(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 13.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    474950,       8953]
NotebookOptionsPosition[    461390,       8713]
NotebookOutlinePosition[    463355,       8755]
CellTagsIndexPosition[    463235,       8749]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell["3.029 Spring 2022\[LineSeparator]Lecture 04 - 02/09/2022", "Subtitle",
 CellChangeTimes->{{3.8525512993398438`*^9, 3.8525513206118402`*^9}, {
   3.852652054138073*^9, 3.8526520591301193`*^9}, {3.853194369726288*^9, 
   3.8531943739664793`*^9}, 3.8531971130005827`*^9, {3.853361889945813*^9, 
   3.853361893353859*^9}},ExpressionUUID->"3f5ed32e-d36b-4831-8e70-\
07bc5563378e"],

Cell[CellGroupData[{

Cell["Liquid - Gas Phase Transitions", "Chapter",
 CellChangeTimes->{{3.852551340964005*^9, 3.852551346980482*^9}, 
   3.8526520737398577`*^9, {3.853194378006518*^9, 3.853194381142681*^9}, {
   3.853361935778483*^9, 
   3.853361942498363*^9}},ExpressionUUID->"f065fde9-564c-4320-ad66-\
e68c1435cb14"],

Cell[TextData[{
 "In 3.020, you have probably covered thermodynamic state variables such as \
pressure, ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["P", "TI"], TraditionalForm], "errors" -> {}, "input" -> "P", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "9be6cb6e-ed9b-43cd-b687-39ea4dde3122"],
 ", temperature, ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["T", "TI"], TraditionalForm], "errors" -> {}, "input" -> "T", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "fc48207c-8db9-4c12-84e8-cae5874f5bd6"],
 ", and the system\[CloseCurlyQuote]s volume, ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["V", "TI"], TraditionalForm], "errors" -> {}, "input" -> "V", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "49c8441f-fbe6-413d-8872-63c01096dfa8"]
}], "Item",
 CellChangeTimes->{{3.85336195400189*^9, 3.8533620684423523`*^9}, {
  3.8533623316728773`*^9, 
  3.85336235616885*^9}},ExpressionUUID->"194c3f35-cc3e-4282-bafd-\
3db05eac971e"],

Cell[CellGroupData[{

Cell["\<\
Equations of state are thermodynamic relations which relate these \
thermodynamic variables, and thus describe the state of a system under these \
physical conditions\
\>", "Item",
 CellChangeTimes->{{3.85336195400189*^9, 3.853362140335434*^9}, {
  3.853362241388192*^9, 
  3.8533622413886642`*^9}},ExpressionUUID->"216df96a-cd90-488c-9263-\
b17fcbb76cd5"],

Cell["They take the general form:", "Subitem",
 CellChangeTimes->{{3.85336195400189*^9, 3.853362140335434*^9}, {
  3.853362242039806*^9, 
  3.853362255160089*^9}},ExpressionUUID->"e97e0e97-6e05-4c47-a51a-\
4b1b2904d0b4"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        StyleBox["f", "TI"], 
        RowBox[{"(", 
          RowBox[{
            StyleBox["P", "TI"], ",", 
            StyleBox["V", "TI"], ",", 
            StyleBox["T", "TI"]}], ")"}], "\[LongEqual]", "0"}], 
      TraditionalForm], "errors" -> {}, "input" -> "f(P,V,T)=0", "state" -> 
    "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, 3.8533633046775913`*^9},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"62e5161b-12ad-44c1-80d5-009c4538d489"],

Cell["\<\
One simple such equation of state, pertaining to non-interacting particles, \
is called the ideal gas law and is given by:\
\>", "Item",
 CellChangeTimes->{
  3.853362143239216*^9, {3.8533621833588457`*^9, 3.8533622158537397`*^9}, {
   3.8533622908781977`*^9, 
   3.853362295024135*^9}},ExpressionUUID->"8f82d3c6-6524-479a-8b5c-\
cfe8c4c90978"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        StyleBox["f", "TI"], 
        RowBox[{"(", 
          RowBox[{
            StyleBox["P", "TI"], ",", 
            StyleBox["V", "TI"], ",", 
            StyleBox["T", "TI"]}], ")"}], "\[LongEqual]", 
        StyleBox["P", "TI"], 
        StyleBox["V", "TI"], "-", 
        StyleBox["n", "TI"], 
        StyleBox["R", "TI"], 
        StyleBox["T", "TI"], "\[LongEqual]", "0"}], TraditionalForm], 
    "errors" -> {}, "input" -> "f(P,V,T)=PV - nRT =0", "state" -> "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, {3.8533633046775913`*^9, 
   3.8533633120769987`*^9}},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"ec5d6515-4fd7-4ce7-9cf0-2c7506787dd0"],

Cell[TextData[{
 "where ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["n", "TI"], TraditionalForm], "errors" -> {}, "input" -> "n", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "59d0a4f6-028f-43fe-91da-54f335005230"],
 " is the number of moles of a substance"
}], "Subitem",
 CellChangeTimes->{{3.8533624062767572`*^9, 
  3.853362431524691*^9}},ExpressionUUID->"95ff0ce5-ff70-4e3f-8fcd-\
dd9952b28e26"],

Cell[CellGroupData[{

Cell[TextData[{
 "and ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["R", "TI"], TraditionalForm], "errors" -> {}, "input" -> "R", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "0afbfe09-c3c0-4b42-be89-4a024c717488"],
 " is the ideal gas constant"
}], "Subitem",
 CellChangeTimes->{{3.8533624062767572`*^9, 
  3.8533624403361683`*^9}},ExpressionUUID->"b1aa1f8d-e62a-484e-a3e6-\
a2cdfbb6c6f5"],

Cell[CellGroupData[{

Cell[BoxData[
 NamespaceBox["WolframAlphaQueryParseResults",
  DynamicModuleBox[{Typeset`q$$ = "ideal gas constant in SI units", 
   Typeset`newq$$ = "ideal gas constant in SI units", Typeset`chosen$$ = 
   "UnitConvert[Quantity[None, \"MolarGasConstant\"], \"SI\"]", 
   Typeset`open$$ = False}, 
   PaneSelectorBox[{False->
    DynamicModuleBox[{Typeset`show$$ = False, Typeset`assumptionsQ$$ = False}, 
     TagBox[
      FrameBox[
       TagBox[GridBox[{
          {
           InputFieldBox[Dynamic[Typeset`newq$$], String,
            Appearance->None,
            BaseStyle->{"CalculateInput"},
            ContinuousAction->True,
            Enabled->True,
            FieldSize->{{1, 40}, {1, 
               DirectedInfinity[1]}},
            TrapSelection->False], 
           ItemBox[
            ButtonBox[
             PaneSelectorBox[{True->
              TagBox[
               TooltipBox[
                
                DynamicBox[FEPrivate`FrontEndResource[
                 "WABitmaps", "OrangeSquarePlus"],
                 ImageSizeCache->{11., {4., 7.}}],
                DynamicBox[
                 ToBoxes[
                  FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"], 
                  StandardForm]]],
               Annotation[#, 
                Dynamic[
                 FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"]], 
                "Tooltip"]& ], False->
              TagBox[
               TooltipBox[
                
                DynamicBox[FEPrivate`FrontEndResource[
                 "WABitmaps", "GraySquarePlus"],
                 ImageSizeCache->{11., {4., 7.}}],
                DynamicBox[
                 ToBoxes[
                  FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"], 
                  StandardForm]]],
               Annotation[#, 
                Dynamic[
                 FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"]], 
                "Tooltip"]& ]}, Dynamic[Typeset`show$$],
              ImageSize->All],
             Appearance->None,
             ButtonFunction:>(Quiet[
                WolframAlpha[]]; If[
                Or[
                 CurrentValue["OptionKey"], 
                 CurrentValue["AltKey"]], SelectionMove[
                  ButtonNotebook[], All, ButtonCell, AutoScroll -> False]; 
                NotebookWrite[
                  ButtonNotebook[], 
                  Cell[
                  Typeset`newq$$, "WolframAlphaShort", FormatType -> 
                   "TextForm"], All], Typeset`open$$ = True; 
                WolframAlphaClient`Private`extrudeFromFastParse[
                 "ideal gas constant in SI units", 
                  Defer[
                   UnitConvert[
                    Quantity[None, "MolarGasConstant"], "SI"]], "Fast parse"]; 
                Typeset`open$$ = False]),
             Evaluator->Automatic,
             Method->"Queued"],
            Alignment->{Right, Top},
            StripOnInput->False]},
          {
           PaneBox[
            TagBox[
             TooltipBox[
              ButtonBox[
               PaneSelectorBox[{False->
                StyleBox[
                 RowBox[{"UnitConvert", "[", 
                  RowBox[{
                   TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""},
                    "Quantity"], ",", " ", "\"\<SI\>\""}], "]"}],
                 StripOnInput->False,
                 NumberMarks->False], True->
                StyleBox[
                 RowBox[{"UnitConvert", "[", 
                  RowBox[{
                   TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""},
                    "Quantity"], ",", " ", "\"\<SI\>\""}], "]"}],
                 StripOnInput->False,
                 ShowSyntaxStyles->False,
                 NumberMarks->False,
                 FontColor->RGBColor[1, 0.5, 0]]}, Dynamic[
                 CurrentValue["MouseOver"]],
                BaseStyle->{ShowStringCharacters -> True},
                FrameMargins->0,
                ImageSize->Automatic],
               Alignment->Left,
               Appearance->None,
               BaseStyle->{},
               ButtonFunction:>(SelectionMove[
                  ButtonNotebook[], All, ButtonCell]; NotebookWrite[
                  ButtonNotebook[], 
                  Cell[
                   BoxData[
                    RowBox[{"UnitConvert", "[", 
                    RowBox[{
                    TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""}, 
                    "Quantity", SyntaxForm -> Mod], ",", " ", "\"SI\""}], 
                    "]"}]], "Input"], All]; SelectionMove[
                  ButtonNotebook[], After, CellContents]),
               Evaluator->Automatic,
               ImageSize->Automatic,
               Method->"Preemptive"],
              DynamicBox[
               ToBoxes[
                FEPrivate`FrontEndResource["WAStrings", "RemoveResults"], 
                StandardForm]]],
             Annotation[#, 
              Dynamic[
               FEPrivate`FrontEndResource["WAStrings", "RemoveResults"]], 
              "Tooltip"]& ],
            AppearanceElements->{},
            BaseStyle->{ShowStringCharacters -> True, ScriptLevel -> 0},
            ImageSize->{Automatic, {1, 100}},
            Scrollbars->{False, Automatic}], "\[SpanFromLeft]"}
         },
         AutoDelete->False,
         BaselinePosition->{1, 1},
         FrameStyle->GrayLevel[0.85],
         GridBoxAlignment->{"Columns" -> {{Left}}},
         GridBoxDividers->{
          "Columns" -> {{False}}, "Rows" -> {False, {True}, False}},
         GridBoxItemSize->{
          "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
        "Grid"],
       Alignment->Top,
       Background->Dynamic[
         FEPrivate`If[
          FEPrivate`And[
           FEPrivate`SameQ[
            FEPrivate`Head[Typeset`newq$$], String], 
           FEPrivate`UnsameQ[Typeset`q$$, Typeset`newq$$]], 
          RGBColor[1., 0.975, 0.95], 
          GrayLevel[1]]],
       BaselinePosition->Baseline,
       FrameStyle->GrayLevel[0.85],
       ImageSize->Automatic,
       RoundingRadius->5,
       StripOnInput->False],
      EventHandlerTag[{
       "MouseEntered" :> FEPrivate`Set[Typeset`show$$, True], "MouseExited" :> 
        FEPrivate`Set[Typeset`show$$, False], Method -> "Preemptive", 
        PassEventsDown -> Automatic, PassEventsUp -> True}]],
     DynamicModuleValues:>{}], True->
    TagBox[GridBox[{
       {
        DynamicModuleBox[{Typeset`show$$ = False, Typeset`assumptionsQ$$ = 
         False}, 
         TagBox[
          FrameBox[
           TagBox[GridBox[{
              {
               InputFieldBox[Dynamic[Typeset`newq$$], String,
                Appearance->None,
                BaseStyle->{"CalculateInput"},
                ContinuousAction->True,
                Enabled->True,
                FieldSize->{{1, 40}, {1, 
                   DirectedInfinity[1]}},
                TrapSelection->False], 
               ItemBox[
                ButtonBox[
                 PaneSelectorBox[{True->
                  TagBox[
                   TooltipBox[
                    
                    DynamicBox[FEPrivate`FrontEndResource[
                    "WABitmaps", "OrangeSquarePlus"]],
                    DynamicBox[
                    ToBoxes[
                    FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"],
                     StandardForm]]],
                   Annotation[#, 
                    Dynamic[
                    FEPrivate`FrontEndResource[
                    "WAStrings", "ShowAllResults"]], "Tooltip"]& ], False->
                  TagBox[
                   TooltipBox[
                    
                    DynamicBox[FEPrivate`FrontEndResource[
                    "WABitmaps", "GraySquarePlus"]],
                    DynamicBox[
                    ToBoxes[
                    FEPrivate`FrontEndResource["WAStrings", "ShowAllResults"],
                     StandardForm]]],
                   Annotation[#, 
                    Dynamic[
                    FEPrivate`FrontEndResource[
                    "WAStrings", "ShowAllResults"]], "Tooltip"]& ]}, Dynamic[
                  Typeset`show$$],
                  ImageSize->All],
                 Appearance->None,
                 ButtonFunction:>(Quiet[
                    WolframAlpha[]]; If[
                    Or[
                    CurrentValue["OptionKey"], 
                    CurrentValue["AltKey"]], SelectionMove[
                    ButtonNotebook[], All, ButtonCell, AutoScroll -> False]; 
                    NotebookWrite[
                    ButtonNotebook[], 
                    Cell[
                    Typeset`newq$$, "WolframAlphaShort", FormatType -> 
                    "TextForm"], All], Typeset`open$$ = True; 
                    WolframAlphaClient`Private`extrudeFromFastParse[
                    "ideal gas constant in SI units", 
                    Defer[
                    UnitConvert[
                    Quantity[None, "MolarGasConstant"], "SI"]], "Fast parse"]; 
                    Typeset`open$$ = False]),
                 Evaluator->Automatic,
                 Method->"Queued"],
                Alignment->{Right, Top},
                StripOnInput->False]},
              {
               PaneBox[
                TagBox[
                 TooltipBox[
                  ButtonBox[
                   PaneSelectorBox[{False->
                    StyleBox[
                    RowBox[{"UnitConvert", "[", 
                    RowBox[{
                    TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""},
                    "Quantity"], ",", " ", "\<\"SI\"\>"}], "]"}],
                    StripOnInput->False,
                    NumberMarks->False], True->
                    StyleBox[
                    RowBox[{"UnitConvert", "[", 
                    RowBox[{
                    TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""},
                    "Quantity"], ",", " ", "\<\"SI\"\>"}], "]"}],
                    StripOnInput->False,
                    ShowSyntaxStyles->False,
                    NumberMarks->False,
                    FontColor->RGBColor[1, 0.5, 0]]}, Dynamic[
                    CurrentValue["MouseOver"]],
                    BaseStyle->{ShowStringCharacters -> True},
                    FrameMargins->0,
                    ImageSize->Automatic],
                   Alignment->Left,
                   Appearance->None,
                   BaseStyle->{},
                   ButtonFunction:>(SelectionMove[
                    ButtonNotebook[], All, ButtonCell]; NotebookWrite[
                    ButtonNotebook[], 
                    Cell[
                    BoxData[
                    RowBox[{"UnitConvert", "[", 
                    RowBox[{
                    TemplateBox[{
                    InterpretationBox["\[InvisibleSpace]", 1], 
                    StyleBox["\"R\"", Italic, StripOnInput -> False], 
                    "molar gas constants", "\"MolarGasConstant\""}, 
                    "Quantity", SyntaxForm -> Mod], ",", " ", "\"SI\""}], 
                    "]"}]], "Input"], All]; SelectionMove[
                    ButtonNotebook[], After, CellContents]),
                   Evaluator->Automatic,
                   ImageSize->Automatic,
                   Method->"Preemptive"],
                  DynamicBox[
                   ToBoxes[
                    FEPrivate`FrontEndResource["WAStrings", "RemoveResults"], 
                    StandardForm]]],
                 Annotation[#, 
                  Dynamic[
                   FEPrivate`FrontEndResource["WAStrings", "RemoveResults"]], 
                  "Tooltip"]& ],
                AppearanceElements->{},
                BaseStyle->{ShowStringCharacters -> True, ScriptLevel -> 0},
                ImageSize->{Automatic, {1, 100}},
                Scrollbars->{False, Automatic}], "\[SpanFromLeft]"}
             },
             AutoDelete->False,
             BaselinePosition->{1, 1},
             FrameStyle->GrayLevel[0.85],
             GridBoxAlignment->{"Columns" -> {{Left}}},
             
             GridBoxDividers->{
              "Columns" -> {{False}}, "Rows" -> {False, {True}, False}},
             
             GridBoxItemSize->{
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
            "Grid"],
           Alignment->Top,
           Background->Dynamic[
             FEPrivate`If[
              FEPrivate`And[
               FEPrivate`SameQ[
                FEPrivate`Head[Typeset`newq$$], String], 
               FEPrivate`UnsameQ[Typeset`q$$, Typeset`newq$$]], 
              RGBColor[1., 0.975, 0.95], 
              GrayLevel[1]]],
           BaselinePosition->Baseline,
           FrameStyle->GrayLevel[0.85],
           ImageSize->Automatic,
           RoundingRadius->5,
           StripOnInput->False],
          
          EventHandlerTag[{
           "MouseEntered" :> FEPrivate`Set[Typeset`show$$, True], 
            "MouseExited" :> FEPrivate`Set[Typeset`show$$, False], Method -> 
            "Preemptive", PassEventsDown -> Automatic, PassEventsUp -> True}]],
         DynamicModuleValues:>{}]},
       {
        InterpretationBox[
         StyleBox[
          
          DynamicBox[FEPrivate`FrontEndResource[
           "FEExpressions", "NecklaceAnimator"][20]],
          AnimatorBoxOptions->{ImageSize->20}],
         Animator[Appearance -> "Necklace", ImageSize -> 20],
         BaseStyle->{"Deploy"}]}
      },
      BaselinePosition->{1, 1},
      DefaultBaseStyle->"Column",
      GridBoxAlignment->{"Columns" -> {{Left}}},
      GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
     
     "Column"]}, Dynamic[
     TrueQ[Typeset`open$$]],
    BaseStyle->{Deployed -> True},
    ImageSize->Automatic],
   DynamicModuleValues:>{}],
  BaseStyle->{Deployed -> True},
  DeleteWithContents->True,
  Editable->False,
  SelectWithContents->True]], "WolframAlphaShortInput",
 CellLabel->"In[6]:=",ExpressionUUID->"22211ff3-2af1-4fc2-8a36-1b95f12c39c1"],

Cell[BoxData[
 TemplateBox[{
   FractionBox["207861565453831", "25000000000000"], 
   RowBox[{
    "\"J\"", "\[InvisibleSpace]", "\"/(\"", "\[InvisibleSpace]", "\"K\"", 
     "\[ThinSpace]", "\"mol\"", "\[InvisibleSpace]", "\")\""}], 
   "joules per kelvin mole", 
   FractionBox["\"Joules\"", 
    RowBox[{"\"Kelvins\"", " ", "\"Moles\""}]]},
  "Quantity"]], "Output",
 CellChangeTimes->{3.8533625290802107`*^9},
 CellLabel->"Out[6]=",ExpressionUUID->"0c09929a-ce16-42f1-b1b6-94adc501bb59"]
}, Open  ]]
}, Open  ]],

Cell["\<\
The equation\[CloseCurlyQuote]s simplicity permits thermodynamic development \
without long and tedious equations. \
\>", "Item",
 CellChangeTimes->{{3.853362551836474*^9, 
  3.8533625546617603`*^9}},ExpressionUUID->"34d63ad0-f971-47af-8984-\
21c470b95d4b"],

Cell[CellGroupData[{

Cell["\<\
The ideal gas law, however, has assumptions that are too simple to capture \
the behavior of real systems.  Those assumptions are:\
\>", "Item",
 CellChangeTimes->{{3.853362551836474*^9, 
  3.853362558491415*^9}},ExpressionUUID->"3d8ba483-4fe8-41c8-bf8f-\
3fa04e92fade"],

Cell["\<\
Gas molecules are treated as point particles (occupying no volume)\
\>", "Subitem",
 CellChangeTimes->{{3.853362551836474*^9, 
  3.853362565288602*^9}},ExpressionUUID->"ccb712cd-b071-4cda-893a-\
ce7057e0c64e"],

Cell["\<\
Gas molecules are allowed to interact with their container, but not one \
another\
\>", "Subitem",
 CellChangeTimes->{{3.853362551836474*^9, 
  3.85336256542801*^9}},ExpressionUUID->"99066aa4-6465-41be-af03-\
5c9d4333e934"]
}, Open  ]],

Cell[CellGroupData[{

Cell["Van der Waals Gas", "Section",
 CellChangeTimes->{{3.853362600203939*^9, 
  3.853362608577957*^9}},ExpressionUUID->"52e7a705-6348-4e87-b2a6-\
52872f2b8db3"],

Cell["\<\
Replacing these with less simple assumptions gives rise to rich phenomena, \
and in particular phase transitions. \
\>", "Item",
 CellChangeTimes->{{3.853362619950158*^9, 
  3.8533626297751217`*^9}},ExpressionUUID->"83603db1-2bcc-45a4-ad8e-\
ba36063afb8f"],

Cell[TextData[{
 "Johannes Van der Waals proposed a modified equation of state in his thesis \
which is ",
 ButtonBox["now known as the Van der Waals equation",
  BaseStyle->"Hyperlink",
  ButtonData->{
    URL["https://en.wikipedia.org/wiki/Van_der_Waals_equation"], None},
  ButtonNote->"https://en.wikipedia.org/wiki/Van_der_Waals_equation"],
 "."
}], "Item",
 CellChangeTimes->{{3.853362619950158*^9, 
  3.853362629532043*^9}},ExpressionUUID->"d0ec8106-e7d5-48d6-8979-\
6388648a0e7f"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        RowBox[{"(", 
          RowBox[{
            StyleBox["P", "TI"], "+", 
            FractionBox[
             StyleBox["a", "TI"], 
             SuperscriptBox[
              OverscriptBox[
               StyleBox["V", "TI"], "_"], "2"]]}], ")"}], 
        RowBox[{"(", 
          RowBox[{
            OverscriptBox[
             StyleBox["V", "TI"], "_"], "-", 
            StyleBox["b", "TI"]}], ")"}], "\[LongEqual]", 
        StyleBox["R", "TI"], 
        StyleBox["T", "TI"]}], TraditionalForm], "errors" -> {}, "input" -> 
    "\\left(P+\\frac{a}{\\bar{V}^2}\\right)\\left(\\bar{V}-b\\right) = RT", 
    "state" -> "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"b7d8c523-abef-4f7c-8300-7ef832957bd6"],

Cell[TextData[{
 "where ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       OverscriptBox[
        StyleBox["V", "TI"], "_"], TraditionalForm], "errors" -> {}, "input" -> 
     "\\bar{V}", "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "a0bdced7-ac52-4f82-8956-2ffb83511405"],
 " is the molar volume"
}], "Subitem",
 CellChangeTimes->{{3.853362670729907*^9, 
  3.853362681111998*^9}},ExpressionUUID->"6b57cc43-8d44-4ec5-adad-\
c5466f055888"],

Cell[CellGroupData[{

Cell[TextData[{
 "and ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "599884ca-3211-48e8-9505-c029814a9b7e"],
 " and ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "6c8343a3-0b0a-4bdd-b9ae-3045b5fbf246"],
 " are constants relating to molecular interactions and volumes"
}], "Subitem",
 CellChangeTimes->{{3.853362670729907*^9, 
  3.853362700168695*^9}},ExpressionUUID->"5eba98f6-0e12-46e1-82a8-\
d831d46b3093"],

Cell[CellGroupData[{

Cell[TextData[{
 "it\[CloseCurlyQuote]s easy to see that if both ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "965ba7c4-c1ee-4f7a-9cca-966bfa1957e4"],
 " and ",
 Cell[BoxData[
  FormBox[
   TemplateBox[<|"boxes" -> FormBox[
       StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", 
     "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
  "085a1e9d-1fee-4eda-9e41-4980f259b5b1"],
 " are zero, the van der Waals equation reduces to the ideal gas law"
}], "Subsubitem",
 CellChangeTimes->{{3.853362670729907*^9, 
  3.853362724468693*^9}},ExpressionUUID->"fd0853a2-dd86-46fe-b54f-\
b4f291ef8d36"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{"vdWEquationOfState", "[", 
     RowBox[{"a_", ",", "b_", ",", "r_"}], "]"}], "[", 
    RowBox[{"pressure_", ",", "molarVolume_", ",", "temperature_"}], "]"}], 
   "=", 
   RowBox[{
    RowBox[{
     RowBox[{"(", 
      RowBox[{"pressure", "+", 
       FractionBox["a", 
        RowBox[{"molarVolume", "^", "2"}]]}], ")"}], 
     RowBox[{"(", 
      RowBox[{"molarVolume", "-", "b"}], ")"}]}], "\[Equal]", 
    RowBox[{"r", " ", "temperature"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8533627566628437`*^9, 3.8533627921202297`*^9}},
 CellLabel->"In[7]:=",ExpressionUUID->"eb90751d-a0a2-4c98-a0b6-26c2f88b9001"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Critical Behaviour", "Subsection",
 CellChangeTimes->{{3.853362828637986*^9, 
  3.8533628342220592`*^9}},ExpressionUUID->"30b58b1b-670a-4756-a42b-\
91c6a4fb77e7"],

Cell[CellGroupData[{

Cell["\<\
Later in 3.020, you will define various thermodynamic relations (Maxwell\
\[CloseCurlyQuote]s relations)\
\>", "Item",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362928519536*^9}, {
  3.853362971386208*^9, 
  3.853362976273346*^9}},ExpressionUUID->"03f7d23a-459e-4bcb-8e78-\
e70dfeafb216"],

Cell["and bounds their stability set to materials properties", "Subitem",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362928519536*^9}, {
  3.853362971386208*^9, 
  3.853362989512271*^9}},ExpressionUUID->"b65a7ca5-e7e4-4f34-b0b9-\
aab04acc7f7b"]
}, Open  ]],

Cell[TextData[{
 "One of these relations, called the ",
 ButtonBox["isothermal bulk modulus",
  BaseStyle->"Hyperlink",
  ButtonData->{
    URL["https://en.wikipedia.org/wiki/Bulk_modulus"], None},
  ButtonNote->"https://en.wikipedia.org/wiki/Bulk_modulus"],
 " , relates the change in the pressure of material following a change in its \
volume at fixed temperature"
}], "Item",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362928519536*^9}, {
  3.853362972263578*^9, 3.853362973911716*^9}, {3.853363025647715*^9, 
  3.853363089432975*^9}},ExpressionUUID->"a5e7db8b-7261-483a-9fb1-\
d8fcabea0c10"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        SubscriptBox[
         StyleBox["K", "TI"], 
         StyleBox["T", "TI"]], "\[LongEqual]", "-", 
        StyleBox["V", "TI"], 
        SubscriptBox[
         RowBox[{
           FractionBox[
            RowBox[{"\[PartialD]", 
              StyleBox["P", "TI"]}], 
            RowBox[{"\[PartialD]", 
              StyleBox["V", "TI"]}]], "\[VerticalSeparator]"}], 
         StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> 
    "K_T = -V \\left.\\frac{\\partial P}{\\partial V}\\right|_{T}", "state" -> 
    "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, 3.853363295175158*^9, 
   3.853365659961577*^9},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"3310c74b-63c9-4883-9dd7-7b16025f1866"],

Cell[CellGroupData[{

Cell["\<\
In stable materials, pressure decreases with increased volume and thus the \
isothermal bulk modulus is positive.  The reasoning goes as follows:\
\>", "Item",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362855094796*^9}, {
   3.853363097634355*^9, 3.853363097635551*^9}, 
   3.853363237619362*^9},ExpressionUUID->"8f941ce5-f963-4512-b086-\
4711a065fa86"],

Cell["\<\
 If the bulk modulus becomes negative, then a decrease in volume would be \
resisted by decreasing pressure and the volume would continue to shrink until \
it goes to zero (or the bulk modulus becomes positive). \
\>", "Subitem",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362855094796*^9}, {
  3.853363100817333*^9, 3.853363106568837*^9}, {3.853363230339158*^9, 
  3.8533632362427263`*^9}},ExpressionUUID->"5a2ef94d-b89c-4f63-8b3b-\
3a10427405d4"],

Cell["\<\
Thus a negative isothermal bulk modules would produce spontaneous volume \
changes \[LongDash] i.e. a phase transition.\
\>", "Subitem",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362855094796*^9}, {
  3.853363100817333*^9, 3.853363106568837*^9}, {3.853363230339158*^9, 
  3.8533632563352833`*^9}},ExpressionUUID->"4ea8d466-2c98-47c4-a6f3-\
656b88106f41"]
}, Open  ]],

Cell["Mathematically, we can express this stability condition as ", "Item",
 CellChangeTimes->{{3.853362836297984*^9, 3.853362855094796*^9}, {
  3.853363100817333*^9, 3.853363106568837*^9}, {3.853363230339158*^9, 
  3.853363266931617*^9}},ExpressionUUID->"fcde1524-e546-472d-af70-\
ab1bf8a6d5a1"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        SubscriptBox[
         RowBox[{
           RowBox[{"\[Delta]", 
             StyleBox["V", "TI"], "\[Delta]", 
             StyleBox["P", "TI"]}], "\[VerticalSeparator]"}], 
         StyleBox["T", "TI"]], "<", "0"}], TraditionalForm], "errors" -> {}, 
    "input" -> "\\left.\\delta V \\delta P \\right|_T < 0", "state" -> 
    "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, {3.853363295175158*^9, 
   3.853363320973236*^9}},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"9e476b17-4fa2-40b4-84f7-7a9741d03bb8"],

Cell["\<\
which highlights that in order for the system to be stable, pressure must \
decrease with increasing volume. \
\>", "Subitem",
 CellChangeTimes->{{3.8533633290565023`*^9, 
  3.853363335675214*^9}},ExpressionUUID->"21c1851b-9465-433e-b8fd-\
e53770ac754c"],

Cell[TextData[{
 "For a gas obeying the van der Waals equation of state, there exists a \
critical temperature, ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["T", "c"], TraditionalForm]],ExpressionUUID->
  "02e1b065-240b-423a-aa64-3779753ae7c1"],
 ", above which eq. (5) is always satisfied \[Dash] highlighting the stable \
region."
}], "Subitem",
 CellChangeTimes->{{3.8533633290565023`*^9, 
  3.8533633423083363`*^9}},ExpressionUUID->"7db7400d-3c27-4ed9-be2e-\
8b9ccaa512ef"],

Cell[CellGroupData[{

Cell[TextData[{
 "In order to find ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["T", "c"], TraditionalForm]],ExpressionUUID->
  "d58357ad-b018-438f-8047-2eddaf67a486"],
 ", the conditions for a negative slope in pressure versus molar volume need \
to be worked out. As such, we rearrange (3) for pressure:"
}], "Item",
 CellChangeTimes->{{3.8533633760750513`*^9, 
  3.853363397725234*^9}},ExpressionUUID->"5d7216bc-3859-4404-abee-\
b4c48fabe4e1"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"vdWEquationOfStatePressure", "[", 
    RowBox[{"a_", ",", "b_", ",", "r_"}], "]"}], "[", 
   RowBox[{"molarVolume_", ",", "temperature_"}], "]"}], "=", 
  RowBox[{"pressure", "/.", 
   RowBox[{"First", "[", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"vdWEquationOfState", "[", 
        RowBox[{"a", ",", "b", ",", "r"}], "]"}], "[", 
       RowBox[{"pressure", ",", "molarVolume", ",", "temperature"}], "]"}], 
      ",", "pressure"}], "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.85336347686228*^9, 3.853363491791638*^9}},
 CellLabel->"In[10]:=",ExpressionUUID->"b3f2e389-dc6e-4b10-b934-7af9efd34e47"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{
    RowBox[{"-", "a"}], " ", "b"}], "+", 
   RowBox[{"a", " ", "molarVolume"}], "-", 
   RowBox[{
    SuperscriptBox["molarVolume", "2"], " ", "r", " ", "temperature"}]}], 
  RowBox[{
   RowBox[{"(", 
    RowBox[{"b", "-", "molarVolume"}], ")"}], " ", 
   SuperscriptBox["molarVolume", "2"]}]]], "Output",
 CellChangeTimes->{3.853363494370277*^9},
 CellLabel->"Out[10]=",ExpressionUUID->"1d1362f1-4aa2-4d87-8610-4f43589f7f84"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["\<\
We require that the molar volume exhibits an inflection point\
\>", "Item",
 CellChangeTimes->{{3.853363523968565*^9, 
  3.853363557106702*^9}},ExpressionUUID->"f7c41806-b144-4299-8563-\
ce059e7d78d4"],

Cell[CellGroupData[{

Cell["\<\
This amounts to the first and second derivatives (w.r.t. molar volume) vanish\
\
\>", "Subitem",
 CellChangeTimes->{{3.853363523968565*^9, 
  3.853363582359413*^9}},ExpressionUUID->"fb9f34d3-1c0b-4998-9401-\
012d0bda610b"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"extremumEquation", "=", 
  RowBox[{"Simplify", "[", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"Derivative", "[", 
       RowBox[{"1", ",", "0"}], "]"}], "[", 
      RowBox[{"vdWEquationOfStatePressure", "[", 
       RowBox[{"a", ",", "b", ",", "r"}], "]"}], "]"}], "[", 
     RowBox[{"vCritical", ",", "tCritical"}], "]"}], "\[Equal]", "0"}], 
   "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.853363601464505*^9, 3.853363604816352*^9}},
 CellLabel->"In[11]:=",ExpressionUUID->"b460a484-c8c0-4c98-934c-14cf6fe032fa"],

Cell[BoxData[
 RowBox[{
  FractionBox[
   RowBox[{
    RowBox[{"2", " ", "a", " ", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"b", "-", "vCritical"}], ")"}], "2"]}], "-", 
    RowBox[{"r", " ", "tCritical", " ", 
     SuperscriptBox["vCritical", "3"]}]}], 
   RowBox[{
    RowBox[{"(", 
     RowBox[{"b", "-", "vCritical"}], ")"}], " ", "vCritical"}]], "\[Equal]", 
  "0"}]], "Output",
 CellChangeTimes->{3.853363608897586*^9},
 CellLabel->"Out[11]=",ExpressionUUID->"a231a323-4fc3-4837-a3c8-bb053ef20eb8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"inflectionEquation", "=", 
  RowBox[{"Simplify", "[", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"Derivative", "[", 
       RowBox[{"2", ",", "0"}], "]"}], "[", 
      RowBox[{"vdWEquationOfStatePressure", "[", 
       RowBox[{"a", ",", "b", ",", "r"}], "]"}], "]"}], "[", 
     RowBox[{"vCritical", ",", "tCritical"}], "]"}], "\[Equal]", "0"}], 
   "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.853363617079802*^9, 3.853363621714244*^9}},
 CellLabel->"In[12]:=",ExpressionUUID->"53609d8e-8ecb-4c07-8b2b-71c1d071a73f"],

Cell[BoxData[
 RowBox[{
  FractionBox[
   RowBox[{
    RowBox[{"3", " ", "a", " ", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"b", "-", "vCritical"}], ")"}], "3"]}], "+", 
    RowBox[{"r", " ", "tCritical", " ", 
     SuperscriptBox["vCritical", "4"]}]}], 
   RowBox[{
    RowBox[{"(", 
     RowBox[{"b", "-", "vCritical"}], ")"}], " ", "vCritical"}]], "\[Equal]", 
  "0"}]], "Output",
 CellChangeTimes->{3.853363627836646*^9},
 CellLabel->"Out[12]=",ExpressionUUID->"0a0587a1-6414-4511-9cb1-288bff4b11c3"]
}, Open  ]]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell[TextData[{
 StyleBox["Coding comment: ",
  FontWeight->"Bold"],
 "The derivatives above were evaluated using the ",
 StyleBox["Derivative",
  FontSlant->"Italic"],
 " operator. This is referred to as functional differentiation, and we often \
find it to be the most natural choice in functional programming (e.g. when \
manipulating mathematical expressions).\n\nAn alternative is to use partial \
derivatives notation, which instead acts on expressions and is given by the \
",
 StyleBox["D",
  FontSlant->"Italic"],
 " function in Mathematica. The examples below are provided in hope of \
demystifying the differences and similarities between the two."
}], "Item",
 CellChangeTimes->{{3.8533636321926003`*^9, 
  3.853363644554522*^9}},ExpressionUUID->"04cec547-f3ef-4ac9-ad5d-\
5d48ca00495c"],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"myFunction", "[", "univariateArgument_", "]"}], ":=", 
  RowBox[{"4", " ", 
   SuperscriptBox["univariateArgument", "3"]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"functionalDerivative", "=", 
   RowBox[{
    RowBox[{"Derivative", "[", "1", "]"}], "[", "myFunction", "]"}]}], 
  "\[IndentingNewLine]"}], "\[IndentingNewLine]", 
 RowBox[{"functionalDerivative", "[", "x", "]"}], "\[IndentingNewLine]", 
 RowBox[{"functionalDerivative", "[", "3", "]"}]}], "Input",
 CellChangeTimes->{{3.85336367166615*^9, 3.853363727425283*^9}, {
  3.853364027293235*^9, 3.8533640337974367`*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"e0a72177-11dc-4449-9958-7a83a44cceff"],

Cell[BoxData[
 RowBox[{
  RowBox[{"12", " ", 
   SuperscriptBox["#1", "2"]}], "&"}]], "Output",
 CellChangeTimes->{{3.853363721410549*^9, 3.85336372810693*^9}, 
   3.853364034006344*^9},
 CellLabel->"Out[23]=",ExpressionUUID->"e6dc0d2f-2ce8-4fd2-ac7f-914323faa68e"],

Cell[BoxData[
 RowBox[{"12", " ", 
  SuperscriptBox["x", "2"]}]], "Output",
 CellChangeTimes->{{3.853363721410549*^9, 3.85336372810693*^9}, 
   3.853364034007649*^9},
 CellLabel->"Out[24]=",ExpressionUUID->"5febdb6d-e18b-4ddd-93c8-2bc161766c47"],

Cell[BoxData["108"], "Output",
 CellChangeTimes->{{3.853363721410549*^9, 3.85336372810693*^9}, 
   3.853364034008794*^9},
 CellLabel->"Out[25]=",ExpressionUUID->"ca56bd14-efdc-426c-b72c-76e9cbb5055e"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Solving our two equations for the constants a & b", "Item",
 CellChangeTimes->{{3.853364040912203*^9, 
  3.853364052972587*^9}},ExpressionUUID->"7423d954-ca06-4d0f-b2f6-\
60c749ea7fac"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"criticalSolutionsSubstitutions", "=", 
  RowBox[{
   RowBox[{"Solve", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"extremumEquation", ",", "inflectionEquation"}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"a", ",", "b"}], "}"}]}], "]"}], "[", 
   RowBox[{"[", "1", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.853363863259712*^9, 3.85336386750734*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"8a72b5ce-20d0-44e2-b71a-b6d8a838fa1a"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"a", "\[Rule]", 
    FractionBox[
     RowBox[{"9", " ", "r", " ", "tCritical", " ", "vCritical"}], "8"]}], ",", 
   RowBox[{"b", "\[Rule]", 
    FractionBox["vCritical", "3"]}]}], "}"}]], "Output",
 CellChangeTimes->{3.853363867935902*^9},
 CellLabel->"Out[19]=",ExpressionUUID->"efec7863-80e0-4a55-b09e-fbb39a46f5af"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["\<\
We can express the van der Waals equation of state at the critical point as:\
\>", "Item",
 CellChangeTimes->{{3.8533640595473003`*^9, 
  3.853364077661161*^9}},ExpressionUUID->"90084ae0-8c5d-49e7-a6c8-\
7da29ca5f31f"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"vdWEquationOfStateCritical", "[", "r_", "]"}], "[", 
   RowBox[{"pCritical_", ",", "vCritical_", ",", "tCritical_"}], "]"}], "=", 
  RowBox[{
   RowBox[{"vdWEquationOfState", "[", 
    RowBox[{
     FractionBox[
      RowBox[{"9", " ", "r", " ", "tCritical", " ", "vCritical"}], "8"], ",", 
     
     FractionBox["vCritical", "3"], ",", "r"}], "]"}], "[", 
   RowBox[{"pCritical", ",", "vCritical", ",", "tCritical"}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.853363902947316*^9, 3.8533640106933327`*^9}},
 CellLabel->"In[21]:=",ExpressionUUID->"dc087a6b-27e8-4e77-9205-d6a3d51ede11"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   FractionBox["2", "3"], " ", 
   RowBox[{"(", 
    RowBox[{"pCritical", "+", 
     FractionBox[
      RowBox[{"9", " ", "r", " ", "tCritical"}], 
      RowBox[{"8", " ", "vCritical"}]]}], ")"}], " ", "vCritical"}], 
  "\[Equal]", 
  RowBox[{"r", " ", "tCritical"}]}]], "Output",
 CellChangeTimes->{3.8533639575902157`*^9, 3.8533640123892527`*^9},
 CellLabel->"Out[21]=",ExpressionUUID->"38ab539f-d73f-414d-bd69-ae1848c46e3a"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["\<\
In this form, the equation can be solved for any of the critical variables in \
terms of the other two.\
\>", "Item",
 CellChangeTimes->{{3.853364096314439*^9, 
  3.85336409978657*^9}},ExpressionUUID->"98c39f85-57e2-4195-9233-\
ef33629986f3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"criticalVolume", "=", 
  RowBox[{"vCritical", "/.", 
   RowBox[{
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"vdWEquationOfStateCritical", "[", "r", "]"}], "[", 
       RowBox[{"pCritical", ",", "vCritical", ",", "tCritical"}], "]"}], ",", 
      " ", "vCritical"}], "]"}], "[", 
    RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.853364110334344*^9, 3.8533641399026337`*^9}, {
  3.8533647501903343`*^9, 3.853364751965526*^9}},
 CellLabel->"In[44]:=",ExpressionUUID->"516bbe1f-50bd-444e-b774-8e2d9a7575f8"],

Cell[BoxData[
 FractionBox[
  RowBox[{"3", " ", "r", " ", "tCritical"}], 
  RowBox[{"8", " ", "pCritical"}]]], "Output",
 CellChangeTimes->{{3.853364115803385*^9, 3.853364140405221*^9}, 
   3.853364752414534*^9},
 CellLabel->"Out[44]=",ExpressionUUID->"0d09eefe-3c83-4c3f-9ab0-2a0d433c38d9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"criticalPressure", "=", 
  RowBox[{"pCritical", "/.", 
   RowBox[{
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"vdWEquationOfStateCritical", "[", "r", "]"}], "[", 
       RowBox[{"pCritical", ",", "vCritical", ",", "tCritical"}], "]"}], ",", 
      " ", "pCritical"}], "]"}], "[", 
    RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.853364110334344*^9, 3.8533641545830812`*^9}, {
  3.8533647573982964`*^9, 3.853364758341812*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"941c72b8-23a7-443f-a6ff-3610b558e475"],

Cell[BoxData[
 FractionBox[
  RowBox[{"3", " ", "r", " ", "tCritical"}], 
  RowBox[{"8", " ", "vCritical"}]]], "Output",
 CellChangeTimes->{{3.853364115803385*^9, 3.853364155306767*^9}, 
   3.8533647587008467`*^9},
 CellLabel->"Out[45]=",ExpressionUUID->"4147293b-9cf1-4d02-85c4-5083cb571e9a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"criticalTemperature", "=", 
  RowBox[{"tCritical", "/.", 
   RowBox[{
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"vdWEquationOfStateCritical", "[", "r", "]"}], "[", 
       RowBox[{"pCritical", ",", "vCritical", ",", "tCritical"}], "]"}], ",", 
      " ", "tCritical"}], "]"}], "[", 
    RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.853364110334344*^9, 3.85336416362085*^9}, {
  3.853364761278335*^9, 3.8533647622460423`*^9}},
 CellLabel->"In[46]:=",ExpressionUUID->"309bfcfb-73ed-466e-b023-2e5d852dec23"],

Cell[BoxData[
 FractionBox[
  RowBox[{"8", " ", "pCritical", " ", "vCritical"}], 
  RowBox[{"3", " ", "r"}]]], "Output",
 CellChangeTimes->{{3.853364115803385*^9, 3.853364164175331*^9}, 
   3.853364762560131*^9},
 CellLabel->"Out[46]=",ExpressionUUID->"32b36f5b-0406-4547-86c2-69811fca99bb"]
}, Open  ]]
}, Open  ]],

Cell["Using these we can define the following dimensionless ratio:", "Item",
 CellChangeTimes->{{3.853364168883246*^9, 
  3.853364181374172*^9}},ExpressionUUID->"34cb50d8-46b1-41dd-911a-\
e42e12c098c4"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        FractionBox["3", "8"], "\[LongEqual]", 
        FractionBox[
         RowBox[{
           SubscriptBox[
            StyleBox["P", "TI"], 
            StyleBox["C", "TI"]], 
           SubscriptBox[
            StyleBox["V", "TI"], 
            StyleBox["C", "TI"]]}], 
         RowBox[{
           StyleBox["R", "TI"], 
           SubscriptBox[
            StyleBox["T", "TI"], 
            StyleBox["C", "TI"]]}]]}], TraditionalForm], "errors" -> {}, 
    "input" -> "\\frac{3}{8} = \\frac{P_C V_C}{RT_C}", "state" -> "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, {3.853363295175158*^9, 
   3.853363320973236*^9}, 3.853364214778598*^9, 3.856093963688128*^9},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"e604b07c-7dfc-4fe3-8628-f7607c497f8f"]
}, Open  ]],

Cell[CellGroupData[{

Cell["Non-dimensional form", "Subsection",
 CellChangeTimes->{{3.853362828637986*^9, 3.8533628342220592`*^9}, {
  3.853364227222845*^9, 
  3.8533642309348917`*^9}},ExpressionUUID->"59211435-2f16-4b65-87d1-\
5df3e6fd3667"],

Cell["\<\
Using these critical points, we can define new non-dimensional variables, so \
that we can plot the behavior as deviations away from criticality.\
\>", "Item",
 CellChangeTimes->{{3.853364234347704*^9, 
  3.8533642499236307`*^9}},ExpressionUUID->"3d069643-8452-4eb6-b6d8-\
3ebf9e2e279b"],

Cell["We\[CloseCurlyQuote]ll define the following three normalized \
variables", "Item",
 CellChangeTimes->{{3.853364234347704*^9, 
  3.8533642650314407`*^9}},ExpressionUUID->"5610471c-ed09-4381-8ac8-\
dfeca90141e1"],

Cell[BoxData[
 RowBox[{"\t", 
  RowBox[{
   TemplateBox[<|"boxes" -> FormBox[
       RowBox[{
         OverscriptBox[
          StyleBox["P", "TI"], "~"], "\[LongEqual]", 
         FractionBox[
          StyleBox["P", "TI"], 
          SubscriptBox[
           StyleBox["P", "TI"], 
           StyleBox["C", "TI"]]]}], TraditionalForm], "errors" -> {}, "input" -> 
     "\\tilde{P}=\\frac{P}{P_C}", "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], "\[LineSeparator]", "\t", 
   TemplateBox[<|"boxes" -> FormBox[
       RowBox[{
         OverscriptBox[
          StyleBox["V", "TI"], "~"], "\[LongEqual]", 
         FractionBox[
          OverscriptBox[
           StyleBox["V", "TI"], "_"], 
          SubscriptBox[
           StyleBox["V", "TI"], 
           StyleBox["C", "TI"]]]}], TraditionalForm], "errors" -> {}, "input" -> 
     "\\tilde{V}=\\frac{\\bar{V}}{V_C}", "state" -> "Boxes"|>,
    "TeXAssistantTemplate"], "\[LineSeparator]", "\t", 
   TemplateBox[<|"boxes" -> FormBox[
       RowBox[{
         OverscriptBox[
          StyleBox["T", "TI"], "~"], "\[LongEqual]", 
         FractionBox[
          StyleBox["T", "TI"], 
          SubscriptBox[
           StyleBox["T", "TI"], 
           StyleBox["C", "TI"]]]}], TraditionalForm], "errors" -> {}, "input" -> 
     "\\tilde{T}=\\frac{T}{T_C}", "state" -> "Boxes"|>,
    "TeXAssistantTemplate"]}]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, {3.853363295175158*^9, 
   3.853363320973236*^9}, 3.853364214778598*^9, {3.8533643010416737`*^9, 
   3.8533643028321667`*^9}, {3.853364339953233*^9, 3.8533643591677027`*^9}, {
   3.8533643915708933`*^9, 3.853364407840563*^9}},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"47d9b86f-2ff5-4cb7-99f8-566729364770"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"pNormalvdWEquationOfStateNormalized", "[", 
   RowBox[{"vNormalized_", ",", "tNormalized_"}], "]"}], "=", 
  RowBox[{"pNormalized", "/.", 
   RowBox[{
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"vdWEquationOfState", "[", 
        RowBox[{
         FractionBox[
          RowBox[{"9", " ", "r", " ", "tCritical", " ", "vCritical"}], "8"], 
         ",", 
         FractionBox["vCritical", "3"], ",", "r"}], "]"}], "[", 
       RowBox[{
        RowBox[{"pNormalized", " ", "criticalPressure"}], ",", 
        RowBox[{"vNormalized", " ", "vCritical"}], ",", 
        RowBox[{"tNormalized", " ", "tCritical"}]}], "]"}], ",", 
      "pNormalized"}], "]"}], "[", 
    RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8533646343426933`*^9, 3.8533646650981083`*^9}, 
   3.8533647339852467`*^9, {3.8533647736391706`*^9, 3.853364813374407*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"c54df07a-8be5-403f-a195-232505659cef"],

Cell[BoxData[
 FractionBox[
  RowBox[{"3", "-", 
   RowBox[{"9", " ", "vNormalized"}], "+", 
   RowBox[{"8", " ", "tNormalized", " ", 
    SuperscriptBox["vNormalized", "2"]}]}], 
  RowBox[{
   SuperscriptBox["vNormalized", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "1"}], "+", 
     RowBox[{"3", " ", "vNormalized"}]}], ")"}]}]]], "Output",
 CellChangeTimes->{{3.853364625530838*^9, 3.853364665426107*^9}, 
   3.85336473466183*^9, {3.85336476606177*^9, 3.853364777501473*^9}, 
   3.853364813995194*^9},
 CellLabel->"Out[49]=",ExpressionUUID->"926f3445-2204-4c68-8b98-43f575eb7f06"]
}, Open  ]],

Cell[CellGroupData[{

Cell["And plot various normalized isotherms", "Item",
 CellChangeTimes->{{3.853364234347704*^9, 3.8533642499236307`*^9}, {
  3.853364863086144*^9, 
  3.853364869285581*^9}},ExpressionUUID->"4d0eebd4-0da0-4792-86ba-\
feca91c1cc2c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"isothermPlot", "=", 
  RowBox[{"With", "[", " ", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"curves", " ", "=", " ", 
      RowBox[{"Table", "[", 
       RowBox[{
        RowBox[{"pNormalvdWEquationOfStateNormalized", "[", 
         RowBox[{"vNormalized", ",", "tNormalized"}], "]"}], ",", 
        RowBox[{"{", 
         RowBox[{"tNormalized", ",", "0.85", ",", "1.1", ",", "0.025"}], 
         "}"}]}], "]"}]}], "}"}], ",", "\n", 
    RowBox[{"Plot", "[", 
     RowBox[{"curves", ",", 
      RowBox[{"{", 
       RowBox[{"vNormalized", ",", "0.5", ",", "4"}], "}"}], ",", " ", 
      InterpretationBox[
       DynamicModuleBox[{Typeset`open = False}, 
        TemplateBox[{"Expression", 
          StyleBox[
          "\"PlottingOptions\"", "IconizedCustomName", StripOnInput -> False], 
          GridBox[{{
             RowBox[{
               TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["Sequence", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Length: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["7", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Byte count: \"", "IconizedLabel"], 
               "\[InvisibleSpace]", 
               TagBox["3432", "IconizedItem"]}]}}, 
           GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> 
           "Column", 
           GridBoxItemSize -> {
            "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], 
          Dynamic[Typeset`open]},
         "IconizedObject"]],
       Sequence[
       PlotRange -> {{0, 4}, {0, 2}}, Frame -> True, 
        FrameLabel -> {
         "\!\(\*FractionBox[\(volume\), \(critical\\ volume\)]\)", 
          "\!\(\*FractionBox[\(pressure\), \(critical\\ pressure\)]\)"}, 
        BaseStyle -> {FontSize -> 24, FontColor -> GrayLevel[0]}, ImageSize -> 
        750, PlotLegends -> Placed[
          
          BarLegend[{
           "ThermometerColors", {0.7333333333333333, 1.1916666666666669`}}, 
           LegendLayout -> "Row", LegendLabel -> "Normalized Temperature", 
           LegendFunction -> "Frame", LabelStyle -> 18, LegendMarkerSize -> 
           350], {0.7, 0.85}], PlotStyle -> {
          RGBColor[0.5395958000000001, 0.6954066000000001, 0.948175], 
          RGBColor[0.6317786, 0.7821216000000001, 0.941844], 
          RGBColor[0.720374, 0.855234, 0.928635], 
          RGBColor[0.7867598, 0.8842044000000001, 0.8924496], 
          RGBColor[0.843704, 0.8988422, 0.8492188], 
          RGBColor[0.881765, 0.8848148, 0.7918972], 
          RGBColor[0.8998708, 0.8438502, 0.7248352], 
          RGBColor[0.907999, 0.789417, 0.652903], 
          RGBColor[0.8879026, 0.6993192, 0.5746156], 
          RGBColor[0.859434, 0.6006316000000003, 0.49633340000000015`], 
          RGBColor[0.814221, 0.4847644, 0.41806160000000003`]}],
       SelectWithContents->True,
       Selectable->False]}], "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\

 CellChangeTimes->{3.8533648364385757`*^9},
 CellLabel->"In[50]:=",ExpressionUUID->"22d735bd-5f7d-4249-ad2c-97a67aa8dd21"],

Cell[BoxData[
 TagBox[
  GraphicsBox[{{{{}, {}, 
      TagBox[
       {RGBColor[0.5395958000000001, 0.6954066000000001, 0.948175], 
        AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV13k81M8fB3AqudKiJDoU6aDSoUvqtYlylG+SSpIOnZSUFDlKypFEhMrR
5Sa3JCqUK6Hcbdjdj0Vy33vgN7+/9vF87HzmMzs7M+/XLD1td/DsNCEhoWhh
IaH/f9rJmC8XEmJiIe+YXOgzLlwkC0y+izFhuy74m5MoF74iq1xDZJig9gbO
8rs1jhjueM1qFSYKDWJjh86MoYUVdtd8DxPL9GYcarIcQTdDKHnZf0wIic9e
DGoYvLoLjX1HmFDckvDewGYY88q3ajy4yITwo7nXpO8NwTi98U+6HxNv57k+
rqoawPEkupjbUyaO/rA+9/XCAC7FxG00iGRCTj5xVu/0ATx4fsu3NYWJlg6R
U+/o/fjkMX/rrBomjuzoHdaM7sFa06NBZxVYaDXjBPlEdEJ7/5dP65RZEJHw
9I6V7ITh3pVdfDUWCvfJPKZcOnBu+zj9iTb5HqnW1y+0I1IlrPeTFQu33F4X
bT7dhqRFQoq+F1jQ7fvc96CDQq78BT0zexZUTxXOdLajUC+5NfyfBwtx823G
ZbzYmD3cYDA/hoWTrBsmz8i4FvbiBvWOBYkpvXZ/WybUOmNfvnvPwuIDUdsK
RJnY8+fmmG4ZC5eeXko87tMCt6/y0fbdLMjwdfh97xjw++RerT3Cwmtpb5ed
0xh4ntPBF51kIUbohuhx89/ITnp/MJLGxiVz91fvZZvQE3xE6PsGNipfbwnu
S6lHKdX3wFSbjV3TFq7LnlOP1xu8pf7osbEwOERr/+06HK7OUew5ygbrqXXN
c7NafJFU3ERzZ8On7Lx5oOYvPD+W/jHUm42fQRJbszJ/4ka8oc6SJ2wMf6r2
l9n6E2p7b/+3PpoNi+UzAzX0qxHs8eei6Xc2zpyf9+Da/B+48tOhn1HLRuEK
tCTpV8BgidRN6xY2NH2T0465fcdk/g7PGwNsWBVY9EVyy3CBGxkZKk/hVqx6
T+XqEujob1FdspTCnszK9Oj7xVgUWpUYp0ahqs8ndgH1Db80hT582EEh26fy
3v3Er9C+eqqGcYZCQ6gRo8quEPM+c82tL1OY/dpk9YJ/BRiQesLsdqRwto6h
YnqpADGJhT0TPhQWmtfYb3X4gju8Yw4PgihwMxrmuk58hoXBEG92BAVa5efA
bwqfId2hIrYklcKaMx/33jyfj65Nef5xHyjIP1Y/HBaWh2+eh+TWFxH7Sx88
W/0Rzsr3lXXqKfRprf7qbJoLyrJd21pA4czfD21Tb97jU5JbUbdIG/R1Lgd0
zHyPMP48wxu0NngmeQ7dtsvGvmd7jzxQboN21IrtW0yysLyztXn26jao2iR/
US3PhPCWW9ahm9oQpjW69YB+JrJr4+zj9NvAoG5Y9ZpmIEBl1/i6g20IOS8p
vZaVDptrTW4fLNpw0HhN+q7r6VgiLeFXfqUNWxOPn/OITgPvxGtZ01ttOHCt
0cVdLw11yVrPGHfbsOmVuXf/31T4GtnEdAe34f5C4+gapGJBgM61mog2xPi4
3zjZnYKkWoWduTFtuNCQoat3MgWVlqV1XjltyKGcG8Us38HqddSrKwVtmGsW
kfKWk4z+dsfLZuVtmPOk2aDdIRmyV1VFVP60IfilnAcjJglvMgXV4pw2eAUP
dB8wSIImtya8v6cNtfn/3vUNJOLbjsQLDaNt2MPXk3n+MhGHPTw0P02R9+3d
2L7BLBEdxeZC0WIcDM5RfxBBS8QtyfUVD2U4kH1i9CO/KgHiB8TCrilyoPek
fP6tpwl4Htx6xlyFg3kPHXTTTiZAvSlbg76ag08PtsUZr09A3iJ//vJN5Hu/
ErnNognYf/psidRODuz0NtTvZ8ejJUY7aHgPB9dcYmNdCuNh92+OFeM/DqLW
rPsYHxsPoXX/1AqPchDHdk3PC4xHoEPhaNwpDjqEv0ZE3ImH8odnhY8vcZBT
Gc7VdIhHxsRVf8frHMxu4ibZ2MZDV0f/mKULBxt9lETVL8aj7oHSct37pH1w
Yv7xS/E49310QM2fg2e0mK4uu3iM0SrzZUI58PsdLvHFKR7eh6J9xqM4ENta
xiv2iofCMxez1jgOFutirOtZPBKaTZcWp3EgLLfimXxqPLYrq/ck5XIwZDxV
u7U8HhXnpn0IKuKgtK9zXKszHpaJTZ7OFRzcURIkSEgkoLcv9cCpOvL7v0V3
BGskwF3Te6F+Cwe2BVJCJUcTIO1k1bm2gwP3e/fD/O8nYMO02XcE4xzI9/ja
h/xNQNEejhEl3I7p4Uy/jCWJOPQwT75coh0bV/z7rWSRCMe5NimhC9uxwsRC
+k1TIkTNdW67qbYjNUxk/bNFSQiLUNh7dm07biTsGA63TkLu8tKWDfR27G0N
a/PnJ8HIJipBwaAdG6quup0wSsafFEdHoYPtqN39LXAyIhmTW1VnV55px/yI
vPobRu+gY+Sx46JXO+xmNt3P/paCmsfm4gcC2hEoPIvaKZcK69p1dZuftaO3
PvVpjX4qHli22s5IbIf1Oq0fjhmpKLPTDo+qbMdMae/c8adpmK/0JtO8oR3n
kyQPz6pOw7lK8R9zmO3IS6ak5SXTMWNNw4TXQDvaE9xnTNxLB73L3urq3A78
zP/p73onA9nWscq7jnVgsYlHgtrLLLw1l41nczpQIFWBhuO5GBJzKgjv7cCD
GV+EViTnQientenwWAcM/kmwuyZy0TovWeK7WCc+D1uWFL78CMXavbYZ6p24
aLhf8+S/PAQau2p42nfifPkeBXbgZ7jt7sxSnehEWuZ5lTM+hThoGP9imsU/
rHBgHHL9XYnSTyt+Xg3owZmwlqOMzFqck1rLmf68B49qvSOky2sx47gmN+RN
D2JLky9ubq3FLi59aX52D5o3hDmZitchd+Mxe/HmHmz21M34dbwOyXF+Mq9X
9aJs5LojU6geT54MmNQU9uKvXHKM0o4GHD/38demkT50WYb+VnnQhBwlk43h
k3148sJ+an5oE3xthwyEZ/RD7/gtranYJrSr+iScl+qHOy1HNKqsCZFhmTaa
S/qhES/1dPWs36C5Sfb+0OvHAaOzjp7+v9Gv/2FQKLAfqSsP7zP1ZiCjZa7g
3IoBpIa3u06ZNEN785RxmfoA9PK6MrxONKP40d9X6usGYBdh7z7DphmN2p/2
9m8dQLeS9SDjXjMmn58PcjIcwDo1RbHpWc3QP5Kr5nd5AMKVSye3yLWgpcrK
PC1jAEJvMpmXf7TgwgrDpDk5AzicTN8S0tiCATfNqRt5A/AWsp2WSbVgxlrx
aK1vA4g1q5Kt5rZglV96f1H9AMJ+yrJ8VVvhoC/iXc8dgMKBLZYyt1shXpCQ
zccgbkkb3TGgMTGus+Z9nu4gJsrun4iZy0Tn15T3rgaD6KjkPZpQYKK0NDNn
6uAgWit2Dj5fxsSD6k+5088Nwl84yOjJNiamMX99kvQbxMef/fI3TzMhmOQV
L2gchNMmo1tbUpnovuNa8ufPII5NWPW3ZzLBmCZUGsEaxLp8Md3AD0zkzhQp
U/o3CMf57f71hUw4zaZ9V5kchEaWxMpldUyMLlKpUl82hOGv3ySqxpno0zZq
2H51CF/tFDfeITktd9tlXqLDEHRNpAb301nw3Px40UKnIbgcEo6V12VBcV3N
GcHdIfT0JE1FGrGwR8WiPy9oCA3jXV9dj7EQLm4jvvP9EBRLQq3cbrJgWO+7
nT45hI9RGo6vSE6Tq0k6kTptGMtGHk4OpbHArKq8u0R0GC/XGbTqZLHgWCZb
KiQ9jIuvUrPqPrLwKu/5oYKlw7D5sl+supSF8dcJl3X0hjHbR7VKgU1yml15
lK7fMOKG3avkZNmoXqp5MTJgGGKSCde65rLBq4nYMB48DK+c+L8f5dnYv9X+
W2LEMFo+mluaLSI5S2j+P9mUYUxffv716ZVs6Dw5u5n1cxj1Mim1nTvYaM0U
+uEqP4IiOSuxrHNsiJ2/FNKwYAQqxQVDKy+ysUGh1mr9khF86pITfm7DxgPX
2MG2lSOod2f6Xr/Kxto9xvP3aY2guPrzixnObLg0vDijSHK871upjJd+bMzn
beZlvx5BctTEqeoUNuLqt9rbxY4gLde5QDGdja0ZWp0rkkZQ0V8/93QmG0dt
d9aHZY2gcTX/VUcOG2EteunOpSPYaKr4qrKA9Fd06NLOXvI+i+ees2uI/a79
/rZtFMP6+wTnh0j/FxxM3HaO4m7Wr79mI6R/PcfSzbtH8SraadGuMdL/pFN2
7L5RFD1lnaTxSf9X7z7xsRrFl1lpLx5OozDfLMBw//1RfEjcOzZDhoLC4ne5
tdWjOOjf+lByNQXPG/8d0q4bxVLp3mMP11Dor+jvedM0ioz05xLiGhSKb29c
ep09iiP2HNnJ9RQcmnK8ZIZHYToSOF65hUJlcNEhY/kxbN+nEim1m4KHZFNv
ieUY6k95b5E4SqHntLO3xukxpJq2XDEwp3A0d4Fy6LkxRNu05j04RkHj4gmz
c3ZjEI0xeMM/TuFPMfVxxt0xhM7YXVx5isJmj17vXW/HEJSU9HWBDYV/49NV
PnaNodzB18rChUKe845Ld/vGwDcc0HV0peAvcEzbOzyGJteGZY/dKGwQ6kLt
xBjE/W4zcu+QHC1afbxHehyvrbcd4XlSmDEvPERpyzhcZAcWLHhE7i+hdc2c
7eRep3rFY54/hVgFmmoSfRxBvXOFpB9TMFzkkbHVcBycB7/2TgRQCFh2odrE
chxFMy22FQST3LxRU8Lz3jgsdk8t7X9BoTfzsomh9zioS5alP8IpfN4cGyb9
aBzXmidfxpMcfVpLcUVEyDgm90f0WURRiNslpJsdPw6dyAGNxNcUNA9UuHZW
jeP229vRI3EU9l22Hti3kIv8bhtLvUwKLm85LYIlXGzVdTL7S5zMOFeRpMqF
Cvf+l4dZJOcbXoydpcFFjpX6yPdsCtXLr1hW7OLibY/O1DaS002ZN8uMznMR
uzi45Ec+WQ/y3Gy+DRfqOVlB5p8oZBo7v028yoXjYY9Oinhuvou7pDMXMYon
1g9/JvP17O6m735cuJvFW08vpHDM9OErw3QulnUqXmv+RsHXd9ZjXjYX75y3
WR8spvCx4JFLwkcu1N54Dn0jXrgu4IjENy4OdD3rjSuh0DLrqVR5AxctPqZO
J8oonCqOdDKY4EK1U3rQu4LCkwml81xhHk4G9xp0EhdqvjoUP5MHI7+TB/f8
oKD85o2GuDQPAnq20yRxm3scp1SZB6/ZLB2rKgoXtqWb6OvzwHkWXkD9JOv5
369Tsft4sK7akrjqF4U7EUP2M014CJeaunOFOFR405Ov5jxcH383PExcXPb+
F92Gh0T7HLmRGgq/bjeyo+x40JFudtpQS6F5DXdw8joPCtvNfl4hHg7UmpPv
QsarUGzZRqxyLN90mz8Pyyg1kaI6CmtntZwJe8LDMY79wnFirU+T18dCeECI
yNrV5J50UJkenBXFw8y5HrsDie90FdauT+ORvJT2338NFPzCqbaALB4+6+mZ
uBCHGc8Y6fvAg+T9AdM44pR0Pbl3hTzIlndbTRC3OJeaqdXy8HxadvyLRgpd
q/+e9WnkIX2jxfcvxKMt4o6df3jonvFhuI1YardRSAyHB14W65RaEzlPRmxi
RLp4cPPYF2tEvCzWL9u6l4eMspQxG2Jtycp65TEeEszD8uKJ9fN72+/yebi6
J2dDCfEhO9oYc4oHoTGR9xSxTc0B+SgxPrTyjvYo/Kbw/EXNkQWKfJzcxVt+
mzhm//B558V85BkmLgskTp+ae6tJmY/Je3WbY4jLzhwOC1XnI2deyosfxLVy
N+NGNfhQePu3r5WYWRKaY6bJh055hsUA8bh6U+OcHXysPTXTVYZB9n8Lt/Pa
Lj5mT5fTXEJMC1Dk/tTjY/qrzyJriRV1touvN+RjtLhkUIt4+bCFQoAxH0pn
evl7iDfEuKzqO8jHveKhpQeJdx6N2GZ8hA+36NCzx4kNJT4ZJFvwsXf+s5Kz
xGZ5LeazTvJx/UW2/hXi4rBQ+XJrPnYax3g6Em+9caDO6yIfaTJNH1yJE0zE
g/Su8PHIC3/vES9cW3hg+nU+tF3L5vgQ+0vcnl1wk/TXfVbrEbFQx8YKNxc+
pATTTgQQXyvq9tG+y0eJkL/7E+K2qOi9vPt8cF2HooKID7ucEMnx5ePMcqUv
/3fpUfmiG4/5aP3DZ/6/vdam6jsbg/lYl3V9eiBxkozPzoEwPjKH7Vb6Ey/u
3SV4F8GH2pymA77EAeW8D7av+Tj7McT1PvG02IybarF8zKt4nOJO7HDPdlNn
Ih+uRxM6bhG3W6kORafysTL++3J74qPaLalnsvhI0W68fIG4fH7olaW5fNiU
ZuSfINYe+W916yc+NLbtkj9E/O6nWFd4ER+zMk/f1ide8q4g9lgpH39DuF3b
////nt+oUv+TzM8a8X4lYsfd3cygej4kvtC9pIk7laIjTRh89DvZrBEirmic
p/ijjY/iLFrCH7JedmZVNfj+JfPD2+VRRpwa6P1Uv5cP6Z5G2yziYEOe9Ncx
PubIRbr4Es9ckVF5V8DHelH3N9eJb0239YOwAGbKakwL4uN5zaIfJQRIXawd
uYp42dqCybRFAvC46bq5ZD+ESDjn2SkLMH+T8fpwYrGODc5rVghgvsBCy5W4
O+rtSNw6Ad4zaNHaxBky3t1RuwW4lhUzlEr267JeeoKlvgCybU9/PyQOKeee
X7BfgD0KV9vOEjvfs6FCDguQ/nuutTyxzojx70cXBXAP373qKjkffjXKld5+
LICY/xxnLjmPlNZdiesMEmAi3v5gObGtV7G3WZgABbcnHJ4Ti26+aaDxSoC1
82VfbCXWDmosZ6cLMLVyp4tt7f/374sfBvUCmBY4K2SQ83Po7VBy9m8Bzmvt
ar5FTBcY+au0CuAS/X14BzEjQWA80SGA6OCdpcXkfJYWO1GdyhVAY/+bu5XV
FJwKl9TIL5qA94meP58ryf5RcMrwXDqB+PWcpbeJ59r/DBpQnYCpSX7RJuJ3
Sh6Hvq+dgNwdvSXxpB6wXag6N/oEThcv2vf/erJvS0wj58wE7lTldq4sJ+sn
Sb0lI2ECIkroGf1KzpM1C23dUyYg+tL7RiixV8osnmHmBMovrz64hbg3vUeO
nT8BX+/ZkjeKSB75kLJf+ucEXtf1+nUWUDhSsjHfdmwC9B/U8VRSP/3Z28NV
dSfhERFkV/KezL/1arUB/UmINt7PNCUe4SzMyds/ifUiq061knp9/O9EjemR
SYxdKB8aJvVcrf+zpMelSQQLDs9WIPW+eGL37ZaASbxM+vtUL5XCxPx9x0Kb
J7Gt9uKXjSQvSB/w9N/HnkTiZIZraiypj155hcId5PkjVM5q4j0jq9Vt+ydR
E85KUIkh+/enlIA+fQomWXW+km/JevKtiuhaOQWurUx0EcknhvyDrB0OU1i8
N+FuYwiF772rNa+JCNEHpt99knyP1KfVKrSJQCH6xelRc4styHiyF0dYqgnT
a1WUnH3UyfyHi7u/zhGmH68IiGvlsRG99t+qhbrT6IYOzHWBpWxoSP3ysmFM
o9uaJvtUP2ZDeW/ctqgL0+lz7zVHWpmz8efHvcg44Rn0zCiz0j3kPuAgdLii
PXQGHZmh95+xWLjhL28svkyE7jbi7BUdz8KOiy0ewnki9DLJ3Fc9tixciQqW
bDGYSa9Ye9fbRpMFl7u7LPtqZ9Jnp0cePTrBxMHUoVP1NqL0fU6MFfPIfSxA
62nuq3FR+md/C9lTD5kIkdEu1gkUoy9ZuvN45QEmRHR/qZYqidP3nZLd1qrI
hImylbFHojgdkp9E7/9oxdn9A6tkd0vQ77/tbtI90QpWzTXzB9US9LDC8qF1
4y1QjeVur74oSe8Ivffe+2EL9iy/2WEsNItuliLxs1W5BdVCbe1pfrPo20vF
xmlFzVBeefhZ1zIpOkvWoXKVZTP+JLyPEs2QokdqrXjBmfpD8jnNznznbPoi
IxzSjPmDmkOXB+7UzaY3pi8/WbPnD16o55b4nabR+xv5GZF9DPz56xA87SyN
viCpdPOiXgYWxmmcunWeRj8qnsx40c1A+LJo3hlbGv1Ab8bDZ3+JFwWs2e5I
o9/ku3mGUAxE0s4F/fWh0S0vqDeENDDwckjGak8ajb6rInUg9TMDzLQK9bwM
Gl21Xidj4ycGllz1Gl+fTaPv+BETkp1H2ncLAhd9pNFl/RiFeR8YeMXp+Dr8
lUY3OPwhtTyDgdcN+WpvGmn0QweNmN2xDLCf3hqbz6DRFxr05NvHMKB8aONX
/2YaXaRNO3/0LWlfHWfpzKbR39Ywlgi/ZuBNWVCASTeNzhZpvC0fzkCbl7Fl
SS+NXvI45lzEcwaW7RFX2zFAo1/bJX1d5RkDbwvdilaO0uhyPxL7NUJI+zvb
AiLHafQzE42nsoNJewwfn8un0ZdNCxvWDmLAeuLdKt8JMj7P9riiQPL8x4uj
U1NkfKsL3QwDGPgfx5O3vA==
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#1"]& ], 
      TagBox[
       {RGBColor[0.6317786, 0.7821216000000001, 0.941844], AbsoluteThickness[
        1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV13lYTF0cB/CKSlRTihYibVRUSEL6jlSSsrRQZKtEC6KNUkhkCVGvElGR
NkKltPAiS4mmfdGU2e6079vMtL33/Wuez/Occ+495977+31nmetpu2MiQkJC
KcJCQv//npZ11hISYiCCW2I7NTODC/M+76mYw8ANVhPDzW0GN0W1Qx/IMjAv
YM+qxT+n8YLPq12pzoDXwpL0tclTaGPGX3a2ZKBYVslm3G8CPS1CrzR2MbDq
Gp3G6BdAUH+iqX8fA6UDuteiTgmw8Kex/jVPBt7MXx3Z7cfHzpwmek4UA5IZ
Mo6aieNweUmdE/YPA0l3hmuDV43D60X62u1PGDBs4T1e8mkM1xLO3fz7mgFv
jSsdKj2j+BiuaCxZy4D5Jg/JtIMj0LN3ijmmxIRcz2HRNYmDMLH99NFAjYn1
Qk3VEraDsN62omtCh4lbR2xWRkwPwGMTj3rfhAn54yKLTD0G8EQ9vu/jYSbi
r139+/luH16qCCnfPMEEwyQ7sEK8D0UKJywczzCRr/jjZEJ4LxrmGT/uDmeC
e+Ca965LPZAeadyu+IKJrkMbFOMTurC4DwHsbCYaeU/e2yzvgk5HWlJ2ARPu
fKN0l/xOWNKDxs3LmZi0/bfzUEsHwr4qpJ7pYeLD7h2p2WhHb+w+oYo1LNwM
merYfYKDMnb/NXsTFgZCl7wul+YgZc11KboFC4HvQ6y3FbCxt+q9cq8TC+fM
i85qSbPxaZ7yOspFFhbZZ4/uq2EiYX9Ocdx1FgRBnuLNkUwEZFibqd5nIVKW
X00BEzrbQnatTmVBcstW5ZAcBmLD6Z72FSy8M7CRyHf6i1PV/gMtdSy8LnzW
s661DdtVpYLc21hwGtXWSnRvw/SHzREBgyzot4kZc0NacYL/5EmcAht+x4Z/
1v1sgZnVek3VZWzsl+KNTLu3QCWOlpWuw8aVV+szkoVbUGMoVFi4mY2xwMZP
S8z+wMT3aG2LGxuSVhXp6W1NWPgv39n9JBv3FPv1LG81YVDqPqMnkI3+3sjB
6Q1NeJH1pXfqBhtn0xtE4xMbIdOuPkf1DRvVcgWuthca0LWu5E56IRs+lPPa
6cYN+BbhsGB1KRtNDdU7aWP1CFa7qmbWwEZn7Bbhw+fqwT7INXGfZKNMIVQu
9m4dPr4MK+0R5eC9y7PrR5zrED+x0DqAwsEVB9Vz+Rp1sHm4bd81NQ7+Pfbn
FOPfWmh1/G2VXslB3BQjM/VuLYTXn3OPW8fB9lsq5Q1HapFfl34m3YqDS5eJ
rCPitYhW38IzsOOgSCikLIteA++zzWGFBziweFQVsC23Bqoyc6N+nuJgNyX0
xV73Gtzc4f2iJ5YDqud8B636aiyKNjtbm8jBr0z5N9751XhZp2Ra9IKD4eiZ
oJfx1ag8WFYf+Z6DOqrJVukj1Tic8jT51GcObt1cE6hlUY0BbuBJx58clMvd
8FuhW435vpqi6nQOGvXrxZv5VXiWN1klQXDgPMLwvsiqgiG/9vFALwcHWgvX
zlRUYW94uOHHGQ7uV1y2D0muQkLsXzdndQLhnhrHJx2roNucr09dSWBKvmdi
lkUVSlTuTGitI7DwjVfwD8MqtL0wiRmxJDD6kp3lv7AKp7vlDrfsIvA53PXT
vjlVEDLo1vniRGDT50UitaM0qBU+/HLXi0DSosw6xa805E753gn0I9B6+wRN
7xUN5mZW+w9eIMDYctH/RhwN9deWaplfJXB07lm62hUaPCrGBnXuENDpHNkw
epqGcUrlB9k4AhFhp5oFB2m47pB6g/eUwEulUFU9WxoyW+2XfX9L4LyRUoG4
Pg2b1HR7XxaR13/3c8ezZTT88hApjCklwH/jL7tvAQ0Hs5ojgn8ROKvXz1GZ
S0Nf/5vdR+sJVLAfFQ7NVOKi4fXFVm0ErHgT8VVjlZA5f7hDr53A8qFtKTl9
lUj+YJS3YICA/leJubHtlVgjIn1pkkfApfu9ki+zEqWWxA62MBf9/zjpm9Er
4XCrROHnXC7iShU+iDZVgqDFsN/IcXF677BVfl0lAuW9X8ct5iJyzn6fXTWV
EHc2CwnT5ELauKb2V1Ul4hOVth3T42LDtWRTHdLarIH5Nuu5GDEODHMjXaRV
1raGyoXb3vlB/tWV2OH9NFNpOxd2Z3kqzrWVoL8ODBSy48J3mXKwVEMlTo7Y
mrXv50JL8vqz282VmDbWlK504+JojHppfWsl7oZONuf5kPcvYjefxaqE6pfa
1EcBXJy0fPsnu6MSb8WyzoSHcfFUsTLAuL8SZjvCN3tGchHyvMUmhDyv2rvO
ErujuSi559PkN10J9zqDeqOHXBicXZW0RJyGUcU5ySopXDjdTNp4ToaGawf/
+szO4mJv3x+bUGUaFFLyjbtzuZhuN7upo0lDOvf27JoSLpY/35V3wYCG8tMm
j59WcqFrTFGatZ0GxaXP8pwbuTh8Me9MryP5/lRK/JZjcKE3XOrh5UbD7FWN
U5GD5HrewYMyl2igdp057Cvfjk0r2I+//kvD3YdNQToq7fiazIwbr6KhzQrR
HM12XNDc1Z3GoiEkTfKz0/p2HPVf5lY8qwr57mlqW/a3Y7GxpqOFbhVE5aU3
Tbi2Q8PT5WPOuio4lPrbv/NuR+Sxx2GO1CoMLTOL0A5tRxJLKtdobxVW/aUT
sknt2P3aLsM6ogrPnednsIh22FulH6F3VGF4zvnPj/vaUTGp5qc1VgWz93+b
9463I/adT+CDWdX4u/DV3Io5HQieoAg4S6qhXLfNJ1e3A/8GF7po7qvGvZ2h
+hFnOiBe/Mrqxu9qhG3teKc51YFYtkyZ+u8aPNx2UTtRrBOiDfsU1vytQd6O
hYnyMp24ZOy8ymGwBt325hGz1Duh152iUb2gFk7uSXZMq06cTe5VSTxci7VX
nfofx3YiiC5SPTlai47vZSvkV3bBYnJrr4NOPeysMx6JHOiGy+wEo8ePGlH2
cXm1b3QvynzKP57ua4GHlB4xK6EXduFeX6dmWjDbxZD/4FkvvqiFCF+SpWML
n7rsQ34vXB1be44Y0lG0dv8ZidZepA2904k5T8er9CjZFO0+vHLYE/FauBX3
7w/uqf3SBwPZjLGbc9rg4lFcs260HynMRVFl/X/xfumetY+n+xG3z1Cna+ov
bvoMbxeePYBb6vdfzYgywNW8kXlcagA9GdGmIvIMPInP8zZUHQDxMnm6RJ8B
Sti8vt8WA0h4flJ+rgcDA1aFQ0L3yPHnM5SlK8nxmrPV8/4ZwPPINd376xiw
EdllfzxhAAcSWMXJfxhIL+bk/n42gIO3rY+rtDNwVE8mICF/AKGaIrq/Zxio
kTs+vpY+gPA3K1NlDJjIbZOf9Fg+iIiHzYUbo5gwMZrZWa47CMPH09In7zHx
/XZnsq7BILSPu55PeMBEk8nHbQPGg1gVLR/PTWJiOuF4zHnrQfwZlbAwf8eE
1b4inaiTg/ANoKYqtDLRRjvs/DZ3EKHfyoxWa7NwYrn1S7n3g/AombOnYhUL
g2GGMwElg8gUOtpwhMw5s/UkUjd+G0Qu5dqqsE0saEflDJQ2DGKBkrRLuC0L
/lai1xv4g0gu8DLI9WVB4nNm/gSG0Oosd+tnLgs8s1UFJeZDOHzlUZneexY6
vr4uCN0+hI65LVJ3SlgoK8t7P2M3BMlOiY+bv7Fwrepj0SyPIby+xlR2bWBB
hFHzcV7UENJHHYc/j7MwOS34vqhpCC636V7jRmz0XAr9QaeT8z9Zp5RuZKNF
RKgskTmEHVllDrdM2SgSEy1f2j2E3V2aG6Qs2TgvTalQnx7Cragrri0OZK5R
UafpagxDfFuCzfMzZG4x2dG4yXcYlIKddKF0cv6Gk4Is/2Gktn3pmZfFRoTR
XZXF54eRW3DypFw2G8oGtW6Tl4ex+7LLT4U8NizVDwyUxAxDeOkcjP3LxmMJ
bwnTgmE4mIWflWxkw7rh5ibq9DC4pYw3b0Q4WFD78tAbkRHc1TWY2knmGAat
8rKq+Ai6uz5Kd4lzEFg+v0xIZgSzF7TcWijFQXJJgsPnZSO4/yNs3XYFDngp
mSfNLEawbJN4qIIuBy9O/3xqHjWC0J95Wzx3c1C1zNDzSfQIkoc0mh6SOUZQ
m7iGFzuCOSXiST8cOLA1PvMtK3EEidsW/FZ25mBESLF7/usROK2L/vP0KAdm
948ZMatHcPWt9Rutsxz8zRP6HaowirmZdseM7nEw57jXg8ZFo8hZquMmG8PB
GqW6w6tVR+EkbtTYSeaga6FpQ5wVo8jWUNeJiedAz3Knos3GUWiduZn34ykH
FxofuSkfHMXYiSTVolccKAqMBPkpoxi03mxY84OD9AbjM6fTRpEnvvzW5XIO
jHM3dix/OYpF9RH6ehUcOPmYNsS/G8VR6jqvi5UcxLdZ5ASXjUJmkW6XcD25
XqmDl2nfKD4pbNW4wSQddfbPtw1jcFNIS3zDI9c/4b8nzHQMbbcDNKUF5PoW
gWVGW8cgndW91XOCXH/6fH6azRguXgq2VZwm1/e9fP/G4TH0aPrSnGcRUHSM
tra9OgadpL3ePlIElJZkF9VVjeGy/eqotqVkbgnY5WBSP4bURUVRDFUCA78G
ep81j0F/QvMVYxmB7yFrl/mxxsC5PWPfQuYy/+b3kbIjY9As/3usaDmBythS
h50K4zjddnpcVZ/Ahh73vneLxmF9aPytqAGB51vFrquojiPokGFqB+mQIavi
nhXjaMlq2pSxhsCK3ZXLbm0cR/q3CvsFRmTum9fc9+PgOKIcQ4MTTAj0ugZf
13cdx5oRCT+3zQScihapxXmMY4N5Z7GOKZlzPA85epwex431h8zzQID+nV08
+/I4TmXIO+WaETAK77u+5fk4eLV3vrtaEejmzVIv7hpHhk+aW7QdgZLgzV6X
+8dh45PycI09gTuTgW+3jYzD11VoTi3pNUJdqJsah3rhpVhpRwLnxKtcemV4
WOwXnuC7j8DshY8fLF3Pw+4622/MAwQa4upbiU08FHvlm59wIZCmRNF8SeXB
/OX2hb2krVXCc42teaj9ZJA/eJBAtMaJqj0HeSj5EyTffpjA4rWGcyOu8HBK
RCPlihuBvryTe6yv8/Du3tBkP+l/jdLiZW6T84d2fdnvTsB1o/LyxAc8FNgl
39c9RiB9i5B5fgYPL7eVnC3yIBBcuuHWhWweOj1W7FA+TmCHhV+NWS4P00X1
D8+R7rPiHqGV8HAgKe+pwQkChrt/hXbQeHiw7VLAHU8CYjWi37LreMjnTyxn
kW60h2RAMw8MOSUXQzJHB+/LSRBm8zCZRdtZR/rTofgC5TEeuqXmXxXxIXCf
UT3NEPCw2fuqtzVpN9d5lmkzPOxxyWyLJi3mEVa3VoIPlJ73VTpJwOak+6DN
Yj4KfIVOKJ0icOE50TapykeMnsYXB9KvWjx+vdTkw+HS9093SEtbe6ZJ6vPx
58r1N9Okq7ROHfy1hY/0XVUXKk8TEDrUb33Bko/prI8qM6RX/+NrvHIHH/Ex
80/q+ZL3N8tPLsqBj56p8kU3SNszgsp3HOej0M+hRe8M+X0o8PMnvPmIIOxl
HUnn7Qx+nuXLh+HWAzPnSct/uHBxXjAf8yZM53wibT4y5VMcxoekc5Amk3SA
7sX93lf48H15ekboLPl+PLy8riKKjwMsmz4T0mLVIuoh9/h4F3VV1Jn0+jkR
MroP+GB+0GzzIx0feK375lM+4uZvaEolXfZKvHnjcz42t41PlJDmc65/70rn
Iy38HVFDer/9rWTrHD5oCYWUCdI3b0reFeTz0ZWz1U6K/J9T/Pn2hcxiPkz6
7A8vId3Dk/ba/4mP/OcSxnqkFxtE75v7jQ+1NVdaTUjbHJe1KConz2+sdbc1
6dAn99d4VfJh72wUs5d0dr2cqnItH0nf0lKPkm6T/EfqZyMf0a9tbniTljZf
OHGezodwjCn8SSMkrkObyUfuyD9lIaR9cxQbmglyP25eWuGkkzoflt7o4qMy
qMY5knSV6qK3G/r5kGpku90iLeT0+EnnMB8Dq3Mt7pA2uKsS9ZDHxwNLB6Fo
0ke/Pzm/fYoPMWZz7P++P7X0OF9YAEW64+z//cUw2SFDTIAtas27/p8/5K1m
5jxPAPdsv3P/r6/27Jm+hIwAL6IML/5/fbs/GiqF8gKYtGgf+//+rsi+mOup
JMCGiiO6F0jnWS3nKS4RwCuZqPl/f5yL6USZmgDKBaUuPqTlC7Rrzy0XgBss
+tOVtEVf5qcVKwW4fCZvkRPpQM2V2U0GAsQaNdvZkH7h8urR9XUChISG+IJ0
Q4zeDeONAijNTwlYTVq84nVgh6kAcc12bmqkT2zI2WNlJYCzksekEGn/7pqj
aTYCTK7+p6+ffP6XEofPiO0R4InPysFW0nHC6+5/dRbg7MoGnQLSKbmOKeqH
BOg4d90thXT2scCccFcBxINYr6NIfy8vqKF6C9BQ8e3aIdI1IU2sp6cF+PKk
c74l6dZV/KFpPwF6F3e9W0l65N5GuQ8XBDjByN46Tr7/6vs/2G+4IyD7tFvs
ZdJ6km1u8fcFeOR2u/co6Y0fp/3GHwgQ8ajNbQtpOzVq7LunAoyeksmaIr/H
S11f6la/FSD4hmmhN+mox2xO9DsBPvUYylqQjt85e7S/UID8PP8oFdKvcywW
ZH8RICmmvr+C/N7bgsscdeoEMB5UubiEdNfKzmM3mgSoNz4mNkjWi7E2icAO
ugD+BgP5X0hLbd3x4AVBPq+vXx64kTaZV9mgNi5A5ljtsUdkfUp4VLtvkfIE
dnSHsdne5POyHTkevGQC6T3yezNI58zIn2tWm4CRlu/USdLlbnvj43QnoL3Z
rHeErI883eYmuc0TEO8tc+eT9dSxpM1Z8sgEHES1bFvJevw9Pk7hp/sEckNe
OUaTNg7YXR/pOYHsEMoFM9KL9b7snuU3AYmM75rPyfrOeZq6TXB1AtY/omcf
JOu//xWfdR1ZExhUfpqR6kog1log83V8AmNDk5viyf4jtjy38vLkBATrTB8Y
kD43yycKwpPYMyq/oozsXy4lreLFcyfBvH5rdGQ/AQ29z9NvVSZhOZFrY+FM
IFf2es/TrZMInX3x/meyH9Y0LSgLuTsJ2pHzd1btJLDU4FR6R8wknDMTf+Tb
EvCJ/H7dMX4SP+r0PUBa3Chou37yJDKu1tbvtCHPN6bpJytnEqaSQXc8rP8/
z0e/tzdM4nt3Vtt5SwLnv6jWKqhMQXAi8/Vast+rvtRty82cAq2p3klmJYG6
VYt9Lr6egsFUhK6XLoHI15IC67wpxD47eqpUh+xvOb0LWB+mkB/Ya+mvTfb7
wte2MtVTMBkxtqdpEdj3Y+0Hn/EpZM6x3utN5p07rE2PNc2n4Z8t8cd0IYEp
RZv9ca3T+Mtc1+tL5quKvpWGZ0WFqH8oiaINPzm4tFKdMnVPiCq2V+zyrAcc
TOUvSTyoI0wtrAg/wHDigPVY4mLKe2HqrnqJqoUqHKTqdWsvNhehzr3Bu5zK
YENfqibSu0WEyt0T6ZiVyIbatvQNT0/Mov5s3BK09xAb9N9XnqQLz6aqKdB8
TJXY8Bfa+4sbN5v65lPd6T31LATcUdgpoSFKzfa8WqjxgIXNnm3hwiWiVCmv
vcMUOxZOPY2d17ZdjLruU7T5AjkWLlzecrC/Toz6rkn9okgDE3Zvho82eItT
g652C+JjmYje+E9RMk+cukyjNtffiYkHsibfze7NoS7P3V1uo8iEqHmNZtlS
CeoF65lH3q0M7FE7vDM8S4JKD8rTffucgWO2g9rzt86lJjxJmW97ggFm7Vnn
a1VzqUE7H/qJrWZAM42/qcpzHrV4+e81z3r+wlIrqH2nkCR14dffn8tC/qJK
iMN9GyVJfTTdqZkp/xdqK/Y+7NKQoqov379AP60N9MyCp+K5UtSzGTl96lvb
yDxKOe1sKk0dcX+XKMtuRa3DycFL9dLU9VICC8nQVjzSLfoR5Uqh2v1pnGAv
bQW90z9W5BiFqjtbw9dqSSsWp+sfPXecQtWumpr7anErHmukCtx8KNRDlrZ5
gUqkVaJXbQqkUIN2CNXPk2vFE4pHTOcNCtX2fPOOzWKtSBqWPWz5lkIdzd/B
K+mhg/H2l25JLoVqFta/XqubDlXfSN7qfAp1nltB4t1OOpJ6Ju+pFFOoV3Ve
tLhy6Ugm2r+OfKVQnyxMUZ3HoCOl8YPOsyYKVSVL45drLR2sf86NK7ZQqEkh
53wqq+lQc1j79U4rhUqUFK3ZWEWOr0o/GMyiUMXkpgzm/6bjWXlM9J4eCrXm
nPJI6Xc6OJE7D/7oo1APm14pNfhGh4alhM7mQXI/nv++Tyyl4/mXsNIVYxRq
2pHn8uc+keMvbYh+wqNQs9wsQ4iP5HiMuMhPUKjyG7PF7T/Q4T6VrX1zikKV
DGsq/FRMzi/2HJuZoVAtyj/f0yui4z9tflPc
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#2"]& ], 
      TagBox[
       {RGBColor[0.720374, 0.855234, 0.928635], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwl13k81M8fB3BXJNWqFKJvIhWKEkXJ60OJVEo6qFQkXUQHpUOliJLcIaVU
SLpcSVIo0alIZVnW7n7Wzbp21/mbHj//7OP52NmZ94z5zGs+s1y9Nu2TkpCQ
iJGUkPj3ybWVPb1ndwMk/v9HTftkYhB0sAHucesTS91GYZf5pzYztAGeyx9M
P3NoGDszqLH+MQ3gbwiwWNQ9hEMpaYvX3GnA5qTVCzacHUJQwqmr9c8aINoj
4X395iAKA1RMxlc2gLNty52sJjH0HRyj9qmyYbbgK5XU2g+z9e8KF2qy4Tvo
WY/ofthaz2sZ1GWjaLpiRKx5P9yXi6hIMzYePs24ZBnXhztacR2Fu9nYaZ19
LmVXLzJmSEy/eoANc6tvI3JKvchXPmC15SgbWk37DtV96kG1gkliawAbkd83
epWa9WBi7+81KilsLDvi7/V5YTfUO+DDecrGJvEZqzECAXSbUu8+fcnGFvv9
CmczBVhde1K4qpyN5DRuoZypAP7vlR8ebWNDHHE6pduhC+3R2yQ+GzaiULte
Lv1UO8o4nUEOZo14O6C/Om9KO5INgyfUWjWCNSdDyH/ehq0VedPbHRsxybz4
zHlBK94pTDdmnG/EpaI08/1XW5CwPfP1zeBGjE/5emybcQt8HtlaakQ2Irok
pHZaYzN0rc9sWPSwES1HpD1YVDOiA2oPOnxuxNfY0v3xk5tw5MeJLmYVGb9z
Ss64z3ys0Zhw0o3ViJrIQj/ZQD5G3qy47CNoRFm7wVn/YRoHxHfu3FTmIOZM
GuPeKA+WNku1NWZxsGzPquCYEh5m3Pz+OE2Xg4uLtrytCebhp5HEq1crOIit
4uxeocyDmbdLJXMvB8quohfZllxMeyt2cvPkQO15zd7zilwIJkQ2tPlycF8U
Pu9QPQcpj4vbh0M40Pvp0hxygQNFvtZYjeccnEp967frO5mXcUFY2isOzt3O
+i+GzPPD5c1TF5VwIP/hxoPis404rRmoaVnNwbUJBWmdCxrBcabN3IY4uFXD
m6Z0i43CDP+StjFcnMmOib10io24wWm2Pgwu+IXPxKVb2VgXb70tSJMLzlGf
K6+mspFblXY0zYaLMR/66xsTGxCuZSFauImLj1F+skEXGnD42F//Vzu4OC24
inq3Bmgojgv9dISLXr8XTikGDbi69nBKWzQXPmt/FG5LqIdauOWxyttc2Ln5
2a/1qkdGlap5fgoXAykHrDda1eObc9mvK3lcLNQ+ePhMLwuTvbXHaNVy8ezx
/qTqXSzczx6qkOdxoZmrlV+1nAUjcWViVzsXg5axR9+psrA1IMCocJQLff0V
thv/1CEhun6vkxYPyRb5Dxt310Hvb64BNZ8HLXGFJmtlHQpmhA3OMeYh/Yi6
Ydq8OrBSzKJ6V/Ow89DP4vjeWni1TtnN3MDDt9Fda/KZtZBY2Kpb7MhDlcyX
w7dKaqH5Kr74xiEeXl70NY6MqUXWsHeY73Eevm4qd7p3vharLG22O5/lIW3j
rSluh2rh/rlfoBvGw9K5d2uFFrVIr3OYVfqCh78OvSUyYiaWa+q1Z+TzUPRZ
d9HOJia+uEu9iiL7rCtyW+aGP0x0dD7f6PKL7Du9VHWJfCbOGwWr27B4UKAG
8l4+ZkLRb3eTPp/UY7H0u8QdJgylJl4YEvHw6vqVtSsuM1GymreWI0nDK6Dg
jd4pJjZfK1D+NI7GvV35Rfc8mPBVOvzspjqNTXfsxqltY0LOyfKMvzaNpssv
nqiuZyLutqr1Pn0aAxWqd2NXMpE/p4xlSNEIWXY+QcqQibWHk9JV19DwcNS1
a9dhovaZr6/EJhr9p9ip6zWZ8Oxdb8nfTmNuyrzoWWpMjJhoT/y2l0bh6Nqx
+5WYuHFu6G+2B43XzUul1CcyoVFc+fCWDw036U3B5mOZsFwbsOLgFRoFlzTO
vh+uQeUNJ/mN4TTcIx7NnC2ugVvVwl9L4mn4mBXlN/fWoE9l7L0ZyTTUuYNn
pghqEORc7yHzmIa+a2h8UnsNlJNzTVqzyHjSmvahLTVIo6/L/Cyg4aD7kf+b
XwMTvX0VeR9oREW8e3SBV4NyL7PEpG80dIw8Wy5zaqAy8362028aJtGLdraw
a+D+Tf7rlAYab+WuJT9oqEHOOW/e1yYaX/rLzDLrayCz4PfwFQGNpRe3P59E
7FC7YprlAA1bRnZwEasGydce6A9J8bHcxXjbO2LBMgXrXAU+tFQUs8aT9lTL
0d3eSnxU5umbPiS+Ef/npO4MPoy01EODyXgsG4RztfnQPN/qkEPqmS96mHZH
n4+kOA1zXVLvmdTxRY5L+XDLiBvmcWvwaevxv5Mp8vu7x235NJmPbI3giw0f
zinD7PnNNdifQ427Ys/HuDXxQTmtNch1S9W02M4Hl/lo9HxHDcYoTVw+6MqH
2iZ/1WtkfTeXnHDIOczHeV+zh7/I+nfPsrysc46PiSofjsweqoHFj7REDjln
m8K2uc+RYCL8AiPndhgfjSlmK/fKMLGgvpY36S4fowunbgqZwMTZsJUjn9P4
mDHW18V7MhOfVqRPC3rBR59kg2KYMhMHEk9aDxTzsVRO3vQg2V8PnCY/auTx
QV13FgQsY6JnrF9RYgcfJ0RT50hbkP2TV/93q5AP2+dbjTKtmaif9mTc57FN
eOVnYxm/hYnpVdYeWXpN6EjenXHsOBMRducMLh9twtUSeYWEXCYahjnW5qeb
cGm+YX7yWyb0n9juEQU0QW57vNPXMvK8KqhEeEQ3YZFwbkIgk4mx5Zndm182
Iddo/hQvqVr4r2zK0R5uQkGb50jMllrEW5/XuS3bDGbqFtcdLrXIXjvttpJi
M7qyeyrMPGvR6rDqsrRWMywSgmTsA2vh6HZ3E9umGS+74nmPc2uxONCxMzG6
GU2Ky4puz6hDU2nZPKX5LXCcd2lGsKgOm2wf3ZLa0YpYu9JicXk9ygrn/vAO
b0esxvbJUtFsuE/Q50kntGOSSopPXwIbMjuNxLH323HE/MEX7j02LMTUrDe5
7ehZPmnhy2ds5C/eflS+rh2hz6f80PnMxpO00EnJOh0oc1JeA8lGREYK7CuL
O7A8aJPW4MFG7HR//dO4rxNPDCvu5M7nIG+m/eLEkU78DDmT7mzIwVWPnjWS
Ml0QqjS9GV3KAa0dkr5/QheU1lmJjVZycCcu+7CRRhcMAgsy9zpxwPBX6Phq
1YWQ+2ntPy5z0GXzqlsiogsX6ufe6P5N2mvLaGXHdGHnhpdHBmo5WCe1wWF/
Qhck751wHmZzkPaam/X1Phkvt8Sjt5UDF31Fn4TcLgxkjxxLHeXg55T9wsW1
Xcizn0xpzuEii6U05D5XgKfct9k+XlyYLRm1K9cTwKZGblXscS5Krzff01so
wO1RhazMk1z8MSu07jIRwE1RuKT+PBcjCfuj/GwFiK+WlZUL58JmW75uqKcA
9dLea6OeccH6vtvpRZYAfqZLzz1u5eLAXNuMKXkCaGgeDVrbSe4H/kajPgUC
TJUMfczv5kJGX/7hsg8CRJ54YK80wIVOaGZXSbUAzuWR1hjLwwmbMcHVYgGW
fDTNrCO5J1+UnjuIbljeZ8asJbklslzwsmBVN4rMXhi+3MFD0/tnL8+t6Ub7
6tfX/9vNQ1lZdt7opm4sHvMrpGEfD0EVhfnS7t1kXy9sWURyTarhZ6FCaDci
VF9/G3+dh6GRgVK1P91YyfN0fvmGh7YL5z7W1naTe63x5rvveGBKSZTdZndj
X3zwvkCSY/myY8pntnZDt2AfZ2U5D34TGZ+1RrrRtncoMbKKh/4ZWt/1ZvdA
rfxImF8LD51ma38v9+7BjpGAwItTaOSbeg48PtGDcR6n+OVTaVxecmOGul8P
OqbXLGao0Ji+sHLv0MUeZCmNjwknObZaa0dXQVQPDKy0Xx0hOZYof1je/GUP
wt54BCYsIedu9dXl1EgPJjdFtL7dSmNqZcau51K96HepGnzkSKPh+7eLGnK9
MH1oZB5Bcsu3fHKZhGIvkoLHuG7bRXKzIGFz0axe5H575lq8j4YoOd3T0qoX
xu1NulNP0Ejx+pS0KrQXW+42ZxWE0aiYZXTwTngvTGqSVqwhuTVQedtQFN2L
4Lf7tlZG0FhvcvTD49u92FFZYdYQTaNXQqV18rNepK96NbkugYZl5L4l7B+9
MLSnr7ml0KjPlvh6TrkP9uari1++pjF2/6HY32p9WOEX+VNMcsxQtWr3Io0+
CLS2PjEtpBF0LrWbO68Pl8v3lWe+Izm42k5l3bI+BE3a8vUqybmzv2/tne7c
B9cFi8MqSc6pDCwZyE3ug3H/Wdmqehpp1SZHvVL78HJz5eYmknMmWcua5mb0
4dArQ9sBNg1HD/PquJw+0A5ehspcGnEsq8zTZX1oa1y+2JjkoErJ5kPmHX3I
r2wtke4i/SVtZfd392Gdqv6ZHmKTs46Oz4R9uBa4caCB5KSj8c7VGpL9OHHX
2DGnh/SXuldTSqkfJ6t0Pq0Ukv5Cj9V8MO1HBU8SYnJfTztwwt6fvBctd1dx
KR0h/Vn5li1Z2Q//586HIkZJfyN+uanryPeHpyybJclHnPfFyJDd/VCFgfQ8
GT5UtoTbrg/sR1z0vvpKeT7SFkUWjbnaD65u55YL4/gwmRhtUhjWDwV33x+6
JJcdP96cYxDXj4UyhSy/8aQ/0ySpSY/7kaGafFmCwYfqf0/zqyr6kaVyKfTF
FD4u+2zYbParH3PnBhUakxzv+tLVfv9vPx6vfLEhj7j0zOJZxxv7cSRdNSZv
Ksmtv3lXJvX2Q5S4oPKhMh/foks22ykL8cC7YKORGh+mbW4dOWpCXO6YrpZE
/GClbPAMDSFut4ZtH6vOx5lum9dt84SYOX+ieTXxvI3fZl1bJsTTWzcKdv/H
R4DC346PzkJYrjn2RncWH+2up4MNXIXIjjY+eY7YMV9N86a7EF/Ve/K/ERsc
3LXF3UsIhfJjPA9NPmpLOa9lLgqxyo5uvqnFh/V/gVs8AoXoNOVOqyfO9JnT
WRkihI9Px+/Zs/kImX1Q836kEMUm/6llEC8J6Ai2eCDEnkHvskfk3nLv7w3N
R2lCpK7flccjHr9oUYHiEyHGe+mt1pjDB6f+eGd9jhDsMDMqgjh8hXiL/0ch
pPhN313n8jEUndDJ+yxEiuLViiji/W3LQ9ZXCPFT/96pEmLzW/4F6n+FMD/Y
UvLfPD5aRdJar1uECHZ7v/8DccHpFYcudgqRdN2ho4M4bMj3hXWvEDLWOq3T
dPgwlGhB1bAQFB243pVYJkDrSoKUCM57RDmBxL+knb/tkRNBOyY4IZX4lFzF
znZFEaIufq6jiW1D5B9kTRVha/FuyOiSe5PCyla/6SJwf1RpahC3hZ41pGaK
UOAYF7KMuHBirp/sbBGuF0/zcSAOD+9892WeCMZ4TR8idpmsMzZqgQhxJZ31
F4hlpiXGzlwqwrzY9CNpxNU3f9Xxlovw6dmIbD5xqipDO4MSofeg//xPxKdu
2XgcsxLh1d3rDX+IbWcEZJnYilAyEDabJlZPej0wYifC0haOWEDcrtFn8cFB
hKwnbS5D/+pL1g+55iiCpv3YXWP0SH2zD1TYO5Pvn0Z3jid2TbmnrOIqwluv
DuUpxIvnMXex3Mn8Jhz9o0wsk66U8uCwCBMrfQ3ViKv17NoPeYugVOs4dwZx
2pMrRot8ROhW9sr7Zz+DojNCPxEur1HkqxPbvhgofuMvwo6xkdnTidUXG427
fEmES0U2mv/678j2tLcNFiEw78qiycRvl6TGKV4XwWjsPY7Cv3rzGuqrI0R4
d59nKvOv3mXT596OFcFr20PjQTI/owKHI3tvifC4XP9PF/EY8+s5OndJ/We+
a/L+re/b0qHOByKwP1VO+7d+aRYSq3IfiaAmCMopJz5dYnrt7FMRZGQXS/xb
/7VWx39aZpH2oxqif/8f9Y8ZqvJ5ImzOjrsTS9xhQ+/5XiDC3r8NvQHE7z7N
TIspEsFJFkOexBHrnDp3lIqQmC3M2favvo1fzjV9FyGn5bLVXGLZn2M+PK0S
Qe5P7YwJxL8dMN7nrwgnpsQ+EZD9d3pbZoIkR4RHs+aKconX/W1lf+SLEBbm
l3OTeMYObZ2wNhG8z2sanCR+tyvu5fR+Ebbruuw0JI5s+DHSMCDCku8HJk8k
3uuqsDp1VITQ7+khTeR5kXX3r1osL8Zzfs67eOJ1nm6CdepivOiNPtZOnr+z
D3isIQ0xulW+678jfsJ0/5KhLUagnFxRBPFE24Op4w3EEKfyDi8irphzxPmL
hRgZL5wHXMnzLrGr0/bsajHY2aGB84kXxXibzF8rRrPdtc5ecl5ESh+fErpZ
DOcpdm4BxA4NJ8vX7hejokyp8wY5by4ri3MHD4tRP7k7bCNxtt3pB4+9ST0G
RtMUiZXenD2vcFoMD+bM+mvk/KqOv2j8OVSMpV5dJ33Jebfd4do920wxzqx3
fKKiwcfVq+NvDOSKodm6niqbycfroutn01+LYWuq9dmXWH1h+LZxH8To8fP4
UkHOW9b4mAmffoux6pdV/Cny3uZSesdvzbAY3L/JS+Om83HANNPexmYAP+IM
lv5H8uBE60+X1HUDiIruXpRL8uPC7Z6jsvYDSP7s5LKe+KakceR7pwF47hne
4zeZ5Ef5y5/U4QFIzqkUflQk743b3ziYhg1gt0WiFjWBjH+6bItu1QCq6gM3
3xvDR8v85n0hfwYwtMLLYhZxP0vet6l2ACM75vrdJXk4YeXa2BTeAL5X3v+c
KM2HmcK3ak3hADKiGIzrJD8TblVuU5s+COMY6bvrSP5uKWA5jd8zSNYrxn5d
L43SuJvKn9wGMedR9px0kt8mPht/XTk4iHSelbkcsbp+8Ubp44OorCpZ+pbk
PTfpofVA4CBuKeofnNNJ48QlD+Omx4Nwr4s6/LOZRrTtgOJ74SBqK3YMPmTR
+PlnatmZG0OIX1yf7FJKY+bCI2lNUUPISy83u0/uMx5XSoO3xA3hywLXbdz3
NOSWnFxjcG8IWj3RivtKaJhF/fnUmDmEc53P7u4h96GU9be+rqkegtm0uvtU
Pg2/Yo1K5RnD8Dy+PyD1CQ2NDD1WVvowbkV6vNeJojGssm77zboRBHZKTn+6
mcbnjvlGx8ZIUB/UXp0amUTjwnwtxnCEBJWc5tlOVfAwnPvfbWddSSrpOG22
NIiHxkT588l5kpQVK0C4Hjw81G/VUV8lRX29rVj5SsSFwYSfVw4zpai9G11m
BT3mQtM6zTTpgDQVMD9lw/q9XNR+vXQnTVKGuhFmM2nJVC5OSGz9Qt+UoTS/
TtouX86BT5iynfzsMVR93Y3W+wEcrDjICpAsGENtKOteZUjet44kRSuw1shS
d+zvSrwVNOLsRQvnzipZynk07WHG00Zset7jUn1YjkqOGPyqtr8R4cti8u+J
5KjAV7ZbgrUbETvJrNQyYiw132rvks/1bIxZ9VO7bKY89XRx24gwiQ17zd12
AY/lKZWWkMokVzb2rRfoTF45jupuscs7OYsNduUxp6CKcdT95es9e3kN0E4V
L684qECV71D4zUppwOo5J/l2EuOpQx42fx0PNaBCgku/CB1P+SfwdDQXN0Bz
3tb4ltkTKNfl1E4jQT1q018myWVNoFapmFu6BtWT+xPDy8l8IvXJX4/fMbMe
lZs9BRd+TaRu7v+qZ5XFwi29/I+hrgzqBTNrpc5GFmqbT0RL7WNQZjvPPzpu
x4J6moHLqf0MajDWblnhOhYSZz8c2OvBoI7coWsd1hDPCF+w3JdB+d66qH3R
koU7DPeo5hAGZXH1yjuOEQt3eybtXv2CQWXco0fKVFloePFFryCLQe2ak1ig
osKChvcV0aJcBvVH9PHBgWmkfdtQxIzXDEpU5t07dgoL93j8973vGVRX9dXw
teNZSP79Rvf+HwZFS4+8/DNSh8aYU0IVJoOa9VRaTW+4DpqbF78Pq2NQH2JM
0s4N1iG5Is35dCODOrDpPwstUR3ul0eF27cxqOLWnR7egjpwr9g5f+xgUMK2
3RrvO+swe7W87goBgzobcWREuaMOD4r9S+b1MyjT3kSTdy2k/QXT8DsiBtVT
nhWt1Ezao3en0iCDkjr2fvpBfh3chp/qXB1mUCUnP316wyO/f32wf3SUQXm6
Fz2YzK3D/wDY+ewS
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#3"]& ], 
      TagBox[
       {RGBColor[0.7867598, 0.8842044000000001, 0.8924496], AbsoluteThickness[
        1.6], Opacity[1.], LineBox[CompressedData["
1:eJwl13k4lOv/B3B7KZmUSosSkuVEljqE3pOdSskSHVqFIm1oISGlRZKEihJZ
klIRhTqVTtlC2SPDjJl57PsMQ/zu7/Xzz1yv67ofz72+P/ez+uDxXYdFhISE
bgoLCf3v1+15//jh0nYI/f8f/UOYnL5UbTvC/MzWfzw9A0175zuHl3bgsO+m
IKlNUzDa/vHDesUOZPFE+/xbJmFjqdo9qd6BnrrasczgSXgYjtNjjDrwN8+p
16JcgIdKCf0f9nXgWEXaXB//CWTLCy277tUBKR9zE3XlCRQu8TJ3PNkBnimV
dKxuHA1z9RN7wjqgfbJN9bDBOKRHG63l0jsw81f7TxtZPlb0w5/1ogOaAZma
7lU8qFMZyS8KOiCikvu57BoPFq1n+GZlHTDP6pq9X4yH4C9L0k72diA2cIdg
3uwx9MXuFqrQYWLCc/+dULMRlLIGrtgbMfFv0SNfe6kRpOhcnddqzkSqje8u
s/phONW8XdbnzET98sMmPkeH8XHusg20i0yMxf8wNXw8hPt7XhfFX2VCultu
4OjJIfg/tTFRiGHix6abI1EmQ1C3DNyhncaEa1VHWzJ3ELFhrUfsK5hIvn6a
7W00CN8ffoMtdUz8I9xj8H7hIKwV5p1xb2NitobX/g+NA5h+bxzuP8TEOR/X
VknjAXhNPHwYv4SFk2aN7xqX9sPoxIHalkMs6CncoC1a3IvF/064uB9job3W
+OU/LT0YmhfT3hvAgonAranucQ/Sn33u+3ONBfmdTdWWOj2Yz1WarfCSBcEX
JZO4/d3o3lAclfmOhZ25WaoNmt34L9xhkXYJC7kP8x/LT3fhvOJlRZMGFlJ2
NtbkPOoCy41j5D7Fwj61ecp7+yl8yA4u6RXvRFRhM+X0hULC5GIbf1onbtrv
KNB5QGHbPcvdVxQ7wX15oTFsK4X8usyTmVadsC4THFmUz8X1rd7pvbGdKF9c
Gvslh4Pl0SanapM6MSx9/NyiWA6y65ZuLkzvxPU2r7mCsxxUuZXWR7ztxFex
Cms/Mw4WnFgjrtTaicKFF5Z3d7CRmjdVI8nuxJihrtjdcjb0JmoTB/s6Yevw
rvFjLhtOYWF6H2Y64W4VlBwTwcb9WMYhFyU2uqVUT3XqsaHRnK9F/4uNF/2/
lF1Xs1EsHzWpsoGNR4u5fmbSbLSlG90ZtWCj4067z76uTii+u/f51lE2mgRb
hSKfdCL3z4mogNNsbNcaSHMk4zIzsdrjFsSGQUhgfmh4JzwqeEPqUWx09ipG
CQ53Iuu3/eqvr9gwldBsMFnXCUNFjb7sQjbsVurvHVnViUoPkXd3Stgo9BD0
TSzoRP/Ay50H6tnQ0aH7igpY0BGRDpkaZ4O5a6l5RwULJRbsrSxhDkZcOdrL
P7HgcKN4SfkcDkqO+e1KzmchQNY7J34FB9or9LUiUlgoVClt06Fz0PWkMCjt
AgtbvR9lLbXmoMkwW2KJPwutOQEBQrs4uD+4x7rch4Vp/TXSVYc44Cy7FD/k
ysKtC1PNeT4czDqSeuGQIwsKn2vTHvhzUPYq7ccCW7IPt4YZH4ngIO5+V+Ya
Ogu1t1wkd0ZzMOgTpRZhwIJ73fr6jffI+xlvFijqsnDFjeEj9oyDe+mOFkJr
WSg7bpT4qIqDVR5qymYyLMitSs1zaeTA0+/LjK8UCx5Vkt8XtpPxzvk1u3wW
C2LrGv9EDHGwmTN5et4ME/atxotNBBw40Y0tRgVMpNx4ojklwsWGtVYqs/lM
0LtP7jshy8WH/jGZvAEmbt1rOqMuz0VJoVK6TS8TbVaI7lxD/GaJy9wuJgIz
pD45/82F3vCsbbNZTJQ7nW5eQCf/L8hOw7SdCTmJX0OVVmRfu3Z6pv1mIt89
Q3HLHi5ascTxdxMT4rLShpMHuYiW31n4qoEJhxI/+zfeXLwx7WdnkVxIPdXi
fdyPi5jym/qlP5kYXm0SrnaB9E9l8yLJH0xs+ZGZyLrMxYPhMx0+1UxEh9De
JEVxMY+7QHzkO+mvVsD33fFcdAkbdd+vZGIdo5Utk8zF7mbvP4dIDgVFmU5X
ZHKxc7nb8+3lpP/GWYuvvOJio76o9+4yJpb2zdeiF3KR8nfo05BSJrwSz1gK
PnOhUaDQVvqNiYKtbfvyKrhwkLEO0SKWmDQ761vHRV52gGTeVyYcs55Fq/7m
YtEpnTFH4icuC54y2VxIHZH8JEs8Mvvcp8R+Lmjnw3sH/mPC5C2j2YnPxQ1H
hQkOcbSnxfB8IQqyF82PThAzFj+fUzGbwlQg/T8V8rzm14VKl2UoTCpvuu1L
HOR/3hDLKGQsXb+7hrhCucN+QpGCt2Pf462kf8vqLH1yNShcY4tMM4iPXHoR
fkyPwsp/P05EkvG91VmUtNaYAitPc80uMv5ZzMA3HeYUSm6IL9Ai8+N0m/n9
gS3xukx7JTJ/aXRrjuNuCosnV1zUJPM7OpAzTdtPwUl/lsZOMv+3bS9ohZ8k
/WW/9qgn69P+h2W5+TwFpc+3NfTJ+mk+t9k/Hkah9LJsSw5Z38q5crd9Yilo
pfzwa61nYnlR8FOVJAq+55YkRzcycfQo+1N7GgX7dCl952ZSJ8peDzsUUNjd
8wwKZH/tPrt0Lu0jBdH4uMlVDCbS14YolZVSyBlOL9buYML0ynYH41/Et13G
rrGZCDal3qz5Q2H4/OFlYmS/37O8qJYk0YWm4qdOn0ndydu6OEl2fhcK5SwL
Y0aZ6LE3CxdV6sIz5Q2nvMj5cXZP3tVh1YXpValOvyVY0L3sPJAY24XUlLfO
jxRZsL02cFD2YRfk/g675KjCwtGbVxpuZHTBS0v6qJw6C8l3896fL+wC3p/Z
XKLNgnT6/Ejn9i5YdrEWpm1hgfpaqir7Vzc2qneku5E6J1qxL/HGhm6oiEaU
ffBkYWU1jyaKbsy58+O8Kskjx0Zl/pBdNw5Y0FNkSV595ob8V32mG/yNJRzr
CBaSZhscvFHSjVMH9QwF2Szssnn6QOSfHhzfdi5Dg9QxZbOLDk2HesB88L6E
K9QJnrHjvBc+PZgqW3cwndS1+9rCF12Ce6C84la+OqlrHXIuB1+Supr0UK5y
G6lrJ7iz1fZSPRATNPq3k7p2M9wr/51/L3o/h2VnxHWi9MPaHyei+1B1fYd5
5Xo2POZpskXv92Gkf7FkL6krYq56E3GpfQjtuZ4gacjGlgn66vf5fdjwPbfL
2Jzkvu6ek5K/+1DuWSl13YWN55mRMilq/YCkRE16KBsxMUN2tZ/7wbi0s+Jl
NRuuHkU/N4wN4LJfDP/qAQ7errLTTZweQB23FV8Pc3DdZ8RaWGwQ7tKbq2aO
kBxfcy3Lc94g6P0TuZ6nOHiYkOetpzCIILdGjzmXOKAFz+3/bj6IwBTW13up
JLet3g0L3R6EjHm6aGMHab9GTCnv7iBklxgN32NzsE1kh73n/UGkZkjMOHdx
kFnUmfs9dRB3241OVQxycEBzvv/9/EGcNZssDJ3h4OdCT75u6yD6h/m/dFdw
kdsmO+Wxdgi/tdJzXu7iwmjjjG2ZxhDc5GTO/evIxdebXY811g9BJuFNb7kz
F01GHywH9YeQGN1c37iXi+n7nnfO2Qxhd4Hot7KjXFjtLlSPPDYE25hHQ9Jh
XLRV73N5lTuEgOdpJWtecOG11iZ74dshtEQ0F1W85GIoWG/Gv3gIIcIFIb65
XIhpSqZt+m8IJ5s/+2e95UIt8vVgScMQ0s8t0Z0iuehnJX61YWIINQ2z9WY3
ciH5KSt/EsPI6E1NrpziYtxkXUGx2TBW8r4mYoYL6ktOwQXrYYyEPZiXI0xy
oDTv7cyuYfyzOtnxkgSFKzUfCkU9htEfHfxOeD4FkfafH+ZGDuOisULWbpJr
U9OCr8ubhqFhPLPjjBmF3pAL31pbh3HCXEHiggWFFhGh0qSOYQRGWAVctKJQ
KCFetqpnGGJRaTfPb6NwTppWoTQ9DGtD/0ZrBwo8eaVqDeUR6G41rbE9RGHA
aGuj4YkRpJsXaIpcJM8bHBM88xuBz8Q6ZkQIhfCNt+RXnBvBmmALwRySY8vW
1x6aCh3B4syifZKXKVgo/TNYfGcEzt4mutzrFBIlvSU3F4ygTH93gmocBU+J
m3+9KBrBJ9nrpy7HU9ARzdmx8uMIlqYXVzESyHxMDd+dLh1B0KpjsjfJ/XFk
4Lziv79G0DNXMKs8mYJNw3VD+vQIjKVMVaqzKCyqzd77UmQUbglnBWLZFNqr
q0IVZo3i0r6sY/rPKQSULSgVmj+KTVNa+gk5FB4X33f4tHoUbfXttwzzKIyn
ZB0zMR+F+aPypgXvKaQfL39kFjkKtYCVKvO/U6hZrXfkYfQofnxaljpOLKhN
0hmPHYVUSYkUo4rCdv2T/z1LGsWyfZHZaTUURoXkehbkjGLKnmmzrI6CSczh
jR0/yPsGQz1TSA77mFXPbGoYhSCu3/doC4U4nn5Z7K9R1CueDlrfSqFrj5Sr
FWsUVfWiL/N/U4hWyg3NGR2F39uGJ8/aKTDyhL5fWDKGhJ8Gqww4FGZ7Ho1r
XD6Gip+CLUxinaV1+7QVxnCdHnDpGpfspwsZw52qY3DzzfT6SVHQtLCV27Zp
DJxXqzjbeygENT44tMxtDD+G/pvsHSDjvya+zu/AGETEWt6fHSTjNzzO+354
DPf1z+WLDJE6lmxyLdR3DMkzKnYywxTKvbpeUBfHsOX5kMPSUQpygo2C/JQx
nHtc3FTPp5DZoH/yeMYYCh5fXLljnIJ+7iZqbfYY8pPa3b8SO/tsbkh4M4bj
nk8FLybI90Ob+evzpWMoy9oW5DVJQbXIUk33+xhWuk+P/yB+G2+d3PNjDJ2H
r4YbTFFo2rk9yrVlDPe8NKpFSF2TK3E4url/DHm3Yg8FT5P3P3Lq4A2T/q0b
j2gi1g9yds7hjyGpSaFs/Qx5/wZXCwVhHt6/TM5sIU7IOKQoIstDOVdbarlw
F1TDD98rlONBaCTJwoP47X7P+aflebD52/dZDnHTUu9plgoP+6ZGBEYipO5F
nvr1nwEPyHNt3yLahUwvP7vgzTwkbC5KDCbWNw8o3WjKQ/+b6uh3xM7T5/Iz
tvEgcMxWURfrAvUrcN1+Ox6mThRW7CM+W3DhiZwTD0v2zsm5Q5xwIjTm2j4e
zJ37N/KIVbdfkjRx56H43Yc2ZXHSP7XLIQIvHqLirCvsiJuYV329T/HIeRec
TSf2+vc6W+kMD4OfdhlXEY8/iHRtDeRB3KRi2yixnGO0zfbLPEhe87M3JPeC
TO2YT+LXebgcVrXdlVhfOlb/QxQPf7fcvxdIXNp9NyfgDg86ut7694idv8Wr
aCXw8ERQrfGGmEq9l8RN5GHzKWf/auKzIQ9kkx/zEPEsZjFFnGDwSETmGQ8f
/7X1kJ1FxrP48bmyHB6c6zlLVInfDqcMhuaR9VF0W7uJ2Kr6ieemdzwcrDWI
syFuepbeNvyeh262qIcLsdfVTMdnn3mI+WtLggfxuHtW5aFvPFzbHqB5ivjq
lmzTFZU8BJaoqAcRL135orCuhofO33WR4cTh/jscjOp5yNbZNXideLBysC+1
mQeVSKPhW8T/KMdEzG3jQUm44s4d4q+BuqtPM8n6fdVtuEusU1tX+IvDQ4t2
dmEccZJ6gINJD5mfN14m//PssCX9Twd4oFiJvrHEfs1vI2RGeSg7EUi/TcxY
v2f1uXEeSjU3vosktrk6Wdg+xYOPzHTzFeJ8RqKDlTAf8utEn1wkXv335v4c
cT7ZJ35yZ4gjoxgRS+bwkTMrVP/Y/8bPDll9UZqP/jhH8YPEh4wVizgL+EgW
WhXiSFwVW+Jgu4SPZhHJLEtig173/jfL+SgK3hyuT/zEVOKqvAIfX8920f63
HvMfZKy+rMyH9lJd28XEgcNWRb2qfOzPNqWLEnOsux0c1vGhm2rC7Sfru+vx
jf4ibT6O3HEyayZW3Vm1+sYmPvJO2q/JIr6TcbxoeDMfCpaXn0UTT0/Pd9xj
ysdetluvP3H9c/uratv4UBu5kWJEHDa3uf+bGx/jRp5CRWS/9h08f1XrIB/6
Gw4ExhM7Fy5XjPfg48DY1LtTxFpH9jp6HOfj5p6IK2uIW7+yisRC+ZAbKQgM
IufHcuVlR5/LfJiaxOnsIH7trzJQe42PiuaWNwrE15SPKKbG8PGkf2DNR3Je
N4b1X93yhI9vivblg+S8P26+pfg0kw/R/qsihcRS2trF85/z0d2UTwsjZjFO
DzDe8HFLQu+5NHG08YRj8Dc+yn0WLVhG8qNnXFSpqJsPL9cObwHJp+LzxkdD
B8h6vRAzfUYcNRXwynKUjySNXVV7iHWEulH3hw/nhTck8knenZ1V49o3fxxz
omVXu5E8FFucGLfq73FM7Z4ld5zkaUN8/W+24ThaRy3K5k787zuJtiabPo4n
a3NNMkj+2siH5erbjOO1Xl/ML5LX0cpeNXZu48gKe1Wuw6OwQldvTvilcdwL
OZaSRfK+P++Ync3VcTgxVnjoEf+7MSNh/s1x3JUfFntP6sPBTcvWJsWNQ8P1
aVM5qR+ZW4TM8p+O4/J9u/Gmfgp6OysvUNXjqL15bdHHbgrbjrkPbVsxgayz
ahc+dZB69ITdNqUwge2i5x9oED9v8ajMXjOB/CjLT7Gk/knbHMmQ0pqAXKXJ
WncGqU8qvm6VWybwamHPGT6pn/btZ8q2ek6AKV8vMtRIYY/9jcc2ryegLMS3
2Ujqt5fBazsrKwHM5SZOGr6h4Nfz80DGNgE0+Dv8g8h9ICRp5KSEnQBP1CN+
FOdSiBfeEPPFRYAjscrxhq8pfC0r+En3FkAtpN1Lm9wnlPa8tzeIEuDCYN3r
6UwKbedLHdXrBDhV1aemnEjBsbjNRWr/JJY2izkVkfvTz6ZFpYG3prBfwrzg
7mYKCtkabblZf3B4m+h6UwEXf+S27Yn/PQ2NP98terK4qOj/S++UuBD95dr6
HhUXLkL+UqL9uS1EN56scwmeQ9rnr0xyUxemhy+3WRmVywEzUfJiylth+ibu
5MrL5P6fptmjtsJMhH7rtapy1XwOtOb9jPBuEaH/tjXs2/+ODUXLTINHXqJ0
g9A5qmZebLR+v/QwU1iMPin++c06GTb8hJwqOfFi9NhmW7NPxZ3wj1piK6ks
TpfedV9e6XgnjI+0hQkXi9NjVW7FOazohO+j2Llt1hL0WaycYq8aFoJCt7gN
1EnQxVQ0K53I99iulyMHGrxn0auS5j5+aMBC9Ka7hY/HZ9G5tp95D4aZiJMx
+mpyezZdt9E/1TqDCXGzn2tKV0nS21Y0Hwg/yISd4j7bsGeSdAfXfYFRCkwc
3j6ktsB0Dt3670m3lF8d6Kg95XKlZg69WlXYk3m/A2syJgxrjsyl5ym9lPXZ
3QELlTNcWyEpejnvqd33xR2oEerkvIqUoj/f0EAfaGmHoqrTvW7lefSfa+/8
SExqR2tWwaNZufPoN0o6bWrc20le0467bJam76zcKeeh2Y5ah2NDIfXSdP6n
ZJngLgYeaBR+izxIo8//feuGbwgDrV1+sSKHafSteb+YD4MZWJGpdeCsJ43+
3e3RkeogBhKV0wSHfGj0YN5Fce1zxPLR6wwDaHT/HpEA3kkGHtI87nRdo9H1
HmzYcP0QA8kjMvssXtHoByNDxestGGh/ValRnEujB1ZZbZlrzoDCiYhx7Xwa
PS2q6dkWU9K+d+q2fBGN7u1pOC8HDDxmc7+MfqHRzeNPC0XqM5DS+F49tYlG
z3FtTLVVZ4B59yxfroU83x5VFqHKgKKD7peo3zR6im++/CcV0r4m0+08k0Yv
vw07PSUGUsvuRNv10uiv9z7qXLGCgc4IW7dv/TT6rQdGF3YvY0DZQlLdeIhG
D3snbxYjx8CTz8ElqjwavSLiruvsRaR9iEH0w3Ea3XD96hemC0l7jLrKTtLo
Q09/rbsow4D7nxdq1//Q6OdOFrcU0sjzRUd4MzM0epzopwLePAb+D36Gtv4=

         "]]},
       Annotation[#, "Charting`Private`Tag$11812#4"]& ], 
      TagBox[
       {RGBColor[0.843704, 0.8988422, 0.8492188], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwl13k8VN//B3B7lhgtoqKyFdpJEXoNJUIqSRRJIqKiKGklS4skkSVbK0la
SEKLlCjCx5aSZmwzcyfbmLFl+Z3v4zf/3Mfzce/ce8497/f7vK/qgWN2HiJC
QkJRwkJC/zuu2Nrlb2zMhND//+ieRiP0WOK3JsK7rMenkKae2PvOlYnj2xKS
VkdNIkdFaN5VLyZqYkvCbdZMokjRy3yXPxP56YfrJn5PoEnGIIUbysTnmb7t
omsnIMdv3qL0iIkirunar8P/oNyLwI5cJqQHGxTLnvyDDjszI/c1E8ljk6cV
3f5hc+up4U2VTPx50mtXWDOG858UH/r/ZULTQ8NWu2QUPXG7hb7ptkPGpE4t
t2oYFR19ETuN27FgbEnR1+hh3NO9LNtq3o7mEInHs+2G4VBbOK/HsR1JSpxy
pdYhfJCZp0+70I5FNbZsswkBkve8LE643A5F4W8aOhUCBD62MlsU246aW41B
M+ME0LE4s231w3Zs7CqN/G+FAHGhrd47v7WjpVJU8doxPo7WBfT/amjHF2mb
uQJTPrYskj11sK0dcczL6kYKfEy+NQkLHGhHfOCmNKt3g/AaTUtLUOxAuoSo
7rR5gzD2c6v/5d4B5b7ogiL+AOa8H3U6eKQD9We2T86vH8CAbCzj78kO9J9T
+LTw5QAePfnYM3GlA8KHlvwSOT4AeZa65KLnHcDARnHWSD8o/ZLorDcduNa5
PUmmtR+fw+wVVpd1QKvk6LaS9/0IVgtXM2vqQNOW0+OvL/ejw6Xb+OB4B8SN
k5UaFvXjXc75sr/inbBmRKsoSPYj8d8cq0BaJ3TZvQFpf/pgk2SxO0KtE3/6
wpfYhPShoCHLP8uyE5eqJwctanpx1drn0d+4TvyMXGLlEtuD+TFmx+tTO5Hn
o2oV7teDnIa5G4oekeu9VQatt/Xgu0tFY2RhJ6iTzN/Zcj2Y6acprt7aiZQd
m1lecX9xP3+8VqqrEy0p9k9w6i/WjNan9Pd0YkFk5sm7e/7CITR0zbupTrwc
bZk/ofYXyXF/3J3Uu9A/cvxm8xsulrYUrKQv68Lr/VsNKjO4KFGJ/rdYvwt/
BO9r11zmou2R8S3+5i7E83aP+DtyofYm6eONw10oy2/tsp2kkP17p2r5iy5c
aXezEt1HwUhtaU9OURc+Nv28X2hNocpT5M2tsi4MilaKVBlS6O17vt2tsQvl
35d9l1CkoCsid3F8pAuMtqOd9xs5KNvcZd0h3I1HQb1hi8o5sL9WovhVuhuL
c2Q+9RVwcHK2z7ME5W6s4li2XEzioGhxRZsuvRvhOfo5Ww5wYO2Tnj13Szf8
rTd6rtvFQeuzkyeF7LrxQuPzuyOWHEwaaMp9d+9Gmz4j+9lKDsysQ028I7ux
efDjLG9hDupvOEltj+nGshmWG88OsXGwYVXj2qRuxKjKWNZw2Yhw+eMr9qQb
s5W73q9qZqPymHFK+vduqOkq139+zobSwvv5Ts3deLLAr46dyYbnd6nqWYxu
jN08+sE0nQ2x5c0TkQPd+HntKy02mg065e/qN5uF6SH2kfHH2LiR9OOUjgoL
3e6GEju82GizREynJguCJ4aSxm5snMmcXuq4joWV0RuTUneyUXAwU810Dwv5
N52yg9ezIT5bzujfARZkZjJZqWvYsC8L2PnKhwUdmw2j1Ao2eKpmYdrnWDhW
OndwSp0N07qslI5wFopVPt0oX8BGzEXaq9RoFrKDI73y57Kx/E9r14wMFpTn
Ve8QlWfjbPTGyW9ZLCToTmm7y7Dx1SR7TsQLFvyP3a5mSbDhlXLKYuwjC1lU
yUKXSRYeOM183N7FwiWZg1LsXhYGJU+XppBj5/CE+T4uC2aFf1ochsl87RR+
8Fks/JnzVPqbJBvzi505F5ksrCifpR4+g43uRRXugW0snA0MNsI8Nlb8UNS5
/IuFeQ0WvnlLybhHGx9KNLHgfSk37AiZd77ZHQ//ehYKdRVSl5iwIdvaET5S
y4LDzfbqO7ZsSOa6yu+pYuEhfUv3rt1sDNHn3tL7ygK/79kkbT8bmxR2ZS6p
YOGm7bmVYf5s6FGMLy6fWGBMdFhsCGZj7Ij0WBqZ54qnVvtHQtm4tM9ZavQD
C+ecXwS9vMbGzZg3UT7vWaiSUbrpG8dGseUN5aG3LDKv848Xp7KxYHmNXWIJ
C4cPd5UyHrLxdjvn645iFiQrX/LsX5N1KykVSL5hYXfQXBnaBzYiFR90ixey
8GjJRfXKCjYOpaXGK70m423qNrpUx8a2u/SH9AIWNkZstTf5ycaRpWffnHvF
Qqx+vu9wOxu3X98+VZNPxt85L/wFiWPNf1oR+sQr40JSffhs6H9Ruv4sj4Xz
G9mvNCdInE/d0jchTrK4oJ0qQfLyodZ400sSZ9ZzUmfLc8BzmD09krh221P5
qLkcrBQJ/mdDzN25KUxUnYM144sPaBFLOP4aDl7GQZ1cVIsSsZrzcR+ePnFm
wbgKscl+qT/e4OD0YiuvdcSOBzPsmCRPEyxOFx0kDvBaV+5ox0F87lTsQ+Ib
vt8Na/dyYBQ1/9Yocbafx1MLDw7OukW67CfjLQ8YX/T+KAd+bSdutxAzg27F
rQ3iIKw1pOMgme/4WR3J3BAOCk6UcIXJ+1EKKT2jeY0DCZ1bu58T64U79qXE
kTpg3FB7jLxP2yt9B2ancRAimilCJ+/78PWIpmuZHFj6RCQtIuuREZ//NriI
g0+2P3JnFLFQkmS9mlfGganxyyhVsp7Nqe0PvKs5sLNxiaaT9ZZ7JB/lyOAg
/FVMZfY7FrSzM6dqOByI69j4Cki8bMrdcMJikAMxC31x21IWzhT47lkrQcFV
qWhkCYk/dnmF1uxlFNZ9EMIpEq+i31xTrulTUKkN6NAm8bygZogmCgqMdfWO
7GoWdjVrDA/soGApF/c6so6Fj6yLn2tOUdgcNBC2pYWFVEnDA9fKKAzy5h95
RJF8mV7bKFJNQcKjb/3YXxYa5A9tCW6i0CU2zcqhjwXpufGrvDkUjt9q91jM
ZyFIe2ByM40LITtde1WS73ZWj++I7OUiyv/GkT2z2NDYdMH+hzsX77Icd/Qo
kDwz2SWb68vFuFvGZJgSG8mrhS84nedC5NRWg48qbDCVnA48v8vF49XiDX5a
bPixJLX3sbmYVrfndPgGNq6HeRW8CfyLq5Y6tc2+bFS8W1LnF9ODf/xNQber
Sb2VXdElmtyDus+RKe21pN46rxm9fb8HVxL9D65oIPVulK76tqAHx/c53P9E
8qRIb4+/1O8eTCwIt6RYbDzNippxT7sXOYV8BzkRDmJjB3bUf+zFuRDbE54k
blcxhz08q3rRO9M4MNqAg+8rJ0+PNvbC8MiVx/lGHMhUS99byOmFitBE5D9T
EnfTNHg+tD44mG4xPm7LwamzDrFizqRPmNorMuHJgbNn8X/6gj44F9hv33ub
g8KFO/RSJvvQbL6hcQXZ3676Dm4RFutHlWhc29QdDro1r2Qfku2HV0zu0eS7
HKQl5vusIX1JuT5v3oscDmjnZXqrzfvheXdBhttHDvot3/CEbvYjLVsjqJhL
rtcUU8+PJ31P24dAw14ObES27TyU3A/z3MSM/H4Osoo786rv92O5dMGpewIO
3FbIByYX9INXPyziPMXBf7MODeuRvkkr7neg+UwKeW2zxz2XDEDoTFQ2l8Sh
8dop28qlA/BxmJfLXkeh/Drn7tJVA7iwynVxB9n/fxi/s+g3GEC1fElArQmF
yeRDt05bkb4uUehylDmJ091FOlFHBvB2UU3CVXsKbTWuTi/yBnBcdbZ0hh8F
ryVWObMKBxDTYzpgfZzCwPk1U4ElA+gWbt8lOEFBbIXUw/WfB2C9gZlEJ3Gu
HfWyv6xpAH3aKQvenKMQYCl+uWl0AK7dza90r1KQKs0u+AceJNb6Ptl6l8KI
2fLXJZt4uPisVaLiHgX2p2evz23hYfDdmet4QKGiIr9wyo6HUBMf1cWZFCJq
3xWJevIgPaf6cl0OBRHGf+9konhwdwsPv/eaAs9t1/uqGB5Kzj9f019IgdnR
/P56PA+lXyY0jIoofGC1fqCl86DV1PK9ooTChb7uj7Ne8rC2QMG/rJTC+ORY
+fwfPMjFx5it+0bh78VzX1pbeVCRlCl0qqLwS0SoIpXJw81AycjTJG+LJMQr
F3J5aHPtWveihsJpOdo39UkeHs7snSHcQGFIRb1mqcYgNlYrztRopdCd/rDm
r9YgZGLXMJV/U2hU1ap9unwQo+U/1We1UcjXXF63ct0gjFqPSo/8IXm/fF29
ntUgHrglX7vfQaHP2LrZyG8QPVHc5lCKPN/wyNiTgEFURnS0mnMphK29oaJ8
ehDOzJcfJP5SmLeq3n08ZBAnjXx0QntIHVLf219yaxChN12fuvZTSJHykdrw
ehBTeaZPCgQUDklcX5ZbPIiLOffNHYdIvyj6bNuCD4OITtjaOExcMc6Ln6wY
xOIs5Z+rRkgd6wtWe/9zEP/1aty9OkbBqumqEX1yEB6r+PvbSL+qUJ+z77kI
H6XflUddp0idrPkesmgaH9/nLkr9Q3yycmaFkDwfdcf2yLUIcXG3JNm+VJV8
p7TOeJsvwoXvm5JTqxfzcW5F2K/FolyyTm3Jd3X4UHRUmJFAXPVMjRmixwe1
Te+LvxgXI/eyj5iZ87FrR06EvAQXZelVMS+38PFytkf4CeLolN48NVs+Vu8L
fNRArHFbd0xkNx9N1mt23ZzGxbYrRRFlXnyIHDCL4ktyMS+i9bHeET5yuTWf
LKW46AydrLrvz0eL8G+dO8TBZ81mhQXzkcQUDV8vzcWjY1/TN0WR8VvvTHSX
4aJWdY13WgwfBx/HS2YRj9Wn6o7E8XGlXLWMIt5q4P/5SSq5H2Wh7DOdi5PU
z2jxe3xsdDz9Nos4I2WTo+sjPu7aqud2EvOFlLgzn/Gx1V3m0m5ZLhbkheT7
5vHBqfjtHU1s6cE9V/6aD4WNOx6WEd+pfCcf/IGPbxewUFuOC7NYj7XMOj4u
x6hsZBD7bqqZWt/Eh0HPH54U2VduDxlUxv3ko9/gorAuMWfPdGfLDj4O3/Cj
nyOeKXtS8x6LjzJvqxMZxMbv//T+4xLXKEh/JI5Rzwt5xufj0KMbXkLyXBQ1
KltLjfKhqfBJV4W4MzJitvsEWU+pIQ8DYrn1/b9LhAVItDgkakds8Ncpc46E
ALmznKYfJj6QVubnJy1A7arpoReJo7YvX/9VToD+Px884okLRBJENWYJ8L2t
oDCL+E++UPU5RQH+eC4/W0Qseejw7eb5Ajgsc3/xlVh3boPr6kUCqLvcdmoh
dv5mon1NQwBuutjJbuKIc5m8Ti0BVs3iTuMRP185o2TDcgEMbCLkx4l/MoPD
E1cLAIeZN8VmcCEW12nL0xcg+MXXqzLEKzbbKtmsF8DMjpqUJ3Ycec18uEGA
dRlPemcTh2arPpkyE8A20HKvInGO87UAJwsBZqiMmSsRN8oJTPKsBfi8c/TZ
/85Pftg3TXa7AOnm55MViLVOVNR62gtAXf8gMZPYTlM3+YOjAI5rhwXTic82
33Gf5yLA+gJHbwniR1fElwe4CVAwMO/AJBl/rdGxoWoPAeQNTzD5xGM9P94v
OSyAjOVtNodYPcPsSshRAVTMC4N+E9vY5dj9Oi5AyYfpt2qIT4rNUdY/JUBr
frnBB+KMggtd0WcEmBum5POM+KsXJ5d9QQCdUb2lqcT8eTuDzMLIfDdbBV8h
XlBdYppyWYDrYlFOAcT+q2Matt0UIG7djmpz4uSO0dTH8eT8L92Dy4g/xbsf
Ek0WYHjr+I0ZxEpja8cK7glQbDOe3UziLavJwP9YpgCve5eyXxEb5K1nL8kR
QDQ0+kIssaPvhqbEVwIMBHd8/F/fxLakb91RJMArwxr/BcRBmmafpN4L8CyZ
cZFP8iGxzfxlcIUAD4+7fL5DrFVsoa1XLcAj++IJX+LChC0Z3DoB8p6qpxgT
/9i+Ndr5lwDV473yzSTflMrsD2/oFSDH2kR0lORrVroDc4gngJ7px7i3xAZn
HR2fDZPnLR1IuEjsqO+8eZHwEERLZUaFiRMz3dVEZg9B6Z+hLY/UE6Wo4z8/
Gw4hO/R1yFVSj7K8Anac3zCE/jn7fqwlNjA/WbF24xD2Fpu+ZpL65Th5uiDT
Zgh5dPNZesSJfiGxV1yHcNz/6eFP4uR+u2KstoYP4dS5S1/ukfqatTq2VPzq
EFR/PjU3IDaQizN4Fz0E1+3v3aqEyf2+JCxemTgExQFmUD+pz4mG6SIzngyh
zuOfhRap33MX5BY11A5hxv3F13f/I/tP4DZ748YhrNiwQI1B9oP+qv6e+y1D
yGj4EneIuPyMnuqJ9iGEdmxVPDFK+oOWwsgZ/CEkbap8enaYwve4MntbxWHI
xO8S3TtIIVSmpfeLyzByVjlvtCb7Xc+B4MsrDwyTuhJ14QXpix2L5qsleA6j
v1rizRzild77dnkeI///e2dJG4tCa3lHsVjIMKiEK7JuXRTWhvZeNn0wDC0r
/ap1DArcEVH1YmoYG+0nj61spFASbHI4pG8YprWvEg6R/Tt6/OQLC/4wlsuf
eZFWT/ZDIQoNE8MIpMe8l/qPQtC0Wuce+RGEprkcrP9O+qE5KbcXrhtB7dyD
pfoVFJT11kiHXRpBNmLVNpD+w+bIwQEb5VE8GH8bGX+HwtkHXW3ji0bxsEdD
MiGZwtNfnlU5mqNgKVwuTUiiIGflnTl95SjW9ae3306gULv4qEuV6SheBQYJ
rt2isJNxqtL60Ch4x+Pn2F2jsGfntbtWL0dR8zKevTOY9G+GL3dYWo6hKOFj
jqMDhV0lbU7T9//DsFnAHh1ZCv/9UKg4c2Mcmi3Z3yoLOFiUs7QtL3sCyySS
7zi7cTChZLMn4fck6qSTT2gJc/Ctd9ma4+JC9CS9gX3bMti4uEydNnFTiP5j
q3F58SY2JgoWpLroCNMPlz2d6mSw0J4ideFeoTB9eX/A5pJL5Pt/BVdbeZMI
fdsXemC7Fvkelv0v0ueXCN1xq8Iboy/dULPIMkz3EqX3NB4VMjrSjdbqS2lZ
wmL0Q+eM9mjKdiNAyKGqO0GMLtZ9bcXp510IjFa0ldIQpxuXP9h2b28XTLzb
QoVLxOmNYUvZJ4W7cDQ9TqZtiwT9aMD7oJnPOnE2xNSlr0GC/sQmjye0vxN2
zwfdmnym0Ucfzw9Qnd6JmPXxRXdHptEtOw0Tn73vwO0ZxuVmNyXpht6X5SuO
dkB803+aFQul6DSJ8k/ymh3YoeZqG/pEih79fY36ubZ2eGwd0J65UZp+91Km
aPWtdjDrjztF1ErTxxRe7a/d1g7NzFGjWm8ZehrX3m50Wjs2Lz7FshWaTtcO
kflqWsZErVBn94uo6fTfteW7S8KYUNNySKI0ZOmDqyUC082YaM1+nT4tT5bO
D84OOCbBJPlDO+a0QY5u1CLztqGKgXr7IwMXG+XoS+WKzvy6wcCdpUVfog7Q
6AZ9rzhOjgy0cgLiRDxo9OUS8+U8djOgnLXSLegQjb5tZpCNnwMDKRoPx9x9
afTNmdMVI+2JVWKWG52k0YtUzDpebWcgjeZ5i3OFRp/dNGCvtIWBjMEZrptf
0OjXjOQi+g0ZYLyoWlqSR6NbF4+1TxowsMgvcmR1AY1uGBvgJEuc8Xf8pkox
jd4jInpLZy0Dd7tYn/ifaPRvS1cYeOoycK/5rc79HzR68Z4fFu06DLTHBw0r
/aLRY6VkjXnaDKjZ632K/k2jl6onbxEhvleb5RLcTqPf9nr+XG0JA/crb8Xs
+Euj17L9cg+qM0i/YevypZdGn/Vw+pFANQY0NkvpmAzQ6GV+3ZsiVBl48PF8
mdYQjZ4ra0HPWkiuv2gYkzZCo5taf3F/s4BcD77z7H80er9fUMZXFQYOTuRq
X52g0RP1dw/9Uib/L/Yempqi0V237/fomc/A/wHtJ6Iw
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#5"]& ], 
      TagBox[
       {RGBColor[0.881765, 0.8848148, 0.7918972], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwl13lcTN//B/C0IMmEqIiS0q49FXpd2ZJEC0r2pUVJlkJkiU+2EGVJGy2W
hFQq1ScfCtFKaSFtU00zc6dpllYtv/N9/OafeTwf95xz7z3nfd73fRbsPexy
QFJCQuL4BAmJ//1/6TQ/N/JvGyT+/0etaToxsOprG8JeiuIUYsdxtkQp9Qjd
hvdOQ49XBY6BF71Vosy0Haoz7DJ/uY2glMkPd13WjnCrDBm76SNIMr0i37S6
HXLvEsY7Kv9iS3XeHJ57O3bMOrT+04a/+E9ujgXjXDscJ5ZHOHgM4+G2zIL7
V9qhrhy6jT1/GEHPHezU77Sjjp43drdzCHprT280SW2H3shjY+ngIUSHNfm6
lrVjjmy0fVrSIAK+H+/9XdsOO8WXgwaBg1inLn9if3M7kl/+mX3fdhBj/y6/
FCRoR0/2NieF5gH4DCUk3FdiQt5vzmUN7QEsC9xT83sfE/pO7p0Hm/sw+/2Q
x/5DTLyVD9O8ltcHgfydVjqYifdjf+dujurDkxcfeaNXmRhO3VvZ5tAHBdbC
yeoZTEyUCGaHfRCDY1F489k7JoIOO85PfyTGp0tus0yKmejXkaz0PS9GiMY/
GnZ1TOzlhis8WCEGc0fXsv0jTHgzDdVOfROhKP1sMS3TgW3MjM9jL0V48He2
QxCjA0dt16rI3BHBMWbt1nCNDvgrfSm45ilCTu2zI8/sO9DhMwHLxUJcW+/3
hI7uQNCZ4vEQGyHmRtodrYnvgE2H742QRUKk16rY5j/pwMphH17lDCEqd5T+
vJzXgQjx37xAWoAZgVoyC5s6UPLlcuOxZAGSs0eqZTs70DJmo9t3WwDzoZq4
Xl4HBpq+TflwXoAtYWHmReMdOP8ztsxslwAPo1v2eSzsxHnhTvcDagLoN+YY
UQadOMhu0ZqrIEDhvJt/F1l0Ivqg470ZEwRofrIsSrymEynPWCs+Mnuh8S7m
462Dndidm9M5Ob0XaX9cF3x+04nAFoeWPWt7sVRDn5ee34n4L0XioqW9KPeS
fBdV3Il71WVyG4170cPP2LTnZyfevJ2qJDOnF6aS086PDHai82DJRa8WPorX
dK5nTujC3uj+eq0yPtyuFyp9m9KFGE6SBXL5CFb0e31ftQtWOR4XQyL5yF9U
2mxKdcEkO+M3bw0f6/0S01TWdWGm569PWy34aHodHCzh0oVqdyPz6Zp8jFlp
Tavc14XOTcuLDknyYbc+bLnv5S7IOMadTf/Yg6+Hl8UlVnbBYGxa2NpNPVBW
S872qO9Cf+nc5L0re+BVKVsxs7UL01SkTr6z7IG0Yf3oZUEXQk1iXsye3wOK
c2RXoCIL3jOzRoL5PNyKaTihN48FhvxGr60dPDTbI7JDiwXtJM9c/0YeTj+d
+sF9CQvGeue6TEt4yNn/VGPFNhYSmLHjSnE8yChOW/p3LwuXJx6dde0OD27F
x13f+rEQ43Zzqv5VHoQL7C7phrKgvr2vuj+YB8OWps7pj1gY3rb4SZIbDyke
M563d7LQ87LIuUCJB9HkUx/ieljICzqRWK7Ag11eS+OWARZWbJqSKzmFh5bZ
L6eUTe7GmuGT8r9HaMypXeufpd+NJPnnGww7aPhefHXpkHk3Nn8O+r65mUae
6ax47eXdsJOK6UpooLHldntFrFM3nBYrVURW0LjtFGp06Ug3fHum6Xbl0Wgd
Za61DenGd5WLpTLZNBa/dNg9GNYN+yUpS+xe0yiXU77tH90NF75jCeMJjclf
M4Vuud3wvFH/QhBNY+tJFTnGf92Y9eDNd24kjSfa5xd+Le2GukN0wHgEjZXh
G9yW/+qGxaeE0CP/0Di7svut1mg3NC993BR8gkbM2nO68RPZeHXz6WPuMRrZ
62fHKyqwYXa3bcfpQBpc11WXpBayUVSj7NLtS2Oi+++BEAM29BZtelHiRUNj
+1E/oQUb3B12me/20XDf/8ilzZ4N68Mb59M7aBz3WfLZ3YUNy/ODb3Q8adzy
r7Su9mQjMMpv0xl3Gp+Pj6i/D2Aj4oK2qrcrDbN/3Plx0WzI1fPtKQcaTlf5
exUT2BBVlV3Qs6dx8EZ43fWnbNg8HSvVWUPj0d3sf0Py2XBptVLbbUejMGa9
ibCYDfnt0ucfUDTq49tTfCvYCJ+bcodpS2PaE4UI91Y2yi4sP5exlIZu2tPx
KjYbp5Q2vDWxobHqle2xtSJyPddlc4kVjdM5/tssJ3Ig6d/6QNWSxr18qcqX
DA7KvyxOajOnkVn0cIWWCge/nftbc8xodH8u1VE04GDFFvX6SBMaUmW74q5b
cKAYv3c02pjG/Kp+hhQ4+NJUa/nMiIZNzY2LIfYcWHrFLv+2mMbmes0BgTNx
Hat82JBG4O+Cg76epD9f/MiaOKLFpbl1Pwf3L0qeCDeg8ZTJdnYP4CD5mLN8
mz6Nj6zzn6pOcHD3ndrCdcTNXCXrtRc4iLqScrJIj8YQ/1V60TUONpyeWkUR
K4pXq1tGcxDzI6i7SpeG8WBT1Mt4DrRK6Mt+xOtHjk3SespBXYP3kZnEXhJy
p+MyOJi8rcT3iw6NMOmknpn5HMhXfrS8TBw/2Xrv9WIOTl+USnQhzpta/VOy
goMSPamDusS1Ct7rQuo4EIUq7ZYj5iuOFQpaOMjp93MY1KYxReWusS+bg+rb
Y0I+8aJ5BimtQg5YiXGaQuIVC4qV3Ec4UE1pSRsj3q617XqVDBdfbfVcZpHx
TuoKxtYwuGjUSmVZEEcZXjlapMyFQGeZ9W7iVyZqXRYaXPxjFzsrmvibRY7H
S30u4rL1Hb8Td1pvqNC04OKKyfSXSuR9JWw7qDhbLsIVtGW9iVXtTmfPtOfC
78aoyXviJWtm6Fx35mKeYv2QGplPF4fnsZKeXKTdSzW7Sqy56pxbwz4uHr8V
NQuJ+5dvln/lz8XI0IzYfWR9HppMOOdxlouu73L5HmQ9/fXrlxhdJv2NVzQ0
E9tqveyVjuTibe3f0INk/duUPfZmPOaisETwO5rES+YMo7nhaVyYtTu6mpF4
ujRVptYzi4tNKb7V9cQ6Em9WT/rERfwZ5V2mJB4DWZN1d3ZzMf3ZnzN6JH7t
2prbzARc9LplVPQRK/7Ofig7zMXDZfkWny1o5FbunvpWjoayysjvoCU0xt7m
8eXIuC/rn16TJ/vnxiWfnHdBNLQrv4smraSx86zt4VtnaZirdAYoryLxdFJR
58BlGlZfJwYYrCbr7/dfjEIMjeGO1MSda8l8uiqHehfSqL45+zh7PY20BaUr
Z0nxkF7hORy+mUZpkfb3wEiSx3fZvNh9kMSf/OJOqYc8ZMUNGjX60ZDebj50
L5mH2NXuxq6HSHwMUQv+zeEhmz+4fT3JX/lm247I/uHBpm75JYdg8tzPIqYn
6fZgvg/zT1AYjTt3BM415Du34JzjXNVY8rxtAwe8ynvAEEeeeRJHo9Jo7NTQ
zx4cN+I8ME6gIVcxJUmN3YMlGS0NKx+T+Z6kKfRj8NH4qczjwFMaJ85suSO9
nY8HkYunRmSR+PQq+GHRx4fV4OznhmVkP6g5m8WNkfbJiQfvl9O45i9aN0G6
l9Qp7J5x8n3o0rqa5i3fi0jTfboV1TQSHmT7mav3gjFNvmprHQ3GWbmeitW9
cHvkcUq3jUav/TuhxG1SNygk04l9pL2W9MLsu7248GT1UEM/DUfJja7eD3vR
ka1npzBI41lBR1ZFci9KzIxCTw3T2LNYIehhTi/89okdLMdp/JjpPWDW1AtP
i2KFrZPJPDcrjnhpC2D8+WjqIhUellmOO33VF+B89ELm9Dk8fL7BfqxvLICo
dPLuv8QNy4rW9loJIH07YeZXVR7GHnpHnXIQ4OfJUfuN6jzYb83XizgkgOHr
seUTtXn48SoltOeIAMcizk79Sew58Vb1pmABuCp7pyXp8BDwdl/wrHMCHE51
T7PU4yFqpvzHhEhSl627bulgSOqHql0eb7LI9bthm+aY8eCj7ZA+M0+A1a5p
i8qJBWfNx4MKBVgvKa9/xpwH6cWyqTafBNBLHv+3zoIH3YjM3uI6AZb8Up8S
bMXDcXuZK3VDAgz1PVmyYzkPo4n8X1ZjAjhIedIC4vCBRsNYSSHa7gZWXbLl
IebJq5pdckKUPfZekAoeiqTd1diqQkSdGRmqWsGD7Ie0nL8QwuuceU7lah4G
7QxzC1cJ8cdHGLhpDQ/dJa9zQ9cJIR72lK8mLi3Nzht3ESLNw5JXupbcr7oo
X8pLCO3Yue6P1/EQ7LKioOSgECPz9YxmOPBwoLa44J/DQgy9306fJ17VUFo4
6ZQQNfl5c93X8yDZ+qNILkII5384u3mOpD7as/l9eaQQ9u/iTm/YwEMbs/79
jbtC7HVlX3hB/B+r6T9GohCPf21y2+PEwzl+18eZmUJIM+QXZW8k63HEt7g2
R4i474ZZUpt42CniFt8tEKKzcqmpM7HtQG+J0ichwt9flO0iHhkb/jy3QYg+
eoHFgDMP9PnQL01NQlR96/O1dOHht6REaXybEC/2ld4/Rpw/UearGleIPBOt
dhZx2pXLX1v5QszeHCWh5srDwylTvj0m5waNgS9z3YhPTWOULRwTQpLj5ZhH
7BN5u6xDUoSMmaX7WMTuMxTLUyeJ4Lrlz2lFUv9ZzVap0J4uwgwdvUwfYp0H
sRXds0T4Jn3wxy1ipTnzK5/PEeHWuYCBbOL+eQur9DVF2LKRdh0i7kpMraJ1
RMiUPntDeTMPPxfoVL80FKFZSqbagrgkOa06wFSEs4vvqDoTZ2sZfjdaIsIB
c6vjB4lTnr7+3rtUhJSrcg0XiKN0TX+8oUT4vF1j3X3isBfZP46uFkEcEV2a
RnzUcEmNmYMIpx+d3lpIvPf1uxqxkwjbC4T9ZcTOJstq37qKwLo7+1kjMZVV
VBvsLsLDYzL+ncTGFit+Ltkhwsw5LSv5xOq5xT8H94igVFpiPECsYL2m7p2X
CP8aNJqNEksUlNaF+InQsJNymrCFB/6y9fVLA0WwqlW7IEWcb31o+MVxERYr
xtT/z5csb81TPSXCvVVqlyWJN5q9oSJCRfhjmxI5TsabY1yzb+SCCI2Vc/qG
iTsN+sL9w0XoSA9+KybO0FVKa7omQtDJ9B808elF1hWOt0QIyHyzgUm8ZqFn
b2GUCOm5Z7QbiKerh840fCBCSYH0nv+9f5NqomV8nAihxSv+/m9+nqh88JB/
TM6ZiQYD6cRHZjPPhKaS9e4u2hxLvGymzCPecxEk+4VKV4gnKmgX73glwo2W
YttjxHGyfrK2uSJYGxkUrSL2nnjD4FWBCHar/lXWJzaVer1x/n8iSF9t/s0g
Lh0R3h0rFaHWuDyxlsRH1JDiu4AKERS87if9L3529ls2NX8Xkfqud3oUsYgf
ovH+Fzk3f99os564iI5bbdQiwt9Ejz5N4ivsIp9Epgir+wfUR0n8zmdKvj5H
k+d/MlbxjNih7tpSakyESLfUWB7ZH7Nq0ndmSIphIPNhIJ+4tarygvokMZRr
75aHEwd/nVEqoSCGP/NShwrx48KHbh8WiLGow45jSPaj/7vCEyaLxJjB6tHh
k/1qmdP88LGeGDd+Rna/Ii5/rdF2wYz0P/arR5d4MCntkN1qMXylbppPI/mg
OLE8MnOdGIMfe+8Xk3xxM64nS8NJjHnL7186Qax5z3RYcqsY77saR3+R/LLx
an54sY8Ya6O8b0SSfPTk8LfEVRFiso+uTMkl+a16gblvQqQYo5EKAVuJh2vi
TQejxZD/du5Uvz0PG6yOfHoRL8aDYKkIY2KxhDJ3xmsxEo+aF0ST/Gl354Bl
23cxrIzfzZ+/krzfqqpxmzoxQlZ+D35ux8O9fquv0b/EkNt4I9yMmL1t6nZ7
phgT1/2pXknydeTCrAuvxWJsi7Y32EzyeUu2REWoUh8W/VVvXLqUh8neB+/V
z+1D+z9l6lk2JB5UaneZqPeh8FSOkS5xeOhTYYdOH2TzDJ9Ot+Zh8RonZUeb
PiQJs5VqLXk4Ux+7b86OPjwN4dapmfKgPGw5nJPUh/GBpaGN5Pv3rM7qyOGn
fchd2vBGldgqy6ZbO70PLl7LHu5cRPKZv23dg7d9CLk573qzJg8PmldnhpT2
IcwmYFrVAjJesdtB254+PJnUlXRsLnHE0V+frPuh4jxjYY08DyrzX+XXVveD
8jl5Q49P6pegjW7LfvYjYx3H1aKH1BPlvbzkxn6oznNdAh45n502W3CsvR8M
CR/3TVxynmvMuzxd3A9/ZaW5PixSH0UXuzkpDWC5dtL2gBZyHpBr7PmyYwC7
NJ3Df1eS8+Og1MICzgA0HOce3/+C1COH9gscVYeQcN7lji+p73ysM53t7Ydh
ohTBChrgYnNhs8fU3X/xO525MyaGix8Ns0pP3xoB/UKhdXQxF+rp+s1ZaaMY
fG88KbiUg1Flx233/4zhhLLXowNbOSjrMTA/KiNBhUH+xwkWG+cNFjJGb0tQ
wY+STYfOsjGaMz9+h94EaqPf9Lal09hoj5M9l5Q3gVIf4h0SpXYjdTFXV3WV
JMVocv/cT3XDSP7HZb/fklTtev6l2T9Z0Fj7zDrRR4pK1atpMDnKQlPFxYRn
E6SpWnH2mKosC8cltpR33ZemgoWlyiYpXQi6qeQkqylDHbJ5fWGBfReW+zaH
TSiUoVSYX6xjujoRkBgt17xuIlUvU2VeeKMTZy6s2MGvnUi5HLNSeWHVCZcM
0Z46v0mUZo7+2pTmDkTa3M1/PDiJSjv1xro4ogP3pi/7bHd7MkX9fRi6xrID
Mqt+aJWqyVIr+Jna8SwmnDV2OYW9kKW+UVPK/OKYOLBBoDtj5RRqsMr1+YAj
E201Rz3Cq6dQi6R8txVJM6H1dGhpta8cdTVr6FZ4XjvWLDrBcpKYSl2VO2SX
c7gd1RIdXW8iplJy/rkBVw3boaGzJYajKU/NWnZKOYnVhqa03MRJWfLUTtPA
hGnP2ki8MA572E6jFnV93rPSrw01bocE539OozwLknsG9NoQq5//JWIvg2Lx
k2+c6W1FE/t4tOQBBmWRWZoWwm+F6jOjPSe9GVRukHrHyZ5WxGmmDu/zZ1BO
rh4vgmjieZGGS4MZ1LtPYdcDu1uRwPCKYl9lUBHN9rf8WlvxSDR915o3DKoz
w/NqcHUrWt+U6xdmMSgPhrPWyapWqAdeHjTJYVDqf0aaTlWS9vTI7XkFDErb
xScxtLwVjztZJeISBiW+rhEYXtqKpPp/9ZIbGJTapE/L4/9rRfvdkwPKvxlU
bZJL1KP3rdBwMyu5+YdBGSt4SKcUkfbVz3aEtDOotZM/WL0obEXy16hIZ5pB
rdO4w8nPa0XHZacdX3oY1K6RkLnvc1uhuUZWb7mAQX2SLvIuzmlFysezxTr9
DOrE1pUu5dmk/XnryIRBBnVgLLS3Oou0h3i74l8G1R0hlfYzsxX7R1/pXhtl
UMdNq8/+ekP6F/j2j48zKNH81oCWjFb8HwnQ2qU=
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#6"]& ], 
      TagBox[
       {RGBColor[0.8998708, 0.8438502, 0.7248352], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwl13k8VN/7AHD7Wk1lskYilQplK1meS0UkColKZSmKoqJoseWTQpGoiJCS
tFqzJUIpWUIiW2OZxTL33rEz+B6/3/wzr/frnDN37nPueZ7nrnXxtjnFx8PD
48rLw7P4fWnO89n6A73A8/8fzL6xUHbEoRdUV5INFz4vQLm4rA4lqBeCDM23
2eTPQ+KRnJJHt9G4hkZMpt88+L2yMFGM7YXOPadvymyfh01m16y3vegFGYnQ
dp1PcxAX2nnGtrYXbPeuu/r9NxfO//IlOlp6IV9+WZvbUy6YKy694tbdC8UB
mmKj7lyY/2QY5kf2gumYz/zvuVnwmH769JFUH1xr2NZpqD0LBj7OzR2ufaD1
di1VrmYaJD9PO7qd64PHKbkWU8nTQC6N/Td8uQ/ig3ovRfhOQ8brLyNzd/pg
tD+5olx5GpYzlEUUP/RBzbLMOoWIKRjUKb2XWdQHx2fM0i1PTUF1mN2qbZV9
UBsfbyllPAVXlf5TMmntg5GouHX+M5PQ50Q3cOP2QWVEhYqC7ySUvQmsHBbs
Bzd6kzfTdhIez0pa+FH6oVpEamqn9iRYJpgdvqXUDyO6ta7eExNQ0JJ5IXNv
Pwh58oe1Bk9AxD7PjOG4fuDTuXTk2+txkIsxudic3A+pKyv9cuLG4U2LjFFx
Bvo92EWbvDEO9U41v8ML+yFdTZg/6uA4rPRREVTu7If8016Qyx2D9Dxuo+hA
Pxx8X3vdgjkG2tPNScRIP5yYMD6yrWUM7ENDtcsW+mHDOwtR1psxSIzrcXVU
HoDbHgLMbucx2NxeoIFtGYBLSgnvf1mPQan8vdn1OgOg93dHlZjRGHRnGDwY
Mx2A+cPp4fvkxkCpKOFL9NkBcKQGOQy2jUJWl+3ar9kD8KjOTebLiVHQV9o8
8qZ4AP4qxzxKOzgKP0/zFT2oHIDta7QkC3eNAhv/cMD59wAs8PN/u7VxFDT5
lgVzpwbAbzbqftwYBypNB/b18dKB4hAUv4rJAbvIUqkfYnQIpSbbfuvgwGWq
5/tHq+mQapwvWVzJgeL1Nd2aGB2GuuIFv8dzYJ9nSpaMOR2O5BeuLI3gQOf7
y5d5bOhw5etPu79BHJjfobKs3pUOEzp1zPizHDDZF2p4JpwOx5uKxyaNOfDd
2yAppZ4OcgPBj/snSZBek57n+IcOaUWuO8/jJJyuF62T+EeHFY21j6QZJAio
/ZkLJ+kQNZSbXtdKAjZ44YQPlQHdTSJ6bz6SEJ3QdmWTPAPWHNXsU/9AQvde
iOlXYYDaT6Pc+kwSrr1cUuGwnQEyrl0ybokkFLi9VDI+woAqWe+sv4EkCFKX
6c+6MCDkRshafX8S7Cp9bfM9GRCpjkfnXyCBs9YkTPUGA7yvefyZcCNBradz
YEUqA+h1ZnOpliQ8d1z5qneAAZqZS/abKZIwKhJQkcRmwNcA/+vyciSYFPa0
208yoCVjwUJEkoQeybditSJMyE368Vh2CQmyLWZeuZuZ8Hd52YzqNAFnbr4L
O6fNhPF1mQrJYwQUaq5K3mDIBINVL9OVCALs7/fWPbFigvVhRpUrg4D7Vjc0
wi4w4UCAwp6PrQT8m+szM7rKhPbeG/sKmghQf2txciqUCUIiEznV9QT8FJe+
7xXHhDELwQLqNwJEvudw7D4yYcv7ia3nCgkI3MXMV5ljwrGwqfw/yQQkmAWp
JguxoE7/gXJwIgF5+ySTqctZUHLmz5/tjwgYst0dxq/MgueHBNe2xBDg4JZq
Q9vLgvO1KyuKwgjw9dj+1cGGBfRMf+bvEAKiver1Go+y4HBd162FQAK++nIV
P59ngV3syIGrAQRo/eeAJ8WxILnwv5Mi3gRY3cFdqE9ZoG7lHxzhRcDZu7da
I1+y4P4F/evSZwlIjc/7dLWYBUThT7PDpwhYlrE8yuEfC0Q3+MkePUYA82vN
RuqWQVCZSNl+yJIA/toTSZE6gyCkkykebEGAQsMEhR8GoRnzFMvbS8ChP+sm
yYODsKxBntTdQ8AXRnB1w5VBuDiXcfK5EQHdQ1J6ZiGDkNE3fZNqSMA0/u5N
WcQgVF0msqP0Cdg61fngbfIgMC+GvYzbQUCyiJ5LZOUg8EX4eSxoov1c0vib
r24QjPwjLd9sI6Blubv51dZBCJmV0D+5lQAxmfitZ1iDILF3aXmnGgH+quS8
KWUI2rmRhiqqBNhYvHrCd3QIGF1d3A5FAtbtDrJrcx0CE2czXe4aAiYMDy19
5zUE8zVf5NYiJ27jDXIMHIJTkgPJ/vIE0KQdXT6kofWb8QvHZAnIWakhdysL
za9SnEuRISBsiWDL0dwhULajpTKkCdjIk71HuHoI3hmyh0OlCPBhiKgeZw7B
PdhazqASYELrpmmRQ+DVrLLdApnakZcoOjMEEUr7TD5IEPCx/uSSfPFhYMrJ
/bm1koD5/EJcXGMYum2k7Y4tJ6Dx/b1M2vZh2KxpW9VOIeDZKzfnj9gw7Goj
Dx5BNk1e3uxiMwwTG9/edVtGwN0wj4Iiv2HofVUqnrSEgOOBRt7RgcNwPtFp
cCvyVn/qxlPhw+C9ofpajTiKr2d5wvKEYfDgEGELYgSstpW+4V46DOtOmndG
ihLAtmTrGFYPw5KgK7PayOWmVeyV9cPQIlt+7p8IAa47fU6W9QwD61ytghFy
1tqaXav4RyByo12IhDAB1+WecgfFR0DP87tQvRB6Xlf55pdTR0A/IvROBDJH
RHGD1/oRWL3v9nFR5Cq+iR5jjREQfkZJrhUk4CG39rHUjhGot7fOjkbWI66I
VZqPgOY2mrY8stjg/srHNmi95dX7dAECOvuUr58/OgJBzQ5Ps5GD/zSMyJwb
gd3DLc8tkWvKNvzyiRmBD/1S3vH8BJxeqj7AnzgCtUV5NHdkgWPa0w/TR8Au
YM28PrLxNLb2U8EIXCvfL87iQ/nDzEznQPkImIazGBXIgQ/3m/d9R/83jc80
CblY68gF0a4RKDKdPXEI2SH05H9J9BG4GtAloo082Xg6QYMYgXlT46VUZO3z
lyoO8bOBd5esQBsvAU2lAb+ZS9jgv/ZNfwmyj3gw65okG8r5p7ipyG8zo1Y8
U2VDjfiZnPPIlpOxKjpabPh6Ld/oMPLgngS9GgM2GD8RpWHI6/teOLOt2ZCp
5GcmhVy17Y1fiCMblGjvZ/mRXYNz7lBd2ZCmuCOD5EH5Qv5z9s7LbBh3//K5
AdnIq7q6LogNuFTrmnLkzuLa9pN32CD8w9EhG/mqaNPIaCwbdG/Lu6Qjyzi0
8YYnsUFeeanuQ+TCjO5Vshnofho06u4g24/3q759z4ZN1S8VA5FjY8mDzV/Y
4GL0guaBvJU2eer0TzY8GeQYn0Cu15gPmP7Nhr/+Krvtkb0CBe5F9aDrf/hH
248sXif2bA2LDRu30qimyFlyKwpyOGzwkeW2GiHvPSv1Yw+XDYxiBaUdyGHC
6zieFBzUVV7qb0FWst8ktCCNwx8Xp/n1yBXPt8rGKuHwIaFEUwn55KiuusoW
HNL5lZvlkeeNDU0KdXDYISX+VwY5KWaX/T7A4ZAer4kk8s4e87Pde3GY984U
lEBuUzsQeMEGh+2SRWuWI1+5bh8rcAyHsRieyKXIkrXHMh6dwkFa0NlEHDlP
xrV4kzcOoct+YaLINh5n6j/546DgfzREGJko8O49EIrD+JjCgiDyPcHLE32R
OGB/9+cLIKvZXRe7Eo/Dhb9qKfzIP5+FKoil4KBVIVXIh3yWvK2ZnInDma1X
ZnmRRbBo0605OCw7/sNt0Rn34o9UluAw1ZSG8yDv7npy3r4ah6xNqY8W3bf5
WSirHof+5gCHRYdezXx4vQ2HDU1jaotW/P4ui9KLAyWYKbHoMqn8smdDOMTY
GAot+tjpkiadcRzEkod5Fl245qBW0jwORDDP/znCa9ScF53TNDYsLCygOJsb
Xc1DeeVcqe3Uoukqd7LclxJQ2iLVv+g4vpa/sihvXmaGlSzapEdBvF6SgBWR
H64smig5ox8ih/Jiw88Vi376OM9TG9UFJ/qGm/PIln4LTxjrCKgr3Vw9hzxz
0OJnIqoj+clOv7jImerx3P3qBLg0O6XNItuL/9vCq0XAgAVDfQZZgLnJKW87
AS92NFyaQs6p8rvrboDO8SeBsxPIJ9PKP8kao/HoGPExZEqgOLsO1U3TlDgb
ErnsiL1CCKqzZpX79NjIXtvTrLStUR5yES0eRJalDgcybNG4vF4DHbmG0H2f
6ID2Lej4pV7ky3UhPfudUF1+SU3rQl6X9ZPC60KA3exS2zbkpltSWN5pVKd+
S4Q1IQe7uvi4exKgqyOk8RNZHXubKutDgLlvh1U1cufqqcY6XwKqJ1K6PyFH
TJvwhqC+g/bPrz1/cT9a727TRn1JT23czreL+5HT5swIRftz3XwufXE/opVj
E8MJeJcwvjpxMf57izg89wn45rfWOWwx/ioCynnxBOic/3HdfzH+fNa27qhv
ulNS2ue5GO+S/ty6dBRvp8zQA4vxfqzRH5xJgKq0e47xYrz9rlK136Jz6jO9
WhPZWX25X2IBAcMcInY58nLxoy/2l6D79X3/cB49V2WMF795ygkIqh6tHkKW
TdPXdf9OwK5/oY8rkZsk3Ce1OgmIa8187YEcTGRvYPwjQCJB+JU1snod93Di
AAEhmREFOsgRt2ILeXACPP2Cx+fnUDxcu5i5owTwru1Q7EWmw0YZ9ylU9yNV
D1Qhm0x/CqjjJaE6XvL9f8jEb5GsYCESnmhS292Qn+bY/tUSJ0FLqXLWBHnG
k7UzkUrCXatoRS4Xh9xuKvf0BhIcVzimOiMb6C5Yfd9MQnzTFml95K93WWmb
t5Lg7pyTIIHcZlBmRuwgQX9FSE7FLMpDie4PAixIiHOcEV2JHM45SO+wIuG8
Ez25bwbFy8JAz8iWBPx+g1oesvL08h6+YyREiHvo2yDvPVy8KeocCUmG6v0h
0yhe757fYKO+3+TBLvV9yEeFohsPXCZhrvGHhwTy+XzXy6uCSJB5w5uVOoXD
A4mlX57GkGD+6frOd5M4dDeccMzOJcFTlHwYh/KAxwaLNxKFJPAUrTxmiUwG
ai/4lZLwkW8HDz+ygLroi53VJIiKKPR6jeGgGpVDVKL3nOCIF+Oaozj47hW8
3TpNLubBonACh7kU/O+OeRKOhytR1ZBvTbarPeHjwMavn0x+4TgkZLxrPiHO
Afu0YhlJ5DIBhzWs1RxYoJSm3R/BQbQiq2AWOFBbwy23HkR50ETtY+luDoCS
SEcbCwdm1fuPN8w5MK1rcPckck1NXuGCDQea/HiLPJnoeo1lxfynOWCueHbD
BToOfP+aysSjOLDzlbXBDpQXOc6HPv+M4UDD6O0vWTQcaH1/Pt9F743z3S3d
csjljM5ySgoHZHu+tU/34BCE079I5HDgl7tAx/MuHLjzM1/l2jjQtTt3w0eU
d4eDb3zr7ORAyN1/chLIHXw8Nck0DlQfvJ157g8OxUKC39cMcSCW/1SUQisO
AcsotcrzHHCt6Lnl3YzDhLxyw+Z1o3D2V3l8fR0OuMG+P/o+o3BTzm5TWAVa
r3du5rXvKESnWTVVlOMQphstvzpgFOpeRu6f/4zO09ZmV27IKBi4/Ph8qQwH
U+WjROmDUWjvSkg7gOpIkqinqNHHUbiUJfmrKQ8Hi9YIfWx+FEr97Vu5GThk
eP9I2R01BlmTpdfFbuPQuFb7zNOYMYjzj2wWCkfnoTlZcypuDO7VdWnw3cJh
/44L1a+Tx8Ce7/Ps+E1UR3mkh1a+HwMyxGn0VxA6b7GndGm/xqC/wW7m6BUc
evJ46m5IjcO5aKrup8U6O6M7U/BsHHalX7PuQHVbRuFdcUvjBFxU+3F3rpcN
Q1P8yiWDk8C3e4d/QggbLM+5kZarp+GxACPJkMIGD72cg3v3zkDGw0NKDx6P
wKHSbsclJ2ehVNLWVQT1sU1tq2quRXMhL/Dy2LaXw6D4ZnN3btYcfAn4djEa
9fVz0pZHHnXNg/x6zbpnb4eglr1F+6IgD+a1T3VPqvoQBG9Rpszd58FWjIql
6BYNwlyBQrLTJl5MR8LvS6z+IPQmiQY9K+TFVvG5x2+qYcEL9SHV1bv5sCbC
R0rckQUaS5vCPTv4MGuL7wfIXiYomWXqpXjwY8eCtmdvvMKEzrqbTzN5BTAT
L/V0qiATfHnsf9IfCWCMeUF+1iMG+N2TshJdJ4glvyvKTdVmgOGZ7lDeUkHM
ydgtsqSWDudT4sS7zYUweNRNnPKiw/UQYye8RQibSfgEh1bQwebDqHOrpzBm
/UVfdkP2AMTsjC9OmxLGllFUO1odB+DhCoOvJvdFMLO7bwer5vpBcHeTSs0a
UexCW0qEalY/HFQ6YRX6WhQTyu25eORIP5zaT6qu3CWGHVjNY60k1A+05ouO
txrFMBtitd2boj5QeTmt33hGHPO99rRO4kwfmK6/wrDiWYKx4uuLN63ug0ae
fnp21BJMXzjzP/vWXlDaaJ8wuG4ppms6XPI8qhc6sz6mCOcuxb6ydGremveC
bzvF29FoGYp/iFCOaC80250jg38vwyI97jpTv9Lgyebib1EuFOwxcX9bym0a
dLJ84/hOUTDD45fNYsJpsDpTw9nfnYIpttdcC7lFg6R1L2ZcvSiY/cILcAtD
lo9R079MwYrOVWptDqbBU8rpB6w7FEyIkfK97AoNUkdXnDDNpmDG619FcU/T
4F/2z82luRTMw/WlO3mKBoo+4VPbCiiY8Mb/TtLd0Pxh7n35EgrmnFb3utGF
BmkDjKqxKgq2ZlgyM+M4DZ79+bQpvY2C3czN1nKwp0FvvP+kdAcFW2XweNDq
EA2U7LSq7nVRsFSu1Oc9dmh+Y6bT1V4KNvXyV7mWDQ3Svz+IOThMwSqO5q5f
YUWD/nArp29sCvbalvVdZD8N1pmKbjIkKVjN4/gIHksaPP8SWLlxgoJhaeBG
mKP5wXoxT6co2J1s7RvMvWg+jB2jzlKwnsx7uf/MaOA29041Yo6CWWuYC7eb
ovUlZyYWFijY7ZET/r/20OB/4qFfOg==
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#7"]& ], 
      TagBox[
       {RGBColor[0.907999, 0.789417, 0.652903], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwllAtUjQkXhk+3UVIfCTVKdyQkjX8keb8KRWEqIaRJ6SKXNCKhQkkYhVy6
K3QTI11UcukyKRFDuYxK5945p1N93zmqU53851//Xmuvvd61nr3Xu/baa5vs
Pui5R5nBYNxX5P/qwD/bmq4NscD4f5AhsuzsG7PYYNmus/Fx/IGV4f4fvgaw
YT9F5NRaKsfM5zKfwP1sRNtww4POyEFpXenpO8JGIKOl9bm3HPn36sXyJDZ4
Zl/Kc8bHMZVvpm78kI0kw39LazzHIVxWe6mwmg2nBOf5Ystx/B2/eYZNAxvp
ypatjUrjiDZNMHX6yEbE4rzl28rGwPblrQwcZ8NoqffCBsMxPCuJaehT4yBE
INV7LxvFzbGZ6yMJDmZ94H0M/zgK9zSXrWdNOQjd8lZz8+VRVLYXHip05cBs
v1rLQa1RnHcLy+9L5SBJbFox3VCG2SlOER+yOGA4GuwSKstQ0q6/qiafA8cE
ww5jwQjafJs7Eqs4qAzS2VBQOQKdcAs1s04O8tU87tLeI0hP/RbgY8bFhe6i
o9vuDMPqS6U1uZCLqB2edueSh1FreGls7jIuvqyzoJWPD6M7f+VV6VouvCb5
vWn3HIZpdVp98l6FPuTS2qo2jOIuL5OmUi5qnsR4mUYNwd7USlxSw4VOnP+K
+OAhvA5Srr7awEX7/nRjk61D6B94+Jt/BxeunrIj6r8OYamydtz4CBeH635l
Rsq+o2Zuc/dSkodqfy/D2ee+wy0sp1h/HQ/zHOKdXkd/R+dfR44wPHk403OK
KNn/HRPLLbTbAniIaDhOS72+w8nttENoIg81MfOK00y/o+XgysycNh4M3EYP
3n0phZ7R7XKfTzw8v2RnZvVUiqA2jTfTe3i4Mf36H+2PpFBd9EmeSPGwfVUG
lZwtBSk85Beuy4e6QZUk86gUlYEFpo7b+ShznupdZC2Fmq62/dhuPp4Pr1tu
M0+KzQ2HvSrC+KhfeiOtY44UtIlTvOVJPl66blkboS3Fom+d3Gm3+Nh4IKpg
sF+COz46RSwuHyEyO+phuQQS9WN1mf18lC5fVtR+XwKnqm9ftgzzccoiegVR
IMG3mfcnt6r3wqn2c/HLNAl+bnfZV2bVi+70go0OcRJc3njSOv5QL8KOV0SO
/SZBj5ztsiq6F43Lax6Fukmw+P7630dO9yJAqr9euEaC15p6l/el9mLFHE6S
ib0E6i2P6M2Pe1F8Q+mi/1wJYpx7KyzkvchvSnaW/qCR5hJrmfWTAE4PPY9M
HqNR7jYzS3eqAJ/UnzGWDtEQea2OVzETINBxQq+8j8a2wFueTFcBVnyTR5z8
l4ZtwraBzFQBKhKuZg5W0diYNLBbN1uAgPLJL36U09j759mPFwoESEgevmpQ
SuPWtfKn0TUCPFKSx8YU0dDOn3pxW48A8/90+96VTqO3qXm+7kIh5tb9pcKK
paHS6pd5YZkQp2bn3Kw4QWPO2yFCBUI4Td8nu3qMhvcn82HKQwjlspfHw/+g
Uc+P+/vtUSFmzHlmfSeYRpa63e4LDQreM/RUhweNqinvOpTfCKG/YwbHeRON
9qnB66I/CqG63KCpxp3GZP1rS0IFQsAl42ydC40oS2piLSFCfdCaROtVNDzX
F2Uo7xAhcrDX74+FNMxXx27+HCBCKV9XHrOAxpCDt9aDfSKM6Y6HpsynkW6j
FOsTI0K7c+OuRnMaTD2f3Q9zRTgQyY08YEgjnK9uuatXBOIe5VhD0HBidjNt
KRF2nvgjUV+bhu7X8nSNUREa51aHnpxC43Hb71MqNPvgaLX8hacGjYmKqgFN
6z4wqztZNio0/owPqayO7MODfSmG5cMUdsWsOpgc0wcUumZ5D1FYEqU7f09i
H1YJz74YlVJoD3uRNjWtD5to7ZpNNAUDL72TwbV96IlKnDAVUyg2aXaeoSKG
w97ohAA2heZn8/4JTxGjKe3KudF/KARpLeaqpIthZ7Hfiv2OgurOX2TXb4vx
9a1OYNtbCo4y0uRppRj6GkYhJW8o1NhuP6TRJcaWvE8nE1oo3C+8OC3Psh8x
AT2ReXUUrlyhPD7U92Opw50K5zKFX+bwnqDX/bDakbUm7BGFNuuJY7KOfgx/
6bBPLaWg+WZynpFAwZ/zdBD+RSF+kjkdRgzgQHDIq7slFI6e2HJFdecAMr4I
CO98CjuDnrxf9n0AQ083LApNp1Bl5GGbOTEAyrp0fXkahfP7JOuUVAehQr+a
xFBonkVScbDWICLsgzal3aCQfbM87BfjQXj55Wa8T6VAxGj2v1kzCL23/Gs7
kykMulbTjMuDKBa/3VseT6GsW3c8aJ5iDw9yNrQdpKBRV1w5Bhozk1h7Qlwo
DKx0+2QfLsEem8bQ0zMp5B98lbP6ohTPeVHDi9mKuaP/Ga3MU/zBgq6U/nuD
0J/zoKb93RA8ZFouIWGDEI2omD0RDmMga8EqvtUg3PcHUu4GMlw+d7xgWssA
Quweebi6juLnmUa+D+0G4F3b7TPl9zFkxdUHH33Uj/efZzQfTx7HMY9O9SCj
fhiXWHWXFctx3nZXd+F1MeR67ttvdE2g3nZC9k1xB639C3+JUGOQm7euqWpW
3FncQjNCfplBlqyJ0DwsEUFeOSfLd4ESqffk821BiAisTI3YvColUl2zp9Zf
KMTdxSJLg9XK5BW1pBCjQ0JYa71PDPuqTLa43jZ4PSiAqUuhXU6ICqnTnpFk
dEKAzjdnsguVVMkH7AKXKUoCHGZsec27oUpu1XQW37rQi8hLszZqmKuRraaN
XCOTXjiEdp9WqlUjc3MYXV0P+TiQk6rZve4nsmB+fwnhxseJU46+A+0/kbkv
nIJ+CHjwfCjx/xg2iYxucxMXneEhZcW1mtyRSWT4nVsnhHN5uD5tZZPTZXXS
3ejFVue/uVBb/d6i2UiDzK27KK7Yx4WHqd/G0/c0SEeLip/X6XGxZwNlqeM8
mcwPKZG6P+eA+SHC5+y7yeTJrncb0g9wYFEgs38Xqkn6OTtr5upzsHbuUf5G
xhTS1XiJbU4zG+8YHF7pxSlkWN7NTLNYNkznb0kTmmuR3r/5+RXYsNFZ/Dhn
UpkWaZ07RrmLWDj8hTjos0qbHP2x8p5xIQsfNu+n4jq0yZoZR9uX+LOQYVXz
8uJugnSlYjvqjFnoFBxOVd5DkKsnm3PuGrFgUGjtHxVMkEkrD00/P4eFTPO7
owH7CNL3Hv3B00ChDVMW2R8hyKoZqp3cWSxkE0FXBUkEGTswpKJDsHBLMs1v
bSlBZmQMJZ+WM9FT+tqqtowgjzyWF+0dZ8I4PHHEppIgxRFaHM8xJm71jV82
fEKQaYNLq8xkTORy+Y3SRoU/d82eJikTeZ+eLrj9mSB5ftmW0/uYYF2LGtb7
SpDeHV2OciETppttGy91EaS24OMxvkDBvyv0jWYRZJELy7WWz8TtlqspHn0E
aXetfXcwmwlO4kbfl/0EOVy8NcqTxYT5Wo0FDhRBvlq4/74Dk4k79TEN84cI
cpLI/ojuNwUfZ5eSPUKQJYEiDUa3god0p+4YQX5s1H8q6mQiUP7A8rycIC0X
1id/+qrofxI69OMHQc6u/Xaq4V8m/gvUNnyJ
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#8"]& ], 
      TagBox[
       {RGBColor[0.8879026, 0.6993192, 0.5746156], AbsoluteThickness[1.6], 
        Opacity[1.], LineBox[CompressedData["
1:eJwllns0lQkXxg8ScnlVBjUpCSVkIk1N8rxJbpmKdFGjpNKFQqXUDMnUGFJR
CMkll0SUwXGJpjAlGoluviQd58Y5Lsf7nuO4HL7zrW+vtddev7Wfvdf+Z6+9
F/sFeR5WZDAYGXL/X1QsymsTVfSC8X8j+21rrxdU92KlNoqvDU7jn8te361s
6MXJoFrXU/XTuGB0xcjhQy9mtD1yXxM4jV4frt2hyV5EdvKtj76cwtOHEQ1C
ZTbChbr1TzKnkDKh6xZKsBF8l1mRHzYF91TnXX8YsSEI7ShbYzEF5ruCkAIX
NtyCVLTU0mSI3RyQL0xkQze/nfC9Ponv4x1Oddxlwz8o1MkoZBIP382zr8ln
o6l5tMnVaxKtPk3vo6vYaM80uF3//STmBJsoL+liIz3XVt360QTSEr8e9F7C
QYrXVpV27jjMO5lWpAUHVxPVG+zfjKPW4PqEqS0Hv1fPNpyoHEd3vt0t2omD
Uub8uftix2FUnVp/4zgHHq2EfbH1OAq/bF/8opSDvgcp16Lix7DOyHzgYQ0H
nl3WX/zDx/DaX7H6VgMHobUK5rHHxzA49HjbgfccpGUNmcZuGoO1olbkpJSD
X6NZP+yakqLGtKnbmuTiBkfb9sQFKTYHZBbOc+VC2rj1VNdxKboenT3L8OTi
5vjq5vC9UkytMdFqPcjF2Lblk9vXS+GwOWr9sWgudM0T969TkuJVkF16ZisX
JqWnnf1vj0J/UU6590cuhAcJDX7sKPxb1f6d2yPP7/LdGh8xihmWH2XRIi6s
EqLg6T8Ksj9kf7AOD9aHj5Rc+3EUzEP3jTbs4aEksHT6XI8Eyjpa6yb8eJCF
zNm69IMEXg1ntlcE8MD4ETniFglGFjtcNgvnwVTXsWKgUgLLr12c2Vk81Gk9
8CATJMj1nvOAxeEh1+1I0nxXCSjV88/TB3m4Myp6f5WUwKHqa+fOUR5sc2kz
3TUSfNUtntWiysenz9zaM0slmP/OObDMnA+hccK9bSoSJGwJt7ocwkd0uHs+
WsTokfU621/go+K6ZJ5Boxgrit18pVF8tPSs/6ZVJ8Zrdf2EwEQ+YkX1Pise
iaH66q8Rr0o+LCM1eDsSxYjYyK8wkfEhVl36VttPjFTni2Z3Z/ahynjOq8S9
YpRv1r2ro92Hyfu5ZhY7xBBsd7ystKQPKyxHtRNdxNh9KMvzm0sftCm+8YYf
xLC5snsoPbEPbz2zP31SFGNLzJCfTkYf0uffnT4jo3H82h8frt7vQ0RxWZGh
lEZWUnndhRo5u1lW5Q3Q0MrXjtvd04et1OI2304a/BdNy3Qs+mEV9/ebk2U0
lFr2p1+17YdMIdlEUEJj4RsJoYR+MDmB/NOFNHZ8NB4VefRjLDlkZmE2jXpe
5D9vzvXjmf37qZx4GndV1/pdbehH7HyftKJgGp5uD+4o7hVAVYmun7WGhrHj
Ra9PBwUwPclqULClIVm/Q7MkUIBpX9uq6ZU00lYqXPSOEMA1JGeRtgWNb/re
fo+zBRh/+vl8pCGNYJ6q2T6+ACm6ZQ1xs2g4fOv+ZiMSYLvJ8498FRo6n8vT
1MYFUDZfmuCmTKOy1VejQl2I7J92PFjIoDFVUTWkbiUE3zA7REVC4drlo8zq
UCEirQ5ZvWZR2BdhH3QjQghdps22Cz0UfgjTWXY4Wgi9Yhdly24K7wKepWqn
CmE3YjGU2UlhwXb98CO1QmQm/GNY00ahcHHTxu+UBiAuyoop+5tC09Olb4Pj
B8DaonlvfxYFf80VHKW0ARTHm4Tuy6Aw45dVY8k5AzhkOrPZN53ChjFycR1z
AHUew41BKRRqbPaEqH0ZAC0ru1MRT6G4IG72PbNB/PRk19oPlyjcvCny6Kgf
xEy7nJiF/hR+8X/SbiseAre7xLt9FYWqRR426VNDoLsPJB21oRAbSLkqzBhG
nVBMMKwpcE1iCo9oDiM27tlDaysKGSnlAasMh/FbS4k4z4wCEaE++O+mYfle
XIl6tpDCsEv1CCNhGGGGRF6+GoWybp1J/6UidHbMaQn4NgK154XMCYygqdhJ
UJA6giG7zR/XBVPQ3LHvqYP7CPKDmjMd42gUedx6vFtxBPrjq8eZ98Tg/CY7
P1QpwryFJTXv2iQQfF790uOwCAKp0pIn/aPombf2mYKeCO4nDoncF4xh00zV
zlPPh3F07V8eLi7jeOVGt/ifGMaO2m5vDd8JkGL91acXDaP903dNv96YhIOx
g0Ha7SEYPjTvLiuUYdcA7VovG4RM333P7S9TOL6h2dRgzyBaBi1WnVJmkBsO
HjAX1Q4g0mIJIUtgkG4pnedKLQcgYy6867NcgWQctLtCJgvBSle7eK9KgZTN
9WanaAiRt0JgtsBRkfSan11tEyOAlWZ7dMBnRXKTczg/f6ofRs4FazOPKpHN
yxh+upf60fXv7xkFCjNIg72LhUqyPpxh7HzNvT2DbNaL/Lj7Yh9Cr+ttUTNW
JmXJrXqZmn1Yf6w7SqFWmeTI0lcwkvk4mZmo3u06k5xdIztabcbHb5c2+Ay9
m0m68F7GPajnwfMxdeBDgAqZ95+9zyx28hD/U1JNtlSF7Firv3CK4iJ5tt0L
hwRV0qu0vfF5HBfKju0mTYvUyI7C89scrLjwMNq/JapIjYy4HVv/4wcODv8s
MpuzcRY5Xb477VwYB986Tnn/0TaLLGy+7Pyn/C6a3B9b13ZMnXRT57usaGbD
yfQcbwtDgywoTCiaG8pGG4PNLY3TIO+sjykbXsqG0bKdqf3GmmTYnnbFQvkf
0FVYmalSpkmm7n7+vTCuF2c6iSBvey2SpyHdesOpFx1eJ0SR77VIQb2v88+T
LNwxr3kZ50eQo6IT59lVLHT1nUlUPEyQ7sy3kU8qWVhQYHUg7AhBjmTOK7rJ
ZCHdOG/8YCBB+u/C0Q3lcjaIt1x3liCr6hwvZz1iIYPwv9UXQ5Bjoz/bH85n
IYuavd+pVN5f2/GWaiILPaWvzWvLCPKKupew9yYLhsHR0pVMgnxXl3Tk7wS5
XjiZYPBEzkhpPHuDhWwOr5FuJMjTD6f1eLEs3PtYtzznk3w+jauLWi+xwEoK
G9X/TJApJ5ekFkWyYORl03j9C0FGvk9aFXNRrm8r8LnAIsg9vJE2x3AWcl7d
ivcQEuRfreKMujAW2NFbfF4OEuRGxRem6edYMHZSW75eRJCtzxzbLpxlIbc+
omGZhCDbV635c80ZuT5ybXyGVM5695L1Tsv1oH/RmSDINz25LyQhLBySlZjF
yghS2Wyd/odgef2TY5LpaYJ8HLv/akUQC/8FAf/97Q==
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#9"]& ], 
      TagBox[
       {RGBColor[0.859434, 0.6006316000000003, 0.49633340000000015`], 
        AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwllHk01fkfxi+X7L4yFIWyRopfo2aS6vlEokhjqXFFJkpJDTVNo2YsGTGV
Naqxl9a5Y1TDyFYz0qLFEoomS7mby8Xlrlzy8zu/55z3ec5z3q/3n+/HPCza
b78yjUbLmJv/+dWeZxpduWzQ/i9yzivqpmAuF+9JOlQ2O4vFWa7HOorYeFbU
4hDUP4uyTuONtTfZcNdrrz/29yxaQprepFazwe62/dibOAv9GGtVyx420t0W
HT2qPov83P5whiUHBS/El7zsPsH+XZUjWcFBZvNjb4nuJ9SbZihs1nBgafdp
u0g8g76b63PEWzjQingbyGuYgUVN3qPMQxx42HffzQidAbPX3/zpPQ60f/3z
2cDtabhY2I+U1XJwbq1K4tacabyKUK7JaeRAXytyjShuGqNjd7/a+4YD9ijn
rVbAND5X1k2clnMQvz09cS19GrU2TX2fEy72RrZ4/31YAa+oEqbxVi6eeC8u
FQQp0HPnxAmaHxelBoLkHVsV+LTWWrclnIuTfd2qFTYKuHolbYhM5eJYF82w
lzWF59HrC0tauLBZOGK27MAUjJZcq2R0caHpzBFfD5xCRItG82cfuPg9f7m9
97YpqKzsmkkd50LKikw3cJgCGToaGmPAQ3D5gsh42SSq9t2y2BTEQ9FFP+aW
7EmoGui6KMJ4cBH8u9/0zCQCGo/7/xXFw1oXXpnhyUlMmLsm28XxEM9aZRW5
dxIr+3s486/wsPTOO0Wm0ySuM/R/G+Dw0F+Q65zcK4dI/WRD4SgPZ6rKld06
5HCt7n+3S8bDgEW0selzOfoX/KH5Un0QBxTiFvO/5FjU6XG4wn4QwvJT0vAM
ObJ94hyTjw6iNIH19md3OeLdBv+ynhkEvB7uWflYhjyPBLuieXyszHu9eEm9
DJVeC4oM9Pgw8jjvZ1Mpw7D/5mS6JR8iI6H68esyBO674vfRk4/eeZ1vVVJk
cDoTOFaYywd/yR2DBm8ZfM6OhRkU8/E60RFD7jIcSk95e/4WH9++jG60ggxX
LlY+OFXLB8kJEb5aJYPuTb20wA9ze4acyVoow+DTJluDFUNw/Lq1QMGVgv4y
tPD8miGcHEz7c+lHKcxapRQdQzCvPtLl/16KnV1WsnHfIQhOLc5mtUrxiJf4
pPWHIRwMFTRfq5GiSN057HzjEF4OfFVxOlMKv22/FSjvHsYlw1nrUjcprDYn
BHSHDyNXfOdcMqSQbtipU354GLNl386LdpEif5VSAiN+GNXFSR92O0nx0YgR
dvfqME6rt8ddsJQihqdut2dwGMZJx91DVaVITz5YVfO9ADsmvtzEbpZgT/zG
6Mx4AXiNZvSSFxL8J9bAdn+qANxozW2hzyTojPonTy9PAKuJbVbCfyQw8TeK
O1AvQCCT7uZbKQHTvMnNkD6C30eeptMLJWh6uOx1TNYI5PRf6h5/K0GEjgOH
nj8Ck+neh++iJFAJXj156doIBn+adBQdlGDTJDF/UDWC3fkN5k7hEtQ6BR3V
6B1BBiOrhvO1BH/cTptfajcKoX7rtIarBBcujPt2PBrFm3WlIZNGEgRH1LWv
kYyhfZZKcWkVo3qJr1PhpzGI0vU/mDSLce6waKuSihDRvKVGtJdicK3PMg/o
CJHfu0jz1VMxin+tjFq9VIiiL+t3nHwoBhWvNdrsLoRWi0W0VbkYQs+aCVq2
EBv9ffp/zRCjos9gOmLZOA5NnvHU8BdDo4FZpcAEYtuZMfxhEcbWe3W5xIhw
N1auT08S4Wb0i5LNaWJcrP8jMslcBKOpL6aqSiVI8TMNFzZOwNisvLazTYrE
h6EeLqETGJbTLeuGZGi56OFqojwB7yP7xr1NJuHq6dcXXDyOg85/+np6TuFn
TUakZMM4dtb3MbS/UcCR+VU1kyNEe7dh04+Z00hWdBjxUoVYWmbfV8GcQVbH
k3+PfC7EjJF30OXeT9Dbcck/6O4YXo6uWH1MlUbsouOKjVXGkLjCkprJphHO
EGGPHhjFTJVZUchyJcLRvBJxuXEEA4UaCaXVSkRo0q7V5jCCGw7DdiablYmB
Y42m51UBHHXaU6PeK5N/3L+uPK0tgIXHbeeSg3SSELdvnU7KMHqafy6+raRC
fmnPz1LIh3CctusV97IKWWf1oEHvuyF8n7HQR8NKldhrvdtqNsXHhsi+JKV6
VWIX7Jxo8ePcH5bkavVtnUdivXSsw9X5+On0ppCxznlEqLO9wr9gEH53RXvf
RqmRNm5Uzh3bQWStu1h7Va5G1rRm/j2/gYdL89c/dc1WJ0FunFUkgAfVze3W
TUs0CD03oqJlrkd9LUJ9kn7XIDUa3xyyyeVi//ZxO303TbJLSZWUruLiY8cx
RkqbJnlzf+2mE90cWN+adGmL1CJfdKSl1J3iYIvNDzwfmjZRXyOy/MWcgzYa
m3svTZs87z754kEbGxa2u/KGrHTI5X3uN8t+ZKOHeb9ErUKHKOulup93YOP4
OyqasVGXtBlXiGfYLHQEHBlPfKNLFsVsq428zEKBfe2ztDCK3JrYbarmy0IP
/3iu8n6K7AxLMH29gwWT2457Yw9QZDf9kWuBDwuFVjemwg9T5DA9bdrRey6b
Zq10OUGR+/vPrNjtwUIxFZHDP0uR72g3Yqs3sHBFND90yz2K+KZkX8pYzsKH
e6/s6ysociGU6RBix8LSmFT5qiqK1KmbDdvbzvGC6WzTOopoZ860Pbdm4SqH
91j8mCKF2uIdauYslHY9WH6tmyJ3qn8wPLuQhYGLsTKj9xTpVosUMhawYBHg
9DijlyKjDQFjyw3n+LbbIacGKKKVSmc067Nw7XlOlq+AInbqC99/pssCO9Un
5NkoRTIZq99wtFmw2qKxfMM4RdoCTET3tVi4/ii+0VZKkbz41fnBGnN8onNW
sZwi4heBlo7qczzEwQYKijyZdmxTUmNh30y53bkZiny0rrzSqTp3XxcpnZ2l
yGZGf+4tFRb+C6arZwc=
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#10"]& ], 
      TagBox[
       {RGBColor[0.814221, 0.4847644, 0.41806160000000003`], 
        AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwljQk01esCxY8hDuKfUHJVCJEklW5E+6u8SqqbqZdSLnFUlNzbdFNSRJOi
WaFQGSopokgS6RSVseGF4jgTjtmZD89bb6+11157rd9e2zQw3DNYmUajxY77
f3k/b6iBeYsN2v9Fclu9TKufsOEcV6u0smIMS81sBA9L2Ki50mw2N2cMtQzl
F5cr2Sj2rYNf0hh6+/I3BjSz4eTSEpcQOIYFyjrRcjEbp/SW1E2jj6HEktm2
gHDgJDgXpOs/CvfQ27nT3DhIbuLUy9eOouXxwYM0Tw6ezEuH6e+jGF1iofNp
Bwe0sHhq8qRRrHA/6bIrnoPmmD0foqoUeB/unHL7Ewd2xxhC7mIFDGdmFvp+
5WCxTmlrgKUCjE8aH/V+ceDYNqxGn6KAqu1XRfwABzWLPX58GZGDdEX479Pn
IkH0dlZ4sRxFQVlmy7dwcenVkLfBCjkm6OsslQVycZyReVRvkRzelfu9noVy
cRQXixws5Rg0XRFrfYyL1vyZlzs15bD92cLWvcPFxT807/9sluGu7+ScDjYX
RoKKVkGEDEP0fypSernYdyDUThosw4rnP79vEnFxNZ1PN98iw88pjzRr6DyI
jFTaP62QwahpdViBDQ9jS4LWHjKQIWnDMbvYCB4qTxxRZ5ZLEbWS98xCwcOF
BJ8eN0spklcft05V4yNLO2lvjrEUhe5TUvUn8eHIiYg00ZOi28s1VmUWH89V
+TRvmhSbg+54tq/ho8Co/DTzhwQLT23uS7nCxwTBy4051yTYcKYvUD+ND01u
RZT/BQl2J8R9OZfFRwjf5odVnAR3rhaWHSnhQ6slwWr4gAQ69yed3/yLj6Ty
T6cYmyTgVTOt9Od2YYnZz5DTRhKo1PinnHPogvhTDDbpSTDjs5BSQReunN1b
vXCiBD5fzUUDHl1gbX/72/RRMd5wo99+PtQFKlolNbNDjFS6Y+C5yi7oPXCt
/XeeGJ5rc24pb+2GlZXmGcc/xDB3Pe79bUc3NCKPeaivFUPo4qOdF9aNMXGW
d5urGDftlY77RnVjXm1AepaTGO2GvoH56d3Q9mSeuGspxj4u3Xo7rxsZAod3
9jQxEmJ3Fr040AOTZ1pe8ucibI9aFn4xqgel9RpFlYUizD+sbxUcP94X1F5I
yhehKfR18qTkHugO7vQl2SIYexkeC3nZg6mVy4N510XINWWuNFARYIedIMnr
sAjMV7Pr9yUKoP9CudnaRQSG9jy2yk0BEkOu0X0cRVD1WyS5lilARGPP1VMO
IiyXENOyIgHGOi5FCW1FKFm4JUKjVQDbZ2FfDWaK8Cj7vG6GdS/ydq967aIs
wqVLAx6Nb3qR45hu31QjhB+jtMFhpA9vTCKe3t0lxPOZHgtTRvsgda6cU88Q
4mzYkJuSaj8sOtxNaEFCcCzO5IZo9+PpvAMhwduFSLtRGLrIpB9vM9/nrPMS
gorS6v34r37Ern+99bSLEP1rXgzSkvpBj0uYdk5PiII2fTlj9gCUZ0re3q8a
gUZFbpEMg7AV6Qitl42gz9n969J9Q9iccimksngY98M/3HY9P4wTs5lmD8kw
DKWLpUUZI7Cxclk38HkI02bklTTVCWGUfvqdue8QusUqs0q7RHitu6lqsWAQ
6/YEDawzlgBnU1irIgex0/Gpx5o1UuBDmVqsziB8Xrb5TvxTBlP/004dDwbQ
8M2AGXlRDn6n2iwl1wGYPLRpK8hV4MD8pEQpux8Kw3VbrreOYus8+9fuMf2o
6Z276K8JNHK2rJaebtGP6LmzKEUSjcS4ZG+cm9EHRdGM1G1zlEjNU5U1vf29
6EjROJ7xXImwLdwXqnv04t68bmtjV2XyfWX9Vr8XAthpN8SH/lAmzq720X5G
Apitzna8vVOF/N7AnKx6rgctH2PSspVUidBN32FouBv7aZtqOddVyaP50gdM
RjcOXJi6QcN8AvE7zopM5XTBZVfbSaWXE0hYSXO9659d2Hv7ilabmxrpaDFu
n8jl4+iJ5dv6mtTI9UUN3xV/8+GZPxTwJVSdyAYjGQtkPCQ6XS1JF6uTG0Hq
ARYXeLim61y9IolOAppFaa9+42GCa4MFc6YGcTjmNWVrIRceZv4bTj7QIMJI
h8kGnlwErx+wnrxSkzxa/4Rd28VBe+NfvnF1mkTpXo9TUAIHFlmSpXW7tIjp
LfuqNTYcrLI8xN1Am0h2lnunyD+yUUfr5Dw5P5HI/t7dfvYfNsysNiV3mWuT
F3ufuz02YaMlt/i2eoE2CXu3LnxOXSf2f6fCfZfpkDLLvclhMZ1o9N4zEN2s
Q9ynL7KNW9CJWzYl784HUmTzkFuFNZ+FFv7+K8rBFNmmY1vC4bJgnG0XcDiE
IlWM3f/J5LCQYn5PuiOMIvsff0uc0TnepyfaLj1IkWLt6iaDnyykUYzL/DMU
6aHLn2o1s3BnSNd/1ROKPJC1JetXsPDrSa3NywKKZBTQIr6Us2CyL15sX0SR
dK/7e2+8Gud75EnTSymyui2w1fglC+lsbtVwFUWqw3jxs4tZyPhaNifzG0UM
goO0XB+x0HH1sMjwB0WM0vNW0x+yYOa9sOpCK0W25+nl1uaO83XZ2450UOSV
pX67TzYLme8vJ3r0jP8vXzJ1dyYLnfEbtr3rpciP/IwYuwwWzFdpzHEZoEgj
b8hg5A4Ld99EVVoJKRLEnP8wOm2cj3ZMTBOP/0VR+atSx3kM++nLKFJuWPp9
YgoLQYo867MKipSZ2Vo33hzfl+4Sjo1R5Pts/7TkZBb+CyWgFt8=
         "]]},
       Annotation[#, "Charting`Private`Tag$11812#11"]& ]}, {}}, InsetBox[
     TemplateBox[{
       FormBox[
        FrameBox[
         StyleBox[
          StyleBox[
           PaneBox[
            TagBox[
             GridBox[{{
                StyleBox[
                "\"Normalized Temperature\"", {
                 FontSize -> 18, FontFamily -> "Arial"}, StripOnInput -> 
                 False]}, {
                GraphicsBox[{
                  RasterBox[CompressedData["
1:eJwVl3k0VW0bxk0pFVJJNFAS0VsiQyWXEKVIKQ1CoYEGU+mVIRn6pIRKSsrU
gIRCVMgQHfPsGI7pTM45e58TkjTQd94/nvXstZ6199rrvq77d1/PKhfPA6fE
RURERIWrVrj+e665meu3eOQzBK3LBKpFZehLa5B85MZFHMt60WhUNcbV96z7
VFSOs74DP+zjuDi+g8yt31AD8nSkA7moEt/NRjmLy7hQfxK192VbDUaeV0cr
elUhdLFYbxuPi/EpDW6o3xfQmWLlFg2fIctaVB+rwEPZwS8RTkoU0FRNxn01
apBUqFZiY87DzbxTq7eWUUB1CVqTGv4F624YvJ7vzcPB+RKf5F1q0Zb6wb5p
iIJ39ruf1j3hQflsmsPYrDo0DP2I/G1UBzN1h5jIOh54VSZTDZl1qFHW+6jx
qB4tP86HWPzgoVB58H6GdT0qnXz4h743wJES7C2xhkBIQNCm8LF6lDzJVQ7b
3wTew1iXSlsCe6jLmpzjG1BEI/fnvW7GFfc0u5AgAkt0P3hs29KIbmn5SkF4
CyS2FpgbZxGg3zkyW6G/EfavdR1m6bYibm6N3p8uAtm8yfTxkCa07z0wsWy4
FSv7qGs/iJP41yLepGlNM2xJr2idmDZkveIq/KtNwjxNtz+T0oymWzFrd29v
h2Hg7zn6jiRm/+WUmOq3YI9Wzidnoh2f90r/+naTxHG+YR69sAX7DE/86Sno
wGCHYKIrjURc468tWWjFMHHO0SO8E/pp1a62RSSqX5dUede2wjf5Stkvuy5E
eya11daT+BUdbL3Frg2SdmHKt1SpYBj57jAbIrHxoglVpL8NDyVjQpZ9o2Lr
XKu8kgkSbjZiJymn26H5IXH4VWU34qgqyvpSfDzc8JkXM9qO0gsvTI3u9oDz
7Ed07go+GmVuXDp8tQO2q96mN5zshbFP0x8NHT7EvlrOrJToBL2jVMJxUx/i
8fxcmgUfBs1SkezoTlyOrD3FF6GBnB/Yu8yBj3O59XI5Cl2QNOqsCWqhwbT3
wO54Tz5SYqIfX07twqOvQ+oyKf149HJdsUw4H52e+9S2a1GxPp2MfOo5gNFL
IuqRD/mYayuXK1FIRZn9FHcDBmFhSo0Xfc2HsXa7YYNxNzRmhT53nj2EJ7I5
EgEVfFxaEF95j9KN8YHZXeqeQ5ighftOdPKRMWq/1+FADz4UR0uOdg3BKsuB
foHHB61laddqWg/C7y4yKDYeRuoVnf0jM3yMDwp8dC70QizvfDYrcRhtmVrJ
LCkB3DYY45xYH/xvGN/1Hh0GxenrzL+yAnQFRs97ltCH0eML/p3eSUfZonyn
+fIC7KqnUWnraTijS3e8+ZiOAopfWbKSAO8V1z+Tr6ShX6rATH6MjqygrSt1
VQTQOhvgZXO4HweHItalWjCQojMTVKMmwJN3dUb/I/tR/+6w7D9JDDwYqeg/
qiWA7CwlqfLrAzCNXve9eIyB20kR2/naAly3c++cWjKID66/e80tmQjbv/tJ
iL4A31KLUzdlD0J7a2N5SxIT/pLS04uMBNCZEjcoVBnCywXJL46PM+H5seX4
yx0CnEvWerL/3BBWjnjd5liycMrrfslWSwGeWdiJCwqHEF9q6nPpCQsOakeW
N+0VoJ9/1T1KZBjz7y8+IvKNhf29ywJPHhBgSXxa89o9wwjzYG+/vYsNy5jB
vonDAuwzqtOrih/GL5Ni1aVP2dhunr4t0lGASMbYY+ehYXgrREk9+8aG7s/T
j5e5ClARpSj2R5MODt/h68bdI1iXo/k756wA8wJ504Q3HRc3q800xo6gXFXz
oMEZAZLWq1z1LaDj6Wbm3MIvI7Cy9p63V/j99f2HJn9N0tG0OV0haWYEHX7F
lSfsBCiNvuUTuoWBv5td1oTpceCc8tf/8m4BbIwrBFKBDGzUW7XJ4zwH3FqL
TVEQYFAw6RFXxsAJvaHt+9M58P0WzXmqJ4BX8vqRpaJMxOolWxn2cjC9vDM5
X6iXqK2La4oZExV6ToeV5biItFh+mLJKgLsiDwfVbzAxprfCTXIXFwu9XGX6
FQRQfdPokEthYrU+zYsfzEXSo6zqMWkBCk6Kd+vPY+GA/uOgjkIu1laNBUpK
CLBz4ZaDZdYshOkfi/pIcpFHGm5e9ouPrsqLLTtjWcjXV0xIU+Vh25IQYuMo
H2d8n+1tbGOBqd+dfvMYD9X4kmbO5mNKtZdyUJ6NxQYJeV5xPOxzlzl2lMbH
zQ7ZnbTDbJgb2JcepvDQe/eQ3MU2PpQidla4JrJx2UC+zvgvD24lSZRQCh+v
9AK2EzQ2nht0dKnpExCwGNcSyvhIdQ60ZiuNQG9Fzj0xNwL8erWEH7l8/Lky
ZlS+V6jfx+aWKn8Cq+wkjtbf5+Nw7On1icEj2HNsTDoihsChXrpSsj8fbzP6
ll3KGwF1auEei+cEok5W0Hyc+JCusJ1nQx+BS8LmyNkfCZRxkp9amPFxtqf6
l/piDvh69tWUFgLjnsEnlDT4+Dy2lSdqwcG/HVfEotgE1H8cXy2Yz8fKuXk9
fVc4kPB9hD1/CDgEb2NWjJG4ulqttjCTgxi5j4HzF5KInaX0Ir6LRMfWxOKY
Pg6U8mjvG9VJfL49dcb9o5DPdrIZ7tJcPLeZmbyzncTPRdR121NIRJ0LTzAD
F5v4yptt7Uj887iQWBBBghX288YKby5Kbu3wlnMn4bL6/mumcDdJuuj3I40L
S03XnLZgEg8yfTyLbUg8LmCcau3goo0STty7T6JOe/+m27okJhuOHHolyYPT
mRcah7JI/C3a+M15KYn9rEbzCEMeuLMop5aUk9CFTKHutHAOTptudvbg4dIz
bhq1k8TZGtJvNp3AhtBCFatEHqafr/HM5JAo2yZFda8moGci83XgHQ8XIhzb
VAZIeMzEnnJKJGA0c7rUt50HmtsDvYftJBQqlk4c8CRgVvLp1pxRHvaaNz+U
rRXWJywl1NKcgNXVpceezCfwUXXOnxtlJLwsNOSMFAkcMPTW0FlHQEt8h/NM
PokVUnnJ2gIejk7WTtbsJJBI96+8nEmitt5gg1oVDycKVlc7uBCYW/lWjf+U
hN+dTyWKD3k44xNwbzSYgH8qEekmrM/q/ZZ7ZC7w4KndcTLiMQFuyBqyTzin
mxc194iZ8uAnWK+tVEzgyAnHfXbXSAR02Z/9sYSHoOyImZwOAhQ8eFt3iYTG
o4FJguAi3GOgwWyMgKFys7yph9AHDqcjhsq5uK1h8LhbmsTLmdn+751JXF8p
WNQZz8U9doz7BU1hXQZMaNqHhLoPX06r9eAi8RnHQMySxI1Sf2RYkehNn9Yu
E/ojzWWHZIKrUM+kt2nKJsLz0xGf3i7mIlMlsUMrhMSpQGJWgh4JnXXSNi+5
HOQNjKeVJ5HodFjjLqNFYpC4T3tcxsGhhcE27GckHOb7O49KCOs2LJidcJOD
NcUTNJFXJKbDbTctoBGYvSCOdteOg3HHc+eWvSGRPK0urp1PYKex7ps7Kzio
EKf/1BPmFDO/vx37ogiEn++MiBoZQUzmkUjbUqF/BV0vPE8SqEi8cuzGmxE4
7Wtecq6KxP/O5PwbY0jgL0VxY2jACP75vvN5hNAHmkMRVrmyBLb/+CgevHME
fxJLdFOaSTQccVzezObhqppTt7/sCOpMdCs/CH15sXWzQFDKQ7GdyOvLPWw8
YmfadvaRWGA1v1wmnofJ62nXvdPZOHtbZfDrMIn8SkbchvM86OaZ21+4wIa+
TsKFuUIfH9r20dXGjAfvAbamuwEbs7ql/6wRkPiRf1fvohIPOfNv/nUTZaMj
KDwKwjyVuN5j9p0xLsitWh0n6llIU/299NgvEkbPd/S8pnCh6d6YcTyeBe9a
75eXRPgYWKH4qjGZizMJnkFHnFkw8eToxUjycf3BaCDfT8iDarkDB9exICPv
/DlTyBtVWYqNtA0XjG/5a22/MZG2X3r7MXE+AnQGet/+Ny/sBi63v2ei/HQs
31T4P9TO+ttzmzjIr/59V+oaEwMBi55qsYT97P/e2CWKg0EDxTyYM/E79oHN
YiGfYpa/HH0v5Ny8LP3Gy1JMKL5Q/PunhgTx6X6anDgHBssP8l41MWDwMSmX
JdTX0jX0oPsnIUfveM+m32PgUIvyiaYMEumSXpIVQv3uiMSsWXqUAR9W2oKi
R0K+ZDoWLzUcwQef7B02KxmI/aVWkRwl9Jv1Hg+vCTZYzFqncAYdObKZ3pEB
JIpGDZdT8tiQOzwS8CGDjoY161d7nyex+P7aJmWhTsa1Eo9GL9DB25LbdlSY
r70MFodcWceGx7bV79bq0jFnn06YqZB/Db2iOs0sFh68RvvxqWGouRXqakHY
n8FfGWvTWKhQdhy9WzoMM39D5iJhfg9f1R8f7MQCP+6qdG3oME7e+Xj/jwqJ
oc91ll1KLChKPNT8azmMa+nGO1lyQn3PFv/8h8qEuV+hpZ70MJKKK743ipF4
OO/Fq4h7THhx2tzOtQ3Bvf/V7/NcAhnWYdi3kwlqyds16QlDGN9Sscv/C4Fn
xhmy1gIGFBk3d9COD+Hqg674COHcSt7YOGiVwICD1Ekn+dVDEP9G0OPChHxT
Gc/dZcLAFmevyaSmQdzaJ6r9VNhX8XIKIRZcOkpfrdSWPTqIxdlLgrJAIFbM
yNb8Lh07phrcrzMG8GTO+rp3Kwjc+nZCxXQbHTXmAenfLgxA7dQOharfPNxg
RoyCOQyruHX9p6b6kVNh79bcw8P1zqzy7dHDaOqnLukO7Yf+yvNv+op4CKxp
jt2mP4wDmjdsraT78enq9ZkRYb/9WzRxYsvgELr8NkeVJNCwi/pgz4QvD74Z
ipsMIodwrIpetWE1DS262Q9FDvBw8ZGxqN6mIQzIxk2nZPfhaGwFa742D22L
v6SdKhiEy3EYLDLowzDZpaMowwNlcoHZSclBsDP4XhEVvfDYTV5TE+absu5j
jONHBuDx/XHWjz29GH8u2ripjouCD8/CjmT1Q7DDiune1YNAMQUl4wwucpME
qgf/0HDpztQK2okeHGy/6Tw/hIvq9p+a3VY0VLv4/wnjd6NoY4qCYC8Xrc5U
ltW9PpQ88/goFdwNpdvvmpsVuegnClJK+3qRz3a4GiPTjSBOw//esDngXbnr
oL2mF1ka1lvkk6kYNGfgXj4Hk+JeS9LP9yDVw3gqcSMVpqk/f1wK4UA81rpV
vrAbD7M3FqmUd+H5tGyevTUHssu1bkdOU3FHoOL3wrYLc46tPWuoxMGyjDmW
v3dScUN7od764U54vDNSURJyV2MzW/TinS4E+ohPvPHuRONCu+7f+SPYXF5V
MtTVCd+CibcGYp3Q9nSP7Q8Zgcne1Ct2ysL3J1nepXc7cK/+2q5P1iOw7g7W
qTnTgZOGVG0z1Q5Mqj8QSRXmtKNu/91g23HkKuUrJV+4h2cXh46wcXp0S8ar
qTbsK3mfY2Pejo9DlV5uBWz4BCq4rtzRBouZrAsdHW1Yub1Hw+I6G8Fzvq+I
u9mK7SZJ64+dakPIfxdBGzZu3W/rFm9rwebQaGLweysY32c9klrGRoJK3j0/
pRZofg7OOnWjFawFUQvqmSz0rnJcsbizCSlU1elbSq0omBV4KiCFBTmp0I7h
941oVPThSHxqQfivCx+0jrOwe/TFrdynDfjlUN4e5NoCu6/OsjQFFkKo9aZB
YfVQfyrzaXJ2C1SZ+91utzNRVDb60+psHTLL3x8cPNKM8W6z90YxTHx9Lv9m
qXUtJHbaa7WmNqGqUU+Gb8XEP9Fbz7I3UeBaOy5axWvEvUp11yeSTLhdclYu
WPIFpdYx3QW6jXApUiy2rmQgySG86/rvaixt08p9EdiATdnzpGeCGGg3zYze
N/QZPvaUiIfV9RBNnT6ZI7yPzNVsMl9RXSXknNvxKJl6tMR/fef0nQ5TuW+/
eZmVUHcW1Q08XIeUqOF5sm/o8J9SyC++U4HrjCdSF1Nq4Xmt/cSn83TkDRp5
3PAtB+3M1iFnLgXGl6oLPTXoaI6uMs3IK4M+2fVuvw4FMu5Fc1WEXDA+Lv3G
7GoJYr18o80CvqDfMdO5JXkY2ZqHlQfNPoCYkHXT+1yD7AOPC0IchqH0MyX6
qnQxLPyzt6pL1yDQMlpqk8Iwor7wfstTC5EyvUtO0b4a/wck+cVy
                   
                   "], {{-175, 
                    Rational[-15, 2]}, {175, 
                    Rational[15, 2]}}], {Antialiasing -> False, 
                   AbsoluteThickness[0.1], 
                   Directive[
                    Opacity[0.3], 
                    GrayLevel[0]], 
                   LineBox[
                    NCache[{{175, 
                    Rational[-15, 2]}, {-175, 
                    Rational[-15, 2]}, {-175, 
                    Rational[15, 2]}, {175, 
                    Rational[15, 2]}, {175, 
                    Rational[-15, 2]}}, {{
                    175, -7.5}, {-175, -7.5}, {-175, 7.5}, {175, 7.5}, {
                    175, -7.5}}]]}, {
                   CapForm[None], {}}, 
                  StyleBox[{Antialiasing -> False, 
                    StyleBox[
                    
                    LineBox[{{-174.99999999999997`, 7.5}, {
                    174.99999999999997`, 7.5}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    Opacity[0.3], 
                    GrayLevel[0]]}, StripOnInput -> False], 
                    StyleBox[
                    StyleBox[{{
                    StyleBox[
                    LineBox[{{{-123.91067538126362`, 7.5}, 
                    
                    Offset[{0, 4.}, {-123.91067538126362`, 
                    7.5}]}, {{-47.65795206971678, 7.5}, 
                    Offset[{0, 4.}, {-47.65795206971678, 7.5}]}, {{
                    28.594771241830063`, 7.5}, 
                    Offset[{0, 4.}, {28.594771241830063`, 7.5}]}, {{
                    104.84749455337703`, 7.5}, 
                    Offset[{0, 4.}, {104.84749455337703`, 7.5}]}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]]}, StripOnInput -> False], 
                    StyleBox[
                    LineBox[{{{-169.66230936819173`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-169.66230936819173`, 
                    7.5}]}, {{-154.41176470588235`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-154.41176470588235`, 
                    7.5}]}, {{-139.161220043573, 7.5}, 
                    
                    Offset[{0., 2.5}, {-139.161220043573, 
                    7.5}]}, {{-108.66013071895425`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-108.66013071895425`, 
                    7.5}]}, {{-93.40958605664488, 7.5}, 
                    
                    Offset[{0., 2.5}, {-93.40958605664488, 
                    7.5}]}, {{-78.15904139433552, 7.5}, 
                    
                    Offset[{0., 2.5}, {-78.15904139433552, 
                    7.5}]}, {{-62.908496732026144`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-62.908496732026144`, 
                    7.5}]}, {{-32.407407407407405`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-32.407407407407405`, 
                    7.5}]}, {{-17.15686274509804, 7.5}, 
                    
                    Offset[{0., 2.5}, {-17.15686274509804, 
                    7.5}]}, {{-1.906318082788671, 7.5}, 
                    Offset[{0., 2.5}, {-1.906318082788671, 7.5}]}, {{
                    13.344226579520697`, 7.5}, 
                    Offset[{0., 2.5}, {13.344226579520697`, 7.5}]}, {{
                    43.84531590413943, 7.5}, 
                    Offset[{0., 2.5}, {43.84531590413943, 7.5}]}, {{
                    59.0958605664488, 7.5}, 
                    Offset[{0., 2.5}, {59.0958605664488, 7.5}]}, {{
                    74.34640522875817, 7.5}, 
                    Offset[{0., 2.5}, {74.34640522875817, 7.5}]}, {{
                    89.59694989106754, 7.5}, 
                    Offset[{0., 2.5}, {89.59694989106754, 7.5}]}, {{
                    120.0980392156864, 7.5}, 
                    Offset[{0., 2.5}, {120.0980392156864, 7.5}]}, {{
                    135.3485838779955, 7.5}, 
                    Offset[{0., 2.5}, {135.3485838779955, 7.5}]}, {{
                    150.599128540305, 7.5}, 
                    Offset[{0., 2.5}, {150.599128540305, 7.5}]}, {{
                    165.84967320261438`, 7.5}, 
                    Offset[{0., 2.5}, {165.84967320261438`, 7.5}]}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]]}, StripOnInput -> False]}, 
                    StyleBox[
                    StyleBox[{{
                    StyleBox[{
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {-123.91067538126362`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"0.9\"", ShowStringCharacters -> False], 0.9, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {-47.65795206971678, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {28.594771241830063`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {104.84749455337703`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}]}, {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]], {
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> False], 
                    
                    StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}}, {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]], {
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> 
                    False]}, {}}, {{
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> False], {
                    "GraphicsLabel"}, StripOnInput -> False]}, {
                    "GraphicsTicks"}, StripOnInput -> False], {{
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]], 
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]]}}, StripOnInput -> False]}, {
                   "GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> 
                 Scaled[0.02], PlotRange -> All, Frame -> True, 
                 FrameTicks -> {{True, False}, {False, False}}, FrameStyle -> 
                 Opacity[0], FrameTicksStyle -> Opacity[0], 
                 ImageSize -> {350, Automatic}, BaseStyle -> {}]}}, 
              GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> 
              False, GridBoxItemSize -> {
               "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
              GridBoxSpacings -> {
               "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
             Alignment -> Left, AppearanceElements -> None, ImageSizeAction -> 
            "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          FontSize -> 18, FontFamily -> "Arial"}, StripOnInput -> False], 
         Background -> Automatic, RoundingRadius -> 5, ContentPadding -> True,
          FrameMargins -> {{5, 5}, {5, 5}}, FrameStyle -> Thickness[0.01], 
         StripOnInput -> False], TraditionalForm]},
      "BarLegend",
      DisplayFunction->(#& ),
      InterpretationFunction:>(RowBox[{"BarLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{"\"ThermometerColors\"", ",", 
               RowBox[{"{", 
                 RowBox[{"0.7333333333333333`", ",", "1.1916666666666669`"}], 
                 "}"}]}], "}"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", "18"}], ",", 
           RowBox[{"LegendFunction", "\[Rule]", "\"Frame\""}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"Normalized Temperature\""}], 
           ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}], ",", 
           RowBox[{"LegendMarkerSize", "\[Rule]", "350"}], ",", 
           RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", 
           RowBox[{"ScalingFunctions", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", 
           RowBox[{"Charting`TickSide", "\[Rule]", "Left"}], ",", 
           RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], 
     Scaled[{0.7, 0.85}], ImageScaled[{0.5, 0.5}],
     BaseStyle->{FontSize -> Larger},
     FormatType->StandardForm]},
   AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
   Axes->{True, True},
   AxesLabel->{None, None},
   AxesOrigin->{0, 0},
   BaseStyle->{FontSize -> 24, FontColor -> GrayLevel[0]},
   DisplayFunction->Identity,
   Frame->{{True, True}, {True, True}},
   FrameLabel->{{
      FormBox[
      "\"\\!\\(\\*FractionBox[\\(pressure\\), \\(critical\\\\ pressure\\)]\\)\
\"", TraditionalForm], None}, {
      FormBox[
      "\"\\!\\(\\*FractionBox[\\(volume\\), \\(critical\\\\ volume\\)]\\)\"", 
       TraditionalForm], None}},
   FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
   GridLines->{None, None},
   GridLinesStyle->Directive[
     GrayLevel[0.5, 0.4]],
   ImagePadding->All,
   ImageSize->750,
   Method->{
    "DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
         (Identity[#]& )[
          Part[#, 1]], 
         (Identity[#]& )[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         (Identity[#]& )[
          Part[#, 1]], 
         (Identity[#]& )[
          Part[#, 2]]}& )}},
   PlotRange->{{0., 4.}, {0., 2.}},
   PlotRangeClipping->True,
   PlotRangePadding->{{0, 0}, {0, 0}},
   Ticks->{Automatic, Automatic}],
  InterpretTemplate[Legended[
    Graphics[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.5395958000000001, 0.6954066000000001, 0.948175]], 
          Line[CompressedData["
1:eJwV13k81M8fB3AqudKiJDoU6aDSoUvqtYlylG+SSpIOnZSUFDlKypFEhMrR
5Sa3JCqUK6Hcbdjdj0Vy33vgN7+/9vF87HzmMzs7M+/XLD1td/DsNCEhoWhh
IaH/f9rJmC8XEmJiIe+YXOgzLlwkC0y+izFhuy74m5MoF74iq1xDZJig9gbO
8rs1jhjueM1qFSYKDWJjh86MoYUVdtd8DxPL9GYcarIcQTdDKHnZf0wIic9e
DGoYvLoLjX1HmFDckvDewGYY88q3ajy4yITwo7nXpO8NwTi98U+6HxNv57k+
rqoawPEkupjbUyaO/rA+9/XCAC7FxG00iGRCTj5xVu/0ATx4fsu3NYWJlg6R
U+/o/fjkMX/rrBomjuzoHdaM7sFa06NBZxVYaDXjBPlEdEJ7/5dP65RZEJHw
9I6V7ITh3pVdfDUWCvfJPKZcOnBu+zj9iTb5HqnW1y+0I1IlrPeTFQu33F4X
bT7dhqRFQoq+F1jQ7fvc96CDQq78BT0zexZUTxXOdLajUC+5NfyfBwtx823G
ZbzYmD3cYDA/hoWTrBsmz8i4FvbiBvWOBYkpvXZ/WybUOmNfvnvPwuIDUdsK
RJnY8+fmmG4ZC5eeXko87tMCt6/y0fbdLMjwdfh97xjw++RerT3Cwmtpb5ed
0xh4ntPBF51kIUbohuhx89/ITnp/MJLGxiVz91fvZZvQE3xE6PsGNipfbwnu
S6lHKdX3wFSbjV3TFq7LnlOP1xu8pf7osbEwOERr/+06HK7OUew5ygbrqXXN
c7NafJFU3ERzZ8On7Lx5oOYvPD+W/jHUm42fQRJbszJ/4ka8oc6SJ2wMf6r2
l9n6E2p7b/+3PpoNi+UzAzX0qxHs8eei6Xc2zpyf9+Da/B+48tOhn1HLRuEK
tCTpV8BgidRN6xY2NH2T0465fcdk/g7PGwNsWBVY9EVyy3CBGxkZKk/hVqx6
T+XqEujob1FdspTCnszK9Oj7xVgUWpUYp0ahqs8ndgH1Db80hT582EEh26fy
3v3Er9C+eqqGcYZCQ6gRo8quEPM+c82tL1OY/dpk9YJ/BRiQesLsdqRwto6h
YnqpADGJhT0TPhQWmtfYb3X4gju8Yw4PgihwMxrmuk58hoXBEG92BAVa5efA
bwqfId2hIrYklcKaMx/33jyfj65Nef5xHyjIP1Y/HBaWh2+eh+TWFxH7Sx88
W/0Rzsr3lXXqKfRprf7qbJoLyrJd21pA4czfD21Tb97jU5JbUbdIG/R1Lgd0
zHyPMP48wxu0NngmeQ7dtsvGvmd7jzxQboN21IrtW0yysLyztXn26jao2iR/
US3PhPCWW9ahm9oQpjW69YB+JrJr4+zj9NvAoG5Y9ZpmIEBl1/i6g20IOS8p
vZaVDptrTW4fLNpw0HhN+q7r6VgiLeFXfqUNWxOPn/OITgPvxGtZ01ttOHCt
0cVdLw11yVrPGHfbsOmVuXf/31T4GtnEdAe34f5C4+gapGJBgM61mog2xPi4
3zjZnYKkWoWduTFtuNCQoat3MgWVlqV1XjltyKGcG8Us38HqddSrKwVtmGsW
kfKWk4z+dsfLZuVtmPOk2aDdIRmyV1VFVP60IfilnAcjJglvMgXV4pw2eAUP
dB8wSIImtya8v6cNtfn/3vUNJOLbjsQLDaNt2MPXk3n+MhGHPTw0P02R9+3d
2L7BLBEdxeZC0WIcDM5RfxBBS8QtyfUVD2U4kH1i9CO/KgHiB8TCrilyoPek
fP6tpwl4Htx6xlyFg3kPHXTTTiZAvSlbg76ag08PtsUZr09A3iJ//vJN5Hu/
ErnNognYf/psidRODuz0NtTvZ8ejJUY7aHgPB9dcYmNdCuNh92+OFeM/DqLW
rPsYHxsPoXX/1AqPchDHdk3PC4xHoEPhaNwpDjqEv0ZE3ImH8odnhY8vcZBT
Gc7VdIhHxsRVf8frHMxu4ibZ2MZDV0f/mKULBxt9lETVL8aj7oHSct37pH1w
Yv7xS/E49310QM2fg2e0mK4uu3iM0SrzZUI58PsdLvHFKR7eh6J9xqM4ENta
xiv2iofCMxez1jgOFutirOtZPBKaTZcWp3EgLLfimXxqPLYrq/ck5XIwZDxV
u7U8HhXnpn0IKuKgtK9zXKszHpaJTZ7OFRzcURIkSEgkoLcv9cCpOvL7v0V3
BGskwF3Te6F+Cwe2BVJCJUcTIO1k1bm2gwP3e/fD/O8nYMO02XcE4xzI9/ja
h/xNQNEejhEl3I7p4Uy/jCWJOPQwT75coh0bV/z7rWSRCMe5NimhC9uxwsRC
+k1TIkTNdW67qbYjNUxk/bNFSQiLUNh7dm07biTsGA63TkLu8tKWDfR27G0N
a/PnJ8HIJipBwaAdG6quup0wSsafFEdHoYPtqN39LXAyIhmTW1VnV55px/yI
vPobRu+gY+Sx46JXO+xmNt3P/paCmsfm4gcC2hEoPIvaKZcK69p1dZuftaO3
PvVpjX4qHli22s5IbIf1Oq0fjhmpKLPTDo+qbMdMae/c8adpmK/0JtO8oR3n
kyQPz6pOw7lK8R9zmO3IS6ak5SXTMWNNw4TXQDvaE9xnTNxLB73L3urq3A78
zP/p73onA9nWscq7jnVgsYlHgtrLLLw1l41nczpQIFWBhuO5GBJzKgjv7cCD
GV+EViTnQientenwWAcM/kmwuyZy0TovWeK7WCc+D1uWFL78CMXavbYZ6p24
aLhf8+S/PAQau2p42nfifPkeBXbgZ7jt7sxSnehEWuZ5lTM+hThoGP9imsU/
rHBgHHL9XYnSTyt+Xg3owZmwlqOMzFqck1rLmf68B49qvSOky2sx47gmN+RN
D2JLky9ubq3FLi59aX52D5o3hDmZitchd+Mxe/HmHmz21M34dbwOyXF+Mq9X
9aJs5LojU6geT54MmNQU9uKvXHKM0o4GHD/38demkT50WYb+VnnQhBwlk43h
k3148sJ+an5oE3xthwyEZ/RD7/gtranYJrSr+iScl+qHOy1HNKqsCZFhmTaa
S/qhES/1dPWs36C5Sfb+0OvHAaOzjp7+v9Gv/2FQKLAfqSsP7zP1ZiCjZa7g
3IoBpIa3u06ZNEN785RxmfoA9PK6MrxONKP40d9X6usGYBdh7z7DphmN2p/2
9m8dQLeS9SDjXjMmn58PcjIcwDo1RbHpWc3QP5Kr5nd5AMKVSye3yLWgpcrK
PC1jAEJvMpmXf7TgwgrDpDk5AzicTN8S0tiCATfNqRt5A/AWsp2WSbVgxlrx
aK1vA4g1q5Kt5rZglV96f1H9AMJ+yrJ8VVvhoC/iXc8dgMKBLZYyt1shXpCQ
zccgbkkb3TGgMTGus+Z9nu4gJsrun4iZy0Tn15T3rgaD6KjkPZpQYKK0NDNn
6uAgWit2Dj5fxsSD6k+5088Nwl84yOjJNiamMX99kvQbxMef/fI3TzMhmOQV
L2gchNMmo1tbUpnovuNa8ufPII5NWPW3ZzLBmCZUGsEaxLp8Md3AD0zkzhQp
U/o3CMf57f71hUw4zaZ9V5kchEaWxMpldUyMLlKpUl82hOGv3ySqxpno0zZq
2H51CF/tFDfeITktd9tlXqLDEHRNpAb301nw3Px40UKnIbgcEo6V12VBcV3N
GcHdIfT0JE1FGrGwR8WiPy9oCA3jXV9dj7EQLm4jvvP9EBRLQq3cbrJgWO+7
nT45hI9RGo6vSE6Tq0k6kTptGMtGHk4OpbHArKq8u0R0GC/XGbTqZLHgWCZb
KiQ9jIuvUrPqPrLwKu/5oYKlw7D5sl+supSF8dcJl3X0hjHbR7VKgU1yml15
lK7fMOKG3avkZNmoXqp5MTJgGGKSCde65rLBq4nYMB48DK+c+L8f5dnYv9X+
W2LEMFo+mluaLSI5S2j+P9mUYUxffv716ZVs6Dw5u5n1cxj1Mim1nTvYaM0U
+uEqP4IiOSuxrHNsiJ2/FNKwYAQqxQVDKy+ysUGh1mr9khF86pITfm7DxgPX
2MG2lSOod2f6Xr/Kxto9xvP3aY2guPrzixnObLg0vDijSHK871upjJd+bMzn
beZlvx5BctTEqeoUNuLqt9rbxY4gLde5QDGdja0ZWp0rkkZQ0V8/93QmG0dt
d9aHZY2gcTX/VUcOG2EteunOpSPYaKr4qrKA9Fd06NLOXvI+i+ees2uI/a79
/rZtFMP6+wTnh0j/FxxM3HaO4m7Wr79mI6R/PcfSzbtH8SraadGuMdL/pFN2
7L5RFD1lnaTxSf9X7z7xsRrFl1lpLx5OozDfLMBw//1RfEjcOzZDhoLC4ne5
tdWjOOjf+lByNQXPG/8d0q4bxVLp3mMP11Dor+jvedM0ioz05xLiGhSKb29c
ep09iiP2HNnJ9RQcmnK8ZIZHYToSOF65hUJlcNEhY/kxbN+nEim1m4KHZFNv
ieUY6k95b5E4SqHntLO3xukxpJq2XDEwp3A0d4Fy6LkxRNu05j04RkHj4gmz
c3ZjEI0xeMM/TuFPMfVxxt0xhM7YXVx5isJmj17vXW/HEJSU9HWBDYV/49NV
PnaNodzB18rChUKe845Ld/vGwDcc0HV0peAvcEzbOzyGJteGZY/dKGwQ6kLt
xBjE/W4zcu+QHC1afbxHehyvrbcd4XlSmDEvPERpyzhcZAcWLHhE7i+hdc2c
7eRep3rFY54/hVgFmmoSfRxBvXOFpB9TMFzkkbHVcBycB7/2TgRQCFh2odrE
chxFMy22FQST3LxRU8Lz3jgsdk8t7X9BoTfzsomh9zioS5alP8IpfN4cGyb9
aBzXmidfxpMcfVpLcUVEyDgm90f0WURRiNslpJsdPw6dyAGNxNcUNA9UuHZW
jeP229vRI3EU9l22Hti3kIv8bhtLvUwKLm85LYIlXGzVdTL7S5zMOFeRpMqF
Cvf+l4dZJOcbXoydpcFFjpX6yPdsCtXLr1hW7OLibY/O1DaS002ZN8uMznMR
uzi45Ec+WQ/y3Gy+DRfqOVlB5p8oZBo7v028yoXjYY9Oinhuvou7pDMXMYon
1g9/JvP17O6m735cuJvFW08vpHDM9OErw3QulnUqXmv+RsHXd9ZjXjYX75y3
WR8spvCx4JFLwkcu1N54Dn0jXrgu4IjENy4OdD3rjSuh0DLrqVR5AxctPqZO
J8oonCqOdDKY4EK1U3rQu4LCkwml81xhHk4G9xp0EhdqvjoUP5MHI7+TB/f8
oKD85o2GuDQPAnq20yRxm3scp1SZB6/ZLB2rKgoXtqWb6OvzwHkWXkD9JOv5
369Tsft4sK7akrjqF4U7EUP2M014CJeaunOFOFR405Ov5jxcH383PExcXPb+
F92Gh0T7HLmRGgq/bjeyo+x40JFudtpQS6F5DXdw8joPCtvNfl4hHg7UmpPv
QsarUGzZRqxyLN90mz8Pyyg1kaI6CmtntZwJe8LDMY79wnFirU+T18dCeECI
yNrV5J50UJkenBXFw8y5HrsDie90FdauT+ORvJT2338NFPzCqbaALB4+6+mZ
uBCHGc8Y6fvAg+T9AdM44pR0Pbl3hTzIlndbTRC3OJeaqdXy8HxadvyLRgpd
q/+e9WnkIX2jxfcvxKMt4o6df3jonvFhuI1YardRSAyHB14W65RaEzlPRmxi
RLp4cPPYF2tEvCzWL9u6l4eMspQxG2Jtycp65TEeEszD8uKJ9fN72+/yebi6
J2dDCfEhO9oYc4oHoTGR9xSxTc0B+SgxPrTyjvYo/Kbw/EXNkQWKfJzcxVt+
mzhm//B558V85BkmLgskTp+ae6tJmY/Je3WbY4jLzhwOC1XnI2deyosfxLVy
N+NGNfhQePu3r5WYWRKaY6bJh055hsUA8bh6U+OcHXysPTXTVYZB9n8Lt/Pa
Lj5mT5fTXEJMC1Dk/tTjY/qrzyJriRV1touvN+RjtLhkUIt4+bCFQoAxH0pn
evl7iDfEuKzqO8jHveKhpQeJdx6N2GZ8hA+36NCzx4kNJT4ZJFvwsXf+s5Kz
xGZ5LeazTvJx/UW2/hXi4rBQ+XJrPnYax3g6Em+9caDO6yIfaTJNH1yJE0zE
g/Su8PHIC3/vES9cW3hg+nU+tF3L5vgQ+0vcnl1wk/TXfVbrEbFQx8YKNxc+
pATTTgQQXyvq9tG+y0eJkL/7E+K2qOi9vPt8cF2HooKID7ucEMnx5ePMcqUv
/3fpUfmiG4/5aP3DZ/6/vdam6jsbg/lYl3V9eiBxkozPzoEwPjKH7Vb6Ey/u
3SV4F8GH2pymA77EAeW8D7av+Tj7McT1PvG02IybarF8zKt4nOJO7HDPdlNn
Ih+uRxM6bhG3W6kORafysTL++3J74qPaLalnsvhI0W68fIG4fH7olaW5fNiU
ZuSfINYe+W916yc+NLbtkj9E/O6nWFd4ER+zMk/f1ide8q4g9lgpH39DuF3b
////nt+oUv+TzM8a8X4lYsfd3cygej4kvtC9pIk7laIjTRh89DvZrBEirmic
p/ijjY/iLFrCH7JedmZVNfj+JfPD2+VRRpwa6P1Uv5cP6Z5G2yziYEOe9Ncx
PubIRbr4Es9ckVF5V8DHelH3N9eJb0239YOwAGbKakwL4uN5zaIfJQRIXawd
uYp42dqCybRFAvC46bq5ZD+ESDjn2SkLMH+T8fpwYrGODc5rVghgvsBCy5W4
O+rtSNw6Ad4zaNHaxBky3t1RuwW4lhUzlEr267JeeoKlvgCybU9/PyQOKeee
X7BfgD0KV9vOEjvfs6FCDguQ/nuutTyxzojx70cXBXAP373qKjkffjXKld5+
LICY/xxnLjmPlNZdiesMEmAi3v5gObGtV7G3WZgABbcnHJ4Ti26+aaDxSoC1
82VfbCXWDmosZ6cLMLVyp4tt7f/374sfBvUCmBY4K2SQ83Po7VBy9m8Bzmvt
ar5FTBcY+au0CuAS/X14BzEjQWA80SGA6OCdpcXkfJYWO1GdyhVAY/+bu5XV
FJwKl9TIL5qA94meP58ryf5RcMrwXDqB+PWcpbeJ59r/DBpQnYCpSX7RJuJ3
Sh6Hvq+dgNwdvSXxpB6wXag6N/oEThcv2vf/erJvS0wj58wE7lTldq4sJ+sn
Sb0lI2ECIkroGf1KzpM1C23dUyYg+tL7RiixV8osnmHmBMovrz64hbg3vUeO
nT8BX+/ZkjeKSB75kLJf+ucEXtf1+nUWUDhSsjHfdmwC9B/U8VRSP/3Z28NV
dSfhERFkV/KezL/1arUB/UmINt7PNCUe4SzMyds/ifUiq061knp9/O9EjemR
SYxdKB8aJvVcrf+zpMelSQQLDs9WIPW+eGL37ZaASbxM+vtUL5XCxPx9x0Kb
J7Gt9uKXjSQvSB/w9N/HnkTiZIZraiypj155hcId5PkjVM5q4j0jq9Vt+ydR
E85KUIkh+/enlIA+fQomWXW+km/JevKtiuhaOQWurUx0EcknhvyDrB0OU1i8
N+FuYwiF772rNa+JCNEHpt99knyP1KfVKrSJQCH6xelRc4styHiyF0dYqgnT
a1WUnH3UyfyHi7u/zhGmH68IiGvlsRG99t+qhbrT6IYOzHWBpWxoSP3ysmFM
o9uaJvtUP2ZDeW/ctqgL0+lz7zVHWpmz8efHvcg44Rn0zCiz0j3kPuAgdLii
PXQGHZmh95+xWLjhL28svkyE7jbi7BUdz8KOiy0ewnki9DLJ3Fc9tixciQqW
bDGYSa9Ye9fbRpMFl7u7LPtqZ9Jnp0cePTrBxMHUoVP1NqL0fU6MFfPIfSxA
62nuq3FR+md/C9lTD5kIkdEu1gkUoy9ZuvN45QEmRHR/qZYqidP3nZLd1qrI
hImylbFHojgdkp9E7/9oxdn9A6tkd0vQ77/tbtI90QpWzTXzB9US9LDC8qF1
4y1QjeVur74oSe8Ivffe+2EL9iy/2WEsNItuliLxs1W5BdVCbe1pfrPo20vF
xmlFzVBeefhZ1zIpOkvWoXKVZTP+JLyPEs2QokdqrXjBmfpD8jnNznznbPoi
IxzSjPmDmkOXB+7UzaY3pi8/WbPnD16o55b4nabR+xv5GZF9DPz56xA87SyN
viCpdPOiXgYWxmmcunWeRj8qnsx40c1A+LJo3hlbGv1Ab8bDZ3+JFwWs2e5I
o9/ku3mGUAxE0s4F/fWh0S0vqDeENDDwckjGak8ajb6rInUg9TMDzLQK9bwM
Gl21Xidj4ycGllz1Gl+fTaPv+BETkp1H2ncLAhd9pNFl/RiFeR8YeMXp+Dr8
lUY3OPwhtTyDgdcN+WpvGmn0QweNmN2xDLCf3hqbz6DRFxr05NvHMKB8aONX
/2YaXaRNO3/0LWlfHWfpzKbR39Ywlgi/ZuBNWVCASTeNzhZpvC0fzkCbl7Fl
SS+NXvI45lzEcwaW7RFX2zFAo1/bJX1d5RkDbwvdilaO0uhyPxL7NUJI+zvb
AiLHafQzE42nsoNJewwfn8un0ZdNCxvWDmLAeuLdKt8JMj7P9riiQPL8x4uj
U1NkfKsL3QwDGPgfx5O3vA==
           "]]}, "Charting`Private`Tag$11812#1"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.6317786, 0.7821216000000001, 0.941844]], 
          Line[CompressedData["
1:eJwV13lYTF0cB/CKSlRTihYibVRUSEL6jlSSsrRQZKtEC6KNUkhkCVGvElGR
NkKltPAiS4mmfdGU2e6079vMtL33/Wuez/Occ+495977+31nmetpu2MiQkJC
KcJCQv//npZ11hISYiCCW2I7NTODC/M+76mYw8ANVhPDzW0GN0W1Qx/IMjAv
YM+qxT+n8YLPq12pzoDXwpL0tclTaGPGX3a2ZKBYVslm3G8CPS1CrzR2MbDq
Gp3G6BdAUH+iqX8fA6UDuteiTgmw8Kex/jVPBt7MXx3Z7cfHzpwmek4UA5IZ
Mo6aieNweUmdE/YPA0l3hmuDV43D60X62u1PGDBs4T1e8mkM1xLO3fz7mgFv
jSsdKj2j+BiuaCxZy4D5Jg/JtIMj0LN3ijmmxIRcz2HRNYmDMLH99NFAjYn1
Qk3VEraDsN62omtCh4lbR2xWRkwPwGMTj3rfhAn54yKLTD0G8EQ9vu/jYSbi
r139+/luH16qCCnfPMEEwyQ7sEK8D0UKJywczzCRr/jjZEJ4LxrmGT/uDmeC
e+Ca965LPZAeadyu+IKJrkMbFOMTurC4DwHsbCYaeU/e2yzvgk5HWlJ2ARPu
fKN0l/xOWNKDxs3LmZi0/bfzUEsHwr4qpJ7pYeLD7h2p2WhHb+w+oYo1LNwM
merYfYKDMnb/NXsTFgZCl7wul+YgZc11KboFC4HvQ6y3FbCxt+q9cq8TC+fM
i85qSbPxaZ7yOspFFhbZZ4/uq2EiYX9Ocdx1FgRBnuLNkUwEZFibqd5nIVKW
X00BEzrbQnatTmVBcstW5ZAcBmLD6Z72FSy8M7CRyHf6i1PV/gMtdSy8LnzW
s661DdtVpYLc21hwGtXWSnRvw/SHzREBgyzot4kZc0NacYL/5EmcAht+x4Z/
1v1sgZnVek3VZWzsl+KNTLu3QCWOlpWuw8aVV+szkoVbUGMoVFi4mY2xwMZP
S8z+wMT3aG2LGxuSVhXp6W1NWPgv39n9JBv3FPv1LG81YVDqPqMnkI3+3sjB
6Q1NeJH1pXfqBhtn0xtE4xMbIdOuPkf1DRvVcgWuthca0LWu5E56IRs+lPPa
6cYN+BbhsGB1KRtNDdU7aWP1CFa7qmbWwEZn7Bbhw+fqwT7INXGfZKNMIVQu
9m4dPr4MK+0R5eC9y7PrR5zrED+x0DqAwsEVB9Vz+Rp1sHm4bd81NQ7+Pfbn
FOPfWmh1/G2VXslB3BQjM/VuLYTXn3OPW8fB9lsq5Q1HapFfl34m3YqDS5eJ
rCPitYhW38IzsOOgSCikLIteA++zzWGFBziweFQVsC23Bqoyc6N+nuJgNyX0
xV73Gtzc4f2iJ5YDqud8B636aiyKNjtbm8jBr0z5N9751XhZp2Ra9IKD4eiZ
oJfx1ag8WFYf+Z6DOqrJVukj1Tic8jT51GcObt1cE6hlUY0BbuBJx58clMvd
8FuhW435vpqi6nQOGvXrxZv5VXiWN1klQXDgPMLwvsiqgiG/9vFALwcHWgvX
zlRUYW94uOHHGQ7uV1y2D0muQkLsXzdndQLhnhrHJx2roNucr09dSWBKvmdi
lkUVSlTuTGitI7DwjVfwD8MqtL0wiRmxJDD6kp3lv7AKp7vlDrfsIvA53PXT
vjlVEDLo1vniRGDT50UitaM0qBU+/HLXi0DSosw6xa805E753gn0I9B6+wRN
7xUN5mZW+w9eIMDYctH/RhwN9deWaplfJXB07lm62hUaPCrGBnXuENDpHNkw
epqGcUrlB9k4AhFhp5oFB2m47pB6g/eUwEulUFU9WxoyW+2XfX9L4LyRUoG4
Pg2b1HR7XxaR13/3c8ezZTT88hApjCklwH/jL7tvAQ0Hs5ojgn8ROKvXz1GZ
S0Nf/5vdR+sJVLAfFQ7NVOKi4fXFVm0ErHgT8VVjlZA5f7hDr53A8qFtKTl9
lUj+YJS3YICA/leJubHtlVgjIn1pkkfApfu9ki+zEqWWxA62MBf9/zjpm9Er
4XCrROHnXC7iShU+iDZVgqDFsN/IcXF677BVfl0lAuW9X8ct5iJyzn6fXTWV
EHc2CwnT5ELauKb2V1Ul4hOVth3T42LDtWRTHdLarIH5Nuu5GDEODHMjXaRV
1raGyoXb3vlB/tWV2OH9NFNpOxd2Z3kqzrWVoL8ODBSy48J3mXKwVEMlTo7Y
mrXv50JL8vqz282VmDbWlK504+JojHppfWsl7oZONuf5kPcvYjefxaqE6pfa
1EcBXJy0fPsnu6MSb8WyzoSHcfFUsTLAuL8SZjvCN3tGchHyvMUmhDyv2rvO
ErujuSi559PkN10J9zqDeqOHXBicXZW0RJyGUcU5ySopXDjdTNp4ToaGawf/
+szO4mJv3x+bUGUaFFLyjbtzuZhuN7upo0lDOvf27JoSLpY/35V3wYCG8tMm
j59WcqFrTFGatZ0GxaXP8pwbuTh8Me9MryP5/lRK/JZjcKE3XOrh5UbD7FWN
U5GD5HrewYMyl2igdp057Cvfjk0r2I+//kvD3YdNQToq7fiazIwbr6KhzQrR
HM12XNDc1Z3GoiEkTfKz0/p2HPVf5lY8qwr57mlqW/a3Y7GxpqOFbhVE5aU3
Tbi2Q8PT5WPOuio4lPrbv/NuR+Sxx2GO1CoMLTOL0A5tRxJLKtdobxVW/aUT
sknt2P3aLsM6ogrPnednsIh22FulH6F3VGF4zvnPj/vaUTGp5qc1VgWz93+b
9463I/adT+CDWdX4u/DV3Io5HQieoAg4S6qhXLfNJ1e3A/8GF7po7qvGvZ2h
+hFnOiBe/Mrqxu9qhG3teKc51YFYtkyZ+u8aPNx2UTtRrBOiDfsU1vytQd6O
hYnyMp24ZOy8ymGwBt325hGz1Duh152iUb2gFk7uSXZMq06cTe5VSTxci7VX
nfofx3YiiC5SPTlai47vZSvkV3bBYnJrr4NOPeysMx6JHOiGy+wEo8ePGlH2
cXm1b3QvynzKP57ua4GHlB4xK6EXduFeX6dmWjDbxZD/4FkvvqiFCF+SpWML
n7rsQ34vXB1be44Y0lG0dv8ZidZepA2904k5T8er9CjZFO0+vHLYE/FauBX3
7w/uqf3SBwPZjLGbc9rg4lFcs260HynMRVFl/X/xfumetY+n+xG3z1Cna+ov
bvoMbxeePYBb6vdfzYgywNW8kXlcagA9GdGmIvIMPInP8zZUHQDxMnm6RJ8B
Sti8vt8WA0h4flJ+rgcDA1aFQ0L3yPHnM5SlK8nxmrPV8/4ZwPPINd376xiw
EdllfzxhAAcSWMXJfxhIL+bk/n42gIO3rY+rtDNwVE8mICF/AKGaIrq/Zxio
kTs+vpY+gPA3K1NlDJjIbZOf9Fg+iIiHzYUbo5gwMZrZWa47CMPH09In7zHx
/XZnsq7BILSPu55PeMBEk8nHbQPGg1gVLR/PTWJiOuF4zHnrQfwZlbAwf8eE
1b4inaiTg/ANoKYqtDLRRjvs/DZ3EKHfyoxWa7NwYrn1S7n3g/AombOnYhUL
g2GGMwElg8gUOtpwhMw5s/UkUjd+G0Qu5dqqsE0saEflDJQ2DGKBkrRLuC0L
/lai1xv4g0gu8DLI9WVB4nNm/gSG0Oosd+tnLgs8s1UFJeZDOHzlUZneexY6
vr4uCN0+hI65LVJ3SlgoK8t7P2M3BMlOiY+bv7Fwrepj0SyPIby+xlR2bWBB
hFHzcV7UENJHHYc/j7MwOS34vqhpCC636V7jRmz0XAr9QaeT8z9Zp5RuZKNF
RKgskTmEHVllDrdM2SgSEy1f2j2E3V2aG6Qs2TgvTalQnx7Cragrri0OZK5R
UafpagxDfFuCzfMzZG4x2dG4yXcYlIKddKF0cv6Gk4Is/2Gktn3pmZfFRoTR
XZXF54eRW3DypFw2G8oGtW6Tl4ex+7LLT4U8NizVDwyUxAxDeOkcjP3LxmMJ
bwnTgmE4mIWflWxkw7rh5ibq9DC4pYw3b0Q4WFD78tAbkRHc1TWY2knmGAat
8rKq+Ai6uz5Kd4lzEFg+v0xIZgSzF7TcWijFQXJJgsPnZSO4/yNs3XYFDngp
mSfNLEawbJN4qIIuBy9O/3xqHjWC0J95Wzx3c1C1zNDzSfQIkoc0mh6SOUZQ
m7iGFzuCOSXiST8cOLA1PvMtK3EEidsW/FZ25mBESLF7/usROK2L/vP0KAdm
948ZMatHcPWt9Rutsxz8zRP6HaowirmZdseM7nEw57jXg8ZFo8hZquMmG8PB
GqW6w6tVR+EkbtTYSeaga6FpQ5wVo8jWUNeJiedAz3Knos3GUWiduZn34ykH
FxofuSkfHMXYiSTVolccKAqMBPkpoxi03mxY84OD9AbjM6fTRpEnvvzW5XIO
jHM3dix/OYpF9RH6ehUcOPmYNsS/G8VR6jqvi5UcxLdZ5ASXjUJmkW6XcD25
XqmDl2nfKD4pbNW4wSQddfbPtw1jcFNIS3zDI9c/4b8nzHQMbbcDNKUF5PoW
gWVGW8cgndW91XOCXH/6fH6azRguXgq2VZwm1/e9fP/G4TH0aPrSnGcRUHSM
tra9OgadpL3ePlIElJZkF9VVjeGy/eqotqVkbgnY5WBSP4bURUVRDFUCA78G
ep81j0F/QvMVYxmB7yFrl/mxxsC5PWPfQuYy/+b3kbIjY9As/3usaDmBythS
h50K4zjddnpcVZ/Ahh73vneLxmF9aPytqAGB51vFrquojiPokGFqB+mQIavi
nhXjaMlq2pSxhsCK3ZXLbm0cR/q3CvsFRmTum9fc9+PgOKIcQ4MTTAj0ugZf
13cdx5oRCT+3zQScihapxXmMY4N5Z7GOKZlzPA85epwex431h8zzQID+nV08
+/I4TmXIO+WaETAK77u+5fk4eLV3vrtaEejmzVIv7hpHhk+aW7QdgZLgzV6X
+8dh45PycI09gTuTgW+3jYzD11VoTi3pNUJdqJsah3rhpVhpRwLnxKtcemV4
WOwXnuC7j8DshY8fLF3Pw+4622/MAwQa4upbiU08FHvlm59wIZCmRNF8SeXB
/OX2hb2krVXCc42teaj9ZJA/eJBAtMaJqj0HeSj5EyTffpjA4rWGcyOu8HBK
RCPlihuBvryTe6yv8/Du3tBkP+l/jdLiZW6T84d2fdnvTsB1o/LyxAc8FNgl
39c9RiB9i5B5fgYPL7eVnC3yIBBcuuHWhWweOj1W7FA+TmCHhV+NWS4P00X1
D8+R7rPiHqGV8HAgKe+pwQkChrt/hXbQeHiw7VLAHU8CYjWi37LreMjnTyxn
kW60h2RAMw8MOSUXQzJHB+/LSRBm8zCZRdtZR/rTofgC5TEeuqXmXxXxIXCf
UT3NEPCw2fuqtzVpN9d5lmkzPOxxyWyLJi3mEVa3VoIPlJ73VTpJwOak+6DN
Yj4KfIVOKJ0icOE50TapykeMnsYXB9KvWjx+vdTkw+HS9093SEtbe6ZJ6vPx
58r1N9Okq7ROHfy1hY/0XVUXKk8TEDrUb33Bko/prI8qM6RX/+NrvHIHH/Ex
80/q+ZL3N8tPLsqBj56p8kU3SNszgsp3HOej0M+hRe8M+X0o8PMnvPmIIOxl
HUnn7Qx+nuXLh+HWAzPnSct/uHBxXjAf8yZM53wibT4y5VMcxoekc5Amk3SA
7sX93lf48H15ekboLPl+PLy8riKKjwMsmz4T0mLVIuoh9/h4F3VV1Jn0+jkR
MroP+GB+0GzzIx0feK375lM+4uZvaEolXfZKvHnjcz42t41PlJDmc65/70rn
Iy38HVFDer/9rWTrHD5oCYWUCdI3b0reFeTz0ZWz1U6K/J9T/Pn2hcxiPkz6
7A8vId3Dk/ba/4mP/OcSxnqkFxtE75v7jQ+1NVdaTUjbHJe1KConz2+sdbc1
6dAn99d4VfJh72wUs5d0dr2cqnItH0nf0lKPkm6T/EfqZyMf0a9tbniTljZf
OHGezodwjCn8SSMkrkObyUfuyD9lIaR9cxQbmglyP25eWuGkkzoflt7o4qMy
qMY5knSV6qK3G/r5kGpku90iLeT0+EnnMB8Dq3Mt7pA2uKsS9ZDHxwNLB6Fo
0ke/Pzm/fYoPMWZz7P++P7X0OF9YAEW64+z//cUw2SFDTIAtas27/p8/5K1m
5jxPAPdsv3P/r6/27Jm+hIwAL6IML/5/fbs/GiqF8gKYtGgf+//+rsi+mOup
JMCGiiO6F0jnWS3nKS4RwCuZqPl/f5yL6USZmgDKBaUuPqTlC7Rrzy0XgBss
+tOVtEVf5qcVKwW4fCZvkRPpQM2V2U0GAsQaNdvZkH7h8urR9XUChISG+IJ0
Q4zeDeONAijNTwlYTVq84nVgh6kAcc12bmqkT2zI2WNlJYCzksekEGn/7pqj
aTYCTK7+p6+ffP6XEofPiO0R4InPysFW0nHC6+5/dRbg7MoGnQLSKbmOKeqH
BOg4d90thXT2scCccFcBxINYr6NIfy8vqKF6C9BQ8e3aIdI1IU2sp6cF+PKk
c74l6dZV/KFpPwF6F3e9W0l65N5GuQ8XBDjByN46Tr7/6vs/2G+4IyD7tFvs
ZdJ6km1u8fcFeOR2u/co6Y0fp/3GHwgQ8ajNbQtpOzVq7LunAoyeksmaIr/H
S11f6la/FSD4hmmhN+mox2xO9DsBPvUYylqQjt85e7S/UID8PP8oFdKvcywW
ZH8RICmmvr+C/N7bgsscdeoEMB5UubiEdNfKzmM3mgSoNz4mNkjWi7E2icAO
ugD+BgP5X0hLbd3x4AVBPq+vXx64kTaZV9mgNi5A5ljtsUdkfUp4VLtvkfIE
dnSHsdne5POyHTkevGQC6T3yezNI58zIn2tWm4CRlu/USdLlbnvj43QnoL3Z
rHeErI883eYmuc0TEO8tc+eT9dSxpM1Z8sgEHES1bFvJevw9Pk7hp/sEckNe
OUaTNg7YXR/pOYHsEMoFM9KL9b7snuU3AYmM75rPyfrOeZq6TXB1AtY/omcf
JOu//xWfdR1ZExhUfpqR6kog1log83V8AmNDk5viyf4jtjy38vLkBATrTB8Y
kD43yycKwpPYMyq/oozsXy4lreLFcyfBvH5rdGQ/AQ29z9NvVSZhOZFrY+FM
IFf2es/TrZMInX3x/meyH9Y0LSgLuTsJ2pHzd1btJLDU4FR6R8wknDMTf+Tb
EvCJ/H7dMX4SP+r0PUBa3Chou37yJDKu1tbvtCHPN6bpJytnEqaSQXc8rP8/
z0e/tzdM4nt3Vtt5SwLnv6jWKqhMQXAi8/Vast+rvtRty82cAq2p3klmJYG6
VYt9Lr6egsFUhK6XLoHI15IC67wpxD47eqpUh+xvOb0LWB+mkB/Ya+mvTfb7
wte2MtVTMBkxtqdpEdj3Y+0Hn/EpZM6x3utN5p07rE2PNc2n4Z8t8cd0IYEp
RZv9ca3T+Mtc1+tL5quKvpWGZ0WFqH8oiaINPzm4tFKdMnVPiCq2V+zyrAcc
TOUvSTyoI0wtrAg/wHDigPVY4mLKe2HqrnqJqoUqHKTqdWsvNhehzr3Bu5zK
YENfqibSu0WEyt0T6ZiVyIbatvQNT0/Mov5s3BK09xAb9N9XnqQLz6aqKdB8
TJXY8Bfa+4sbN5v65lPd6T31LATcUdgpoSFKzfa8WqjxgIXNnm3hwiWiVCmv
vcMUOxZOPY2d17ZdjLruU7T5AjkWLlzecrC/Toz6rkn9okgDE3Zvho82eItT
g652C+JjmYje+E9RMk+cukyjNtffiYkHsibfze7NoS7P3V1uo8iEqHmNZtlS
CeoF65lH3q0M7FE7vDM8S4JKD8rTffucgWO2g9rzt86lJjxJmW97ggFm7Vnn
a1VzqUE7H/qJrWZAM42/qcpzHrV4+e81z3r+wlIrqH2nkCR14dffn8tC/qJK
iMN9GyVJfTTdqZkp/xdqK/Y+7NKQoqov379AP60N9MyCp+K5UtSzGTl96lvb
yDxKOe1sKk0dcX+XKMtuRa3DycFL9dLU9VICC8nQVjzSLfoR5Uqh2v1pnGAv
bQW90z9W5BiFqjtbw9dqSSsWp+sfPXecQtWumpr7anErHmukCtx8KNRDlrZ5
gUqkVaJXbQqkUIN2CNXPk2vFE4pHTOcNCtX2fPOOzWKtSBqWPWz5lkIdzd/B
K+mhg/H2l25JLoVqFta/XqubDlXfSN7qfAp1nltB4t1OOpJ6Ju+pFFOoV3Ve
tLhy6Ugm2r+OfKVQnyxMUZ3HoCOl8YPOsyYKVSVL45drLR2sf86NK7ZQqEkh
53wqq+lQc1j79U4rhUqUFK3ZWEWOr0o/GMyiUMXkpgzm/6bjWXlM9J4eCrXm
nPJI6Xc6OJE7D/7oo1APm14pNfhGh4alhM7mQXI/nv++Tyyl4/mXsNIVYxRq
2pHn8uc+keMvbYh+wqNQs9wsQ4iP5HiMuMhPUKjyG7PF7T/Q4T6VrX1zikKV
DGsq/FRMzi/2HJuZoVAtyj/f0yui4z9tflPc
           "]]}, 
         "Charting`Private`Tag$11812#2"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.720374, 0.855234, 0.928635]], 
          Line[CompressedData["
1:eJwl13k81M8fB3BXJNWqFKJvIhWKEkXJ60OJVEo6qFQkXUQHpUOliJLcIaVU
SLpcSVIo0alIZVnW7n7Wzbp21/mbHj//7OP52NmZ94z5zGs+s1y9Nu2TkpCQ
iJGUkPj3ybWVPb1ndwMk/v9HTftkYhB0sAHucesTS91GYZf5pzYztAGeyx9M
P3NoGDszqLH+MQ3gbwiwWNQ9hEMpaYvX3GnA5qTVCzacHUJQwqmr9c8aINoj
4X395iAKA1RMxlc2gLNty52sJjH0HRyj9qmyYbbgK5XU2g+z9e8KF2qy4Tvo
WY/ofthaz2sZ1GWjaLpiRKx5P9yXi6hIMzYePs24ZBnXhztacR2Fu9nYaZ19
LmVXLzJmSEy/eoANc6tvI3JKvchXPmC15SgbWk37DtV96kG1gkliawAbkd83
epWa9WBi7+81KilsLDvi7/V5YTfUO+DDecrGJvEZqzECAXSbUu8+fcnGFvv9
CmczBVhde1K4qpyN5DRuoZypAP7vlR8ebWNDHHE6pduhC+3R2yQ+GzaiULte
Lv1UO8o4nUEOZo14O6C/Om9KO5INgyfUWjWCNSdDyH/ehq0VedPbHRsxybz4
zHlBK94pTDdmnG/EpaI08/1XW5CwPfP1zeBGjE/5emybcQt8HtlaakQ2Irok
pHZaYzN0rc9sWPSwES1HpD1YVDOiA2oPOnxuxNfY0v3xk5tw5MeJLmYVGb9z
Ss64z3ys0Zhw0o3ViJrIQj/ZQD5G3qy47CNoRFm7wVn/YRoHxHfu3FTmIOZM
GuPeKA+WNku1NWZxsGzPquCYEh5m3Pz+OE2Xg4uLtrytCebhp5HEq1crOIit
4uxeocyDmbdLJXMvB8quohfZllxMeyt2cvPkQO15zd7zilwIJkQ2tPlycF8U
Pu9QPQcpj4vbh0M40Pvp0hxygQNFvtZYjeccnEp967frO5mXcUFY2isOzt3O
+i+GzPPD5c1TF5VwIP/hxoPis404rRmoaVnNwbUJBWmdCxrBcabN3IY4uFXD
m6Z0i43CDP+StjFcnMmOib10io24wWm2Pgwu+IXPxKVb2VgXb70tSJMLzlGf
K6+mspFblXY0zYaLMR/66xsTGxCuZSFauImLj1F+skEXGnD42F//Vzu4OC24
inq3Bmgojgv9dISLXr8XTikGDbi69nBKWzQXPmt/FG5LqIdauOWxyttc2Ln5
2a/1qkdGlap5fgoXAykHrDda1eObc9mvK3lcLNQ+ePhMLwuTvbXHaNVy8ezx
/qTqXSzczx6qkOdxoZmrlV+1nAUjcWViVzsXg5axR9+psrA1IMCocJQLff0V
thv/1CEhun6vkxYPyRb5Dxt310Hvb64BNZ8HLXGFJmtlHQpmhA3OMeYh/Yi6
Ydq8OrBSzKJ6V/Ow89DP4vjeWni1TtnN3MDDt9Fda/KZtZBY2Kpb7MhDlcyX
w7dKaqH5Kr74xiEeXl70NY6MqUXWsHeY73Eevm4qd7p3vharLG22O5/lIW3j
rSluh2rh/rlfoBvGw9K5d2uFFrVIr3OYVfqCh78OvSUyYiaWa+q1Z+TzUPRZ
d9HOJia+uEu9iiL7rCtyW+aGP0x0dD7f6PKL7Du9VHWJfCbOGwWr27B4UKAG
8l4+ZkLRb3eTPp/UY7H0u8QdJgylJl4YEvHw6vqVtSsuM1GymreWI0nDK6Dg
jd4pJjZfK1D+NI7GvV35Rfc8mPBVOvzspjqNTXfsxqltY0LOyfKMvzaNpssv
nqiuZyLutqr1Pn0aAxWqd2NXMpE/p4xlSNEIWXY+QcqQibWHk9JV19DwcNS1
a9dhovaZr6/EJhr9p9ip6zWZ8Oxdb8nfTmNuyrzoWWpMjJhoT/y2l0bh6Nqx
+5WYuHFu6G+2B43XzUul1CcyoVFc+fCWDw036U3B5mOZsFwbsOLgFRoFlzTO
vh+uQeUNJ/mN4TTcIx7NnC2ugVvVwl9L4mn4mBXlN/fWoE9l7L0ZyTTUuYNn
pghqEORc7yHzmIa+a2h8UnsNlJNzTVqzyHjSmvahLTVIo6/L/Cyg4aD7kf+b
XwMTvX0VeR9oREW8e3SBV4NyL7PEpG80dIw8Wy5zaqAy8362028aJtGLdraw
a+D+Tf7rlAYab+WuJT9oqEHOOW/e1yYaX/rLzDLrayCz4PfwFQGNpRe3P59E
7FC7YprlAA1bRnZwEasGydce6A9J8bHcxXjbO2LBMgXrXAU+tFQUs8aT9lTL
0d3eSnxU5umbPiS+Ef/npO4MPoy01EODyXgsG4RztfnQPN/qkEPqmS96mHZH
n4+kOA1zXVLvmdTxRY5L+XDLiBvmcWvwaevxv5Mp8vu7x235NJmPbI3giw0f
zinD7PnNNdifQ427Ys/HuDXxQTmtNch1S9W02M4Hl/lo9HxHDcYoTVw+6MqH
2iZ/1WtkfTeXnHDIOczHeV+zh7/I+nfPsrysc46PiSofjsweqoHFj7REDjln
m8K2uc+RYCL8AiPndhgfjSlmK/fKMLGgvpY36S4fowunbgqZwMTZsJUjn9P4
mDHW18V7MhOfVqRPC3rBR59kg2KYMhMHEk9aDxTzsVRO3vQg2V8PnCY/auTx
QV13FgQsY6JnrF9RYgcfJ0RT50hbkP2TV/93q5AP2+dbjTKtmaif9mTc57FN
eOVnYxm/hYnpVdYeWXpN6EjenXHsOBMRducMLh9twtUSeYWEXCYahjnW5qeb
cGm+YX7yWyb0n9juEQU0QW57vNPXMvK8KqhEeEQ3YZFwbkIgk4mx5Zndm182
Iddo/hQvqVr4r2zK0R5uQkGb50jMllrEW5/XuS3bDGbqFtcdLrXIXjvttpJi
M7qyeyrMPGvR6rDqsrRWMywSgmTsA2vh6HZ3E9umGS+74nmPc2uxONCxMzG6
GU2Ky4puz6hDU2nZPKX5LXCcd2lGsKgOm2wf3ZLa0YpYu9JicXk9ygrn/vAO
b0esxvbJUtFsuE/Q50kntGOSSopPXwIbMjuNxLH323HE/MEX7j02LMTUrDe5
7ehZPmnhy2ds5C/eflS+rh2hz6f80PnMxpO00EnJOh0oc1JeA8lGREYK7CuL
O7A8aJPW4MFG7HR//dO4rxNPDCvu5M7nIG+m/eLEkU78DDmT7mzIwVWPnjWS
Ml0QqjS9GV3KAa0dkr5/QheU1lmJjVZycCcu+7CRRhcMAgsy9zpxwPBX6Phq
1YWQ+2ntPy5z0GXzqlsiogsX6ufe6P5N2mvLaGXHdGHnhpdHBmo5WCe1wWF/
Qhck751wHmZzkPaam/X1Phkvt8Sjt5UDF31Fn4TcLgxkjxxLHeXg55T9wsW1
Xcizn0xpzuEii6U05D5XgKfct9k+XlyYLRm1K9cTwKZGblXscS5Krzff01so
wO1RhazMk1z8MSu07jIRwE1RuKT+PBcjCfuj/GwFiK+WlZUL58JmW75uqKcA
9dLea6OeccH6vtvpRZYAfqZLzz1u5eLAXNuMKXkCaGgeDVrbSe4H/kajPgUC
TJUMfczv5kJGX/7hsg8CRJ54YK80wIVOaGZXSbUAzuWR1hjLwwmbMcHVYgGW
fDTNrCO5J1+UnjuIbljeZ8asJbklslzwsmBVN4rMXhi+3MFD0/tnL8+t6Ub7
6tfX/9vNQ1lZdt7opm4sHvMrpGEfD0EVhfnS7t1kXy9sWURyTarhZ6FCaDci
VF9/G3+dh6GRgVK1P91YyfN0fvmGh7YL5z7W1naTe63x5rvveGBKSZTdZndj
X3zwvkCSY/myY8pntnZDt2AfZ2U5D34TGZ+1RrrRtncoMbKKh/4ZWt/1ZvdA
rfxImF8LD51ma38v9+7BjpGAwItTaOSbeg48PtGDcR6n+OVTaVxecmOGul8P
OqbXLGao0Ji+sHLv0MUeZCmNjwknObZaa0dXQVQPDKy0Xx0hOZYof1je/GUP
wt54BCYsIedu9dXl1EgPJjdFtL7dSmNqZcau51K96HepGnzkSKPh+7eLGnK9
MH1oZB5Bcsu3fHKZhGIvkoLHuG7bRXKzIGFz0axe5H575lq8j4YoOd3T0qoX
xu1NulNP0Ejx+pS0KrQXW+42ZxWE0aiYZXTwTngvTGqSVqwhuTVQedtQFN2L
4Lf7tlZG0FhvcvTD49u92FFZYdYQTaNXQqV18rNepK96NbkugYZl5L4l7B+9
MLSnr7ml0KjPlvh6TrkP9uari1++pjF2/6HY32p9WOEX+VNMcsxQtWr3Io0+
CLS2PjEtpBF0LrWbO68Pl8v3lWe+Izm42k5l3bI+BE3a8vUqybmzv2/tne7c
B9cFi8MqSc6pDCwZyE3ug3H/Wdmqehpp1SZHvVL78HJz5eYmknMmWcua5mb0
4dArQ9sBNg1HD/PquJw+0A5ehspcGnEsq8zTZX1oa1y+2JjkoErJ5kPmHX3I
r2wtke4i/SVtZfd392Gdqv6ZHmKTs46Oz4R9uBa4caCB5KSj8c7VGpL9OHHX
2DGnh/SXuldTSqkfJ6t0Pq0Ukv5Cj9V8MO1HBU8SYnJfTztwwt6fvBctd1dx
KR0h/Vn5li1Z2Q//586HIkZJfyN+uanryPeHpyybJclHnPfFyJDd/VCFgfQ8
GT5UtoTbrg/sR1z0vvpKeT7SFkUWjbnaD65u55YL4/gwmRhtUhjWDwV33x+6
JJcdP96cYxDXj4UyhSy/8aQ/0ySpSY/7kaGafFmCwYfqf0/zqyr6kaVyKfTF
FD4u+2zYbParH3PnBhUakxzv+tLVfv9vPx6vfLEhj7j0zOJZxxv7cSRdNSZv
Ksmtv3lXJvX2Q5S4oPKhMh/foks22ykL8cC7YKORGh+mbW4dOWpCXO6YrpZE
/GClbPAMDSFut4ZtH6vOx5lum9dt84SYOX+ieTXxvI3fZl1bJsTTWzcKdv/H
R4DC346PzkJYrjn2RncWH+2up4MNXIXIjjY+eY7YMV9N86a7EF/Ve/K/ERsc
3LXF3UsIhfJjPA9NPmpLOa9lLgqxyo5uvqnFh/V/gVs8AoXoNOVOqyfO9JnT
WRkihI9Px+/Zs/kImX1Q836kEMUm/6llEC8J6Ai2eCDEnkHvskfk3nLv7w3N
R2lCpK7flccjHr9oUYHiEyHGe+mt1pjDB6f+eGd9jhDsMDMqgjh8hXiL/0ch
pPhN313n8jEUndDJ+yxEiuLViiji/W3LQ9ZXCPFT/96pEmLzW/4F6n+FMD/Y
UvLfPD5aRdJar1uECHZ7v/8DccHpFYcudgqRdN2ho4M4bMj3hXWvEDLWOq3T
dPgwlGhB1bAQFB243pVYJkDrSoKUCM57RDmBxL+knb/tkRNBOyY4IZX4lFzF
znZFEaIufq6jiW1D5B9kTRVha/FuyOiSe5PCyla/6SJwf1RpahC3hZ41pGaK
UOAYF7KMuHBirp/sbBGuF0/zcSAOD+9892WeCMZ4TR8idpmsMzZqgQhxJZ31
F4hlpiXGzlwqwrzY9CNpxNU3f9Xxlovw6dmIbD5xqipDO4MSofeg//xPxKdu
2XgcsxLh1d3rDX+IbWcEZJnYilAyEDabJlZPej0wYifC0haOWEDcrtFn8cFB
hKwnbS5D/+pL1g+55iiCpv3YXWP0SH2zD1TYO5Pvn0Z3jid2TbmnrOIqwluv
DuUpxIvnMXex3Mn8Jhz9o0wsk66U8uCwCBMrfQ3ViKv17NoPeYugVOs4dwZx
2pMrRot8ROhW9sr7Zz+DojNCPxEur1HkqxPbvhgofuMvwo6xkdnTidUXG427
fEmES0U2mv/678j2tLcNFiEw78qiycRvl6TGKV4XwWjsPY7Cv3rzGuqrI0R4
d59nKvOv3mXT596OFcFr20PjQTI/owKHI3tvifC4XP9PF/EY8+s5OndJ/We+
a/L+re/b0qHOByKwP1VO+7d+aRYSq3IfiaAmCMopJz5dYnrt7FMRZGQXS/xb
/7VWx39aZpH2oxqif/8f9Y8ZqvJ5ImzOjrsTS9xhQ+/5XiDC3r8NvQHE7z7N
TIspEsFJFkOexBHrnDp3lIqQmC3M2favvo1fzjV9FyGn5bLVXGLZn2M+PK0S
Qe5P7YwJxL8dMN7nrwgnpsQ+EZD9d3pbZoIkR4RHs+aKconX/W1lf+SLEBbm
l3OTeMYObZ2wNhG8z2sanCR+tyvu5fR+Ebbruuw0JI5s+DHSMCDCku8HJk8k
3uuqsDp1VITQ7+khTeR5kXX3r1osL8Zzfs67eOJ1nm6CdepivOiNPtZOnr+z
D3isIQ0xulW+678jfsJ0/5KhLUagnFxRBPFE24Op4w3EEKfyDi8irphzxPmL
hRgZL5wHXMnzLrGr0/bsajHY2aGB84kXxXibzF8rRrPdtc5ecl5ESh+fErpZ
DOcpdm4BxA4NJ8vX7hejokyp8wY5by4ri3MHD4tRP7k7bCNxtt3pB4+9ST0G
RtMUiZXenD2vcFoMD+bM+mvk/KqOv2j8OVSMpV5dJ33Jebfd4do920wxzqx3
fKKiwcfVq+NvDOSKodm6niqbycfroutn01+LYWuq9dmXWH1h+LZxH8To8fP4
UkHOW9b4mAmffoux6pdV/Cny3uZSesdvzbAY3L/JS+Om83HANNPexmYAP+IM
lv5H8uBE60+X1HUDiIruXpRL8uPC7Z6jsvYDSP7s5LKe+KakceR7pwF47hne
4zeZ5Ef5y5/U4QFIzqkUflQk743b3ziYhg1gt0WiFjWBjH+6bItu1QCq6gM3
3xvDR8v85n0hfwYwtMLLYhZxP0vet6l2ACM75vrdJXk4YeXa2BTeAL5X3v+c
KM2HmcK3ak3hADKiGIzrJD8TblVuU5s+COMY6bvrSP5uKWA5jd8zSNYrxn5d
L43SuJvKn9wGMedR9px0kt8mPht/XTk4iHSelbkcsbp+8Ubp44OorCpZ+pbk
PTfpofVA4CBuKeofnNNJ48QlD+Omx4Nwr4s6/LOZRrTtgOJ74SBqK3YMPmTR
+PlnatmZG0OIX1yf7FJKY+bCI2lNUUPISy83u0/uMx5XSoO3xA3hywLXbdz3
NOSWnFxjcG8IWj3RivtKaJhF/fnUmDmEc53P7u4h96GU9be+rqkegtm0uvtU
Pg2/Yo1K5RnD8Dy+PyD1CQ2NDD1WVvowbkV6vNeJojGssm77zboRBHZKTn+6
mcbnjvlGx8ZIUB/UXp0amUTjwnwtxnCEBJWc5tlOVfAwnPvfbWddSSrpOG22
NIiHxkT588l5kpQVK0C4Hjw81G/VUV8lRX29rVj5SsSFwYSfVw4zpai9G11m
BT3mQtM6zTTpgDQVMD9lw/q9XNR+vXQnTVKGuhFmM2nJVC5OSGz9Qt+UoTS/
TtouX86BT5iynfzsMVR93Y3W+wEcrDjICpAsGENtKOteZUjet44kRSuw1shS
d+zvSrwVNOLsRQvnzipZynk07WHG00Zset7jUn1YjkqOGPyqtr8R4cti8u+J
5KjAV7ZbgrUbETvJrNQyYiw132rvks/1bIxZ9VO7bKY89XRx24gwiQ17zd12
AY/lKZWWkMokVzb2rRfoTF45jupuscs7OYsNduUxp6CKcdT95es9e3kN0E4V
L684qECV71D4zUppwOo5J/l2EuOpQx42fx0PNaBCgku/CB1P+SfwdDQXN0Bz
3tb4ltkTKNfl1E4jQT1q018myWVNoFapmFu6BtWT+xPDy8l8IvXJX4/fMbMe
lZs9BRd+TaRu7v+qZ5XFwi29/I+hrgzqBTNrpc5GFmqbT0RL7WNQZjvPPzpu
x4J6moHLqf0MajDWblnhOhYSZz8c2OvBoI7coWsd1hDPCF+w3JdB+d66qH3R
koU7DPeo5hAGZXH1yjuOEQt3eybtXv2CQWXco0fKVFloePFFryCLQe2ak1ig
osKChvcV0aJcBvVH9PHBgWmkfdtQxIzXDEpU5t07dgoL93j8973vGVRX9dXw
teNZSP79Rvf+HwZFS4+8/DNSh8aYU0IVJoOa9VRaTW+4DpqbF78Pq2NQH2JM
0s4N1iG5Is35dCODOrDpPwstUR3ul0eF27cxqOLWnR7egjpwr9g5f+xgUMK2
3RrvO+swe7W87goBgzobcWREuaMOD4r9S+b1MyjT3kSTdy2k/QXT8DsiBtVT
nhWt1Ezao3en0iCDkjr2fvpBfh3chp/qXB1mUCUnP316wyO/f32wf3SUQXm6
Fz2YzK3D/wDY+ewS
           "]]}, "Charting`Private`Tag$11812#3"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.7867598, 0.8842044000000001, 0.8924496]], 
          Line[CompressedData["
1:eJwl13k4lOv/B3B7KZmUSosSkuVEljqE3pOdSskSHVqFIm1oISGlRZKEihJZ
klIRhTqVTtlC2SPDjJl57PsMQ/zu7/Xzz1yv67ofz72+P/ez+uDxXYdFhISE
bgoLCf3v1+15//jh0nYI/f8f/UOYnL5UbTvC/MzWfzw9A0175zuHl3bgsO+m
IKlNUzDa/vHDesUOZPFE+/xbJmFjqdo9qd6BnrrasczgSXgYjtNjjDrwN8+p
16JcgIdKCf0f9nXgWEXaXB//CWTLCy277tUBKR9zE3XlCRQu8TJ3PNkBnimV
dKxuHA1z9RN7wjqgfbJN9bDBOKRHG63l0jsw81f7TxtZPlb0w5/1ogOaAZma
7lU8qFMZyS8KOiCikvu57BoPFq1n+GZlHTDP6pq9X4yH4C9L0k72diA2cIdg
3uwx9MXuFqrQYWLCc/+dULMRlLIGrtgbMfFv0SNfe6kRpOhcnddqzkSqje8u
s/phONW8XdbnzET98sMmPkeH8XHusg20i0yMxf8wNXw8hPt7XhfFX2VCultu
4OjJIfg/tTFRiGHix6abI1EmQ1C3DNyhncaEa1VHWzJ3ELFhrUfsK5hIvn6a
7W00CN8ffoMtdUz8I9xj8H7hIKwV5p1xb2NitobX/g+NA5h+bxzuP8TEOR/X
VknjAXhNPHwYv4SFk2aN7xqX9sPoxIHalkMs6CncoC1a3IvF/064uB9job3W
+OU/LT0YmhfT3hvAgonAranucQ/Sn33u+3ONBfmdTdWWOj2Yz1WarfCSBcEX
JZO4/d3o3lAclfmOhZ25WaoNmt34L9xhkXYJC7kP8x/LT3fhvOJlRZMGFlJ2
NtbkPOoCy41j5D7Fwj61ecp7+yl8yA4u6RXvRFRhM+X0hULC5GIbf1onbtrv
KNB5QGHbPcvdVxQ7wX15oTFsK4X8usyTmVadsC4THFmUz8X1rd7pvbGdKF9c
Gvslh4Pl0SanapM6MSx9/NyiWA6y65ZuLkzvxPU2r7mCsxxUuZXWR7ztxFex
Cms/Mw4WnFgjrtTaicKFF5Z3d7CRmjdVI8nuxJihrtjdcjb0JmoTB/s6Yevw
rvFjLhtOYWF6H2Y64W4VlBwTwcb9WMYhFyU2uqVUT3XqsaHRnK9F/4uNF/2/
lF1Xs1EsHzWpsoGNR4u5fmbSbLSlG90ZtWCj4067z76uTii+u/f51lE2mgRb
hSKfdCL3z4mogNNsbNcaSHMk4zIzsdrjFsSGQUhgfmh4JzwqeEPqUWx09ipG
CQ53Iuu3/eqvr9gwldBsMFnXCUNFjb7sQjbsVurvHVnViUoPkXd3Stgo9BD0
TSzoRP/Ay50H6tnQ0aH7igpY0BGRDpkaZ4O5a6l5RwULJRbsrSxhDkZcOdrL
P7HgcKN4SfkcDkqO+e1KzmchQNY7J34FB9or9LUiUlgoVClt06Fz0PWkMCjt
AgtbvR9lLbXmoMkwW2KJPwutOQEBQrs4uD+4x7rch4Vp/TXSVYc44Cy7FD/k
ysKtC1PNeT4czDqSeuGQIwsKn2vTHvhzUPYq7ccCW7IPt4YZH4ngIO5+V+Ya
Ogu1t1wkd0ZzMOgTpRZhwIJ73fr6jffI+xlvFijqsnDFjeEj9oyDe+mOFkJr
WSg7bpT4qIqDVR5qymYyLMitSs1zaeTA0+/LjK8UCx5Vkt8XtpPxzvk1u3wW
C2LrGv9EDHGwmTN5et4ME/atxotNBBw40Y0tRgVMpNx4ojklwsWGtVYqs/lM
0LtP7jshy8WH/jGZvAEmbt1rOqMuz0VJoVK6TS8TbVaI7lxD/GaJy9wuJgIz
pD45/82F3vCsbbNZTJQ7nW5eQCf/L8hOw7SdCTmJX0OVVmRfu3Z6pv1mIt89
Q3HLHi5ascTxdxMT4rLShpMHuYiW31n4qoEJhxI/+zfeXLwx7WdnkVxIPdXi
fdyPi5jym/qlP5kYXm0SrnaB9E9l8yLJH0xs+ZGZyLrMxYPhMx0+1UxEh9De
JEVxMY+7QHzkO+mvVsD33fFcdAkbdd+vZGIdo5Utk8zF7mbvP4dIDgVFmU5X
ZHKxc7nb8+3lpP/GWYuvvOJio76o9+4yJpb2zdeiF3KR8nfo05BSJrwSz1gK
PnOhUaDQVvqNiYKtbfvyKrhwkLEO0SKWmDQ761vHRV52gGTeVyYcs55Fq/7m
YtEpnTFH4icuC54y2VxIHZH8JEs8Mvvcp8R+Lmjnw3sH/mPC5C2j2YnPxQ1H
hQkOcbSnxfB8IQqyF82PThAzFj+fUzGbwlQg/T8V8rzm14VKl2UoTCpvuu1L
HOR/3hDLKGQsXb+7hrhCucN+QpGCt2Pf462kf8vqLH1yNShcY4tMM4iPXHoR
fkyPwsp/P05EkvG91VmUtNaYAitPc80uMv5ZzMA3HeYUSm6IL9Ai8+N0m/n9
gS3xukx7JTJ/aXRrjuNuCosnV1zUJPM7OpAzTdtPwUl/lsZOMv+3bS9ohZ8k
/WW/9qgn69P+h2W5+TwFpc+3NfTJ+mk+t9k/Hkah9LJsSw5Z38q5crd9Yilo
pfzwa61nYnlR8FOVJAq+55YkRzcycfQo+1N7GgX7dCl952ZSJ8peDzsUUNjd
8wwKZH/tPrt0Lu0jBdH4uMlVDCbS14YolZVSyBlOL9buYML0ynYH41/Et13G
rrGZCDal3qz5Q2H4/OFlYmS/37O8qJYk0YWm4qdOn0ndydu6OEl2fhcK5SwL
Y0aZ6LE3CxdV6sIz5Q2nvMj5cXZP3tVh1YXpValOvyVY0L3sPJAY24XUlLfO
jxRZsL02cFD2YRfk/g675KjCwtGbVxpuZHTBS0v6qJw6C8l3896fL+wC3p/Z
XKLNgnT6/Ejn9i5YdrEWpm1hgfpaqir7Vzc2qneku5E6J1qxL/HGhm6oiEaU
ffBkYWU1jyaKbsy58+O8Kskjx0Zl/pBdNw5Y0FNkSV595ob8V32mG/yNJRzr
CBaSZhscvFHSjVMH9QwF2Szssnn6QOSfHhzfdi5Dg9QxZbOLDk2HesB88L6E
K9QJnrHjvBc+PZgqW3cwndS1+9rCF12Ce6C84la+OqlrHXIuB1+Supr0UK5y
G6lrJ7iz1fZSPRATNPq3k7p2M9wr/51/L3o/h2VnxHWi9MPaHyei+1B1fYd5
5Xo2POZpskXv92Gkf7FkL6krYq56E3GpfQjtuZ4gacjGlgn66vf5fdjwPbfL
2Jzkvu6ek5K/+1DuWSl13YWN55mRMilq/YCkRE16KBsxMUN2tZ/7wbi0s+Jl
NRuuHkU/N4wN4LJfDP/qAQ7errLTTZweQB23FV8Pc3DdZ8RaWGwQ7tKbq2aO
kBxfcy3Lc94g6P0TuZ6nOHiYkOetpzCIILdGjzmXOKAFz+3/bj6IwBTW13up
JLet3g0L3R6EjHm6aGMHab9GTCnv7iBklxgN32NzsE1kh73n/UGkZkjMOHdx
kFnUmfs9dRB3241OVQxycEBzvv/9/EGcNZssDJ3h4OdCT75u6yD6h/m/dFdw
kdsmO+Wxdgi/tdJzXu7iwmjjjG2ZxhDc5GTO/evIxdebXY811g9BJuFNb7kz
F01GHywH9YeQGN1c37iXi+n7nnfO2Qxhd4Hot7KjXFjtLlSPPDYE25hHQ9Jh
XLRV73N5lTuEgOdpJWtecOG11iZ74dshtEQ0F1W85GIoWG/Gv3gIIcIFIb65
XIhpSqZt+m8IJ5s/+2e95UIt8vVgScMQ0s8t0Z0iuehnJX61YWIINQ2z9WY3
ciH5KSt/EsPI6E1NrpziYtxkXUGx2TBW8r4mYoYL6ktOwQXrYYyEPZiXI0xy
oDTv7cyuYfyzOtnxkgSFKzUfCkU9htEfHfxOeD4FkfafH+ZGDuOisULWbpJr
U9OCr8ubhqFhPLPjjBmF3pAL31pbh3HCXEHiggWFFhGh0qSOYQRGWAVctKJQ
KCFetqpnGGJRaTfPb6NwTppWoTQ9DGtD/0ZrBwo8eaVqDeUR6G41rbE9RGHA
aGuj4YkRpJsXaIpcJM8bHBM88xuBz8Q6ZkQIhfCNt+RXnBvBmmALwRySY8vW
1x6aCh3B4syifZKXKVgo/TNYfGcEzt4mutzrFBIlvSU3F4ygTH93gmocBU+J
m3+9KBrBJ9nrpy7HU9ARzdmx8uMIlqYXVzESyHxMDd+dLh1B0KpjsjfJ/XFk
4Lziv79G0DNXMKs8mYJNw3VD+vQIjKVMVaqzKCyqzd77UmQUbglnBWLZFNqr
q0IVZo3i0r6sY/rPKQSULSgVmj+KTVNa+gk5FB4X33f4tHoUbfXttwzzKIyn
ZB0zMR+F+aPypgXvKaQfL39kFjkKtYCVKvO/U6hZrXfkYfQofnxaljpOLKhN
0hmPHYVUSYkUo4rCdv2T/z1LGsWyfZHZaTUURoXkehbkjGLKnmmzrI6CSczh
jR0/yPsGQz1TSA77mFXPbGoYhSCu3/doC4U4nn5Z7K9R1CueDlrfSqFrj5Sr
FWsUVfWiL/N/U4hWyg3NGR2F39uGJ8/aKTDyhL5fWDKGhJ8Gqww4FGZ7Ho1r
XD6Gip+CLUxinaV1+7QVxnCdHnDpGpfspwsZw52qY3DzzfT6SVHQtLCV27Zp
DJxXqzjbeygENT44tMxtDD+G/pvsHSDjvya+zu/AGETEWt6fHSTjNzzO+354
DPf1z+WLDJE6lmxyLdR3DMkzKnYywxTKvbpeUBfHsOX5kMPSUQpygo2C/JQx
nHtc3FTPp5DZoH/yeMYYCh5fXLljnIJ+7iZqbfYY8pPa3b8SO/tsbkh4M4bj
nk8FLybI90Ob+evzpWMoy9oW5DVJQbXIUk33+xhWuk+P/yB+G2+d3PNjDJ2H
r4YbTFFo2rk9yrVlDPe8NKpFSF2TK3E4url/DHm3Yg8FT5P3P3Lq4A2T/q0b
j2gi1g9yds7hjyGpSaFs/Qx5/wZXCwVhHt6/TM5sIU7IOKQoIstDOVdbarlw
F1TDD98rlONBaCTJwoP47X7P+aflebD52/dZDnHTUu9plgoP+6ZGBEYipO5F
nvr1nwEPyHNt3yLahUwvP7vgzTwkbC5KDCbWNw8o3WjKQ/+b6uh3xM7T5/Iz
tvEgcMxWURfrAvUrcN1+Ox6mThRW7CM+W3DhiZwTD0v2zsm5Q5xwIjTm2j4e
zJ37N/KIVbdfkjRx56H43Yc2ZXHSP7XLIQIvHqLirCvsiJuYV329T/HIeRec
TSf2+vc6W+kMD4OfdhlXEY8/iHRtDeRB3KRi2yixnGO0zfbLPEhe87M3JPeC
TO2YT+LXebgcVrXdlVhfOlb/QxQPf7fcvxdIXNp9NyfgDg86ut7694idv8Wr
aCXw8ERQrfGGmEq9l8RN5GHzKWf/auKzIQ9kkx/zEPEsZjFFnGDwSETmGQ8f
/7X1kJ1FxrP48bmyHB6c6zlLVInfDqcMhuaR9VF0W7uJ2Kr6ieemdzwcrDWI
syFuepbeNvyeh262qIcLsdfVTMdnn3mI+WtLggfxuHtW5aFvPFzbHqB5ivjq
lmzTFZU8BJaoqAcRL135orCuhofO33WR4cTh/jscjOp5yNbZNXideLBysC+1
mQeVSKPhW8T/KMdEzG3jQUm44s4d4q+BuqtPM8n6fdVtuEusU1tX+IvDQ4t2
dmEccZJ6gINJD5mfN14m//PssCX9Twd4oFiJvrHEfs1vI2RGeSg7EUi/TcxY
v2f1uXEeSjU3vosktrk6Wdg+xYOPzHTzFeJ8RqKDlTAf8utEn1wkXv335v4c
cT7ZJ35yZ4gjoxgRS+bwkTMrVP/Y/8bPDll9UZqP/jhH8YPEh4wVizgL+EgW
WhXiSFwVW+Jgu4SPZhHJLEtig173/jfL+SgK3hyuT/zEVOKqvAIfX8920f63
HvMfZKy+rMyH9lJd28XEgcNWRb2qfOzPNqWLEnOsux0c1vGhm2rC7Sfru+vx
jf4ibT6O3HEyayZW3Vm1+sYmPvJO2q/JIr6TcbxoeDMfCpaXn0UTT0/Pd9xj
ysdetluvP3H9c/uratv4UBu5kWJEHDa3uf+bGx/jRp5CRWS/9h08f1XrIB/6
Gw4ExhM7Fy5XjPfg48DY1LtTxFpH9jp6HOfj5p6IK2uIW7+yisRC+ZAbKQgM
IufHcuVlR5/LfJiaxOnsIH7trzJQe42PiuaWNwrE15SPKKbG8PGkf2DNR3Je
N4b1X93yhI9vivblg+S8P26+pfg0kw/R/qsihcRS2trF85/z0d2UTwsjZjFO
DzDe8HFLQu+5NHG08YRj8Dc+yn0WLVhG8qNnXFSpqJsPL9cObwHJp+LzxkdD
B8h6vRAzfUYcNRXwynKUjySNXVV7iHWEulH3hw/nhTck8knenZ1V49o3fxxz
omVXu5E8FFucGLfq73FM7Z4ld5zkaUN8/W+24ThaRy3K5k787zuJtiabPo4n
a3NNMkj+2siH5erbjOO1Xl/ML5LX0cpeNXZu48gKe1Wuw6OwQldvTvilcdwL
OZaSRfK+P++Ync3VcTgxVnjoEf+7MSNh/s1x3JUfFntP6sPBTcvWJsWNQ8P1
aVM5qR+ZW4TM8p+O4/J9u/Gmfgp6OysvUNXjqL15bdHHbgrbjrkPbVsxgayz
ahc+dZB69ITdNqUwge2i5x9oED9v8ajMXjOB/CjLT7Gk/knbHMmQ0pqAXKXJ
WncGqU8qvm6VWybwamHPGT6pn/btZ8q2ek6AKV8vMtRIYY/9jcc2ryegLMS3
2Ujqt5fBazsrKwHM5SZOGr6h4Nfz80DGNgE0+Dv8g8h9ICRp5KSEnQBP1CN+
FOdSiBfeEPPFRYAjscrxhq8pfC0r+En3FkAtpN1Lm9wnlPa8tzeIEuDCYN3r
6UwKbedLHdXrBDhV1aemnEjBsbjNRWr/JJY2izkVkfvTz6ZFpYG3prBfwrzg
7mYKCtkabblZf3B4m+h6UwEXf+S27Yn/PQ2NP98terK4qOj/S++UuBD95dr6
HhUXLkL+UqL9uS1EN56scwmeQ9rnr0xyUxemhy+3WRmVywEzUfJiylth+ibu
5MrL5P6fptmjtsJMhH7rtapy1XwOtOb9jPBuEaH/tjXs2/+ODUXLTINHXqJ0
g9A5qmZebLR+v/QwU1iMPin++c06GTb8hJwqOfFi9NhmW7NPxZ3wj1piK6ks
TpfedV9e6XgnjI+0hQkXi9NjVW7FOazohO+j2Llt1hL0WaycYq8aFoJCt7gN
1EnQxVQ0K53I99iulyMHGrxn0auS5j5+aMBC9Ka7hY/HZ9G5tp95D4aZiJMx
+mpyezZdt9E/1TqDCXGzn2tKV0nS21Y0Hwg/yISd4j7bsGeSdAfXfYFRCkwc
3j6ktsB0Dt3670m3lF8d6Kg95XKlZg69WlXYk3m/A2syJgxrjsyl5ym9lPXZ
3QELlTNcWyEpejnvqd33xR2oEerkvIqUoj/f0EAfaGmHoqrTvW7lefSfa+/8
SExqR2tWwaNZufPoN0o6bWrc20le0467bJam76zcKeeh2Y5ah2NDIfXSdP6n
ZJngLgYeaBR+izxIo8//feuGbwgDrV1+sSKHafSteb+YD4MZWJGpdeCsJ43+
3e3RkeogBhKV0wSHfGj0YN5Fce1zxPLR6wwDaHT/HpEA3kkGHtI87nRdo9H1
HmzYcP0QA8kjMvssXtHoByNDxestGGh/ValRnEujB1ZZbZlrzoDCiYhx7Xwa
PS2q6dkWU9K+d+q2fBGN7u1pOC8HDDxmc7+MfqHRzeNPC0XqM5DS+F49tYlG
z3FtTLVVZ4B59yxfroU83x5VFqHKgKKD7peo3zR6im++/CcV0r4m0+08k0Yv
vw07PSUGUsvuRNv10uiv9z7qXLGCgc4IW7dv/TT6rQdGF3YvY0DZQlLdeIhG
D3snbxYjx8CTz8ElqjwavSLiruvsRaR9iEH0w3Ea3XD96hemC0l7jLrKTtLo
Q09/rbsow4D7nxdq1//Q6OdOFrcU0sjzRUd4MzM0epzopwLePAb+D36Gtv4=

           "]]}, "Charting`Private`Tag$11812#4"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.843704, 0.8988422, 0.8492188]], 
          Line[CompressedData["
1:eJwl13k8VN//B3B7lhgtoqKyFdpJEXoNJUIqSRRJIqKiKGklS4skkSVbK0la
SEKLlCjCx5aSZmwzcyfbmLFl+Z3v4zf/3Mfzce/ce8497/f7vK/qgWN2HiJC
QkJRwkJC/zuu2Nrlb2zMhND//+ieRiP0WOK3JsK7rMenkKae2PvOlYnj2xKS
VkdNIkdFaN5VLyZqYkvCbdZMokjRy3yXPxP56YfrJn5PoEnGIIUbysTnmb7t
omsnIMdv3qL0iIkirunar8P/oNyLwI5cJqQHGxTLnvyDDjszI/c1E8ljk6cV
3f5hc+up4U2VTPx50mtXWDOG858UH/r/ZULTQ8NWu2QUPXG7hb7ptkPGpE4t
t2oYFR19ETuN27FgbEnR1+hh3NO9LNtq3o7mEInHs+2G4VBbOK/HsR1JSpxy
pdYhfJCZp0+70I5FNbZsswkBkve8LE643A5F4W8aOhUCBD62MlsU246aW41B
M+ME0LE4s231w3Zs7CqN/G+FAHGhrd47v7WjpVJU8doxPo7WBfT/amjHF2mb
uQJTPrYskj11sK0dcczL6kYKfEy+NQkLHGhHfOCmNKt3g/AaTUtLUOxAuoSo
7rR5gzD2c6v/5d4B5b7ogiL+AOa8H3U6eKQD9We2T86vH8CAbCzj78kO9J9T
+LTw5QAePfnYM3GlA8KHlvwSOT4AeZa65KLnHcDARnHWSD8o/ZLorDcduNa5
PUmmtR+fw+wVVpd1QKvk6LaS9/0IVgtXM2vqQNOW0+OvL/ejw6Xb+OB4B8SN
k5UaFvXjXc75sr/inbBmRKsoSPYj8d8cq0BaJ3TZvQFpf/pgk2SxO0KtE3/6
wpfYhPShoCHLP8uyE5eqJwctanpx1drn0d+4TvyMXGLlEtuD+TFmx+tTO5Hn
o2oV7teDnIa5G4oekeu9VQatt/Xgu0tFY2RhJ6iTzN/Zcj2Y6acprt7aiZQd
m1lecX9xP3+8VqqrEy0p9k9w6i/WjNan9Pd0YkFk5sm7e/7CITR0zbupTrwc
bZk/ofYXyXF/3J3Uu9A/cvxm8xsulrYUrKQv68Lr/VsNKjO4KFGJ/rdYvwt/
BO9r11zmou2R8S3+5i7E83aP+DtyofYm6eONw10oy2/tsp2kkP17p2r5iy5c
aXezEt1HwUhtaU9OURc+Nv28X2hNocpT5M2tsi4MilaKVBlS6O17vt2tsQvl
35d9l1CkoCsid3F8pAuMtqOd9xs5KNvcZd0h3I1HQb1hi8o5sL9WovhVuhuL
c2Q+9RVwcHK2z7ME5W6s4li2XEzioGhxRZsuvRvhOfo5Ww5wYO2Tnj13Szf8
rTd6rtvFQeuzkyeF7LrxQuPzuyOWHEwaaMp9d+9Gmz4j+9lKDsysQ028I7ux
efDjLG9hDupvOEltj+nGshmWG88OsXGwYVXj2qRuxKjKWNZw2Yhw+eMr9qQb
s5W73q9qZqPymHFK+vduqOkq139+zobSwvv5Ts3deLLAr46dyYbnd6nqWYxu
jN08+sE0nQ2x5c0TkQPd+HntKy02mg065e/qN5uF6SH2kfHH2LiR9OOUjgoL
3e6GEju82GizREynJguCJ4aSxm5snMmcXuq4joWV0RuTUneyUXAwU810Dwv5
N52yg9ezIT5bzujfARZkZjJZqWvYsC8L2PnKhwUdmw2j1Ao2eKpmYdrnWDhW
OndwSp0N07qslI5wFopVPt0oX8BGzEXaq9RoFrKDI73y57Kx/E9r14wMFpTn
Ve8QlWfjbPTGyW9ZLCToTmm7y7Dx1SR7TsQLFvyP3a5mSbDhlXLKYuwjC1lU
yUKXSRYeOM183N7FwiWZg1LsXhYGJU+XppBj5/CE+T4uC2aFf1ochsl87RR+
8Fks/JnzVPqbJBvzi505F5ksrCifpR4+g43uRRXugW0snA0MNsI8Nlb8UNS5
/IuFeQ0WvnlLybhHGx9KNLHgfSk37AiZd77ZHQ//ehYKdRVSl5iwIdvaET5S
y4LDzfbqO7ZsSOa6yu+pYuEhfUv3rt1sDNHn3tL7ygK/79kkbT8bmxR2ZS6p
YOGm7bmVYf5s6FGMLy6fWGBMdFhsCGZj7Ij0WBqZ54qnVvtHQtm4tM9ZavQD
C+ecXwS9vMbGzZg3UT7vWaiSUbrpG8dGseUN5aG3LDKv848Xp7KxYHmNXWIJ
C4cPd5UyHrLxdjvn645iFiQrX/LsX5N1KykVSL5hYXfQXBnaBzYiFR90ixey
8GjJRfXKCjYOpaXGK70m423qNrpUx8a2u/SH9AIWNkZstTf5ycaRpWffnHvF
Qqx+vu9wOxu3X98+VZNPxt85L/wFiWPNf1oR+sQr40JSffhs6H9Ruv4sj4Xz
G9mvNCdInE/d0jchTrK4oJ0qQfLyodZ400sSZ9ZzUmfLc8BzmD09krh221P5
qLkcrBQJ/mdDzN25KUxUnYM144sPaBFLOP4aDl7GQZ1cVIsSsZrzcR+ePnFm
wbgKscl+qT/e4OD0YiuvdcSOBzPsmCRPEyxOFx0kDvBaV+5ox0F87lTsQ+Ib
vt8Na/dyYBQ1/9Yocbafx1MLDw7OukW67CfjLQ8YX/T+KAd+bSdutxAzg27F
rQ3iIKw1pOMgme/4WR3J3BAOCk6UcIXJ+1EKKT2jeY0DCZ1bu58T64U79qXE
kTpg3FB7jLxP2yt9B2ancRAimilCJ+/78PWIpmuZHFj6RCQtIuuREZ//NriI
g0+2P3JnFLFQkmS9mlfGganxyyhVsp7Nqe0PvKs5sLNxiaaT9ZZ7JB/lyOAg
/FVMZfY7FrSzM6dqOByI69j4Cki8bMrdcMJikAMxC31x21IWzhT47lkrQcFV
qWhkCYk/dnmF1uxlFNZ9EMIpEq+i31xTrulTUKkN6NAm8bygZogmCgqMdfWO
7GoWdjVrDA/soGApF/c6so6Fj6yLn2tOUdgcNBC2pYWFVEnDA9fKKAzy5h95
RJF8mV7bKFJNQcKjb/3YXxYa5A9tCW6i0CU2zcqhjwXpufGrvDkUjt9q91jM
ZyFIe2ByM40LITtde1WS73ZWj++I7OUiyv/GkT2z2NDYdMH+hzsX77Icd/Qo
kDwz2SWb68vFuFvGZJgSG8mrhS84nedC5NRWg48qbDCVnA48v8vF49XiDX5a
bPixJLX3sbmYVrfndPgGNq6HeRW8CfyLq5Y6tc2+bFS8W1LnF9ODf/xNQber
Sb2VXdElmtyDus+RKe21pN46rxm9fb8HVxL9D65oIPVulK76tqAHx/c53P9E
8qRIb4+/1O8eTCwIt6RYbDzNippxT7sXOYV8BzkRDmJjB3bUf+zFuRDbE54k
blcxhz08q3rRO9M4MNqAg+8rJ0+PNvbC8MiVx/lGHMhUS99byOmFitBE5D9T
EnfTNHg+tD44mG4xPm7LwamzDrFizqRPmNorMuHJgbNn8X/6gj44F9hv33ub
g8KFO/RSJvvQbL6hcQXZ3676Dm4RFutHlWhc29QdDro1r2Qfku2HV0zu0eS7
HKQl5vusIX1JuT5v3oscDmjnZXqrzfvheXdBhttHDvot3/CEbvYjLVsjqJhL
rtcUU8+PJ31P24dAw14ObES27TyU3A/z3MSM/H4Osoo786rv92O5dMGpewIO
3FbIByYX9INXPyziPMXBf7MODeuRvkkr7neg+UwKeW2zxz2XDEDoTFQ2l8Sh
8dop28qlA/BxmJfLXkeh/Drn7tJVA7iwynVxB9n/fxi/s+g3GEC1fElArQmF
yeRDt05bkb4uUehylDmJ091FOlFHBvB2UU3CVXsKbTWuTi/yBnBcdbZ0hh8F
ryVWObMKBxDTYzpgfZzCwPk1U4ElA+gWbt8lOEFBbIXUw/WfB2C9gZlEJ3Gu
HfWyv6xpAH3aKQvenKMQYCl+uWl0AK7dza90r1KQKs0u+AceJNb6Ptl6l8KI
2fLXJZt4uPisVaLiHgX2p2evz23hYfDdmet4QKGiIr9wyo6HUBMf1cWZFCJq
3xWJevIgPaf6cl0OBRHGf+9konhwdwsPv/eaAs9t1/uqGB5Kzj9f019IgdnR
/P56PA+lXyY0jIoofGC1fqCl86DV1PK9ooTChb7uj7Ne8rC2QMG/rJTC+ORY
+fwfPMjFx5it+0bh78VzX1pbeVCRlCl0qqLwS0SoIpXJw81AycjTJG+LJMQr
F3J5aHPtWveihsJpOdo39UkeHs7snSHcQGFIRb1mqcYgNlYrztRopdCd/rDm
r9YgZGLXMJV/U2hU1ap9unwQo+U/1We1UcjXXF63ct0gjFqPSo/8IXm/fF29
ntUgHrglX7vfQaHP2LrZyG8QPVHc5lCKPN/wyNiTgEFURnS0mnMphK29oaJ8
ehDOzJcfJP5SmLeq3n08ZBAnjXx0QntIHVLf219yaxChN12fuvZTSJHykdrw
ehBTeaZPCgQUDklcX5ZbPIiLOffNHYdIvyj6bNuCD4OITtjaOExcMc6Ln6wY
xOIs5Z+rRkgd6wtWe/9zEP/1aty9OkbBqumqEX1yEB6r+PvbSL+qUJ+z77kI
H6XflUddp0idrPkesmgaH9/nLkr9Q3yycmaFkDwfdcf2yLUIcXG3JNm+VJV8
p7TOeJsvwoXvm5JTqxfzcW5F2K/FolyyTm3Jd3X4UHRUmJFAXPVMjRmixwe1
Te+LvxgXI/eyj5iZ87FrR06EvAQXZelVMS+38PFytkf4CeLolN48NVs+Vu8L
fNRArHFbd0xkNx9N1mt23ZzGxbYrRRFlXnyIHDCL4ktyMS+i9bHeET5yuTWf
LKW46AydrLrvz0eL8G+dO8TBZ81mhQXzkcQUDV8vzcWjY1/TN0WR8VvvTHSX
4aJWdY13WgwfBx/HS2YRj9Wn6o7E8XGlXLWMIt5q4P/5SSq5H2Wh7DOdi5PU
z2jxe3xsdDz9Nos4I2WTo+sjPu7aqud2EvOFlLgzn/Gx1V3m0m5ZLhbkheT7
5vHBqfjtHU1s6cE9V/6aD4WNOx6WEd+pfCcf/IGPbxewUFuOC7NYj7XMOj4u
x6hsZBD7bqqZWt/Eh0HPH54U2VduDxlUxv3ko9/gorAuMWfPdGfLDj4O3/Cj
nyOeKXtS8x6LjzJvqxMZxMbv//T+4xLXKEh/JI5Rzwt5xufj0KMbXkLyXBQ1
KltLjfKhqfBJV4W4MzJitvsEWU+pIQ8DYrn1/b9LhAVItDgkakds8Ncpc46E
ALmznKYfJj6QVubnJy1A7arpoReJo7YvX/9VToD+Px884okLRBJENWYJ8L2t
oDCL+E++UPU5RQH+eC4/W0Qseejw7eb5Ajgsc3/xlVh3boPr6kUCqLvcdmoh
dv5mon1NQwBuutjJbuKIc5m8Ti0BVs3iTuMRP185o2TDcgEMbCLkx4l/MoPD
E1cLAIeZN8VmcCEW12nL0xcg+MXXqzLEKzbbKtmsF8DMjpqUJ3Ycec18uEGA
dRlPemcTh2arPpkyE8A20HKvInGO87UAJwsBZqiMmSsRN8oJTPKsBfi8c/TZ
/85Pftg3TXa7AOnm55MViLVOVNR62gtAXf8gMZPYTlM3+YOjAI5rhwXTic82
33Gf5yLA+gJHbwniR1fElwe4CVAwMO/AJBl/rdGxoWoPAeQNTzD5xGM9P94v
OSyAjOVtNodYPcPsSshRAVTMC4N+E9vY5dj9Oi5AyYfpt2qIT4rNUdY/JUBr
frnBB+KMggtd0WcEmBum5POM+KsXJ5d9QQCdUb2lqcT8eTuDzMLIfDdbBV8h
XlBdYppyWYDrYlFOAcT+q2Matt0UIG7djmpz4uSO0dTH8eT8L92Dy4g/xbsf
Ek0WYHjr+I0ZxEpja8cK7glQbDOe3UziLavJwP9YpgCve5eyXxEb5K1nL8kR
QDQ0+kIssaPvhqbEVwIMBHd8/F/fxLakb91RJMArwxr/BcRBmmafpN4L8CyZ
cZFP8iGxzfxlcIUAD4+7fL5DrFVsoa1XLcAj++IJX+LChC0Z3DoB8p6qpxgT
/9i+Ndr5lwDV473yzSTflMrsD2/oFSDH2kR0lORrVroDc4gngJ7px7i3xAZn
HR2fDZPnLR1IuEjsqO+8eZHwEERLZUaFiRMz3dVEZg9B6Z+hLY/UE6Wo4z8/
Gw4hO/R1yFVSj7K8Anac3zCE/jn7fqwlNjA/WbF24xD2Fpu+ZpL65Th5uiDT
Zgh5dPNZesSJfiGxV1yHcNz/6eFP4uR+u2KstoYP4dS5S1/ukfqatTq2VPzq
EFR/PjU3IDaQizN4Fz0E1+3v3aqEyf2+JCxemTgExQFmUD+pz4mG6SIzngyh
zuOfhRap33MX5BY11A5hxv3F13f/I/tP4DZ748YhrNiwQI1B9oP+qv6e+y1D
yGj4EneIuPyMnuqJ9iGEdmxVPDFK+oOWwsgZ/CEkbap8enaYwve4MntbxWHI
xO8S3TtIIVSmpfeLyzByVjlvtCb7Xc+B4MsrDwyTuhJ14QXpix2L5qsleA6j
v1rizRzild77dnkeI///e2dJG4tCa3lHsVjIMKiEK7JuXRTWhvZeNn0wDC0r
/ap1DArcEVH1YmoYG+0nj61spFASbHI4pG8YprWvEg6R/Tt6/OQLC/4wlsuf
eZFWT/ZDIQoNE8MIpMe8l/qPQtC0Wuce+RGEprkcrP9O+qE5KbcXrhtB7dyD
pfoVFJT11kiHXRpBNmLVNpD+w+bIwQEb5VE8GH8bGX+HwtkHXW3ji0bxsEdD
MiGZwtNfnlU5mqNgKVwuTUiiIGflnTl95SjW9ae3306gULv4qEuV6SheBQYJ
rt2isJNxqtL60Ch4x+Pn2F2jsGfntbtWL0dR8zKevTOY9G+GL3dYWo6hKOFj
jqMDhV0lbU7T9//DsFnAHh1ZCv/9UKg4c2Mcmi3Z3yoLOFiUs7QtL3sCyySS
7zi7cTChZLMn4fck6qSTT2gJc/Ctd9ma4+JC9CS9gX3bMti4uEydNnFTiP5j
q3F58SY2JgoWpLroCNMPlz2d6mSw0J4ideFeoTB9eX/A5pJL5Pt/BVdbeZMI
fdsXemC7Fvkelv0v0ueXCN1xq8Iboy/dULPIMkz3EqX3NB4VMjrSjdbqS2lZ
wmL0Q+eM9mjKdiNAyKGqO0GMLtZ9bcXp510IjFa0ldIQpxuXP9h2b28XTLzb
QoVLxOmNYUvZJ4W7cDQ9TqZtiwT9aMD7oJnPOnE2xNSlr0GC/sQmjye0vxN2
zwfdmnym0Ucfzw9Qnd6JmPXxRXdHptEtOw0Tn73vwO0ZxuVmNyXpht6X5SuO
dkB803+aFQul6DSJ8k/ymh3YoeZqG/pEih79fY36ubZ2eGwd0J65UZp+91Km
aPWtdjDrjztF1ErTxxRe7a/d1g7NzFGjWm8ZehrX3m50Wjs2Lz7FshWaTtcO
kflqWsZErVBn94uo6fTfteW7S8KYUNNySKI0ZOmDqyUC082YaM1+nT4tT5bO
D84OOCbBJPlDO+a0QY5u1CLztqGKgXr7IwMXG+XoS+WKzvy6wcCdpUVfog7Q
6AZ9rzhOjgy0cgLiRDxo9OUS8+U8djOgnLXSLegQjb5tZpCNnwMDKRoPx9x9
afTNmdMVI+2JVWKWG52k0YtUzDpebWcgjeZ5i3OFRp/dNGCvtIWBjMEZrptf
0OjXjOQi+g0ZYLyoWlqSR6NbF4+1TxowsMgvcmR1AY1uGBvgJEuc8Xf8pkox
jd4jInpLZy0Dd7tYn/ifaPRvS1cYeOoycK/5rc79HzR68Z4fFu06DLTHBw0r
/aLRY6VkjXnaDKjZ632K/k2jl6onbxEhvleb5RLcTqPf9nr+XG0JA/crb8Xs
+Euj17L9cg+qM0i/YevypZdGn/Vw+pFANQY0NkvpmAzQ6GV+3ZsiVBl48PF8
mdYQjZ4ra0HPWkiuv2gYkzZCo5taf3F/s4BcD77z7H80er9fUMZXFQYOTuRq
X52g0RP1dw/9Uib/L/Yempqi0V237/fomc/A/wHtJ6Iw
           "]]}, 
         "Charting`Private`Tag$11812#5"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.881765, 0.8848148, 0.7918972]], 
          Line[CompressedData["
1:eJwl13lcTN//B/C0IMmEqIiS0q49FXpd2ZJEC0r2pUVJlkJkiU+2EGVJGy2W
hFQq1ScfCtFKaSFtU00zc6dpllYtv/N9/OafeTwf95xz7z3nfd73fRbsPexy
QFJCQuL4BAmJ//1/6TQ/N/JvGyT+/0etaToxsOprG8JeiuIUYsdxtkQp9Qjd
hvdOQ49XBY6BF71Vosy0Haoz7DJ/uY2glMkPd13WjnCrDBm76SNIMr0i37S6
HXLvEsY7Kv9iS3XeHJ57O3bMOrT+04a/+E9ujgXjXDscJ5ZHOHgM4+G2zIL7
V9qhrhy6jT1/GEHPHezU77Sjjp43drdzCHprT280SW2H3shjY+ngIUSHNfm6
lrVjjmy0fVrSIAK+H+/9XdsOO8WXgwaBg1inLn9if3M7kl/+mX3fdhBj/y6/
FCRoR0/2NieF5gH4DCUk3FdiQt5vzmUN7QEsC9xT83sfE/pO7p0Hm/sw+/2Q
x/5DTLyVD9O8ltcHgfydVjqYifdjf+dujurDkxcfeaNXmRhO3VvZ5tAHBdbC
yeoZTEyUCGaHfRCDY1F489k7JoIOO85PfyTGp0tus0yKmejXkaz0PS9GiMY/
GnZ1TOzlhis8WCEGc0fXsv0jTHgzDdVOfROhKP1sMS3TgW3MjM9jL0V48He2
QxCjA0dt16rI3BHBMWbt1nCNDvgrfSm45ilCTu2zI8/sO9DhMwHLxUJcW+/3
hI7uQNCZ4vEQGyHmRtodrYnvgE2H742QRUKk16rY5j/pwMphH17lDCEqd5T+
vJzXgQjx37xAWoAZgVoyC5s6UPLlcuOxZAGSs0eqZTs70DJmo9t3WwDzoZq4
Xl4HBpq+TflwXoAtYWHmReMdOP8ztsxslwAPo1v2eSzsxHnhTvcDagLoN+YY
UQadOMhu0ZqrIEDhvJt/F1l0Ivqg470ZEwRofrIsSrymEynPWCs+Mnuh8S7m
462Dndidm9M5Ob0XaX9cF3x+04nAFoeWPWt7sVRDn5ee34n4L0XioqW9KPeS
fBdV3Il71WVyG4170cPP2LTnZyfevJ2qJDOnF6aS086PDHai82DJRa8WPorX
dK5nTujC3uj+eq0yPtyuFyp9m9KFGE6SBXL5CFb0e31ftQtWOR4XQyL5yF9U
2mxKdcEkO+M3bw0f6/0S01TWdWGm569PWy34aHodHCzh0oVqdyPz6Zp8jFlp
Tavc14XOTcuLDknyYbc+bLnv5S7IOMadTf/Yg6+Hl8UlVnbBYGxa2NpNPVBW
S872qO9Cf+nc5L0re+BVKVsxs7UL01SkTr6z7IG0Yf3oZUEXQk1iXsye3wOK
c2RXoCIL3jOzRoL5PNyKaTihN48FhvxGr60dPDTbI7JDiwXtJM9c/0YeTj+d
+sF9CQvGeue6TEt4yNn/VGPFNhYSmLHjSnE8yChOW/p3LwuXJx6dde0OD27F
x13f+rEQ43Zzqv5VHoQL7C7phrKgvr2vuj+YB8OWps7pj1gY3rb4SZIbDyke
M563d7LQ87LIuUCJB9HkUx/ieljICzqRWK7Ag11eS+OWARZWbJqSKzmFh5bZ
L6eUTe7GmuGT8r9HaMypXeufpd+NJPnnGww7aPhefHXpkHk3Nn8O+r65mUae
6ax47eXdsJOK6UpooLHldntFrFM3nBYrVURW0LjtFGp06Ug3fHum6Xbl0Wgd
Za61DenGd5WLpTLZNBa/dNg9GNYN+yUpS+xe0yiXU77tH90NF75jCeMJjclf
M4Vuud3wvFH/QhBNY+tJFTnGf92Y9eDNd24kjSfa5xd+Le2GukN0wHgEjZXh
G9yW/+qGxaeE0CP/0Di7svut1mg3NC993BR8gkbM2nO68RPZeHXz6WPuMRrZ
62fHKyqwYXa3bcfpQBpc11WXpBayUVSj7NLtS2Oi+++BEAM29BZtelHiRUNj
+1E/oQUb3B12me/20XDf/8ilzZ4N68Mb59M7aBz3WfLZ3YUNy/ODb3Q8adzy
r7Su9mQjMMpv0xl3Gp+Pj6i/D2Aj4oK2qrcrDbN/3Plx0WzI1fPtKQcaTlf5
exUT2BBVlV3Qs6dx8EZ43fWnbNg8HSvVWUPj0d3sf0Py2XBptVLbbUejMGa9
ibCYDfnt0ucfUDTq49tTfCvYCJ+bcodpS2PaE4UI91Y2yi4sP5exlIZu2tPx
KjYbp5Q2vDWxobHqle2xtSJyPddlc4kVjdM5/tssJ3Ig6d/6QNWSxr18qcqX
DA7KvyxOajOnkVn0cIWWCge/nftbc8xodH8u1VE04GDFFvX6SBMaUmW74q5b
cKAYv3c02pjG/Kp+hhQ4+NJUa/nMiIZNzY2LIfYcWHrFLv+2mMbmes0BgTNx
Hat82JBG4O+Cg76epD9f/MiaOKLFpbl1Pwf3L0qeCDeg8ZTJdnYP4CD5mLN8
mz6Nj6zzn6pOcHD3ndrCdcTNXCXrtRc4iLqScrJIj8YQ/1V60TUONpyeWkUR
K4pXq1tGcxDzI6i7SpeG8WBT1Mt4DrRK6Mt+xOtHjk3SespBXYP3kZnEXhJy
p+MyOJi8rcT3iw6NMOmknpn5HMhXfrS8TBw/2Xrv9WIOTl+USnQhzpta/VOy
goMSPamDusS1Ct7rQuo4EIUq7ZYj5iuOFQpaOMjp93MY1KYxReWusS+bg+rb
Y0I+8aJ5BimtQg5YiXGaQuIVC4qV3Ec4UE1pSRsj3q617XqVDBdfbfVcZpHx
TuoKxtYwuGjUSmVZEEcZXjlapMyFQGeZ9W7iVyZqXRYaXPxjFzsrmvibRY7H
S30u4rL1Hb8Td1pvqNC04OKKyfSXSuR9JWw7qDhbLsIVtGW9iVXtTmfPtOfC
78aoyXviJWtm6Fx35mKeYv2QGplPF4fnsZKeXKTdSzW7Sqy56pxbwz4uHr8V
NQuJ+5dvln/lz8XI0IzYfWR9HppMOOdxlouu73L5HmQ9/fXrlxhdJv2NVzQ0
E9tqveyVjuTibe3f0INk/duUPfZmPOaisETwO5rES+YMo7nhaVyYtTu6mpF4
ujRVptYzi4tNKb7V9cQ6Em9WT/rERfwZ5V2mJB4DWZN1d3ZzMf3ZnzN6JH7t
2prbzARc9LplVPQRK/7Ofig7zMXDZfkWny1o5FbunvpWjoayysjvoCU0xt7m
8eXIuC/rn16TJ/vnxiWfnHdBNLQrv4smraSx86zt4VtnaZirdAYoryLxdFJR
58BlGlZfJwYYrCbr7/dfjEIMjeGO1MSda8l8uiqHehfSqL45+zh7PY20BaUr
Z0nxkF7hORy+mUZpkfb3wEiSx3fZvNh9kMSf/OJOqYc8ZMUNGjX60ZDebj50
L5mH2NXuxq6HSHwMUQv+zeEhmz+4fT3JX/lm247I/uHBpm75JYdg8tzPIqYn
6fZgvg/zT1AYjTt3BM415Du34JzjXNVY8rxtAwe8ynvAEEeeeRJHo9Jo7NTQ
zx4cN+I8ME6gIVcxJUmN3YMlGS0NKx+T+Z6kKfRj8NH4qczjwFMaJ85suSO9
nY8HkYunRmSR+PQq+GHRx4fV4OznhmVkP6g5m8WNkfbJiQfvl9O45i9aN0G6
l9Qp7J5x8n3o0rqa5i3fi0jTfboV1TQSHmT7mav3gjFNvmprHQ3GWbmeitW9
cHvkcUq3jUav/TuhxG1SNygk04l9pL2W9MLsu7248GT1UEM/DUfJja7eD3vR
ka1npzBI41lBR1ZFci9KzIxCTw3T2LNYIehhTi/89okdLMdp/JjpPWDW1AtP
i2KFrZPJPDcrjnhpC2D8+WjqIhUellmOO33VF+B89ELm9Dk8fL7BfqxvLICo
dPLuv8QNy4rW9loJIH07YeZXVR7GHnpHnXIQ4OfJUfuN6jzYb83XizgkgOHr
seUTtXn48SoltOeIAMcizk79Sew58Vb1pmABuCp7pyXp8BDwdl/wrHMCHE51
T7PU4yFqpvzHhEhSl627bulgSOqHql0eb7LI9bthm+aY8eCj7ZA+M0+A1a5p
i8qJBWfNx4MKBVgvKa9/xpwH6cWyqTafBNBLHv+3zoIH3YjM3uI6AZb8Up8S
bMXDcXuZK3VDAgz1PVmyYzkPo4n8X1ZjAjhIedIC4vCBRsNYSSHa7gZWXbLl
IebJq5pdckKUPfZekAoeiqTd1diqQkSdGRmqWsGD7Ie0nL8QwuuceU7lah4G
7QxzC1cJ8cdHGLhpDQ/dJa9zQ9cJIR72lK8mLi3Nzht3ESLNw5JXupbcr7oo
X8pLCO3Yue6P1/EQ7LKioOSgECPz9YxmOPBwoLa44J/DQgy9306fJ17VUFo4
6ZQQNfl5c93X8yDZ+qNILkII5384u3mOpD7as/l9eaQQ9u/iTm/YwEMbs/79
jbtC7HVlX3hB/B+r6T9GohCPf21y2+PEwzl+18eZmUJIM+QXZW8k63HEt7g2
R4i474ZZUpt42CniFt8tEKKzcqmpM7HtQG+J0ichwt9flO0iHhkb/jy3QYg+
eoHFgDMP9PnQL01NQlR96/O1dOHht6REaXybEC/2ld4/Rpw/UearGleIPBOt
dhZx2pXLX1v5QszeHCWh5srDwylTvj0m5waNgS9z3YhPTWOULRwTQpLj5ZhH
7BN5u6xDUoSMmaX7WMTuMxTLUyeJ4Lrlz2lFUv9ZzVap0J4uwgwdvUwfYp0H
sRXds0T4Jn3wxy1ipTnzK5/PEeHWuYCBbOL+eQur9DVF2LKRdh0i7kpMraJ1
RMiUPntDeTMPPxfoVL80FKFZSqbagrgkOa06wFSEs4vvqDoTZ2sZfjdaIsIB
c6vjB4lTnr7+3rtUhJSrcg0XiKN0TX+8oUT4vF1j3X3isBfZP46uFkEcEV2a
RnzUcEmNmYMIpx+d3lpIvPf1uxqxkwjbC4T9ZcTOJstq37qKwLo7+1kjMZVV
VBvsLsLDYzL+ncTGFit+Ltkhwsw5LSv5xOq5xT8H94igVFpiPECsYL2m7p2X
CP8aNJqNEksUlNaF+InQsJNymrCFB/6y9fVLA0WwqlW7IEWcb31o+MVxERYr
xtT/z5csb81TPSXCvVVqlyWJN5q9oSJCRfhjmxI5TsabY1yzb+SCCI2Vc/qG
iTsN+sL9w0XoSA9+KybO0FVKa7omQtDJ9B808elF1hWOt0QIyHyzgUm8ZqFn
b2GUCOm5Z7QbiKerh840fCBCSYH0nv+9f5NqomV8nAihxSv+/m9+nqh88JB/
TM6ZiQYD6cRHZjPPhKaS9e4u2hxLvGymzCPecxEk+4VKV4gnKmgX73glwo2W
YttjxHGyfrK2uSJYGxkUrSL2nnjD4FWBCHar/lXWJzaVer1x/n8iSF9t/s0g
Lh0R3h0rFaHWuDyxlsRH1JDiu4AKERS87if9L3529ls2NX8Xkfqud3oUsYgf
ovH+Fzk3f99os564iI5bbdQiwt9Ejz5N4ivsIp9Epgir+wfUR0n8zmdKvj5H
k+d/MlbxjNih7tpSakyESLfUWB7ZH7Nq0ndmSIphIPNhIJ+4tarygvokMZRr
75aHEwd/nVEqoSCGP/NShwrx48KHbh8WiLGow45jSPaj/7vCEyaLxJjB6tHh
k/1qmdP88LGeGDd+Rna/Ii5/rdF2wYz0P/arR5d4MCntkN1qMXylbppPI/mg
OLE8MnOdGIMfe+8Xk3xxM64nS8NJjHnL7186Qax5z3RYcqsY77saR3+R/LLx
an54sY8Ya6O8b0SSfPTk8LfEVRFiso+uTMkl+a16gblvQqQYo5EKAVuJh2vi
TQejxZD/du5Uvz0PG6yOfHoRL8aDYKkIY2KxhDJ3xmsxEo+aF0ST/Gl354Bl
23cxrIzfzZ+/krzfqqpxmzoxQlZ+D35ux8O9fquv0b/EkNt4I9yMmL1t6nZ7
phgT1/2pXknydeTCrAuvxWJsi7Y32EzyeUu2REWoUh8W/VVvXLqUh8neB+/V
z+1D+z9l6lk2JB5UaneZqPeh8FSOkS5xeOhTYYdOH2TzDJ9Ot+Zh8RonZUeb
PiQJs5VqLXk4Ux+7b86OPjwN4dapmfKgPGw5nJPUh/GBpaGN5Pv3rM7qyOGn
fchd2vBGldgqy6ZbO70PLl7LHu5cRPKZv23dg7d9CLk573qzJg8PmldnhpT2
IcwmYFrVAjJesdtB254+PJnUlXRsLnHE0V+frPuh4jxjYY08DyrzX+XXVveD
8jl5Q49P6pegjW7LfvYjYx3H1aKH1BPlvbzkxn6oznNdAh45n502W3CsvR8M
CR/3TVxynmvMuzxd3A9/ZaW5PixSH0UXuzkpDWC5dtL2gBZyHpBr7PmyYwC7
NJ3Df1eS8+Og1MICzgA0HOce3/+C1COH9gscVYeQcN7lji+p73ysM53t7Ydh
ohTBChrgYnNhs8fU3X/xO525MyaGix8Ns0pP3xoB/UKhdXQxF+rp+s1ZaaMY
fG88KbiUg1Flx233/4zhhLLXowNbOSjrMTA/KiNBhUH+xwkWG+cNFjJGb0tQ
wY+STYfOsjGaMz9+h94EaqPf9Lal09hoj5M9l5Q3gVIf4h0SpXYjdTFXV3WV
JMVocv/cT3XDSP7HZb/fklTtev6l2T9Z0Fj7zDrRR4pK1atpMDnKQlPFxYRn
E6SpWnH2mKosC8cltpR33ZemgoWlyiYpXQi6qeQkqylDHbJ5fWGBfReW+zaH
TSiUoVSYX6xjujoRkBgt17xuIlUvU2VeeKMTZy6s2MGvnUi5HLNSeWHVCZcM
0Z46v0mUZo7+2pTmDkTa3M1/PDiJSjv1xro4ogP3pi/7bHd7MkX9fRi6xrID
Mqt+aJWqyVIr+Jna8SwmnDV2OYW9kKW+UVPK/OKYOLBBoDtj5RRqsMr1+YAj
E201Rz3Cq6dQi6R8txVJM6H1dGhpta8cdTVr6FZ4XjvWLDrBcpKYSl2VO2SX
c7gd1RIdXW8iplJy/rkBVw3boaGzJYajKU/NWnZKOYnVhqa03MRJWfLUTtPA
hGnP2ki8MA572E6jFnV93rPSrw01bocE539OozwLknsG9NoQq5//JWIvg2Lx
k2+c6W1FE/t4tOQBBmWRWZoWwm+F6jOjPSe9GVRukHrHyZ5WxGmmDu/zZ1BO
rh4vgmjieZGGS4MZ1LtPYdcDu1uRwPCKYl9lUBHN9rf8WlvxSDR915o3DKoz
w/NqcHUrWt+U6xdmMSgPhrPWyapWqAdeHjTJYVDqf0aaTlWS9vTI7XkFDErb
xScxtLwVjztZJeISBiW+rhEYXtqKpPp/9ZIbGJTapE/L4/9rRfvdkwPKvxlU
bZJL1KP3rdBwMyu5+YdBGSt4SKcUkfbVz3aEtDOotZM/WL0obEXy16hIZ5pB
rdO4w8nPa0XHZacdX3oY1K6RkLnvc1uhuUZWb7mAQX2SLvIuzmlFysezxTr9
DOrE1pUu5dmk/XnryIRBBnVgLLS3Oou0h3i74l8G1R0hlfYzsxX7R1/pXhtl
UMdNq8/+ekP6F/j2j48zKNH81oCWjFb8HwnQ2qU=
           "]]}, 
         "Charting`Private`Tag$11812#6"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.8998708, 0.8438502, 0.7248352]], 
          Line[CompressedData["
1:eJwl13k8VN/7AHD7Wk1lskYilQplK1meS0UkColKZSmKoqJoseWTQpGoiJCS
tFqzJUIpWUIiW2OZxTL33rEz+B6/3/wzr/frnDN37nPueZ7nrnXxtjnFx8PD
48rLw7P4fWnO89n6A73A8/8fzL6xUHbEoRdUV5INFz4vQLm4rA4lqBeCDM23
2eTPQ+KRnJJHt9G4hkZMpt88+L2yMFGM7YXOPadvymyfh01m16y3vegFGYnQ
dp1PcxAX2nnGtrYXbPeuu/r9NxfO//IlOlp6IV9+WZvbUy6YKy694tbdC8UB
mmKj7lyY/2QY5kf2gumYz/zvuVnwmH769JFUH1xr2NZpqD0LBj7OzR2ufaD1
di1VrmYaJD9PO7qd64PHKbkWU8nTQC6N/Td8uQ/ig3ovRfhOQ8brLyNzd/pg
tD+5olx5GpYzlEUUP/RBzbLMOoWIKRjUKb2XWdQHx2fM0i1PTUF1mN2qbZV9
UBsfbyllPAVXlf5TMmntg5GouHX+M5PQ50Q3cOP2QWVEhYqC7ySUvQmsHBbs
Bzd6kzfTdhIez0pa+FH6oVpEamqn9iRYJpgdvqXUDyO6ta7eExNQ0JJ5IXNv
Pwh58oe1Bk9AxD7PjOG4fuDTuXTk2+txkIsxudic3A+pKyv9cuLG4U2LjFFx
Bvo92EWbvDEO9U41v8ML+yFdTZg/6uA4rPRREVTu7If8016Qyx2D9Dxuo+hA
Pxx8X3vdgjkG2tPNScRIP5yYMD6yrWUM7ENDtcsW+mHDOwtR1psxSIzrcXVU
HoDbHgLMbucx2NxeoIFtGYBLSgnvf1mPQan8vdn1OgOg93dHlZjRGHRnGDwY
Mx2A+cPp4fvkxkCpKOFL9NkBcKQGOQy2jUJWl+3ar9kD8KjOTebLiVHQV9o8
8qZ4AP4qxzxKOzgKP0/zFT2oHIDta7QkC3eNAhv/cMD59wAs8PN/u7VxFDT5
lgVzpwbAbzbqftwYBypNB/b18dKB4hAUv4rJAbvIUqkfYnQIpSbbfuvgwGWq
5/tHq+mQapwvWVzJgeL1Nd2aGB2GuuIFv8dzYJ9nSpaMOR2O5BeuLI3gQOf7
y5d5bOhw5etPu79BHJjfobKs3pUOEzp1zPizHDDZF2p4JpwOx5uKxyaNOfDd
2yAppZ4OcgPBj/snSZBek57n+IcOaUWuO8/jJJyuF62T+EeHFY21j6QZJAio
/ZkLJ+kQNZSbXtdKAjZ44YQPlQHdTSJ6bz6SEJ3QdmWTPAPWHNXsU/9AQvde
iOlXYYDaT6Pc+kwSrr1cUuGwnQEyrl0ybokkFLi9VDI+woAqWe+sv4EkCFKX
6c+6MCDkRshafX8S7Cp9bfM9GRCpjkfnXyCBs9YkTPUGA7yvefyZcCNBradz
YEUqA+h1ZnOpliQ8d1z5qneAAZqZS/abKZIwKhJQkcRmwNcA/+vyciSYFPa0
208yoCVjwUJEkoQeybditSJMyE368Vh2CQmyLWZeuZuZ8Hd52YzqNAFnbr4L
O6fNhPF1mQrJYwQUaq5K3mDIBINVL9OVCALs7/fWPbFigvVhRpUrg4D7Vjc0
wi4w4UCAwp6PrQT8m+szM7rKhPbeG/sKmghQf2txciqUCUIiEznV9QT8FJe+
7xXHhDELwQLqNwJEvudw7D4yYcv7ia3nCgkI3MXMV5ljwrGwqfw/yQQkmAWp
JguxoE7/gXJwIgF5+ySTqctZUHLmz5/tjwgYst0dxq/MgueHBNe2xBDg4JZq
Q9vLgvO1KyuKwgjw9dj+1cGGBfRMf+bvEAKiver1Go+y4HBd162FQAK++nIV
P59ngV3syIGrAQRo/eeAJ8WxILnwv5Mi3gRY3cFdqE9ZoG7lHxzhRcDZu7da
I1+y4P4F/evSZwlIjc/7dLWYBUThT7PDpwhYlrE8yuEfC0Q3+MkePUYA82vN
RuqWQVCZSNl+yJIA/toTSZE6gyCkkykebEGAQsMEhR8GoRnzFMvbS8ChP+sm
yYODsKxBntTdQ8AXRnB1w5VBuDiXcfK5EQHdQ1J6ZiGDkNE3fZNqSMA0/u5N
WcQgVF0msqP0Cdg61fngbfIgMC+GvYzbQUCyiJ5LZOUg8EX4eSxoov1c0vib
r24QjPwjLd9sI6Blubv51dZBCJmV0D+5lQAxmfitZ1iDILF3aXmnGgH+quS8
KWUI2rmRhiqqBNhYvHrCd3QIGF1d3A5FAtbtDrJrcx0CE2czXe4aAiYMDy19
5zUE8zVf5NYiJ27jDXIMHIJTkgPJ/vIE0KQdXT6kofWb8QvHZAnIWakhdysL
za9SnEuRISBsiWDL0dwhULajpTKkCdjIk71HuHoI3hmyh0OlCPBhiKgeZw7B
PdhazqASYELrpmmRQ+DVrLLdApnakZcoOjMEEUr7TD5IEPCx/uSSfPFhYMrJ
/bm1koD5/EJcXGMYum2k7Y4tJ6Dx/b1M2vZh2KxpW9VOIeDZKzfnj9gw7Goj
Dx5BNk1e3uxiMwwTG9/edVtGwN0wj4Iiv2HofVUqnrSEgOOBRt7RgcNwPtFp
cCvyVn/qxlPhw+C9ofpajTiKr2d5wvKEYfDgEGELYgSstpW+4V46DOtOmndG
ihLAtmTrGFYPw5KgK7PayOWmVeyV9cPQIlt+7p8IAa47fU6W9QwD61ytghFy
1tqaXav4RyByo12IhDAB1+WecgfFR0DP87tQvRB6Xlf55pdTR0A/IvROBDJH
RHGD1/oRWL3v9nFR5Cq+iR5jjREQfkZJrhUk4CG39rHUjhGot7fOjkbWI66I
VZqPgOY2mrY8stjg/srHNmi95dX7dAECOvuUr58/OgJBzQ5Ps5GD/zSMyJwb
gd3DLc8tkWvKNvzyiRmBD/1S3vH8BJxeqj7AnzgCtUV5NHdkgWPa0w/TR8Au
YM28PrLxNLb2U8EIXCvfL87iQ/nDzEznQPkImIazGBXIgQ/3m/d9R/83jc80
CblY68gF0a4RKDKdPXEI2SH05H9J9BG4GtAloo082Xg6QYMYgXlT46VUZO3z
lyoO8bOBd5esQBsvAU2lAb+ZS9jgv/ZNfwmyj3gw65okG8r5p7ipyG8zo1Y8
U2VDjfiZnPPIlpOxKjpabPh6Ld/oMPLgngS9GgM2GD8RpWHI6/teOLOt2ZCp
5GcmhVy17Y1fiCMblGjvZ/mRXYNz7lBd2ZCmuCOD5EH5Qv5z9s7LbBh3//K5
AdnIq7q6LogNuFTrmnLkzuLa9pN32CD8w9EhG/mqaNPIaCwbdG/Lu6Qjyzi0
8YYnsUFeeanuQ+TCjO5Vshnofho06u4g24/3q759z4ZN1S8VA5FjY8mDzV/Y
4GL0guaBvJU2eer0TzY8GeQYn0Cu15gPmP7Nhr/+Krvtkb0CBe5F9aDrf/hH
248sXif2bA2LDRu30qimyFlyKwpyOGzwkeW2GiHvPSv1Yw+XDYxiBaUdyGHC
6zieFBzUVV7qb0FWst8ktCCNwx8Xp/n1yBXPt8rGKuHwIaFEUwn55KiuusoW
HNL5lZvlkeeNDU0KdXDYISX+VwY5KWaX/T7A4ZAer4kk8s4e87Pde3GY984U
lEBuUzsQeMEGh+2SRWuWI1+5bh8rcAyHsRieyKXIkrXHMh6dwkFa0NlEHDlP
xrV4kzcOoct+YaLINh5n6j/546DgfzREGJko8O49EIrD+JjCgiDyPcHLE32R
OGB/9+cLIKvZXRe7Eo/Dhb9qKfzIP5+FKoil4KBVIVXIh3yWvK2ZnInDma1X
ZnmRRbBo0605OCw7/sNt0Rn34o9UluAw1ZSG8yDv7npy3r4ah6xNqY8W3bf5
WSirHof+5gCHRYdezXx4vQ2HDU1jaotW/P4ui9KLAyWYKbHoMqn8smdDOMTY
GAot+tjpkiadcRzEkod5Fl245qBW0jwORDDP/znCa9ScF53TNDYsLCygOJsb
Xc1DeeVcqe3Uoukqd7LclxJQ2iLVv+g4vpa/sihvXmaGlSzapEdBvF6SgBWR
H64smig5ox8ih/Jiw88Vi376OM9TG9UFJ/qGm/PIln4LTxjrCKgr3Vw9hzxz
0OJnIqoj+clOv7jImerx3P3qBLg0O6XNItuL/9vCq0XAgAVDfQZZgLnJKW87
AS92NFyaQs6p8rvrboDO8SeBsxPIJ9PKP8kao/HoGPExZEqgOLsO1U3TlDgb
ErnsiL1CCKqzZpX79NjIXtvTrLStUR5yES0eRJalDgcybNG4vF4DHbmG0H2f
6ID2Lej4pV7ky3UhPfudUF1+SU3rQl6X9ZPC60KA3exS2zbkpltSWN5pVKd+
S4Q1IQe7uvi4exKgqyOk8RNZHXubKutDgLlvh1U1cufqqcY6XwKqJ1K6PyFH
TJvwhqC+g/bPrz1/cT9a727TRn1JT23czreL+5HT5swIRftz3XwufXE/opVj
E8MJeJcwvjpxMf57izg89wn45rfWOWwx/ioCynnxBOic/3HdfzH+fNa27qhv
ulNS2ue5GO+S/ty6dBRvp8zQA4vxfqzRH5xJgKq0e47xYrz9rlK136Jz6jO9
WhPZWX25X2IBAcMcInY58nLxoy/2l6D79X3/cB49V2WMF795ygkIqh6tHkKW
TdPXdf9OwK5/oY8rkZsk3Ce1OgmIa8187YEcTGRvYPwjQCJB+JU1snod93Di
AAEhmREFOsgRt2ILeXACPP2Cx+fnUDxcu5i5owTwru1Q7EWmw0YZ9ylU9yNV
D1Qhm0x/CqjjJaE6XvL9f8jEb5GsYCESnmhS292Qn+bY/tUSJ0FLqXLWBHnG
k7UzkUrCXatoRS4Xh9xuKvf0BhIcVzimOiMb6C5Yfd9MQnzTFml95K93WWmb
t5Lg7pyTIIHcZlBmRuwgQX9FSE7FLMpDie4PAixIiHOcEV2JHM45SO+wIuG8
Ez25bwbFy8JAz8iWBPx+g1oesvL08h6+YyREiHvo2yDvPVy8KeocCUmG6v0h
0yhe757fYKO+3+TBLvV9yEeFohsPXCZhrvGHhwTy+XzXy6uCSJB5w5uVOoXD
A4mlX57GkGD+6frOd5M4dDeccMzOJcFTlHwYh/KAxwaLNxKFJPAUrTxmiUwG
ai/4lZLwkW8HDz+ygLroi53VJIiKKPR6jeGgGpVDVKL3nOCIF+Oaozj47hW8
3TpNLubBonACh7kU/O+OeRKOhytR1ZBvTbarPeHjwMavn0x+4TgkZLxrPiHO
Afu0YhlJ5DIBhzWs1RxYoJSm3R/BQbQiq2AWOFBbwy23HkR50ETtY+luDoCS
SEcbCwdm1fuPN8w5MK1rcPckck1NXuGCDQea/HiLPJnoeo1lxfynOWCueHbD
BToOfP+aysSjOLDzlbXBDpQXOc6HPv+M4UDD6O0vWTQcaH1/Pt9F743z3S3d
csjljM5ySgoHZHu+tU/34BCE079I5HDgl7tAx/MuHLjzM1/l2jjQtTt3w0eU
d4eDb3zr7ORAyN1/chLIHXw8Nck0DlQfvJ157g8OxUKC39cMcSCW/1SUQisO
AcsotcrzHHCt6Lnl3YzDhLxyw+Z1o3D2V3l8fR0OuMG+P/o+o3BTzm5TWAVa
r3du5rXvKESnWTVVlOMQphstvzpgFOpeRu6f/4zO09ZmV27IKBi4/Ph8qQwH
U+WjROmDUWjvSkg7gOpIkqinqNHHUbiUJfmrKQ8Hi9YIfWx+FEr97Vu5GThk
eP9I2R01BlmTpdfFbuPQuFb7zNOYMYjzj2wWCkfnoTlZcypuDO7VdWnw3cJh
/44L1a+Tx8Ce7/Ps+E1UR3mkh1a+HwMyxGn0VxA6b7GndGm/xqC/wW7m6BUc
evJ46m5IjcO5aKrup8U6O6M7U/BsHHalX7PuQHVbRuFdcUvjBFxU+3F3rpcN
Q1P8yiWDk8C3e4d/QggbLM+5kZarp+GxACPJkMIGD72cg3v3zkDGw0NKDx6P
wKHSbsclJ2ehVNLWVQT1sU1tq2quRXMhL/Dy2LaXw6D4ZnN3btYcfAn4djEa
9fVz0pZHHnXNg/x6zbpnb4eglr1F+6IgD+a1T3VPqvoQBG9Rpszd58FWjIql
6BYNwlyBQrLTJl5MR8LvS6z+IPQmiQY9K+TFVvG5x2+qYcEL9SHV1bv5sCbC
R0rckQUaS5vCPTv4MGuL7wfIXiYomWXqpXjwY8eCtmdvvMKEzrqbTzN5BTAT
L/V0qiATfHnsf9IfCWCMeUF+1iMG+N2TshJdJ4glvyvKTdVmgOGZ7lDeUkHM
ydgtsqSWDudT4sS7zYUweNRNnPKiw/UQYye8RQibSfgEh1bQwebDqHOrpzBm
/UVfdkP2AMTsjC9OmxLGllFUO1odB+DhCoOvJvdFMLO7bwer5vpBcHeTSs0a
UexCW0qEalY/HFQ6YRX6WhQTyu25eORIP5zaT6qu3CWGHVjNY60k1A+05ouO
txrFMBtitd2boj5QeTmt33hGHPO99rRO4kwfmK6/wrDiWYKx4uuLN63ug0ae
fnp21BJMXzjzP/vWXlDaaJ8wuG4ppms6XPI8qhc6sz6mCOcuxb6ydGremveC
bzvF29FoGYp/iFCOaC80250jg38vwyI97jpTv9Lgyebib1EuFOwxcX9bym0a
dLJ84/hOUTDD45fNYsJpsDpTw9nfnYIpttdcC7lFg6R1L2ZcvSiY/cILcAtD
lo9R079MwYrOVWptDqbBU8rpB6w7FEyIkfK97AoNUkdXnDDNpmDG619FcU/T
4F/2z82luRTMw/WlO3mKBoo+4VPbCiiY8Mb/TtLd0Pxh7n35EgrmnFb3utGF
BmkDjKqxKgq2ZlgyM+M4DZ79+bQpvY2C3czN1nKwp0FvvP+kdAcFW2XweNDq
EA2U7LSq7nVRsFSu1Oc9dmh+Y6bT1V4KNvXyV7mWDQ3Svz+IOThMwSqO5q5f
YUWD/nArp29sCvbalvVdZD8N1pmKbjIkKVjN4/gIHksaPP8SWLlxgoJhaeBG
mKP5wXoxT6co2J1s7RvMvWg+jB2jzlKwnsx7uf/MaOA29041Yo6CWWuYC7eb
ovUlZyYWFijY7ZET/r/20OB/4qFfOg==
           "]]}, 
         "Charting`Private`Tag$11812#7"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.907999, 0.789417, 0.652903]], 
          Line[CompressedData["
1:eJwllAtUjQkXhk+3UVIfCTVKdyQkjX8keb8KRWEqIaRJ6SKXNCKhQkkYhVy6
K3QTI11UcukyKRFDuYxK5945p1N93zmqU53851//Xmuvvd61nr3Xu/baa5vs
Pui5R5nBYNxX5P/qwD/bmq4NscD4f5AhsuzsG7PYYNmus/Fx/IGV4f4fvgaw
YT9F5NRaKsfM5zKfwP1sRNtww4POyEFpXenpO8JGIKOl9bm3HPn36sXyJDZ4
Zl/Kc8bHMZVvpm78kI0kw39LazzHIVxWe6mwmg2nBOf5Ystx/B2/eYZNAxvp
ypatjUrjiDZNMHX6yEbE4rzl28rGwPblrQwcZ8NoqffCBsMxPCuJaehT4yBE
INV7LxvFzbGZ6yMJDmZ94H0M/zgK9zSXrWdNOQjd8lZz8+VRVLYXHip05cBs
v1rLQa1RnHcLy+9L5SBJbFox3VCG2SlOER+yOGA4GuwSKstQ0q6/qiafA8cE
ww5jwQjafJs7Eqs4qAzS2VBQOQKdcAs1s04O8tU87tLeI0hP/RbgY8bFhe6i
o9vuDMPqS6U1uZCLqB2edueSh1FreGls7jIuvqyzoJWPD6M7f+VV6VouvCb5
vWn3HIZpdVp98l6FPuTS2qo2jOIuL5OmUi5qnsR4mUYNwd7USlxSw4VOnP+K
+OAhvA5Srr7awEX7/nRjk61D6B94+Jt/BxeunrIj6r8OYamydtz4CBeH635l
Rsq+o2Zuc/dSkodqfy/D2ee+wy0sp1h/HQ/zHOKdXkd/R+dfR44wPHk403OK
KNn/HRPLLbTbAniIaDhOS72+w8nttENoIg81MfOK00y/o+XgysycNh4M3EYP
3n0phZ7R7XKfTzw8v2RnZvVUiqA2jTfTe3i4Mf36H+2PpFBd9EmeSPGwfVUG
lZwtBSk85Beuy4e6QZUk86gUlYEFpo7b+ShznupdZC2Fmq62/dhuPp4Pr1tu
M0+KzQ2HvSrC+KhfeiOtY44UtIlTvOVJPl66blkboS3Fom+d3Gm3+Nh4IKpg
sF+COz46RSwuHyEyO+phuQQS9WN1mf18lC5fVtR+XwKnqm9ftgzzccoiegVR
IMG3mfcnt6r3wqn2c/HLNAl+bnfZV2bVi+70go0OcRJc3njSOv5QL8KOV0SO
/SZBj5ztsiq6F43Lax6Fukmw+P7630dO9yJAqr9euEaC15p6l/el9mLFHE6S
ib0E6i2P6M2Pe1F8Q+mi/1wJYpx7KyzkvchvSnaW/qCR5hJrmfWTAE4PPY9M
HqNR7jYzS3eqAJ/UnzGWDtEQea2OVzETINBxQq+8j8a2wFueTFcBVnyTR5z8
l4ZtwraBzFQBKhKuZg5W0diYNLBbN1uAgPLJL36U09j759mPFwoESEgevmpQ
SuPWtfKn0TUCPFKSx8YU0dDOn3pxW48A8/90+96VTqO3qXm+7kIh5tb9pcKK
paHS6pd5YZkQp2bn3Kw4QWPO2yFCBUI4Td8nu3qMhvcn82HKQwjlspfHw/+g
Uc+P+/vtUSFmzHlmfSeYRpa63e4LDQreM/RUhweNqinvOpTfCKG/YwbHeRON
9qnB66I/CqG63KCpxp3GZP1rS0IFQsAl42ydC40oS2piLSFCfdCaROtVNDzX
F2Uo7xAhcrDX74+FNMxXx27+HCBCKV9XHrOAxpCDt9aDfSKM6Y6HpsynkW6j
FOsTI0K7c+OuRnMaTD2f3Q9zRTgQyY08YEgjnK9uuatXBOIe5VhD0HBidjNt
KRF2nvgjUV+bhu7X8nSNUREa51aHnpxC43Hb71MqNPvgaLX8hacGjYmKqgFN
6z4wqztZNio0/owPqayO7MODfSmG5cMUdsWsOpgc0wcUumZ5D1FYEqU7f09i
H1YJz74YlVJoD3uRNjWtD5to7ZpNNAUDL72TwbV96IlKnDAVUyg2aXaeoSKG
w97ohAA2heZn8/4JTxGjKe3KudF/KARpLeaqpIthZ7Hfiv2OgurOX2TXb4vx
9a1OYNtbCo4y0uRppRj6GkYhJW8o1NhuP6TRJcaWvE8nE1oo3C+8OC3Psh8x
AT2ReXUUrlyhPD7U92Opw50K5zKFX+bwnqDX/bDakbUm7BGFNuuJY7KOfgx/
6bBPLaWg+WZynpFAwZ/zdBD+RSF+kjkdRgzgQHDIq7slFI6e2HJFdecAMr4I
CO98CjuDnrxf9n0AQ083LApNp1Bl5GGbOTEAyrp0fXkahfP7JOuUVAehQr+a
xFBonkVScbDWICLsgzal3aCQfbM87BfjQXj55Wa8T6VAxGj2v1kzCL23/Gs7
kykMulbTjMuDKBa/3VseT6GsW3c8aJ5iDw9yNrQdpKBRV1w5Bhozk1h7Qlwo
DKx0+2QfLsEem8bQ0zMp5B98lbP6ohTPeVHDi9mKuaP/Ga3MU/zBgq6U/nuD
0J/zoKb93RA8ZFouIWGDEI2omD0RDmMga8EqvtUg3PcHUu4GMlw+d7xgWssA
Quweebi6juLnmUa+D+0G4F3b7TPl9zFkxdUHH33Uj/efZzQfTx7HMY9O9SCj
fhiXWHWXFctx3nZXd+F1MeR67ttvdE2g3nZC9k1xB639C3+JUGOQm7euqWpW
3FncQjNCfplBlqyJ0DwsEUFeOSfLd4ESqffk821BiAisTI3YvColUl2zp9Zf
KMTdxSJLg9XK5BW1pBCjQ0JYa71PDPuqTLa43jZ4PSiAqUuhXU6ICqnTnpFk
dEKAzjdnsguVVMkH7AKXKUoCHGZsec27oUpu1XQW37rQi8hLszZqmKuRraaN
XCOTXjiEdp9WqlUjc3MYXV0P+TiQk6rZve4nsmB+fwnhxseJU46+A+0/kbkv
nIJ+CHjwfCjx/xg2iYxucxMXneEhZcW1mtyRSWT4nVsnhHN5uD5tZZPTZXXS
3ejFVue/uVBb/d6i2UiDzK27KK7Yx4WHqd/G0/c0SEeLip/X6XGxZwNlqeM8
mcwPKZG6P+eA+SHC5+y7yeTJrncb0g9wYFEgs38Xqkn6OTtr5upzsHbuUf5G
xhTS1XiJbU4zG+8YHF7pxSlkWN7NTLNYNkznb0kTmmuR3r/5+RXYsNFZ/Dhn
UpkWaZ07RrmLWDj8hTjos0qbHP2x8p5xIQsfNu+n4jq0yZoZR9uX+LOQYVXz
8uJugnSlYjvqjFnoFBxOVd5DkKsnm3PuGrFgUGjtHxVMkEkrD00/P4eFTPO7
owH7CNL3Hv3B00ChDVMW2R8hyKoZqp3cWSxkE0FXBUkEGTswpKJDsHBLMs1v
bSlBZmQMJZ+WM9FT+tqqtowgjzyWF+0dZ8I4PHHEppIgxRFaHM8xJm71jV82
fEKQaYNLq8xkTORy+Y3SRoU/d82eJikTeZ+eLrj9mSB5ftmW0/uYYF2LGtb7
SpDeHV2OciETppttGy91EaS24OMxvkDBvyv0jWYRZJELy7WWz8TtlqspHn0E
aXetfXcwmwlO4kbfl/0EOVy8NcqTxYT5Wo0FDhRBvlq4/74Dk4k79TEN84cI
cpLI/ojuNwUfZ5eSPUKQJYEiDUa3god0p+4YQX5s1H8q6mQiUP7A8rycIC0X
1id/+qrofxI69OMHQc6u/Xaq4V8m/gvUNnyJ
           "]]}, 
         "Charting`Private`Tag$11812#8"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.8879026, 0.6993192, 0.5746156]], 
          Line[CompressedData["
1:eJwllns0lQkXxg8ScnlVBjUpCSVkIk1N8rxJbpmKdFGjpNKFQqXUDMnUGFJR
CMkll0SUwXGJpjAlGoluviQd58Y5Lsf7nuO4HL7zrW+vtddev7Wfvdf+Z6+9
F/sFeR5WZDAYGXL/X1QsymsTVfSC8X8j+21rrxdU92KlNoqvDU7jn8te361s
6MXJoFrXU/XTuGB0xcjhQy9mtD1yXxM4jV4frt2hyV5EdvKtj76cwtOHEQ1C
ZTbChbr1TzKnkDKh6xZKsBF8l1mRHzYF91TnXX8YsSEI7ShbYzEF5ruCkAIX
NtyCVLTU0mSI3RyQL0xkQze/nfC9Ponv4x1Oddxlwz8o1MkoZBIP382zr8ln
o6l5tMnVaxKtPk3vo6vYaM80uF3//STmBJsoL+liIz3XVt360QTSEr8e9F7C
QYrXVpV27jjMO5lWpAUHVxPVG+zfjKPW4PqEqS0Hv1fPNpyoHEd3vt0t2omD
Uub8uftix2FUnVp/4zgHHq2EfbH1OAq/bF/8opSDvgcp16Lix7DOyHzgYQ0H
nl3WX/zDx/DaX7H6VgMHobUK5rHHxzA49HjbgfccpGUNmcZuGoO1olbkpJSD
X6NZP+yakqLGtKnbmuTiBkfb9sQFKTYHZBbOc+VC2rj1VNdxKboenT3L8OTi
5vjq5vC9UkytMdFqPcjF2Lblk9vXS+GwOWr9sWgudM0T969TkuJVkF16ZisX
JqWnnf1vj0J/UU6590cuhAcJDX7sKPxb1f6d2yPP7/LdGh8xihmWH2XRIi6s
EqLg6T8Ksj9kf7AOD9aHj5Rc+3EUzEP3jTbs4aEksHT6XI8Eyjpa6yb8eJCF
zNm69IMEXg1ntlcE8MD4ETniFglGFjtcNgvnwVTXsWKgUgLLr12c2Vk81Gk9
8CATJMj1nvOAxeEh1+1I0nxXCSjV88/TB3m4Myp6f5WUwKHqa+fOUR5sc2kz
3TUSfNUtntWiysenz9zaM0slmP/OObDMnA+hccK9bSoSJGwJt7ocwkd0uHs+
WsTokfU621/go+K6ZJ5Boxgrit18pVF8tPSs/6ZVJ8Zrdf2EwEQ+YkX1Pise
iaH66q8Rr0o+LCM1eDsSxYjYyK8wkfEhVl36VttPjFTni2Z3Z/ahynjOq8S9
YpRv1r2ro92Hyfu5ZhY7xBBsd7ystKQPKyxHtRNdxNh9KMvzm0sftCm+8YYf
xLC5snsoPbEPbz2zP31SFGNLzJCfTkYf0uffnT4jo3H82h8frt7vQ0RxWZGh
lEZWUnndhRo5u1lW5Q3Q0MrXjtvd04et1OI2304a/BdNy3Qs+mEV9/ebk2U0
lFr2p1+17YdMIdlEUEJj4RsJoYR+MDmB/NOFNHZ8NB4VefRjLDlkZmE2jXpe
5D9vzvXjmf37qZx4GndV1/pdbehH7HyftKJgGp5uD+4o7hVAVYmun7WGhrHj
Ra9PBwUwPclqULClIVm/Q7MkUIBpX9uq6ZU00lYqXPSOEMA1JGeRtgWNb/re
fo+zBRh/+vl8pCGNYJ6q2T6+ACm6ZQ1xs2g4fOv+ZiMSYLvJ8498FRo6n8vT
1MYFUDZfmuCmTKOy1VejQl2I7J92PFjIoDFVUTWkbiUE3zA7REVC4drlo8zq
UCEirQ5ZvWZR2BdhH3QjQghdps22Cz0UfgjTWXY4Wgi9Yhdly24K7wKepWqn
CmE3YjGU2UlhwXb98CO1QmQm/GNY00ahcHHTxu+UBiAuyoop+5tC09Olb4Pj
B8DaonlvfxYFf80VHKW0ARTHm4Tuy6Aw45dVY8k5AzhkOrPZN53ChjFycR1z
AHUew41BKRRqbPaEqH0ZAC0ru1MRT6G4IG72PbNB/PRk19oPlyjcvCny6Kgf
xEy7nJiF/hR+8X/SbiseAre7xLt9FYWqRR426VNDoLsPJB21oRAbSLkqzBhG
nVBMMKwpcE1iCo9oDiM27tlDaysKGSnlAasMh/FbS4k4z4wCEaE++O+mYfle
XIl6tpDCsEv1CCNhGGGGRF6+GoWybp1J/6UidHbMaQn4NgK154XMCYygqdhJ
UJA6giG7zR/XBVPQ3LHvqYP7CPKDmjMd42gUedx6vFtxBPrjq8eZ98Tg/CY7
P1QpwryFJTXv2iQQfF790uOwCAKp0pIn/aPombf2mYKeCO4nDoncF4xh00zV
zlPPh3F07V8eLi7jeOVGt/ifGMaO2m5vDd8JkGL91acXDaP903dNv96YhIOx
g0Ha7SEYPjTvLiuUYdcA7VovG4RM333P7S9TOL6h2dRgzyBaBi1WnVJmkBsO
HjAX1Q4g0mIJIUtgkG4pnedKLQcgYy6867NcgWQctLtCJgvBSle7eK9KgZTN
9WanaAiRt0JgtsBRkfSan11tEyOAlWZ7dMBnRXKTczg/f6ofRs4FazOPKpHN
yxh+upf60fXv7xkFCjNIg72LhUqyPpxh7HzNvT2DbNaL/Lj7Yh9Cr+ttUTNW
JmXJrXqZmn1Yf6w7SqFWmeTI0lcwkvk4mZmo3u06k5xdIztabcbHb5c2+Ay9
m0m68F7GPajnwfMxdeBDgAqZ95+9zyx28hD/U1JNtlSF7Firv3CK4iJ5tt0L
hwRV0qu0vfF5HBfKju0mTYvUyI7C89scrLjwMNq/JapIjYy4HVv/4wcODv8s
MpuzcRY5Xb477VwYB986Tnn/0TaLLGy+7Pyn/C6a3B9b13ZMnXRT57usaGbD
yfQcbwtDgywoTCiaG8pGG4PNLY3TIO+sjykbXsqG0bKdqf3GmmTYnnbFQvkf
0FVYmalSpkmm7n7+vTCuF2c6iSBvey2SpyHdesOpFx1eJ0SR77VIQb2v88+T
LNwxr3kZ50eQo6IT59lVLHT1nUlUPEyQ7sy3kU8qWVhQYHUg7AhBjmTOK7rJ
ZCHdOG/8YCBB+u/C0Q3lcjaIt1x3liCr6hwvZz1iIYPwv9UXQ5Bjoz/bH85n
IYuavd+pVN5f2/GWaiILPaWvzWvLCPKKupew9yYLhsHR0pVMgnxXl3Tk7wS5
XjiZYPBEzkhpPHuDhWwOr5FuJMjTD6f1eLEs3PtYtzznk3w+jauLWi+xwEoK
G9X/TJApJ5ekFkWyYORl03j9C0FGvk9aFXNRrm8r8LnAIsg9vJE2x3AWcl7d
ivcQEuRfreKMujAW2NFbfF4OEuRGxRem6edYMHZSW75eRJCtzxzbLpxlIbc+
omGZhCDbV635c80ZuT5ybXyGVM5695L1Tsv1oH/RmSDINz25LyQhLBySlZjF
yghS2Wyd/odgef2TY5LpaYJ8HLv/akUQC/8FAf/97Q==
           "]]}, 
         "Charting`Private`Tag$11812#9"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.859434, 0.6006316000000003, 0.49633340000000015`]], 
          Line[CompressedData["
1:eJwllHk01fkfxi+X7L4yFIWyRopfo2aS6vlEokhjqXFFJkpJDTVNo2YsGTGV
Naqxl9a5Y1TDyFYz0qLFEoomS7mby8Xlrlzy8zu/55z3ec5z3q/3n+/HPCza
b78yjUbLmJv/+dWeZxpduWzQ/i9yzivqpmAuF+9JOlQ2O4vFWa7HOorYeFbU
4hDUP4uyTuONtTfZcNdrrz/29yxaQprepFazwe62/dibOAv9GGtVyx420t0W
HT2qPov83P5whiUHBS/El7zsPsH+XZUjWcFBZvNjb4nuJ9SbZihs1nBgafdp
u0g8g76b63PEWzjQingbyGuYgUVN3qPMQxx42HffzQidAbPX3/zpPQ60f/3z
2cDtabhY2I+U1XJwbq1K4tacabyKUK7JaeRAXytyjShuGqNjd7/a+4YD9ijn
rVbAND5X1k2clnMQvz09cS19GrU2TX2fEy72RrZ4/31YAa+oEqbxVi6eeC8u
FQQp0HPnxAmaHxelBoLkHVsV+LTWWrclnIuTfd2qFTYKuHolbYhM5eJYF82w
lzWF59HrC0tauLBZOGK27MAUjJZcq2R0caHpzBFfD5xCRItG82cfuPg9f7m9
97YpqKzsmkkd50LKikw3cJgCGToaGmPAQ3D5gsh42SSq9t2y2BTEQ9FFP+aW
7EmoGui6KMJ4cBH8u9/0zCQCGo/7/xXFw1oXXpnhyUlMmLsm28XxEM9aZRW5
dxIr+3s486/wsPTOO0Wm0ySuM/R/G+Dw0F+Q65zcK4dI/WRD4SgPZ6rKld06
5HCt7n+3S8bDgEW0selzOfoX/KH5Un0QBxTiFvO/5FjU6XG4wn4QwvJT0vAM
ObJ94hyTjw6iNIH19md3OeLdBv+ynhkEvB7uWflYhjyPBLuieXyszHu9eEm9
DJVeC4oM9Pgw8jjvZ1Mpw7D/5mS6JR8iI6H68esyBO674vfRk4/eeZ1vVVJk
cDoTOFaYywd/yR2DBm8ZfM6OhRkU8/E60RFD7jIcSk95e/4WH9++jG60ggxX
LlY+OFXLB8kJEb5aJYPuTb20wA9ze4acyVoow+DTJluDFUNw/Lq1QMGVgv4y
tPD8miGcHEz7c+lHKcxapRQdQzCvPtLl/16KnV1WsnHfIQhOLc5mtUrxiJf4
pPWHIRwMFTRfq5GiSN057HzjEF4OfFVxOlMKv22/FSjvHsYlw1nrUjcprDYn
BHSHDyNXfOdcMqSQbtipU354GLNl386LdpEif5VSAiN+GNXFSR92O0nx0YgR
dvfqME6rt8ddsJQihqdut2dwGMZJx91DVaVITz5YVfO9ADsmvtzEbpZgT/zG
6Mx4AXiNZvSSFxL8J9bAdn+qANxozW2hzyTojPonTy9PAKuJbVbCfyQw8TeK
O1AvQCCT7uZbKQHTvMnNkD6C30eeptMLJWh6uOx1TNYI5PRf6h5/K0GEjgOH
nj8Ck+neh++iJFAJXj156doIBn+adBQdlGDTJDF/UDWC3fkN5k7hEtQ6BR3V
6B1BBiOrhvO1BH/cTptfajcKoX7rtIarBBcujPt2PBrFm3WlIZNGEgRH1LWv
kYyhfZZKcWkVo3qJr1PhpzGI0vU/mDSLce6waKuSihDRvKVGtJdicK3PMg/o
CJHfu0jz1VMxin+tjFq9VIiiL+t3nHwoBhWvNdrsLoRWi0W0VbkYQs+aCVq2
EBv9ffp/zRCjos9gOmLZOA5NnvHU8BdDo4FZpcAEYtuZMfxhEcbWe3W5xIhw
N1auT08S4Wb0i5LNaWJcrP8jMslcBKOpL6aqSiVI8TMNFzZOwNisvLazTYrE
h6EeLqETGJbTLeuGZGi56OFqojwB7yP7xr1NJuHq6dcXXDyOg85/+np6TuFn
TUakZMM4dtb3MbS/UcCR+VU1kyNEe7dh04+Z00hWdBjxUoVYWmbfV8GcQVbH
k3+PfC7EjJF30OXeT9Dbcck/6O4YXo6uWH1MlUbsouOKjVXGkLjCkprJphHO
EGGPHhjFTJVZUchyJcLRvBJxuXEEA4UaCaXVSkRo0q7V5jCCGw7DdiablYmB
Y42m51UBHHXaU6PeK5N/3L+uPK0tgIXHbeeSg3SSELdvnU7KMHqafy6+raRC
fmnPz1LIh3CctusV97IKWWf1oEHvuyF8n7HQR8NKldhrvdtqNsXHhsi+JKV6
VWIX7Jxo8ePcH5bkavVtnUdivXSsw9X5+On0ppCxznlEqLO9wr9gEH53RXvf
RqmRNm5Uzh3bQWStu1h7Va5G1rRm/j2/gYdL89c/dc1WJ0FunFUkgAfVze3W
TUs0CD03oqJlrkd9LUJ9kn7XIDUa3xyyyeVi//ZxO303TbJLSZWUruLiY8cx
RkqbJnlzf+2mE90cWN+adGmL1CJfdKSl1J3iYIvNDzwfmjZRXyOy/MWcgzYa
m3svTZs87z754kEbGxa2u/KGrHTI5X3uN8t+ZKOHeb9ErUKHKOulup93YOP4
OyqasVGXtBlXiGfYLHQEHBlPfKNLFsVsq428zEKBfe2ztDCK3JrYbarmy0IP
/3iu8n6K7AxLMH29gwWT2457Yw9QZDf9kWuBDwuFVjemwg9T5DA9bdrRey6b
Zq10OUGR+/vPrNjtwUIxFZHDP0uR72g3Yqs3sHBFND90yz2K+KZkX8pYzsKH
e6/s6ysociGU6RBix8LSmFT5qiqK1KmbDdvbzvGC6WzTOopoZ860Pbdm4SqH
91j8mCKF2uIdauYslHY9WH6tmyJ3qn8wPLuQhYGLsTKj9xTpVosUMhawYBHg
9DijlyKjDQFjyw3n+LbbIacGKKKVSmc067Nw7XlOlq+AInbqC99/pssCO9Un
5NkoRTIZq99wtFmw2qKxfMM4RdoCTET3tVi4/ii+0VZKkbz41fnBGnN8onNW
sZwi4heBlo7qczzEwQYKijyZdmxTUmNh30y53bkZiny0rrzSqTp3XxcpnZ2l
yGZGf+4tFRb+C6arZwc=
           "]]}, "Charting`Private`Tag$11812#10"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           AbsoluteThickness[1.6], 
           RGBColor[0.814221, 0.4847644, 0.41806160000000003`]], 
          Line[CompressedData["
1:eJwljQk01esCxY8hDuKfUHJVCJEklW5E+6u8SqqbqZdSLnFUlNzbdFNSRJOi
WaFQGSopokgS6RSVseGF4jgTjtmZD89bb6+11157rd9e2zQw3DNYmUajxY77
f3k/b6iBeYsN2v9Fclu9TKufsOEcV6u0smIMS81sBA9L2Ki50mw2N2cMtQzl
F5cr2Sj2rYNf0hh6+/I3BjSz4eTSEpcQOIYFyjrRcjEbp/SW1E2jj6HEktm2
gHDgJDgXpOs/CvfQ27nT3DhIbuLUy9eOouXxwYM0Tw6ezEuH6e+jGF1iofNp
Bwe0sHhq8qRRrHA/6bIrnoPmmD0foqoUeB/unHL7Ewd2xxhC7mIFDGdmFvp+
5WCxTmlrgKUCjE8aH/V+ceDYNqxGn6KAqu1XRfwABzWLPX58GZGDdEX479Pn
IkH0dlZ4sRxFQVlmy7dwcenVkLfBCjkm6OsslQVycZyReVRvkRzelfu9noVy
cRQXixws5Rg0XRFrfYyL1vyZlzs15bD92cLWvcPFxT807/9sluGu7+ScDjYX
RoKKVkGEDEP0fypSernYdyDUThosw4rnP79vEnFxNZ1PN98iw88pjzRr6DyI
jFTaP62QwahpdViBDQ9jS4LWHjKQIWnDMbvYCB4qTxxRZ5ZLEbWS98xCwcOF
BJ8eN0spklcft05V4yNLO2lvjrEUhe5TUvUn8eHIiYg00ZOi28s1VmUWH89V
+TRvmhSbg+54tq/ho8Co/DTzhwQLT23uS7nCxwTBy4051yTYcKYvUD+ND01u
RZT/BQl2J8R9OZfFRwjf5odVnAR3rhaWHSnhQ6slwWr4gAQ69yed3/yLj6Ty
T6cYmyTgVTOt9Od2YYnZz5DTRhKo1PinnHPogvhTDDbpSTDjs5BSQReunN1b
vXCiBD5fzUUDHl1gbX/72/RRMd5wo99+PtQFKlolNbNDjFS6Y+C5yi7oPXCt
/XeeGJ5rc24pb+2GlZXmGcc/xDB3Pe79bUc3NCKPeaivFUPo4qOdF9aNMXGW
d5urGDftlY77RnVjXm1AepaTGO2GvoH56d3Q9mSeuGspxj4u3Xo7rxsZAod3
9jQxEmJ3Fr040AOTZ1pe8ucibI9aFn4xqgel9RpFlYUizD+sbxUcP94X1F5I
yhehKfR18qTkHugO7vQl2SIYexkeC3nZg6mVy4N510XINWWuNFARYIedIMnr
sAjMV7Pr9yUKoP9CudnaRQSG9jy2yk0BEkOu0X0cRVD1WyS5lilARGPP1VMO
IiyXENOyIgHGOi5FCW1FKFm4JUKjVQDbZ2FfDWaK8Cj7vG6GdS/ydq967aIs
wqVLAx6Nb3qR45hu31QjhB+jtMFhpA9vTCKe3t0lxPOZHgtTRvsgda6cU88Q
4mzYkJuSaj8sOtxNaEFCcCzO5IZo9+PpvAMhwduFSLtRGLrIpB9vM9/nrPMS
gorS6v34r37Ern+99bSLEP1rXgzSkvpBj0uYdk5PiII2fTlj9gCUZ0re3q8a
gUZFbpEMg7AV6Qitl42gz9n969J9Q9iccimksngY98M/3HY9P4wTs5lmD8kw
DKWLpUUZI7Cxclk38HkI02bklTTVCWGUfvqdue8QusUqs0q7RHitu6lqsWAQ
6/YEDawzlgBnU1irIgex0/Gpx5o1UuBDmVqsziB8Xrb5TvxTBlP/004dDwbQ
8M2AGXlRDn6n2iwl1wGYPLRpK8hV4MD8pEQpux8Kw3VbrreOYus8+9fuMf2o
6Z276K8JNHK2rJaebtGP6LmzKEUSjcS4ZG+cm9EHRdGM1G1zlEjNU5U1vf29
6EjROJ7xXImwLdwXqnv04t68bmtjV2XyfWX9Vr8XAthpN8SH/lAmzq720X5G
Apitzna8vVOF/N7AnKx6rgctH2PSspVUidBN32FouBv7aZtqOddVyaP50gdM
RjcOXJi6QcN8AvE7zopM5XTBZVfbSaWXE0hYSXO9659d2Hv7ilabmxrpaDFu
n8jl4+iJ5dv6mtTI9UUN3xV/8+GZPxTwJVSdyAYjGQtkPCQ6XS1JF6uTG0Hq
ARYXeLim61y9IolOAppFaa9+42GCa4MFc6YGcTjmNWVrIRceZv4bTj7QIMJI
h8kGnlwErx+wnrxSkzxa/4Rd28VBe+NfvnF1mkTpXo9TUAIHFlmSpXW7tIjp
LfuqNTYcrLI8xN1Am0h2lnunyD+yUUfr5Dw5P5HI/t7dfvYfNsysNiV3mWuT
F3ufuz02YaMlt/i2eoE2CXu3LnxOXSf2f6fCfZfpkDLLvclhMZ1o9N4zEN2s
Q9ynL7KNW9CJWzYl784HUmTzkFuFNZ+FFv7+K8rBFNmmY1vC4bJgnG0XcDiE
IlWM3f/J5LCQYn5PuiOMIvsff0uc0TnepyfaLj1IkWLt6iaDnyykUYzL/DMU
6aHLn2o1s3BnSNd/1ROKPJC1JetXsPDrSa3NywKKZBTQIr6Us2CyL15sX0SR
dK/7e2+8Gud75EnTSymyui2w1fglC+lsbtVwFUWqw3jxs4tZyPhaNifzG0UM
goO0XB+x0HH1sMjwB0WM0vNW0x+yYOa9sOpCK0W25+nl1uaO83XZ2450UOSV
pX67TzYLme8vJ3r0jP8vXzJ1dyYLnfEbtr3rpciP/IwYuwwWzFdpzHEZoEgj
b8hg5A4Ld99EVVoJKRLEnP8wOm2cj3ZMTBOP/0VR+atSx3kM++nLKFJuWPp9
YgoLQYo867MKipSZ2Vo33hzfl+4Sjo1R5Pts/7TkZBb+CyWgFt8=
           "]]}, 
         "Charting`Private`Tag$11812#11"]}}, {}}, {
     DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
      AxesOrigin -> {0, 0}, 
      FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      GridLines -> {None, None}, DisplayFunction -> Identity, 
      PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, 
      ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 
      GoldenRatio^(-1), Axes -> {True, True}, AxesLabel -> {None, None}, 
      AxesOrigin -> {0, 0}, 
      BaseStyle -> {FontSize -> 24, FontColor -> GrayLevel[0]}, 
      DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, 
      FrameLabel -> {{
        "\!\(\*FractionBox[\(pressure\), \(critical\\ pressure\)]\)", None}, {
        "\!\(\*FractionBox[\(volume\), \(critical\\ volume\)]\)", None}}, 
      FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      GridLines -> {None, None}, GridLinesStyle -> Directive[
        GrayLevel[0.5, 0.4]], ImageSize -> 750, 
      Method -> {
       "DefaultBoundaryStyle" -> Automatic, 
        "DefaultGraphicsInteraction" -> {
         "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
          "Effects" -> {
           "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
            "Droplines" -> {
             "freeformCursorMode" -> True, 
              "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
        "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
        None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), "CopiedValueFunction" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& )}}, PlotRange -> {{0., 4.}, {0., 2.}}, 
      PlotRangeClipping -> True, 
      PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      Ticks -> {Automatic, Automatic}}], 
    Placed[
     Unevaluated[
      BarLegend[{
       "ThermometerColors", {0.7333333333333333, 1.1916666666666669`}}, 
       LabelStyle -> 18, LegendFunction -> "Frame", LegendLabel -> 
       "Normalized Temperature", LegendLayout -> "Row", LegendMarkerSize -> 
       350, Charting`AxisLabel -> None, 
       ScalingFunctions -> {Identity, Identity}, Charting`TickSide -> Left, 
       ColorFunctionScaling -> True]], {0.7, 0.85}, Identity]]& ],
  AutoDelete->True,
  Editable->True,
  SelectWithContents->False,
  Selectable->True]], "Output",
 CellChangeTimes->{3.853364844368431*^9},
 CellLabel->"Out[50]=",ExpressionUUID->"65905f07-74a7-46ea-b0a5-29b2f44c17fa"]
}, Open  ]]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Instability", "Subsection",
 CellChangeTimes->{{3.853362828637986*^9, 3.8533628342220592`*^9}, {
  3.853364227222845*^9, 3.8533642309348917`*^9}, {3.853365545149029*^9, 
  3.853365546429081*^9}},ExpressionUUID->"c1f1b258-50ca-4a2a-bb14-\
6cc488a0fe0c"],

Cell[CellGroupData[{

Cell["\<\
Regions of positive slope identify where the system is mechanically unstable\
\>", "Item",
 CellChangeTimes->{{3.853364968619278*^9, 
  3.8533649894772577`*^9}},ExpressionUUID->"6e7401fd-2b42-43ac-80ae-\
469f18de5099"],

Cell[CellGroupData[{

Cell["\<\
Let\[CloseCurlyQuote]s visualize this unstable region by plotting where the \
second derivative changes sign (the spinodal points)\
\>", "Subitem",
 CellChangeTimes->{{3.853364968619278*^9, 
  3.853365020724764*^9}},ExpressionUUID->"4fb0121b-536c-4475-979d-\
51279b0972d1"],

Cell["\<\
There is always one spinodal point separating local maxima from minima.\
\>", "Subsubitem",
 CellChangeTimes->{{3.853364968619278*^9, 
  3.8533650219433517`*^9}},ExpressionUUID->"75370610-05ab-4a37-a7be-\
15abfbfdeef4"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["We use our solution to eliminate the normalized temperature", "Item",
 CellChangeTimes->{{3.853365259993268*^9, 3.853365285466359*^9}, {
  3.853365402395966*^9, 
  3.853365402675753*^9}},ExpressionUUID->"777ee0f2-0f71-43c3-aeaf-\
c5359ab49aac"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"normalizedTemperatureSubstitution", "=", 
  RowBox[{
   RowBox[{"Solve", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"pNormalvdWEquationOfStateNormalized", "[", 
       RowBox[{"vNormalized", ",", "tNormalized"}], "]"}], "==", 
      "pNormalized"}], ",", "tNormalized"}], "]"}], "[", 
   RowBox[{"[", "1", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.853365290276318*^9, 3.853365295244821*^9}},
 CellLabel->"In[57]:=",ExpressionUUID->"ffc490ff-009d-42cc-bdcc-aaaf1fc4c33d"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"tNormalized", "\[Rule]", 
   FractionBox[
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", "1"}], "+", 
       RowBox[{"3", " ", "vNormalized"}]}], ")"}], " ", 
     RowBox[{"(", 
      RowBox[{"3", "+", 
       RowBox[{"pNormalized", " ", 
        SuperscriptBox["vNormalized", "2"]}]}], ")"}]}], 
    RowBox[{"8", " ", 
     SuperscriptBox["vNormalized", "2"]}]]}], "}"}]], "Output",
 CellChangeTimes->{3.85336529555383*^9},
 CellLabel->"Out[57]=",ExpressionUUID->"0ea9bcd8-187f-42a5-ac3f-1f32f7837d64"]
}, Open  ]]
}, Open  ]],

Cell["and recall our definition of the bulk modulus:", "Item",
 CellChangeTimes->{{3.853365211082309*^9, 3.8533652219143248`*^9}, {
  3.8533654083153152`*^9, 
  3.853365410428097*^9}},ExpressionUUID->"39b5c9d4-3938-428d-83a6-\
e9b7515daf3c"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        SubscriptBox[
         StyleBox["K", "TI"], 
         StyleBox["T", "TI"]], "\[LongEqual]", "-", 
        StyleBox["V", "TI"], 
        SubscriptBox[
         RowBox[{
           FractionBox[
            RowBox[{"\[PartialD]", 
              StyleBox["P", "TI"]}], 
            RowBox[{"\[PartialD]", 
              StyleBox["V", "TI"]}]], "\[VerticalSeparator]"}], 
         StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> 
    "K_T = -V \\left.\\frac{\\partial P}{\\partial V}\\right|_{T}", "state" -> 
    "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683437834396`*^9}, 3.773724600013646*^9, {
   3.853362665796761*^9, 3.853362666140524*^9}, 3.853363295175158*^9, 
   3.853365652086615*^9},
 FontSize->18,
 CellTags->
  "eq:van-der-waals",ExpressionUUID->"38d55d67-895d-438d-8bd4-71ff30955685"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"bulkModulus", "[", 
   RowBox[{"vNormalized_", ",", "pNormalized_"}], "]"}], "=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"-", "vNormalized"}], " ", 
     RowBox[{
      RowBox[{
       RowBox[{"Derivative", "[", 
        RowBox[{"1", ",", "0"}], "]"}], "[", 
       "pNormalvdWEquationOfStateNormalized", "]"}], "[", 
      RowBox[{"vNormalized", ",", "tNormalized"}], "]"}]}], "/.", 
    "normalizedTemperatureSubstitution"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8533653028657*^9, 3.8533653069473133`*^9}, {
  3.853365340170864*^9, 3.853365354003783*^9}},
 CellLabel->"In[62]:=",ExpressionUUID->"2605e698-8f5a-4482-87c0-ad54495dbd9e"],

Cell[BoxData[
 FractionBox[
  RowBox[{"3", " ", 
   RowBox[{"(", 
    RowBox[{"2", "-", 
     RowBox[{"3", " ", "vNormalized"}], "+", 
     RowBox[{"pNormalized", " ", 
      SuperscriptBox["vNormalized", "3"]}]}], ")"}]}], 
  RowBox[{
   SuperscriptBox["vNormalized", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "1"}], "+", 
     RowBox[{"3", " ", "vNormalized"}]}], ")"}]}]]], "Output",
 CellChangeTimes->{{3.853365303495236*^9, 3.853365307212459*^9}, 
   3.853365354301819*^9, 3.853365415723666*^9},
 CellLabel->"Out[62]=",ExpressionUUID->"db50a090-7f0c-43b1-a481-4ed76b69a8a6"]
}, Open  ]],

Cell[CellGroupData[{

Cell["\<\
To define the spinodal region as the volumes this crosses the zero point\
\>", "Item",
 CellChangeTimes->{{3.853365417225165*^9, 
  3.8533654589083967`*^9}},ExpressionUUID->"f0181302-60b4-49f2-8270-\
8c5d0dcc915b"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"spinode", "[", "vNormalized_", "]"}], "=", 
  RowBox[{"pNormalized", "/.", 
   RowBox[{
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"bulkModulus", "[", 
        RowBox[{"vNormalized", ",", "pNormalized"}], "]"}], "\[Equal]", "0"}],
       ",", "pNormalized"}], "]"}], "[", 
    RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input",
 CellLabel->"In[63]:=",ExpressionUUID->"e7fb646e-4b4a-40b6-9a0f-8c97aa84ef42"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{"-", "2"}], "+", 
   RowBox[{"3", " ", "vNormalized"}]}], 
  SuperscriptBox["vNormalized", "3"]]], "Output",
 CellChangeTimes->{3.853365463975243*^9},
 CellLabel->"Out[63]=",ExpressionUUID->"e2148c8a-6d17-44e3-984c-3ae998a5530b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{"isothermPlot", ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"pNormalvdWEquationOfStateNormalized", "[", 
        RowBox[{"vNormalized", ",", "1"}], "]"}], ",", 
       RowBox[{"spinode", "[", "vNormalized", "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"vNormalized", ",", "0.5", ",", "4"}], "}"}], ",", 
     InterpretationBox[
      DynamicModuleBox[{Typeset`open = False}, 
       TemplateBox[{"Expression", 
         StyleBox[
         "\"PlottingOptions\"", "IconizedCustomName", StripOnInput -> False], 
         
         GridBox[{{
            RowBox[{
              TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]", 
              TagBox["Sequence", "IconizedItem"]}]}, {
            RowBox[{
              TagBox["\"Length: \"", "IconizedLabel"], "\[InvisibleSpace]", 
              TagBox["5", "IconizedItem"]}]}, {
            RowBox[{
              TagBox["\"Byte count: \"", "IconizedLabel"], 
              "\[InvisibleSpace]", 
              TagBox["1712", "IconizedItem"]}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> 
          "Column", 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], 
         Dynamic[Typeset`open]},
        "IconizedObject"]],
      Sequence[PlotRange -> All, PlotStyle -> {{
          GrayLevel[0], 
          Thickness[Large]}, {
          RGBColor[0, 0, 1], 
          Thickness[Large]}}, PlotLegends -> Placed[
         LineLegend[{
           GrayLevel[0], 
           RGBColor[0, 0, 1]}, {"Critical Isotherm, T=1", "Spinodal Region"}, 
          LabelStyle -> 18], {0.7, 0.65}], Filling -> {2 -> Bottom}, 
       FillingStyle -> RGBColor[0, 0, 1, 0.15]],
      SelectWithContents->True,
      Selectable->False]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.77372953735343*^9, 3.773729551551521*^9}, {
  3.7737381524089465`*^9, 3.773738233173065*^9}, {3.773738275513356*^9, 
  3.773738291683792*^9}, {3.853365491823443*^9, 3.853365494157054*^9}},
 CellLabel->"In[64]:=",ExpressionUUID->"eec99a1d-8e55-43ec-91dd-3e39f10cdc4b"],

Cell[BoxData[
 TagBox[
  GraphicsBox[{{{{{}, {}, 
       TagBox[
        {RGBColor[0.5395958000000001, 0.6954066000000001, 0.948175], 
         AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV13k81M8fB3AqudKiJDoU6aDSoUvqtYlylG+SSpIOnZSUFDlKypFEhMrR
5Sa3JCqUK6Hcbdjdj0Vy33vgN7+/9vF87HzmMzs7M+/XLD1td/DsNCEhoWhh
IaH/f9rJmC8XEmJiIe+YXOgzLlwkC0y+izFhuy74m5MoF74iq1xDZJig9gbO
8rs1jhjueM1qFSYKDWJjh86MoYUVdtd8DxPL9GYcarIcQTdDKHnZf0wIic9e
DGoYvLoLjX1HmFDckvDewGYY88q3ajy4yITwo7nXpO8NwTi98U+6HxNv57k+
rqoawPEkupjbUyaO/rA+9/XCAC7FxG00iGRCTj5xVu/0ATx4fsu3NYWJlg6R
U+/o/fjkMX/rrBomjuzoHdaM7sFa06NBZxVYaDXjBPlEdEJ7/5dP65RZEJHw
9I6V7ITh3pVdfDUWCvfJPKZcOnBu+zj9iTb5HqnW1y+0I1IlrPeTFQu33F4X
bT7dhqRFQoq+F1jQ7fvc96CDQq78BT0zexZUTxXOdLajUC+5NfyfBwtx823G
ZbzYmD3cYDA/hoWTrBsmz8i4FvbiBvWOBYkpvXZ/WybUOmNfvnvPwuIDUdsK
RJnY8+fmmG4ZC5eeXko87tMCt6/y0fbdLMjwdfh97xjw++RerT3Cwmtpb5ed
0xh4ntPBF51kIUbohuhx89/ITnp/MJLGxiVz91fvZZvQE3xE6PsGNipfbwnu
S6lHKdX3wFSbjV3TFq7LnlOP1xu8pf7osbEwOERr/+06HK7OUew5ygbrqXXN
c7NafJFU3ERzZ8On7Lx5oOYvPD+W/jHUm42fQRJbszJ/4ka8oc6SJ2wMf6r2
l9n6E2p7b/+3PpoNi+UzAzX0qxHs8eei6Xc2zpyf9+Da/B+48tOhn1HLRuEK
tCTpV8BgidRN6xY2NH2T0465fcdk/g7PGwNsWBVY9EVyy3CBGxkZKk/hVqx6
T+XqEujob1FdspTCnszK9Oj7xVgUWpUYp0ahqs8ndgH1Db80hT582EEh26fy
3v3Er9C+eqqGcYZCQ6gRo8quEPM+c82tL1OY/dpk9YJ/BRiQesLsdqRwto6h
YnqpADGJhT0TPhQWmtfYb3X4gju8Yw4PgihwMxrmuk58hoXBEG92BAVa5efA
bwqfId2hIrYklcKaMx/33jyfj65Nef5xHyjIP1Y/HBaWh2+eh+TWFxH7Sx88
W/0Rzsr3lXXqKfRprf7qbJoLyrJd21pA4czfD21Tb97jU5JbUbdIG/R1Lgd0
zHyPMP48wxu0NngmeQ7dtsvGvmd7jzxQboN21IrtW0yysLyztXn26jao2iR/
US3PhPCWW9ahm9oQpjW69YB+JrJr4+zj9NvAoG5Y9ZpmIEBl1/i6g20IOS8p
vZaVDptrTW4fLNpw0HhN+q7r6VgiLeFXfqUNWxOPn/OITgPvxGtZ01ttOHCt
0cVdLw11yVrPGHfbsOmVuXf/31T4GtnEdAe34f5C4+gapGJBgM61mog2xPi4
3zjZnYKkWoWduTFtuNCQoat3MgWVlqV1XjltyKGcG8Us38HqddSrKwVtmGsW
kfKWk4z+dsfLZuVtmPOk2aDdIRmyV1VFVP60IfilnAcjJglvMgXV4pw2eAUP
dB8wSIImtya8v6cNtfn/3vUNJOLbjsQLDaNt2MPXk3n+MhGHPTw0P02R9+3d
2L7BLBEdxeZC0WIcDM5RfxBBS8QtyfUVD2U4kH1i9CO/KgHiB8TCrilyoPek
fP6tpwl4Htx6xlyFg3kPHXTTTiZAvSlbg76ag08PtsUZr09A3iJ//vJN5Hu/
ErnNognYf/psidRODuz0NtTvZ8ejJUY7aHgPB9dcYmNdCuNh92+OFeM/DqLW
rPsYHxsPoXX/1AqPchDHdk3PC4xHoEPhaNwpDjqEv0ZE3ImH8odnhY8vcZBT
Gc7VdIhHxsRVf8frHMxu4ibZ2MZDV0f/mKULBxt9lETVL8aj7oHSct37pH1w
Yv7xS/E49310QM2fg2e0mK4uu3iM0SrzZUI58PsdLvHFKR7eh6J9xqM4ENta
xiv2iofCMxez1jgOFutirOtZPBKaTZcWp3EgLLfimXxqPLYrq/ck5XIwZDxV
u7U8HhXnpn0IKuKgtK9zXKszHpaJTZ7OFRzcURIkSEgkoLcv9cCpOvL7v0V3
BGskwF3Te6F+Cwe2BVJCJUcTIO1k1bm2gwP3e/fD/O8nYMO02XcE4xzI9/ja
h/xNQNEejhEl3I7p4Uy/jCWJOPQwT75coh0bV/z7rWSRCMe5NimhC9uxwsRC
+k1TIkTNdW67qbYjNUxk/bNFSQiLUNh7dm07biTsGA63TkLu8tKWDfR27G0N
a/PnJ8HIJipBwaAdG6quup0wSsafFEdHoYPtqN39LXAyIhmTW1VnV55px/yI
vPobRu+gY+Sx46JXO+xmNt3P/paCmsfm4gcC2hEoPIvaKZcK69p1dZuftaO3
PvVpjX4qHli22s5IbIf1Oq0fjhmpKLPTDo+qbMdMae/c8adpmK/0JtO8oR3n
kyQPz6pOw7lK8R9zmO3IS6ak5SXTMWNNw4TXQDvaE9xnTNxLB73L3urq3A78
zP/p73onA9nWscq7jnVgsYlHgtrLLLw1l41nczpQIFWBhuO5GBJzKgjv7cCD
GV+EViTnQientenwWAcM/kmwuyZy0TovWeK7WCc+D1uWFL78CMXavbYZ6p24
aLhf8+S/PAQau2p42nfifPkeBXbgZ7jt7sxSnehEWuZ5lTM+hThoGP9imsU/
rHBgHHL9XYnSTyt+Xg3owZmwlqOMzFqck1rLmf68B49qvSOky2sx47gmN+RN
D2JLky9ubq3FLi59aX52D5o3hDmZitchd+Mxe/HmHmz21M34dbwOyXF+Mq9X
9aJs5LojU6geT54MmNQU9uKvXHKM0o4GHD/38demkT50WYb+VnnQhBwlk43h
k3148sJ+an5oE3xthwyEZ/RD7/gtranYJrSr+iScl+qHOy1HNKqsCZFhmTaa
S/qhES/1dPWs36C5Sfb+0OvHAaOzjp7+v9Gv/2FQKLAfqSsP7zP1ZiCjZa7g
3IoBpIa3u06ZNEN785RxmfoA9PK6MrxONKP40d9X6usGYBdh7z7DphmN2p/2
9m8dQLeS9SDjXjMmn58PcjIcwDo1RbHpWc3QP5Kr5nd5AMKVSye3yLWgpcrK
PC1jAEJvMpmXf7TgwgrDpDk5AzicTN8S0tiCATfNqRt5A/AWsp2WSbVgxlrx
aK1vA4g1q5Kt5rZglV96f1H9AMJ+yrJ8VVvhoC/iXc8dgMKBLZYyt1shXpCQ
zccgbkkb3TGgMTGus+Z9nu4gJsrun4iZy0Tn15T3rgaD6KjkPZpQYKK0NDNn
6uAgWit2Dj5fxsSD6k+5088Nwl84yOjJNiamMX99kvQbxMef/fI3TzMhmOQV
L2gchNMmo1tbUpnovuNa8ufPII5NWPW3ZzLBmCZUGsEaxLp8Md3AD0zkzhQp
U/o3CMf57f71hUw4zaZ9V5kchEaWxMpldUyMLlKpUl82hOGv3ySqxpno0zZq
2H51CF/tFDfeITktd9tlXqLDEHRNpAb301nw3Px40UKnIbgcEo6V12VBcV3N
GcHdIfT0JE1FGrGwR8WiPy9oCA3jXV9dj7EQLm4jvvP9EBRLQq3cbrJgWO+7
nT45hI9RGo6vSE6Tq0k6kTptGMtGHk4OpbHArKq8u0R0GC/XGbTqZLHgWCZb
KiQ9jIuvUrPqPrLwKu/5oYKlw7D5sl+supSF8dcJl3X0hjHbR7VKgU1yml15
lK7fMOKG3avkZNmoXqp5MTJgGGKSCde65rLBq4nYMB48DK+c+L8f5dnYv9X+
W2LEMFo+mluaLSI5S2j+P9mUYUxffv716ZVs6Dw5u5n1cxj1Mim1nTvYaM0U
+uEqP4IiOSuxrHNsiJ2/FNKwYAQqxQVDKy+ysUGh1mr9khF86pITfm7DxgPX
2MG2lSOod2f6Xr/Kxto9xvP3aY2guPrzixnObLg0vDijSHK871upjJd+bMzn
beZlvx5BctTEqeoUNuLqt9rbxY4gLde5QDGdja0ZWp0rkkZQ0V8/93QmG0dt
d9aHZY2gcTX/VUcOG2EteunOpSPYaKr4qrKA9Fd06NLOXvI+i+ees2uI/a79
/rZtFMP6+wTnh0j/FxxM3HaO4m7Wr79mI6R/PcfSzbtH8SraadGuMdL/pFN2
7L5RFD1lnaTxSf9X7z7xsRrFl1lpLx5OozDfLMBw//1RfEjcOzZDhoLC4ne5
tdWjOOjf+lByNQXPG/8d0q4bxVLp3mMP11Dor+jvedM0ioz05xLiGhSKb29c
ep09iiP2HNnJ9RQcmnK8ZIZHYToSOF65hUJlcNEhY/kxbN+nEim1m4KHZFNv
ieUY6k95b5E4SqHntLO3xukxpJq2XDEwp3A0d4Fy6LkxRNu05j04RkHj4gmz
c3ZjEI0xeMM/TuFPMfVxxt0xhM7YXVx5isJmj17vXW/HEJSU9HWBDYV/49NV
PnaNodzB18rChUKe845Ld/vGwDcc0HV0peAvcEzbOzyGJteGZY/dKGwQ6kLt
xBjE/W4zcu+QHC1afbxHehyvrbcd4XlSmDEvPERpyzhcZAcWLHhE7i+hdc2c
7eRep3rFY54/hVgFmmoSfRxBvXOFpB9TMFzkkbHVcBycB7/2TgRQCFh2odrE
chxFMy22FQST3LxRU8Lz3jgsdk8t7X9BoTfzsomh9zioS5alP8IpfN4cGyb9
aBzXmidfxpMcfVpLcUVEyDgm90f0WURRiNslpJsdPw6dyAGNxNcUNA9UuHZW
jeP229vRI3EU9l22Hti3kIv8bhtLvUwKLm85LYIlXGzVdTL7S5zMOFeRpMqF
Cvf+l4dZJOcbXoydpcFFjpX6yPdsCtXLr1hW7OLibY/O1DaS002ZN8uMznMR
uzi45Ec+WQ/y3Gy+DRfqOVlB5p8oZBo7v028yoXjYY9Oinhuvou7pDMXMYon
1g9/JvP17O6m735cuJvFW08vpHDM9OErw3QulnUqXmv+RsHXd9ZjXjYX75y3
WR8spvCx4JFLwkcu1N54Dn0jXrgu4IjENy4OdD3rjSuh0DLrqVR5AxctPqZO
J8oonCqOdDKY4EK1U3rQu4LCkwml81xhHk4G9xp0EhdqvjoUP5MHI7+TB/f8
oKD85o2GuDQPAnq20yRxm3scp1SZB6/ZLB2rKgoXtqWb6OvzwHkWXkD9JOv5
369Tsft4sK7akrjqF4U7EUP2M014CJeaunOFOFR405Ov5jxcH383PExcXPb+
F92Gh0T7HLmRGgq/bjeyo+x40JFudtpQS6F5DXdw8joPCtvNfl4hHg7UmpPv
QsarUGzZRqxyLN90mz8Pyyg1kaI6CmtntZwJe8LDMY79wnFirU+T18dCeECI
yNrV5J50UJkenBXFw8y5HrsDie90FdauT+ORvJT2338NFPzCqbaALB4+6+mZ
uBCHGc8Y6fvAg+T9AdM44pR0Pbl3hTzIlndbTRC3OJeaqdXy8HxadvyLRgpd
q/+e9WnkIX2jxfcvxKMt4o6df3jonvFhuI1YardRSAyHB14W65RaEzlPRmxi
RLp4cPPYF2tEvCzWL9u6l4eMspQxG2Jtycp65TEeEszD8uKJ9fN72+/yebi6
J2dDCfEhO9oYc4oHoTGR9xSxTc0B+SgxPrTyjvYo/Kbw/EXNkQWKfJzcxVt+
mzhm//B558V85BkmLgskTp+ae6tJmY/Je3WbY4jLzhwOC1XnI2deyosfxLVy
N+NGNfhQePu3r5WYWRKaY6bJh055hsUA8bh6U+OcHXysPTXTVYZB9n8Lt/Pa
Lj5mT5fTXEJMC1Dk/tTjY/qrzyJriRV1touvN+RjtLhkUIt4+bCFQoAxH0pn
evl7iDfEuKzqO8jHveKhpQeJdx6N2GZ8hA+36NCzx4kNJT4ZJFvwsXf+s5Kz
xGZ5LeazTvJx/UW2/hXi4rBQ+XJrPnYax3g6Em+9caDO6yIfaTJNH1yJE0zE
g/Su8PHIC3/vES9cW3hg+nU+tF3L5vgQ+0vcnl1wk/TXfVbrEbFQx8YKNxc+
pATTTgQQXyvq9tG+y0eJkL/7E+K2qOi9vPt8cF2HooKID7ucEMnx5ePMcqUv
/3fpUfmiG4/5aP3DZ/6/vdam6jsbg/lYl3V9eiBxkozPzoEwPjKH7Vb6Ey/u
3SV4F8GH2pymA77EAeW8D7av+Tj7McT1PvG02IybarF8zKt4nOJO7HDPdlNn
Ih+uRxM6bhG3W6kORafysTL++3J74qPaLalnsvhI0W68fIG4fH7olaW5fNiU
ZuSfINYe+W916yc+NLbtkj9E/O6nWFd4ER+zMk/f1ide8q4g9lgpH39DuF3b
////nt+oUv+TzM8a8X4lYsfd3cygej4kvtC9pIk7laIjTRh89DvZrBEirmic
p/ijjY/iLFrCH7JedmZVNfj+JfPD2+VRRpwa6P1Uv5cP6Z5G2yziYEOe9Ncx
PubIRbr4Es9ckVF5V8DHelH3N9eJb0239YOwAGbKakwL4uN5zaIfJQRIXawd
uYp42dqCybRFAvC46bq5ZD+ESDjn2SkLMH+T8fpwYrGODc5rVghgvsBCy5W4
O+rtSNw6Ad4zaNHaxBky3t1RuwW4lhUzlEr267JeeoKlvgCybU9/PyQOKeee
X7BfgD0KV9vOEjvfs6FCDguQ/nuutTyxzojx70cXBXAP373qKjkffjXKld5+
LICY/xxnLjmPlNZdiesMEmAi3v5gObGtV7G3WZgABbcnHJ4Ti26+aaDxSoC1
82VfbCXWDmosZ6cLMLVyp4tt7f/374sfBvUCmBY4K2SQ83Po7VBy9m8Bzmvt
ar5FTBcY+au0CuAS/X14BzEjQWA80SGA6OCdpcXkfJYWO1GdyhVAY/+bu5XV
FJwKl9TIL5qA94meP58ryf5RcMrwXDqB+PWcpbeJ59r/DBpQnYCpSX7RJuJ3
Sh6Hvq+dgNwdvSXxpB6wXag6N/oEThcv2vf/erJvS0wj58wE7lTldq4sJ+sn
Sb0lI2ECIkroGf1KzpM1C23dUyYg+tL7RiixV8osnmHmBMovrz64hbg3vUeO
nT8BX+/ZkjeKSB75kLJf+ucEXtf1+nUWUDhSsjHfdmwC9B/U8VRSP/3Z28NV
dSfhERFkV/KezL/1arUB/UmINt7PNCUe4SzMyds/ifUiq061knp9/O9EjemR
SYxdKB8aJvVcrf+zpMelSQQLDs9WIPW+eGL37ZaASbxM+vtUL5XCxPx9x0Kb
J7Gt9uKXjSQvSB/w9N/HnkTiZIZraiypj155hcId5PkjVM5q4j0jq9Vt+ydR
E85KUIkh+/enlIA+fQomWXW+km/JevKtiuhaOQWurUx0EcknhvyDrB0OU1i8
N+FuYwiF772rNa+JCNEHpt99knyP1KfVKrSJQCH6xelRc4styHiyF0dYqgnT
a1WUnH3UyfyHi7u/zhGmH68IiGvlsRG99t+qhbrT6IYOzHWBpWxoSP3ysmFM
o9uaJvtUP2ZDeW/ctqgL0+lz7zVHWpmz8efHvcg44Rn0zCiz0j3kPuAgdLii
PXQGHZmh95+xWLjhL28svkyE7jbi7BUdz8KOiy0ewnki9DLJ3Fc9tixciQqW
bDGYSa9Ye9fbRpMFl7u7LPtqZ9Jnp0cePTrBxMHUoVP1NqL0fU6MFfPIfSxA
62nuq3FR+md/C9lTD5kIkdEu1gkUoy9ZuvN45QEmRHR/qZYqidP3nZLd1qrI
hImylbFHojgdkp9E7/9oxdn9A6tkd0vQ77/tbtI90QpWzTXzB9US9LDC8qF1
4y1QjeVur74oSe8Ivffe+2EL9iy/2WEsNItuliLxs1W5BdVCbe1pfrPo20vF
xmlFzVBeefhZ1zIpOkvWoXKVZTP+JLyPEs2QokdqrXjBmfpD8jnNznznbPoi
IxzSjPmDmkOXB+7UzaY3pi8/WbPnD16o55b4nabR+xv5GZF9DPz56xA87SyN
viCpdPOiXgYWxmmcunWeRj8qnsx40c1A+LJo3hlbGv1Ab8bDZ3+JFwWs2e5I
o9/ku3mGUAxE0s4F/fWh0S0vqDeENDDwckjGak8ajb6rInUg9TMDzLQK9bwM
Gl21Xidj4ycGllz1Gl+fTaPv+BETkp1H2ncLAhd9pNFl/RiFeR8YeMXp+Dr8
lUY3OPwhtTyDgdcN+WpvGmn0QweNmN2xDLCf3hqbz6DRFxr05NvHMKB8aONX
/2YaXaRNO3/0LWlfHWfpzKbR39Ywlgi/ZuBNWVCASTeNzhZpvC0fzkCbl7Fl
SS+NXvI45lzEcwaW7RFX2zFAo1/bJX1d5RkDbwvdilaO0uhyPxL7NUJI+zvb
AiLHafQzE42nsoNJewwfn8un0ZdNCxvWDmLAeuLdKt8JMj7P9riiQPL8x4uj
U1NkfKsL3QwDGPgfx5O3vA==
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#1"]& ], 
       TagBox[
        {RGBColor[0.6317786, 0.7821216000000001, 0.941844], AbsoluteThickness[
         1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV13lYTF0cB/CKSlRTihYibVRUSEL6jlSSsrRQZKtEC6KNUkhkCVGvElGR
NkKltPAiS4mmfdGU2e6079vMtL33/Wuez/Occ+495977+31nmetpu2MiQkJC
KcJCQv//npZ11hISYiCCW2I7NTODC/M+76mYw8ANVhPDzW0GN0W1Qx/IMjAv
YM+qxT+n8YLPq12pzoDXwpL0tclTaGPGX3a2ZKBYVslm3G8CPS1CrzR2MbDq
Gp3G6BdAUH+iqX8fA6UDuteiTgmw8Kex/jVPBt7MXx3Z7cfHzpwmek4UA5IZ
Mo6aieNweUmdE/YPA0l3hmuDV43D60X62u1PGDBs4T1e8mkM1xLO3fz7mgFv
jSsdKj2j+BiuaCxZy4D5Jg/JtIMj0LN3ijmmxIRcz2HRNYmDMLH99NFAjYn1
Qk3VEraDsN62omtCh4lbR2xWRkwPwGMTj3rfhAn54yKLTD0G8EQ9vu/jYSbi
r139+/luH16qCCnfPMEEwyQ7sEK8D0UKJywczzCRr/jjZEJ4LxrmGT/uDmeC
e+Ca965LPZAeadyu+IKJrkMbFOMTurC4DwHsbCYaeU/e2yzvgk5HWlJ2ARPu
fKN0l/xOWNKDxs3LmZi0/bfzUEsHwr4qpJ7pYeLD7h2p2WhHb+w+oYo1LNwM
merYfYKDMnb/NXsTFgZCl7wul+YgZc11KboFC4HvQ6y3FbCxt+q9cq8TC+fM
i85qSbPxaZ7yOspFFhbZZ4/uq2EiYX9Ocdx1FgRBnuLNkUwEZFibqd5nIVKW
X00BEzrbQnatTmVBcstW5ZAcBmLD6Z72FSy8M7CRyHf6i1PV/gMtdSy8LnzW
s661DdtVpYLc21hwGtXWSnRvw/SHzREBgyzot4kZc0NacYL/5EmcAht+x4Z/
1v1sgZnVek3VZWzsl+KNTLu3QCWOlpWuw8aVV+szkoVbUGMoVFi4mY2xwMZP
S8z+wMT3aG2LGxuSVhXp6W1NWPgv39n9JBv3FPv1LG81YVDqPqMnkI3+3sjB
6Q1NeJH1pXfqBhtn0xtE4xMbIdOuPkf1DRvVcgWuthca0LWu5E56IRs+lPPa
6cYN+BbhsGB1KRtNDdU7aWP1CFa7qmbWwEZn7Bbhw+fqwT7INXGfZKNMIVQu
9m4dPr4MK+0R5eC9y7PrR5zrED+x0DqAwsEVB9Vz+Rp1sHm4bd81NQ7+Pfbn
FOPfWmh1/G2VXslB3BQjM/VuLYTXn3OPW8fB9lsq5Q1HapFfl34m3YqDS5eJ
rCPitYhW38IzsOOgSCikLIteA++zzWGFBziweFQVsC23Bqoyc6N+nuJgNyX0
xV73Gtzc4f2iJ5YDqud8B636aiyKNjtbm8jBr0z5N9751XhZp2Ra9IKD4eiZ
oJfx1ag8WFYf+Z6DOqrJVukj1Tic8jT51GcObt1cE6hlUY0BbuBJx58clMvd
8FuhW435vpqi6nQOGvXrxZv5VXiWN1klQXDgPMLwvsiqgiG/9vFALwcHWgvX
zlRUYW94uOHHGQ7uV1y2D0muQkLsXzdndQLhnhrHJx2roNucr09dSWBKvmdi
lkUVSlTuTGitI7DwjVfwD8MqtL0wiRmxJDD6kp3lv7AKp7vlDrfsIvA53PXT
vjlVEDLo1vniRGDT50UitaM0qBU+/HLXi0DSosw6xa805E753gn0I9B6+wRN
7xUN5mZW+w9eIMDYctH/RhwN9deWaplfJXB07lm62hUaPCrGBnXuENDpHNkw
epqGcUrlB9k4AhFhp5oFB2m47pB6g/eUwEulUFU9WxoyW+2XfX9L4LyRUoG4
Pg2b1HR7XxaR13/3c8ezZTT88hApjCklwH/jL7tvAQ0Hs5ojgn8ROKvXz1GZ
S0Nf/5vdR+sJVLAfFQ7NVOKi4fXFVm0ErHgT8VVjlZA5f7hDr53A8qFtKTl9
lUj+YJS3YICA/leJubHtlVgjIn1pkkfApfu9ki+zEqWWxA62MBf9/zjpm9Er
4XCrROHnXC7iShU+iDZVgqDFsN/IcXF677BVfl0lAuW9X8ct5iJyzn6fXTWV
EHc2CwnT5ELauKb2V1Ul4hOVth3T42LDtWRTHdLarIH5Nuu5GDEODHMjXaRV
1raGyoXb3vlB/tWV2OH9NFNpOxd2Z3kqzrWVoL8ODBSy48J3mXKwVEMlTo7Y
mrXv50JL8vqz282VmDbWlK504+JojHppfWsl7oZONuf5kPcvYjefxaqE6pfa
1EcBXJy0fPsnu6MSb8WyzoSHcfFUsTLAuL8SZjvCN3tGchHyvMUmhDyv2rvO
ErujuSi559PkN10J9zqDeqOHXBicXZW0RJyGUcU5ySopXDjdTNp4ToaGawf/
+szO4mJv3x+bUGUaFFLyjbtzuZhuN7upo0lDOvf27JoSLpY/35V3wYCG8tMm
j59WcqFrTFGatZ0GxaXP8pwbuTh8Me9MryP5/lRK/JZjcKE3XOrh5UbD7FWN
U5GD5HrewYMyl2igdp057Cvfjk0r2I+//kvD3YdNQToq7fiazIwbr6KhzQrR
HM12XNDc1Z3GoiEkTfKz0/p2HPVf5lY8qwr57mlqW/a3Y7GxpqOFbhVE5aU3
Tbi2Q8PT5WPOuio4lPrbv/NuR+Sxx2GO1CoMLTOL0A5tRxJLKtdobxVW/aUT
sknt2P3aLsM6ogrPnednsIh22FulH6F3VGF4zvnPj/vaUTGp5qc1VgWz93+b
9463I/adT+CDWdX4u/DV3Io5HQieoAg4S6qhXLfNJ1e3A/8GF7po7qvGvZ2h
+hFnOiBe/Mrqxu9qhG3teKc51YFYtkyZ+u8aPNx2UTtRrBOiDfsU1vytQd6O
hYnyMp24ZOy8ymGwBt325hGz1Duh152iUb2gFk7uSXZMq06cTe5VSTxci7VX
nfofx3YiiC5SPTlai47vZSvkV3bBYnJrr4NOPeysMx6JHOiGy+wEo8ePGlH2
cXm1b3QvynzKP57ua4GHlB4xK6EXduFeX6dmWjDbxZD/4FkvvqiFCF+SpWML
n7rsQ34vXB1be44Y0lG0dv8ZidZepA2904k5T8er9CjZFO0+vHLYE/FauBX3
7w/uqf3SBwPZjLGbc9rg4lFcs260HynMRVFl/X/xfumetY+n+xG3z1Cna+ov
bvoMbxeePYBb6vdfzYgywNW8kXlcagA9GdGmIvIMPInP8zZUHQDxMnm6RJ8B
Sti8vt8WA0h4flJ+rgcDA1aFQ0L3yPHnM5SlK8nxmrPV8/4ZwPPINd376xiw
EdllfzxhAAcSWMXJfxhIL+bk/n42gIO3rY+rtDNwVE8mICF/AKGaIrq/Zxio
kTs+vpY+gPA3K1NlDJjIbZOf9Fg+iIiHzYUbo5gwMZrZWa47CMPH09In7zHx
/XZnsq7BILSPu55PeMBEk8nHbQPGg1gVLR/PTWJiOuF4zHnrQfwZlbAwf8eE
1b4inaiTg/ANoKYqtDLRRjvs/DZ3EKHfyoxWa7NwYrn1S7n3g/AombOnYhUL
g2GGMwElg8gUOtpwhMw5s/UkUjd+G0Qu5dqqsE0saEflDJQ2DGKBkrRLuC0L
/lai1xv4g0gu8DLI9WVB4nNm/gSG0Oosd+tnLgs8s1UFJeZDOHzlUZneexY6
vr4uCN0+hI65LVJ3SlgoK8t7P2M3BMlOiY+bv7Fwrepj0SyPIby+xlR2bWBB
hFHzcV7UENJHHYc/j7MwOS34vqhpCC636V7jRmz0XAr9QaeT8z9Zp5RuZKNF
RKgskTmEHVllDrdM2SgSEy1f2j2E3V2aG6Qs2TgvTalQnx7Cragrri0OZK5R
UafpagxDfFuCzfMzZG4x2dG4yXcYlIKddKF0cv6Gk4Is/2Gktn3pmZfFRoTR
XZXF54eRW3DypFw2G8oGtW6Tl4ex+7LLT4U8NizVDwyUxAxDeOkcjP3LxmMJ
bwnTgmE4mIWflWxkw7rh5ibq9DC4pYw3b0Q4WFD78tAbkRHc1TWY2knmGAat
8rKq+Ai6uz5Kd4lzEFg+v0xIZgSzF7TcWijFQXJJgsPnZSO4/yNs3XYFDngp
mSfNLEawbJN4qIIuBy9O/3xqHjWC0J95Wzx3c1C1zNDzSfQIkoc0mh6SOUZQ
m7iGFzuCOSXiST8cOLA1PvMtK3EEidsW/FZ25mBESLF7/usROK2L/vP0KAdm
948ZMatHcPWt9Rutsxz8zRP6HaowirmZdseM7nEw57jXg8ZFo8hZquMmG8PB
GqW6w6tVR+EkbtTYSeaga6FpQ5wVo8jWUNeJiedAz3Knos3GUWiduZn34ykH
FxofuSkfHMXYiSTVolccKAqMBPkpoxi03mxY84OD9AbjM6fTRpEnvvzW5XIO
jHM3dix/OYpF9RH6ehUcOPmYNsS/G8VR6jqvi5UcxLdZ5ASXjUJmkW6XcD25
XqmDl2nfKD4pbNW4wSQddfbPtw1jcFNIS3zDI9c/4b8nzHQMbbcDNKUF5PoW
gWVGW8cgndW91XOCXH/6fH6azRguXgq2VZwm1/e9fP/G4TH0aPrSnGcRUHSM
tra9OgadpL3ePlIElJZkF9VVjeGy/eqotqVkbgnY5WBSP4bURUVRDFUCA78G
ep81j0F/QvMVYxmB7yFrl/mxxsC5PWPfQuYy/+b3kbIjY9As/3usaDmBythS
h50K4zjddnpcVZ/Ahh73vneLxmF9aPytqAGB51vFrquojiPokGFqB+mQIavi
nhXjaMlq2pSxhsCK3ZXLbm0cR/q3CvsFRmTum9fc9+PgOKIcQ4MTTAj0ugZf
13cdx5oRCT+3zQScihapxXmMY4N5Z7GOKZlzPA85epwex431h8zzQID+nV08
+/I4TmXIO+WaETAK77u+5fk4eLV3vrtaEejmzVIv7hpHhk+aW7QdgZLgzV6X
+8dh45PycI09gTuTgW+3jYzD11VoTi3pNUJdqJsah3rhpVhpRwLnxKtcemV4
WOwXnuC7j8DshY8fLF3Pw+4622/MAwQa4upbiU08FHvlm59wIZCmRNF8SeXB
/OX2hb2krVXCc42teaj9ZJA/eJBAtMaJqj0HeSj5EyTffpjA4rWGcyOu8HBK
RCPlihuBvryTe6yv8/Du3tBkP+l/jdLiZW6T84d2fdnvTsB1o/LyxAc8FNgl
39c9RiB9i5B5fgYPL7eVnC3yIBBcuuHWhWweOj1W7FA+TmCHhV+NWS4P00X1
D8+R7rPiHqGV8HAgKe+pwQkChrt/hXbQeHiw7VLAHU8CYjWi37LreMjnTyxn
kW60h2RAMw8MOSUXQzJHB+/LSRBm8zCZRdtZR/rTofgC5TEeuqXmXxXxIXCf
UT3NEPCw2fuqtzVpN9d5lmkzPOxxyWyLJi3mEVa3VoIPlJ73VTpJwOak+6DN
Yj4KfIVOKJ0icOE50TapykeMnsYXB9KvWjx+vdTkw+HS9093SEtbe6ZJ6vPx
58r1N9Okq7ROHfy1hY/0XVUXKk8TEDrUb33Bko/prI8qM6RX/+NrvHIHH/Ex
80/q+ZL3N8tPLsqBj56p8kU3SNszgsp3HOej0M+hRe8M+X0o8PMnvPmIIOxl
HUnn7Qx+nuXLh+HWAzPnSct/uHBxXjAf8yZM53wibT4y5VMcxoekc5Amk3SA
7sX93lf48H15ekboLPl+PLy8riKKjwMsmz4T0mLVIuoh9/h4F3VV1Jn0+jkR
MroP+GB+0GzzIx0feK375lM+4uZvaEolXfZKvHnjcz42t41PlJDmc65/70rn
Iy38HVFDer/9rWTrHD5oCYWUCdI3b0reFeTz0ZWz1U6K/J9T/Pn2hcxiPkz6
7A8vId3Dk/ba/4mP/OcSxnqkFxtE75v7jQ+1NVdaTUjbHJe1KConz2+sdbc1
6dAn99d4VfJh72wUs5d0dr2cqnItH0nf0lKPkm6T/EfqZyMf0a9tbniTljZf
OHGezodwjCn8SSMkrkObyUfuyD9lIaR9cxQbmglyP25eWuGkkzoflt7o4qMy
qMY5knSV6qK3G/r5kGpku90iLeT0+EnnMB8Dq3Mt7pA2uKsS9ZDHxwNLB6Fo
0ke/Pzm/fYoPMWZz7P++P7X0OF9YAEW64+z//cUw2SFDTIAtas27/p8/5K1m
5jxPAPdsv3P/r6/27Jm+hIwAL6IML/5/fbs/GiqF8gKYtGgf+//+rsi+mOup
JMCGiiO6F0jnWS3nKS4RwCuZqPl/f5yL6USZmgDKBaUuPqTlC7Rrzy0XgBss
+tOVtEVf5qcVKwW4fCZvkRPpQM2V2U0GAsQaNdvZkH7h8urR9XUChISG+IJ0
Q4zeDeONAijNTwlYTVq84nVgh6kAcc12bmqkT2zI2WNlJYCzksekEGn/7pqj
aTYCTK7+p6+ffP6XEofPiO0R4InPysFW0nHC6+5/dRbg7MoGnQLSKbmOKeqH
BOg4d90thXT2scCccFcBxINYr6NIfy8vqKF6C9BQ8e3aIdI1IU2sp6cF+PKk
c74l6dZV/KFpPwF6F3e9W0l65N5GuQ8XBDjByN46Tr7/6vs/2G+4IyD7tFvs
ZdJ6km1u8fcFeOR2u/co6Y0fp/3GHwgQ8ajNbQtpOzVq7LunAoyeksmaIr/H
S11f6la/FSD4hmmhN+mox2xO9DsBPvUYylqQjt85e7S/UID8PP8oFdKvcywW
ZH8RICmmvr+C/N7bgsscdeoEMB5UubiEdNfKzmM3mgSoNz4mNkjWi7E2icAO
ugD+BgP5X0hLbd3x4AVBPq+vXx64kTaZV9mgNi5A5ljtsUdkfUp4VLtvkfIE
dnSHsdne5POyHTkevGQC6T3yezNI58zIn2tWm4CRlu/USdLlbnvj43QnoL3Z
rHeErI883eYmuc0TEO8tc+eT9dSxpM1Z8sgEHES1bFvJevw9Pk7hp/sEckNe
OUaTNg7YXR/pOYHsEMoFM9KL9b7snuU3AYmM75rPyfrOeZq6TXB1AtY/omcf
JOu//xWfdR1ZExhUfpqR6kog1log83V8AmNDk5viyf4jtjy38vLkBATrTB8Y
kD43yycKwpPYMyq/oozsXy4lreLFcyfBvH5rdGQ/AQ29z9NvVSZhOZFrY+FM
IFf2es/TrZMInX3x/meyH9Y0LSgLuTsJ2pHzd1btJLDU4FR6R8wknDMTf+Tb
EvCJ/H7dMX4SP+r0PUBa3Chou37yJDKu1tbvtCHPN6bpJytnEqaSQXc8rP8/
z0e/tzdM4nt3Vtt5SwLnv6jWKqhMQXAi8/Vast+rvtRty82cAq2p3klmJYG6
VYt9Lr6egsFUhK6XLoHI15IC67wpxD47eqpUh+xvOb0LWB+mkB/Ya+mvTfb7
wte2MtVTMBkxtqdpEdj3Y+0Hn/EpZM6x3utN5p07rE2PNc2n4Z8t8cd0IYEp
RZv9ca3T+Mtc1+tL5quKvpWGZ0WFqH8oiaINPzm4tFKdMnVPiCq2V+zyrAcc
TOUvSTyoI0wtrAg/wHDigPVY4mLKe2HqrnqJqoUqHKTqdWsvNhehzr3Bu5zK
YENfqibSu0WEyt0T6ZiVyIbatvQNT0/Mov5s3BK09xAb9N9XnqQLz6aqKdB8
TJXY8Bfa+4sbN5v65lPd6T31LATcUdgpoSFKzfa8WqjxgIXNnm3hwiWiVCmv
vcMUOxZOPY2d17ZdjLruU7T5AjkWLlzecrC/Toz6rkn9okgDE3Zvho82eItT
g652C+JjmYje+E9RMk+cukyjNtffiYkHsibfze7NoS7P3V1uo8iEqHmNZtlS
CeoF65lH3q0M7FE7vDM8S4JKD8rTffucgWO2g9rzt86lJjxJmW97ggFm7Vnn
a1VzqUE7H/qJrWZAM42/qcpzHrV4+e81z3r+wlIrqH2nkCR14dffn8tC/qJK
iMN9GyVJfTTdqZkp/xdqK/Y+7NKQoqov379AP60N9MyCp+K5UtSzGTl96lvb
yDxKOe1sKk0dcX+XKMtuRa3DycFL9dLU9VICC8nQVjzSLfoR5Uqh2v1pnGAv
bQW90z9W5BiFqjtbw9dqSSsWp+sfPXecQtWumpr7anErHmukCtx8KNRDlrZ5
gUqkVaJXbQqkUIN2CNXPk2vFE4pHTOcNCtX2fPOOzWKtSBqWPWz5lkIdzd/B
K+mhg/H2l25JLoVqFta/XqubDlXfSN7qfAp1nltB4t1OOpJ6Ju+pFFOoV3Ve
tLhy6Ugm2r+OfKVQnyxMUZ3HoCOl8YPOsyYKVSVL45drLR2sf86NK7ZQqEkh
53wqq+lQc1j79U4rhUqUFK3ZWEWOr0o/GMyiUMXkpgzm/6bjWXlM9J4eCrXm
nPJI6Xc6OJE7D/7oo1APm14pNfhGh4alhM7mQXI/nv++Tyyl4/mXsNIVYxRq
2pHn8uc+keMvbYh+wqNQs9wsQ4iP5HiMuMhPUKjyG7PF7T/Q4T6VrX1zikKV
DGsq/FRMzi/2HJuZoVAtyj/f0yui4z9tflPc
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#2"]& ], 
       TagBox[
        {RGBColor[0.720374, 0.855234, 0.928635], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwl13k81M8fB3BXJNWqFKJvIhWKEkXJ60OJVEo6qFQkXUQHpUOliJLcIaVU
SLpcSVIo0alIZVnW7n7Wzbp21/mbHj//7OP52NmZ94z5zGs+s1y9Nu2TkpCQ
iJGUkPj3ybWVPb1ndwMk/v9HTftkYhB0sAHucesTS91GYZf5pzYztAGeyx9M
P3NoGDszqLH+MQ3gbwiwWNQ9hEMpaYvX3GnA5qTVCzacHUJQwqmr9c8aINoj
4X395iAKA1RMxlc2gLNty52sJjH0HRyj9qmyYbbgK5XU2g+z9e8KF2qy4Tvo
WY/ofthaz2sZ1GWjaLpiRKx5P9yXi6hIMzYePs24ZBnXhztacR2Fu9nYaZ19
LmVXLzJmSEy/eoANc6tvI3JKvchXPmC15SgbWk37DtV96kG1gkliawAbkd83
epWa9WBi7+81KilsLDvi7/V5YTfUO+DDecrGJvEZqzECAXSbUu8+fcnGFvv9
CmczBVhde1K4qpyN5DRuoZypAP7vlR8ebWNDHHE6pduhC+3R2yQ+GzaiULte
Lv1UO8o4nUEOZo14O6C/Om9KO5INgyfUWjWCNSdDyH/ehq0VedPbHRsxybz4
zHlBK94pTDdmnG/EpaI08/1XW5CwPfP1zeBGjE/5emybcQt8HtlaakQ2Irok
pHZaYzN0rc9sWPSwES1HpD1YVDOiA2oPOnxuxNfY0v3xk5tw5MeJLmYVGb9z
Ss64z3ys0Zhw0o3ViJrIQj/ZQD5G3qy47CNoRFm7wVn/YRoHxHfu3FTmIOZM
GuPeKA+WNku1NWZxsGzPquCYEh5m3Pz+OE2Xg4uLtrytCebhp5HEq1crOIit
4uxeocyDmbdLJXMvB8quohfZllxMeyt2cvPkQO15zd7zilwIJkQ2tPlycF8U
Pu9QPQcpj4vbh0M40Pvp0hxygQNFvtZYjeccnEp967frO5mXcUFY2isOzt3O
+i+GzPPD5c1TF5VwIP/hxoPis404rRmoaVnNwbUJBWmdCxrBcabN3IY4uFXD
m6Z0i43CDP+StjFcnMmOib10io24wWm2Pgwu+IXPxKVb2VgXb70tSJMLzlGf
K6+mspFblXY0zYaLMR/66xsTGxCuZSFauImLj1F+skEXGnD42F//Vzu4OC24
inq3Bmgojgv9dISLXr8XTikGDbi69nBKWzQXPmt/FG5LqIdauOWxyttc2Ln5
2a/1qkdGlap5fgoXAykHrDda1eObc9mvK3lcLNQ+ePhMLwuTvbXHaNVy8ezx
/qTqXSzczx6qkOdxoZmrlV+1nAUjcWViVzsXg5axR9+psrA1IMCocJQLff0V
thv/1CEhun6vkxYPyRb5Dxt310Hvb64BNZ8HLXGFJmtlHQpmhA3OMeYh/Yi6
Ydq8OrBSzKJ6V/Ow89DP4vjeWni1TtnN3MDDt9Fda/KZtZBY2Kpb7MhDlcyX
w7dKaqH5Kr74xiEeXl70NY6MqUXWsHeY73Eevm4qd7p3vharLG22O5/lIW3j
rSluh2rh/rlfoBvGw9K5d2uFFrVIr3OYVfqCh78OvSUyYiaWa+q1Z+TzUPRZ
d9HOJia+uEu9iiL7rCtyW+aGP0x0dD7f6PKL7Du9VHWJfCbOGwWr27B4UKAG
8l4+ZkLRb3eTPp/UY7H0u8QdJgylJl4YEvHw6vqVtSsuM1GymreWI0nDK6Dg
jd4pJjZfK1D+NI7GvV35Rfc8mPBVOvzspjqNTXfsxqltY0LOyfKMvzaNpssv
nqiuZyLutqr1Pn0aAxWqd2NXMpE/p4xlSNEIWXY+QcqQibWHk9JV19DwcNS1
a9dhovaZr6/EJhr9p9ip6zWZ8Oxdb8nfTmNuyrzoWWpMjJhoT/y2l0bh6Nqx
+5WYuHFu6G+2B43XzUul1CcyoVFc+fCWDw036U3B5mOZsFwbsOLgFRoFlzTO
vh+uQeUNJ/mN4TTcIx7NnC2ugVvVwl9L4mn4mBXlN/fWoE9l7L0ZyTTUuYNn
pghqEORc7yHzmIa+a2h8UnsNlJNzTVqzyHjSmvahLTVIo6/L/Cyg4aD7kf+b
XwMTvX0VeR9oREW8e3SBV4NyL7PEpG80dIw8Wy5zaqAy8362028aJtGLdraw
a+D+Tf7rlAYab+WuJT9oqEHOOW/e1yYaX/rLzDLrayCz4PfwFQGNpRe3P59E
7FC7YprlAA1bRnZwEasGydce6A9J8bHcxXjbO2LBMgXrXAU+tFQUs8aT9lTL
0d3eSnxU5umbPiS+Ef/npO4MPoy01EODyXgsG4RztfnQPN/qkEPqmS96mHZH
n4+kOA1zXVLvmdTxRY5L+XDLiBvmcWvwaevxv5Mp8vu7x235NJmPbI3giw0f
zinD7PnNNdifQ427Ys/HuDXxQTmtNch1S9W02M4Hl/lo9HxHDcYoTVw+6MqH
2iZ/1WtkfTeXnHDIOczHeV+zh7/I+nfPsrysc46PiSofjsweqoHFj7REDjln
m8K2uc+RYCL8AiPndhgfjSlmK/fKMLGgvpY36S4fowunbgqZwMTZsJUjn9P4
mDHW18V7MhOfVqRPC3rBR59kg2KYMhMHEk9aDxTzsVRO3vQg2V8PnCY/auTx
QV13FgQsY6JnrF9RYgcfJ0RT50hbkP2TV/93q5AP2+dbjTKtmaif9mTc57FN
eOVnYxm/hYnpVdYeWXpN6EjenXHsOBMRducMLh9twtUSeYWEXCYahjnW5qeb
cGm+YX7yWyb0n9juEQU0QW57vNPXMvK8KqhEeEQ3YZFwbkIgk4mx5Zndm182
Iddo/hQvqVr4r2zK0R5uQkGb50jMllrEW5/XuS3bDGbqFtcdLrXIXjvttpJi
M7qyeyrMPGvR6rDqsrRWMywSgmTsA2vh6HZ3E9umGS+74nmPc2uxONCxMzG6
GU2Ky4puz6hDU2nZPKX5LXCcd2lGsKgOm2wf3ZLa0YpYu9JicXk9ygrn/vAO
b0esxvbJUtFsuE/Q50kntGOSSopPXwIbMjuNxLH323HE/MEX7j02LMTUrDe5
7ehZPmnhy2ds5C/eflS+rh2hz6f80PnMxpO00EnJOh0oc1JeA8lGREYK7CuL
O7A8aJPW4MFG7HR//dO4rxNPDCvu5M7nIG+m/eLEkU78DDmT7mzIwVWPnjWS
Ml0QqjS9GV3KAa0dkr5/QheU1lmJjVZycCcu+7CRRhcMAgsy9zpxwPBX6Phq
1YWQ+2ntPy5z0GXzqlsiogsX6ufe6P5N2mvLaGXHdGHnhpdHBmo5WCe1wWF/
Qhck751wHmZzkPaam/X1Phkvt8Sjt5UDF31Fn4TcLgxkjxxLHeXg55T9wsW1
Xcizn0xpzuEii6U05D5XgKfct9k+XlyYLRm1K9cTwKZGblXscS5Krzff01so
wO1RhazMk1z8MSu07jIRwE1RuKT+PBcjCfuj/GwFiK+WlZUL58JmW75uqKcA
9dLea6OeccH6vtvpRZYAfqZLzz1u5eLAXNuMKXkCaGgeDVrbSe4H/kajPgUC
TJUMfczv5kJGX/7hsg8CRJ54YK80wIVOaGZXSbUAzuWR1hjLwwmbMcHVYgGW
fDTNrCO5J1+UnjuIbljeZ8asJbklslzwsmBVN4rMXhi+3MFD0/tnL8+t6Ub7
6tfX/9vNQ1lZdt7opm4sHvMrpGEfD0EVhfnS7t1kXy9sWURyTarhZ6FCaDci
VF9/G3+dh6GRgVK1P91YyfN0fvmGh7YL5z7W1naTe63x5rvveGBKSZTdZndj
X3zwvkCSY/myY8pntnZDt2AfZ2U5D34TGZ+1RrrRtncoMbKKh/4ZWt/1ZvdA
rfxImF8LD51ma38v9+7BjpGAwItTaOSbeg48PtGDcR6n+OVTaVxecmOGul8P
OqbXLGao0Ji+sHLv0MUeZCmNjwknObZaa0dXQVQPDKy0Xx0hOZYof1je/GUP
wt54BCYsIedu9dXl1EgPJjdFtL7dSmNqZcau51K96HepGnzkSKPh+7eLGnK9
MH1oZB5Bcsu3fHKZhGIvkoLHuG7bRXKzIGFz0axe5H575lq8j4YoOd3T0qoX
xu1NulNP0Ejx+pS0KrQXW+42ZxWE0aiYZXTwTngvTGqSVqwhuTVQedtQFN2L
4Lf7tlZG0FhvcvTD49u92FFZYdYQTaNXQqV18rNepK96NbkugYZl5L4l7B+9
MLSnr7ml0KjPlvh6TrkP9uari1++pjF2/6HY32p9WOEX+VNMcsxQtWr3Io0+
CLS2PjEtpBF0LrWbO68Pl8v3lWe+Izm42k5l3bI+BE3a8vUqybmzv2/tne7c
B9cFi8MqSc6pDCwZyE3ug3H/Wdmqehpp1SZHvVL78HJz5eYmknMmWcua5mb0
4dArQ9sBNg1HD/PquJw+0A5ehspcGnEsq8zTZX1oa1y+2JjkoErJ5kPmHX3I
r2wtke4i/SVtZfd392Gdqv6ZHmKTs46Oz4R9uBa4caCB5KSj8c7VGpL9OHHX
2DGnh/SXuldTSqkfJ6t0Pq0Ukv5Cj9V8MO1HBU8SYnJfTztwwt6fvBctd1dx
KR0h/Vn5li1Z2Q//586HIkZJfyN+uanryPeHpyybJclHnPfFyJDd/VCFgfQ8
GT5UtoTbrg/sR1z0vvpKeT7SFkUWjbnaD65u55YL4/gwmRhtUhjWDwV33x+6
JJcdP96cYxDXj4UyhSy/8aQ/0ySpSY/7kaGafFmCwYfqf0/zqyr6kaVyKfTF
FD4u+2zYbParH3PnBhUakxzv+tLVfv9vPx6vfLEhj7j0zOJZxxv7cSRdNSZv
Ksmtv3lXJvX2Q5S4oPKhMh/foks22ykL8cC7YKORGh+mbW4dOWpCXO6YrpZE
/GClbPAMDSFut4ZtH6vOx5lum9dt84SYOX+ieTXxvI3fZl1bJsTTWzcKdv/H
R4DC346PzkJYrjn2RncWH+2up4MNXIXIjjY+eY7YMV9N86a7EF/Ve/K/ERsc
3LXF3UsIhfJjPA9NPmpLOa9lLgqxyo5uvqnFh/V/gVs8AoXoNOVOqyfO9JnT
WRkihI9Px+/Zs/kImX1Q836kEMUm/6llEC8J6Ai2eCDEnkHvskfk3nLv7w3N
R2lCpK7flccjHr9oUYHiEyHGe+mt1pjDB6f+eGd9jhDsMDMqgjh8hXiL/0ch
pPhN313n8jEUndDJ+yxEiuLViiji/W3LQ9ZXCPFT/96pEmLzW/4F6n+FMD/Y
UvLfPD5aRdJar1uECHZ7v/8DccHpFYcudgqRdN2ho4M4bMj3hXWvEDLWOq3T
dPgwlGhB1bAQFB243pVYJkDrSoKUCM57RDmBxL+knb/tkRNBOyY4IZX4lFzF
znZFEaIufq6jiW1D5B9kTRVha/FuyOiSe5PCyla/6SJwf1RpahC3hZ41pGaK
UOAYF7KMuHBirp/sbBGuF0/zcSAOD+9892WeCMZ4TR8idpmsMzZqgQhxJZ31
F4hlpiXGzlwqwrzY9CNpxNU3f9Xxlovw6dmIbD5xqipDO4MSofeg//xPxKdu
2XgcsxLh1d3rDX+IbWcEZJnYilAyEDabJlZPej0wYifC0haOWEDcrtFn8cFB
hKwnbS5D/+pL1g+55iiCpv3YXWP0SH2zD1TYO5Pvn0Z3jid2TbmnrOIqwluv
DuUpxIvnMXex3Mn8Jhz9o0wsk66U8uCwCBMrfQ3ViKv17NoPeYugVOs4dwZx
2pMrRot8ROhW9sr7Zz+DojNCPxEur1HkqxPbvhgofuMvwo6xkdnTidUXG427
fEmES0U2mv/678j2tLcNFiEw78qiycRvl6TGKV4XwWjsPY7Cv3rzGuqrI0R4
d59nKvOv3mXT596OFcFr20PjQTI/owKHI3tvifC4XP9PF/EY8+s5OndJ/We+
a/L+re/b0qHOByKwP1VO+7d+aRYSq3IfiaAmCMopJz5dYnrt7FMRZGQXS/xb
/7VWx39aZpH2oxqif/8f9Y8ZqvJ5ImzOjrsTS9xhQ+/5XiDC3r8NvQHE7z7N
TIspEsFJFkOexBHrnDp3lIqQmC3M2favvo1fzjV9FyGn5bLVXGLZn2M+PK0S
Qe5P7YwJxL8dMN7nrwgnpsQ+EZD9d3pbZoIkR4RHs+aKconX/W1lf+SLEBbm
l3OTeMYObZ2wNhG8z2sanCR+tyvu5fR+Ebbruuw0JI5s+DHSMCDCku8HJk8k
3uuqsDp1VITQ7+khTeR5kXX3r1osL8Zzfs67eOJ1nm6CdepivOiNPtZOnr+z
D3isIQ0xulW+678jfsJ0/5KhLUagnFxRBPFE24Op4w3EEKfyDi8irphzxPmL
hRgZL5wHXMnzLrGr0/bsajHY2aGB84kXxXibzF8rRrPdtc5ecl5ESh+fErpZ
DOcpdm4BxA4NJ8vX7hejokyp8wY5by4ri3MHD4tRP7k7bCNxtt3pB4+9ST0G
RtMUiZXenD2vcFoMD+bM+mvk/KqOv2j8OVSMpV5dJ33Jebfd4do920wxzqx3
fKKiwcfVq+NvDOSKodm6niqbycfroutn01+LYWuq9dmXWH1h+LZxH8To8fP4
UkHOW9b4mAmffoux6pdV/Cny3uZSesdvzbAY3L/JS+Om83HANNPexmYAP+IM
lv5H8uBE60+X1HUDiIruXpRL8uPC7Z6jsvYDSP7s5LKe+KakceR7pwF47hne
4zeZ5Ef5y5/U4QFIzqkUflQk743b3ziYhg1gt0WiFjWBjH+6bItu1QCq6gM3
3xvDR8v85n0hfwYwtMLLYhZxP0vet6l2ACM75vrdJXk4YeXa2BTeAL5X3v+c
KM2HmcK3ak3hADKiGIzrJD8TblVuU5s+COMY6bvrSP5uKWA5jd8zSNYrxn5d
L43SuJvKn9wGMedR9px0kt8mPht/XTk4iHSelbkcsbp+8Ubp44OorCpZ+pbk
PTfpofVA4CBuKeofnNNJ48QlD+Omx4Nwr4s6/LOZRrTtgOJ74SBqK3YMPmTR
+PlnatmZG0OIX1yf7FJKY+bCI2lNUUPISy83u0/uMx5XSoO3xA3hywLXbdz3
NOSWnFxjcG8IWj3RivtKaJhF/fnUmDmEc53P7u4h96GU9be+rqkegtm0uvtU
Pg2/Yo1K5RnD8Dy+PyD1CQ2NDD1WVvowbkV6vNeJojGssm77zboRBHZKTn+6
mcbnjvlGx8ZIUB/UXp0amUTjwnwtxnCEBJWc5tlOVfAwnPvfbWddSSrpOG22
NIiHxkT588l5kpQVK0C4Hjw81G/VUV8lRX29rVj5SsSFwYSfVw4zpai9G11m
BT3mQtM6zTTpgDQVMD9lw/q9XNR+vXQnTVKGuhFmM2nJVC5OSGz9Qt+UoTS/
TtouX86BT5iynfzsMVR93Y3W+wEcrDjICpAsGENtKOteZUjet44kRSuw1shS
d+zvSrwVNOLsRQvnzipZynk07WHG00Zset7jUn1YjkqOGPyqtr8R4cti8u+J
5KjAV7ZbgrUbETvJrNQyYiw132rvks/1bIxZ9VO7bKY89XRx24gwiQ17zd12
AY/lKZWWkMokVzb2rRfoTF45jupuscs7OYsNduUxp6CKcdT95es9e3kN0E4V
L684qECV71D4zUppwOo5J/l2EuOpQx42fx0PNaBCgku/CB1P+SfwdDQXN0Bz
3tb4ltkTKNfl1E4jQT1q018myWVNoFapmFu6BtWT+xPDy8l8IvXJX4/fMbMe
lZs9BRd+TaRu7v+qZ5XFwi29/I+hrgzqBTNrpc5GFmqbT0RL7WNQZjvPPzpu
x4J6moHLqf0MajDWblnhOhYSZz8c2OvBoI7coWsd1hDPCF+w3JdB+d66qH3R
koU7DPeo5hAGZXH1yjuOEQt3eybtXv2CQWXco0fKVFloePFFryCLQe2ak1ig
osKChvcV0aJcBvVH9PHBgWmkfdtQxIzXDEpU5t07dgoL93j8973vGVRX9dXw
teNZSP79Rvf+HwZFS4+8/DNSh8aYU0IVJoOa9VRaTW+4DpqbF78Pq2NQH2JM
0s4N1iG5Is35dCODOrDpPwstUR3ul0eF27cxqOLWnR7egjpwr9g5f+xgUMK2
3RrvO+swe7W87goBgzobcWREuaMOD4r9S+b1MyjT3kSTdy2k/QXT8DsiBtVT
nhWt1Ezao3en0iCDkjr2fvpBfh3chp/qXB1mUCUnP316wyO/f32wf3SUQXm6
Fz2YzK3D/wDY+ewS
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#3"]& ], 
       TagBox[
        {RGBColor[0.7867598, 0.8842044000000001, 0.8924496], 
         AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwl13k4lOv/B3B7KZmUSosSkuVEljqE3pOdSskSHVqFIm1oISGlRZKEihJZ
klIRhTqVTtlC2SPDjJl57PsMQ/zu7/Xzz1yv67ofz72+P/ez+uDxXYdFhISE
bgoLCf3v1+15//jh0nYI/f8f/UOYnL5UbTvC/MzWfzw9A0175zuHl3bgsO+m
IKlNUzDa/vHDesUOZPFE+/xbJmFjqdo9qd6BnrrasczgSXgYjtNjjDrwN8+p
16JcgIdKCf0f9nXgWEXaXB//CWTLCy277tUBKR9zE3XlCRQu8TJ3PNkBnimV
dKxuHA1z9RN7wjqgfbJN9bDBOKRHG63l0jsw81f7TxtZPlb0w5/1ogOaAZma
7lU8qFMZyS8KOiCikvu57BoPFq1n+GZlHTDP6pq9X4yH4C9L0k72diA2cIdg
3uwx9MXuFqrQYWLCc/+dULMRlLIGrtgbMfFv0SNfe6kRpOhcnddqzkSqje8u
s/phONW8XdbnzET98sMmPkeH8XHusg20i0yMxf8wNXw8hPt7XhfFX2VCultu
4OjJIfg/tTFRiGHix6abI1EmQ1C3DNyhncaEa1VHWzJ3ELFhrUfsK5hIvn6a
7W00CN8ffoMtdUz8I9xj8H7hIKwV5p1xb2NitobX/g+NA5h+bxzuP8TEOR/X
VknjAXhNPHwYv4SFk2aN7xqX9sPoxIHalkMs6CncoC1a3IvF/064uB9job3W
+OU/LT0YmhfT3hvAgonAranucQ/Sn33u+3ONBfmdTdWWOj2Yz1WarfCSBcEX
JZO4/d3o3lAclfmOhZ25WaoNmt34L9xhkXYJC7kP8x/LT3fhvOJlRZMGFlJ2
NtbkPOoCy41j5D7Fwj61ecp7+yl8yA4u6RXvRFRhM+X0hULC5GIbf1onbtrv
KNB5QGHbPcvdVxQ7wX15oTFsK4X8usyTmVadsC4THFmUz8X1rd7pvbGdKF9c
Gvslh4Pl0SanapM6MSx9/NyiWA6y65ZuLkzvxPU2r7mCsxxUuZXWR7ztxFex
Cms/Mw4WnFgjrtTaicKFF5Z3d7CRmjdVI8nuxJihrtjdcjb0JmoTB/s6Yevw
rvFjLhtOYWF6H2Y64W4VlBwTwcb9WMYhFyU2uqVUT3XqsaHRnK9F/4uNF/2/
lF1Xs1EsHzWpsoGNR4u5fmbSbLSlG90ZtWCj4067z76uTii+u/f51lE2mgRb
hSKfdCL3z4mogNNsbNcaSHMk4zIzsdrjFsSGQUhgfmh4JzwqeEPqUWx09ipG
CQ53Iuu3/eqvr9gwldBsMFnXCUNFjb7sQjbsVurvHVnViUoPkXd3Stgo9BD0
TSzoRP/Ay50H6tnQ0aH7igpY0BGRDpkaZ4O5a6l5RwULJRbsrSxhDkZcOdrL
P7HgcKN4SfkcDkqO+e1KzmchQNY7J34FB9or9LUiUlgoVClt06Fz0PWkMCjt
AgtbvR9lLbXmoMkwW2KJPwutOQEBQrs4uD+4x7rch4Vp/TXSVYc44Cy7FD/k
ysKtC1PNeT4czDqSeuGQIwsKn2vTHvhzUPYq7ccCW7IPt4YZH4ngIO5+V+Ya
Ogu1t1wkd0ZzMOgTpRZhwIJ73fr6jffI+xlvFijqsnDFjeEj9oyDe+mOFkJr
WSg7bpT4qIqDVR5qymYyLMitSs1zaeTA0+/LjK8UCx5Vkt8XtpPxzvk1u3wW
C2LrGv9EDHGwmTN5et4ME/atxotNBBw40Y0tRgVMpNx4ojklwsWGtVYqs/lM
0LtP7jshy8WH/jGZvAEmbt1rOqMuz0VJoVK6TS8TbVaI7lxD/GaJy9wuJgIz
pD45/82F3vCsbbNZTJQ7nW5eQCf/L8hOw7SdCTmJX0OVVmRfu3Z6pv1mIt89
Q3HLHi5ascTxdxMT4rLShpMHuYiW31n4qoEJhxI/+zfeXLwx7WdnkVxIPdXi
fdyPi5jym/qlP5kYXm0SrnaB9E9l8yLJH0xs+ZGZyLrMxYPhMx0+1UxEh9De
JEVxMY+7QHzkO+mvVsD33fFcdAkbdd+vZGIdo5Utk8zF7mbvP4dIDgVFmU5X
ZHKxc7nb8+3lpP/GWYuvvOJio76o9+4yJpb2zdeiF3KR8nfo05BSJrwSz1gK
PnOhUaDQVvqNiYKtbfvyKrhwkLEO0SKWmDQ761vHRV52gGTeVyYcs55Fq/7m
YtEpnTFH4icuC54y2VxIHZH8JEs8Mvvcp8R+Lmjnw3sH/mPC5C2j2YnPxQ1H
hQkOcbSnxfB8IQqyF82PThAzFj+fUzGbwlQg/T8V8rzm14VKl2UoTCpvuu1L
HOR/3hDLKGQsXb+7hrhCucN+QpGCt2Pf462kf8vqLH1yNShcY4tMM4iPXHoR
fkyPwsp/P05EkvG91VmUtNaYAitPc80uMv5ZzMA3HeYUSm6IL9Ai8+N0m/n9
gS3xukx7JTJ/aXRrjuNuCosnV1zUJPM7OpAzTdtPwUl/lsZOMv+3bS9ohZ8k
/WW/9qgn69P+h2W5+TwFpc+3NfTJ+mk+t9k/Hkah9LJsSw5Z38q5crd9Yilo
pfzwa61nYnlR8FOVJAq+55YkRzcycfQo+1N7GgX7dCl952ZSJ8peDzsUUNjd
8wwKZH/tPrt0Lu0jBdH4uMlVDCbS14YolZVSyBlOL9buYML0ynYH41/Et13G
rrGZCDal3qz5Q2H4/OFlYmS/37O8qJYk0YWm4qdOn0ndydu6OEl2fhcK5SwL
Y0aZ6LE3CxdV6sIz5Q2nvMj5cXZP3tVh1YXpValOvyVY0L3sPJAY24XUlLfO
jxRZsL02cFD2YRfk/g675KjCwtGbVxpuZHTBS0v6qJw6C8l3896fL+wC3p/Z
XKLNgnT6/Ejn9i5YdrEWpm1hgfpaqir7Vzc2qneku5E6J1qxL/HGhm6oiEaU
ffBkYWU1jyaKbsy58+O8Kskjx0Zl/pBdNw5Y0FNkSV595ob8V32mG/yNJRzr
CBaSZhscvFHSjVMH9QwF2Szssnn6QOSfHhzfdi5Dg9QxZbOLDk2HesB88L6E
K9QJnrHjvBc+PZgqW3cwndS1+9rCF12Ce6C84la+OqlrHXIuB1+Supr0UK5y
G6lrJ7iz1fZSPRATNPq3k7p2M9wr/51/L3o/h2VnxHWi9MPaHyei+1B1fYd5
5Xo2POZpskXv92Gkf7FkL6krYq56E3GpfQjtuZ4gacjGlgn66vf5fdjwPbfL
2Jzkvu6ek5K/+1DuWSl13YWN55mRMilq/YCkRE16KBsxMUN2tZ/7wbi0s+Jl
NRuuHkU/N4wN4LJfDP/qAQ7errLTTZweQB23FV8Pc3DdZ8RaWGwQ7tKbq2aO
kBxfcy3Lc94g6P0TuZ6nOHiYkOetpzCIILdGjzmXOKAFz+3/bj6IwBTW13up
JLet3g0L3R6EjHm6aGMHab9GTCnv7iBklxgN32NzsE1kh73n/UGkZkjMOHdx
kFnUmfs9dRB3241OVQxycEBzvv/9/EGcNZssDJ3h4OdCT75u6yD6h/m/dFdw
kdsmO+Wxdgi/tdJzXu7iwmjjjG2ZxhDc5GTO/evIxdebXY811g9BJuFNb7kz
F01GHywH9YeQGN1c37iXi+n7nnfO2Qxhd4Hot7KjXFjtLlSPPDYE25hHQ9Jh
XLRV73N5lTuEgOdpJWtecOG11iZ74dshtEQ0F1W85GIoWG/Gv3gIIcIFIb65
XIhpSqZt+m8IJ5s/+2e95UIt8vVgScMQ0s8t0Z0iuehnJX61YWIINQ2z9WY3
ciH5KSt/EsPI6E1NrpziYtxkXUGx2TBW8r4mYoYL6ktOwQXrYYyEPZiXI0xy
oDTv7cyuYfyzOtnxkgSFKzUfCkU9htEfHfxOeD4FkfafH+ZGDuOisULWbpJr
U9OCr8ubhqFhPLPjjBmF3pAL31pbh3HCXEHiggWFFhGh0qSOYQRGWAVctKJQ
KCFetqpnGGJRaTfPb6NwTppWoTQ9DGtD/0ZrBwo8eaVqDeUR6G41rbE9RGHA
aGuj4YkRpJsXaIpcJM8bHBM88xuBz8Q6ZkQIhfCNt+RXnBvBmmALwRySY8vW
1x6aCh3B4syifZKXKVgo/TNYfGcEzt4mutzrFBIlvSU3F4ygTH93gmocBU+J
m3+9KBrBJ9nrpy7HU9ARzdmx8uMIlqYXVzESyHxMDd+dLh1B0KpjsjfJ/XFk
4Lziv79G0DNXMKs8mYJNw3VD+vQIjKVMVaqzKCyqzd77UmQUbglnBWLZFNqr
q0IVZo3i0r6sY/rPKQSULSgVmj+KTVNa+gk5FB4X33f4tHoUbfXttwzzKIyn
ZB0zMR+F+aPypgXvKaQfL39kFjkKtYCVKvO/U6hZrXfkYfQofnxaljpOLKhN
0hmPHYVUSYkUo4rCdv2T/z1LGsWyfZHZaTUURoXkehbkjGLKnmmzrI6CSczh
jR0/yPsGQz1TSA77mFXPbGoYhSCu3/doC4U4nn5Z7K9R1CueDlrfSqFrj5Sr
FWsUVfWiL/N/U4hWyg3NGR2F39uGJ8/aKTDyhL5fWDKGhJ8Gqww4FGZ7Ho1r
XD6Gip+CLUxinaV1+7QVxnCdHnDpGpfspwsZw52qY3DzzfT6SVHQtLCV27Zp
DJxXqzjbeygENT44tMxtDD+G/pvsHSDjvya+zu/AGETEWt6fHSTjNzzO+354
DPf1z+WLDJE6lmxyLdR3DMkzKnYywxTKvbpeUBfHsOX5kMPSUQpygo2C/JQx
nHtc3FTPp5DZoH/yeMYYCh5fXLljnIJ+7iZqbfYY8pPa3b8SO/tsbkh4M4bj
nk8FLybI90Ob+evzpWMoy9oW5DVJQbXIUk33+xhWuk+P/yB+G2+d3PNjDJ2H
r4YbTFFo2rk9yrVlDPe8NKpFSF2TK3E4url/DHm3Yg8FT5P3P3Lq4A2T/q0b
j2gi1g9yds7hjyGpSaFs/Qx5/wZXCwVhHt6/TM5sIU7IOKQoIstDOVdbarlw
F1TDD98rlONBaCTJwoP47X7P+aflebD52/dZDnHTUu9plgoP+6ZGBEYipO5F
nvr1nwEPyHNt3yLahUwvP7vgzTwkbC5KDCbWNw8o3WjKQ/+b6uh3xM7T5/Iz
tvEgcMxWURfrAvUrcN1+Ox6mThRW7CM+W3DhiZwTD0v2zsm5Q5xwIjTm2j4e
zJ37N/KIVbdfkjRx56H43Yc2ZXHSP7XLIQIvHqLirCvsiJuYV329T/HIeRec
TSf2+vc6W+kMD4OfdhlXEY8/iHRtDeRB3KRi2yixnGO0zfbLPEhe87M3JPeC
TO2YT+LXebgcVrXdlVhfOlb/QxQPf7fcvxdIXNp9NyfgDg86ut7694idv8Wr
aCXw8ERQrfGGmEq9l8RN5GHzKWf/auKzIQ9kkx/zEPEsZjFFnGDwSETmGQ8f
/7X1kJ1FxrP48bmyHB6c6zlLVInfDqcMhuaR9VF0W7uJ2Kr6ieemdzwcrDWI
syFuepbeNvyeh262qIcLsdfVTMdnn3mI+WtLggfxuHtW5aFvPFzbHqB5ivjq
lmzTFZU8BJaoqAcRL135orCuhofO33WR4cTh/jscjOp5yNbZNXideLBysC+1
mQeVSKPhW8T/KMdEzG3jQUm44s4d4q+BuqtPM8n6fdVtuEusU1tX+IvDQ4t2
dmEccZJ6gINJD5mfN14m//PssCX9Twd4oFiJvrHEfs1vI2RGeSg7EUi/TcxY
v2f1uXEeSjU3vosktrk6Wdg+xYOPzHTzFeJ8RqKDlTAf8utEn1wkXv335v4c
cT7ZJ35yZ4gjoxgRS+bwkTMrVP/Y/8bPDll9UZqP/jhH8YPEh4wVizgL+EgW
WhXiSFwVW+Jgu4SPZhHJLEtig173/jfL+SgK3hyuT/zEVOKqvAIfX8920f63
HvMfZKy+rMyH9lJd28XEgcNWRb2qfOzPNqWLEnOsux0c1vGhm2rC7Sfru+vx
jf4ibT6O3HEyayZW3Vm1+sYmPvJO2q/JIr6TcbxoeDMfCpaXn0UTT0/Pd9xj
ysdetluvP3H9c/uratv4UBu5kWJEHDa3uf+bGx/jRp5CRWS/9h08f1XrIB/6
Gw4ExhM7Fy5XjPfg48DY1LtTxFpH9jp6HOfj5p6IK2uIW7+yisRC+ZAbKQgM
IufHcuVlR5/LfJiaxOnsIH7trzJQe42PiuaWNwrE15SPKKbG8PGkf2DNR3Je
N4b1X93yhI9vivblg+S8P26+pfg0kw/R/qsihcRS2trF85/z0d2UTwsjZjFO
DzDe8HFLQu+5NHG08YRj8Dc+yn0WLVhG8qNnXFSpqJsPL9cObwHJp+LzxkdD
B8h6vRAzfUYcNRXwynKUjySNXVV7iHWEulH3hw/nhTck8knenZ1V49o3fxxz
omVXu5E8FFucGLfq73FM7Z4ld5zkaUN8/W+24ThaRy3K5k787zuJtiabPo4n
a3NNMkj+2siH5erbjOO1Xl/ML5LX0cpeNXZu48gKe1Wuw6OwQldvTvilcdwL
OZaSRfK+P++Ync3VcTgxVnjoEf+7MSNh/s1x3JUfFntP6sPBTcvWJsWNQ8P1
aVM5qR+ZW4TM8p+O4/J9u/Gmfgp6OysvUNXjqL15bdHHbgrbjrkPbVsxgayz
ahc+dZB69ITdNqUwge2i5x9oED9v8ajMXjOB/CjLT7Gk/knbHMmQ0pqAXKXJ
WncGqU8qvm6VWybwamHPGT6pn/btZ8q2ek6AKV8vMtRIYY/9jcc2ryegLMS3
2Ujqt5fBazsrKwHM5SZOGr6h4Nfz80DGNgE0+Dv8g8h9ICRp5KSEnQBP1CN+
FOdSiBfeEPPFRYAjscrxhq8pfC0r+En3FkAtpN1Lm9wnlPa8tzeIEuDCYN3r
6UwKbedLHdXrBDhV1aemnEjBsbjNRWr/JJY2izkVkfvTz6ZFpYG3prBfwrzg
7mYKCtkabblZf3B4m+h6UwEXf+S27Yn/PQ2NP98terK4qOj/S++UuBD95dr6
HhUXLkL+UqL9uS1EN56scwmeQ9rnr0xyUxemhy+3WRmVywEzUfJiylth+ibu
5MrL5P6fptmjtsJMhH7rtapy1XwOtOb9jPBuEaH/tjXs2/+ODUXLTINHXqJ0
g9A5qmZebLR+v/QwU1iMPin++c06GTb8hJwqOfFi9NhmW7NPxZ3wj1piK6ks
TpfedV9e6XgnjI+0hQkXi9NjVW7FOazohO+j2Llt1hL0WaycYq8aFoJCt7gN
1EnQxVQ0K53I99iulyMHGrxn0auS5j5+aMBC9Ka7hY/HZ9G5tp95D4aZiJMx
+mpyezZdt9E/1TqDCXGzn2tKV0nS21Y0Hwg/yISd4j7bsGeSdAfXfYFRCkwc
3j6ktsB0Dt3670m3lF8d6Kg95XKlZg69WlXYk3m/A2syJgxrjsyl5ym9lPXZ
3QELlTNcWyEpejnvqd33xR2oEerkvIqUoj/f0EAfaGmHoqrTvW7lefSfa+/8
SExqR2tWwaNZufPoN0o6bWrc20le0467bJam76zcKeeh2Y5ah2NDIfXSdP6n
ZJngLgYeaBR+izxIo8//feuGbwgDrV1+sSKHafSteb+YD4MZWJGpdeCsJ43+
3e3RkeogBhKV0wSHfGj0YN5Fce1zxPLR6wwDaHT/HpEA3kkGHtI87nRdo9H1
HmzYcP0QA8kjMvssXtHoByNDxestGGh/ValRnEujB1ZZbZlrzoDCiYhx7Xwa
PS2q6dkWU9K+d+q2fBGN7u1pOC8HDDxmc7+MfqHRzeNPC0XqM5DS+F49tYlG
z3FtTLVVZ4B59yxfroU83x5VFqHKgKKD7peo3zR6im++/CcV0r4m0+08k0Yv
vw07PSUGUsvuRNv10uiv9z7qXLGCgc4IW7dv/TT6rQdGF3YvY0DZQlLdeIhG
D3snbxYjx8CTz8ElqjwavSLiruvsRaR9iEH0w3Ea3XD96hemC0l7jLrKTtLo
Q09/rbsow4D7nxdq1//Q6OdOFrcU0sjzRUd4MzM0epzopwLePAb+D36Gtv4=

          "]]},
        Annotation[#, "Charting`Private`Tag$11812#4"]& ], 
       TagBox[
        {RGBColor[0.843704, 0.8988422, 0.8492188], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwl13k8VN//B3B7lhgtoqKyFdpJEXoNJUIqSRRJIqKiKGklS4skkSVbK0la
SEKLlCjCx5aSZmwzcyfbmLFl+Z3v4zf/3Mfzce/ce8497/f7vK/qgWN2HiJC
QkJRwkJC/zuu2Nrlb2zMhND//+ieRiP0WOK3JsK7rMenkKae2PvOlYnj2xKS
VkdNIkdFaN5VLyZqYkvCbdZMokjRy3yXPxP56YfrJn5PoEnGIIUbysTnmb7t
omsnIMdv3qL0iIkirunar8P/oNyLwI5cJqQHGxTLnvyDDjszI/c1E8ljk6cV
3f5hc+up4U2VTPx50mtXWDOG858UH/r/ZULTQ8NWu2QUPXG7hb7ptkPGpE4t
t2oYFR19ETuN27FgbEnR1+hh3NO9LNtq3o7mEInHs+2G4VBbOK/HsR1JSpxy
pdYhfJCZp0+70I5FNbZsswkBkve8LE643A5F4W8aOhUCBD62MlsU246aW41B
M+ME0LE4s231w3Zs7CqN/G+FAHGhrd47v7WjpVJU8doxPo7WBfT/amjHF2mb
uQJTPrYskj11sK0dcczL6kYKfEy+NQkLHGhHfOCmNKt3g/AaTUtLUOxAuoSo
7rR5gzD2c6v/5d4B5b7ogiL+AOa8H3U6eKQD9We2T86vH8CAbCzj78kO9J9T
+LTw5QAePfnYM3GlA8KHlvwSOT4AeZa65KLnHcDARnHWSD8o/ZLorDcduNa5
PUmmtR+fw+wVVpd1QKvk6LaS9/0IVgtXM2vqQNOW0+OvL/ejw6Xb+OB4B8SN
k5UaFvXjXc75sr/inbBmRKsoSPYj8d8cq0BaJ3TZvQFpf/pgk2SxO0KtE3/6
wpfYhPShoCHLP8uyE5eqJwctanpx1drn0d+4TvyMXGLlEtuD+TFmx+tTO5Hn
o2oV7teDnIa5G4oekeu9VQatt/Xgu0tFY2RhJ6iTzN/Zcj2Y6acprt7aiZQd
m1lecX9xP3+8VqqrEy0p9k9w6i/WjNan9Pd0YkFk5sm7e/7CITR0zbupTrwc
bZk/ofYXyXF/3J3Uu9A/cvxm8xsulrYUrKQv68Lr/VsNKjO4KFGJ/rdYvwt/
BO9r11zmou2R8S3+5i7E83aP+DtyofYm6eONw10oy2/tsp2kkP17p2r5iy5c
aXezEt1HwUhtaU9OURc+Nv28X2hNocpT5M2tsi4MilaKVBlS6O17vt2tsQvl
35d9l1CkoCsid3F8pAuMtqOd9xs5KNvcZd0h3I1HQb1hi8o5sL9WovhVuhuL
c2Q+9RVwcHK2z7ME5W6s4li2XEzioGhxRZsuvRvhOfo5Ww5wYO2Tnj13Szf8
rTd6rtvFQeuzkyeF7LrxQuPzuyOWHEwaaMp9d+9Gmz4j+9lKDsysQ028I7ux
efDjLG9hDupvOEltj+nGshmWG88OsXGwYVXj2qRuxKjKWNZw2Yhw+eMr9qQb
s5W73q9qZqPymHFK+vduqOkq139+zobSwvv5Ts3deLLAr46dyYbnd6nqWYxu
jN08+sE0nQ2x5c0TkQPd+HntKy02mg065e/qN5uF6SH2kfHH2LiR9OOUjgoL
3e6GEju82GizREynJguCJ4aSxm5snMmcXuq4joWV0RuTUneyUXAwU810Dwv5
N52yg9ezIT5bzujfARZkZjJZqWvYsC8L2PnKhwUdmw2j1Ao2eKpmYdrnWDhW
OndwSp0N07qslI5wFopVPt0oX8BGzEXaq9RoFrKDI73y57Kx/E9r14wMFpTn
Ve8QlWfjbPTGyW9ZLCToTmm7y7Dx1SR7TsQLFvyP3a5mSbDhlXLKYuwjC1lU
yUKXSRYeOM183N7FwiWZg1LsXhYGJU+XppBj5/CE+T4uC2aFf1ochsl87RR+
8Fks/JnzVPqbJBvzi505F5ksrCifpR4+g43uRRXugW0snA0MNsI8Nlb8UNS5
/IuFeQ0WvnlLybhHGx9KNLHgfSk37AiZd77ZHQ//ehYKdRVSl5iwIdvaET5S
y4LDzfbqO7ZsSOa6yu+pYuEhfUv3rt1sDNHn3tL7ygK/79kkbT8bmxR2ZS6p
YOGm7bmVYf5s6FGMLy6fWGBMdFhsCGZj7Ij0WBqZ54qnVvtHQtm4tM9ZavQD
C+ecXwS9vMbGzZg3UT7vWaiSUbrpG8dGseUN5aG3LDKv848Xp7KxYHmNXWIJ
C4cPd5UyHrLxdjvn645iFiQrX/LsX5N1KykVSL5hYXfQXBnaBzYiFR90ixey
8GjJRfXKCjYOpaXGK70m423qNrpUx8a2u/SH9AIWNkZstTf5ycaRpWffnHvF
Qqx+vu9wOxu3X98+VZNPxt85L/wFiWPNf1oR+sQr40JSffhs6H9Ruv4sj4Xz
G9mvNCdInE/d0jchTrK4oJ0qQfLyodZ400sSZ9ZzUmfLc8BzmD09krh221P5
qLkcrBQJ/mdDzN25KUxUnYM144sPaBFLOP4aDl7GQZ1cVIsSsZrzcR+ePnFm
wbgKscl+qT/e4OD0YiuvdcSOBzPsmCRPEyxOFx0kDvBaV+5ox0F87lTsQ+Ib
vt8Na/dyYBQ1/9Yocbafx1MLDw7OukW67CfjLQ8YX/T+KAd+bSdutxAzg27F
rQ3iIKw1pOMgme/4WR3J3BAOCk6UcIXJ+1EKKT2jeY0DCZ1bu58T64U79qXE
kTpg3FB7jLxP2yt9B2ancRAimilCJ+/78PWIpmuZHFj6RCQtIuuREZ//NriI
g0+2P3JnFLFQkmS9mlfGganxyyhVsp7Nqe0PvKs5sLNxiaaT9ZZ7JB/lyOAg
/FVMZfY7FrSzM6dqOByI69j4Cki8bMrdcMJikAMxC31x21IWzhT47lkrQcFV
qWhkCYk/dnmF1uxlFNZ9EMIpEq+i31xTrulTUKkN6NAm8bygZogmCgqMdfWO
7GoWdjVrDA/soGApF/c6so6Fj6yLn2tOUdgcNBC2pYWFVEnDA9fKKAzy5h95
RJF8mV7bKFJNQcKjb/3YXxYa5A9tCW6i0CU2zcqhjwXpufGrvDkUjt9q91jM
ZyFIe2ByM40LITtde1WS73ZWj++I7OUiyv/GkT2z2NDYdMH+hzsX77Icd/Qo
kDwz2SWb68vFuFvGZJgSG8mrhS84nedC5NRWg48qbDCVnA48v8vF49XiDX5a
bPixJLX3sbmYVrfndPgGNq6HeRW8CfyLq5Y6tc2+bFS8W1LnF9ODf/xNQber
Sb2VXdElmtyDus+RKe21pN46rxm9fb8HVxL9D65oIPVulK76tqAHx/c53P9E
8qRIb4+/1O8eTCwIt6RYbDzNippxT7sXOYV8BzkRDmJjB3bUf+zFuRDbE54k
blcxhz08q3rRO9M4MNqAg+8rJ0+PNvbC8MiVx/lGHMhUS99byOmFitBE5D9T
EnfTNHg+tD44mG4xPm7LwamzDrFizqRPmNorMuHJgbNn8X/6gj44F9hv33ub
g8KFO/RSJvvQbL6hcQXZ3676Dm4RFutHlWhc29QdDro1r2Qfku2HV0zu0eS7
HKQl5vusIX1JuT5v3oscDmjnZXqrzfvheXdBhttHDvot3/CEbvYjLVsjqJhL
rtcUU8+PJ31P24dAw14ObES27TyU3A/z3MSM/H4Osoo786rv92O5dMGpewIO
3FbIByYX9INXPyziPMXBf7MODeuRvkkr7neg+UwKeW2zxz2XDEDoTFQ2l8Sh
8dop28qlA/BxmJfLXkeh/Drn7tJVA7iwynVxB9n/fxi/s+g3GEC1fElArQmF
yeRDt05bkb4uUehylDmJ091FOlFHBvB2UU3CVXsKbTWuTi/yBnBcdbZ0hh8F
ryVWObMKBxDTYzpgfZzCwPk1U4ElA+gWbt8lOEFBbIXUw/WfB2C9gZlEJ3Gu
HfWyv6xpAH3aKQvenKMQYCl+uWl0AK7dza90r1KQKs0u+AceJNb6Ptl6l8KI
2fLXJZt4uPisVaLiHgX2p2evz23hYfDdmet4QKGiIr9wyo6HUBMf1cWZFCJq
3xWJevIgPaf6cl0OBRHGf+9konhwdwsPv/eaAs9t1/uqGB5Kzj9f019IgdnR
/P56PA+lXyY0jIoofGC1fqCl86DV1PK9ooTChb7uj7Ne8rC2QMG/rJTC+ORY
+fwfPMjFx5it+0bh78VzX1pbeVCRlCl0qqLwS0SoIpXJw81AycjTJG+LJMQr
F3J5aHPtWveihsJpOdo39UkeHs7snSHcQGFIRb1mqcYgNlYrztRopdCd/rDm
r9YgZGLXMJV/U2hU1ap9unwQo+U/1We1UcjXXF63ct0gjFqPSo/8IXm/fF29
ntUgHrglX7vfQaHP2LrZyG8QPVHc5lCKPN/wyNiTgEFURnS0mnMphK29oaJ8
ehDOzJcfJP5SmLeq3n08ZBAnjXx0QntIHVLf219yaxChN12fuvZTSJHykdrw
ehBTeaZPCgQUDklcX5ZbPIiLOffNHYdIvyj6bNuCD4OITtjaOExcMc6Ln6wY
xOIs5Z+rRkgd6wtWe/9zEP/1aty9OkbBqumqEX1yEB6r+PvbSL+qUJ+z77kI
H6XflUddp0idrPkesmgaH9/nLkr9Q3yycmaFkDwfdcf2yLUIcXG3JNm+VJV8
p7TOeJsvwoXvm5JTqxfzcW5F2K/FolyyTm3Jd3X4UHRUmJFAXPVMjRmixwe1
Te+LvxgXI/eyj5iZ87FrR06EvAQXZelVMS+38PFytkf4CeLolN48NVs+Vu8L
fNRArHFbd0xkNx9N1mt23ZzGxbYrRRFlXnyIHDCL4ktyMS+i9bHeET5yuTWf
LKW46AydrLrvz0eL8G+dO8TBZ81mhQXzkcQUDV8vzcWjY1/TN0WR8VvvTHSX
4aJWdY13WgwfBx/HS2YRj9Wn6o7E8XGlXLWMIt5q4P/5SSq5H2Wh7DOdi5PU
z2jxe3xsdDz9Nos4I2WTo+sjPu7aqud2EvOFlLgzn/Gx1V3m0m5ZLhbkheT7
5vHBqfjtHU1s6cE9V/6aD4WNOx6WEd+pfCcf/IGPbxewUFuOC7NYj7XMOj4u
x6hsZBD7bqqZWt/Eh0HPH54U2VduDxlUxv3ko9/gorAuMWfPdGfLDj4O3/Cj
nyOeKXtS8x6LjzJvqxMZxMbv//T+4xLXKEh/JI5Rzwt5xufj0KMbXkLyXBQ1
KltLjfKhqfBJV4W4MzJitvsEWU+pIQ8DYrn1/b9LhAVItDgkakds8Ncpc46E
ALmznKYfJj6QVubnJy1A7arpoReJo7YvX/9VToD+Px884okLRBJENWYJ8L2t
oDCL+E++UPU5RQH+eC4/W0Qseejw7eb5Ajgsc3/xlVh3boPr6kUCqLvcdmoh
dv5mon1NQwBuutjJbuKIc5m8Ti0BVs3iTuMRP185o2TDcgEMbCLkx4l/MoPD
E1cLAIeZN8VmcCEW12nL0xcg+MXXqzLEKzbbKtmsF8DMjpqUJ3Ycec18uEGA
dRlPemcTh2arPpkyE8A20HKvInGO87UAJwsBZqiMmSsRN8oJTPKsBfi8c/TZ
/85Pftg3TXa7AOnm55MViLVOVNR62gtAXf8gMZPYTlM3+YOjAI5rhwXTic82
33Gf5yLA+gJHbwniR1fElwe4CVAwMO/AJBl/rdGxoWoPAeQNTzD5xGM9P94v
OSyAjOVtNodYPcPsSshRAVTMC4N+E9vY5dj9Oi5AyYfpt2qIT4rNUdY/JUBr
frnBB+KMggtd0WcEmBum5POM+KsXJ5d9QQCdUb2lqcT8eTuDzMLIfDdbBV8h
XlBdYppyWYDrYlFOAcT+q2Matt0UIG7djmpz4uSO0dTH8eT8L92Dy4g/xbsf
Ek0WYHjr+I0ZxEpja8cK7glQbDOe3UziLavJwP9YpgCve5eyXxEb5K1nL8kR
QDQ0+kIssaPvhqbEVwIMBHd8/F/fxLakb91RJMArwxr/BcRBmmafpN4L8CyZ
cZFP8iGxzfxlcIUAD4+7fL5DrFVsoa1XLcAj++IJX+LChC0Z3DoB8p6qpxgT
/9i+Ndr5lwDV473yzSTflMrsD2/oFSDH2kR0lORrVroDc4gngJ7px7i3xAZn
HR2fDZPnLR1IuEjsqO+8eZHwEERLZUaFiRMz3dVEZg9B6Z+hLY/UE6Wo4z8/
Gw4hO/R1yFVSj7K8Anac3zCE/jn7fqwlNjA/WbF24xD2Fpu+ZpL65Th5uiDT
Zgh5dPNZesSJfiGxV1yHcNz/6eFP4uR+u2KstoYP4dS5S1/ukfqatTq2VPzq
EFR/PjU3IDaQizN4Fz0E1+3v3aqEyf2+JCxemTgExQFmUD+pz4mG6SIzngyh
zuOfhRap33MX5BY11A5hxv3F13f/I/tP4DZ748YhrNiwQI1B9oP+qv6e+y1D
yGj4EneIuPyMnuqJ9iGEdmxVPDFK+oOWwsgZ/CEkbap8enaYwve4MntbxWHI
xO8S3TtIIVSmpfeLyzByVjlvtCb7Xc+B4MsrDwyTuhJ14QXpix2L5qsleA6j
v1rizRzild77dnkeI///e2dJG4tCa3lHsVjIMKiEK7JuXRTWhvZeNn0wDC0r
/ap1DArcEVH1YmoYG+0nj61spFASbHI4pG8YprWvEg6R/Tt6/OQLC/4wlsuf
eZFWT/ZDIQoNE8MIpMe8l/qPQtC0Wuce+RGEprkcrP9O+qE5KbcXrhtB7dyD
pfoVFJT11kiHXRpBNmLVNpD+w+bIwQEb5VE8GH8bGX+HwtkHXW3ji0bxsEdD
MiGZwtNfnlU5mqNgKVwuTUiiIGflnTl95SjW9ae3306gULv4qEuV6SheBQYJ
rt2isJNxqtL60Ch4x+Pn2F2jsGfntbtWL0dR8zKevTOY9G+GL3dYWo6hKOFj
jqMDhV0lbU7T9//DsFnAHh1ZCv/9UKg4c2Mcmi3Z3yoLOFiUs7QtL3sCyySS
7zi7cTChZLMn4fck6qSTT2gJc/Ctd9ma4+JC9CS9gX3bMti4uEydNnFTiP5j
q3F58SY2JgoWpLroCNMPlz2d6mSw0J4ideFeoTB9eX/A5pJL5Pt/BVdbeZMI
fdsXemC7Fvkelv0v0ueXCN1xq8Iboy/dULPIMkz3EqX3NB4VMjrSjdbqS2lZ
wmL0Q+eM9mjKdiNAyKGqO0GMLtZ9bcXp510IjFa0ldIQpxuXP9h2b28XTLzb
QoVLxOmNYUvZJ4W7cDQ9TqZtiwT9aMD7oJnPOnE2xNSlr0GC/sQmjye0vxN2
zwfdmnym0Ucfzw9Qnd6JmPXxRXdHptEtOw0Tn73vwO0ZxuVmNyXpht6X5SuO
dkB803+aFQul6DSJ8k/ymh3YoeZqG/pEih79fY36ubZ2eGwd0J65UZp+91Km
aPWtdjDrjztF1ErTxxRe7a/d1g7NzFGjWm8ZehrX3m50Wjs2Lz7FshWaTtcO
kflqWsZErVBn94uo6fTfteW7S8KYUNNySKI0ZOmDqyUC082YaM1+nT4tT5bO
D84OOCbBJPlDO+a0QY5u1CLztqGKgXr7IwMXG+XoS+WKzvy6wcCdpUVfog7Q
6AZ9rzhOjgy0cgLiRDxo9OUS8+U8djOgnLXSLegQjb5tZpCNnwMDKRoPx9x9
afTNmdMVI+2JVWKWG52k0YtUzDpebWcgjeZ5i3OFRp/dNGCvtIWBjMEZrptf
0OjXjOQi+g0ZYLyoWlqSR6NbF4+1TxowsMgvcmR1AY1uGBvgJEuc8Xf8pkox
jd4jInpLZy0Dd7tYn/ifaPRvS1cYeOoycK/5rc79HzR68Z4fFu06DLTHBw0r
/aLRY6VkjXnaDKjZ632K/k2jl6onbxEhvleb5RLcTqPf9nr+XG0JA/crb8Xs
+Euj17L9cg+qM0i/YevypZdGn/Vw+pFANQY0NkvpmAzQ6GV+3ZsiVBl48PF8
mdYQjZ4ra0HPWkiuv2gYkzZCo5taf3F/s4BcD77z7H80er9fUMZXFQYOTuRq
X52g0RP1dw/9Uib/L/Yempqi0V237/fomc/A/wHtJ6Iw
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#5"]& ], 
       TagBox[
        {RGBColor[0.881765, 0.8848148, 0.7918972], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwl13lcTN//B/C0IMmEqIiS0q49FXpd2ZJEC0r2pUVJlkJkiU+2EGVJGy2W
hFQq1ScfCtFKaSFtU00zc6dpllYtv/N9/OafeTwf95xz7z3nfd73fRbsPexy
QFJCQuL4BAmJ//1/6TQ/N/JvGyT+/0etaToxsOprG8JeiuIUYsdxtkQp9Qjd
hvdOQ49XBY6BF71Vosy0Haoz7DJ/uY2glMkPd13WjnCrDBm76SNIMr0i37S6
HXLvEsY7Kv9iS3XeHJ57O3bMOrT+04a/+E9ujgXjXDscJ5ZHOHgM4+G2zIL7
V9qhrhy6jT1/GEHPHezU77Sjjp43drdzCHprT280SW2H3shjY+ngIUSHNfm6
lrVjjmy0fVrSIAK+H+/9XdsOO8WXgwaBg1inLn9if3M7kl/+mX3fdhBj/y6/
FCRoR0/2NieF5gH4DCUk3FdiQt5vzmUN7QEsC9xT83sfE/pO7p0Hm/sw+/2Q
x/5DTLyVD9O8ltcHgfydVjqYifdjf+dujurDkxcfeaNXmRhO3VvZ5tAHBdbC
yeoZTEyUCGaHfRCDY1F489k7JoIOO85PfyTGp0tus0yKmejXkaz0PS9GiMY/
GnZ1TOzlhis8WCEGc0fXsv0jTHgzDdVOfROhKP1sMS3TgW3MjM9jL0V48He2
QxCjA0dt16rI3BHBMWbt1nCNDvgrfSm45ilCTu2zI8/sO9DhMwHLxUJcW+/3
hI7uQNCZ4vEQGyHmRtodrYnvgE2H742QRUKk16rY5j/pwMphH17lDCEqd5T+
vJzXgQjx37xAWoAZgVoyC5s6UPLlcuOxZAGSs0eqZTs70DJmo9t3WwDzoZq4
Xl4HBpq+TflwXoAtYWHmReMdOP8ztsxslwAPo1v2eSzsxHnhTvcDagLoN+YY
UQadOMhu0ZqrIEDhvJt/F1l0Ivqg470ZEwRofrIsSrymEynPWCs+Mnuh8S7m
462Dndidm9M5Ob0XaX9cF3x+04nAFoeWPWt7sVRDn5ee34n4L0XioqW9KPeS
fBdV3Il71WVyG4170cPP2LTnZyfevJ2qJDOnF6aS086PDHai82DJRa8WPorX
dK5nTujC3uj+eq0yPtyuFyp9m9KFGE6SBXL5CFb0e31ftQtWOR4XQyL5yF9U
2mxKdcEkO+M3bw0f6/0S01TWdWGm569PWy34aHodHCzh0oVqdyPz6Zp8jFlp
Tavc14XOTcuLDknyYbc+bLnv5S7IOMadTf/Yg6+Hl8UlVnbBYGxa2NpNPVBW
S872qO9Cf+nc5L0re+BVKVsxs7UL01SkTr6z7IG0Yf3oZUEXQk1iXsye3wOK
c2RXoCIL3jOzRoL5PNyKaTihN48FhvxGr60dPDTbI7JDiwXtJM9c/0YeTj+d
+sF9CQvGeue6TEt4yNn/VGPFNhYSmLHjSnE8yChOW/p3LwuXJx6dde0OD27F
x13f+rEQ43Zzqv5VHoQL7C7phrKgvr2vuj+YB8OWps7pj1gY3rb4SZIbDyke
M563d7LQ87LIuUCJB9HkUx/ieljICzqRWK7Ag11eS+OWARZWbJqSKzmFh5bZ
L6eUTe7GmuGT8r9HaMypXeufpd+NJPnnGww7aPhefHXpkHk3Nn8O+r65mUae
6ax47eXdsJOK6UpooLHldntFrFM3nBYrVURW0LjtFGp06Ug3fHum6Xbl0Wgd
Za61DenGd5WLpTLZNBa/dNg9GNYN+yUpS+xe0yiXU77tH90NF75jCeMJjclf
M4Vuud3wvFH/QhBNY+tJFTnGf92Y9eDNd24kjSfa5xd+Le2GukN0wHgEjZXh
G9yW/+qGxaeE0CP/0Di7svut1mg3NC993BR8gkbM2nO68RPZeHXz6WPuMRrZ
62fHKyqwYXa3bcfpQBpc11WXpBayUVSj7NLtS2Oi+++BEAM29BZtelHiRUNj
+1E/oQUb3B12me/20XDf/8ilzZ4N68Mb59M7aBz3WfLZ3YUNy/ODb3Q8adzy
r7Su9mQjMMpv0xl3Gp+Pj6i/D2Aj4oK2qrcrDbN/3Plx0WzI1fPtKQcaTlf5
exUT2BBVlV3Qs6dx8EZ43fWnbNg8HSvVWUPj0d3sf0Py2XBptVLbbUejMGa9
ibCYDfnt0ucfUDTq49tTfCvYCJ+bcodpS2PaE4UI91Y2yi4sP5exlIZu2tPx
KjYbp5Q2vDWxobHqle2xtSJyPddlc4kVjdM5/tssJ3Ig6d/6QNWSxr18qcqX
DA7KvyxOajOnkVn0cIWWCge/nftbc8xodH8u1VE04GDFFvX6SBMaUmW74q5b
cKAYv3c02pjG/Kp+hhQ4+NJUa/nMiIZNzY2LIfYcWHrFLv+2mMbmes0BgTNx
Hat82JBG4O+Cg76epD9f/MiaOKLFpbl1Pwf3L0qeCDeg8ZTJdnYP4CD5mLN8
mz6Nj6zzn6pOcHD3ndrCdcTNXCXrtRc4iLqScrJIj8YQ/1V60TUONpyeWkUR
K4pXq1tGcxDzI6i7SpeG8WBT1Mt4DrRK6Mt+xOtHjk3SespBXYP3kZnEXhJy
p+MyOJi8rcT3iw6NMOmknpn5HMhXfrS8TBw/2Xrv9WIOTl+USnQhzpta/VOy
goMSPamDusS1Ct7rQuo4EIUq7ZYj5iuOFQpaOMjp93MY1KYxReWusS+bg+rb
Y0I+8aJ5BimtQg5YiXGaQuIVC4qV3Ec4UE1pSRsj3q617XqVDBdfbfVcZpHx
TuoKxtYwuGjUSmVZEEcZXjlapMyFQGeZ9W7iVyZqXRYaXPxjFzsrmvibRY7H
S30u4rL1Hb8Td1pvqNC04OKKyfSXSuR9JWw7qDhbLsIVtGW9iVXtTmfPtOfC
78aoyXviJWtm6Fx35mKeYv2QGplPF4fnsZKeXKTdSzW7Sqy56pxbwz4uHr8V
NQuJ+5dvln/lz8XI0IzYfWR9HppMOOdxlouu73L5HmQ9/fXrlxhdJv2NVzQ0
E9tqveyVjuTibe3f0INk/duUPfZmPOaisETwO5rES+YMo7nhaVyYtTu6mpF4
ujRVptYzi4tNKb7V9cQ6Em9WT/rERfwZ5V2mJB4DWZN1d3ZzMf3ZnzN6JH7t
2prbzARc9LplVPQRK/7Ofig7zMXDZfkWny1o5FbunvpWjoayysjvoCU0xt7m
8eXIuC/rn16TJ/vnxiWfnHdBNLQrv4smraSx86zt4VtnaZirdAYoryLxdFJR
58BlGlZfJwYYrCbr7/dfjEIMjeGO1MSda8l8uiqHehfSqL45+zh7PY20BaUr
Z0nxkF7hORy+mUZpkfb3wEiSx3fZvNh9kMSf/OJOqYc8ZMUNGjX60ZDebj50
L5mH2NXuxq6HSHwMUQv+zeEhmz+4fT3JX/lm247I/uHBpm75JYdg8tzPIqYn
6fZgvg/zT1AYjTt3BM415Du34JzjXNVY8rxtAwe8ynvAEEeeeRJHo9Jo7NTQ
zx4cN+I8ME6gIVcxJUmN3YMlGS0NKx+T+Z6kKfRj8NH4qczjwFMaJ85suSO9
nY8HkYunRmSR+PQq+GHRx4fV4OznhmVkP6g5m8WNkfbJiQfvl9O45i9aN0G6
l9Qp7J5x8n3o0rqa5i3fi0jTfboV1TQSHmT7mav3gjFNvmprHQ3GWbmeitW9
cHvkcUq3jUav/TuhxG1SNygk04l9pL2W9MLsu7248GT1UEM/DUfJja7eD3vR
ka1npzBI41lBR1ZFci9KzIxCTw3T2LNYIehhTi/89okdLMdp/JjpPWDW1AtP
i2KFrZPJPDcrjnhpC2D8+WjqIhUellmOO33VF+B89ELm9Dk8fL7BfqxvLICo
dPLuv8QNy4rW9loJIH07YeZXVR7GHnpHnXIQ4OfJUfuN6jzYb83XizgkgOHr
seUTtXn48SoltOeIAMcizk79Sew58Vb1pmABuCp7pyXp8BDwdl/wrHMCHE51
T7PU4yFqpvzHhEhSl627bulgSOqHql0eb7LI9bthm+aY8eCj7ZA+M0+A1a5p
i8qJBWfNx4MKBVgvKa9/xpwH6cWyqTafBNBLHv+3zoIH3YjM3uI6AZb8Up8S
bMXDcXuZK3VDAgz1PVmyYzkPo4n8X1ZjAjhIedIC4vCBRsNYSSHa7gZWXbLl
IebJq5pdckKUPfZekAoeiqTd1diqQkSdGRmqWsGD7Ie0nL8QwuuceU7lah4G
7QxzC1cJ8cdHGLhpDQ/dJa9zQ9cJIR72lK8mLi3Nzht3ESLNw5JXupbcr7oo
X8pLCO3Yue6P1/EQ7LKioOSgECPz9YxmOPBwoLa44J/DQgy9306fJ17VUFo4
6ZQQNfl5c93X8yDZ+qNILkII5384u3mOpD7as/l9eaQQ9u/iTm/YwEMbs/79
jbtC7HVlX3hB/B+r6T9GohCPf21y2+PEwzl+18eZmUJIM+QXZW8k63HEt7g2
R4i474ZZUpt42CniFt8tEKKzcqmpM7HtQG+J0ichwt9flO0iHhkb/jy3QYg+
eoHFgDMP9PnQL01NQlR96/O1dOHht6REaXybEC/2ld4/Rpw/UearGleIPBOt
dhZx2pXLX1v5QszeHCWh5srDwylTvj0m5waNgS9z3YhPTWOULRwTQpLj5ZhH
7BN5u6xDUoSMmaX7WMTuMxTLUyeJ4Lrlz2lFUv9ZzVap0J4uwgwdvUwfYp0H
sRXds0T4Jn3wxy1ipTnzK5/PEeHWuYCBbOL+eQur9DVF2LKRdh0i7kpMraJ1
RMiUPntDeTMPPxfoVL80FKFZSqbagrgkOa06wFSEs4vvqDoTZ2sZfjdaIsIB
c6vjB4lTnr7+3rtUhJSrcg0XiKN0TX+8oUT4vF1j3X3isBfZP46uFkEcEV2a
RnzUcEmNmYMIpx+d3lpIvPf1uxqxkwjbC4T9ZcTOJstq37qKwLo7+1kjMZVV
VBvsLsLDYzL+ncTGFit+Ltkhwsw5LSv5xOq5xT8H94igVFpiPECsYL2m7p2X
CP8aNJqNEksUlNaF+InQsJNymrCFB/6y9fVLA0WwqlW7IEWcb31o+MVxERYr
xtT/z5csb81TPSXCvVVqlyWJN5q9oSJCRfhjmxI5TsabY1yzb+SCCI2Vc/qG
iTsN+sL9w0XoSA9+KybO0FVKa7omQtDJ9B808elF1hWOt0QIyHyzgUm8ZqFn
b2GUCOm5Z7QbiKerh840fCBCSYH0nv+9f5NqomV8nAihxSv+/m9+nqh88JB/
TM6ZiQYD6cRHZjPPhKaS9e4u2hxLvGymzCPecxEk+4VKV4gnKmgX73glwo2W
YttjxHGyfrK2uSJYGxkUrSL2nnjD4FWBCHar/lXWJzaVer1x/n8iSF9t/s0g
Lh0R3h0rFaHWuDyxlsRH1JDiu4AKERS87if9L3529ls2NX8Xkfqud3oUsYgf
ovH+Fzk3f99os564iI5bbdQiwt9Ejz5N4ivsIp9Epgir+wfUR0n8zmdKvj5H
k+d/MlbxjNih7tpSakyESLfUWB7ZH7Nq0ndmSIphIPNhIJ+4tarygvokMZRr
75aHEwd/nVEqoSCGP/NShwrx48KHbh8WiLGow45jSPaj/7vCEyaLxJjB6tHh
k/1qmdP88LGeGDd+Rna/Ii5/rdF2wYz0P/arR5d4MCntkN1qMXylbppPI/mg
OLE8MnOdGIMfe+8Xk3xxM64nS8NJjHnL7186Qax5z3RYcqsY77saR3+R/LLx
an54sY8Ya6O8b0SSfPTk8LfEVRFiso+uTMkl+a16gblvQqQYo5EKAVuJh2vi
TQejxZD/du5Uvz0PG6yOfHoRL8aDYKkIY2KxhDJ3xmsxEo+aF0ST/Gl354Bl
23cxrIzfzZ+/krzfqqpxmzoxQlZ+D35ux8O9fquv0b/EkNt4I9yMmL1t6nZ7
phgT1/2pXknydeTCrAuvxWJsi7Y32EzyeUu2REWoUh8W/VVvXLqUh8neB+/V
z+1D+z9l6lk2JB5UaneZqPeh8FSOkS5xeOhTYYdOH2TzDJ9Ot+Zh8RonZUeb
PiQJs5VqLXk4Ux+7b86OPjwN4dapmfKgPGw5nJPUh/GBpaGN5Pv3rM7qyOGn
fchd2vBGldgqy6ZbO70PLl7LHu5cRPKZv23dg7d9CLk573qzJg8PmldnhpT2
IcwmYFrVAjJesdtB254+PJnUlXRsLnHE0V+frPuh4jxjYY08DyrzX+XXVveD
8jl5Q49P6pegjW7LfvYjYx3H1aKH1BPlvbzkxn6oznNdAh45n502W3CsvR8M
CR/3TVxynmvMuzxd3A9/ZaW5PixSH0UXuzkpDWC5dtL2gBZyHpBr7PmyYwC7
NJ3Df1eS8+Og1MICzgA0HOce3/+C1COH9gscVYeQcN7lji+p73ysM53t7Ydh
ohTBChrgYnNhs8fU3X/xO525MyaGix8Ns0pP3xoB/UKhdXQxF+rp+s1ZaaMY
fG88KbiUg1Flx233/4zhhLLXowNbOSjrMTA/KiNBhUH+xwkWG+cNFjJGb0tQ
wY+STYfOsjGaMz9+h94EaqPf9Lal09hoj5M9l5Q3gVIf4h0SpXYjdTFXV3WV
JMVocv/cT3XDSP7HZb/fklTtev6l2T9Z0Fj7zDrRR4pK1atpMDnKQlPFxYRn
E6SpWnH2mKosC8cltpR33ZemgoWlyiYpXQi6qeQkqylDHbJ5fWGBfReW+zaH
TSiUoVSYX6xjujoRkBgt17xuIlUvU2VeeKMTZy6s2MGvnUi5HLNSeWHVCZcM
0Z46v0mUZo7+2pTmDkTa3M1/PDiJSjv1xro4ogP3pi/7bHd7MkX9fRi6xrID
Mqt+aJWqyVIr+Jna8SwmnDV2OYW9kKW+UVPK/OKYOLBBoDtj5RRqsMr1+YAj
E201Rz3Cq6dQi6R8txVJM6H1dGhpta8cdTVr6FZ4XjvWLDrBcpKYSl2VO2SX
c7gd1RIdXW8iplJy/rkBVw3boaGzJYajKU/NWnZKOYnVhqa03MRJWfLUTtPA
hGnP2ki8MA572E6jFnV93rPSrw01bocE539OozwLknsG9NoQq5//JWIvg2Lx
k2+c6W1FE/t4tOQBBmWRWZoWwm+F6jOjPSe9GVRukHrHyZ5WxGmmDu/zZ1BO
rh4vgmjieZGGS4MZ1LtPYdcDu1uRwPCKYl9lUBHN9rf8WlvxSDR915o3DKoz
w/NqcHUrWt+U6xdmMSgPhrPWyapWqAdeHjTJYVDqf0aaTlWS9vTI7XkFDErb
xScxtLwVjztZJeISBiW+rhEYXtqKpPp/9ZIbGJTapE/L4/9rRfvdkwPKvxlU
bZJL1KP3rdBwMyu5+YdBGSt4SKcUkfbVz3aEtDOotZM/WL0obEXy16hIZ5pB
rdO4w8nPa0XHZacdX3oY1K6RkLnvc1uhuUZWb7mAQX2SLvIuzmlFysezxTr9
DOrE1pUu5dmk/XnryIRBBnVgLLS3Oou0h3i74l8G1R0hlfYzsxX7R1/pXhtl
UMdNq8/+ekP6F/j2j48zKNH81oCWjFb8HwnQ2qU=
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#6"]& ], 
       TagBox[
        {RGBColor[0.8998708, 0.8438502, 0.7248352], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwl13k8VN/7AHD7Wk1lskYilQplK1meS0UkColKZSmKoqJoseWTQpGoiJCS
tFqzJUIpWUIiW2OZxTL33rEz+B6/3/wzr/frnDN37nPueZ7nrnXxtjnFx8PD
48rLw7P4fWnO89n6A73A8/8fzL6xUHbEoRdUV5INFz4vQLm4rA4lqBeCDM23
2eTPQ+KRnJJHt9G4hkZMpt88+L2yMFGM7YXOPadvymyfh01m16y3vegFGYnQ
dp1PcxAX2nnGtrYXbPeuu/r9NxfO//IlOlp6IV9+WZvbUy6YKy694tbdC8UB
mmKj7lyY/2QY5kf2gumYz/zvuVnwmH769JFUH1xr2NZpqD0LBj7OzR2ufaD1
di1VrmYaJD9PO7qd64PHKbkWU8nTQC6N/Td8uQ/ig3ovRfhOQ8brLyNzd/pg
tD+5olx5GpYzlEUUP/RBzbLMOoWIKRjUKb2XWdQHx2fM0i1PTUF1mN2qbZV9
UBsfbyllPAVXlf5TMmntg5GouHX+M5PQ50Q3cOP2QWVEhYqC7ySUvQmsHBbs
Bzd6kzfTdhIez0pa+FH6oVpEamqn9iRYJpgdvqXUDyO6ta7eExNQ0JJ5IXNv
Pwh58oe1Bk9AxD7PjOG4fuDTuXTk2+txkIsxudic3A+pKyv9cuLG4U2LjFFx
Bvo92EWbvDEO9U41v8ML+yFdTZg/6uA4rPRREVTu7If8016Qyx2D9Dxuo+hA
Pxx8X3vdgjkG2tPNScRIP5yYMD6yrWUM7ENDtcsW+mHDOwtR1psxSIzrcXVU
HoDbHgLMbucx2NxeoIFtGYBLSgnvf1mPQan8vdn1OgOg93dHlZjRGHRnGDwY
Mx2A+cPp4fvkxkCpKOFL9NkBcKQGOQy2jUJWl+3ar9kD8KjOTebLiVHQV9o8
8qZ4AP4qxzxKOzgKP0/zFT2oHIDta7QkC3eNAhv/cMD59wAs8PN/u7VxFDT5
lgVzpwbAbzbqftwYBypNB/b18dKB4hAUv4rJAbvIUqkfYnQIpSbbfuvgwGWq
5/tHq+mQapwvWVzJgeL1Nd2aGB2GuuIFv8dzYJ9nSpaMOR2O5BeuLI3gQOf7
y5d5bOhw5etPu79BHJjfobKs3pUOEzp1zPizHDDZF2p4JpwOx5uKxyaNOfDd
2yAppZ4OcgPBj/snSZBek57n+IcOaUWuO8/jJJyuF62T+EeHFY21j6QZJAio
/ZkLJ+kQNZSbXtdKAjZ44YQPlQHdTSJ6bz6SEJ3QdmWTPAPWHNXsU/9AQvde
iOlXYYDaT6Pc+kwSrr1cUuGwnQEyrl0ybokkFLi9VDI+woAqWe+sv4EkCFKX
6c+6MCDkRshafX8S7Cp9bfM9GRCpjkfnXyCBs9YkTPUGA7yvefyZcCNBradz
YEUqA+h1ZnOpliQ8d1z5qneAAZqZS/abKZIwKhJQkcRmwNcA/+vyciSYFPa0
208yoCVjwUJEkoQeybditSJMyE368Vh2CQmyLWZeuZuZ8Hd52YzqNAFnbr4L
O6fNhPF1mQrJYwQUaq5K3mDIBINVL9OVCALs7/fWPbFigvVhRpUrg4D7Vjc0
wi4w4UCAwp6PrQT8m+szM7rKhPbeG/sKmghQf2txciqUCUIiEznV9QT8FJe+
7xXHhDELwQLqNwJEvudw7D4yYcv7ia3nCgkI3MXMV5ljwrGwqfw/yQQkmAWp
JguxoE7/gXJwIgF5+ySTqctZUHLmz5/tjwgYst0dxq/MgueHBNe2xBDg4JZq
Q9vLgvO1KyuKwgjw9dj+1cGGBfRMf+bvEAKiver1Go+y4HBd162FQAK++nIV
P59ngV3syIGrAQRo/eeAJ8WxILnwv5Mi3gRY3cFdqE9ZoG7lHxzhRcDZu7da
I1+y4P4F/evSZwlIjc/7dLWYBUThT7PDpwhYlrE8yuEfC0Q3+MkePUYA82vN
RuqWQVCZSNl+yJIA/toTSZE6gyCkkykebEGAQsMEhR8GoRnzFMvbS8ChP+sm
yYODsKxBntTdQ8AXRnB1w5VBuDiXcfK5EQHdQ1J6ZiGDkNE3fZNqSMA0/u5N
WcQgVF0msqP0Cdg61fngbfIgMC+GvYzbQUCyiJ5LZOUg8EX4eSxoov1c0vib
r24QjPwjLd9sI6Blubv51dZBCJmV0D+5lQAxmfitZ1iDILF3aXmnGgH+quS8
KWUI2rmRhiqqBNhYvHrCd3QIGF1d3A5FAtbtDrJrcx0CE2czXe4aAiYMDy19
5zUE8zVf5NYiJ27jDXIMHIJTkgPJ/vIE0KQdXT6kofWb8QvHZAnIWakhdysL
za9SnEuRISBsiWDL0dwhULajpTKkCdjIk71HuHoI3hmyh0OlCPBhiKgeZw7B
PdhazqASYELrpmmRQ+DVrLLdApnakZcoOjMEEUr7TD5IEPCx/uSSfPFhYMrJ
/bm1koD5/EJcXGMYum2k7Y4tJ6Dx/b1M2vZh2KxpW9VOIeDZKzfnj9gw7Goj
Dx5BNk1e3uxiMwwTG9/edVtGwN0wj4Iiv2HofVUqnrSEgOOBRt7RgcNwPtFp
cCvyVn/qxlPhw+C9ofpajTiKr2d5wvKEYfDgEGELYgSstpW+4V46DOtOmndG
ihLAtmTrGFYPw5KgK7PayOWmVeyV9cPQIlt+7p8IAa47fU6W9QwD61ytghFy
1tqaXav4RyByo12IhDAB1+WecgfFR0DP87tQvRB6Xlf55pdTR0A/IvROBDJH
RHGD1/oRWL3v9nFR5Cq+iR5jjREQfkZJrhUk4CG39rHUjhGot7fOjkbWI66I
VZqPgOY2mrY8stjg/srHNmi95dX7dAECOvuUr58/OgJBzQ5Ps5GD/zSMyJwb
gd3DLc8tkWvKNvzyiRmBD/1S3vH8BJxeqj7AnzgCtUV5NHdkgWPa0w/TR8Au
YM28PrLxNLb2U8EIXCvfL87iQ/nDzEznQPkImIazGBXIgQ/3m/d9R/83jc80
CblY68gF0a4RKDKdPXEI2SH05H9J9BG4GtAloo082Xg6QYMYgXlT46VUZO3z
lyoO8bOBd5esQBsvAU2lAb+ZS9jgv/ZNfwmyj3gw65okG8r5p7ipyG8zo1Y8
U2VDjfiZnPPIlpOxKjpabPh6Ld/oMPLgngS9GgM2GD8RpWHI6/teOLOt2ZCp
5GcmhVy17Y1fiCMblGjvZ/mRXYNz7lBd2ZCmuCOD5EH5Qv5z9s7LbBh3//K5
AdnIq7q6LogNuFTrmnLkzuLa9pN32CD8w9EhG/mqaNPIaCwbdG/Lu6Qjyzi0
8YYnsUFeeanuQ+TCjO5Vshnofho06u4g24/3q759z4ZN1S8VA5FjY8mDzV/Y
4GL0guaBvJU2eer0TzY8GeQYn0Cu15gPmP7Nhr/+Krvtkb0CBe5F9aDrf/hH
248sXif2bA2LDRu30qimyFlyKwpyOGzwkeW2GiHvPSv1Yw+XDYxiBaUdyGHC
6zieFBzUVV7qb0FWst8ktCCNwx8Xp/n1yBXPt8rGKuHwIaFEUwn55KiuusoW
HNL5lZvlkeeNDU0KdXDYISX+VwY5KWaX/T7A4ZAer4kk8s4e87Pde3GY984U
lEBuUzsQeMEGh+2SRWuWI1+5bh8rcAyHsRieyKXIkrXHMh6dwkFa0NlEHDlP
xrV4kzcOoct+YaLINh5n6j/546DgfzREGJko8O49EIrD+JjCgiDyPcHLE32R
OGB/9+cLIKvZXRe7Eo/Dhb9qKfzIP5+FKoil4KBVIVXIh3yWvK2ZnInDma1X
ZnmRRbBo0605OCw7/sNt0Rn34o9UluAw1ZSG8yDv7npy3r4ah6xNqY8W3bf5
WSirHof+5gCHRYdezXx4vQ2HDU1jaotW/P4ui9KLAyWYKbHoMqn8smdDOMTY
GAot+tjpkiadcRzEkod5Fl245qBW0jwORDDP/znCa9ScF53TNDYsLCygOJsb
Xc1DeeVcqe3Uoukqd7LclxJQ2iLVv+g4vpa/sihvXmaGlSzapEdBvF6SgBWR
H64smig5ox8ih/Jiw88Vi376OM9TG9UFJ/qGm/PIln4LTxjrCKgr3Vw9hzxz
0OJnIqoj+clOv7jImerx3P3qBLg0O6XNItuL/9vCq0XAgAVDfQZZgLnJKW87
AS92NFyaQs6p8rvrboDO8SeBsxPIJ9PKP8kao/HoGPExZEqgOLsO1U3TlDgb
ErnsiL1CCKqzZpX79NjIXtvTrLStUR5yES0eRJalDgcybNG4vF4DHbmG0H2f
6ID2Lej4pV7ky3UhPfudUF1+SU3rQl6X9ZPC60KA3exS2zbkpltSWN5pVKd+
S4Q1IQe7uvi4exKgqyOk8RNZHXubKutDgLlvh1U1cufqqcY6XwKqJ1K6PyFH
TJvwhqC+g/bPrz1/cT9a727TRn1JT23czreL+5HT5swIRftz3XwufXE/opVj
E8MJeJcwvjpxMf57izg89wn45rfWOWwx/ioCynnxBOic/3HdfzH+fNa27qhv
ulNS2ue5GO+S/ty6dBRvp8zQA4vxfqzRH5xJgKq0e47xYrz9rlK136Jz6jO9
WhPZWX25X2IBAcMcInY58nLxoy/2l6D79X3/cB49V2WMF795ygkIqh6tHkKW
TdPXdf9OwK5/oY8rkZsk3Ce1OgmIa8187YEcTGRvYPwjQCJB+JU1snod93Di
AAEhmREFOsgRt2ILeXACPP2Cx+fnUDxcu5i5owTwru1Q7EWmw0YZ9ylU9yNV
D1Qhm0x/CqjjJaE6XvL9f8jEb5GsYCESnmhS292Qn+bY/tUSJ0FLqXLWBHnG
k7UzkUrCXatoRS4Xh9xuKvf0BhIcVzimOiMb6C5Yfd9MQnzTFml95K93WWmb
t5Lg7pyTIIHcZlBmRuwgQX9FSE7FLMpDie4PAixIiHOcEV2JHM45SO+wIuG8
Ez25bwbFy8JAz8iWBPx+g1oesvL08h6+YyREiHvo2yDvPVy8KeocCUmG6v0h
0yhe757fYKO+3+TBLvV9yEeFohsPXCZhrvGHhwTy+XzXy6uCSJB5w5uVOoXD
A4mlX57GkGD+6frOd5M4dDeccMzOJcFTlHwYh/KAxwaLNxKFJPAUrTxmiUwG
ai/4lZLwkW8HDz+ygLroi53VJIiKKPR6jeGgGpVDVKL3nOCIF+Oaozj47hW8
3TpNLubBonACh7kU/O+OeRKOhytR1ZBvTbarPeHjwMavn0x+4TgkZLxrPiHO
Afu0YhlJ5DIBhzWs1RxYoJSm3R/BQbQiq2AWOFBbwy23HkR50ETtY+luDoCS
SEcbCwdm1fuPN8w5MK1rcPckck1NXuGCDQea/HiLPJnoeo1lxfynOWCueHbD
BToOfP+aysSjOLDzlbXBDpQXOc6HPv+M4UDD6O0vWTQcaH1/Pt9F743z3S3d
csjljM5ySgoHZHu+tU/34BCE079I5HDgl7tAx/MuHLjzM1/l2jjQtTt3w0eU
d4eDb3zr7ORAyN1/chLIHXw8Nck0DlQfvJ157g8OxUKC39cMcSCW/1SUQisO
AcsotcrzHHCt6Lnl3YzDhLxyw+Z1o3D2V3l8fR0OuMG+P/o+o3BTzm5TWAVa
r3du5rXvKESnWTVVlOMQphstvzpgFOpeRu6f/4zO09ZmV27IKBi4/Ph8qQwH
U+WjROmDUWjvSkg7gOpIkqinqNHHUbiUJfmrKQ8Hi9YIfWx+FEr97Vu5GThk
eP9I2R01BlmTpdfFbuPQuFb7zNOYMYjzj2wWCkfnoTlZcypuDO7VdWnw3cJh
/44L1a+Tx8Ce7/Ps+E1UR3mkh1a+HwMyxGn0VxA6b7GndGm/xqC/wW7m6BUc
evJ46m5IjcO5aKrup8U6O6M7U/BsHHalX7PuQHVbRuFdcUvjBFxU+3F3rpcN
Q1P8yiWDk8C3e4d/QggbLM+5kZarp+GxACPJkMIGD72cg3v3zkDGw0NKDx6P
wKHSbsclJ2ehVNLWVQT1sU1tq2quRXMhL/Dy2LaXw6D4ZnN3btYcfAn4djEa
9fVz0pZHHnXNg/x6zbpnb4eglr1F+6IgD+a1T3VPqvoQBG9Rpszd58FWjIql
6BYNwlyBQrLTJl5MR8LvS6z+IPQmiQY9K+TFVvG5x2+qYcEL9SHV1bv5sCbC
R0rckQUaS5vCPTv4MGuL7wfIXiYomWXqpXjwY8eCtmdvvMKEzrqbTzN5BTAT
L/V0qiATfHnsf9IfCWCMeUF+1iMG+N2TshJdJ4glvyvKTdVmgOGZ7lDeUkHM
ydgtsqSWDudT4sS7zYUweNRNnPKiw/UQYye8RQibSfgEh1bQwebDqHOrpzBm
/UVfdkP2AMTsjC9OmxLGllFUO1odB+DhCoOvJvdFMLO7bwer5vpBcHeTSs0a
UexCW0qEalY/HFQ6YRX6WhQTyu25eORIP5zaT6qu3CWGHVjNY60k1A+05ouO
txrFMBtitd2boj5QeTmt33hGHPO99rRO4kwfmK6/wrDiWYKx4uuLN63ug0ae
fnp21BJMXzjzP/vWXlDaaJ8wuG4ppms6XPI8qhc6sz6mCOcuxb6ydGremveC
bzvF29FoGYp/iFCOaC80250jg38vwyI97jpTv9Lgyebib1EuFOwxcX9bym0a
dLJ84/hOUTDD45fNYsJpsDpTw9nfnYIpttdcC7lFg6R1L2ZcvSiY/cILcAtD
lo9R079MwYrOVWptDqbBU8rpB6w7FEyIkfK97AoNUkdXnDDNpmDG619FcU/T
4F/2z82luRTMw/WlO3mKBoo+4VPbCiiY8Mb/TtLd0Pxh7n35EgrmnFb3utGF
BmkDjKqxKgq2ZlgyM+M4DZ79+bQpvY2C3czN1nKwp0FvvP+kdAcFW2XweNDq
EA2U7LSq7nVRsFSu1Oc9dmh+Y6bT1V4KNvXyV7mWDQ3Svz+IOThMwSqO5q5f
YUWD/nArp29sCvbalvVdZD8N1pmKbjIkKVjN4/gIHksaPP8SWLlxgoJhaeBG
mKP5wXoxT6co2J1s7RvMvWg+jB2jzlKwnsx7uf/MaOA29041Yo6CWWuYC7eb
ovUlZyYWFijY7ZET/r/20OB/4qFfOg==
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#7"]& ], 
       TagBox[
        {RGBColor[0.907999, 0.789417, 0.652903], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwllAtUjQkXhk+3UVIfCTVKdyQkjX8keb8KRWEqIaRJ6SKXNCKhQkkYhVy6
K3QTI11UcukyKRFDuYxK5945p1N93zmqU53851//Xmuvvd61nr3Xu/baa5vs
Pui5R5nBYNxX5P/qwD/bmq4NscD4f5AhsuzsG7PYYNmus/Fx/IGV4f4fvgaw
YT9F5NRaKsfM5zKfwP1sRNtww4POyEFpXenpO8JGIKOl9bm3HPn36sXyJDZ4
Zl/Kc8bHMZVvpm78kI0kw39LazzHIVxWe6mwmg2nBOf5Ystx/B2/eYZNAxvp
ypatjUrjiDZNMHX6yEbE4rzl28rGwPblrQwcZ8NoqffCBsMxPCuJaehT4yBE
INV7LxvFzbGZ6yMJDmZ94H0M/zgK9zSXrWdNOQjd8lZz8+VRVLYXHip05cBs
v1rLQa1RnHcLy+9L5SBJbFox3VCG2SlOER+yOGA4GuwSKstQ0q6/qiafA8cE
ww5jwQjafJs7Eqs4qAzS2VBQOQKdcAs1s04O8tU87tLeI0hP/RbgY8bFhe6i
o9vuDMPqS6U1uZCLqB2edueSh1FreGls7jIuvqyzoJWPD6M7f+VV6VouvCb5
vWn3HIZpdVp98l6FPuTS2qo2jOIuL5OmUi5qnsR4mUYNwd7USlxSw4VOnP+K
+OAhvA5Srr7awEX7/nRjk61D6B94+Jt/BxeunrIj6r8OYamydtz4CBeH635l
Rsq+o2Zuc/dSkodqfy/D2ee+wy0sp1h/HQ/zHOKdXkd/R+dfR44wPHk403OK
KNn/HRPLLbTbAniIaDhOS72+w8nttENoIg81MfOK00y/o+XgysycNh4M3EYP
3n0phZ7R7XKfTzw8v2RnZvVUiqA2jTfTe3i4Mf36H+2PpFBd9EmeSPGwfVUG
lZwtBSk85Beuy4e6QZUk86gUlYEFpo7b+ShznupdZC2Fmq62/dhuPp4Pr1tu
M0+KzQ2HvSrC+KhfeiOtY44UtIlTvOVJPl66blkboS3Fom+d3Gm3+Nh4IKpg
sF+COz46RSwuHyEyO+phuQQS9WN1mf18lC5fVtR+XwKnqm9ftgzzccoiegVR
IMG3mfcnt6r3wqn2c/HLNAl+bnfZV2bVi+70go0OcRJc3njSOv5QL8KOV0SO
/SZBj5ztsiq6F43Lax6Fukmw+P7630dO9yJAqr9euEaC15p6l/el9mLFHE6S
ib0E6i2P6M2Pe1F8Q+mi/1wJYpx7KyzkvchvSnaW/qCR5hJrmfWTAE4PPY9M
HqNR7jYzS3eqAJ/UnzGWDtEQea2OVzETINBxQq+8j8a2wFueTFcBVnyTR5z8
l4ZtwraBzFQBKhKuZg5W0diYNLBbN1uAgPLJL36U09j759mPFwoESEgevmpQ
SuPWtfKn0TUCPFKSx8YU0dDOn3pxW48A8/90+96VTqO3qXm+7kIh5tb9pcKK
paHS6pd5YZkQp2bn3Kw4QWPO2yFCBUI4Td8nu3qMhvcn82HKQwjlspfHw/+g
Uc+P+/vtUSFmzHlmfSeYRpa63e4LDQreM/RUhweNqinvOpTfCKG/YwbHeRON
9qnB66I/CqG63KCpxp3GZP1rS0IFQsAl42ydC40oS2piLSFCfdCaROtVNDzX
F2Uo7xAhcrDX74+FNMxXx27+HCBCKV9XHrOAxpCDt9aDfSKM6Y6HpsynkW6j
FOsTI0K7c+OuRnMaTD2f3Q9zRTgQyY08YEgjnK9uuatXBOIe5VhD0HBidjNt
KRF2nvgjUV+bhu7X8nSNUREa51aHnpxC43Hb71MqNPvgaLX8hacGjYmKqgFN
6z4wqztZNio0/owPqayO7MODfSmG5cMUdsWsOpgc0wcUumZ5D1FYEqU7f09i
H1YJz74YlVJoD3uRNjWtD5to7ZpNNAUDL72TwbV96IlKnDAVUyg2aXaeoSKG
w97ohAA2heZn8/4JTxGjKe3KudF/KARpLeaqpIthZ7Hfiv2OgurOX2TXb4vx
9a1OYNtbCo4y0uRppRj6GkYhJW8o1NhuP6TRJcaWvE8nE1oo3C+8OC3Psh8x
AT2ReXUUrlyhPD7U92Opw50K5zKFX+bwnqDX/bDakbUm7BGFNuuJY7KOfgx/
6bBPLaWg+WZynpFAwZ/zdBD+RSF+kjkdRgzgQHDIq7slFI6e2HJFdecAMr4I
CO98CjuDnrxf9n0AQ083LApNp1Bl5GGbOTEAyrp0fXkahfP7JOuUVAehQr+a
xFBonkVScbDWICLsgzal3aCQfbM87BfjQXj55Wa8T6VAxGj2v1kzCL23/Gs7
kykMulbTjMuDKBa/3VseT6GsW3c8aJ5iDw9yNrQdpKBRV1w5Bhozk1h7Qlwo
DKx0+2QfLsEem8bQ0zMp5B98lbP6ohTPeVHDi9mKuaP/Ga3MU/zBgq6U/nuD
0J/zoKb93RA8ZFouIWGDEI2omD0RDmMga8EqvtUg3PcHUu4GMlw+d7xgWssA
Quweebi6juLnmUa+D+0G4F3b7TPl9zFkxdUHH33Uj/efZzQfTx7HMY9O9SCj
fhiXWHWXFctx3nZXd+F1MeR67ttvdE2g3nZC9k1xB639C3+JUGOQm7euqWpW
3FncQjNCfplBlqyJ0DwsEUFeOSfLd4ESqffk821BiAisTI3YvColUl2zp9Zf
KMTdxSJLg9XK5BW1pBCjQ0JYa71PDPuqTLa43jZ4PSiAqUuhXU6ICqnTnpFk
dEKAzjdnsguVVMkH7AKXKUoCHGZsec27oUpu1XQW37rQi8hLszZqmKuRraaN
XCOTXjiEdp9WqlUjc3MYXV0P+TiQk6rZve4nsmB+fwnhxseJU46+A+0/kbkv
nIJ+CHjwfCjx/xg2iYxucxMXneEhZcW1mtyRSWT4nVsnhHN5uD5tZZPTZXXS
3ejFVue/uVBb/d6i2UiDzK27KK7Yx4WHqd/G0/c0SEeLip/X6XGxZwNlqeM8
mcwPKZG6P+eA+SHC5+y7yeTJrncb0g9wYFEgs38Xqkn6OTtr5upzsHbuUf5G
xhTS1XiJbU4zG+8YHF7pxSlkWN7NTLNYNkznb0kTmmuR3r/5+RXYsNFZ/Dhn
UpkWaZ07RrmLWDj8hTjos0qbHP2x8p5xIQsfNu+n4jq0yZoZR9uX+LOQYVXz
8uJugnSlYjvqjFnoFBxOVd5DkKsnm3PuGrFgUGjtHxVMkEkrD00/P4eFTPO7
owH7CNL3Hv3B00ChDVMW2R8hyKoZqp3cWSxkE0FXBUkEGTswpKJDsHBLMs1v
bSlBZmQMJZ+WM9FT+tqqtowgjzyWF+0dZ8I4PHHEppIgxRFaHM8xJm71jV82
fEKQaYNLq8xkTORy+Y3SRoU/d82eJikTeZ+eLrj9mSB5ftmW0/uYYF2LGtb7
SpDeHV2OciETppttGy91EaS24OMxvkDBvyv0jWYRZJELy7WWz8TtlqspHn0E
aXetfXcwmwlO4kbfl/0EOVy8NcqTxYT5Wo0FDhRBvlq4/74Dk4k79TEN84cI
cpLI/ojuNwUfZ5eSPUKQJYEiDUa3god0p+4YQX5s1H8q6mQiUP7A8rycIC0X
1id/+qrofxI69OMHQc6u/Xaq4V8m/gvUNnyJ
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#8"]& ], 
       TagBox[
        {RGBColor[0.8879026, 0.6993192, 0.5746156], AbsoluteThickness[1.6], 
         Opacity[1.], LineBox[CompressedData["
1:eJwllns0lQkXxg8ScnlVBjUpCSVkIk1N8rxJbpmKdFGjpNKFQqXUDMnUGFJR
CMkll0SUwXGJpjAlGoluviQd58Y5Lsf7nuO4HL7zrW+vtddev7Wfvdf+Z6+9
F/sFeR5WZDAYGXL/X1QsymsTVfSC8X8j+21rrxdU92KlNoqvDU7jn8te361s
6MXJoFrXU/XTuGB0xcjhQy9mtD1yXxM4jV4frt2hyV5EdvKtj76cwtOHEQ1C
ZTbChbr1TzKnkDKh6xZKsBF8l1mRHzYF91TnXX8YsSEI7ShbYzEF5ruCkAIX
NtyCVLTU0mSI3RyQL0xkQze/nfC9Ponv4x1Oddxlwz8o1MkoZBIP382zr8ln
o6l5tMnVaxKtPk3vo6vYaM80uF3//STmBJsoL+liIz3XVt360QTSEr8e9F7C
QYrXVpV27jjMO5lWpAUHVxPVG+zfjKPW4PqEqS0Hv1fPNpyoHEd3vt0t2omD
Uub8uftix2FUnVp/4zgHHq2EfbH1OAq/bF/8opSDvgcp16Lix7DOyHzgYQ0H
nl3WX/zDx/DaX7H6VgMHobUK5rHHxzA49HjbgfccpGUNmcZuGoO1olbkpJSD
X6NZP+yakqLGtKnbmuTiBkfb9sQFKTYHZBbOc+VC2rj1VNdxKboenT3L8OTi
5vjq5vC9UkytMdFqPcjF2Lblk9vXS+GwOWr9sWgudM0T969TkuJVkF16ZisX
JqWnnf1vj0J/UU6590cuhAcJDX7sKPxb1f6d2yPP7/LdGh8xihmWH2XRIi6s
EqLg6T8Ksj9kf7AOD9aHj5Rc+3EUzEP3jTbs4aEksHT6XI8Eyjpa6yb8eJCF
zNm69IMEXg1ntlcE8MD4ETniFglGFjtcNgvnwVTXsWKgUgLLr12c2Vk81Gk9
8CATJMj1nvOAxeEh1+1I0nxXCSjV88/TB3m4Myp6f5WUwKHqa+fOUR5sc2kz
3TUSfNUtntWiysenz9zaM0slmP/OObDMnA+hccK9bSoSJGwJt7ocwkd0uHs+
WsTokfU621/go+K6ZJ5Boxgrit18pVF8tPSs/6ZVJ8Zrdf2EwEQ+YkX1Pise
iaH66q8Rr0o+LCM1eDsSxYjYyK8wkfEhVl36VttPjFTni2Z3Z/ahynjOq8S9
YpRv1r2ro92Hyfu5ZhY7xBBsd7ystKQPKyxHtRNdxNh9KMvzm0sftCm+8YYf
xLC5snsoPbEPbz2zP31SFGNLzJCfTkYf0uffnT4jo3H82h8frt7vQ0RxWZGh
lEZWUnndhRo5u1lW5Q3Q0MrXjtvd04et1OI2304a/BdNy3Qs+mEV9/ebk2U0
lFr2p1+17YdMIdlEUEJj4RsJoYR+MDmB/NOFNHZ8NB4VefRjLDlkZmE2jXpe
5D9vzvXjmf37qZx4GndV1/pdbehH7HyftKJgGp5uD+4o7hVAVYmun7WGhrHj
Ra9PBwUwPclqULClIVm/Q7MkUIBpX9uq6ZU00lYqXPSOEMA1JGeRtgWNb/re
fo+zBRh/+vl8pCGNYJ6q2T6+ACm6ZQ1xs2g4fOv+ZiMSYLvJ8498FRo6n8vT
1MYFUDZfmuCmTKOy1VejQl2I7J92PFjIoDFVUTWkbiUE3zA7REVC4drlo8zq
UCEirQ5ZvWZR2BdhH3QjQghdps22Cz0UfgjTWXY4Wgi9Yhdly24K7wKepWqn
CmE3YjGU2UlhwXb98CO1QmQm/GNY00ahcHHTxu+UBiAuyoop+5tC09Olb4Pj
B8DaonlvfxYFf80VHKW0ARTHm4Tuy6Aw45dVY8k5AzhkOrPZN53ChjFycR1z
AHUew41BKRRqbPaEqH0ZAC0ru1MRT6G4IG72PbNB/PRk19oPlyjcvCny6Kgf
xEy7nJiF/hR+8X/SbiseAre7xLt9FYWqRR426VNDoLsPJB21oRAbSLkqzBhG
nVBMMKwpcE1iCo9oDiM27tlDaysKGSnlAasMh/FbS4k4z4wCEaE++O+mYfle
XIl6tpDCsEv1CCNhGGGGRF6+GoWybp1J/6UidHbMaQn4NgK154XMCYygqdhJ
UJA6giG7zR/XBVPQ3LHvqYP7CPKDmjMd42gUedx6vFtxBPrjq8eZ98Tg/CY7
P1QpwryFJTXv2iQQfF790uOwCAKp0pIn/aPombf2mYKeCO4nDoncF4xh00zV
zlPPh3F07V8eLi7jeOVGt/ifGMaO2m5vDd8JkGL91acXDaP903dNv96YhIOx
g0Ha7SEYPjTvLiuUYdcA7VovG4RM333P7S9TOL6h2dRgzyBaBi1WnVJmkBsO
HjAX1Q4g0mIJIUtgkG4pnedKLQcgYy6867NcgWQctLtCJgvBSle7eK9KgZTN
9WanaAiRt0JgtsBRkfSan11tEyOAlWZ7dMBnRXKTczg/f6ofRs4FazOPKpHN
yxh+upf60fXv7xkFCjNIg72LhUqyPpxh7HzNvT2DbNaL/Lj7Yh9Cr+ttUTNW
JmXJrXqZmn1Yf6w7SqFWmeTI0lcwkvk4mZmo3u06k5xdIztabcbHb5c2+Ay9
m0m68F7GPajnwfMxdeBDgAqZ95+9zyx28hD/U1JNtlSF7Firv3CK4iJ5tt0L
hwRV0qu0vfF5HBfKju0mTYvUyI7C89scrLjwMNq/JapIjYy4HVv/4wcODv8s
MpuzcRY5Xb477VwYB986Tnn/0TaLLGy+7Pyn/C6a3B9b13ZMnXRT57usaGbD
yfQcbwtDgywoTCiaG8pGG4PNLY3TIO+sjykbXsqG0bKdqf3GmmTYnnbFQvkf
0FVYmalSpkmm7n7+vTCuF2c6iSBvey2SpyHdesOpFx1eJ0SR77VIQb2v88+T
LNwxr3kZ50eQo6IT59lVLHT1nUlUPEyQ7sy3kU8qWVhQYHUg7AhBjmTOK7rJ
ZCHdOG/8YCBB+u/C0Q3lcjaIt1x3liCr6hwvZz1iIYPwv9UXQ5Bjoz/bH85n
IYuavd+pVN5f2/GWaiILPaWvzWvLCPKKupew9yYLhsHR0pVMgnxXl3Tk7wS5
XjiZYPBEzkhpPHuDhWwOr5FuJMjTD6f1eLEs3PtYtzznk3w+jauLWi+xwEoK
G9X/TJApJ5ekFkWyYORl03j9C0FGvk9aFXNRrm8r8LnAIsg9vJE2x3AWcl7d
ivcQEuRfreKMujAW2NFbfF4OEuRGxRem6edYMHZSW75eRJCtzxzbLpxlIbc+
omGZhCDbV635c80ZuT5ybXyGVM5695L1Tsv1oH/RmSDINz25LyQhLBySlZjF
yghS2Wyd/odgef2TY5LpaYJ8HLv/akUQC/8FAf/97Q==
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#9"]& ], 
       TagBox[
        {RGBColor[0.859434, 0.6006316000000003, 0.49633340000000015`], 
         AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwllHk01fkfxi+X7L4yFIWyRopfo2aS6vlEokhjqXFFJkpJDTVNo2YsGTGV
Naqxl9a5Y1TDyFYz0qLFEoomS7mby8Xlrlzy8zu/55z3ec5z3q/3n+/HPCza
b78yjUbLmJv/+dWeZxpduWzQ/i9yzivqpmAuF+9JOlQ2O4vFWa7HOorYeFbU
4hDUP4uyTuONtTfZcNdrrz/29yxaQprepFazwe62/dibOAv9GGtVyx420t0W
HT2qPov83P5whiUHBS/El7zsPsH+XZUjWcFBZvNjb4nuJ9SbZihs1nBgafdp
u0g8g76b63PEWzjQingbyGuYgUVN3qPMQxx42HffzQidAbPX3/zpPQ60f/3z
2cDtabhY2I+U1XJwbq1K4tacabyKUK7JaeRAXytyjShuGqNjd7/a+4YD9ijn
rVbAND5X1k2clnMQvz09cS19GrU2TX2fEy72RrZ4/31YAa+oEqbxVi6eeC8u
FQQp0HPnxAmaHxelBoLkHVsV+LTWWrclnIuTfd2qFTYKuHolbYhM5eJYF82w
lzWF59HrC0tauLBZOGK27MAUjJZcq2R0caHpzBFfD5xCRItG82cfuPg9f7m9
97YpqKzsmkkd50LKikw3cJgCGToaGmPAQ3D5gsh42SSq9t2y2BTEQ9FFP+aW
7EmoGui6KMJ4cBH8u9/0zCQCGo/7/xXFw1oXXpnhyUlMmLsm28XxEM9aZRW5
dxIr+3s486/wsPTOO0Wm0ySuM/R/G+Dw0F+Q65zcK4dI/WRD4SgPZ6rKld06
5HCt7n+3S8bDgEW0selzOfoX/KH5Un0QBxTiFvO/5FjU6XG4wn4QwvJT0vAM
ObJ94hyTjw6iNIH19md3OeLdBv+ynhkEvB7uWflYhjyPBLuieXyszHu9eEm9
DJVeC4oM9Pgw8jjvZ1Mpw7D/5mS6JR8iI6H68esyBO674vfRk4/eeZ1vVVJk
cDoTOFaYywd/yR2DBm8ZfM6OhRkU8/E60RFD7jIcSk95e/4WH9++jG60ggxX
LlY+OFXLB8kJEb5aJYPuTb20wA9ze4acyVoow+DTJluDFUNw/Lq1QMGVgv4y
tPD8miGcHEz7c+lHKcxapRQdQzCvPtLl/16KnV1WsnHfIQhOLc5mtUrxiJf4
pPWHIRwMFTRfq5GiSN057HzjEF4OfFVxOlMKv22/FSjvHsYlw1nrUjcprDYn
BHSHDyNXfOdcMqSQbtipU354GLNl386LdpEif5VSAiN+GNXFSR92O0nx0YgR
dvfqME6rt8ddsJQihqdut2dwGMZJx91DVaVITz5YVfO9ADsmvtzEbpZgT/zG
6Mx4AXiNZvSSFxL8J9bAdn+qANxozW2hzyTojPonTy9PAKuJbVbCfyQw8TeK
O1AvQCCT7uZbKQHTvMnNkD6C30eeptMLJWh6uOx1TNYI5PRf6h5/K0GEjgOH
nj8Ck+neh++iJFAJXj156doIBn+adBQdlGDTJDF/UDWC3fkN5k7hEtQ6BR3V
6B1BBiOrhvO1BH/cTptfajcKoX7rtIarBBcujPt2PBrFm3WlIZNGEgRH1LWv
kYyhfZZKcWkVo3qJr1PhpzGI0vU/mDSLce6waKuSihDRvKVGtJdicK3PMg/o
CJHfu0jz1VMxin+tjFq9VIiiL+t3nHwoBhWvNdrsLoRWi0W0VbkYQs+aCVq2
EBv9ffp/zRCjos9gOmLZOA5NnvHU8BdDo4FZpcAEYtuZMfxhEcbWe3W5xIhw
N1auT08S4Wb0i5LNaWJcrP8jMslcBKOpL6aqSiVI8TMNFzZOwNisvLazTYrE
h6EeLqETGJbTLeuGZGi56OFqojwB7yP7xr1NJuHq6dcXXDyOg85/+np6TuFn
TUakZMM4dtb3MbS/UcCR+VU1kyNEe7dh04+Z00hWdBjxUoVYWmbfV8GcQVbH
k3+PfC7EjJF30OXeT9Dbcck/6O4YXo6uWH1MlUbsouOKjVXGkLjCkprJphHO
EGGPHhjFTJVZUchyJcLRvBJxuXEEA4UaCaXVSkRo0q7V5jCCGw7DdiablYmB
Y42m51UBHHXaU6PeK5N/3L+uPK0tgIXHbeeSg3SSELdvnU7KMHqafy6+raRC
fmnPz1LIh3CctusV97IKWWf1oEHvuyF8n7HQR8NKldhrvdtqNsXHhsi+JKV6
VWIX7Jxo8ePcH5bkavVtnUdivXSsw9X5+On0ppCxznlEqLO9wr9gEH53RXvf
RqmRNm5Uzh3bQWStu1h7Va5G1rRm/j2/gYdL89c/dc1WJ0FunFUkgAfVze3W
TUs0CD03oqJlrkd9LUJ9kn7XIDUa3xyyyeVi//ZxO303TbJLSZWUruLiY8cx
RkqbJnlzf+2mE90cWN+adGmL1CJfdKSl1J3iYIvNDzwfmjZRXyOy/MWcgzYa
m3svTZs87z754kEbGxa2u/KGrHTI5X3uN8t+ZKOHeb9ErUKHKOulup93YOP4
OyqasVGXtBlXiGfYLHQEHBlPfKNLFsVsq428zEKBfe2ztDCK3JrYbarmy0IP
/3iu8n6K7AxLMH29gwWT2457Yw9QZDf9kWuBDwuFVjemwg9T5DA9bdrRey6b
Zq10OUGR+/vPrNjtwUIxFZHDP0uR72g3Yqs3sHBFND90yz2K+KZkX8pYzsKH
e6/s6ysociGU6RBix8LSmFT5qiqK1KmbDdvbzvGC6WzTOopoZ860Pbdm4SqH
91j8mCKF2uIdauYslHY9WH6tmyJ3qn8wPLuQhYGLsTKj9xTpVosUMhawYBHg
9DijlyKjDQFjyw3n+LbbIacGKKKVSmc067Nw7XlOlq+AInbqC99/pssCO9Un
5NkoRTIZq99wtFmw2qKxfMM4RdoCTET3tVi4/ii+0VZKkbz41fnBGnN8onNW
sZwi4heBlo7qczzEwQYKijyZdmxTUmNh30y53bkZiny0rrzSqTp3XxcpnZ2l
yGZGf+4tFRb+C6arZwc=
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#10"]& ], 
       TagBox[
        {RGBColor[0.814221, 0.4847644, 0.41806160000000003`], 
         AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwljQk01esCxY8hDuKfUHJVCJEklW5E+6u8SqqbqZdSLnFUlNzbdFNSRJOi
WaFQGSopokgS6RSVseGF4jgTjtmZD89bb6+11157rd9e2zQw3DNYmUajxY77
f3k/b6iBeYsN2v9Fclu9TKufsOEcV6u0smIMS81sBA9L2Ki50mw2N2cMtQzl
F5cr2Sj2rYNf0hh6+/I3BjSz4eTSEpcQOIYFyjrRcjEbp/SW1E2jj6HEktm2
gHDgJDgXpOs/CvfQ27nT3DhIbuLUy9eOouXxwYM0Tw6ezEuH6e+jGF1iofNp
Bwe0sHhq8qRRrHA/6bIrnoPmmD0foqoUeB/unHL7Ewd2xxhC7mIFDGdmFvp+
5WCxTmlrgKUCjE8aH/V+ceDYNqxGn6KAqu1XRfwABzWLPX58GZGDdEX479Pn
IkH0dlZ4sRxFQVlmy7dwcenVkLfBCjkm6OsslQVycZyReVRvkRzelfu9noVy
cRQXixws5Rg0XRFrfYyL1vyZlzs15bD92cLWvcPFxT807/9sluGu7+ScDjYX
RoKKVkGEDEP0fypSernYdyDUThosw4rnP79vEnFxNZ1PN98iw88pjzRr6DyI
jFTaP62QwahpdViBDQ9jS4LWHjKQIWnDMbvYCB4qTxxRZ5ZLEbWS98xCwcOF
BJ8eN0spklcft05V4yNLO2lvjrEUhe5TUvUn8eHIiYg00ZOi28s1VmUWH89V
+TRvmhSbg+54tq/ho8Co/DTzhwQLT23uS7nCxwTBy4051yTYcKYvUD+ND01u
RZT/BQl2J8R9OZfFRwjf5odVnAR3rhaWHSnhQ6slwWr4gAQ69yed3/yLj6Ty
T6cYmyTgVTOt9Od2YYnZz5DTRhKo1PinnHPogvhTDDbpSTDjs5BSQReunN1b
vXCiBD5fzUUDHl1gbX/72/RRMd5wo99+PtQFKlolNbNDjFS6Y+C5yi7oPXCt
/XeeGJ5rc24pb+2GlZXmGcc/xDB3Pe79bUc3NCKPeaivFUPo4qOdF9aNMXGW
d5urGDftlY77RnVjXm1AepaTGO2GvoH56d3Q9mSeuGspxj4u3Xo7rxsZAod3
9jQxEmJ3Fr040AOTZ1pe8ucibI9aFn4xqgel9RpFlYUizD+sbxUcP94X1F5I
yhehKfR18qTkHugO7vQl2SIYexkeC3nZg6mVy4N510XINWWuNFARYIedIMnr
sAjMV7Pr9yUKoP9CudnaRQSG9jy2yk0BEkOu0X0cRVD1WyS5lilARGPP1VMO
IiyXENOyIgHGOi5FCW1FKFm4JUKjVQDbZ2FfDWaK8Cj7vG6GdS/ydq967aIs
wqVLAx6Nb3qR45hu31QjhB+jtMFhpA9vTCKe3t0lxPOZHgtTRvsgda6cU88Q
4mzYkJuSaj8sOtxNaEFCcCzO5IZo9+PpvAMhwduFSLtRGLrIpB9vM9/nrPMS
gorS6v34r37Ern+99bSLEP1rXgzSkvpBj0uYdk5PiII2fTlj9gCUZ0re3q8a
gUZFbpEMg7AV6Qitl42gz9n969J9Q9iccimksngY98M/3HY9P4wTs5lmD8kw
DKWLpUUZI7Cxclk38HkI02bklTTVCWGUfvqdue8QusUqs0q7RHitu6lqsWAQ
6/YEDawzlgBnU1irIgex0/Gpx5o1UuBDmVqsziB8Xrb5TvxTBlP/004dDwbQ
8M2AGXlRDn6n2iwl1wGYPLRpK8hV4MD8pEQpux8Kw3VbrreOYus8+9fuMf2o
6Z276K8JNHK2rJaebtGP6LmzKEUSjcS4ZG+cm9EHRdGM1G1zlEjNU5U1vf29
6EjROJ7xXImwLdwXqnv04t68bmtjV2XyfWX9Vr8XAthpN8SH/lAmzq720X5G
Apitzna8vVOF/N7AnKx6rgctH2PSspVUidBN32FouBv7aZtqOddVyaP50gdM
RjcOXJi6QcN8AvE7zopM5XTBZVfbSaWXE0hYSXO9659d2Hv7ilabmxrpaDFu
n8jl4+iJ5dv6mtTI9UUN3xV/8+GZPxTwJVSdyAYjGQtkPCQ6XS1JF6uTG0Hq
ARYXeLim61y9IolOAppFaa9+42GCa4MFc6YGcTjmNWVrIRceZv4bTj7QIMJI
h8kGnlwErx+wnrxSkzxa/4Rd28VBe+NfvnF1mkTpXo9TUAIHFlmSpXW7tIjp
LfuqNTYcrLI8xN1Am0h2lnunyD+yUUfr5Dw5P5HI/t7dfvYfNsysNiV3mWuT
F3ufuz02YaMlt/i2eoE2CXu3LnxOXSf2f6fCfZfpkDLLvclhMZ1o9N4zEN2s
Q9ynL7KNW9CJWzYl784HUmTzkFuFNZ+FFv7+K8rBFNmmY1vC4bJgnG0XcDiE
IlWM3f/J5LCQYn5PuiOMIvsff0uc0TnepyfaLj1IkWLt6iaDnyykUYzL/DMU
6aHLn2o1s3BnSNd/1ROKPJC1JetXsPDrSa3NywKKZBTQIr6Us2CyL15sX0SR
dK/7e2+8Gud75EnTSymyui2w1fglC+lsbtVwFUWqw3jxs4tZyPhaNifzG0UM
goO0XB+x0HH1sMjwB0WM0vNW0x+yYOa9sOpCK0W25+nl1uaO83XZ2450UOSV
pX67TzYLme8vJ3r0jP8vXzJ1dyYLnfEbtr3rpciP/IwYuwwWzFdpzHEZoEgj
b8hg5A4Ld99EVVoJKRLEnP8wOm2cj3ZMTBOP/0VR+atSx3kM++nLKFJuWPp9
YgoLQYo867MKipSZ2Vo33hzfl+4Sjo1R5Pts/7TkZBb+CyWgFt8=
          "]]},
        Annotation[#, "Charting`Private`Tag$11812#11"]& ]}, {}}, {
      GraphicsComplexBox[CompressedData["
1:eJxN2nk8VN//B3D7zlRkixbaEGVNKe+bylJS2UqlEqGQNqWSLaWkSCRlrUha
FCpki1FKJMoexjbGMvfOkH35Hd/Hb67PPzzmca87577vOa973s9adszT8jgP
FxdXGPox+9tzvt1KLq42WGtUoz09Q8EGIvdxlWu1w+NzDYnXTnFhITvdUvoj
O4FH99yBry//wTfPTbEJld2wqMv/YecIC3y39rxfMdUDh4JG39fFEWC548Vj
noN9QP/7d7JpKQFlBat+nQ4fgLedMp5RvAQccv5UrfsPB5G4fvTtBGS2SE06
r2KB3Xy7RIdJHIQ/p32YADaUl00W7e7FAd+0s87g9CBcW2StGvQZhxTP7wnb
QocgbSTPR+QmDrLjeuMfnvyDrU+v7G4CHOQWv8n9XTUMZ9W/35lqZ0LfKK/y
p94R4Nmm7x0TwARzDyeWucIYPOSjx26mMMF1Q8ZeU9NxSHlgo3T/4QDY5LXY
iR2dgDxpK0ehlQNQXb+w7ErYJGT5XhjSfN4PS1+ptWSmTUHxpa9nw9b2w5Ss
+YHov9OguFKr4snrPihnrtE5y8+Fue9U2Z6o0Qf+a5QpU/e4sPmDIgl6Ob0w
9WFxnL0qN6Yr6VUcYdAL7bHCfk+yubGFPC5RqmUMSNboU1HYxoNVE6dlRO0Y
sFa8OtitiQfbvePbHlZ7DyiZpG5IcOXFDvmtf7f6Yg80V1yLT+Xmw4zcNZ5K
8ffAeS7bH93RfBh9mp+XEU0Hr7syFsLL+bG4NzmZiTp02HyiJZA7jx+z3+J0
+1N5N5xKiBRtMRPAILqFOO7eDT4BW+zx3wLYeEw+2MzvBsu3gw61boLY7mID
+VXvuiB8Y1Ru0qggJkFRaaq164IH8zd9MbonhJnced1LneoE/m3VK8qWCGNn
6hNCVNI6Ya/SEYvAl8KYQGbr2QMHOuH4LpbKgq0i2B4Frt1KAp1Aqzlrd6NK
BLMkFKxf5XTAiudjBlUnRLHzV+IrJE90gPHKi3QLLjGMEVWZq6rQAVVcnd3v
QsUwA8HU67a17aC02jamd7k4pmfc/+lZaDs0p31MEMwUx74wdMtem7XD+QaK
p52hBKp/gECGcDvUWHuw/P9IYLdd7zhIfaHBY7Xcr6HHKNhD4p5mwk0aPPt0
YngGrYObA0e8f22ngYbV/vvH5WjQK7tFJm2BALbptENNk2MHaL9eJrWobAzS
/lot+4LqEl3hJFd8ZBCe2S140d5FB61UsV0mS1nQ86VstdSaXlgxnLDexpyA
O0GuH3K8+qH9RZ5orBgBERGsvTXFTDhmmExzReuBMM1hc90j4KvXMoegGRxa
fh6xe5fJAjdh1oNItG4mp8e/LKpnw99tmas+1uOwozbEAJsehDxv29rJFBxa
s7gqrsr8A48wKb384zgkDs4/YvyOgm1Z+SJ00pkGFhn1zRmhbeBvdEmWsVsE
iwxsPmFV3g5Wpssvf/szCY8iWx3tlLvgpitfT4vDEHxweq605QAdqPKeaY2+
LNC+vh+PjWRAXPb1o0KeBJymC6kc7umDu7CuiC5FwOvU0PlPVJhQJnoi4xQ3
ARRfUWbFdgKMEyItWeh+TPflqoZ6sCB2s0ZnwBgOPG3VBaKhbNj4Yvcm/XYc
YoXdhA0/DsK5NOlf1Vk4GEUc16P9GoLOn9bjBy/iEE9xvs+4RcEE6AnfCi7S
QGKozkw2hQZPsgJ9nVp5sA777k1Okx1QEvJ5xeLzI5C7sqxFC+uGvr9R/N+i
2HDP4uraoDM9sOfS4u0fawmIE9pw7HZJL/CEeLnOaBGQtqxs60LeAbi92jpA
UpCAiz62EXyHcBgK57otjp5PtaTLiHYzAZG1qS9dp3E4b8p/s3aMBXf5L+QE
EzgMKyr/VFs+CCd/FUVVVuDwpC5f9Wk9BbuW+U57vy0NWmgPA+yM28D6JhZh
zBLDikTldSl+7eC32UzT8v00LDi9gl+5uRPeO7tD5uQQYL1njpyWokNLtdCG
Vx9ZsN8p0ZJmyoBT5Qs+5wQRQJO1O/Y2CeWtGn7mkDwBudoHzgj/HYAc44kj
NjwExD/MctNBOWzfveraNKr/9COX+5d2sCDSblx4wQQON6oKcnmd2WC29OSq
M904GCsfJPLuD0LD35ikPZ/QfXPJ9i1IHwJWgP3gLz/0fBTD1Q0uULAcjxJt
NX8axCs/ZBYcocE3tfwDLYf4sHl0ZaGlbzugTCK1YnHIKGjxSPhPjnaB10To
vcghNsj/NnHPVOuBxnkF4ypjBBTT/Ut/XuyFs1MpR58ZEqBgJXvVJa8flh81
a74tTECQ4HK2GwUHjRXPDdag+jtozPN69IGAfjYRMQ/dj0poBlFSywL/kOR/
WoM4XJKglCtPs8Hxc+sNzxockrro1CEqBVvSL52acpgGBYGy+mI1baDcJTR4
VkQIcx2Lj4+W6YArPzWbN+tMgFJOTHHYyS6wk/Lb31s/COqtzV3zE+nQXWEy
lWjOAomUeaH72xggvMpL/uAhAqbfZ+Oi6D3QYilrfWgeAYmKhe82XmDCP5fi
wp9ovP6Ox067uBGgpyuw9gca731J8eL4cBaY5ftsfDOCgx/eXSyZwYZfLnxN
z/7i4EuVST7TTwN1Bfr42ghu7MPv1DOppp0g4MYbVOs/DEY7AzefCO6Gw9W5
QyNb2CD0LYNt/bEH1qQPr/PIJsBbhTVtTOmDhsnbm1eoELCBuChSYjYAWpo0
HUV+Ak6ybmrFpeJwYt3FCW40PqOx/EsV3CwojZJOvz6FQwHf/iUMBTbMUPKS
7g3g8PTb/fC9/RTs88HMlfMtaJAyNlqzRrkNykUW1OWckMBsq7LlB/a3g8oC
1s8zhTNQaV/2Jzi7E56qC/KG7v0HfOp1U8Gsbgjty3xagZ5Tn9W2IF5lBjyz
4V/2O5yAR5rcfna+fXBcuivOW5GALWPYsvwPA3ClaJcoA83f7hW30lzECcj7
LdM5g+pXv6nAhNBngcH8gIzPaP6WlWVlz1iyodqLO8etBwf5dTWOkwGDsOnY
98JzBTjs0j9T+jJuCGx5Cif+XUPzd3nyuKM7BbOdSQanIBo4G4xiEZtocLpb
VVJ1HT+W8rJ4YOpWBwx2xn0uUh4DJv52j8OfLpjh5f16Y/UgtEq/FikX6oHM
2O8P5cVYYFO3fIS1txckfiqy9FDO/XYripkX0w+ubCJoRoQA0QqRJ0sYTFi9
jiZljOqd+qkzs+IpAcfsUwP3oPvh0xBO3ljKAmGhxe3uQzjkCvB/W9LHhgje
46GLa1F+90/eU/xEwRySKl5WHaPBjUfeIa3pbRDxYvxLspIwNp2/OciL1Q7G
Q6en/0xNQEvKpvtDxl0wve9p8M5FQ8BeZhSkcpUOnldc64adWJAYlZV/OZcB
RPYPk33HCfhYeVTsvWg/9CxaVHdjAQErO5IdmLuZkKrkZSKD8ruM0Et/tJ8A
Ib/D59rReE+9d7yw0I8Fcq+40xJHcSiiNxdREtC6bv3aMNaK8qP54si2bzS4
v8/nnI42D2YeY7LvhlInDOiVO3oOD8O0/gqJSsduGNat6Ik6yYYforL33CN7
YGgH/weprwSIyEWtO8HoBUlT8aJmdQLYQktXuaN9mMLOm4eFBdD78YNn+55A
HP4NLZ7hR/UMuRGRzYUT4Obl/28azd+YlDc1R0TZYJuUKyeNo/ytSrW/3E7B
Rp//KtK2pIH0d/21N06g+tUd8ZaLFMVUTa7s1kxuBznJwAbd/CmwDQzUKZjp
hFVvdggzXg3Bledin/evp4Oc4185p0cs+HJ+cmnhKQZYRwzsuXyJgNVc77YL
lvbBm83M/kAZAnROnftsw8sE7q3yfPWofraibWu4tQno2kHXGEf1Ux6b18pz
iAUhoq4GluM41Irqx/YF0oDnZUlaYjQvdlnpupJRbQcMhEYu9x4fgQtSbunR
Ct2QuOW9dG4Juq977RWPLXpg9z461ZFOwLrR5vuv43qh52zQ80h9Ahw3nj5a
0NoPDI/yxYZCKJ+2bDbK1sVBX0a0UQ7VSz7JQM/lGwFb2wIflqD3l3HcvJpj
lv0wvPr1HScJAuT213MHxzJBUVlc7wE6X7/2jqaOLwGt5ZEbX6Px+9f9HJDz
GIBt/b+fmfMR0KH2JJBRiUNnzaX9s/v5cTfGxkdSLLhjEbZ0Eu3nnxX7lqwe
pmBYEjgRZjQI4Ve5+mB+Gzip3XIdXkfBnmjdFG/e3g5LvRe9bFzBhb36LWeY
m9IJpbCVNnL1HzhXCldItnXD/KryaFk6C7J2SsdJzWPApxN1deujCRjebCP+
xr0PpsuKFy1bQgDfIZ2xB08HwPrSkmkD1G+EuA+acaNxJjFhZjY/vtxhJKmt
Y4GLQ0aMJBpfDzX941UzNozpbbpzlIFDkF6YosKlQah4fnvXdCEO4zVxWqOR
Q3C34u9anhs4KKSudfB2oWBLG8quBNygwQ6T1b0TqjR4H0BZcDqBH2OJR7T1
X+iAKL/2cyHnx+CHM0/O/ZIuWL9EWzp76yAYZbc22I7Q4XfKzA4haRYs/jlM
4YVeqMHcRLJM0fP0llp9PLgfPFeVXikTJaBy7fSlsT9MaPResc0W1decZ7eV
yyMCbn3K63BD98Py1ZnxymPBRx59Ll60P2zi4SqLo7GhdO/NVI86HJaeDh7V
/EDBBFdfP9rtRIOTKanaZvFt0FJn+PHmB2HMbKn4RaeWdsi9pCUy6DIJeYp3
J1bqdsGGRn2qiOEQWJect3rvRofbGnjY+zMsOHnnRu3t5wy4d8bAR/YkAVJN
WY+Ex/sgRGmn0VtJAnq3x2wo28SELY+FaRia/+7rkyx0dqPnckw4txeN96BA
WNWeCyyYqvruKon2f7SOusI7aF823fK7ZRENB9We54lvPtLg396d5xuCebCH
E9I7vChoPgjJjG7UGYHm9AsXuCy74eKXH9aNfmzQeL3j6GhgDwgIDWeUVqL8
nedidrm2FwImJA2OriPAYuH590VSA2AQEngrBOVHlpxjrqonDoESvzBhVE+N
isl9j7oICEgN+aCL1sONkQb1xzxsWP0l3+gXyg8la23q3b8ULHFSpnC7NQ3G
/7jW4/va4IHpARMPEMO8XuwwWhqB+o7tztfk1k+DzlhNLDHQCUeGtxzQ/D0E
LaYQ3rmCDuo/DDMrU1kQ5l65oeogA/ZV/L0xg9ZVkBj/74OZfaBsTUukyxIw
UuUcs5YYgGnjLeJS6P03vnfHj0foPf4+zv7XJKrfvB2bNhhasQC/91M9C+VH
rozrdpszNEh9uV4hbJQXKw2yXqhZ0gHlUVHmMltGwfp2nsx3kW4IlIqz+trE
hmythXGrNvfApoXPnyoRBIzhb14VhPQC9QLxLtSAgCJjKnNBZT/8li/yaEP5
8fnZOvkIJRzexnzSUkL1KqAn/+EqIsCvdLC0D9XryQsnh49YP2ytZ+09QCGg
Obe84egtJgh+t9v/Dp3frDBaVXGegNLhhJZ8NP7mDmWfUwcHwK9mf/w7tC5T
7kYdKEH7zNHqJHw2P+IzrBq1RVGfoVQyYYTyfLmxsOpmFgUrexgVwmVOA98H
u8w6vg2AYBKPcSyqj1HrYtFKaQLm3357cXZ9m56U+b59kgn03MVK+uh6fF6X
pXReo/s4PaaghY47+mfcknJkQtJS/RQWOr487QeF+xgB1hPiVvXo+IPJ8ocy
+gNQabv7XRjaL6lb+4hcjMLhTKN6Ai86vxtWy7mMou+9rbKHisZ3WtSfcUWa
CUW8o5OJaL5nUL3uuGxCfUI+38lhdL2NrWYnW0zRvtszlV8S/b3tv06V1+lM
UC19vtQXfY4MU454FEzAm5h/Co/Q+Uu/vUmjoD6I4t8jOVuP5TB0SGqCgrWm
3s1sM6GBj+jnveVCbXBX46HOlWhUlw78htWmdrhoEJvabMaFLQo3OlsT1wmJ
C0q8MiL/geySp1l2dd2QlOO48RTOghgTP5U4AQZUGNxX9kc5snybn3W9Yx8Y
OZjoTaL8dBbX6OJ9NADlOVk0F5Sf2Uv2asei50z4c/3PazbpzVh8U2NBVPUa
WQOUn6NG6h/ztrEBlISa6lF+5m7wGH95fhDCkiyqPxfhULVM50R8+BBEet+u
EQhGz59xPpLnOAXbfPiCSXgwDTbtKipYp0QDlaF2kdB6fky6cMzOyaMDHiZk
7hiNGwMDJbWBV7ld0KgcHp20dxAGhS59jmXS4cslbx/FRSzgLT8Se1u3FwR0
U0X9dxBw2NfQM8y3H049su9dh/rrdbSR484/mPC4l73lyOz8WsGnnBVFgO6p
7z7eqN6uq3a8ksxmAVfOgkPmKD/7/a9+bW5mQ8CdtkWSqL9ue/dDLS+Tgrk6
PndhHafBoVeYkG9UG/iktVy5ziOCnfp1nmj63Q7vFSXqneInQa3hw1psTRec
U4pJ/7V7CPilJAwmjtEh4GrAMgNvFljcwo9JxTNAw8LbP8QdzSNaC02b1Qfu
NSvW70D9s/lIxApdbSZ8ufLecB+aTwUHbBcHoPsyKdm5gYnGW/3m2VUmymGj
+1s1dqL8ZDvYFP4IZ8PPwZvFaSg/FZjg1fGGBi7D0l5YJg9W8Mq3pJ+/E5y6
qz17rEZgp1tCmpxZNxx4n70gL4QNbVMdJoaXe6Ch/erOD9XoeYtV/eGp6AVD
79vmrzQJ8FkUP9krOgAb3L4JVKL8lC4/lBJ9HAdZfgcj0dn+hni3it5GgGSM
4IvdaJ5MJeCN+tMsOBysJKWO+uH2KO8R2SYKtnDTw14LGxr0N3G9Xr67DQR9
zj4LihbDHh3I+BR9E/UPa9eGp3pNw9OsySrhrk7Ym17us6NnCMJi6i+qKtJh
yUGtDo23LDjvuv7LfksGdKd69/wJQOttwdpFN9LQ+5+6dCpBjoD9gUevx3YP
wOVLf4V0UD6Ye808pi8noCJPrXQK1S+Yvbe7yYIFp+y74zpQfr5S5JIPcaWB
7mmbG6aqfFivbt7d1JwOODxu8tT8+CiUGHft7ODuBsp+v6iFPWw4ce1NkIdO
D/xbnro4boiAlj6ZDSYBvZDSMXZNajMBTHOm7ubSfhDzuzihg/pXJVtVgRlZ
HOqO2U+vRPWaJ3owedcntG88n/5gGtWrKv1uKm19P6hpWVEbUH4aupeWVvgx
AZepXVI0+37CXifKnybA7HyTRSkav0jvrpKHlmg/bH75XjfKTyEszHhdBg4S
h787zfZzxB+hNH8BFjzWkmpwQvnUGWxh/5VJwV5aMb4J7aJBm4mJ7p6iATAO
ZtA/o/pE8vxulEf7/gs9QZ9m8zNt0fwPGWwmnJafrDWczauHazv9UwlQkXXJ
2IKOUzVfeQXYMUGJlj7Bi+bnhYqA1l32BNg8l0r6O3ucZ7h1y1qUz08oceUo
P+/yXxjuuI0D1rjrPd/sftLxb0/mIAHcy5qWtqPxVedd+tMjxgTvZa86P6Hr
8fWo2metJyBZ/+e5UXS92PCttjsBB5sN3EbS6O+zU1oWyqeg83+urbg1m8cZ
9Q70QAI8fMymnqLzAy+nPvBB63ZV9ZD6bF51+m8Ijx+lYLfe6VztMaWBvpnh
5Sz0XvPIsxqdvV93X767oa3offW2jbZrdn8s1e9Lt0LrTXHDz2503NL1RGW+
Nw6LvQ8GCM72bxpRk7s0UP9WY580gY4fHdTTWLEG9cm8yjWK6Phl4eqBwQgm
6N1UPPZ0tj8ZM+IOQH0Crc2r4T06f9vfx6dsS1GdVROjZ8dHfDphELCIgDs/
f8yfHU/1DRksyxnNjz+SQdXo848ngYtFEnDQ/iyTzYPOP5pUlC+/BdUnLFx0
aLYfVt/je8YSh/XSOUvmzb6fZd4XPOnDIdxys8Ds9Z2m3qiETFGw3WvNBBuM
acDx/ogN//P+Io731wjujBsNHyvkeP+PNR4mPeyqQo73N17nWp7mXk96f1V3
75prgnTS+3GmRJVDXz/p/aGr3St49+Ck94/fUxD7h8bL8f4zG3gyvkbNeX+n
/Tx+tRdM0vvHTYXOfbQbIL3/l2zjyo9TfaT3F1x0UpaP7yW9/56UxJoEZQbp
/bZrBvScK+ik93ffUT/o7NZNev8hVaPG68pdpPenO362kefrJL1fRo9r0b62
dtL7If6djW47jfR+dqtb8XtaG+n9y053sd7graT3Rz06u9rYroX0/ttd3Bn/
CppJ7xe+l6NpeKCJ9P4hWdW7TpKNpPcX32twP1tWT3p/gWJrj3RqHen9WgnG
yQpBtaT3X31ns/Gx9x/S+w9QfwTU3f1Nev/YijX7VJNqSO+v8NF0FPxVTXr/
iflyfR3zqknvVzub75dn/ov0/uCImIXnEqtI77d0iknkof0kvX/rnkYzs5eV
pPe7Oxu9FQ+tIL1/R6OKaNTxH6T3r3yRapfuUE56/9j60Ar1fd9J789aFnbh
25FvpPefGr093hZURnr/pau16x8+/Up6/6ng/vy2pi+k92tXjgccX/aF9P42
qceG9UdLSe+fp7jH9Mt7Kun9fWLfRLi4qKT3W8kZGJhW8RVxvP+J1nY/VZ3e
Qo73S3jkiE/9/ER6/ypPIqzJu530/oJstyVhN3tJ78fXJadrOzFJ728oT8mi
oP6M4/2ZDKymv2PO+60Dqqcd1ea8/+gGPsxHiEl6/vwPW59+sKOSns/Kcfb8
gQsXcTyfz+1OS+oPdiHH8+suhHext7wt5Hh+plFX0oE1raTnX04Zst/P6iE9
fzDRM7nz0wDp+bTDbzH5JJz0/E5MXk99bM7z3XuNHYWc5jy/pdDHjH2ASXr9
rcnHYmeDqaTXY8U8iX+8uYo4Xi+kyH01PrqtkOP1mkvOP0o+UkV6vQRDQlQd
7yS93njjr1dP6vtIr0+fT7x1ZzBJrw/0yNr6GOUOx+v9Ik766BbPeb1Rv8P5
X/1M0ucdOt5cureGSvp88DEToq9WrIjj8zHh/MyjwsOFHJ9f//ddo3kgtZDj
8/zle5QUmU2kzx84LrgqVLCH9Pldrm19PCjPOD6fv/Gioo4PTvq8wCnxRdem
53z+y9QLmz9X53zej2unxtNAJunvyQ8udt+Mp5L+nn/QuIx6h6eI4++7Amzt
KzS7Cjn+Hha7xUEx4yvp7w7K56/HFnWQ/i7Ju1qzTr+P9Hf5pIPcPWlM0t/3
PWm9IIb29xx/vyOw937g7zl/vzskuOG72Jy3S25V8py/lUp6O7fr6ZJ32wSL
ON5+bYb7iHsqXsjx9nmZNRmH7j4ivX39gJ2EuDSN9PZoGaO+oC8M0tuvFwj6
50kxSW8XvehzbmMhTnr7Z7sGu41o/8nx8OAdbmmLT/STHt5Vv0d951Kc9PDi
s7v2LkH7EdLDV9S/MHg959+ivhln9aSppH+X7pU3/3VMoojj367zKhWPlowU
cvzbpCy+x2dBeSHHv+nD+rFyeo2kf2s0izifDKGT/j3wxHL5A+UB0r91qM5t
4i446d98lsu18//j3wUZgsJiIXP+HXnRGRd/wCR9u+TVss9KaVTStw+//nJz
/gveIo5vO+2yf3A0mV7I8e3woqDgB13FpG8PZeNiM0s6SN++npdzuba9l/Tt
6tHLJbE3maRvG+Uf213chpO+HZxWExndPOfbSzq7M7YpzHk2r/feQ0csqKRn
b1fyXSJzX6iI49kGTqnFZqasQo5nK/f9cD27L6KQ49lXAprUaHZtpGc/Njon
cfIwg/Ts+vw9QzcYA6Rnh24e0Jp4i5OevT9+bKXy7P9D4HizqMDbbKV+0puX
loReKePHSW+W0DydNYryjuPN05VV/SLZc76cOHnI/sgyKum/z14ajwSH4aT/
Nl1Tkt+D+mWOz+62bb26qpxJ+qyM1E7DCRwnffafh2pfVjlOeuxBtx9ydPSZ
47F/2sMGL/fipL/G2iSclZ+Z81a7y9/SpUWppLcWBr28prmWUsTx1te+1ufT
no8Wcrz157T22uhzlYUcb1VbbZsUY9VAeuvXSd7JDDM66a28/p1nawUHSG9t
HTTw/HIQJ701/Zoy1/h/vLWrVyx4LGzOWxVOfHZJSWCSnko38rMYTKeSnmo5
0ji00oCviOOpFuMMjZ2MnkKOpx70ui4l6lFEemrUEqWKLRXtpKeaf72y1vBD
L+mpus/aFr1GOcHxVMWjlt3SaH5yPJUKCYkH2uY8dfnryeFW5Tk/Xc5D1Ahb
U0k/XSBuJRkHwkUcP33OeNHjKMQu5PhpdPsV2we5zwo5fir1wdxgjNVK+qnm
Q3+Ja6sZpJ/K7/uXzVczQPopt9NIN7zAST/9zn/s9rYRnPTN8hn51hXTfaRv
suZN5NaOMEnf3GWkEM5C53N8sygqap1u/pxnbl2WsW1kJZX0RmOnge0yN3DS
G98d81lxE+UhxwPFJ9IVTD8xSQ/028p/+U0/TnrgtXuvnbSqcNL//hY2qRej
Pofjf62N5uPnB3DS+7bPb07YMj3nezIvOtyT51FJz7uT/bIO/uN52/lD4iS7
5vzuVXW6lAVafxy/c9+hJfWdjZNep3zg1IqMCZz0uK2C+jLN43MeJ6JdYzXE
nvO2VSxi+Uv0fRxvs9ussjGEn0p6m6mQSIxQNKWI422VWyLU0heNFXK8LSmw
2nD7wqpCjre1i6xc9q6tnvQ25urQ+99X00lv4w7cxcoY6ye97Zvem9QhG5z0
Ns+A+F+z/SDH2/QezwvvjJjztuFwur7bMybpaaay1KvNGVTS02ZOhnPZXOcr
4niasF/Y54Y7jEKOp22teJ+oub+A9LSV2/lMtz1tJz3N6Na6mlsJvaSn3R2p
LwnwYJKepqWZTYtvwElPm2is7lBpn/M0Qi+S8WzVnJ896bxLtNpSST/LYj/Q
NYwWLuL4memB+YEzJ9iFHD+7nph96G90WiHHz2wuLv2UHNZK+tmg34c70uIM
0s+KhWyibn4dIP2spf2S78ZknPQz7ZFaIWwUJ30rOmZbTGBfH+lbZvG/W98S
TNK3jrZ6O1cN46Rv/fY98iS3cM6zBlJcFlJVqKQ33f67S0knACe9iT9jgY04
eo4cD3qjZ262OpNJehDOit7Qg/Kb40FpO5W0j1bjpP9ILXn+NQTtVzn+I+lV
aNHCxEnvObyMuyDnP77jXJ6Y4iFJJT2H0msUdOM/ntPTvG3JcPuc36Qcco94
l4WTftOt3Bg4NYiTXqNSulusFa0Xjsd4pfRfj5uY85jhMLWVgaw5b/mUaJ87
++9RHG+pLFJcs0eISnpL01afgo7/eEqr6R98Gj0PjqcsTg5+Ozg55yMS9c1K
H2fd+f995GlcqyVjes5DlMsPq59F53O843BwdfOs33O8ozKH2kDlmevvON7x
f0MQ5n0=
       "], {{{}, {}, {}, 
         {RGBColor[0, 0, 1], Opacity[0.15], EdgeForm[None], 
          GraphicsGroupBox[PolygonBox[CompressedData["
1:eJwV01WAVVUABdBh6B5KujtUkJQuASlhaFBSpBlAQJohh5KUDpXubpASBaQ7
lE4RBemGdT/W7L3P+3nnvjuZW0aEdw4NCQmJRpg/kYxzsEaOleEMJwOf059H
Pkshy9Kd4/Yt4ugFacN2ex9/8Zbczr5itb6KlaxgOctYyhIWs4iFLGA+85jL
z/zEj8xhNrOYyQymM42pTGEyPzCJiUxgfHC/4G58zxhGM4pt/M6fvCGX7/sl
I/Vj3CS2/QnfsNX+jQu8JqezJozQH5JcL8O3HLXTyM/ozQ07lixAa7bY6WRl
+vKfXUMOIowSRLDX+RdyCCmD70Z5enI+uIusygBe2VEyB42JCu4sazOM9Iyi
Cv34P3gesiaDSRbchdJ044jPa8mhpKYivbjuvJocSEzy8zWbnaeVlejDv3Z1
GUliihO8fL86/0CWowfn7Jdk1xsF75/+gKR6Kbpy2E4lK/Ad1+wY8mNascm+
RyL9Uzqxxz7LC7LZDYPnoN8niV6SLhyyrxJd/4iWbLT/IaFejI7sts/wnKx2
g+DZ6Ae5Qqj9IS3YYN8lgV6UDuyyT/OMLHb94HfV/+Ay0ex8NGe9/Tfx9SK0
Z6d9iqdktusFv5t+gEvBP7Sdl2ass+8QTy9MO3bYJ3lCJrtu8L7p+7nIO/I4
a8pa/TZx9UK05Rf7BI/JaNfhPUcti18=
            
            "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, 
         TagBox[
          {GrayLevel[0], Thickness[Large], Opacity[1.], 
           LineBox[CompressedData["
1:eJwl1Hecz3UcwPGzs529uSiZySojMjLOKHdCWZmVEQ17VrbIHpllVCqlqWiY
RWjbQjQIRUOEPN8Pfzzv9Xl/7tzv9/t+PiepW/+UR9MkJCSM9iVa1JfPdSzt
aWr+S9/kLqqZj+oiBlCVsva+1xn0pLX5in5AS+qaT+kqhpGWYva26zjup5n5
b11Lfaqbj+liHovXpZy9PTqTXqSYr+qHtKKe+Td9ieGko7i9HTqeB0g2/6Nv
0YAa5h91CY/H61Le3l6dxUOkmv/X9dwTz8F8Wl9mBOkpYe8LnUAHmpsv6Ns0
5HbzcV3KE/G6VLC3T2fzMG3iANgg98ZzsD6jrzCSDJS0t1Mn0pEW5n/1HRpx
h/mELuPJeF0q2tuvc3iE++Ks+SjOKp6D9VldzSgykmRvl06iU5yj+aK+y93U
NP+kLzAwztCcgY3xHqhkfUDn0pu25rR8HOcWz8T6d301ztI6N6PjM+kNbLHO
xI3Wu3UyD1pno3Oct17S9+IzWeejsXUt/VlfpId1LgbF2WvGWLPJ3FcLUtP6
Vj0Y90znaTfNQR/rdpqOgXxi7qMFGElqPHP9I85UX4v7onkYzph4dpqZIWw1
xx9bYUbF5zSX0i91gE7RrpqdoXSJ+6b/xVnq+/EsNT8jaGKurb/E3dXl2lMT
GcbguIuaKdZsNvfTQtSyrqyHdD7drXPS17q9pufTuJNx3tbn9PW4p9Z5ecq6
s2Zhm3VmSlt/pc/GWcUdNl/WdTSljvlXXcGQeO/cZu+wLoj3FneTxvbO6xqe
Jgs32ftap8Yzohl32jupKxkav58q9n7Q5+NZx70jKzfb/0anxfmSHP+ebJTx
vW/1uXgONKcu2clBTnKRSG7ykJd85KcABSlEYYpQlGIUpwQlSYr7HGcezyo+
U7yveH1uoSzlKE8FKlIp7mecVTyr+Dnv9TudHvebFtSjqv0jupD+cW9pYu9P
fYNn6GLOymfxM1okzfX/96uYrwHjdKH0
            "]]},
          Annotation[#, "Charting`Private`Tag$12239#1"]& ], 
         TagBox[
          {RGBColor[0, 0, 1], Thickness[Large], Opacity[1.], 
           LineBox[CompressedData["
1:eJwVzmVglXUYxuGzEdKju7ulQVC629EhKB3CaMEABttopJVO6e6QRrqUlu6Q
kpQQuPhwnef+/d8vJ1OrsNCuQYFAIMTPQOoFBwIZeGb/xVY66CLE5rZeTQs7
N+/ti+wnnPreMvLcPsE2OuqixOGOXkNLOw8BLukDDKKBzsQL+yTb6aSLEZe7
ei1f23kJ4rI+yGAa6sy8tE+xg866OPG4p9fxjZ2PYK7oQ0TQSGfhP/s0O/lW
lyA+/+j1tLLzE42r+jDd7M9JxCMdSWM7K6/sM+yii/6MBNzXG2htf0p0runv
3Aqk5Iju7n5BYh7rKJrY2Xhtn6W3XY7k7NZd3ZKEMJCaPPD+vVuZNGzUbdwC
xGAANbjuva9bkVREUJej3nu4pRlKEgZRm5H86/uPblWGk45IvmQUQ3xv6mb/
uHmj+7vVGcE53cctzzBSMJg67PEtzC1FQsKpxUPvP7hVSMsm3dYtSExu6H5u
JVJzTPd0y5CUJ3oozewcvLX/5g82085bIT7hpj7OMJrrnPxvn2cvWxjOCEYy
itH8zBjGMo7xTGAik/iFX5nMFKYyjenMYCazmM0c5jKP35jPAhayiMUsYSnL
WM4KVvKV/5uLd/YF9vE77b0VJha39J/0ssuSjKf6J7ca6YkilNGs8u0D0AaK
yw==
            "]]},
          Annotation[#, "Charting`Private`Tag$12239#2"]& ]}}], {}}}, {InsetBox[
      TemplateBox[{
        FrameBox[
         StyleBox[
          StyleBox[
           PaneBox[
            TagBox[
             GridBox[{{
                StyleBox[
                 TagBox[
                  FormBox["\"Normalized Temperature\"", TraditionalForm], 
                  TraditionalForm, Editable -> True], {
                 FontSize -> 18, FontFamily -> "Arial"}, StripOnInput -> 
                 False]}, {
                GraphicsBox[{
                  RasterBox[CompressedData["
1:eJwVl3k0VW0bxk0pFVJJNFAS0VsiQyWXEKVIKQ1CoYEGU+mVIRn6pIRKSsrU
gIRCVMgQHfPsGI7pTM45e58TkjTQd94/nvXstZ6199rrvq77d1/PKhfPA6fE
RURERIWrVrj+e665meu3eOQzBK3LBKpFZehLa5B85MZFHMt60WhUNcbV96z7
VFSOs74DP+zjuDi+g8yt31AD8nSkA7moEt/NRjmLy7hQfxK192VbDUaeV0cr
elUhdLFYbxuPi/EpDW6o3xfQmWLlFg2fIctaVB+rwEPZwS8RTkoU0FRNxn01
apBUqFZiY87DzbxTq7eWUUB1CVqTGv4F624YvJ7vzcPB+RKf5F1q0Zb6wb5p
iIJ39ruf1j3hQflsmsPYrDo0DP2I/G1UBzN1h5jIOh54VSZTDZl1qFHW+6jx
qB4tP86HWPzgoVB58H6GdT0qnXz4h743wJES7C2xhkBIQNCm8LF6lDzJVQ7b
3wTew1iXSlsCe6jLmpzjG1BEI/fnvW7GFfc0u5AgAkt0P3hs29KIbmn5SkF4
CyS2FpgbZxGg3zkyW6G/EfavdR1m6bYibm6N3p8uAtm8yfTxkCa07z0wsWy4
FSv7qGs/iJP41yLepGlNM2xJr2idmDZkveIq/KtNwjxNtz+T0oymWzFrd29v
h2Hg7zn6jiRm/+WUmOq3YI9Wzidnoh2f90r/+naTxHG+YR69sAX7DE/86Sno
wGCHYKIrjURc468tWWjFMHHO0SO8E/pp1a62RSSqX5dUede2wjf5Stkvuy5E
eya11daT+BUdbL3Frg2SdmHKt1SpYBj57jAbIrHxoglVpL8NDyVjQpZ9o2Lr
XKu8kgkSbjZiJymn26H5IXH4VWU34qgqyvpSfDzc8JkXM9qO0gsvTI3u9oDz
7Ed07go+GmVuXDp8tQO2q96mN5zshbFP0x8NHT7EvlrOrJToBL2jVMJxUx/i
8fxcmgUfBs1SkezoTlyOrD3FF6GBnB/Yu8yBj3O59XI5Cl2QNOqsCWqhwbT3
wO54Tz5SYqIfX07twqOvQ+oyKf149HJdsUw4H52e+9S2a1GxPp2MfOo5gNFL
IuqRD/mYayuXK1FIRZn9FHcDBmFhSo0Xfc2HsXa7YYNxNzRmhT53nj2EJ7I5
EgEVfFxaEF95j9KN8YHZXeqeQ5ighftOdPKRMWq/1+FADz4UR0uOdg3BKsuB
foHHB61laddqWg/C7y4yKDYeRuoVnf0jM3yMDwp8dC70QizvfDYrcRhtmVrJ
LCkB3DYY45xYH/xvGN/1Hh0GxenrzL+yAnQFRs97ltCH0eML/p3eSUfZonyn
+fIC7KqnUWnraTijS3e8+ZiOAopfWbKSAO8V1z+Tr6ShX6rATH6MjqygrSt1
VQTQOhvgZXO4HweHItalWjCQojMTVKMmwJN3dUb/I/tR/+6w7D9JDDwYqeg/
qiWA7CwlqfLrAzCNXve9eIyB20kR2/naAly3c++cWjKID66/e80tmQjbv/tJ
iL4A31KLUzdlD0J7a2N5SxIT/pLS04uMBNCZEjcoVBnCywXJL46PM+H5seX4
yx0CnEvWerL/3BBWjnjd5liycMrrfslWSwGeWdiJCwqHEF9q6nPpCQsOakeW
N+0VoJ9/1T1KZBjz7y8+IvKNhf29ywJPHhBgSXxa89o9wwjzYG+/vYsNy5jB
vonDAuwzqtOrih/GL5Ni1aVP2dhunr4t0lGASMbYY+ehYXgrREk9+8aG7s/T
j5e5ClARpSj2R5MODt/h68bdI1iXo/k756wA8wJ504Q3HRc3q800xo6gXFXz
oMEZAZLWq1z1LaDj6Wbm3MIvI7Cy9p63V/j99f2HJn9N0tG0OV0haWYEHX7F
lSfsBCiNvuUTuoWBv5td1oTpceCc8tf/8m4BbIwrBFKBDGzUW7XJ4zwH3FqL
TVEQYFAw6RFXxsAJvaHt+9M58P0WzXmqJ4BX8vqRpaJMxOolWxn2cjC9vDM5
X6iXqK2La4oZExV6ToeV5biItFh+mLJKgLsiDwfVbzAxprfCTXIXFwu9XGX6
FQRQfdPokEthYrU+zYsfzEXSo6zqMWkBCk6Kd+vPY+GA/uOgjkIu1laNBUpK
CLBz4ZaDZdYshOkfi/pIcpFHGm5e9ouPrsqLLTtjWcjXV0xIU+Vh25IQYuMo
H2d8n+1tbGOBqd+dfvMYD9X4kmbO5mNKtZdyUJ6NxQYJeV5xPOxzlzl2lMbH
zQ7ZnbTDbJgb2JcepvDQe/eQ3MU2PpQidla4JrJx2UC+zvgvD24lSZRQCh+v
9AK2EzQ2nht0dKnpExCwGNcSyvhIdQ60ZiuNQG9Fzj0xNwL8erWEH7l8/Lky
ZlS+V6jfx+aWKn8Cq+wkjtbf5+Nw7On1icEj2HNsTDoihsChXrpSsj8fbzP6
ll3KGwF1auEei+cEok5W0Hyc+JCusJ1nQx+BS8LmyNkfCZRxkp9amPFxtqf6
l/piDvh69tWUFgLjnsEnlDT4+Dy2lSdqwcG/HVfEotgE1H8cXy2Yz8fKuXk9
fVc4kPB9hD1/CDgEb2NWjJG4ulqttjCTgxi5j4HzF5KInaX0Ir6LRMfWxOKY
Pg6U8mjvG9VJfL49dcb9o5DPdrIZ7tJcPLeZmbyzncTPRdR121NIRJ0LTzAD
F5v4yptt7Uj887iQWBBBghX288YKby5Kbu3wlnMn4bL6/mumcDdJuuj3I40L
S03XnLZgEg8yfTyLbUg8LmCcau3goo0STty7T6JOe/+m27okJhuOHHolyYPT
mRcah7JI/C3a+M15KYn9rEbzCEMeuLMop5aUk9CFTKHutHAOTptudvbg4dIz
bhq1k8TZGtJvNp3AhtBCFatEHqafr/HM5JAo2yZFda8moGci83XgHQ8XIhzb
VAZIeMzEnnJKJGA0c7rUt50HmtsDvYftJBQqlk4c8CRgVvLp1pxRHvaaNz+U
rRXWJywl1NKcgNXVpceezCfwUXXOnxtlJLwsNOSMFAkcMPTW0FlHQEt8h/NM
PokVUnnJ2gIejk7WTtbsJJBI96+8nEmitt5gg1oVDycKVlc7uBCYW/lWjf+U
hN+dTyWKD3k44xNwbzSYgH8qEekmrM/q/ZZ7ZC7w4KndcTLiMQFuyBqyTzin
mxc194iZ8uAnWK+tVEzgyAnHfXbXSAR02Z/9sYSHoOyImZwOAhQ8eFt3iYTG
o4FJguAi3GOgwWyMgKFys7yph9AHDqcjhsq5uK1h8LhbmsTLmdn+751JXF8p
WNQZz8U9doz7BU1hXQZMaNqHhLoPX06r9eAi8RnHQMySxI1Sf2RYkehNn9Yu
E/ojzWWHZIKrUM+kt2nKJsLz0xGf3i7mIlMlsUMrhMSpQGJWgh4JnXXSNi+5
HOQNjKeVJ5HodFjjLqNFYpC4T3tcxsGhhcE27GckHOb7O49KCOs2LJidcJOD
NcUTNJFXJKbDbTctoBGYvSCOdteOg3HHc+eWvSGRPK0urp1PYKex7ps7Kzio
EKf/1BPmFDO/vx37ogiEn++MiBoZQUzmkUjbUqF/BV0vPE8SqEi8cuzGmxE4
7Wtecq6KxP/O5PwbY0jgL0VxY2jACP75vvN5hNAHmkMRVrmyBLb/+CgevHME
fxJLdFOaSTQccVzezObhqppTt7/sCOpMdCs/CH15sXWzQFDKQ7GdyOvLPWw8
YmfadvaRWGA1v1wmnofJ62nXvdPZOHtbZfDrMIn8SkbchvM86OaZ21+4wIa+
TsKFuUIfH9r20dXGjAfvAbamuwEbs7ql/6wRkPiRf1fvohIPOfNv/nUTZaMj
KDwKwjyVuN5j9p0xLsitWh0n6llIU/299NgvEkbPd/S8pnCh6d6YcTyeBe9a
75eXRPgYWKH4qjGZizMJnkFHnFkw8eToxUjycf3BaCDfT8iDarkDB9exICPv
/DlTyBtVWYqNtA0XjG/5a22/MZG2X3r7MXE+AnQGet/+Ny/sBi63v2ei/HQs
31T4P9TO+ttzmzjIr/59V+oaEwMBi55qsYT97P/e2CWKg0EDxTyYM/E79oHN
YiGfYpa/HH0v5Ny8LP3Gy1JMKL5Q/PunhgTx6X6anDgHBssP8l41MWDwMSmX
JdTX0jX0oPsnIUfveM+m32PgUIvyiaYMEumSXpIVQv3uiMSsWXqUAR9W2oKi
R0K+ZDoWLzUcwQef7B02KxmI/aVWkRwl9Jv1Hg+vCTZYzFqncAYdObKZ3pEB
JIpGDZdT8tiQOzwS8CGDjoY161d7nyex+P7aJmWhTsa1Eo9GL9DB25LbdlSY
r70MFodcWceGx7bV79bq0jFnn06YqZB/Db2iOs0sFh68RvvxqWGouRXqakHY
n8FfGWvTWKhQdhy9WzoMM39D5iJhfg9f1R8f7MQCP+6qdG3oME7e+Xj/jwqJ
oc91ll1KLChKPNT8azmMa+nGO1lyQn3PFv/8h8qEuV+hpZ70MJKKK743ipF4
OO/Fq4h7THhx2tzOtQ3Bvf/V7/NcAhnWYdi3kwlqyds16QlDGN9Sscv/C4Fn
xhmy1gIGFBk3d9COD+Hqg674COHcSt7YOGiVwICD1Ekn+dVDEP9G0OPChHxT
Gc/dZcLAFmevyaSmQdzaJ6r9VNhX8XIKIRZcOkpfrdSWPTqIxdlLgrJAIFbM
yNb8Lh07phrcrzMG8GTO+rp3Kwjc+nZCxXQbHTXmAenfLgxA7dQOharfPNxg
RoyCOQyruHX9p6b6kVNh79bcw8P1zqzy7dHDaOqnLukO7Yf+yvNv+op4CKxp
jt2mP4wDmjdsraT78enq9ZkRYb/9WzRxYsvgELr8NkeVJNCwi/pgz4QvD74Z
ipsMIodwrIpetWE1DS262Q9FDvBw8ZGxqN6mIQzIxk2nZPfhaGwFa742D22L
v6SdKhiEy3EYLDLowzDZpaMowwNlcoHZSclBsDP4XhEVvfDYTV5TE+absu5j
jONHBuDx/XHWjz29GH8u2ripjouCD8/CjmT1Q7DDiune1YNAMQUl4wwucpME
qgf/0HDpztQK2okeHGy/6Tw/hIvq9p+a3VY0VLv4/wnjd6NoY4qCYC8Xrc5U
ltW9PpQ88/goFdwNpdvvmpsVuegnClJK+3qRz3a4GiPTjSBOw//esDngXbnr
oL2mF1ka1lvkk6kYNGfgXj4Hk+JeS9LP9yDVw3gqcSMVpqk/f1wK4UA81rpV
vrAbD7M3FqmUd+H5tGyevTUHssu1bkdOU3FHoOL3wrYLc46tPWuoxMGyjDmW
v3dScUN7od764U54vDNSURJyV2MzW/TinS4E+ohPvPHuRONCu+7f+SPYXF5V
MtTVCd+CibcGYp3Q9nSP7Q8Zgcne1Ct2ysL3J1nepXc7cK/+2q5P1iOw7g7W
qTnTgZOGVG0z1Q5Mqj8QSRXmtKNu/91g23HkKuUrJV+4h2cXh46wcXp0S8ar
qTbsK3mfY2Pejo9DlV5uBWz4BCq4rtzRBouZrAsdHW1Yub1Hw+I6G8Fzvq+I
u9mK7SZJ64+dakPIfxdBGzZu3W/rFm9rwebQaGLweysY32c9klrGRoJK3j0/
pRZofg7OOnWjFawFUQvqmSz0rnJcsbizCSlU1elbSq0omBV4KiCFBTmp0I7h
941oVPThSHxqQfivCx+0jrOwe/TFrdynDfjlUN4e5NoCu6/OsjQFFkKo9aZB
YfVQfyrzaXJ2C1SZ+91utzNRVDb60+psHTLL3x8cPNKM8W6z90YxTHx9Lv9m
qXUtJHbaa7WmNqGqUU+Gb8XEP9Fbz7I3UeBaOy5axWvEvUp11yeSTLhdclYu
WPIFpdYx3QW6jXApUiy2rmQgySG86/rvaixt08p9EdiATdnzpGeCGGg3zYze
N/QZPvaUiIfV9RBNnT6ZI7yPzNVsMl9RXSXknNvxKJl6tMR/fef0nQ5TuW+/
eZmVUHcW1Q08XIeUqOF5sm/o8J9SyC++U4HrjCdSF1Nq4Xmt/cSn83TkDRp5
3PAtB+3M1iFnLgXGl6oLPTXoaI6uMs3IK4M+2fVuvw4FMu5Fc1WEXDA+Lv3G
7GoJYr18o80CvqDfMdO5JXkY2ZqHlQfNPoCYkHXT+1yD7AOPC0IchqH0MyX6
qnQxLPyzt6pL1yDQMlpqk8Iwor7wfstTC5EyvUtO0b4a/wck+cVy
                   
                   "], {{-175, 
                    Rational[-15, 2]}, {175, 
                    Rational[15, 2]}}], {Antialiasing -> False, 
                   AbsoluteThickness[0.1], 
                   Directive[
                    Opacity[0.3], 
                    GrayLevel[0]], 
                   LineBox[
                    NCache[{{175, 
                    Rational[-15, 2]}, {-175, 
                    Rational[-15, 2]}, {-175, 
                    Rational[15, 2]}, {175, 
                    Rational[15, 2]}, {175, 
                    Rational[-15, 2]}}, {{
                    175, -7.5}, {-175, -7.5}, {-175, 7.5}, {175, 7.5}, {
                    175, -7.5}}]]}, {
                   CapForm[None], {}}, 
                  StyleBox[{Antialiasing -> False, 
                    StyleBox[
                    
                    LineBox[{{-174.99999999999997`, 7.5}, {
                    174.99999999999997`, 7.5}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    Opacity[0.3], 
                    GrayLevel[0]]}, StripOnInput -> False], 
                    StyleBox[
                    StyleBox[{{
                    StyleBox[
                    LineBox[{{{-123.91067538126362`, 7.5}, 
                    
                    Offset[{0, 4.}, {-123.91067538126362`, 
                    7.5}]}, {{-47.65795206971678, 7.5}, 
                    Offset[{0, 4.}, {-47.65795206971678, 7.5}]}, {{
                    28.594771241830063`, 7.5}, 
                    Offset[{0, 4.}, {28.594771241830063`, 7.5}]}, {{
                    104.84749455337703`, 7.5}, 
                    Offset[{0, 4.}, {104.84749455337703`, 7.5}]}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]]}, StripOnInput -> False], 
                    StyleBox[
                    LineBox[{{{-169.66230936819173`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-169.66230936819173`, 
                    7.5}]}, {{-154.41176470588235`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-154.41176470588235`, 
                    7.5}]}, {{-139.161220043573, 7.5}, 
                    
                    Offset[{0., 2.5}, {-139.161220043573, 
                    7.5}]}, {{-108.66013071895425`, 7.5}, 
                    Offset[{0., 2.5}, {-108.66013071895425`, 
                    7.5}]}, {{-93.40958605664488, 7.5}, 
                    
                    Offset[{0., 2.5}, {-93.40958605664488, 
                    7.5}]}, {{-78.15904139433552, 7.5}, 
                    
                    Offset[{0., 2.5}, {-78.15904139433552, 
                    7.5}]}, {{-62.908496732026144`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-62.908496732026144`, 
                    7.5}]}, {{-32.407407407407405`, 7.5}, 
                    
                    Offset[{0., 2.5}, {-32.407407407407405`, 
                    7.5}]}, {{-17.15686274509804, 7.5}, 
                    
                    Offset[{0., 2.5}, {-17.15686274509804, 
                    7.5}]}, {{-1.906318082788671, 7.5}, 
                    Offset[{0., 2.5}, {-1.906318082788671, 7.5}]}, {{
                    13.344226579520697`, 7.5}, 
                    Offset[{0., 2.5}, {13.344226579520697`, 7.5}]}, {{
                    43.84531590413943, 7.5}, 
                    Offset[{0., 2.5}, {43.84531590413943, 7.5}]}, {{
                    59.0958605664488, 7.5}, 
                    Offset[{0., 2.5}, {59.0958605664488, 7.5}]}, {{
                    74.34640522875817, 7.5}, 
                    Offset[{0., 2.5}, {74.34640522875817, 7.5}]}, {{
                    89.59694989106754, 7.5}, 
                    Offset[{0., 2.5}, {89.59694989106754, 7.5}]}, {{
                    120.0980392156864, 7.5}, 
                    Offset[{0., 2.5}, {120.0980392156864, 7.5}]}, {{
                    135.3485838779955, 7.5}, 
                    Offset[{0., 2.5}, {135.3485838779955, 7.5}]}, {{
                    150.599128540305, 7.5}, 
                    Offset[{0., 2.5}, {150.599128540305, 7.5}]}, {{
                    165.84967320261438`, 7.5}, 
                    Offset[{0., 2.5}, {165.84967320261438`, 7.5}]}}], {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]]}, StripOnInput -> False]}, 
                    StyleBox[
                    StyleBox[{{
                    StyleBox[{
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {-123.91067538126362`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"0.9\"", ShowStringCharacters -> False], 0.9, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {-47.65795206971678, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {28.594771241830063`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}], 
                    InsetBox[
                    FormBox[
                    TagBox[
                    InterpretationBox[
                    StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1, 
                    AutoDelete -> True], NumberForm[#, {
                    DirectedInfinity[1], 1}]& ], TraditionalForm], 
                    Offset[{0., 7.}, {104.84749455337703`, 7.5}], 
                    ImageScaled[{0.5, 0.}], Automatic, {1, 0}]}, {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]], {
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> False], 
                    
                    StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}}, {
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]], {
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> 
                    False]}, {}}, {{
                    Directive[
                    Opacity[1], FontSize -> 18], 
                    Directive[
                    Opacity[1], FontSize -> 18]}}, StripOnInput -> False], {
                    "GraphicsLabel"}, StripOnInput -> False]}, {
                    "GraphicsTicks"}, StripOnInput -> False], {{
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4]], 
                    Directive[
                    AbsoluteThickness[0.2], 
                    GrayLevel[0.4], 
                    Opacity[0.3]]}}, StripOnInput -> False]}, {
                   "GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> 
                 Scaled[0.02], PlotRange -> All, Frame -> True, 
                 FrameTicks -> {{True, False}, {False, False}}, FrameStyle -> 
                 Opacity[0], FrameTicksStyle -> Opacity[0], 
                 ImageSize -> {350, Automatic}, BaseStyle -> {}]}}, 
              GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> 
              False, GridBoxItemSize -> {
               "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
              GridBoxSpacings -> {
               "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
             Alignment -> Left, AppearanceElements -> None, ImageSizeAction -> 
            "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          FontSize -> 18, FontFamily -> "Arial"}, StripOnInput -> False], 
         Background -> Automatic, RoundingRadius -> 5, ContentPadding -> True,
          FrameMargins -> {{5, 5}, {5, 5}}, FrameStyle -> Thickness[0.01], 
         StripOnInput -> False]},
       "BarLegend",
       DisplayFunction->(#& ),
       InterpretationFunction:>(RowBox[{"BarLegend", "[", 
          RowBox[{
            RowBox[{"{", 
              RowBox[{"\"ThermometerColors\"", ",", 
                RowBox[{"{", 
                  RowBox[{"0.7333333333333333`", ",", "1.1916666666666669`"}],
                   "}"}]}], "}"}], ",", 
            RowBox[{"LabelStyle", "\[Rule]", "18"}], ",", 
            RowBox[{"LegendFunction", "\[Rule]", "\"Frame\""}], ",", 
            RowBox[{"LegendLabel", "\[Rule]", "\"Normalized Temperature\""}], 
            ",", 
            RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}], ",", 
            RowBox[{"LegendMarkerSize", "\[Rule]", "350"}], ",", 
            RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", 
            RowBox[{"ScalingFunctions", "\[Rule]", 
              RowBox[{"{", 
                RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", 
            RowBox[{"Charting`TickSide", "\[Rule]", "Left"}], ",", 
            RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], 
      Scaled[{0.7, 0.85}], ImageScaled[{0.5, 0.5}],
      BaseStyle->{FontSize -> Larger},
      FormatType->StandardForm], InsetBox[
      TemplateBox[{"\"Critical Isotherm, T=1\"", "\"Spinodal Region\""},
       "LineLegend",
       DisplayFunction->(StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    AbsoluteThickness[1.6], 
                    GrayLevel[0]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    AbsoluteThickness[1.6], 
                    GrayLevel[0]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.148] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    AbsoluteThickness[1.6], 
                    RGBColor[0, 0, 1]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    AbsoluteThickness[1.6], 
                    RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.148] -> Baseline)], #2}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontSize -> 18, FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False]& ),
       Editable->True,
       InterpretationFunction:>(RowBox[{"LineLegend", "[", 
          RowBox[{
            RowBox[{"{", 
              RowBox[{
                
                TemplateBox[<|"color" -> GrayLevel[0]|>, 
                 "GrayLevelColorSwatchTemplate"], ",", 
                
                TemplateBox[<|"color" -> RGBColor[0, 0, 1]|>, 
                 "RGBColorSwatchTemplate"]}], "}"}], ",", 
            RowBox[{"{", 
              RowBox[{#, ",", #2}], "}"}], ",", 
            RowBox[{"LabelStyle", "\[Rule]", "18"}], ",", 
            RowBox[{"LegendLayout", "\[Rule]", 
              RowBox[{"{", 
                RowBox[{"\"Column\"", ",", 
                  RowBox[{"{", 
                    RowBox[{"Automatic", ",", "5"}], "}"}]}], "}"}]}]}], 
          "]"}]& )], Scaled[{0.7, 0.65}], ImageScaled[{0.5, 0.5}],
      BaseStyle->{FontSize -> Larger},
      FormatType->StandardForm]}},
   AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
   Axes->{True, True},
   AxesLabel->{None, None},
   AxesOrigin->{0, 0},
   BaseStyle->{FontSize -> 24, FontColor -> GrayLevel[0]},
   DisplayFunction->Identity,
   Frame->{{True, True}, {True, True}},
   FrameLabel->{{
      FormBox[
      "\"\\!\\(\\*FractionBox[\\(pressure\\), \\(critical\\\\ pressure\\)]\\)\
\"", TraditionalForm], None}, {
      FormBox[
      "\"\\!\\(\\*FractionBox[\\(volume\\), \\(critical\\\\ volume\\)]\\)\"", 
       TraditionalForm], None}},
   FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
   GridLines->{None, None},
   GridLinesStyle->Directive[
     GrayLevel[0.5, 0.4]],
   ImagePadding->All,
   ImageSize->750,
   Method->{
    "DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
         (Identity[#]& )[
          Part[#, 1]], 
         (Identity[#]& )[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         (Identity[#]& )[
          Part[#, 1]], 
         (Identity[#]& )[
          Part[#, 2]]}& )}},
   PlotRange->{{0., 4.}, {0., 2.}},
   PlotRangeClipping->True,
   PlotRangePadding->{{0, 0}, {0, 0}},
   Ticks->{Automatic, Automatic}],
  InterpretTemplate[Legended[
    Graphics[{{{{{}, {}, 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.5395958000000001, 0.6954066000000001, 0.948175]], 
           Line[CompressedData["
1:eJwV13k81M8fB3AqudKiJDoU6aDSoUvqtYlylG+SSpIOnZSUFDlKypFEhMrR
5Sa3JCqUK6Hcbdjdj0Vy33vgN7+/9vF87HzmMzs7M+/XLD1td/DsNCEhoWhh
IaH/f9rJmC8XEmJiIe+YXOgzLlwkC0y+izFhuy74m5MoF74iq1xDZJig9gbO
8rs1jhjueM1qFSYKDWJjh86MoYUVdtd8DxPL9GYcarIcQTdDKHnZf0wIic9e
DGoYvLoLjX1HmFDckvDewGYY88q3ajy4yITwo7nXpO8NwTi98U+6HxNv57k+
rqoawPEkupjbUyaO/rA+9/XCAC7FxG00iGRCTj5xVu/0ATx4fsu3NYWJlg6R
U+/o/fjkMX/rrBomjuzoHdaM7sFa06NBZxVYaDXjBPlEdEJ7/5dP65RZEJHw
9I6V7ITh3pVdfDUWCvfJPKZcOnBu+zj9iTb5HqnW1y+0I1IlrPeTFQu33F4X
bT7dhqRFQoq+F1jQ7fvc96CDQq78BT0zexZUTxXOdLajUC+5NfyfBwtx823G
ZbzYmD3cYDA/hoWTrBsmz8i4FvbiBvWOBYkpvXZ/WybUOmNfvnvPwuIDUdsK
RJnY8+fmmG4ZC5eeXko87tMCt6/y0fbdLMjwdfh97xjw++RerT3Cwmtpb5ed
0xh4ntPBF51kIUbohuhx89/ITnp/MJLGxiVz91fvZZvQE3xE6PsGNipfbwnu
S6lHKdX3wFSbjV3TFq7LnlOP1xu8pf7osbEwOERr/+06HK7OUew5ygbrqXXN
c7NafJFU3ERzZ8On7Lx5oOYvPD+W/jHUm42fQRJbszJ/4ka8oc6SJ2wMf6r2
l9n6E2p7b/+3PpoNi+UzAzX0qxHs8eei6Xc2zpyf9+Da/B+48tOhn1HLRuEK
tCTpV8BgidRN6xY2NH2T0465fcdk/g7PGwNsWBVY9EVyy3CBGxkZKk/hVqx6
T+XqEujob1FdspTCnszK9Oj7xVgUWpUYp0ahqs8ndgH1Db80hT582EEh26fy
3v3Er9C+eqqGcYZCQ6gRo8quEPM+c82tL1OY/dpk9YJ/BRiQesLsdqRwto6h
YnqpADGJhT0TPhQWmtfYb3X4gju8Yw4PgihwMxrmuk58hoXBEG92BAVa5efA
bwqfId2hIrYklcKaMx/33jyfj65Nef5xHyjIP1Y/HBaWh2+eh+TWFxH7Sx88
W/0Rzsr3lXXqKfRprf7qbJoLyrJd21pA4czfD21Tb97jU5JbUbdIG/R1Lgd0
zHyPMP48wxu0NngmeQ7dtsvGvmd7jzxQboN21IrtW0yysLyztXn26jao2iR/
US3PhPCWW9ahm9oQpjW69YB+JrJr4+zj9NvAoG5Y9ZpmIEBl1/i6g20IOS8p
vZaVDptrTW4fLNpw0HhN+q7r6VgiLeFXfqUNWxOPn/OITgPvxGtZ01ttOHCt
0cVdLw11yVrPGHfbsOmVuXf/31T4GtnEdAe34f5C4+gapGJBgM61mog2xPi4
3zjZnYKkWoWduTFtuNCQoat3MgWVlqV1XjltyKGcG8Us38HqddSrKwVtmGsW
kfKWk4z+dsfLZuVtmPOk2aDdIRmyV1VFVP60IfilnAcjJglvMgXV4pw2eAUP
dB8wSIImtya8v6cNtfn/3vUNJOLbjsQLDaNt2MPXk3n+MhGHPTw0P02R9+3d
2L7BLBEdxeZC0WIcDM5RfxBBS8QtyfUVD2U4kH1i9CO/KgHiB8TCrilyoPek
fP6tpwl4Htx6xlyFg3kPHXTTTiZAvSlbg76ag08PtsUZr09A3iJ//vJN5Hu/
ErnNognYf/psidRODuz0NtTvZ8ejJUY7aHgPB9dcYmNdCuNh92+OFeM/DqLW
rPsYHxsPoXX/1AqPchDHdk3PC4xHoEPhaNwpDjqEv0ZE3ImH8odnhY8vcZBT
Gc7VdIhHxsRVf8frHMxu4ibZ2MZDV0f/mKULBxt9lETVL8aj7oHSct37pH1w
Yv7xS/E49310QM2fg2e0mK4uu3iM0SrzZUI58PsdLvHFKR7eh6J9xqM4ENta
xiv2iofCMxez1jgOFutirOtZPBKaTZcWp3EgLLfimXxqPLYrq/ck5XIwZDxV
u7U8HhXnpn0IKuKgtK9zXKszHpaJTZ7OFRzcURIkSEgkoLcv9cCpOvL7v0V3
BGskwF3Te6F+Cwe2BVJCJUcTIO1k1bm2gwP3e/fD/O8nYMO02XcE4xzI9/ja
h/xNQNEejhEl3I7p4Uy/jCWJOPQwT75coh0bV/z7rWSRCMe5NimhC9uxwsRC
+k1TIkTNdW67qbYjNUxk/bNFSQiLUNh7dm07biTsGA63TkLu8tKWDfR27G0N
a/PnJ8HIJipBwaAdG6quup0wSsafFEdHoYPtqN39LXAyIhmTW1VnV55px/yI
vPobRu+gY+Sx46JXO+xmNt3P/paCmsfm4gcC2hEoPIvaKZcK69p1dZuftaO3
PvVpjX4qHli22s5IbIf1Oq0fjhmpKLPTDo+qbMdMae/c8adpmK/0JtO8oR3n
kyQPz6pOw7lK8R9zmO3IS6ak5SXTMWNNw4TXQDvaE9xnTNxLB73L3urq3A78
zP/p73onA9nWscq7jnVgsYlHgtrLLLw1l41nczpQIFWBhuO5GBJzKgjv7cCD
GV+EViTnQientenwWAcM/kmwuyZy0TovWeK7WCc+D1uWFL78CMXavbYZ6p24
aLhf8+S/PAQau2p42nfifPkeBXbgZ7jt7sxSnehEWuZ5lTM+hThoGP9imsU/
rHBgHHL9XYnSTyt+Xg3owZmwlqOMzFqck1rLmf68B49qvSOky2sx47gmN+RN
D2JLky9ubq3FLi59aX52D5o3hDmZitchd+Mxe/HmHmz21M34dbwOyXF+Mq9X
9aJs5LojU6geT54MmNQU9uKvXHKM0o4GHD/38demkT50WYb+VnnQhBwlk43h
k3148sJ+an5oE3xthwyEZ/RD7/gtranYJrSr+iScl+qHOy1HNKqsCZFhmTaa
S/qhES/1dPWs36C5Sfb+0OvHAaOzjp7+v9Gv/2FQKLAfqSsP7zP1ZiCjZa7g
3IoBpIa3u06ZNEN785RxmfoA9PK6MrxONKP40d9X6usGYBdh7z7DphmN2p/2
9m8dQLeS9SDjXjMmn58PcjIcwDo1RbHpWc3QP5Kr5nd5AMKVSye3yLWgpcrK
PC1jAEJvMpmXf7TgwgrDpDk5AzicTN8S0tiCATfNqRt5A/AWsp2WSbVgxlrx
aK1vA4g1q5Kt5rZglV96f1H9AMJ+yrJ8VVvhoC/iXc8dgMKBLZYyt1shXpCQ
zccgbkkb3TGgMTGus+Z9nu4gJsrun4iZy0Tn15T3rgaD6KjkPZpQYKK0NDNn
6uAgWit2Dj5fxsSD6k+5088Nwl84yOjJNiamMX99kvQbxMef/fI3TzMhmOQV
L2gchNMmo1tbUpnovuNa8ufPII5NWPW3ZzLBmCZUGsEaxLp8Md3AD0zkzhQp
U/o3CMf57f71hUw4zaZ9V5kchEaWxMpldUyMLlKpUl82hOGv3ySqxpno0zZq
2H51CF/tFDfeITktd9tlXqLDEHRNpAb301nw3Px40UKnIbgcEo6V12VBcV3N
GcHdIfT0JE1FGrGwR8WiPy9oCA3jXV9dj7EQLm4jvvP9EBRLQq3cbrJgWO+7
nT45hI9RGo6vSE6Tq0k6kTptGMtGHk4OpbHArKq8u0R0GC/XGbTqZLHgWCZb
KiQ9jIuvUrPqPrLwKu/5oYKlw7D5sl+supSF8dcJl3X0hjHbR7VKgU1yml15
lK7fMOKG3avkZNmoXqp5MTJgGGKSCde65rLBq4nYMB48DK+c+L8f5dnYv9X+
W2LEMFo+mluaLSI5S2j+P9mUYUxffv716ZVs6Dw5u5n1cxj1Mim1nTvYaM0U
+uEqP4IiOSuxrHNsiJ2/FNKwYAQqxQVDKy+ysUGh1mr9khF86pITfm7DxgPX
2MG2lSOod2f6Xr/Kxto9xvP3aY2guPrzixnObLg0vDijSHK871upjJd+bMzn
beZlvx5BctTEqeoUNuLqt9rbxY4gLde5QDGdja0ZWp0rkkZQ0V8/93QmG0dt
d9aHZY2gcTX/VUcOG2EteunOpSPYaKr4qrKA9Fd06NLOXvI+i+ees2uI/a79
/rZtFMP6+wTnh0j/FxxM3HaO4m7Wr79mI6R/PcfSzbtH8SraadGuMdL/pFN2
7L5RFD1lnaTxSf9X7z7xsRrFl1lpLx5OozDfLMBw//1RfEjcOzZDhoLC4ne5
tdWjOOjf+lByNQXPG/8d0q4bxVLp3mMP11Dor+jvedM0ioz05xLiGhSKb29c
ep09iiP2HNnJ9RQcmnK8ZIZHYToSOF65hUJlcNEhY/kxbN+nEim1m4KHZFNv
ieUY6k95b5E4SqHntLO3xukxpJq2XDEwp3A0d4Fy6LkxRNu05j04RkHj4gmz
c3ZjEI0xeMM/TuFPMfVxxt0xhM7YXVx5isJmj17vXW/HEJSU9HWBDYV/49NV
PnaNodzB18rChUKe845Ld/vGwDcc0HV0peAvcEzbOzyGJteGZY/dKGwQ6kLt
xBjE/W4zcu+QHC1afbxHehyvrbcd4XlSmDEvPERpyzhcZAcWLHhE7i+hdc2c
7eRep3rFY54/hVgFmmoSfRxBvXOFpB9TMFzkkbHVcBycB7/2TgRQCFh2odrE
chxFMy22FQST3LxRU8Lz3jgsdk8t7X9BoTfzsomh9zioS5alP8IpfN4cGyb9
aBzXmidfxpMcfVpLcUVEyDgm90f0WURRiNslpJsdPw6dyAGNxNcUNA9UuHZW
jeP229vRI3EU9l22Hti3kIv8bhtLvUwKLm85LYIlXGzVdTL7S5zMOFeRpMqF
Cvf+l4dZJOcbXoydpcFFjpX6yPdsCtXLr1hW7OLibY/O1DaS002ZN8uMznMR
uzi45Ec+WQ/y3Gy+DRfqOVlB5p8oZBo7v028yoXjYY9Oinhuvou7pDMXMYon
1g9/JvP17O6m735cuJvFW08vpHDM9OErw3QulnUqXmv+RsHXd9ZjXjYX75y3
WR8spvCx4JFLwkcu1N54Dn0jXrgu4IjENy4OdD3rjSuh0DLrqVR5AxctPqZO
J8oonCqOdDKY4EK1U3rQu4LCkwml81xhHk4G9xp0EhdqvjoUP5MHI7+TB/f8
oKD85o2GuDQPAnq20yRxm3scp1SZB6/ZLB2rKgoXtqWb6OvzwHkWXkD9JOv5
369Tsft4sK7akrjqF4U7EUP2M014CJeaunOFOFR405Ov5jxcH383PExcXPb+
F92Gh0T7HLmRGgq/bjeyo+x40JFudtpQS6F5DXdw8joPCtvNfl4hHg7UmpPv
QsarUGzZRqxyLN90mz8Pyyg1kaI6CmtntZwJe8LDMY79wnFirU+T18dCeECI
yNrV5J50UJkenBXFw8y5HrsDie90FdauT+ORvJT2338NFPzCqbaALB4+6+mZ
uBCHGc8Y6fvAg+T9AdM44pR0Pbl3hTzIlndbTRC3OJeaqdXy8HxadvyLRgpd
q/+e9WnkIX2jxfcvxKMt4o6df3jonvFhuI1YardRSAyHB14W65RaEzlPRmxi
RLp4cPPYF2tEvCzWL9u6l4eMspQxG2Jtycp65TEeEszD8uKJ9fN72+/yebi6
J2dDCfEhO9oYc4oHoTGR9xSxTc0B+SgxPrTyjvYo/Kbw/EXNkQWKfJzcxVt+
mzhm//B558V85BkmLgskTp+ae6tJmY/Je3WbY4jLzhwOC1XnI2deyosfxLVy
N+NGNfhQePu3r5WYWRKaY6bJh055hsUA8bh6U+OcHXysPTXTVYZB9n8Lt/Pa
Lj5mT5fTXEJMC1Dk/tTjY/qrzyJriRV1touvN+RjtLhkUIt4+bCFQoAxH0pn
evl7iDfEuKzqO8jHveKhpQeJdx6N2GZ8hA+36NCzx4kNJT4ZJFvwsXf+s5Kz
xGZ5LeazTvJx/UW2/hXi4rBQ+XJrPnYax3g6Em+9caDO6yIfaTJNH1yJE0zE
g/Su8PHIC3/vES9cW3hg+nU+tF3L5vgQ+0vcnl1wk/TXfVbrEbFQx8YKNxc+
pATTTgQQXyvq9tG+y0eJkL/7E+K2qOi9vPt8cF2HooKID7ucEMnx5ePMcqUv
/3fpUfmiG4/5aP3DZ/6/vdam6jsbg/lYl3V9eiBxkozPzoEwPjKH7Vb6Ey/u
3SV4F8GH2pymA77EAeW8D7av+Tj7McT1PvG02IybarF8zKt4nOJO7HDPdlNn
Ih+uRxM6bhG3W6kORafysTL++3J74qPaLalnsvhI0W68fIG4fH7olaW5fNiU
ZuSfINYe+W916yc+NLbtkj9E/O6nWFd4ER+zMk/f1ide8q4g9lgpH39DuF3b
////nt+oUv+TzM8a8X4lYsfd3cygej4kvtC9pIk7laIjTRh89DvZrBEirmic
p/ijjY/iLFrCH7JedmZVNfj+JfPD2+VRRpwa6P1Uv5cP6Z5G2yziYEOe9Ncx
PubIRbr4Es9ckVF5V8DHelH3N9eJb0239YOwAGbKakwL4uN5zaIfJQRIXawd
uYp42dqCybRFAvC46bq5ZD+ESDjn2SkLMH+T8fpwYrGODc5rVghgvsBCy5W4
O+rtSNw6Ad4zaNHaxBky3t1RuwW4lhUzlEr267JeeoKlvgCybU9/PyQOKeee
X7BfgD0KV9vOEjvfs6FCDguQ/nuutTyxzojx70cXBXAP373qKjkffjXKld5+
LICY/xxnLjmPlNZdiesMEmAi3v5gObGtV7G3WZgABbcnHJ4Ti26+aaDxSoC1
82VfbCXWDmosZ6cLMLVyp4tt7f/374sfBvUCmBY4K2SQ83Po7VBy9m8Bzmvt
ar5FTBcY+au0CuAS/X14BzEjQWA80SGA6OCdpcXkfJYWO1GdyhVAY/+bu5XV
FJwKl9TIL5qA94meP58ryf5RcMrwXDqB+PWcpbeJ59r/DBpQnYCpSX7RJuJ3
Sh6Hvq+dgNwdvSXxpB6wXag6N/oEThcv2vf/erJvS0wj58wE7lTldq4sJ+sn
Sb0lI2ECIkroGf1KzpM1C23dUyYg+tL7RiixV8osnmHmBMovrz64hbg3vUeO
nT8BX+/ZkjeKSB75kLJf+ucEXtf1+nUWUDhSsjHfdmwC9B/U8VRSP/3Z28NV
dSfhERFkV/KezL/1arUB/UmINt7PNCUe4SzMyds/ifUiq061knp9/O9EjemR
SYxdKB8aJvVcrf+zpMelSQQLDs9WIPW+eGL37ZaASbxM+vtUL5XCxPx9x0Kb
J7Gt9uKXjSQvSB/w9N/HnkTiZIZraiypj155hcId5PkjVM5q4j0jq9Vt+ydR
E85KUIkh+/enlIA+fQomWXW+km/JevKtiuhaOQWurUx0EcknhvyDrB0OU1i8
N+FuYwiF772rNa+JCNEHpt99knyP1KfVKrSJQCH6xelRc4styHiyF0dYqgnT
a1WUnH3UyfyHi7u/zhGmH68IiGvlsRG99t+qhbrT6IYOzHWBpWxoSP3ysmFM
o9uaJvtUP2ZDeW/ctqgL0+lz7zVHWpmz8efHvcg44Rn0zCiz0j3kPuAgdLii
PXQGHZmh95+xWLjhL28svkyE7jbi7BUdz8KOiy0ewnki9DLJ3Fc9tixciQqW
bDGYSa9Ye9fbRpMFl7u7LPtqZ9Jnp0cePTrBxMHUoVP1NqL0fU6MFfPIfSxA
62nuq3FR+md/C9lTD5kIkdEu1gkUoy9ZuvN45QEmRHR/qZYqidP3nZLd1qrI
hImylbFHojgdkp9E7/9oxdn9A6tkd0vQ77/tbtI90QpWzTXzB9US9LDC8qF1
4y1QjeVur74oSe8Ivffe+2EL9iy/2WEsNItuliLxs1W5BdVCbe1pfrPo20vF
xmlFzVBeefhZ1zIpOkvWoXKVZTP+JLyPEs2QokdqrXjBmfpD8jnNznznbPoi
IxzSjPmDmkOXB+7UzaY3pi8/WbPnD16o55b4nabR+xv5GZF9DPz56xA87SyN
viCpdPOiXgYWxmmcunWeRj8qnsx40c1A+LJo3hlbGv1Ab8bDZ3+JFwWs2e5I
o9/ku3mGUAxE0s4F/fWh0S0vqDeENDDwckjGak8ajb6rInUg9TMDzLQK9bwM
Gl21Xidj4ycGllz1Gl+fTaPv+BETkp1H2ncLAhd9pNFl/RiFeR8YeMXp+Dr8
lUY3OPwhtTyDgdcN+WpvGmn0QweNmN2xDLCf3hqbz6DRFxr05NvHMKB8aONX
/2YaXaRNO3/0LWlfHWfpzKbR39Ywlgi/ZuBNWVCASTeNzhZpvC0fzkCbl7Fl
SS+NXvI45lzEcwaW7RFX2zFAo1/bJX1d5RkDbwvdilaO0uhyPxL7NUJI+zvb
AiLHafQzE42nsoNJewwfn8un0ZdNCxvWDmLAeuLdKt8JMj7P9riiQPL8x4uj
U1NkfKsL3QwDGPgfx5O3vA==
            "]]}, "Charting`Private`Tag$11812#1"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.6317786, 0.7821216000000001, 0.941844]], 
           Line[CompressedData["
1:eJwV13lYTF0cB/CKSlRTihYibVRUSEL6jlSSsrRQZKtEC6KNUkhkCVGvElGR
NkKltPAiS4mmfdGU2e6079vMtL33/Wuez/Occ+495977+31nmetpu2MiQkJC
KcJCQv//npZ11hISYiCCW2I7NTODC/M+76mYw8ANVhPDzW0GN0W1Qx/IMjAv
YM+qxT+n8YLPq12pzoDXwpL0tclTaGPGX3a2ZKBYVslm3G8CPS1CrzR2MbDq
Gp3G6BdAUH+iqX8fA6UDuteiTgmw8Kex/jVPBt7MXx3Z7cfHzpwmek4UA5IZ
Mo6aieNweUmdE/YPA0l3hmuDV43D60X62u1PGDBs4T1e8mkM1xLO3fz7mgFv
jSsdKj2j+BiuaCxZy4D5Jg/JtIMj0LN3ijmmxIRcz2HRNYmDMLH99NFAjYn1
Qk3VEraDsN62omtCh4lbR2xWRkwPwGMTj3rfhAn54yKLTD0G8EQ9vu/jYSbi
r139+/luH16qCCnfPMEEwyQ7sEK8D0UKJywczzCRr/jjZEJ4LxrmGT/uDmeC
e+Ca965LPZAeadyu+IKJrkMbFOMTurC4DwHsbCYaeU/e2yzvgk5HWlJ2ARPu
fKN0l/xOWNKDxs3LmZi0/bfzUEsHwr4qpJ7pYeLD7h2p2WhHb+w+oYo1LNwM
merYfYKDMnb/NXsTFgZCl7wul+YgZc11KboFC4HvQ6y3FbCxt+q9cq8TC+fM
i85qSbPxaZ7yOspFFhbZZ4/uq2EiYX9Ocdx1FgRBnuLNkUwEZFibqd5nIVKW
X00BEzrbQnatTmVBcstW5ZAcBmLD6Z72FSy8M7CRyHf6i1PV/gMtdSy8LnzW
s661DdtVpYLc21hwGtXWSnRvw/SHzREBgyzot4kZc0NacYL/5EmcAht+x4Z/
1v1sgZnVek3VZWzsl+KNTLu3QCWOlpWuw8aVV+szkoVbUGMoVFi4mY2xwMZP
S8z+wMT3aG2LGxuSVhXp6W1NWPgv39n9JBv3FPv1LG81YVDqPqMnkI3+3sjB
6Q1NeJH1pXfqBhtn0xtE4xMbIdOuPkf1DRvVcgWuthca0LWu5E56IRs+lPPa
6cYN+BbhsGB1KRtNDdU7aWP1CFa7qmbWwEZn7Bbhw+fqwT7INXGfZKNMIVQu
9m4dPr4MK+0R5eC9y7PrR5zrED+x0DqAwsEVB9Vz+Rp1sHm4bd81NQ7+Pfbn
FOPfWmh1/G2VXslB3BQjM/VuLYTXn3OPW8fB9lsq5Q1HapFfl34m3YqDS5eJ
rCPitYhW38IzsOOgSCikLIteA++zzWGFBziweFQVsC23Bqoyc6N+nuJgNyX0
xV73Gtzc4f2iJ5YDqud8B636aiyKNjtbm8jBr0z5N9751XhZp2Ra9IKD4eiZ
oJfx1ag8WFYf+Z6DOqrJVukj1Tic8jT51GcObt1cE6hlUY0BbuBJx58clMvd
8FuhW435vpqi6nQOGvXrxZv5VXiWN1klQXDgPMLwvsiqgiG/9vFALwcHWgvX
zlRUYW94uOHHGQ7uV1y2D0muQkLsXzdndQLhnhrHJx2roNucr09dSWBKvmdi
lkUVSlTuTGitI7DwjVfwD8MqtL0wiRmxJDD6kp3lv7AKp7vlDrfsIvA53PXT
vjlVEDLo1vniRGDT50UitaM0qBU+/HLXi0DSosw6xa805E753gn0I9B6+wRN
7xUN5mZW+w9eIMDYctH/RhwN9deWaplfJXB07lm62hUaPCrGBnXuENDpHNkw
epqGcUrlB9k4AhFhp5oFB2m47pB6g/eUwEulUFU9WxoyW+2XfX9L4LyRUoG4
Pg2b1HR7XxaR13/3c8ezZTT88hApjCklwH/jL7tvAQ0Hs5ojgn8ROKvXz1GZ
S0Nf/5vdR+sJVLAfFQ7NVOKi4fXFVm0ErHgT8VVjlZA5f7hDr53A8qFtKTl9
lUj+YJS3YICA/leJubHtlVgjIn1pkkfApfu9ki+zEqWWxA62MBf9/zjpm9Er
4XCrROHnXC7iShU+iDZVgqDFsN/IcXF677BVfl0lAuW9X8ct5iJyzn6fXTWV
EHc2CwnT5ELauKb2V1Ul4hOVth3T42LDtWRTHdLarIH5Nuu5GDEODHMjXaRV
1raGyoXb3vlB/tWV2OH9NFNpOxd2Z3kqzrWVoL8ODBSy48J3mXKwVEMlTo7Y
mrXv50JL8vqz282VmDbWlK504+JojHppfWsl7oZONuf5kPcvYjefxaqE6pfa
1EcBXJy0fPsnu6MSb8WyzoSHcfFUsTLAuL8SZjvCN3tGchHyvMUmhDyv2rvO
ErujuSi559PkN10J9zqDeqOHXBicXZW0RJyGUcU5ySopXDjdTNp4ToaGawf/
+szO4mJv3x+bUGUaFFLyjbtzuZhuN7upo0lDOvf27JoSLpY/35V3wYCG8tMm
j59WcqFrTFGatZ0GxaXP8pwbuTh8Me9MryP5/lRK/JZjcKE3XOrh5UbD7FWN
U5GD5HrewYMyl2igdp057Cvfjk0r2I+//kvD3YdNQToq7fiazIwbr6KhzQrR
HM12XNDc1Z3GoiEkTfKz0/p2HPVf5lY8qwr57mlqW/a3Y7GxpqOFbhVE5aU3
Tbi2Q8PT5WPOuio4lPrbv/NuR+Sxx2GO1CoMLTOL0A5tRxJLKtdobxVW/aUT
sknt2P3aLsM6ogrPnednsIh22FulH6F3VGF4zvnPj/vaUTGp5qc1VgWz93+b
9463I/adT+CDWdX4u/DV3Io5HQieoAg4S6qhXLfNJ1e3A/8GF7po7qvGvZ2h
+hFnOiBe/Mrqxu9qhG3teKc51YFYtkyZ+u8aPNx2UTtRrBOiDfsU1vytQd6O
hYnyMp24ZOy8ymGwBt325hGz1Duh152iUb2gFk7uSXZMq06cTe5VSTxci7VX
nfofx3YiiC5SPTlai47vZSvkV3bBYnJrr4NOPeysMx6JHOiGy+wEo8ePGlH2
cXm1b3QvynzKP57ua4GHlB4xK6EXduFeX6dmWjDbxZD/4FkvvqiFCF+SpWML
n7rsQ34vXB1be44Y0lG0dv8ZidZepA2904k5T8er9CjZFO0+vHLYE/FauBX3
7w/uqf3SBwPZjLGbc9rg4lFcs260HynMRVFl/X/xfumetY+n+xG3z1Cna+ov
bvoMbxeePYBb6vdfzYgywNW8kXlcagA9GdGmIvIMPInP8zZUHQDxMnm6RJ8B
Sti8vt8WA0h4flJ+rgcDA1aFQ0L3yPHnM5SlK8nxmrPV8/4ZwPPINd376xiw
EdllfzxhAAcSWMXJfxhIL+bk/n42gIO3rY+rtDNwVE8mICF/AKGaIrq/Zxio
kTs+vpY+gPA3K1NlDJjIbZOf9Fg+iIiHzYUbo5gwMZrZWa47CMPH09In7zHx
/XZnsq7BILSPu55PeMBEk8nHbQPGg1gVLR/PTWJiOuF4zHnrQfwZlbAwf8eE
1b4inaiTg/ANoKYqtDLRRjvs/DZ3EKHfyoxWa7NwYrn1S7n3g/AombOnYhUL
g2GGMwElg8gUOtpwhMw5s/UkUjd+G0Qu5dqqsE0saEflDJQ2DGKBkrRLuC0L
/lai1xv4g0gu8DLI9WVB4nNm/gSG0Oosd+tnLgs8s1UFJeZDOHzlUZneexY6
vr4uCN0+hI65LVJ3SlgoK8t7P2M3BMlOiY+bv7Fwrepj0SyPIby+xlR2bWBB
hFHzcV7UENJHHYc/j7MwOS34vqhpCC636V7jRmz0XAr9QaeT8z9Zp5RuZKNF
RKgskTmEHVllDrdM2SgSEy1f2j2E3V2aG6Qs2TgvTalQnx7Cragrri0OZK5R
UafpagxDfFuCzfMzZG4x2dG4yXcYlIKddKF0cv6Gk4Is/2Gktn3pmZfFRoTR
XZXF54eRW3DypFw2G8oGtW6Tl4ex+7LLT4U8NizVDwyUxAxDeOkcjP3LxmMJ
bwnTgmE4mIWflWxkw7rh5ibq9DC4pYw3b0Q4WFD78tAbkRHc1TWY2knmGAat
8rKq+Ai6uz5Kd4lzEFg+v0xIZgSzF7TcWijFQXJJgsPnZSO4/yNs3XYFDngp
mSfNLEawbJN4qIIuBy9O/3xqHjWC0J95Wzx3c1C1zNDzSfQIkoc0mh6SOUZQ
m7iGFzuCOSXiST8cOLA1PvMtK3EEidsW/FZ25mBESLF7/usROK2L/vP0KAdm
948ZMatHcPWt9Rutsxz8zRP6HaowirmZdseM7nEw57jXg8ZFo8hZquMmG8PB
GqW6w6tVR+EkbtTYSeaga6FpQ5wVo8jWUNeJiedAz3Knos3GUWiduZn34ykH
FxofuSkfHMXYiSTVolccKAqMBPkpoxi03mxY84OD9AbjM6fTRpEnvvzW5XIO
jHM3dix/OYpF9RH6ehUcOPmYNsS/G8VR6jqvi5UcxLdZ5ASXjUJmkW6XcD25
XqmDl2nfKD4pbNW4wSQddfbPtw1jcFNIS3zDI9c/4b8nzHQMbbcDNKUF5PoW
gWVGW8cgndW91XOCXH/6fH6azRguXgq2VZwm1/e9fP/G4TH0aPrSnGcRUHSM
tra9OgadpL3ePlIElJZkF9VVjeGy/eqotqVkbgnY5WBSP4bURUVRDFUCA78G
ep81j0F/QvMVYxmB7yFrl/mxxsC5PWPfQuYy/+b3kbIjY9As/3usaDmBythS
h50K4zjddnpcVZ/Ahh73vneLxmF9aPytqAGB51vFrquojiPokGFqB+mQIavi
nhXjaMlq2pSxhsCK3ZXLbm0cR/q3CvsFRmTum9fc9+PgOKIcQ4MTTAj0ugZf
13cdx5oRCT+3zQScihapxXmMY4N5Z7GOKZlzPA85epwex431h8zzQID+nV08
+/I4TmXIO+WaETAK77u+5fk4eLV3vrtaEejmzVIv7hpHhk+aW7QdgZLgzV6X
+8dh45PycI09gTuTgW+3jYzD11VoTi3pNUJdqJsah3rhpVhpRwLnxKtcemV4
WOwXnuC7j8DshY8fLF3Pw+4622/MAwQa4upbiU08FHvlm59wIZCmRNF8SeXB
/OX2hb2krVXCc42teaj9ZJA/eJBAtMaJqj0HeSj5EyTffpjA4rWGcyOu8HBK
RCPlihuBvryTe6yv8/Du3tBkP+l/jdLiZW6T84d2fdnvTsB1o/LyxAc8FNgl
39c9RiB9i5B5fgYPL7eVnC3yIBBcuuHWhWweOj1W7FA+TmCHhV+NWS4P00X1
D8+R7rPiHqGV8HAgKe+pwQkChrt/hXbQeHiw7VLAHU8CYjWi37LreMjnTyxn
kW60h2RAMw8MOSUXQzJHB+/LSRBm8zCZRdtZR/rTofgC5TEeuqXmXxXxIXCf
UT3NEPCw2fuqtzVpN9d5lmkzPOxxyWyLJi3mEVa3VoIPlJ73VTpJwOak+6DN
Yj4KfIVOKJ0icOE50TapykeMnsYXB9KvWjx+vdTkw+HS9093SEtbe6ZJ6vPx
58r1N9Okq7ROHfy1hY/0XVUXKk8TEDrUb33Bko/prI8qM6RX/+NrvHIHH/Ex
80/q+ZL3N8tPLsqBj56p8kU3SNszgsp3HOej0M+hRe8M+X0o8PMnvPmIIOxl
HUnn7Qx+nuXLh+HWAzPnSct/uHBxXjAf8yZM53wibT4y5VMcxoekc5Amk3SA
7sX93lf48H15ekboLPl+PLy8riKKjwMsmz4T0mLVIuoh9/h4F3VV1Jn0+jkR
MroP+GB+0GzzIx0feK375lM+4uZvaEolXfZKvHnjcz42t41PlJDmc65/70rn
Iy38HVFDer/9rWTrHD5oCYWUCdI3b0reFeTz0ZWz1U6K/J9T/Pn2hcxiPkz6
7A8vId3Dk/ba/4mP/OcSxnqkFxtE75v7jQ+1NVdaTUjbHJe1KConz2+sdbc1
6dAn99d4VfJh72wUs5d0dr2cqnItH0nf0lKPkm6T/EfqZyMf0a9tbniTljZf
OHGezodwjCn8SSMkrkObyUfuyD9lIaR9cxQbmglyP25eWuGkkzoflt7o4qMy
qMY5knSV6qK3G/r5kGpku90iLeT0+EnnMB8Dq3Mt7pA2uKsS9ZDHxwNLB6Fo
0ke/Pzm/fYoPMWZz7P++P7X0OF9YAEW64+z//cUw2SFDTIAtas27/p8/5K1m
5jxPAPdsv3P/r6/27Jm+hIwAL6IML/5/fbs/GiqF8gKYtGgf+//+rsi+mOup
JMCGiiO6F0jnWS3nKS4RwCuZqPl/f5yL6USZmgDKBaUuPqTlC7Rrzy0XgBss
+tOVtEVf5qcVKwW4fCZvkRPpQM2V2U0GAsQaNdvZkH7h8urR9XUChISG+IJ0
Q4zeDeONAijNTwlYTVq84nVgh6kAcc12bmqkT2zI2WNlJYCzksekEGn/7pqj
aTYCTK7+p6+ffP6XEofPiO0R4InPysFW0nHC6+5/dRbg7MoGnQLSKbmOKeqH
BOg4d90thXT2scCccFcBxINYr6NIfy8vqKF6C9BQ8e3aIdI1IU2sp6cF+PKk
c74l6dZV/KFpPwF6F3e9W0l65N5GuQ8XBDjByN46Tr7/6vs/2G+4IyD7tFvs
ZdJ6km1u8fcFeOR2u/co6Y0fp/3GHwgQ8ajNbQtpOzVq7LunAoyeksmaIr/H
S11f6la/FSD4hmmhN+mox2xO9DsBPvUYylqQjt85e7S/UID8PP8oFdKvcywW
ZH8RICmmvr+C/N7bgsscdeoEMB5UubiEdNfKzmM3mgSoNz4mNkjWi7E2icAO
ugD+BgP5X0hLbd3x4AVBPq+vXx64kTaZV9mgNi5A5ljtsUdkfUp4VLtvkfIE
dnSHsdne5POyHTkevGQC6T3yezNI58zIn2tWm4CRlu/USdLlbnvj43QnoL3Z
rHeErI883eYmuc0TEO8tc+eT9dSxpM1Z8sgEHES1bFvJevw9Pk7hp/sEckNe
OUaTNg7YXR/pOYHsEMoFM9KL9b7snuU3AYmM75rPyfrOeZq6TXB1AtY/omcf
JOu//xWfdR1ZExhUfpqR6kog1log83V8AmNDk5viyf4jtjy38vLkBATrTB8Y
kD43yycKwpPYMyq/oozsXy4lreLFcyfBvH5rdGQ/AQ29z9NvVSZhOZFrY+FM
IFf2es/TrZMInX3x/meyH9Y0LSgLuTsJ2pHzd1btJLDU4FR6R8wknDMTf+Tb
EvCJ/H7dMX4SP+r0PUBa3Chou37yJDKu1tbvtCHPN6bpJytnEqaSQXc8rP8/
z0e/tzdM4nt3Vtt5SwLnv6jWKqhMQXAi8/Vast+rvtRty82cAq2p3klmJYG6
VYt9Lr6egsFUhK6XLoHI15IC67wpxD47eqpUh+xvOb0LWB+mkB/Ya+mvTfb7
wte2MtVTMBkxtqdpEdj3Y+0Hn/EpZM6x3utN5p07rE2PNc2n4Z8t8cd0IYEp
RZv9ca3T+Mtc1+tL5quKvpWGZ0WFqH8oiaINPzm4tFKdMnVPiCq2V+zyrAcc
TOUvSTyoI0wtrAg/wHDigPVY4mLKe2HqrnqJqoUqHKTqdWsvNhehzr3Bu5zK
YENfqibSu0WEyt0T6ZiVyIbatvQNT0/Mov5s3BK09xAb9N9XnqQLz6aqKdB8
TJXY8Bfa+4sbN5v65lPd6T31LATcUdgpoSFKzfa8WqjxgIXNnm3hwiWiVCmv
vcMUOxZOPY2d17ZdjLruU7T5AjkWLlzecrC/Toz6rkn9okgDE3Zvho82eItT
g652C+JjmYje+E9RMk+cukyjNtffiYkHsibfze7NoS7P3V1uo8iEqHmNZtlS
CeoF65lH3q0M7FE7vDM8S4JKD8rTffucgWO2g9rzt86lJjxJmW97ggFm7Vnn
a1VzqUE7H/qJrWZAM42/qcpzHrV4+e81z3r+wlIrqH2nkCR14dffn8tC/qJK
iMN9GyVJfTTdqZkp/xdqK/Y+7NKQoqov379AP60N9MyCp+K5UtSzGTl96lvb
yDxKOe1sKk0dcX+XKMtuRa3DycFL9dLU9VICC8nQVjzSLfoR5Uqh2v1pnGAv
bQW90z9W5BiFqjtbw9dqSSsWp+sfPXecQtWumpr7anErHmukCtx8KNRDlrZ5
gUqkVaJXbQqkUIN2CNXPk2vFE4pHTOcNCtX2fPOOzWKtSBqWPWz5lkIdzd/B
K+mhg/H2l25JLoVqFta/XqubDlXfSN7qfAp1nltB4t1OOpJ6Ju+pFFOoV3Ve
tLhy6Ugm2r+OfKVQnyxMUZ3HoCOl8YPOsyYKVSVL45drLR2sf86NK7ZQqEkh
53wqq+lQc1j79U4rhUqUFK3ZWEWOr0o/GMyiUMXkpgzm/6bjWXlM9J4eCrXm
nPJI6Xc6OJE7D/7oo1APm14pNfhGh4alhM7mQXI/nv++Tyyl4/mXsNIVYxRq
2pHn8uc+keMvbYh+wqNQs9wsQ4iP5HiMuMhPUKjyG7PF7T/Q4T6VrX1zikKV
DGsq/FRMzi/2HJuZoVAtyj/f0yui4z9tflPc
            "]]}, 
          "Charting`Private`Tag$11812#2"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.720374, 0.855234, 0.928635]], 
           Line[CompressedData["
1:eJwl13k81M8fB3BXJNWqFKJvIhWKEkXJ60OJVEo6qFQkXUQHpUOliJLcIaVU
SLpcSVIo0alIZVnW7n7Wzbp21/mbHj//7OP52NmZ94z5zGs+s1y9Nu2TkpCQ
iJGUkPj3ybWVPb1ndwMk/v9HTftkYhB0sAHucesTS91GYZf5pzYztAGeyx9M
P3NoGDszqLH+MQ3gbwiwWNQ9hEMpaYvX3GnA5qTVCzacHUJQwqmr9c8aINoj
4X395iAKA1RMxlc2gLNty52sJjH0HRyj9qmyYbbgK5XU2g+z9e8KF2qy4Tvo
WY/ofthaz2sZ1GWjaLpiRKx5P9yXi6hIMzYePs24ZBnXhztacR2Fu9nYaZ19
LmVXLzJmSEy/eoANc6tvI3JKvchXPmC15SgbWk37DtV96kG1gkliawAbkd83
epWa9WBi7+81KilsLDvi7/V5YTfUO+DDecrGJvEZqzECAXSbUu8+fcnGFvv9
CmczBVhde1K4qpyN5DRuoZypAP7vlR8ebWNDHHE6pduhC+3R2yQ+GzaiULte
Lv1UO8o4nUEOZo14O6C/Om9KO5INgyfUWjWCNSdDyH/ehq0VedPbHRsxybz4
zHlBK94pTDdmnG/EpaI08/1XW5CwPfP1zeBGjE/5emybcQt8HtlaakQ2Irok
pHZaYzN0rc9sWPSwES1HpD1YVDOiA2oPOnxuxNfY0v3xk5tw5MeJLmYVGb9z
Ss64z3ys0Zhw0o3ViJrIQj/ZQD5G3qy47CNoRFm7wVn/YRoHxHfu3FTmIOZM
GuPeKA+WNku1NWZxsGzPquCYEh5m3Pz+OE2Xg4uLtrytCebhp5HEq1crOIit
4uxeocyDmbdLJXMvB8quohfZllxMeyt2cvPkQO15zd7zilwIJkQ2tPlycF8U
Pu9QPQcpj4vbh0M40Pvp0hxygQNFvtZYjeccnEp967frO5mXcUFY2isOzt3O
+i+GzPPD5c1TF5VwIP/hxoPis404rRmoaVnNwbUJBWmdCxrBcabN3IY4uFXD
m6Z0i43CDP+StjFcnMmOib10io24wWm2Pgwu+IXPxKVb2VgXb70tSJMLzlGf
K6+mspFblXY0zYaLMR/66xsTGxCuZSFauImLj1F+skEXGnD42F//Vzu4OC24
inq3Bmgojgv9dISLXr8XTikGDbi69nBKWzQXPmt/FG5LqIdauOWxyttc2Ln5
2a/1qkdGlap5fgoXAykHrDda1eObc9mvK3lcLNQ+ePhMLwuTvbXHaNVy8ezx
/qTqXSzczx6qkOdxoZmrlV+1nAUjcWViVzsXg5axR9+psrA1IMCocJQLff0V
thv/1CEhun6vkxYPyRb5Dxt310Hvb64BNZ8HLXGFJmtlHQpmhA3OMeYh/Yi6
Ydq8OrBSzKJ6V/Ow89DP4vjeWni1TtnN3MDDt9Fda/KZtZBY2Kpb7MhDlcyX
w7dKaqH5Kr74xiEeXl70NY6MqUXWsHeY73Eevm4qd7p3vharLG22O5/lIW3j
rSluh2rh/rlfoBvGw9K5d2uFFrVIr3OYVfqCh78OvSUyYiaWa+q1Z+TzUPRZ
d9HOJia+uEu9iiL7rCtyW+aGP0x0dD7f6PKL7Du9VHWJfCbOGwWr27B4UKAG
8l4+ZkLRb3eTPp/UY7H0u8QdJgylJl4YEvHw6vqVtSsuM1GymreWI0nDK6Dg
jd4pJjZfK1D+NI7GvV35Rfc8mPBVOvzspjqNTXfsxqltY0LOyfKMvzaNpssv
nqiuZyLutqr1Pn0aAxWqd2NXMpE/p4xlSNEIWXY+QcqQibWHk9JV19DwcNS1
a9dhovaZr6/EJhr9p9ip6zWZ8Oxdb8nfTmNuyrzoWWpMjJhoT/y2l0bh6Nqx
+5WYuHFu6G+2B43XzUul1CcyoVFc+fCWDw036U3B5mOZsFwbsOLgFRoFlzTO
vh+uQeUNJ/mN4TTcIx7NnC2ugVvVwl9L4mn4mBXlN/fWoE9l7L0ZyTTUuYNn
pghqEORc7yHzmIa+a2h8UnsNlJNzTVqzyHjSmvahLTVIo6/L/Cyg4aD7kf+b
XwMTvX0VeR9oREW8e3SBV4NyL7PEpG80dIw8Wy5zaqAy8362028aJtGLdraw
a+D+Tf7rlAYab+WuJT9oqEHOOW/e1yYaX/rLzDLrayCz4PfwFQGNpRe3P59E
7FC7YprlAA1bRnZwEasGydce6A9J8bHcxXjbO2LBMgXrXAU+tFQUs8aT9lTL
0d3eSnxU5umbPiS+Ef/npO4MPoy01EODyXgsG4RztfnQPN/qkEPqmS96mHZH
n4+kOA1zXVLvmdTxRY5L+XDLiBvmcWvwaevxv5Mp8vu7x235NJmPbI3giw0f
zinD7PnNNdifQ427Ys/HuDXxQTmtNch1S9W02M4Hl/lo9HxHDcYoTVw+6MqH
2iZ/1WtkfTeXnHDIOczHeV+zh7/I+nfPsrysc46PiSofjsweqoHFj7REDjln
m8K2uc+RYCL8AiPndhgfjSlmK/fKMLGgvpY36S4fowunbgqZwMTZsJUjn9P4
mDHW18V7MhOfVqRPC3rBR59kg2KYMhMHEk9aDxTzsVRO3vQg2V8PnCY/auTx
QV13FgQsY6JnrF9RYgcfJ0RT50hbkP2TV/93q5AP2+dbjTKtmaif9mTc57FN
eOVnYxm/hYnpVdYeWXpN6EjenXHsOBMRducMLh9twtUSeYWEXCYahjnW5qeb
cGm+YX7yWyb0n9juEQU0QW57vNPXMvK8KqhEeEQ3YZFwbkIgk4mx5Zndm182
Iddo/hQvqVr4r2zK0R5uQkGb50jMllrEW5/XuS3bDGbqFtcdLrXIXjvttpJi
M7qyeyrMPGvR6rDqsrRWMywSgmTsA2vh6HZ3E9umGS+74nmPc2uxONCxMzG6
GU2Ky4puz6hDU2nZPKX5LXCcd2lGsKgOm2wf3ZLa0YpYu9JicXk9ygrn/vAO
b0esxvbJUtFsuE/Q50kntGOSSopPXwIbMjuNxLH323HE/MEX7j02LMTUrDe5
7ehZPmnhy2ds5C/eflS+rh2hz6f80PnMxpO00EnJOh0oc1JeA8lGREYK7CuL
O7A8aJPW4MFG7HR//dO4rxNPDCvu5M7nIG+m/eLEkU78DDmT7mzIwVWPnjWS
Ml0QqjS9GV3KAa0dkr5/QheU1lmJjVZycCcu+7CRRhcMAgsy9zpxwPBX6Phq
1YWQ+2ntPy5z0GXzqlsiogsX6ufe6P5N2mvLaGXHdGHnhpdHBmo5WCe1wWF/
Qhck751wHmZzkPaam/X1Phkvt8Sjt5UDF31Fn4TcLgxkjxxLHeXg55T9wsW1
Xcizn0xpzuEii6U05D5XgKfct9k+XlyYLRm1K9cTwKZGblXscS5Krzff01so
wO1RhazMk1z8MSu07jIRwE1RuKT+PBcjCfuj/GwFiK+WlZUL58JmW75uqKcA
9dLea6OeccH6vtvpRZYAfqZLzz1u5eLAXNuMKXkCaGgeDVrbSe4H/kajPgUC
TJUMfczv5kJGX/7hsg8CRJ54YK80wIVOaGZXSbUAzuWR1hjLwwmbMcHVYgGW
fDTNrCO5J1+UnjuIbljeZ8asJbklslzwsmBVN4rMXhi+3MFD0/tnL8+t6Ub7
6tfX/9vNQ1lZdt7opm4sHvMrpGEfD0EVhfnS7t1kXy9sWURyTarhZ6FCaDci
VF9/G3+dh6GRgVK1P91YyfN0fvmGh7YL5z7W1naTe63x5rvveGBKSZTdZndj
X3zwvkCSY/myY8pntnZDt2AfZ2U5D34TGZ+1RrrRtncoMbKKh/4ZWt/1ZvdA
rfxImF8LD51ma38v9+7BjpGAwItTaOSbeg48PtGDcR6n+OVTaVxecmOGul8P
OqbXLGao0Ji+sHLv0MUeZCmNjwknObZaa0dXQVQPDKy0Xx0hOZYof1je/GUP
wt54BCYsIedu9dXl1EgPJjdFtL7dSmNqZcau51K96HepGnzkSKPh+7eLGnK9
MH1oZB5Bcsu3fHKZhGIvkoLHuG7bRXKzIGFz0axe5H575lq8j4YoOd3T0qoX
xu1NulNP0Ejx+pS0KrQXW+42ZxWE0aiYZXTwTngvTGqSVqwhuTVQedtQFN2L
4Lf7tlZG0FhvcvTD49u92FFZYdYQTaNXQqV18rNepK96NbkugYZl5L4l7B+9
MLSnr7ml0KjPlvh6TrkP9uari1++pjF2/6HY32p9WOEX+VNMcsxQtWr3Io0+
CLS2PjEtpBF0LrWbO68Pl8v3lWe+Izm42k5l3bI+BE3a8vUqybmzv2/tne7c
B9cFi8MqSc6pDCwZyE3ug3H/Wdmqehpp1SZHvVL78HJz5eYmknMmWcua5mb0
4dArQ9sBNg1HD/PquJw+0A5ehspcGnEsq8zTZX1oa1y+2JjkoErJ5kPmHX3I
r2wtke4i/SVtZfd392Gdqv6ZHmKTs46Oz4R9uBa4caCB5KSj8c7VGpL9OHHX
2DGnh/SXuldTSqkfJ6t0Pq0Ukv5Cj9V8MO1HBU8SYnJfTztwwt6fvBctd1dx
KR0h/Vn5li1Z2Q//586HIkZJfyN+uanryPeHpyybJclHnPfFyJDd/VCFgfQ8
GT5UtoTbrg/sR1z0vvpKeT7SFkUWjbnaD65u55YL4/gwmRhtUhjWDwV33x+6
JJcdP96cYxDXj4UyhSy/8aQ/0ySpSY/7kaGafFmCwYfqf0/zqyr6kaVyKfTF
FD4u+2zYbParH3PnBhUakxzv+tLVfv9vPx6vfLEhj7j0zOJZxxv7cSRdNSZv
Ksmtv3lXJvX2Q5S4oPKhMh/foks22ykL8cC7YKORGh+mbW4dOWpCXO6YrpZE
/GClbPAMDSFut4ZtH6vOx5lum9dt84SYOX+ieTXxvI3fZl1bJsTTWzcKdv/H
R4DC346PzkJYrjn2RncWH+2up4MNXIXIjjY+eY7YMV9N86a7EF/Ve/K/ERsc
3LXF3UsIhfJjPA9NPmpLOa9lLgqxyo5uvqnFh/V/gVs8AoXoNOVOqyfO9JnT
WRkihI9Px+/Zs/kImX1Q836kEMUm/6llEC8J6Ai2eCDEnkHvskfk3nLv7w3N
R2lCpK7flccjHr9oUYHiEyHGe+mt1pjDB6f+eGd9jhDsMDMqgjh8hXiL/0ch
pPhN313n8jEUndDJ+yxEiuLViiji/W3LQ9ZXCPFT/96pEmLzW/4F6n+FMD/Y
UvLfPD5aRdJar1uECHZ7v/8DccHpFYcudgqRdN2ho4M4bMj3hXWvEDLWOq3T
dPgwlGhB1bAQFB243pVYJkDrSoKUCM57RDmBxL+knb/tkRNBOyY4IZX4lFzF
znZFEaIufq6jiW1D5B9kTRVha/FuyOiSe5PCyla/6SJwf1RpahC3hZ41pGaK
UOAYF7KMuHBirp/sbBGuF0/zcSAOD+9892WeCMZ4TR8idpmsMzZqgQhxJZ31
F4hlpiXGzlwqwrzY9CNpxNU3f9Xxlovw6dmIbD5xqipDO4MSofeg//xPxKdu
2XgcsxLh1d3rDX+IbWcEZJnYilAyEDabJlZPej0wYifC0haOWEDcrtFn8cFB
hKwnbS5D/+pL1g+55iiCpv3YXWP0SH2zD1TYO5Pvn0Z3jid2TbmnrOIqwluv
DuUpxIvnMXex3Mn8Jhz9o0wsk66U8uCwCBMrfQ3ViKv17NoPeYugVOs4dwZx
2pMrRot8ROhW9sr7Zz+DojNCPxEur1HkqxPbvhgofuMvwo6xkdnTidUXG427
fEmES0U2mv/678j2tLcNFiEw78qiycRvl6TGKV4XwWjsPY7Cv3rzGuqrI0R4
d59nKvOv3mXT596OFcFr20PjQTI/owKHI3tvifC4XP9PF/EY8+s5OndJ/We+
a/L+re/b0qHOByKwP1VO+7d+aRYSq3IfiaAmCMopJz5dYnrt7FMRZGQXS/xb
/7VWx39aZpH2oxqif/8f9Y8ZqvJ5ImzOjrsTS9xhQ+/5XiDC3r8NvQHE7z7N
TIspEsFJFkOexBHrnDp3lIqQmC3M2favvo1fzjV9FyGn5bLVXGLZn2M+PK0S
Qe5P7YwJxL8dMN7nrwgnpsQ+EZD9d3pbZoIkR4RHs+aKconX/W1lf+SLEBbm
l3OTeMYObZ2wNhG8z2sanCR+tyvu5fR+Ebbruuw0JI5s+DHSMCDCku8HJk8k
3uuqsDp1VITQ7+khTeR5kXX3r1osL8Zzfs67eOJ1nm6CdepivOiNPtZOnr+z
D3isIQ0xulW+678jfsJ0/5KhLUagnFxRBPFE24Op4w3EEKfyDi8irphzxPmL
hRgZL5wHXMnzLrGr0/bsajHY2aGB84kXxXibzF8rRrPdtc5ecl5ESh+fErpZ
DOcpdm4BxA4NJ8vX7hejokyp8wY5by4ri3MHD4tRP7k7bCNxtt3pB4+9ST0G
RtMUiZXenD2vcFoMD+bM+mvk/KqOv2j8OVSMpV5dJ33Jebfd4do920wxzqx3
fKKiwcfVq+NvDOSKodm6niqbycfroutn01+LYWuq9dmXWH1h+LZxH8To8fP4
UkHOW9b4mAmffoux6pdV/Cny3uZSesdvzbAY3L/JS+Om83HANNPexmYAP+IM
lv5H8uBE60+X1HUDiIruXpRL8uPC7Z6jsvYDSP7s5LKe+KakceR7pwF47hne
4zeZ5Ef5y5/U4QFIzqkUflQk743b3ziYhg1gt0WiFjWBjH+6bItu1QCq6gM3
3xvDR8v85n0hfwYwtMLLYhZxP0vet6l2ACM75vrdJXk4YeXa2BTeAL5X3v+c
KM2HmcK3ak3hADKiGIzrJD8TblVuU5s+COMY6bvrSP5uKWA5jd8zSNYrxn5d
L43SuJvKn9wGMedR9px0kt8mPht/XTk4iHSelbkcsbp+8Ubp44OorCpZ+pbk
PTfpofVA4CBuKeofnNNJ48QlD+Omx4Nwr4s6/LOZRrTtgOJ74SBqK3YMPmTR
+PlnatmZG0OIX1yf7FJKY+bCI2lNUUPISy83u0/uMx5XSoO3xA3hywLXbdz3
NOSWnFxjcG8IWj3RivtKaJhF/fnUmDmEc53P7u4h96GU9be+rqkegtm0uvtU
Pg2/Yo1K5RnD8Dy+PyD1CQ2NDD1WVvowbkV6vNeJojGssm77zboRBHZKTn+6
mcbnjvlGx8ZIUB/UXp0amUTjwnwtxnCEBJWc5tlOVfAwnPvfbWddSSrpOG22
NIiHxkT588l5kpQVK0C4Hjw81G/VUV8lRX29rVj5SsSFwYSfVw4zpai9G11m
BT3mQtM6zTTpgDQVMD9lw/q9XNR+vXQnTVKGuhFmM2nJVC5OSGz9Qt+UoTS/
TtouX86BT5iynfzsMVR93Y3W+wEcrDjICpAsGENtKOteZUjet44kRSuw1shS
d+zvSrwVNOLsRQvnzipZynk07WHG00Zset7jUn1YjkqOGPyqtr8R4cti8u+J
5KjAV7ZbgrUbETvJrNQyYiw132rvks/1bIxZ9VO7bKY89XRx24gwiQ17zd12
AY/lKZWWkMokVzb2rRfoTF45jupuscs7OYsNduUxp6CKcdT95es9e3kN0E4V
L684qECV71D4zUppwOo5J/l2EuOpQx42fx0PNaBCgku/CB1P+SfwdDQXN0Bz
3tb4ltkTKNfl1E4jQT1q018myWVNoFapmFu6BtWT+xPDy8l8IvXJX4/fMbMe
lZs9BRd+TaRu7v+qZ5XFwi29/I+hrgzqBTNrpc5GFmqbT0RL7WNQZjvPPzpu
x4J6moHLqf0MajDWblnhOhYSZz8c2OvBoI7coWsd1hDPCF+w3JdB+d66qH3R
koU7DPeo5hAGZXH1yjuOEQt3eybtXv2CQWXco0fKVFloePFFryCLQe2ak1ig
osKChvcV0aJcBvVH9PHBgWmkfdtQxIzXDEpU5t07dgoL93j8973vGVRX9dXw
teNZSP79Rvf+HwZFS4+8/DNSh8aYU0IVJoOa9VRaTW+4DpqbF78Pq2NQH2JM
0s4N1iG5Is35dCODOrDpPwstUR3ul0eF27cxqOLWnR7egjpwr9g5f+xgUMK2
3RrvO+swe7W87goBgzobcWREuaMOD4r9S+b1MyjT3kSTdy2k/QXT8DsiBtVT
nhWt1Ezao3en0iCDkjr2fvpBfh3chp/qXB1mUCUnP316wyO/f32wf3SUQXm6
Fz2YzK3D/wDY+ewS
            "]]}, "Charting`Private`Tag$11812#3"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.7867598, 0.8842044000000001, 0.8924496]], 
           Line[CompressedData["
1:eJwl13k4lOv/B3B7KZmUSosSkuVEljqE3pOdSskSHVqFIm1oISGlRZKEihJZ
klIRhTqVTtlC2SPDjJl57PsMQ/zu7/Xzz1yv67ofz72+P/ez+uDxXYdFhISE
bgoLCf3v1+15//jh0nYI/f8f/UOYnL5UbTvC/MzWfzw9A0175zuHl3bgsO+m
IKlNUzDa/vHDesUOZPFE+/xbJmFjqdo9qd6BnrrasczgSXgYjtNjjDrwN8+p
16JcgIdKCf0f9nXgWEXaXB//CWTLCy277tUBKR9zE3XlCRQu8TJ3PNkBnimV
dKxuHA1z9RN7wjqgfbJN9bDBOKRHG63l0jsw81f7TxtZPlb0w5/1ogOaAZma
7lU8qFMZyS8KOiCikvu57BoPFq1n+GZlHTDP6pq9X4yH4C9L0k72diA2cIdg
3uwx9MXuFqrQYWLCc/+dULMRlLIGrtgbMfFv0SNfe6kRpOhcnddqzkSqje8u
s/phONW8XdbnzET98sMmPkeH8XHusg20i0yMxf8wNXw8hPt7XhfFX2VCultu
4OjJIfg/tTFRiGHix6abI1EmQ1C3DNyhncaEa1VHWzJ3ELFhrUfsK5hIvn6a
7W00CN8ffoMtdUz8I9xj8H7hIKwV5p1xb2NitobX/g+NA5h+bxzuP8TEOR/X
VknjAXhNPHwYv4SFk2aN7xqX9sPoxIHalkMs6CncoC1a3IvF/064uB9job3W
+OU/LT0YmhfT3hvAgonAranucQ/Sn33u+3ONBfmdTdWWOj2Yz1WarfCSBcEX
JZO4/d3o3lAclfmOhZ25WaoNmt34L9xhkXYJC7kP8x/LT3fhvOJlRZMGFlJ2
NtbkPOoCy41j5D7Fwj61ecp7+yl8yA4u6RXvRFRhM+X0hULC5GIbf1onbtrv
KNB5QGHbPcvdVxQ7wX15oTFsK4X8usyTmVadsC4THFmUz8X1rd7pvbGdKF9c
Gvslh4Pl0SanapM6MSx9/NyiWA6y65ZuLkzvxPU2r7mCsxxUuZXWR7ztxFex
Cms/Mw4WnFgjrtTaicKFF5Z3d7CRmjdVI8nuxJihrtjdcjb0JmoTB/s6Yevw
rvFjLhtOYWF6H2Y64W4VlBwTwcb9WMYhFyU2uqVUT3XqsaHRnK9F/4uNF/2/
lF1Xs1EsHzWpsoGNR4u5fmbSbLSlG90ZtWCj4067z76uTii+u/f51lE2mgRb
hSKfdCL3z4mogNNsbNcaSHMk4zIzsdrjFsSGQUhgfmh4JzwqeEPqUWx09ipG
CQ53Iuu3/eqvr9gwldBsMFnXCUNFjb7sQjbsVurvHVnViUoPkXd3Stgo9BD0
TSzoRP/Ay50H6tnQ0aH7igpY0BGRDpkaZ4O5a6l5RwULJRbsrSxhDkZcOdrL
P7HgcKN4SfkcDkqO+e1KzmchQNY7J34FB9or9LUiUlgoVClt06Fz0PWkMCjt
AgtbvR9lLbXmoMkwW2KJPwutOQEBQrs4uD+4x7rch4Vp/TXSVYc44Cy7FD/k
ysKtC1PNeT4czDqSeuGQIwsKn2vTHvhzUPYq7ccCW7IPt4YZH4ngIO5+V+Ya
Ogu1t1wkd0ZzMOgTpRZhwIJ73fr6jffI+xlvFijqsnDFjeEj9oyDe+mOFkJr
WSg7bpT4qIqDVR5qymYyLMitSs1zaeTA0+/LjK8UCx5Vkt8XtpPxzvk1u3wW
C2LrGv9EDHGwmTN5et4ME/atxotNBBw40Y0tRgVMpNx4ojklwsWGtVYqs/lM
0LtP7jshy8WH/jGZvAEmbt1rOqMuz0VJoVK6TS8TbVaI7lxD/GaJy9wuJgIz
pD45/82F3vCsbbNZTJQ7nW5eQCf/L8hOw7SdCTmJX0OVVmRfu3Z6pv1mIt89
Q3HLHi5ascTxdxMT4rLShpMHuYiW31n4qoEJhxI/+zfeXLwx7WdnkVxIPdXi
fdyPi5jym/qlP5kYXm0SrnaB9E9l8yLJH0xs+ZGZyLrMxYPhMx0+1UxEh9De
JEVxMY+7QHzkO+mvVsD33fFcdAkbdd+vZGIdo5Utk8zF7mbvP4dIDgVFmU5X
ZHKxc7nb8+3lpP/GWYuvvOJio76o9+4yJpb2zdeiF3KR8nfo05BSJrwSz1gK
PnOhUaDQVvqNiYKtbfvyKrhwkLEO0SKWmDQ761vHRV52gGTeVyYcs55Fq/7m
YtEpnTFH4icuC54y2VxIHZH8JEs8Mvvcp8R+Lmjnw3sH/mPC5C2j2YnPxQ1H
hQkOcbSnxfB8IQqyF82PThAzFj+fUzGbwlQg/T8V8rzm14VKl2UoTCpvuu1L
HOR/3hDLKGQsXb+7hrhCucN+QpGCt2Pf462kf8vqLH1yNShcY4tMM4iPXHoR
fkyPwsp/P05EkvG91VmUtNaYAitPc80uMv5ZzMA3HeYUSm6IL9Ai8+N0m/n9
gS3xukx7JTJ/aXRrjuNuCosnV1zUJPM7OpAzTdtPwUl/lsZOMv+3bS9ohZ8k
/WW/9qgn69P+h2W5+TwFpc+3NfTJ+mk+t9k/Hkah9LJsSw5Z38q5crd9Yilo
pfzwa61nYnlR8FOVJAq+55YkRzcycfQo+1N7GgX7dCl952ZSJ8peDzsUUNjd
8wwKZH/tPrt0Lu0jBdH4uMlVDCbS14YolZVSyBlOL9buYML0ynYH41/Et13G
rrGZCDal3qz5Q2H4/OFlYmS/37O8qJYk0YWm4qdOn0ndydu6OEl2fhcK5SwL
Y0aZ6LE3CxdV6sIz5Q2nvMj5cXZP3tVh1YXpValOvyVY0L3sPJAY24XUlLfO
jxRZsL02cFD2YRfk/g675KjCwtGbVxpuZHTBS0v6qJw6C8l3896fL+wC3p/Z
XKLNgnT6/Ejn9i5YdrEWpm1hgfpaqir7Vzc2qneku5E6J1qxL/HGhm6oiEaU
ffBkYWU1jyaKbsy58+O8Kskjx0Zl/pBdNw5Y0FNkSV595ob8V32mG/yNJRzr
CBaSZhscvFHSjVMH9QwF2Szssnn6QOSfHhzfdi5Dg9QxZbOLDk2HesB88L6E
K9QJnrHjvBc+PZgqW3cwndS1+9rCF12Ce6C84la+OqlrHXIuB1+Supr0UK5y
G6lrJ7iz1fZSPRATNPq3k7p2M9wr/51/L3o/h2VnxHWi9MPaHyei+1B1fYd5
5Xo2POZpskXv92Gkf7FkL6krYq56E3GpfQjtuZ4gacjGlgn66vf5fdjwPbfL
2Jzkvu6ek5K/+1DuWSl13YWN55mRMilq/YCkRE16KBsxMUN2tZ/7wbi0s+Jl
NRuuHkU/N4wN4LJfDP/qAQ7errLTTZweQB23FV8Pc3DdZ8RaWGwQ7tKbq2aO
kBxfcy3Lc94g6P0TuZ6nOHiYkOetpzCIILdGjzmXOKAFz+3/bj6IwBTW13up
JLet3g0L3R6EjHm6aGMHab9GTCnv7iBklxgN32NzsE1kh73n/UGkZkjMOHdx
kFnUmfs9dRB3241OVQxycEBzvv/9/EGcNZssDJ3h4OdCT75u6yD6h/m/dFdw
kdsmO+Wxdgi/tdJzXu7iwmjjjG2ZxhDc5GTO/evIxdebXY811g9BJuFNb7kz
F01GHywH9YeQGN1c37iXi+n7nnfO2Qxhd4Hot7KjXFjtLlSPPDYE25hHQ9Jh
XLRV73N5lTuEgOdpJWtecOG11iZ74dshtEQ0F1W85GIoWG/Gv3gIIcIFIb65
XIhpSqZt+m8IJ5s/+2e95UIt8vVgScMQ0s8t0Z0iuehnJX61YWIINQ2z9WY3
ciH5KSt/EsPI6E1NrpziYtxkXUGx2TBW8r4mYoYL6ktOwQXrYYyEPZiXI0xy
oDTv7cyuYfyzOtnxkgSFKzUfCkU9htEfHfxOeD4FkfafH+ZGDuOisULWbpJr
U9OCr8ubhqFhPLPjjBmF3pAL31pbh3HCXEHiggWFFhGh0qSOYQRGWAVctKJQ
KCFetqpnGGJRaTfPb6NwTppWoTQ9DGtD/0ZrBwo8eaVqDeUR6G41rbE9RGHA
aGuj4YkRpJsXaIpcJM8bHBM88xuBz8Q6ZkQIhfCNt+RXnBvBmmALwRySY8vW
1x6aCh3B4syifZKXKVgo/TNYfGcEzt4mutzrFBIlvSU3F4ygTH93gmocBU+J
m3+9KBrBJ9nrpy7HU9ARzdmx8uMIlqYXVzESyHxMDd+dLh1B0KpjsjfJ/XFk
4Lziv79G0DNXMKs8mYJNw3VD+vQIjKVMVaqzKCyqzd77UmQUbglnBWLZFNqr
q0IVZo3i0r6sY/rPKQSULSgVmj+KTVNa+gk5FB4X33f4tHoUbfXttwzzKIyn
ZB0zMR+F+aPypgXvKaQfL39kFjkKtYCVKvO/U6hZrXfkYfQofnxaljpOLKhN
0hmPHYVUSYkUo4rCdv2T/z1LGsWyfZHZaTUURoXkehbkjGLKnmmzrI6CSczh
jR0/yPsGQz1TSA77mFXPbGoYhSCu3/doC4U4nn5Z7K9R1CueDlrfSqFrj5Sr
FWsUVfWiL/N/U4hWyg3NGR2F39uGJ8/aKTDyhL5fWDKGhJ8Gqww4FGZ7Ho1r
XD6Gip+CLUxinaV1+7QVxnCdHnDpGpfspwsZw52qY3DzzfT6SVHQtLCV27Zp
DJxXqzjbeygENT44tMxtDD+G/pvsHSDjvya+zu/AGETEWt6fHSTjNzzO+354
DPf1z+WLDJE6lmxyLdR3DMkzKnYywxTKvbpeUBfHsOX5kMPSUQpygo2C/JQx
nHtc3FTPp5DZoH/yeMYYCh5fXLljnIJ+7iZqbfYY8pPa3b8SO/tsbkh4M4bj
nk8FLybI90Ob+evzpWMoy9oW5DVJQbXIUk33+xhWuk+P/yB+G2+d3PNjDJ2H
r4YbTFFo2rk9yrVlDPe8NKpFSF2TK3E4url/DHm3Yg8FT5P3P3Lq4A2T/q0b
j2gi1g9yds7hjyGpSaFs/Qx5/wZXCwVhHt6/TM5sIU7IOKQoIstDOVdbarlw
F1TDD98rlONBaCTJwoP47X7P+aflebD52/dZDnHTUu9plgoP+6ZGBEYipO5F
nvr1nwEPyHNt3yLahUwvP7vgzTwkbC5KDCbWNw8o3WjKQ/+b6uh3xM7T5/Iz
tvEgcMxWURfrAvUrcN1+Ox6mThRW7CM+W3DhiZwTD0v2zsm5Q5xwIjTm2j4e
zJ37N/KIVbdfkjRx56H43Yc2ZXHSP7XLIQIvHqLirCvsiJuYV329T/HIeRec
TSf2+vc6W+kMD4OfdhlXEY8/iHRtDeRB3KRi2yixnGO0zfbLPEhe87M3JPeC
TO2YT+LXebgcVrXdlVhfOlb/QxQPf7fcvxdIXNp9NyfgDg86ut7694idv8Wr
aCXw8ERQrfGGmEq9l8RN5GHzKWf/auKzIQ9kkx/zEPEsZjFFnGDwSETmGQ8f
/7X1kJ1FxrP48bmyHB6c6zlLVInfDqcMhuaR9VF0W7uJ2Kr6ieemdzwcrDWI
syFuepbeNvyeh262qIcLsdfVTMdnn3mI+WtLggfxuHtW5aFvPFzbHqB5ivjq
lmzTFZU8BJaoqAcRL135orCuhofO33WR4cTh/jscjOp5yNbZNXideLBysC+1
mQeVSKPhW8T/KMdEzG3jQUm44s4d4q+BuqtPM8n6fdVtuEusU1tX+IvDQ4t2
dmEccZJ6gINJD5mfN14m//PssCX9Twd4oFiJvrHEfs1vI2RGeSg7EUi/TcxY
v2f1uXEeSjU3vosktrk6Wdg+xYOPzHTzFeJ8RqKDlTAf8utEn1wkXv335v4c
cT7ZJ35yZ4gjoxgRS+bwkTMrVP/Y/8bPDll9UZqP/jhH8YPEh4wVizgL+EgW
WhXiSFwVW+Jgu4SPZhHJLEtig173/jfL+SgK3hyuT/zEVOKqvAIfX8920f63
HvMfZKy+rMyH9lJd28XEgcNWRb2qfOzPNqWLEnOsux0c1vGhm2rC7Sfru+vx
jf4ibT6O3HEyayZW3Vm1+sYmPvJO2q/JIr6TcbxoeDMfCpaXn0UTT0/Pd9xj
ysdetluvP3H9c/uratv4UBu5kWJEHDa3uf+bGx/jRp5CRWS/9h08f1XrIB/6
Gw4ExhM7Fy5XjPfg48DY1LtTxFpH9jp6HOfj5p6IK2uIW7+yisRC+ZAbKQgM
IufHcuVlR5/LfJiaxOnsIH7trzJQe42PiuaWNwrE15SPKKbG8PGkf2DNR3Je
N4b1X93yhI9vivblg+S8P26+pfg0kw/R/qsihcRS2trF85/z0d2UTwsjZjFO
DzDe8HFLQu+5NHG08YRj8Dc+yn0WLVhG8qNnXFSpqJsPL9cObwHJp+LzxkdD
B8h6vRAzfUYcNRXwynKUjySNXVV7iHWEulH3hw/nhTck8knenZ1V49o3fxxz
omVXu5E8FFucGLfq73FM7Z4ld5zkaUN8/W+24ThaRy3K5k787zuJtiabPo4n
a3NNMkj+2siH5erbjOO1Xl/ML5LX0cpeNXZu48gKe1Wuw6OwQldvTvilcdwL
OZaSRfK+P++Ync3VcTgxVnjoEf+7MSNh/s1x3JUfFntP6sPBTcvWJsWNQ8P1
aVM5qR+ZW4TM8p+O4/J9u/Gmfgp6OysvUNXjqL15bdHHbgrbjrkPbVsxgayz
ahc+dZB69ITdNqUwge2i5x9oED9v8ajMXjOB/CjLT7Gk/knbHMmQ0pqAXKXJ
WncGqU8qvm6VWybwamHPGT6pn/btZ8q2ek6AKV8vMtRIYY/9jcc2ryegLMS3
2Ujqt5fBazsrKwHM5SZOGr6h4Nfz80DGNgE0+Dv8g8h9ICRp5KSEnQBP1CN+
FOdSiBfeEPPFRYAjscrxhq8pfC0r+En3FkAtpN1Lm9wnlPa8tzeIEuDCYN3r
6UwKbedLHdXrBDhV1aemnEjBsbjNRWr/JJY2izkVkfvTz6ZFpYG3prBfwrzg
7mYKCtkabblZf3B4m+h6UwEXf+S27Yn/PQ2NP98terK4qOj/S++UuBD95dr6
HhUXLkL+UqL9uS1EN56scwmeQ9rnr0xyUxemhy+3WRmVywEzUfJiylth+ibu
5MrL5P6fptmjtsJMhH7rtapy1XwOtOb9jPBuEaH/tjXs2/+ODUXLTINHXqJ0
g9A5qmZebLR+v/QwU1iMPin++c06GTb8hJwqOfFi9NhmW7NPxZ3wj1piK6ks
TpfedV9e6XgnjI+0hQkXi9NjVW7FOazohO+j2Llt1hL0WaycYq8aFoJCt7gN
1EnQxVQ0K53I99iulyMHGrxn0auS5j5+aMBC9Ka7hY/HZ9G5tp95D4aZiJMx
+mpyezZdt9E/1TqDCXGzn2tKV0nS21Y0Hwg/yISd4j7bsGeSdAfXfYFRCkwc
3j6ktsB0Dt3670m3lF8d6Kg95XKlZg69WlXYk3m/A2syJgxrjsyl5ym9lPXZ
3QELlTNcWyEpejnvqd33xR2oEerkvIqUoj/f0EAfaGmHoqrTvW7lefSfa+/8
SExqR2tWwaNZufPoN0o6bWrc20le0467bJam76zcKeeh2Y5ah2NDIfXSdP6n
ZJngLgYeaBR+izxIo8//feuGbwgDrV1+sSKHafSteb+YD4MZWJGpdeCsJ43+
3e3RkeogBhKV0wSHfGj0YN5Fce1zxPLR6wwDaHT/HpEA3kkGHtI87nRdo9H1
HmzYcP0QA8kjMvssXtHoByNDxestGGh/ValRnEujB1ZZbZlrzoDCiYhx7Xwa
PS2q6dkWU9K+d+q2fBGN7u1pOC8HDDxmc7+MfqHRzeNPC0XqM5DS+F49tYlG
z3FtTLVVZ4B59yxfroU83x5VFqHKgKKD7peo3zR6im++/CcV0r4m0+08k0Yv
vw07PSUGUsvuRNv10uiv9z7qXLGCgc4IW7dv/TT6rQdGF3YvY0DZQlLdeIhG
D3snbxYjx8CTz8ElqjwavSLiruvsRaR9iEH0w3Ea3XD96hemC0l7jLrKTtLo
Q09/rbsow4D7nxdq1//Q6OdOFrcU0sjzRUd4MzM0epzopwLePAb+D36Gtv4=

            "]]}, "Charting`Private`Tag$11812#4"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.843704, 0.8988422, 0.8492188]], 
           Line[CompressedData["
1:eJwl13k8VN//B3B7lhgtoqKyFdpJEXoNJUIqSRRJIqKiKGklS4skkSVbK0la
SEKLlCjCx5aSZmwzcyfbmLFl+Z3v4zf/3Mfzce/ce8497/f7vK/qgWN2HiJC
QkJRwkJC/zuu2Nrlb2zMhND//+ieRiP0WOK3JsK7rMenkKae2PvOlYnj2xKS
VkdNIkdFaN5VLyZqYkvCbdZMokjRy3yXPxP56YfrJn5PoEnGIIUbysTnmb7t
omsnIMdv3qL0iIkirunar8P/oNyLwI5cJqQHGxTLnvyDDjszI/c1E8ljk6cV
3f5hc+up4U2VTPx50mtXWDOG858UH/r/ZULTQ8NWu2QUPXG7hb7ptkPGpE4t
t2oYFR19ETuN27FgbEnR1+hh3NO9LNtq3o7mEInHs+2G4VBbOK/HsR1JSpxy
pdYhfJCZp0+70I5FNbZsswkBkve8LE643A5F4W8aOhUCBD62MlsU246aW41B
M+ME0LE4s231w3Zs7CqN/G+FAHGhrd47v7WjpVJU8doxPo7WBfT/amjHF2mb
uQJTPrYskj11sK0dcczL6kYKfEy+NQkLHGhHfOCmNKt3g/AaTUtLUOxAuoSo
7rR5gzD2c6v/5d4B5b7ogiL+AOa8H3U6eKQD9We2T86vH8CAbCzj78kO9J9T
+LTw5QAePfnYM3GlA8KHlvwSOT4AeZa65KLnHcDARnHWSD8o/ZLorDcduNa5
PUmmtR+fw+wVVpd1QKvk6LaS9/0IVgtXM2vqQNOW0+OvL/ejw6Xb+OB4B8SN
k5UaFvXjXc75sr/inbBmRKsoSPYj8d8cq0BaJ3TZvQFpf/pgk2SxO0KtE3/6
wpfYhPShoCHLP8uyE5eqJwctanpx1drn0d+4TvyMXGLlEtuD+TFmx+tTO5Hn
o2oV7teDnIa5G4oekeu9VQatt/Xgu0tFY2RhJ6iTzN/Zcj2Y6acprt7aiZQd
m1lecX9xP3+8VqqrEy0p9k9w6i/WjNan9Pd0YkFk5sm7e/7CITR0zbupTrwc
bZk/ofYXyXF/3J3Uu9A/cvxm8xsulrYUrKQv68Lr/VsNKjO4KFGJ/rdYvwt/
BO9r11zmou2R8S3+5i7E83aP+DtyofYm6eONw10oy2/tsp2kkP17p2r5iy5c
aXezEt1HwUhtaU9OURc+Nv28X2hNocpT5M2tsi4MilaKVBlS6O17vt2tsQvl
35d9l1CkoCsid3F8pAuMtqOd9xs5KNvcZd0h3I1HQb1hi8o5sL9WovhVuhuL
c2Q+9RVwcHK2z7ME5W6s4li2XEzioGhxRZsuvRvhOfo5Ww5wYO2Tnj13Szf8
rTd6rtvFQeuzkyeF7LrxQuPzuyOWHEwaaMp9d+9Gmz4j+9lKDsysQ028I7ux
efDjLG9hDupvOEltj+nGshmWG88OsXGwYVXj2qRuxKjKWNZw2Yhw+eMr9qQb
s5W73q9qZqPymHFK+vduqOkq139+zobSwvv5Ts3deLLAr46dyYbnd6nqWYxu
jN08+sE0nQ2x5c0TkQPd+HntKy02mg065e/qN5uF6SH2kfHH2LiR9OOUjgoL
3e6GEju82GizREynJguCJ4aSxm5snMmcXuq4joWV0RuTUneyUXAwU810Dwv5
N52yg9ezIT5bzujfARZkZjJZqWvYsC8L2PnKhwUdmw2j1Ao2eKpmYdrnWDhW
OndwSp0N07qslI5wFopVPt0oX8BGzEXaq9RoFrKDI73y57Kx/E9r14wMFpTn
Ve8QlWfjbPTGyW9ZLCToTmm7y7Dx1SR7TsQLFvyP3a5mSbDhlXLKYuwjC1lU
yUKXSRYeOM183N7FwiWZg1LsXhYGJU+XppBj5/CE+T4uC2aFf1ochsl87RR+
8Fks/JnzVPqbJBvzi505F5ksrCifpR4+g43uRRXugW0snA0MNsI8Nlb8UNS5
/IuFeQ0WvnlLybhHGx9KNLHgfSk37AiZd77ZHQ//ehYKdRVSl5iwIdvaET5S
y4LDzfbqO7ZsSOa6yu+pYuEhfUv3rt1sDNHn3tL7ygK/79kkbT8bmxR2ZS6p
YOGm7bmVYf5s6FGMLy6fWGBMdFhsCGZj7Ij0WBqZ54qnVvtHQtm4tM9ZavQD
C+ecXwS9vMbGzZg3UT7vWaiSUbrpG8dGseUN5aG3LDKv848Xp7KxYHmNXWIJ
C4cPd5UyHrLxdjvn645iFiQrX/LsX5N1KykVSL5hYXfQXBnaBzYiFR90ixey
8GjJRfXKCjYOpaXGK70m423qNrpUx8a2u/SH9AIWNkZstTf5ycaRpWffnHvF
Qqx+vu9wOxu3X98+VZNPxt85L/wFiWPNf1oR+sQr40JSffhs6H9Ruv4sj4Xz
G9mvNCdInE/d0jchTrK4oJ0qQfLyodZ400sSZ9ZzUmfLc8BzmD09krh221P5
qLkcrBQJ/mdDzN25KUxUnYM144sPaBFLOP4aDl7GQZ1cVIsSsZrzcR+ePnFm
wbgKscl+qT/e4OD0YiuvdcSOBzPsmCRPEyxOFx0kDvBaV+5ox0F87lTsQ+Ib
vt8Na/dyYBQ1/9Yocbafx1MLDw7OukW67CfjLQ8YX/T+KAd+bSdutxAzg27F
rQ3iIKw1pOMgme/4WR3J3BAOCk6UcIXJ+1EKKT2jeY0DCZ1bu58T64U79qXE
kTpg3FB7jLxP2yt9B2ancRAimilCJ+/78PWIpmuZHFj6RCQtIuuREZ//NriI
g0+2P3JnFLFQkmS9mlfGganxyyhVsp7Nqe0PvKs5sLNxiaaT9ZZ7JB/lyOAg
/FVMZfY7FrSzM6dqOByI69j4Cki8bMrdcMJikAMxC31x21IWzhT47lkrQcFV
qWhkCYk/dnmF1uxlFNZ9EMIpEq+i31xTrulTUKkN6NAm8bygZogmCgqMdfWO
7GoWdjVrDA/soGApF/c6so6Fj6yLn2tOUdgcNBC2pYWFVEnDA9fKKAzy5h95
RJF8mV7bKFJNQcKjb/3YXxYa5A9tCW6i0CU2zcqhjwXpufGrvDkUjt9q91jM
ZyFIe2ByM40LITtde1WS73ZWj++I7OUiyv/GkT2z2NDYdMH+hzsX77Icd/Qo
kDwz2SWb68vFuFvGZJgSG8mrhS84nedC5NRWg48qbDCVnA48v8vF49XiDX5a
bPixJLX3sbmYVrfndPgGNq6HeRW8CfyLq5Y6tc2+bFS8W1LnF9ODf/xNQber
Sb2VXdElmtyDus+RKe21pN46rxm9fb8HVxL9D65oIPVulK76tqAHx/c53P9E
8qRIb4+/1O8eTCwIt6RYbDzNippxT7sXOYV8BzkRDmJjB3bUf+zFuRDbE54k
blcxhz08q3rRO9M4MNqAg+8rJ0+PNvbC8MiVx/lGHMhUS99byOmFitBE5D9T
EnfTNHg+tD44mG4xPm7LwamzDrFizqRPmNorMuHJgbNn8X/6gj44F9hv33ub
g8KFO/RSJvvQbL6hcQXZ3676Dm4RFutHlWhc29QdDro1r2Qfku2HV0zu0eS7
HKQl5vusIX1JuT5v3oscDmjnZXqrzfvheXdBhttHDvot3/CEbvYjLVsjqJhL
rtcUU8+PJ31P24dAw14ObES27TyU3A/z3MSM/H4Osoo786rv92O5dMGpewIO
3FbIByYX9INXPyziPMXBf7MODeuRvkkr7neg+UwKeW2zxz2XDEDoTFQ2l8Sh
8dop28qlA/BxmJfLXkeh/Drn7tJVA7iwynVxB9n/fxi/s+g3GEC1fElArQmF
yeRDt05bkb4uUehylDmJ091FOlFHBvB2UU3CVXsKbTWuTi/yBnBcdbZ0hh8F
ryVWObMKBxDTYzpgfZzCwPk1U4ElA+gWbt8lOEFBbIXUw/WfB2C9gZlEJ3Gu
HfWyv6xpAH3aKQvenKMQYCl+uWl0AK7dza90r1KQKs0u+AceJNb6Ptl6l8KI
2fLXJZt4uPisVaLiHgX2p2evz23hYfDdmet4QKGiIr9wyo6HUBMf1cWZFCJq
3xWJevIgPaf6cl0OBRHGf+9konhwdwsPv/eaAs9t1/uqGB5Kzj9f019IgdnR
/P56PA+lXyY0jIoofGC1fqCl86DV1PK9ooTChb7uj7Ne8rC2QMG/rJTC+ORY
+fwfPMjFx5it+0bh78VzX1pbeVCRlCl0qqLwS0SoIpXJw81AycjTJG+LJMQr
F3J5aHPtWveihsJpOdo39UkeHs7snSHcQGFIRb1mqcYgNlYrztRopdCd/rDm
r9YgZGLXMJV/U2hU1ap9unwQo+U/1We1UcjXXF63ct0gjFqPSo/8IXm/fF29
ntUgHrglX7vfQaHP2LrZyG8QPVHc5lCKPN/wyNiTgEFURnS0mnMphK29oaJ8
ehDOzJcfJP5SmLeq3n08ZBAnjXx0QntIHVLf219yaxChN12fuvZTSJHykdrw
ehBTeaZPCgQUDklcX5ZbPIiLOffNHYdIvyj6bNuCD4OITtjaOExcMc6Ln6wY
xOIs5Z+rRkgd6wtWe/9zEP/1aty9OkbBqumqEX1yEB6r+PvbSL+qUJ+z77kI
H6XflUddp0idrPkesmgaH9/nLkr9Q3yycmaFkDwfdcf2yLUIcXG3JNm+VJV8
p7TOeJsvwoXvm5JTqxfzcW5F2K/FolyyTm3Jd3X4UHRUmJFAXPVMjRmixwe1
Te+LvxgXI/eyj5iZ87FrR06EvAQXZelVMS+38PFytkf4CeLolN48NVs+Vu8L
fNRArHFbd0xkNx9N1mt23ZzGxbYrRRFlXnyIHDCL4ktyMS+i9bHeET5yuTWf
LKW46AydrLrvz0eL8G+dO8TBZ81mhQXzkcQUDV8vzcWjY1/TN0WR8VvvTHSX
4aJWdY13WgwfBx/HS2YRj9Wn6o7E8XGlXLWMIt5q4P/5SSq5H2Wh7DOdi5PU
z2jxe3xsdDz9Nos4I2WTo+sjPu7aqud2EvOFlLgzn/Gx1V3m0m5ZLhbkheT7
5vHBqfjtHU1s6cE9V/6aD4WNOx6WEd+pfCcf/IGPbxewUFuOC7NYj7XMOj4u
x6hsZBD7bqqZWt/Eh0HPH54U2VduDxlUxv3ko9/gorAuMWfPdGfLDj4O3/Cj
nyOeKXtS8x6LjzJvqxMZxMbv//T+4xLXKEh/JI5Rzwt5xufj0KMbXkLyXBQ1
KltLjfKhqfBJV4W4MzJitvsEWU+pIQ8DYrn1/b9LhAVItDgkakds8Ncpc46E
ALmznKYfJj6QVubnJy1A7arpoReJo7YvX/9VToD+Px884okLRBJENWYJ8L2t
oDCL+E++UPU5RQH+eC4/W0Qseejw7eb5Ajgsc3/xlVh3boPr6kUCqLvcdmoh
dv5mon1NQwBuutjJbuKIc5m8Ti0BVs3iTuMRP185o2TDcgEMbCLkx4l/MoPD
E1cLAIeZN8VmcCEW12nL0xcg+MXXqzLEKzbbKtmsF8DMjpqUJ3Ycec18uEGA
dRlPemcTh2arPpkyE8A20HKvInGO87UAJwsBZqiMmSsRN8oJTPKsBfi8c/TZ
/85Pftg3TXa7AOnm55MViLVOVNR62gtAXf8gMZPYTlM3+YOjAI5rhwXTic82
33Gf5yLA+gJHbwniR1fElwe4CVAwMO/AJBl/rdGxoWoPAeQNTzD5xGM9P94v
OSyAjOVtNodYPcPsSshRAVTMC4N+E9vY5dj9Oi5AyYfpt2qIT4rNUdY/JUBr
frnBB+KMggtd0WcEmBum5POM+KsXJ5d9QQCdUb2lqcT8eTuDzMLIfDdbBV8h
XlBdYppyWYDrYlFOAcT+q2Matt0UIG7djmpz4uSO0dTH8eT8L92Dy4g/xbsf
Ek0WYHjr+I0ZxEpja8cK7glQbDOe3UziLavJwP9YpgCve5eyXxEb5K1nL8kR
QDQ0+kIssaPvhqbEVwIMBHd8/F/fxLakb91RJMArwxr/BcRBmmafpN4L8CyZ
cZFP8iGxzfxlcIUAD4+7fL5DrFVsoa1XLcAj++IJX+LChC0Z3DoB8p6qpxgT
/9i+Ndr5lwDV473yzSTflMrsD2/oFSDH2kR0lORrVroDc4gngJ7px7i3xAZn
HR2fDZPnLR1IuEjsqO+8eZHwEERLZUaFiRMz3dVEZg9B6Z+hLY/UE6Wo4z8/
Gw4hO/R1yFVSj7K8Anac3zCE/jn7fqwlNjA/WbF24xD2Fpu+ZpL65Th5uiDT
Zgh5dPNZesSJfiGxV1yHcNz/6eFP4uR+u2KstoYP4dS5S1/ukfqatTq2VPzq
EFR/PjU3IDaQizN4Fz0E1+3v3aqEyf2+JCxemTgExQFmUD+pz4mG6SIzngyh
zuOfhRap33MX5BY11A5hxv3F13f/I/tP4DZ748YhrNiwQI1B9oP+qv6e+y1D
yGj4EneIuPyMnuqJ9iGEdmxVPDFK+oOWwsgZ/CEkbap8enaYwve4MntbxWHI
xO8S3TtIIVSmpfeLyzByVjlvtCb7Xc+B4MsrDwyTuhJ14QXpix2L5qsleA6j
v1rizRzild77dnkeI///e2dJG4tCa3lHsVjIMKiEK7JuXRTWhvZeNn0wDC0r
/ap1DArcEVH1YmoYG+0nj61spFASbHI4pG8YprWvEg6R/Tt6/OQLC/4wlsuf
eZFWT/ZDIQoNE8MIpMe8l/qPQtC0Wuce+RGEprkcrP9O+qE5KbcXrhtB7dyD
pfoVFJT11kiHXRpBNmLVNpD+w+bIwQEb5VE8GH8bGX+HwtkHXW3ji0bxsEdD
MiGZwtNfnlU5mqNgKVwuTUiiIGflnTl95SjW9ae3306gULv4qEuV6SheBQYJ
rt2isJNxqtL60Ch4x+Pn2F2jsGfntbtWL0dR8zKevTOY9G+GL3dYWo6hKOFj
jqMDhV0lbU7T9//DsFnAHh1ZCv/9UKg4c2Mcmi3Z3yoLOFiUs7QtL3sCyySS
7zi7cTChZLMn4fck6qSTT2gJc/Ctd9ma4+JC9CS9gX3bMti4uEydNnFTiP5j
q3F58SY2JgoWpLroCNMPlz2d6mSw0J4ideFeoTB9eX/A5pJL5Pt/BVdbeZMI
fdsXemC7Fvkelv0v0ueXCN1xq8Iboy/dULPIMkz3EqX3NB4VMjrSjdbqS2lZ
wmL0Q+eM9mjKdiNAyKGqO0GMLtZ9bcXp510IjFa0ldIQpxuXP9h2b28XTLzb
QoVLxOmNYUvZJ4W7cDQ9TqZtiwT9aMD7oJnPOnE2xNSlr0GC/sQmjye0vxN2
zwfdmnym0Ucfzw9Qnd6JmPXxRXdHptEtOw0Tn73vwO0ZxuVmNyXpht6X5SuO
dkB803+aFQul6DSJ8k/ymh3YoeZqG/pEih79fY36ubZ2eGwd0J65UZp+91Km
aPWtdjDrjztF1ErTxxRe7a/d1g7NzFGjWm8ZehrX3m50Wjs2Lz7FshWaTtcO
kflqWsZErVBn94uo6fTfteW7S8KYUNNySKI0ZOmDqyUC082YaM1+nT4tT5bO
D84OOCbBJPlDO+a0QY5u1CLztqGKgXr7IwMXG+XoS+WKzvy6wcCdpUVfog7Q
6AZ9rzhOjgy0cgLiRDxo9OUS8+U8djOgnLXSLegQjb5tZpCNnwMDKRoPx9x9
afTNmdMVI+2JVWKWG52k0YtUzDpebWcgjeZ5i3OFRp/dNGCvtIWBjMEZrptf
0OjXjOQi+g0ZYLyoWlqSR6NbF4+1TxowsMgvcmR1AY1uGBvgJEuc8Xf8pkox
jd4jInpLZy0Dd7tYn/ifaPRvS1cYeOoycK/5rc79HzR68Z4fFu06DLTHBw0r
/aLRY6VkjXnaDKjZ632K/k2jl6onbxEhvleb5RLcTqPf9nr+XG0JA/crb8Xs
+Euj17L9cg+qM0i/YevypZdGn/Vw+pFANQY0NkvpmAzQ6GV+3ZsiVBl48PF8
mdYQjZ4ra0HPWkiuv2gYkzZCo5taf3F/s4BcD77z7H80er9fUMZXFQYOTuRq
X52g0RP1dw/9Uib/L/Yempqi0V237/fomc/A/wHtJ6Iw
            "]]}, 
          "Charting`Private`Tag$11812#5"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.881765, 0.8848148, 0.7918972]], 
           Line[CompressedData["
1:eJwl13lcTN//B/C0IMmEqIiS0q49FXpd2ZJEC0r2pUVJlkJkiU+2EGVJGy2W
hFQq1ScfCtFKaSFtU00zc6dpllYtv/N9/OafeTwf95xz7z3nfd73fRbsPexy
QFJCQuL4BAmJ//1/6TQ/N/JvGyT+/0etaToxsOprG8JeiuIUYsdxtkQp9Qjd
hvdOQ49XBY6BF71Vosy0Haoz7DJ/uY2glMkPd13WjnCrDBm76SNIMr0i37S6
HXLvEsY7Kv9iS3XeHJ57O3bMOrT+04a/+E9ujgXjXDscJ5ZHOHgM4+G2zIL7
V9qhrhy6jT1/GEHPHezU77Sjjp43drdzCHprT280SW2H3shjY+ngIUSHNfm6
lrVjjmy0fVrSIAK+H+/9XdsOO8WXgwaBg1inLn9if3M7kl/+mX3fdhBj/y6/
FCRoR0/2NieF5gH4DCUk3FdiQt5vzmUN7QEsC9xT83sfE/pO7p0Hm/sw+/2Q
x/5DTLyVD9O8ltcHgfydVjqYifdjf+dujurDkxcfeaNXmRhO3VvZ5tAHBdbC
yeoZTEyUCGaHfRCDY1F489k7JoIOO85PfyTGp0tus0yKmejXkaz0PS9GiMY/
GnZ1TOzlhis8WCEGc0fXsv0jTHgzDdVOfROhKP1sMS3TgW3MjM9jL0V48He2
QxCjA0dt16rI3BHBMWbt1nCNDvgrfSm45ilCTu2zI8/sO9DhMwHLxUJcW+/3
hI7uQNCZ4vEQGyHmRtodrYnvgE2H742QRUKk16rY5j/pwMphH17lDCEqd5T+
vJzXgQjx37xAWoAZgVoyC5s6UPLlcuOxZAGSs0eqZTs70DJmo9t3WwDzoZq4
Xl4HBpq+TflwXoAtYWHmReMdOP8ztsxslwAPo1v2eSzsxHnhTvcDagLoN+YY
UQadOMhu0ZqrIEDhvJt/F1l0Ivqg470ZEwRofrIsSrymEynPWCs+Mnuh8S7m
462Dndidm9M5Ob0XaX9cF3x+04nAFoeWPWt7sVRDn5ee34n4L0XioqW9KPeS
fBdV3Il71WVyG4170cPP2LTnZyfevJ2qJDOnF6aS086PDHai82DJRa8WPorX
dK5nTujC3uj+eq0yPtyuFyp9m9KFGE6SBXL5CFb0e31ftQtWOR4XQyL5yF9U
2mxKdcEkO+M3bw0f6/0S01TWdWGm569PWy34aHodHCzh0oVqdyPz6Zp8jFlp
Tavc14XOTcuLDknyYbc+bLnv5S7IOMadTf/Yg6+Hl8UlVnbBYGxa2NpNPVBW
S872qO9Cf+nc5L0re+BVKVsxs7UL01SkTr6z7IG0Yf3oZUEXQk1iXsye3wOK
c2RXoCIL3jOzRoL5PNyKaTihN48FhvxGr60dPDTbI7JDiwXtJM9c/0YeTj+d
+sF9CQvGeue6TEt4yNn/VGPFNhYSmLHjSnE8yChOW/p3LwuXJx6dde0OD27F
x13f+rEQ43Zzqv5VHoQL7C7phrKgvr2vuj+YB8OWps7pj1gY3rb4SZIbDyke
M563d7LQ87LIuUCJB9HkUx/ieljICzqRWK7Ag11eS+OWARZWbJqSKzmFh5bZ
L6eUTe7GmuGT8r9HaMypXeufpd+NJPnnGww7aPhefHXpkHk3Nn8O+r65mUae
6ax47eXdsJOK6UpooLHldntFrFM3nBYrVURW0LjtFGp06Ug3fHum6Xbl0Wgd
Za61DenGd5WLpTLZNBa/dNg9GNYN+yUpS+xe0yiXU77tH90NF75jCeMJjclf
M4Vuud3wvFH/QhBNY+tJFTnGf92Y9eDNd24kjSfa5xd+Le2GukN0wHgEjZXh
G9yW/+qGxaeE0CP/0Di7svut1mg3NC993BR8gkbM2nO68RPZeHXz6WPuMRrZ
62fHKyqwYXa3bcfpQBpc11WXpBayUVSj7NLtS2Oi+++BEAM29BZtelHiRUNj
+1E/oQUb3B12me/20XDf/8ilzZ4N68Mb59M7aBz3WfLZ3YUNy/ODb3Q8adzy
r7Su9mQjMMpv0xl3Gp+Pj6i/D2Aj4oK2qrcrDbN/3Plx0WzI1fPtKQcaTlf5
exUT2BBVlV3Qs6dx8EZ43fWnbNg8HSvVWUPj0d3sf0Py2XBptVLbbUejMGa9
ibCYDfnt0ucfUDTq49tTfCvYCJ+bcodpS2PaE4UI91Y2yi4sP5exlIZu2tPx
KjYbp5Q2vDWxobHqle2xtSJyPddlc4kVjdM5/tssJ3Ig6d/6QNWSxr18qcqX
DA7KvyxOajOnkVn0cIWWCge/nftbc8xodH8u1VE04GDFFvX6SBMaUmW74q5b
cKAYv3c02pjG/Kp+hhQ4+NJUa/nMiIZNzY2LIfYcWHrFLv+2mMbmes0BgTNx
Hat82JBG4O+Cg76epD9f/MiaOKLFpbl1Pwf3L0qeCDeg8ZTJdnYP4CD5mLN8
mz6Nj6zzn6pOcHD3ndrCdcTNXCXrtRc4iLqScrJIj8YQ/1V60TUONpyeWkUR
K4pXq1tGcxDzI6i7SpeG8WBT1Mt4DrRK6Mt+xOtHjk3SespBXYP3kZnEXhJy
p+MyOJi8rcT3iw6NMOmknpn5HMhXfrS8TBw/2Xrv9WIOTl+USnQhzpta/VOy
goMSPamDusS1Ct7rQuo4EIUq7ZYj5iuOFQpaOMjp93MY1KYxReWusS+bg+rb
Y0I+8aJ5BimtQg5YiXGaQuIVC4qV3Ec4UE1pSRsj3q617XqVDBdfbfVcZpHx
TuoKxtYwuGjUSmVZEEcZXjlapMyFQGeZ9W7iVyZqXRYaXPxjFzsrmvibRY7H
S30u4rL1Hb8Td1pvqNC04OKKyfSXSuR9JWw7qDhbLsIVtGW9iVXtTmfPtOfC
78aoyXviJWtm6Fx35mKeYv2QGplPF4fnsZKeXKTdSzW7Sqy56pxbwz4uHr8V
NQuJ+5dvln/lz8XI0IzYfWR9HppMOOdxlouu73L5HmQ9/fXrlxhdJv2NVzQ0
E9tqveyVjuTibe3f0INk/duUPfZmPOaisETwO5rES+YMo7nhaVyYtTu6mpF4
ujRVptYzi4tNKb7V9cQ6Em9WT/rERfwZ5V2mJB4DWZN1d3ZzMf3ZnzN6JH7t
2prbzARc9LplVPQRK/7Ofig7zMXDZfkWny1o5FbunvpWjoayysjvoCU0xt7m
8eXIuC/rn16TJ/vnxiWfnHdBNLQrv4smraSx86zt4VtnaZirdAYoryLxdFJR
58BlGlZfJwYYrCbr7/dfjEIMjeGO1MSda8l8uiqHehfSqL45+zh7PY20BaUr
Z0nxkF7hORy+mUZpkfb3wEiSx3fZvNh9kMSf/OJOqYc8ZMUNGjX60ZDebj50
L5mH2NXuxq6HSHwMUQv+zeEhmz+4fT3JX/lm247I/uHBpm75JYdg8tzPIqYn
6fZgvg/zT1AYjTt3BM415Du34JzjXNVY8rxtAwe8ynvAEEeeeRJHo9Jo7NTQ
zx4cN+I8ME6gIVcxJUmN3YMlGS0NKx+T+Z6kKfRj8NH4qczjwFMaJ85suSO9
nY8HkYunRmSR+PQq+GHRx4fV4OznhmVkP6g5m8WNkfbJiQfvl9O45i9aN0G6
l9Qp7J5x8n3o0rqa5i3fi0jTfboV1TQSHmT7mav3gjFNvmprHQ3GWbmeitW9
cHvkcUq3jUav/TuhxG1SNygk04l9pL2W9MLsu7248GT1UEM/DUfJja7eD3vR
ka1npzBI41lBR1ZFci9KzIxCTw3T2LNYIehhTi/89okdLMdp/JjpPWDW1AtP
i2KFrZPJPDcrjnhpC2D8+WjqIhUellmOO33VF+B89ELm9Dk8fL7BfqxvLICo
dPLuv8QNy4rW9loJIH07YeZXVR7GHnpHnXIQ4OfJUfuN6jzYb83XizgkgOHr
seUTtXn48SoltOeIAMcizk79Sew58Vb1pmABuCp7pyXp8BDwdl/wrHMCHE51
T7PU4yFqpvzHhEhSl627bulgSOqHql0eb7LI9bthm+aY8eCj7ZA+M0+A1a5p
i8qJBWfNx4MKBVgvKa9/xpwH6cWyqTafBNBLHv+3zoIH3YjM3uI6AZb8Up8S
bMXDcXuZK3VDAgz1PVmyYzkPo4n8X1ZjAjhIedIC4vCBRsNYSSHa7gZWXbLl
IebJq5pdckKUPfZekAoeiqTd1diqQkSdGRmqWsGD7Ie0nL8QwuuceU7lah4G
7QxzC1cJ8cdHGLhpDQ/dJa9zQ9cJIR72lK8mLi3Nzht3ESLNw5JXupbcr7oo
X8pLCO3Yue6P1/EQ7LKioOSgECPz9YxmOPBwoLa44J/DQgy9306fJ17VUFo4
6ZQQNfl5c93X8yDZ+qNILkII5384u3mOpD7as/l9eaQQ9u/iTm/YwEMbs/79
jbtC7HVlX3hB/B+r6T9GohCPf21y2+PEwzl+18eZmUJIM+QXZW8k63HEt7g2
R4i474ZZUpt42CniFt8tEKKzcqmpM7HtQG+J0ichwt9flO0iHhkb/jy3QYg+
eoHFgDMP9PnQL01NQlR96/O1dOHht6REaXybEC/2ld4/Rpw/UearGleIPBOt
dhZx2pXLX1v5QszeHCWh5srDwylTvj0m5waNgS9z3YhPTWOULRwTQpLj5ZhH
7BN5u6xDUoSMmaX7WMTuMxTLUyeJ4Lrlz2lFUv9ZzVap0J4uwgwdvUwfYp0H
sRXds0T4Jn3wxy1ipTnzK5/PEeHWuYCBbOL+eQur9DVF2LKRdh0i7kpMraJ1
RMiUPntDeTMPPxfoVL80FKFZSqbagrgkOa06wFSEs4vvqDoTZ2sZfjdaIsIB
c6vjB4lTnr7+3rtUhJSrcg0XiKN0TX+8oUT4vF1j3X3isBfZP46uFkEcEV2a
RnzUcEmNmYMIpx+d3lpIvPf1uxqxkwjbC4T9ZcTOJstq37qKwLo7+1kjMZVV
VBvsLsLDYzL+ncTGFit+Ltkhwsw5LSv5xOq5xT8H94igVFpiPECsYL2m7p2X
CP8aNJqNEksUlNaF+InQsJNymrCFB/6y9fVLA0WwqlW7IEWcb31o+MVxERYr
xtT/z5csb81TPSXCvVVqlyWJN5q9oSJCRfhjmxI5TsabY1yzb+SCCI2Vc/qG
iTsN+sL9w0XoSA9+KybO0FVKa7omQtDJ9B808elF1hWOt0QIyHyzgUm8ZqFn
b2GUCOm5Z7QbiKerh840fCBCSYH0nv+9f5NqomV8nAihxSv+/m9+nqh88JB/
TM6ZiQYD6cRHZjPPhKaS9e4u2hxLvGymzCPecxEk+4VKV4gnKmgX73glwo2W
YttjxHGyfrK2uSJYGxkUrSL2nnjD4FWBCHar/lXWJzaVer1x/n8iSF9t/s0g
Lh0R3h0rFaHWuDyxlsRH1JDiu4AKERS87if9L3529ls2NX8Xkfqud3oUsYgf
ovH+Fzk3f99os564iI5bbdQiwt9Ejz5N4ivsIp9Epgir+wfUR0n8zmdKvj5H
k+d/MlbxjNih7tpSakyESLfUWB7ZH7Nq0ndmSIphIPNhIJ+4tarygvokMZRr
75aHEwd/nVEqoSCGP/NShwrx48KHbh8WiLGow45jSPaj/7vCEyaLxJjB6tHh
k/1qmdP88LGeGDd+Rna/Ii5/rdF2wYz0P/arR5d4MCntkN1qMXylbppPI/mg
OLE8MnOdGIMfe+8Xk3xxM64nS8NJjHnL7186Qax5z3RYcqsY77saR3+R/LLx
an54sY8Ya6O8b0SSfPTk8LfEVRFiso+uTMkl+a16gblvQqQYo5EKAVuJh2vi
TQejxZD/du5Uvz0PG6yOfHoRL8aDYKkIY2KxhDJ3xmsxEo+aF0ST/Gl354Bl
23cxrIzfzZ+/krzfqqpxmzoxQlZ+D35ux8O9fquv0b/EkNt4I9yMmL1t6nZ7
phgT1/2pXknydeTCrAuvxWJsi7Y32EzyeUu2REWoUh8W/VVvXLqUh8neB+/V
z+1D+z9l6lk2JB5UaneZqPeh8FSOkS5xeOhTYYdOH2TzDJ9Ot+Zh8RonZUeb
PiQJs5VqLXk4Ux+7b86OPjwN4dapmfKgPGw5nJPUh/GBpaGN5Pv3rM7qyOGn
fchd2vBGldgqy6ZbO70PLl7LHu5cRPKZv23dg7d9CLk573qzJg8PmldnhpT2
IcwmYFrVAjJesdtB254+PJnUlXRsLnHE0V+frPuh4jxjYY08DyrzX+XXVveD
8jl5Q49P6pegjW7LfvYjYx3H1aKH1BPlvbzkxn6oznNdAh45n502W3CsvR8M
CR/3TVxynmvMuzxd3A9/ZaW5PixSH0UXuzkpDWC5dtL2gBZyHpBr7PmyYwC7
NJ3Df1eS8+Og1MICzgA0HOce3/+C1COH9gscVYeQcN7lji+p73ysM53t7Ydh
ohTBChrgYnNhs8fU3X/xO525MyaGix8Ns0pP3xoB/UKhdXQxF+rp+s1ZaaMY
fG88KbiUg1Flx233/4zhhLLXowNbOSjrMTA/KiNBhUH+xwkWG+cNFjJGb0tQ
wY+STYfOsjGaMz9+h94EaqPf9Lal09hoj5M9l5Q3gVIf4h0SpXYjdTFXV3WV
JMVocv/cT3XDSP7HZb/fklTtev6l2T9Z0Fj7zDrRR4pK1atpMDnKQlPFxYRn
E6SpWnH2mKosC8cltpR33ZemgoWlyiYpXQi6qeQkqylDHbJ5fWGBfReW+zaH
TSiUoVSYX6xjujoRkBgt17xuIlUvU2VeeKMTZy6s2MGvnUi5HLNSeWHVCZcM
0Z46v0mUZo7+2pTmDkTa3M1/PDiJSjv1xro4ogP3pi/7bHd7MkX9fRi6xrID
Mqt+aJWqyVIr+Jna8SwmnDV2OYW9kKW+UVPK/OKYOLBBoDtj5RRqsMr1+YAj
E201Rz3Cq6dQi6R8txVJM6H1dGhpta8cdTVr6FZ4XjvWLDrBcpKYSl2VO2SX
c7gd1RIdXW8iplJy/rkBVw3boaGzJYajKU/NWnZKOYnVhqa03MRJWfLUTtPA
hGnP2ki8MA572E6jFnV93rPSrw01bocE539OozwLknsG9NoQq5//JWIvg2Lx
k2+c6W1FE/t4tOQBBmWRWZoWwm+F6jOjPSe9GVRukHrHyZ5WxGmmDu/zZ1BO
rh4vgmjieZGGS4MZ1LtPYdcDu1uRwPCKYl9lUBHN9rf8WlvxSDR915o3DKoz
w/NqcHUrWt+U6xdmMSgPhrPWyapWqAdeHjTJYVDqf0aaTlWS9vTI7XkFDErb
xScxtLwVjztZJeISBiW+rhEYXtqKpPp/9ZIbGJTapE/L4/9rRfvdkwPKvxlU
bZJL1KP3rdBwMyu5+YdBGSt4SKcUkfbVz3aEtDOotZM/WL0obEXy16hIZ5pB
rdO4w8nPa0XHZacdX3oY1K6RkLnvc1uhuUZWb7mAQX2SLvIuzmlFysezxTr9
DOrE1pUu5dmk/XnryIRBBnVgLLS3Oou0h3i74l8G1R0hlfYzsxX7R1/pXhtl
UMdNq8/+ekP6F/j2j48zKNH81oCWjFb8HwnQ2qU=
            "]]}, 
          "Charting`Private`Tag$11812#6"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.8998708, 0.8438502, 0.7248352]], 
           Line[CompressedData["
1:eJwl13k8VN/7AHD7Wk1lskYilQplK1meS0UkColKZSmKoqJoseWTQpGoiJCS
tFqzJUIpWUIiW2OZxTL33rEz+B6/3/wzr/frnDN37nPueZ7nrnXxtjnFx8PD
48rLw7P4fWnO89n6A73A8/8fzL6xUHbEoRdUV5INFz4vQLm4rA4lqBeCDM23
2eTPQ+KRnJJHt9G4hkZMpt88+L2yMFGM7YXOPadvymyfh01m16y3vegFGYnQ
dp1PcxAX2nnGtrYXbPeuu/r9NxfO//IlOlp6IV9+WZvbUy6YKy694tbdC8UB
mmKj7lyY/2QY5kf2gumYz/zvuVnwmH769JFUH1xr2NZpqD0LBj7OzR2ufaD1
di1VrmYaJD9PO7qd64PHKbkWU8nTQC6N/Td8uQ/ig3ovRfhOQ8brLyNzd/pg
tD+5olx5GpYzlEUUP/RBzbLMOoWIKRjUKb2XWdQHx2fM0i1PTUF1mN2qbZV9
UBsfbyllPAVXlf5TMmntg5GouHX+M5PQ50Q3cOP2QWVEhYqC7ySUvQmsHBbs
Bzd6kzfTdhIez0pa+FH6oVpEamqn9iRYJpgdvqXUDyO6ta7eExNQ0JJ5IXNv
Pwh58oe1Bk9AxD7PjOG4fuDTuXTk2+txkIsxudic3A+pKyv9cuLG4U2LjFFx
Bvo92EWbvDEO9U41v8ML+yFdTZg/6uA4rPRREVTu7If8016Qyx2D9Dxuo+hA
Pxx8X3vdgjkG2tPNScRIP5yYMD6yrWUM7ENDtcsW+mHDOwtR1psxSIzrcXVU
HoDbHgLMbucx2NxeoIFtGYBLSgnvf1mPQan8vdn1OgOg93dHlZjRGHRnGDwY
Mx2A+cPp4fvkxkCpKOFL9NkBcKQGOQy2jUJWl+3ar9kD8KjOTebLiVHQV9o8
8qZ4AP4qxzxKOzgKP0/zFT2oHIDta7QkC3eNAhv/cMD59wAs8PN/u7VxFDT5
lgVzpwbAbzbqftwYBypNB/b18dKB4hAUv4rJAbvIUqkfYnQIpSbbfuvgwGWq
5/tHq+mQapwvWVzJgeL1Nd2aGB2GuuIFv8dzYJ9nSpaMOR2O5BeuLI3gQOf7
y5d5bOhw5etPu79BHJjfobKs3pUOEzp1zPizHDDZF2p4JpwOx5uKxyaNOfDd
2yAppZ4OcgPBj/snSZBek57n+IcOaUWuO8/jJJyuF62T+EeHFY21j6QZJAio
/ZkLJ+kQNZSbXtdKAjZ44YQPlQHdTSJ6bz6SEJ3QdmWTPAPWHNXsU/9AQvde
iOlXYYDaT6Pc+kwSrr1cUuGwnQEyrl0ybokkFLi9VDI+woAqWe+sv4EkCFKX
6c+6MCDkRshafX8S7Cp9bfM9GRCpjkfnXyCBs9YkTPUGA7yvefyZcCNBradz
YEUqA+h1ZnOpliQ8d1z5qneAAZqZS/abKZIwKhJQkcRmwNcA/+vyciSYFPa0
208yoCVjwUJEkoQeybditSJMyE368Vh2CQmyLWZeuZuZ8Hd52YzqNAFnbr4L
O6fNhPF1mQrJYwQUaq5K3mDIBINVL9OVCALs7/fWPbFigvVhRpUrg4D7Vjc0
wi4w4UCAwp6PrQT8m+szM7rKhPbeG/sKmghQf2txciqUCUIiEznV9QT8FJe+
7xXHhDELwQLqNwJEvudw7D4yYcv7ia3nCgkI3MXMV5ljwrGwqfw/yQQkmAWp
JguxoE7/gXJwIgF5+ySTqctZUHLmz5/tjwgYst0dxq/MgueHBNe2xBDg4JZq
Q9vLgvO1KyuKwgjw9dj+1cGGBfRMf+bvEAKiver1Go+y4HBd162FQAK++nIV
P59ngV3syIGrAQRo/eeAJ8WxILnwv5Mi3gRY3cFdqE9ZoG7lHxzhRcDZu7da
I1+y4P4F/evSZwlIjc/7dLWYBUThT7PDpwhYlrE8yuEfC0Q3+MkePUYA82vN
RuqWQVCZSNl+yJIA/toTSZE6gyCkkykebEGAQsMEhR8GoRnzFMvbS8ChP+sm
yYODsKxBntTdQ8AXRnB1w5VBuDiXcfK5EQHdQ1J6ZiGDkNE3fZNqSMA0/u5N
WcQgVF0msqP0Cdg61fngbfIgMC+GvYzbQUCyiJ5LZOUg8EX4eSxoov1c0vib
r24QjPwjLd9sI6Blubv51dZBCJmV0D+5lQAxmfitZ1iDILF3aXmnGgH+quS8
KWUI2rmRhiqqBNhYvHrCd3QIGF1d3A5FAtbtDrJrcx0CE2czXe4aAiYMDy19
5zUE8zVf5NYiJ27jDXIMHIJTkgPJ/vIE0KQdXT6kofWb8QvHZAnIWakhdysL
za9SnEuRISBsiWDL0dwhULajpTKkCdjIk71HuHoI3hmyh0OlCPBhiKgeZw7B
PdhazqASYELrpmmRQ+DVrLLdApnakZcoOjMEEUr7TD5IEPCx/uSSfPFhYMrJ
/bm1koD5/EJcXGMYum2k7Y4tJ6Dx/b1M2vZh2KxpW9VOIeDZKzfnj9gw7Goj
Dx5BNk1e3uxiMwwTG9/edVtGwN0wj4Iiv2HofVUqnrSEgOOBRt7RgcNwPtFp
cCvyVn/qxlPhw+C9ofpajTiKr2d5wvKEYfDgEGELYgSstpW+4V46DOtOmndG
ihLAtmTrGFYPw5KgK7PayOWmVeyV9cPQIlt+7p8IAa47fU6W9QwD61ytghFy
1tqaXav4RyByo12IhDAB1+WecgfFR0DP87tQvRB6Xlf55pdTR0A/IvROBDJH
RHGD1/oRWL3v9nFR5Cq+iR5jjREQfkZJrhUk4CG39rHUjhGot7fOjkbWI66I
VZqPgOY2mrY8stjg/srHNmi95dX7dAECOvuUr58/OgJBzQ5Ps5GD/zSMyJwb
gd3DLc8tkWvKNvzyiRmBD/1S3vH8BJxeqj7AnzgCtUV5NHdkgWPa0w/TR8Au
YM28PrLxNLb2U8EIXCvfL87iQ/nDzEznQPkImIazGBXIgQ/3m/d9R/83jc80
CblY68gF0a4RKDKdPXEI2SH05H9J9BG4GtAloo082Xg6QYMYgXlT46VUZO3z
lyoO8bOBd5esQBsvAU2lAb+ZS9jgv/ZNfwmyj3gw65okG8r5p7ipyG8zo1Y8
U2VDjfiZnPPIlpOxKjpabPh6Ld/oMPLgngS9GgM2GD8RpWHI6/teOLOt2ZCp
5GcmhVy17Y1fiCMblGjvZ/mRXYNz7lBd2ZCmuCOD5EH5Qv5z9s7LbBh3//K5
AdnIq7q6LogNuFTrmnLkzuLa9pN32CD8w9EhG/mqaNPIaCwbdG/Lu6Qjyzi0
8YYnsUFeeanuQ+TCjO5Vshnofho06u4g24/3q759z4ZN1S8VA5FjY8mDzV/Y
4GL0guaBvJU2eer0TzY8GeQYn0Cu15gPmP7Nhr/+Krvtkb0CBe5F9aDrf/hH
248sXif2bA2LDRu30qimyFlyKwpyOGzwkeW2GiHvPSv1Yw+XDYxiBaUdyGHC
6zieFBzUVV7qb0FWst8ktCCNwx8Xp/n1yBXPt8rGKuHwIaFEUwn55KiuusoW
HNL5lZvlkeeNDU0KdXDYISX+VwY5KWaX/T7A4ZAer4kk8s4e87Pde3GY984U
lEBuUzsQeMEGh+2SRWuWI1+5bh8rcAyHsRieyKXIkrXHMh6dwkFa0NlEHDlP
xrV4kzcOoct+YaLINh5n6j/546DgfzREGJko8O49EIrD+JjCgiDyPcHLE32R
OGB/9+cLIKvZXRe7Eo/Dhb9qKfzIP5+FKoil4KBVIVXIh3yWvK2ZnInDma1X
ZnmRRbBo0605OCw7/sNt0Rn34o9UluAw1ZSG8yDv7npy3r4ah6xNqY8W3bf5
WSirHof+5gCHRYdezXx4vQ2HDU1jaotW/P4ui9KLAyWYKbHoMqn8smdDOMTY
GAot+tjpkiadcRzEkod5Fl245qBW0jwORDDP/znCa9ScF53TNDYsLCygOJsb
Xc1DeeVcqe3Uoukqd7LclxJQ2iLVv+g4vpa/sihvXmaGlSzapEdBvF6SgBWR
H64smig5ox8ih/Jiw88Vi376OM9TG9UFJ/qGm/PIln4LTxjrCKgr3Vw9hzxz
0OJnIqoj+clOv7jImerx3P3qBLg0O6XNItuL/9vCq0XAgAVDfQZZgLnJKW87
AS92NFyaQs6p8rvrboDO8SeBsxPIJ9PKP8kao/HoGPExZEqgOLsO1U3TlDgb
ErnsiL1CCKqzZpX79NjIXtvTrLStUR5yES0eRJalDgcybNG4vF4DHbmG0H2f
6ID2Lej4pV7ky3UhPfudUF1+SU3rQl6X9ZPC60KA3exS2zbkpltSWN5pVKd+
S4Q1IQe7uvi4exKgqyOk8RNZHXubKutDgLlvh1U1cufqqcY6XwKqJ1K6PyFH
TJvwhqC+g/bPrz1/cT9a727TRn1JT23czreL+5HT5swIRftz3XwufXE/opVj
E8MJeJcwvjpxMf57izg89wn45rfWOWwx/ioCynnxBOic/3HdfzH+fNa27qhv
ulNS2ue5GO+S/ty6dBRvp8zQA4vxfqzRH5xJgKq0e47xYrz9rlK136Jz6jO9
WhPZWX25X2IBAcMcInY58nLxoy/2l6D79X3/cB49V2WMF795ygkIqh6tHkKW
TdPXdf9OwK5/oY8rkZsk3Ce1OgmIa8187YEcTGRvYPwjQCJB+JU1snod93Di
AAEhmREFOsgRt2ILeXACPP2Cx+fnUDxcu5i5owTwru1Q7EWmw0YZ9ylU9yNV
D1Qhm0x/CqjjJaE6XvL9f8jEb5GsYCESnmhS292Qn+bY/tUSJ0FLqXLWBHnG
k7UzkUrCXatoRS4Xh9xuKvf0BhIcVzimOiMb6C5Yfd9MQnzTFml95K93WWmb
t5Lg7pyTIIHcZlBmRuwgQX9FSE7FLMpDie4PAixIiHOcEV2JHM45SO+wIuG8
Ez25bwbFy8JAz8iWBPx+g1oesvL08h6+YyREiHvo2yDvPVy8KeocCUmG6v0h
0yhe757fYKO+3+TBLvV9yEeFohsPXCZhrvGHhwTy+XzXy6uCSJB5w5uVOoXD
A4mlX57GkGD+6frOd5M4dDeccMzOJcFTlHwYh/KAxwaLNxKFJPAUrTxmiUwG
ai/4lZLwkW8HDz+ygLroi53VJIiKKPR6jeGgGpVDVKL3nOCIF+Oaozj47hW8
3TpNLubBonACh7kU/O+OeRKOhytR1ZBvTbarPeHjwMavn0x+4TgkZLxrPiHO
Afu0YhlJ5DIBhzWs1RxYoJSm3R/BQbQiq2AWOFBbwy23HkR50ETtY+luDoCS
SEcbCwdm1fuPN8w5MK1rcPckck1NXuGCDQea/HiLPJnoeo1lxfynOWCueHbD
BToOfP+aysSjOLDzlbXBDpQXOc6HPv+M4UDD6O0vWTQcaH1/Pt9F743z3S3d
csjljM5ySgoHZHu+tU/34BCE079I5HDgl7tAx/MuHLjzM1/l2jjQtTt3w0eU
d4eDb3zr7ORAyN1/chLIHXw8Nck0DlQfvJ157g8OxUKC39cMcSCW/1SUQisO
AcsotcrzHHCt6Lnl3YzDhLxyw+Z1o3D2V3l8fR0OuMG+P/o+o3BTzm5TWAVa
r3du5rXvKESnWTVVlOMQphstvzpgFOpeRu6f/4zO09ZmV27IKBi4/Ph8qQwH
U+WjROmDUWjvSkg7gOpIkqinqNHHUbiUJfmrKQ8Hi9YIfWx+FEr97Vu5GThk
eP9I2R01BlmTpdfFbuPQuFb7zNOYMYjzj2wWCkfnoTlZcypuDO7VdWnw3cJh
/44L1a+Tx8Ce7/Ps+E1UR3mkh1a+HwMyxGn0VxA6b7GndGm/xqC/wW7m6BUc
evJ46m5IjcO5aKrup8U6O6M7U/BsHHalX7PuQHVbRuFdcUvjBFxU+3F3rpcN
Q1P8yiWDk8C3e4d/QggbLM+5kZarp+GxACPJkMIGD72cg3v3zkDGw0NKDx6P
wKHSbsclJ2ehVNLWVQT1sU1tq2quRXMhL/Dy2LaXw6D4ZnN3btYcfAn4djEa
9fVz0pZHHnXNg/x6zbpnb4eglr1F+6IgD+a1T3VPqvoQBG9Rpszd58FWjIql
6BYNwlyBQrLTJl5MR8LvS6z+IPQmiQY9K+TFVvG5x2+qYcEL9SHV1bv5sCbC
R0rckQUaS5vCPTv4MGuL7wfIXiYomWXqpXjwY8eCtmdvvMKEzrqbTzN5BTAT
L/V0qiATfHnsf9IfCWCMeUF+1iMG+N2TshJdJ4glvyvKTdVmgOGZ7lDeUkHM
ydgtsqSWDudT4sS7zYUweNRNnPKiw/UQYye8RQibSfgEh1bQwebDqHOrpzBm
/UVfdkP2AMTsjC9OmxLGllFUO1odB+DhCoOvJvdFMLO7bwer5vpBcHeTSs0a
UexCW0qEalY/HFQ6YRX6WhQTyu25eORIP5zaT6qu3CWGHVjNY60k1A+05ouO
txrFMBtitd2boj5QeTmt33hGHPO99rRO4kwfmK6/wrDiWYKx4uuLN63ug0ae
fnp21BJMXzjzP/vWXlDaaJ8wuG4ppms6XPI8qhc6sz6mCOcuxb6ydGremveC
bzvF29FoGYp/iFCOaC80250jg38vwyI97jpTv9Lgyebib1EuFOwxcX9bym0a
dLJ84/hOUTDD45fNYsJpsDpTw9nfnYIpttdcC7lFg6R1L2ZcvSiY/cILcAtD
lo9R079MwYrOVWptDqbBU8rpB6w7FEyIkfK97AoNUkdXnDDNpmDG619FcU/T
4F/2z82luRTMw/WlO3mKBoo+4VPbCiiY8Mb/TtLd0Pxh7n35EgrmnFb3utGF
BmkDjKqxKgq2ZlgyM+M4DZ79+bQpvY2C3czN1nKwp0FvvP+kdAcFW2XweNDq
EA2U7LSq7nVRsFSu1Oc9dmh+Y6bT1V4KNvXyV7mWDQ3Svz+IOThMwSqO5q5f
YUWD/nArp29sCvbalvVdZD8N1pmKbjIkKVjN4/gIHksaPP8SWLlxgoJhaeBG
mKP5wXoxT6co2J1s7RvMvWg+jB2jzlKwnsx7uf/MaOA29041Yo6CWWuYC7eb
ovUlZyYWFijY7ZET/r/20OB/4qFfOg==
            "]]}, 
          "Charting`Private`Tag$11812#7"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.907999, 0.789417, 0.652903]], 
           Line[CompressedData["
1:eJwllAtUjQkXhk+3UVIfCTVKdyQkjX8keb8KRWEqIaRJ6SKXNCKhQkkYhVy6
K3QTI11UcukyKRFDuYxK5945p1N93zmqU53851//Xmuvvd61nr3Xu/baa5vs
Pui5R5nBYNxX5P/qwD/bmq4NscD4f5AhsuzsG7PYYNmus/Fx/IGV4f4fvgaw
YT9F5NRaKsfM5zKfwP1sRNtww4POyEFpXenpO8JGIKOl9bm3HPn36sXyJDZ4
Zl/Kc8bHMZVvpm78kI0kw39LazzHIVxWe6mwmg2nBOf5Ystx/B2/eYZNAxvp
ypatjUrjiDZNMHX6yEbE4rzl28rGwPblrQwcZ8NoqffCBsMxPCuJaehT4yBE
INV7LxvFzbGZ6yMJDmZ94H0M/zgK9zSXrWdNOQjd8lZz8+VRVLYXHip05cBs
v1rLQa1RnHcLy+9L5SBJbFox3VCG2SlOER+yOGA4GuwSKstQ0q6/qiafA8cE
ww5jwQjafJs7Eqs4qAzS2VBQOQKdcAs1s04O8tU87tLeI0hP/RbgY8bFhe6i
o9vuDMPqS6U1uZCLqB2edueSh1FreGls7jIuvqyzoJWPD6M7f+VV6VouvCb5
vWn3HIZpdVp98l6FPuTS2qo2jOIuL5OmUi5qnsR4mUYNwd7USlxSw4VOnP+K
+OAhvA5Srr7awEX7/nRjk61D6B94+Jt/BxeunrIj6r8OYamydtz4CBeH635l
Rsq+o2Zuc/dSkodqfy/D2ee+wy0sp1h/HQ/zHOKdXkd/R+dfR44wPHk403OK
KNn/HRPLLbTbAniIaDhOS72+w8nttENoIg81MfOK00y/o+XgysycNh4M3EYP
3n0phZ7R7XKfTzw8v2RnZvVUiqA2jTfTe3i4Mf36H+2PpFBd9EmeSPGwfVUG
lZwtBSk85Beuy4e6QZUk86gUlYEFpo7b+ShznupdZC2Fmq62/dhuPp4Pr1tu
M0+KzQ2HvSrC+KhfeiOtY44UtIlTvOVJPl66blkboS3Fom+d3Gm3+Nh4IKpg
sF+COz46RSwuHyEyO+phuQQS9WN1mf18lC5fVtR+XwKnqm9ftgzzccoiegVR
IMG3mfcnt6r3wqn2c/HLNAl+bnfZV2bVi+70go0OcRJc3njSOv5QL8KOV0SO
/SZBj5ztsiq6F43Lax6Fukmw+P7630dO9yJAqr9euEaC15p6l/el9mLFHE6S
ib0E6i2P6M2Pe1F8Q+mi/1wJYpx7KyzkvchvSnaW/qCR5hJrmfWTAE4PPY9M
HqNR7jYzS3eqAJ/UnzGWDtEQea2OVzETINBxQq+8j8a2wFueTFcBVnyTR5z8
l4ZtwraBzFQBKhKuZg5W0diYNLBbN1uAgPLJL36U09j759mPFwoESEgevmpQ
SuPWtfKn0TUCPFKSx8YU0dDOn3pxW48A8/90+96VTqO3qXm+7kIh5tb9pcKK
paHS6pd5YZkQp2bn3Kw4QWPO2yFCBUI4Td8nu3qMhvcn82HKQwjlspfHw/+g
Uc+P+/vtUSFmzHlmfSeYRpa63e4LDQreM/RUhweNqinvOpTfCKG/YwbHeRON
9qnB66I/CqG63KCpxp3GZP1rS0IFQsAl42ydC40oS2piLSFCfdCaROtVNDzX
F2Uo7xAhcrDX74+FNMxXx27+HCBCKV9XHrOAxpCDt9aDfSKM6Y6HpsynkW6j
FOsTI0K7c+OuRnMaTD2f3Q9zRTgQyY08YEgjnK9uuatXBOIe5VhD0HBidjNt
KRF2nvgjUV+bhu7X8nSNUREa51aHnpxC43Hb71MqNPvgaLX8hacGjYmKqgFN
6z4wqztZNio0/owPqayO7MODfSmG5cMUdsWsOpgc0wcUumZ5D1FYEqU7f09i
H1YJz74YlVJoD3uRNjWtD5to7ZpNNAUDL72TwbV96IlKnDAVUyg2aXaeoSKG
w97ohAA2heZn8/4JTxGjKe3KudF/KARpLeaqpIthZ7Hfiv2OgurOX2TXb4vx
9a1OYNtbCo4y0uRppRj6GkYhJW8o1NhuP6TRJcaWvE8nE1oo3C+8OC3Psh8x
AT2ReXUUrlyhPD7U92Opw50K5zKFX+bwnqDX/bDakbUm7BGFNuuJY7KOfgx/
6bBPLaWg+WZynpFAwZ/zdBD+RSF+kjkdRgzgQHDIq7slFI6e2HJFdecAMr4I
CO98CjuDnrxf9n0AQ083LApNp1Bl5GGbOTEAyrp0fXkahfP7JOuUVAehQr+a
xFBonkVScbDWICLsgzal3aCQfbM87BfjQXj55Wa8T6VAxGj2v1kzCL23/Gs7
kykMulbTjMuDKBa/3VseT6GsW3c8aJ5iDw9yNrQdpKBRV1w5Bhozk1h7Qlwo
DKx0+2QfLsEem8bQ0zMp5B98lbP6ohTPeVHDi9mKuaP/Ga3MU/zBgq6U/nuD
0J/zoKb93RA8ZFouIWGDEI2omD0RDmMga8EqvtUg3PcHUu4GMlw+d7xgWssA
Quweebi6juLnmUa+D+0G4F3b7TPl9zFkxdUHH33Uj/efZzQfTx7HMY9O9SCj
fhiXWHWXFctx3nZXd+F1MeR67ttvdE2g3nZC9k1xB639C3+JUGOQm7euqWpW
3FncQjNCfplBlqyJ0DwsEUFeOSfLd4ESqffk821BiAisTI3YvColUl2zp9Zf
KMTdxSJLg9XK5BW1pBCjQ0JYa71PDPuqTLa43jZ4PSiAqUuhXU6ICqnTnpFk
dEKAzjdnsguVVMkH7AKXKUoCHGZsec27oUpu1XQW37rQi8hLszZqmKuRraaN
XCOTXjiEdp9WqlUjc3MYXV0P+TiQk6rZve4nsmB+fwnhxseJU46+A+0/kbkv
nIJ+CHjwfCjx/xg2iYxucxMXneEhZcW1mtyRSWT4nVsnhHN5uD5tZZPTZXXS
3ejFVue/uVBb/d6i2UiDzK27KK7Yx4WHqd/G0/c0SEeLip/X6XGxZwNlqeM8
mcwPKZG6P+eA+SHC5+y7yeTJrncb0g9wYFEgs38Xqkn6OTtr5upzsHbuUf5G
xhTS1XiJbU4zG+8YHF7pxSlkWN7NTLNYNkznb0kTmmuR3r/5+RXYsNFZ/Dhn
UpkWaZ07RrmLWDj8hTjos0qbHP2x8p5xIQsfNu+n4jq0yZoZR9uX+LOQYVXz
8uJugnSlYjvqjFnoFBxOVd5DkKsnm3PuGrFgUGjtHxVMkEkrD00/P4eFTPO7
owH7CNL3Hv3B00ChDVMW2R8hyKoZqp3cWSxkE0FXBUkEGTswpKJDsHBLMs1v
bSlBZmQMJZ+WM9FT+tqqtowgjzyWF+0dZ8I4PHHEppIgxRFaHM8xJm71jV82
fEKQaYNLq8xkTORy+Y3SRoU/d82eJikTeZ+eLrj9mSB5ftmW0/uYYF2LGtb7
SpDeHV2OciETppttGy91EaS24OMxvkDBvyv0jWYRZJELy7WWz8TtlqspHn0E
aXetfXcwmwlO4kbfl/0EOVy8NcqTxYT5Wo0FDhRBvlq4/74Dk4k79TEN84cI
cpLI/ojuNwUfZ5eSPUKQJYEiDUa3god0p+4YQX5s1H8q6mQiUP7A8rycIC0X
1id/+qrofxI69OMHQc6u/Xaq4V8m/gvUNnyJ
            "]]}, 
          "Charting`Private`Tag$11812#8"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.8879026, 0.6993192, 0.5746156]], 
           Line[CompressedData["
1:eJwllns0lQkXxg8ScnlVBjUpCSVkIk1N8rxJbpmKdFGjpNKFQqXUDMnUGFJR
CMkll0SUwXGJpjAlGoluviQd58Y5Lsf7nuO4HL7zrW+vtddev7Wfvdf+Z6+9
F/sFeR5WZDAYGXL/X1QsymsTVfSC8X8j+21rrxdU92KlNoqvDU7jn8te361s
6MXJoFrXU/XTuGB0xcjhQy9mtD1yXxM4jV4frt2hyV5EdvKtj76cwtOHEQ1C
ZTbChbr1TzKnkDKh6xZKsBF8l1mRHzYF91TnXX8YsSEI7ShbYzEF5ruCkAIX
NtyCVLTU0mSI3RyQL0xkQze/nfC9Ponv4x1Oddxlwz8o1MkoZBIP382zr8ln
o6l5tMnVaxKtPk3vo6vYaM80uF3//STmBJsoL+liIz3XVt360QTSEr8e9F7C
QYrXVpV27jjMO5lWpAUHVxPVG+zfjKPW4PqEqS0Hv1fPNpyoHEd3vt0t2omD
Uub8uftix2FUnVp/4zgHHq2EfbH1OAq/bF/8opSDvgcp16Lix7DOyHzgYQ0H
nl3WX/zDx/DaX7H6VgMHobUK5rHHxzA49HjbgfccpGUNmcZuGoO1olbkpJSD
X6NZP+yakqLGtKnbmuTiBkfb9sQFKTYHZBbOc+VC2rj1VNdxKboenT3L8OTi
5vjq5vC9UkytMdFqPcjF2Lblk9vXS+GwOWr9sWgudM0T969TkuJVkF16ZisX
JqWnnf1vj0J/UU6590cuhAcJDX7sKPxb1f6d2yPP7/LdGh8xihmWH2XRIi6s
EqLg6T8Ksj9kf7AOD9aHj5Rc+3EUzEP3jTbs4aEksHT6XI8Eyjpa6yb8eJCF
zNm69IMEXg1ntlcE8MD4ETniFglGFjtcNgvnwVTXsWKgUgLLr12c2Vk81Gk9
8CATJMj1nvOAxeEh1+1I0nxXCSjV88/TB3m4Myp6f5WUwKHqa+fOUR5sc2kz
3TUSfNUtntWiysenz9zaM0slmP/OObDMnA+hccK9bSoSJGwJt7ocwkd0uHs+
WsTokfU621/go+K6ZJ5Boxgrit18pVF8tPSs/6ZVJ8Zrdf2EwEQ+YkX1Pise
iaH66q8Rr0o+LCM1eDsSxYjYyK8wkfEhVl36VttPjFTni2Z3Z/ahynjOq8S9
YpRv1r2ro92Hyfu5ZhY7xBBsd7ystKQPKyxHtRNdxNh9KMvzm0sftCm+8YYf
xLC5snsoPbEPbz2zP31SFGNLzJCfTkYf0uffnT4jo3H82h8frt7vQ0RxWZGh
lEZWUnndhRo5u1lW5Q3Q0MrXjtvd04et1OI2304a/BdNy3Qs+mEV9/ebk2U0
lFr2p1+17YdMIdlEUEJj4RsJoYR+MDmB/NOFNHZ8NB4VefRjLDlkZmE2jXpe
5D9vzvXjmf37qZx4GndV1/pdbehH7HyftKJgGp5uD+4o7hVAVYmun7WGhrHj
Ra9PBwUwPclqULClIVm/Q7MkUIBpX9uq6ZU00lYqXPSOEMA1JGeRtgWNb/re
fo+zBRh/+vl8pCGNYJ6q2T6+ACm6ZQ1xs2g4fOv+ZiMSYLvJ8498FRo6n8vT
1MYFUDZfmuCmTKOy1VejQl2I7J92PFjIoDFVUTWkbiUE3zA7REVC4drlo8zq
UCEirQ5ZvWZR2BdhH3QjQghdps22Cz0UfgjTWXY4Wgi9Yhdly24K7wKepWqn
CmE3YjGU2UlhwXb98CO1QmQm/GNY00ahcHHTxu+UBiAuyoop+5tC09Olb4Pj
B8DaonlvfxYFf80VHKW0ARTHm4Tuy6Aw45dVY8k5AzhkOrPZN53ChjFycR1z
AHUew41BKRRqbPaEqH0ZAC0ru1MRT6G4IG72PbNB/PRk19oPlyjcvCny6Kgf
xEy7nJiF/hR+8X/SbiseAre7xLt9FYWqRR426VNDoLsPJB21oRAbSLkqzBhG
nVBMMKwpcE1iCo9oDiM27tlDaysKGSnlAasMh/FbS4k4z4wCEaE++O+mYfle
XIl6tpDCsEv1CCNhGGGGRF6+GoWybp1J/6UidHbMaQn4NgK154XMCYygqdhJ
UJA6giG7zR/XBVPQ3LHvqYP7CPKDmjMd42gUedx6vFtxBPrjq8eZ98Tg/CY7
P1QpwryFJTXv2iQQfF790uOwCAKp0pIn/aPombf2mYKeCO4nDoncF4xh00zV
zlPPh3F07V8eLi7jeOVGt/ifGMaO2m5vDd8JkGL91acXDaP903dNv96YhIOx
g0Ha7SEYPjTvLiuUYdcA7VovG4RM333P7S9TOL6h2dRgzyBaBi1WnVJmkBsO
HjAX1Q4g0mIJIUtgkG4pnedKLQcgYy6867NcgWQctLtCJgvBSle7eK9KgZTN
9WanaAiRt0JgtsBRkfSan11tEyOAlWZ7dMBnRXKTczg/f6ofRs4FazOPKpHN
yxh+upf60fXv7xkFCjNIg72LhUqyPpxh7HzNvT2DbNaL/Lj7Yh9Cr+ttUTNW
JmXJrXqZmn1Yf6w7SqFWmeTI0lcwkvk4mZmo3u06k5xdIztabcbHb5c2+Ay9
m0m68F7GPajnwfMxdeBDgAqZ95+9zyx28hD/U1JNtlSF7Firv3CK4iJ5tt0L
hwRV0qu0vfF5HBfKju0mTYvUyI7C89scrLjwMNq/JapIjYy4HVv/4wcODv8s
MpuzcRY5Xb477VwYB986Tnn/0TaLLGy+7Pyn/C6a3B9b13ZMnXRT57usaGbD
yfQcbwtDgywoTCiaG8pGG4PNLY3TIO+sjykbXsqG0bKdqf3GmmTYnnbFQvkf
0FVYmalSpkmm7n7+vTCuF2c6iSBvey2SpyHdesOpFx1eJ0SR77VIQb2v88+T
LNwxr3kZ50eQo6IT59lVLHT1nUlUPEyQ7sy3kU8qWVhQYHUg7AhBjmTOK7rJ
ZCHdOG/8YCBB+u/C0Q3lcjaIt1x3liCr6hwvZz1iIYPwv9UXQ5Bjoz/bH85n
IYuavd+pVN5f2/GWaiILPaWvzWvLCPKKupew9yYLhsHR0pVMgnxXl3Tk7wS5
XjiZYPBEzkhpPHuDhWwOr5FuJMjTD6f1eLEs3PtYtzznk3w+jauLWi+xwEoK
G9X/TJApJ5ekFkWyYORl03j9C0FGvk9aFXNRrm8r8LnAIsg9vJE2x3AWcl7d
ivcQEuRfreKMujAW2NFbfF4OEuRGxRem6edYMHZSW75eRJCtzxzbLpxlIbc+
omGZhCDbV635c80ZuT5ybXyGVM5695L1Tsv1oH/RmSDINz25LyQhLBySlZjF
yghS2Wyd/odgef2TY5LpaYJ8HLv/akUQC/8FAf/97Q==
            "]]}, 
          "Charting`Private`Tag$11812#9"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.859434, 0.6006316000000003, 0.49633340000000015`]], 
           Line[CompressedData["
1:eJwllHk01fkfxi+X7L4yFIWyRopfo2aS6vlEokhjqXFFJkpJDTVNo2YsGTGV
Naqxl9a5Y1TDyFYz0qLFEoomS7mby8Xlrlzy8zu/55z3ec5z3q/3n+/HPCza
b78yjUbLmJv/+dWeZxpduWzQ/i9yzivqpmAuF+9JOlQ2O4vFWa7HOorYeFbU
4hDUP4uyTuONtTfZcNdrrz/29yxaQprepFazwe62/dibOAv9GGtVyx420t0W
HT2qPov83P5whiUHBS/El7zsPsH+XZUjWcFBZvNjb4nuJ9SbZihs1nBgafdp
u0g8g76b63PEWzjQingbyGuYgUVN3qPMQxx42HffzQidAbPX3/zpPQ60f/3z
2cDtabhY2I+U1XJwbq1K4tacabyKUK7JaeRAXytyjShuGqNjd7/a+4YD9ijn
rVbAND5X1k2clnMQvz09cS19GrU2TX2fEy72RrZ4/31YAa+oEqbxVi6eeC8u
FQQp0HPnxAmaHxelBoLkHVsV+LTWWrclnIuTfd2qFTYKuHolbYhM5eJYF82w
lzWF59HrC0tauLBZOGK27MAUjJZcq2R0caHpzBFfD5xCRItG82cfuPg9f7m9
97YpqKzsmkkd50LKikw3cJgCGToaGmPAQ3D5gsh42SSq9t2y2BTEQ9FFP+aW
7EmoGui6KMJ4cBH8u9/0zCQCGo/7/xXFw1oXXpnhyUlMmLsm28XxEM9aZRW5
dxIr+3s486/wsPTOO0Wm0ySuM/R/G+Dw0F+Q65zcK4dI/WRD4SgPZ6rKld06
5HCt7n+3S8bDgEW0selzOfoX/KH5Un0QBxTiFvO/5FjU6XG4wn4QwvJT0vAM
ObJ94hyTjw6iNIH19md3OeLdBv+ynhkEvB7uWflYhjyPBLuieXyszHu9eEm9
DJVeC4oM9Pgw8jjvZ1Mpw7D/5mS6JR8iI6H68esyBO674vfRk4/eeZ1vVVJk
cDoTOFaYywd/yR2DBm8ZfM6OhRkU8/E60RFD7jIcSk95e/4WH9++jG60ggxX
LlY+OFXLB8kJEb5aJYPuTb20wA9ze4acyVoow+DTJluDFUNw/Lq1QMGVgv4y
tPD8miGcHEz7c+lHKcxapRQdQzCvPtLl/16KnV1WsnHfIQhOLc5mtUrxiJf4
pPWHIRwMFTRfq5GiSN057HzjEF4OfFVxOlMKv22/FSjvHsYlw1nrUjcprDYn
BHSHDyNXfOdcMqSQbtipU354GLNl386LdpEif5VSAiN+GNXFSR92O0nx0YgR
dvfqME6rt8ddsJQihqdut2dwGMZJx91DVaVITz5YVfO9ADsmvtzEbpZgT/zG
6Mx4AXiNZvSSFxL8J9bAdn+qANxozW2hzyTojPonTy9PAKuJbVbCfyQw8TeK
O1AvQCCT7uZbKQHTvMnNkD6C30eeptMLJWh6uOx1TNYI5PRf6h5/K0GEjgOH
nj8Ck+neh++iJFAJXj156doIBn+adBQdlGDTJDF/UDWC3fkN5k7hEtQ6BR3V
6B1BBiOrhvO1BH/cTptfajcKoX7rtIarBBcujPt2PBrFm3WlIZNGEgRH1LWv
kYyhfZZKcWkVo3qJr1PhpzGI0vU/mDSLce6waKuSihDRvKVGtJdicK3PMg/o
CJHfu0jz1VMxin+tjFq9VIiiL+t3nHwoBhWvNdrsLoRWi0W0VbkYQs+aCVq2
EBv9ffp/zRCjos9gOmLZOA5NnvHU8BdDo4FZpcAEYtuZMfxhEcbWe3W5xIhw
N1auT08S4Wb0i5LNaWJcrP8jMslcBKOpL6aqSiVI8TMNFzZOwNisvLazTYrE
h6EeLqETGJbTLeuGZGi56OFqojwB7yP7xr1NJuHq6dcXXDyOg85/+np6TuFn
TUakZMM4dtb3MbS/UcCR+VU1kyNEe7dh04+Z00hWdBjxUoVYWmbfV8GcQVbH
k3+PfC7EjJF30OXeT9Dbcck/6O4YXo6uWH1MlUbsouOKjVXGkLjCkprJphHO
EGGPHhjFTJVZUchyJcLRvBJxuXEEA4UaCaXVSkRo0q7V5jCCGw7DdiablYmB
Y42m51UBHHXaU6PeK5N/3L+uPK0tgIXHbeeSg3SSELdvnU7KMHqafy6+raRC
fmnPz1LIh3CctusV97IKWWf1oEHvuyF8n7HQR8NKldhrvdtqNsXHhsi+JKV6
VWIX7Jxo8ePcH5bkavVtnUdivXSsw9X5+On0ppCxznlEqLO9wr9gEH53RXvf
RqmRNm5Uzh3bQWStu1h7Va5G1rRm/j2/gYdL89c/dc1WJ0FunFUkgAfVze3W
TUs0CD03oqJlrkd9LUJ9kn7XIDUa3xyyyeVi//ZxO303TbJLSZWUruLiY8cx
RkqbJnlzf+2mE90cWN+adGmL1CJfdKSl1J3iYIvNDzwfmjZRXyOy/MWcgzYa
m3svTZs87z754kEbGxa2u/KGrHTI5X3uN8t+ZKOHeb9ErUKHKOulup93YOP4
OyqasVGXtBlXiGfYLHQEHBlPfKNLFsVsq428zEKBfe2ztDCK3JrYbarmy0IP
/3iu8n6K7AxLMH29gwWT2457Yw9QZDf9kWuBDwuFVjemwg9T5DA9bdrRey6b
Zq10OUGR+/vPrNjtwUIxFZHDP0uR72g3Yqs3sHBFND90yz2K+KZkX8pYzsKH
e6/s6ysociGU6RBix8LSmFT5qiqK1KmbDdvbzvGC6WzTOopoZ860Pbdm4SqH
91j8mCKF2uIdauYslHY9WH6tmyJ3qn8wPLuQhYGLsTKj9xTpVosUMhawYBHg
9DijlyKjDQFjyw3n+LbbIacGKKKVSmc067Nw7XlOlq+AInbqC99/pssCO9Un
5NkoRTIZq99wtFmw2qKxfMM4RdoCTET3tVi4/ii+0VZKkbz41fnBGnN8onNW
sZwi4heBlo7qczzEwQYKijyZdmxTUmNh30y53bkZiny0rrzSqTp3XxcpnZ2l
yGZGf+4tFRb+C6arZwc=
            "]]}, "Charting`Private`Tag$11812#10"], 
         Annotation[{
           Directive[
            Opacity[1.], 
            AbsoluteThickness[1.6], 
            RGBColor[0.814221, 0.4847644, 0.41806160000000003`]], 
           Line[CompressedData["
1:eJwljQk01esCxY8hDuKfUHJVCJEklW5E+6u8SqqbqZdSLnFUlNzbdFNSRJOi
WaFQGSopokgS6RSVseGF4jgTjtmZD89bb6+11157rd9e2zQw3DNYmUajxY77
f3k/b6iBeYsN2v9Fclu9TKufsOEcV6u0smIMS81sBA9L2Ki50mw2N2cMtQzl
F5cr2Sj2rYNf0hh6+/I3BjSz4eTSEpcQOIYFyjrRcjEbp/SW1E2jj6HEktm2
gHDgJDgXpOs/CvfQ27nT3DhIbuLUy9eOouXxwYM0Tw6ezEuH6e+jGF1iofNp
Bwe0sHhq8qRRrHA/6bIrnoPmmD0foqoUeB/unHL7Ewd2xxhC7mIFDGdmFvp+
5WCxTmlrgKUCjE8aH/V+ceDYNqxGn6KAqu1XRfwABzWLPX58GZGDdEX479Pn
IkH0dlZ4sRxFQVlmy7dwcenVkLfBCjkm6OsslQVycZyReVRvkRzelfu9noVy
cRQXixws5Rg0XRFrfYyL1vyZlzs15bD92cLWvcPFxT807/9sluGu7+ScDjYX
RoKKVkGEDEP0fypSernYdyDUThosw4rnP79vEnFxNZ1PN98iw88pjzRr6DyI
jFTaP62QwahpdViBDQ9jS4LWHjKQIWnDMbvYCB4qTxxRZ5ZLEbWS98xCwcOF
BJ8eN0spklcft05V4yNLO2lvjrEUhe5TUvUn8eHIiYg00ZOi28s1VmUWH89V
+TRvmhSbg+54tq/ho8Co/DTzhwQLT23uS7nCxwTBy4051yTYcKYvUD+ND01u
RZT/BQl2J8R9OZfFRwjf5odVnAR3rhaWHSnhQ6slwWr4gAQ69yed3/yLj6Ty
T6cYmyTgVTOt9Od2YYnZz5DTRhKo1PinnHPogvhTDDbpSTDjs5BSQReunN1b
vXCiBD5fzUUDHl1gbX/72/RRMd5wo99+PtQFKlolNbNDjFS6Y+C5yi7oPXCt
/XeeGJ5rc24pb+2GlZXmGcc/xDB3Pe79bUc3NCKPeaivFUPo4qOdF9aNMXGW
d5urGDftlY77RnVjXm1AepaTGO2GvoH56d3Q9mSeuGspxj4u3Xo7rxsZAod3
9jQxEmJ3Fr040AOTZ1pe8ucibI9aFn4xqgel9RpFlYUizD+sbxUcP94X1F5I
yhehKfR18qTkHugO7vQl2SIYexkeC3nZg6mVy4N510XINWWuNFARYIedIMnr
sAjMV7Pr9yUKoP9CudnaRQSG9jy2yk0BEkOu0X0cRVD1WyS5lilARGPP1VMO
IiyXENOyIgHGOi5FCW1FKFm4JUKjVQDbZ2FfDWaK8Cj7vG6GdS/ydq967aIs
wqVLAx6Nb3qR45hu31QjhB+jtMFhpA9vTCKe3t0lxPOZHgtTRvsgda6cU88Q
4mzYkJuSaj8sOtxNaEFCcCzO5IZo9+PpvAMhwduFSLtRGLrIpB9vM9/nrPMS
gorS6v34r37Ern+99bSLEP1rXgzSkvpBj0uYdk5PiII2fTlj9gCUZ0re3q8a
gUZFbpEMg7AV6Qitl42gz9n969J9Q9iccimksngY98M/3HY9P4wTs5lmD8kw
DKWLpUUZI7Cxclk38HkI02bklTTVCWGUfvqdue8QusUqs0q7RHitu6lqsWAQ
6/YEDawzlgBnU1irIgex0/Gpx5o1UuBDmVqsziB8Xrb5TvxTBlP/004dDwbQ
8M2AGXlRDn6n2iwl1wGYPLRpK8hV4MD8pEQpux8Kw3VbrreOYus8+9fuMf2o
6Z276K8JNHK2rJaebtGP6LmzKEUSjcS4ZG+cm9EHRdGM1G1zlEjNU5U1vf29
6EjROJ7xXImwLdwXqnv04t68bmtjV2XyfWX9Vr8XAthpN8SH/lAmzq720X5G
Apitzna8vVOF/N7AnKx6rgctH2PSspVUidBN32FouBv7aZtqOddVyaP50gdM
RjcOXJi6QcN8AvE7zopM5XTBZVfbSaWXE0hYSXO9659d2Hv7ilabmxrpaDFu
n8jl4+iJ5dv6mtTI9UUN3xV/8+GZPxTwJVSdyAYjGQtkPCQ6XS1JF6uTG0Hq
ARYXeLim61y9IolOAppFaa9+42GCa4MFc6YGcTjmNWVrIRceZv4bTj7QIMJI
h8kGnlwErx+wnrxSkzxa/4Rd28VBe+NfvnF1mkTpXo9TUAIHFlmSpXW7tIjp
LfuqNTYcrLI8xN1Am0h2lnunyD+yUUfr5Dw5P5HI/t7dfvYfNsysNiV3mWuT
F3ufuz02YaMlt/i2eoE2CXu3LnxOXSf2f6fCfZfpkDLLvclhMZ1o9N4zEN2s
Q9ynL7KNW9CJWzYl784HUmTzkFuFNZ+FFv7+K8rBFNmmY1vC4bJgnG0XcDiE
IlWM3f/J5LCQYn5PuiOMIvsff0uc0TnepyfaLj1IkWLt6iaDnyykUYzL/DMU
6aHLn2o1s3BnSNd/1ROKPJC1JetXsPDrSa3NywKKZBTQIr6Us2CyL15sX0SR
dK/7e2+8Gud75EnTSymyui2w1fglC+lsbtVwFUWqw3jxs4tZyPhaNifzG0UM
goO0XB+x0HH1sMjwB0WM0vNW0x+yYOa9sOpCK0W25+nl1uaO83XZ2450UOSV
pX67TzYLme8vJ3r0jP8vXzJ1dyYLnfEbtr3rpciP/IwYuwwWzFdpzHEZoEgj
b8hg5A4Ld99EVVoJKRLEnP8wOm2cj3ZMTBOP/0VR+atSx3kM++nLKFJuWPp9
YgoLQYo867MKipSZ2Vo33hzfl+4Sjo1R5Pts/7TkZBb+CyWgFt8=
            "]]}, 
          "Charting`Private`Tag$11812#11"]}}, {}}, {
       GraphicsComplex[CompressedData["
1:eJxN2nk8VN//B3D7zlRkixbaEGVNKe+bylJS2UqlEqGQNqWSLaWkSCRlrUha
FCpki1FKJMoexjbGMvfOkH35Hd/Hb67PPzzmca87577vOa973s9adszT8jgP
FxdXGPox+9tzvt1KLq42WGtUoz09Q8EGIvdxlWu1w+NzDYnXTnFhITvdUvoj
O4FH99yBry//wTfPTbEJld2wqMv/YecIC3y39rxfMdUDh4JG39fFEWC548Vj
noN9QP/7d7JpKQFlBat+nQ4fgLedMp5RvAQccv5UrfsPB5G4fvTtBGS2SE06
r2KB3Xy7RIdJHIQ/p32YADaUl00W7e7FAd+0s87g9CBcW2StGvQZhxTP7wnb
QocgbSTPR+QmDrLjeuMfnvyDrU+v7G4CHOQWv8n9XTUMZ9W/35lqZ0LfKK/y
p94R4Nmm7x0TwARzDyeWucIYPOSjx26mMMF1Q8ZeU9NxSHlgo3T/4QDY5LXY
iR2dgDxpK0ehlQNQXb+w7ErYJGT5XhjSfN4PS1+ptWSmTUHxpa9nw9b2w5Ss
+YHov9OguFKr4snrPihnrtE5y8+Fue9U2Z6o0Qf+a5QpU/e4sPmDIgl6Ob0w
9WFxnL0qN6Yr6VUcYdAL7bHCfk+yubGFPC5RqmUMSNboU1HYxoNVE6dlRO0Y
sFa8OtitiQfbvePbHlZ7DyiZpG5IcOXFDvmtf7f6Yg80V1yLT+Xmw4zcNZ5K
8ffAeS7bH93RfBh9mp+XEU0Hr7syFsLL+bG4NzmZiTp02HyiJZA7jx+z3+J0
+1N5N5xKiBRtMRPAILqFOO7eDT4BW+zx3wLYeEw+2MzvBsu3gw61boLY7mID
+VXvuiB8Y1Ru0qggJkFRaaq164IH8zd9MbonhJnced1LneoE/m3VK8qWCGNn
6hNCVNI6Ya/SEYvAl8KYQGbr2QMHOuH4LpbKgq0i2B4Frt1KAp1Aqzlrd6NK
BLMkFKxf5XTAiudjBlUnRLHzV+IrJE90gPHKi3QLLjGMEVWZq6rQAVVcnd3v
QsUwA8HU67a17aC02jamd7k4pmfc/+lZaDs0p31MEMwUx74wdMtem7XD+QaK
p52hBKp/gECGcDvUWHuw/P9IYLdd7zhIfaHBY7Xcr6HHKNhD4p5mwk0aPPt0
YngGrYObA0e8f22ngYbV/vvH5WjQK7tFJm2BALbptENNk2MHaL9eJrWobAzS
/lot+4LqEl3hJFd8ZBCe2S140d5FB61UsV0mS1nQ86VstdSaXlgxnLDexpyA
O0GuH3K8+qH9RZ5orBgBERGsvTXFTDhmmExzReuBMM1hc90j4KvXMoegGRxa
fh6xe5fJAjdh1oNItG4mp8e/LKpnw99tmas+1uOwozbEAJsehDxv29rJFBxa
s7gqrsr8A48wKb384zgkDs4/YvyOgm1Z+SJ00pkGFhn1zRmhbeBvdEmWsVsE
iwxsPmFV3g5Wpssvf/szCY8iWx3tlLvgpitfT4vDEHxweq605QAdqPKeaY2+
LNC+vh+PjWRAXPb1o0KeBJymC6kc7umDu7CuiC5FwOvU0PlPVJhQJnoi4xQ3
ARRfUWbFdgKMEyItWeh+TPflqoZ6sCB2s0ZnwBgOPG3VBaKhbNj4Yvcm/XYc
YoXdhA0/DsK5NOlf1Vk4GEUc16P9GoLOn9bjBy/iEE9xvs+4RcEE6AnfCi7S
QGKozkw2hQZPsgJ9nVp5sA777k1Okx1QEvJ5xeLzI5C7sqxFC+uGvr9R/N+i
2HDP4uraoDM9sOfS4u0fawmIE9pw7HZJL/CEeLnOaBGQtqxs60LeAbi92jpA
UpCAiz62EXyHcBgK57otjp5PtaTLiHYzAZG1qS9dp3E4b8p/s3aMBXf5L+QE
EzgMKyr/VFs+CCd/FUVVVuDwpC5f9Wk9BbuW+U57vy0NWmgPA+yM28D6JhZh
zBLDikTldSl+7eC32UzT8v00LDi9gl+5uRPeO7tD5uQQYL1njpyWokNLtdCG
Vx9ZsN8p0ZJmyoBT5Qs+5wQRQJO1O/Y2CeWtGn7mkDwBudoHzgj/HYAc44kj
NjwExD/MctNBOWzfveraNKr/9COX+5d2sCDSblx4wQQON6oKcnmd2WC29OSq
M904GCsfJPLuD0LD35ikPZ/QfXPJ9i1IHwJWgP3gLz/0fBTD1Q0uULAcjxJt
NX8axCs/ZBYcocE3tfwDLYf4sHl0ZaGlbzugTCK1YnHIKGjxSPhPjnaB10To
vcghNsj/NnHPVOuBxnkF4ypjBBTT/Ut/XuyFs1MpR58ZEqBgJXvVJa8flh81
a74tTECQ4HK2GwUHjRXPDdag+jtozPN69IGAfjYRMQ/dj0poBlFSywL/kOR/
WoM4XJKglCtPs8Hxc+sNzxockrro1CEqBVvSL52acpgGBYGy+mI1baDcJTR4
VkQIcx2Lj4+W6YArPzWbN+tMgFJOTHHYyS6wk/Lb31s/COqtzV3zE+nQXWEy
lWjOAomUeaH72xggvMpL/uAhAqbfZ+Oi6D3QYilrfWgeAYmKhe82XmDCP5fi
wp9ovP6Ox067uBGgpyuw9gca731J8eL4cBaY5ftsfDOCgx/eXSyZwYZfLnxN
z/7i4EuVST7TTwN1Bfr42ghu7MPv1DOppp0g4MYbVOs/DEY7AzefCO6Gw9W5
QyNb2CD0LYNt/bEH1qQPr/PIJsBbhTVtTOmDhsnbm1eoELCBuChSYjYAWpo0
HUV+Ak6ybmrFpeJwYt3FCW40PqOx/EsV3CwojZJOvz6FQwHf/iUMBTbMUPKS
7g3g8PTb/fC9/RTs88HMlfMtaJAyNlqzRrkNykUW1OWckMBsq7LlB/a3g8oC
1s8zhTNQaV/2Jzi7E56qC/KG7v0HfOp1U8Gsbgjty3xagZ5Tn9W2IF5lBjyz
4V/2O5yAR5rcfna+fXBcuivOW5GALWPYsvwPA3ClaJcoA83f7hW30lzECcj7
LdM5g+pXv6nAhNBngcH8gIzPaP6WlWVlz1iyodqLO8etBwf5dTWOkwGDsOnY
98JzBTjs0j9T+jJuCGx5Cif+XUPzd3nyuKM7BbOdSQanIBo4G4xiEZtocLpb
VVJ1HT+W8rJ4YOpWBwx2xn0uUh4DJv52j8OfLpjh5f16Y/UgtEq/FikX6oHM
2O8P5cVYYFO3fIS1txckfiqy9FDO/XYripkX0w+ubCJoRoQA0QqRJ0sYTFi9
jiZljOqd+qkzs+IpAcfsUwP3oPvh0xBO3ljKAmGhxe3uQzjkCvB/W9LHhgje
46GLa1F+90/eU/xEwRySKl5WHaPBjUfeIa3pbRDxYvxLspIwNp2/OciL1Q7G
Q6en/0xNQEvKpvtDxl0wve9p8M5FQ8BeZhSkcpUOnldc64adWJAYlZV/OZcB
RPYPk33HCfhYeVTsvWg/9CxaVHdjAQErO5IdmLuZkKrkZSKD8ruM0Et/tJ8A
Ib/D59rReE+9d7yw0I8Fcq+40xJHcSiiNxdREtC6bv3aMNaK8qP54si2bzS4
v8/nnI42D2YeY7LvhlInDOiVO3oOD8O0/gqJSsduGNat6Ik6yYYforL33CN7
YGgH/weprwSIyEWtO8HoBUlT8aJmdQLYQktXuaN9mMLOm4eFBdD78YNn+55A
HP4NLZ7hR/UMuRGRzYUT4Obl/28azd+YlDc1R0TZYJuUKyeNo/ytSrW/3E7B
Rp//KtK2pIH0d/21N06g+tUd8ZaLFMVUTa7s1kxuBznJwAbd/CmwDQzUKZjp
hFVvdggzXg3Bledin/evp4Oc4185p0cs+HJ+cmnhKQZYRwzsuXyJgNVc77YL
lvbBm83M/kAZAnROnftsw8sE7q3yfPWofraibWu4tQno2kHXGEf1Ux6b18pz
iAUhoq4GluM41Irqx/YF0oDnZUlaYjQvdlnpupJRbQcMhEYu9x4fgQtSbunR
Ct2QuOW9dG4Juq977RWPLXpg9z461ZFOwLrR5vuv43qh52zQ80h9Ahw3nj5a
0NoPDI/yxYZCKJ+2bDbK1sVBX0a0UQ7VSz7JQM/lGwFb2wIflqD3l3HcvJpj
lv0wvPr1HScJAuT213MHxzJBUVlc7wE6X7/2jqaOLwGt5ZEbX6Px+9f9HJDz
GIBt/b+fmfMR0KH2JJBRiUNnzaX9s/v5cTfGxkdSLLhjEbZ0Eu3nnxX7lqwe
pmBYEjgRZjQI4Ve5+mB+Gzip3XIdXkfBnmjdFG/e3g5LvRe9bFzBhb36LWeY
m9IJpbCVNnL1HzhXCldItnXD/KryaFk6C7J2SsdJzWPApxN1deujCRjebCP+
xr0PpsuKFy1bQgDfIZ2xB08HwPrSkmkD1G+EuA+acaNxJjFhZjY/vtxhJKmt
Y4GLQ0aMJBpfDzX941UzNozpbbpzlIFDkF6YosKlQah4fnvXdCEO4zVxWqOR
Q3C34u9anhs4KKSudfB2oWBLG8quBNygwQ6T1b0TqjR4H0BZcDqBH2OJR7T1
X+iAKL/2cyHnx+CHM0/O/ZIuWL9EWzp76yAYZbc22I7Q4XfKzA4haRYs/jlM
4YVeqMHcRLJM0fP0llp9PLgfPFeVXikTJaBy7fSlsT9MaPResc0W1decZ7eV
yyMCbn3K63BD98Py1ZnxymPBRx59Ll60P2zi4SqLo7GhdO/NVI86HJaeDh7V
/EDBBFdfP9rtRIOTKanaZvFt0FJn+PHmB2HMbKn4RaeWdsi9pCUy6DIJeYp3
J1bqdsGGRn2qiOEQWJect3rvRofbGnjY+zMsOHnnRu3t5wy4d8bAR/YkAVJN
WY+Ex/sgRGmn0VtJAnq3x2wo28SELY+FaRia/+7rkyx0dqPnckw4txeN96BA
WNWeCyyYqvruKon2f7SOusI7aF823fK7ZRENB9We54lvPtLg396d5xuCebCH
E9I7vChoPgjJjG7UGYHm9AsXuCy74eKXH9aNfmzQeL3j6GhgDwgIDWeUVqL8
nedidrm2FwImJA2OriPAYuH590VSA2AQEngrBOVHlpxjrqonDoESvzBhVE+N
isl9j7oICEgN+aCL1sONkQb1xzxsWP0l3+gXyg8la23q3b8ULHFSpnC7NQ3G
/7jW4/va4IHpARMPEMO8XuwwWhqB+o7tztfk1k+DzlhNLDHQCUeGtxzQ/D0E
LaYQ3rmCDuo/DDMrU1kQ5l65oeogA/ZV/L0xg9ZVkBj/74OZfaBsTUukyxIw
UuUcs5YYgGnjLeJS6P03vnfHj0foPf4+zv7XJKrfvB2bNhhasQC/91M9C+VH
rozrdpszNEh9uV4hbJQXKw2yXqhZ0gHlUVHmMltGwfp2nsx3kW4IlIqz+trE
hmythXGrNvfApoXPnyoRBIzhb14VhPQC9QLxLtSAgCJjKnNBZT/8li/yaEP5
8fnZOvkIJRzexnzSUkL1KqAn/+EqIsCvdLC0D9XryQsnh49YP2ytZ+09QCGg
Obe84egtJgh+t9v/Dp3frDBaVXGegNLhhJZ8NP7mDmWfUwcHwK9mf/w7tC5T
7kYdKEH7zNHqJHw2P+IzrBq1RVGfoVQyYYTyfLmxsOpmFgUrexgVwmVOA98H
u8w6vg2AYBKPcSyqj1HrYtFKaQLm3357cXZ9m56U+b59kgn03MVK+uh6fF6X
pXReo/s4PaaghY47+mfcknJkQtJS/RQWOr487QeF+xgB1hPiVvXo+IPJ8ocy
+gNQabv7XRjaL6lb+4hcjMLhTKN6Ai86vxtWy7mMou+9rbKHisZ3WtSfcUWa
CUW8o5OJaL5nUL3uuGxCfUI+38lhdL2NrWYnW0zRvtszlV8S/b3tv06V1+lM
UC19vtQXfY4MU454FEzAm5h/Co/Q+Uu/vUmjoD6I4t8jOVuP5TB0SGqCgrWm
3s1sM6GBj+jnveVCbXBX46HOlWhUlw78htWmdrhoEJvabMaFLQo3OlsT1wmJ
C0q8MiL/geySp1l2dd2QlOO48RTOghgTP5U4AQZUGNxX9kc5snybn3W9Yx8Y
OZjoTaL8dBbX6OJ9NADlOVk0F5Sf2Uv2asei50z4c/3PazbpzVh8U2NBVPUa
WQOUn6NG6h/ztrEBlISa6lF+5m7wGH95fhDCkiyqPxfhULVM50R8+BBEet+u
EQhGz59xPpLnOAXbfPiCSXgwDTbtKipYp0QDlaF2kdB6fky6cMzOyaMDHiZk
7hiNGwMDJbWBV7ld0KgcHp20dxAGhS59jmXS4cslbx/FRSzgLT8Se1u3FwR0
U0X9dxBw2NfQM8y3H049su9dh/rrdbSR484/mPC4l73lyOz8WsGnnBVFgO6p
7z7eqN6uq3a8ksxmAVfOgkPmKD/7/a9+bW5mQ8CdtkWSqL9ue/dDLS+Tgrk6
PndhHafBoVeYkG9UG/iktVy5ziOCnfp1nmj63Q7vFSXqneInQa3hw1psTRec
U4pJ/7V7CPilJAwmjtEh4GrAMgNvFljcwo9JxTNAw8LbP8QdzSNaC02b1Qfu
NSvW70D9s/lIxApdbSZ8ufLecB+aTwUHbBcHoPsyKdm5gYnGW/3m2VUmymGj
+1s1dqL8ZDvYFP4IZ8PPwZvFaSg/FZjg1fGGBi7D0l5YJg9W8Mq3pJ+/E5y6
qz17rEZgp1tCmpxZNxx4n70gL4QNbVMdJoaXe6Ch/erOD9XoeYtV/eGp6AVD
79vmrzQJ8FkUP9krOgAb3L4JVKL8lC4/lBJ9HAdZfgcj0dn+hni3it5GgGSM
4IvdaJ5MJeCN+tMsOBysJKWO+uH2KO8R2SYKtnDTw14LGxr0N3G9Xr67DQR9
zj4LihbDHh3I+BR9E/UPa9eGp3pNw9OsySrhrk7Ym17us6NnCMJi6i+qKtJh
yUGtDo23LDjvuv7LfksGdKd69/wJQOttwdpFN9LQ+5+6dCpBjoD9gUevx3YP
wOVLf4V0UD6Ye808pi8noCJPrXQK1S+Yvbe7yYIFp+y74zpQfr5S5JIPcaWB
7mmbG6aqfFivbt7d1JwOODxu8tT8+CiUGHft7ODuBsp+v6iFPWw4ce1NkIdO
D/xbnro4boiAlj6ZDSYBvZDSMXZNajMBTHOm7ubSfhDzuzihg/pXJVtVgRlZ
HOqO2U+vRPWaJ3owedcntG88n/5gGtWrKv1uKm19P6hpWVEbUH4aupeWVvgx
AZepXVI0+37CXifKnybA7HyTRSkav0jvrpKHlmg/bH75XjfKTyEszHhdBg4S
h787zfZzxB+hNH8BFjzWkmpwQvnUGWxh/5VJwV5aMb4J7aJBm4mJ7p6iATAO
ZtA/o/pE8vxulEf7/gs9QZ9m8zNt0fwPGWwmnJafrDWczauHazv9UwlQkXXJ
2IKOUzVfeQXYMUGJlj7Bi+bnhYqA1l32BNg8l0r6O3ucZ7h1y1qUz08oceUo
P+/yXxjuuI0D1rjrPd/sftLxb0/mIAHcy5qWtqPxVedd+tMjxgTvZa86P6Hr
8fWo2metJyBZ/+e5UXS92PCttjsBB5sN3EbS6O+zU1oWyqeg83+urbg1m8cZ
9Q70QAI8fMymnqLzAy+nPvBB63ZV9ZD6bF51+m8Ijx+lYLfe6VztMaWBvpnh
5Sz0XvPIsxqdvV93X767oa3offW2jbZrdn8s1e9Lt0LrTXHDz2503NL1RGW+
Nw6LvQ8GCM72bxpRk7s0UP9WY580gY4fHdTTWLEG9cm8yjWK6Phl4eqBwQgm
6N1UPPZ0tj8ZM+IOQH0Crc2r4T06f9vfx6dsS1GdVROjZ8dHfDphELCIgDs/
f8yfHU/1DRksyxnNjz+SQdXo848ngYtFEnDQ/iyTzYPOP5pUlC+/BdUnLFx0
aLYfVt/je8YSh/XSOUvmzb6fZd4XPOnDIdxys8Ds9Z2m3qiETFGw3WvNBBuM
acDx/ogN//P+Io731wjujBsNHyvkeP+PNR4mPeyqQo73N17nWp7mXk96f1V3
75prgnTS+3GmRJVDXz/p/aGr3St49+Ck94/fUxD7h8bL8f4zG3gyvkbNeX+n
/Tx+tRdM0vvHTYXOfbQbIL3/l2zjyo9TfaT3F1x0UpaP7yW9/56UxJoEZQbp
/bZrBvScK+ik93ffUT/o7NZNev8hVaPG68pdpPenO362kefrJL1fRo9r0b62
dtL7If6djW47jfR+dqtb8XtaG+n9y053sd7graT3Rz06u9rYroX0/ttd3Bn/
CppJ7xe+l6NpeKCJ9P4hWdW7TpKNpPcX32twP1tWT3p/gWJrj3RqHen9WgnG
yQpBtaT3X31ns/Gx9x/S+w9QfwTU3f1Nev/YijX7VJNqSO+v8NF0FPxVTXr/
iflyfR3zqknvVzub75dn/ov0/uCImIXnEqtI77d0iknkof0kvX/rnkYzs5eV
pPe7Oxu9FQ+tIL1/R6OKaNTxH6T3r3yRapfuUE56/9j60Ar1fd9J789aFnbh
25FvpPefGr093hZURnr/pau16x8+/Up6/6ng/vy2pi+k92tXjgccX/aF9P42
qceG9UdLSe+fp7jH9Mt7Kun9fWLfRLi4qKT3W8kZGJhW8RVxvP+J1nY/VZ3e
Qo73S3jkiE/9/ER6/ypPIqzJu530/oJstyVhN3tJ78fXJadrOzFJ728oT8mi
oP6M4/2ZDKymv2PO+60Dqqcd1ea8/+gGPsxHiEl6/vwPW59+sKOSns/Kcfb8
gQsXcTyfz+1OS+oPdiHH8+suhHext7wt5Hh+plFX0oE1raTnX04Zst/P6iE9
fzDRM7nz0wDp+bTDbzH5JJz0/E5MXk99bM7z3XuNHYWc5jy/pdDHjH2ASXr9
rcnHYmeDqaTXY8U8iX+8uYo4Xi+kyH01PrqtkOP1mkvOP0o+UkV6vQRDQlQd
7yS93njjr1dP6vtIr0+fT7x1ZzBJrw/0yNr6GOUOx+v9Ik766BbPeb1Rv8P5
X/1M0ucdOt5cureGSvp88DEToq9WrIjj8zHh/MyjwsOFHJ9f//ddo3kgtZDj
8/zle5QUmU2kzx84LrgqVLCH9Pldrm19PCjPOD6fv/Gioo4PTvq8wCnxRdem
53z+y9QLmz9X53zej2unxtNAJunvyQ8udt+Mp5L+nn/QuIx6h6eI4++7Amzt
KzS7Cjn+Hha7xUEx4yvp7w7K56/HFnWQ/i7Ju1qzTr+P9Hf5pIPcPWlM0t/3
PWm9IIb29xx/vyOw937g7zl/vzskuOG72Jy3S25V8py/lUp6O7fr6ZJ32wSL
ON5+bYb7iHsqXsjx9nmZNRmH7j4ivX39gJ2EuDSN9PZoGaO+oC8M0tuvFwj6
50kxSW8XvehzbmMhTnr7Z7sGu41o/8nx8OAdbmmLT/STHt5Vv0d951Kc9PDi
s7v2LkH7EdLDV9S/MHg959+ivhln9aSppH+X7pU3/3VMoojj367zKhWPlowU
cvzbpCy+x2dBeSHHv+nD+rFyeo2kf2s0izifDKGT/j3wxHL5A+UB0r91qM5t
4i446d98lsu18//j3wUZgsJiIXP+HXnRGRd/wCR9u+TVss9KaVTStw+//nJz
/gveIo5vO+2yf3A0mV7I8e3woqDgB13FpG8PZeNiM0s6SN++npdzuba9l/Tt
6tHLJbE3maRvG+Uf213chpO+HZxWExndPOfbSzq7M7YpzHk2r/feQ0csqKRn
b1fyXSJzX6iI49kGTqnFZqasQo5nK/f9cD27L6KQ49lXAprUaHZtpGc/Njon
cfIwg/Ts+vw9QzcYA6Rnh24e0Jp4i5OevT9+bKXy7P9D4HizqMDbbKV+0puX
loReKePHSW+W0DydNYryjuPN05VV/SLZc76cOHnI/sgyKum/z14ajwSH4aT/
Nl1Tkt+D+mWOz+62bb26qpxJ+qyM1E7DCRwnffafh2pfVjlOeuxBtx9ydPSZ
47F/2sMGL/fipL/G2iSclZ+Z81a7y9/SpUWppLcWBr28prmWUsTx1te+1ufT
no8Wcrz157T22uhzlYUcb1VbbZsUY9VAeuvXSd7JDDM66a28/p1nawUHSG9t
HTTw/HIQJ701/Zoy1/h/vLWrVyx4LGzOWxVOfHZJSWCSnko38rMYTKeSnmo5
0ji00oCviOOpFuMMjZ2MnkKOpx70ui4l6lFEemrUEqWKLRXtpKeaf72y1vBD
L+mpus/aFr1GOcHxVMWjlt3SaH5yPJUKCYkH2uY8dfnryeFW5Tk/Xc5D1Ahb
U0k/XSBuJRkHwkUcP33OeNHjKMQu5PhpdPsV2we5zwo5fir1wdxgjNVK+qnm
Q3+Ja6sZpJ/K7/uXzVczQPopt9NIN7zAST/9zn/s9rYRnPTN8hn51hXTfaRv
suZN5NaOMEnf3GWkEM5C53N8sygqap1u/pxnbl2WsW1kJZX0RmOnge0yN3DS
G98d81lxE+UhxwPFJ9IVTD8xSQ/028p/+U0/TnrgtXuvnbSqcNL//hY2qRej
Pofjf62N5uPnB3DS+7bPb07YMj3nezIvOtyT51FJz7uT/bIO/uN52/lD4iS7
5vzuVXW6lAVafxy/c9+hJfWdjZNep3zg1IqMCZz0uK2C+jLN43MeJ6JdYzXE
nvO2VSxi+Uv0fRxvs9ussjGEn0p6m6mQSIxQNKWI422VWyLU0heNFXK8LSmw
2nD7wqpCjre1i6xc9q6tnvQ25urQ+99X00lv4w7cxcoY6ye97Zvem9QhG5z0
Ns+A+F+z/SDH2/QezwvvjJjztuFwur7bMybpaaay1KvNGVTS02ZOhnPZXOcr
4niasF/Y54Y7jEKOp22teJ+oub+A9LSV2/lMtz1tJz3N6Na6mlsJvaSn3R2p
LwnwYJKepqWZTYtvwElPm2is7lBpn/M0Qi+S8WzVnJ896bxLtNpSST/LYj/Q
NYwWLuL4memB+YEzJ9iFHD+7nph96G90WiHHz2wuLv2UHNZK+tmg34c70uIM
0s+KhWyibn4dIP2spf2S78ZknPQz7ZFaIWwUJ30rOmZbTGBfH+lbZvG/W98S
TNK3jrZ6O1cN46Rv/fY98iS3cM6zBlJcFlJVqKQ33f67S0knACe9iT9jgY04
eo4cD3qjZ262OpNJehDOit7Qg/Kb40FpO5W0j1bjpP9ILXn+NQTtVzn+I+lV
aNHCxEnvObyMuyDnP77jXJ6Y4iFJJT2H0msUdOM/ntPTvG3JcPuc36Qcco94
l4WTftOt3Bg4NYiTXqNSulusFa0Xjsd4pfRfj5uY85jhMLWVgaw5b/mUaJ87
++9RHG+pLFJcs0eISnpL01afgo7/eEqr6R98Gj0PjqcsTg5+Ozg55yMS9c1K
H2fd+f995GlcqyVjes5DlMsPq59F53O843BwdfOs33O8ozKH2kDlmevvON7x
f0MQ5n0=
        "], {{{}, {}, {}, {
           EdgeForm[], 
           RGBColor[0, 0, 1, 0.15], 
           GraphicsGroup[{
             Polygon[CompressedData["
1:eJwV01WAVVUABdBh6B5KujtUkJQuASlhaFBSpBlAQJohh5KUDpXubpASBaQ7
lE4RBemGdT/W7L3P+3nnvjuZW0aEdw4NCQmJRpg/kYxzsEaOleEMJwOf059H
Pkshy9Kd4/Yt4ugFacN2ex9/8Zbczr5itb6KlaxgOctYyhIWs4iFLGA+85jL
z/zEj8xhNrOYyQymM42pTGEyPzCJiUxgfHC/4G58zxhGM4pt/M6fvCGX7/sl
I/Vj3CS2/QnfsNX+jQu8JqezJozQH5JcL8O3HLXTyM/ozQ07lixAa7bY6WRl
+vKfXUMOIowSRLDX+RdyCCmD70Z5enI+uIusygBe2VEyB42JCu4sazOM9Iyi
Cv34P3gesiaDSRbchdJ044jPa8mhpKYivbjuvJocSEzy8zWbnaeVlejDv3Z1
GUliihO8fL86/0CWowfn7Jdk1xsF75/+gKR6Kbpy2E4lK/Ad1+wY8mNascm+
RyL9Uzqxxz7LC7LZDYPnoN8niV6SLhyyrxJd/4iWbLT/IaFejI7sts/wnKx2
g+DZ6Ae5Qqj9IS3YYN8lgV6UDuyyT/OMLHb94HfV/+Ay0ex8NGe9/Tfx9SK0
Z6d9iqdktusFv5t+gEvBP7Sdl2ass+8QTy9MO3bYJ3lCJrtu8L7p+7nIO/I4
a8pa/TZx9UK05Rf7BI/JaNfhPUcti18=
              
              "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, 
          Annotation[{
            Directive[
             Opacity[1.], 
             AbsoluteThickness[1.6], 
             GrayLevel[0], 
             Thickness[Large]], 
            Line[CompressedData["
1:eJwl1Hecz3UcwPGzs529uSiZySojMjLOKHdCWZmVEQ17VrbIHpllVCqlqWiY
RWjbQjQIRUOEPN8Pfzzv9Xl/7tzv9/t+PiepW/+UR9MkJCSM9iVa1JfPdSzt
aWr+S9/kLqqZj+oiBlCVsva+1xn0pLX5in5AS+qaT+kqhpGWYva26zjup5n5
b11Lfaqbj+liHovXpZy9PTqTXqSYr+qHtKKe+Td9ieGko7i9HTqeB0g2/6Nv
0YAa5h91CY/H61Le3l6dxUOkmv/X9dwTz8F8Wl9mBOkpYe8LnUAHmpsv6Ns0
5HbzcV3KE/G6VLC3T2fzMG3iANgg98ZzsD6jrzCSDJS0t1Mn0pEW5n/1HRpx
h/mELuPJeF0q2tuvc3iE++Ks+SjOKp6D9VldzSgykmRvl06iU5yj+aK+y93U
NP+kLzAwztCcgY3xHqhkfUDn0pu25rR8HOcWz8T6d301ztI6N6PjM+kNbLHO
xI3Wu3UyD1pno3Oct17S9+IzWeejsXUt/VlfpId1LgbF2WvGWLPJ3FcLUtP6
Vj0Y90znaTfNQR/rdpqOgXxi7qMFGElqPHP9I85UX4v7onkYzph4dpqZIWw1
xx9bYUbF5zSX0i91gE7RrpqdoXSJ+6b/xVnq+/EsNT8jaGKurb/E3dXl2lMT
GcbguIuaKdZsNvfTQtSyrqyHdD7drXPS17q9pufTuJNx3tbn9PW4p9Z5ecq6
s2Zhm3VmSlt/pc/GWcUdNl/WdTSljvlXXcGQeO/cZu+wLoj3FneTxvbO6xqe
Jgs32ftap8Yzohl32jupKxkav58q9n7Q5+NZx70jKzfb/0anxfmSHP+ebJTx
vW/1uXgONKcu2clBTnKRSG7ykJd85KcABSlEYYpQlGIUpwQlSYr7HGcezyo+
U7yveH1uoSzlKE8FKlIp7mecVTyr+Dnv9TudHvebFtSjqv0jupD+cW9pYu9P
fYNn6GLOymfxM1okzfX/96uYrwHjdKH0
             "]]}, 
           "Charting`Private`Tag$12239#1"], 
          Annotation[{
            Directive[
             Opacity[1.], 
             AbsoluteThickness[1.6], 
             RGBColor[0, 0, 1], 
             Thickness[Large]], 
            Line[CompressedData["
1:eJwVzmVglXUYxuGzEdKju7ulQVC629EhKB3CaMEABttopJVO6e6QRrqUlu6Q
kpQQuPhwnef+/d8vJ1OrsNCuQYFAIMTPQOoFBwIZeGb/xVY66CLE5rZeTQs7
N+/ti+wnnPreMvLcPsE2OuqixOGOXkNLOw8BLukDDKKBzsQL+yTb6aSLEZe7
ei1f23kJ4rI+yGAa6sy8tE+xg866OPG4p9fxjZ2PYK7oQ0TQSGfhP/s0O/lW
lyA+/+j1tLLzE42r+jDd7M9JxCMdSWM7K6/sM+yii/6MBNzXG2htf0p0runv
3Aqk5Iju7n5BYh7rKJrY2Xhtn6W3XY7k7NZd3ZKEMJCaPPD+vVuZNGzUbdwC
xGAANbjuva9bkVREUJej3nu4pRlKEgZRm5H86/uPblWGk45IvmQUQ3xv6mb/
uHmj+7vVGcE53cctzzBSMJg67PEtzC1FQsKpxUPvP7hVSMsm3dYtSExu6H5u
JVJzTPd0y5CUJ3oozewcvLX/5g82085bIT7hpj7OMJrrnPxvn2cvWxjOCEYy
itH8zBjGMo7xTGAik/iFX5nMFKYyjenMYCazmM0c5jKP35jPAhayiMUsYSnL
WM4KVvKV/5uLd/YF9vE77b0VJha39J/0ssuSjKf6J7ca6YkilNGs8u0D0AaK
yw==
             "]]}, "Charting`Private`Tag$12239#2"]}}], {}}}, {
     DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
      AxesOrigin -> {0, 0}, 
      FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      GridLines -> {None, None}, DisplayFunction -> Identity, 
      PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, 
      ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 
      GoldenRatio^(-1), Axes -> {True, True}, AxesLabel -> {None, None}, 
      AxesOrigin -> {0, 0}, 
      BaseStyle -> {FontSize -> 24, FontColor -> GrayLevel[0]}, 
      DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, 
      FrameLabel -> {{
        "\!\(\*FractionBox[\(pressure\), \(critical\\ pressure\)]\)", None}, {
        "\!\(\*FractionBox[\(volume\), \(critical\\ volume\)]\)", None}}, 
      FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      GridLines -> {None, None}, GridLinesStyle -> Directive[
        GrayLevel[0.5, 0.4]], ImageSize -> 750, 
      Method -> {
       "DefaultBoundaryStyle" -> Automatic, 
        "DefaultGraphicsInteraction" -> {
         "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
          "Effects" -> {
           "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
            "Droplines" -> {
             "freeformCursorMode" -> True, 
              "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
        "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
        None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), "CopiedValueFunction" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& )}}, PlotRange -> {{0., 4.}, {0., 2.}}, 
      PlotRangeClipping -> True, 
      PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
      Ticks -> {Automatic, Automatic}}], 
    Placed[
     Unevaluated[
      Unevaluated[
       LineLegend[{
         GrayLevel[0], 
         RGBColor[0, 0, 1]}, {"Critical Isotherm, T=1", "Spinodal Region"}, 
        LabelStyle -> 18, LegendLayout -> {"Column", {Automatic, 5}}]]], {0.7,
      0.65}, Identity]]& ],
  AutoDelete->True,
  Editable->True,
  SelectWithContents->False,
  Selectable->True]], "Output",
 CellChangeTimes->{
  3.773729501273692*^9, 3.7737295530384083`*^9, {3.7737381547387466`*^9, 
   3.7737381890087013`*^9}, {3.7737382197437143`*^9, 3.7737382354710655`*^9}, 
   3.773738293559266*^9, 3.853365495618284*^9},
 CellLabel->"Out[64]=",ExpressionUUID->"9fa29c5c-ed3d-4d9c-a789-afcf699280b1"]
}, Open  ]]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Compressibility", "Subsection",
 CellChangeTimes->{{3.853365550604891*^9, 
  3.8533655744530783`*^9}},ExpressionUUID->"fcc8f772-40a6-454b-9574-\
5a83a5fc31c6"],

Cell[TextData[{
 "The ",
 ButtonBox["isothermal compressibility",
  BaseStyle->"Hyperlink",
  ButtonData->{
    URL["https://en.wikipedia.org/wiki/Compressibility"], None},
  ButtonNote->"https://en.wikipedia.org/wiki/Compressibility"],
 " is related to the inverse of the isothermal bulk modulus:"
}], "Item",
 CellChangeTimes->{{3.85336558112871*^9, 
  3.853365590485774*^9}},ExpressionUUID->"94ecf5c5-3f3a-4c18-a5d6-\
0025c20dec91"],

Cell[BoxData[
 RowBox[{"\t", 
  TemplateBox[<|"boxes" -> FormBox[
      RowBox[{
        SubscriptBox["\[Beta]", 
         StyleBox["T", "TI"]], "\[LongEqual]", "-", 
        FractionBox["1", 
         StyleBox["V", "TI"]], 
        SubscriptBox[
         RowBox[{
           FractionBox[
            RowBox[{"\[PartialD]", 
              StyleBox["V", "TI"]}], 
            RowBox[{"\[PartialD]", 
              StyleBox["P", "TI"]}]], "\[VerticalSeparator]"}], 
         StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> 
    "\\beta_T = -\\frac{1}{V}\\left.\\frac{\\partial V}{\\partial \
P}\\right|_T", "state" -> "Boxes"|>,
   "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered",
 CellChangeTimes->{{3.7735647893570647`*^9, 3.7735647902824917`*^9}, {
   3.7735660158612933`*^9, 3.773566016706119*^9}, {3.7735676244674263`*^9, 
   3.773567625284314*^9}, {3.7735678890224657`*^9, 3.773567891494249*^9}, {
   3.7735683430528593`*^9, 3.7735683709731483`*^9}, {3.7735694681343184`*^9, 
   3.7735695036440487`*^9}, 3.773740311730636*^9, {3.853365630974243*^9, 
   3.853365631367478*^9}},
 FontSize->18,
 CellTags->
  "eq:compressibility",ExpressionUUID->"7c5d541b-fa37-4238-b008-59e225c97059"],

Cell["\<\
This is an example of a susceptibility function, i.e. the measure of change \
of an extensive property upon variation of an intensive property.\
\>", "Item",
 CellChangeTimes->{{3.853365665035244*^9, 
  3.85336567427352*^9}},ExpressionUUID->"e97a48fc-7195-47ac-9294-\
f6ed53d336d6"],

Cell[CellGroupData[{

Cell["\<\
It\[CloseCurlyQuote]s often convenient to work with susceptibilities when \
possible for two reasons:\
\>", "Item",
 CellChangeTimes->{{3.853365665035244*^9, 
  3.853365685218197*^9}},ExpressionUUID->"62ed85b3-592a-448c-9dcd-\
1d433323cc79"],

Cell["They can be experimentally measured", "Subitem",
 CellChangeTimes->{{3.853365665035244*^9, 
  3.85336568906671*^9}},ExpressionUUID->"420fd2db-784b-4ef7-b506-\
1d8be3f43b9f"],

Cell[CellGroupData[{

Cell["They diverge at phase transitions", "Subitem",
 CellChangeTimes->{{3.853365665035244*^9, 
  3.853365692462834*^9}},ExpressionUUID->"31d34dd4-01dc-4477-9925-\
d1d7474eba50"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"compressibility", "[", 
   RowBox[{"vNormalized_", ",", "tNormalized_"}], "]"}], "=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"-", "1"}], "/", "vNormalized"}], "/", 
    RowBox[{
     RowBox[{
      RowBox[{"Derivative", "[", 
       RowBox[{"1", ",", "0"}], "]"}], "[", 
      "pNormalvdWEquationOfStateNormalized", "]"}], "[", 
     RowBox[{"vNormalized", ",", "tNormalized"}], "]"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8533657196629267`*^9, 3.853365735207078*^9}, {
  3.853365769363492*^9, 3.853365795942891*^9}, {3.853365901151782*^9, 
  3.853365901248685*^9}},
 CellLabel->"In[74]:=",ExpressionUUID->"5bdf3598-8bcb-49e0-ab08-79c8fd64acd3"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"1", "-", 
      RowBox[{"3", " ", "vNormalized"}]}], ")"}], "2"], " ", 
   SuperscriptBox["vNormalized", "2"]}], 
  RowBox[{"6", " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "1"}], "+", 
     RowBox[{"6", " ", "vNormalized"}], "-", 
     RowBox[{"9", " ", 
      SuperscriptBox["vNormalized", "2"]}], "+", 
     RowBox[{"4", " ", "tNormalized", " ", 
      SuperscriptBox["vNormalized", "3"]}]}], ")"}]}]]], "Output",
 CellChangeTimes->{
  3.853365735933774*^9, {3.8533657915633497`*^9, 3.853365797340836*^9}, 
   3.853365903019926*^9},
 CellLabel->"Out[74]=",ExpressionUUID->"09aa1ba4-8c4d-48e5-acfd-23a4779ed045"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Row", "[", 
  RowBox[{"{", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"compressibility", "[", 
       RowBox[{"1", ",", "tNormalized"}], "]"}], ",", 
      RowBox[{"{", 
       RowBox[{"tNormalized", ",", "0.85", ",", "1.1"}], "}"}], ",", 
      InterpretationBox[
       DynamicModuleBox[{Typeset`open = False}, 
        TemplateBox[{"Expression", 
          StyleBox[
          "\"TemperatureOptions\"", "IconizedCustomName", StripOnInput -> 
           False], 
          GridBox[{{
             RowBox[{
               TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["Sequence", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Length: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["7", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Byte count: \"", "IconizedLabel"], 
               "\[InvisibleSpace]", 
               TagBox["1608", "IconizedItem"]}]}}, 
           GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> 
           "Column", 
           GridBoxItemSize -> {
            "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], 
          Dynamic[Typeset`open]},
         "IconizedObject"]],
       Sequence[PlotStyle -> {
          RGBColor[1, 0, 0], 
          Thickness[Large]}, GridLines -> {{1}, None}, GridLinesStyle -> 
        Directive[
          GrayLevel[0.5], 
          Dashing[{Small, Small}], 
          Thickness[Large]], Frame -> True, 
        BaseStyle -> {FontSize -> 14, FontColor -> GrayLevel[0]}, ImageSize -> 
        350, FrameLabel -> {
         "\!\(\*FractionBox[\(temperature\), \(critical\\ temperature\)]\)", 
          "compressibility, \!\(\*SubscriptBox[\(\[Beta]\), \(T\)]\)"}],
       SelectWithContents->True,
       Selectable->False]}], "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"compressibility", "[", 
       RowBox[{"vNormalized", ",", "1"}], "]"}], ",", 
      RowBox[{"{", 
       RowBox[{"vNormalized", ",", "0", ",", "4"}], "}"}], ",", 
      InterpretationBox[
       DynamicModuleBox[{Typeset`open = False}, 
        TemplateBox[{"Expression", 
          StyleBox[
          "\"VolumeOptions\"", "IconizedCustomName", StripOnInput -> False], 
          GridBox[{{
             RowBox[{
               TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["Sequence", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Length: \"", "IconizedLabel"], "\[InvisibleSpace]", 
               TagBox["7", "IconizedItem"]}]}, {
             RowBox[{
               TagBox["\"Byte count: \"", "IconizedLabel"], 
               "\[InvisibleSpace]", 
               TagBox["1608", "IconizedItem"]}]}}, 
           GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> 
           "Column", 
           GridBoxItemSize -> {
            "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], 
          Dynamic[Typeset`open]},
         "IconizedObject"]],
       Sequence[PlotStyle -> {
          RGBColor[0, 0, 1], 
          Thickness[Large]}, GridLines -> {{1}, None}, GridLinesStyle -> 
        Directive[
          GrayLevel[0.5], 
          Dashing[{Small, Small}], 
          Thickness[Large]], Frame -> True, 
        BaseStyle -> {FontSize -> 14, FontColor -> GrayLevel[0]}, ImageSize -> 
        350, FrameLabel -> {
         "\!\(\*FractionBox[\(volume\), \(volume\\ temperature\)]\)", 
          "compressibility, \!\(\*SubscriptBox[\(\[Beta]\), \(T\)]\)"}],
       SelectWithContents->True,
       Selectable->False]}], "]"}]}], "}"}], "]"}]], "Input",
 CellChangeTimes->{{3.853365814328342*^9, 3.853365816274321*^9}, {
  3.85336584824539*^9, 3.853365869323434*^9}, {3.853365913321644*^9, 
  3.8533659287218847`*^9}},
 CellLabel->"In[77]:=",ExpressionUUID->"f06abcb2-0ac6-407a-b292-7abe15d43008"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          RGBColor[1, 0, 0], 
          Thickness[Large]], 
         LineBox[CompressedData["
1:eJwV1Xk41ekXAHCDaym6F7ebJVu42U1ENeGgRkhIiwqlrNVEiymhxdJiLKFu
lBbJVllSxq57LJWJsgymxljmpsS99/vNzh3q9/398T7v8/njPOc95znnebUP
hXkGiouJiWVS5//3tqNfLS0s+MBaL4ha+XqcK1luKt5Nefo5Y/fxP8a5dQu/
vAtfywenTPe25tZxrnHKaFCFJR+iNyqmhHWMc+XKeBkb1vOhw//wsbYP49w3
M93zYMOH79z6zoeCca5TbHW96xY+MIprxt4oTnA33Yr9OcibDzOSE1kyBye4
GVXj06LLfKjSjeCtZE5yTTbmeRSV8mFQq/fV8pZJbk1epGfaX3yIzF+4x7s0
xc39wWT6L3EBxBvOcX4LmOZ2oo7DRiMBVMxGXGQ4znC9T8yaiXkJ4Fn3sdSj
HrPcPllh81yMAKrk/2a4hM1x79FWSy57LIBXnIVDIzfmuS8mbIbjewQwFKCb
oDYl4mpvuhWq/E0AHuXskqYDC9zIKFb2oJ4QBor2ZFzkL3LX5B0/KbNdCHi/
nl7V9p1raE4nt50VQrheQ1/3RzGMefqb3HSuEL6Fm/3etVIc37H0O9vbhXD5
sfOt3y5IoO+QrN3rWSE46F2Pon2XRKc+p9zwOSHUbM/cKS1Fw7W9V2RWzQvh
kfKVf+TlaSjXRuuMFglhZcv0UgM1GtZU/nDIfFEI7xWdQzPX0VD52nzcXXEC
nFZcv3DgBA27bUZfn5In4JhWqMmzLzR0yWpx19Ih4E6CJOfOiBQ2FTxlN1Im
itavCSSl0Lo8c9Ffl4B9OrEqFrNSaPI25EmBHgE9urThASlpZHyXkTbTJ+BT
h7XoNFsaew85v7AxIaD/o5BeEiSNhwzfGHuvIyCJvyvXjy+NZ6tbZW9uJUBu
7PboBmlZrNqwLvhnVwKCtmnedFWQxZnqnOYpyr46yQeD1WTxZM3ZCzvcCAif
SYr+3UwWj9SunmZsJ2CA9+vf5Xtk0ac+bihxNwGyBk/YzkWyaNewsTLmIAGn
SwMUlfYtQak/ngQcO0MAng/La+paisMdz1NVIghovjb/z8LAUmx8X1v3kjLB
quu14y/F819amRqRBDwuFTqPSsjhjLSg+V00AVZduU31lnI44mis92MslS99
7ltMlhy2NBd9mkgiQKwP6J/C5DG/rVzhfjIB41cS2DfOyWN8d53N1hQCTi7e
WnBPlEe74TbOw2sEvLucaEzky2OVhPDnnelU/renMl4NyGOhg0n+7xkE3LI3
Hp31WIYJWBwUkUOAzRfLuM9Ax6kP+2kqDwnQL/Pc6exGR79Jem41Zd8lB45U
+9DRin3yX1EuAZ958yUNZ+nIS7TyOVdAQP793Lzwcjr+5MXdHltEgF+4TtJP
LAYKhB3WSRUETD2q16i8zkAv6dg+40oCvg4ckenIYmCjlkXkW8rTIvrg14cM
zNzBqVxWTQDL778Yl3IGbq7ea55WS8DmpIix/T0MvBvPW30TCVj7zH+apaKA
bmpTitlvCHDlMx9oFCjg+UL99W6tBAg8WmjMMgUstfT1XaBs5W1TzKxVQIbH
q4I9bwlIDTJQWN+ugF3xmdYKHQTsGuxyl51TQC/COii2hwAPd7udI1sV0a/h
UnXAEAET0ewh/UVFTHWrGVD8l4CLtoFbSmWUsKGPkGig/H5PcvkmphKumvFy
U/9IwNDMaekMIyUcNjT82POJgMKc7GNj+5Qw5MY7uS18Anan7pLwqVPCE8Er
/AxmCKj1DzZbl8hEU6np2VbK5mRacnsGEwW5XddCZwnISx4KOpPLxBBeMvf5
HLVP6jmL0/VM3O8rqWn7HzVPywKJsnEmuuwY7/cUI8Hn0eEg8FmOutDqHb2E
BKvD9qc5tizk9RdOaiwlwelzXdy+bSy8H305sYHyhwiPjRY+LFStsa+VkifB
MqLQUSuShQzLKtU0Ogm2yt1WwgoWLhrmfchjkvBrl9+PZ9auwF7WBa92DRIk
49aIEuyUca3NfH2oJgnfJMT6cbsypvmf0l2mRYI83d2e4a+Mrk+Dx121STg2
OeY3f0kZG509Et/okCCI/nNA1KaMxdHa3Jf6JIT+vWWGf0AF43lN7DpzEtJU
JA5YZKkiT8Y22duCBOajB42CUlUEs6pJEeV3OWFXXzWroiiqCDdYklAXxfzl
H0IVjy/n7KtcR4Lrj0t1bm9WQ2+noJRn1iTkeoYo5s2ooXmJzEyhIwnnd/G+
HD+jjrucpD7u2kKCXOVP3TLX1TGCJ9Eh7kTCiz9H7naXqOML1vdHPs4kGPen
qywZUUfnC9O+DFcSpgY9ty7u1UA/D97LM9tJ6GLrrUhz0cS4scFnup4kePJH
mp4e1sT8+P77nZQftMRlLkvQREHV+7NGO0lQOfK54EqLJp7RbjcZ3E1Cx4NW
Rwc9LUyZqOU4+lD9xptlJcVaWJZUHTtJ2bd3RvIAVwu72ZVh2b4kbDmeTrPs
1EJV72fOov0k7NeXntoxrYV5TYWLxQdJyIEKu6OgjXU3OIHLg0n4wai9IrxP
G/lWYZbDJ0gIWGlxT3udDt7mLedcOkm9r8IsRm6bDrqk1E2xT5GQ3Oh618Bf
Bx9/ki0/HE5Cz978DYvXdPDIjVxz8jQJV79ENakLdHBs/IOZKIqk/k/WSWGJ
Lt6+e/FaVjQJPOOu6ztbdNHFeTVpfY4EU/rdENG/uvg4O7zkwnkS2Obj3TSW
Hh5xp5vQYkjwU7P0s4rRw9GizYaMyyTcu+gqPRzAxsw9/IQyyvZeKWdLYtno
JJk+6nmFqm+qOLMlm42F3oOFnKsklCWnjX7tZ2PIksjVaolUf+sDn1r5rMYv
waW67FQqHm6k9x7Wx0yl3fGvKacNRzx2SNZHJ+7Cx5A0EmIv169ileljIcvl
4ZN0EmwMTniL5vUx5OWw9hoOCZ+cp70FqQY4skpV0/o2CWIicyn7HkP0cdhM
41N2Fj/xtETCCLsOhvJvZZEw6hCo/sLcCOuyGytn71D7pZz9sD3dCNM1jno8
v0/VW/7kuJa3McrYcqwOZZPwPmqk4FuKMZ7z5a5UeECC8lrlxawmYwy5ozQa
mkNC/3+OqGtmgraqdTGGedS8mEt9HaObYvmGz8EfKItvleXYuJiiwV6G29V8
EjqNrtqHXzLF/dFkfxJltX1j72WumOL/APVv4EQ=
          "]], 
         LineBox[CompressedData["
1:eJwV1Xk8lesWB3BSmwjbbGeetk2HDkoyrcXNJZFQhkrmEpFTiG6aUJkriZBQ
hjQhR11XEWrLKUoDh6JTyDHcni1DbdN97h/v5/18/1nvetez3t+rEXDQLXiZ
gIBAOr3+f696mV/z5RcCXmcyl0JCDXFLccAmQi1XnyXd62+IOLAYdNGAwOoJ
/wMt0waot2tD2XtDAsl16dM72QY471bB8TUiUM0QYh0pX4Mzv82YVVHrJfnt
9j66BnnnN20WNCawyj59+KXzGhzu+LT/OnX1D+93ATP62OnIuvXVhICN0yDj
u7M+ltimGESaEjjvmi+RI6uHB0rZpY3UDo8zr64lHDQVaVGW3ECgZ8bI1ugF
B/94OSd2l5qT/qQ1JImDU17ho2NmBK4+OVoYN6+L9ge3le+zIDB/bKiEO8dG
6a5x1QfUH52eVhl9ZOOHdcmXGZYEksIz6scfszGS/ySplLpDOLZtWwIb85JM
gr5YEfC5ke1/T5KN4/nyGr5IYI9r1omO9TpYt1iTe5c6Zd/ts41KOnjS34W5
SH03kbOZCOqgnO65pQIbAp6GWjvFO7XRuubnx15bAq3xg64qB7TxQtuHPA87
Ak3tOkX9VVpoOl0iu9WRgJO32r4JX038InXK5Qa1gYWX0X1HTTxv6JvCp65X
G+64uV4TR/cpCZRvIfDAwWCEvUoTC3uzxpacCAgNmk1t/Y8GCjclNle7EDid
/SKkS0MDaz8ELAhvI/Aq2e7LbkkNDPiJZnuoI/+pwZdYUMcG44U7oq4EFp2t
hUZ61DGyNPpKoBsB/kKSpt9FdexJ2Rspt4PArPnXMaFV6phUvulWGHV2+fhM
8awaGrdqDj+hXtQ1sYrvVsO0hf5dER4EEn+sM5nKUUOM9LTnetL5B6crdiqp
YcUOB9W4nQRMtdWKCwxVMU5d/8UHXwJuhwJVNh5TxvGnu9HAj4CIquTy4CBl
9AvLrI2nXpZpWv7QSRkd6qYKVP0JnJKfyXmnoozyTo3hfgEEjHM7C/qeKGHN
ke2Sg0EEcmfffuMylXCs47jb2H4CdQ2dzT1cFu6Jqn5mEUqAVRB33K2WhV2s
QfM0ak5xfN3fRSysD9qsZRBG983/x4WDR1l4ji8zFXGAQNHti/2vDVmozb6Z
PRlBoP3HiZj6AkX0iX/T8/MwgZWrJczTUhXovO2ZrlEEnrFbSwfjFFDUssG+
gpqjF3HEM0QB6/g36jyiCYTf4/in2ikgMzbm0v0YAm2hvUJsQQVsPsTaFh5H
QGoo2nXmmDyyQ3y5n44T+C0pL7YoSQ6Pcd8sbjhBQPTkuU0DMXLYxXYwzaS+
GnvTyjhEDk8M/VpqdZK+n3avtOwWOewJWJaQd4pAnnzap2YpOUz1KbXenkgg
Q/KE5q0SWSRuY79zkwk8ng/Wu/VaBsUtatmsFPr9lKL03FMZ1NeKzwmlzq8R
bfCql8HA7xJx4ql0PsYtPMvrMvg+y9jSPY3AXoV9zmXRMvjobVxzfwbdVwPR
2hFlGUzxEOmcziLw9L2NxOUoaSy3fg32lwgIjKPq4VBpbGXnVeVSJ4rdcNzl
J40LM2suWmQTiNj45p6TkzRG5rjsOHWZAH5SelCtLY2ePZf7Vl0h8H115Pno
binU3qkzolVI6xWXxx7aJIVSZyybDlMXsy8LNlpI4WK1e24LtbT4d0dZEyns
XnnaIfAaPR/m7tEeDSlM+Xd/RUkRgf/2+/LalphIFHP3a1yn9dKE1DY+YmJD
t+iYagXtr6zmHcOaie47yASrhu5j64cpkUoJ1LTYnBxJHVkhMMjOl8BJ9RJt
LrXR92vW7mkSeH7cfVfUfXoeKh2f30dIYEfCg7aOWgK2sfLlZ9dJoGPN8esJ
DwhMyekWxTeLo62kuPdEA4EVSS0DpiOr0Oi5XmsTl0DJdEwh21MMn23ozpVq
I3B8OKRvtZMY7i5LDA+gfvT0lqCijRieSxiQX/6cwKix9sAva8Twk1X2fvt2
Aq5WxbWNS6J4vkZAsuMFzfuwd3UnK0WR5Hd7972m9ZRsufoMUayKSPo23Uf7
n73prv1WBPVyos46f6D5pDurYNcugiWNgWql1D4tb2vCm0Qwi2nrsv0jrfdK
2P79bRGMqVm8W9NPoGD1t69CZ0TQcuZIxMG/CEynVK99vlEEufGhEyPD9H+Q
uaq5sUwY+9Ncxvp4NA8vzMmXXmIg+2faqNEk7SdVJ7kojYEHg9v/Pkttt3ak
sjiRgQLWdiMm32n+iigM1UYxUOub+VDqFM1Ljky66g4GhriyByxmCSjD6Yyf
8gyclFvoyp8n8FBxglleuAKFr1XW7xLmwYKy38SjhuX4+rPuwH4lHiRyrsvJ
2gmh4zWZtxwjHhy4ckc4dUgQg9I1VGPseNBlQ8KauAIYd7DJwsebBytk1A8F
Fi2BVftLvekIHjRbvKqeblmAEo+FA0oJPIjXNkvfvmEerJ0rg6OpP3sVmnN/
nYfef3ju6aS2iXKctNSfBymjapeERPr8XMFYI5V5OCkWbDyWxAMN5/Ul1kLz
4NP0Yrb+HA/sOFtLvnbOgaJ+wemdGTwI2GRrtjdsDmrVN/+rllpkJNvcNHgO
XBRmDktk8mA8T194pe8cnFm+LbiZOlknY7bObQ6m+4Uc9C/woHD9R4F15nPQ
lRUmzs/iwZSzhGL1yjmISFFkbL/EA0OV3oHbQnMgeurp4h3qdzcStt9a4INN
hBrxz+bBcJ+LVRWPD1UOb7qeX+bBcxW7vj//5IMTnPxDK4f6YVjP6Bs+fF1v
0BpPzerwilp8yQdVrbO/G+XyQNUi95RBMx/qWevuplLHOx/55tDABw/mX2VD
1Ewn0+m9dXyYZGRcgys8CPVRu3C2ig/pC+a5V6iHOMefVFby4X/ZQjof
          "]], 
         LineBox[{{1.0000520286243093`, -15.263739374740046`}, {
          1.0000521711201813`, 15.207832323331942`}}]}, 
        Annotation[#, "Charting`Private`Tag$13275#1"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0.8500000000000019, 0}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {{1}, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0.85, 0}, 
     BaseStyle -> {FontSize -> 14, FontColor -> GrayLevel[0]}, 
     DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, 
     FrameLabel -> {{
        FormBox[
        "\"compressibility, \\!\\(\\*SubscriptBox[\\(\[Beta]\\), \
\\(T\\)]\\)\"", TraditionalForm], None}, {
        FormBox[
        "\"\\!\\(\\*FractionBox[\\(temperature\\), \\(critical\\\\ \
temperature\\)]\\)\"", TraditionalForm], None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {{1}, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5], 
       Dashing[{Small, Small}], 
       Thickness[Large]], ImageSize -> 350, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0.85, 1.1}, {-15.263739374740046`, 15.207832323331942`}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          RGBColor[0, 0, 1], 
          Thickness[Large]], 
         LineBox[CompressedData["
1:eJwVV3c01o8XNkoqlQaZyYjKCKEIz2uXWWaEIitRKhmVPRPZklRkRGUlFPGR
rOw9XvN97fVNg1Li5/fXPc+597n3nHvOc+5zea2v69vS0dDQ3Kalofl/1LSd
bq+cua2oc+IPzzJt18dNKhwuI+yGkCPJpU50R1Ucf56YXMhug+yCd+rJ3fkV
41wCfu6C13BwYO621GJVhVZz79un7K6wSe3d5tHdViEQzp2xzuOJ66PB0746
5IpVzcuPrAS9ISI6SnAsUitmA7uqrRL8cNls9kpj7UyFic2v8hj2QCR3UOOu
dC9WVKtwlHxODkbwfs+77LpLFeL8Cvk/ee4jbH5xq5vOn4pkukvZh9Ie4IBM
GpNv53oFI9X/hbHgQ1hYupO4FumI0tGO5s+GUdD9lKfTJstAuJy10TRPiIbB
nh1Tg7VbiaFjISoR7HFQ1jPP8utmJuKes1UeuhCP90p0mbto9xKau17JVyQn
gIhxYdPWZSGK/2uS/srzGOsZZcGdOhyEk6Xl2xCrJLBdIswP0nATfC1fxQ6m
PUHxb8VLPF08xMOcPYfPCT7D6SIZv+RFPkKNOz19xv45tE2kVYQjBAjv2iTm
T4YpGOLup0+QEySkZEQiTBNSMWSkq0Nff4RIYdELDmNPh6vqc//cHnHibvOj
auPSdEwyKSbdnpYgjING6fgvZMBpMbsvj+44wbR0w6csORNrm5xC/M5KEx5d
cR7zPNmoi3E7+v6cHGEQPlT8vjIbBsxzATIvTxFiqoJLgVavkK4RkSqxWYEY
Lyy5wZ32Gu6R5Op0MohzsWRHXcFchBzjLOtfUiZEtPizOepysUW4YHNmlQrB
SO80NWmfBxrHm7PvY1WJix/WCgjDfHSKKv0qUVYnWI5EiZ1PKEBDnaqgetcZ
wo+xUOg++zt4vg5afTl2ljiqER361uUdPCymmfQ8zhEdQddnBuregf9LhW/E
Ln1CgF7ktZhbEfQ1Tu7pVzMgav+li3V1FIPvm3bgQrsRwfQjQZon/ANKaFqX
nzteIIokbiecHvuAULvu3K1HzQlLF4NfN+RKEaUTz4F5cyJvYdeH6ulSkJL5
HXg9LQn96VB5R7WPeO58X6eAfIlIHLqjUrRWAdG8mq+/LG0IJS7T9GEjAg8H
ahTiemyIWbMTmxlzCDTKJvF26dkSB+Y9L+eIVuLJd4EkYw074voVmUM0gxv4
Jb05r5YDUR2a0R235RN4wtsdYtscCLasfcFHjn9CsVZBKtXkClE5+X1SP+wT
xNmt3ys4ORJ7bPKyMk5WYadGPrE1x4mwCzhgKmdTBQEDMd0gZWei7EXE1tbI
Kjw+REN7kuxM2FCuOv6erMK7xb2uXszXiSLLwyJa8Z/hsc6cKdzsQpw3Tc1b
/FaN8HIV58akW8TXAcNtLzhqwOEXNmW5dIsItmS0NVCpwXceCdOH51yJwsvX
OYrjamCZeW2IdtdtYuc1haC7J2oRL/6Bm5TiRmQsLo6IXKqFWnL93rdb3Qn5
W+lyw6G1kBY7uWx1251w9Ni+SCLX4qJ4Bu2sgQdR499vxuBVBw7p064cEncI
880RRSUZdRhqS5ZdzLtDfA8hMV9pqQPrSaE1Hsm7xMGIlzWNPPVwfOOZZqx0
jyjZdeGg1+l6mNEL1Ta13CN0Y3beFbtRD++wCwb3LnkR9x7dFo+uqsdIx7m3
z6O9ib0cRx4oz9WDGl7/Ik/Ch3iVPDjxY+8X8GYZlkj2+hC9qSpPjG2/QP7h
sOHuJF9C8s1uBi7GBjwoiDXy5vUnvojVXGoWb8DAEb1fExH+xKUCjzJv0wbs
v2ybIr/uT0QUj7hQXjUg8C7v2r3vAYSAbGxjTGcDKrmSR5xuBxKlZeqCqqsN
kEDyY/P1QGK6MmcgU6cRsw5+PGzCwYSPipXMebdGBDdGl8W0BBOstfuitz5v
hIDeMQnXeyHEm9P1c6V1jbB6UOcwJx1KqDTeVXdabISI5I5p49VQgqxzLJWb
vQltT+KCdNvvEy5t1L8tSk0oidCOzysOI551nymQiG3C5qQbsSNl4YT0+X/b
x8qa0JD+j2RHiSCayPl2ceNNiPFdSaLhjySsLWw+qe1oxv6WJ7zPlaOIlZH9
XL+km2Fx5cTrQYZoIsq60S3LshmNN5M9CynRhOCEd7tpSDO0nLwcA3pjiHJ7
SZHt+c0oPxlxd3QhljCcnQj+2NeM7vL+wE0i8cSc02OKM20LTo0SRu5PEgj/
r9ryPEdbsGvfC5GdZxIJ9ps0j9r0W+B61T/gnnoSkf+z8Jvf3RZ8kfhSOfom
mdBwt9c+nt4Ct6PM7Jypz4nhFY6X400tyFv929KYk0q43muhTVhqgZ2EFPUp
Zzqxfd3PXONAK7LuvKmTd3hJJF4xsRRRb4XCH7mDtVvfEAJdIpd2X2uFhp2V
UFViAVGgSGe9HN8K4eVgtVuDJYRidu/lgfJWRLhrVOj0VBGNe3NsKydaERRc
tf2YRS8hgk+FHQxtCA2Z3inHNYmbP19L1XC04T3r3VBr4Vp8yE4oKhFrg3dP
5rGRlfeguegn80q5DWZ/s0bcJQugvs+pJNm4DZQjk/Sm69kI/2J8MtKxDRZ5
h6sDy9PR6a30wc+7DYEiEZKn+VPBISUi5xrThtdVJ8pEtzzFpRnWMrvMNozS
yO4uZ3yMzGe08qalbWDKEmaVH4/HgsH8R62WjXn5Q+y+ZrGQ2tqroEhtQ93w
bE6GcjTuVHyqEF/e4P8W1NtHF4nKW2/Av60dcoVV57M2hWPLkUeVLAfacXHh
7NmDN+5Dd9hPiVGyHdo/ppYHJEMQF+tU9UetHdVkm3UNuSCQT5uoLJi242q8
2pkrdwPAu6ZUPeLcjq3m25mo835wKBRR6/Brx4jfu3bVEF/kOuyvrY5vx+Cm
dz+k7nvjJzedRkl2O2ilS5hZSPdwqnO+Lrt8o//LSloZ4TvwD+09ndzejpZp
G29aVQ/UK1R9eTjRjmV9c+5fgW4wynrUeGtHB3ib3++Ncr6FZAt/bTveDjAc
WBlc2HET1D3OzeelOxDZl52QV+eCw/UmulpnOrB+WOdLkfh1XPdSblWw6IDv
i9IbsX+dUCwpelb8RgfKz4fWyM47YnVqfztfUAeM/RTlrNcdcF9/oWNLTgdG
jX1Wdvjbom1Ln8Gfyg48tIgZqp+/DNbyqq75rg3M3xdg6WIN85s5RiPTHfig
6uXFuN0KaUKJPe2rHfgdE71o5XYRs4P+JtXMnZD0bz7av2YO8RjnvmKBThy9
9MZo9o0ZyleVyU+0O7EndbV42sUYm96KXnh4qROJipwNk/6G0LRnG/R17UTJ
aeJo3Ft9RHHRW9wK7URbQmaGw9pZ9LYvDNkmd0JQ55E8TYMuDoT0WZ7P70R9
Yc5D0QYt2Mh/HtGs7kRZyv3M7X9P41tmIuXYfCcGBXbcT5tUwUnzAGs+mi4Y
bbl4uPCpErx3Xxvbt68Ll3rXrURXFVFde95my+EuZFUmFucxncL2eyoTK6e6
kCn9/QrJ8QT0JcTs5vW6wPfoQKrTHikkTrJNDV/uwrJHecAynQSGn9A7tLt3
wUOTwSP1lggOnftv+vODLnDMmw9IOQqBw0dDzj61C4Gb47JVw/jAnJPyYFtJ
Fz7x+5ILgrmweWBlMKepC/VOBwtf8LPgD6OB2DlqFxhYl07EfdmBRZk3Pj9/
dYFC83vHtVB6TNhsbn+0oxvyZa9DJL4vK5JjLPlO8XejVi2IK0djUrGtsuTW
8MluFPPyM0emNSnW/Mdc46fbjcsKqsvDimGKpVyOrIdsupHnLlhQXZ2rmK/5
2b7esxs/9DxUs6V6FTM8uD5cjexGa13CiJ/FgmJS5u1tuzK6EfSr+4d39F/F
qK6WC29Lu3E0drdBigwDgugO5xi1dePimRsSNbrMuCPut/Z7ohtryq0XNb1Y
cd2SrJf8txtHxkifczO4YRN+PBW7e5A1S3fXd4wPZqXh36mCPXh68m6FmosQ
9KYnVILle2A/Glk67SECVVbEH9HvQa6PKPXFmjjkVBMnm+x74CUlfSZ77TgE
UjTv743twalWapfNezmwt6SRi7N6YPYWaWduKmLn6qqwWUUPeB226ElKK2HF
JK8lZaYH7CtaRQwP1PBfEONB1fUeWErW39gxoYHxQqsbU/t68TRxOjzXUhMt
u/btEyP1on5HzsXrBXr4rOBs227UC1vXQHcPtXN4f7W22PVqL/bKKgk4VOkj
rc7DtCyhF43Rx/s0F4yQuNT+yvJNL1R37sn2emKyoSvhVdqqXvB77idbmpnC
w2fo2emFXgjb2kZUbLOAc47M4hxdH/5+sREPW7WE9UCkUiRbHxjPr0q0+lyC
zgnl8W6VPhjyJ0weemoNvq+ZRy4n9eF7+9Gblir22M9Nc5chvw96V8bkqQEO
YNIybcqu6cPohHhyffMV/Mrcfn1xsQ9CQn/zjng7ocnS5Z2XRj8W3rytFT16
A1XhXzbzWvTjV59DVfC3Gygp5TOpvtkPI/thV4aKm3jB2r2y7Vk/hGOyOMrs
XOHeIovEn/1Q4jxL0/XbHTvFiia+MJKxePmb/yjZA+kR4uF/uchwdz7wkPLJ
E+3aQv2WamRsyVjuWXt2F8KN+24dSiCjWO7wHptHPqg6GsVu8ooMT0Tedjjn
i/Nh2ytDK8iQiyoVI/f7IugM3Y75STKS2hYe7/nhh5G6r5lvTwzAqoYhpUsj
EG5CV3XGtQaw+8pUo9V4IJhCJn+wXBoAs+8688+AIMiqD5E8QwdwZIR8X68p
GLHVDWT0DyA6lI2FJuA+ND5l7Gy+M4ghF0XDD9GRGD7IW7T2cBDEx6SgOoko
uPomXxBPG4TL0Bm9iOQopCI2K7ZxEGrMwYVV7tH4W+6rbMY1hO+UwM331WIR
w706/UB8CEt2//6ulcfisJd7ZLnqECoyBI0CT8bBSP7a4EHnIVSqR8v3H49H
XukFt6nyIUQn8s7dVn0EdY5eLvaOISQuyBmKtzzCoKf+Z83JIUyJmc1ImSVi
q+wZ5tydwwjrOcIg7/kYl0tkXrleHMZOffJ1ga4n2P9u9zAt7QgudJpWOPqn
wDz8r+E46wh2sioK7h9LwQubicZakRHwCEjoXFNLhQjLhw8Pzo+AflBkm8yu
F1B2uxTPkj+CO4bVpyglaQjV1WT6XTOCZ+az84mC6WgWlAogD4xAa2Dwivij
dLyZC3jfSj8KxUxnY07vDMgkm2TGHRtFuN13w7zLL2Ea2kQJkhvF3gy2VUnq
S9xzVeJ2VxvFtse6SR3WWfikLRxnemGD7+0rFOyYDe1/a34HQkZhV708mBX3
GlaWmRZZw6PYb+sa3CGaj0BNzsePZ0ZxwOTI+ppPPjJlorrCfo6CxvRngH9n
PuZ33tFy3kaBI31OQZp3AdwIHVlJGQpWA1geTk68xePXVa78ShQc9nlXZa1S
iI+PTuTv06ZA9GnoBesXhaB14RX6ZUXBXl2FQnrbdwg/uLTvYwQFHEtSYff+
FSGXyfFsTiIFU+T2qkr7YrT/Hn7wLI2CBco2prLOYrC219P5faDgtogwFvJL
kLrxRatNUJCYLzq60+8DiqkqTa3yVOSOUVKnvMvRc9rvW4QGFSuz84J+myuw
nFvBqq1PxYV7XF9PPqzAibuyVvX2VNDkCgccyiTwfu+x5coYKma13zne/l2J
Pk8nTp+nVOinRdQVq37C75FskkIWFebkw8HCMZ9w8o3Agw/lVGz6T7avSrxq
465zHHw7TUXL88vJJ7w+g/zKRM3lBxWr2V8VXnR+xh/meEexNSrGTpFpHIWr
ITe0q+jV3jGoR/mmCI1Uo/T2Zs00xTEkuTHw05yvxcfMxVtxcWNQWAxJfR33
BYNMYo/1n49hUqfRrom+Aas3r1YwvxpDhbiT3VvXBihgkjGCGIOSalrC/IVG
VPQOPA2aHQMDX2fkL1IzhhXYP6ssjaGav2wzD9GMtTTjaVqacbhzprzWRgsU
XdolvVnG0c3suHtYrRUEY12dG2kcOnr3lp2LN3zitU0LUlrj2PTniCTnWhto
upX2/DAax6EosuM39XaQUj+aX786DtrsQ0mig+2olH37zT5hHOzSS9r3WDpR
5fiU03R+HE57NuVF1HejcObqVcvlcXyOniw7ytODdAe5sss0E2Ap82/idu9B
kF2v2bV9E4hnkge3cC9OW+9OCpCfwEHhuv6j6X2QpYzMhKpPYIyvpOAgQ/+G
T8qVfXh2Ap9EB6WeXekHk6VWf6LNBOQJozta0mS0mgax5YZPIHXCJUB6dACV
fQYOhQkToDrv1RXTG0S+Cd/79ykTcPyR/WeaGESMEWHy+d0EvK4e/vc5cwjG
51YS+gYnsHehWOJP2AgGTzuz0ItOYuQEq0smmYLmulO2jCcmYaT777ESHxUV
6tuKdihNoqhSzo/xKhXPVV8ashlNwuni6NdjNGOwJlFiRb0mcUPQT+i+7DgM
iLwxyZBJpNKRNA49GIeqovfxk9GTMPM+o8s9vLFnec5O5YyN/nULtadCJzB9
wmjP+eZJNG6ZXVhamER/Mb+1Re8k5Pkseo5rTaFB+nuBNWUS1QbnxLa8msLr
45HnnJcm4VnYJfLQaRrXjn2J8ueewjVX0a2MDLNYElTYleM8hfNKQS25MQtQ
pCrXhXlMQcjI6OfY/v8Q/PS0j0PAFN5GfrF99fw/sO4z/Mr/eAqeJo/ohUq+
Qob2amtS9RQs4t2eN9F/g/dHlxCP1inkdDpzhZ77hlp3NxiTpzBn3PGmOeUb
TP7zy9u9OAXeeWsJLtXv8BhIjAzlnEb1abux/mc/UJnwTMNOcBq7fA3sf638
AKN++rqKxDQiXvE+WDT+icf1edfX1TfychTFdNYllBbV6rndnMaPHqESx9xl
rEb+3GXzZaNes6wiWOsPVLX+1Cl1TYPjwsqr5IY/CGeg8eUZmcZJ3t4fbtp/
we21fZH8cwMHatd8Pr8KRUe+tnMHZyBelLT5a/wagg8dDj0mPIPUCodMQ9F1
tIyKknbIzKDvUWbhofp1WJrI5tdrzYD3aHqsdCANyUf1bBTcN/hRtwZEBmhJ
9etGp7n9ZxB/UOXrkjQdibnsAs3f8BkUmpQcpcTQkVIk7F2KX8wgbFNClIUB
PanygPdZ0ZYZsJjJBzUsbiIxkgMYt/fP4JfW3s9elptJZ+PvV06PzYARXLWU
ls0kyvZ48fSVGWzSjFJkfs9Aolt5zcx5aBaCPDxTvrmMJM5m5R84Nruh/+13
JIW3kqRS+7ttZGfxwH3Lw9FXW0m2Z7Y8ydWZRfLy9x8RhdtI9Y+tDym7zeLZ
fReW0XkmEsV5ZYu97yy6z13v5gvcQfqjFDX7IGwWJazLvBI8O0kis+V53c9m
oR0VdUbYahcpUo5d7krdLIJZFQ04mXaTsnbmcz1sn8WOd7fTShx2kyqp6utv
B2bh2nfFsaZuN+l7mGv16tdZHB4TZbsfsYdkPNCqG8U2B4ciSpqI3D7S9Tw7
iSK+OZx0ecrW+GYfKTTg316yyBw4BzwHk/hYSB+Ehfv5lebwr4EuTpmNlcR1
L/hyyZU5cHzdtenoMTaS9Flu9cFbc+ANk/CrqmAj6Qq8O0zrPYegTNP9j/XZ
ST5NlAXNmDmES0neyQjhICWmeLRdT55DAtexSMkjnKR8112FcZlzaEkQCHrT
ykmicil4DJfOYfzAP3VREW7S38VOM/qaOeT6nxB7SuUmFdvvOXW2aQ5cblZb
tjseIP0PbK57AA==
          "]], 
         LineBox[CompressedData["
1:eJwV13c8Vf8fB/B7zrnnXivXDkmFhIhKQ8XnnVSysqKUkZSS7JS2SMjoKwoh
igYSGVGSzEp2RFkt9GtQuObl9+kvj+fjHmd8zvu8P6/3EmdPy4Mkg8E4QzAY
//4ufqsp3ik3iuT897MF3eShM2hld4DOKHq7zLiPa78QbmtVr2nTG0X236p+
vFmxENy7d0dpGYyi8k+rc/UYC4Gx7gIaMBtFLNv71ZPpcqD8v4Y0a5dRdLJa
K8hrbAH4mbsf0oweRZSKs4Jyrizo8ebKwmNH0Y/8GObTMFlgZ16b358wilbH
q4nXHJCFROrZq6T0UfRi4flUPRlZeFnEv1zg6Shq7flmfDpMBoQX3hv6+nUU
3XNTOxxzVhrAJqj7y/dRFLZTSPmXozT4RDvWff49itw9i43i9aWhnZC+1zcx
ipYu+SD1kU8aUvpDHbqExtAzeCAxEj8fVuS61bdqjyG9/wzsLtRIgdP3bc9a
dMZQqAcv0vGhFMQoKD5o1htDNo86H52LlQJu7MfgRsMxVKn3UTfggBSUBZhs
qts3hsZXC37czpQC0y0rsiqCxxBRzylNMJeEc2cEEl6GjaGEokQPqY2SkFvY
H1IeNYb67ink1CyVBAmVW85l8WMo5Pbk8hfTEtAlJCL7NHsMRReXK80+kAD3
9j+hee/GkKLtnnR1jgREHCk8lKrERbatUR/CJsTgf/AwVFCNi2SM/+fEGBCD
7dIZmf6aXORQUvP8VpsYkLWxv002cFFM9eywTb4YBCj5+U/u5KKqYOGjCV5i
cKh3VYjlaS66sjHhFOuvKFQVqd1/foGL/D0vWDZ/FgWFKIU3KiFc5HOw+8nz
VlHo3iQmPHeVi24d9Y2bLBQF68Q/cVl3uUj3XeyHv6dFYfOu3AxmCxfNyfuu
SZwnCinq92s933NRekeoswVDFGao1O8furhISrzgqNKICBQ/jtbIG+AihdVC
rXKdIrBCxLPQnsdFqTFFp8zuioBcnUZ1kco4irds7vLbKgJcyPp6+Pw4Wvtb
68iMKgdK03/cPBE8jogf77c9luLART51q5CwcbT/99WYcIoDwk3ZL+9cG0eM
zReU07qFQdkxJ6Xn3jgSvft6t/01YbA5m7fbumkcuX5Xba1nCkNhyZO3aMkE
0lB7lZfEE4JTCyeCzJQn0IlrsaIiv4UAAtdvtF8+gc5dcVZI7hGCt4YlD06t
mUBbDHf5UOVC8PX905DCHROoKvJUzlSQEEhwn8NynwnUH/w6x0VECPxWVRVI
VU4gCXve1FsdQTikvTj1v1cTyHBRqx2lLgi71565ItQwgUo6/is3lxeEjRu0
ncnOCbQhvbZJkxIEUj+d8/v3BJoXxAqbrBeAaItgt2rZSRT3kt/kP1cByPQy
WOznM4kaLSuVkx7wQ5JPquDQiUm0xtHj854Ufoj0m+EeOTuJDhe6rFa9xg9e
JwvqHUMnkci6BObMGX5Yd0HptHHKJHrJbAn2sOCHqmhmu8KbScQNk9I8wuOD
3pyqK81LptCIcvzyDic+aPrF/Llq2RSyGOswK7Dlg3L1rSax6lOoKfjovWQz
PkjNrBayXTeFalsC4m5s4gPnuzWRXSZTqKN8unSpDB/0J7+KHjgxhaimxwXX
37HhV8Tba7z6KbR13jHFVdZs6KkTGnVonUL3NRaIhZmwoUHA1Lq8YwrRufeC
/2fAhpzQeomgL1NIxCo/6+0aNngFN8TxTU4hOVkJtpA0G0ZPN90QV5pGr127
brv2sGDa7d1N1VPT6ORN0YxFPiywXmv/34rz0+hD3CctSXcWZBP9IauDp9Gm
RBUFsUMscIgf99aNmkZ5FS/YCnYseFkta2hxexpN9ATcjddnweXF+0dPvplG
9xO/F7yXYIF4+y+TV7IzyPhXiMuuMhrc0/z16xfNIE+Xd2sVS2iocp9b16I0
g7bayy0fz6fBnxJV7Foxg3S2idrkPaChU0t7ckh/Br2pcis/FkfDrSunMuYf
nUHfhz/5zB2jYflm9uyhZzOo+/zXVlNFGnIzs5Z1lM8gMuuZrqc8DdoS5hY7
ambQTaf03OsyNGwaiE9f3jyDIu6/iBzn0GAWqWY83D+DLv49rcHgMcGn0zQ+
QIyHQi4qnV3awYQS79hVEUd4yE25zfNyDBP0Pq7fx/PgIVv18jd7ophQYdB9
ycOPhwai6jRWhjPhzXzlTvPzPHQj+/fQ70AmdD1/cl4yjodEMr+nZngzgSHw
8W1KOQ/l3JConLRgwvbbS1zz5s8i7TitbxwpJmjHCyvXyM2ilYmNXvliTFgc
Nf31w5JZVJ3BfWjHYcJUQJszU30W1Up7qhXwMeGhRZiDLcyigGdZ2THTFIgT
f3bxDs+ivHizkclPFPQ6lhvseDqLPux62m2VR8HbXQ8phxezKNkkavXBHAqK
jRMrfKpmUV9kVUFAFgUx6/wgqWEWdW3frJadQcFWjsqmoc+zKF5JKWBtIgVZ
ZdGr4wTnUMrSK/7dQRScWOio8GnfHDre3hS5bw8FzuZaNl3759D8eaxtnTYU
mAUR4e8PzSEPV/nU3dYUKH+/86feaw69PqmzwnEnBe8KBsufBs+h6rQGpytb
KdAy8XGMzZ5DA69abtuvomDw1KWk7TNzaGaP8OX2eRT8z2b54TQGAyJzdKVv
C1LgNCxOLqIYUJQ4PerJT4Gx4rc1snwMSFtkeVmMpkAh7HKyiBgDZl941/nM
kNBk/dadt5QBV/Y+KU3+QYL6z12C700ZcFn9z9bIOhKKrU1ehJsz4JkX1eL7
moQtz/V99awYUM/WKN1XS4JdlObHjN0MCDbdmLqmkoQwLf4svwMMaHAwc6Ce
kdDvV2okFsCABZoD/kJZJKTyFMJN0xkgQ3ZPVUbg6x2S0SPuMWDLwRe+f8JJ
eNLA+VvwAN+/7Cbe4jASGm7N7JF7xADTWG2dkEsk8Da3q/4oYYCqrrz0kXP4
+iFhr0MbGRDaEHMtyosEcc4wX9UUA9hKoGxkQ0LL8/DLO3gMEE4NT2qyJiHG
fSmrcY4Bauo5d3dbkSD2xo76wCRAj3vC65g59qVq3pAwAYGuBrkPjEgQmU78
u0CRANZO/fijiAShga1dvsYECHYeVBRUI+FtXJ/dpCkBklpTRi9VSIgwON15
zpyA373hnSeXkSB4O7c9bBcBK0eOK/9UIkHAfkHzLUcCdrxM3PtlEQl8rcPV
db4ExDKdZcSlSGC+uPlIMYmAOdrH2ZMi4cMmA8PeFAI6eXd560gSHj392ZeY
RkBrlJooSeDnL9IVE7uHj5fyvZk4S0Dew14/xmMCDMerJLsnCXBIUtzQXUuA
UBjz2N1hAooDsqqujxBQ9njr3s29BESNW9lbcgkY+bbeeW0PAQeOz4zNw//X
dtLpiXo3AcLepssu4fPufOS7feFHAg4eHgrz5Seh1n9e97z3BIjZrt5pjp9D
0u1b2/JGAo5qP+vkNyYhP1qMZVVOQHlTW3axKQkG5hdLfF/gdTo2fN4Vr/Py
N1si4soIeJGxVLl6FwnGe19f6SolQHz+VZ8LTiSUFJ55f6KEgGeTLoLjx0nY
5C335jN+LsEXwrpfU0nYfOlBQtBdApz2qopcu0PCdrco55oMAgrHt3zZfJeE
Rl3QEMB21AoIu4Xr7oBrSlXsHQLy07602RXhulQO/lKYSsDe4GKPZlznfT7U
smU3Ccja4ZxaxiWhqLJDrvwqAdrqS/TQJAlq4jvU1bHLhPs+vpgmYXHJUzoh
moCmVvv5LxkUbDRYK3E8ioBR+z1RlQIUhEmURa2NwHXlY37mlTwFAzohx3su
4+MT9Xa3bKOgfnwVs+w8AXvO8sYsd1Dwq7JilT72Z8fSa63GFCzSEZOpPYfP
p7Sh8Z057mNkvUDrWQJkHq3Z9t6OArXATt+R0wQ4V6prd3lQcK5EZ2DXSQLG
fsiK9F+nYJ5wdlWyN66r5IHapAQKIt4E7tHEXr2z4LxVEu5zsa75L70I8H5s
OlSeRsH5U5P5g54E/Dp5oeFmNgX6R/3eIw8CvtH9ERYVFLQsfaIodpSA4CeP
DfiqKVhx/WjFIzcCFI+cnymrpYCzv1HODHv/W2l39XoK1ibvJyOPENAdY2zM
7qBgwc+JC+KHcV0tyuN//ouCJ7PCTfoHCfBrPvvSd5gCttxc/w8X/P6DjALU
RijI12nJjcO26P8yeGOCgoyrxN4fBwioz5Z65UMxoVS6cirFmYBqnTMhKjJM
QBGnR5Sd8Pu32k7FGjDBXTxnc9FeAkKNiy/JbWfCPo1VwgHY+7ao8mXsYMJ5
pXuHN2GTqwXnFZkx4VVEV3WVHQFmYo1SHbuZYPyuXaprDwGDTTZqcseYkKum
/UJpN67HV7XZ6Z5MeD6doTtsi7+f8vWaGj5MKLonblCKrZ0rq613ggmtw14D
u7ADo3t0nfC+x5pSPRdtQ4Cs2SGL9DgmOKXZJC3AfeHX1vet6vFMeBzd4zlk
jb8XXUObwkQmnLpbXl2JfUhDbW/NLSbYPl0zfgw7X+i3y+ADJsyYHXR9ZUWA
Sd3xk+plTFBV/7wyzpKARZX9UwXlTPBH+aQ39t+ntmd1K5lw43K4uSl2QqbO
RbNXTHj3geHMxu4P413xamGCkbGIVaAFAecNL90q6GfCzi0vlSNwH2txOLxP
6zsTFB4c0PLCVjpuLJP9gwlvQ60fWmO/SRO9dmcY79P+U3Py2BLTySExU0yw
+mbBKNmJ7180cIswzhHluvuTUrFLlrkwwueYENLp/yAU28Fa7VQgk4ZzRnGS
dtj3HxYd8xKmYW5bowaJPVWZoPZThIY6A2T0y4wA0w9nBlzFabgbcKatA/sv
a8t+R2kaGl23rcvD3uTUaG2mQIPHijOLXbGj/B+LvlGiIWpxcdYu7E8RcQ1b
l9EQ+uP6HQPskJK9hrrqNCTIq3coYjeJDW5UX0tDSJOR6QDu6wqqdRP31uPj
m1eu7cQ+jnIKFTfiHBZ0K6wOW9bdT3MB0FDGpj3zsN0v2v68ro9/dz3JyMB+
Eb/hgdhWGr7GHZmOx3apZigKGOGc1VCmfhG76OOX3ksmNGRKpzqfwOb/W5NE
7KTheO4k4xh2jnyk1KQVDXtixfz3YDPWeLX62dBA15mbmGNbGVtdHd5NwwdF
Onw79sQJGYFBexq6rJo2rMM2ipqpOeBEw+kS14ea2MnpvUG9zjQU2PuHqGAP
P62AvQdpsOZ/Xr0EW785g9fuSkNM8YzbAuzYgdCnlm40DCZyj0tiD/COnmhw
p2FAzL2fgx2htupPtTcNk8ZNXBq7ByRzNvvRcK1R/zqBvdJ2wu25P36/x9Yn
8kxw/zj2cZlOAA0Bwb7kFHZ7UNnXgtM0rMkoauBiqyampWmdw+//v6rZEewz
ucEO2RdoSNdzivmD3VDjukAliIb1TSZhQ9hLuo067lyioTfJ9Msv7PCKjY92
hdKQ7aQd9hP77z31EPYVGsY/a975gW0XudC+JBL/7jKi9c8VPsLaR6/inHxk
1ap/Vts9J7DwGg1XilPv/vM13eFPDThnr7D7G/nvfDMKn4ovxNPwIOHjwL/r
ufC1RK+6ScNHSrTg3/28/VVx6GsyDaqu2//+u981rfm611NpMGpdfXsUO6U4
XcLwDg3f469UjmOzUuJ+TGbg9dnBtJnG9ggKqci6T8OXIqs9c9jvD59IsM+i
QX1Es57C6wlmh704OTRYmu/M48O+v3rP9pe5NEw7HqaFsUVkjOR98dywbGTl
a3HsgNkNY0pFNPBkDszI/KuH13J3Qp/RsDq589Ey7Mc5805twHOIsFWU5r/6
kI2dNf9ZTsP8nWEL/9XPD4e+2Z01uF79V28xxLY2aG4jXtMQ8d3qlAV2qWpF
dn4dnlNWJcvv/VcPo3fs5jfjeveNfuiJvSLctajnIw2Oyw26k7Gve+6OvNpD
Azl/+ngm9pz1Dhf9T7heTLMCnmA3LVoudrefhhu6X8tbsL0Lfx879gd/D3a6
24Xx9/khsddg0SgNniv1teSx9S80LWjm0sA9s+jiCmwx48evtWdo8N5h62iO
XdB3fOkMiwUTXJ+JeGy5mkMzD/lZcGzJn8XZ2JeybFsdhVgQprQm9wW2jb9O
YKUoCwJD+MlB7HFBXle4HAtWHKk7qov70YZ1wbEyq1igKH170TR2u7PM2mRt
Fihw4nrEcP/zjcp5v3gdC9KTw0fUsLO/dciqbGKB3PwC+X3Y8rEaaWu3sUBY
4rJfBTb5p/2hFZ4bqU+9f1Nw/02Rc9/5fh8LIqPypp5hbzQk/tg5ssAj2HtX
J7bfreXazi4sGLaZISX/9W/TC0+9PFggOkHrXMWuy1StjbzIAom22wNxeH84
3F52WPQSCx4ULuUrxmaS1gJxl1mw0OPeyQ/YenvOmSZFsMDPadhwMd5fctmt
rZnXWfA9MyXtEXasy5m+2kwW8OdxhLrxfrVPvnGSaGXBPUmt/7zxfigs41P4
rI0Feywk56VhvxSX9D7ewYKRhvC+Jmxl/r2Dg90sMLGwjFyJ99Ohkf72xkEW
WJLRE1zsi69n85NnWeDYrzT4H96P7/ut8NBRY4NgrmUtC+dkO89m1RF1Nqj3
nWsG7Hluft+yNdmgZD+gfhrbx/HpvsV4rtdjPWwfxt5otM2YDWwYqWwe7sV5
oGGRg0rbLjac69WUqsd5YexN5GevQDbUSiz5/OkQAV2CbYdngtiw8NOP9Utc
cT8wkRu6HMKGXTGRzU7YVxsyp1OusGHT5draPmy1llqJ+jg2OJxdX/UF5xmH
TmK7aiYbljz37xnD+adm4HjWpxY2THdl3t+B81Q808HPUokPHM6pHLiP89ns
gflrmpX5INNx1c0xbJfKprGdqnzwIfChwJYAArQubjlhuoIPpGUvR/dgv5pT
OWW4ng8GHxVrSOO8Nz41cl7PhA/SV368E4fzoM2fsCtqfnzgbslfUnwR56ee
wttkFR+UvxpuTIgkgD4baK3jzQ/TDkuX1eI5gfHA4dFnMQEQSdC4LlGJ1y/x
UaRYhQDcVwgp8vxCwPPloXyiHoIQr2P2Jo8mQdTIR/2isBDIl8aU3cHzTJdG
U2tAqRBs/vt7s4sZCbkpSOmrwzyw81EZWudHgv2jtaILZ+fBTrMKk/xEEi5c
SgvsyhSGdSkTr3urSXg4uPCmsAkH3s741jkNkRCafMmpx4wD/XyQKjdMgovl
r6U5FhwIMT8U3oEtV1qaa2rLgWt+qSnmf0kIj95bE+HMgTaNr9Wbx0g4vDbh
j0AAB2yWX+BTwblcIVjCkH2XA2evJS5lsimYXX9m3vv7HNhf8DeuArvz15eW
u1kcWMNJlw3ko+Cqbb79tjwOhO0fcZrF8/KcmqXvpVIO/Og+2jcpREFXc3QK
1cqBISWh9FExnJtDxg+0tnFgdGqvTYE4BbEbHVXvdHBANjxczk8Cz9sZKwr0
ezgwV3Lw64gkBU9P1r8O/M6Bn+f0949KU3BdY020xU8OKCkU5RXIUOD9Ocl6
yRAHqrLfSh6XpUDFxL23fJQDHu1V0twFFDCJd+lXxznQ/vDGkyI5CvoKN7o5
TXFgX/fQkRMLKSh1u6OpxePAMYEazfV4zrixSHBsbo4Dcj1i/JPY/wfKxBIm

          "]]}, Annotation[#, "Charting`Private`Tag$13327#1"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {{1}, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, 
     BaseStyle -> {FontSize -> 14, FontColor -> GrayLevel[0]}, 
     DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, 
     FrameLabel -> {{
        FormBox[
        "\"compressibility, \\!\\(\\*SubscriptBox[\\(\[Beta]\\), \
\\(T\\)]\\)\"", TraditionalForm], None}, {
        FormBox[
        "\"\\!\\(\\*FractionBox[\\(volume\\), \\(volume\\\\ \
temperature\\)]\\)\"", TraditionalForm], None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {{1}, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5], 
       Dashing[{Small, Small}], 
       Thickness[Large]], ImageSize -> 350, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0, 4}, {-0.3650624861566956, 7.603557696651048}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}]},
  "RowDefault"]], "Output",
 CellChangeTimes->{
  3.8533658202636538`*^9, 3.853365870075375*^9, {3.853365905233098*^9, 
   3.85336592913451*^9}},
 CellLabel->"Out[77]=",ExpressionUUID->"1fe7765b-dcdf-4aa0-a04a-5a41d373d442"]
}, Open  ]]
}, Open  ]]
}, Open  ]],

Cell["\<\
As expected, the compressibility diverges around the critical point\
\>", "Item",
 CellChangeTimes->{{3.853365956550922*^9, 
  3.853365966336871*^9}},ExpressionUUID->"ef474044-276b-4259-a352-\
5d82c0d6fcae"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
},
WindowSize->{1440, 786},
WindowMargins->{{1440, -1440}, {Automatic, 24}},
PrivateNotebookOptions->{"CloudPublishPath"->"/Published/3029-SP22__L04__van-\
der-waals-gas__02-09-22.nb"},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"32162b73-68a4-41df-8cd0-f6c3d90ad90d"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{
 "eq:compressibility"->{
  Cell[426163, 8011, 1212, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"7c5d541b-fa37-4238-b008-59e225c97059",
   CellTags->"eq:compressibility"]},
 "eq:van-der-waals"->{
  Cell[3087, 87, 920, 20, 33, "DisplayFormulaNumbered",ExpressionUUID->"62e5161b-12ad-44c1-80d5-009c4538d489",
   CellTags->"eq:van-der-waals"],
  Cell[4367, 119, 1124, 25, 33, "DisplayFormulaNumbered",ExpressionUUID->"ec5d6515-4fd7-4ce7-9cf0-2c7506787dd0",
   CellTags->"eq:van-der-waals"],
  Cell[23928, 616, 1229, 29, 54, "DisplayFormulaNumbered",ExpressionUUID->"b7d8c523-abef-4f7c-8300-7ef832957bd6",
   CellTags->"eq:van-der-waals"],
  Cell[29438, 775, 1186, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"3310c74b-63c9-4883-9dd7-7b16025f1866",
   CellTags->"eq:van-der-waals"],
  Cell[32168, 841, 986, 21, 33, "DisplayFormulaNumbered",ExpressionUUID->"9e476b17-4fa2-40b4-84f7-7a9741d03bb8",
   CellTags->"eq:van-der-waals"],
  Cell[46440, 1264, 1221, 28, 53, "DisplayFormulaNumbered",ExpressionUUID->"e604b07c-7dfc-4fe3-8628-f7607c497f8f",
   CellTags->"eq:van-der-waals"],
  Cell[48441, 1317, 2069, 47, 164, "DisplayFormulaNumbered",ExpressionUUID->"47d9b86f-2ff5-4cb7-99f8-566729364770",
   CellTags->"eq:van-der-waals"],
  Cell[222378, 4408, 1186, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"38d55d67-895d-438d-8bd4-71ff30955685",
   CellTags->"eq:van-der-waals"]}
 }
*)
(*CellTagsIndex
CellTagsIndex->{
 {"eq:compressibility", 461851, 8726},
 {"eq:van-der-waals", 462027, 8729}
 }
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 381, 5, 85, "Subtitle",ExpressionUUID->"3f5ed32e-d36b-4831-8e70-07bc5563378e"],
Cell[CellGroupData[{
Cell[964, 29, 300, 5, 69, "Chapter",ExpressionUUID->"f065fde9-564c-4320-ad66-e68c1435cb14"],
Cell[1267, 36, 1191, 30, 32, "Item",ExpressionUUID->"194c3f35-cc3e-4282-bafd-3db05eac971e"],
Cell[CellGroupData[{
Cell[2483, 70, 366, 8, 32, "Item",ExpressionUUID->"216df96a-cd90-488c-9263-b17fcbb76cd5"],
Cell[2852, 80, 220, 4, 26, "Subitem",ExpressionUUID->"e97e0e97-6e05-4c47-a51a-4b1b2904d0b4"]
}, Open  ]],
Cell[3087, 87, 920, 20, 33, "DisplayFormulaNumbered",ExpressionUUID->"62e5161b-12ad-44c1-80d5-009c4538d489",
 CellTags->"eq:van-der-waals"],
Cell[4010, 109, 354, 8, 32, "Item",ExpressionUUID->"8f82d3c6-6524-479a-8b5c-cfe8c4c90978"],
Cell[4367, 119, 1124, 25, 33, "DisplayFormulaNumbered",ExpressionUUID->"ec5d6515-4fd7-4ce7-9cf0-2c7506787dd0",
 CellTags->"eq:van-der-waals"],
Cell[5494, 146, 487, 13, 27, "Subitem",ExpressionUUID->"95ff0ce5-ff70-4e3f-8fcd-dd9952b28e26"],
Cell[CellGroupData[{
Cell[6006, 163, 475, 13, 27, "Subitem",ExpressionUUID->"b1aa1f8d-e62a-484e-a3e6-a2cdfbb6c6f5"],
Cell[CellGroupData[{
Cell[6506, 180, 14909, 356, 70, "WolframAlphaShortInput",ExpressionUUID->"22211ff3-2af1-4fc2-8a36-1b95f12c39c1"],
Cell[21418, 538, 491, 11, 58, "Output",ExpressionUUID->"0c09929a-ce16-42f1-b1b6-94adc501bb59"]
}, Open  ]]
}, Open  ]],
Cell[21936, 553, 267, 6, 32, "Item",ExpressionUUID->"34d63ad0-f971-47af-8984-21c470b95d4b"],
Cell[CellGroupData[{
Cell[22228, 563, 280, 6, 32, "Item",ExpressionUUID->"3d8ba483-4fe8-41c8-bf8f-3fa04e92fade"],
Cell[22511, 571, 219, 5, 26, "Subitem",ExpressionUUID->"ccb712cd-b071-4cda-893a-ce7057e0c64e"],
Cell[22733, 578, 233, 6, 26, "Subitem",ExpressionUUID->"99066aa4-6465-41be-af03-5c9d4333e934"]
}, Open  ]],
Cell[CellGroupData[{
Cell[23003, 589, 162, 3, 68, "Section",ExpressionUUID->"52e7a705-6348-4e87-b2a6-52872f2b8db3"],
Cell[23168, 594, 266, 6, 32, "Item",ExpressionUUID->"83603db1-2bcc-45a4-ad8e-ba36063afb8f"],
Cell[23437, 602, 488, 12, 32, "Item",ExpressionUUID->"d0ec8106-e7d5-48d6-8979-6388648a0e7f"],
Cell[23928, 616, 1229, 29, 54, "DisplayFormulaNumbered",ExpressionUUID->"b7d8c523-abef-4f7c-8300-7ef832957bd6",
 CellTags->"eq:van-der-waals"],
Cell[25160, 647, 503, 14, 28, "Subitem",ExpressionUUID->"6b57cc43-8d44-4ec5-adad-c5466f055888"],
Cell[CellGroupData[{
Cell[25688, 665, 792, 21, 27, "Subitem",ExpressionUUID->"5eba98f6-0e12-46e1-82a8-d831d46b3093"],
Cell[CellGroupData[{
Cell[26505, 690, 843, 21, 26, "Subsubitem",ExpressionUUID->"fd0853a2-dd86-46fe-b54f-b4f291ef8d36"],
Cell[27351, 713, 673, 18, 44, "Input",ExpressionUUID->"eb90751d-a0a2-4c98-a0b6-26c2f88b9001"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[28073, 737, 168, 3, 54, "Subsection",ExpressionUUID->"30b58b1b-670a-4756-a42b-91c6a4fb77e7"],
Cell[CellGroupData[{
Cell[28266, 744, 303, 7, 32, "Item",ExpressionUUID->"03f7d23a-459e-4bcb-8e78-e70dfeafb216"],
Cell[28572, 753, 248, 4, 26, "Subitem",ExpressionUUID->"b65a7ca5-e7e4-4f34-b0b9-aab04acc7f7b"]
}, Open  ]],
Cell[28835, 760, 600, 13, 32, "Item",ExpressionUUID->"a5e7db8b-7261-483a-9fb1-d8fcabea0c10"],
Cell[29438, 775, 1186, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"3310c74b-63c9-4883-9dd7-7b16025f1866",
 CellTags->"eq:van-der-waals"],
Cell[CellGroupData[{
Cell[30649, 806, 368, 7, 32, "Item",ExpressionUUID->"8f941ce5-f963-4512-b086-4711a065fa86"],
Cell[31020, 815, 462, 8, 26, "Subitem",ExpressionUUID->"5a2ef94d-b89c-4f63-8b3b-3a10427405d4"],
Cell[31485, 825, 369, 7, 26, "Subitem",ExpressionUUID->"4ea8d466-2c98-47c4-a6f3-656b88106f41"]
}, Open  ]],
Cell[31869, 835, 296, 4, 32, "Item",ExpressionUUID->"fcde1524-e546-472d-af70-ab1bf8a6d5a1"],
Cell[32168, 841, 986, 21, 33, "DisplayFormulaNumbered",ExpressionUUID->"9e476b17-4fa2-40b4-84f7-7a9741d03bb8",
 CellTags->"eq:van-der-waals"],
Cell[33157, 864, 264, 6, 26, "Subitem",ExpressionUUID->"21c1851b-9465-433e-b8fd-e53770ac754c"],
Cell[33424, 872, 477, 12, 26, "Subitem",ExpressionUUID->"7db7400d-3c27-4ed9-be2e-8b9ccaa512ef"],
Cell[CellGroupData[{
Cell[33926, 888, 446, 11, 32, "Item",ExpressionUUID->"5d7216bc-3859-4404-abee-b4c48fabe4e1"],
Cell[CellGroupData[{
Cell[34397, 903, 683, 16, 29, "Input",ExpressionUUID->"b3f2e389-dc6e-4b10-b934-7af9efd34e47"],
Cell[35083, 921, 477, 13, 53, "Output",ExpressionUUID->"1d1362f1-4aa2-4d87-8610-4f43589f7f84"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[35609, 940, 211, 5, 32, "Item",ExpressionUUID->"f7c41806-b144-4299-8563-ce059e7d78d4"],
Cell[CellGroupData[{
Cell[35845, 949, 232, 6, 26, "Subitem",ExpressionUUID->"fb9f34d3-1c0b-4998-9401-012d0bda610b"],
Cell[CellGroupData[{
Cell[36102, 959, 592, 13, 71, "Input",ExpressionUUID->"b460a484-c8c0-4c98-934c-14cf6fe032fa"],
Cell[36697, 974, 520, 15, 52, "Output",ExpressionUUID->"a231a323-4fc3-4837-a3c8-bb053ef20eb8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[37254, 994, 594, 13, 71, "Input",ExpressionUUID->"53609d8e-8ecb-4c07-8b2b-71c1d071a73f"],
Cell[37851, 1009, 520, 15, 52, "Output",ExpressionUUID->"0a0587a1-6414-4511-9cb1-288bff4b11c3"]
}, Open  ]]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[38432, 1031, 799, 18, 116, "Item",ExpressionUUID->"04cec547-f3ef-4ac9-ad5d-5d48ca00495c"],
Cell[CellGroupData[{
Cell[39256, 1053, 700, 14, 113, "Input",ExpressionUUID->"e0a72177-11dc-4449-9958-7a83a44cceff"],
Cell[39959, 1069, 265, 6, 33, "Output",ExpressionUUID->"e6dc0d2f-2ce8-4fd2-ac7f-914323faa68e"],
Cell[40227, 1077, 245, 5, 33, "Output",ExpressionUUID->"5febdb6d-e18b-4ddd-93c8-2bc161766c47"],
Cell[40475, 1084, 200, 3, 33, "Output",ExpressionUUID->"ca56bd14-efdc-426c-b72c-76e9cbb5055e"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[40724, 1093, 191, 3, 32, "Item",ExpressionUUID->"7423d954-ca06-4d0f-b2f6-60c749ea7fac"],
Cell[CellGroupData[{
Cell[40940, 1100, 470, 11, 29, "Input",ExpressionUUID->"8a72b5ce-20d0-44e2-b71a-b6d8a838fa1a"],
Cell[41413, 1113, 370, 9, 49, "Output",ExpressionUUID->"efec7863-80e0-4a55-b09e-fbb39a46f5af"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[41832, 1128, 228, 5, 32, "Item",ExpressionUUID->"90084ae0-8c5d-49e7-a6c8-7da29ca5f31f"],
Cell[CellGroupData[{
Cell[42085, 1137, 636, 15, 47, "Input",ExpressionUUID->"dc087a6b-27e8-4e77-9205-d6a3d51ede11"],
Cell[42724, 1154, 462, 12, 49, "Output",ExpressionUUID->"38ab539f-d73f-414d-bd69-ae1848c46e3a"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[43235, 1172, 252, 6, 32, "Item",ExpressionUUID->"98c39f85-57e2-4195-9233-ef33629986f3"],
Cell[CellGroupData[{
Cell[43512, 1182, 578, 13, 29, "Input",ExpressionUUID->"516bbe1f-50bd-444e-b774-8e2d9a7575f8"],
Cell[44093, 1197, 291, 6, 51, "Output",ExpressionUUID->"0d09eefe-3c83-4c3f-9ab0-2a0d433c38d9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[44421, 1208, 580, 13, 29, "Input",ExpressionUUID->"941c72b8-23a7-443f-a6ff-3610b558e475"],
Cell[45004, 1223, 293, 6, 49, "Output",ExpressionUUID->"4147293b-9cf1-4d02-85c4-5083cb571e9a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[45334, 1234, 580, 13, 29, "Input",ExpressionUUID->"309bfcfb-73ed-466e-b023-2e5d852dec23"],
Cell[45917, 1249, 291, 6, 49, "Output",ExpressionUUID->"32b36f5b-0406-4547-86c2-69811fca99bb"]
}, Open  ]]
}, Open  ]],
Cell[46235, 1259, 202, 3, 32, "Item",ExpressionUUID->"34cb50d8-46b1-41dd-911a-e42e12c098c4"],
Cell[46440, 1264, 1221, 28, 53, "DisplayFormulaNumbered",ExpressionUUID->"e604b07c-7dfc-4fe3-8628-f7607c497f8f",
 CellTags->"eq:van-der-waals"]
}, Open  ]],
Cell[CellGroupData[{
Cell[47698, 1297, 221, 4, 54, "Subsection",ExpressionUUID->"59211435-2f16-4b65-87d1-5df3e6fd3667"],
Cell[47922, 1303, 297, 6, 32, "Item",ExpressionUUID->"3d069643-8452-4eb6-b6d8-3ebf9e2e279b"],
Cell[48222, 1311, 216, 4, 32, "Item",ExpressionUUID->"5610471c-ed09-4381-8ac8-dfeca90141e1"],
Cell[48441, 1317, 2069, 47, 164, "DisplayFormulaNumbered",ExpressionUUID->"47d9b86f-2ff5-4cb7-99f8-566729364770",
 CellTags->"eq:van-der-waals"],
Cell[CellGroupData[{
Cell[50535, 1368, 995, 23, 68, "Input",ExpressionUUID->"c54df07a-8be5-403f-a195-232505659cef"],
Cell[51533, 1393, 600, 15, 53, "Output",ExpressionUUID->"926f3445-2204-4c68-8b98-43f575eb7f06"]
}, Open  ]],
Cell[CellGroupData[{
Cell[52170, 1413, 230, 4, 32, "Item",ExpressionUUID->"4d0eebd4-0da0-4792-86ba-feca91c1cc2c"],
Cell[CellGroupData[{
Cell[52425, 1421, 3122, 67, 91, "Input",ExpressionUUID->"22d735bd-5f7d-4249-ad2c-97a67aa8dd21"],
Cell[55550, 1490, 164051, 2828, 523, "Output",ExpressionUUID->"65905f07-74a7-46ea-b0a5-29b2f44c17fa"]
}, Open  ]]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[219662, 4325, 258, 4, 54, "Subsection",ExpressionUUID->"c1f1b258-50ca-4a2a-bb14-6cc488a0fe0c"],
Cell[CellGroupData[{
Cell[219945, 4333, 228, 5, 32, "Item",ExpressionUUID->"6e7401fd-2b42-43ac-80ae-469f18de5099"],
Cell[CellGroupData[{
Cell[220198, 4342, 283, 6, 26, "Subitem",ExpressionUUID->"4fb0121b-536c-4475-979d-51279b0972d1"],
Cell[220484, 4350, 229, 5, 25, "Subsubitem",ExpressionUUID->"75370610-05ab-4a37-a7be-15abfbfdeef4"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[220762, 4361, 250, 4, 32, "Item",ExpressionUUID->"777ee0f2-0f71-43c3-aeaf-c5359ab49aac"],
Cell[CellGroupData[{
Cell[221037, 4369, 504, 11, 29, "Input",ExpressionUUID->"ffc490ff-009d-42cc-bdcc-aaaf1fc4c33d"],
Cell[221544, 4382, 563, 16, 54, "Output",ExpressionUUID->"0ea9bcd8-187f-42a5-ac3f-1f32f7837d64"]
}, Open  ]]
}, Open  ]],
Cell[222134, 4402, 241, 4, 32, "Item",ExpressionUUID->"39b5c9d4-3938-428d-83a6-e9b7515daf3c"],
Cell[222378, 4408, 1186, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"38d55d67-895d-438d-8bd4-71ff30955685",
 CellTags->"eq:van-der-waals"],
Cell[CellGroupData[{
Cell[223589, 4439, 703, 17, 51, "Input",ExpressionUUID->"2605e698-8f5a-4482-87c0-ad54495dbd9e"],
Cell[224295, 4458, 597, 16, 55, "Output",ExpressionUUID->"db50a090-7f0c-43b1-a481-4ed76b69a8a6"]
}, Open  ]],
Cell[CellGroupData[{
Cell[224929, 4479, 224, 5, 32, "Item",ExpressionUUID->"f0181302-60b4-49f2-8270-8c5d0dcc915b"],
Cell[CellGroupData[{
Cell[225178, 4488, 464, 12, 29, "Input",ExpressionUUID->"e7fb646e-4b4a-40b6-9a0f-8c97aa84ef42"],
Cell[225645, 4502, 279, 7, 50, "Output",ExpressionUUID->"e2148c8a-6d17-44e3-984c-3ae998a5530b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[225961, 4514, 2175, 50, 36, "Input",ExpressionUUID->"eec99a1d-8e55-43ec-91dd-3e39f10cdc4b"],
Cell[228139, 4566, 197357, 3420, 523, "Output",ExpressionUUID->"9fa29c5c-ed3d-4d9c-a789-afcf699280b1"]
}, Open  ]]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[425557, 7993, 165, 3, 54, "Subsection",ExpressionUUID->"fcc8f772-40a6-454b-9574-5a83a5fc31c6"],
Cell[425725, 7998, 435, 11, 32, "Item",ExpressionUUID->"94ecf5c5-3f3a-4c18-a5d6-0025c20dec91"],
Cell[426163, 8011, 1212, 27, 51, "DisplayFormulaNumbered",ExpressionUUID->"7c5d541b-fa37-4238-b008-59e225c97059",
 CellTags->"eq:compressibility"],
Cell[427378, 8040, 292, 6, 32, "Item",ExpressionUUID->"e97a48fc-7195-47ac-9294-f6ed53d336d6"],
Cell[CellGroupData[{
Cell[427695, 8050, 251, 6, 32, "Item",ExpressionUUID->"62ed85b3-592a-448c-9dcd-1d433323cc79"],
Cell[427949, 8058, 179, 3, 26, "Subitem",ExpressionUUID->"420fd2db-784b-4ef7-b506-1d8be3f43b9f"],
Cell[CellGroupData[{
Cell[428153, 8065, 178, 3, 26, "Subitem",ExpressionUUID->"31d34dd4-01dc-4477-9925-d1d7474eba50"],
Cell[CellGroupData[{
Cell[428356, 8072, 714, 17, 32, "Input",ExpressionUUID->"5bdf3598-8bcb-49e0-ab08-79c8fd64acd3"],
Cell[429073, 8091, 714, 20, 56, "Output",ExpressionUUID->"09aa1ba4-8c4d-48e5-acfd-23a4779ed045"]
}, Open  ]],
Cell[CellGroupData[{
Cell[429824, 8116, 3952, 90, 91, "Input",ExpressionUUID->"f06abcb2-0ac6-407a-b292-7abe15d43008"],
Cell[433779, 8208, 27315, 490, 284, "Output",ExpressionUUID->"1fe7765b-dcdf-4aa0-a04a-5a41d373d442"]
}, Open  ]]
}, Open  ]]
}, Open  ]],
Cell[461133, 8703, 217, 5, 32, "Item",ExpressionUUID->"ef474044-276b-4259-a352-5d82c0d6fcae"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
}
]
*)