if x < c/k. So, as before, the higher the proportion of games

that are Hi Lo, the more advantaged are team reasoners. Here, the critical value of x is determined

solely by the relative magnitudes of the c and k parameters.

When individual reasoners’ play varies based on the proportion of types in the population. A

relatively minor modification of our baseline model results in the possibility of multiple internal

equilibria. In particular, suppose that individual reasoners become more likely to play Hi as the

proportion of team reasoners (who always play Hi) in the population increases. For example, suppose

h = 1− p. Then, the numerator of the difference equation is a fifth degree polynomial in p, and thus

6The model could be complicated by considering other kinds of errors, but we do not pursue that extension here.
7Bacharach (2006, 108) discusses closely related considerations.
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Figure 2. Multiple internal equilibria can exist when h is a function of p. The graph shows an example
with both stable and unstable internal equilibria. Here, w0 = 2, b = 2, c = 1, β = 1, γ = 1, h = 1− p,
and x = .7.

the function can take on a value of 0 for up to three values of p ∈ (0, 1), multiple internal equilibria

may exist, at least one of which may be stable. A concrete example is shown in Figure 2. In this

particular case, there are two internal equilibria, and a stable equilibrium with p ≈ .2 exists.

Circumspect Team Reasoning. We now consider team reasoners who are circumspect (Bacharach

1999; Bacharach 2006, 130-135). In our baseline model, team reasoners choose to play their role in

the strategy profile that is best for the team, under the assumption that their co-player is also a team

reasoner. A team reasoner who is circumspect, however, considers the possibility that a co-player

may “fail”(for any reason) to play his role in the strategy profile that is best for the team, and instead

performs some “default” action. The circumspect team reasoner thus calculates, in light of probability

that a team member fails, the strategy profile that is best for the team (including the potentially

failing team member), and executes the move that corresponds to her choice in that profile. Below,

we sketch a version of the baseline model in which all team reasoners are circumspect. Our results

indicate that key features of our baseline model carry over: most importantly, team reasoners perform

relatively better when Hi Lo is played relatively often. At the same time, circumspect team reasoners

perform (weakly) better than “un-circumspect” team reasoners against individual reasoners—in fact,

for a certain class of PDs, circumspect team reasoners can always invade a population of individual
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reasoners; we also find that the population can remain polymorphic indefinitely, even when there is

not, technically, a stable internal equilibrium.

We take the probability that a team member fails to be p, the proportion of individual reasoners in

the population; following Bacharach (1999), we assume that a circumspect team reasoner accurately

assesses this probability. The default actions of a failing team member are that of the individual

reasoner. In this extension we generalize the PD in our baseline model, making the payoffs from

mutual cooperation (a; a), with a > 0, 2a > b− c, instead of (b− c; b− c) (see Table 8).8

Cooperate Defect

Cooperate a; a −c; b
Defect b;−c 0; 0

Table 8. A generalized PD. a, b, c > 0, 2a > b− c, payoffs are listed as (row player; column player).

The circumspect team reasoner determines the strategy profile that maximizes the sum of the

individual payoffs, given the failure probability p, and chooses the strategy it prescribes for her. If

the failure probability is 0, utility-maximizing strategy profile—from the perspective of the team

reasoner—is (C,C), as in our baseline model (since, by definition, in the PD 2a > b − c, 0). Now,

suppose first that b−c > 0. Then, the team reasoner ranks the profiles (C,C)>(C,D)=(D,C)>(D,D).

This implies that for any failure probability, the team reasoner cooperates, in an attempt to imple-

ment (C,C); even in the event of certain failure on the part of the co-player, the team is better off

if the team reasoner cooperates. Thus, if b − c > 0, the team reasoner’s behavior in the PD is no

different than in our baseline model. But suppose that b− c < 0. Then, the the team reasoner ranks

the profiles (C,C)>(D,D)>(C,D)=(D,C). The circumspect team reasoner calculates the value of p at

which implementing (C,C) yields greater utility for the team than implementing (D,D); i.e., where

2p(1− p)(b− c) + (1− p)22a > 0. Solving for p, the circumspect team reasoner cooperates iff:

p <
a

a− (b− c)
≡ ppd.

The circumspect team reasoner proceeds similarly for Hi Lo, calculating the value of p at which

implementing (H,H) yields greater utility than implementing (L,L), and thus plays Hi for all p, for

8As we show below, circumspect team reasoning is interesting in the PD only if b− c < 0.
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h > .5, and for h < .5, iff:

p <
β

(β + 2γ)(1− 2h)
≡ phl.

To facilitate exposition of the evolutionary model, define f(p) ≡W (I)−W (T ), the numerator of the

right side of the difference equation (1); note that f(p) determines the sign of the right hand side of

(1) for p ∈ (0, 1) (which, in turn, determines the stability of equilibria). The formulas for f(p) differ

based on the play of the team reasoner, and are as follows. When the team reasoner plays Cooperate

and Hi,

f(p) = p[c(1− x)− x(1− h)(βh+ 2γh− γ)] + (1− p)[(b− a)(1− x)− x(1− h)(β + γ)]. (2)

When the team reasoner plays Defect and Hi,

f(p) = px(1− h)(γ − 2γh− βh)− (1− p)x(1− h)(β + γ). (3)

When the team reasoner plays Cooperate and Lo,

f(p) = p[c(1− x) + xh(βh+ 2γh− γ)] + (1− p)[(b− a)(1− x)− xhγ]. (4)

When the team reasoner plays Defect and Lo,

f(p) = xh[p(βh+ 2γh− γ))− (1− p)(γ)]. (5)

Case 1: ppd ∈ (0, 1), but phl /∈ (0, 1) (implying that h > .5 and c > b).

On [0, ppd], f(p) is given by (2). Let x∗ be the value of x for which f(0) = 0.9 Because f(p) is

increasing in p, fx∗(p
′) > 0 for any p′ ∈ (0, ppd). Set x = x∗ + ε (while holding other parameters

constant). Since f(p) is decreasing in x, fx∗+ε(0) < 0; because f(p) is continuous in x, fx∗+ε(p
′) > 0,

for sufficiently small ε. Thus, there exists a set of parameter values for which a stable equilibrium at

p = 0, and an unstable internal equilibrium at p∗ < ppd exist. Similarly, setting x = x∗−ε gives a set

of parameter values for which an unstable equilibrium at p = 0 exists, and no internal equilibrium

∈ (0, ppd) exists. Finally, observe that f(1) < 0 ∀x > c
c+(1−h)(βh+2γh−γ , so (since certainly ppd < 1),

9x∗ = b−a
(1−h)(γ+β)+b−a .

14



there exists a set of parameter values for which a stable equilibrium at p = 0 exists, and no internal

equilibrium ∈ (0, ppd) exists.

On (ppd, 1), f(p) is given by (3). This is always negative, so the equilibrium at p = 1 is unstable.

Thus, for Case 1, there are the following possibilities. If the all team reasoner equilibrium is

unstable, then p will “oscillate” around ppd, increasing until it exceeds ppd, and then decreasing until

it becomes smaller than ppd; thus, the outcome is, in practice, similar to an internal equilibrium at

ppd (see Figure 3.) If the all team reasoner equilibrium is stable, but there is an unstable equilibrium

at p∗ ∈ (0, ppd), then for any initial p < p∗, the equilibrium outcome is p = 0, and for any initial

p > p∗, p will ultimately oscillate around ppd. Finally, if the all team reasoner equilibrium is stable

and there is no internal equilibrium ∈ (0, ppd), then the equilibrium outcome is p = 0, for any initial

p.

Figure 3. When team reasoners are circumspect, both the p = 0 and p = 1 equilibria may be unstable,
and p may oscillate around ppd. Here, w0 = 5, a = 1, b = 2, c = 3, β = 2, γ = 2, h = .8, and x = .5. See
Case 1 in text for details.

Case 2: 0 < phl < ppd < 1 (implying h < .5 and c > b).

On (0, phl), f(p) is given by (2). Here too, f(p) is increasing in p. An analysis parallel to that of

Case 1 shows that sets of parameter values exist such that 1) there is a stable equilibrium at p = 0,

and an unstable equilibrium ∈ (0, phl); 2) there is an unstable equilibrium at p = 0 and no internal
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equilibrium ∈ (0, phl). Finally, solving f(phl) < 0 for x gives

x >
βc+ 2(βh+ 2γh− γ)(a− b)

βc+ 2(βh+ 2γh− γ)(a− b)− (βh+ 2γh− γ)(1− h)(β + 2γ)
.

Thus, for such x, there is a stable equilibrium at p = 0, and no internal equilibrium ∈ (0, phl).
10

On f(phl, ppd), f(p) is given by (4). This is again increasing in p. An analysis parallel to

that of Case 1 shows that sets of parameter values exist such that 1) f(phl) < 0 but there is an

unstable internal equilibrium ∈ (phl, ppd); 2) f(p) > 0 ∀p ∈ (phl, ppd).
11 And since f(ppd) < 0, for

x > b(c−b+a)
b(c−b+a)+h[γ(c−b)−a(βh−γ+2γh)] , there exist a set of parameter values for which f(p) < 0, ∀ p ∈

(phl, ppd).

On f(ppd, 1), f(p) is given by (5). Whenever phl ∈ (0, 1), this is certainly negative, so the

equilibrium at p = 1 is unstable.

Lastly, observe that f(p) is increasing in p on [0, ppd]. (To see this, note that the right side of (4)

is greater than the right side of (2), for p = phl, iff βh < γ−2γh, which always holds for phl ∈ (0, 1).)

Therefore, the substantive interpretation of the model is the same as for Case 1: if the all team

reasoner equilibrium is unstable, then p will oscillate around ppd; if the all team reasoner equilibrium

is stable, but there is an unstable equilibrium p∗ ∈ (0, ppd), then for any initial p < p∗, the equilibrium

outcome is p = 0, and for any initial p > p∗, p will ultimately oscillate around ppd (see Figure 4);

finally, if the all team reasoner equilibrium is stable and there is no internal equilibrium ∈ (0, ppd),

then the equilibrium outcome is p = 0.

Case 3: 0 < ppd < phl < 1 (again implying h < .5 and c > b).

On [0, ppd], f(p) is given by (2). Here too, f(p) is increasing in p. An analysis parallel to that

of Case 1 shows that sets of parameter values exist such that 1) there is a stable equilibrium at

p = 0, and an unstable equilibrium ∈ (0, ppd); 2) there is an unstable equilibrium at p = 0 and no

internal equilibrium ∈ (0, ppd). Finally, the analysis of Case 2 on (0, phl) shows that there is a set of

parameter values for which f(ppd) < 0, since ppd must be less than phl.

On (ppd, phl), f(p) is given by (3), and, again, increasing in p. To see that f(phl) < 0 (and thus

f(p) < 0, ∀ p ∈ (ppd, phl)), write f(p) as x(1−h)
(β+2γ)(1−2h)(γ(1 − 2h) − βh)(β − 2(β + γ)); observe that

γ(1− 2h)− βh is positive whenever phl ∈ (0, 1), so f(phl) < 0.

10Note this x ∈ (0, 1), since phl ∈ (0, 1) implies βh+ 2γh− γ < 0.
11Here, f(phl, x

∗) = 0 for x∗ = βc+(βh+2γh−γ)(a−b)
βc+(βh+2γh−γ)(a−b)−(βh−γ+2γh)(βh+γh)

; note that this x∗ ∈ (0, 1).
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Figure 4. Another possibility when team reasoners are circumspect. Here, the equilibrium at p = 0 is
stable, the equilibrium at p = 1 is unstable, there is an unstable internal equilibrium, and oscillation
around ppd. Here, w0 = 5, a = 1.5, b = 2, c = 2.5, β = 2, γ = 4, h = .3, and x = .4. See Case 2 in text
for details.

On (phl, 1), f(p) is given by (5), and so whenever phl ∈ (0, 1), f(p) < 0, ∀p ∈ (phl, 1).

To summarize Case 3, the all individual reasoner equilibrium is never stable. If the all team

reasoner equilibrium is unstable, then p will oscillate around ppd; thus, the outcome is, again, in

practice, similar to an internal equilibrium at ppd. If the all team reasoner equilibrium is stable, but

there is an unstable equilibrium at p∗ ∈ (0, ppd), then for any initial p < p∗, the equilibrium outcome

is p = 0, and for any initial p > p∗, p will ultimately oscillate around ppd. Finally, if the all team

reasoner equilibrium is stable and there is no internal equilibrium ∈ (0, ppd), then the equilibrium

outcome is p = 0, for any initial p.

Case 4: phl ∈ (0, 1), but ppd /∈ (0, 1) (implying c < b and h < .5). On (0, phl), f(p) is given by

(2). Although f(p) is decreasing in p for b > a + c + x(1−h)2(β+2γ)
1−x , f(1) (and so certainly for such

b, f(phl)) is never less than 0—thus, there can be no stable internal equilibrium ∈ (0, phl). (In other

words, no internal equilibrium exists for b such that f(p) is decreasing.12) If b is such that f(p) is

increasing in p, then, an analysis parallel to that of Case 2 on (0, phl) shows that sets of parameter

12It is worth observing that this is conditional on phl ∈ (0, 1). Otherwise, a stable internal equilibrium can exist
for such b. The reason that this is not a possibility in our baseline model, is because in the additive PD, a=b − c,
meaning f(p) is increasing in p. Thus, the possibility of a stable internal equilibrium is not tied to team reasoners
being circumspect; however, it is conditional on the parameters of the PD being such that circumspect team reasoners’
behavior is not always the same as that of non-circumspect team reasoners.
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values exist such that 1) there is a stable equilibrium at p = 0, and an unstable equilibrium ∈ (0, phl);

2) there is an unstable equilibrium at p = 0 and no internal equilibrium ∈ (0, phl); 3) there is a stable

equilibrium at p = 0, and no internal equilibrium ∈ (0, phl).

On (phl, 1), f(p) is given by (4). Note that, on (phl, 1), f(p) is continuous and decreasing in x;

also, it is decreasing in p iff b > a + c + xh2(β+2γ)
1−x . Let (0 <)b∗ < a + c + xh2(β+2γ)

1−x < b∗(< 2a + c),

and let c
c−h(βh+2γh−γ) ≡ x∗ be the value of x for which f(1) = 0. Clearly, for any p′ ∈ (phl, 1),

fb∗,x∗(p
′) > 0 and fb∗,x∗(p

′) < 0. Now, set x = x∗ + ε (holding a,b∗, b∗, β, c, γ, h, p′ fixed). Because

fb,x(p) is continuous in x, fb∗,x∗+ε(p
′) > 0, and fb∗,x∗+ε(p

′) < 0 for sufficiently small ε. At the same

time, since fb,x(p) is decreasing in x, fb∗,x∗+ε(1) < 0 and fb∗,x∗+ε(1) < 0.

Thus, there exists a set of parameter values for which there is an unstable equilibrium at p = 1 and

a stable internal equilibrium at p∗ > phl, and a set of values such that there is an unstable equilibrium

at p = 1 and no internal equilibrium ∈ (phl, 1). The parallel analysis for x∗− ε establishes that there

is a set of parameter values for which there is a stable equilibrium at p = 1 and an unstable internal

equilibrium at p∗ > phl, and a set of values such that there is a stable equilibrium at p = 1 and no

internal equilibrium ∈ (phl, 1). Lastly—since, for every set parameter values (given that phl ∈ (0, 1)),

f(phl + ε) > f(phl − ε)—there will be no oscillation around phl.

To summarize Case 4, the all team reasoner equilibrium can be stable or unstable; an internal

equilibrium p∗ < phl, if it exists, will be unstable. The all individual reasoner equilibrium can also be

stable or unstable, and an internal equilibrium p∗ > phl, if it exists, can be either stable or unstable.

So, if the all team reasoner equilibrium is unstable, then for any initial p, the population will end

up at the stable internal equilibrium p∗ > phl, if it exists, and at the (stable) all individual reasoner

equilibrium, if it does not. If the all team reasoner equilibrium is stable, and the all individual

reasoner equilibrium is unstable, then—if no stable internal equilibrium exists—the system ends

up at the all team reasoner equilibrium for any initial p; but—if a stable equilibrium does exist—

then the endpoint of the all team reasoner equilibrium’s basin of attraction will be at the unstable

equilibrium p∗ < phl, if such p∗ exists, and at phl, if it does not. If both the all team reasoner and

the all individual reasoner equilibria are stable, their basins of attraction are defined by the unstable

internal equilibrium p∗ < phl, if it exists, and by phl otherwise.
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6 Conclusion

We have shown that team reasoners, and thus cooperative behavior, can thrive even in an environ-

ment that appears hostile to such behavior; even in one-shot interactions with random pairings of

players, cooperation can be sustained. The key is variation in the ludic ecology. True, the mechanism

of individual reasoning is successful relative to team reasoning in social dilemmas like the PD. How-

ever, it is relatively unsuccessful in the Hi Lo (and we have suggested that this is particularly likely

to be true outside the laboratory.) We have shown that these facts can be important for understand-

ing evolutionary outcomes. In an environment where common interest games are prevalent, team

reasoning is the only evolutionarily stable strategy; at the same time, if the ludic ecology consists

mainly of social dilemmas, individual reasoning is favored.

We have also pursued several extensions that augment this basic account. We have noted that

over-time changes in the proportion of games that are Hi Lo may allow both types of reasoners

to persist in the system longer than would otherwise be expected. Second, we have argued that

individual reasoners may be more susceptible to certain errors of perception; this may be a further

evolutionary advantage for team reasoners. Third, we have discussed how a more complex, and

thus costly, mechanism fares against team reasoners. Fourth, we have noted that a stable internal

equilibrium, with both team and individual reasoners, may exist, when individual reasoners’ play in

the Hi Lo responds to the proportion of team reasoners in the population. Last, in considering team

reasoners who are circumspect, we have shown that there are scenarios in which individual reasoners

and circumspect team reasoners coexist indefinitely, and that—whenever the parameters of the PD

are such that circumspection potentially affects behavior—circumspect team reasoners can always

invade a population of individual reasoners.

Though we shown that team reasoning is a evolutionarily viable strategy against individual

reasoning, we do not argue that other explanations of cooperative behavior should be discounted.

Cooperation, in many contexts, is compatible with individual reasoning. However—as we have

discussed—team reasoning explains cooperative behavior in many (seemingly) simple interactions,

and it does so in a coherent and parsimonious fashion. And it can explain cooperation even in

the absence of reciprocity (conditional cooperation) or assortative interaction (nonrandom pairing).

Surely, further empirical investigation regarding the prevalence of, and mechanisms underlying, team
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reasoning is warranted; in particular, scholars will have to design and implement critical tests in which

the behavioral implications of team reasoning differ from those of competitor theories (Faillo, Smerilli

and Sugden 2013). But, until such evidence accumulates, we argue that team reasoning should not

be dismissed as implausible on evolutionary-theoretic grounds; it is a viable approach to basic human

interactions.
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