{ "cells": [ { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "using ApproxFun, Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations,\n", " SpecialFunctions\n", "\n", "using SingularIntegralEquations.HypergeometricFunctions\n", "gr();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# M3M6: Methods of Mathematical Physics\n", "\n", "$$\n", "\\def\\dashint{{\\int\\!\\!\\!\\!\\!\\!-\\,}}\n", "\\def\\infdashint{\\dashint_{\\!\\!\\!-\\infty}^{\\,\\infty}}\n", "\\def\\D{\\,{\\rm d}}\n", "\\def\\E{{\\rm e}}\n", "\\def\\dx{\\D x}\n", "\\def\\dt{\\D t}\n", "\\def\\dz{\\D z}\n", "\\def\\ds{\\D s}\n", "\\def\\C{{\\mathbb C}}\n", "\\def\\R{{\\mathbb R}}\n", "\\def\\H{{\\mathbb H}}\n", "\\def\\CC{{\\cal C}}\n", "\\def\\HH{{\\cal H}}\n", "\\def\\FF{{\\cal F}}\n", "\\def\\I{{\\rm i}}\n", "\\def\\Ei{{\\rm Ei}\\,}\n", "\\def\\qqqquad{\\qquad\\qquad}\n", "\\def\\qqand{\\qquad\\hbox{and}\\qquad}\n", "\\def\\qqfor{\\qquad\\hbox{for}\\qquad}\n", "\\def\\qqwhere{\\qquad\\hbox{where}\\qquad}\n", "\\def\\Res_#1{\\underset{#1}{\\rm Res}}\\,\n", "\\def\\sech{{\\rm sech}\\,}\n", "\\def\\acos{\\,{\\rm acos}\\,}\n", "\\def\\erfc{\\,{\\rm erfc}\\,}\n", "\\def\\vc#1{{\\mathbf #1}}\n", "\\def\\ip<#1,#2>{\\left\\langle#1,#2\\right\\rangle}\n", "\\def\\br[#1]{\\left[#1\\right]}\n", "\\def\\norm#1{\\left\\|#1\\right\\|}\n", "\\def\\half{{1 \\over 2}}\n", "\\def\\fL{f_{\\rm L}}\n", "\\def\\fR{f_{\\rm R}}\n", "\\def\\HF{{}_2F_1}\n", "\\def\\questionequals{= \\!\\!\\!\\!\\!\\!{\\scriptstyle ? \\atop }\\,\\,\\,}\n", "$$\n", "\n", "Dr Sheehan Olver\n", "
\n", "s.olver@imperial.ac.uk\n", "\n", "Office Hours: 3-4pm Mondays, 11-12am Thursdays, Huxley 6M40\n", "
\n", "Website: https://github.com/dlfivefifty/M3M6LectureNotes\n", "\n", "# Chapter 6: Special functions\n", "\n", "A _special function_ is a function that can't be expressed in closed form in terms of classical functions, like $\\cos$, $\\sin$. We've seen a few special functions so far:\n", "\\begin{align*}\n", "\\Ei z &= \\int_{-\\infty}^z {\\E^\\zeta \\over \\zeta} \\D \\zeta \\\\\n", "\\erfc z &= {2 \\over \\sqrt \\pi} \\int_z^\\infty \\E^{-\\zeta^2} \\D \\zeta \\\\\n", "\\Gamma(\\alpha, z) &= \\int_z^\\infty \\zeta^{\\alpha-1} \\E^{-\\zeta} \\D\\zeta.\n", "\\end{align*}\n", "But we've also seen special functions in the form of orthogonal polynomials:\n", "1. $P_n^{(a,b)}(x)$ are orthogonal w.r.t. $(1-x)^a(1+x)^b$\n", "2. $L_n^{(a)}(x)$ are orthogonal w.r.t. $x^a \\E^{-x}$\n", "3. $H_n(x)$ are orthogonal w.r.t. $\\E^{-x^2}$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Lecture 26: Analyticity of solutions of ordinary differential equations\n", "\n", "\n", "Most special functions solve simple ODEs involving very low order rational functions. For example, these three special functions satisfy second ODEs:\n", "1. $u(z) = \\E^{-z} \\Ei z$ satisfies\n", "\\begin{align*}\n", "{\\D u \\over \\dz} + u &= {1 \\over z}\\qquad\\Rightarrow \\\\\n", "z {\\D^2 u \\over \\dz^2} + (z+1) {\\D u \\over \\dz} + u &= 0\n", "\\end{align*}\n", "2. $u(z) = {\\sqrt \\pi \\over 2} \\E^{z^2} \\erfc z$ satisfies\n", "\\begin{align*}\n", "{\\D u \\over \\dz} - 2 z u &= 1 \\qquad\\Rightarrow \\\\\n", "{\\D^2 u \\over \\dz^2} -2z {\\D u \\over \\dz} -2 u &= 0\n", "\\end{align*}\n", "3. $u(z) = \\E^{z} \\Gamma(\\alpha, z)$ satisfies \n", "\\begin{align*}\n", "{\\D u \\over \\dz} - u &= z^{\\alpha-1} \\qquad\\Rightarrow \\\\\n", "z {\\D^2 u \\over \\dz^2} + (1- \\alpha -z) {\\D u \\over \\dz} + (\\alpha-1)u &= 0\n", "\\end{align*}\n", "\n", "4. Laguerre satisfies\n", "$$\n", "x {\\D^2 L_n^{(a)} \\over \\dx^2} + (a+1-x) {\\D L_n^{(a)} \\over \\dx} + n L_n^{(a)} = 0\n", "$$\n", "5. Hermite satisfies\n", "$$\n", " {\\D^2 H_n \\over \\dx^2} -2x{\\D H_n \\over \\dx} + 2n H_n = 0\n", "$$\n", "\n", "A natural question becomes what is the relationship between the singularities of the variable coefficients and the singularities of the solutions?\n", "\n", "1. General properties of ODEs in the complex plane\n", " - Solving an ODE on a contour\n", " - Radius of convergence\n", " - Analytic continuation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## ODEs on contours\n", "\n", "Consider the solution of a first order ODE\n", "$$\n", "{\\D u\\over \\dz} = a(z) u\\qqand u(z_0) = c\n", "$$\n", "which we can write as\n", "$$\n", "u(z) = c \\E^{\\int_{z_0}^z a(\\zeta) \\D \\zeta}\n", "$$\n", "That is, we can think of the solution as living on a contour, corresponding to the contour of integration of the integral. \n", "\n", "Alternatively, we can think of the ODE as living on a contour $\\gamma : (a,b) \\rightarrow \\C$, in the first order case we do the change of variables $v(t) = u(\\gamma(t))$, the ODE is reduced to\n", "$$\n", "{\\D v \\over \\dt} = \\gamma'(t) u'(\\gamma(t)) = \\gamma'(t) a(\\gamma(t)) u(\\gamma(t)) = \\gamma'(t) a(\\gamma(t)) v\n", "$$\n", "Thus provided we can choose the contour to avoid the singularities of $a(z)$, we can define the solution, but the value of $u(z)$ can depend on the choice of contour.\n", "\n", "\n", "Normally, the contour is taken as a straight line, so that poles in $a(z)$ can induce branch cuts in $u(z)$. \n", "\n", "**Example** consider\n", "$$\n", "{\\D u\\over \\dz} = u \\qqand u(0) = 1\n", "$$\n", "with solution $u(z) = \\E^z$. Consider a contour like $\\gamma(t) = (1+\\I )t$. Then we have for $v(t) = u(\\gamma(t)) = \\E^{(1+\\I )t}$ that $v$ satisfies the ODE\n", "$$\n", "{\\D v \\over \\dt} = (1+\\I t) v \\qqand v(0) = 1\n", "$$\n", "\n", "\n", "**Example** Now consider an ODE with a pole:\n", "$$\n", "{\\D u\\over \\dz} = {k u \\over z} \\qqand u(1) = 1\n", "$$\n", "with solution $u(z) = z^k$. Consider two different choices of contours: $\\gamma_1(t) = \\E^{\\I t}$ and $ \\gamma_2(t) = \\E^{-\\I t}$ for $0 \\leq t \\leq 2\\pi$. For $v_1(t) = u(\\gamma_1(t))$ we have the ODE:\n", "$$\n", "{\\D v_1\\over \\dt} = \\I k v_1 \\qqand v(0) = 1\n", "$$\n", "with solution $v_1(t) = \\E^{\\I k t}$ (and similarly $v_2(t) = \\E^{- \\I k t}$). Hence we have \n", "\\begin{align*}\n", "u(1) &= u(\\E^{2 \\I \\pi}) \\questionequals v_1(2\\pi) = \\E^{2 \\pi \\I k} \\\\\n", "u(1) &= u(\\E^{-2 \\I \\pi}) \\questionequals v_2(2\\pi) = \\E^{-2 \\pi \\I k} \n", "\\end{align*}.\n", "When $k$ is not an integer, each of these is a different number.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Radius of convergence of ODEs\n", "\n", "This non-uniqueness means we think of solving an ODE in terms along a contour. In what sense is $u(z)$ analytic? Well, we can deduce that the radius of convergence of the solution $z_0$ is dictated by the radius of convergence of $a(z)$, that is, the closest singularity. \n", "\n", "\n", "**Theorem** Suppose $a(z)$ is analytic in a disk of radius $R$. Then $u(z)$ is also analytic in a disk of radius $R$.\n", "\n", "**Sketch of proof**\n", "We will show this using Taylor series (using operator notation). Note that if we represent (here we take $z_0 = 0$):\n", "$$\n", "u(z) = u_0 + u_1 z+ u_2 z^2 + \\cdots = (1,z,z^2,\\ldots) \\begin{pmatrix} u_0\\\\u_1\\\\u_2\\\\\\vdots \\end{pmatrix}\n", "$$\n", "The derivative operator has a very nice simple form:\n", "$$\n", "u'(z) = (1,z,z^2,\\ldots) \\begin{pmatrix} 0 & 1 \\\\ && 2 \\\\ &&&3 \\\\ &&&&\\ddots \\end{pmatrix} \\begin{pmatrix} u_0\\\\u_1\\\\u_2 \\\\\n", "\\vdots \\end{pmatrix}\n", "$$\n", "On the other hand, multiplication by $z$ has the following operator form:\n", "$$\n", "z u(z) = \\begin{pmatrix} 0 \\\\ 1 \\\\ & 1 \\\\ &&1 \\\\ &&&\\ddots \\end{pmatrix} \\begin{pmatrix} u_0\\\\u_1\\\\u_2 \\\\\n", "\\vdots \\end{pmatrix}\n", "$$\n", "Each time we multiply by $z$, this expression gets shift down. Thus multiplication by \n", "$$\n", "a(z) = a_0 + a_1 z+ a_2 z^2 + \\cdots\n", "$$\n", "has the form\n", "$$\n", "a(z) u(z) = \\begin{pmatrix} a_0 \\\\ a_1 & a_0 \\\\ a_2 & a_1 & a_0 \\\\ a_3 & a_2 & a_1 & a_0 \\\\ \\vdots &\\ddots&\\ddots&\\ddots&\\ddots \\end{pmatrix} \\begin{pmatrix} u_0\\\\u_1\\\\u_2 \\\\\n", "\\vdots \\end{pmatrix}\n", "$$\n", "Thus the ODE $u'(z) - a(z) u(z)= 0$ and $u(0) = c$ becomes:\n", "$$\n", "\\begin{pmatrix} 1 \\\\ -a_0 & 1 \\\\ -a_1 & -a_0 & 2 \\\\ -a_2 & -a_1 & -a_0 & 3 \\\\ -a_3 & -a_2 & -a_1 & -a_0 & 4 \\\\ \\vdots &\\ddots&\\ddots&\\ddots&\\ddots & \\ddots \\end{pmatrix} \\begin{pmatrix} u_0\\\\u_1\\\\u_2 \\\\\n", "\\vdots \n", "\\end{pmatrix} = \\begin{pmatrix} 1 \\\\ 0 \\\\\\vdots \\end{pmatrix}\n", "$$\n", "This is solvable via forward substitution.\n", "\n", "Assume that the radius of convergence of $a$ is $R$, that is, for every $r < R$ we have $|a_k| \\leq {C(r) \\over r^k}$ for some constant $C$. The worst case in the growth of $u_k$ is in the case every $a_k$ is positive, therefore, we have\n", "$$\n", "\\left| \\begin{pmatrix} u_0\\\\u_1\\\\u_2 \\\\\n", "\\vdots \n", "\\end{pmatrix} \\right| \\leq \\begin{pmatrix} 1 \\\\ -C & 1 \\\\ -C r^{-1} & -C & 2 \\\\ -C r^{-2} & -C r^{-1} & -C & 3 \\\\ -C r^{-3} & -C r^{-2} & -C r^{-1} & -C & 4 \\\\ \\vdots &\\ddots&\\ddots&\\ddots&\\ddots & \\ddots \\end{pmatrix}^{-1}\\begin{pmatrix} 1 \\\\ 0 \\\\\\vdots \\end{pmatrix}\n", "$$\n", "That is, we can bound $|u_k| < w_k$ where $w_k$ solves\n", "$$\n", "\\begin{pmatrix} 1 \\\\ -C & 1 \\\\ -C r^{-1} & -C & 2 \\\\ -C r^{-2} & -C r^{-1} & -C & 3 \\\\ -C r^{-3} & -C r^{-2} & -C r^{-1} & -C & 4 \\\\ \\vdots &\\ddots&\\ddots&\\ddots&\\ddots & \\ddots \\end{pmatrix}\\begin{pmatrix}w_0 \\\\ w_1 \\\\\\vdots \\end{pmatrix} = \\begin{pmatrix} 1 \\\\ 0 \\\\\\vdots \\end{pmatrix}\n", "$$\n", "This can be observed exactly when we note that this is the ODE with $\\tilde a(z)$ defined as\n", "$$\n", "\\tilde a(z) = C\\sum_{k=0} r^{-k} z^k = {C r \\over r-z}\n", "$$\n", "This motivates multiplying the equation by $z-r$, or in coefficient space, by:\n", "$$\n", "\\begin{pmatrix}\n", "1 \\\\\n", "-1 & r \\\\\n", "&-1 & r \\\\\n", "&&\\ddots & \\ddots\n", "\\end{pmatrix}\n", "$$\n", "which simplifies things:\n", "$$\n", "\\begin{pmatrix} 1 \\\\ -1-Cr & r \\\\ & -1-Cr & 2r \\\\ & & -2-Cr & 3r \\\\ & & & -3-Cr & 4r \\\\ &&&&\\ddots & \\ddots \\end{pmatrix}\\begin{pmatrix}w_0 \\\\ w_1 \\\\\\vdots \\end{pmatrix} = \\begin{pmatrix} 1 \\\\ -1 \\\\0 \\\\\\vdots \\end{pmatrix}\n", "$$\n", "Therefore we have \n", "$$\n", " w_k = r^{-1}(1 + C r/k) w_{k-1} = r^{-2}(1 + C r/k)(1 + C r/(k-1)) w_{k-2} = \\cdots = r^{-k}(1 + C r/k) \\cdots (1 + C r) w_1\n", "$$ \n", "With a bit of work, it can be shown that the product is uniformly bounded, giving us $O(r^{-k})$ decay.\n", "\n", "⬛️\n", "\n", "\n", "**Remark** This proof can be adapted to the vector-valued case, which gives the equivalent result for\n", "$$\n", "u''(z) + a(z) u'(z) + b(z) u(z) = 0\n", "$$\n", "that the radius of convergence is the smaller of radius convergence.\n", "\n", "\n", "### Analytic continuation\n", "\n", "\n", "We know $u$ is analytic around $z_0$ with a non-zero radius. But given a curve, we can re-expand around another point inside the radius of convergence of the first point, to get analyticity in another circle:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "-1.5\n", "\n", "\n", "-1.0\n", "\n", "\n", "-0.5\n", "\n", "\n", "0.0\n", "\n", "\n", "0.5\n", "\n", "\n", "1.0\n", "\n", "\n", "1.5\n", "\n", "\n", "-0.5\n", "\n", "\n", "0.0\n", "\n", "\n", "0.5\n", "\n", "\n", "1.0\n", "\n", "\n", "1.5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "contour\n", "\n", "\n", "\n", "\n", "singularity of a\n", "\n", "\n", "\n", "y3\n", "\n", "\n", "\n", "y4\n", "\n", "\n", "\n", "y5\n", "\n", "\n", "\n", "y6\n", "\n", "\n", "\n", "y7\n", "\n", "\n", "\n", "y8\n", "\n", "\n", "\n", "y9\n", "\n", "\n", "\n", "y10\n", "\n", "\n", "\n", "y11\n", "\n", "\n", "\n", "y12\n", "\n", "\n" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "γ = Arc(0.,1., (0,π))\n", "\n", "p = plot(γ; label=\"contour\")\n", "scatter!([0.],[0.]; label=\"singularity of a\")\n", "r = 0.5\n", "for k = linspace(0.,π,10)\n", " plot!(Circle(exp(im*k),r); color=:green)\n", "end\n", "p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this sense, provided $a$ is analytic in a neighbourhood of $\\gamma$, $u$ can be analytically continued along $\\gamma$. Note as soon as this analytic continuation wraps back to itself we have no guarantee." ] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.6.0", "language": "julia", "name": "julia-0.6" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }