{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations, DifferentialEquations\n",
    "gr();"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# M3M6: Methods of Mathematical Physics\n",
    "\n",
    "$$\n",
    "\\def\\dashint{{\\int\\!\\!\\!\\!\\!\\!-\\,}}\n",
    "\\def\\infdashint{\\dashint_{\\!\\!\\!-\\infty}^{\\,\\infty}}\n",
    "\\def\\D{\\,{\\rm d}}\n",
    "\\def\\E{{\\rm e}}\n",
    "\\def\\dx{\\D x}\n",
    "\\def\\dt{\\D t}\n",
    "\\def\\dz{\\D z}\n",
    "\\def\\C{{\\mathbb C}}\n",
    "\\def\\R{{\\mathbb R}}\n",
    "\\def\\CC{{\\cal C}}\n",
    "\\def\\HH{{\\cal H}}\n",
    "\\def\\I{{\\rm i}}\n",
    "\\def\\qqqquad{\\qquad\\qquad}\n",
    "\\def\\qqand{\\qquad\\hbox{for}\\qquad}\n",
    "\\def\\qqfor{\\qquad\\hbox{for}\\qquad}\n",
    "\\def\\qqwhere{\\qquad\\hbox{where}\\qquad}\n",
    "\\def\\Res_#1{\\underset{#1}{\\rm Res}}\\,\n",
    "\\def\\sech{{\\rm sech}\\,}\n",
    "\\def\\acos{\\,{\\rm acos}\\,}\n",
    "\\def\\vc#1{{\\mathbf #1}}\n",
    "\\def\\ip<#1,#2>{\\left\\langle#1,#2\\right\\rangle}\n",
    "\\def\\norm#1{\\left\\|#1\\right\\|}\n",
    "\\def\\half{{1 \\over 2}}\n",
    "$$\n",
    "\n",
    "Dr. Sheehan Olver\n",
    "<br>\n",
    "s.olver@imperial.ac.uk\n",
    "\n",
    "<br>\n",
    "Website: https://github.com/dlfivefifty/M3M6LectureNotes\n",
    "\n",
    "\n",
    "# Lecture 18: Orthogonal polynomials and singular integrals\n",
    "\n",
    "\n",
    "This lecture we do the following:\n",
    "\n",
    "1. Cauchy transforms of weighted orthogonal polynomials\n",
    "    - Three-term recurrence and calculation\n",
    "    - Hilbert transform of weighted orthogonal polynomials\n",
    "    - Hilbert transform of weighted Chebyshev polynomials\n",
    "    \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Cauchy transforms of orthogonal polynomials\n",
    "\n",
    "Given a family of orthogonal polynomials $p_k(x)$ with respect to the weight $w(x)$ on $(a,b)$, we always know it satisfies a three-term recurrence:\n",
    "\\begin{align*}\n",
    "x p_0(x) &= a_0 p_0(x) + b_0 p_1(x) \\\\\n",
    "x p_k(x) &= c_k p_{k-1}(x) + a_k p_k(x) + b_k p_{k+1}(x)\n",
    "\\end{align*}\n",
    "\n",
    "Consider now the Cauchy transform of the weighted orthogonal polynomial:\n",
    "$$\n",
    "Q_k(z) := {\\cal C}_{[a,b]}[p_k w](z) = {1 \\over 2 \\pi \\I} \\int_a^b {p_k(x) w(x) \\over x -z} \\dx\n",
    "$$\n",
    "\n",
    "\n",
    "**Theorem (Three-term recurrence Cauchy transform of weighted OPs)** \n",
    "$C_k(z)$ satisfies the same recurrence relationship as $p_k(x)$ for $k=1,2,\\ldots$:\n",
    "\\begin{align*}\n",
    "z C_0(z) &= a_0 C_0(z) + b_0 C_1(z) - {1 \\over 2 \\pi \\I} \\int_a^b w(x) \\dx \\\\\n",
    "z C_k(z) &= c_k C_{k-1}(z) + a_k C_k(z) + b_k C_{k+1}(z)\n",
    "\\end{align*}\n",
    "\n",
    "**Proof**\n",
    "\\begin{align*}\n",
    "z C_k(z) &= {1 \\over 2 \\pi \\I} \\int_a^b {z p_k(x) w(x) \\over x -z} \\dx  = {1 \\over 2 \\pi \\I} \\int_a^b {(z -x) p_k(x) w(x) \\over x -z} \\dx  +  \\int_a^b {x p_k(x) w(x) \\over x -z} \\dx \\\\\n",
    "  &= -{1 \\over 2 \\pi \\I} \\int_a^b p_k(x) w(x)  \\dx +  \\int_a^b {(c_k p_{k-1}(x) + a_k p_k(x) + b_k p_{k+1}(x) w(x) \\over x -z} \\dx \\\\\n",
    "  &= -{1 \\over 2 \\pi \\I} \\int_a^b p_k(x) w(x)  \\dx + c_k C_{k-1}(z) + a_k C_k(z) + b_k C_{k+1}(z)\n",
    "\\end{align*}\n",
    "when $k > 0$, the integral term disappears.  \n",
    "⬛️\n",
    "\n",
    "This gives a convenient way to calculate the Cauchy transforms: if we know $C_0(z) ={\\cal C}w(z)$ and $\\int_a^b w(x) \\dx$, solve the lower triangular system:\n",
    "$$\n",
    "\\begin{pmatrix}\n",
    "1 \\\\\n",
    "a_0-z & b_0 \\\\\n",
    "c_1 & a_1-z & b_1 \\\\\n",
    "&c_2 & a_2-z & b_2 \\\\\n",
    "&& c_3 & a_3-z &\\ddots\\\\\n",
    "&&&\\ddots & \\ddots\n",
    "\\end{pmatrix}\\begin{pmatrix}C_0(z) \\\\C_1(z) \\\\C_2(z) \\\\C_3(z) \\\\ \\vdots \\end{pmatrix} = \\begin{pmatrix}C_0(z) \\\\{1 \\over 2 \\pi \\I} \\int_a^b w(x) \\dx \\\\0 \\\\0 \\\\ \\vdots \\end{pmatrix} \n",
    "$$\n",
    "\n",
    "**Example (Chebyshev Cauchy transform)** \n",
    "\n",
    "Consider the Chebyshev case $w(x) = {1 \\over \\sqrt{1-x^2}}$, which satisfies $\\int_{-1}^1 w(x) \\dx = {\\pi}$. Recall that\n",
    "$$\n",
    "    C_0(z) ={\\cal C}w(z) = { \\I \\over 2\\sqrt{z-1}\\sqrt{z+1}}\n",
    "$$\n",
    "Further, we have\n",
    "\\begin{align*}\n",
    "x T_0(x) = T_1(x) \\\\\n",
    "x T_k(x) = {T_{k-1}(x) \\over 2} + { T_{k+1}(x) \\over 2} \n",
    "\\end{align*}\n",
    "hence\n",
    "\\begin{align*}\n",
    "z C_0(z) = C_1(z) -  {1  \\over 2 \\I} \\\\\n",
    "z C_k(z) = {C_{k-1}(z) \\over 2} +{C_{k+1}(z) \\over 2} .\n",
    "\\end{align*}\n",
    "In other words, we want to solve\n",
    "$$\n",
    "\\begin{pmatrix}\n",
    "1 \\\\\n",
    "-z & 1 \\\\\n",
    "1/2 & -z & 1/2 \\\\\n",
    "&1/2 & -z & 1/2 \\\\\n",
    "&& 1/2 & -z &\\ddots\\\\\n",
    "&&&\\ddots & \\ddots\n",
    "\\end{pmatrix}\\begin{pmatrix}C_0(z) \\\\C_1(z) \\\\C_2(z) \\\\C_3(z) \\\\ \\vdots \\end{pmatrix} = \\begin{pmatrix} { \\I \\over 2\\sqrt{z-1}\\sqrt{z+1}} \\\\{1 \\over 2 \\I} \\\\0 \\\\0 \\\\ \\vdots \\end{pmatrix} \n",
    "$$\n",
    "with forward substitution.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10-element Array{Complex{Float64},1}:\n",
       "   0.4999250218677838 + 0.004998750393615982im\n",
       " 0.049492627147416784 - 0.44950762277386im    \n",
       " -0.40012497188352847 - 0.08500174951890464im \n",
       " -0.11251727162034156 + 0.35248227849337344im \n",
       "   0.3071250618607855 + 0.13299475089351104im \n",
       "  0.14734333381379644 - 0.2644583159425141im  \n",
       " -0.22476473190952334 - 0.15641774731925456im \n",
       " -0.16101273073185018 + 0.18822182009675853im \n",
       "   0.1549178217438016 + 0.16185956519223624im \n",
       "  0.15962438204216325 - 0.12486634270955096im "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = Fun()\n",
    "w = 1/sqrt(1-x^2)\n",
    "z = 0.1+0.1im\n",
    "\n",
    "n = 10\n",
    "L = zeros(ComplexF64,n,n)\n",
    "L[1,1] = 1\n",
    "L[2,1] = -z\n",
    "L[2,2] = 1\n",
    "for k=3:n\n",
    "    L[k,k-1] = -z\n",
    "    L[k,k-2] = L[k,k] = 1/2\n",
    "end\n",
    "\n",
    "\n",
    "\n",
    "C = L \\ [ im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-5.551115123125783e-17 + 5.551115123125783e-17im"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "T₅ = Fun(Chebyshev(), [zeros(5);1])\n",
    "cauchy(T₅*w,z) - C[6]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Warning** This fails for large $n$ or large $z$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(-2.2332625421658917e6 + 521568.0612707699im, 0.0 + 8.834874115176436e-18im)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = Fun()\n",
    "w = 1/sqrt(1-x^2)\n",
    "z = 5+6im\n",
    "\n",
    "n = 100\n",
    "L = zeros(ComplexF64,n,n)\n",
    "L[1,1] = 1\n",
    "L[2,1] = -z\n",
    "L[2,2] = 1\n",
    "for k=3:n\n",
    "    L[k,k-1] = -z\n",
    "    L[k,k-2] = L[k,k] = 1/2\n",
    "end\n",
    "\n",
    "C = L \\ [ im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)]\n",
    "\n",
    "T₂₀ = Fun(Chebyshev(), [zeros(20);1])\n",
    "\n",
    "C[21], cauchy(T₂₀*w, z)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Get around it by dropping the first row:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "99×99 Array{Complex{Float64},2}:\n",
       " -5.0-6.0im   1.0+0.0im   0.0+0.0im  …   0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.5+0.0im  -5.0-6.0im   0.5+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.5+0.0im  -5.0-6.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.5+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im  …   0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im  …   0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "     ⋮                               ⋱                                    \n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im  …   0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im  …   0.5+0.0im   0.0+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im     -5.0-6.0im   0.5+0.0im   0.0+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.5+0.0im  -5.0-6.0im   0.5+0.0im\n",
       "  0.0+0.0im   0.0+0.0im   0.0+0.0im      0.0+0.0im   0.5+0.0im  -5.0-6.0im"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "L[2:end,1:end-1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-3.072062106493749e-17 + 4.410020129853371e-17im"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "C = L[2:end,1:end-1]\\ [1/(2im); zeros(n-2)]\n",
    "\n",
    "C[6]- cauchy(T₅*w, z)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Hilbert transform of weighted orthogonal polynomials\n",
    "\n",
    "Now consider the Hilbert transform of weighted orthogonal polynomials:\n",
    "$$\n",
    "H_k(x) = \\HH_{[a,b]}[p_k w](x) = {1 \\over \\pi} \\int_a^b {p_k(t) w(t) \\over t-x} \\dt\n",
    "$$\n",
    "\n",
    "Just like Cauchy transforms, the Hilbert transforms have \n",
    "\n",
    "**Corollary (Hilbert transform recurrence)**\n",
    "\\begin{align*}\n",
    "x H_0(x) &=  a_0 H_0(x) + b_0 H_1(x) - {1 \\over \\pi} \\int_a^b w(x) \\dx\\\\\n",
    "x H_k(x) &=  c_k H_{k-1}(x) + a_k H_k(x) + b_k H_{k+1}(x) \n",
    "\\end{align*}\n",
    "\n",
    "**Proof**\n",
    "Recall\n",
    "$$\n",
    "\\CC^+ f(x) + \\CC^- f(x) = -\\I \\HH f(x)\n",
    "$$\n",
    "Therefore, we have\n",
    "$$\n",
    "C_k^+(x) + C_k^-(x) = -\\I \\HH[w p_k](x)\n",
    "$$\n",
    "hence we have\n",
    "\\begin{align*}\n",
    "x H_0(x) &= \\I x (C_0^+(x) + C_0^-(x)) =  \\I \\left[a_0 (C_0^+(x) + C_0^-(x)) + b_0 (C_1^+(x) + C_1^-(x))    -{1 \\over  \\pi \\I} \\int_a^b w(x) \\dx \\right]\\\\\n",
    "            &=  a_0 H_0(x) + b_0 H_1(x) - {1 \\over \\pi} \\int_a^b w(x) \\dx\n",
    "\\end{align*}\n",
    "Other $k$ follows by a similar argument.\n",
    "\n",
    "⬛️\n",
    "\n",
    "\n",
    "\n",
    "### Example: weighted Chebyshev\n",
    "For\n",
    "$$\n",
    "H_k(x) = \\int_{-1}^1 {T_k(t) \\over (t-x)\\sqrt{1-t^2}} \\dt\n",
    "$$\n",
    "The recurrence gives us\n",
    "\\begin{align*}\n",
    "x H_0(x) &= H_1(x) -1 \\\\\n",
    "x H_k(x) &= {H_{k-1}(x) \\over 2} + {H_k(x) \\over 2} \\\\\n",
    "\\end{align*}\n",
    "In this case, we have $H_0(x) = \\HH[w](x) =  0 $. Therefore, we can rewrite this recurrence as\n",
    "\\begin{align*}\n",
    " H_1(x)&= 1  \\\\\n",
    " x H_1(x) &= {H_2(x) \\over 2} \\\\\n",
    "x H_k(x) &= {H_{k-1}(x) \\over 2} + {H_k(x) \\over 2} \\\\\n",
    "\\end{align*}\n",
    "This is precisely the three-term recurrence satisfied by $U_{k-1}$! We therefore have\n",
    "$$\n",
    "H_k(x) = U_{k-1}(x)\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.0"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = 0.1\n",
    "\n",
    "T = Fun(Chebyshev(),[zeros(n);1])\n",
    "hilbert(w*T,x) - Fun(Ultraspherical(1), [zeros(n-1);1])(x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This gives a very easy way to compute Hilbert transforms: if\n",
    "$$\n",
    "f(x) = \\sum_{k=0}^\\infty f_k T_k(x)\n",
    "$$\n",
    "then\n",
    "$$\n",
    "\\HH\\left[{f \\over \\sqrt{1-\\diamond^2}}\\right](x) = \\sum_{k=0}^\\infty f_{k+1} U_k(x)\n",
    "$$"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Julia 1.0.2",
   "language": "julia",
   "name": "julia-1.0"
  },
  "language_info": {
   "file_extension": ".jl",
   "mimetype": "application/julia",
   "name": "julia",
   "version": "1.0.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}