(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 806440, 14700] NotebookOptionsPosition[ 787214, 14364] NotebookOutlinePosition[ 787750, 14383] CellTagsIndexPosition[ 787707, 14380] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["3.029 Spring 2022\[LineSeparator]Lecture 06 - 02/16/2022", "Subtitle", CellChangeTimes->{{3.8525512993398438`*^9, 3.8525513206118402`*^9}, { 3.852652054138073*^9, 3.8526520591301193`*^9}, {3.853194369726288*^9, 3.8531943739664793`*^9}, 3.8531971130005827`*^9, {3.853361889945813*^9, 3.853361893353859*^9}, {3.853751852803602*^9, 3.853751857475161*^9}, { 3.853960813105687*^9, 3.8539608154897003`*^9}},ExpressionUUID->"958f9c1d-ad79-42c0-9cd1-\ 04c275b85126"], Cell[CellGroupData[{ Cell["Legendre Transformations", "Chapter", CellChangeTimes->{{3.852551340964005*^9, 3.852551346980482*^9}, 3.8526520737398577`*^9, {3.853194378006518*^9, 3.853194381142681*^9}, { 3.853361935778483*^9, 3.853361942498363*^9}, {3.853751868275942*^9, 3.853751875260585*^9}, {3.8539608172177677`*^9, 3.853960822793701*^9}},ExpressionUUID->"90fb45e3-9a6d-44ac-8c50-\ 7271e7a354a1"], Cell[CellGroupData[{ Cell["\<\ Last lecture, we introduced the concept of Legendre transforms as a way of \ \[OpenCurlyDoubleQuote]changing variables\[CloseCurlyDoubleQuote] from one \ thermodynamic potential to another\ \>", "Item", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961474356748*^9}},ExpressionUUID->"7ed0fc45-744e-4e58-9b44-\ ca4b9b46df9f"], Cell[CellGroupData[{ Cell["We did so by a rather prescribed process, namely:", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.8539615151400757`*^9}},ExpressionUUID->"ff19d89c-11b8-4d4a-9865-\ 1cf5ab1f2bec"], Cell["\<\ Define a new thermodynamic potential, \[CapitalPhi] = U - \ Y X\ \>", "Subsubitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961560442546*^9}, { 3.854016863440464*^9, 3.854016873482719*^9}},ExpressionUUID->"e6b9142c-9564-43c2-b4cf-\ bd0cc6617139"], Cell["\<\ Take its total differential, d\ \[CapitalPhi] = dU - Y dX - X dY\ \>", "Subsubitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961585588524*^9}, { 3.8540168776852207`*^9, 3.854016881584691*^9}},ExpressionUUID->"03b82fb9-68ac-4d27-a9d5-\ dab79560f475"], Cell["\<\ Use the fundamental thermodynamic relation, dU = T dS - P dV\ \>", "Subsubitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961624165371*^9}, { 3.8540168849663553`*^9, 3.854016885864963*^9}},ExpressionUUID->"706be27e-4db0-42e8-9590-\ de19bbd28323"], Cell["Simplify expression", "Subsubitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961649044726*^9}},ExpressionUUID->"305de2c2-8b63-4695-9336-\ b04d97a30c22"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ As a reminder, the key thermodynamic potentials we defined this way are:\ \>", "Item", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.8539616837191057`*^9}, { 3.8539619284458838`*^9, 3.853961929422491*^9}},ExpressionUUID->"0fd63084-ea24-4637-b9d4-\ a1ffb9bb02c6"], Cell["\<\ Internal Energy,\t dU(S,V) = T dS - P dV\ \>", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.8539617220780163`*^9}, 3.853961886509301*^9, 3.854016898565922*^9, {3.8540169449366817`*^9, 3.854016946854254*^9}},ExpressionUUID->"77f4bb3c-2b98-4c76-ae97-\ 8a560e330214"], Cell[TextData[{ "Entropy, dS(U,V) = ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ FractionBox["1", "T"], "dU"}], " ", "+", " ", RowBox[{ FractionBox["P", "T"], "dV"}]}], TraditionalForm]],ExpressionUUID-> "f637c753-5d51-4ee5-a6f1-761a13c1db19"] }], "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961750903428*^9}, 3.8539618833420057`*^9, 3.854016902571888*^9, {3.854016937654722*^9, 3.854016941887876*^9}},ExpressionUUID->"a16a81dd-4908-434f-a687-\ 078844a6642d"], Cell["\<\ Enthalpy, dH(S,P) = T dS + V dP\ \>", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961778014441*^9}, 3.853961880092753*^9, {3.854016907855617*^9, 3.854016933412715*^9}},ExpressionUUID->"1b7e5d56-146b-4440-9887-\ 672541eb71df"], Cell["\<\ Helmholtz Free Energy, dA(T,V) = -S dT - P dV\ \>", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961798174645*^9}, { 3.853961869797452*^9, 3.853961873309866*^9}, {3.854016910431608*^9, 3.854016926055975*^9}, 3.854024488746697*^9},ExpressionUUID->"0399ed5a-cc6c-42ab-84be-\ c2be41347e6a"], Cell["\<\ Gibbs Free Energy, dG(T,P) = -S dT + V dP\ \>", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961816052717*^9}, 3.853961876277906*^9, {3.8539619443517036`*^9, 3.8539619443520813`*^9}, { 3.854016912667123*^9, 3.8540169200767403`*^9}},ExpressionUUID->"3996be77-55f5-4136-bb4d-\ 46bb822eeb04"], Cell[TextData[{ StyleBox["Note: ", FontWeight->"Bold"], "This procedure is not restricted to named potentials. ", "If you have other work terms in your potential, \[LineSeparator]\ \[LineSeparator]e.g. electrical work in an dielectric medium, \ \[ScriptCapitalE] \[ScriptCapitalP], where \[ScriptCapitalE] is the \ (intensive) internal electric field, and \[ScriptCapitalP] is the (extensive) \ total polarization,\[LineSeparator]then the fundamental thermodynamic \ relation would read: d U = T dS - P dV + \[ScriptCapitalE] d\[ScriptCapitalP] \ (remember, the variations are wrt extensive variables),\[LineSeparator]\ \[LineSeparator]and we want to instead express this in terms of the internal \ electric field, we would define:\[LineSeparator]\[LineSeparator] \ \[CapitalPhi] = U - \[ScriptCapitalE] \[ScriptCapitalP]\[LineSeparator]d\ \[CapitalPhi] = d U - \[ScriptCapitalE] d\[ScriptCapitalP] - \ \[ScriptCapitalP] d\[ScriptCapitalE]\[LineSeparator]d\[CapitalPhi] = T dS - \ \[ScriptCapitalP] d\[ScriptCapitalE]" }], "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961816052717*^9}, 3.853961876277906*^9, {3.8539619450227413`*^9, 3.8539619663667393`*^9}, { 3.8539621074639883`*^9, 3.853962448739772*^9}, {3.854016962495803*^9, 3.854016965978149*^9}},ExpressionUUID->"22488823-34dc-483d-8304-\ 931cb539bef2"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ This is largely all you will need in your thermodynamics and statistical \ mechanics courses\ \>", "Item", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961664459304*^9}, { 3.853962455779375*^9, 3.853962475191037*^9}},ExpressionUUID->"bf2451c2-6806-4cf5-b709-\ f919598536f3"], Cell["\<\ But in this lecture, we will go a step further, and provide an intuitive \ geometrical picture of what the Legendre transform does\ \>", "Subitem", CellChangeTimes->{{3.853752273920609*^9, 3.853752278100286*^9}, { 3.853752381756166*^9, 3.85375247158083*^9}, {3.853960830217661*^9, 3.853960836882002*^9}, {3.853961447544964*^9, 3.853961664459304*^9}, { 3.853962455779375*^9, 3.8539625160283327`*^9}},ExpressionUUID->"17f52756-26d1-4f46-a7f9-\ befd7f51a586"] }, Open ]], Cell[CellGroupData[{ Cell["Convex Functions", "Section", CellChangeTimes->{{3.854016986430471*^9, 3.8540169896053133`*^9}},ExpressionUUID->"b5603d8e-d5e9-4e6d-a5bd-\ 1e5552478b83"], Cell["\<\ The Legendre transform is defined for general functions, but it is \ particularly useful in looking at convex functions\ \>", "Item", CellChangeTimes->{{3.854016991830118*^9, 3.854017037588416*^9}},ExpressionUUID->"2bc40ec0-d34a-42d5-88cc-\ c9b732ecb312"], Cell[CellGroupData[{ Cell["What exactly is a convex function?", "Item", CellChangeTimes->{{3.854016991830118*^9, 3.8540170459783783`*^9}, { 3.8540170819203863`*^9, 3.85401708192222*^9}},ExpressionUUID->"24c01a6f-7bee-4da3-bea7-\ a0893677d276"], Cell[TextData[{ "For a univariate function, f(x), if you pick any two points, ", Cell[BoxData[ FormBox[ SubscriptBox["x", "1"], TraditionalForm]],ExpressionUUID-> "b2d34faa-78f9-4663-9026-35950eefd6c1"], " and ", Cell[BoxData[ FormBox[ SubscriptBox["x", "2"], TraditionalForm]],ExpressionUUID-> "69c43fcc-95a4-4178-b54b-fd355e800c8a"], "\[LineSeparator]convexity implies that for every point in the interval \ between ", Cell[BoxData[ FormBox[ SubscriptBox["x", "1"], TraditionalForm]],ExpressionUUID-> "86ce54f6-d2ea-4486-b61e-9e159a77c421"], " and ", Cell[BoxData[ FormBox[ SubscriptBox["x", "2"], TraditionalForm]],ExpressionUUID-> "40d51912-baf2-4eae-a48f-152b083ccc07"], "\[LineSeparator]\[LineSeparator](which we\[CloseCurlyQuote]ll define \ parametrically as ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"x", "(", "t", ")"}], "=", RowBox[{ RowBox[{ SubscriptBox["x", "1"], "+", RowBox[{ RowBox[{"t", "[", RowBox[{ SubscriptBox["x", "2"], "-", SubscriptBox["x", "1"]}], "]"}], " ", "for", " ", "0"}]}], "<=", " ", "t", " ", "<=", "1"}]}], TraditionalForm]],ExpressionUUID-> "b2aea6dc-ba04-49e3-ad76-eb9a1c6f8c06"], ")\[LineSeparator]\[LineSeparator]then we must obey: ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"f", "(", RowBox[{"x", "(", "t", ")"}], ")"}], " ", "<=", " ", RowBox[{ RowBox[{"f", "(", SubscriptBox["x", "1"], ")"}], " ", "+", " ", RowBox[{"t", "(", RowBox[{ RowBox[{"f", "(", SubscriptBox["x", "2"], ")"}], "-", RowBox[{"f", "(", SubscriptBox["x", "1"], ")"}]}], ")"}]}]}], TraditionalForm]], ExpressionUUID->"bc4a6450-9038-40db-a199-995b65162e81"] }], "Subitem", CellChangeTimes->{{3.854016991830118*^9, 3.8540170459783783`*^9}, { 3.854017086166256*^9, 3.854017266228284*^9}, {3.8540253074881763`*^9, 3.8540253079093*^9}, {3.854032309753221*^9, 3.85403230975331*^9}, { 3.854032461654694*^9, 3.854032473644121*^9}},ExpressionUUID->"bf60c70e-6e97-4eb1-969d-\ f3a000f0195a"], Cell[CellGroupData[{ Cell["Let\[CloseCurlyQuote]s visualize this!", "Subitem", CellChangeTimes->{{3.854016991830118*^9, 3.8540170459783783`*^9}, { 3.854017086166256*^9, 3.854017270946677*^9}},ExpressionUUID->"d2c0b190-fc75-40b8-9266-\ 8bd6435ebfe1"], Cell[BoxData[ DynamicModuleBox[{$CellContext`f$$}, TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0.706, $CellContext`temp$$ = 0.606, $CellContext`x1$$ = { 0.25, -0.3748351446188083}, $CellContext`x2$$ = { 0.75, -0.3748351446188083}, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`x1$$], {0.25, -0.3748351446188083}}, { Hold[$CellContext`x2$$], {0.75, -0.3748351446188083}}, {{ Hold[$CellContext`temp$$], 1, Style["Convexity Parameter", 16]}, 0, 1}, {{ Hold[$CellContext`t$$], 0.5, Style["Interpolator", 16]}, 0, 1}, { Hold[ Dynamic[ Style[ StringTemplate[ "f(x(t)) `1` f(\!\(\*SubscriptBox[\(x\), \(1\)]\)) + \ t(f(\!\(\*SubscriptBox[\(x\), \(2\)]\))-f(\!\(\*SubscriptBox[\(x\), \ \(1\)]\)))"][ If[$CellContext`temp$$ > 1/2, "<", ">"]], 14]]], Manipulate`Dump`ThisIsNotAControl}, { Hold[ Dynamic[ Style[ StringTemplate["`1` `2` `3`"][ $CellContext`f$$[ Part[$CellContext`x1$$, 1] + $CellContext`t$$ ( Part[$CellContext`x2$$, 1] - Part[$CellContext`x1$$, 1]), $CellContext`temp$$], If[$CellContext`temp$$ > 1/2, "<", ">"], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$] + $CellContext`t$$ ($CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$] - $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$])], 14]]], Manipulate`Dump`ThisIsNotAControl}, { Hold[ Dynamic[ Style["Convex: " <> ToString[$CellContext`temp$$ > 1/2], {16, If[$CellContext`temp$$ > 1/2, RGBColor[0, 1/3, 0], Red]}]]], Manipulate`Dump`ThisIsNotAControl}, { Hold[ Dynamic[ Style["Adjust x1 and x2 by dragging black points", 14]]], Manipulate`Dump`ThisIsNotAControl}}, Typeset`size$$ = { 450., {143., 148.24537657417505`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0.5, $CellContext`temp$$ = 1, $CellContext`x1$$ = { 0.25, -0.3748351446188083}, $CellContext`x2$$ = { 0.75, -0.3748351446188083}}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Show[ Plot[ $CellContext`f$$[$CellContext`x, $CellContext`temp$$], \ {$CellContext`x, 0, 1}, Frame -> True, FrameLabel -> {"x", "f(x)"}, FrameTicks -> None, BaseStyle -> {FontSize -> 18}], Graphics[{ PointSize[0.02], Point[ Dynamic[{ Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]}]], Point[ Dynamic[{ Part[$CellContext`x2$$, 1], $CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$]}]], Line[{ Dynamic[{ Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]}], Dynamic[{ Part[$CellContext`x2$$, 1], $CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$]}]}], Orange, Point[ Dynamic[{ Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]} + $CellContext`t$$ ({ Part[$CellContext`x2$$, 1], $CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$]} - { Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]})]], Line[{ Dynamic[{ Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]} + $CellContext`t$$ ({ Part[$CellContext`x2$$, 1], $CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$]} - { Part[$CellContext`x1$$, 1], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$]})], Dynamic[{ Part[$CellContext`x1$$, 1] + $CellContext`t$$ ( Part[$CellContext`x2$$, 1] - Part[$CellContext`x1$$, 1]), $CellContext`f$$[ Part[$CellContext`x1$$, 1] + $CellContext`t$$ ( Part[$CellContext`x2$$, 1] - Part[$CellContext`x1$$, 1]), $CellContext`temp$$]}]}]}], SaveDefinitions -> True], "Specifications" :> {{$CellContext`x1$$, {0.25, -0.3748351446188083}, ControlType -> Locator, Appearance -> None}, {$CellContext`x2$$, { 0.75, -0.3748351446188083}, ControlType -> Locator, Appearance -> None}, {{$CellContext`temp$$, 1, Style["Convexity Parameter", 16]}, 0, 1}, {{$CellContext`t$$, 0.5, Style["Interpolator", 16]}, 0, 1}, Delimiter, Dynamic[ Style[ StringTemplate[ "f(x(t)) `1` f(\!\(\*SubscriptBox[\(x\), \(1\)]\)) + \ t(f(\!\(\*SubscriptBox[\(x\), \(2\)]\))-f(\!\(\*SubscriptBox[\(x\), \ \(1\)]\)))"][ If[$CellContext`temp$$ > 1/2, "<", ">"]], 14]], Dynamic[ Style[ StringTemplate["`1` `2` `3`"][ $CellContext`f$$[ Part[$CellContext`x1$$, 1] + $CellContext`t$$ ( Part[$CellContext`x2$$, 1] - Part[$CellContext`x1$$, 1]), $CellContext`temp$$], If[$CellContext`temp$$ > 1/2, "<", ">"], $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$] + $CellContext`t$$ ($CellContext`f$$[ Part[$CellContext`x2$$, 1], $CellContext`temp$$] - $CellContext`f$$[ Part[$CellContext`x1$$, 1], $CellContext`temp$$])], 14]], Dynamic[ Style["Convex: " <> ToString[$CellContext`temp$$ > 1/2], {16, If[$CellContext`temp$$ > 1/2, RGBColor[0, 1/3, 0], Red]}]], Delimiter, Dynamic[ Style["Adjust x1 and x2 by dragging black points", 14]]}, "Options" :> {Paneled -> False}, "DefaultOptions" :> {}], ImageSizeCache->{483., {263.025390625, 269.974609375}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]], DynamicModuleValues:>{{DownValues[$CellContext`f$$] = {HoldPattern[ $CellContext`f$$[ Pattern[$CellContext`x, Blank[]], Pattern[$CellContext`temp, Blank[]]]] :> $CellContext`x ( 1 - $CellContext`x) + $CellContext`temp ($CellContext`x Log[$CellContext`x] + (1 - $CellContext`x) Log[1 - $CellContext`x])}}}]], "Output", CellChangeTimes->{{3.853992202988023*^9, 3.85399222043511*^9}, { 3.8539923880142193`*^9, 3.853992407854725*^9}, 3.853992647913581*^9, { 3.853992768957498*^9, 3.853992784470092*^9}, 3.8539928418935966`*^9, 3.853992891568191*^9, {3.8539930437186403`*^9, 3.8539930636059113`*^9}, { 3.853993115373818*^9, 3.853993125801959*^9}, {3.853993190081634*^9, 3.853993204763206*^9}, {3.853993281004238*^9, 3.853993292818267*^9}, { 3.853993350823626*^9, 3.8539933730992413`*^9}, {3.8540325448746758`*^9, 3.854032578774571*^9}, 3.854032617513053*^9, {3.8540326878544273`*^9, 3.85403270891188*^9}, 3.8540328249127903`*^9, 3.8540329102984467`*^9}, CellLabel->"Out[55]=",ExpressionUUID->"a2ead71e-2ec5-4b4a-9224-769ed83b00ba"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "An important thing to note about convexity is that it is not ", StyleBox["local:\[LineSeparator]", FontSlant->"Italic"], " the construction depends on geometry that is not in the proximity of the \ point (x,f[x])" }], "Item", CellChangeTimes->{{3.854017465665847*^9, 3.854017487717896*^9}},ExpressionUUID->"4a515486-8936-4d11-b126-\ a5553643b5ef"], Cell[CellGroupData[{ Cell["\<\ This turns out to be important when we think about the convexity of \ thermodynamic potentials\ \>", "Subitem", CellChangeTimes->{{3.854017465665847*^9, 3.854017514142441*^9}},ExpressionUUID->"c6168a29-5d7e-49ab-8dc4-\ fe7613783382"], Cell[TextData[{ "Suppose that U[x] is the internal energy of a system with a fixed number of \ moles\[LongDash]for example, if there is one mole, then we can call ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["U", "TI"], "_"], RowBox[{"[", StyleBox["x", "TI"], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\overline{U}[x]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "319959b6-fdc3-4af6-a84a-e635083ace46"], " the molar internal energy." }], "Subsubitem", CellChangeTimes->{{3.854017465665847*^9, 3.854017546253323*^9}},ExpressionUUID->"9f5357bf-88fe-404e-a8fd-\ a0e97c70f451"], Cell[TextData[{ "Suppose further that x is the molar density of some extensive quantity. In \ our system, let\[CloseCurlyQuote]s suppose that x is the molar volume ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "28fd5ed5-5164-4549-8af2-85be982a2434"], ". Then ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["U", "TI"], "_"], RowBox[{"[", OverscriptBox[ StyleBox["V", "TI"], "_"], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\overline{U}[\\overline{V}]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9a17ced5-b173-4096-a3ad-e3f1533270d3"], " is the molar energy as a function of the molar volume." }], "Subsubitem", CellChangeTimes->{{3.854017465665847*^9, 3.8540175690292873`*^9}},ExpressionUUID->"34c834d9-3e4d-43bd-822d-\ b484cd194b19"], Cell[TextData[{ "1) If ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["U", "TI"], "_"], RowBox[{"[", OverscriptBox[ StyleBox["V", "TI"], "_"], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\overline{U}[\\overline{V}]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cc896b66-3103-4972-baba-1f280532a07b"], " is ", StyleBox["not", FontSlant->"Italic"], " convex then we can find two other molar volumes ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "1"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "a08626fd-b080-442e-b42c-5037a954e723"], " and ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "2"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "11afb95d-35ab-4c4b-89bd-26f9c2c43328"], " (for example, molar volumes of 1/2 and and 3/4) such that the system\ \[CloseCurlyQuote]s average value is ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "bcc74dc7-ee15-4e36-b0a6-9fc3d2e7a3d6"], " is between ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "1"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "d45c3117-c4a1-435e-9225-339bcef738f3"], " and ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "2"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "e9a09607-e00a-4ec2-9c87-bb6abf72bd8c"], " (for example if ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "f50fb05d-2d95-4152-95cf-89c686c75c78"], " = 5/8, then half of the system is at ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "1"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "34273e16-581e-4e86-ad4c-5a691d00aaf0"], " and the other half is at ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ OverscriptBox[ StyleBox["V", "TI"], "_"], "2"], TraditionalForm], "errors" -> {}, "input" -> "\\overline{V}_2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "45335012-1b64-4066-8be5-d6a9caec8b27"], ")" }], "Subsubitem", CellChangeTimes->{{3.854017465665847*^9, 3.85401756923477*^9}, { 3.8540176066584597`*^9, 3.854017606660684*^9}},ExpressionUUID->"bde76c9d-8677-483b-a42f-\ 5a4f6cab6277"], Cell[TextData[{ "If ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["U", "TI"], "_"], RowBox[{"[", OverscriptBox[ StyleBox["V", "TI"], "_"], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\overline{U}[\\overline{V}]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "1d2f29af-ecca-4b37-a2c3-ef8e0e28b71e"], " is not convex, the system can lower its molar internal energy by \ separating into a dense and less dense portion such that the average molar \ volume remains constant\[LineSeparator]\[LineSeparator]", Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3VeX3Dbe+Pn/2d2Lvdy3sO9ib/dyb/979s627JlhUR57POM0j9PMSK3k IIfHUQ6SnGTLQY7drSxZakVLVs4559zK3Q1ugakYAFZskFX88rhcLBDEBz+2 6hyiAAL/55/+/j8r/8v/+B//4+n/vfq///nIf/3fTz31yPP/7/9R/fD/PfH0 o/YT1l/+nyeesWzrqf/rT/9rNfGhat63qjv/W3Xf0WxCkRBNEyKZN5Xgv4t0 WYoUfHx8fHx8fHx8fHx8/OL7SiWZIVVc1nGReNcli8ghfHx8fHx8fHx8fHx8 /EL7imzRJCGEMj3rHFWC6lyBj4+Pj4+Pj4+Pj4+P33W+OofIOKYrUMT/r6y4 rib4+Pj4+Pj4+Pj4+Pj4RfaFSOYTiTxCdSRWU60RnqirMz4+Pj4+Pj4+Pj4+ Pn53+Ok8qYwNbLFT6pyfOoyPj4+Pj4+Pj4+Pj49feD+dTST2RSw5mV9kHYxk EqlyvXd8fHx8fHx8fHx8fHz87vBjNdD4umo1uonkh1QCPj4+Pj4+Pj4+Pj4+ ftf4WZmC8bGi+VhEZC/zXHx8fHx8fHx8fHx8fPxC+9rT3HP0hdatS+bpDVwP fHx8fHx8fHx8fHx8/IL5QpWoSRLxxDr102YTmg/4+Pj4+Pj4+Pj4+Pj4hfVF MqO2Trra1TNVKSK9h4+Pj4+Pj4+Pj4+Pj99lfrSgyL6i/HgJjVUgXl9VXnx8 fHx8fHx8fHx8fPxC+tpyNK7WUhwVteOxHKKROPDx8fHx8fHx8fHx8fGL5ifL zjojq+xwmp7kqXWKwsfHx8fHx8fHx8fHx+8OP3260KelKtdYieGeyK4ZPj4+ Pj4+Pj4+Pj4+fjf4QrGrKitelEhn05ebueHj4+Pj4+Pj4+Pj4+MX2dceb8Bq rmYi/hkfHx8fHx8fHx8fHx+/a/z6eUW6piK1k1m2+lixfKtScSoVu/qqOLa7 H7ys6jHbfa9Y1c92xX23/TTb9s+zgvx+XjuyHym7do4VSbPx8fHx8fHx8fHx 8fGN+a23v0QyewNtMFWO9Bw/sQ/+53SfZzF873patb+DbUX+hrWXpdn3/s6R v5NVO2aHf/vqvxPLTvxdo+/4+Pj4+Pj4+Pj4+Pjj73ei/aVujQl9SZoDyeR4 j5+u3zVfP3kdyxY/Pj4+Pj4+Pj4+Pn7v+0Ebsx2/9hymSB1TurEChRN/kDN5 TIdHchXA9/qQrdx8L3d5rz8+Pj4+Pj4+Pj4+/vj7bj+mVWnD12yqukT29eVE apHeabwChn1vvLCqH9eMrygGHx8fHx8fHx8fHx+/o36t/7FdXyhyNVBWpCCR yipSe/orl68vxwhb1TZkWePHx8fHx8fHx8fHx+99P3hesmU/K59I+9oLkDpX 9TkRhUhkzdEP5jDKy1efg4+Pj4+Pj4+Pj4+P3zlfjru0gv7Htnz1gYSYmScr l1AejiTk7FcsS9mPW5b48fHx8fHx8fHx8fF73w/Hr7bhZ1SozsnpAw05Qv6X kTMHP/b8Ywnjx8fHx8fHx8fHx8fvfV/5/GOrvkikaNqkqtOFprzau3DCWgtN tXL0bX/8alnjx8fHx8fHx8fHx8fvfT9Yd7ItX5FN6D7VKbKprUB+cv7VssWP j4+Pj4+Pj4+Pj9/7vtv/aNkd9usGlEhXlS9SSdEisqth3o/345Yvfnx8fHx8 fHx8fHz83vfd9R9T87404VcPCBWvOFXlZ18H3VnF822//VjW+PHx8fHx8fHx 8fHxe9+XY1ctSzfusr6fShGanCLxucUtWoxQHcnJ98YBV0obPz4+Pj4+Pj4+ Pj5+7/u2XXH7zjrtp3Il4k23mVMJYV3SYv06mPaT8xCVLX58fHx8fHx8fHx8 /N73lfOvNukrlTpz72TOPxsPICNZRA7l61uyHzd6HUsWPz4+Pj4+Pj4+Pj5+ 7/uV8Lm9Fn1FtmiSEEKZnnWOKkF1riiQ767f4bcfyxg/Pj4+Pj4+Pj4+Pn7v +3LNwmT/Yyu+OofIOKYrUMT/r6y4rib5+d76HVZuvrpAfHx8fHx8fHx8fHz8 zvnx+Vdb84VI5hOJPEJ1JFZTrRGeqLtmxfDtcBxwOePHx8fHx8fHx8fHx+99 320/WlYycxN+Ok8qYwNb7JQ656cOF8Cv2FZt/Y4Sxo+Pj4+Pj4+Pj4+P3/t+ RT63Z9XmX23WT2cTiX0RS07mF1kHI5lEqlzvvSh+xbYj/Y/m/fQxfHx8fHx8 fHx8fHz8zvpWav7V5vxYDTS+rlqNbiL5IZWQv+9eRys9j60pP+/48fHx8fHx 8fHx8fF73w/WvW/bz8oUjJ0VzcciInuZ5+bsq+YhMunnHT8+Pj4+Pj4+Pj4+ fu/7ss0j535p1dee5p6jL7Tutcg8vYHrYdh310Gxk+s/lid+fHx8fHx8fHx8 fPze99PjV5v1hSpRkyTiiXXqp80mNB9y9Cua8atliR8fHx8fHx8fHx8fv/f9 YN7QVn2RzKitk6529UxVikjv5ey741ftOv244+h3Ov4xIZwrw3ecY2evOxev 3jbuZ6fg4+Pj4+Pj4+Pjd4d/vHo/ferCsDN8+24ufi1LZ+K3LH/e0I750YIi +4ry4yU0VoH49VLlzcev9T92f/wL1x52JvQNOg9NHnAmVF/fLttv1M/a8PHx 8fHx8fHx8bvJf/79oeq9tXdf/fCUQefk+WGjfqfjTz2316yvjUPjNlHn2rqY iWc3RSPX0azvroOimz/HgF9va8Zf9cdJ58Hqv/GHJve7bciPf9pW+OuPj4+P j4+Pj4+PX0T/8deWuPfUD00edO+vrw7fM+qrU1v3ZZ+ZbVtt+cmys87IKjuc pid5ap2iiuBXgudIeyD+LfvPub+PTHD/nQ84r3+5yaifd/z4+Pj4+Pj4+Pj4 nfDlM2Gy79HrmxlwHq6+j411d/yyzWNF+81a8NOU0KelKtdYieGeyK5ZXr7X j2v3RPxHT19z245BH+RLH60x6qtKxMfHx8fHx8fHx+82/+qNO85Dk7wxffLe +vHXlxr1vbfOxp9ct7A9Xyh2VWXFixLpbPpyM7f8fG8dlEg/bhfHf+naHb+P XfZBDjp/f2OZUT+zXHx8fHx8fHx8fPwu8eXcOQ/2ee1H2Q/5wgdDRv3kp07E X4mt39Garz2eVSX/aHNXRsQ/F8gP5s/phfhHRsfCsauy//GRKQv9v3Vxrz8+ Pj4+Pj4+Pj5+0fwdhy5Engvrd175YmPXx1+pqPofG/fr5xXpmorUTmbZ6mPF 8r11NO3c/E7HP/HVxWH7Uf5WMnzrvlFfv+Hj4+Pj4+Pj4+N3hz+09ZQ7bjVo Q876YatRP525/fgrfrundV8kszdQB1WO9Bw/sQ/+53SfZzH8SsVyX70S/3+9 uyoyhrXfOXnuhlE/7/jx8fHx8fHx8fHx2/UH1hwOn32U/TLzluw16mef2Zrv tXtamz8n6atrI/QlaQ4kk0XsXSjz5O0nr2O3xz/js/Xh+o8PVF+7j1ws9PXH x8fHx8fHx8fHL5r/1ZI97li+YF28wWp70qRfF2rBr41fbd2vPYcpUseUbqxA 4cQf5Ewe0+GRXAXwZR+upZw/pzvjf+/7Le6zvhMmeb+XrN9x2qhfO6Zl8fHx 8fHx8fHx8Qvtz/phW9gnI++p12w7ZdQP/9/B+N31O6xKG75mU9Ulsq8vJ1KL 9E7jFTDsV+yKph/XjK8opi3/y0V7wvGr8veSReuOGvXjpxT/74+Pj4+Pj4+P j4+fTHj58w3h/bR833HwglE/ZXQg/uT8Oa37QpGrgbIiBYlUVpHa01+5fH25 dodla+Zf7cL4f1lzyH3u0X3et6/fmb9sn1E/ma/of398fHx8fHx8fHz8pP/8 rCF/7hzvvvrEuetdH78cdxkdv9q0n5VPpH3tBUidq/qciEIksubou9fRSrTD uzj+VX+cjM2f8/FPO4z6ecePj4+Pj4+Pj4+P367/2Mxl4dhVeV999cYdo74y T5u+HHdpBf2PbfnqAwkxM09WLqE8HEnI2a9YlrIft1vj37b/XGz9jtfm/V7o 64+Pj4+Pj4+Pj49fJH9sTDgPTxkM11WX99QyzZQ/XvGH41fb8DMqVOfk9IGG HCH/y8iZgx97/rEH4j9y6lr4O4l8vfTRGqN+5oaPj4+Pj4+Pj49fcP/68N3I /XS/8/hry4z6jWVs3lc+/9iqLxIpmjap6nShKa/2Lpyw1kJTrRx92x+/2ivx X7p+J5wrSr7/7Y1lRv3Yxy74++Pj4+Pj4+Pj4+NH/RNnb8TGrr7wweqeiD9c 974dX5FN6D7VKbKprUB+cv7Vbo9/dHQsNtfwn6YMps8t0PXHx8fHx8fHx8fH L5K/89BFr+04yWs/yrlYTfqaA237bv+jZXfYrxtQIl1VvkglRYvIroZ5P96P 2xvxT3xliftv/QH5DGT1/fqte0b95F6R//74+Pj4+Pj4+Pj40W3ttlO1Zx+r rw8WbDXqj1f87vqPqXlfmvCrB4SKV5yq8rOvg+6s4vm2337spfife291uFaN fD95/oZRX38WPj4+Pj4+Pj4+frH9wbWHnQf7+sP5RL5cvMeoryupXV+OXbUs 3bjL+n4qRWhyisTnFrdoMUJ1JCffGwdc6an4Z/jrncq5ouRvJjsPXSjs9cfH x8fHx8fHx8cvkj9/yV6//9Ebyzew7pBRf7zit+2K23fWaT+VKxFvus2cSgjr khbr18G0n5yHqBfil33sEybXfjNZve2UUT/v+PHx8fHx8fHx8fFb9T/8YZvz YN+g+wykvKdetfVUIm93xq+cf7VJX6nUmXsnc/7ZeAAZySJyKF/fkv240evY A/HPX7I7bDvK30z6hw4Z9fOOHx8fHx8fHx8fH79V/9UvN/p9j15/zLaD5436 aaEz8VfC5/Za9BXZoklCCGV61jmqBNW5okC+u36H337slfgXrT8Sth/lv/0v F+026mcex8fHx8fHx8fHxy+w/+KHQ+599IP+s2BHz1w36uvKaNeXaxYm+x9b 8dU5RMYxXYEi/n9lxXU1yc/31u+wcvPVBbbnr995Onz+Uf67f+f7YM6o4l1/ fHx8fHx8fHx8/CL5f5u51B/HN+i2Hy9fv9MT8cfnX23NFyKZTyTyCNWRWE21 Rnii7poVw7fDccC9E/++o5ci41f7nalz1xn140UW+++Pj4+Pj4+Pj4+PH3yU YzUfdp997A/7Y0bHRE/E77YfLSuZuQk/nSeVsYEtdkqd81OHC+BXbKu2fkeP xH/60nDY5y7fn3lnpVG/obz4+Pj4+Pj4+Pj4BfOv3bzr9jkG868+9uoSo34j W6t+RT63Z9XmX23WT2cTiX0RS07mF1kHI5lEqlzvvSh+xbYj/Y/m/fSx9v2b d++H/+4f6Ot3rOmLjPrRTEX/++Pj4+Pj4+Pj4+MH/slzN8JxfHIO1uffX23U zyLa9a3U/KvN+bEaaHxdtRrdRPJDKiF/372OVnoeW1P+eMVfmbYoNgfrnTsj hbz++Pj4+Pj4+Pj4+EXxtx+66Ezo63fHrcr76Jc/32DUH8/4g3Xv2/azMgVj Z0XzsYjIXua5OfuqeYhM+uMV/9Nvr6z+mx90+93lONYzl24a9fOOHx8fHx8f Hx8fH79Zf2jrycg6BgPOrB+3GvXHM37Z5pFzv7Tqa09zz9EXWvdaZJ7ewPUw 7LvroNjJ9R+7P/6pc9eGcw7Lf/tyTp0iXn98fHx8fHx8fHz8ovj9aw+Fzz7K e+ivl+7tmfjT41eb9YUqUZMk4ol16qfNJjQfcvQrmvGr3R7/e99tCdd/lP2Q 63eeKeT1x8fHx8fHx8fHxy+K/8WiPf6zj/3u+h0L1x4x6qc+dTD+YN7QVn2R zKitk6529UxVikjv5ey741ftOv244+iPV/zev/3+cA2PReuOGPXVKfj4+Pj4 +Pj4+PjF9WUfzIRw/Gq/s27HaaO+urTO+JblzxvaMT9aUGRfUX68hMYqEL9e qrz5+LX+x96K/9c1h2Lz53y1dK9RX1c6Pj4+Pj4+Pj4+flH9aZ+ujazfMeDs cZ8B6434U8/tNetr49C4TdS5ti5m4tlN0ch1NOu766Do5s8x4NfbWvVXbzvl 9js+6M8fNevHbYW8/vj4+Pj4+Pj4+PhF8Z9557ew71HeS5+5GMxB2f3xyz4z 27ba8pNlZ52RVXY4TU/y1DpFFcGvBM+R9lj8Ow5dcMdsB+NXVXMPF+H64+Pj 4+Pj4+Pj4xfFl+ume88/en2Qt++OGPXrbe34ss1jRfvNWvDTlNCnpSrXWInh nsiuWV6+149r91z8J85dD//ty9cL760u5PXHx8fHx8fHx8fHL4J/595IpO9x wPnLtIVG/VRah+NPrlvYni8Uu6qy4kWJdDZ9uZlbfr63DkqkH7dH4h++ec/t d5zgtyEffXWJUV9VBj4+Pj4+Pj4+Pn5R/bMXh8O5Q+T981PvrDTqj3f8ldj6 Ha352uNZVfKPNndlRPxzgfxg/pyei7/6R/7T1IWx31Duj4wV7vrj4+Pj4+Pj 4+PjF8GX66XLeUPcNmRfvzN1zjqjfuMltuZXKqr+x8b9+nlFuqYitZNZtvpY sXxvHU07N3884//7W8vD31BkG/Li1dtGffUxfHx8fHx8fHx8/OL563eedtdN D9bAe+e7LT0Vf8Vv97Tui2T2BuqgypGe4yf2wf+c7vMshl+pWO6rF+Of/MmQ 89Ak+fvJoPt+8MRVo37e8ePj4+Pj4+Pj4+M36sv10qNrd3y+cLdRP2vrhO+1 e1qbPyfpq2sj9CVpDiSTRexdKPPk7SevYy/F/8b8zW7fe9AHv2nP2cJdf3x8 fHx8fHx8fPwi+N8s3es+9yj7IOU8InI9dZP+eMdfG7/aul97DlOkjindWIHC iT/ImTymwyO5CuDLPlxLOX9O98c/d2BXZPzqgLNk0zGjfr0NHx8fHx8fHx8f vyj+rB+3+ut2eHOHrNp2qqfid9fvsCpt+JpNVZfIvr6cSC3SO41XwLBfsSua flwzvqKYjvk/rtwfzh8l3xes2GfUzzt+fHx8fHx8fHx8/EZ9uV56MPekfJfr qfdS/Mn5c1r3hSJXA2VFChKprCK1p79y+fpy7Q7L1sy/2uXxr9xyvNp27Pe/ BwPOJz/vMOpH94r698fHx8fHx8fHx8eX+y++P+RMmFRb/+7kuRtGffVJnfPl uMvo+NWm/ax8Iu1rL0DqXNXnRBQikTVH372OVqId3iPxb91/rvrv35tDSn4H Zs7baNSvfS7u3x8fHx8fHx8fHx9f+nK99KDfRb7keuom/dShDscvx11aQf9j W776QELMzJOVSygPRxJy9iuWpezH7YX4j565Fnv+8aUPh4z64ZEC//3x8fHx 8fHx8fHx74+M+nNOevfNj0wdVBLdHH84frUNP6NCdU5OH2jIEfK/jJw5+LHn H3ss/is37vpzSHnfhb/NXFa464+Pj4+Pj4+Pj4+ft3/x6h2v33GS1/fyxJvL jfr1C23fVz7/2KovEimaNqnqdKEpr/YunLDWQlOtHH3bH7/ai/GPjgq33Rg8 A/nw5EFnbEzxL7jEf398fHx8fHx8fHz8Qyeu+Ot2eH0vkz5ea9Q3EX+47n07 viKb0H2qU2RTW4H85PyrvRa/7HMMnoGU34UrN24X6vrj4+Pj4+Pj4+Pj5+1v 2nPOvVeW/S6yDfnG/E09F7/b/2jZHfbrBpRIV5UvUknRIrKrYd6P9+P2Xvwv fbgm9hzw4TPXjPrJIor298fHx8fHx8fHx8dfuulYOG+IfH3av8uoXy+pE767 /mNq3pcm/OoBoeIVp6r87OugO6t4vu23H3s1/tfmbXQm+ONX5XdBzslq0s8q HR8fHx8fHx8fH78I/vfL9/lj9rw+yB9WHzDqZ1md8uXYVcvSjbus76dShCan SHxucYsWI1RHcvK9ccCVno1frvkYjOOW7ys2nyjU9cfHx8fHx8fHx8fP2//o 5+1uu1HOPSnvmVf9cdKon05PHmvft+2K23fWaT+VKxFvus2cSgjrkhbr18G0 n5yHqNfi/37FvnDsqvxO/LSq9luKCb9O6fj4+Pj4+Pj4+Pi5+69+sTG8Z54w ud/ZdvCCUT+ZMB7xK+dfbdJXKnXm3smcfzYeQEayiBzK17dkP270OvZY/Ms3 HnN/Q3HX8ZgUjOUuzvXHx8fHx8fHx8fHz9t/8f3V4dqP8t75+Nlr+vzj4Gdt nfIr4XN7LfqKbNEkIYQyPescVYLqXFEg312/w28/9mL8v+85G869Kt/fnL+5 UNcfHx8fHx8fHx8fP2//0VeXuPfKQb/L9eH7Rn13f5zjl2sWJvsfW/HVOUTG MV2BIv5/ZcV1NcnP99bvsHLz1QV2zj9w8kr1OxCsZdPvTP5kjVE/nqV4f398 fHx8fHx8fPxy+/dHxsL+Ftl2fGTKQKwtNd5++vP4xB+ff7U1P35dRDyviNcp XWIdIzxRd82K4dvhOODejP/ClVvebyn+s8D/eHOFUT/v+PHx8fHx8fHx8fGz /AtXb1fvlwedCZO8+ULk/XIvxu+2Hy0rmbkJP50nlbGBLXZKnfNThwvgV2yr tn5HD8bv/Z5SW//xkSmDRn1tXnx8fHx8fHx8fPwC+AePXwnXK5D9j5M/WWfU NxV/RT63Z9XmX23WT2cTiX0RS07mF1kHI5lEqlzvvSh+xbYj/Y/m/fSxzvt/ fWWJ9yywPyfx8M27hbn++Pj4+Pj4+Pj4+Hn6v+8+449f9Z5/fGv+ZqN+bX98 47dS868258dqoPF11Wp0E8kPqYT8ffc6Wul5bE35JuJ/Xs4nNWnA7ZeX34sT 524Y9cMPBfz74+Pj4+Pj4+Pjl9tfvPGoP2/OoPNA9f3zwV1Gfe35HfaDde/b 9rMyBWNnRfOxiMhe5rk5+6p5iEz6JuJ/5csNYX+8fN924KJRP+/48fHx8fHx 8fHx8XX+/GX7wnU7ZF/LL0OHejJ+2eaRc7+06mtPc8/RF1r3WmSe3sD1MOy7 66DYyfUfeyv+j37a7v+m4s0rteqPE4W5/vj4+Pj4+Pj4+Ph5+rN+2BrOvyrv mddsPWXUNxV/evxqs75QJWqSRDyxTv202YTmQ45+RTN+tZfi/3bFgXD+HNkv /9Oqg0Z9daH4+Pj4+Pj4+Pj4+fszPt/grlUQ3C/vOHTRqK9O6rwfzBvaqi+S GbV10tWunqlKEem9nH13/Kpdpx93HH0T8S/1x3RP8H9Xmdu/szDXHx8fHx8f Hx8fHz9P/5/vrgrvk+U986nzw0b9rK2TvmX584Z2zI8WFNlXlB8vobEKxK+X Km8+fq3/sXfj37z3fLgGpPxevPH170b92NGC/f3x8fHx8fHx8fHL7VdmLArb j/J5r1u37xv1TcWfem6vWV8bh8Ztos61dTETz26KRq6jWd9dB0U3f44Bv97W Cf/IqauR8asDzr8+WlOY64+Pj4+Pj4+Pj4+fl3/77mhsrfS/TF/Us/HLPjPb ttryk2VnnZFVdjhNT/LUOkUVwa8Ez5H2cPxXr9+OPBPc7zw2c5lRv975+Pj4 +Pj4+Pj4+Hn4Zy4Oh+s+ynvlZ99ZadRv6KQO+bLNY0X7zVrw05TQp6Uq11iJ 4Z7IrllevtePa/d0/KNjwnnYX/tRth8f7htwRkczrA77ecePj4+Pj4+Pj4+P r8q9+8jF8BkvOU5v2qfrjfom40+uW9ieLxS7qrLiRYl0Nn25mVt+vrcOSqQf t0fj/9sby8PvhXxdunbbqJ+94ePj4+Pj4+Pj45v312w7HfY9yn6W9xdsNerH d8c3/kps/Y7WfO3xrCr5R5u7MiL+uUB+MH9Or8c/6eOhcFz3hEkDzqGTV4z6 sc8F+vvj4+Pj4+Pj4+OX1/956GDYxyLbkfOX7TPqq/bHy69UVP2Pjfv184p0 TUVqJ7Ns9bFi+d46mnZuvqn43/xmk983L5+DHHR+333WqJ93/Pj4+Pj4+Pj4 +PjJT5/27wzX7ZD3yYs3HjPqJ/OPZ/wVv93Tui+S2RuogypHeo6f2Af/c7rP sxh+pWK5r16P/9OB3eH3Qv6+snjjEaN+3vHj4+Pj4+Pj4+PjJz++/tUmd82O CX4bcvOec0Z9Zfo4+V67p7X5c5K+ujZCX5LmQDJZxN6FMk/efvI69mr8v645 6Pc/DrrfjW+W7lOe1avx4+Pj4+Pj4+Pj4yfPeunDNW77MXj+8dDpa0Z975OZ +GvjV1v3a89hitQxpRsrUDjxBzmTx3R4JFcBfNmHaynnz+mt+FdvOxVb2+aD H7YW4vrj4+Pj4+Pj4+Pj5+X/9bWlkfU7+p0rw/eM+smyxjN+d/0Oq9KGr9lU dYns68uJ1CK903gFDPsVu6LpxzXjK4oZF3/X4YvubyrBbyvTP11n1M87fnx8 fHx8fHx8fPzodn9k1HmwbzC8R35kyqAzljqnd+JPzp/Tui8UuRooK1KQSGUV qT39lcvXl2t3WLZm/tUeiv/0xZv+7yqD7vOPz7z9m1E/7/jx8fHx8fHx8fHx o0fOXb7l3h8H69s99dbKno5fjruMjl9t2s/KJ9K+9gKkzlV9TkQhEllz9N3r aCXa4T0Y/527I+FvK/L1lxkLC3H98fHx8fHx8fHx8fPw9x29HK79KMeuTp2z zqgfP2f845fjLq2g/7EtX30gIWbmycollIcjCTn7FctS9uP2YvyVGYvC8avy ffj2vdyvPz4+Pj4+Pj4+Pn4e/rrtp8L2o3x/7/stRn1djvHyw/GrbfgZFapz cvpAQ46Q/2XkzMGPPf/Y4/E/995qf35ibw7WE2dvGPXzjh8fHx8fHx8fHx8/ 2PrXHnbbjnLsqrw3/mrJ3p6OX/n8Y6u+SKRo2qSq04WmvNq7cMJaC021cvRt f/xqGeJ/9YuN4XdE9tFvO3DOqJ93/Pj4+Pj4+Pj4+PhBwmcLd4frPsrxeYvW HzXqm44/XPe+HV+RTeg+1Smyqa1AfnL+1V6O/+NfdrjfDfmSbciVm04Y9VNl FeDvj4+Pj4+Pj4+PX07/rfmbI88/Dji/7z5r1Fcz4+e7/Y+W3WG/bkCJdFX5 IpUULSK7Gub9eD9ub8f/w8r9Yf+8fC2ofjbpZxWHj4+Pj4+Pj4+Pb9Kf9PHa yNqPA87BE1eN+tqj4+S76z+m5n1pwq8eECpecarKz74OurOK59t++7EM8a/Y fDwyB2u/8/FP2436yeNF+Pvj4+Pj4+Pj4+OX03/sjeWx+XOuXLvb0/HLsauW pRt3Wd9PpQhNTpH43OIWLUaojuTke+OAK6WIf9uB82H//IS+Aee1Lzca9YOd Iv398fHx8fHx8fHxy+ePjgq/7ej3rUwZcMbEmDG/9mYuftuuuH1nnfZTuRLx ptvMqYSwLmmxfh1M+8l5iHo5/uPnrsfGeD/3/mqjft7x4+Pj4+Pj4+Pj48vt 4tXbbn+KXJdA3hf//Y3lRv3MHOPkK+dfbdJXKnXm3smcfzYeQEayiBzK17dk P270OvZw/MO37sd+Z5k4Y1Hu1x8fHx8fHx8fHx/ftL/v+BV3XhC5tp28N+77 ZJ1RP57XTPyV8Lm9Fn1FtmiSEEKZnnWOKkF1riiQ767f4bcfyxD/n6ctqo1h rb7u3B0x6odpBfn74+Pj4+Pj4+Pjl8/fsONMbexq9fX2d3/0fPxyzcJk/2Mr vjqHyDimK1DE/6+suK4m+fne+h1Wbr66wPHzn333N7/t6K3hcfriTaO+esPH x8fHx8fHx8c35w+sO+yvSeCNX/1i0W6jfh7xx+dfbc0XIplPJPII1ZFYTbVG eKLumhXDt8NxwOWIf8ZnG9zfWmRf/QPV952HLhj1Y4cL8PfHx8fHx8fHx8cv n//Foj1+f4r3Glx7pOfjd9uPlpXM3ISfzpPK2MAWO6XO+anDBfArtlVbv6ME 8c/6cZv/DKT3W8uqrSeM+nnHj4+Pj4+Pj4+Pj//Ot384D/j3w/K1YecZo35s 11D8FfncnlWbf7VZP51NJPZFLDmZX2QdjGQSqXK996L4FduO9D+a99PHxtf/ ZsW+cA1I2Y78afVBo37wXpS/Pz4+Pj4+Pj4+fvn8yZ+scSb01dZFP3D8slE/ Xcj4x2+l5l9tzo/VQOPrqtXoJpIfUgn5++51tNLz2JryTce/7PdjkbmmBpzZ v+4s9d8fHx8fHx8fHx+/fL5cryNY107eG8v1PEz6ecQfrHvftp+VKRg7K5qP RUT2Ms/N2VfNQ2TSNx3/H3vPh32P8jVz3u9G/YyM+Pj4+Pj4+Pj4+OPuj46O OQ9PqY1dletAjlTTTPl5xS/bPHLul1Z97WnuOfpC616LzNMbuB6GfXcdFDu5 /mPvxn/0zLVw/Kr8reWFWauN+sFbUf7++Pj4+Pj4+Pj45fIvX7/j3gcH/Sl/ m7nUqJ/OYib+9PjVZn2hStQkiXhinfppswnNhxz9imb8aq/Gf+3mfe+74o9f ffTVJaX+++Pj4+Pj4+Pj45fLP3TyqjNhkteXIu+H//3xWqO+rrzx9oN5Q1v1 RTKjtk662tUzVSkivZez745ftev0446jbzp+mfLI1Fp/vXzduz9amvjx8fHx 8fHx8fHL7W/cddYdsxo80/XW/M1G/bzityx/3tCO+dGCIvuK8uMlNFaB+PVS 5c3Hr/U/lif+p99eEY5fle9nLt406ucdPz4+Pj4+Pj4+fnn9ReuP+G1Hbzze 54O7jPrqcsbfTz2316yvjUPjNlHn2rqYiWc3RSPX0azvroOimz/HgF9vGw9/ +mcbwjGsD/YNOjsPXTTq107N/++Pj4+Pj4+Pj49fLv+rJfsifSmDTv/QIaN+ vW28fNlnZttWW36y7KwzssoOp+lJnlqnqCL4leA50hLF/+GP2yLjV/udVX+c KFX8+Pj4+Pj4+Pj45fXf+35LbD2CtdtPGfXTH8zEL9s8VrTfrAU/TQl9Wqpy jZUY7onsmuXle/24dqniX7Byf/ibi/zO/PDbgVLFj4+Pj4+Pj4+PX15/6px1 4XNcsi9l77HLRn2lZcBPrlvYni8Uu6qy4kWJdDZ9uZlbfr63DkqkH7cE8a/Y ctz9rgRtyI9/2mbUz8yHj4+Pj4+Pj4+PP47+P/57hfvs4wR/PN6FS7eM+ql8 huKvxNbvaM3XHs+qkn+0uSsj4p8L5Afz55Qp/l0HLrjfl6D/ccZn60sVPz4+ Pj4+Pj4+fjl9+XTgI1NqaxHI++H7I6OliL9SUfU/Nu7XzyvSNRWpncyy1ceK 5XvraNq5+XnEf+rCzXDMt3x/5p3fjPqNnYGPj4+Pj4+Pj4/fWf/qjXuxdQge l2uhG/Szzxhfv+K3e1r3RTJ7A3VQ5UjP8RP74H9O93kWw69ULPdVpvjv3Bup fmeC8av9zp+nDUaO9378+Pj4+Pj4+Pj45fQPn7rq3v8Ga3e8OGvIqK/+aMb3 2j2tzZ+T9NW1EfqSNAeSySL2LpR58vaT17Es8U98ZYk/55Q39vvazbtGfd1Z +Pj4+Pj4+Pj4+OPlb95zLvbs4xtfby5N/LXxq637tecwReqY0o0VKJz4g5zJ Yzo8kqsAvuzDtZTz5/R2/PK3Fq//cdCdS+fIqWtGfTdXAf7++Pj4+Pj4+Pj4 5fEXbzwW3v/KNuSnA7tKE7+7fodVacPXbKq6RPb15URqkd5pvAKG/Ypd0fTj mvEVxRjx3/h6k/cMpD+HzqY9Z4362g0fHx8fHx8fHx9/nPxvlu4L73/lvfAv Q4dKE39y/pzWfaHI1UBZkYJEKqtI7emvXL6+XLvDsjXzr/Zw/J8N7g7Hr8rn hxduOGLUT+Yt2/XHx8fHx8fHx8c373+wYGt4/yvbj2u2njLqR4+Yjl+Ou4yO X23az8on0r72AqTOVX1ORCESWXP03etoJdrhJYh/YN0h54HI3FPzFu8x6meW jY+Pj4+Pj4+Pjz8O/uQ568L7X9mXsufoJaN+nvHLcZdW0P/Ylq8+kBAz82Tl EsrDkYSc/YplKftxez3+9TvO+OveeHNPvfPNH0b92m65//3h4+Pj4+Pj4+Ob 8//x5vLw/lf2Q164csuo7+3mE384frUNP6NCdU5OH2jIEfK/jJw5+LHnH0sU /8HjV2Jr3/znkzWlih8fHx8fHx8fH79c/tiYcJ99DPsf+wadkZExY35DxY6j r3z+sVVfJFI0bVLV6UJTXu1dOGGthaZaOfq2P361bPFfunbbn7t40P3+PPb6 MqN+Mn/Zrj8+Pj4+Pj4+Pr5Z/+LV+P3v428sN+on85uOP1z3vh1fkU3oPtUp sqmtQH5y/tWyxD9W/TfycN9Cd/3UYP7ikdGx0sSPj4+Pj4+Pj49fLn/vscvO Q5MGw/vfyZ+sM+rryjTlu/2Plt1hv25AiXRV+SKVFC0iuxrm/Xg/brni//tb K/y5i73247nLN436DWH4+Pj4+Pj4+Pj4HfDXbT/tjl0N7n/f+26LUT+jUCO+ u/5jat6XJvzqAaHiFaeq/OzroDureL7ttx/LGP+UOWvdMeCy//6BvkFn75FL Rv2848fHx8fHx8fHxy+P/8vQQa/fxL///WrpPqN+3vHLsauWpRt3Wd9PpQhN TpH43OIWLUaojuTke+OAK6WMf9YPW8P5p+RraOtJo37aKdf1x8fHx8fHx8fH N+d/OrDLbzt6979LNhw16qsdc75tV9y+s077qVyJeNNt5lRCWJe0WL8Opv3k PERliv/bZfvDtqP8Lv3828FSxY+Pj4+Pj4+Pj18e/7V5v4f3vvL1x76zRn3d ZspXzr/apK9U6sy9kzn/bDyAjGQROZSvb8l+3Oh1LFH8y34/Fv7+IseCz/51 R6nix8fHx8fHx8fHL4///Pur3flXg/vfY2evG/W15RnyK+Fzey36imzRJCGE Mj3rHFWC6lxRIN9dv8NvP5Yt/q0HzrvPDwfPEL/yxUajftap+Pj4+Pj4+Pj4 +J30KzMWh/e+8jV861654rfS/Y+t+OocIuOYrkAR/7+y4rqa5Od763dYufnq As34x8/d8NdP9eZffe691UZ9fYH4+Pj4+Pj4+Pj4nfNv3rnv9j3Ke1/5+sv0 hUb9+gWOvx+ff7U1X4hkPpHII1RHYjXVGuGJumtWDN8OxwGXL/7h2/f8vscB 9/v0lxkL4+f2ePz4+Pj4+Pj4+Pjl8E+cve6u+/iA32/yX26/SXnil5vbfrSs ZOYm/HSeVMYGttgpdc5PHS6AX7Gt2vodZYz/5UXe+h2TB933m7fuG/Xzjh8f Hx8fHx8fH7/3/a37L1TvdQf9eSP7nVe/3Fiq+OVWkc/tWbX5V5v109lEYl/E kpP5RdbBSCaRKtd7L4pfse1I/6N5P33MrP/8B0PeGPA+/zniM9eM+uljwT4+ Pj4+Pj4+Pj5+Z3xv3kj/2ce+QWfOrzuN+nnHL9+t1PyrzfmxGmh8XbUa3UTy Qyohf9+9jlZ6HltTft7xy3mMa3PoyHmMzxv1844fHx8fHx8fHx+/9/1vl+1z x68Ga3fIdetM+tGjeV3/YN37tv2sTMHYWdF8LCKyl3luzr5qHiKTft7xz/11 pz+HjvdauvGYUT/v+PHx8fHx8fHx8Xvff//7rbF1B9ZsO2XU12Q06ss2j5z7 pVVfe5p7jr7Qutci8/QGrodh310HxU6u/1ie+H8ZOui2H4Pv0/wle4366Szl uv74+Pj4+Pj4+Pjj7/d9siZc81y+9hy7ZNTPO375lh6/2qwvVImaJBFPrFM/ bTah+ZCjX9GMXy1L/Gu3n3YmTBoI+yDf+36rUV9XHj4+Pj4+Pj4+Pn6n/L+/ sTyc72NC9b73wpXbRv3UhxyufzBvaKu+SGbU1klXu3qmKkWk93L23fGrdp1+ 3HH0845/z9FL7ncoeJ54yuy1Rv2848fHx8fHx8fHx+9tf2R0LLzfDdqPo2Oi NPEHm2X584Z2zI8WFNlXlB8vobEKxK+XKm8+fq3/sZzxn79yK1z/Ub7/483l Rn11Ofj4+Pj4+Pj4+Pid8c9duhXe68oxd39/a4VRP+/4Az/13F6zvjYOjdtE nWvrYiae3RSNXEezvrsOim7+HAN+vW28/ZFR4f4G441fHXQelr/HjAonlm0c /XobPj4+Pj4+Pj4+fjv+riOXavN99PU7U+euN+rnHX/wWfaZ2bbVlp8sO+uM rLLDaXqSp9Ypqgh+JXiOtKTxy80dDx6Zj+rClVtG/fiH8l1/fHx8fHx8fHz8 8fOHtpwMx67K16wfthr1tYcN+7LNY0X7zVrw05TQp6Uq11iJ4Z7IrllevteP a5c2frn1zV3nf5/63b7I3UcvG/VTlioNHx8fHx8fHx8fvwX/h5X7w7XOZT/k 9ysOGPWzc5vzk+sWtucLxa6qrHhRIp1NX27mlp/vrYMS6cctWfxym7VgS/id ku/yN5oyxY+Pj4+Pj4+Pj9+7/kc/b/ef1fKegVyx5YRRv24+Q34ltn5Ha772 eFaV/KPNXRkR/1wgP5g/p6zxy+27ZfvC32Pk+4JVB4z6yaSyXX98fHx8fHx8 fPzx86d/ut5dr26Cf7+789AFo37e8Qd+paLqf2zcr59XpGsqUjuZZauPFcv3 1tG0c/Pzjl9+WrH5RGwO1o9/3m7U1+XHx8fHx8fHx8fHb9d/6r9XuPNEBmPt zly8adTPO/7gveK3e1r3RTJ7A3VQ5UjP8RP74H9O93kWw69ULPdV1vjltuPQ hfB54gf7+p0ZnzYzJ1X3x4+Pj4+Pj4+Pj9+b/tiYcNcXeLDPu8+V7cf7o6PG /KxSTPteu6e1+XOSvro2Ql+S5kAyWcTehTJP3n7yOpYtfpkif4MJxq/K79VT /73SqB//VL7rj4+Pj4+Pj4+PPz7+pWu33b7HYK2BJ15fnjqrl+OPptXGr7bu 157DFKljSjdWoHDiD3Imj+nwSK4C+LIP11LOn1OO+OV27/6ovx6O91zxn6YM OmNjY6WJHx8fHx8fHx8fvzf9vccuhePs5LNakz9ZZ9RP5crx+rvrd1iVNnzN pqpLZF9fTqQW6Z3GK2DYr9gVTT+uGV9RTC7+468vcx7sGwyfgbx49bZRP55P l4CPj4+Pj4+Pj4/fuL9m28mw7SjH2b3//Rajft7xRz8n589p3ReKXA2UFSlI pLKK1J7+yuXry7U7LFsz/2oJ4g+OTJq9NpyTSr72yTUgSxQ/Pj4+Pj4+Pj5+ 7/k/rTrgjl8N1hmQ6w6UKf7oJsddRsevNu1n5RNpX3sBUueqPieiEImsOfru dbQS7fASxR/sfLBga7gGpBzDOrT1lFE/fk75rj8+Pj4+Pj4+Pn7nfbmuQDh+ ta/fWbb5uFE/7/ijsBx3aQX9j2356gMJMTNPVi6hPBxJyNmvWJayH7cs8Qe+ /C1mQjg2fMD54bcDRn1dDnx8fHx8fHx8fPxW/RmfrY+tUyfXHShT/NHUcPxq G35GheqcnD7QkCPkfxk5c/Bjzz+WMP5gC9aAlH37sv34kVwDskTx4+Pj4+Pj 4+Pj957/5Jsr/HU7vDlYz15KrP3Y4/FHfeXzj636IpGiaZOqThea8mrvwglr LTTVytG3/fGrZY0/SNhx+GI4r7H8fWb6pxuN+nnHj4+Pj4+Pj4+P31v+yOiY 83C13Rj2kVRfIyO1tR97Pf6kH657346vyCZ0n+oU2dRWID85/2rZ4g82+VtM 7fnHAefJt1YY9dUMPj4+Pj4+Pj4+fmubvL8Nxq7Kl3t/W6L4k8W6/Y+W3WG/ bkCJdFX5IpUULSK7Gub9eD9u+eIPttGRMfeZ4qAN+fCUQWd0dKw08ePj4+Pj 4+Pj4/eWL591jD6fNf3T9Ub9esWZ9t31H1PzvjThVw8IFa84VeVnXwfdWcXz bb/9WNb4ozn+8ebycP4cOUb83OXbRn1dCfj4+Pj4+Pj4+PjN+it+Px4+myXv ceVcrGWKP7nJsauWpRt3Wd9PpQhNTpH43OIWLUaojuTke+OAK6WNP+pMm7s2 /I1GPme868jFUsWPj4+Pj4+Pj4/fO/7XS/fFns/6eeigUT/v+JO+bVfcvrNO +6lciXjTbeZUQliXtFi/Dqb95DxEZYs/un300/aw/1G+yzlZyxQ/Pj4+Pj4+ Pj5+7/hvf/eHP/eqd2+7dvtpo76m9Nx85fyrTfpKpc7cO5nzz8YDyEgWkUP5 +pbsx41ex5LFHy1vwar91e+W9x2T81N9s3y/Ud9LKO/1x8fHx8fHx8fH75z/ 0kdrnIcmBX0j/c7BE1eM+vHk/K9/JXxur0VfkS2aJIRQpmedo0pQnSsK5Lvr d/jtxzLGH92Gtp7y+h/7vO/YB99vNernHT8+Pj4+Pj4+Pn7v+BNfWeLe0wbj V6/euGfUT6XlfP3lmoXJ/sdWfHUOkXFMV6CI/19ZcV1N8vO99Tus3Hx1gfn4 +49d8b9f3vfsP7PXGPXVn/Hx8fHx8fHx8fGb84fvjIT9jrJv5C/TF9Uxeit+ lR+ff7U1X4hkPpHII1RHYjXVGuGJumtWDN8OxwGXM/5o5kvX77hjxB+aPOhM mDTgPDZziVE/7/jx8fHx8fHx8fF7wz96+prbbvTakIPO8++vMurrtjx9t/1o WcnMTfjpPKmMDWyxU+qcnzpcAL9iW7X1O0oYf+zfyJhw/jR1YfiMsZyH9e69 UWN+3vHj4+Pj4+Pj4+P3hv/77rPhuFXZB/nmV5uM+trDOfoV+dyeVZt/tVk/ nU0k9kUsOZlfZB2MZBKpcr33ovgV2470P5r308fy9Z999zd//Ko3j86JczeM +rX9cl5/fHx8fHx8fHz89v2BNYf9eT363T6ReQt3lyp+lW+l5l9tzo/VQOPr qtXoJpIfUgn5++51tNLz2Jry844/6b/25e9uu/HBvkHnger71v3njPra8/Hx 8fHx8fHx8fEb9D8d2OU+jyXHrsp+kcUbjxr1ww8Fuv7Buvdt+1mZgrGzovlY RGQv89ycfdU8RCb9vONPHvx0YGdkDch+Z9H6o6WKHx8fHx8fHx8fv/v9V+dt DJ/Hku9/7D1v1M87ftW5ss0j535p1dee5p6jL7Tutcg8vYHrYdh310Gxk+s/ lif+5NY/dCicf1W2Ib9ctMeon3f8+Pj4+Pj4+Pj43e8/+85v/pg677725Lkb pYpf5afHrzbrC1WiJknEE+vUT5tNaD7k6Fc041fLEn9yd+Puc/76j97rja83 G/XVSfj4+Pj4+Pj4+PiN+WPCmxPyoXBOyEF/TshyxK8rNJg3tFVfJDNq66Sr XT1TlSLSezn77vhVu04/7jj6ecef9I/IuY4j/Y8vfLDaqJ+14ePj4+Pj4+Pj 49fzL127497PTnDvZ/udx2YuNerrPuftW5Y/b2jH/GhBkX1F+fESGqtA/Hqp 8ubj1/ofyxl/Msfw7Xth+1H29/9l2sJ4lcbZzzt+fHx8fHx8fHz87vb3HL0c zuUhx9VN/mSdUT91TkGuf+q5vWZ9bRwat4k619bFTDy7KRq5jmZ9dx0U3fw5 Bvx6Wx7+xFeWRNbLGXAu37ht1FdJ+Pj4+Pj4+Pj4+I34q7adjD2P9f6CrUb9 vOPX+bLPzLattvxk2VlnZJUdTtOTPLVOUUXwK8FzpCWNX+VP+nitP37V64fc d/yyUb/RDR8fHx8fHx8fHz+ZYcHK/f59rHcvu2DFPqN+I+fn4cs2jxXtN2vB T1NCn5aqXGMlhnsiu2Z5+V4/rl3a+FXWuwu2hnMdy+/d0NZTpYofHx8fHx8f Hx+/e/1ZP25z72W99R/7ndVbThj1w72CXf/kuoXt+UKxqyorXpRIZ9OXm7nl 53vroET6cUsWv8r/fsWB2Bw68nOZ4sfHx8fHx8fHx+9ef8qctV770e8P2X30 klG/sc28X4mt39Garz2eVSX/aHNXRsQ/F8gP5s8pa/wqc9XWk958VX3BmPEt Rv2848fHx8fHx8fHx+9e/28zl3lz5/jPP164ertU8ev8SkXV/9i4Xz+vSNdU pHYyy1YfK5bvraNp5+bnHb/qjH3Hr/jjxQfd939/vNaoHxwp6/XHx8fHx8fH x8dvzb83MhqOoZP3sX+aOuiMiTFjvvpYMa5/xW/3tO6LZPYG6qDKkZ7jJ/bB /5zu8yyGX6lY7qus8av8qzfu+OvleK9HX11i1K+34ePj4+Pj4+Pj46sOnj5/ w3lokhxHN+i+P/P2b0b9vOPP8r12T2vz5yR9dW2EviTNgWSyiL0LZZ68/eR1 LFv8Kl/+W/vL9IX+HDqD7rOQN+/cM+Yn9+pC+Pj4+Pj4+Pj4+NVty/4L1baj P49H9f3VLzaUKv4svzZ+tXW/9hymSB1TurEChRN/kDN5TIdHchXAl324lnL+ nHLEr/Nf+GC199yxP3b88KlrpYofHx8fHx8fHx+/+/wlG49Fxq8OOHP6dxr1 6215+u76HValDV+zqeoS2deXE6lFeqfxChj2K3ZF049rxlcUUwj/rfmbw/U7 5Pv6nWeM+uoEfHx8fHx8fHx8fL3/5aLdbtvR6wcZcPqHDhn1844/y0/On9O6 LxS5GigrUpBIZRWpPf2Vy9eXa3dYtmb+1RLEr/PnL9nnTJjUH37/fll10Kiv PgkfHx8fHx8fHx9f7781f1P13rXf7wcZcH7fddaoH90r2vWX4y6j41eb9rPy ibSvvQCpc1WfE1GIRNYcffc6Wol2eIni1/nLNx0Pv3fy9fFP2436qUMlu/74 +Pj4+Pj4+PjN+8+9t8qZ4K8hIPtAjp65ZtSvfS7e9ZfjLq2g/7EtX30gIWbm ycollIcjCTn7FctS9uOWJX6dv+PQxXD9R/ndmzZ3nVE/7/jx8fHx8fHx8fG7 yxfVcv88bWHs+cfbd+8b82NHCnj9w/GrbfgZFapzsuLv1WD5GbP65OLHnn8s Yfy6Qs5fueXNfey3H594fblRP7tQfHx8fHx8fHx8/Ph26dqdsO9Dvj82c2mp 4q/nK59/bNUXiRRNm1R1utCUV3sXTlhroalWjr7tj18ta/w6f2zMcR6ZMhj+ fiO/h/fujxrzMzd8fHx8fHx8fHz8xPG9Ry6F8z/KZyAnzV5bqvjr+eG69+34 imxC96lOkU1tBfKT86+WLf4s/+l3V4ZtR9kXefLcsFE/7/jx8fHx8fHx8fG7 x1+55UQ476p8BvLDH7cZ9TO3Avhu/6Nld9ivG1AiXVW+SCVFi8iuhnk/3o9b vvizsNe+3Oh//7wxAH/sPZvI2tvx4+Pj4+Pj4+Pjd48/f9k+5wF/7XJ57/rj ygNG/eheEa+/u/5jat6XJvzqAaHiFaeq/OzroDureL7ttx/LGn9Wjs8Gd7t9 /8EcyINrD5cqfnx8fHx8fHx8/O7x3/m2tn75hOr967rtp436ecdfz5djVy1L N+6yvp9KEZqcIvG5xS1ajFAdycn3xgFXSht/lr9ww5FI/2O/89nALqN+6sQ2 Nnx8fHx8fHx8/N72X5w15K4fENy/Hjp51aif3Ip2/W274vadddpP5UrEm24z pxLCuqTF+nUw7SfnISpb/Fk5tuw7X/3uyf7HQXcs+atfbChV/Pj4+Pj4+Pj4 +N3jW9MXxdYvH751z6ifd/z1fOX8q036SqXO3DuZ88/GA8hIFpFD+fqW7MeN XseSxZ/ln7owHPY9ynbk02+vLFX8+Pj4+Pj4+Pj43eFfvXEnbDfK+9dHX15s 1M87/kb8SvjcXou+Ils0SQihTM86R5WgOlcUyHfX7/Dbj2WMP8u/f3/UHQMQ rKPzSN+gMzomtOd02s8qAx8fHx8fHx8fHz9IOHjiSqTvsd/5z0drjPqZxwvi yzULk/2PrfjqHCLjmK5AEf+/suK6muTne+t3WLn56gKL4//jjeX+7ziD7m85 Zy/dLFX8+Pj4+Pj4+Pj4xfdXbzvp3bP2ef0e732/1aifd/yN+PH5V1vzhUjm E4k8QnUkVlOtEZ6ou2bF8O1wHHA546/nT/90fTj/qnzfcfBCqeLHx8fHx8fH x8cvvr9gxYHI+NV+5/sV+4z68SKLef3d9qNlJTM34afzpDI2sMVOqXN+6nAB /Ipt1dbvKGH89fzZv+yIPQO5dONxo369DR8fHx8fHx8fH//dBVvCZ67k+9DW k0b9hvLm7Ffkc3tWbf7VZv10NpHYF7HkZH6RdTCSSaTK9d6L4ldsO9L/aN5P HyuW/8vQIf+76I1fnbd4j1E/7/jx8fHx8fHx8fGL77/00Zpw3Y4H+vqdA8ev GPWjmYp6/a3U/KvN+bEaaHxdtRrdRPJDKiF/372OVnoeW1N+3vHX8zfuOhPO oSNfb369yajfzoaPj4+Pj4+Pj18O3355sT9mzntdu3m3VPE34gfr3rftZ2UK xs6K5mMRkb3Mc3P2VfMQmfTzjr+ef/T09fB7KJ9/fO691Ub9IE9Zrz8+Pj4+ Pj4+Pn72JtuKctzqA5PlnB2DTmXGolLF36gv2zxy7pdWfe1p7jn6Qutei8zT G7gehn13HRQ7uf5jeeKv59+5O+I++xjMZ/XI1MHEc7/j62tKwMfHx8fHx8fH x3cPHjh2xR+72u+2I+Nrd/R+/I366fGrzfpClahJEvHEOvXTZhOaDzn6Fc34 1bLE34j/2OtLw/U7ZDvywpVbRv2848fHx8fHx8fHxy+uv2rrSX+uR+9e9b3v txj1M7MVyA/mDW3VF8mM2jrpalfPVKWI9F7Ovjt+1a7TjzuOft7xN+L3zV1X 64Osvu88fMGoH89avuuPj4+Pj4+Pj4+vP/7tin3hvKvynnXByv1G/eyU4viW 5c8b2jE/WlBkX1F+vITGKhC/Xqq8+fi1/sdyxt+I/8nP28Pxq/J3nSUbjxn1 k8WX7frj4+Pj4+Pj4+Pr/Xe/3eL3c3htyDXbThn1dVvR/NRze8362jg0bhN1 rj0fl3h2UzRyHc367joouvlzDPj1tiL4v6455PY7er/pDDpfLNpt1Nen4uPj 4+Pj4+Pjl91/8cOh2Fi5AyevxE7r9fgb9WWfmW1bbfnJsrPOyCo7nKYneWqd oorgV4LnSEsafyP+pj3n3N9zgnEBr8/73ahf73x8fHx8fHx8fPyy+sKxpi8K +x7lnB03b90z6GcBxfJlm8eK9pu14KcpoU/TzblZp8RwT2TXLC/f68e1Sxt/ I/7Jc8POQ5P6/TU8Bpxn3llp1Pfeynv98fHx8fHx8fHx1dvl63cj/Rz9zsRX lxj1VSUW1U+uW9ieLxS7qrLiRYl0Nn25mVt+vrcOSqQft2TxN+LfHxkL+x7d ZyD7Bp3R0bHSxI+Pj4+Pj4+Pj19Mf/fRS+Fa5bLvsW92dO2O8fczyy2YX4mt 39Garz2eVSX/aHNXRsQ/F8gP5s8pa/yN+k+9tcIfF+Ctq3P6wrBRX18iPj4+ Pj4+Pj5+Wf3lm46HY1flfepHP20vVfzN+JWKqv+xcb9+XpGuqUjtZJatPlYs 31tH087Nzzv+Rv1Xvtjor8vqfTe37D9n1I/vlu/64+Pj4+Pj4+Pjp7evFu12 HuzrD9uPvwwdNOrnHX8zfsVv97Tui2T2BuqgypGe4yf2wf+c7vMshl+pWO6r rPE36n82uCscVy6/n4Nrjxj19Wfi4+Pj4+Pj4+OX1X9t3kbnoUkD4RjWTbvP lCr+Znyv3dPa/DlJX10boS9JcyCZLGLvQpknbz95HcsWf6P+kg1HI/MiDzhz ft1p1M+E8PHx8fHx8fHxS+k/9d8r3Pk5gnvUk+eHjfp5x9+MXxu/2rpfew5T pI4p3ViBwok/yOk4w8M3nS1b/nCWLV/m/PD9D86cuXOdN99805n0n0nO9Okz nKnTpjrvvvuu88UXXzq//vqLs3r1kLN33z5nZGSkI378mC74SC7huH24lnL+ HDO+l7sz1388/W0HL4RzW8nv6LS560oVPz4+Pj4+Pj4+frH8+/fH3Hkdvfk5 +p2HJw86I6NjxvxEyYW//u76HValDV+zqeoS2Y+WI9dbOXr0aLUt+Kvz8ozp jm3bju3PR+PNS2OF7Vx3vcpK5HPwsivOE3/7m/P+B+87Q2vWONevXmvYT+YT td30uZoTpa/uxzXjK4oppH/+yu1Y/+Njry8z6seMEl5/fHx8fHx8fHz8+Hby 7PXw3lS+P/POb0b9vONv1k/On9O6LxS5ssu6cuWKM//r+c5TTz3lthct/xWM BbUj75ZfTytsM9p+m82u5bG947bfnpw6bZqzbu06Z2xkVB9LJBCRqqpI7en+ coHfTPyd9Fu5/rn41f0/Tx0M+x/ld3T49j1zfjKhbNcfHx8fHx8fHx8/du76 3Wfdfkf3/nRyvzPzq01G/bzjb9YP2l8t+1n5RNqXO+fOn3M+/ewz59FHH430 K8o+R9tvO9p+36MdO14J+x2tsC+yYlfCuU/D/spKvN/yueeec1asWOncv39f /wdI1V31OXEVI2+B30j84+Grzymm//ys1ZH1dQacQyevlip+fHx8fHx8fHz8 4vg/rTrgze/oz5/z1ZK9Rv3sz8Xzg/ZX+776QFQ8c+aM89GHHzm2PdHvM7T9 PsVouzDoc4yPTZ04caLz7DPPOi++9JLz9NNP+WVYqbaibcX7KS3/fDlG95ln nnGWLFpcbUeOKOuoDy5x+RT5Az8r/syy2/Qbuf5F8d/+bkvYdpSv1dtOGvX1 peDj4+Pj4+Pj45fN/+CHrbHxqyu3nDDqZ+YpoB+OX23Dz6iQu42NjjkLBxc6 j/71Ub+P0O9jlO92rZ0o25NPPf20M2vWLGfFiuXOgQMHnLNnzzo3bw7HixTy P+HcunnLOXfunHPo0CFnxcoVzocffug88+yzYb9k/JlJP626/69/vVQ957Ay qobi9P3oFnv+MVmIttDO+ZmFFMz/fsW+6vczeEZ5wPl++T6jftYBfHx8fHx8 fHz8cvkvfbgmbDvKe9P9xy4b9fOOv1lf+fxjq75IpFTbpLJ9N2PGjFhfYti/ WG3LTXz0Uef99z9wVq1a5fZPKosXwf8S8+4o43Jcc2hoyHn3nXfCvs6kP9G2 ne++/dYb0xqWlY6nUd/2x68m48/cRHK3dT9I6AZ/7fZTYd+j/I6+/c0fpYof Hx8fHx8fHx+/GL6cx7MyY7G/Prn3unHzXmnib8UP171vx1dkk6cuW7bMeeyx xxzL9sZ2WnZtTtUXXnzRGVw46Fy7fj3baNX33y9fvuz8+POPzrPPPhvzg9dL L8m+yINt+8n5V4Uyo7quLW8NxF9E//Cpa7Hv6PPvrzLqd2zDx8fHx8fHx8fv av/y9Tux56omvrLEqN/0VgA/mJums75w7ty+HWunyecS5bocH3zwgbN3zx63 rV8rT1W+SCVF6exqpI/KOVg3b/7DmT59uv9spRXG/vrrM9v24/24df+gifTx j79I/p27I7E1POR8rGNjIpGvd+PHx8fHx8fHx8cvhr/r8MXIfWm/0zd7rVE/ nq87rn8wx0zLfvWAUPC3q+1H23+mUZY/c+ZrzpGjRzLrpCs/uxJqX1WC8F8b N250nn/++TD2ma+/3rYfzPdTz89Ka8fPzlE8//HXl4X9j7Iv8vyVW0b9vOPH x8fHx8fHx8fP31+68ZjbbvTuS/udT37eYdRXb8X2ZT+cZenGXdb3UynC+59s P8oxnf+Z9G9n+/btkRPq1zhrixYjVEeEpqYJf2T0vrN48SLnH3//e7z/sUU/ 6M9s1G9161T8efszPlvvflcn+L/1bNt/3qjf6oaPj4+Pj4+Pj987/meDu6vt xkH3flT2afSvO2zUb2Qrmm/b3lw2nfZlm1jOnxodlygSx+MlphLCuqTF+nVI 5dD4wzeHnRMnT7btJ+chatSv5c0n/rz8Ob/uCn/nke+L1h9On9zD8ePj4+Pj 4+Pj4+fvv/L5xrD/UbYfN+89Z9RPndwF1185/2qTvlKpM/dOkH9kZKTaxhzT 6CkkkSwih+J5Zf/n/K++dtf/yPJ1tWvWl2tYxsYBNxh/p/xWr39e/mC1vTih L1hnp9+Z27/TqJ93/Pj4+Pj4+Pj4+Pn7/3hzuT+vY7+7vtyZi8NG/QyosH4l fG6vRV+RLZokhFCmB9unn37mzJw507ly9aq+EM25QnPgwMGDzvPPv+COn3XH zmaUoT3WpO+u3+G3H5uJv1O+Lm9R/W0HLrrtx2AOnalz1xn1s87Bx8fHx8fH x8fvff/OvZHwflS2IR+ZEpnT0YCfd/yt+sF6Fu366hwi45iXNGf2HNd/8skn nR3ba8+rhv9XVlxdk9HREeenH390JoZrPlrV9uOOTF+X2Kzvrd9hZQDj66sL LK5/4ept56FJte/ro68uNerrkvDx8fHx8fHx8cvhHz19LRwLJ+9J//nuKqN+ MrFbrn98/tXWfCGS+UQij1AdcffnzJldW+Oj2v769ptv3HZgysnoD5X+ubNn nalTp3nz2Mj1Jt32nJ1qk6YjqhNjg74djgNuLv5O+YnMhffl+19mLArn0PHW ar1jzI+nxlPw8fHx8fHx8fF731+344wzoc+fz7FvwHlz/majvpPaTxZZTN9t P1pWMnMTfjpPKmPGNmfOnHCND8tvg02dMs05f14/H2ey+N9W/uY8/rfH/Law 7fWp+v2q0fGrWVuszDr1Tx0WjtdmDdbvaCL+TvmtXv88/X9/POSPXx103/cc vWzU15aJj4+Pj4+Pj4/f8/73v+33x8L1u3OwfrN0n1E/7/hb9St+e6tVP51N JPZFLDmZf/bs2eHaF0GbT76eeOIJZ8PGDeFJIlWu49y4ft15+513vHNs23+3 wrGrdjXt4MEDmb7IOhjJpPKjqYHfbPyd8tPHiu9/+OM2f7yAN2Zg2e/Hjfq1 z+W8/vj4+Pj4+Pj4Zfbf+X6LM2HSQDgWbmjrKaO+8mAX+FZq/tXm/FgNNL6u WnLbv3+/8+yzz3rjP4P2Y6Qd+encT527d++mqrRt2zbn6aefDtueVuK8f//7 P87hw4fr+o1sIvkhleCEft3zx8lv9frn6fcPHfTnu/K+t58P7jbqN7rh4+Pj 4+Pj4+P3nv+vWUOR/scB5+CJK0b9rK3IftD+atvPyhSMnRXqbMPDw857770f tv0su9YOlOti/Otf/3ZOnjjhnnv37j3n8y8+j7Uzo21P257ofL9ggTMycr9h v7Gwsme8Vc1DZNJv5/rn5f+x77zbbgzakC9/vsGo38iGj4+Pj4+Pj4/fe76c ZvXP0xa5bUd5Lypfw7fvGfMbK7aYftD+atXXnuaeoy9UdWTVqlXO448/Xnt+ 0bLDduRjf33M+frrr51/vfRSZLyrFfafytekSZOcY0ePtuzHDmaenr4e3tjZ 5PqP5vx0luL75y7fisx51e888foyo37mQXx8fHx8fHx8/J713bUAIvM4Pv7a 0lLF346fHr/arC9UiZokEU9U5D/rzqM6Jex7tCPz6lT8eXbcdmXkeceJEyc6 P/30kzM6MpIqr1k/ekCbTaQ/VDTjV035uvKK7Mv1df40dWE4flW+37xz35if d/z4+Pj4+Pj4+Pj5+NsPng/vP+X7tE/XGfV1Z3WDH8w306ovkhm1ddLVLr2N jIw6C35Y4NgTg/5HK+xj9MaJ1ubImdw3xTl+/HhH/fSRZIpI7bn1suv0446j n3f8rfovfTAUzp8j500+cPxKqeLHx8fHx8fHx8c37y/ccCS8/5Tvs3/dadRX H+8O3/LHiHbOjxYU2VeUHy8hnWHN0JpauzF8HlI+41hrR966dWvc/KzovJ1a 3lr/Yz6+upzi++9/v9V//tFrQ67copmDdZx89Xn4+Pj4+Pj4+Pi97M/p3xHe f8r3ReuOGPXT5+m3ovmp5/aa9bVxaNwG6jwyMuL8/MsvzqOPPuo/n2lF5tSx q21ef51H23ZeeP5558B+/VotrfjhUVE7HsshVNfRVo8DNuTX24rq/7T6oDNh cm3d1q+W7DHqZx7Fx8fHx8fHx8fvSX/K7LXh/ad87Tx00aifd/zt+LLPzLat tvxk2VlnZJUtq3vo8CF3vtVYv6PfR2pH1uewE/2S8+bN89b5aNOPvqdj0p8f 1CMvP/2hO/zfd50L50yW67a+Nm9jqeLHx8fHx8fHx8c379uvLg7vP+W96KVr d4z6ecffjh+MCW3HT1NCn5aqnLfdu3/P+Wb+/Gpb1q61De34s4/vf/CBM33a dHdeneS6HfL1wosvOHv37WvJrxdRuCfUV8arr91y/O36SqsL/FMXhsOx57If 8sm3Vhj162/4+Pj4+Pj4+Pi95F+9cSd2/1l5ebFRv/5WbD+5bmF7vlDsqsqK FyXbfC+88ILfXky+bOepp550tmzZ4uYdGxtzfvnlV3fO1WR+Oc5VPhs5b95X zt07dxv2RTqbPi7NFvjpU8z4qXxd4o+OjjkPT/HnYPX7Ie/eS86j27vx4+Pj 4+Pj4+Pjm/V3Hb7o9z1695//+WSdUT9M69LrH467bMPXHs+qkn908eLF1XaX 7bYFrUR/ony99dZbzvVr1/3ctRIPHz7ivPTiS4lxrn4Z1bJeeOF5Z2/mc5HJ ErO3ZO7kNQ/8ZuPvlK8yu8V/7r1V4dxX8nXk9DWjfiMbPj4+Pj4+Pj5+b/iL 1x8Nn32U954f/7zDqJ93/O368fZj8379vCJdU1HbmTt3jjf3jFXrb5RjVh97 /K/O8uUrIs9wJk8Wzt2795zPPvu8ti6kP4dNMP5VjoU9cGB/pt9IbDo/ugW+ Kr8Jv9XrXwT/7W/+8Nfe6XfHoK/ZdtKorzfw8fHx8fHx8fF7zf90YKd7zxnc fw6uPWLUzzaK7wdtttZ9kczeQB1qOebMmROu5Ri0wfr6+pzTp07Hc/rFpfs8 hbN161Z3jKv7rGTQDvXXtdyxXf17QrqG6TmGGvXl5j2naTUdf6f89Mfu8b9b ud+dN9mbR2fQmb9sX6nix8fHx8fHx8fHN+dPm7s+XLdD3n9uP3DRqB/91I3X P5ifphO+ujZCX5II2o922F/4/fffOSOjI8lskXcRSwu269euOW+//XZknUjL LXfH9u2ZfiPJjfjJ69ho/J3yW73+RfDX7TjjrgEZjCF4Y/4mo369ZHx8fHx8 fHx8/N7xH311qT/vqnf/efHq7VLF365fG7/aul97DlOkjindyLE5c2Y7Fcty /uu//uns25t8XlFoY4zlivgrV6x0Hn/8MbdMOY51+47tmb5nhAW07HtjaFXz 52TH3ynfy9389S+Cf/zMdW/91kkD7lj0Z975zaifd/z4+Pj4+Pj4+Phm/OvD d937Tu+5qX7Hmr5IUbfx82tG915/t6/OqrThazZVXSL7QTnzv/nG+ejjj5zb t2/Hj8VOSVYmuwJnzp51pk6Z4rbptm/fnumrKt6KH8wFG88XL3c8fUUxXePf Hxl1Hp5SG4M+oW/QGRkZK038+Pj4+Pj4+Pj4Zvy9Ry65/Y5B3+Okj9ca9fOO vxN+cv6c1n2hyNVAWZGCRCqrSO3pr1zcHx0bdQYXLnQuXrxkxJdrd1i2Zv7V HOLvNv+Zd1a67Ufv+9zvHD93w6gf/L+s1x8fHx8fHx8fvwz+0o3HwmcfZfvx w5+Sz7r1dvyd8INnD1v2Nfnu3bvnTJo0yVm5YoUzOjqaUZYmXfk5EYVIZE2d k44/mufatWvOF1987nz99ddt+8Ecss349b3GffU53eO/+dVmt99xgvsc84Cz fscZo37e8ePj4+Pj4+Pj44+/P7d/p/u8VLBunDf3qjk/XX69z8Xzg3UX2/fj B27fvuPPY1Nx/vXvfzlbtmzVnBgtUld4ovqq/KrFKJ1UxO52t9q2/eWXX5y/ /e1vbh1nvj6zbV8+b6nqx1X5+lLMxF9Ef/6yPZE5WAecH1buN+rXy4WPj4+P j4+Pj9/9/rS569z2o7znlH0W2w6cN+qnS+m+6x+OX23DV510+87tsGzZLyfn snlt5mvOkSNHlDXXp6jLz5jVJ12I//n+yH1n1apVzjPPPhOuMynbz6/PfL1t P/b8o8avX9Hxjb/I/pptp8LfguT7W99sNurXzYqPj4+Pj4+Pj9/1/sRXFnvP Pvr3nFeu3SlV/J3wlc8/tuqLWsrIyIjTN2lSOD42fFXbWTNmzHDWr1vnjNy/ nygpXV7tXThhrYWmWiKR5reJT58+7cyfP9/5xz/+EbbzbL9dK/e/++77tn3b H7+q8rWbSO6OT/zd4B89c82fC8t7BvJZOQdrieLHx8fHx8fHx8cfX//Kjbvh vabss6i8vNionyygW69/uO59O74im0ySbciffvrJmfjoRG8sq11rs8nXk08+ 6Xz73XfOuXNns50W/Ju3bjlr1651Xn755aprKf2nn37a2bJVP662GT85/6pQ ZlTXtRO+7lC3+PfuR+dgHXAern6v78k5WA35LW34+Pj4+Pj4+Phd4+84dDF8 7lH2W/TNXmvU78hWAN8bX2p32I9nOnH8uNM3uS/si3T7/ipWaMu5S//rv55z Zs+e7Y4vletvqJ69FFrBcW7cuOFs3rzZmf/1187kvsmObcf7PW233VjzZ82a 5QwPD/sFqeJrzo/349b9gybS2/frYl3gP/vub946kP46HrJP0qQfz1e+64+P j4+Pj4+P38v+wnWHw74Kea85+9edRv14evde/2COm5b96gGh4hOnyvU0fvm1 NmeN5be3vHe71p70X0899ZTbd/jOO287c+fOdb799ltn4cJBZ+mSpW6f5hdf fOG8//77ziuvvOK88MILfptU9jHW2o22+7I9w58n6J///Kez6fdNymuii69e dDL+wNfFryupU352ju7w3/7mD38tV+83oTXbThv11Rs+Pj4+Pj4+Pn4v+B// vCPsf5RjWBdvPGrUzzv+Tvmy3WZZunGX9f1UitDk9N9u3hx2fvn5F+fJJ/8R a+fVxpVG2pJ27ZlJ2U8ZbXfK/HLftpP9mZX4+bY3R85LL7zoDK0ecsfUtrOJ yE40ysCsF38jf7FW/Eavf5H9BSv3V7/PtTU8vlq616jfyIaPj4+Pj4+Pj9+d /qSPh9z7zKD/cdfhS0b9Vrei+UH7q9N+Klci3jt37joLFy5ynnnmab8dGOl/ tII2o9cWtCL9kl670Ar7+9QvOzxn8uTJzsbff3fE2Fg8KhGrWrzGIvqumuko nZKch6he/J326+boAn/jrrNh/6NsP7725Uajfurkkl1/fHx8fHx8fPxe9UUV //O0ReE4N/l+/dYdY75Xh2Te7rz+yvlXm/SVSp25d4L8I/dHnG3btjlffPGl O7a0EvYlxse02sEzjLE5cGrHrUg7c3LfJGfBggXOwQMH6/q6o/F3XXLteOA3 G3+n/Favf5H80xeG/fmw5O9Cg87f31hm1M+A8PHx8fHx8fHxu9g/d/mW84C8 x/TX7nj8taVGfWX+LvWD9lfLviJbNEko5sHJqvGJEyedgcEB58033nT+859/ O0888USkP9FK9EPazlNPPuX2MX7wwQfOqlWrncuXL7fl6xJU54rIAdufmyeZ 15Svy9tN/tiYcP40dWFtTZ7q+43b94z5WQn4+Pj4+Pj4+Pjd62/afc6bO8df u+PlzzeUKv5O+kFfXru+OofIOKYrUMT/X/3v/v17zvkLF5wDBw86O3fscI4c OeJcuXLZGR0dNeKns6QTvWc1rdx8dYHd57/04VDkueZ+Z9/Ry0b9vOPHx8fH x8fHx8fvvP+DO89Gv/PQJO8+c96SPUb9rKRu8+Pzr7bmC5HMJxJ5hOpIrKZa IzxRd82K4dvhOOByxt8p/6OftoW/C8k+yKUbj5cqfnx8fHx8fHx8/M77b36z KZxjY4I7z/8po37sUJdff7f9aFnJzE346TxBxkWLFjnzv5nvrB4aco4cPuLc v3dPXb9k2UkoK2+G38zWrl/x5//Jy887/k75A+66PIPOQ5P63f7HOcG6PIZ8 NYCPj4+Pj4+Pj9/N/tNvrXDvMR/0+ylOnL1Rqvg76bvz1Fi1+Veb9dPZainT p0+Lrauxbt26VH4RPUdnCvmfiCf471l+LBAN0Sm/YtuR/kfzfvpYd/o7Dl0I +x7l97vvk3Wlih8fHx8fHx8fH7+z/s27I+69ZfCM1MNTBp2RkVFjft7xd9q3 UvOvNufHapA4+M9n/+m2q9z1OartyJ07031JX331lbeGSDXf4489Xv1b3tcI 6SrV85Xnt7A14lt+GzkvP+/4O+VfHb4Tth/ly56+2BmL9p33ePz4+Pj4+Pj4 +Pid9fcfuxy2HeXY1RdmDRn1W9mK7Af9g237iUxjY2Num9B9LtDyjEMHD6XK mjN7Trhmo3y/lxjjKiJ7mfXIOhi0P0Tz17JRXzUPkUk/7/g76f915tJwfLqc Z/ncpVtGfXWx+Pj4+Pj4+Pj43egv2XjMfS5qgj9+9cMfthn1846/036wtmKr vu60O3dup9Zv/OOPzanz5syZU1uPw/Lbj8KpvbKiyroeIrOA+n+LJn1vPZHk +o/m/HSW7vVf+XxD2P8ofyP6fc85o37e8ePj4+Pj4+Pj43fOl/NpTAjWGK++ D649bNRPlKA/2CV+evxqs75QJbrb448/FpYv31997VVnVI41FrX8sfZj2P8o YsWlaiE0HxTVFapP2oLj+ZrxK5rxq6Z8XXnd6H+1ZI8/xqDfbUMuWLnfqJ93 /Pj4+Pj4+Pj4+J3zJ3+yrvb846R+Z+ehi0b97IK7zw/mDW3VF8mMkRNefOGF arvRDte2kK/nnnvOmffVPGdwcMBZumyp859//ydsY8rXwOCgs2TpMveY+5L7 S733ZdX3Ze7+Ej9tqZc3yCPzL1kaHpN5r9+4Uefq1ItZlSJSe+74VbtOP+44 +vX/TXSPP7T1lDu2IJgf6835m4z6ecePj4+Pj4+Pj4/fGX+seuwv0xeFzz7K /sfrw3XmW+mgH8/aG9ffsvx5Qzvm1wqaN+9Lv11ohc8HBu0s2++TDMZ9yjxW kDfSnky+3Ll4bL+cIK9dK9sOz7fc1/btO7w6KeITmnrXjz3YqeWt9T9Gy4ns j7OvLqc7/eNnroe/Ecn3p/57pVE/a8PHx8fHx8fHx+8e/+zFm949ZZ93X/nY zKVG/WTxvXD9U8/tNetr43CcM2fOOI8++mjY7ou3Be1IW9EK02z/WUlZJ8uf d0e2CS27dp5lVdx+TXfNDNlmdPtQ7TAWK9ivvnvtR10Ns69ZbV3OxLOjQnUd g/U71Nt4+/W2bvJHRsacCVMH3fGrwW9FN+/ej53Wy/Hj4+Pj4+Pj4+N3xt+4 +4x7L+k9GzXovPrFBqO+PrV7/aD91Y6fLDu6s3HjRmeibcf7CYN+xKA96KfL vlBLthWtRFvT7yO1I+nRMbGxtqkVHPPanjv89mMjsYXTBCWDrfPnkYcDPxl/ I1sn/PSH7vZffH91pA9y0Dlw/IpRXw/g4+Pj4+Pj4+N3i//dyv3huuLyvvKb pXuN+vXO70Y/aH+146ep+LknT55yZn04y3nm6WfCtTzcNmOkPemNabXibUM7 Pp41WGPRiuaLtjX9tSaDc2Q/5O7du+J1Sl2cxiIK94T6ygS+Kn4TvtLqYn/W D1v977n3e9HSTcdKFT8+Pj4+Pj4+Pn77/ptfbXLnzAnWhlu347RR33vrreuf XLewPV8oduP5R8dGnVs3bznDN24416/fcN5/7z1vvKn/XOTFixedG9VjN657 x2/cGK6+rntpweu6/z58I3Zs+Lq3fz3IU305YkxXw1p7O11NfVyaLRhnWy/+ 8fJT+brc7x86HPY9yjEHc/t3GvW15eLj4+Pj4+Pj43eN/+RbK9y1H4NnIE+c u2HUT37qhesfjrtsw9cez6qSf3T27DmR5xaD9Tt0uUX8cwf85v4yej8YO5uX rzK72d9x6EJsDY9JH6816tfLjY+Pj4+Pj4+PX2z/5p371TZjf7iu+J+mDjqj Y6I08Y+XH28/Nu/XzyvSNRW1nblz53hzz1jB+o/368gi8d6en2007lv+s5x5 +XnH32n/2s27tfZj34Dz52mLnDE5AXNJ4sfHx8fHx8fHx2/P33P0UjhuVbYf X/pwjVE/7/jHyw/mKW3dF8nsDdShluOPP7Y4X331VfU1z/n2u2/9NkLydBF+ Tvd5tudHPyXJZvxgvZC8/PTH7vf//sbycP7VhyYNOCfPD5cqfnx8fHx8fHx8 /Nb9JRuO+v0RXhvyo5+2lSr+8fKDuWY64atrk9FHrDmQTBaxd6HMk7efvI5l i388/De+3uT+VvSAO16931m97ZRRP/m5bNcfHx8fHx8fH7+b/Y9/3uH2Q0zw 52RcuO5IqeIfL782frV1v/YcpkgdU7qxAoUTf5AzeUyHR3IVwHfXIVHOn1OO +MfD/+G3/c6ESbX5lr9ctMeon3f8+Pj4+Pj4+Pj4rfv/+Si6HtyAs+voRaN+ 3vGPl++tu1hpw9dsqrpE9vXlRGqR3mm8Aob9YC2SvHxFMV3v/7H3fGwOnWmf ritV/Pj4+Pj4+Pj4+K35Y9X20Z+nLQzHr8r7yRs375Um/vH0k/PntO4LRa4G yooUJFJZRWpPf+Xy9eXaHXJNy7LGPx7+lWu3vOed+/rdeZcrLy8uVfz4+Pj4 +Pj4+Pit+afPD7v9D8HcOX9/fZlRP+/4x9N35z6NjF9t2s/KJ9K+9gKkzlV9 TkQhEllz9IM5ZPPy1ed0v//X15Z649YnD7q/G529dNOoH/9cvuuPj4+Pj4+P j9+N/rodp8O+R9l+fG3e70b9zDxd7gfrLrbvqw8kxMw8WbmE8nAkIWe/YlnK ftyyxD9e/itfbPCfefa++xt2nTHqx46U8Prj4+Pj4+Pj43ej/9XSvbG1O75d ccCon11yd/vh+NU2/IwK1Tk5faAhR8j/MnLm4Meefyxh/OPlz1+2L/zuy/dv q5/LFD8+Pj4+Pj4+Pn7z/oxP14fjV+U95KY9Z436ecc/nr7y+cdWfZFI0bRJ VacLTXm1d+GEtRaaauXo2/741bLGP17+xl1nw2ee5TOQr3yxsVTx4+Pj4+Pj 4+PjN+fLzxNfWRKOX5NtyAtXbxvzM7ce8MN179vxFdmE7lOdIpvaCuQn518t W/zj5Z+7dDMcdyCfgfzra0uM+pkbPj4+Pj4+Pj5+4fzzl2+5/Q5B2/HRl5ek M4+jn/rUY9ff7X+07A77dQNKpKvKF6mkaBHZ1TDvx/txyxf/ePny/9aMReHa PfJ16dqd0sSPj4+Pj4+Pj4/fnP/77rN+34P3evnzDUb9uid0ue+u/5ia96UJ v3pAqHjFqSo/+zrozvr/2bsP+KiuM2H4CPt713acOGWz2d04u7aTTfbbJLt2 ku/37fvuprzZbMkmm+xbfu+XghFgZsa9JbZx3CTRMWDTTTVgMC5gmjSSEOoI kAQCIYoESDQV1FDv0nm+Obf3KZq59849zyRjzdx77vnf50rMzJlzznPc5weE 9iOr8SfSp+s+cmtAZmRy7ceTta22+uFqRx999NFHH3300UffPf7H+XVC/gx+ /tOuvAu2+maWV3w6dtXnMxt3Gd7XbSEmJYnmeYw3ZTXEaI9DPj8O2M9s/In0 d+ael74/oq8FnxReYip+9NFHH3300UcfffQj95fsLFfMf8qCY2eabPWdjj/R fiDg5/rO4u3rSmni1beZdRukc9GL4c/Bbl+bh4i1+BPpl5xulMau0vvyDwzW 70mg73T86KOPPvroo48++uhH7j/55mEhdw7tfwxCM7d+ODvxJ9o3zL8apW+o hMm9Y5l/Vh2AxWai2OWs76P9uMrryFj8ifRvtPZK3x/R75KeWZZvq2++GX30 0UcfffTRRx99N/ldPcOqtcNpHg0inBcL8dvh+6V5ezH6BsWUmwghhtutjjHa YHQscZHPrd8htB9ZjD+R/vgEgVnzs7k5kOJaHt39w8zEjz766KOPPvroo49+ ZH5V3U0+b4bQ7zB3y1Fbfe6xx68/XbNQ2/8Yi29cgljsM6uQqP9reOJmZ+Kc z6/f4XPMN67QO/4bm45w4w9ShfbjmctttvrqIuxdf/TRRx999NFHH/1k8PcU 1gq5c/jPjDtyztnqOx2/Hb46/2psPiHackRThhjtUZ2pqSEdaHbN3OEHpHHA bMafaH9rZo2Qg5Ufi3Cw9LKtvtPxo48++uijjz766KMf3l/6fiWkpmVJ6z+W VjcyFb8dPtd+9Pm0haPw9WV0BSO4qQ4Jc7xutwt8f8Anr9/BYPyJ9guqrqty 6Kz66KStvmlZ9NFHH3300UcfffRd4z+x9LDU/0jbj01tfbb60dyS1ffTeXs+ Of9qtL6+GNE8JqrN2vLEaqeiENHVy/90i+8PBBT9j/b7+n3e8i83dUnrd9B1 IJ9fVWir73T86KOPPvroo48++uhb+x3dQ0K+DL7v0beAz53DSvx2+T5d/tXo fNUZmPhmpxXpjWif6DY473PX0afPY2uX73T8ifZHxyZg5twgNx5henqQe13o Gxq1zVc9YfD6o48++uijjz766LvdP3GhVcibE4RpoZ/z3zXPnZMI3/R4j/ni uveT9q0KiWNnSfSxEMUjy2Md9o3yENnpOx2/Hf6rG0oU86GzoOZyu62+0/Gj jz766KOPPvroo2/u7y6oldbtoH0NO3MvMBW/XT5t89DcL7H6podxx5hXGvZa WB4ewfWw2efWQQlo139kJ347/C0Ha4TvlPh1PA6WXmIqfvTRRx999NFHH330 zYssee+4tN4b/cx4/EyTrb7T8dvl68evRusTo40mm4h6Y5jzMy1GTJ446PtN xq+yEr8dfsEJOYcOHZew8sOTtvrGlaKPPvroo48++uij7wb/0SV5XK5+8fNi S0e/rb7xJu/5Yt7QWH2iLWh6TmZnF8402kL0jxz2ufGrgTD9uAn0nY7fDv9a Szf3XVKq8L3Ss2/lMxU/+uijjz766KOPPvrGfmvngNDvyH9OfGzRIVv9cDcv +T6fkDc0br6yIsVjg/rVNUR2AurrZVTWGV/uf2Qzfjv88QkCs+ZnS98r0deH rt4h23zVXgavP/roo48++uijj75b/aNnmoS8q3z7cfF7x5mK305fN28vWt80 DhM3inOW18XUzN0kkVxHe31uHRSz/Dk2+OFuXvHnbjkq5dCh96oLrbb6YnFW rz/66KOPPvroo4++G/3t2edVa4XvLrjIVPx2+rTPLBDwTcrX1m11hFXdUpoe 7aFhqnKD7xfnkTIav13+jpxzqrEJutcGj8ePPvroo48++uijj77eT990RFr3 kX5GPFV301Y/ooM84tM2j0/ZbxaDr6eI+TbdyUVWo/SIWJ+ZUz7fjxtgNn67 /GPV8tgE+vqweHu5rb7T8aOPPvroo48++uijr77RdcJnzQtKc5zoGLXufnmd cK/Hb7evXbdwcj4xeGhUl7oqoi9mXq/lzTmfXwdF0Y/LWPx2+TeFudHi+NVH F+cq/iS9Hz/66KOPPvroo48++upyl2/cUqz7mAW/X1lgq69/6O3r71et3xGb b7rf6pSEvdFdGaJ+7iJfzJ/Davy2+YTmZj7Ev0ak8a8TzVxuZpt85XMWrz/6 6KOPPvroo4++y/yc8itcv4LYx7Buzylbfafjt9v3+436HyP3w5cl+jMlugeW dRvvc5fPr6MZcMx3On47/aU7K4S1YYPc68SRU41MxY8++uijjz766KOPvvxs 7Z4qKTcG7VvILW9gKn67fb/Q7ondJ9riEZyDUQl9jh/VE+G5vs/THb7f7+Pu rMZvp7+38CLXfuTHsGbC1qyztvpWtaCPPvroo48++uijb6//uxWFQt8jnx+j /kaXrb7T8dvt8+2e2PLnaH3jsyHmNZns0G4mqp/EsIzTvvY6sha/nf6Zy21c 32Oq8B3Tq+uP2OobH4o++uijjz766KOPvt1+b/+IIjdGJsyalw1jY+PMxO+E L49fjd2X52ES3T5DV1UhAfVETu0+M1xRygU+7cP1GebPYSN+O/2+wRFpbR86 VmHG3GwYGZ1gJn700UcfffTRRx999PmfJ2tb+D4Fbv5jJmRsOmqr73T8Tvjc +h0+/yR8k5vRuSgem9ejOAv9g8hPwGbfH/Cb9OPa4xtU42n/xdVFXNuRfs9E 25G11zpt9cPe0EcfffTRRx999NFPuL+7oFbofwxynw3fyzlvq6+pxmKDd3xt /pzYfWJQKoK6FBURXVGie2R+5Zz16dodvoBJ/lUG4rfb37CvWsqzRb9zCpbV 2+rrb2xdf/TRRx999NFHH303+IveK5c+D9LPhmU1Tbb62v0sXH867lI5fjVq 36oc0fumF0B3rNFzTRREU9RBn7uOPk07nKH47fYPV1zjXysyMmFa6Oeqj04y FT/66KOPPvroo48+6z6lHl2YK+XEoJ8NWzsHbPONj/H+9afjLn1i/+OkfOMd GtGyjFUpYrhbscFh3+/zGfbjshK/3f6V5h4pTzO9P7v8sK2+rjxj1x999NFH H3300Uffab+xtVfKh0Hbj4+/mWer73T8TvnS+NVJ+BYnFOZg/Y6IHEL/b1HS AV81/5HB+O32x8kEzF6QI33XRMcrdPQM2eY7HT/66KOPPvroo48+637RqevS 3Ef6c9muSlt9y0o87BvOf4zVJ5otJm1So8OJSX3yTwLSWROT03LQDwjjV1mN 3wl/7tZjXJ4t/junIBw708xU/Oijjz766KOPPvos++8ePMu1G6dl8ONX95dc ZCp+p3xp3fvJ+AbFiNmzMFVGdXORr82/ylr8Tvi782v5HDppQS4P6/bgWVt9 p+NHH3300UcfffTRZ9l/ZX0p15cg5s+pqW+31Tfb5XWf63/0BeLshw1Is92o fqLbpKzC+jTs99X9uOzF74R/+mKrlGuL/nw19Bpip29+Qx999NFHH3300Uc/ kf7QyDjMnBsUxqLxORUHh0Zt800qZcLn1n/U5X2Jwg/tIEa8waFGvvV1MDvK fX5AaD+yGr8T/sDgqJBDJ5NbMzY1IwgDodcSu3xxG6vXH3300UcfffTRR98p /2x9O/f5jx+/GoQ5a0ts9Z2O30mfjl31+czGXYb3dVuISUmieR7jTVkNMdrj kM+PA/YzG79T/h/eKRVeO/ixCzWX2231jR300UcfffTRRx999BPp7y+5JH3+ o/fNB6pt9fUOO9c/EPBzfWfx9nWlNPHq28y6DdK56MXw52C3r81DxFr8Tvnv Zp6VXjfo/ZOiOlt9sxv66KOPPvroo48++onzl+yokD7/0b6E0lONTMXvpG+Y fzVK31AJk3vHMv+sOgCLzUSxy1nfR/txldeRsfid8suqG6UxrPT1Y9H247b6 pvWhjz766KOPPvroo58Qn4ScwKJc6fMfzYXR0tnPTPxO+35p3l6MvkEx5SZC iOF2q2OMNhgdS1zkc+t3CO1HFuN3ym/tHOTnTAt338IcGJ9QmB6PH3300Ucf ffTRR581/3pLr+rz3xNL85iK32mfrlmo7X+MxTcuQSz2mVVI1P81PHGzM3HO 59fv8DnmG1fIhv/U8nx+HQ8h/9aVph5bffMK0UcfffTRRx999NGPt19QcZX7 7Cd+/nv7gxO2+tYVet9X51+NzSdEW45oyhCjPaozNTWkA82umTv8gDQOmM34 nfRXfXSSazfya/9kQk55g62+0/Gjjz766KOPPvros+S/88kpmCb0G9DPf8Gy y7b63G6Grz/XfvT5tIWj8PVldAUjuKkOCXO8brcLfH/AJ6/fwWD8Tvq5x65w a/5w+ZvTg7D6oyqm4kcfffTRRx999NFnyX9+RaGQN4f//Fd3vYup+J32/XTe nk/Ovxqtry9GNI+JarO2PLHaqShEdPXyP93i+wMBRf+j/b5+Hzv+laZubu1H ce3YZ5bn2+ob1Yg++uijjz766KOPfvz9rp5BYcwZv/b3I/OzYWx8XFPOu/G7 wffp8q9G56vOwMQ3O61Ib0T7RLfBeZ+7jj59Hlu7fKfjd9Kn+XJmL8iR5lDT 15TWW4O2+dJ/Gb3+6KOPPvroo48++nb5x882w8MZ8rqP87cctdVX7mXx+tOb uO79pH2rQuLYWRJ9LETxyPJYh32jPER2+k7H77S/aNtxYQ41f6fretjpOx0/ +uijjz766KOPPgv+tqxzij6DTPiooNZW36QgUz5t89DcL7H6podxx5hXGvZa WB4ewfWw2efWQQlo139kJ36n/U+K6rj2o/h68u7BM7b6+iJsXX/00UcfffTR Rx99O/xX15VIaz7Se/WlVlt9p+N3g68fvxqtT4w2mmwi6o1hzs+0GDF54qDv Nxm/ykr8Tvs19e2QmpYl9UG+vK7UVt+sPvTRRx999NFHH3304+P3DY3xOS+E 8asz5gZhcGjUNt/wCUPXX7yJeUNj9Ym2oOk5mZ1dONNoC9E/ctjnxq8GwvTj JtB3On6n/cHQ6wl9DZmuWEu2f2jENt/p+NFHH3300UcfffS97udXXuPGrIrz lV5dX2qrr3vE2PUXbz6fkDc0br6yIsVjg/rVNUR2AurrZVTWGV/uf2Qzfjf4 r64/wq3/OF0YD3/64k1bfX09bF1/9NFHH3300Ucf/UT6aRvLpM96dMzZ8l2V tvpOx+8WXzdvL1rfNA4TN4pzltfF1MzdJJFcR3t9bh0Us/w5Nvjhbiz427PP CeNX+X7IDw7X2epb3dBHH3300UcfffTRn5w/e2GunO8iIxN25ZnkzkmQ73T8 bvFpn1kg4JuUr63b6giruqU0PdpDw1TlBt8vziNlNH43+BVnW1T5uDI2Gedz TpSvfsLe9UcfffTRRx999NFPlN/VN6IYZ8bfG9v6bPPNjmfRp20en7LfLAZf TxHzbbqTi6xG6RGxPjOnfL4fN8Bs/G7wu/uHpbGrqRl0TnU2DI+OMRM/+uij jz766KOPvld9ujYbbT+Ka33Pmp9tq+90/G7ytesWTs4nBg+N6lJXRfTFzOu1 vDnn8+ugKPpxGYvfLf6cNcVSDh36s+Zyq6ZEYn39Q7auP/roo48++uijj34i /F25F6Q1O2hfwZqPq2z1IyrHiO9Xrd8Rm2+63+qUhL3RXRmifu4iX8yfw2r8 bvHfzTorreFBf36cX6cvlEDf6fjRRx999NFHH330vei/uuEI30eQxvcTVF64 qSmXWF96xOj1V/p+v1H/Y+R++LJEf6ZE98CybuN97vL5dTQDjvlOx+8Wv/xs szQ2nr62ZGw+wlT86KOPPvroo48++l7z+wZHhHXaMrk8ifQzXt/gKDPxu833 C+2e2H2iLR7BORiV0Of4UT0Rnuv7PN3h+/0+7s5q/G7xe3pHhL5Hfnz8zNBr zfDImG2+0/Gjjz766KOPPvroe82vPHdTyo9Ix5e9tqHEVt/p+N3m8+2e2PLn aH3jsyHmNZns0G4mqp/EsIzTvvY6sha/m/yX1pZw7Ue+DzITTl9qs9Xnn7F7 /dFHH3300UcfffTj6b+XfZbLjSj2PX5w6IKtvtPxu82Xx6/G7svzMIlun6Gr qpCAeiKndp8ZrijlAp/24foM8+ewEb+b/G3Bs3wOVuF7Kn5tIHbiRx999NFH H3300feSP2dtiWrdjupLrUzF7zafW7/D55+Eb3IzOhfFY/N6FGehfxD5Cdjs +wN+k35ce3yDapj1K87fVK0P9NqGI7b62kP0G9BHH3300UcfffTRj8Tv6h8W 1vfmP9vRuUlDJnOTvBi/G31t/pzYfWJQKoK6FBURXVGie2R+5Zz16dodvoBJ /lUG4neT3z8wwo1xoOPjU9ODMCP0WjMwOGqbrzuaseuPPvroo48++uijHy// WE2zYm22IKRvKbPVN6yKcZ+Ou1SOX43atypH9L7pBdAda/RcEwXRFHXQ566j T9MOZyh+t/mvri9VjGHNgsrzN231+efsXn/00UcfffTRRx/9ePhbDp4R+gT4 /sfd+bW2+k7H70afjrv0if2Pk/KNd2hEyzJWpYjhbsUGh32/z2fYj8tK/G7z 3z90QWo70r7IbcFztvraEqxdf/TRRx999NFHH/14+L9fUaTof8yCcw3ttvpO x+9GXxq/Ognf4oTCHKzfEZFD6P8tSjrgq+Y/Mhi/2/zTl1ql15npaVnw8toS 44IJ8iOrFH300UcfffTRRx99s6Lt3UNSXwD9XDdrfhBGxyZs87WFWLv+Zr7h /MdYfaLZYtImNTqcmNQn/yQgnTUxOS0H/YAwfpXV+N3m03nVM+fKeZ7pa09X 75BtPv+c3euPPvroo48++uijP1m/+NR1xZpsWbBg6zGm4nerL617PxnfoBgx examyqhuLvK1+VdZi9+N/twtZdzrDX3doa85pdWNTMWPPvroo48++uijn8z+ hr2nuVyI04W5j/uLLjIVv1t9rv/RF4izHzYgzXaj+oluk7IK69Ow31f347IX vxv9T4rqpO+r6P2dT07b6ofbhD766KOPPvroo4++uf/sWwWqdR9rr9+y1ddW wdr1N/O59R91eV+i8EM7iBFvcKiRb30dzI5ynx8Q2o+sxu9G/3LoNYb/zorv g3x8aZ7O9XL86KOPPvroo48++snqt3T087n0hfGrvoU5MD4+Ie33evxu9unY VZ/PbNxleF+3hZiUJJrnMd6U1RCjPQ75/DhgP7Pxu9GfCP3DCizOFXI+8/er zd22+frt2n3oo48++uijjz766BvdDldclT6/0fbjsh0VTMXvZj8Q8HN9Z/H2 daU08erbzLoN0rnoxfDnYLevzUPEWvxu9Vd9VCWMYc0MtSODcPDIZVt95QYW rz/66KOPPvroo49+LP5bH5xQjV3NPl5vq+90/G72DfOvRukbKmFy71jmn1UH YLGZKHY56/toP67yOjIWv1v9wqrrijWDMmHh1mO2+uYC+uijjz766KOPPvpG 0PgEAf/CHKn/kY4lu3GzzzbfejP6fmneXoy+QTHlJkKI4XarY4w2GB1LXORz 63cI7UcW43er3941KL3u0HbkzHlBGB4Zs813On700UcfffTRRx/9ZPMvXO0U +h0zuftTy/Nt9a2ORR+4NQu1/Y+x+MYliMU+swqJ+r+GJ252Js75/PodPsd8 4wrRp7eX1hRLeZ9pPp1TdTdt9U0x9NFHH3300UcfffR1/sf5dZCawX//T+cf bdxXzVT8bvfV+Vdj8wnRliOaMsRoj+pMTQ3pQLNr5g4/II0DZjN+N/s7cs8J fZB8G3J79llbfafjRx999NFHH3300U8m//WNZVL+CtoHcLym2VZfPpDN6x/O 59qPPp+2cBS+voyuYAQ31SFhjtftdoHvD/jk9TsYjN/N/qmLrYr8XZnw4qpC W/1Ibuijjz766KOPPvroA/QMDqvmHtF+yJ6BEWbiTwbfT+ft+eT8q9H6+mJE 85ioNmvLE6udikJEVy//0y2+PxBQ9D/a7+v3oS/6IyNjMGtetrAOZJB7TWq7 NWibb0Wgjz766KOPPvrooy/fymqapO/9p2VkQtrGMlt9ZSEWr38kvk+XfzU6 X3UGJr7ZaUV6I9onug3O+9x19Onz2NrlOx2/2/3F249z31+JOaDzK6/Z6k/m hj766KOPPvroo8+Kv2HfaWnNR3rfXVDLVPzJ4Ivr3k/atyokjp0l0cdCFI8s j3XYN8pDZKfvdPxu97OO1EuvQ3Qe5MoPT9rqi2VYvf7oo48++uijjz76kbhP LM2Dady8xyA376j2Wqdtvr5atq5/pD5t89DcL7H6podxx5hXGvZaWB4ewfWw 2efWQQlo139kJ363+9dbeuQcrBlZ4F+UCxMTJkd7MH700UcfffTRRx99t/sN jd3C2NVMbv7j44sPKT6veT/+ZPH141ej9YnRRpNNRL0xzPmZFiMmTxz0/Sbj V1mJ3+0+/XN+clket36HOCai9kqHbb7qGYPXH3300UcfffTRRz+cv6/4Evd9 v/hZbdXHJ5W7E+5bFkNfuol5Q2P1ibag6TmZnV0402gL0T9y2OfGrwbC9OMm 0Hc6/mTwN+yrVqwDmQkf5l+w1VcXZe/6o48++uijjz766FvtT9t8RMq7Sj+z lZ5qtNW33oK+ePP5hLyhcfOVFSkeG9SvriGyE1BfL6Oyzvhy/yOb8SeDX362 WRq/Sr/Xenldia2+tnrWrj/66KOPPvroo4++md/XPwwzMoLC9/z8vadv2Dbf 6oa+2tfN24vWN43DxI3inOV1MTVzN0kk19Fen1sHxSx/jg1+uBv6AP1DozBz blD4Toufk93ePWSbb74VffTRRx999NFHn23/yOlGoe+RHyuWtuEIU/Enk0/7 zAIB36R8bd1WR1jVLaXp0R4apio3+H5xHimj8SeLv2DrMXk92tA9r/waU/Gj jz766NNbQ309FBUVQ2FxEdSHHrMWP/roo+8+/+0PT0j9jvRz2t7CS7b6Tsef TD5t8/iU/WYx+HqKmG/TnVxkNUqPiPWZOeXz/bgBZuNPFj8orONB25B0HOvS nRW2+k7Hjz766LPr9/X2Qnp6Otz/wP0wJWUKTJki3EOPH7j/Pm5ff19fwnyn 40cfffTd64+OTYB/YS7XdhT7IK8099jmm9WIvrGvXbdwcj4xeGhUl7oqoi9m Xq/lzTmfXwdF0Y/LWPzJ4jd19ElzIOnPR+Zlw/DoODPxo48++mz6lZWV8OV7 7+XaiynKtuOUFKkNSX/eGypTWVEZd1/7jLXrjz766Fv7p+rapHW66f25twtt 9cPWi77q5let3xGbb7rf6pSEvdFdGaJ+7iJfzJ/DavzJ5L+4qoj7Xkscx3ri /E1bfeMa0UcfffQT49O245133cm3Haco245TVG1H8X7nnXdyx8TLDx+R9Q19 9NH3vr/5QI1q7Op72Wdt9SMtjT7/H7/fqP8xcj98WaI/U6J7YFm38T53+fw6 mgHHfKfjTyZ/V+4F4fUpk+uHpOt62Ok7HT/66KPPjt/b1w/33vtlRTsxJdSG TFH0Q6YY9kXee+9XoE81ljU23+n40Ucffff7NF/LU0vzubXVHs7gc+ecrW+3 zY+kNvTVvl9o98TuE23xCM7BqIQ+x4/qifBc3+fpDt/v93F3VuNPJr/uaqeU 24veH38zDybIBDPxo48++uz4dE6jrr/R9J6iep4WOjbZ40cfffTd79fduCXk xQ99LkvLgsDiQzA+MWGb73T8yejz7Z7Y8udofeOzIeY1mezQbiaqn8SwjNO+ 9jqyFn8y+RMTJNRmPCSNkaCvWRdCbUq7fFMIffTRRz/0v77BEWhq64OL127B iQutkFd+hctLuOS94zB3SxnMe/cYbM06y4332ri/GjbsO82No6CPtxysgW3B s/D+oQuwp6AW/uTPv6Kb46gex5piOq71/vvvZ/D6o48++nb7HxyuFT6P8ePC 3vnklK2+2Wb0zX15/GrsvjwPk+j2GbqqCgmoJ3Jq95nhilIu8Gkfrs8wfw4b 8SebvyH0OStVyO9Fx0vszD3PVPzoo4++Mz6ZAGjrHuTGZuVXXoOPQp+b1u6u gozNx+D5twtg5rxsYX526LUpLUu13tB0zT1VGEfxcEZQeC3LUryuZcH/fHaz QdswRTff0aoPsr6hIa7xO3390Ucffff5L64qFl7j+Ney8nPNTMWfjD63fofP Pwnf5GZ0LorH5vUozkL/IPITsNn3B/wm/bj2+AbVoG/hn7hwU8oRTe+/X1Vk q+90/Oijj37i/a7eIai+1AYHj1yCtXtOwSvvlMIj84NSe1B8/UnNULcH1W3F TKlsqqqMPE8oNUM+hrYlxTL/OnORaTsxReyPTJH7JVN0fZNTYNaLa7g+zdzy K3ChoQMGB0cijt94Azu/f/TRRz+839zRr3r9o3nxh4bHbPN1+1T70Tfztflz YveJQakI6lJURHRFie6R+ZVz1qdrd/gCJvlXGYg/2Xy6ZsfsBdmq8RLXWnqZ iR999NGPr98TalfR/POfFNZx68o+sexw6PNQqC2Xpm//KduM4uvPdKk9KeyX ysntRLltGVT1S6Yq8kkr26X/NmuxKsdqirb9aPBYu+0f/8dz8Nu0Ayr/dyuK YNXuKsg+2gCXrt2CsbFxx68/+uijn5x+Ztll1evfm9y63OzEn6w+HXepHL8a tW9Vjuh90wugO9bouSYKoinqoM9dR5+mHc5Q/Mnov7WrUvU9/yeFl2z19fWH e44++ui7xW/vGoKy6kbYdKAGXlxTrGjLqfsN1eNN5fGo2n7GVKHfkO4PLMqF F1YXw9wtR7nXqfWfVMOr60th3rtH4c0d5bDq4yooqLgGxaeuQ8npRiitboIj oZ/0cWHVdcirvBpq29XDxl0FEefNSZHGrWp/ToHbb78DvnTft+DvfvRr+MnD 6fB/XtolnHMmTAv9pGNu0zeWcXMuq2pboX9o1PO/f/TRRz8+fsamY6rXP/ra ZqfvdPzJ6tNxlz6x/3FSvvEOjWhZxqoUMdyt2OCw7/f5DPtxWYk/Gf2joc9c /Oc5/jXrpdBnQDt9fS1sXX/00U8mf2BwFCrOt8C7mTXwuxWF0lgrsa0ojr9K 1bQNlX2L4jaa83leqG1Ic97sLb7Itf3OX+mAm7f6YWR0Iq7x3//A/Zr+RzFf TopFW9J8bUjxfs8f3wtfffBf4O9/+TT84vHV8HDaASl++lnwjQ1H4KOCWrhw tQPGxvUxRXv9nf79o48++vH3u/qGpDnb3Jzv9CA37t8u3+n4k9mXxq9Owrc4 oTAH63dE5BD6f4uSDviq+Y8Mxp+MPv2OfNb8bKnPgN5vtGrXO0uc73T86KOP vvWWGzd74UDpJa4fcAb9fjwjS/rOiRubmi63DeU8NnJbcfaCHEjfdBS2Zp6F /JPXuHyqfdL8QXviT09Ll+c6GqzzmGLWngzt8/kfg4yFb8O//eJX8OWvfA2m Tp2qO058fvt/uQP+7Kvf4foofzw9Q+qjpLn4/QtzYPkHlVy/QmfPkPGJJij+ ZP77Qx99r/tFJ66rxm2kbzpiqx9RUfQNfcP5j7H6RLPFpE1qdDgxqU/+SUA6 a2JyWg76AWH8KqvxJ6u/7P1KVR/C3sKLtvrqh+xdf/TRd5NPDzl3pQN25JwX +hjl1wYpV42qzZgp9LkFYebcILy2sRS2B89B2elGaG7rsz4Fm+Lv6+uDe++9 V9WXqMvHqs2pE/r5lS/fC/2hY5V+X38/BIM58Mzv5sB3/+sP4FOfuce0L5PW dc8X/wK+9tC/wH/75TPwiyfWcH2U9NrRvsl9xRehsa0v4fGb3lz494c++qz5 S3dWgnK8/4Ejl2315YdsXv/J+NK695PxDYoRs2dhqozq5iJfm3+VtfiT1afz haSxZ6HPgy+vLbHVn9QNffTRn7Q/EXqfo2tp0HGpTyzNU30Xrs57E1SNU6U5 AhdsO8bNmz57pR1GRsdj8mO+RRF/ZWUl3HHXnZZjUpVtyjvvvJM7JhL/3Nnz sHrtO/DL//UbuPcvaB/lbbp+TKmP8v+6A/7sgYfgb3/0G/jxw3wf5Zy1xfBJ UR00RjL2I8b4TXZM7oY++uhPyqdjwGbOC6rG+Te1Rfg64IH4k93n+h99gTj7 YQPSbDeqn+g2KauwPg37fXU/LnvxJ6tP5zTNmqfuT2hq77fNdzp+9NFn1W9o 6ub6GZ9elqf696/MI0/v0xRzGun6Gx/m1UJNQzuMGsxTjMaXt9sTf2XlCa4f Utv3qM29+uVQmROVFTH7fX29sP9AFsx+/HfwzYf+G9x51z2aeZdq/7Nf/IrQ R/k0PPLqVthbWAftXf1xj9+8KJt//+ij77RfWtWoWMM2C+ZIOSjYiD/ZfW79 R13elyh8IKpuSqNiVr71dTA7yn1+QGg/shp/Mvs0177yc+O+4ksGJRPnW9/Q Rx/9ePkd3UOwv+QSvLi6WGofGrcb+TGps+dnw/JdlVxO066+wUn7VtuMb/GN n45lTU9Ph/vuv183fvX+0Da6j5aJt19QWgFPzVkA3/3+f4Tai38BU1KmGo6f 5XK9cvMoH4J/+uVseHP1dmhsaolb/FbbjG/e+vtHH303+XTsqvL1l353ZKfv dPzJ7tOxqz6f2bjL8L5uCzEpSTTPY7wpqyFGexzy+XHAfmbjT2a/JPTZUJ4D GYRX3jEfw+rF+NFH38s+zf15vKYZlmwvhxniWNSMTDlXqCqPahAeW3IINu6v hpN1N1VjUmP1dQdO4hZPv76+HooKi6CoqCj0uME2v69/BHLLasE/ZwU89OPf wp+H2op/dOc9+rakYtzrn937Nfjf/2cabNi4Ec6dPQvjY+NJf/3RR59lv39o BGbNDapefxvb+sHq5qX4veAHAn6u7yzevq6UJl59m1m3QToXvRj+HOz2tXmI WIs/mf2+AToGP0vV/9DSOcBM/Oij70W/tXMQduXVcmtl8OuKBYW5jJlcO1G5 7sajS3Jg0/4zUHO5DcbHSVx87QbWrn8kPv0MWXyqEZbvKof/8dR6bgwrHcv6 2T/5S12/pLJdeffdd8O//Mu/wBtvpEFOTg50dHTE5Mtl2bz+6KPvlF9Spcw9 kQlz1pTY6qvLsnf94+Eb5l+N0jdUwuTescw/qw7AYjNR7HLW99F+XOV1ZCz+ ZPeX7ChXjWU7UHrZVj8MhD766Efg01w4J2tbYMl75TBDkZMhNV3OlSrOaXxk fjas+ugkVJ5r0axPmLzxJ7NP1zUpOHEN5r1bxo0d/vUru+En0+fCgz/6DXz5 qw/BHXfcbboWJb3/zd/8DTzyyCOwafMmro+STFitOem++NFHnyV/2fsV0usy P3b1orTXDt9qL/qR+X5p3l6MvkEx5SZCiOF2q2OMNhgdS1zkc+t3CO1HFuNP dr+g6rpqne/X16vXIPJ6/Oijn8w+zYMVPNIAz68okMZCpWbIOeEfVvzbpuuL 5Vdeg8Gh0bj5ZmVZuf7x9ts7B2Fv8UV45u0CRT9xJvziybXw90If5T1f/Aqk TJlqun7I3Z/m+yjT09Ig91AutLd3Ruw7HT/66HvZ7x0cgVli3tV0g7yrHo/f Kz5ds1Db/xiLb1yCWOwzq5Co/2t44mZn4pzPr9/hc8w3rhD9SP3e/mGYmSHn 5+fHsPYzEz/66Cej33prALYFz4FvYa7UVkzVjE2lbUY6p3Fn7vnQZxTF/BoP xO91f2KCcGOKV+2uglnzc+R+ZOH7gN+88jH8eHoGtx7IX3zju/Dpz3xW35ZU 9Fl+82++CbNpH+Um2kd5LlS/to/SXfGjj74XfTrOYHqa/J2evG4aG/F7xVfn X43NJ0RbjmjKEKM9qjM1NaQDza6ZO/yANA6Yzfi94C9+75iQW4N/XaPrW9vp Ox0/+ugni9/Q2A2rPzoJM+aq19fg5znydzrHce6mo3Dk9A0YHZvwVPws+vQ7 vqyj9fD00sPC/FX+96z9/f/v596BwPMZMO3hGfDNv/6/YeptKaZ5eT7z6bvh X//1XyEtLQ0O5eZAZ6dBH6VL4kcffa/4C7cdl+ai03+7hvOFEuirt6q3oB+5 z7UffT5t4Sh8fRldwQhuqkPCHK/b7QLfH/DJ63cwGL8X/KKqG9LnzulpmfDi miJbfafjRx99t/vVl9pgwdZjUl+jmAcnNUOc10jX3MiBLQdq4PrN3rj7hrsZ uv5u8OkcV7oGy1NSO1L9+xfHj9D5rVuzzkL99VbIyc6BN15/Hf75n/8ZPv+5 z/LtyRRx/Ut1f+U3/+ZbMPuR2bB5y2Y4f/58yFP3UTodP/roJ7Pf1TMIM4Rc ZtOF8SI3bw0wE7+XfD+dt+eT869G6+uLEc1jotqsLU+sdioKEV29/E+3+P5A QNH/aL+v34d+tP7g4KhqTD59fbvS1M1M/Oij71a/4nwLvLbhiNRWkPOoiutx BOHZtwog68hl6BsclQ/0SPzoG/s19e2wYe9pbvxyqqIdKc6XpHc6L2HdnlNw o7WPPzLU/qypqYENGzbAjBkz4a//+hswdepUwzyv9Oen7/40/OtP+T7K3Nxc 6OzskHyn40cf/WTzs8vqFeslZXLz0e309aXZuv7x9H26/KvR+aozMPHNTivS G9E+0W1w3ueuo0+fx9Yu3+n4veKv/PCE/Jk0dH8/5zxT8aOPvpv8irMtMGdt ifxvMi1LMXYxixsv8Mr6Ujhypgkmxo2lZI4f/ch8+p1BVmk9PL3ssDSniv8O MAjThHYlXfvzrV2VcPlGl87o7emBYDAIr732Gvzkn34Cn/vc54S8POo2ZQp3 nwrf/OY3Yfbs2bB58yauj3KczqNk+Pqjj36k/quh12t5rkEW5JZfsdWP9oa+ uS+uez9p36qQOHaWRB8LUTyyPNZh3ygPkZ2+0/F7xa88f1OVq/GJZXnAp1hg I3700XeDX1V3k2sXTpPWasxU/bukP+kaHWfr2xPiS4cqHrF0/ZPVp/NcD5+4 Br9fWahat0Xu7+C/c3hzR4VhO1I+Zb6Pcv2GDTBz5iz46298A6bcZtBHKbQp P/Ppz8C//fTfID0tHQ4dOgS3bt1yJH6TYNBH3xU+nVNA//3RMav0dZyODeju H7bNdzp+r/m0zUNzv8Tqmx7GHWNeadhrYXl4BNfDZp9bByWgXf+Rnfi94o+F Pn88tihX6n+k35HROVd2+dJORq8/+mz7NNdm2sYy1b8/sS+JfvanfUirPj4J V5t7PBk/+vHxJ8Yn4Gh1I5fXMVXTjpTWdaH9ke9Xhv6WuiPye3p6IJv2Ub7+ KvzkJz+Bz95zj9CGTFGNd00R7t/61je53BJbtmyB2gsXVLlevX790UffaO/O 3Auqf3/LdlbY6mtqMN+JfkS+fvxqtD4x2miyiag3hjk/02LE5ImDvt9k/Cor 8XvJ35J5RhqbTz93rNldZavvdPzoo2+3X3e1E+ZvPaabw6ZsN67fVw1N7do1 dbwRP/qJ86tqWyFjc5nU7yH+TdEcaWJ7kr7GN3f0qyoK59M+yjM11bB+/XqY MWMGfOPr3wi1IVOkNmVKirqf8jOf+TT89N9+KvVRGuZ6TUD8+hM3L48++ony 6RhvmvNK+e+v/GyLbb7T8XvRF/OGxuoTbUHTczI7u3Cm0Raif+Swz41fDYTp x02g73T8XvJrr90S5lbJefz6h8Zs852OH3307fLpOhyLd5Qr+oXkMapcv2NG EN755BTc7BxIiG++32oL+snon7vSAQu2HZPmXqVmiGuF8u3IGXODsPlADXT0 aMfTRe53d3VDVlYWN4/yn3/yE7jns5/TzaGUxr1OTYFvf+vbMFvoo7xQy/dR evX6o8+2f7K2VR4DEPpJ1+QdHwuveSV+L/o+n5A3NG6+siLFY4P61TVEdgLq 62VU1hlf7n9kM36v+S+sKlLMn8mCghPXbfXNbuij7wW/NdQeXPnxScV8RnWf I203rvrwJDS29SXE1x/N1vVn2b9wtQPmv3tU9V2F8u9v9vxs2F1wEYaGx0xr j9SX+ijfEfso/5prN8ptyhR5PUqxj/KnP4WMjAzIy8uDrq4uw9oTev1v3QC4 WhG6l/OP7fYtbugnry/lJhTmI9C1dez0tdWzdv0T4evm7UXrm8Zh4kZxzvK6 mJq5mySS62ivz62DYpY/xwY/3A396Px9JRdV35Wlbymz1ee2Mnz90fem3zcw DO9ln4OZ87KlnDipUpsxS5qT1tDS48n40XePT+favs7NtVX//YlrNz2xNA/y T14Dou0TnKTf3U37KIPw6quvwD/90z/BPfd8Rpg/mSLNnZTmUoa2/e23vwW+ 0Gc0ro/yQm3ofEj8r//IIEDx6tCH/L8HeGMqkLTQ/Y0pAKGf8Pb/C1CyCmC0 Py7xG/pGez3+98eS3zMwEnrND0prLtGcaPWN4ncj3o/fqz7tMwsEfJPytXVb HWFVt5SmR3tomKrc4PvFeaSMxu81v71rkOsDEde3pT9vSvNjEu+bA+ijn3w+ zUuVWVYPgUW5inWj+c8RDwvzHRduK4eLN255Mn703elTi64t+tKaYulvcZrY nhT6J/+wpgRO17UmxKc32jqtrq6GdevWw/TU6fBXf/V1rt0o53dNUa0lcs89 98C/K/oobyn7KGPwobkGYPl3Q+3F20Ltxil8uzHUhgSuDXkb/5jel30XoKkm 7vGz/PfHik/X6HhY8d0MXZPJTj+S49GP3qdtHp+y3yyW1x8dRcy36U4ushql R8T6zJzy+X7cALPxe9FfuP2Y1AdJX/Pez6tlKn700Y+HT3MkPL+igP88nib/ exL7e2i+1fNXOoyqi4vvdPzou9+fCG0vOXkdnlmeL7UdleNa6eOF24/DteYe W+Kn41azglmKPsp7DNcNEfsov/3tb3OfP7a8+y7U1l5QnYGlT9uOc/+M72cU +xulO9+WJOJj+nPun/LHJDh+7dHSI4/+/Xndf2V9ser1P+tova2+0/F71deu Wzg5nxg8NKpLXRXRFzOv1/LmnM+vg6Lox2Usfi/6ZdVNQr4+/vtoOp5p3GSN 8kT4xkdFWA599B326Rob898tk/oa+Zw4cs7L360ohPKaZs/Gj37y+cOj47C3 +CL4FuRIY0/E13/69yvm2OkdHEmIbxYXHUtWfYbOo3wHUlNnwNe/8XVuHqVR e5Lro/zMPfDv//7vMHduBhw+fBh6urv1Z0PHrC77Lt8u5NqOYluR73eU+h7T psg/6f5l35PHstoUf2Q39N3oX2vpUb3+z8gIQk/fMDPxe9n3q9bviM033W91 SsLe6K4MUT93kS/mz2E1fi/6dC1qmiNMyjcd+hxxvKbJNt+qNProu9UfHB7j 5jhOnxuU5pVNF9bl4L6HWZIHOccaYGzcKNfk5H2jx+FrRB99+dbVN8S1E2co 1h5VrifzWOhvuFjIqZYIP1xp+qj7VhdkZmbCK6++Aj/+8Y+5NqNyHUr5nsL3 Uf7tt7nPKe8KfZRQtEoxVnWK3GZMmyK3GYU+SX7fFO45VyZ0rJd//+jHz9+Z e171+r9sZ6WtfmQ1oh+L7/cb9T9G7ocvS/RnSnQPLOs23ucun19HM+CY73T8 XvXpa1+qYr4Wzf9up2++D3303ecfq2mCZ5YdVsxvzOTmldGfM0PtyR2hf08D g6MJ843Ks3T90Y+vf6O1F94U15cR25AZ8t91+qajcK251xXxT0wQOH36NLyz bh2kpqbC17/+dWENSkU/pfCczqm88txdinbiVE2bUWgnKh/TdmSaIqdORGec 3L9/9Cfnj42Pw2Nv5qnGgVdIaz56P36v+36h3RO7T7TFIzgHoxL6HD+qJ8Jz fZ+nO3y/38fdWY3fq35Tex+fMyyNX1OA/mxpN16LLhG+9ITR649+cvj038mi 7ccUayLIOUjo/a1dJzRrOHorfvS97Z+51AZ/WFfKvw8I7UjleLz3cs7B4PCo 6+K/desWZNE+ylf4PspPf4bP9frA528Xxq1OleY+EqH9yP8U+x3FPscpmnw6 U4S1Pdj4/aMfm3/0TJMqF9Vjbx7ixp3Y5Vvd0J+8z7d7Ysufo/WNz4aY12Sy Q7uZqH4SwzJO+9rryFr8Xvbnbj3Gjb0Qx2C8f+gCU/Gjj76ZPzI6DrsLamGW MFZ1erp6nuMLqwqh+nJbwnyzo1i5/ujb549PEAiWXQbfwhyu71H5/Qj9jvHp Zflw7Iw4v8Gd8U+QCa6Pcv/KV/g24BtTpb5FVTtS0bYkilw64thWbhtdHzJK 3zJQk81u+f2jH71P11nl81Dx84jfz7tgq+90/F735fGrsfvyPEyi22foqiok oJ7Iqd1nhitKucCnfbg+w/w5bMTvZf/omWbF+CX+OzQ6N9IuP9wNffSd8Ktq W7m8qnybMSjND6Pj+2bNC8Lewouhfyfjno0ffTb9zp4hWPHRSWltYO3f/6Lt x6GprS9hvq5ULPFfK9f1L5LXb5fWfuTbiKF9r98mtyWFtiYRxrPmvpMBdXV1 MDERg+90/Ogn3G9u69et8dvcMcBM/Cz43PodPv8kfJOb0bkoHpvXozgL/YPI T8Bm3x/wm/Tj2uMbVIN+nPyx0GdgmvNDXL+IvhaK3zPb4TsdP/roK6tp7+qH 5bsquX8Hynyq4vcrb+6sgDbdWqneiR999OntzOVW+P2qQt3fP21L0v74D/Pr uP75RPmWtzDxc2NPpbbiVHX/ozjXkWsrTpVy7EjjXYU2Jx0DS8fCfu5zn4Of /fxnMG/ePMjPz4eenl4mfv/oW/s7hLw5Yu4pZe4IFuJnwdfmz4ndJwalIqhL URHRFSW6R+ZXzlmfrt3hC5jkX2Ugfq/7Ow/Jr4X0c8L8reUABmW9Gj/66NN5 K/tLL8PsBTnCWuvyvwfalnzm7QKoONeiP9oj8aOPvrYqOg6F9rM/Ml/974Ef w50Fz79dCFUXWjRHuST+lX8v51VVtBfldTymqPsi35DnP1559i4pF4+0doiQ 9/W2qVPh7x78Owg89ihs37YdLtVdBPXEKZfEj37C/JGxcQhwueuDkJrG9z0e Pdtsm696zOD1t8un4y6V41ej9q3KEb1vegF0xxo910RBNEUd9Lnr6NO0wxmK 3+t+c9uAaiwG/ZxAx2fY5TsdP/ps++frO+ClNUWqv39xPjBdE29XXi0MD48l zHc6fvTRt/Jbbw3Csh0VqlwhyvU+lr1fCW1dg+6Kn67Bocq/+l+kvDnKtiK8 oVn/kf4sXAmnqk7BunVrYdrDD8PXvvZXmjVD1PfP0j7Kn/0M5s3l+yh7e3ud jx/9hPmFVddVf/907Wwubw4j8bPi03GXPrH/cVK+8Q6NaFnGqhQx3K3Y4LDv 9/kM+3FZiZ8Ff+HWY6p5kDtyz9nqOx0/+uz5Xb1DsO6TU6q/e/lnJsx/9xg0 tvZ5Nn700Y/GrzzXAs+9la/+dyL0S9J++wPFl0Kfo4lJLTbHPxJqzy7/rpAv R5EfR1rLQ5l3VTGGNXQMd6zG7+zshIMHDsDLL78MP/rv/x0+/elPq9ejTBH6 KaekwNSpU+HBv3sQHn30Udi6bStcvHgxVMWE0VkmLn7dvuT/+3OL/8r6I6q/ /4/z62z1tSVYu/52+dL41Un4FicU5mD9jogcQv9vUdIBXzX/kcH4WfCP1TRL 81zovK/AokMwPDKmL+jR+NFnx6dvB/knr4X+xnOlnKrKeV6PL82DI6ebjOv2 QPzoox+rT/vhdx0+DzPnZvP9kGnymFb6/MXVRXCuoTNhflTxN9cAzP1TdS7W N8Q8rIr5juLjeV8EaDobkU/Xozx16hSsXbMWptM+yr/6mqJPMkXRpuQff+Hz X4Cf/fznMH/+fCgoKIDevl7T+t38+2fdr7vaKeWKoH/vdH2bW91DtvlOx8+S bzj/MVafaLaYtEmNDicm9ck/CUhnTUxOy0E/IIxfZTV+FvzxiQl4ctlh1ToF eeVXbPOdjh99Nnw6zm7htuOqPpTpQq4c2n7cmnkWBgZHPRs/+ujHw29q7YUF W8tV/fZiG3IG9++oBoaE7x8djT/UHuT6IRV9jHw7UrnmY+jxWw+GytZMyu/o 6IADBw7AH2gf5Q9/BHfffbfcltTMo5yaMhUeevBBeOzRx2D79m1w8VJdUv3+ WfVXfXRSmhNP58mv/PCkrb78nM3rb6cvrXs/Gd+gGDF7FqbKqG4u8rX5V1mL nxV/b3GdNHaP3l9YXWT4z8Sr8aPvbT+v/Cr4FuToPvPSn29sKIOGpq6E+lHd 0Ec/CfzS6hvw1NLDfNsxLUvVn//c2wVQY7Y+apz8iOIf6QcoXgXw9n9VzIcU xrGu+K/8XEluzGp8/YmJCaiqqoI1a9bAw9OmwVe/+lV9H+UUedzr5z//Ofj5 z38OC2gfZX4BP4/S5b9/lvzWzgGuv1HOu5oF56+22+YbM+xcf7t9rv/RF4iz HzYgzXaj+oluk7IK69Ow31f347IXPyt+V98IzJqXrVjLIwtOXWy1zQ9XHfro x+K3dAzA/K1HuX5G5bp29E7XSz9ccQ0mIn4bSL740Uc/kf7g4ChsyzoHqRlB 4buZTOn7GfpvbdOBMzA4POp4/CTUnpP6Gw/M4db5sPv6t3d0wMED+/l5lD/6 EXyK66PU5OQR+yi5XK8PwuOP0T7K7XD50qVJ+9oDvPD3Z5e/PXhWlTfn1fWl tvqme9FPiM+t/6jL+xKFH9pBjHiDQ4186+tgdpT7/IDQfmQ1fpb8jfuqFZ+v M2HB1mOGpRPla/ezdv3Rj59P24TZx6/A7AXZmnZjJpd7/c0d5dx66YnynY4f ffTt9C/f6IKXVher+mf4vshMePatAjht+V2kDfHTHDZvCPlyitfa7xscPT4+ zvVRrl27Gqbp+iiV/ZO0XZkCX/jCF+A//uM/YOGCBVBUWAS9fZo86VH64aJL pr+/RPp9AyMwe2GuauzKsepmZuJn0adjV30+s3GX4X3dFmJSkmiex3hTVkOM 9jjk8+OA/czGz5J/vaVXsX4Bf5fG9TEQP/re8Jvb+2Du5jJVXyOdr0KfBxbn QvGpGwn1Y7mhj36y+2NjE/Bh/gWYOTdLMU9M/ve3Yd9p6B8aTZhveaMfRoV8 rFC62n4/zE08ur2tHfbtF/oof/hDuPvuTxn3UYbut91+G3znwYfgscce5+ZR 8n2Uk/Odjt+N/r7iS9J3j+LY7Akxpy4D8bPoBwJ+ru8s3r6ulCZefZtZt0E6 F70Y/hzs9rV5iFiLnzV/8fbjqu+Q1+w+Zasf7oY++mY+zYuYWVrPjcOWxtFl yONW33q/Em71Dns2fvTRd4Pf0NgNL68r0f37oz+fWp4PJy7cTKivLitsIML4 VTr3sWiN/b7yYRTXn/ZRnjx5EtasWQ3TfjsNHtD0UaYIfZPiuNfPf/6PuT7K BQvmQ0FhIfT39+qr9/jfXzz90bEJbo4vn5+bn/+Yc7TBNj9sCfQT4hvmX43S N1TC5N6xzD+rDsBiM1Hsctb30X5c5XVkLH7WfJrzQDlXbMbcLG4Nabt87X7W rj/6sfmNrb3wxqYjMC09U1qLQ/w7fmzJISirbkyob1reGkIffU/64+MEdhfU wsy5QdVYVv4zeCas23OKGxeYKF+/Y0LKw8rlzFEflHjfGIrJ72hvh/0HDsCc OXPghz/8IXzqU+o+ypQU+fFtt90GDz30EDz++OPw3nvbof5y/aR9q5tb/v7i 5RecuCb9/fJrm+Vy69jY5TsdP6u+X5q3F6NvUEy5iRBiuN3qGKMNRscSF/nc +h1C+5HF+Fn0//BOqSIHQhZsD56z1Xc6fvSTx58I/dxfchlmzQ+Cdl1z+vzt D09AT99wwnyzOkz3oY8+Q/6V5h4u14j4GTxV8e/ziaWHofxcS0J9aV+ovLTu Y8lq/f5E+yYb4uGPjU/wfZSrV8Nvf/tb+OpXHzCZQ8n//OIX/xh+8YtfwMKF i6CwqAj6+/sn5TsdfyL9OWuKVd9FfnC41lbfrCz6ifXpmoXa/sdYfOMSxGKf WYVE/V/DEzc7E+d8fv0On2O+cYXoJ9Ivq27i+h7579yy4JH52dDVq1wn19vx o58c/rWbvfD6evG7DkX+x7QsePzNPDh+tjmhvvE+403oo8+qPzFOYG9hHcyc ly20IzOl73no+8vKj6ugt384ofETKX/Obfx6Hh6//m2tbbBv3z546cWX4Ic/ +CHc9am79Ll5xHmUt90O36F9lI89Bu+99x5cvnx50r7ZxmT6+z9Z26roN8+C WXNDn4N6hm3zzStEP9G+Ov9qbD4h2nJEU4YY7VGdqakhHWh2zdzhB6RxwGzG z6I/Pj4Bz68o4McCCn06O3LO2eZLuxm9/uhb++MT9PPopdDn0aCwjmOm6nPp qt1V0DcwrDk2fr5cJZvXH330Y/FvtPbCaxuOSO8p8rzITO77nmNnmhLn0/Zj mjB+tXi1oko2rv/E+DicOHECVq+m8yh/Cw888FVdTh5xLUr6/I+/yM+jXLRw IRRxfZR9SR1/LH76piOKnKuZsGH/aVt9p+Nn2efajz6ftnAUvr6MrmAEN9Uh YY7X7XaB7w/45PU7GIyfVb/gxA1V/oNZ83Ogq3eEmfjRd6d/rbkXXnlHMx5O 6Hd8amkeVJ67mVDf6fjRRz+Zffrd5IEjl+ARYa1hZa42el/x0QnNvMg4+UL+ HG4OZOkq67LKDR67/srj29qFPsqXXoIf/OAHcOdddynGu6ao16Pk+ii/A088 /gTs2LED6uvrJ+1blhU3OHT9a+o7VJ9/Hs4Iwo2bvZ76/aNvXtZP5+355Pyr 0fr6YkTzmKg2a8sTq52KQkRXL//TLb4/EFD0P9rv6/ehb4dP51Q8/3aBtC40 fR3dlXveNt/p+NF3l0/nOR4svcz1OU4X+iyU/Rhr956GfvFzZwJ8p+NHH30v +U1tfVz/zrSMTMW8ZX7OxNNL87ixg3H1aftRnP+o6H9k9fob+WPjo3Di5AlY vWol/Po3v4H777+fz+2qaEcq71/84hfhl7/4JSxcuBAKi4thQDGPMhnjV/rz 3j0mfO7hP/+8/UGlrb7T8bPu+3T5V6PzVWdg4pudVqQ3on2i2+C8z11Hnz6P rV2+0/Gz7OefvKbKozN7QQ509w8bH58AX/ovo9cfff6/Le39kLH5iKrPkX4f PC3085nlh+FUnbrPMd6+0/Gjj74XffqdULCsnptfn5rGrxE5XZp3nwkbD1TD IM11GQ9fmP/Ird8htB+djj8Z/JutrbD3k73w4osvwve//324665PyWuGCH2V Yr5Xmuv1O9/5DjzxRGR9lG6N/8LVDmkuhPj550pTt22+cq/Tv39WfXHd+0n7 VoXEsbMk+liI4pHlsQ77RnmI7PSdjp9ln441evatfNU4o115F2zzNQUN9qHv dT+v/Cr4FubI7+WK3Kp0PfKBwVFPx48++l73mzv6IW1zmep9RvzOkq7Vfv5K x+R9If8qoXMgQ+1HN8WfTP7Y2BhU0nmUq1bBb379a76PUtUvmaJ6/id/8iX4 5X/+EhYtWgSFJcUwMDAwKV+9LzHxL9h6TDUvYun7Fbb6JgXRt9GnbR6a+yVW 3/Qw7hjzSsNeC8vDI7geNvvcOigB7fqP7MTPun+44qpqntnsBdl8rjybfH0R tq4/q35HzxAsfq9cygGsned48oJ2fFt8fafjRx99lnyaK2N/6UUhJ1amNNaA +7cfuu/MPQ+joxOx+1z/o7j+4xrroxm8/pPxW2kf5d698NKLL8I/cn2U+lyv 4v32226H737ne/Dkk0/Czp074UpDw6R9gwjMd4aJ/9yVDt3f38Ubt2zzxR/J 9Pv3oq8fvxqtT4w2mmwi6o1hzs+0GDF54qDvNxm/ykr8rPt0HuSzy9V9kB8d rmUmfvTt949WN8GjS3Kl/kY6tk38+1vx0Ukuv4aX40cffVb9qy298PK6Eilv ifLf/0triqFBGEcYtU8/96VN4edAFq0y9Q2fMHT94+GPjY5BZWUlrFy5En79 61/DfffdJ68Xol2TUuyj/OUvYdHCxVBcUiL0UdoXf319A7cOZlFhMTy7eLeU 74H+/S3dWZF01x/9yfti3tBYfaItaHpOZmcXzjTaQvSPHPa58auBMP24CfSd jh99fgzhdKn/Jwv8C+k8yFHb/DDVou8Rn665sSrUPhTXalaOWQ0sOgRl1Y0J 9Z2OH3300affWY7D+4dqYUZGUDdmfebcILeWJF3DJyqfjl+laz8K41etfNUj Bq9/IvybN2/Cnk8+gRdfehG+/4Pvw5133mneR3n77fAdsY9yx05ouNIQ9/j7 +vogPT3NYPztFPjU574ED/5oGvzmlT1Qf6MrLvEb72Hn959svs8n5A2Nm6+s SPHYoH51DZGdgPp6GZV1xpf7H9mMH32A0bEJLk/J9HRxLd1M2BY8Z5uvr4et 68+CT/MtPr3ssGJNOLnPcfH2cujsGUio73T86KOPvtqvvdYJv1tZqHpNEN9/ Xt9YBk3tvZH7YcavujF+L/vcPEpFH+Vf3nefqn9Sm/P1T7/0J/Cf//mfsHjx IigpKYbBwcGY/cqKSrj33nt17Uatf88XvsSdYyLi195Y+/273dfN24vWN43D xI3inOV1MTVzN0kk19Fen1sHxSx/jg1+uBv69vh5J64K+fH4z/Qz52XDzc4B ZuJHPzH+wMgobD5wRvq7Us539C3IhkPlV62WGE76+NFHH31zf3hkHLYcrBG+ SwqqxiXQvK3Zxxu4PK7hfT7/qnL8ajLEz5Lf3NwCez7ZCy/QeZT/8I9w1113 aNahFHPzpHB9lN/73vfgyaee4uZRNjQ0RORXnqiEO+64Qx5DK7UZ5bql3LKh fXfeeZeiDZnY+J2+/ujLR9A+s0DANylfW7fVEVZ1S2l6zF7mIjk3h3y/OI+U 0fjR52/j4wRe4L4LltfrWvPxSdt8p+NHP/5+7ZVOeP7tQqFvIVPVz5C+6Sg0 t/frK/NQ/Oijj35kfvXFVnhmeb7q/Ud8rViw7Ti0dw1a+oSu/yj2PyrWf4zU dzp+Fv2R0VGoqKiAFStWwK/+v1/BfX/5l+r+Qk0/5Ze+9CWuj3LJ4sVQUlIK /UODKre3t0/V75gyJUVdj+axeKfH9IWOtTt+p68/yz5t8/iU/WYx+HqKmG+z +pLcokbpEbE+M6d8vh83wGz86Mtljtc0SXNRxLGFddc7bfOdjh/9+Pij4+Nc PsXUDEV/Yxo/Nm3W3CAcKL4EExOJ85VHS48Yuv7oo5+Mft/gCKzdc0r1/iO2 J+mc/KKqGxYVTPBrP9J76eqYfKfjR59AS4vYR/kC/MM/fh/uuPMORZsvhW9L psjzKL/3/3wPnn7qKXj//ffhueee042LNbrr2pApKZCWnu6K+NG3x9euWzg5 nxg8NKpLXRXRFzOv1/LmnM+vg6Lox2UsfvTlcrTe9I1l6n6i0HO7fPVD9q6/ F3yaP3HOmuLQ3w+fpz81Xc7R//LaUrja0pNQ37Reyxv66KPvFv94TTM8IeZn lsa88+9Hy3dVQlfviM7nxqzR9R9pDh1p/mNyxo++/GBM6KN8a+UK+NWvfgX3 3afso0yxaC8q1qlMEduM6vansj1J8+y4MX70E+P7Vet3xOab7rc6JWFvdFeG qJ+7yBfz57AaP/pq8+K1Tnk9PuE74FJVXkxvx49+bD4d/0zzJtL8icp+AzG/ 4geHLnB5mrwaP/roox8/v6t3CJa9Xym8fmSq1od9/M08KD/brKmA8LlXVflX kzd+9M1rbG5uht2798Dvf/97+Id//Af4I2G+o1U/o+FjTTuyvqE+Ij98GfPS Xrj+XvD9fqP+x8j98GWJ/kyJ7oFl3cb73OXz62gGHPOdjh99/W3N7iphvlqQ +0nnpQyPjjMTP/rR+Y1tvfDGhjKuv1HsJ+Daj6F24+9WFkHd1c6E+pHUhj76 6CefX3DiGvgW5sjfaSpeW9buOQ19g8I6U7T9+Ia+/ThZ3+n40Q/vj46Owrp1 7+jz8KSo+yFTjHLpKH4WFxXF5EcSjZevfzL6fqHdE7tPtMUjOAejEvocP6on wnN9n6c7fL/fx91ZjR99vU9zFdDcd/L7dRZ8mH/BNj/cDX13+HTMWLDsMsya H5RzJ6bJ+RO3HDwDw8NjCfPFZ6xef/TRZ8FvvTUI87ceFeZEqteOfWr5YTh9 qZUDCG07vqFZ/9ED8aMf3i8qKjbvf+TyraaA9XjXKaE6imL2jXeyc/2Tzefb PbHlz9H6xmdDzGsy2aHdTFQ/iWEZp33tdWQtfvSN/d0FtVJOddqvRNsIze19 tvlOx4++td/aOQDzthyX5jYq+xyfXpYP1ZfaPB0/+uijb59PnwXL6kPvQ9nS d5r0vUl8/dlysJpvP6bJ+Ve9FD/61n59fb3h/McUbVtSOS9Sc6+vb0ja+NGP zpfHr8buy/MwiW6foauqkCgr0AOmuKKUC3zah+szzJ/DRvzoG/vDo2PwzNsF Ug4U+n69aNtx23z5IZvX381+fiU/pkxalyNN7KcOwro9VVweRS/Hjz766Dvj N7b1wesbS4X51fLrz4zQT27tR2786irPxo++uX///Q/o8qpa5WFVtif1+XOS L370I/e59Tt8/kn4Jjejc1E8Nq9HcRb6B5GfgM2+P+A36ce1xzeoBn2X+OXn WjTjhTKh5HQjM/Gjr97Q2TMES3ZUKHIiyn2PT755CMrPtiTUdzp+9NFH33l/ YpzAnuI6mDkvKL3+zEg/yOdeDbUhazanc7m6vBo/+sYH0jU4jNZ3FMermu2j 29O59Tsm5zsdP/qR+9r8ObH7xKBUBHUpKiK6okT3yPzKOevTtTt8AZP8qwzE j761v3RnhSJ3QSY89mYe9A0MMxM/+vztaHUTPLo413C8KpdTv28kob5uA2PX H3300Vf7DU1d8PLaYilHK+17pH2Q+9KfgTlrS+BKc7en40df7ff19cGX/uzP DcasavobFXl1aJkvf+Ve6O3rm7RvVI6l659MPh13qRy/GrVvVY7ofdMLoDvW 6LkmCqIp6qDPXUefph3OUPzoW/uttwZg9oIcqc+Jvlev3V1lm+90/Kz7vf3D sOKjk6rfv7guW2BRLpRUNWqOja/vdPzoo4++e/3R0Ql4/9AFmJlxkJ/7+MZU 2Jv+HPcaRdcS2lt4CcYnJhLmOx0/+vJD2uf88Avr4bbb/8h4HUhlbh2hT/LO O++CyorKuPjmz9m4/snk03GXPrH/cVK+8Q6NaFnGqhQx3K3Y4LDv9/kM+3FZ iR/98H7wWIMiZwHfdqiqbWUmflb9E7Ut3FprYv+z8ve/aPtxaO8eTKhvXbP3 rz/66KMfmV97rQPeXboK3k5fCi+lb5PGRtDXqzfWH+HmTSbStyzDwPV3g78z 9wL33vSzwNtw12f+2DTPqni/9957Q23Hirj5pmUYuf7J5EvjVyfhW5xQmIP1 OyJyCP2/RUkHfNX8RwbjRz+8PxH6N/bGhiNCzgJ+TUiaN31AXHsrwX74gujH 0x8cGoP1+05LeXEeVoxXnT0/B3LLGyI/1Rj88JV6+/qjjz760fvDI2Ow5WCN apyE+JiuRxUsa4AJD8fPsn/+SifMyJB/579+ZQ/8r2lPcHlxtPMdH7j/AW6+ Y19fn3W1SRQ/+tH5hvMfY/WJZotJm9TocGJSn/yTgHTWxOS0HPQDwvhVVuNH PzL/+s0ePl9ButymWPPxKWbiZ8WvvtQKz72VL6zbIvc30t93xuYyuNnR7+n4 0Ucf/eT2T19shWeW50vfeT2ckSm9js0NvYY1tuvbDV6KnzV/aHgUfreiUPW9 AX3Orz1MoL7hMhQWFUFRYRG3zofX4kc/el9a934yvkExYvYsTJVR3Vzka/Ov shY/+pH7ewsvql6j6XtzWbVm/lsC/bjd0NfV2TcwAuv3nlatzU0/d9HPXDPm Z8OB4ssgTSNKgK/dpXvm8euPPvrox88fGByBtXtOCd93BqU84txaxvOCsK/k EoyP6yv1Svws+ZsPnJG+H+DuGUGou9ppmx/1DX3Hfa7/0ReIsx82IM12o/qJ bpOyCuvTsN9X9+OyFz/6kftkgghrb8n5WP0Lc+Fm5wAT8XvVp98BPPlmnjA+ WT3P8bV1pXD9Zp/+IA/Fjz766HvTrzjbwuUMV45nFdsZL79TCg2NXQn1tVWw dv0T7VecaxG+05a/H6D5lOzy9eXYuv7J6nPrP+ryvkThh3YQI97gUCPf+jqY HeU+PyC0H1mNH/3o/Kb2fvAtyFHMLcmENzYdUeS4S6zvdPxe8ttuDXLrs9Df 5bQM9XjVmRnZ8HF+Hfd79Wr86KOPvvf97v4hWPnhCek7T3HsDL3PmBvk8q4M jekHV3glfq/67d1D3JpS0xW/1zlri2FMu/anR+NHP3afjl31+czGXYb3dVuI SUmieR7jTVkNMdrjkM+PA/YzGz/60ftFJ65p3ouz4L3s87b5sdzQlx9MTBDI Lb8C/oU50ve28meqLHhtwxG42tKdMN/p+NFHH332fNpX9dTSw8J6keI6tpnS fLmz9W0J9cUHrF7/ePrj4xOQsfmI4r0rCI/MD8K1lh5b/Ghv6LvLDwT8XN9Z vH1dKU28+jazboN0Lnox/DnY7WvzELEWP/qx+Ss/Pimt2yx+/1d6qtE2Xy7L 5vWP1b9xs5frL1bOcxQ/T9F1PjPL6rn2ZaL8cDevX3/00UffOb9/aBQ27q82 fP2j8yQ37j+jyivutfi94m8NntV9/sg9dsU2Xy7L5vVPdt8w/2qUvqESJveO Zf5ZdQAWm4lil7O+j/bjKq8jY/GjH5tP34fpd7bKeSU0R/qVph5bfLO92vrR 55+Ojk/A7vyL3Jrayrki4mO6nmPrrQHPxo8++uijLz6oqW+H33PvX5nS+xef pzUTnll2GCov3Eyob1ofI9d/Mv7RM43CXAt57MxbH1Ta5lvtRT85fL80by9G 36CYchMhxHC71TFGG4yOJS7yufU7hPYji/GjH7t/vaWX67NKVay79NxbBVwu Tzt8w30MXf9I/QtXO+DF1cWasar8PMfHluRBSdWNhPqGRRi6/uijj777/JHR cW7u44yMoOq1URzXuurDk9DVN+LZ+JPRv9LcA76FOdL7F/35wqoi6B8as8W3 Ogb95PHpmoXa/sdYfOMSxGKfWYVE/V/DEzc7E+d8fv0On2O+cYXoJ4t/7Eyz 7rvABduOGuZG92L8bvbpuljvZtZw+czF35HY1qd9j6t2V0F3/3DCfH0Rtq4/ +uij736/vrEL/rCuVFjnI0vVJ0nzsxSfvJ5Q3+n4k8Xv6h2CZ+naxGnqMU/0 e2wW4kc/fr46/2psPiHackRThhjtUZ2pqSEdaHbN3OEHpHHAbMaP/uT9XXnn hHWX5H6trVnnmInfjX7l+Zvw9LLD0hjV1Azx+9og9x5cVXfT0/Gjjz766Efq 0zzTe4vrYNb8IPcamZomr39Lfy4Ux/cnyHc6frf7QyNj0tph/Bos/O+mrLrJ Ft/p+NGPr8+1H30+beEofH0ZXcEIbqpDwhyv2+0C3x/wyet3MBg/+pP3aVfj 4veOc++709MyhXkkWVwuFjt8p+N3k9/VMwwrPjqhWF9FvtPn24JnYWhYOdbH W/Gjjz766MfqN7X2Q8bmMt1akfQ7OP/8bDhYehnGFGtVeS1+N/pj4xPc/Hz+ u9Cg9L724aFaJuJHP/6+n87b88n5V6P19cWI5jFRbdaWJ1Y7FYWIrl7+p1t8 fyCg6H+039fvQz8Z/b7BEXh+RaHwfa38vlt8+oYtvuGNoes/QQjklV+FRxcf Ul3/acJ36HPWlMCl650J8w1vDF1/9NFH3xs+7Rc5dPyKtM4x35aU18d9aXUx 1FxuS5jvdPxu8mku8FUfnVRdf3pf9n6F3H/l4fjRT4zv0+Vfjc5XnYGJb3Za kd6I9olug/M+dx19+jy2dvlOx49+/Pymtj6u/SJ/Z5vFrc9Mx1KyEL9T/vn6 dnh5XYk0dlh5/WfNy4a9hXUwTtdU9mj86KOPPvrx9tu6h2DpznJpXoacdyyT +45u1ccn4VaoTKJ8p+N3g7/54Bnd9U/fdASGR8ds8SdzQ9+9vrju/aR9q0KK 7zeijYUoHlke67BvlIfITt/p+NGPr3/haifMmp8N04SxJnTcz4z5Qai+1GZ8 gMfit9Nv6xqElR+e5MYL8/nn5XGq9PrP3XwMGlt7PRs/+uijj36i/SOnG+Hx N/OE+ZBBaXwH/Tl7fg43b5Lmck2U73T8TvkfHLqgmX+RCS+vLYXewRHzg+Lo Ox0/+onzaZuH5n6J1Tc9jDvGvNKw18Ly8Aiuh80+tw5KQLv+Izvxox9//+SF Vm6dwYcz5H4wmiet+lKrLb7T8Sfap59V9hRc5K7pdCGPgLLvMbDoEOSVXzGY Ou6N+NFHH3307fQHBkdha9ZZPg9ZhjwnUnz9petWHa9p9mz8dvu7Q+9vyrmn 9P2Nrjfd2Ttoix+mBvST3NePX43WJ0YbTTYR9cYw52dajJg8cdD3m4xfZSV+ 9BPjH61uEvrDxH7ILJg1Nxsqzt/UV+LB+BPlHz3TBM8sz1et4Sj+nBG63hsP nIGevqGE+WbllTu8fP3RRx99dv2Gpm5I21hm+PqbmpEJ8949yq0HkijfrLxy R7Jf//cN+h2fWnoYbnYM2OLrN7F1/VnwxbyhsfpEW9D0nMzOLpxptIXoHzns c+NXA2H6cRPoOx0/+onzCyuvCWsPZgrfJWZybZzCqmtMxB9P/9yVDng99Lkl VVqLQ17zmj6nOQPrG7sT5stF2Lz+6KOPPvrif0urGuHJZYel119ljmv6fO2e U9J6H4nwzfdbbXG3T3PAbdp/RsizqhhPs/gQXGvp8Xz86Nvn+3xC3tC4+cqK FI8N6lfXENkJqK+XUVlnfLn/kc340U+sX3DiOteG1K5dv7f4oi2+7pgku/43 bvbCsp0V0ueU1HT1Z5Vnlh+G0uomzVpK8fOdjh999NFH340+XZPww7wLMHOe PI9A2R9Jc5ftyDkP3f3Dnow/nv7I6Bgs21UpXMdMqd/xsSWH4GpTt+fjR99e XzdvL1rfNA4TN4pzlj/LaeZukkiuo70+tw6KWf4cG/xwN/ST36djLmfOzZba POK8yPV7T8HI2IRhHfH0lYcly/VvvTUI73xyWm57C++pYk4imqNod/4FGB7R 56HzQvzoo48++sng09fqtz84IeXUkcaFpPNrIfsW5sBHBRehb3DUk/FP1m/v GoRX1pdK81zEOx2zer21L+G+1Y2F68+iT/vMAgHfpHxt3VZHWNUtpenRHhqm Kjf4fnEeKaPxo2+Pf/riTZi9IEfRDuLvr20o4d4/vB5/pH5bVz9sPnCGyz8k fw+bpfhskgVrPq7iPrN4MX700Ucf/WT0zzV0wBsbjij6IINSO5K2Kek4zAPF l2BoeCwhvtPxx+Kfv9LB5bZV5spJFXLltHX0J9zXP2Hr+rPq0zaPT9lvFoOv p4j5tjDjw8xqlB4R6zNzyuf7cQPMxo++fX7d9VvwpPBeoWwXPb40D05dbE24 73T8VjU0t/fDxv3Vwlgoua0o5VdNy4QFW8vhclNXQnyn40cfffTR94J/rKYJ nl9RoB5vk5YljSN5Ykke7Au1I/uHRhPiK4+WHrns+k+Enhw4cplbH1r1Xhd6 TOf5d/cPeTp+9J31tesWTs4nBg+N6lJXRfTFzOu1vDnn8+ugKPpxGYsffXv9 1q4BmMOtda/sW+PbSNuzz8HIyLjhsV6JX3ujeQHWfHySyyukzucn5xCgY3v4 9nX8fV05j//9oY8++ugn2h8fJ3C44io3P13MqaNsT3L9kYty4cP8C9ClXJPC I/Fb+e3dg7Bw2zHd+z99vvbjKmEtTe/Gj77zvl+1fkdsvul+q1MS9kZ3ZYj6 uYt8MX8Oq/Gjb78/MjwGqz4+qVofUnwveWFVEdRev5VQ3+n46X9q6ttgyY5y XfzKftmX1hTza4oZnF2yx48++uij73V/ONQWyjpyGZ5Yckhe8yNNno/A59kJ wob91XCjtTfuvtPxa0sXVl2HxxbmquLnc8MFYX/ppYT7TsePvjt8v9+o/zFy P3xZoj9TontgWbfxPnf5/DqaAcd8p+NH3zk/eKRBNX5F6nMLvZdsyTwDfQOj CfWtj4h//DTHXMGJazBnbamqr1Eb/5w1JVBW3QjjE/H1jcqw/PeHPvroo2+H Pzg8CvtLLsFjS3KlPDFGr/9L3iuHU3VtXA4QL8Xf2NYr9Dlm6uJ/Yulh7vvU RPpOx4++u3y/0O6J3Sfa4hGcg1EJfY4f1RPhub7P0x2+3+/j7qzGj76zPl1r +YVVhaq1gsW59DR396b91boco8kW/5XmHthy8Cz4F+Zy75/8GKZMRbz841fX H4GKc81hh/onW/zoo48++ugDlzsns+wyPLEsT/f6r3z/o/ljDpRegq7eobj6 ZrUkKv7e/mHYFjwnrAOdpXv/e3NnOXT1DTHz+0ffHT7f7oktf47WNz4bYl6T yQ7tZqL6SQzLOO1rryNr8aPvvE/nO9C5j/Q9RnxfSRXeZ+h3lTQX6cb9p4V5 EfH31c/iE//NzgF4Z+9pLh8f36cqrn8ZlNrHqUKc87ceg9PC/EYWf//oo48+ +iz5o2MTUFh5DV5cXaTqh9S+/83IyIaloTbW8ZomGE2i97++gRFuzRL/ohzD 9z/fwlwuflZ//+g768vjV2P35XmYRLfP0FVVSEA9kVO7zwxXlHKBT/twfYb5 c9iIH333+HVXO7k5f8rvKZVz6/3zc+Fg2WVuHS03xt8/NAY7cs/Bk8vyuDku D2ty4ijvtE28ZvcpaGjqcc31Rx999NFH3z6f5iE9WdsC8989JrSvMk3f/x5d eAg2HjgDZy63wTid3ODC+Fs6+mFb8GzovTrH9P1v2fuV0NE96Irrjz6bPrd+ h88/Cd/kZnQuisfm9SjOQv8g8hOw2fcH/Cb9uPb4BtWgz7A/EXpfDB5r4NZc FnN6y+89/GPfvGyub6+mvj30/ivW6Uz8bV2DkFd+FZa+dzzUJszWvFdmqvIE 0M8Cz76VD58U1cEtZc69Sfi6far9yff7Rx999NFn0b/S3MvN13hkQY7uPU/5 mL6XBJbkwrpPTnH51foGR+Liaw/RbzCOf2hkDMpO34CF249LecSN3v9eXF0I VbWtYHlj+PePvn2+Nn9O7D4xKBVBXYqKiK4o0T0yv3LO+nTtDl/AJP8qA/Gj 706/qa0fXnunVNf+UuZCp+9PtK9v88EzcKK2BYaGR1V1TsY3PohAe/cQt77X loM18LuVhZq87PJ3xvx5ZnLb6Hsq/c6VvndOTEzOVz/07u8fffTRR59Fvz/0 PpZXfg1eXx/+/S9VeP7axlL44PB5bp2nAa49GbsfSfy3uoehpOo6rPzwBDwi 9DWavf89ueww5JZfhfEJo7Nw3/VH3/s+HXepHL8atW9Vjuh90wugO9bouSYK oinqoM9dR5+mHc5Q/Oi7229o6oZXQu3I2YrxMNoxMfzc/Ewulyudb7g9+zyU nmqEK6Fjh4eVa0lF7tM8B1dbeuDYmWb4uLAO3gq1/8ScB2Y+d35p8vZH5mXD kvcquDE9scbv9PVHH3300UffGf/6zV7YlVcLzyzLD/v+J77/0Od0XuW6PVVw sLQeqmpboLm9H8bG1fMnI42/t38E6q50wqHyK7BhXzW3xlYk73/Pv10AOUev cHnHY43f6euPvjd9Ou7SJ/Y/Tso33qERLctYlSKGuxUbHPb9Pp9hPy4r8aOf HP7g0CgEyxrgdyuLpNwz4ved/FyRTM37aqb0Pe2TS/K43KZv7ijn5hxuPljN 5YSjOXu2ZtbAxv3VsPqjk7Bo2zF4eV0pPLr4kPC+qF6PUfnebea/vLaYW9vy +NnmuMZvVYaF3z/66KOPPqs+mSDcfI0toferp5cdjur9T15jMYvrC3xtQwks 2VEBa/ec4sbLbg2ehe2hO/2e9oXVxdwci8fezIM564q5eSTRvP/R7XO3lHFj dOjcEq9cf/S95UvjVyfhW5xQmIP1OyJyCP2/RUkHfNX8RwbjRz/J/NC2cw3t sOlANTweauelKt8fNetpqdbWypDf81LTg7qyD2cE9W1FxTrP8nyOoCK3QRY8 Mj8bFm8v5+Zsyv2MCYzfZAczv3/00UcffYZ92i67fOMW7M6vDbUFj8CMDOP1 JO14/xPvz68ohD0FF6GprS/h8Tt9/dFPft9w/mOsPtFsMWmTGh1OTOqTfxKQ zpqYnJaDfkAYv8pq/Ognrz8+zn8nuyPnPPxhXYnJ+B79d7Pid6ap0vthFkxT vR9mSnnGxePEuv0Lc2Dh1mOwp7AOai63w8iYcnysvfHLD9FHH3300WfR7xkY hopzLbAt+xy8KrQnE/X+J5aZOS8I8949BvtKLsHV5m5H43f6+qOffL607v1k fINixOxZmCqjurnI1+ZfZS1+9L3j0zWnTte1widFF7l5/S+uKebmIIrfmYrr aslzNcT1JrVjf7Jg1vxseGFtESzfVQm7DtdC2elGuNHaB4YpAKK9efT6o48+ +uij76xP10mm/ZOHT1zjxqUu2l4Oz71dIM1TjOT9b7rUV5kFvkU58Pr6I7B+ 72lunM2Fq53C96Yx3jx+/dF3v8/1P/oCcfbDBqTZblQ/0W1SVmF9Gvb76n5c 9uJH39s+/Sqps3cYGhq7ofpSGxw92wzFJ2/A4YprcKjyKhSE3mOLT92AynMt cLa+Da639EJ3/7D8FVSSx48++uijjz76ExMEOnoHVe+FNIfq4YqrkF9+FTbu Pw2b9p+BnYfOw4HSy6FyXdDXL+dynaxvFY7pXg9df/Td43PrP+ryvkThh3YQ I97gUCPf+jqYHeU+PyC0H1mNH3300UcfffTRRx999NH3vk/Hrvp8ZuMuw/u6 LcSkJNE8j/GmrIYY7XHI58cB+5mNH3300UcfffTRRx999NH3vh8I+Lm+s3j7 ulKaePVtZt0G6Vz0YvhzsNvX5iFiLX700UcfffTRRx999NFH3/u+Yf7VKH1D JUzuHcv8s+oALDYTxS5nfR/tx1VeR8biRx999NFHH3300UcfffS97/uleXsx +gbFlJsIIYbbrY4x2mB0LHGRz63fIbQfWYwfffTRRx999NFHH3300fe+T9cs 1PY/xuIblyAW+8wqJOr/Gp642Zk45///7d3frxzVfQDwv3Z2ILaxHdUkJi8p BipBTRKe0gcMb81TARVFbSWKJaRUaYghTR6aAhIPDrZEBEQidpTY3+nd3zNz zpnde33tuzv7WbHszDnf8/18z9wHdJhf8/d3VGfm5xPy+Xw+n8/n8/l8/un5 3eevnsyP6MdFLyZyPZ1Ki8ZqYOmY7YZfr64DPsz58/l8Pp/P5/P5/PH7s/Vj VfWDj+GnMUngFp/OkA3jk+4d8Cd1tX5/xwHOn8/n8/l8Pp/P54/fn0zv26vW z189rp+GRW87Os39+BjqbAVFknf+uyv+pK5b5x+fvJ/28fl8Pp/P5/P5fP7p +lXy/NXj+Z0KCn6prG0/0d9JGs7enx3HKn2O7ZPyz3r+fD6fz+fz+Xw+f/z+ 8r33j+wPBS2vnY3jzyVaW4Njz9jPPYfoSfpnPX8+n8/n8/l8Pp8/fn+65pk+ ++WkfnHYbEw56cZjMTh8i+PxhP3Ze1Dq/vsfD2f+fD6fz+fz+Xw+f/x+ev3q cf3INRaaotu4ob5iWBR2ztCfFK5fPZT58/l8Pp/P5/P5/PH7y+eGntSPfmCx plJ1m8xcS6RbZ+zPrl+tN5zHfYz+Wc+fz+fz+Xw+n8/nj9+vqsVzQ0/Nbydq bWfydzNsV0D3eOViz8Zfn388zPnz+Xw+n8/n8/n88fvJfXvH9YvzKLjHqHn9 XszevZuxzXF8sv7sPSil5+c8AX/Th8/n8/l8Pp/P5/Mf1Z+eM6vr6pH8fu6h EUO5V4/p6Q/dkGoX/MnyPtIDnT+fz+fz+Xw+n88fvz9d81Tt82Yn8FMqym1J cdtlXG3FcGVn5c/P49YHO38+n8/n8/l8Pp8/fr//3sJH8yOzmcvVTRVpWDnv 4Ofs/Pl7UFrncQ9s/nw+n8/n8/l8Pn/8/qTz/o6T+cX+oZIWvcc7MtHd3yF/ +fycQ50/n8/n8/l8Pp/PH78/meTOP27vb46NtNJINgZz5/t2y5+/R7M+M/+s 58/n8/l8Pp/P5/PH708W656T+9EP36KGXET6jJ/OzmI/Pee5G/5kUs2+hzp/ Pp/P5/P5fD6fP35/vu452fNz+n6+mihnKnT0m6PzG9mYs/aXx3H5rWb79ax9 eW5y+a6UZUxdTVbr9/n9k+2x7VzzeyuXv/O2uhPD5/P5fD6fz+fz+U/Kf5T1 1/o+zEj6suuuZG0byZh1XwlvRe2AP/0brI779G9UVYu/R/+4T/vq1t+xmsXO tjt/z2rRN5k917X/9+zsVxM+n8/n8/l8Pp/Pf2L+yddfpUXVUEMM5GlVkTsX um0BfD6fz+fz+Xw+n8/fUT8yUVvkaiWKJDSSrXLlfD6fz+fz+Xw+n8/faX8o LlK/WEAyNrffm0X0Qvl8Pp/P5/P5fD6fvwd+vqMnDsYMRUW2u9XA5/P5fD6f z+fz+fyd9wcK2jA47djKiek/A5F8Pp/P5/P5fD6fz99tP3othTVpbngU8q1/ o1lVHYWy+Hw+n8/n8/l8Pp+/234mLEp7G1Ie68Pn8/l8Pp/P5/P5/D33Nybs tefyR9LUTjFcBp/P5/P5fD6fz+fzd84/6ogcnxma84frKI3i8/l8Pp/P5/P5 fP6++UlLFCKjt3/CTztN5Hr4fD6fz+fz+Xw+n79XfhLV89I1a9KwqiUVN9fA 5/P5fD6fz+fz+fzd87PKhmfvDD7/tTuBgeZodfH5fD6fz+fz+Xw+f6f9TFi7 KSKy7UNjcg25scHn8/l8Pp/P5/P5/L3z8xEx0FdKGN1/ZwsvVcLn8/l8Pp/P 5/P5/F32I/px0YuJXE+n0qKxGliqmc/n8/l8Pp/P5/P5++GnMUngFp/OkA3j k24+n8/n8/l8Pp/P5++8n4ZFbzs6zf34GOpsBUWSd/7L5/P5fD6fz+fz+fz9 8DsVFPxSWdt+or+TNPD5fD6fz+fz+Xw+f2/8oaDl9bFx/LlEa2twLJ/P5/P5 fD6fz+fzd9ovDpuNKSfdWMvg8C2OB5/P5/P5fD6fz+fzd8yPXGOhKbqNG+or hkVhh8/n8/l8Pp/P5/P5O+tHP7BYU6m6TWauJdItPp/P5/P5fD6fz+fvmd9O 1NrO5O9m2K6Abr25WD6fz+fz+Xw+n8/n76RfzFNwi1amN9b9nYjYZh58Pp/P 5/P5fD6fz981v597aMRQ7tVjevpDN6Ti8/l8Pp/P5/P5fP5++OnwKLclxW2X cbUVw5Xx+Xw+n8/n8/l8Pn8f/Mhs5nJ1U0UaVs47+OHz+Xw+n8/n8/l8/i77 xf4trONVFt19Pp/P5/P5fD6fz+fvjb85NtJKI9kYzJ3v4/P5fD6fz+fz+Xz+ fvnRD9+ihnwFUeyM1X56zpPP5/P5fD6fz+fz+fvm56uJcqZCR785Or+RjeHz +Xw+fwz+7du3m0sXLzWXLl1qLl6a/l5sLl682Pz85+9u9B8e/Uf+1R+9ehS/ GDfNcbT9Tz/96dZ+bv+Qjj+fz+fzH7+/vg8zkr6s20kYTfdGzn5fCW9F8fl8 Pp8/Gj+a669ebybVpJnUdTOZTGbfp7/zneb2H24P+u+++69H46qmno2pmuro 96mjHL//39/v0fz5fD6fP26/lHSoIQbytKpIN7YvgM/n8/n8PfW/+uqr2fnH 6VpwuX6crif/4aUXm4cPH2bZzz77rHnq6acXY+brzun68Z133j62f9bz5/P5 fP4h+JGJ2iJXK1EkoZFslSvn8/l8Pn88/q8+/LCpF+cQl2vB6e+//9t/JDnv /+UvzXM/eG5+3rE+ij361kdryFdefrmJznpzf+bP5/P5/JH6Q3GR+sUCkrG5 /d4sohfK5/P5fP6I/Bs3Xm8mVT27FnWyuCb13Llzzd07dzuhN268sT5POTtX WTWXL1+encfc5/nz+Xw+f8x+vqMnDsYMRUW2u9XA5/P5fP7I/Pv37zdXr16d XbtatdaHr7zy8or971/+ctZWV93zlB99/PEj+6ueAz3+fD6fz388/kBBGwan HVs5Mf1nIJLP5/P5/JH4n3z6SVPXT63ugazqanZt6gcffNB8/fXXzaXLlxbr ynrxzJ1J87N//tmp+f2gQzv+fD6fz3+MfvRaCmvS3PAo5Fv/RrOqOgpl8fl8 Pp8/Qv+tt9+an1esFs/FOVojTp+vc+3a87O1ZPv85LVr15q//fWvp+qf9fz5 fD6fPzI/ExalvQ0pj/Xh8/l8Pv8A/AcPHjYvvvjC/DrVxXnIyXI9Wa+va71w 4UJz5+7dU/eTz4Edfz6fz+c/bn9jwl57Ln8kTe0Uw2Xw+Xw+nz8u/86du835 8+dn5x4nvWeyLteVv/ivXzw2f1O6Yi+fz+fz+b2OyPGZoTl/uI7SKD6fz+fz D8+/efNm51msVbU4H3n0ff2NNx673+8/tOPP5/P5/Ef3k5YoREZv/4SfdprI 9fD5fD6fP2L/ypVnZ+cd63q5dpyvJz///PMn4p/1/Pl8Pp8/Tj+J6nnpmjVp WNWSiptr4PP5fD5/bP5HH3+0Ot/Y/7700kvNw4cPRz1/Pp/P54/Dzyobnr0z +PzX7gQGmqPVxefz+Xz+eP1v/vSn5ruXv7u6dnV9D2S1ug/ynXfeHu38+Xw+ nz8SPxPWboqIbPvQmFxDbmzw+Xw+n38g/muvvdZ9bk61fG5OvVpTTt8T+emn nz0WP2k7sOPP5/P5/NP18xEx0FdKGN1/ZwsvVcLn8/l8/vj892/enF23WlXr 847PXLjQ/GS6pqzX5yOna8kfPPdcc//+vVP11yGHefz5fD6ff7p+RD8uejGR 6+lUWjRWA0s18/l8Pp8/Xv/OF180586dm60T5/c+1rNzjzdvvt/cu3ev+f73 vre+prWuZnFvvvnmaObP5/P5/LH5aUwSuMWnM2TD+KSbz+fz+fwR+g8ePmhe eOGFznWr0/sdr1+/Pv/P+tH3d7/77aJvvq5cXtd669atR/YHY5cNIz7+fD6f zz99Pw2L3nZ0mvvxMdTZCook7/yXz+fz+fyx+m/9y1uz9eL6OatVc+GZZ5o/ fvllZ8j0fOPs3OPq2TpVc/ny5eabb77Z6/nz+Xw+f3x+p4KCXypr20/0d5IG Pp/P5/PH5X/yf580dV2v1o717Nxi3bz//vuJf+/Pf26effZK950eR2N/9OOf PFIVh3z8+Xw+n/+Y/aGg5fWxcfy5RGtrcCyfz+fz+SPx792/13z/6tXFvY5V U9XzNeH8utVepsXub37zP6v3eMyfpTOZjX3vvff2bv58Pp/PH69fHLa8MeME XBOt79DooePB5/P5fP6e+jdev9FdBx59L1w433z5xy8H/dm4quq8H/L8uXPN F1/84Vj+Wc+fz+fz+WP2I9dYaIpu44b6imFR2OHz+Xw+f8/9X3344eyex3r5 nsfFM1f/c3rd6gb/22+/bf7uypWmrtdjp7/PX3u+efC3B3sxfz6fz+eP249+ YLGmUnWbzFxLpFt8Pp/P54/A/+Hf/3DxTsf1ex2vX//Hpv//dUv+rVsfLdae 9erc5fT761u/3ov58/l8Pv/Q/Hai1nYmfzfDdgV0683F8vl8Pp/P5/P5fD5/ J/1inoJbtDK9se7vRMQ28+Dz+Xw+n8/n8/l8/q75/dxDI4Zyrx7T0x+6IRWf z+fz+Xw+n8/n8/fDT4dHuS0pbruMq60YrozP5/P5fD6fz+fz+fvgR2Yzl6ub KtKwct7BD5/P5/P5fD6fz+fzd9kv9m9hHa+y6O7z+Xw+n8/n8/l8Pn9v/M2x kVYaycZg7nwfn8/n8/l8Pp/P5/P3y49++BY15CuIYmes9tNznnw+n8/n8/l8 Pp/P3zc/X02UMxU6+s3R+Y1sDJ/P5/P5fD6fz+fzd99f34cZSV/W7SSMpnsj Z7+vhLei+Hw+n8/n8/l8Pp+/B34p6VBDDORpVZFubF8An8/n8/l8Pp/P5/N3 1I9M1Ba5WokiCY1kq1w5n8/n8/l8Pp/P5/N32h+Ki9QvFpCMze33ZhG9UD6f z+fz+Xw+n8/n74Gf7+iJgzFDUZHtbjXw+Xw+n8/n8/l8Pn/n/YGCNgxOO7Zy YvrPQCSfz+fz+Xw+n8/n83fbj15LYU2aGx6FfOvfaFZVR6EsPp/P5/P5fD6f z+fvtp8Ji9LehpTH+vD5fD6fz+fz+Xw+f8/9jQl77bn8kTS1UwyXwefz+Xw+ n8/n8/n8XfP/H94lJYg= "], {{0, 303.}, {456., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{144., 144.}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{234.88437499999964`, Automatic}, ImageSizeRaw->{456., 303.}, PlotRange->{{0, 456.}, {0, 303.}}]], "Input",ExpressionUUID-> "6b625d78-0593-481c-bbc2-2d6fc8648eab"], "\[LineSeparator]" }], "Subsubitem", CellChangeTimes->{{3.854017465665847*^9, 3.85401756923477*^9}, { 3.854017606911104*^9, 3.8540177278044863`*^9}},ExpressionUUID->"e723510c-7110-43b1-94d7-\ 639ccf665cd2"], Cell[TextData[{ "If however, ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["U", "TI"], "_"], RowBox[{"[", OverscriptBox[ StyleBox["V", "TI"], "_"], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\overline{U}[\\overline{V}]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "d0f09ff8-c8f4-4ac7-bbdf-0959512906cf"], " is convex, there are no two other molar volumes for which the energy is \ lower \[LineSeparator]\[LineSeparator]", Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3VeX20Ya8Pn37O7FXu5X2G+xt3u5t++evbMt2zMgnGec43jkluQojT3O lm0552x3t7Jk5WQrWjlLVpasrM5V24VEhCoAZJMASP5xhiZYKNSvHnRrDqsr /Z+3/+N/1v6X//E//seD//vkf/7nbY/+3w88cNvj/+//Mfnh/7vvwTvt+6y/ /z/3PWTZ1gP/1+3/62TiLZN5X5k8+d8mz6XhEJqEcJoQ8byJBO9dJMvSpODj 4+Pj4+Pj4+Pj4+NX39cq8QyJ4tKui9i7KVmELuHj4+Pj4+Pj4+Pj4+NX2tdk CycJIbTpaffoEnT3Cnx8fHx8fHx8fHx8fPyO8/U5RMo1U4Ei+l9txU01wcfH x8fHx8fHx8fHx6+yL0Q8n4jlEborkZoajeBGU53x8fHx8fHx8fHx8fHxO8NP 5klkzHFEbsm4P3EZHx8fHx8fHx8fHx8fv/J+MpuInYtIcjy/SLsYyiQS5brv +Pj4+Pj4+Pj4+Pj4+J3hR2pg8E3VynuI+IdEAj4+Pj4+Pj4+Pj4+Pn7H+GmZ /PGxovFYROgs9V58fHx8fHx8fHx8fHz8SvvG25x7zIVm1iX19hzPAx8fHx8f Hx8fHx8fH79ivtAlGpJENDGjfsZswvABHx8fHx8fHx8fHx8fv7K+iGc01slU uyxTlyKSZ/j4+Pj4+Pj4+Pj4+Pgd5ocLCp1ryo+WkK8C0frq8uLj4+Pj4+Pj 4+Pj4+NX0jeWY3CNluaqqF+P5BB54sDHx8fHx8fHx8fHx8evmh8vO+2OtLKD ZXrit2YUhY+Pj4+Pj4+Pj4+Pj98ZfvJ2YU5LVC5ficGZSK8ZPj4+Pj4+Pj4+ Pj4+fif4QnOqKytalEhmM5ebelTHr1k1Waupl+W+e5+tmvtuq/MgzXav2/49 4ZddL8N276tZtps3lt/284U8fHx8fHx8fHx8fHz8dvuNtL+M13O0tRprmSXb wlX1wz8r92cQfs71n6v/M1Q/Cyvyc6///O2gLMu71/1sx/NaXj67ho+Pj4+P j4+Pj4+PX5ift/2l/xS9kmipGdqmeUqrX6u27z/TXo0fHx8fHx8fHx8fH7/7 fb99mt+PWZl1M9UyucZP5IP3OdnnWU2/Zlte+7Ecv+z48fHx8fHx8fHx8fG7 3/f7L5vx9bUR5pIMF+LJIvIutHmq5ltO/7Bdml92/Pj4+Pj4+Pj4+Pj43e/7 4y4b8evr0IjENa0bKVDI6EI28WsmPJSrgn7NsoJ+3F6MHx8fHx8fHx8fHx+/ +31/LmV+31RoWoJIKSf0FJIn+StQsq/aj27/Yzl+2fHj4+Pj4+Pj4+Pj43e/ 76/X07gvNLk0t6bURySyisSZuebV8p31jLx1iHoxfnx8fHx8fHx8fHz87vet 0Po5ufy0fCLpGyuQuFf3ORaFiGWtkO+uZ2uV5rufe/f54+Pj4+Pj4+Pj4+O3 36/vO9Gor78QE1PzpOUS2suhhIr5VjCPtBw/ngMfHx8fHx8fHx8fH7/Vvm3V IvtO5PFTKpRxc/JCLkeo/6XkrIDv7+FZlp+vUHx8fHx8fHx8fHx8/OZ9NfdR 7eHRlC9iKYY2se52YSiv/i5kUGthqFaFfGcfzdD41aJ993PvPn98fHx8fHx8 fHx8/Pb7lmH8aqqvySZMnzKKbOiosB95jj0YPz4+Pj4+Pj4+Pj5+9/u12Ly9 5vzMgGLpuvJFIilcRHo1yvftWnQccK/Fj4+Pj4+Pj4+Pj4/f/b7b7tGMuzRW WES6KXXZ0vz052C6q/p+TbOObS/Fj4+Pj4+Pj4+Pj4/f/b5l29F+sww/kSIM OUXsc5NHuBihu1IR3+nHdfZ/7M348fHx8fHx8fHx8fG7369Z8f7H5vxErpiX bDMnEoJnkRSz61C2b2nGr/ZS/Pj4+Pj4+Pj4+Pj43e+78x/thnytkrH2Tur6 s9EAUpJF6FK1fMuygvGrZfhlx4+Pj4+Pj4+Pj4+P3/1+MO4yr6/JFk4SQmjT 0+7RJejuFRX2/efYq/Hj4+Pj4+Pj4+Pj43e/r8auWqF+s7y+PodIuWYqUET/ q624qSbV8WuJdYh6K358fHx8fHx8fHx8/O733XVD7YZ8IeL5RCyP0F2J1NRo BDea6lxNX/U9qnHAvRo/Pj4+Pj4+Pj4+Pn73+6rPrGaH+s0y/WSeRMYcR+SW jPsTlyvou+sQmec/ttsvO358fHx8fHx8fHx8/O73rZrttH3y+slsInYuIsnx /CLtYiiTSJTrvlfVd9rhzvjV3owfHx8fHx8fHx8fH7/7fdX3WO83y/YjNTD4 pmrlPUT8QyKhen4ttH9HL8aPj4+Pj4+Pj4+Pj9/9fi2+b2FePy2TPz5WNB6L CJ2l3lsxP/IcezB+fHx8fHx8fHx8fPzu99XYVSs+by/FN5bp3GMWM+uSenuO 51GyX7Os2PqrjftjoxPyrys35LHTVybfhxvyy44fHx8fHx8fHx8fH7/a/slz 1+SJs1fllavDcmI8tXCjH/Sb5faFLtGQJKKJGfUzZhOGDxXy1TxSW+3/2KT/ w/J98pZn+uW0ZwYm3wfkDyv2NeTrk3rn+ePj4+Pj4+Pj4+Pjp/vPfbTeaW9M 6+t32hw7D51v2Ldi41ezfBHPaHwm8VLMGZNX4ikieVYxX/Xj2ob1V/P4CzYc ljf3uW1H1Y78ZMGuhvy0oxeePz4+Pj4+Pj4+Pj5+uv/k26u89saA0/Y4evpy w36efSfS4w8HEjrXxBctId8DiNZXl7cafn391eb8NdtOOD9Hv//x7e+3NuSX HT8+Pj4+Pj4+Pj4+frX9f/xnaTDmUb3+ujTUsG/X/PVXc/rGOAyuNtVwVdSv R3KIPM+xXN8dB2w37W/df8b5WbptyH754mcbGvJNUl7fSe3g54+Pj4+Pj4+P j4+Pn+7/bdYCOa3PbTuq/sfhkbGG/Zpdc+buNeLHy067w1yKrC/TE781o6gq +rWaldmPm+YfPH4x6Huc9sygnP7umob8suPHx8fHx8fHx8fHx6+uPzw6PtnW GJxsN/bLm57pl3+fNb8pvz5vL7+fLEuY0xIPJ1+JwZlIr1lVfNV29Nvhzfhn Llz35j+6fZAPvrq8o+LHx8fHx8fHx8fHx6+uf/7SkDPO0Z8zd//LS5vy3fVz ovtO5I9faE51sUSLEsls5nJTj+r49XmkzflDw2NB36P6uf792fky+6hO/Pj4 +Pj4+Pj4+Pj41fUPqfGO3rqr6vWvuaub8uv7d+T3jdczrMZqFs1teuZV8d3+ x7Txq9n+32ctiOzhMTQ8mtvPKrvbnz8+Pj4+Pj4+Pj4+vrnEzXtPB21H1d6Y 8/nGpnyn/9Gu5faz6yqST0okTlLL1l+rth+0w6fgP/jqr2770dvH49T567n9 8JVefP74+Pj4+Pj4+Pj4+GZ/2W/HvPGr7njH937e1pSv2jzRfQuz/FjNM5+N JmvE0V0Uwedkn2c1/ZqdvX5Olj9j3tpg/dVbpg/I3UcudEz8+Pj4+Pj4+Pj4 +PjV9X9YsddZO0e1H1Wb49ule5ryTfP2snzz0xDmkgwX4ski8i60earmW876 q/aU/Ne+2ez0Jd+k2pCTP9t1O07m9suOHx8fHx8fHx8fHx+/uv4H/TuCcY5q zOOSjUeb8v1xl4349XmYInFN60YKFDIykTMOGPFQrgr6NcsK+nGb9T9ZsFNO mz7grcM6IOevOZjbLzt+fHx8fHx8fHx8fPzq+mq+oxrj6K61Mih/2326Kb/m z3/M7ZsKTUsQKeWEnkLyJH8FSvZV+7EW2UezcX9g9cHg7wHq5/rpwl0dEz8+ Pj4+Pj4+Pj4+fnX9p+aurs+Vm3w/9Oelpny3/9FuIn6hyZUjllBBIpFVJM7M Na+Wr9rglrcOUbP+uu1/On2PauyqGpusxrN2Svz4+Pj4+Pj4+Pj4+NX17569 2Gk3qvaGamtcuDLclG+F1s/J5aflE0nfWIHEvbrPsShELGuFfKcdbtX30WzG 33P4QvA3AbUPZN/7q6OZKxw/Pj4+Pj4+Pj4+Pn41/dGxCbed0eeuvXrbzPly YiKWMadf33civx/Pm2BTboteM+cS2suhhIr5VjCPtHn/7F/XI/t3/PM/y3L7 8Ry99vzx8fHx8fHx8fHx8fXHqQvXvDVW3HGO97+8rGnftmqRfSfy+MZKmz6n XMjlCPW/lJwV8NX41Xo7vDl/bGIiaDuqn++tfYNyQoiOiB8fHx8fHx8fHx8f v5r+7kMXnPVV3LVzBuTMeWub9tXcR7WHRyN+tNzw54ynIeKnyfLq70IGtRaG alXId/bRDI1fbda/b87SYA0d9beBcxeHOiJ+fHx8fHx8fHx8fPxq+qu2/BlZ p/ON77c07VuG8atpfrKgeFLiQbXmqLAfeY5T8J95b7W7ho7z94FBuffI+Vx+ 2fHj4+Pj4+Pj4+Pj41fT/2nlPm/+o9v/+PWSPU37tdi8vTy+ueD0pHq6rnyR SAoXkV6N8n27Fh0H3Kyv1ly9yfu7gPrZrtl2IpefJymPHz7rpOePj4+Pj4+P j4+Pj6/POu+XbcEcOdUHuXjT0aZ9t92jGXdprLCIdFPqsqX56c/BdFf1/Zpm Hdtm/C8W7673Lff1y59X7M/l6yLopeePj4+Pj4+Pj4+Pj69Pe+GTDU77wt/r Ycves037lm1H+80y/ESKMOQUsc9NHuFihO5KRXynH9fZ/3Fq/uINR5x+ZX9+ 6/u/7Mjl69Mb9+NHpzx/fHx8fHx8fHx8fHy9/8hrv3p9VOo1KP88c6Vpv2bF +x+biz+RK+Yl28yJhOBZJMXsOpTtW5rxq834W/aeDv1sB5y/FXRC/Pj4+Pj4 +Pj4+Pj41fPF5Ina71GNbfT7H4eHx5r23fmPdkPxa5WMtXdS15+NPsCUZBG6 VC3fsqxg/OpU/D/PXPV+ru7r4dd/7Yj48fHx8fHx8fHx8fGr51+8PByMXVWv u15aNCU/GHeZN35NtnCSEEKbnnaPLkF3r6iw7z/HqfpDI2PB/Ef1Un8r8Mus cvz4+Pj4+Pj4+Pj4+NXz9x65EKzNqebJTX93zZR8NXbVCvWb5Y1fn0OkXDMV KKL/1VbcVJPq+LXEOkTN+/fOXuysjXRz36Dzsz538Uamn/zcW88fHx8fHx8f Hx8fHz95efXWP711V93xjW98+/uUfHfdUDu37xYXzydieYTuSuRJGY3gRlOd q+mrvkc1DrgV/jPvrXXGJbtrsA7IPYfPR65XMX58fHx8fHx8fHx8/Or5P67Y G+p/7JffLN09JV/1mdXsUL9ZZvzJPImMOY7ILRn3Jy5X0HfXITLPf2zEf+v7 LZE1dH7dfLzy8ePj4+Pj4+Pj4+PjV8+f+8O2yfbjYNC2WLb56JR8q2Y7bZ+8 fjKbiJ2LSHI8v0i7GMokEuW671X1nXa4M3516v53y/bJm/r6g78TfLd8T6Zf P+/N54+Pj4+Pj4+Pj4+PnyRmzFtT3/tx+oD849C5Kfmq77Heb5btR56AIX7T Y8l7iPiHREL1/Fpo/46p+iu2HK+vwTpdjVHekukna9j80YnPHx8fHx8fHx8f Hx8/edz7nyVB20K9n9WsrdKIX4vvW5jh58rkj48VjT9LETpLvbdifuQ5TtHf e+Qv528E/jzXp99dlelHr/Xe88fHx8fHx8fHx8fHj2YbHh132o1+u+K2mYNy IjbPsVFfjV214vP2UuI3luncYxYz65J6e46fR8l+zbJi668271+8OlKf4zr5 sl9YmOmXHT8+Pj4+Pj4+Pj4+frX846eveO0Kd23Oh1/7dcp+0G+WO36hSzQk iWhiRv2M2YThQ4V8NY/UVvs/tsi3nl0w+TOuz3O9cmM01dcn9c7zx8fHx8fH x8fHx8eP+ht3ngraE6odOfuzjVP2rdj41az4RTyj8ZnESzFnTF6Jp4jkWcV8 1Y9rG9ZfbcZ/8u1Vzh4ezhzIyfcDxy+m+mlHLzx/fHx8fHx8fHx8fPyoP7D2 gLf2qrt+zicLdk7Zz7PvRHr84UBC55r4oiXkewDR+uryVsOvr7/aGv+1r38P +prVHpBrtp1I9cuOHx8fHx8fHx8fHx+/Wv57P2932o3u/Md+uXDDkSn7ds1f fzVn/MY4DK421XBV1K9Hcog8z7Fc3x0HbLfM/3Lpbqfd6Pc3f//rvlTfJDXr d9rzx8fHx8fHx8fHx8ePHrM+XOu0Hf1xjdv2n52yX7Nrzty9PL6fGi877Q5z KbK+TE/81oyiqujXalZmP24j/orfjzs/Z7+v+e3vtyTuj37o7eePj4+Pj4+P j4+Pjx89/jFnqbOmys19bpvi9PkbU/br8/byx58sS5jTEpXLV2JwJtJrVhVf tR39dngr/L1HLrh/K5ju9jX/e+7qVN+Y1iPPHx8fHx8fHx8fHx+/7g+NjDnj Gf0xjbfPnC8nJiam7Lvr50T3ncgfv9Cc6mKJFiWS2czlph7V8evzSFvjX746 7LYfvZ937fmF6fXs8eePj4+Pj4+Pj4+Pj1//dOTkZW/dVbfv8dHXV7TEr+/f ke4755piheHclLOxJyOinyvsu/2PaeNXG/drzy8I9oFUr8tXhox+dtnd/fzx 8fHx8fHx8fHx8evH2u0nvHVz3L07Xvnqt5b4Tv+jXcv041fNeUXySYnESWrZ +mvV9oN2eAv96e+uCdZfVe+7Dl/IUePefP74+Pj4+Pj4+Pj4+PXMav3Nelti UH61eE9LfNXmie5bmBV/zMp8NqZaJtf4iXzwPif7PKvp1+zs9XMa9d/+Yau8 ZfpAsI/Hst+OGv2y48fHx8fHx8fHx8fHr47/xrebg3GM6rVy87GW+KZ5e7oj Hn/0k0icZRRgTBaRd6HNUzXfctZftVvq/7hyv5zWV/+bwWcLdxnvKjt+fHx8 fHx8fHx8fPzq+E++vSo0F25Q7j92sSW+P+6ykfjr80BF4prWjRQoZHQiafya CQ/lqqBfs6ygH7dV/qadpyJ/M3jp041Gv+z48fHx8fHx8fHx8fGr4//t2QXB PDi1hs6VGyMt8Wv+/Mfc8ZsKTUsQKeWEnkLyJH8FSvZV+7EW2Udz6v6fZ686 fzPw10x64L/LzBXo8eePj4+Pj4+Pj4+Pj+8e5y5eC9bNUWvo3DV7cct8t//R biJ+ocmVHUu4IJHIKhJn5ppXy1dtcMtbh6hV/tj4hLxlxqDX7zzo/P1gZHQi krcq8ePj4+Pj4+Pj4+PjV8Pfvv9MZC/AmfPWtMy3Quvn5Io/LZ9I+sYKJO7V fY5FIWJZK+Q77XCrvo9mq/xHXv816H9Ur6OnLlcyfnx8fHx8fHx8fHz8avjz 1x8K2g+qL+r9n7e3zK/vO2H2tYduM8ikmJonLZfQXg4lVMy3gnmkrfX/8+Vv wbxX1Y5cu/2k1o+X2GvPHx8fHx8fHx8fHx/fPeb17wjajuo1ONmebJVvW7XI vhN54jdW2vQ55UIuR6j/peSsgK/Gr9bb4a3zv16yxxu3rOa9Dspvl+1JZqpA /Pj4+Pj4+Pj4+Pj41fBnfrDGaTuotXPUONYd+862zFdzH9UeHqn1MV0QsRRD m1h3uzCUV38XMqi1MFSrQr6zj2Zo/Gqr/FXb/gz6H9XP/pUvf9P67ufeff74 +Pj4+Pj4+Pj4+O5x54uLgr5H1YY4d3GoZb5lGL+qPUTsXXMp8SmjyIaOCvuR 59hC/8jJS8HYVfV66LVfKxk/Pj4+Pj4+Pj4+Pn75/sUrI0Hfk3q3nlsgU/sy G/RrsXl7iQy5qMyAYum68kUiKVxEejXK9+1adBxwq/yR0XF5a5/781d/P7i1 b1COjE3I6FF+/Pj4+Pj4+Pj4+Pj45fs7D533xi+6a3BOn7umpb7b7tGMuzRW WES6KXXZ0vz052C6q/p+TbOObav8h18Lr8HaLw+fuJRRw9b68etVfP74+Pj4 +Pj4+Pj4+FIu2nA4WHtVveb+uK2lvmXb0X4zmR5/IkUYcorY5yaPcDFCd6Ui vtOP6+z/2HpfzXkM1t/tG5Brtv2Z8PX1ao3vn1T5+ePj4+Pj4+Pj4+PjSznv l+3u3Mc+d/7b4OqDLfVrVrz/sbn4E7liXrLNnEgInkVSzK5D2b6lGb/aKv+b 5XuCNXTU68slyTVYy44fHx8fHx8fHx8fH798/5l5a72xi4NO22Hb/jMt9d35 j3ZD8WuVjLV30udsiti7KVmELlXLtywrGL/aan/d9pORMcxzPttYufjx8fHx 8fHx8fHx8cv37ecXOm2Gm9T6m30D8sLl4Zb6wbjLvPFrsoWThBDa9LR7dAm6 e0WFff85tsM/fuZKZAzzA/9dbszbq88fHx8fHx8fHx8fv9f9c5eGgnU3Vbvh jhcXtdxXY1etUL9Z3vj1OUTKNVOBIvpfbcVNNamOX0usQ9Q6f2xsQt42czDY x+PmvkE5NDKmKbB3nz8+Pj4+Pj4+Pj5+r/tb952ZbC8MBmMXZ7y/ruW+u26o rfVN1RUink/E8gjdlUhNjUZwo6nO1fRV36MaB9wu/7E3Vjq/Azf39Tt90YeO X4z40SJ77/nj4+Pj4+Pj4+Pj97rfv/aAt/ejO+9tXv+Olvuqz6xmh/rNMuNP 5klkzHFEbsm4P3G5gr67DpF5/uNU/Ve/+d37O4LbD7ly87FoVXr8+ePj4+Pj 4+Pj4+P3uv/OD1udPid//ZzFm4603LdqttP2yRt/MpuInYtIcjy/SLsYyiQS 5brvVfWddrgzfrU9/vcr9wV7QKp25GcLd8fq5p/35vPHx8fHx8fHx8fH73X/ ybdXOXPd/PmPew5faLmv+h7r/WbZ8UeegME3VSvvIeIfEgnV82uh/Tva4f+2 +7QzF9bvi37uo3WVih8fHx8fHx8fHx8fvzx/YmJC/m3W/Mi6m9dvjLTcr8X3 LTRXKwWJXxNBnkafpQidpd5bMT/yHNvgn7lwPeh7VK+7Q2spJQvpveePj4+P j4+Pj4+P38v+8TNXg3aj6nO6/+VlbfHV2FUrPm8vJX5jmc49ZjGzLqm35/h5 lOzXLCu2/mprfXXJfnaB9/vgvi5cCe3l0uPPHx8fHx8fHx8fH7+X/XXbTwT7 xat9H2d/vrEtftBvljt+oUs0JIloYkb9jNmE4UOFfDWP1Fb7P7bRnzFv7eTv Qv13Ytu+c4aS2uMnPlTo+ePj4+Pj4+Pj4+P3sv/F4j1Ov6O/f8dXS/e2xbdi 41ez4hfxjMY6mWpnup6WIpJnFfNVP65tWH+1Vf4H/Tsi45l/WX2gMvHj4+Pj 4+Pj4+Pj45fnv/jpBq+d4PY3bfjjZFv8PPtOpMcfDiR0rokvWkK+H0C0vrq8 1fDr66+2z1++6WgwflW9v/HNZlmV+PHx8fHx8fHx8fHxy/PveWlxsO6qGqt4 6vy1tvh2zV9/NWf8xjgMrjbVcFXUr0dyiDzPsVzfHQdst9Xf/+dFd/2cvn5n Xd5HXl+hLaddfv3W6j1/fHx8fHx8fHx8/F71L1weCvoe1Z5/1nMLvCVtWu/X 7Jozdy9Rll5IXhOJk8wjqKWIvmfg+ssV8Ws1K7Mfd6r+8Mi4vHWy3Rj8bvQN yJHJtFyVboGvvVyR54+Pj4+Pj4+Pj4/fq/7WvaeDcYqqv0mtm9Iuvz5vL3/8 ybKEOS1RuXwlBmcivWZV8VXb0W+Ht9NXfY7+74V6P3D8oqxC/Pj4+Pj4+Pj4 +Pj45fg/rtzv9T0OyFum98uPB3e2zXfXz4nuO5E/fqE51T3LaFEimc1cbupR Hb8+j7S9/hvfbg79baFfLtl4JHZLbz5/fHx8fHx8fHx8/F71X/3q96B/Sa3B unzzsbb59f079Pfq4jdez7Aaq1k0tynmqvhu/2Pa+NXW+AOrDwT9j6od+d4v 2xN1aaevz4ePj4+Pj4+Pj4+PX5b/4KvLvXVz3D7IIycutc13+h/tWo6yRcqn 6JVETUXiJLVs/bVq+0E7vM3+HwfPBW1H1Y7819zVify9+Pzx8fHx8fHx8fHx e9G/NjQy2TYYDPbtmDZzUI6NTbTNV22e6L6FWfHHrMxnY6plco2fyAfvc7LP s5p+zc5eP6cV/pUbw17b0V1b6faZ8+XY+ESyXm3yq/r88fHx8fHx8fHx8XvR 33P4vLtHg9fH9OTbq9rqm+bt6Y64r6+NMJdkuBBPFpF3oc1TNd9y1l+1C/Ef +O9yp+3o/44cOXm59Pjx8fHx8fHx8fHx8Yv3F6w75O0PP+i0Eeb+tLWtvj/u spH46/MwReKa1o0UKGR0Imf8mgkP5aqgX7OsoB+33b6aH3tz32CwxtKvan5s jz9/fHx8fHx8fHx8/F703/lxa7C2pmobLNhwuK1+zZ//mDt+U6FpCSKlnNBT SJ7kr0DJvmo/1iL7aLbP/2nlfmfvR7//8cOBnaXHj4+Pj4+Pj4+Pj49fvP/4 WyuD/eHV++4jF9rqu/2PdhPxC00uza0p9RGJrCJxZq55tXzVBre8dYja7e/Y d9b5+4LbTz0g+95bHc3bg88fHx8fHx8fHx8fv9f8obFxeduM+XLadLfvcVrf oBwaHmurb4XWz8kVf1o+kfSNFUjcq/sci0LEslbId9rhVn0fzXb6F6+OBG1H 9Xvyt1nz5fiE6Onnj4+Pj4+Pj4+Pj99r/v6jF4Ixier1yOsr2u7X952QDcav vxATU/Ok5RLay6GEivlWMI+0GP8fc5Z47Uf3bw3HzlyN5Oi154+Pj4+Pj4+P j4/fa/6i9Ye9fR/d9uNb329pu29btci+E3niT6lQxs3JC7kcof6XkrMCvhq/ Wm+Ht9//z5ebvH08Bp33X7ccz1Fo9z5/fHx8fHx8fHx8/F7z5/64ze17nO6O S5y//lDbfTX3Ue3hka9QkfgYSTG0yXW3C0N59Xchg1oLQ7Uq5Dv7aIbGr7bb V2voqN+Vm7x1dD7o39HTzx8fHx8fHx8fHx+/1/zH31zh7dvh9j/uOXyh7b5l GL+qPUTsXV81XUVbc1TYjzzHAvztB88Gayyp35cn31mlydg+33QJHx8fHx8f Hx8fH7/9/tDIeDBu9ea+fnmrWjtnZKztfi02by+RIZef+UBj6bryRSIpXER6 Ncr37Vp0HHC7/WtDo+4aS95avbfNGJQjo+OF+ZpCM5Pw8fHx8fHx8fHx8Vvj 7z1yIVg3R7UJHldr5xTgu+0ezbhLY4VFpJtSly3NT38Opruq79c069i221fr K93UV++v3nfkQqG+OQc+Pj4+Pj4+Pj4+fjv9wXWHvP4kdz2UuT9uLcS3bDva b2awkiWJ0Jsmp4h9bvIIFyN0VyriO/24zv6Pxfnv/LA1slfo4LqDhfr1t/Kf Pz4+Pj4+Pj4+Pn4v+W98u9nZ00+NXVXvS9YfKcSvWfH+x+biT+SKeck2cyIh eBZJMbsOZfuWZvxqu/3FG444Y579vzm88c3mQv3UHPj4+Pj4+Pj4+Pj4bfMf /O/yyN6PB4/9VYjvzn+0G4pfq2SsvZO6/mw0gJRkEbpULd+yrGD8alH+oROX gr85qD7IB15ZVqgfzdvbP398fHx8fHx8fHz8ovzL14ed7//TvL0fb5s5KMfG Jwrxg3GXeePXZAsnCSG06Wn36BJ094oK+/5zLNIfHxfy9lmD9Xmzk787F68O Febr8vbqzx8fHx8fHx8fHx+/KH/z3rPB93/Vjnzm3TWF+WrsqhXqN8sbvz6H SLlmKlBE/6utuKkm1fFriXWIivH73lsbjF9Vvzub95wp1Dd/xsfHx8fHx8fH x8dvh//dsn2RdVA+XrCzMN9dN9TWAGZfiHg+EcsjdFciNTUawY2mOlfTV32P ahxw0f6nk78r7pzZfmfv0G+X7ivUr8rzx8fHx8fHx8fHx+8V/4VP1wff/6dN H5Brt/9ZmK/6zGp2qN8sM/5knkTGHEfkloz7E5cr6LvrEJnnP7bLX739ZGTf lxc+2VCoX5Xnj4+Pj4+Pj4+Pj98L/sTk2x3PLQy+/6v3039dL8y3arbT9skb fzKbiJ2LSHI8v0i7GMokEuW671X1nXa4M361WP/MX9dCfdf90n5hoe4xtM2v yvPHx8fHx8fHx8fH7wX/xLmrke//d720qFBf9T3W+82y44/UwOCbqpX3EPEP iYTq+bXQ/h1F+3e+uMhZh1X9/eHmvkH557lrhfqp9+Pj4+Pj4+Pj4+Pjt8xf seW40370v//P+WJToX4tvm9hPHsuJH5NBHkajUWEzlLvrZgfeY4F+y99ttFb e8n9HVo1+TtVpJ+81ns/f3x8fHx8fHx8fPwi/Hm/7AitvTogf1q5v1BfjV21 4vP2Unxjmc49ZjGzLqm353geJfs1y4qtv1qc/8PyfUH/tfod+mjwj0J991pv //zx8fHx8fHx8fHxi/D/9fYqb96j+/1/x4FzhfpBv1nu+IUu0ZAkookZ9TNm E4YPFfLVPFJb7f9Ygr91/5nI3yD+NXd1ob4xKz4+Pj4+Pj4+Pj5+y/zh4TF5 64z6/u+3zhiQ14ZGC/PVqRUbv5oVv4hnNNbJVDvT9bQUkTyrmK/6cW3D+qvt 9q/eGPHGrrr9j7fPmC9HxyYK87MOfHx8fHx8fHx8fPyp+7sOn4+su/rYGysK 9dWRZ9+JdD/8IEPnmucbLSHfDyBaX13eavj19VfL8R9+bXnQflR7wew/+leh ftnPHx8fHx8fHx8fH7/b/Z9XHAi+86uxq+//vK1QXx12zV9/NWf8xudocLWp hquifj2SQ2THUbbvjgO2S/Pf/n5r0I+tXoPrDhXqmyR8fHx8fHx8fHx8/Nb4 cz7f6Ky7essz7hjWFb8fL9RXR82uOXP3TJIuNV522h3mUmR9mZ74rRlFVdGv 1azMftx2+os3HQn6sdXfJF796vdC/bKfPz4+Pj4+Pj4+Pn43+6qtd9cLi5zv /P76OSfOXi3M94/6vL388SfLEua0ROXylRicifSaVcVXbUe/HV6Gf/T0lWAf GPV+9+zFhfrGNHx8fHx8fHx8fHz8Kfsnz10LvuurtuOdLy4O8hUZv7t+TnTf ify+0JzqnmW0KJHMZi439aiOX59HWo4vJibbsM8tDMZDq79JnP7res88f3x8 fHx8fHx8fPxu9n/dfMz5ru+POZzz2cZCfT9fff8O/b0633g9w2qsZtHcppir 4rv9j2njV9sf//OfbHD7s72/S6zeejyRs1ufPz4+Pj4+Pj4+Pn43++/+tC1Y 60T1Q/68an8p8Tv9j3YtR9ki5VP0SqKmInGSWrb+WrX9oB1eYvw/LN/n7SM6 6K3HtL1Q37/Siz9/fHx8fHx8fHx8/Hb6D7+2Ihi/qvohdx2+UKjvf1Jtnui+ hVl+zMqsm6mWyTV+Ih+8z8k+z2r6NTt7/Zx2x//HwXPBfNppmv1guvn54+Pj 4+Pj4+Pj43erf+XasLNHnz9X7bYZ8+XI2FhhfvgwzdvL4+trI8wlGS7Ek0Xk XWjzVM23nPVX7dJ8pQ6PjE/+Lg0Ea/qq36+rN0YK8+NnmRA+Pj4+Pj4+Pj4+ fqa/adfpyNzH6e+vKS1+f9xlI359HqZIXNO6kQKFjE7kjF8z4aFcFfRrlhX0 45YZ/9PvrnLaj/7v1+97zvTE88fHx8fHx8fHx8fvVv/j+bsmv+O7c9TUd/wv Fu8uLf6aP/8xt28qNC1BpJQT+ikkT/JXoGRftR9rkX00y4n/0wW7gjV9b/F/ t3rg+ePj4+Pj4+Pj4+N3q//k26ucNTL9/sfNe8+WFr/b/2g34QtNLs2tKfUR iawicWauebV81Qa3vHWIyoz/t11n5LTp7t8lVD/kM++tLtTX34SPj4+Pj4+P j4+P34x//caovNUbX+iMM5x83ZhMK8qP57VC6+fk8tPyiaRvrEDiXt3nWBQi lrVCvtMOt+r7aJYV/9VrI8G6vup1a9+gHBrRzK3tsuePj4+Pj4+Pj4+P343+ lr2n5U3PDARrrz71zupC/XjZ9X0nGvX1F2Jiap60XEJ7OZRQMd8K5pGW44dz PPbWimBfGNUPuf3AuUL99JLx8fHx8fHx8fHx8fP6ny/aHZmf9tn8nYX69VP3 3LZqkX0n8vgpFcq4OXkhlyPU/1JyVsBX41fr7fDi/fDxQf+OYPyq+h37bvme Qv2y48fHx8fHx8fHx8fvFv/fc1cHfUPq/bfd8fUx2+vHDzX3Ue3h0ZQvYimG NrnudmEor/4uZFBrYahWhXxnH83Q+NWiffez+2nd9pPevqLu79msD9cW6hsP fHx8fHx8fHx8fPzcvpqHdusMf2+FQef7/eXr4f35io/fMoxfTfU12YTpU0aR DR0V9iPPseT4z1++Xu9/nD4gb585X46OTxTmlx0/Pj4+Pj4+Pj4+fjf42/ad 8b7TD06+98vH31pZqK+Lvxabt9ecn/lAY+m68kUiKVxEejXK9+1adBxw2fE/ +MryYH1f9b73yPlC/bLjx8fHx8fHx8fHx+90/+sle4N+IfX+4cAfhfq6w233 aMZdGh+YiHRT6rKl+ek/B9Nd1fdrmnVsy4x/7k9bnb9R+Ouwfr9yf6G+qSR8 fHx8fHx8fHx8/Hx+3/trvHVz+p19O9bvOFl6/JZtR/vNMvxEijDkFLHPTR7h YoTuSkV8px/X2f+xGvGv2nzc639094J87qN1hfplx4+Pj4+Pj4+Pj4/fyf7I yLi8beag026c1ud+r794Zaj0+GtWvP+xOT+RK+Yl2+yJhOBZJMXsOpTtW5rx q2XGf+HiDXlz36DX190vb5+5QI6MThTmlx0/Pj4+Pj4+Pj4+fif7uw6ei+zr /sjrKwr1TYc7/9FuyNcqGWvvpK5/Gw0gJVmELlXLtywrGL9ahq+L/+HXljtt R/X7dtPk+85D5xJ52ulHi+runz8+Pj4+Pj4+Pj5+K/3vl+8N9nxU3+nf/2Vb oX78ul9eMO4yr6/JFk4SQmjT0+7RJejuFRX2/edYpfjn/bIjmGurfu++XbZH e0+7/LLjx8fHx8fHx8fHx+9Uf9aH64K+R/V9fu22E4X6QVrsghq7aoX6zfL6 +hwi5ZqpQBH9r7bipppUx68l1iEqP341v9bfJ0b97eKZ99YW6mdmx8fHx8fH x8fHx8dPHKOj4/Jvs+YHfY+qT+jC5eHC/LT43XVD7YZ8IeL5RCyP0F2J1NRo BDea6lxNX/U9qnHAVYr/0rVh53fOX4f11hmDcmh4tDC/7Pjx8fHx8fHx8fHx O9Hfc/j85Pf3QacPSH2Xf+C/ywr1E5dD11SfWc0O9Ztl+sk8iYw5jsgtGfcn LlfQd9chMs9/bLdvul/tMerOgXTX0tmy92yhfq4y8fHx8fHx8fHx8fGD4xtv 7qM7jnBQvvfT9kL9tPitmu20ffL6yWwidi4iyfH8Iu1iKJNIlOu+V9V32uHO +NVqxf/xgl3B/Ef1+nTyczc+f3x8fHx8fHx8fPxu8Wd+sCbYR+GW2NzHsuNX fY/1frNsP1IDg2+qVt5DxD8kEqrn10L7d1Qp/t93nwrNu+2XT76zqlC/mQMf Hx8fHx8fHx+/V/3h4TF564z53thVdy7aX1eGKxN/Lb5vYV4/LZM/PlY0HosI naXeWzE/8hwrFP+1oVF5y4wBZx0dfy3Wy9dHCvPLjh8fHx8fHx8fHx+/k/yt +84439v9PqDH3lxZqJ+VUY1dteLz9lJ8Y5nOPWYxsy6pt+d4HiX7NcuKrb9a rJ8W/7/fW+2On/bajxt3nirUl6lX8PHx8fHx8fHx8fH948tFu4P1L9X4wY8G dxbqR+7WxB/0m+X2hS7RkCSiiRn1M2YThg8V8tU8Ulvt/1iSr09yP329eI/7 94vp7u/hhwN/FOqXHT8+Pj4+Pj4+Pj5+p/hqvpm7h4K7D5+aj1akn0yIxm/F xq9m+SKe0VgnU+1M19NSRPKsYr7qx7UN66+WHf/2A2edv124/Y+D8pHXfy3U Lzt+fHx8fHx8fHx8/E7wr14fdtqM/ro5t05+f796Y7QwX/c5Hn+efSfS/XAg oXNNfNES8j2AaH11eavh19dfLcdPi39kdFzePnN+MIba3X90qDA/UVbiPnx8 fHx8fHx8fHz8DX+cCuadqe/tT7+rW/uy3Pjtmr/+ak7f+BwNrjbVcFXUr0dy iOw4yvbdccB2ab5J8o+ZH6wL1nBSf89Ys/XPQv1oavf9/PHx8fHx8fHx8fGn 6r//y/ZIn89XS/dWLv6aXXPm7jXix8tOu8Nciqwv0xO/NaOoKvq1mpXZj9tO P+um75fvDfYfVfNx3/1pW1c9f3x8fHx8fHx8fPxO9x98ZZnT5+OvnbPz0PlC /az71VGft5ffT5YlzGmJyuUrMTgT6TWriq/ajn47vIrx7z56wZ3/6PWF//Pl pYX6+Q98fHx8fHx8fHz83vNPX7jujhWcPuC0If8+a74cG5sozA/OMuJ318+J 7juR3xeaU10s0aJEMpu53NSjOn59Hmk14x+fmJB/f3ZBMBdXvU6cu1qY75x3 8c8fHx8fHx8fHx8ffyr+ko1H3Paj19/z4qcbCvXzHSK0f0d+33g9w2qsZtHc ppir4rv9j2njV8uP/z9fbPL6wt3fywXrDhfqZ+fBx8fHx8fHx8fH703/5S9/ c9fO8fp6BtccqmT8Tv+jXcvt6z9FryRqKhInqWXrr1XbD9rhFY5/4YbD3t8z Bp3fyTmfbyzULzt+fHx8fHx8fHx8/Cr6E0LI2vMLvbaju/7qsdOXC/P11/Tx qzZPdN/CLD9mZdbNVMvkGj+RD97nZJ9nNf2anb1+Ttnxnzh3LRi7qn4v//as GlPtQ+33y44fHx8fHx8fHx8fv4r+3iPn5S3T1RjBQef9vjlLZXht1Hb7jcRv mreXx9fXRphLMlyIJ0eflNDmqZpvOeuv2qX5eeO/31nTaTAYW/3HwXNd8fzx 8fHx8fHx8fHxO9VX+3RM6/PWXZ18n/vj1srG74+7bMSvz8MUiWtaN1KgkNGJ nPFrJjyUq4J+zbKCftwqxz/vl+3eGjr9zt82vlq8p1C/7Pjx8fHx8fHx8fHx q+Y/+c7qYJ0S9b72j5OF+llH2K/58x9z+6ZC0xJESjmhp5A8yV+Bkn3VfqxF 9tGsZvwbdp+OrOv01Fsru+L54+Pj4+Pj4+Pj43ei/9eV4WDdHPU9/da+QXn9 xkhhfuLejPjd/ke7CV9ocmluTamPSGQViTNzzavlqza45a1DVOX4r98Yk7fO qLcf1e/ohctDhfllx4+Pj4+Pj4+Pj49fJf/XLcedMas3e+NXn5m3tlA/fpYV vxVaPyeXn5ZPJH1jBRL36j7HohCxrBXynXa4Vd9Hs8rxz/xgrTe2etAZy7p8 87GOf/74+Pj4+Pj4+Pj4nei/9s1m5zv5NGePhH7508r9hfrRz9nx1/edaNTX X4iJqXnScgnt5VBCxXwrmEdajh/Pkeb/vHq/0++ofj/V3zle/er3Qv2y48fH x8fHx8fHx8evgj8xIaSt9u3wxgaqMayHTlwqzE/kyRG/bdUi+07k8VMqlHFz 8kIuR6j/peSsgK/Gr9bb4cX7+Qp1Lxw9edn53fTn597x3EI5Pj5RmJ8rKz4+ Pj4+Pj4+Pn6X+3uOXgj211P9O3fPXlKon1a+yVdzH9UeHk35IpZiaBPrbheG 8urvQga1FoZqVch39tEMjV8t2nc/54tfZbtnzpLIPN1dh8939PPHx8fHx8fH x8fH7zT/G7VvR2h/9mDfjgrHbxnGr6b6mmzC9CmjyIaOCvuR59gB8b/707ZI P/nXS/boM7bJb+rAx8fHx8fHx8fH7yL/qXdWB/056n399ui+HVWMvxabt9ec nxlQLF1XvkgkhYtIr0b5vl2LjgOuevwb/jgVzIFUbcgn315ZqJ/M19k/f3x8 fHx8fHx8fPxG/MtXh4KxqzdNfidX+3ZcCe3bUdX43XaPZtylscIi0k2py5bm pz8H013V92uadWyrHP+1oVF56wx3/VW/v/z8paHCfPOBj4+Pj4+Pj4+P3/3+ ys3HgzVX1ffxvvfXFOrrS8z2LduO9ptl+IkUYcgpYp+bPMLFCN2VivhOP66z /2PnxD/rw3WTv6tuG1L1RS7edKRQP8+Bj4+Pj4+Pj4+P343+G99u9sYDunuz /7hif6G+6cjya1a8/7E5P5Er5iXbzImE4Fkkxew6lO1bmvGrVY9/cM2hoP9R /e6++MmGQv3EzR3888fHx8fHx8fHx8fP64+PC3nHi4u8tUjc7+PGfTva4E8l fnf+o92Qr1Uy1t5JXX82GkBKsghdqpZvWVYwfrUMv5n4T567FsyBVH3nt88c lMMj44X5KRA+Pj4+Pj4+Pj5+1/p7Dp+PjF29e/Zil+qA+INxl3l9TbZwkhBC m552jy5Bd6+osO8/x06L/+HXVgTrPal+8027ThXqmxLw8fHx8fHx8fHxu9X/ fPHu4Pu3aj/O/XF7x8Svxq5aoX6zvL4+h0i5ZipQRP+rrbipJtXxa4l1iDoj /s8X7QrtWar2nNlWqF92/Pj4+Pj4+Pj4+PhF+4+8viL4/q3ef9sV37ejuvG7 64baDflCxPOJWB6huxKpqdEIbjTVuZq+6ntU44A7LX6n7zy0D+Tds5dIMSE6 7vnj4+Pj4+Pj4+Pjd4J/+sL1yPfv22fOl0PDYx0Tv+ozq9mhfrNMP5knkTHH Ebkl4/7E5Qr67jpE5vmP7fabjX9iYkLe8cJiecv0/uDvH/uOXyzM1wMpefHx 8fHx8fHx8fE72J+//pCzB4L//dtdw7I4Xw/k962a7bR98vrJbCJ2LiLJ8fwi 7WIok0iU675X1Xfa4c741c6L/63vtzh/+/DnQX6zZG/HPX98fHx8fHx8fHz8 TvCf+2hd0Pfo7KG34UhHxa/6Huv9Ztl+pAYG31StvIeIf0gkVM+vhfbv6LT4 120/6c7f9V6Pv7WyUD/1fnx8fHx8fHx8fPwu8a/fGJW3zRwM2o/qdf6vGx0V fy2+b2FePy2TPz5WNB6LCJ2l3lsxP/IcOyz+a8OTv8czBp2/f9zkrCE8KM/+ db2jnj8+Pj4+Pj4+Pj5+1f21208437lv9uY/Pv72yo6LX41dteLz9lJ8Y5nO PWYxsy6pt+d4HiX7NcuKrb9arD/V+J/7cL33N5B+5/d5yfojhfplx4+Pj4+P j4+Pj4/fbv+NbzZH+h6/XbqvUD9yscn4g36z3L7QJRqSRDQxo37GbMLwoUK+ mkdqq/0fS/L1Sfn9+WsPOfuXTvP28njhk/WF+qnZ8PHx8fHx8fHx8TvcHx+f kLXnF3r7PrrrVh7882Jhvu6uZuK3YuNXs3wRz2isk6l2putpKSJ5VjFf9ePa hvVXOyF+tY6w34+u2pG3OesIjxbmp6fg4+Pj4+Pj4+Pjd7a/ff/ZYN8O9br3 P0t0Stt8femN+3n2nUj3w4GEzjXxRUvI9wCi9dXlrYZfX3+1HL8V8T/6+oqg /1G9NvxxqmOePz4+Pj4+Pj4+Pn6V/Q8HdgR9Neo794f9fxTqtyp+u+avv5rT N8ZhcLWphquifj2SQ+R5juX67jhguzTfJDXif7V4tzce292L5q3vthTqlx0/ Pj4+Pj4+Pj4+flv8Secfc5Y6/Y/TvD3zth0425Hx1+yaM3evET9edtod5lJk fZme+K0ZRVXRr9WszH7cdvqtiP/A8Yte+9FdU9h+fqEcG58ozNcD5vvx8fHx 8fHx8fHxO8Hfe+wvr+9x0OmnsZ5b4MyHLMpvZfz1eXv5/WRZwpyWqFy+EoMz kV6zqviq7ei3wzs1fpXzvjlLnN9tf13hbfvOdcTzx8fHx8fHx8fHx6+q/8XC XV6/o7tuztvfbynUTz8a8931c6L7TuT3heZUF0u0KJHMZi439aiOX59H2tnx fzjwh/N7Pc1rQ877ZUehvq4MfHx8fHx8fHx8/E72//nf5e44P2/d1U27Thfq tzL++v4d+X3j9QyrsZpFc5tirorv9j+mjV/tjPj/OHg2tIZOv7x39mI5Iar/ /PHx8fHx8fHx8fGr6B86ccnbs8P9jv33ZxfIkdHxwvxWx+/0P9q13L7+U/RK oqYicZJatv5atf2gHd7h8Y9PTMg7XlwU7Guq2pB7j1wozDdfw8fHx8fHx8fH x+88/+tlu515j/46la99vblQP91o3Fdtnui+hVl+zMqsm6mWyTV+Ih+8z8k+ z2r6NTt7/ZxOiX/uD1vkLdPV30gGnfdP5u8q1C87fnx8fHx8fHx8fPxW+Y+8 viIY26fWzlm3/WShfvhTK+I3zdvL4+trI8wlGS7Ek0XkXWjzVM23nPVX7dL8 Vsb/+54zwdhs9f7Pl5dW/vnj4+Pj4+Pj4+PjV80/fvpKaN3VAfm3WfPl0PBY R8fvj7tsxK/PwxSJa1o3UqCQ0Ymc8WsmPJSrgn7NsoJ+3E6Pf3R8QlrPLQzN gxyQ+49dLMzPOvDx8fHx8fHx8fE7wf9hxT6n39Fdd7VfzvlsU6F+3Whd/DV/ /mNu31RoWoJIKSf0FJIn+StQsq/aj7XIPpqdHf9b321x/kYyzRun/fmi3YX6 0WKq//PHx8fHx8fHx8fHjxtPvrkq2BdPrZ+zasvxQv12xO/2P9pN+EKTS3Nr Sn1EIqtInJlrXi1ftcEtbx2iboh/465TQd+jakM+8N/lhfplx4+Pj4+Pj4+P j48/Ff/UhevBmquq7/G2mYPy6o3Rjo/fCq2fk8tPyyeSvrECiXt1n2NRiFjW CvlOO9yq76PZ6fGPjEzIvz873+uDdOdCHjx+sTC/7Pjx8fHx8fHx8fHxp+L/ svpAaE+DAfnCxxsK9RNHi+Kv7zvRqK+/EBNT86TlEtrLoYSK+VYwj7QcP56j Ff7rX2+O/M5/vii0DmvFnj8+Pj4+Pj4+Pj5+lfyn313jzQUbcNZdXfr70UJ9 fSlT922rFtl3Io+fUqGMm5MXcjlC/S8lZwV8NX613g4v3s9XaGP+xp2nnD53 /3f+/leW62+owPPHx8fHx8fHx8fHr4p/7uKNye/Qg96eHQPy1r5BeeXqcGF+ 2oWp+mruo9rDoylfxFIMbWLd7cJQXv1dyKDWwlCtCvnOPpqh8atF++7n1sY/ MjYm//7cgqD/Uf3u7z12oTC/7Pjx8fHx8fHx8fHxm/EHVh8M9T0OyFkfrOua +C3D+NVUX5NNmD5lFNnQUWE/8hy7KP43v/PHsLrrDn+yYGclnz8+Pj4+Pj4+ Pj5+Vfx/zV3ttBv99SgXbzhSqN+yQ+PXYvP2mvMzA4ql68oXiaRwEenVKN+3 a9FxwN0S/++7zwR9j+rvJ//4z1I5kSi7/OePj4+Pj4+Pj4+PXwX/tFp31Vtz VX2PvvWZQXn56lBhvj69dfG77R7NuEtjhUWkm1KXLc1Pfw6mu6rv1zTr2HZD /GNjE9J+fmGwBqv6d7D70PnCfN31Kv788fHx8fHx8fHx8dX7z6v2B/2O6vXc R+sL9dPSWuFbth3tN8vwEynCkFPEPjd5hIsRuisV8Z1+XGf/x+6Lf+4P2+p7 QfYNyI8G/ijU90+q/PPHx8fHx8fHx8fHV8eTb6905z72ufO/lm86Wqjf7vhr Vrz/sTk/kSvmJdvMiYTgWSTF7DqU7Vua8avdEv/W/aeDNXTU6+7ZSxJjWMt+ /vj4+Pj4+Pj4+Phl+yfOXQvtnz4ob50xX169PtxV8bvzH+2GfK2SsfZO6vqz 0QBSkkXoUrV8y7KC8atl+O2Mf3xcyDtfXBSM4Vb/HnYcPFuYX3b8+Pj4+Pj4 +Pj4+Hn873/dG8z7umny/aXPNhTqR4tqT/zBuMu8viZbOEkIoU1Pu0eXoLtX VNj3n2O3xv/ez9vrY1gnX/N+3lGoH6RV9OePj4+Pj4+Pj4+P//BrK4J1J9X3 5pVb/yzULyJ+NXbVCvWb5fX1OUTKNVOBIvpfbcVNNamOX0usQ9Rd8av+Rr/v Uf2buPOlxXJsfKIwX39U5+ePj4+Pj4+Pj4/f2/7hE5e878uDTvvx9lmD8sbQ aGF+UfG764baDflCxPOJWB6huxKpqdEIbjTVuZq+6ntU44C7Nf6JyabiPZNt xpv7+p2+ePVvYtOu04X5kcsV/Pnj4+Pj4+Pj4+P3tv/Fwt3Od2V377t++cpX v3dl/KrPrGaH+s0y/WSeRMYcR+SWjPsTlyvou+sQmec/ttsvIv5P5u9y5gHf 4q0n9cqXv1Xm+ePj4+Pj4+Pj4+OX5U9Mfvjnf5YG+z6qMXsb/jhVmJ/naJVv 1Wyn7ZPXT2YTsXMRSY7nF2kXQ5lEolz3vaq+0w53xq92b/yHT1wM5j9O6xuU t88clFduDBfmlx0/Pj4+Pj4+Pj4+vs5X+6P7a4XcPPk9We2fPjI6XpifRrTa V32P9X6zbD9SA4NvqlbeQ8Q/JBKq59dC+3d0c/yPvbkiso7O4g2HC/XLjh8f Hx8fHx8fHx8/fsz9abu732Of+z157o/bCvWLjL8W37cwr5+WyR8fKxqPRYTO Uu+tmB95jl0c/8Dqg0G/vFpH5+l31xTqazLi4+Pj4+Pj4+Pjl+aPjo7L2nML gj4W9frj0LnCfPdacfGrsatWfN5eim8s07nHLGbWJfX2HM+jZL9mWbH1V4v1 i4r//OUheeuMQaft6K9NfPLstdKfPz4+Pj4+Pj4+Pn4Z/trtJ935XV4fyz/+ szT9vhb7GSW03A/6zXL7QpdoSBLRxIz6GbMJw4cK+Woeqa32fyzJ1ye1x3/h kw1O3/y06W4b8quluwv1DRg+Pj4+Pj4+Pj5+4f5Ln20MzX3sl18v3tPV8Vux 8atZvohnNNbJVDvT9bQUkTyrmK/6cW3D+qvdFv/abSe8NVjdfyf3v7wsbbnf rosfHx8fHx8fHx8fXx2Xr7pj8+r9jwPy+JkrXR1/nn0n0v1wIKFzTXzREvI9 gGh9dXmr4dfXXy3HLzJ+tZaU5Y3xVmsTO2O8D54tzNfn6O3fP3x8fHx8fHx8 /OL9BWsPBv2Oqv349Duruj5+u+avv5rTN8ZhcLWphquifj2SQ+R5juX67jhg uzTfJLXLf/en7d6/lQFnT8h3fthaqJ914OPj4+Pj4+Pj47fbf+qd1ZF1cxas O1Sor5Pa7dfsmjN3rxE/XnbaHeZSZH2ZnvitGUVV0a/VrMx+3Hb6Rce/6/D5 +l6Qky/ruflyeGSsMD/5obd///Dx8fHx8fHx8Yv1j525HIxZVWPy1DjWS9eG dbd3Vfz1eXv5/WRZwpyWNjEuo3bC+09aCVXxVdvRb4f3Svz//O9y728t7l43 q7b8WaifsHRp+Pj4+Pj4+Pj4+G3wv1i8JzQeb0DO/nxDob4xrc2+u35OdN+J /L7QnOpiiRYlktnM5aYe1fHr80h7J/7vlu0J/c1lQD7/0fpC/bLjx8fHx8fH x8fH701/YvJN7dMRXg9k/fYThfnR02Ljr+/fkd83Xs+wGqtZNLcp5qr4bv9j 2vjV7ov/1Plrkb+5qPfzl4YK8+NJvfz7h4+Pj4+Pj4+PX5y/49C54Puv6kex n18oR8YmCvN159kltsZ3+h/tWm5f/yl6JVFTkThJLVt/rdp+0A7vsfinv786 +JuL+rfz86r9PRU/Pj4+Pj4+Pj5+7/nvfL8l+P6r5nKptSV7JX7V5onuW5jl x6zMuplqmVzjxz+uXb0iN/++WS5dulR+99338oN5H8iXX35ZTp8+XT773Cw5 c+ZM+fobr8tPPvlE/vLzL3LlylVy957dcnxsvCW+88H7nOxz1cdfs7PXz2mn 38rn34i/bOPRyJrFj76+olC/7Pjx8fHx8fHx8fF7y78xNCb/PmtB8P1XvfYc Pl+YX3b8pnl7eXx9bYS5JMOFCTEhDx8+LH/55Rf53HPPTbbFbGdfEctp21rB 2jR+H1/Nm7MZ/mxNfr733vvkW2+9KVetXi0vXbqc248ni8i70OaJp1hOfWzZ TPyt8Kfy/KfiX70xIm+fNd/59+OP/97358XC/PqncuLHx8fHx8fHx8fvLX/Z b0edcav+99+HXl3WU/H77a9G/Po8TJG4pnUjBYqggAsX/pJffvmlfODBB732 oOW2Z2071jasRT9b7l6Llt+GtCdfluX0o9b8dudk2qyZs+TqNWvkeGQsspDR iaTxupmCD+XSxO/7jcTfSr+Z598q/7VvfnfXYPX67z8c3FmoHy+r154/Pj4+ Pj4+Pj5+cf4z76119h7wv//+uGJfT8Xvt7/y+6ZC0xJEpJzTZ07Ljz76SN55 552hfsZa0Beq2mJBe9Gq90FGXnb4s+3dY4fam1bQ7nzssUflsuXL5djIqLbi on6arHvOB+D7eeJvh9/I82+1v3nv2WAOpHrd+eJiOTYebbN3c/z4+Pj4+Pj4 +Pi94Z84e9WbuzXofP+dNvleXz+y++NXh9/+atwXmlyaW0MJp06elO+8M1fa zvhUt53nt/VqobGqdqjt57/fcced8qGHH5JPPfmUfPCBByc/29Kya/W2pzq3 1bldb3/afrvU/fzQQw/JhQsWytHR0aBWQlPP8Jn5yUXj9/20+Oun9Xtb5UfO C/YnJtuKd89e7K0/NflvaXq/3LTrdGF+4u4ee/74+Pj4+Pj4+PjF+J97ez5O 89ZefeHTDYabujN+dfjtr9x+Wj6R9NWJmt84OH/Q6W+s9yvablvPmzdY88ak Pvjgg/Ltt9+Sy5Yul/v27ZWnTp2S165ddYsW9bLV69rVa/L06dPywIEDctmy ZfKdt9+WDz/0cHTMq1VL9F3+61//mrznYFqIkeccgQ3x+/2mmc8o1Wvedz/r n38R/icLdobGsA7Il7/8rVDf/Vxe/Pj4+Pj4+Pj4+N3tj08Iee9LS4I1c9R3 3nXeno9F+Pp7in/+9X0nGvX1F2KiPD3Z/ntWrYlT8/oGvbVu/DVw7rzzDvnm m2/JlStWyJMnT+qrrwsyxVfjY9WarK+//rq8w7aDtmTYt++w5ddffy1HR0fM cTTg+0Y8fmPZGbmmEn8Z/uGTl4N/R2o8+K0zBuWla8OF+fEcvfb88fHx8fHx 8fHx2+tv2nkqWC9Sfe+948XFcnRsvGfi933bCrUfc/opFap/nnwtWrpE3n33 3fU+RvXuzVt88okn5PzB+fp1UjXlp6zqo/e948L5C/LHH3/w+iWtyLxJ1Z58 8qmn5IH9B6bs++Vq62OsaM7nPIX4i/SfeGuVOwdyuvs3mYG1B/UZ2+RnF4qP j4+Pj4+Pj4/fnD/7843B3Ef1/vGCnYX6qYUU6PtjR5vyRSwl1Ca+ceNGZJ0b 23u99dZbcteu3d59yfLq70IGtRaGaqX48WNifFz+tuk3+eyzz3prt6p1XN1+ 0NlzZk/Zd2IMjV/VHiJ+Wlz8RfgL1x2a/Lc0GPRDPvLar4X6ZcePj4+Pj4+P j4/fnf5fl4bkrV678aY+t6/k6KnLPRN/OL9lGL+a6muyidgn1X607Pr8w9mz Z8tDhw+nl591NOAbLjgfN27cIB9//HFvv4+anDN7zpT9yHNM8ad0tCD+dvpX r9f3gvTnFO8+pN9LtR2+9lMPPX98fHx8fHx8fPz2+D8sP+Dt9+juOfD0u2t6 Kv5wmbXYvL3m/GSmoes3nH6+f//733L7tm2xrLryRSIpXGp6NTIfaMIfHRuT CxculP/4xz8m27Zzpuzbteg44Cw/ma/Y+Nvlv/ndlmBOsXq9/f3WQv3MG/Dx 8fHx8fHx8fEb8CcmhLzv5aXBXufqfdlvRwvzUwotxbe9dWxy+5MXhI5P3Crk 3n17nbVXTXUylZ9Vej5fX1I8v1rb9fjx41P2/TG6jfq68pvxdSWU4e8+dMEb F97vvFR/pOqX7JX48fHx8fHx8fHxu8vftOuU227sc+doWc8vlEMjY4X5Zccf 9y3bjvabZfiJFGHIKWKfDceYWrNITBivh4sRuisGf+jGkPzi8y8ia7o2c+T1 /bmejcbfKl+fXryvRkw//PqvoXWN++X8tYcK88uOHx8fHx8fHx8fv7v8Fz7Z 4LUd3bGrH/b/Uaivd8rz3fmJVvKOBv1ErpiXbDO7//3oow/l7Jdmy4sXLwbP Iilm1yGcY//+/fKJxx932sbbtm9P9SOnU/AtzfjVPPG3ym/2+bfDV+uuqnWN 1dpUag7ko5PtyV6KHx8fHx8fHx8fvzv8k+evufsLhF7Hz1wpzE87yvLd+Y92 Q75WyVh7x7T+67x585z26wP3PyC3hedJhqst4gl6X62x+uOPP0rb61NVL3/u Zer6t0moYV+t5WrH+nGjRbXXb/b5t8O/fH1Y3j5zvjc+3P07zc7D5wrz9ULv PH98fHx8fHx8fPzW+J8u2Bns+ai+2878YG2hftnx6/xg3GVeX5MtnCSE0Kab 7pn3/jx3jw+rNtnuq8mvvvrKHdNqusfgnz59Ws6aNTNox6m4rJrqf9yWvEFX jOHR5fX959ho/K3yg/OK+GodnVu8NVjVONY3vt1SqG8qAx8fHx8fHx8fHz+P Pzw6Lu0XFnrtR/e1fsfJwvwgrWLPX/X9WaF+s7y+PodIuaZPev/99722njuO VrUjVTvwzNmzoftMNXHTV/y6Qt5zzz3u/cGek5bX/7g91fcTg/9qH1y6r45a Yh2ifPG3yk9+Ltffdfi892/N3Q/ytpmD8uKVkcL8suPHx8fHx8fHx8fvbH/5 5mNB36PqE7lnzhI5Nh5ft6V74zf57rqhdkO+EPF8IpZH6K5EauqnOONX7Vqw fqkaS6vakPfde69cv369vtaef/nyFfnaa69O3m95ZdjSVvM5bbftaN9hy337 96f6ekCmPDN9/L7faPyt8qNFVsN/9M0VwVqs6v3HlfsL9cuOHx8fHx8fHx8f v3P9p95Z7YxZVd9lb5p8/27ZnkL9yOUKPX+nn84O9Ztl+sk8iYw5Dv+WvXv3 yIcfesRpM1p2uP/QfX3w4YdyeHg4Wvzkh63btsgHHnjQGaPqrAFk1e9Rr38/ /W958ODBTF8baFreSND1U99vNP5W+c0+/3b6izccCc2BHHT2zVH75xTlpx34 +Pj4+Pj4+Pj4pmPvsb+CvR7V99hb+wblhcvXC/PLjj/N99tfef1kNhE7F5Hk eH6huXj16lX55htvTrYfvfafakv6Y1EnX08//S95/M/jzg3DwyPyk48/nmxj emvk+G1OJ78l77jDlt99+50cHR3N7etCEom43HdT/L7fTPyt8Ovn1fFvDI85 ++NMC61XtXHnqcJ8HdFLzx8fHx8fHx8fH785/+0ftnjreLjj6F796rdC/bLj T/P99ldeP1IDg2+qVtaxcsUKee899wR7YThjUJ2+RVvedddd8osvv5BP/eup +nzJWJ/j9OnT5eEjR5r2tfUXuoRk/H4dEvcX5BvvL9n/cOCPoO2o/v09/7F+ THK7/GYOfHx8fHx8fHz83vWvXhsJ9hJQbUg1fnXHwXM9E3+WH273NOSnZfLH x4rGYzl56qScMWPmZNvQqvdH1ur9ksE8Sauedscddzr7doyNj03ZF6Gz1Htj FyPPsQQ/eq06/rHTV5x/c2odHX8t1hPnrhXmlx0/Pj4+Pj4+Pj5+Z/m/rD7g fG/1+0AeeX1FoX6OjKX67ljR2Ly9FN9YpnOPWcysS+j2sfFx+f3334f2cfTG qFpWpG9SzZOc0dcnjx492lLfeHfKz0PVLbr+arF+2fGn+c9+uM4dP+61Hz+e v7NQX6ZewcfHx8fHx8fHx/eLFPLB/y4L1n9U4+fmrz9UmJ+4u4LPP+g3y+0L XaIhSUQTM+oXz7Zq9WpvnKqtme/o9j1ev3G9bb6+UH38ah6p2r+yLF+fVA1/ w46T7t9vprv/Du3nF8rhkfHC/LLjx8fHx8fHx8fH7wx/896zQb/jzX2D0np2 gbwxPFqYry+0Ws/fio1fzfJFPKOxTqbama7Xj7HRUfnzzz/Lu+660xunWl8j x7Ls+ljWyfbaE48/Iffu3dtSP5kikmex+FV9bMP6q0X4aUfZ/tjEhLxvzmKv /3HQ6YtcuuloYX7Z8ePj4+Pj4+Pj43eGP/uzDc54OX/dnPd/3t5T8efx8+w7 ke6HAwmda+KLlqB/AAcPHpBPP/100Meo2reqXy/Sjgyt02o7+4/Y8vPPP5Mj I8NT9k3RuSe6vG5aff3VcvxWPf92+T8s3xf6W86AfOyNFZm/1630k3f31vPH x8fHx8fHx8dP98/8dUNO6xsM5l2p761HTl4qzE/cU9Hnb9f89Vdz+sY4DK42 NXl1ZHREfvnll86cR1Wn+to5trScOZq2fOutt+Szs56dzGM56X5b0vLOn3ji Cblnz56mfCdV1K9Hcojs5+jXNS4V5ZukqvgXrozI22YOBusgq7/rbNt/tjA/ mtp7zx8fHx8fHx8fHz/d/3zx7qDdqF7T319TqF92/Hl9v/3ViB8vO+0Ocyky WKZn9+7d8snJtl99XqNd37tj8v3+Bx6QWzb/7uSdGJ9wxraqfR7rfZD1vknV /vz8s8/k8PCwHtf4Il71jFB08ddqVmY/bjv9qTz/ovx3vt/q7L/qz0d+/uMN hfrxnL32/PHx8fHx8fHx8fX+6OiEvPPFxd64Vfe76tptfxbmlx1/I3593l5+ P1mWMKclKhc9Fi5aWF9n1Q7PdXTHrr7y8ivy4qVkv/GhQ4fkk0895c3ftLz8 dtAefvyJx+Ve1ReZ4ZsiCs5E+pPxY/X9cJr7VoxvTKuQf+TU5eBvOtO8fki1 v0dRfr4DHx8fHx8fHx+/1/wVW457ez1OfkedPiDvemmRHBubKMyPnFX8+fvt r+Z8oTnVxRItSoQuvD9vXnSPR2csqiXvvvtuuXTZ0hRbypGhIfnxRx9F9oas 7/Xh9kXu3VdfW0fnZ8aVetTz1eeRNhZ/q/xmn3/RvruXh9+G7Jdzf9xWqB+k 9ejzx8fHx8fHx8fHTx5Pvr3SmV/ltB8nX18tNq3P2Z3xN+LX9+/I7xuvZ1i6 PPPej7cfLTmjb4Y8ceJEJLcpZpW0ZesW+cADD4T2hrSD8rZv257q561tmq8O v780f4mt9bPLroa/ec8Zd00rrx/y9pnz5cWrQ4X5ZcePj4+Pj4+Pj49fLf+P g+ec76duH0e/vG3GoDx3cahn4m/Ut7xxo3l9/afolURNReIkOObN+8DtM1Rj V21bfvPtN3J8fEwjpfuXLl2Wr776qrvHh9eHqfoEt23fnupnRZPXD9rhDcbf Kj98per+I6+vCPZjVfMhv122p1DfbODj4+Pj4+Pj4/eaP/uzjfU5VpOv1779 vVDffK2avrPmTKTfLMuPWZl1M9XSdea9/4FTh0cfeTRYO9XJ6WVO9nmm+8uX L5f33H130J7btm2b4c7kGkORDw36NTt7/Zx2+s0+/zJ8tfej+tuOu47OoLzz xUVyZGS8MN//1KvPHx8fHx8fHx8f37144ty1YF2OW6YPOPt3HDh2sTA/8qFD nr9p3l4eX18bYS5Jc+Grr76Uc+fOlTdu3EhkE4n/5vNPnDopZ86c5Y5f3b7N dIsxuRnfqlne/h2Nxd8qv9nnX4Y/Mjoh73ppcWh95H655LejhflZyfj4+Pj4 +Pj4+L3hf9C/w+lzvMlbm6PP2bOjd+Jvxvf76Rrx6/MwReKa1o0UKGR0Imf8 mgkP5crhT4yPyfmD8+XZc+cK8WuWFfTjViH+qvtqzKrzNx6n/TgoH3n9V+ns P9Mj8ePj4+Pj4+Pj45frX70+LP/+7HxnvdWbvX6NTTtPFebXr2nJyvr+vhn5 fVOh0Y8jI8Ny+vTpctmyZc58RnM5oaeQPMlfAd2ziBuxPJcuXZKffPyx/Pzz L6bsq/ZjLbKPZrYfuTZFv5n4y/QvXh1x1s6Z5u2vo9qRam2dovzEtch1fHx8 fHx8fHz8bvd/Wrk/2BdAjYd78L/L5UTQn9H98Tfr++uVNu4LTa76ydCNG067 VPXJ/eupp+SWLVsS9RGJmonEmbnm6b4xlsnT4eFh+csvP8t77rnXWT9ozpzZ U/adfSe9dYiy/LLjr4qv9u5w99npd96f/XBtoX7Z8ePj4+Pj4+Pj45fjj49P yHvmLHH6Mtw9O/rl/PWHCvN1+Trl+Vuh9XNy+Wn5QpMtr6v2Y2Rfxpp86aWX 5KFDhwz36j7HohCxrCm+Ls/o6KhcsWKFfOihhybrZU/G7a7TOnvOnCn7bqz1 fTTNz9JU96n57uf0+KvmHz99Nfg3q8ayqr/9HD5xuTA/+zM+Pj4+Pj4+Pn43 +iu2HA++f6qX/fxCOTQ0Xphv/lx9v77vRKO+/oKfOjo6Jp955hmnbervy2h7 +zI++9yzcu3atU57znREqp+sVaYfvvrniRPyyy+/lPf/835vn0Yr2GtSvb75 5tsp+1YwjzTpm0sx52pl/FX2X/hkfTB+Vb2/9f2WQv3UPPj4+Pj4+Pj4+F3o C/nYGysjez5+vnh3D8U/Nd+2apF9J/L4KRWKfB4bH5M//vijvOPOO5wxssE+ j15b6/7775dff/21PH3qdGb5Kav6aP0b16/LNWvXyOeff95rJyb9hx58SG7e vDlXfFm+X662PsaK5nzOTcTfKf7W/WeDf7uqH1Lt13rh8lBhftnx4+Pj4+Pj 4+PjF+tv3ns68f3z/CW+f+b1nXaVVUvkz+WLWIqhTXz02FHZ1/dMaCyr7fTX WZYVrN/z6KOPyvffe0+uXLlSnjp5yl2LU0bnXSZKD/lXrlyRv//2m/ziyy8n rb6gr9Nv19mRsbS2fPudd+TVq1f04QVoft8xQuNXtYeInyafZ7O++znjt6Gi /mNvrQjGDqh/y18t3lOon7jeY88fHx8fHx8fH7+X/Gc/XBest6pe7/ywtafi n6pvGcavpvqabML0yTsdnxiXv/zyi7z33nuD/j+7Vu8LjL8efPBB+fxzz8vX XntNfvDBB/Kbb76W8wcH5aLFi+WPP/wkP/n0E/nmm2/KF154QT755JNBHM74 VNvy3qPzL9XrkUcekZs2bUyPs4n4I89RE39Ljik8/yr7yzcfC/4GpN7veHGR HBkZK8zPfeDj4+Pj4+Pj43e0f/D4xeA7p//989jpy4X5DR8V9Ov7P07Fzwwo OK5dvS5//vkn+c9//tNt41mWt4aPVW//eefRNmHoPJRue/MY421Rd1yuHeR5 8sknnL7N8bFxqY9PJJLCIaQ/BhH4mTeI2MUW+XmSquqPjk3Ie2cvDv4GdNMz /XLR+sM9Ez8+Pj4+Pj4+Pn4x/itf/ebMd3TbkP3ypc82FOpH83Xm8/fbX7n9 yQtCx2tu1fn++9DQkFywYIF86KEHgzajvx5q0A60Q+ehNW8sq953adl2pC1p e2Njnf00Jt/VGj4bNmxw93JJC0sbkT46Xfy+nzf+Vvu6EjrJ//7XvZP/hgeD f8//eGWpnJiYKMzXl9g7zx8fHx8fHx8fv9v9E+euyml9g8H+4+p75+5DFwrz zUdn+X77K6+fSBGGnCL22XCodVq3bd3qjEd95NFH6nMWLTva12i557Zd73Os 7w9Sn0ep2pzP9D0jv//uO7l/335vHmXzRzgMobvixe/7jcbfKl+f3jn+5evD 8u/PLnD/FtTnjidYteV4z8SPj4+Pj4+Pj4/fXl/tPe62G9025L/fW12on/eo uu+3v6bqJ3LFvGSbOZHgvB87dkwODAzKl19+WT799NPyvvvuc9qEurmSqq/x gQcekM880yfffPMtuXLFCnnhwl9T8tV/khFnP4Po/Mfi/VY9/zL9jwd3hv4e NCAffWNFsI5SEX7Z8ePj4+Pj4+Pj47fHP3txSN4+ayAYt6reN+063TPxt9L3 1yNtxNcqGf18qevPRgNIJI8Mj8qzZ87K/fv3yR07tsvDhw7JC39dkOPj44X4 9WQRuhTNq+Zx2rF+3CL9suNvhX/u4g1n/eTwnOZNu0/3TPz4+Pj4+Pj4+Pjt 8d/9aVvQR6HWXn309V+923sj/lb6wbjLvL4mWzgpPF40T41NCbp7dT/iqvj+ c+zV+Fvl18cV9Duvf89dHc3S5fHj4+Pj4+Pj4+O31j91/lq9j8Lbt2P19j97 Jv5W+856NKF+s7y+PkckEmd9nK+++kquWrVKHjx4UI4MjxjLCP6rrbipJul+ ZvYW+v7aPmX5yc+d6Z84e1XeOsP9u9DNzvzmAblt35nC/LLjx8fHx8fHx8fH b63/1ndbgv0epzlzpH6VE6J34m+1788jbMSPrkkjonlFPeOsZ2cFa6EqZ83a tdlGUKSpzvn92JXIk2q178Zol+ZHi+xs//Wvf/fGpfc7fyOaOW9toX7Z8ePj 4+Pj4+Pj47fGP676Jvrqez1O6+uXG3eeKswvO/52+M7apXao3yzTT+ZJZPSO Rx55xGufWk7bavuO7dEqTr4++/yzYJ/Gu+69R46NJfeNTxSf0087Irdk3J/H d9chMs9/bLdfdvyt9I+evhKMT/dfuw6fL8xPzYuPj4+Pj4+Pj98x/n+/+d3r d3THrz7x9irpzMvrkfjb4Vuq7WbVcvvJbCJ27n4eH5+Qtm07+4P4a6ce2H8g HLXzNm/evGA9VcuuyZGREen+SOPluu95/dhbLLfhYihTo767h4hVml8/7w5/ zhcbI38neu7j9YX6ZcePj4+Pj4+Pj48/Nf/Iycve98n+YI/xzXsM86K6MP52 +arvsd5vlu1HamDwVfLw8JCzV2N4v43ff/stkXfevPeDvjv1Gp1sP4p4YYmE bH8qRzN+LbR/Rxm+8f4O9Q8cv+iuwTrd3aNH/Zvfc7S+v2u3x4+Pj4+Pj4+P jz81f87nG505Uf7cx2cM+z22y2/k6CS/Ft+3MK+flskbH3v3XXcH+yKqMaov vvSSHB8bj2RV/Y9WqJ05POKvsZO+4mweX+Vp9FmK0FkjfuQ5luBHr3WH/8Kn G4I1ltX78x+tL9QvO358fHx8fHx8fPzm/APH/3LGrN7szX1U7zsOnCvMb+To NF/1/VnxeXspvrFM557o1SeefMKb/1gL2pGPPfaY/Pzzz+TA4IBcvHixfPrp p93+R+dly0GVvmSJXLJ4iXN9yeRr8ZLFzvniRYvlIufzEjdtiXvdzbvIzbN4 iZfm3nPlypX0evsXk9VPRp3y86hZ/vjV1BLa5uuef6f7+4/95f177w/2et17 5EJhfuLuHnv++Pj4+Pj4+Pid6r/w8fpgLUb1fXLmB2tj97bXl6lXOtsP+s1y +0KXqE369LNPnbVd/TaqZUXHs/ov2xtDa022v8JtTdVn6ZxPtitrtu3tsWjV 77XqedU8TjVetv7ZLW/7tu31SmU8H2M2YfgQOvX96L0imq+Nvj6p8/0XPvH7 IN29PJ7/ZF2hfjKht54/Pj4+Pj4+Pn6n+XsOXwjW0bhlutsPsTvRB9G98bfb t2rR8atZvohnNNZJyhMnT8o777zTMyxnjwvbskPtw3pbz9n/IhjHGm0j1j9b k21Qu55u1+pzJy2/n7O+Xo96bdu2LfZ0TE8vLUUkz2Lx+765/Pb6aUcn+/uP /uXt5TEQzHvee+SvnokfHx8fHx8fHx+/MV/1Nfpj11T/44sfbyzUr2fpzuef Z9+JdD8cSOjcO92wfoO84w472q9oe23BeFtR87Kc/slYO9IOtxmtUJszdG75 7cftiZom650Vu3+iy+um1ddfjcYfvqWdvun5d4P/otcH6bcjn/9kfSxHe/36 SW8+f3x8fHx8fHz8TvG37z/rrd9f3/NRrctYlB8vvhufv9/+yu0b4zC4k8fx 48fl2++8Ix966MFY/6LbrrS9NqFlWcF+kfU1dWxn3Kuzz4jtjoV1x7vaQVvS 8s+D93pbdecff+R+ZvV9MWNzR0X2c/R9XfxF+CapG/x9R/9y5jz785/Vfh57 JtOK8suOHx8fHx8fHx8fP5//9LurQmPXBuV/vtgYutp+35zaPb7f/mrEj5ed dkf8mBgX8tr1a866NpcvX5VvvPlGZF7kuXPn5JXJ9CuXr0y+Lk/mu+zkveq9 q/TL6pr6fNn9fFWV5V8P5/XWzjHFFiwTFK96Rii6+Gu18D4o+e5vpZ/3+Xeq /+In673/H3Bfz320rlDfeBkfHx8fHx8fH78S/u+7z0TWW1XfGY+evFyYn+f+ bvDr8/by+8myhDktUbnoofbvCOYrTrZlR0aGo+WI9JpN1TeV2Kjvr+FTlm9M 6xLfnQc5EOznoc53HDzXM/Hj4+Pj4+Pj4+On+JMfn3x7pft90Vsz57Vvfi/O D6d1+fP35yA25wvNqS6WaFEidOH9yfZjeL7jyMhooox2+pnl5vTr80jL8cuO vwj/xc82BGvoqDbkv+euLNRPzYePj4+Pj4+Pj1+av37HyaDfUe39puY/njx3 tWfiL9Kv79+R3zdez7B0eX7/fbOzH6R6ffPNN3JiYkKb2xTzVP28ubN8f85l WX522Z3vHz1x2fn/gptD86HX/3GyML/s+PHx8fHx8fHx8ZP+xISQj7250ls3 p9/5nvjO91sL8/OX2B2+v3dGXl//KXolUVOROEktW3+t2n7QDu/R+Ivy3/x2 S2Qc6yOv/yqF9zeHIvzsO/Dx8fHx8fHx8Yv0V2897qyV449TmzZzUJ49f70w v+z4i/Zrtfi+hVl+zMqsm6mWyTV+Ih+8z8k+z2r6NTt7/Zxujr8o/9SFa/K2 GYPuuATv/yOWbjpamF92/Pj4+Pj4+Pj4+PWT8XEhH3p1ubtGv9fH8N7P5v37 ui3+MnzTvL08vr42wlyS4UI8WUTehTZP1XyrZnn7d/Rm/EX6Hw784e4H6/1/ xL3/WSr/f/buBL6J884bOAZykDRt2rRJ2ibdkO3dbbfb7vZ633b7tu/utt23 x+52dz/dJjEBJOW+76QBDA43JJBwBcIZQghJILFlAwYbMAbbHOY2h81lg43B xrcty8//1TMjzT2jsbE0I81vWkWjmWee7/wfG1mPnqsr1JM03+gqL5U/fPjw 4cOHDx++W/zC8jPC50JxvtUgjZwQpIuXO5Lma/fiQmngx/pd9sWXx2Ey3TlD V5UhI/VATu05M1yRyoW+3+eT2nG9GH8y/caWbho9cb3QRyEzuj5szrYTSfOd jh8+fPjw4cOHDx8+UU9PmB6fuVn4TCjOj5FDy4KHPBO/U35s3Qz7vlmmVgeY RT6KUtDv2L8Bh31ef/Sr1tH0VvzJ9tdsrlSMgwzS/ZPWU2tnKGm+QTYWB+DD hw8fPnz48OEPtL9h50nV+uCjsvOosSW2FmD6x++UL7Y/BvrhM4NUBpda3A/T JWW6PfM7d5fP6+C+6DxEXow/2X5HpK5435SN4hjp6Fw6qzYdSZrvdPzw4cOH Dx8+fPhe9kOhMD08oyDa7hikzLE5tGrDkaT5uqs9VP4+xfw5tnyrdEzvm96A 7lqj15oomCapi3yhHu6T19H0WvxO+LnFVaqx0qOz86ipuStpvtPxw4cPHz58 +PDhe9XnnwPFdkdxPJNvYj61tHUlzZev8V75y+tO9NU3PqERLdNYpWKGpxUH XOb7pHGkzvjaFF7wu3vC9NiMTVL9kT+/lXMgab5V3vDhw4cPHz58+PAT43d1 9dADUzdIn//483uFlZ6J32k/4POr1p2w41vcUJyL9SdsOYz/3yKlC3zef1Wu hyfft5dp+vmFe85Ka0Hy9w++tse5hrak+YaZeKj84cOHDx8+fPjwk+2v23pc 9fkvMHk9tXeEDNOmY/xO+3zsI1/Do18+0xwxqRMbXc5M8pOfGUl3zUxuy0W+ sI6mov9qsn3xtffKP9zL6NnXt0T7seYI8zbPfm9P0nyn44cPHz58+PDhw/eS z+uJ/kh9MTaGiX/+WxupTybLdzp+N/g+k/6rlr5BMmb2Kk6Wfdpc7KvK0YPx O+mXHz6vmnvr7qwcOll7OWm+/pC3yh8+fPjw4cOHDz9ZPp+DX9lv9YGpG6mz qydpvtEp3as09/2acXv98+MGpDlulD/THVJmYX0bzvsBv7ofsNfid9oft7BY qj/y95PJy3Ym1bdzCD58+PDhw4cPH37//db2LmGenEzFvDm5JVVJ8w0yjXso HX2x3mPQ79L0hpmqmdIomZVvXQ5mV7nf9xvMY+ul+J32D1Y3RPswBKU2yL3H 6pPmG+XgpfKHDx8+fPjw4cNPtM/X5+Cf8+7KCgqf+x6aXiCs45Es3zqFd3xf IKBuN4vj644wk5RM87qfmzIbZnTGJb7Qjius/+jN+N3gT16xU6g3xsZSPz2r iHp6wknz9ce15+DDhw8fPnz48OH3x7/Q2E4js4OKMUs5tL70ZNJ8veOt8lee 8fu07Y/983WpNJ6+zqw7IJWFXox/D077PoP+q16K3w3+mfMtNCIrGO3DyuuR QWk8tRfihw8fPnz48OHDT1d/6ooyeaxSVi49PnMzhXp6k+YbbV4qf+Umjn8M 9Mk3VOLMvWM5/6w6AIvDTHHKXb7P55P6rzrhOx2/W/zl+YcVY6pzaHR2HjU0 dXgmfvjw4cOHDx8+/HTz+VyJ4jz7OdK6HTsO1Homfrf5Ur9Lu75BMuUhxpjh catrjA4YXctc7MfK0avxu8Vv6wzRw9MKhPeV2PvLa+/sSprvdPzw4cOHDx8+ fPjp5HeFwkJbo7xeRy5NXLrDM/G70ed9V32KdjO7vnEKZnHOLEOm/q/hjZvd iXt8v24eIm/F7yZ/274a6fspPp8Of5+pOFbnmfjhw4cPHz58+PDTxV9VUBkd lyS2C9w7IUi1F1qT5sfP0Hu+OG9ooE8+Y9p0TJOGGZ1R3ampIV1ods/u9Hnb I+8H7NX43eZPeKtEmEsnNhfrU7OLKBTuTZpvcMZT5Q8fPnz48OHDh3+lfm1D G907Pih8lrsrul7H6oKjSfNVpz1Y/mY+bzPzBxTtZnF9fRpdQhub6pI41+tO u9AX5yEyH/+YaN/p+N3mn6lrEd5vxLWBeD2Sz6VzLGl+vA0+fPjw4cOHDx++ dVreT1Wc00KcH/HxVzdRV3fYM/G71ff5A0Ldx66vT8Y0+0x1WJueWZ1UJGK6 fMVnt/pCPVzov+rN+N3oL887JMzBmhmdq2t0dj7VN3YkzTcivFT+8OHDhw8f Pnz4/fVL9tdE12TLkeZG3HWkXk6cYN/p+N3s87ZHud0svq+6AxPf7Lbsbkz7 QnfAfb5fsX6HF+N3o9/ZJc6lI831HHn/mblKP5dOovz+bvDhw4cPHz58+F72 Ozt76KHpm4R+ZOK4xxya+naZZ+J3u+/Xrlto17dKFOsfy/oeC1PsWV7rMl9V jh6M361+cUWN8J7D59ERv8PKpb3H6s0vHWDf6fjhw4cPHz58+PBTzV+Rf1ia S58/RmXnUf2lds/E73af9131acftWfimeQrXmItx78Xychvl4bDv9/k0868m 13c6frf6/HD24hJxHGS0/vjU7EIK9YST4mtyMD8JHz58+PDhw4cPn86cb5bm zIn1H/ug6JhRDmkZfyr4UruZbZ8ZHTQ5xNQH49yfaTJm8sJFPh9HGuDrPzrk Gx+Cz7cz51toBJ9LZ2yO9D3W2q3Hk+Y7HT98+PDhw4cPH34q+HyOz/FvlUif 1/g8Fk/NKqKecFh7WUJ880y9Uf52fZ+m/2o8n2kTmt6T2d2Znbc6wvR7LvN5 O27AZP5VL8Tvdn9F/qFo+6M4J+voV/LpQlNH0nyn44cPHz58+PDhw3e7X7Tn rNDemDlOnjdn37F6z8SfKr6ddSesfWUgin2D+NQ52CsA9f0apXWHL8+/6ozv dPxu9zu7+Djsguh3WblCHXLGO7uS5uuv9lb5w4cPHz58+PDhW/mtHSF6YOrG 6Lz54rijV1eZfVZLv/hTyQ/4Y/Ov2vRN4zBxDY+anGXyeVUKZqccnfXFfsAB x3wzCb68FVecleaBFr7XyhK/00qW73T88OHDhw8fPnz4bvWX5OwX5zzMktdd a7jcmTTf6fhTyfcH/MLYvb742rytrjDPheRperSXxsnKjb7f74vbjptI3+n4 U8KPJJnw1k5pPDZfi5bPpdMdCuvSJcTXpPRc+cOHDx8+fPjw4Rv4VTVNNCIr KM2Xw9sfc7ZXJc23kxV8eZPH7dn39Xkx82O6m7OXo7THrO/MLT6vO8bq4V6M P1X8M3XNwvtTpmI92nVF+rl0EuXH3+DDhw8fPnz48L3j81avMQuKpTFG/PH8 61uoJ9ybFF95tbTnofLvjy/On6Ned8K+zwx2jWJRZ8X0yczztdzc48vjSL0Z fyr5y/MPi99vRdsh+ZpCFxo7kuY7HT98+PDhw4cPH75b/I2lp4T5DWPji3j9 8VD1xaT5xlfZTOdRX16/w75vej6O1bc7U6c2i9ktvtj+aNV/Nb3jTyW/ozMk zaUj9pPIpZmrypPm29ngw4cPHz58+PDT3W9p66L7Jm8Q58uJfi6b8/6epPnx UsM3vlhofwz4bfvGr9RndHfKdDuWeRufc7cv1cM9Gn+q+cUVNdH+q+L3XXxM 5N5jDUnzjQ2rc/Dhw4cPHz58+OnlL1hXEf0+X5w3xz9pPTW2dCXNN9/gW/m8 zqNetzCer7Hi3pvZXern+FG9iL7Wt3m60/cH4s+fk87xp5rP9fFLSoT6o/C+ NTZXWJ821BNOiu90/PDhw4cPHz58+E76lacvCZ+/5P5gOZRfcjJpvv6kt8r/ SnyzcXt2fOO7YeY5mZzQHmaqZ2aYxm2+T5h/NeCY73T8qeifrWuhEeOD0nde /L1r7ZbjnokfPnz48OHDhw/fCb+3l9Hzc7dKn79439UX5m2LHO/1RPyp7sf6 XfbFl8dhMt05Q1eVISP1QE7tOTNckcqFvt/nk9pxvRh/qvorhLl0xDok78Pq m5BHF5qUc+kk1tfk7Lnyhw8fPnz48OF7z88rqVZ9/uL1x6NnGpPma3L2XPlf qe+PjX+07ZtlanWAWeSjKAX9jv0bcNjn9Ue/ah1Nb8Wfqn5nZ4genlYgjdnm j5nvlCsvTajvdPzw4cOHDx8+fPjJ9Pn4xsCkfKndkT+/uW5/0nzVOdV5+HZ9 sf0x0A+fGaQyuNTifpguKdPtmd+5u3xeB/dF5yHyYvyp7G/bVyPMFS3OoyOu 67H3WH3SfKN0Xip/+PDhw4cPH753/DfW7Imu8yh+7rp/ynpqbu9Omu90/Ong +xTz59jyrdIxvW96A7prjV5romCapC7yhXq4T15H02vxp7LPdye8VaIav/3k q0XU2R1Kim/+2hvlDx8+fPjw4cP3hn+w6iJlZgWl7+z5/Dmbys8kzXc6/nTx 5XUn+uobn9CIlmmsUjHD04oDLvN90jhSZ3xtCvh9843m0lm4dn/SfMM0Hip/ +PDhw4cPH356+z3hXnrmjSJpzCP/rDX2zW2RLDV3lqbxp5Mf8PlV607Y8S1u KM7F+hO2HMb/b5HSBT7vvyrXw5Pv28sUvtWRlRuPSG2Qd0frkLuO1Hkmfvjw 4cOHDx8+/ET5H205IYx3jI15HBH5rFVdezlpvq2k8G35fOwjX8OjXz7THDGp Extdzkzyk58ZSXfNTG7LRb6wjqai/2qyffG1d8t/IPxQKEwvzN0qrWPLvxu7 f+pGam7pNkg98L7T8cOHDx8+fPjw4SfCP1PXQiMn5EmfsXgdcnHwYNJ89a73 yn+gfZ9J/1VL3yAZM3sVJ8s+bS72VeXowfjTxT9T10wjs/Oi34+J/Vmnvl2W NN9ygw8fPnz48OHDTzE/1MO/n98mfKYS5pnIyqUHp22k9o4Q2dpSPP509P2a cXv98+MGpDlulD/THVJmYX0bzvsBv7ofsNfiTyc/t7hKtZ4Hf2zcdSppvtPx w4cPHz58+PDhD5S/PP9Q9Hv5HGmMUNmh80nz5ePeLP9E+GK9x6DfpekNM1Uz pVEyK9+6HMyucr/vN5jH1kvxp5PPx3FnLykR1vGIrU00OjuPzjW0JcWPlzt8 +PDhw4cPH34q+PurGqR5CcW5JXKiaz0mx3c6/nT1fYGAut0sjq87wkxSMs3r fm7KbJjRGZf4QjuusP6jN+NPN/9SUycFJq1XrW37lze3UW+v5l9HmsYPHz58 +PDhw4d/JX5be4genVEgtDvG2h+fmlVEnV09SfGvZINv7ft92vbH/vm6VBpP X2fWHZDKQi/GvwenfZ9B/1UvxZ+O/vZ9tdHvy3KkOuSazceS5lvkDh8+fPjw 4cOH72p/1ru7Ip+dgvKcOVlBOnH2UtJ84aWHyz+Rvjj+MdAn31CJM/eO5fyz 6gAsDjPFKXf5Pp9P6r/qhO90/Onqz16zR1jbNjP63sfXiDx+ptEz8cOHDx8+ fPjw4ffV37rnjFBvvCu6rjb/HPVB0dGk+abp4Q+IL/W7tOsbJFMe0q0BGueO zQ4YXctc7MfK0avxp6vf2iH2vVDOpfPUrELq6g4nxdcd81j5w4cPHz58+PBT y6+71EG+SflS3y1efxy3sEQYA+SF+L3g876rPkW7mV3fOAWzOGeWIVP/1/DG ze7EPb5fNw+Rt+JPZ//AiQvS2O9MYV3IXFr48f6k+U7HDx8+fPjw4cOHb8fv 7e2lsYuKhTXQYn23fK/kR+qU7UnxnY7fK744b2igTz5j2nRMk4YZnVHdqakh XWh2z+70edsj7wfs1fjT3V+x/ojwHsjHQt4VHQe++0h90nzVaQ+WP3z48OHD hw/f/f4HhceFz0qx+SP4c9Ges0nzDc54qvyT5fM2M39A0W4W19en0SW0saku iXO97rQLfXEeIvPxj4n2nY4/3X2+9u3zc7ZK48D52h4PTN1ITa0hT8QPHz58 +PDhw4dv5R8720T3jpfbHXmfrVmrdifNt7PBHxjf5w8IdR+7vj4Z0+wz1WFt emZ1UpGI6fIVn93qC/Vwof+qN+P3gn/63GW6d0KeOAd1lvj+OH1lWdJ8p+OH Dx8+fPjw4cM38ju7QsL8ELG5Iu6OfE7i80e0tncnxXc6fq/5vO1RbjeL76vu wMQ3uy27G9O+0B1wn+9XrN/hxfi94udsPyG9N2ZGH5vKTyfNdzp++PDhw4cP Hz587fbmR/vprmj/rNh8q/tPXEiab3EYfgJ8v3bdQru+VaJY/1jW91iYYs/y Wpf5qnL0YPxe8XnWrywpiY6FFOuRo1/Jp/MX25LiGyQ0vkn48OHDhw8fPvwk +GWHzkt9VmPfsa/IP5w0Xz7nzfJ3wud9V33acXsWvmmewjXmYtx7sbzcRnk4 7Pt9Ps38q8n1nY7fS35DUycFJq8X6o+xNsixb24T5hxLhm+cxDvlDx8+fPjw 4cN3h9/U3EH3T9mg6pf1/NytFOrpTYrvdPxe9aV2M9s+MzpocoipD8a5P9Nk zOSFi3w+jjTA1390yDc+BD9R/vZ9NZQ5Nldqg7wnui6uV+KHDx8+fPjw4Xvb 50+Tl5dKa5zxx8gJeXS6rjkpvmlSj5S/k75P0381ns+0CU3vyezuzM5bHWH6 PZf5vB03YDL/qhfi96I/e80e6fs2/nzv+Fxh7rFk+XGyhQ8fPnz48OHDT5if v6NaWhs79nkor6Q6aX68DX7ifDvrTlj7ykAU+wbxqXOwVwDq+zVK6w5fnn/V Gd/p+L3ot3aE6LEZBdHv3MR5qp+aXURdoZAn4ocPHz58+PDhe9M/W99MI7Pz pM8//LPQ5OU7PBO/1/2APzb/qk3fNA4T1/CoyVkmn1elYHbK0Vlf7AcccMw3 k+An1j9QdUGYozrWb4M/3vp4v2fihw8fPnz48OF7y+/p6aUX5slrYvPHfVM2 UFNzlyfih8/X7/ALY/f64mvztrrCPBeSp+nRXhonKzf6fr8vbjtuIn2n4/ey vyL/UPT7t1ypH8eeyvqk+bYugg8fPnz48OHD74dfVVVFRUVFVBh58H0+t2qm NH5H/PzD52BNlG942kPl70ZfHrdn39fnxcyP6W7OXo7SHrO+M7f4vO4Yq4d7 MX4v+6GeMD03Z2t0vVyxDvnAtA3U0trlifjhw4cPHz58+Onlt7a00thxY2n4 8OGUMWgQDVI8rv/0LfSdX9xF//PiGmHunAXr9g+473T88K19cf4c9boT9n1m sGsUizorpk9mnq/l5h5fHkfqzfi97p+qvUz3jg+qxpBPW1lOvcp/j2kcP3z4 8OHDhw8/PfzyXeV0+223ReqKGTQoY5D4UNQfY/XJ6z75ObrrqXnU2dUzoH78 Lb3LPxV8ef0O+77p+ThW3+5MndosZrf4YvujVf/V9I4fPtFHxSfE/hzRNsjM rBxas7kyab7T8cOHDx8+fPjwU9svKy+nYcOuVbU5SvuaeiR/fe211wrXDJTv dPzw7flC+2PAb9s3fqU+o7tTptuxzNv4nLt9qR7u0fjhk/D9yoTF26PjyXOk /qylB89bXDVwfuyMV8sfPnz48OHDh99/v7WtlW677Xa53ijVFzMMn2P1yttu u41aW1tSPn749n1e51GvWxjP11hx783sLvVz/KheRF/r2zzd6fsD8efPSef4 4Ys7TS2d9OiMAmkuHf4YPTGfTp9v9kT88OHDhw8fPvzU9LPGjY22K2ZE64gZ xu2OmjZI/jxu3Lgr9p2OH75932zcnh3f+G6YeU4mJ7SHmeqZGaZxm+8T5l8N OOY7HT98+apjNU00ckK+MBZS7MuaQ0+8tpna2rqT4jsdP3z48OHDhw8/9fw7 FHPlyP1XM8zrjoo0w4ffkfLxw7fvx/pd9sWXx2Ey3TlDV5UhI/VATu05M1yR yoW+3+eT2nG9GD989e62vWcU63mI/VgnLt1B4d5eT8QPHz58+PDhw08dv+pE VbTdMX5dUdu/NVbXPFFVnbLxw++b74+Nf7Ttm2VqdYBZ5KMoBf2O/Rtw2Of1 R79qHU1vxQ9ff2B5/uFoH1Z5TtaleQeT5usMj5U/fPjw4cOHD9+ez9d31PZJ 1a7bETunb5sUn/n6kKkaP/y++WL7Y6AfPjNIZXCpxf0wXVKm2zO/c3f5vA7u i85D5MX44ev9MGM0edlOoR8rb3+MzctauOd0UnyjfL1U/vDhw4cPHz58ez6v +xnWF2NreCjnzFHWLzNidcoMKios7Lev3fNa+aea71PMn2PLt0rH9L7pDeiu NXqtiYJpkrrIF+rhPnkdTa/FD9/Yb2vvpidnFUpz6fA2yJET8ujY6aak+E7H Dx8+fPjw4cN3t88vnz9/geV4R/1crPpHVVVVSsYPv+++vO5EX33jExrRMo1V KmZ4WnHAZb5PGkfqjK9NAd89/pn6VvJNzBfXhhTGQubQQ9ML6FJzZ1J881y8 Uf7w4cOHDx8+fL3f28tozXvv0be+9a3486xq65Oa13zunb76pmk8Uv6p7Ad8 ftW6E3Z8ixuKc7H+hC2H8f9bpHSBz/uvyvXw5Pv2MoXvlF9+uE7uxxqtR459 czt19/QmxTc74ZXyhw8fPnz48OGLW2+4l95euZK+9rWvqeqNw4YNMxnvmKF6 rWqHVK7fkSLxw79yn4995Gt49MtnmiMmdWKjy5lJfvIzI+mumcltucgX1tFU 9F9Nti++9m75p4L/QeFRof54j7Q2ZA7N/6Aiab7T8cOHDx8+fPjwnfNDoR5a vGQJ3RlbpyNa97v5czdH6n/j6eGJH9J1n/ysaR1RbHfU91+9/YtfpNbWNtfH D3/gfJ9J/1VL3yAZM3sVJ8s+bS72VeXowfjhx/f57qvv7pLnY43WJYPbq5Li X/EGHz58+PDhw085v6urixYsWEBf+tKXVH1Pv/CFL9DUqVOpvb2DZr5TLnzH /dvAqzR06DUm/VQzdH1crx02jMrLyy39K95SvPzT0fdrxu31z48bkOa4Uf5M d0iZhfVtOO8H/Op+wF6LH749v7MrTC/O2SLUG8W2yJxIPTJIB07UJ8V3On74 8OHDhw8ffnL8zo4Oev3114V6Iq/7xeqCvB752quvReqV3cIFqzdXCp9L7uKf SSLPv4nUIW+86RbDMZEZiufbbvuiou7ovvjhJ84X6z0G/S5Nb5ipmimNkln5 1uVgdpX7fb/BPLZeih++fb+usYPum7IhOh+r2BYZmLye6i51JMW33uDDhw8f Pnz4qey3trXRzJkz6ZZbblHV/e68869p7ty5FAqFpGt2HjgX+SwSlPpG8eex i4qpsalZGNM4fPgduvrj8OHDaWxWFrW2troyfviJ932BgLrdLI6vO8JMUjLN 635uymyY0RmX+EI7rrD+ozfjh983/8CJBhoxnr9fB6V5dZ6bs5U6u3qS4tvd 4MOHDx8+fPip4Te3NNPkSZPppps+K9X1+LobX/3qV2nhwoUU7lF/xjh9/jKN npgvzc3Ax9U8On0TNbZ0qfwTVVW0ZUsRbSkqoqqqE6a+7savYEvF8veS7/dp 2x/75+tSaTx9nVl3QCoLvRj/Hpz2fQb9V70UP/y++3kl1VL7Y+y9m48/8Er8 8OHDhw8fPvwr9xsbG2n8+PF04403RufFEccp8nU5li5dLqzTofVb27vo8Zmb 5bpj5PPIyOw8OnG2SZN7fF97wGvl70VfHP8Y6JNvqMSZe8dy/ll1ABaHmeKU u3yfzyf1X3XCdzp++P3z56+tEMdAKvqOvFdYmTTfBIIPHz58+PDhu9xvuHiB /vLSS/TJG25QjVP87ne/S6tWvRO5NWboh8O9lL2kRPf5Y2vF2T754gHvlr+X fanfpV3fIJnyEGPM8LjVNUYHjK5lLvZj5ejV+OH3zw/19NKYhcXimpCKtT1K D51Pim92wCvlDx8+fPjw4aeaX1dXR8899yxdd/31qjlufvAP/0AffPBBXH9J 7kGp71Ps88eK/MO2faN79VL5wyeh76pP0W5m1zdOwSzOmWXI1P81vHGzO3GP 79fNQ+St+OH33+fjDB6aXhB5H5fX9eDjEU7XtSTFV/3Xg+UPHz58+PDhp4J/ tqaGnnjyCRo27FrVWow/+ME/0Mcff2zL31R+WqgzyvPl5NLk5TulPq5WvnlA 3ih/+PK14ryhgT75jGnTMU0aZnRGdaemhnSh2T270+dtj7wfsFfjh39lPh9v MGpCnvRezschPPHqZmrp6E6KrwbIc+UPHz58+PDhu9U/dfIkPfTwQ3T11VdH 188Q643/+6f/izZt3mTbP3rqEt0b+ayRmZUjtTs+NbuI2jtClr6Uj0fLH77e 521m/oCi3Syur0+jS2hjU10S53rdaRf64jxE5uMfE+07HT/8K/eL9p5RzaXD H7xva2d3jyfihw8fPnz48OHL2/ETJ8gX+Zx+9VVXSXVG3lf1F7/4BW3dVtwn /3xDOz00tUD6fMH7PPkmrqea+hZ79xo74KHyh2/u+/wBoe5j19cnY5p9pjqs Tc+sTioSMV2+4rNbfaEeLvRf9Wb88AfGX553SPhO8K7od4P8PX7Ssh3U09ub FD923KvlDx8+fPjw4TvtVx45Qvfeey8NGTpYqC9mROfF+dWvfkWlZWV99hua OumxmZukPquZY8W2x92V9Ya+PkZvlT/8+D5ve5TbzeL7qjsw8c1uy+7GtC90 B9zn+xXrd3gxfvgD4/PxB5OXl0b7sIrv8XyNyFdX7aJeJt9MusYPHz58+PDh e9Xff+AA/fnPf6bBgwdL/VQzMjLot7/7Le3es7tfflNrJz09u1CxTof4vG7r MevrPVj+8O37fu26hXZ9q0Sx/rGs77EwxZ7ltS7zVeXowfjhD5zf1R2mcQuL pff62POCD/fJGaZx/PDhw4cPH76X/D179tAf//OPkbriYKmPKq9D/sd//Acd iNQp++u3dXbTS3O3SfOsxj5PLM49oL9Usee18offd5/3XfVpx+1Z+KZ5KtpG rO/L5KTl5TbKw2Hf7/Np5l9Nru90/PAH1udj2Z+fszX6fp8jzamzPP9QUnzD qz1U/vDhw4cPH36i/dKdpfT73/1eHtsYeR46ZAj96U9/EvqwXonPv4vOWrRd XOMxK1eac3Xu+3vleVA8Xv7w++9L7Wa2fWZ00OQQUx+Mc3+myZjJCxf5fBxp gK//6JBvfAh+KvuNLd305KzCaBtkMDpXWg59WHgsKb5xpt4pf/jw4cOHDz8R /o4dO+g3v/kNZUTXbeQPPkfOPZmZdOLEiSv2Q+EwTV5WKvVVvWes+D30jHfK Net0eLP84V+579P0X43nM21C03syuzuz81ZHmH7PZT5vxw2YzL/qhfjhJ8a/ 0NhOj86IzZcmr9W0fsfJpPja114rf/jw4cOHD3+g/KItW+jnP/+5VGfkj2uu vYZG+0bTqVOnBsTn9cOZq3bJc+VE2x8nLS2lUE/YJHezI+lV/vAHzrez7oS1 rwxEsW8QnzoHewWgvl+jtO7w5flXnfGdjh9+4vyaC6103+QNwt+A2HhI/reg eG9NUnx5x5vlDx8+fPjw4V+Jv2HjRvrJT/6XMK4xVm8cNuxaeuCBB6impmbA fD5ybd77e6V2x1i/Vb4WGO/Pqr/OfEun8oc/8H7AH5t/1aZvGoeJa3jU5CyT z6tSMDvl6Kwv9gMOOOabSfDTwz9ec1lYpynWh5X3Zx0xPki7K88nxXc6fvjw 4cOHDz/V/GAwSP/wDz9QtTdef/319Nhjj1N9Xd2A+0tyD0r9lWLfOb8wdxu1 dnQb3J2CSdPyh5843x/wC2P3+uJr87a6wjwXkqfp0V4aJys3+n6/L247biJ9 p+OHn3j/YFUDjZqQp+rLyl8fPnkxKb7haQ+VP3z48OHDhx/P55/F165bR9/9 7nelOiNfi+OGGz5JTz/7DDU0NCTEX11Qqe6nFHl+anaRsH6H9pJ0Ln/4yfHl cXv2fX1ezPyY7ubs5SjtMes7c4vP646xergX44efHH/X4Xqh3VE5D7d/Yj5V 115Oim+c2jvlDx8+fPjw4Rv5vayX3l29mr75rW9G124U51O98dM30ksvvUiN jY0J8z8urpI+E4htj7n02IxN1NDUaZHDwPmGxzz28/eaL86fo153wr7PDHaN YlFnxfTJzPO13Nzjy+NIvRk//OT52/bWRMc05EhjHB6csoFq6luT4hum81D5 w4cPHz58+LGtJ9RDK1asoK999SuqfqqfuekmGjduHLW0NCfULyg7Jc2TIz5H PhNMK6Dai61y6jQuf/jO+PL6HfZ90/NxrL7dmTq1Wcxu8cX2R6v+q+kdP/zk +ut3VEtzsca+c3x45ia60NiRFF+dTr8PHz58+PDhp7PfHQrR4iWL6c4771TU GzPolltupYkTJ1J7W1tCfX6oZH+t1B8pMzpfTmDyBjp9vtkix4Hzjfbj5wg/ HXyh/THgt+0bv1Kf0d0p0+1Y5m18zt2+VA/3aPzwk+9/UHRM953jU7MKhXUj vRA/fPjw4cOHn2y/s6uL5s9fQF/60pcU/VQH0Re+8HmaNn0GdXS0J9SPvdpd WU8jxwelv/+83+roV9bTsdOXkuIbpffCzx++uPE6j3rdwni+xop7b2Z3qZ/j R/Ui+lrf5ulO3x+IP39OOscP3xl/WfBQtA1S7MuaKcy1tpXaO0JJ8Z2OHz58 +PDhw0+Gz+uFs2fPjtQTv6Dqp/qlv7qdZs2aRV2RemUifWVC5Xx6sb//IyOv D5y4kBRf/dIbP3/46gNm4/bs+MZ3w8xzMjmhPcxUz8wwjdt8nzD/asAx3+n4 4Tvj8//OX7tP+PsRa4vk/ViyFu2g7u6ehPvyK2+WP3z48OHDT2+/pbWNpk+f TjfffLOq3sj7rc6bN5+6Q/LaGMmI/8SZRmE9r9j4Ff73f0RWkMoPn0/L8ofv Tj/W77IvvjwOk+nOGbqqDBmpB3Jqz5nhilQu9P0+n9SO68X44Tvn90YOzHyn XOq/cnd0bp3Jy0qpu6c37eOHDx8+fPjwB9pvbm6miZMm0U033aSqN37ta1+n RW8tonA4nFDfaDt9voXum7JRmmM1MzrusXhvTVJ8L/384Vv7/tj4R9u+WaZW B5hFPopS0O/YvwGHfV5/9KvW0fRW/PCd9XtCYZq4bKc0p05sfcgJi0uoozOU 9vHDhw8fPnz4A+HzdTaysrLoxk/dqBrf+K1vfUuYZ5Wv05FIX52N/Pr8xTZ6 eFqBVGcU2x+DtGHnyaT4plua/fzh2/PF9sdAP3xmkMrgUov7YbqkTLdnfufu 8nkd3Bedh8iL8cN33u/s7qFxC0soc2yOaj62l+dvo+b27oT7TscPHz58+PDh 99e/0NBAf3npJbr+kzeo2hu/+92/o3dXv6sYD5b8+M9faqPHZ26OznOQI827 vq7oeFJ8ozzT7ecPv2++TzF/ji3fKh3T+6Y3oLvW6LUmCqZJ6iJfqIf75HU0 vRY/fHf4bZF64l8WFEvtkLF65LNvbKFLzYp1hNM0fvjw4cOHD78v/vlz5+mZ Z56l66+/XlqDgz//4Ac/oA8//CDhfrz4T51rpoembqTMrBy6S7Fm18oNR5Li Gzyl1c8ffv98ed2JvvrGJzSiZRqrVMzwtOKAy3yfNI7UGV+bAr53/Y6uEI1/ q0Rqf4zVJZ98rZDqLrWnffzw4cOHDx9+PL+m5iw9/vjjNOzaa+X2xoxB9MMf /Yhyc3IT7lumiZ4+euoS+Setl9bpio1PWfTx/qT4Rlemy88f/pX5AZ9fte6E Hd/ihuJcrD9hy2H8/xYpXeDz/qtyPTz5vr1M4XvFD4XCNPXtUulvTea4oPD8 0PQCOnO+JeG+vYTw4cOHDx9+cv1Tp07RQw8+RFddfbWq3vjTn/6UNm/enHA/ btLotvdoHY3Kzo+uzxGUvg9+K+eAXIVIwfKHnx4+H/vI1/Dol880R0zqxEaX M5P85GdG0l0zk9tykS+so6nov5psX3zt3fKHr/fD4V56Y80eqR9rrC/rfZM3 0NEzjQn3dZvHyh8+fPjw4bvHP378OPkin3eHXnWVUGfMiNYbf/HLX1LxtuKE ++pd6/hL9tfQiPFBxTw54nfBqwsqk+I7HT989/s+k/6rlr5BMmb2Kk6Wfdpc 7KvK0YPxw3enz3oZLfrogDReItYe6ZuYL6w/nGjf6fjhw4cPH763/SOVRygz M5OGDBkitTfyuuOvf/1rKi0tTbjf161g50mpz1BsXWf+yC2pSsnyh5+evl8z bq9/ftyANMeN8me6Q8osrG/DeT/gV/cD9lr88N3tr9xwWNEOKf5NGpmdR2WH zifFVx/3XvnDhw8fPvzk+vv376c//8//0ODBGdK8OIMzBtHvf/972rNnjyvj /6DoqGreAuHv9oQgbdl9Nim+0/HDTx1frPcY9Ls0vWGmaqY0SmblW5eD2VXu 9/0G89h6KX747vfXbT2u6gfD90eMz6Ut0XWHE+2bpTe+Gj58+PDhw++7v3vP bvqPP/6RMjIypPbGwYMHC8cOHDyYcN8sp3jxL887JM9ZkBX9nndCHpUflr/n TYXyh+8N3xcIqNvN4vi6I8wkJdO87uemzIYZnXGJL7TjCus/ejN++Knhbyw9 RSNUfVmDwlrE60urk+L3dYMPHz58+PDt+DtLd9Dvfv87cVxjdA2OoUOG0J// /D9UWVmZcL+/8ff2Mpr3YYXY1pglz1cwOjbOJEXKH763fL9P2/7YP1+XSuPp 68y6A1JZ6MX49+C07zPov+ql+OGnjr9tXy3dOyFXGlcRa5P8sPBYUnyn44cP Hz58+OnjFxdvp1/96leqsY1Dr76aRtw7gk6cOOHq+LtDYZqxapfq7zF/3D9l A1XVNCXcdzp++Knri+MfA33yDZU4c+9Yzj+rDsDiMFOccpfv8/mk/qtO+E7H Dz+1/D2V9TRqQp7UlzU2Vn/F+sN6Lg3jhw8fPnz4qe0XFRXRz//Pz1VzqV5z zTXC59rTp08l3JcP9C/+jq4eyl5Soporhz8em7GJautbE+6r8029nz98Z32p 36Vd3yCZ8hBjzPC41TVGB4yuZS72Y+Xo1fjhp55/qPoi+SauF+qQmdF+M/xv 14K1+yncq7863eKHDx8+fPip52/csJF+8pOfyGs3Rh7DrhtGDzzwANWerUm4 b5a2L/G3tHXTy/OLdX9/n5pdRPWNHQn3rQ64/ecP3x0+77vqU7Sb2fWNUzCL c2YZMvV/DW/c7E7c4/t18xB5K374qemfONtI90/ZGO3DmiONv3ht9W4KhVnC fafjhw8fPnz4qeHn5uTQ3//93wvtjLF64yeu/wQ9/vjjVFd3XnlRQnzrDO3H 39DUQc++vkXV5sj//r44b1ukXtmVcF97MFV+/vDd5Yvzhgb65DOmTcc0aZjR GdWdmhrShWb37E6ftz3yfsBejR9+6vo1F1ro4RmbVHOG83EYk5fvFMZmJNrX A+Sp8ocPHz58+CZ+ZP+DDz6kv/3O30r1Rt5X9ZOf/BQ9++wz1HDxQmJ97ekr jP9cQys9NnOzML+qst0x+60SauvscV/5w4dv4vM2M39A0W4W19en0SW0saku iXO97rQLfXEeIvPxj4n2nY4ffmr79Zfa6YnZmxXre4iPMQuLqam1O+3jhw8f Pnz47vF7e3vp3XffpW9885vy+MZBGfTpGz9Nf3n5JWpqakq5+KtrLtNDUwtU bY58DvRpb5dRd09Pwn3DPF3684fvft/nDwh1H7u+PhnT7DPVYW16ZnVSkYjp 8hWf3eoL9XCh/6o344ef+v6lli56fs5W4TvRu6LfjQpj+WcWUNW5ywn3lYm8 WP7w4cOH73U/HOqhZcuX0de++lWxj2qG+PjcZ2+iceOyqLm5OaF+ouIv2V9L I7PzpD6rmWPFcY9z3t9LvWGmysbLP3/4qePztke53Sy+r7oDE9/stuxuTPtC d8B9vl+xfocX44efHn5be4hefnN7tA+r+DeOfz86KvJ3b8eB2oT7uus9Vv7w 4cOH70U/FArRW4sW0fA771Stw3HLzbfSpEmTIn+b2hLqG14/APH3MkbvbDwi jAmJ9e2JfTe7NHhQ0x/Ruz9/+Knn+7XrFtr1rRLF/j2wvsfCFHuW17rMV5Wj B+OHnz5+Z1eYpr1dKv2tU/ZnXV1QKeafxvHDhw8fPvzk+F3dXTR37ly6/fbb o/XGDOH587d9kWbMmEEdHfq5SFMl/taOEE2N/C3l63PE5lmN/T19v7Ay4b7T 8cNPb5/3XfVpx+1Z+KZ5CteYi3HvxfJyG+XhsO/3+TTzrybXdzp++GnmR/bf 3VgZ/XuXo1rbePrK8kgdUzNWI93ihw8fPnz4CfN5vXDWrFn0hc9/QVVv/Ku/ uoPeeP116urqUl+dYvHXXmilp2cXRefHyRGe+d9T3pdn+76ahPsGOZifhA+/ H77UbmbbZ0YHTQ4x9cE492eajJm8cJHPx5EG+PqPDvnGh+DDvzJ/+75aGjUh P1KHDEbnihPrkM/N2UJ1F9sT7usPeKv84cOHDz+d/NbWVpo2bRrdfPPNYh/V 6Jyqd/71X9OC+fOpOxRKqG921UDGv6eynvyT8oV2R2le87E5wryr1bWXE+6r Xrns5w8/fXyfpv9qPJ9pE5rek9ndmZ23OsL0ey7zeTtuwGT+VS/EDz99/era Jnp0xibVWlX8cd+UDXTgREPCfafjhw8fPnz4V+Zfbr5ME7Mn0k033SSNb+SP r37ta7R4yWIK94ZVVwy0b33e6oh9n79ct/W4tCaHNFdO5HnC4hJqadXUjQfY N9rc8vOHn36+nXUnrH1lIIp9g/jUOdgrAPX9GqV1hy/Pv+qM73T88NPbb2rp pKxFxbrxkPeOz6X8HScT7jsdP3z48OHD77vf2NhI48aOpU/deKPYRzXa3vg3 f/M39PbbK4R1OhLp6/LSXWe+9cXvDvXQ7NW7hfEemYo5cnhdcnHOAeoJ9xpe N1C+0/HD954f8MfmX7Xpm8Zh4hoeNTnL5POqFMxOOTrri/2AA475ZhJ8+APl 879/Cz6sEPqw8v6scl0ySG+u3Uc9Pb3KSwbcly/1ZvnDhw8ffqr4Fy5coBdf fJFuuOEGaWwjf/zd332X3lv9ni6XVI7/QmMHvTBvm6p/Dm97HDk+SAVlpxLu 6/KyPAof/sD4/oBfGLvXF1+bt9UV5rmQPE2P7o3E3vVu8v1+X9x23ET6TscP 3zt+cHs1jRgvz0OeGf1bmbVoOzW3dllfPAC+0/HDhw8fftr6l2qITpVFHqVE jaf77NedP09PP/00XXf9dap+qj/8wQ9o7dp17o+/j/7hkxfp/qkb5PbGaJ/V B6cV0JFTlxLu27oIPvwE+PK4Pfu+Pi9mfkx3c/ZylPaY9Z25xed1x1g93Ivx w/eWv/9EgzD+MfY9a2y8x2MzN1F1bXPCfXVq75U/fPjw4Q+Y391GtGU20Ws/ JDZ2MNHYQeLzmMjjtR8TFUXOdevX0VBaZ87W0KOPPUrXXDtMWruRP//4xz+m YF7Q3n2kWPnnl54UxnBkata6emn+NrrU1Jk6P3/48Pvhi/PnqNedsO8zg12j WNRZMX0y83wtN/f48jhSb8YP33t+3cU2evaNLar1kPl3r3x+8h37axPuOx0/ fPjw4ae8f+4A0fTvExszRKwvRuqO0nO0DinUJWd+j6j2gC73kydP0v333U9X X321VGfkj3/8+c9pc2FhfN8qLsvNufLnYzkWrtun+Lsn//2bs2YPhULhhPq6 dKn8+wc/ZX15/Q77vun5OFbf7kyd2ixmt/hi+6NV/9X0jh++N/22rh6atrJM +u41c5z8XezqgkrFe0Z6xg8fPnz4KevXHiSacKtcZxwj1hl5XZLx/chD3I/W LXnac2Id8vjx4zRq9GgaetVQVT/Vf/qnf6bi4mJ7vs27dVP5N7bKc8mp5pMb H6SPi08k3Nen0+/Dh58MX2h/DPht+8av1Gd0d8p0O5Z5G59zty/Vwz0aP3wP +5FK4jsbK6VxkHw+ndi85ZOXl1JTS3difc0Zz5U/fPjw4ffV531Wp/99tM44 KFpHVOzzemSsDTLan5Uf75n8HfJl3kVDhgxV9VP9zW9+Q2VlpakTfz/8nQfO 0ehX8lX1Rt7mGJi8gfYda0i4H/8K+PCT5/M6j3rdwni+xop7b2Z3qZ/jR/Ui +lrf5ulO3x+IP39OOscPH37Jvlqh76py7nL+eGDaRtp7tC7t44cPHz78VPFp 6+xo39RBinbHWJuj3A4Za5dksfpk5PXLP4+NccygP/zhD7S3Yk+ffafj76s/ f22FsDaHWHfMkebJefb1LXTuYmvCfaNcUvn3D37q+2bj9uz4xnfDzHMyOaE9 zFTPzDCN23yfMP9qwDHf6fjhw+dbdU0TPTxzk9AGmSnNqyP+nV0RPEShHv1a X+kUP3z48OGnhP/qj6P1Qnmco9jmGG1vjLZFynPpDJLSVD86lP7rv/6LDh48 2H/f5LDbyr+5vYuem7tN+l40M9rmyJ+nryyjjq6etI4fPnwzP9bvsi++PA6T 6c4ZuqoMmTIDPWCKK1K50Pf7fFI7rhfjhw8/tjW2dtOkZTtUcwsIYyMjjxfm bqWaupaE+k7HDx8+fPiu9htPE3t5qDw3zthoPfLlIXJdckx0HKTUt3Ww1LdV uEa5tkeqxW/T33f8Aj00vUDqSxNrc+TrH49ZWCy3z6Rp/PDhW/n+2PhH275Z plYHmEU+ilLQ79i/AYd9Xn/0q9bR9Fb88OGrXkbeZPhcAvdOkMdCxuqRo17J o4Ky09KF6Rg/fPjw4bvWP10WrScqxjpG64Us2s4ord8xZpA0LlLVLsnXh+yv rz2nOu98+fN+MsvyDkltjbG6Y6z/Kj+XSF+dTRr+/sFPC19sfwz0w2cGqQwu tbgfpkvKdHvmd+4un9fBfdF5iLwYP3z4Rv7J2sv09KxCqf1RuV7kjHfKqbm9 2yiHtIkfPnz48F3nny6V2xFj/VNVz4Ok9ke5HVJulxTqk5E6aMrGb+GfrW+m 5+ZuVbQ55grjMfjfsGde30L7jtUn1Ffupe3vH/y08H2K+XNs+VbpmN43vQHd tUavNVEwTVIX+UI93Cevo+m1+OHDN/M7u3towdp9qnWyhP2sID06vYAOVl9M 6/jhw4cP31X+pbOReuLV0rw5yrqiPM5RMfeqpv+qcJzn0V/f6fgNPH55/o6T NGoCnwNO7DcjrkmVQ/eOD9K6ouNCv5q0+PnDhz8AvrzuRF994xMa0TKNVSpm eFpxwGW+TxpH6oyvTQEfvtt8Pvd5YNJ6oQ/Q3dF5dcR57IK0uuAwhXt71fmk Wfzw4cOH7waf14M6Xvkbed3Hsdp5Vwepx0YKdUZF3XHmD6/Ij5cq2eXf3NpJ U5aXSn1jlN91Pj27kKrONiXUN0yTxr9/8NPDD/j8qnUn7PgWNxTnYv0JWw7j /7dI6QKf91+V6+HJ9+1lCh++s37D5Q4av2iHao2P2PPLb26juovtCfXjHzG+ DD58+PBT3ef/e//99+lv//Zvacw/Xq9bn0Nqf5TmY43VIwdJ4yWF41tm98uP f8T4skSW/+4j5+mBqRuk9RyVazsuXLePurrCafPzhw9/IH0+9pGv4dEvn2mO mNSJjS5nJvnJz4yku2Ymt+UiX1hHU9F/Ndm++Nq75Q8/dXzezLim6CiNyJLn 1In93fZPXE9b95xNqC/verP84cOH7y2/Nxymd1a+Q9/85jdp0KAMYe3GG67O oHNPXRudM2eIYg3IIdJ8OXL9crC8hseM7xN1d6RU/EZ+V3cPLf74gOrvT+y7 zPunrKeyw7Vp8/OHDz8Rvs+k/6qlb5CMmb2Kk2WfNhf7qnL0YPzw4ffVP3b6 Ej3x6mZdWyT/ez5nzR7q6OxJqN/nDT58+PBTyO8J9dCyZcvoK1/9ilBnjD0+ +9nPUvaECdR+vJRo/K3Suo7yWo9y+2OsD6tQd8yOpK09aNt3On4zn8/r9uwb W6S/Ocq/PxOX7aSm5q6E+v3a4MN3me/XjNvrnx83IM1xo/yZ7pAyC+vbcN4P +NX9gL0WP3z4/fFbO7pp9nt7pDnS+eOu6NrMj0fqlhXCXHfpGz98+PDhD7Qf 6uqmhQsX0fDhwylDUW+89ZbP09Qpk6mtrU2+lNcHZ/ydYs5VZTukou2Rtzue 09cd3Ri/2QWslyi3+LgwH05sDH5sbQ6+1lRucRX1RttRUvnnDx9+Mnyx3mPQ 79L0hpmqmdIomZVvXQ5mV7nf9xvMY+ul+OHDvxJ/y+4zQt/Ve6R6JJ/HQNzn bZF8foNE+sY5eqf84cOHn/p+V2cXvTFnLt3+pdtV7Y2f/+IXaebMmdTRadCu xrfuSH2y6A2iV38oz58Ta3N89ceRc7PFPqsuj9/KP9fQRhMW79DVG/kzb4s8 fa4lob5ZeuOr4cN3v+8LBNTtZnF83RFmkpJpXvdzU2bDjM64xBfacYX1H70Z P3z4V+qfu9hGYxYUC/PfafsUBSZtoE27TyfUN9q8VP7w4cNPTb+9vZ1efe1V +vwXbqVBGYOibY4Z9Fd/9SWa88YbFAp1k62NN9DF+q9+9BxR41lbvvFx7bm+ bwNR/j09vfRB0VEaOSEY/bsi93Xh6zouyT1A3aFwwvwr2eDDd7Pv92nbH/vn 61JpPH2dWXdAKgu9GP8enPZ9Bv1XvRQ/fPgD4YfDvbSq4KjQv0ieCy9HqktO eKuEai+0Jsx3On748OHDt+u3tbXS1KnT6HM336xqb/zynX9NCxYupFBPqG9+ pP4ordGx5fW4vukduqT8+drCz8wuEuqJsX4t4trDOfTQ1ALaU1mf0j9/+PCd 9MXxj4E++YZKnLl3LOefVQdgcZgpTrnL9/l8Uv9VJ3yn44cPfyD9M+ebadyb 28W+RmNjbZHi3/6Rkbrle4WVkc9GvYos0it++PDhwzfzmy430YTsbPrMZz4j tDfyOiNvc/z6N75OS5YuFeZb7ZfP44itCcn7s5r4Tscfz29t76YFH1ZIbY13 Rdd1jP0dmfFOOTW3dkm5DbSv3dLt9w8+fL5J/S7t+gbJlIcYY4bHra4xOmB0 LXOxHytHr8YPH/5A+zyv9aUnyTcxX9HfSO7b+szsLXT45MW0jR8+fPjwlccu XbxEY8aMoRs/daOqvfHb3/42rXxnJYUV9cZ++dH2R2H8o3KNR3JH/Hb8rbvP 0v1TN0rrOErjICL7j0zfRGWHzqfszx8+fDf5vO+qT9FuZtc3TsEszpllyNT/ Nbxxsztxj+/XzUPkrfjhw0+Uf/FyJ726apc03wH/TBCbAyFTWON5P7W1dyfM dzp++PDhe9u/cOECPf/88/TJG24Q64zRNsfvfe979P6a96Of2wbA54vzjh0U 7b86R/KNN3eVf21DK2Uv0c6PEx3zGDm2NPcgdXSGEuY7HT98+Mn2xXlDA33y GdOmY5o0zOiM6k5NDelCs3t2p8/bHnk/YK/GDx9+ov3yQ+fpkZkF0voecn0y hx6cvpFK9p1L6/jhw4fvLf/c+XP09FNP0XXXXa+qN/7ohz+kjz76eOB97gpr dujbH+Uk7ir/UDgsjGcYOSGfMsfK4+Xvjs7f/eL8bVRVczklf/7w4bvZ521m /oCi3Syur0+jS2hjU10S53rdaRf64jxE5uMfE+07HT98+MnwO7vCtDT3EI0Y H1srMqjq1zp5eSnVNbYnzJcOeLT84cOHn3j/7Nmz9Mgjj9C1114r9VHl4xt/ 8pP/Rfl5+YnzY/OvKubPcXP5H6i6SE/PKpLe/5V9Vv0T8ym4vYp6e3ut83Th zx8+/FTwff6AUPex6+uTMc0+Ux3WpmdWJxWJmC5f8dmtvlAPF/qvejN++PCT 6fPvk1+Yu01aI1LsryQ+Rmfn0cfFJygc1t9vusQPHz789PNPnjxJ9wfuo6HX XBVdg0Nsc/z5//k5FRVuTnz8vP44ZjAx3odVN/+qe8q/ub2b5n1QYfj+z+uO M1eWU0NTZ8r9/OHDTyWftz3K7WbxfdUdmPhmt2V3Y9oXugPu8/2K9Tu8GD98 +Mn2ef0wZ9sJGhWpL8a+c747K0h3Rednf3HeNjp2ujFhvtPxw4cPPz38Y8eO 0ciRI+mqoUNV8+L8yz/9MxUXlyTcly9m4tw5Y6Ltjy4rf/4JtnDPGbpv8gbV GsGx9/9HZm6mssN1CfOdjh8+fDf5fu26hXZ9q0Sx/rGs77EwxZ7ltS7zVeXo wfjhw3fKr2vsoCnLSxV9mHJU87XOfm831V/qSJivP+et8ocPH37//MOHD9Pd 99xNQ4YMUdQbM+j//eu/Uml5WcJ9/aW98vjHba9bJEyQr9jTXnv01CUat7BE eo8X58kRH3w8w7K8Q9TZ1ZNSP3/48FPZ531Xfdpxexa+aZ66+b9sXhc7aXm5 jfJw2Pf7fJr5V5PrOx0/fPhO+9srauiBqRsV30vnSPO23zshSMvzDwnrgiXK dzp++PDhp4a/b98++u//+m8aPHiwYnzjYPq3f/s32rt3b8J93UnpoR//6HT5 11xoEdZrjK3lGJt/O9bm+PL8YqquaUqY73T88OG71ZfazWz7zOigySGmPhjn /kyTMZMXLvL5ONIAX//RId/4EHz43vJbOrppwbp90c8ZOdL87cL31GNzKDBp PX28/QSFepRzKqRP/PDhw3evv2vXLqGOmJGRIdUbhwzJoP/+7/+mAwcPJtw3 3hTxR/uvius/zjG4Lnnlf6mlmxZ+tJ9GZAWFcQmZ0XEJse8Efa/kU97OaupV zAfp9p8/fPjp5Ps0/Vfj+Uyb0PSezO7O7LzVEYP3B5f5vB03YDL/qhfihw/f TT4f9zhmYYliHbAc4TNHpjBfaw49NnMTFVfURD57pGf88OHDd4+/Y0cJ/ev/ +1fKGCTXG4cOHUp33303VR49lnDfdvzC+h2x9R9n61Iko/w7u0K0enMljX4l L9qXRDlHTnRMwurddLG5M2V+/vDhp6NvZ90Ja18ZiGLfID51DvYKQH2/Rmnd 4cvzrzrjOx0/fPiu8yOP0gPn6anZhXIbZLT/U+yzyIvzttKhEw2J8TWXeK78 4cP3uL9t6zb653/5Z3ku1Uj98aqrr6JRo0ZSVVVVwv0+xy+0Pw6R+q8m0+8J 99L60pPCGATlWPbMLHmt3wmLS+jE2aaE+EZbqv/+wYefSD/gj82/atM3jcPE NTxqcpbJ51UpmJ1ydNYX+wEHHPPNJPjwve7zzyX5O07S/VM2RMfM5ET7QkUf kf2pb5fR6fPNCfH1R71V/vDhe80v2LSJfvazn6nmxLnmmqvpvvvuo9OnTyXc 73f80fZH1fodifYjL0sOnqMnX9ss1ROFsQeK+XGem7OVdlfWp8zPHz58L/j+ gF8Yu9cXX5u31RXmuZA8TY/20jhZudH3+31x23ET6TsdP3z4bvc7OkP0zsZK GpmdF/1cEhQ+p9wVrU/ycTZvrttPTc0Gc+wMgK9N6bXyhw8/3f28vDz6yY9/ LK3byJ+HDRtGjzzyCJ2rrU24b2ez9KX5VyOPotnaSwfcP3Sygf6yoFi1Foc4 xkCsRz48o0BYr4MpbtLNP3/48L3ky+P27Pv6vJj5Md3N2ctR2mPWd+YWn9cd Y/VwL8YPH36q+A1NHTTvwwoaIX1eia0dKfaXGvVKPq3ZXEkdwlzw6Rc/fPjw B87na16s++gj+t73/z5aZxTHON7wiU/QU08+SfX19Qn1BzT+SCxMmH91ENHW NxLmn6lvoWlvlxq+//Jj/knrad2249TdHXb9zx8+fK/64vw56nUn7PvMYNco FnVWTJ/MPF/LzT2+PI7Um/HDh59q/qlzl2nisp2qtSLF+VrF9sgHp22k4PZq 6uwKJ8S3FZflBh8+fKd81humNWvW0He+8x3FGhyD6JOf/CS9+PwLdPHixdSL nyfidccxyvU7Bs5vvNwpzI89QjGXqvIxckJedJ2lrjh2/3zpmFvLHz78FPLl 9Tvs+6bn41h9uzN1arOY3eKL7Y9W/VfTO3748FPVrzhWT8/P3SrN8SfPtSPu 3zdlA31QdIza20MJ8e2kTufyhw8/lfxwpN64cuVK+sbXv6Hqp3rjpz9NY8aM oaamywn19en0+/32o+s/CnPoKPqvXql/qbmTVqw/TKOy86Sx5/co+39EXr+x Zi/VX2o3vFs3/fzhw4cvbkL7Y8Bv2zd+pT6ju1Om27HM2/icu32pHu7R+OHD T2WfryFWuOesMN5Gnu9POf9fDvkmrqeVG45QU0t32sUPHz58a7+nJ0xLliyh r3zlq9KcOPz55s99jrKzs6mlpSWhvr0rrtAX6o+DxPqj0P54Zf65i220aN1+ oV1Rfi+Vxzfy/YlLd1B1bZNpflfiq3dToPzhw08hn9d51OsWxvM1Vtx7M7tL /Rw/qhfR1/o2T3f6/kD8+XPSOX748NPB7wqFaV3RMfJH6oqZWZHPOWPleiQf n8Pn2+GfhZbkHqALTW1pFz98+PDVfnd3iBYsWEDD7xyumE91EN166y00dcpU amtrS6hvlctAx8+E+XN4/ZHPvzqn3/6p2ss0+709Qn1ROa7xHkXfjufnbaWK ow0Gl7vr5w8fPnzjXMzG7dnxje+GmedkckJ7mKmemWEat/k+Yf7VgGO+0/HD h59OfkdnN3245Rg9NHWD9J15pmKuB/7d+b3jgzR/bQXVXmhLu/jhw/e639HZ SXPmvE6333671NbIH7fddhu99tqr1Bk5n0jfkfgjHxhV8+f00T98soEmryiN vl/KfTfk/hy59NjMQtq2t0Y9HssgZ6d//vDhw7f2Y/0u++LL/+6Z7pyhq36D ItM3DuGcGa5I5ULf7/NJ7bhejB8+/HT0eXtkcEc1PTJ9k6LPFf9OPSiNj+Sf kWa/u4tO1l4ecN9o81L5w4efbL+9o4NmzpxJn//851XtjXfccUekPjmHurpC CfXjbQmNv5cJ4x/F9TvesO3vPnKeshZtl/ppZCrGkcfmVn32jS1UtOcMhXt6 zX2n44cPH75t3x8b/2jbN8vU6gCzyEdRCvod+zfgsM/rj37VOpreih8+/HT2 e8K9tHnXaXpyVnSN6yz5+3Rel4zVK6esKKUjpy4NuB93S/Pyhw8/0X5rSytN njyZPve5z6rmxfnKl/+aFi5cSKGQfv6sgfSdjl/Y4e2PYxTzr1r4vZG65vZ9 NfTc3G3S+5+yf2ps/y8LtlLpofPC0Mq4vvbePfT7Bx9+qvli+2OgHz4zSGVw qcX9MF1Sptszv3N3+bwO7ovOQ+TF+OHD94IvfGaqqKHn52yJjuuRv18Xv3eP 1CXH5tCExSVUcfzCgPvatF4rf/jwB9q/fPkyjR8/nm76zKelNTj489e//nVa umwZhcNG6/ekT/zKkyy6fgfj/Vcj9UcjPxQKU0HZKXrstULT9z9+7JWlO+nA iQt98rV7Xvj9gw8/VX2fYv4cW75VOqb3TW9Ad63Ra00UTJPURb5QD/fJ62h6 LX748L3k88euw3U09s3tuvU+lN/D/2XeNtpacZa6e8IG+fffN77GO+UPH/6V +pcuNdLLL79Mn/rUjar5VL/97W/Tqnfepd7esDqTNIvf8DXPQ2p/nK062drW TR8XH6cHpxWovjtTvf9Fjs9cVU7HzzT2z1e9Tu/fP/jwU92X153oq298QiNa prFKxQxPKw64zPdJ40id8bUp4MOHnxyff8eevWSHPN4nK9avVf5sxdeQ5Gt/ nL/Ylnbxw4efSn79hXp67rnn6BOfuF6qN/I2x+9973v0/vvvEyOz/l7pEb+l L63/OEga/8jrgvM+qKBR2UFd/9TYOMcR4/OENGfrW6/MV57xYvnDh59CfsDn V607Yce3uKE4F+tP2HIYEbNK6QKf91+V6+HJ9+1lCh8+/ET5/HPW9JVl0pof d2cp2yWD0vfzU5aXCm2XvC9sOsUPH76b/draWnriySfo+uuuj/ZTFdsbf/jD H9LHH3+ccN/p+G35sfbHSB3y5DvZ9MK8rdH3MvE9TB7zLT6PeiWfluYepAuX OwbGN7nMM+UPH34K+XzsI1/Do18+0xwxqRMbXc5M8pOfGUl3zUxuy0W+sI6m ov9qsn3xtXfLHz58t/inz7fQG+/toRFZubp+XnKdMpcenbGJ1m45Ro2tnQPq m24eKX/48JXbmTNn6OGHHqJrr7lW1U/1pz/937Rh/fqE+7r8Kbnx98U/fe4y sTFDhDrk2qxHVetuxNZx5G2O90/aQKsLKqmprWtAffnZm+UPH34q+T6T/quW vkEyZvYqTpZ92lzsq8rRg/HDhw9f/epCUwe9u7GSHpi6UVVvlPp+RY/xdSRf X72bDlVfHFDfLG2/N/jwU8ivPllNAX+Arr76amkuVf74xS9+QYWFhQn3zdL2 e0uQH+rppeKKGhq7aDuNiLw3sej6HWvHPa7pp5pDT79eRHnbT1JHl3ou2lSO Hz58+P3z/Zpxe/3z4wakOW6UP9MdUmZhfRvO+wG/uh+w1+KHDx++8aFwuJdK 9tfS+Le2R9shc1Tf5yvXlXzm9S2UV1JNbZ2htIkfPvxk+seOHaORI+6loUOv Us2n+i//8i+0vbgk4b7lBS4qfz4W++31h+m+KRul9x+h/hjtv/rhuMek77de e283HaxqGFBfnc575Q8ffqr7Yr3HoN+l6Q0zVTOlUTIr37oczK5yv+83mMfW S/HDhw8/vn+mroWW5B4k38R8Vb1ROUZSHFeURws/2kfVNZcH1Hc6fvjwE+Uf PnSI7vrzXTR4yFCpvTEjI4N++9vfUll5ecJ97TE3ln+4l1HZ4TqatGwnZSrW rY29//DXO8b9D5WM+xMtnjpT6F/f1NI5YL7T8cOHD3/gfF8goG43i+PrjjCT lEzzup+bMhtmdMYlvtCOK6z/6M344cOHb9/v7OJrqJ2mF6Jrb9+tHCuZpZ4X /y8LiilvezVdalaMNUrx+OHDHyh/374K+s///M9IvXGwWG+MPAYPyqD/+Pc/ UkXF3oT7Tsdvx69taKU1myrp0ekFijojfwRV7z/8PWfa22W050i9en6vFI8f Pnz4A+/7fdr2x/75ulQaT19n1h2QykIvxr8Hp32fQf9VL8UPHz78/vnHTjXS 3A8qaOSEPM1nu9i8FeIc+bxeOXHpTirac5baOnsGzHc6fvjw++Pv2rWL/vCH P9DgjMHS2MYhQ4bQn/70Jzp88FDaxx/Pb2juopztVcIatPeMC2rGXqv7zT8w bSO9s7GSLjS2p0388OHDT6wvjn8M9Mk3VOLMvWM9Uz3TPJsdZopT7vJ9Pp/U f9UJ3+n44cOHf2V+S5v4ee/J1wrV87WOjbVFyp/5RmYHada7u6ns8HkKhcNp ET98+Hb8ku0l9Ovf/FqqM/L2xqGRemPmPffQ0WPHEu4b5ueS8m/p6KaCXacp e3FJtB+D+J5xV3TtIOX7CH9MiKQr2V9DPT1sQHzzCL1R/vDhe8mX+l3a9Q2S KQ8xxgyPW11jdMDoWuZiP1aOXo0fPnz4A+P3Rvb3HqunmSvLaERWUPV5T7kW SOyzoH/SBnpz3X46WN1A4d7eK/bNrvVK+cN3p1+0ZQv931/+X9XajVdffRWN Gj2aqqurE+47Hb+Z39kdppJ9tTT9nTJhzSDlOkF3Z8n94GPzPQcmraelwYNU U986IL7T8cOHD98Zn/dd9Snazez6ximYxTmzDJn6v4Y3bnYn7vH9unmIvBU/ fPjwB95vbumk/B3VNGZhsdT2KI+VjPZrVfRNe2j6Jlqx4TBV1zQNiC8e9m75 w3feL9i4kX72jz+T2xsjj2uuvYYeeOB+YW3HRPtOx2/k9/Qy2lN5nuas2Uuj s/NVfVPV8zoHhfcIPofq1BVlwjodXaHwFfvGAXmn/OHDh8+i84YG+uQzpk3H NGmY0RnVnZoa0oVm9+xOn7c98n7AXo0fPnz4ifXrLrbRh1uO0tOzi+Q2BaE+ KT6EuTDGyuMl+VptHxQdo5qG1gHxpdMeLX/4yfWDwSD96Mc/iq6/IbY3Xnf9 dfToo4/S+XPnEu6bbU6VP5/P5vDJi7Too/10/5QNcf/98+fxb5XQxvKT1NLW nfLxw4cP310+bzPzBxTtZnF9fRpdQhub6pI41+tOu9AX5yEyH/+YaN/p+OHD h588/+S5JmHttodnbFL1a1X2WYv1b+WfMZ99fSut3lwprQeS6vHDT0+ffzZZ u24tff/731e1N17/ievp6aefpvr6C2kdv3br7gnT7sp6enPdPnpo6kZpHpzY /Dd3SX0P5H//z8/bSjnbqqihqeOKfcPTHip/+PDhm/s+f0Co+9j19cmYZp+p DmvTM6uTikRMl6/47FZfqIcL/Ve9GT98+PCT7/MjfF1v/vmSj2uK9WmV524N ql7z84/MLBDWoNx//AL1hHtJt6VQ/PDTw2e9vfTu6tX0ne98R5oTh7c7fupT n6IXX3qBLl66mFBfm8jJ8m9r76atFWeF+bF8r+QLdcW7FXPhiHMxB6PP4rEn XttM7206Qmfrmq/Ydzp++PDhp4bP2x7ldrP4vuoOTHyz27K7Me0L3QH3+X7F +h1ejB8+fPjO+j09vVR+pI5eXb2bRmUHpfky7lH1dVW3Vfgn5dPsyOfUrXvO UmNL1xX5hvffjw2+d/xwOExvr3ibvvGNb0TnxRHbGz/zmc/QuHHj6HJjU1rH H9vONbRR3vYqmrhkB40YH5TriWNzo22OsXHP8lxavD1yWd5BOn6mUWWmYvzw 4cNPPd+vXbfQrm+VKNY/lvU9FqbYs7zWZb6qHD0YP3z48N3j8/UheZ2QrwXO 1/rg82jcrZubUTkXj/j8wryt9N6mo3T01EUKW83J7fL44bvb7+kJ0+LFi+nL X/6y0NYY66f62c99liZOnEQtLc1pHX93qJcqjtdH6n+H6MlZhdK/v7vG5ajq i/co/r3yx4NTNtKba/cJfQd6zf59pkD88OHDT32f9131acftWfimeQrXmItx 78Xychvl4bDv9/k0868m13c6fvjw4bvT7+zqoZL9tTT7vd3kn7g+OjdjjmIO HuUjR6pn8v6wb0Su2bL3DF1q7kzZ+OG7xw91d9P8+fPpjjvuUI1vvPWWW2na 1OnU0d6eUN/0ZMLjZ3T6fDPlba+mKStKaVR2Xtx/f7FzvG/qivxDdKT6IoV7 TQzXxw8fPvx086V2M9s+MzpocoipD8a5P9NkzOSFi3w+jjTA1390yDc+BB8+ fPjyS97Hdd/xemH846MzNqnGUKnHTsbaQeRxlM+9sZWW5x8U5vPo6AylZPzw nfE7Oztp9qzZdNttt6nqjfz17NmvCefTLf66S21UtOsMvfHeHnqAz30zNoe0 c92Y/ft7cd42Ye7kU5E6Z6rGDx8+/PT2fZr+q/F8pk1oek9md2d23uoI0++5 zOftuAGT+Ve9ED98+PBTzz95rpnWbT1BWYu3S+Ou5LXjcqQ2EeXx2FrkL7+5 nVZtqBTqox2dPf3yjc94p/zT3W9vb6fpM2bQrbfeEp0TR1yHg7c/zps/j7q7 u9Mm/qaWTirZf05YX+OJVzfr/y1lxdZqzZH+DcX+PY16JY+mrSyjgrLTBvOm pkb88OHD95ZvZ90Ja18ZiGLfID51DvYKQH2/Rmnd4cvzrzrjOx0/fPjwU9tv 7wjRzoPnaMHaffTwtAJ5/Y8sef4d7Xis2LERkWMvzd9Gy/MOUdmhc9Tc0p1y 8cMfOL+luYUmTZpEn/vs56S5VHm98ctf/gq9tfgt6ukJJdRPRvz1jR1UXHGW 3ozUF5+eXaj495FDmco2RkV/VPnfTw49OauIlgYPUMXRegqFwn329XG45+cP Hz789PcD/tj8qzZ90zhMXMOjJmeZfF6VgtkpR2d9sR9wwDHfTIIPHz78vvuM TtZepnVbj9OEt0ooc0KevK6kMO9OUPFZWO7nqnw8PbuIFq7bJ8zjc66hXRFV KsQPvz/+5cuXKSsriz79mc+o+ql+4xvfpOXLlwnzraZi/KEwo6qay7R+RzW9 sWa3tO6q1e9/bO1VcT9I901eT6+t3k2bSk9R3UX9OE83xw8fPnz4Wt8f8Atj 9/ria/O2usI8F5Kn6dFeGicrN/p+vy9uO24ifafjhw8ffvr6Xd09tPfoBXp7 /WF6Yd42RZtkrtxOOU7fTqmc7/WByRto2tvl9P6Wo1RxrIFa2rpt+6anPVL+ bvcvXmygl156SVivMdbWyNsd+XqO7777LvX29uqud3P8vH5Xsq9GaE8ft7CE Rk3Q1hFz4v7+j34ln6YsL6Wc7SeoOlL3jEGpED98+PDhx/PlcXv2fX1ezPyY 2RzTNu6ORf9jlYNbfF53jNXDvRg/fPjwveO3tndT2eE6WhI8JKz5kalqj1R8 nh6rqEtmyWO+MqProT/xWiHNWbOXgtur6NDJi9TW2Z0S8cMXt7r6enr22Wfo E5+4IVJnzIiuxZFB3/v+92jthx8SU9QbE+EPRPyXmrto95Hz9EHRUZr6dind P2WjtK6NuP5ijjQW2Oh7kVgf73sn5NGExSW0ZvOxyO9ygzBXVbr//OHDh+9d X5w/R73uhH2fGewaxaLOiumTmedrubnHl8eRejN++PDhe9fnYyd5++S7G49Q 1qLtNHJ8ULXeuXYM5T2qeSeV4ymD9OSszTR79W6h7+zeo3V08XJn/Pv0ePn3 x6+qrqLCoiIqijyqqqr65J87d46eePwxuu6661T9VH/0ox9Sbm6uLd9WXJZb 3+IPhxnVXmilkoPnaHVBpVBXfHBage73L1ZXvFvxfYe8Tqr8fUjglTyavHwn fbjlmLC2hjiGMXV+/vDhw4d/Jb68fod93/R8HKtvd6ZObRazW3yx/dGq/2p6 xw8fPnz4sa27p5cOn7wo1AGnrygTxn7drezzqpqDRzm/SI7hfmDyBnplcQkt DR6kTeWn6djpS0IbqFvjd6vf0tpK48aNo+F3DlfV+/hj+PDhkXNjqa21zdQ/ c+YMPfjQg3TNNdfI12YMop/97Ge0fuOGPkRkvV1p/HxuG/7dQ862EzTv/Qp6 cd5WGpmd1+/fP2E876uFNOf9PbS+9KQwNri3l6Xczx8+fPjwB8oX2h8Dftu+ 8Sv1Gd2dMt2OZd7G59ztS/Vwj8YPHz58+FZ+bUOrMF/l0txDNPbN7TRSGFMW jK6ZrlgDT1HPlF/L61Eq+xH6J+bTA5G66fNzt9Hs9/bQlr1nqaGpUzEXgHvi d9ovLy+j22+/TexnKtUbM6Q6YGz/tkia8vJdqourq6vI5/PT1Vdfrbg+g375 y1/SlqIiW/5Ax9/D2xMjv1O7D9fRx8VV9Oa6fTRm4TYaPXG9qp0wU/e7FPs9 yjH9/ePfV0xeXkrvFVYK9dCWti6bd+zenz98+PDhD6TP6zzqdQvj+Ror7r2Z 3aV+jh/Vi+hrfZunO31/IP78OekcP3z48OH3xQ+Fw8K8IhvLTwnztPI10/ka lMLn+rG54pjKsfJnf2V/WHGNBLn/q3LNBP4YnZ0XqVNupZmrdtE7Gytp867T dKC6gS40dgjtRm6IP5l+eXk5XTtsmK7NUV2XFB98/pth1w6j8l27qLLyGI0Y cS8NHTokWscUH7/+za+ppGR7wuPv6u6lmvpW2lNZT/mlJ2lZ3kGauqKUnppd GPldyTX9+Rutl6Gd/0b8XQqSb2I+Zb9VQivWH6biiho6F6mTms4tkaI/f/jw 4cMfaN9s3J4d3/humHlOJie0h5nqmRmmcZvvE+ZfDTjmOx0/fPjw4V+p3xPu peray1S050ykrnCIspdsp8Dk9dF2ImX9QD2fiTTOMlrPjLUrZSrqDrH0I7Ly 6MlZhTRx6Q56c+0+Yd4U3m55sKqBzl9sp67oWnzpUv6tra102223yfOiRuuM Gbq6pPrcsOuuo6FDBkvHMzIy6He/+51QFx2o+Fs7uunU+WZh7GxB2Wl6b9NR mvP+Xhr/VrG4BmmW3GY4ED9/vu7G1BVltKqgkkoPnovUFduol2ljGdjyt4rf 6DB8+PDhp4If63fZF18eh8l05wxdVYaM1AM5tefMcEUqF/p+n09qx/Vi/PDh w4efCJ8futDUIdQxPi4+QXP5eLb5xTQqO08xli1H1U6prF+o50KJtVvmKNo2 g1J7FJ9vk6e9b/IGen7OVqEP44K1FfRupF6zYecpKj10jg6fvES1De1C3Ue6 XxeX/7ixWaq2w7htkBnq17ze+Mc//pEqKips+eFeRs2tnXS2roX2R+rk2ytq KbijilZuOBL52e2hiUtKhLVBR2Xnm5b/PZo2RHmsYqz9OSj9zI1+/g9N3UCv LNlBS4OHaHOkXlp5+hK1dYYcKX+nf/7w4cOHnwjfHxv/aNs3y9TqALPIR1EK +h37N+Cwz+uPftU6mt6KHz58+PCT6bNIPeVgdQO9V3icpr9dRs9F6nvj39pO D0zdqOmvmKOqRyrn1czUtE0q502Rx84p27bk+WT5Od7f9qHpm+jFiP3K0p3C vLGLPj5AqwoOC3VdPtfPjgO1VHH8Ap043UhnL7RSw+VOao3UZcLh3iuK37S4 NQeGD79Dbm/MUDwUbZCGbZGRNNdfdz1t2lJKR09doopjdVSyv4Y2lp6ij7Yd p1WR+iAfczhj1S6asGg7PfP6Frp/ygaD/qKJK//HX91MU1aU0YrgQdoYKetD kd+HptZu8sLvP3z48OE76Yvtj4F++MwglcGlFvfDdEmZbs/8zt3l8zq4LzoP kRfjhw8fPny3+LytifeD3bG/ltZuOUbz1+6j7MUl9EikrqdchzLW9zHWZinW bZTzqchtlKr5Y6V+kpp6Ee83OVZf/1HWmZRzBN07IUj3TVlPj8zcRM/MLqQX 5m2jcQuLafySEqHtc/rKcpr97m56Y81emvdhBb25dj8t+mg/Lc6JPCJ1Jj4f 7YrgIaGv76TlO+nFecVCXZa3nb4aqctOfjNXNa7RaF97THvu3x97K2Hxxyt/ Xj/nbZVTlpfR4twDlFtcRbsO19HZ+hZhjl+3/v7Bhw8ffrr7PsX8ObZ8q3RM 75vegO5ao9eaKJgmqYt8oR7uk9fR9Fr88OHDh58KfihS7zh3oY0OnGigol2n hfXe531QQdlLdgjjIvm8sJlSn0r9mpV3jcvV1KWM13tQ1q3UddFYXkG5HjZW 3UdzoPxf3TvJtM9qhmIeVX0/Vnn/VyMnJix+Pn8ubzeeEqkrL/roQKSuf1yY o7ey+hI1NMXGJqbX7x98+PDhp4MvrzvRV9/4hEa0TGOVihmeVhxwme+TxpE6 42tTwIcPHz78/vnN7V105nwLVRyvpy27zwj1mqXBA0L/1AmLS+jpSD0zMGm9 bpxlrG+lcu0I7TqDsfa2e5T9MZV1MM34P/nZqE+otS/WH2Nz4ujnWpXrkup+ q8rzvxo5qU8+nxeV9yHm899OWrqT5kbq5nxuU952uL2iRpgHt/ZCK3V0hVz7 84cPHz58+NZ+wOdXrTthx7e4oTgX60/Ychj/v0VKF/i8/6pcD0++by9T+PDh w4c/UD5fg7CpuYtO1bfQkeqLVHboPBWWnxbWrV+16QgtzjkgrDnP5/zMWlQs 1Kken7lZGCc4ckKeqt6lbKeT2vey5DpnZnQOUuV5cR4ZTV11rNzu9++PLdKt 85hhVp80mWPnwfHv0vgl22nmynKa98Feoc8sXxcxuKOatuytod1HzlPlmUuR OmGbUO8W10dJTvkbZuKh3z/48OHDd8rnYx/5Gh798pnmiEmd2OhyZpKf/MxI umtmclsu8oV1NBX9V5Pti6+9W/7w4cOHn2p+OFL/5HPpXGrporqLbXS2vpWq zl6mo6cu0sHqC7T3WD3tOlwvrDVRsr+Wtu09S1v3nKGiXWeEuXk27jotzGfD H3wOGT5Okq9/MTfyWLf1uLAuyee/eLtmTKNcb8zQ1Bu17ZB3DB+e1uUPHz58 +PD75/tM+q9a+gbJmNmrOFn2aXOxrypHD8YPHz58+PDd548bN86wbVE/h46m Xhl5PW7c2Cv2B2yDDx8+fPiu8f2acXv98+MGpDlulD/THVJmYX0bzvsBv7of sNfihw8fPnz47vPb/n97d/QrR3UeAFx95G+IKyX533YHahPbaSCFvARMiBQw CnnioTH0KX0KQWmkthKyKx6QMMIg8dCEGCGFBipaCCXCSLa/6d3de3dn5pwz O9dcc2dnfyvWO3POd77fd/Y+oKOZOfvFF/WZM9/KP+vYsx/rt86cqb84GPt1 /bR9v75/Pp/Pn6K/Wvdk7rssFhyty5S5sD6//3sojRq/P8/sY7tP8+fz+Xz+ OP03rl+vH3jggcw+q8015KZ9EXv9zTdOzD/t+fP5fD7/ZP1ZVbWvm23xk5Yo REbn/B5fzTSR6xmJv7yOu/z9x/2cP5/P5/PH618/WEOeOXOm+Czk0T2uZ/72 TH39jTdP3L+XF5/P5/PH6c9n3euP9+YnUR0vXTMnDevvIhW313Da/ixz/+o+ zZ/P5/P54/YX96P++Ikn6u9+99udvVf/pv7Ot7+zfN7x/w7vWb0f/iZ2P79/ Pp/Pn4q/ev6xOpafVbbsvdO7/2x7Aj3N0egalz+bzdb3r56Gf9rz5/P5fP7u +Ddv3qyvXbt28L5av3/z/W/c74H4fD6fP3J/fd/lUD8T1myKiGx735hcQ25s jNg/+h73df58Pp/P5/P5fD5/+v7i3tVZ47rZUD8fET19pYTR/jdbeKmS8fjz ZB+i/Zo/n8/n8/l8Pp/Pn76/2je0OpYf0Y2LTkzkelqVFo31wFLN4/QX1x4X 9wHv6/z5fD6fz+fz+Xz+9P3FNbN51bhuttVPY5LAAa/WkC3jk+4R+qt9iMrP P95v/7Tnz+fz+Xw+n8/n86fvz+bVcu0z1E/DonMcreZufPR1NoIiybv6HKu/ XIcv71/dz/nz+Xw+n8/n8/n86fuLa4+b62bb/VYFBb9U1tBXdE+ShvH588bv d+zj/Pl8Pp/P5/P5fP70/Xn3dwuH+n1BR/fHxvHnEo2j3rEj81vf4x7On8/n 8/l8Pp/P50/fX9y7Ous+t9fjF3Mux5TFrbX0Dh/wfZyyP5/NOvuvfrP+ac+f z+fz+Xw+n8/nT99fXzcb7EeusdAU7cYt9RXDonAyIn/xHGm1+P3HU/LzTXw+ n8/n8/l8Pp9/cv6sc//qNj+6gcWaStWV+vtaIj0amb+4jlsV9l/dh/nz+Xw+ n8/n8/n86ftDfnei329OpHGcmV87w7AvoF1vLnYc/mb/1dPxT3v+fD6fz+fz +Xw+f/p+NT/af3WgX5xHwc22Fnpj09+KiCHf4+n6q/uAq1PzSxKfz+fz+Xw+ n8/nn5Q/r+bLZ/eO43dz940oZ6k32/R0h25JNUZ/Pp9tvY57P/3Tnj+fz+fz +Xw+n8+fvr95bm+4n+aKcltS3LCM66Por2ws/mLteLQO38f58/l8Pp/P5/P5 /On7q/1z2r87MdyPzGFuLu1UkYaV8/a+xuNvniPdz/nz+Xw+n8/n8/n86fub 3+8Y7hf7t1jHq6wdXZrzWPzV9ce++1enPX8+n8/n8/l8Pp8/fX95/bGaD/bz Z+2epNJIDnpz5/vG7R+twxfXchf3sS6fh5ytvtvVPcKrtsVvRC722Tm6Xjk/ iq0ax+v2eWPMrNFWHV43Xp1Xa5vP5/P5fD6fz+fz778/fP3VWTltXZuV1lzp Hj+tk8Pz9JrnOP15NWv8DTfvWeF49Xdu/J1mm75q/bc/+DvNqs7ftfk524zj 8/l8Pp/P5/P5/G/Iv5f1V341FuVMhY5uc/uKX+m6K5/P5/P5fD6fz+fzx+5v nsOMpC/rthJG3X6Qs9tXwhtRfD6fz+fz+Xw+n8/fAb+UtK8hevI0qkgPhhfA 5/P5fD6fz+fz+fyR+pGJGpCrkSiS0EiOypXz+Xw+n8/n8/l8Pn/Ufl9cpH6x gGRs7rwzi+iE8vl8Pp/P5/P5fD5/B/x8R0fsjemLimx3o4HP5/P5fD6fz+fz +aP3ewraMjjtGOTE4r+eSD6fz+fz+Xw+n8/nj9uPTkthTZobHoV8m8+o11VH oSw+n8/n8/l8Pp/P54/bz4RF6WxLymO9+Hw+n8/n8/l8Pp+/4/7WhJ32XP5I mpop+svg8/l8Pp/P5/P5fP7o/IOOyPGZoTm/v47SKD6fz+fz+Xw+n8/n75qf tEQhMjrn9/hqpolcD5/P5/P5fD6fz+fzd8pPojpeumZNGta1pOL2Gvh8Pp/P 5/P5fD6fPz4/q2zZe6d3/9f2BHqao9HF5/P5fD6fz+fz+fxR+5mwZlNEZNv7 xuQacmODz+fz+Xw+n8/n8/k75+cjoqevlDDa/2YLL1XC5/P5fD6fz+fz+fwx +xHduOjERK6nVWnRWA8s1czn8/l8Pp/P5/P5/N3w05gkcMCrNWTL+KSbz+fz +Xw+n8/n8/mj99Ow6BxHq7kbH32djaBI8q4++Xw+n8/n8/l8Pp+/G36rgoJf KmvoK7onSQOfz+fz+Xw+n8/n83fG7ws6uj82jj+XaBz1juXz+Xw+n8/n8/l8 /qj94rDlmHLSrbX0Dh/wffD5fD6fz+fz+Xw+f2R+5BoLTdFu3FJfMSwKJ3w+ n8/n8/l8Pp/PH60f3cBiTaXqtpm5lkiP+Hw+n8/n8/l8Pp+/Y34zUeM4k7+d YVgB7XpzsXw+n8/n8/l8Pp/PH6VfzFNwi1amNzb9rYgYMg8+n8/n8/l8Pp/P 54/N7+buG9GXe71NT3follR8Pp/P5/P5fD6fz98NPx0e5bakuGEZ10fRXxmf z+fz+Xw+n8/n83fBj8xhLlc7VaRh5by9Lz6fz+fz+Xw+n8/nj9kv9g+wjldZ tM/5fD6fz+fz+Xw+n78z/vbYSCuN5KA3d76Pz+fz+fzp+3/604f1hQsX6vMX zi8/Lxx8nj/4/N3vfrfVv3s36ueeu1yfP78ac+H8hWWOF154YbCf9u3X98/n 8/n8k/ajGz6ghnwFUeyM9Xl6zZPP5/P5/On6i73wnnvuuXo2q+r5fPGeHbzn 9UN/91D94Ycf9vr/8tvfLmMX79nhZ1VV9X/+/veD/dOeP5/P5/On6+eriXKm Qke3OVqfkY3h8/l8Pn+q/qefflpfvHj+cB1YrdeETz/9dH337t2s//7Nm/WD Dz14uOY8iK9WY1555ZWdmz+fz+fzp+VvnsOMpC/rthJG3X6Qs9tXwhtRfD6f z+dP3L9+/c31NcT1NcXZvP7Xf/v3xP/q1lf1448/voyvDq9XLo6f+dkz9d24 2zB2Z/58Pp/Pn4pfStrXED15GlWkB8ML4PP5fD5/Yv6LV37ZWj8u3mfPnq3/ ++OPW3FXXnyxcc/qbPl58eLF+tNP/3en58/n8/n8KfmRiRqQq5EoktBIjsqV 8/l8Pp8/bf/WrVv1Y489fngv6uq+1MX1xZ8980x99H//N66/Uc+qRftB/2y2 vnf17bff/tp+/rU/3z+fz+fzT8Dvi4vULxaQjM2dd2YRnVA+n8/n8yfuv/fe e8s9cBZrwtX1xcU6cV6/9tpr9WeffbbcX3W9bjy8BvmrX/3zZObP5/P5/Kn4 +Y6O2BvTFxXZ7kYDn8/n8/l74r/88q8397AerhUvHqwbL126tH5GcnZ43fHJ Jy/Vt2/fPlH/tOfP5/P5/N32ewraMjjtGOTE4r+eSD6fz+fzJ+zfvXO3/slT T7X2VT26Drk5n9fnzp1rPxt5Qn5f/7CkfD6fz+cf5W2eb6kmuodpvs1n1Ouq o1AWn8/n8/l74n/08UfL9WF1uG5s7s1aLa9JVvXrr79+3/xu/L59/3w+n8// Gn4mLEpnW1Ie68Xn8/l8/h77167+R+t642bP1Xl95cqV++6f9vz5fD6fPxV/ a8JOey5/JE3NFP1l8Pl8Pp+/H/6jjz5yuA/r6rc6qsP14wcffPCN+JmkW5v4 fD6fv8f+QUfk+MzQnN9fR2kUn8/n8/n8GzdurNeLs6ra3L968P7pT35a37lz 9776pz1/Pp/P5++en7REITI65/f4aqaJXA+fz+fz+Xvgf/755/Xff//7y2uO q31Y55vjxT2t1az+zSu/mez8+Xw+nz8tP4nqeOmaNWlY15KK22vg8/l8Pn/K /vO/+EXrucejPVhb++g8+GB9849/nOT8+Xw+n7+7flbZsvdO7/6v7Qn0NEej i8/n8/n8/fCvXr3a2C9ntlwzPvy9hw/WlM/Xs9nhM5CH++r86EeP17du3TpR /7Tnz+fz+fwd9jNhzaaIyLb3jck15MYGn8/n8/l75n/00Uf12XNnD+9Xna9+ v+Pg89q1q/WXt76qf/jDf1iuHdfryIP3iy++dGL+um1Pv38+n8/nn4yfj4ie vlLCaP+bLbxUCZ/P5/P50/Xv3L5dP/XUU+3f6jhYK16+/Ow6/t13320/B3l4 fOOtG1/bP+358/l8Pn8afkQ3LjoxketpVVo01gNLNfP5fD6fvx/+y79+efmM 49G1x8U1xu89/HD9ySf/01Jeeumf6mq22kPnaJ158eLF+i+f/+Vr+Un3nn3/ fD6fzz8JP41JAge8WkO2jE+6+Xw+n8+fuP+HP7xXV1W1fN7xaK+cxTpycd9q 1//yyy/rRx59tHV/6+L9/M9/nuTflfnz+Xw+fxp+Ghad42g1d+Ojr7MRFEne 1Sefz+fz+VP3F/vfPPbY46t7UavFmnC1Z87ly5eL/jvvvNP4XY/V70Munod8 9dVXj+2nxn59/3w+n88/Ob9VQcEvlTX0Fd2TpIHP5/P5/On6V65cWd2POttc Szz38Ln6k08+6fX/8ZdXlmvNqtr8psfZs2frP//5v47lr0/29Pvn8/l8/n3w +4KO7o+N488lGke9Y/l8Pp/Pn6B//fr1elZ1fufxYC25+A2Pbf5f//pF/YMf PLKM3/wuZFU/eelSfef2nUH+ac+fz+fz+dPyi8OWY8pJt9bSO3zA98Hn8/l8 /gT8J378RGPtuHr28fKzz3b2Lij7N27cWI+v5pt15FtvvTXIz1a/R98/n8/n 80/aj1xjoSnajVvqK4ZF4YTP5/P5fD6fz+fz+aP1oxtYrKlU3TYz1xLpEZ/P 5/P5fD6fz+fzd8xvJmocZ/K3MwwroF1vLpbP5/P5fD6fz+fz+aP0i3kKbtHK 9MamvxURQ+bB5/P5fD6fz+fz+fyx+d3cfSP6cq+36ekO3ZKKz+fz+Xw+n8/n 8/m74afDo9xW2i9uS8b1UfRXxufz+Xw+n8/n8/n8XfAjc5jL1U4VaVg5b++L z+fz+Xw+n8/n8/lj9ov9A6zjVRbtcz6fz+fz+Xw+n8/n74y/PTbSSiM56M2d 7+Pz+Xw+n8/n8/l8/m750Q0fUEO+gih2xvo8vebJ5/P5fD6fz+fz+fxd8/PV RDlToaPbHK3PyMbw+Xw+n8/n8/l8Pn/8/uY5zEj6sm4rYdTtBzm7fSW8EcXn 8/l8Pp/P5/P5/B3wS0n7GqInT6OK9GB4AXw+n8/n8/l8Pp/PH6kfmagBuRqJ IgmN5KhcOZ/P5/P5fD6fz+fzR+33xUXqFwtIxubOO7OITiifz+fz+Xw+n8/n 83fAz3d0xN6YvqjIdjca+Hw+n8/n8/l8Pp8/er+noC2D045BTiz+64nk8/l8 Pp/P5/P5fP64/ei0FNakueFRyLf5jHpddRTK4vP5fD6fz+fz+Xz+uP1MWJTO tqQ81ovP5/P5fD6fz+fz+Tvub03Yac/lj6SpmaK/DD6fz+fz+Xw+n8/nj83/ f7ewVtg= "], {{0, 303.}, {456., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{144., 144.}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{225.17187499999952`, Automatic}, ImageSizeRaw->{456., 303.}, PlotRange->{{0, 456.}, {0, 303.}}]], "Input",ExpressionUUID-> "853cdfba-40ac-47cf-bc42-ef1a89be4fba"], "\[LineSeparator]" }], "Subsubitem", CellChangeTimes->{{3.854017465665847*^9, 3.85401756923477*^9}, { 3.854017606911104*^9, 3.854017642776705*^9}, {3.854017684720883*^9, 3.854017725246677*^9}},ExpressionUUID->"c6eb453a-3485-46d3-9144-\ 2f20f0f22c49"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Convexity in higher dimensions", "Subsection", CellChangeTimes->{{3.854017778854875*^9, 3.854017784266613*^9}},ExpressionUUID->"741695c9-85b3-4b75-8c6d-\ 7736778a6485"], Cell[TextData[{ "In the examples above, we were considering the convexity of a graph ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["y", "TI"], "\[LongEqual]", StyleBox["f", "TI"], RowBox[{"(", StyleBox["x", "TI"], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "y=f(x)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "a8be83ab-b59c-491b-a604-952110231480"], "." }], "Item", CellChangeTimes->{{3.854017995108261*^9, 3.854017996582353*^9}, { 3.854018113937302*^9, 3.854018115130785*^9}},ExpressionUUID->"7768fa9b-a8e8-42c8-930b-\ 7cea9c7648ce"], Cell["\<\ The definition we used above for convexity can be generalized to higher \ dimensions, but it becomes less intuitive\ \>", "Item", CellChangeTimes->{{3.854017995108261*^9, 3.854017996582353*^9}, { 3.854018113937302*^9, 3.8540181187915993`*^9}, {3.854018216028378*^9, 3.85401823866201*^9}},ExpressionUUID->"a1ca6af6-3e75-475f-9bd1-\ 665bc6b2824b"], Cell[CellGroupData[{ Cell["\<\ Instead, we will consider what \[OpenCurlyDoubleQuote]non-convexity\ \[CloseCurlyDoubleQuote] means to get a better intuition:\ \>", "Item", CellChangeTimes->{{3.854017995108261*^9, 3.854017996582353*^9}, { 3.854018113937302*^9, 3.8540181187915993`*^9}, {3.854018216028378*^9, 3.85401828188964*^9}},ExpressionUUID->"f2c8ae61-5ad5-46e9-a31c-\ f9186673da3e"], Cell["\<\ Let\[CloseCurlyQuote]s consider the a 2D surface embedded in 3D dimensions \ parametrically:\[LineSeparator]{x[u,v], y[u,v], z[u,v]}\ \>", "Subitem", CellChangeTimes->{{3.854017995108261*^9, 3.854017996582353*^9}, { 3.854018113937302*^9, 3.8540181187915993`*^9}, {3.854018216028378*^9, 3.8540183308363447`*^9}, {3.854018548013041*^9, 3.8540185480147142`*^9}},ExpressionUUID->"b17a0696-5f56-445b-b8c0-\ e426d6073dc2"], Cell[CellGroupData[{ Cell["Spheres and ellipsoids are convex surfaces", "Subitem", CellChangeTimes->{{3.854017995108261*^9, 3.854017996582353*^9}, { 3.854018113937302*^9, 3.8540181187915993`*^9}, {3.854018216028378*^9, 3.8540183308363447`*^9}, {3.854018548623056*^9, 3.854018571428236*^9}},ExpressionUUID->"d9ff8a5b-a8eb-43f0-9ca8-\ b11483c06155"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"convexShape", "=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", "f", "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"u_", ",", "v_"}], "]"}], ":=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "u", "]"}], RowBox[{"Cos", "[", "v", "]"}]}], ",", RowBox[{ RowBox[{"Sin", "[", "u", "]"}], RowBox[{"Sin", "[", "v", "]"}]}], ",", RowBox[{"Cos", "[", "u", "]"}]}], "}"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"ParametricPlot3D", "[", RowBox[{ RowBox[{"f", "[", RowBox[{"u", ",", "v"}], "]"}], ",", RowBox[{"{", RowBox[{"u", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "]"}], "//", "Rasterize"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.854018583552822*^9, 3.8540186111872253`*^9}, { 3.8540192719774227`*^9, 3.8540192757691507`*^9}, {3.854019756574988*^9, 3.85401975821659*^9}, {3.8540257316445208`*^9, 3.854025731936611*^9}, { 3.85403296013837*^9, 3.85403296224277*^9}}, CellLabel->"In[56]:=",ExpressionUUID->"d70efb9d-a927-4b7c-82a8-083545ed53c6"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsnQd4k2Xb/nnfz9Jmr+6RNm1Z+r2v/w/EPQEBZe9RaFktUGgL3QW696aM 0ijIUkEUBARFBGUICDy4wIEoiIhb2aMz/3s8O09KKR1pe5/HdfRI0jR9EpJf T87ruu/HNC1qZNi/O3XqFOMEvoycmvBcdPTUpFFacGVMZMzsmZGhM16IjA2d GRr96LT/ATdqwX1//FenTvCyhYiIiIiIiIiIiIiIiIiIiIiIqKNq//79999/ v+S3bt++vXbt2pycnEOHDrXwURERERF1cL377rtarbZ79+7W36qtre2HlJyc 7OnpWV5e3vKHR0RERNQxlZ+f7+HhERUVJcnnbdu2mUymqqoqcPnIkSM6ne7W rVstfoxEREREHVGAuleuXHnnnXck+RwREREWFoYv19XV6fX6AwcOtOwBEhER EXVo2eLzyJEj09LS2KsPPPDAhg0bWvC4iIiIiDq6bPF52LBhWVlZ7NUHH3xw /fr1LXhcRERERB1dtvgcEhKSmJjIXvX399++fXsLHhcRERFRR5ctPhcVFQ0d OhRfvnLlioODw9mzZ1v20IiIiIg6tPh8vnr16n//+1+KosDl8+fPq1Sq3bt3 V1VVRURE9O3bt1UPk4iIiKjD6fTp00uXLsWXb926lZqa+uOPP+Kr27ZtCwgI kMlkffr0uXjxYusdIxERERERERERERERERERERERERERUXvW6dOnW/sQiIiI iIgEAmTevn17UVHRdkaE1UREREStLkxjjGX2RvYW0e1ERERERC0jlr31c5jP amKtiYiIiJpV2CGzVxvuk/nWmrCaiIiIqGklidZG5BgkBiEiIiJqKgGiFhUV SX7r3gFLYhAiIiKixoltBdr6bhP+LmKtiYiIiBoiPpZbhs/WD05YTURERCTS aST2aqvwWfSLSAxCREREZM3AVuczXyQGISIi6oCy1Qq0Kz5bHwOx1kRERK2i 27dvr127Nicn59ChQ5J3GDp0aCeebt261bhfVE8r0Bb37IHPfJFBayIiohZT bW1tP6Tk5GRPT8/y8nLr+xiNxm3btl1gVFdXd7e/pSGtQEnZG5/5IjEIERFR swqA12QyVVVVgctHjhzR6XQie/z333//z//8z/Xr1xv9K0RWs93wWSQSgxAR ETWtIiIiwsLC8GVgjPV6/YEDB/h32Lt3L4D2U0891blz5//85z8fffRRwx+8 nsHmBqoN8ZkvEoMQERHdu0aOHJmWlsZefeCBBzZs2MC/w7p16wCWjx49eunS paysLKVS+fPPPzfkketZFdhwtVE+80ViECIiosZp2LBhgLrs1QcffHD9+vX1 3L9bt24VFRV3fNj6VwU2XO0PaCQGISIiaqBCQkISExPZq/7+/iIkfo/EXn38 8cfLysrqecBGtwIl1f74zBex1kRERPWoqKho6NCh+PKVK1ccHBzOnj3Lv0NM TMxTTz2FZzYuXLggk8k+/fRTW49m7Qnv0SJ2KGoRVhMREfF1/vx5lUq1e/fu qqqqiIiIvn374tsLCgpmzJhhQUz29vYeMmRISkqKyWQCuJZ8nCZJM6zVYUlF YhAiIiILGrELCAgAxrhPnz4XL17EN7733ntr1qzBl//++2+z2ZyTk2NreGM7 OlFgcxxbh+UzXyQGISIiapwwMZqJGwRH1iLWmoiI6I5q2lagpAif6xcZtCYi IrKWCAjNBAfC54aLxCBERETN1AqUFOFMo0ViECKijqbmawVKSrSNP1HjRKw1 EVH7FmubW/gDTnjS5CKsJiJqT+L7WMLn9iQSgxARtWm1TCuwnt/ekr+uI4vE IEREbUgt2Qq0pVY/gA4rwmoiIruVnXww7eEYiEgMQkRkJ2qtVqCk7OEYiPgi MQgRUWuJb5Ds4dNnD8dAVI+ItSYiahmJYGgPbLSHYyBqoMh6cyKi5pBkK9Ae 2GgPx0DUCJEYhIioSVRUVCTpduzhY2UPx0B07yIxCBHR3Yo1Oba+28LHYy3C 5/YnYq2JiO4o1snY82fEno+NqElEWE1ExJcobbbnz4U9HxtRk4vEIER2qx07 dvj7+8vl8v79+1+4cEH03Rs3bowfP16pVHp5eZWXlzf6t1i/8+35g0D43GFF YhAi+xEAskql+vDDDysrKyMiIvr06SO6A7hxyJAh169fP3nypIuLy/79+xvx W9rc+7zNHTBRM4mwmqgVlZeXN2jQIHz56tWrDg4O586dY79bVVUF6H3s2DF8 NSEhYcqUKXf1+PW3Au1Wbe6AiVpAJAYhamFNmjQJUJe96u/vv23bNvbqmTNn OnXqdPPmTXx17dq1PXv2bPiDt4lWoKTa3AETtbBIDELUAho6dGhWVhZ79cEH H1y/fj179cSJE8BRs1e3bNkSGBjYkIdtQ61ASbW5AyZqXRFrTdQcGjNmTHp6 Onv1gQce2LhxI3v11KlT//73v+vq6vDVTZs29ejR446P2bZagZIifCZqtMh6 c6Km0vz582fNmoUvAw7r9fqDBw+y3718+fK//vWvX3/9FV8tKyvr169fPY9m D1s3N4nax7MganWRGIToXrRt27aAgIDKykpw+fDhw4DPN2/erKqq2rx5859/ /glu7Nmz56pVq/CdBwwYkJeXZ+uh2g2cLYTPRM0jEoMQ3ZVqa2ufRUpJSfHw 8KioqAA3Xrp0qVOnTniU7v3339dqtfHx8aNHj+7WrRtw1JKPg99v7QZr7eaJ ENmtiLUmaohu3769bt267OxsW7PNJ0+eBLa5vLz8n3/+sf4uH8vt5m3Wbp4I UVsRYTVRk0v037R289ZqN0+EqC2KxCBE96j2lGZYqx0/NaK2JRKDEN2t2v2f dfJBILJPEWtNVL86wt/xdv8EidqByKA1EV92dYrtZlW7f4JE7UwkBung2m5n p9hubnWE50jUXkVikI4j61ZgR/gXJ3wmah8iMUg7Vof9NyV8Jmp/IjFIu1H7 nqC7ozrycyfqICIxSBvV9va1XrsR6sjPnagDiljrtqLt7W69diPUkZ87ERFh tR2qre+r34TqyM+diIgvEoPYg6xf/I7MqI783ImIbInEIC0vW1FzR379O/Jz JyJqoAirm1v1vLYd+TXvyM+diOhuVVRU1NqH0N7UcdZrN0LkNSEiaqCIf25y nUbCl8lray3ymhARNUSYJOTz0oTa3k731W9CkdeEiOiOYm0e+bw0iST/0pGZ GWuR9xsR0R1F1kpg/fXXX6k8ffDBB414EDK+2HB18PcbEdEd1aHWSuzYscPf 318ul/fv3//ChQui7+7cudPNzW0Go82bN9/VgwMskwbrXandv9+IiO5Fog9I +/68ACCrVKoPP/ywsrIyIiKiT58+ojvk5OQEBwc37sHJZhqNEHm5iIhsiT9d YH21/SkvL2/QoEH48tWrVx0cHM6dO8e/w9ixY5OTk5ctW1ZcXPzDDz80/JFJ QNQ4kZeLiEhS1jRu9x+WSZMmJSQksFf9/f23bdvGv0PXrl09PDwiIyNHjhyp UCgOHDhwx8ckm2nci8jLRUQkKeuPRrv/sAwdOjQrK4u9+uCDD65fv55/hzVr 1pw/fx5fjo6OfvTRR+t/QMlWYPv+P0jTqt2/5YiIGqH2vRHEjh075gn12muv gdvHjBmTnp7O3u2BBx7YuHGjrQfZvXu3SqWy9V0SNTeJyGtIRCRSu98IYs+e PalCbdmyBdw+f/78WbNm4fvU1dXp9fqDBw+yP/XLL788//zzf/zxB766du3a bt26ST4+WWjZVCIvIxERX/U0Adv9h2Xbtm0BAQGVlZXg8uHDhwGfb968WVVV tXnz5j///LO2trZHjx4zZswAN545c6ZLly6LFy8WPQLZTKNpRV5GIiJW9U9o tPsPCyDws0gpKSkeHh4VFRXgxkuXLnXq1Gn//v3g8nfffde3b1+5XA6+m5WV BTw2/8f5aXO7f61aRuRlJCJiVc/Hod0P12Hdvn173bp12dnZGMgNV4caFG8x kZeRiAir/s8C+aTYEtlMo/lE3nVERJYGfBDIJ0VSZDONZhV51xERNeRTQD4p IpEJuhYQeYWJOrgaGCyTTwpfZDONllEH6XoQEUmq4e9/wiIsPpbJa9ICIi8y UYdVw9/85GNisfpzRl6TFhB5kYk6pu7qnU8+JtatQPJf7xYQeeMRdUARODdc JGpuRZFXnqij6W7bLh35M0Im6FpXHfm9R9QB1YieeMf8jGDb3DGfu/2IvP5E HUqNeMN3wM8Ia5s74HO3K5HXn6jjqHHv9o72GSFnPLEftdHX32w2UxTV2kdB 1JbU6Ld6G/2MNELWrcCO89ztUy32+puRdqwt+fKNzFNvZn71ZubXb2V+81bm q0kjop73mdcf1nxU0f19El4wJrwIKxFVEqhBsMBl8K0xT3eHd3jBGP+CD6jY AT57Xis5tzXrLKpL3975tGhEHU33shSrgzBKshXYQZ673apZX/931pR8tjFz dcLw10Y7vjHWsXiofsST3Xv16jXqqe6jn+4eDwFrrBhj+GCKbM9U2d5psg+n yT6aLts3XbZ/huzADNnBUNnHobJDYbLDYfLDM+VHZso/mSlPGWI8OkvO1ifw Rtn6ic6pQ42gwHeTBxsXDIK1cqxh4WDjltQR323OJH67I4vAuX7VM0FHlhi3 rpr27bd9dfGJDZkr44avHuH46mjHjWMdI/v5AHscM9AYO9BYPsqwK0S2G9H4 5bHOwA/vAxwOlR8MlX8cJj+EIAw5DKgL2Dtbfmy2/Hg4LCpcfmKO/NM58s/m ytOHGT+fK/88Qv6FdYHbUX02B9bGyc7gzqAAtwG0100wrB5vAAD/cVvm++tL ALGb8IkT2bPu5U3e7vl8xyENwudW1L28/YAjBZQDTA571sc8tDNg8vpRjnP6 +kT0g2EFZvK7wTKWycAe75su3z+DBjJAcfJQ47ogZ4hizOE5ihNzFJ/OVXyG 6vMIxRcRii8jFScjFaeiFF9FKbJG+H49T/HNfBs1T1Dgnl9HwfoK/Hik/K0Q Z2DdJz7XPW2oEXMbFLgMbsTZSxO+qkT2o3sEbDvmMzkdlf2rEf80AGUpc4NC n/FOHaB7ZYTjulGOG8Y6YiZHDzC+M1m2M1j2Xojs/SmyD3BqMV2+b4Yc+mRg khl7jLwxpPGGYJeNwS4QxZEIxVEIxYiuiLrKb6OVp6OV38Uoz8Qoc0f5fh+r /AFXHFOxtkoBavt0l9yRvnmjYJ2JVnwXrTg9X7F1qkvOSN/M4caMYcYvI4DZ lh2bJQMGe+Eg45vJIwir243unTztlV3kdFRtQg38p8FWefoz3jOf81k5zHHN SMfXxzi9Mc4p8nkBllmrvHea/CNklQ8wVvkIjCwUx8IVFHbIDJABjTdPdcka 6StAcazyewbCZ+OU5+KVP8YrzycoC8b4/ZSg+ilRdYGpn+FXpWQVjPEtHOP7 XpjLhQQlqJ9AgQcBDwUeMFZxFtA7RvF9jAJwG7B6yxTnr6PkJyPkn4bLPgmT JQ825kcHEVC3aTVJdtou2UWGNNqK6v+nAYDatrq4V69egx7rBsg8px/MLgCT RzzZfeRT3QGWYwYacY4R94IxHk1cAKu8H1nlj2fKDwOrPFsBsIyt8qc4soAm WfnVPOXX85Xf8IA8uW+P3NG+ebD8AIdBFY6FVcTUlOd7FI/zKx6Lahxdvy9S gfqDV3tmu5aM8ysd7/cH+tbvC7n6bYHq1wXKX5OUvyQpLyYqf05E3AbQjlPs nOGSP9oXOG1grU/PlwNWfzFXfmymLGWIsSB6EgF1m1NTNbbaGbvIZhptS5L/ WABHYWFhAMuznvOZ3ccHuOX1o51eG+O0cZxT8TDD/AHGJSMNOybL3g2R7YIh hhy6ZQbLi4b4Jg+lK2Wo7wlklT8HVjlKeWoejWXok2OUOaN8c0dBGucjGp9P UIGv0BInqS4mqX6BLFX9thAWIrC6ZLzfn8nqv0ClqP9G9U+KumyCH67FqMCF /XPdLqeqL3GlgpWi+idF9XcyrL9ALVL9CR5zIazfFyp/w9BOhNDeFeZSMNp3 xwyXs8BdRytOz4Om+sRsWepQY2EMAXWbUVNRqD3RjGym0ebEf/tRFAWwPOMZ n7BnfV4a5vjKCJhjrBslIPNSQGY2Xp4m3zudI/OhWYojwC2HK47PUTBYVmaO 8MW1ZZrLt8gq54zyw0w+F686z4QVkMkLVO/Pdts92+23RerfF6n/SFb/yaI4 Vf1PKkTx5TQ1qCug0tVXUV3LgHU9Q710ot+yIBMocAHUjQw1ruu4wD1RXU2D BR8hVXUZFUA3pDdANw1t5e8LlLtnuhSN8X031AVY63MoCQGgPhUh/yxclj7U WERAbd9qKqi2m+kyYpvbqPC/GiBzytygRc/rKoY4vjzMcdUIx9VSZKYbf1Pl e6bJYdcvVH4A5hiKwyIyRyq/iFKeBG55vvLraOW3MdAt547ym9y3B/Dk5xIY LCMm/7JA/etCNcvkD+e4gcJAvoRpDDmsWTrRdD1Dcz1TcwPVTVBZmluoDs1z L59kup2tAVWJqipbs2KSCdz4yTz3KuZGULez1KBugcpU30TFYRzSW3U1TXUl lcY18Nh7Z7uWjPV9f6bLxQTlhXgFYDUA9bcMqNMQqMlYtb2pCUHUPphGTkfV dhUTEzPose7J/fUVQx2BZ145HNrmtQyZ35rgBMk8CpF5ihyQGXtmPpk/wV2/ uYpPI5R8MsNsOUb1Xaxq2wxXYJh3hLmeT1T9lKRiI2WMZeiTU5BPBkyGQNYs mWi6mqG5hmiMgQxQvDzIROM3R1PF1CfR7ismm45Gu9fkamryNNWoapiqzdMc j3GvAHeIcWdvOQZ+ZJIJ09uq/JYH0bUMmfClE/yWTPArG+837fkepeN8i8f6 AlNdOBqOgnwfLf82Sn5yrmzjJOfiWEJpe1ETz/M3P9NqamoGDBiwYcMGye9+ +eWXeXl54D9rly9fbsSDk9NRtV0BpIjIvAqR+VWGzPP6w97fzhABmT8Kle8P UxzEZA5XHJtDk/nzSCWdMEcrvwGGOVZ1Jk71Q7wqb4zfTkTmC0nqnxeof1mo /hVY5WSI5dIJptLxfh/Ndb+UprmcrrmSoYFYRkxeFmS6kaW5ka25ma25laO5 naMtn2yqzNVW5Wmr87Q1edrafC1g7/FY97oCba2wwC11hXRZCrXmEFPYC/fD IecQEygK/UhdvqYWFeZ2dS4szPzKbDUo2mkDjw3cdbrqWpoKgHrfHFfkq5V/ LlQCX12I+olvT3H+KlK+aTKhdOuryeOI5mbalStXRo8e3alTJ0k+792712Aw JCYmgvt07dr1bhFNTkfVRgX+HKfODQJkXjHE0TyUDjTWIDJvGOf05gSn0hGG 6IHGHcGyd6fId1mRGebM4YqjkMxKmszzlKfoKAMaZpbMBWP9fkJYvrgQkvk3 RGbollM1f6dpMJYPRLovDTIdjHK/lqW5DipbcyNHC4C8bLLpZq72Vp72dp62 Kl9bHmyqLtDWoKot1FYA0sZ5WIq0uOqKtRamqHgP8xQTKn9Q7O3gMhXvTl9l ftDCkLyuQFNbgIidTxO7Khd4dcjqyixYtzPVhyPdgKO+hjMQAOqFyt+TlO+H uSBQG7OGGzOHG0sIpVtJzZEVNyvTAJw9PDwmT578wAMPSPK5Z8+eL7/8Mr48 cODA/Pz8hj+4dSuQ8Nn+hWaYfZYNdgRkxrZ51XDHNSOd1tNklm0JkpWNNCwd 5bwzBJJ59zT5nunyD2fI97Fkni0kcxQmswqT+fs41dkE1blEFSCz2DCnqP8E WE7V/MO4ZWiVEZNvZGsPzXdfNsn0cbQ7YPLNPO2tfO3RWPcjsR63C7SVhdry EFN1oa6mSFdbpKsr1iHq6iwlqEphUYke5qn+sKb5U0kelsU6yQLfAvfEP4JK aylhiuF2XRHEdS3CNWA1zkyqoLtWV2erq7LV5UF+ANTQVKeqLqeo/l4E+4kX ExQ/xSl2oLUwk/p0DwsLI5RuYTUHf5qVadevXz906BC48NBDD1nz+a+//vrX v/518eJFfLWsrKxv374NeVgSNbdFsWQuR3A2o0BjNSDzaKcNY502jZdtnijb OkkGbPPy0c7vTWHIbOWZj89VnhB4ZhXnmRGZzyepC8f6/QwM8yKWzBraMKdr LmdormZCMt/I0t7M1t7M0d4CbjkXmmRQAMjLg02HAZYLdZWFuvIQ/8oiXVWx bsUU/5oSXW2J7ngC5DBEK8NbAGTI5AWeliU6yxI9UzpbBe5JLfCgr5YxhQEO cF0qwDXN6kJNTQHtq2HQnas5Nt/t6Dw3YKpvZaiuIzv9zyLlHwvghB6g9LkY xZn58pwRxqDnupMxj5ZRMxGpZUAnyecvvvji3//+d11dHb66adOm7t273/Gh yARdW1TK3KClgxyXAzgj28yS+fWxTm+Ml701EdrmbZNlMQONdKAxXb4XeOZQ xYGZio8Zz4zJDDuA85Qn5yu/ilZ9E6Nic+ZziWpA5gsL1EXj/ACZf0tW/56i AYb5rzRomC/heBkaZi1wy7cYLFei7KI6X1tToKsp1AGTXFWkOxrvAYD8SYJH dYluxVT/6lJdxVT/2sW640mekMNlevAVYnm6P7XQ07JUT9cyppbfoahFnqCY ++tgLUXFh/ZiLR/XdTSr6QwEdx6PRbvXAFONog9gp68CSidDSv+aCIc9MKXf nuJMKN3caj6KNskj37p165JQN27c4N9Bks+ffvqpg4MDe3XLli2BgYH1/BZi m9uitr5STNtmROaXEZnXjXZ6bazThnGyTRNkm4Ogbd4eLIt9wfgeG2iEKqBt nqU4NBs3AZVUhPJTdjZDROYE9Y9J6p8WqIFnfn+22wfh7hyZ09koQ3sdGWaA 5UqMZUxmhGVQOLjAkUVdqa62VHcsyRPA+dgCT1AV0/xBARoDJkMss3RdrjfP 8KcrNKDhFTb4fnOoP/ezvLIs14mhLcI1jEE0gNXHY90BpevyNLW56ppsdSVs JkJKX0qGDURA6Z/jFT/GKrZPc8lE0TTZ47Q51Hwjyk2FuwULFnQSKjg4mH8H ST6fPXsW3BOwHV9du3Ztr1696jlUwue2pQtf7ge2eeHzemCbVyAyvzLSae1o GDUD27xxvAynzVsny94JlgM4M7ZZsS+Msc0w0FDStjkK22YVHWjEqb6PV50F ZE6kyXxxkfrXZHXJeBNH5gzNlUzNtSwBmQGWa/J1x2I9VgT7rwhhagpdwCfj wqkFYHLYoPtDB8HpizD01RrFlgoDLPNdlzksAF3Qw6rgCnKbrRn++C8CKMZd a2lWl+BepDsV524p0ABK1+Wqa3PUVSj0uJYGKf3XQuVvSTSlc0cav2bGPFr7 rdF+1KzrR1oMd5J8rqmp0Wg0J06cwFcTEhJCQkIkf5xM0LU5LZs/nO0Dwibg CKfVoyCcX4VwlkE4T5RtmQQzjR0h8uVjnCvGOu+Zwdnmw9A2K4/NpW3z51HK L+erTkWrvmZtc4KaDTQQmTW/pWj2zHEvnWBaPMFUNhHWkiDT0iDTskmm5ZNN 5ZP9AZArQIX4m0P8j8d71BXpeD0+vWUxqjKYHsP4gqFiL6Egk8NQYT6jy5aX DHS9zNTKO9XLBvPMAO7+Lxu4BxERewWqcp5Rn8Z2ISGoqQR3OBZSqAGUtuRr LADUKPTA0fTlFJrSFxMUhaN9t051/ipCljHMSIx0k6hZidQqfL569ep///tf /PYIDw8fNGjQtWvXTp486eLicuCA+MRAIs9M+Gz/Orw+Y8rT3sA2w0BjGLTN q0Y6rRkFMw0I53EyHDi/DTMN+Q40pBE/yAhs80ecbVbStjkS22YVsM1fAdsc i22z+iwKNN6d5QZXmowzFY83lUwwATJP7X//vkj3K5naq8gz3+A8s646X1db oKst1NFYhmTWs1imkjwx9BCTA6hFXqDMMwSJBJXqRZMZMxlC1dmyEpZ5VoBk WV5xrqfQHQyWVbxi0M3hGrPazGN1uR4HINRCD3i04JinmsJevB9QGuceGNQ4 9KjOVt+mKa36mxnGyxvl+908uLCFTOLdo5obRy156jdAYHz51q1bqampP/74 owWxevz48Uql0s3Nbfny5daHJ/q/A+kM2rP2r8ko6N95GrbNQ+GExssjnF5B cF7PwhkFzhjOO1ErMGGQEdjmfUzafMSGbQZw3hrqlov3MhrrVzjOb1e4O7DN OGr+GwUawDNfzWTInIvbf7qqfB0OmWuLdLXFujqM5VI9Ow7HtfmWGSzLDVQy JDOV4mWpMMD4AgcRLzkjuwu/UhlefCZzyF3N1Bq6zOGBdM0OAEVle7Hfou8w O4C+zP4sfCgDx20O13pYLKt5oMYZNUA0fC5o7poOqAtgG7E6B47kAUrfSFNd QcN4fyQpi8b4nouByw/fmGQgrcPGqQXgabd2lETNbUtvrSyO66MrfQHCefkQ COeXhjuuRHCGgTOAM78bOFn+TrD83Sny96fJzeNcVk5w2T8TZxrKT+ZAODNp M7TNmSP9skb55Yz2A2R+J8wNZhoobf5lkea3ZM0fXNSsBbZ5aZCJns3I1d3O 01Xm66oKdPTcMiIzXDDCZMtwCg7OXRgwlkFhw4zJzGIZMxkCGXxd5QyKyvQC xRIV4ReWZa0LXeukar0LlettnhMIC0GbyvE2hwdY1jnTtZYpFuDw8Q0crjl3 zbCaBrUOgBo2FulmotY8zQRMNQD18Tj3mgI0Pp2DViMiL301BQ7jlY7zfS/U 5Ydo+akI2fa0EcRI35VaZtsi+2QgmaBrQwKf61dj+hUN7Fz6guO0pyGcK4YB ODuxgfP6MQDOsg3jZZsmMnAOkb87FcJ57wxF0mBfnGkcDodwPh6hfD3ENX2E X8YIP0xmlGmov09Qn01khjQWaX7h2+YM7WUcaGRrl00y8cmMPfPxeE8ay1P9 2YSZj2VLOU1mps3nzLplgGXgliGNcSIBILzaxbLGhcoGaA0U0Hi9C83eOYGW V12k6zVBmecGwuL/1HpQzjaJLcFqDtRUiieV7Ml31ADUVKI7oPSKEFN1gaYq T12ZA7dmuoFHplNU+8Jdi8f4/hSn+G6efOMkw5Vv97f2u6ltqMX2lLM3PoNn XVRU1NpHQdRQbVlVnPd8ZwznpH765AF6FDg7rRpJw3ndGKfX+N1AFDjDIbrp ir2hEM4o01AeCVcmD/NNHe6bNsLvjamuXKYRp/ouXk23AheoLyzUXFykgZlG qubPNM3f6dpLyDZfy9LeQJ75SLTHJzEeOM2oCPGvQMurqURPOmcWkbncYFlh YGYwnDGWIZNf5qwySolpJmMsA9PLBzKwxEL2ulpedzVHQPBS+T7gMl0beBfo cgF3A18tr9OFfwr+YB7zmIDVuPi4xqBeLcpAIKjNYf58R40oDYc96kq1FVNM FSGmFcEmQOnbOeqbWerraMYDUHrxON9fExU/xshPzZVvI0a6AWoZbNobnMkE XRsS+BS/Ftsvvz8H55QBevMwJzZwxs6ZB2c57AZOgXD+YLoCzmnMVIx9tsfC ob6AzCnDfFHgrPoctwJjVN/Eqk7Hqc/E82zzQmibf0vBmYb2n3TONt9EcK5E TcDQgffDCQ24/lrPdQAhmQ0SZIYTbhyWYbNvlTMdKQMmIyzTwQWPyQyQXUEB CAOiCsHratkIiyr0AcgFX+HVNyTKHBlIX94oKPyDGNcQ3a9h+23FamiqDXxT Da1+uiftqHmUrivT1gFKl2jrijSQ0pNNn0S73c6mvTTceWm8758LlBfj4XoW YKT3vlbS2u8v+1WLAcquSEiGNNqQNq8qzunXGcO5hIXzcKeVAjjLXkPdwLdg N1BOdwOnyT+YoXh5vAtwzguH+C4a6st1A6NUX3BwVgsyjYUanGlwcOZlGjdR oEGPz8HBOU8q3tMmmRGcqRQv1PhjyLySJrPlFRe+W8ZYhkBej5KHV11BASBz xpihMc1hPn430UUV+ZijukAUg6tvcmWOCqQvb7IqIcMxq2mbjV06YPWrDKv5 oF5tgH9cVvFyD0zpZbo6TOlSbW2xtrZIcyzWfcVkv/JJfpWA0pmqG+lwc7xL i5S/JynOxypOzZWRGWlJtSSa7ASD1p7ZTg6MyFrANkc9rePDeckgx9BnfV5C cF7Ng/PrLJyZwHnFWJeEQb6Jg31XTXQ5OEsJnPOROUI4R0M4fwvgHC+AM840 aDin8+Ccoz003wOTuaZAV1eor0OemUr0hJkGn8zLBGSm0ryEntkFkBlgGVrl NYJI2bLeFZpYZJVZJkNaYq9Lo9gNFFVkBGV5042rtwRlntcFgJoqMVo2u4Gv VKlReAdXungM5xObAzUbiViDei0aCGGjD47SurrlujpA6SXa2sXaWkhpDdzT I18DvPSKSX5HotwOR7kdnOt6GS1p+SUBGukNQQaSdfDVwqcysQcMSrYCSXPQ PpUUHpTRp3M2D85lCM5s4EzDeazs9fG8UY0QuDYwfpCvebwLnqM7MEt5aLYS mGcI50iVLTifX6DhAucUzZ9pWjZwPjDPY+kk/+WT/Y/EeOA+YF2Rnh9omKcF UAu8hIGGcz1kFuQY611hveqKsczFFzSTGRQjLPNRDKgLIAzwy9UWcQEsm+d3 AWV52w2W1R2Yn3XliP2WANcQ1JEMqDfwQI3SD3ogZC2TezDRdF2Fvq4cUXqp rrYMUbpEW1NEb7t0NNoNUHrGgB6HIlyvpirhVktJcDe8zcHOBNFYLX+eqdbl M4ma25DAh3TOU1oM57z+nQv5cB4B4fwKA2duVGOSfGuwHJ5Z+0Xf96cpPkAN QRbOwDmjzJmD89cx6m/jaDifSxLCOZWDc1mQaekk08fzPXCsgeCsp+FMBxoG bJvxGhNI5nJnaJvxsNxLEmRmGn8+IjLjTh8isxvAMiyGycAJc9ZXiGLEXneu tgoKfJcqM4IyRyNKb3UT19tuAnSzuN4sZrUUqJ3NcwI4R71GQOk6s75uBaR0 7TJdLTDSZdqaUm1NsQZTujpPXZ2jDh3QY/lEP7ieJVn55wJopE9HyUtI1tEa tGxFPJIJujakxNlByc86WMN5xrM+Kxk4o2kNGYbzmxNlJSOc5w80xryANqNj 4PwRgvPHCM5H5ypTh/vxnDMN5x/4cE7W/JoC4KzFcF6M1mtfy9bdyNHBIbp8 HpxLxHDmVprgpX+sbV7pIiIz8MyAzFSuD0dmNlve6GaO6MLHMmeVS40wqYAI lUAxYK9lmztX2+mCt29355c5pgu1xMjdQv+IGyxJXG+xYvUmOvqgCrwxpVEg 4yym9CpD3Up9HTLStSt0tct1tUshpWsWa2tKEKVR3FGbqwZGujzIb9kEv6sp 0Ej/nqQ4FyMvjevQiG4VVLbKLyUTdG1IwDaPfdRbEs7JA/QZL+pZOK9D3cCN E2RFw53nDTCWjXJ+JwQ3BBW7peB8PEKVNtzvcyGcv08EcNZAOC/i4Lw3wh2Q GdjmK1laGs7ceDMdOCM4G2g404GGMx1ooEXZVLo3TWY+nGGa4QoKjWTwyezG GmZzZBeazJxVdodM3uJO+2TMZGsUA/Au9bW8444LXDXHdrXscLcuapkR3dnI 3pku+qHcBLjeysc1A2rkqGEjUghqjtKwh2ioe8VQByiNjHQtoDQ20ijuqCvV 1hVr6orgwnBzsKkWbd8BKL10gh8y0ooLcYotIR0062gtTra8gz3NUwv/aqK7 FfgwznpCC+Cc3qdzlhDOK4Y5zuzjw8YaGM6FwwxR/Y2lI5y3TqanNd6bCuG8 B22ssR/B+XA4DWfgnAGcM0f6ScIZj2rALTUmmj6KdL+cqaXhnMvCWV9TJISz YHzOWTShQWV4m2cFcrMZmMwozYBwfo0dxnATRBlsjgGYzGCZtcqcScYghVD1 gLWDLmqZLyiAZUjmnR6w3pUq+C13ajm4ZxfAanAZFp/hHK7dxLh+m0dpBGou 9NjoYkVpQ91qRGlspFHfkF7Pgsak0YZ4cPuOimBTDd67I1O1fKLfgTmufy+E 2yttn9bhEN1aIUOrxCkslknybOf6/tP9ONbAcM61BWfUDZz7vDGyv7F4uPPm IPnbk9k5Z8X70xUfzFB8COA8UwDnEwjOwDnD5YF8OC+k4Yz3O+KNauiu5fDg XMiDM2ubaTg7Azhj2ywONPCEBr2wmk4z6NmM1yXIjAyzO+z3sVjeynPLtEnu KmDyTg+Ww4i3Xc1xXalyX8t7HoLa5SG+hSlwZwhzGt3udImITeOaB2pMaQRq emyPSafFXpoXd9DTHRW8xSxleNtSOCNdixJpvCr8cKQrMNIfzXb5NVFxNlq+ uMNkHa3oJFuSkGSCrm0JwHkMijVoOD/fuXAAA+ehcMujWX18EJxl4f2MAM4b UUPwLQDnSXK8QvBdAOdpEM6wJzhTeRDB+RMenL9EsUb2KD8+nH9epCkabyqe YPojTcvBOVt3nYVzgZ6GsyjTYOCMA2fGNruI0+a1rtg2U3lwUUnYsAfMc7tw ZN4kIDM2zOIQA2LZg2Uy5DOPyaAAkHFR5X6Qw7s8qBV+1Apfy/sed6hdXJnj 4SMIMS5kNYvrdxhHzdhp87xAvp3GoQdVyKM0MtKQ0rBvqIeUtjLS5qmmWpRI V+WrK3PVt7LVNzJVH0e4lo3z/QMOSMvL4ts/olv3v/ktuQrG+mkSPtutIJwf EcC5gIFzOdz1yCnjRf2svj6z+xrn9DO+Ng42BNGcs3wLgjMadVbg2HlPqOKj mUo4sIHgfAzB+TME51Mx6m/i1Dmj/X5I1GA4F44zATj/mqL9nYVzlo6Dc77u NoJzdZG+tkRfZwPOcGsjaTi7snDGUTOVb6QKjADO5sgudEV1QWkGE2W8jeDM ZssAy9vFVhmY5LBR/8syGXDVsssT1vtM7YZFVfjBb6HLlg+EtZtfHnQhYoMf 4cDO0tua1bSjhqCGkYvQTgsojb00a6TXMkZ6pdhIUws8jie615Roqos0lQWa W3nqmzkQ0dfT4UrDPbNcLsQp8ka28x2kW5dRLfDb65mgI3y2T/HhnNmvcw6C czEDZ7xCEMA5e7Bh3Rg4rfE6gvObCM541HnnFMV7LJzDIJw/Doc9QQjnSAjn L+bTcEbOWZM/1gQKwBk1BLVwWoN2zhDOONa4ieBcieBcA+FssIYzvSOoNZx5 tpmBs5vldTSYsZGfZrhjMsNVJGg+2RzdNWzk/4KvsGJQxfKKMcnI6PKYzMKW D+E9sMwJXfGF+kpIb8oMwU5V+PK5zeGaZTUDanNMF4ncw5rSrzvTRhrHHXAx C89Io/WGFdNMtYu11SXaqiLN7UIG0Vmqa+mq/XNdS8f5XkxQvNN+4+hWB1QL 7Cxdz/8OWv3pE1kLwHk0gnMagHNfCOd8BOfFgxyXIziH9fGZ1Qc657WjZXAR ChrYeHOifDOC83YGzkzsrNzPDmxEqCgenL+OU59GcM4bawp+/n40raFl4fx3 hvZSpu5Ktu5qju46hLP+FoJzFYJzrRjOTKZBb3DkIoSz2DYDMkPPjKfmaDi7 c56Zy5k9LNs8AJm5eJkLMTwt73nSTN4FvTEoMZNZ3u4VlDmxq+VDT4naK1XM g1Av+QG2A1ZbPvCAZc1qQOn33KnlRlB8O81QmvHSMJd2oYq86ZFpXt9QbKRX wN1Ka5fqasq0VaXa28UI0fkcoi+nKheP990V5pI70njjjPicGm1d9kCnZj0G MkHX5sTAuTMPzo40nIc4pgzUAzivHOmUOcgAzDOAM56m24TgzPQEFe8yPcG9 oUo6dobTdBDOnyI4nwRwjoVw3hbmDuD84wLNu+Huu8Ldf0nR/paq/SMNwvmf TB1MNnJ013J1N/IgnG8jOFcjONcJ4cxspG8FZ4lMw00AZ5g2uwvgzCMzjjJg vMyRGWGZJTPPLUNjzDJ5rxdXH/LqI7rMSd3oy/u4G3nlCUsK4NTLfhDvnNMW sxo6edZO7+D1EK2MNKA0PeNh20hTqZ7Hkz1qlumql2grF2srSzCiNTdz1dez 1FcholUfhbsWjfbNa1+ItpPpsmY9ITjgM1mB0oZ0RgrORQjOi/rrQ5/zSXtB j9cJAvOMp+nQIkH5W2hgA8bOCM67pit2z2Bi59k4dlYdxyu4GThvCXXLHWN6 Z6b7uQUauPFRsrZovAnD+a8M7d+ZuktZuis5uqu5uut5+psF+luF+koE5xoh nPH5pywrnO8KzlSBkSo0crZZAGeGzEzOTM/F8cnMDzFoq+xFvWQCJWYyn7r7 eLXfy7ygG/gqUfukChOb4TZANAC10GBDUFNmXxiDsHaao7SVkWYQbXmD3tFU bKRfoY10Rah/7Qpd9XJd1VJtFUZ0EY3oa1nqKxkQ0f8sUhaPaT+Ibvdwxg+O hfNnAmo715kT+0c94r0IwPk5COfs5zvn9afhPP0Zn+SB+ophTnD7IzhQJwN8 fhX3BBGct0yGi7jfCVHs5PUE6WQjXHlkrgr3BD8HcI5WfxWrzh7ttzXM/Xum J0gnG6nakgkmmGxk6v7J0l3OhnC+lqe/kQ/hfLtIX1UM4VzLwdkZrt1O9mLg 7MLBGXYDXTk4YzIzcIbrAeF6E3epTIOzzUwH0BPyWeSZOTJ7ATKzVtmc2E3A ZCGQuTpAF0T0QS+6DtgoCXpDSlMr/cxJXUXZCLLWjKOGlHYXU9raSCNEWzZC SlP53gIjjeIO80z/2pf0NRUMossAorUQ0QWaGwDR2RyiS8b65oxoD4i2h2TD 0iLnnOVbaBbUdvL0iVh9d2Lf1Ee14U/pUp/rnMHAuXCgY2I/PYDz8qFOK4Y5 mYfDXZ1XjZKtHi3LGWLIH+r8xgQ53RMMlm9HcGZiZyWGM0o2VDB2pgc21Jmj /ACcT8drAJzPJml+BOZ5ETTPeGBjb4THh5EelzCccxg4F9Bwri6BcK6jlwei TKPhcMZktgVnlsx8OO/0BJ6ZWu6HZuREZPYSkJmxyjC1EAPZ23JAWAd59bG3 eWE38FWqvDh0iwDOYzUgPAA19tU0rvcyuQebTmNKWxtpYdYBKE0VeKPzAnhx RnoN3Kq0bqWeRnS5rnqpDiK6FCL6ZoHmOkL01QzVFYToPbNctk11btOIth86 tWJzkIDafgTgHPywBJynPO2zoL9+2RCn8qFO0DyPAOZZtnqUbO0YGTDPEf2N AM507Byi2MH1BJV7w9jYWfVJBEo25qnemOYG4Px1rPrbePWZBM0PSZpzC5B5 TtaysfNfGbqPojz2z/PAPUEudkZwrhHCGa/dFsB5lRDOMNMQ2GZQcNO5YqM0 nPlkRnAGnpkezLAm8x4BmRkme6PUwiaNBXWILvOibpbD3FWJsiY2j9XUKybw S9GfBi4AQZTmG2le3GG7aYiNNKI0b3ultYYKgOhVGNH6GoDoZRDRuGNojeg2 7aLtikj2cFpwfgzSrAdDJKnTJ/bNfeS+sY96p/DgHNtHD+BcNshx6WAnzjyj ZGPNaNk6NFAXOcD4FoLzNgTndxGcd89Q7glVimLnE/NU6SP93pzu9lUsGqhL YMwzTDa0ONkA5hkO1KGe4IH5HgejPW+g2BnAuRLDuZSGM7XQiwdnFxrO9KiG a31wht1AdzjbLICzhwSceVEznFiGcPaql8zekMkIy9APSwKZz9vDwjribU7u Br5KF76PgNVeIlZDPgMjvcqETLUnDWprSlsn0uKmIY1oeNYteErEADwjbQ4P gEvCAaJf1teaaUTDjmGp9lax5kaB5kae+nq2+lqG6mqq6lIynUWfKR3Q2u/u u5OdxM6sGsjnXbt2nTx5svkeH4vE1C0vAOfwh+8Le1w35ykds4LbMfgpn4R+ +tJBjksGO9HmGScbI2Gygc3zxgnyqAHGLbAnqOD1BCGcP5wpiJ1fnwJP8/pF tPokGqj7Nl5zJhGaZ5RsaH/G5jkND9ShniCadv44xnNZsD/uCVYhONeWGeoQ nNFmoXeC8zprOLs3AM6cbWabgOb4bjbJ/JGAzNgtU2tMoGwD2cdyhFefcGVO 7s6/avnEmyubrIagRn8RIKip1dBI0wGILUSzibR101CYdUBKw03wAqhcL7ib NMo66lYZaESv0NXwEH2Tj+g01b45ru+HuQBE/7Yzq7Xf4w2VvcHZ0jB+fvLJ J2q1esOGDdbfunHjxvjx45VKpZeXV3l5eeMe31okpm4xzep9X+yTDuMe82YH NgCciwY6lrwIl6IsHUKbZ5xs8MyzfFOQfN5A41YE550Izu/PUH4QipKNWcqD 4XTsnDrcb8NUt8/nq79EbUHOPDPJxkWcbKTDZAOaZ7wUBThn1BMsDwkAcK5G PUEAZ/P0AAk4v9xQOFPFaC9Qeo8jjzvDGXjm3V7mhG4cmfeyZPa2JjPrk82L ukMO47JBY1hHeXXMh3rVH5TgRn6JWM0AH2YjkNVerKkGuKZeMdmktHi0w43X NHS1bhoCI03le4cNe4DK8aIRjTZWAoiuBYherqtaor29GCL6VoHmZp76RjZ9 wtkydLbZNjTRYYe0qf+QqqurCwoKdEiSfI6IiBgyZMj169eBu3Zxcdm/X3xa 9nt/ygTUzaeSWX3nP+Yw+0nd3Kd1GX07z3tWN/lJn8KB9LQzNs+itiBrnt+a JJ8/0JfXE1SysTNMNuao1gW7AjijddxqCfO8EJpnAGeYbKRr/8zQ/Z1J9wSv 5+rppSiwJ2hYMTXgWJIXhjPe9UgM55VWcF4vAWdgm6F5FtlmGs6eVnD2ogON PWgkw5rM+yTJ7APrsA/kszWQj4qBzNVxuqjX/EGxV2Hx70b/LA1qc3I3OhXh TLUXBjX08KtNdEy9H8UdkkbaevrOZtYRQOV5sYi2YES/xCG6cjHMovmIPhjh +tFsl18SFG1i6YodEuaOh/T777/379//1KlTDz30kDWfq6qqVCrVsWPH8NWE hIQpU6bc7a+4q6Ml6UcTqmRm34hHHBY87TD+ce/0Pp2jntVFP6fH087APC8e 5IST54rhPPM8hjPPWybLo1/w3cHAWRA7z1ElD/N7NcSVilJ9Ok+NzfMpaJ41 p4F5xm1BnGykomQDwRlPO1/L1QPzjBdxAzjjnuDxBV4QzstswHmVFZxfZeHs bgVnG7bZBpx5I3Pe0mQ+KCAzxjK1zp9a7y9gshSN6aKMvPKhXg+gXvcHFwQl xDWw2eaU7iyopdIPiGg692ARTRvpBmQdVmtY0K5KzgDRMJHmIboOIBrP3TGI pteAo52Ulk7wg/uRxityRhivf2e/iLZDOFvu5qgk+XzmzJlOnTrdvHkTX127 dm3Pnj3v5bc0UCSmvncVz+w752GHhKfoZCPoCe/5z+nxzAYwz6WDHMsGOy0d 4lROtwVl2Dyv45nnrcGKmBd9352m2MXAGcfOqye5AjgfjVAdi1RRUepPpc2z Ficbv6Zp/0jX/cVMO2M438rHi7gNbE8QnkOQW4RiBWdsnvlwxuaZB2d0GlZf KzhL2WYhnKmXTdRKk4DM+/lk9hGRmbXKiJ8Yp0bLcV7xaXxCuqgNANEBwhs5 VptTu0OPzZlq73pAbV7UjTPSfETvkRqQtrGGBfL5DbyJNFzAAhANjTSzzBAj Grjoarx6hYfoZUF+V1Ph6bEuxCnsdqc7O4ydse6RzydOnHBwcGCvbtmyJTAw 8F5+y92KgLpxAnCe3fu+2CccFj7TecLj3hOf8M5GbcECnnmG4QZtnmXQPKNk A67mHi9/I0i+Gc1sxL7oi+HMxs4Lhvqtnex6ZC5MntHYhvoz1jzHa75jzPNP jHn+PV0HzTM97ay/jmJnuD1dkb662FBbajie5AXgbFnqjM2zOTTQHBYoAec1 VnDG5pkZcjbP69ogOO8WwNnyoTcaWrsTmQ8LyIywbIR8tmYyH7mfStVndJnT u1t/F3DbnNadY7UoALEGNaI0tRb1K0VG2uZch0QcDbeSxnE0g2i6Y2iN6CUM ogsYRE+EJ175PUnxU6w9Itpu4Wy5Zz6fOnXq3//+d11dHb66adOmHj163Mtv abRIP7HhKprZd1bv++Y/5pD0dOfxj3lPfNwbbU/nmDfAsQCb5xd55nkENM9s W/DVcfINE+RvTpK/Hax4ZyrkM9sTXDnRBcD543AVHni2Ms8abJ7PLuDM82+M eUbJhh6aZwznQn0NgHMJhDM69TaC83JnywoXbJ7NMwNBCeAMzbMVnLF5bhCc ebaZB2dgmyGfxU1AHxrOEmQ2QrfMGGZgdAVYtoFirj4XFEQ0c5naGACugq/0 zwJEn7BKP2xTmkY0HsmrP+sQx9EQ0XArabZjiBH9Gn2KcCrLC60xRIhewSC6 lEF0LrTQ19PhUPQvifD0hYvtDNH2TIx75PPly5f/9a9//frrr/hqWVlZv379 7uW3NIkIqOtRURiEc+SjDolPw7YgMM9o4NkRmOf8ATDc4JtnNLYhY9uC68fK +eZ55zRF3CDf3aHKPWHKlye6vBLkejBcdWiOSmyeY4TmeaEWmme6LQjNM7OO G5pnvD1dNYZzoheV5GVZ4gz5jNuCgmTDFZ6manYgB2fWPG8QJRu+MNng4OxZ H5zpOQ1vDGdgm9G4GiazjwSZMZwBlo8aBTkGwjLyujwyi1HsK64vxGXO6E69 EYC/0qzGP85Cng9qfkZtRWmAaDjp8bEXZ6Stp+8Ei8FpRKMTE1h1DDGigZHO 8aKyOUTXoRPO1izRVpfC/UgrCzTLJ/vdzIRD0X8uVP4cr/jBns66YueUaByf q6qqNm/e/Oeff4LLPXv2XLVqFb59wIABeXl59/JbmlaknyhSTNjEmQ/dN+cR h/gnHWahmY2JTzDmuT80zzjcwOYZdwZf5rUFBeZ5iuK96UpgnhMG+yYO9l0V 5HpgtgqbZ8hnvnmOheb5dAJtns8vguYZtQV1f+C2YDYyzzjZQLGzGM5888zA mTXP6DRVXahcI888u4uTjcbCmV4MyMLZOmpmyXxMIseAMfIG5Hg/84VVL4ot X4rLnNEDF30LvBvPYAtA7cOBWtJLM0YaDeOhMTxR01B6rsONWmqEZxUXxNHc UAeNaJx1rKY3U4KIXsYh+kis++H5bjczVJdTUMoRp/hunl2cBNzO4WxpLJ8v XbrUqVMnPEr3/vvva7Xa+Pj40aNHd+vWDTjqe/ktzSQSU1sQnMMeui/8YYfY JxxmPqELf4o2z1k881z8omPpIKcyvCYFhhuylax5HofM80RgnhXYPO+arqwY 7zLmmR4fzVTum6WCfJ6jOjyXDjdY8/xVrAaaZ9QWxOYZtwV/Z9uCTLKBBuoM NcWG4wkIzmXOkM8YzuUukM/ctDM/2XAD5hnw2Ty3CzpHlTttnpsCzpDPC7tz cBYEGkaxbaZE2TJksjm9h4DM9QD5JF3Um4HmzB6g2Fu4yzSojTZAbeWlIaXF Rhp2DNmsw7pp+IGgaWiO7SLKOmhEbxIgGi8wpDK9IKLNDKLLaESXT/a7na2+ ka76J5lOOd6e0sr7+bc6lO6opgrGT548CWxzeXn5P//8Y+sX4S2S7v133aM6 bEwdjeA8u7fD/Mcdwp7QzX5Sl/Ic7Axm9nPMFppnGG7gNSnD6XADmWf5q+MF 5vndacr4Qb7mCS57w5RJQ/z2z1bxww1onucLzXMSMM9avnn+kzHPXFuw0FBd ZDgG4JzoZVnszJnncpvmWZxsoJOh4HNUwVgD1GKUbDQIzt7WcLYc8IF8FsPZ KG2baTL7YjLjgnz+3AaTT/LqFIdl6q1AcJVf4Bb6Rj6lvzQKQP2Z7cTDKu6g 1pmotSZB1iHRNHQ3x3URz3WINusQIprK9uIQXc4gukRTHmKqzFPfyoLrCmHK kQBTjs0hrYZoe+4JsmpJRuHfZVdstKuDaVaBT8GEXtpZvR0iH3UIfVw360nd omc7p/bpPPEJ76x+jjn9YWeQGatzosONYUy4AcwzSjZe55nnHVNh8kx3BmdC PtPhBm2e1cA8fx6NzDNqC0LzjNqCP9EzdTp2pu4KzzxXFRmOJngdh3A2iM0z t47b1do8C5INXuwMT0o1vysoKzh7QTgL+CwNZ+CcIZ+t4XzM2jb7CsjMGGbq jUBQtrDMMtmchbD8lZ/lK1/JojYHCrjNgZpHaZGRFscd3vy4g0b0IS/ppiGa vkNnURTH0dx0dD2IfplB9FItQPSKqaaqAg08vWwmSjkWKHHK8WawoeUR3Sbg bGkNPvOv2s9L1L5javD+H99LM7O3w9xHHGY8pp35hG7hM52BeU6DfPahO4O0 eXbC5nnZUF64AcwzSjZY87xkjAseqwN83hMGZ573zVItHOqHww06eUbm+VSs 5ut4ekEKNs8/p4hm6vS4LXgTtgUNn8R7AfOMTinoDPlMm2cXnnl25fjMwplb jcJPNjyoUmSeYbLhyT9pIA1nwSidEM77ODhTq/2pNf5M5mzk4MyfmpMkM88w wwCZx2QayAImM/V1fQXuzxFbRGmRkW5Y3AEQzcXR4pWGHuhcMKK5Dt7onQjR 7AnB1xkAos2zAiCiKyCi65ZqaxdrV4SY4BnAc5iUI0lxLlbxTZS8pMWD6LZi yVqRz/apdhlT455g+MMO0x7Vhj2uS3q6MzTPz3VO79s56AkfbJ5xuMGZZxxu jJStGi1bg83zBPnGifK3JisWj3ZZOsbl3WnKXTOUeHIDrkmZrVo9yXXtZFe4 j2gUbZ5PYvOcgM2zljbPTFvwL3FbEMIZmOfaEgPkc5kzb2zDhnnmw/k1Hpzh QJ2HZbMHtM04eWbNM3LO5rhu5nhUCbDQ6U5EcPbBcLZ8jJZpW8OZzTQAmU/Y IDPnlv3Cgv7LZ7LllJ+AydZY/sZmmbN7oPtYUdpm3OEjjjtERhotErcc9hI1 DamVfvDkLKK5Dr6L5p+B5Q0hotG5V8yz/BGi4XnAAaKBha4u0lTlqW9nqWHK sQimHN9Hy7+OlJXEthyi2wSIsAifbandxNRmsxnGzg87DO/tHfq4LvHpzgue 6YzPXZXR1zHoSR+6M/iCYzE2z4Np81wxXIbDjXVjafO8aZK8dJTLktEuO6Yq 3p1O83lvmPKjWar9KNxYG+z6aogbhdqCX8CZOtgWPJ0IzLP23ELWPOugeWba gleZZONInNfReK+aEgM6qyDPPC93YWeeafNMJxtukM9c7OzOTzYAn3ltQU+a zzDZ8ILmWeicAZ/NiXDnZFhwi87usBYyhbc5sgVnxjab03vAyuBVJldMenyX WP5WuiCiv/HjKN0UcQdAtCDrOOBpXtBVPCBdH6J5Q3evChH9Eo3oiun+taXa 6kJNFU45UlW/L1Cej1N8N7/lgui29XEmfG6I2i6oYez8kHZ2b4fgh7XTH9PG P9UZmOeFz6Jwo2/nzH6Ok570Yc1zySCnxZx5lrHhxnrGPEcN8F08ymX7FMWO qUo8WYfD54+YyY0jEapXp7jBrepgW1CDzfMZbJ5RW/Biqo43U6e/wrQFD8d5 AfNcXWzAfBZ2BvljG1LJBgtnXrJBm2c+nHcwfLaVOX8kdM7MwEbYuP+Yk7vD SmEqFVQPcxqqdLp4ttkP1klUp5j6CkcTd8/k0xJFvR1IbQkUIFpMaSsj/RlC tETc4c3GHdR6E7XOhI003LVDMCDdYEQzqwvZk8yaZyJEo5OA15Vpa0s01QWa qhz1jQwu5Tg9T5413NjciG4rsTMrwue7UpuLqWPCgmb1dpjcWzvtMW3skw4J T0HzjDuD6X0ds553nPyUD2ue6XCDMc9MuIHGNibKIwf4bp6seDtEAfi8cxrD ZyZ8hpMbsDOoPh6lBnzeNN39VJzQPCejBSlpOmamTs/O1B2O9fokzgvvg8SZ 5yWMeS6XMs+CZMNdkGy8ieBMm2dPyGc+nHHyzIezoCeI4HzAhz9NhzZkFsbO MHPmxRp3IjNmMuSzreyifiZ/Jyx0ozmnB7wn/vGmiztYRNPLWPiIFs3diRDN 34+U6xUaWERTqZ7mUH/LMl3dYm1tsaY6X12ZDU/8jVOOszHyb6OadyK6zcG5 5Q+4HSAaq03E1GazeWZvh0m9tVMf1cY84RD/ZOdEYJ6f6ZyMOoMZaKwO8LmA 7QwOZjqDyDy/PEr2yhg63IAnsZqkAHzeGgLXdGM+M+EzDDcO0p1BNQw3otWb ZrhvDnWH5jlJexab5xRknpm24CWmLXgo1vNInFdlkaGKNs/OdfV0BmnzXE+y 4SFqC9o2z95WAxs+/NiZzZxpPguSDV9BQ/BzG3AWumXgeKktXaSAbIJ1Wljf 1VM0qCGiT/vxKO0rFXcYpeIOn3riDoDoXr16wTFpfhxtjWj+0B27sb91rxCf BHyVnkr3DBt8v6VcZ1mqrSvV1hZpqtG4HU45fkKLCpt1IrrNwaflD7jNvUR3 lD3H1EMe8gZwnvKIdv7jDtg8JyHznAI7g46ZaKwu+Cm01TPPPC8fJg435vY3 bpwoB3zeEgwn696ZquQ3B2G4EU6HG0eZsbqTsRrA560z3b9fAM3zT9A866B5 Rm3Bf1CycS1P/3GM5+E4r9sIznifutrFznVcZ9CFF24wYxur60k2POhkA5tn azjzxzbEAxtScD5shHyGe9BZwVlsnhk4S5GZ8ckmc/b9NI2tgWyLyWdslAjR fErfW9xhTukGKI06hneJaHacgx9EMymHZaUeuugUT8tynWWJtq5EU1sAg+gb Gaq/U5S/JMEg+vv58kl9ujfHZ8EOP553FOFz08quQB0dNnFWb4dhvb3nPeYQ /YRDHDLPC5B5TkWdQbxmEPL5BSeBeR4mqxhBhxvZQ5znPG98fYL8jSDFW5jP KHzGzUEUPqv2zebCjWNR6hOwM6iB4UaCBvD5ndnu2Dz/wplnPW4LAjgfivW6 VWio5PjsXCsKNyQ6g3zzLJFsMObZU6ItaG2e6djZCs6HaDgD5wz5bAvONJ+F zpkP529MdCEmm3Pub5BJtsXk75libqG2daG2BtIxCEtp1kgL4g6jVNzhI4o7 4G5OTNbBDXWI1hhKIpqduKs3iKbSPKlkD8synaVMW1esqcnXsCnHL4mKH2MV 26Y5h4WFNe1nwU4+kncrwudmUqvH1N9S+4B5HvqQd+SjcLUgDDcEnUFHes3g AMeQp32KXnQq4a1JWcGEG5mDnXOGOuPweRPg82TF28EwfN4xDfKZnnyeJQg3 juOx5ximM5ikBXx+d47Hz6nQPDMzdbR5XhYccLPAcJvHZxhusOZ5mQ3zvIZd jeLOmedNPPOM24KC5NlLmDyLkg0f654gC2dqfQD1agCCs299cP7SCs5CMmMg U1sBTrvcBZD5TJasMyZz7v38XPpe4g64lRPFNA2PCufu+IjGCwz5W5LuYBDN 9gr5QTQ7yzETTkRTqQjRS7WWxdq6Ik0NTDnUl1NVfyxUXkyEvcLsEU3ZKGxz sTMrwufmVmvF1MA8Az7PfcQh6jEHFG505sINpjOYg8bqAJ/pcENonjMGGbKG ONPLUgCfmfB5+xQlFz7PVPHCDTUbPn+J16QkamC4sUj73hyP9+d6/EbP1NHm eWmwP4AzMM+3iwyVxYYqxjyLww1J84z5zE82NtFwRubZT2CeMZ9tmWcWzgck 4Gw5yphnDGfqTnA+JYSzKMdAKIYWutFA/kFYzO0Q0UziIYw7fKUobeQozRhp uHOpaE9paUR7SiPaVq9wowDRcMUK2j2JSvGkFnlYlmgtpdq6Qk11LjzNyj+p qt/Ruu8d010yhhmb5IPQduFsIXxuQbVkTL21Iv3ZXt0m99ZGPOrAhhsJKNxY BMMNx4x+KNwYANcMTnnaB4/VwXCDMc9pLxqAeV4zVg43RIKTdQrYHAzGzUHI 511ocgOHGwf44QYTPn8NF3Rr8Vjdzym63REeeyI9/srSQ/MM4DzZ/0a+geUz P9yoK2PMMxtuAPNs3RnE5pmFMzbPW7B5RnDmwg0vYbhh2zxDOBs5OLN8rgfO 1rHz1zzbbJ1jnGFY2jgg8+ssd5na3oXa1gU9mtBI8yltO+6g3giAe0p/ZrXY UIToj20gmh3nsNkrZPYgzfKyrDLgdd/AQlMLPSxlWkuJpq5AU5kDT/n9d4ry twXKC/HwZIX7N5Tc+2ehTQOnVQ6+Tb9iTaLmBvWLPb2CemvnPAK32piHwo24 p9DkxrNocqOvI57cyIVjz07AP/M6gzLA59QXDemDDGjPDTmefH4jSPEmEz6/ g8Ln90MBn1W8cEP9CRNufM6Ez98lac/isTqUPO+N8vhonicwz0sm+1/PN9wo MNwsNNxizHN1qXPNYufaO3QG3ehwYz3PPLNwxm1BAGdr82wz3LABZ95SFHNq Dy7Z4A9sfO5nI3YWOmerBIPa1hVUI4EsWei75rz7uWj6OylKi0JpxkhTmwLo baVh1sHrGB63jWjeAnBuKNo6iBb2CulTFjIbkFoqdBDRCzwsi7WWIk1tvvoW CqL/Slb+mqR8L9Qle/i9Wui2jppWOX68i5399NFaUc3xOuSH9gXmOfxhB2Ce cbgR80RnifAZb4j0ghPwz6WDYbiBxp5lKS8YgHleCSfr5GvR5DPdHJzMNQfr CTc+ZZqD9GQdvaAb8vmvTD3gM4DztTw9y2cm3HCu5ocb2DzT4YarzXBDmGwI zPN2W+GGt3S4cRDBmW+e6VFnX8hnidjZz0ayYWWeOTj7W76nC7L0B/8711nb dY4tDtToYdnuoZ9UKC2IO6i34L5M1JsBXNZhjehjd0K0qFfIBdHiXqF5bgBM OfAsB7LQcMXKdH9ooUu1lkIYRN/MUl9Jo3uFOSOM++7BQrd1vLTW8bf11605 1FT9xG+O73u6Zzdsnlk+C8NnRy58Hgj5XDzIadqzPmhyQ5Y80ADM80sj8WSd fO04emUK5vPbIYDPyh1M+MwLN9RsuPFZtObLWM1X8ZpvmfD5pxTdL3isLktf Nsn/QLTn0uCAj2O9sHm+XWyoLDFUMea5rr7OIM88v8YOPNebbOyoP9zw4fgs SjYYOEM+p/Xg4PwpD87W5hnAWdI88+GMwAtBypK2fg5LAFmyrBBtTWlh3EHv yyTKOj63mrurH9GicQ62VygVRJvnBtKzHHAc2oAstN5SjhANLHQxTDnwuN2l FDgRXTja961g58Z9ENp07IxF+GyHusd+YnLoMGCeZz8M96nD4Ua94bMTntyY +ozPkqFOiwYagHlmJ+sAn5nmoAI3B99mm4MzOD7zw40TKNw4STcHtd/Ty1Ig n//I0JUG+ePO4LV8A+DzspAAzGdsnnl8vqN5duf4/KYN84zhvMOL47PIPEuG G4IdNnxxrEHzmdubzk/CPMNkwyQ2zzSc/UVwBrAV8LkRQP5RqhClqR1dqHe6 CLqHVqG0ObsH2mFJmHWIhjpEq1eE23SIh6Jt9QqFQbQ5IpCb5UDj0NhCW5br zNNM0EIXaeryNbez1dfSVX8vUpaM9f1+vnzva3dtodsBnC2Ez/atRvQTgXke 3Mt7yEPe4YDPyDwjPneWCJ/7o/D5BcjnUuSfFw4wAPMMm4Mj4WTdqtHyNWMR n1FzcBPTHNzONQfp8JkON6JQuBGt+QLwOU7zNQqff1io/RGFz7+m6/ZEeuLw GfMZhxvLQwLKpwRAPi92rilzrl1ST2fQjbdmkOkMYvNsM9nwkjDPmM8i8wz5 bBTy2ZfNnCGf+bGGtHk2Ccwzm2xIwRmz15x//50scQOYDOo8Kh6l4SPzcmmG 0hDR1NZAelX4t7ym4Skhoj8XItqqV8htGc1O3NkKonmLVqhiH6rQG85ysOPQ uFGILLRlKUJ0CUo5ctU30dZJe2e77JzhsnGS4W4/O+2DMITPbUUNBPXA//MK e8hh6EPe/HCDDp+fQeFzH0cYPj9Ph8+Az3CybrBTUn/99OeMy4fLVowQ8Hn9 eMTnIGZ4AzUHd07n8Tlc9fFc9RFmWQoON4TNQR3g8+4Ij71RnuyyFEH4XOJc PjXgaJIXZ565cMNVKtxw5yY32OT5bU/IZ0GygeAs4LN3g8INIZwBmelTU2Hb zIfzlzw4S5tnm3CmKWoLuXes87YL3QHB3ySitDn3fjjj8Z1VHN1oRN8x5eAF 0eaoQHqWQ2ShX6IttGWJ1jzVBFOOfE1Vtvo62iC6aIzv6Sj5B6/ehYVuN3hp rSfSPv730SqqJ6ZeX1E8vpcWmOfZDzvgyQ3I5yc6xzxJ89kqfHbC4fPiwdA/ Az6X8/iMm4Prmebgm3RzUMkf3sDNwUM43JgH+KzB4QYMnxO0dHMwRXcxTVc8 0f/PTL0En2H47FxV6gz4XDEtoG5Jg80zG25A8+wpTjbqN8+Qzz7CcMMo5jPT EKQ2BFIbA+uDc0PM8w9WfMYIPR+Aql7e3rF+4hVzI7WzK7WjK5tLm/Pup6c7 +FmHNaJP1ovo41aIxqcvtF60skuccsBzf+OUA+/LASz0WiaFZi00WlFonmKq Qxb6Vqb6aqqqdJzvj7GKhs9Ctxs4W1r1ubSnl7FVZB1Tv9ATmmc63AB8ZsKN 2AaHz8lM+EwPb6Dm4OsTFfTwBtMcxHzeY8VnLtxgwmfcHCya4I9Wpuj/zkZ8 ZoY3bvH4DMPnJc4V0wPN0wOpZO8Gmec3ULixhWeerZMNkXluULhhZZ75ZP7C egcknnn+Vso8W8MZhxXnA8wFD9CI/imAYbWwfvJvZJ33NxdAfw4oTccdbNYh WsYiWmbIrl4RrS7k9wqZc2PRZ12xHrezWvcN+byFmbXDy1XWiQc5IJ+XaKkk dyrevTYf7T6arloy3u+XRMWpCFlDlhO2M6oQPrcDYVCnpaWFDu5N85kJN1g+ M+Gzo3X4POUZn8VDnJYMlS0bJpvxnJHm82g5bg6+yjQHBcMbMwCfVXC4braA z58BPtPhhvY0szKlcLz/L2m63zL4fDbQfKaHN5jm4BLnOhRuAD6bQwPNYYFM Z9BNojPIhhtbpJINsXn2ljDPmM8i88znM8yc/Wg+i2wzDWcTB2exea4v2UAR RADN558CGlMXbJU/LIRowOdevXoBI41CadM9IfpTEaKZs64c9pbeg1S47tsc 3YXbl0MQcTijiIMZ5FgOU2hgoalE9+Nx7jV56sos9ccRrntmuZyLkW9NHXHH D0J7+l956z4dwuem1aCeXqG9HMKG9J445LlZQ3sz4XPnGF5zUBA+D3QqQJPP JYOdWD6XD5eF9TG+hMLn1UxzcAPTHHw7RImbg2h4A/KZHt7glnUzk3UJWtwc 3Bnu8d5cD0k+32T4TA9vlNF8rmMnN15yNc8MNM8KpDKNTLjhzgs3PGg+A/Mc 3ZWXbFjBeZe3BJ+tzTPL52M8Pn+O+NxwOH/LwFlkngVwDsBwFvPZJnIbXD/T ZS68HxRANPVuV1BM31AK0adtI9p64o4NonkWmka0oFHoyW8UUsuM1FIjnUKL Io51UhEHWvFdMcVUgzbwv5mhWjzO92KC4tPZ9VnodgZnS2sTkvC5CRUdNnF6 z/tCH3KY1Rs2B+c+4hA+rPec4aAentffSIfPz6HwuR8dPgM+x/XTJzyvF/E5 lOEzHN6AzUHFxiB2eAPxGZ/TKkzFDNepDzPDG7zJZy27LdKFVF29fHa2wWdX Nnymsozm2V3M4V2oXKM43MBbIXHJhld9ycYHVuYZ8tkI+cw3z5jPMNyAsQY8 qSufzCcRmflwFu+z4S82zxycA2g4/0hnGtS73aj3utnC7N2WufABXPAq9tLI RXPTHY1AtPXEnchCoz2i4ZlWbDQKzbFd6HFo1kLbjDgYC71YaynRVoSYqpGF XjLB748Fyh+i5QXRQbY+Au2PJ4TP7UPAVIztqZnR674wxOdhvb3nPorD587R T3QGfI4c8XDUyIcTXjTyw+eYvnrA5+JBTnw+4+bgzL7GV8bQwxuvIz7j5uBW 1ByEfEbNwb2zhHxmmoNs+Jw/zv98so7hs17MZ3plN5/PLrXLIJ/rBHx2Y8Nn Ks9ontvFHNGFNs8iPmM4WycbdxtuSPJZksz1wFlkngGZzwXwnTOdOf8EoVof li/eucxFD+DibsQ/Wz+ieUN3YkRbD0VLphw8C02tMVGrTdaNQnN8V25fDrxc BUYcjIVez3QJV3JrVXDEASw0leB+LMYdWOjlQX6XkuGOHBsmSW/d3y5h0rpP qv39f6S1BMzztJ73zejlAPg8+2HIZyZ87sw1B5/tDPgcM/rh2DEPx419OLqP PravvvBFJ5bPS4fKljN8Th/knDnEee04xGfUHOSGN+jmoIobrpvDDtchPsPm IAyfc8eazi7SNpTPaPi5huXzCis+s+EzCjfMkV3NUV2pEl96t41tVub5Pcxn IZwhn32E4YZROLnhK5is+4zhM4SzqaFwtjbPtuEMEErb3SbBMr94iKbeQynH eW4NS4MQbT3OYbtRCCw0jej9gnFoKz67cTtyWEcc2ELDiIO20OYQU22eunyS 3/U0uJzw9Dx53nyxhW6XcLbYwfNq9QNoBzKbzVP+7z4cbszsLeAznqyTDJ+n jXguYdwjieMfwXwuGyKDfGaG61aOlrPbPkM+T8LDG0p6eINpDloNPzN8TtDm jDEB/3xHPt8W8Xkp5HNtOeRzXQU7vMHyWRg+v+kB+Bw28n+Bf6aW+HFw5swz A2db5rmecMOazyyZpeHsLw1nls824CzmszVmfxEXh2XRt2whGlIaWeif/O+M aOt1K/WnHDwLTSP6FRObcpgTutKzduyKb+uIA27HwesSruC6hHg5YUWwacVk v1sZKmChf4pTrJ9g4FvodmzzWh2P7C5JrXsYbVov9PSaCvjci+Zz+MMOw3t7 43CD4zNcmeKIw2fA50lP+eQNdMp/wQn456TxjyyY8MjCCY/kjfbDfH5pFBre GCsHfM4b7kIPbzDNQdHwBs3nSPUxZvj5VJxmcxh9Tquzi3QN4nMp5HM14nMN 4nMt4LP5znyG5nmLp+VtT6rMzxzdzRzTzRwLi4azZFuQ5bO1ef7El+YzxYQb n8G2IOIz45z5ZKbhLCSzJJzP2YQznRtDDxwoqF+4ot7vRjO5GJbl10BYVtyW BjWDaOq9btBCNxDRtoJoNuWQttDelo+ZU37v86RW+lEv+XHLVfgWWjLi4G3H wVnoYq2lQNOrV6/KLPW1NNVvSYpTEfJ8JoVux3C22AGf2QNo9SNpowLmOeT/ 3ceGG7MAnx9xGP6wdyQv3GCag46paLIu6EmfnAFOLJ+Bf0Y718kAn5ODHkkN eqR4vIltDs7p77shSDi8MR0Nb4Sxw3Vq0fAz4HP2GNPpJO0d+Yy2fXbGfK4C fF7iAvm8HPPZFfC5zhafN3qI+Awjju3czLM5rhuseFiU2SRINqzNs61wg+Vz ppDP9dhmiYE6q2TDCs6WnwMFfEZMZk0yKMBneOOvUnU3lIZGnV3DYo1oyYm7 hqQcQgsNEb2gm2W/lzmpKzdrt4u3aZJkxEGv9TYIuoSMhTYHm47Oc7uJduQ4 H6dYM5620O2YG/bwp6cdv7wto4H/5zXl/3h8fthh8sPakEe0eLKO5vPTNJ/T +jpGPquf95xeks9L0fBGxUhZyXhTxuRHM4MfzQp59LUJiogBvpsm45Xd7PCG ajdqDkI+z2H5rPkUDT9njjbB4ed6+JxrgHwuYPhcwvG5GvG5BvC5wrUW8Pll 1zo+n9cL+EwV+1IlfgI+vyMRbgA+mxO6mRO7w0rqTq30Z/hshHy2Ns80n/1w c5B6I5Da1EXMZ9Y21wfnABrO5+qBcyCsi4EYwnwm8/2zuMSUDoB1R0ozc3d3 RrRov2hbKYdtC2056BU27j/c1qN3iDhcxBGHlYU2h5gqJvvdzlRfSVX9mqj4 Yg4c5Gjf9LCHZ2cPx9B2hc3zVGH4PAf55yheuIGbg8nPOUY8o496Vp/V31GC z3i4Dq/sHi3HKwfXj1fkTHk0d+qj4eP6bAlWbkXNQTS8oeIPbxyK4Pj8xgz3 t0Ld75bPlYDPZc5VgM/LXKqt+fyKNJ/NUV3x4hSaz9uY/iDks3W4QZtnwGfz gu6wFqJahCq5O7U+UCLcoIc3TBJ8viOcrXuCvIYgV4jGYSEP0ib5rqqBlOYh GqYc73UVI/reUw6hhTYv7Ea9YjIv6EoPcggiDneuSygZcVhbaLpLqCkPgl3C vxYqz8Yoloc+0oRnJ7RD2QMb7eEY2q6AeQ75v/um9rxvei8Hls9zH4V8nifk Mw6fJz7hk/m8oxSfZbzhOjkOn+HK7gkK3Bx8c7Jizrg+hdMfK5rxGG4OfoCa g/vCBcN1G6a5b5rhfipea4vPfyA+X+Lzudj5NuJzJZ/PK1xqAJ9fcq2FfHar k+IzVeQL/LM0n3fWx2cb4YYv4LM5pYc5FVUaqnRYYRP/a868n64sWIjPYjib c+/HG1yY8x6Alc+rAl7Rw8mBrHNmM407eOYGgTqAK9uIRuN8vJ06fmxwymGN aFsrvpGFBoimVvrZtNCbeWu96YjDhoUuhYPQtfmao/PdDkW6XUpWHY7x3znb rzBmUmt/BJtRdsJGOzmMNidgHkb9P40g3EDNQcDnEYjPONxgm4PjH/dJ6+eY IcXnxUMgn5nmoJxdOQj4vCEIDW8Ew+GN6Bd9d0xTloQ+Vhr2WFnYYxtnBewP Vx+cy/E5fZQJLu5m+HwG8flHxOeLaXrI5ywBn2+yfF4M+OxStdSlCvG5eoUr 4HMN5vMqxOc1Yj6bI7sy2z7z+Lyd5bP1mkERn40iPsN8QxRucMMbAv9szr4f Vg6qXLoY5xwgjjXE5jkQlojPv9wznzlQB9iktC1E33XK4VuPhUZb93sz5yhE EbSEhcYRB9MlZCOOtVaDdsxalYopptoCeALZ5UF+nyUFHI3z/26efP1EQzu2 0HYCRjs5jDaneaETg//ffaLwOfwRzj9HP9k59ik6fJ79lH7O03qGz058Pv9/ 9u4CzMoy/R/47k9q8vQEM3OmaQXBWEVCQkK6G6S7Y6iB6e58CSVEFBTxmKgY mOCxUUdRTBCQns7zf/J9n7fOOYPEDH/e67n2WnfZ3eF3LZ+9f9/nvu8HNT/D 8DkPhc9bgc+jhclBfDn4/BT3F6e6Z4825Y41vT7T4xC6HAQ+58x9OG/ewwcW hgGfN40I/nKFBvv8vdznKGWfy9NQvsH4XJWPfOaIz7XI5zre5z3O+fzadfWZ zTeEiCNENCfoFM5in2UXgso3gGpHVelQh0rTiRillENOtP2Ug/psfTqEi2yN N3IIe6HxLaEzEYe8hMY+oxIa+pyiqU7UfLrU+/kVD13YAB/4/mKeS+rtW0I3 EBgbyI/RuD5QNozopME+z+jclA2feZ9xuIF9BsUzbH6W+Zw6kDY/k8tBVxw+ 70Dh854JaLIbXg6648vB3LFe+eO8YPMGvRz8cKHniwvDlk/szS14eMvCh+vl cynvcwZTPyOfq5HPNdugz7VPQZ/rdvrwPnOLWpHhbuzzAcZn4YqQ9TnAKZ+P 1t9nEdHOFc8qPlvfbA1O/Yh2cJSUvl4ph7iEtj4TYt0Twm9MIreEyGfYZbc1 yHHEsUex0Q4SbV3v+1mEb22qpjpJ8+Kqh0EJfTnS48xaOKvyzMTbtoRuIDA2 kB+jcX0cx03u2IRcDnYR+bwI5Rts+DzmoYANjzaX+wyX16HwmbkchOEzuRxE 4fOzKHw+MFW4HAQ+c+O9hOaNRbD5edPwYOsyDaifty56ePvirk8u7sr7/Hsk yp+Rz/8wPhdjn1NJ/lyl7LO34PMuxufFzvn8xnXxuZ3gs6jFLkShhL6GcINv df47TOhtvs5HXEUjotFFYet/kXIIJbR1byjwmaTQ4i4OPEuoXEKzEYekhBbf EnIzQuqytLVp2oNrHq6M9yyL8cweF/TPevc/Vrt9veC2LaEbCIwN5MdoXF+/ e/0md0I+iy8HF/yv6aKHmi55uNmIB/2xz7O76uZ206v5LFwO0vBZfjn4/GR3 ODn4BJrsnunxxiyPwgleWyd6vTffE/u8cVjQsaUa7DNfPz+1pOvOpV13Let6 JKKV3OcryOeSFEMZ63O24HON2Oda5HMd8plbGE76n/cxPr/I+PzKzfVZXkIr +xxmJ3y+wT6HyX1WKaHtpxxiopHP1mdDgc8w5eBvCXEXx4f801d+tndbchGt RCU0G3Hst99op4c+Z+t+iA3/Piq8MkFTFuuZMyHo4kaPvyPci5a6fjHPBZQr t/pP5HX+Go6KDecnaSwf+H/o+t/rN0Xm83wln0HxvK5nc2WfJZeDI1y3oPAZ Xg6Oc2MuB6U+vzXHA/i8dkjQBws8d0zx3j3NW+Iz6d9YrwP1M/D56eVdn1nx yKfrW7M+X6U+lzM+V/P3g0r1cx3a/AzDDed9PnRjfP5e3WeeaPs+y+cEb7rP TpXQ8nY75qKQi24DfBZuCVmfQQlNI2i7s97qs4S0hOZmhhQltAI+V6doKhI1 ZXGexdGeWeOCzq5z/20lHCfcPMTZp1Uay9dwVGwIYzKN65s9e/akjk2gz6i5 jp0clPg86n/+a3o0U/NZaN4gl4P18Bk113muHxoEiudPl3gCnz9fDn3+Bvsc IfjM5xufrG/97KpHnlv1yL7Vj1wmPhtLkc8VKj7XSnze7WNNNFuTAgWf9zM+ H2R8lrTYSX02q/p8TN1n6Yi3zGdJCV0vn5GiJII+E1a/c60+17uEFhMNxyrl jXZHA+QRNB5UsW4JsnKBKOLwld4SChuhTZJbQm52CCihLRu61mZqq1O1FUma snjP4hjP9xd6HZ7ndWqN+09LXWOcfvqqsXwNx2dbA/thGv73yL2tJ1Ofp3du KmneWPRQM+DzEw/pRj7oP6urDvi8tmfz9ao+u1yjz3DzBvR5w7CgjcODBZ9X adV8xvnG+Tj9xQTD/jWP7I945PmIbsDnMupztdD/TPvrZPkzDDee8bXtvb4+ B167z0UqPp9kxgadCzfwgSV0fX12UmnVcZXWCuMqohJalnJ8h3DGKTR/S8j6 LIug8dJ+hRJaiDgUG+0MwGdL5CO2XB30OU1bkawpS9AAn69s9sgcF/T3Wvdf V7o9P1V56Wjj/RoUifyWpDuFtMOP4zgcPtPmOuTz/VKfl3VtNvJ//qu6N+N9 3sj4HNevRQLJN1yY5jqnfD5Efd4+yfupKd5weHCJZtPw4L3TfRz6fA76bAA+ X0o0XEk2FKcYX1jb7cC6bi+u63Y8vq2Cz1uhz3X2fX6e8fklxufX2BEVp32G +UYQ7zN6OSVY6vN3jnyWl9BO+nzmX/jsUGl5L7S8hP5NcaJQtMPfeiCMi20L S2i+F5pvhGavCGEE7c9G0GgjNCIa3xJCn+3eEqISetPsPviWsDZLV52urUjR lCVqimM9r0R5XIz0SBsT+Mdqt6IlrrdZBN2gfOZ/mDs+O/zWzhgq9fk+BZ9H POgP6meJz5v6NI/q2zyG93kAyTfq6zPcLDrPc93QoA8WemKfQf38zHSfqJHB zvh8Afl8OdlwNcVYkmosTTeWZxiBzwc3dDu4sdv3SW2xz7W8z08Sn7kF4aT/ Gfj8LOPzC9fJ52PqPiu02Il9Voygf1XxWSncoD53sJ0JR+d6K63iM1lw6iDi IERzcW2BzyTiYGdVWJ9BCa0SQQOfrVyQtSBQOeKQldCWqEf4dwlrs3XVGdqK VG1ZkqY4zvNytOdF+LR30Kk17ieWud5mXRwN0+c7n8NvaEcNvhxkfcbNG7zP 0/6nm/6QjubPzdV8TsL9dfX1GQ2nRAwJen+BJ/YZLRcl+Ub0qGC4f0PF57Ox +n+Qzxepz8XU5wqcP+eYgM8vRXZ/aVP3lzZ3Z3227UQ+P834/Bzj8wHqs4Xx +XXG57dvgM8/1MfnP5zxOdz6ZhvrW20o0f9CaQWfZRHHX07vtTsRzMW3BUcU QcvrZyv1WR5Bv8u/S4hKaPu3hKiELspqs3zCg/CWEHVx1OboqjK1FWnaUuBz vOZyjOfFzR7/bPBIHR3460q3uGG3VQTdoEhsUD9MQ/6sVutjnfzI5SAeTmGa 63if+f5nqc+9lX3G/RvO+7xlgte2Sd4Sn600fwY+x40OPjjXl/FZfypK/zf1 +Tz1+QryuSTdWIZ8ruT31xV41aL6GRBtiepuie4OfLbGmeHjg+Txbl+mhUPm 88uMz28wPh+26/NR53w+bt/nUHjkPv+u5LN8zREymUvvwPh8/Yg+bb+EbqcW cVhfCocD7JIujuPq+QZbPwtXhH7E57db0kev7N0SFuW02bO6kzXGj3RxEJ91 0OdkTXGC5nIs8nmjR/rYwN9XucWPCCz+6cit/gN6fb6G1jLR0H6eBvvtz48C PvOXg/LhFDw8KCyv695s9EMBij7H8z4Pkvk8Fvk8AQ13T0bD3dOgz6/MID6v GRz0zjzP9+aLfcb9dTTfeHGub8LYEOLzZsHnc8jnC4mGS8jnq9TnctbnfOIz qJ/x/g1LTPdBgwZZYnsU5bVHEYeSzy8yPr/C+My22F1b/vy1ks/fhyi32PE+ n1Ty+U879TMBGUYcZ8Ph+ZdE189nhYjD+nI4l9gO+Kww7s37/JVdn4V8w4+v n4HP1sJAa36gnYjDEtuNmxeK3o2lPufKfI7yBD6/NdfrtVmml6ab3tubfqv/ gF6frwHWqw3wR2qAX/QTvft1IuGzfHOdUz73gT7HUp9T4ONWaH6Q7X9GPu9R 8blgvBeon7HPRxZ6foh8Pir2+XuabySOC3l1gS/2+XS0/gzy+R/q82Xqcyny uSIbjhAKPsP9ot78fiRufrhtl09RbntLXA9LfI+igg70ipDx+SDj86tKPpOI w27/xmfqPn+r5LP0ijBU6YowTDmCtu/zv1RawWeViAM/syV+AItLagd8FkXQ 9n22Ouczqp9th3y5Va3EgyrevM+WuG7WBH9rnB/pskNd0NDnLF1FuuDzBeBz pMeZde4powN/WeGWtvI2iaAbIIYN8EdqgN+4u5v0v5f1uang84PQ56HwZatm ouXPPZqPeSiA9Tm6L/E5kexHoj4PJz7vEPnszvjs8fpMj9WDgt6e68H6/DH1 +Qs4nyL4fALlG8DnlPEhbyxuiX0+S32+iHy+kmosRj6XUZ+r4fspjM9ovyg3 L9y204e8n4LqZ+CzJaGHJRGcnkwLhx9zReiv3mJnhiW0HZ9pCQ19/ipYJYKW +fyTks/1iKCJw9a3UATNEn32moiur8+0hAYygyPq4pD4/J1dnz8NkPZvSHzG g95v+HIrw+VdHJaE7qB+5haEwitCxuca5HM58DlFc5X1eb37oTmml2eYom+X LugGiGED/JEa2rezIE3uM9/8PA8Np4DieZFdnzdjnx8TfE6j+zcYn93UfF75 eNCh2bi/zhPPdxOfl2g+oz5/i+a7i6jPv0Xq/tikf31Ry9QJIWkTQ4DP5xIM 55HPl6jPJdTnyhy8n1/ks431mazg8GVaOFpaknrCk9xT7LOdFg6zEHE49jlI JYIOEUXQPzodQauW0EKpDCNoic+C0tfVZzHRs6fcA6tockXohM9fU58/r5fP LbHP1rxAa66Z9bmIa1dU0JZbGGbbbUItHEY8pVIn8lkr9tnjVIR78qjA2GHm 06/E3uo/ptfha4AYNsAfqaF9+/Kixt/dpB/js6T5GRTPC//XTO7z2p7Nxz4c AHyOZH3uJ/iMW+zyh7tyI1230ftBRZ9XDSI+Hxb7/Cn2ebnmK7HPvyCff9+k /zNKfypa/3esPm1SaPrk0HdW+F2gPl9FPpdmmcqRz1XU5zrqszXGbI01Cz4/ zfj8HMo3aIudJaUnPKk9i3bcrdDCodZi54zPChF0iHIEfSJUIYLmIw57JXS4 EHGo+ey80sr9GwzRsqcJ4Uluz7RwqPj8vV2fj6r4/J6Cz7bXfLkV4STiOOBd tLUd8NmaEmBN8oeDhILPBqnPicTnc8DnDR6n1sKII2544NlX7/h8Q74G+CM1 tG/w3RrsM9+8wTY/T3pAO/kBrZrPc7vp53fXsz7H8Ss4JD6PUvV5xeNBr83y 4H1+V+bz59Tn77DP66DPv26EPv+xWf9XtP50jP5MnOFsvOHwCr/MKaFZU0Mv I5+Lqc8V0Gcvic/c3HD4fsoOxuc9Sj4foPmGxQ/4bEnraUl/tGj3PaIWO0y0 9IowEBJtx+evlCJoxYiD9VlaQst8Vi+hHfhMlL6G4lnqs/WN1uRJF/wk4h8h jutn3udv6unzuwo+W/PM1hwzjqAtSd1t+724xWFk0Bv7vF3wuRL5XIJ8vhSH fN7k8fcGj9Nr3f9a4x4/IvCbha63+o/pdfgaIIYN8EdqaN+Y9k0m3NOEbEa6 V+rzkPv9F/yvqcRnuJ+/R/OIns3XPdoc+LygB17R3yJGPEKYgUe8h7uS/c9j XHcK/RvE56zRXrljveB8N/Z5LvT5fSWfv1lFfP5pne7nDbqTG3W/IZ//jNaf itH/jXw+l2g4n2S4mGIERGdPC/0gwh/4XIZ8rszzqmZ8trE+71TyeV9L5RYO VD8Dny0Zj1oyHy16pqNTEbR9nxUjaGmXXahKxBGmGnHISmjpFaHquUaf+bdo gc9CvvEH4/NvKj7/oOTzF0o+f6TkM9PCgX22veoDS+iXvC3J3W0veHNLwuAV Ib+Iw77P0dBnUD//vc79VIR7ly5dvlvc6H1usM1sd4i28+0sSBvToclEJZ/n 3N904v1aUD8r+9yd+LyhV/NxXeETV1Fin1N5n4eJfR4v8hk+bjXDA/v8JuMz bLFbrMEjhKzPP1Cff9mo+3WT/nfk818x+tNxhjPI53+SDBdSjJdSjVfSjEci /HOeCMudHlZOfa7BPm/x5uaEk/e7JT4/w/i831GL3Zv+RXs6WrIehSf7UWkE LY04iM/WvWHWZ8PQFo5g1YjDYQRtP+JQ6IWuTwlth2gln0Usi0dUeJ/x/SD1 OUTV52+VfD4mrp9h/4Y/47Of1GfaAr1pYV/bQW9rhtmaFkBa7CQ+F+pr8vSV 2azPmvPI57MbYQR9OsJ9Su+2L0wz/t3II44Gy2Bqauqt/hEa7vdcXtRY5PPk jk0GoGdhoc+0eWPwff7zH8T9dUo+9yA+R/ZuPr5rAOtzEu/zELHPY0U+Z442 ZY/xepnx+W2xz59Qn79EPh9fg0a81+lgBA18jtT9tln/RxTyOdbwd7zhbAL0 +Xyy8WKq8XKa8WqGsTjTVJptypsRlj8z7NONATXoftAm93kX4/NeJZ8PqrVA C/kGINqS0wscUcTB+oxKaG5zW7olKVilyy7k2iMOZ0roM874rKI0g7P1Tcoy fiL8lHR+kIYb1OdkFZ+LlHz+0q7PuIS263PRjvbLpz4EfOaWhsMWDn7Km9/V z/qcIfZ5s+e5jR5n13v8vdY9aVRg/IjAnzP73eo/rP/qa7A+W5jvVv8sDe7b NK038blTkwGdic+4uW7CfVpQP897EM8PCj4vF9fP63s139i7+aY+LSY8EiDx OX0w0wI9irRwwPdT4Pwg9HnZwEA4PzjD41W0vw77/I7MZzRCKPL5p/W6nzfq TiKff4/S/xmjP4V8PpNgOEd9vpRmvIJ8Lsk2leWYKvK8gM8Fs8IKZ4dZN5ut UWbo85OMz7slPtMI2n4L9JsB8hYOS24vePJ6Fb3QiYmglXxWjqCVfK5vxKFC NLOIwzmiZT5DltPag0NYPo3/U1Rwxj7T+RTaX3edfD6i6nPRzg7AZ5vFh1sW Dupn0YuxzFsqwOdq5HMZ8DlVewX7HOP5z2bYwnEORRzJowITRwZ+3cgj6Aar X4P9wRrCN6pdk3HA546Cz3zzMyiecX8d2v/s2OdFPfVLHtUzI4Rin0dKfV7S P/AAuh+U+jzP8z0y4g19Pkp95kdUipDPJzbqfonU/Yp8/iNG/1es4TTy+Wyi 4Z9kI4w40oyX041Xgc9ZptIcU3muV2W+F14BPWtQB1A/c3PDrTFm21NKPj+r 5DPbAv2a2GfhilCUbwCfLfm9wCk62ImPoAWfvwxWiKCPMz5LI45QlYgjzPkS WuSzM0pTmQWW8WuGfHJyivFZEWfnfT6u4rOQPwdIfZaOeLfEPlvSethe8bFm m6nP3mgLh5e6zzroc5LmUjz0+XyU5/lIuIXjzDoP4PPPy92ih5qv/tiIB71v KIPffPNNYmIix3GXL1+W/7NDhgz5D/OVl5fftB+sUX/Hj703qn2TcXcTn/vf K/g87j7thPu19fI5qm+LxY/ql/bS0xFCFzyikjOMabEb67ZrPHofFvg8IBC+ Pwj3b0CfXxf7fETs8xfIZ9jCEaH9Ya3uR+DzBt3PkbqTm/S/AZ+j9X/GGk7F Gf5GPp9LNp5PMV5EPl/JNBWLfa4t9ILhBroiBD5z88LhmR+OtiT5qrXY8S0c Dnx+1yy+IgzEEXTRi50sBb0shb0tXG/GZ7UIOkSlyy7UXsThXAkNFyW92UZK tLrS4BeLWJZcCzqDM+Mznh8U+fyjQ5/NzPwg67M4guZ9PuRrSe9he9XXmmsG PsN8Y1m4yOfdJrJlVMnni/GaCzGwhePCJryFI+hUhPvJFW6xw8ynXm7EEfSN Y/Dw4cMGgyEiImLUqFGtWrWSE202m1966aU/6VdXV3dzfrDG/j2bGzW6fZPx vM+d/aZRnwfd5z/n/qb19Tn6sRYTuwWQERXkc+YQcQs0HVFZ1C9w3xT3F5DP FurzIbHPH/I+L5P6XLRe9xP1+dco/e/U59MJhjPI539SjBfSjJeAzxnI52zg M7oiLPA6tings81m7LPkihAQzS1sxS2Cx5oapNhiJ/gs2WKnOKWidEW4aUU/ y5be4FyHiOOkis+qF4UqJbRMaS69AzxpHRDmKj0bpxif7eEcyu5HUvX5Oyd8 FrVwKPtsyegB6mc4opJDRlSsmWZrulnmsxH4XIt8rhD7fDFWcxFuGfU8z/u8 Ei5K+jGjEUfQN47Bzp07b926Ff/9/v37JyUlsf/shQsX7rrrrpKSErV/eYNt LLnl38apvbHPk2i+MY0OD16zz7H9WkzqFoB9TpP7PIbxebL781NRC/R0D9jC gVugsc9kxFvzMfIZjRBqYQvHau3xCO33yOcfN6CIA/i8Wf9btP6PGMNfcTDi +DvRcDYJ+Zyq7HPhrDC+xU4aQTMtHNaUQG5xK25JK25pK2tGkODzy4zPsitC BZ9pCc1H0KR+/iIIKr0VnqLXOsu67NQjDuVBFZWIQ6mEhj4zQytk+hvWyR3I SRcvi7aP818OcRb5bH2llfXlVsTnnyQ+Bznls2ILB/K5aM/dRU93sOYHWnMD 4XwKHiF8EV0R7kc+PyP2mRN8LoY+ay8laC7HaS5He17a7HkhEvp8Gr2l8sNS t8jBjXjQ+wb5fP78+f/+97+nTp3Cf5mVldW7d2/2F4DqWqfTdevWrVmzZnff ffe777570362xv6NaNsENj+LfG4KfH68i/+s+5sSnx+ot8/Leukndw9IHkh8 Ji3QI3ELh9vOcW4LHguEK0ZRCweKoD34Fo635ngeFq3g0HxKfNZgn79do/1u re6HddDnnzbqft6kP4l8/j1G/2ec4RT1GeYbqSh/zoD5cxkzokJ83uINicY+ P+XDTKmwETRp4QA+c8tac8vRWdHa9orYZz7isO8zWWSHfOYfukIRNPDZsq03 OEWvd1aOOIocRhxhzpfQ2GcRyKROlpTT6t3OAs5h9cIZh89cYjvHPgvzKSo+ y1o4ivbeDXy2FgYJK+zoiDdpseN93sn7bKjO11fkUJ+TtVcSNFfiNFdiPC9H eWaOD/oHTan8usqtaKnbpsHmy40zgr5xAH799df/93//x0cW+/bta9OmDfsL du3aBVg+evTopUuXYmNj3d3d//rrr5v24zXez2q1jmjXZEwHOJyCfR51r2Z0 Z+30zk0HAZ/pfIrE56XE5+Z2fMb5xpTuZpHPIwSfFz4WiK8I9yOfD/JXhLgF Go8Qin3+fAVssfsa+Xx8re77dboisc/wijCOXBGeAz4LLXamkkzB52MbAz6L DBB8lkUcqlOEzBUhIJpb2Zpbhc5qcNpII2g7Ph8L4jZRn79grghRxAF8hlBv B6ePSsQRWo9bQuaiEDfCodNh9rSOBGRcRbPnDP47doZQ6ouzgs+gfrZawh35 zJTQn5kZn2URNPXZktWTvKLymq/EZzKiIvF5G+Nzpq44TXs1GbbYXY3XXI3x vML4/Nsqd+BzzDDzH5ZGGUHfOAC/+OKLpk2b8n954MCBsLAwO7++devWhYWF kn/wjs/yb29u1Mh2TcYyPk+9t8nAzv5jOmvHdtFin+c8wK9IUvZ5rYrPCQNa gPp5Wg8zP0JIWuzGuM3rG7h7vNueifCKUB5Bi1rsqM/H0AjhFyu1X63SfgN8 jkA+r0c+RyKfxS0c55gW6OIMU2kmWcFRnetVODOstsCrrpD4XGc34pBOEapG 0AHcmjbwRKCzFp11bbj18Cj7zOyCFkXQQsQRAoi2PAmPU7eE1Gfra6255PZk 6wVzJCkHUFoBZ1bm0+osCziHOcb5NynOKHxGJbTzPuMSWs1ntCXJkt0TPuRd GMTPD6L9G/yKJG9QP1tTAuQ+VyGfS5HPxSna4kT4igp8iDAa+bwRttgBn39c 5rZvinHDoEYZcdw4AE+ePMm2ZOzcubNLly7sL/gZffxfPvzww1lZWTftx2u8 36onhir6PLCLP+6v+zc+Jw5wAT6nDnJ5oqcZ+Jw7TPB5ft9A3MKxF/hsJ4Jm RwiXoRYOuz7zLdBwRCXRcCHZCLckAZ/Tkc9ZIp/RlLc3JHobXATtTMSBuuzU I2hRxGFmIw5ufVtuAzob23KR8Mwefw8gmtuMThQ47eCJpieGnlh04toNGjRo 06r+4G+Xz+vKxbfj4ttzCfQk0pNEjvXV1qSEVqqieaJBIS3l136pLDJZSWZl nO36fELs8/eIaDs+q7dwQJy3BgOfSX8d8PkVX+Lzi8Rn2z7ZCg6xzyVpcESl JElbkqApidUcWez93kLv89Bnj99XQ5+/Wei6/nFzY3zR+8YBWFNTo9FoPv/8 c/yXa9asmTp1KvsLVqxY0a1bNxyA/Pnnny4uLqDkvmk/XuP9et3jp+jz48hn vH+DvyK8Zp9B/Tz9UfOGAUbs85w+gbiFA23hcH8O+XwA+fwy8vkN5PNhvsWO GVHhff4uQse32P0SqYdT3lFoCwfwOU7us5H3+eiGgGMbA7DPtTTiIIv6sc87 qc9CxNGSiTj8mC5o/2vossMlNKyfmV0cJOJQaIQOkaTQRW93sTzVx7KjT9Hh Lo5TaEWiqdIKPjvLcpjIZJZlp3GG5+dg9LiVzGdhf52zLRyW3J7WbcHWrUFo P1JLODwIffapj8964HNpuq40VVuapC1N0JTGaXImBl/eDFs4ziCffwI+L3KN HGx+++nG95zKDQVw/vz5jz/+eHFx8bfffmsymY4cgRF9cnLyzJkzbchkf3// wYMHR0ZGBgcHA67l/w53WjjkH/AZNz+zPg/o7D8d9dcBn2f9O5+TqM9ZQ13W DzBGDjRyI13nIp/xlqRnkM80gvZgImhPJoImLXafqbRAy30mW6CTjJeFV65M +JXYghlhtXlecEt/AeMzKqHreJ+vIeKARAeIBwnN4lvCQHaXHSihic9qRAuN diGKjRzAZ6C0ZSc8qkSrZdE0jpYu6DjlkGV8HLEs4Bwqwtmez8GMz2wLRyDj s1IE/YF/0f579iR0AT6T+UHWZwv1+QVvvv8ZroBmfK5BPpfn6MuydGXpurJU bVmytixRUwZ9DiI+r/f4A/i83O3bRa6bh5jXDWx8EccN9fnq1avjxo1zd3f3 9vbOy8vD/+Drr7++Y8cO/PcvXLjAcVx8fLxi88ZN+Akb3Qf+zzWsbRO5z907 tx7TWcv7PFvs82JVn1sAnzcr+ZyOfM4d5rpxoHFQ1zZbR8Mrwh3j3FAE7f4s uiJEEbQHE0F7Cls4FmmYK0LSYoe2JKERb7jFTv+bsGXUcAb4HG/P5xreZ1hC Mz4/iYjeWZ+IA5fQ8oiDJVp2S8htbGs7GsTPekOfr4loclF4IhQrbdnVxx7R sqY7wWenTGZkdoplivOvajiH4OZnLr7dv/G56Pl7ls942Lo92PaOHx1OEft8 kPq8n/q8CPm8ywR8rgM+b0E+5+rLs3TlGbryNG15srYiUfPxMp8PlnhfjoIt dmeBz2vcTwCfF7s+M8m4ZbThVv/xrffX8PVLTU0FP+SdKhp/wOfhbZuMFvs8 6l7t6M7agTTf4CNo7PNCmc9wBbSKzwlin3OGueaPcAU+z+lt3g58plOEe9EV IYygn0AR9EwUQc9BEfR8eQSthS0cZAuH7kfxllG5z/gV79I0Y3mGqTLTdHSd /9H1ATW5aAs09bl2i8jnOjaCdj7i4EtoxYiDLaGJz6gR+l8SLevlAETjU/T+ fZBoR1mHiGh7LIc5MFnKcqiIZV5m3meKMyieqc9BCj5/5cBn645gS+6jtiP+ aL5b7POrqj7bnvHiFoQRn7cjnwv0FbmwBboiA74SW5mirUzS5k0OLonVXKE+ /wl8XuF2fLGrdZ5rxMCAxhVBN4r0AP8vCPg58aKkhv8D39BP4vNEpv95YGf/ 6WKf0SsqzRb+j/i87JFmK7o1X4V9pitGI3sTn2P6tYijPqegFRxwRGWY68xe 5sKRMIKe2ycwdogJ+Pw08tnJCJqf8v4KRRzfR+iK0BY76HMk9Bk+5B1jOBtr +CfecCHBcAn4nCzyuWB6WE2OCfqMS2jqcy19i5D4TCIOXybiaMlEHH72BlVE JbRyxAF95mcJ1Yh2OPFtt92u6L0uEOrdfYuO3Gcn64BNHQ5YDnO6VKaluxrL fOWMfT5BfLYeDLe+GC7gjH0W7gdVfbbuDN609DFyPwiHU6jPb1CfX6Y+H6A+ P0d9Xsj7bMQ+V+bCEe/KTF1Vuq4qRVuFfC4lPnueQz7/DH12+3w+vCIEf3xu 9Z/genwNv3i2yX7IRvG/KTfuA/8Fw8MpYp/9+fkUOy0cyOdmwGd+RT/2GUfQ cIVd/xbxA1wSkc9pjM8FyOdto92Az/P7BjofQX/MRNCSiAM+pAJ83qT/C/qs V/S5It1UJfa5hkbQ2OdaGkEDn+uuIeIQ1kHbLaFZn+tNtPSu0HFH9K+hoJAG SuMjL6SJzwom88fJalmGs5rMYpxh5fxjMBfXTjncUPeZ29Bm07LHyP3g+xKf fRV8fp76vBf6bHvaxM0Ps+3gfTZU5emrcvTVmbrqdF11qrY6mfqMprzPbfD4 KwL6/N0S6PPGwXd8vv5fo/ghb9oHfUbDKcDn8cjnEZ00I+/VTkU+D1Rq4Zgv j6B7SCNo5orQBbZw0BHvdf2NGwbCFg4O+cxPESYNN5EIGvlsQT6/PtteBM1H HN8zEcfvyOfT0cjnOMPFBMPlROPVZGNJirEM+Zz/RFh1lqk621STQ3yu4SMO 5HMtjDh8INE7feqcjDgsShEHS7RSxMFtaCv0QvNBNNvO4TzRdjqi2dVJKOsg UD/dlycaPT6lJnOY44JZJHOoAstymX+mPv/Ed9bVz2fr7hBuY5uiAx2LXrgH +ozDDezzWy2F5rpXaXOd3Oc9sH8DRhzU5+pCQ3WeviZHX5Olq8nQ1aRqC6YG VybCFo6ryOd/kM+/rHS/4/ON+xrFD3nTPt7nsdRn+n5K02mdm07vAktoyRXh PCbiWC6OONaDErp3i0gmgsYRB/Y5YwhssctFIyrcSNetyOcd42AEnTjcxC9K ehFdEb5CFiV5vs1H0Is08ggadXHoitaSRf2/Rer/3Awfij0TYzgXZ7gQD3w2 KPpcjUto5HMNH3Egn2ufFErout1ORxws0Q4a7Rif5URbnSDa0V2hMtG/hrJx NFYaHMFnicwOC2apzKEOZOZxPiHFGd8McrFtKc403FDorzNzkW2Az0UvdgQ+ 0/0bNHzGPh+SNz9Tn/eJfLbG+1vj/LHPNYWG2nx9ba6+NktXm6GrTdMWTIE+ l1GfQf18ivH541kud3y+EV9j+Tlvwgf+CzZS3WcccfA+SyMOJoJmIo4WJOJg ImjcAh3RzwDqZ3xFWIh83j7GDS8axRH04v6B6aNM6hG0homgtTiChouSmC4O NuI4F2s4H2+4lGC4kgR9Lk81VqabCoDPmYzPuIQu9KqhETQkmvV5l08d7zMb cTxPIw47t4TqsyqAaOgz3wstTzkUif7muhAt7esARG+K6A/+tuiD+6jMMpzt s/wr/k9xQmY5zqRtQ8VncfFs3RMKcMbhhiX/Uab5uT4+P0t93g37N7h5ocDn 2q2GOs5Ql6+vy9XXZevqMnV1aTq+fr4c7Xke+7yW+PwF8Hm2y+zZs2/1n+B6 fI3Fvcbyc96ED/s8mvo8vJNmRCcN6/OYLgpT3vCWkO+C7tZ8JeOzQsRBWzim 9TRnDXUFPuMtSXiKEHZBjxe6oNNGmpYOCMxCb13Zj6D5Ljs+4jiBuux+3wRL aEnEUZxsLEs15k0LrcqAETQpoXOFiKOm0LtmixBx1D7J+LwbEf2Mo4hDOqsS IL0lFDXaUZ9FRMtSDj6Idki0nSCaJ1qWdfBEc8ntwd8Cn3H6ge4TnSuYf+X/ zVVYZmW2i7Pt+yDrC2HW58MUww3rM6HcpjbAZwHnjwOIz0do+IybN0TNz760 +dmHNj9748tB4vNOE6ifP4vxs2012DiDrUBvy9XbsvW2TF3htJDqZG1ZguZq rOYi3NIP7wexz98DnxdAnyUjzA38ayzuNZaf8yZ8Ep/73euHW+ymAJ9RBI0j DonP8x5shktoPoKGEQcTQUeKuuxIC8cTPc2ZQ1yzh7qSiANF0HhKZTfymY+g M0d7rXg8SIig50kj6GN8BE19ZiMO3MXBRxyXUMRRmgJ9BiU0JBp1QVfneAGi q2nEAUroGsbn2qdEPtepRRyYaMVbQky0yi0h9JkfJ7QTRNsfLXTyrtBRIQ19 5ivq30OLjnSx7O6Dj3qUwR4nZFbDGfv8PUmeuZi2suI5kNvcBviMkmcz8NlS gHEOEBXPovC5JQ2ffdWaN2DzM/LZ9pSRmxsq8dm61vfoat+KZDjifZn6fBb4 HOFxEvi8lPi8tvGMqDSiRog7PvMf9Lk98rmD1Oep1Ge4pR8tGsUR9FzkM19C s112QsSBfKYRB2zhmNrDnDYYRtC4hM4XR9B4SmUvXZSEI2hAdP54L3kE/QmN oL/AETQd9MbPef8aqf+dRBywy46NOIDPFWnGStRlB4nOMVUBn9Fz3tXY5y2I aOpzLY2gsc915EXClsoRByTaX7xxVFZCi9dxQJ8/CqxfyqHYFP2viWZ8lhbM fDe1isyhTsuMjl2cQeUs8RmuJdnchm6ugzgXHexY9GJHcfHsX7/imQk3bDvE Pudjn3WFT4RUoRHvq/GayzGaS8jnM+s9/hL73Ijq50aEXiP6UW/0t2Fqb8Hn u6HPExmfp1Gfx3XRjr9Py5TQ0OcF/C2hNOJosVHUZQdbOKb0MOMrQnHE4SZM qSCfaRe0B16UlDfOa/WgIG6iNx9Bf4gj6GWaz2gEja8I4aC3LOI4w0QcH6z0 +2iVXzm6JawARGeZKrMB0V6A6Cr03BUguhr5XLPNuwYQjXyuJSU047Mk4rBz SyhttDOzJTT0mR/3lqcciu128rtCRaLlQbSDrCOUS0I+240yhLGX97oI/yYO ZeZx/kkFZ+wz3/P8bRAX3RbgbH0uDOAMimembcNMcP7E6eKZdG74qBbPyGfb diM3J9RWSHzmpodUZ+jKU+GKJODzFeDzZs9/0P6NPyPcT66CPn95x+cb9jWi H/VGfwPaa6DP7eEVYd9OfrgFehLwmY+gu5AtHKCEZn2GRP9PKKFhxNGDjzha sBEH8Hl5b8PKvgY8RQgjjmEk4tjCRxw4gp4k64JGV4SFE7wjhgStHRr0PvAZ RdCwy265lomgdfAtFfRc7C/iQRU+4sieEgq7OFKNkOgMU0UmnPUGRFcCn/Mg 0VXAZ84bEF29Ffpc86RPDSZ6l08t8Plp6HPdXvWIw2GjnTjiID5/GFi/lEP5 JVm1jrt6Eu04ZGbGXgDU73Zxqmbmcf5RBWehp474DI712TAcbgg+HzXDZAPO DCoWz37isW47xbMXmezGPj8p8tm6oeWxtb4V6bqyFG1JorYY+XwR+fz3Ojif Anz+4Y7PN/hrXD/tjfvw8jqpz2QLB7kihCU0miKEb109gCMO4jNfQosGCXtJ u+wmdTfDCHoQnlJBETQbcYxFEQeOoCcrdEEfQhH0O/M91w0NWj8s+CO1CHqd 0MVBG6FJxAFKaOBzMUqhgc/l6aZytIujAq7r96pEL8ZWFgCivas46HP1Nu9q QPRTPjU7fGp2IqKf9q3dQ4iuYyMO6S2hv5O3hHAj9AfUZznRTqYccqLV2jkc ZR3EZ7sy05oZnxDgM1n6sbOPqswSnIskOAcLOB8Psu4PAzLPnnAP3bkhKp4h znimW1I8v+OoeCZtz95kLAX4vFvs8zbB58IZIVWZOuxzKfA5TnMlWoOb606v g/s3Tq4kPu+aYFwzoNGMeDcu8VJTUxtLWn5DP+zzKOTzY538xt/TZAL1eYrY Z1BC47e85/A+8yU0viUUd9nBiANF0MDnyd3NZIpQFnFsxRHHOCHioIs4PJhF HJ78Io4jCzUbhgVvHB6sGEHjXXZ4VxIbcVxIMGRNCSWN0KnGsjToczlaNwqJ zvWqyENEF3pVct5VW7yrtnpXbfeuftKnGhO9y6dmty8k+hnfWuDzs4jo/Uol tNO3hMhns6iEtpNyWJ1LOdS2czhRSEOf7cv8C3ukBbMAtVRmGc4/yHBG14Lg WPeF4eQZJhtiny0FvejCDeqzcvHc0kHxDMMN1me8n99o22LgZoVyM0NrcvTQ 5zRdOfK5BPrseQH7vBb6/Av2eSFcMfrW1BaNpQW6cfmMN2/gFRy3+me5ld+j cp/plLfkihB3QfMl9DzFElocceBdSeghb3hFmPw4WZSUORRGHPQtFbdtQped NIKmXdCeb6Iu6HeZCDpyePCmEcF7Z/jgLmg2gv5lo/5XccSRMSn0UiK8JcQl dGmasSzdVJZhKsuCL6qU53hBovO9KgoA0d6A6Erg8zZIdNVTPtU7fKp3IqKf 9q3ZA4lWKKEP1KeEfs9s3R5qfTJUGCeUE+1kyuH86Le8kBYrzSW2VyiVFWQO tRcynwiB+0530N3UP+EyXp5pCDhzsW3JnSC8FgzirwWhz58HYpyLXupUdLAT 9FnatuFfj+JZCDcYn1H4bNtKfD62oWVNNvS5EvgM94tCny9Hw+UbsHljLdz/ zPr85h2fb8zXuH7aG/cBn0cgn/t09MMj3kwE3ZSPoKczi0YH3+cv8XkRKaHh LSHeZbeuVws+4gA+x/V3IYuS+Agaddnloy47HHHsVIk4XmEiDthlt1DzARNB PzPDJ2pk8L5ZPjiC/nEd7rLTSyIO4DOZ9UaNHKVwHYepFPicCYkug496e5Xn IaILvSqAz1sg0ZXA5yd9ANFVgGhUQtfglAOV0OJGDj9pyqG6FBpGHNzaNqSR g12adCOCaD7oYJs6lJRW8FnKMjrqMkvKZrib+qk+lqd6F73dWY4zehQGyUxj Z4Iz8tn6bJh1bxgungWcnSmeX8XFs6+0eH6Ob3tW8ZmDPn+GfK7OgD5XwOZn bXGs5jLTvPHbavefV7j/sMztqzs+38ivcf20N+5jfR57t7AlSeQzE3EAosff r51wv46PoPkSGjfa0YgD+ryR+hzb3yWeLrJDXXauJOJgBgklEccL4ogDlNDS QUIUQVtRBP3cLJ+Y0SGxY0L4CPpkJIk48Kw38BnfEuISGhBdkmYsTYdElyKf y3K8ygDR+V7lBV7lhd6A6Arg8zZANPWZltC1io12DlIOaQkNfeZ77W4o0cpK h8iVhj4rgizILMNZiWXh4Mq5KLjorc6WJ3vjY30hHMuMA2cxzkHinue2JNko 7GU7amaK5wBZ8eznoHjeJw6feZ93CD5zs0Nt+YbCGSG1yOeqVOyzBvgMm+s2 Cj6fWAHr56/QE1eHGonPjY67RvcD36BvWNsmvdH7KbzPTATdlO+ye4KJOEAJ PeF+7cQHdHwELS2hmYhj/CMBKIJ2kUccOIJGu+xIxLFLFnEcnE522b0+2/NN ekvIl9BokFDUZRc3JiR+bIhlfkthXX+U/s0lfm8v9cO3hLiELkYboUvSTCXo 0VhAdGk29Lksz6sMEF3oVQ583oKIpiV0NUqha1EKXceuS7qmlIP4zE5827kr vDaiv5MRLVdanEtzCe2Folp6HBfMijjjstl6IJyLg68oohfJ4RHJLMOZ91nA +VqKZ8bnZ1V8xpeDs/HloIFDPtdgn5O0pfD9btxc5wmbNyI8fl1FfP5yoes6 4POUOz7fkK8RTdPc0G9o2ybwihD7TLfY0UX9jM/iEnrOA4BoHSEa+YyX9rMl 9HoUcWCf8ZQKjDh4n2mXXT6/y45EHO5MxOHxIh9xyG4JhUEVoYuDRBwvzfNN HBeSNC7k9836P6P0qRNCyS0hLKGNoIS+moyIRo/GAqJLskwl2abSHK/SXOhz GS2hK1EJXbXdB14U8o0cu+ksISS6pUC0vNdOPeXgItqQi8IbQbTkupBXWg71 T6JyWsFnOcVOySzgjFkGZbPtu2C2ZrZs641P0ev3ynG2fQ5nBiHOcCbFUfF8 CBfPLWnx7Et7ntnwWeYzbd6AnRtwctBgy9MDn+uyoM/V1GfaXOeJmjc8Tq5y /2k56n+mPi97LOBW/yF2/DU6n22N82e+7t/QNoLP/JYkPuIgRHcWBlXYXUnA 50kP6LDPCx6iJTSd9V73aIt5PfQLeupJlx0fQYsjjnyliONZcReH/JZQoRGa uSXku+ySxoekjA+Z+lh7fpYQl9CQaPToVXGaqTjDVJyJiUY+55GUg0+h2UYO vhdautGunikH9JnvtbuOREs6Otiswwml4TuA9dVYQeYQwjI6MG3+Dv8wTJrB lM1Fr91r2doLnKJXO9GeDXgtaOF6oVVIAGezUDx/4HTxzPu8T8lnEj6brDF+ 1ig/XDwDn205+sLpIbXpxGfUvKFBzRuCzz8uh/uRnptifGqc4Y0pLfasG36r /xA7/hqjdY3xZ76+3zM5Udjn3h39cAu0JIJWK6HpoEozlmh5CT3m4QDcZReN I44BTMTBR9A04tguizj204iDNkJ78o3Q7y3QkFlvmEJrSaMdU0LjLg48qJI6 IQSU0GkTQ9Mnhb6z3A+U0JfR0v4rgGhUQgOiSzJNpaiE5lPoCqaRo3q7DxxX YcYJbYolNCTaz5mUg1vTRtQOfd2JVsw6HCkNH5myL7AayPRYX2xFWMb3gN8x OMtkhuerIFg2o8q56JVOli29AMvgFFk6Fb3Uifpcn+LZgopn3uf9Sj7vJj5b Y/2t0X6weMY+o80bxOcUbTlp3oA+n93gCZs31nj8shL6fHyJW/SwwA9nuQCf f3g+5lb/OXb8NUbrGuPPfH0/4POQNk0GtNd07dR6FOPzeGFKReazuISe+yAh GvtMNibREhr4vEHYNeqCI45kWcSBdiW52Ys4yC2hJ444Ds9XmPVWLKFPohIa 3xLiEvrwMr/MyaFZU0Kzp4ReYUroEiaFLkclNOy1o73Q1duEcUK0kcPX9rQS 0YoThUpLOaDPkomV60W0YtbBKy2HmlEaPQIoiz6UHJaaHN8Onrh21gPh1yAz G2vYrIEkdj4G9zyLi+cAWjz7o3dSQPHsJyueGZ+fV/KZhs/WOH9rjD/u3EDh BvGZQz5XIZ+Lgc9RGrwZ6a+1Hr+t9vh5pXvRMvdvF7tFDQv8YJbL61NafL// js835GuMP/P1/bDPw9o26dKlyyi0hYN/SGVCR1xCN5XcEpJZQmEdNOziAD5P BkQ/xJfQzUEJPesR/ZxuenhLyAx68112QsQxXBpx7BYPqhygEcerNOKQN9qB EpqfJfwWlND4UUJUQieNC8G3hKejDWdiYS80evfKeDHJCJTOmhqaMy0MnA8i /EtRCV2W41WOxlVwL3QVR31GJXSt8O6Vr/RdFedTjkPU5+tL9BdioqVZBxNK q5TTQFpw7GuM4gtqchw2uRUSPlgmc7C6zEEKMlOcmZ4NM7exjah4ft9R8cz7 /IKSzzR8hmv5Y/1h58YWIxtu2LLgZtGCaSFVtLnuEvL5DPEZN9e5f7PYbfNQ M/R5covv7vh8Y77G+DNf34/3ueu9rXmflSNopVvC2Q8AopvhRjtI9IM6WELT jUkj/xewhjba4RJaEnFk2I04nqERByihmUZoVELTiOMIjTiO0ogDNnKs0TEl NPSZf9f7VIzhdCx82vtsguGfROP5JOPFFOOlVOOVNNORNf45T4TlTg/LnRGW NyOsAvVCw4lvVEJXo6VJZOkofjpWrYTmUw67Q9/c6jakl+O6EC0ZAFfMOkRK B6spDaOJohC1w6fKxGTyr2JGTr5j/lNUZQ5SkTkQznGTUW6Zz3aKZ+DzK2Kf Dyj5TMNna0IAKJ5h5wYunplwA/hcl6ErmBpSiXy+iprrYPPGetS8gZrrvl/q tm+q6ZlJxiMzXV6b3OL4vobucyOFrpH+2Nfx28PUz/yWJFEEjSMOphFaMqvC l9Dz/9cM+IyJRhuToM8whcaNdqiEJrtGhYjDFQ8S2ok49tGIgzZCe74xhzRC vwt8RhEHarTT4ojjy1XCuiScQieOC8G90L9H6f+INvwVYzgVZzgdbziTYDyb ZPwn2Xg+xXgh1Xgp3XQ5w3Q101SMUmio9Myw/FnghB/dbIZ77eBeaJ9a9DSh TVJC80SrldCylAP6zLfb/RuiJQPgdrIOXmk7UGOffxC4Bg7zJov/KcmYtkTm YKnMX6vLLMMZ7UHqhZMN6DMpngOkxTN5pBsUz2KfX1TymYbP3IIwUDzDzg1c PIvDjbpMfW069Bk1b2iv0uYN3FwHmzdWuH+3FIbP1vmuwOdXJ7d4bWf6rf5z 7OBrvNClpqbe6h/hVn7A58Gtm+AWu94d/SQRtP2IQ15CY6KnPKgDJfS0h3Qz HtbzjRySEpqNOPhBwsKRbvyupF3j3cm60SniRuhZqBF6rqgR+iMacViZiOM7 FHHEjw0BJfTJjfpfgc+b9X9E6f8EPscaTscZ/gZEJxrPYaJTjRfSTBfTTZcy TFeyTFezvUpyvEpxL3SB1yebzPmzwwvmhBfOhQf6vENMtJ2LQmF7vz+bckCf 2Y7oayBasqNDmnUEKWQd9pQmS0pnT7qHaByL++JaCTU2PMEKx1mZg9RlDiQy k2465PMnZlg5fwwf6XZQPLM+H5T5TMMNa1IAfA12txfu3EA7N/hww2DL0ddl 6WszdDWMz7i57hxurosQmjeihgYem+f6/kyXVyY1gv7nxuuzhflu9c9yCz7i M27hQFMqogj6HiWfJRHH/SKfF2Ci/6cb9oD/skfoUmhUQkeyJfRA/sVY0SDh Fvoi4U4acTyrFnHMFSIOeksIS2gccXyzWnccRRxxY0JwCk1K6M36P3EJHYt8 TjCcSxRK6ItpsIS+kmm6mmUqzvEqob12uJEDphyohAZEc/PQmR/OLWgFz8JW ykQrltCIaG5VaxxEXwvRkjVKzmcdYqW5mHaiE0sO5dq5I5I5WF3mIKdkxt10 wOf8XhhnUDyjRVJ88exPi2c/UjyzPr8k9lkonr0BztbEANJZh4tnGG4Y+XCj Lltfizuf03SfrvL9eIUP31wHmzfWoeaNVe5Fy91jhwd+udDtKPL55Ts+38iv 8f7k1+V7OjtqUOsm/dtrBnTQDOygefxuDR9Bj7tHqYTu7LiEXvBQM1BCA5+X inuhFUtoUcQxEkUcY4SIYw+NOJ6fSiKOl2nEQRuhNaJbwuXSW0LgM06hyUYO XEJHG2AQHWc4E284mwBL6PPJxgspyOd005UM5DPTa0cuCreQ16/qtvvYZCU0 IBqeRegsbsUtQWdpa3AUUw7ks3+9iZasUXI66+Ci2nHR0qNYTgOoBXKdPNcu c6BIZtLqDA96+5VcC0Kf+eIZ9zzzN4Osz2qXg896c4vCgM/oZhD5zBfPNNyo y9XDscFMfXW6rhJNdudODi4WN9f9toY0b0QPC/xigdunc13fm+FimXjH5xv4 Nd6f/Lp82Oeed/sNa9tkRLsmki5oZyMOWQm98KFmj97XeviDTpTQ4ogD+MwM qrg/TSOO/VM97DRCK94SghIaj3v/SDZyMCV0lJ6U0HG0hE6CJfTFVOOlNNOV dJRCM7126KLQu5ojD8jWbfe2PalAtNrEClR6GTrLW3Mr0FnZevaouwHR8Kxu Q479jo4jhGhuQ1vhbKQnkjmbmLOZHFEi/ZVqRY2LamV+1c439mUOUpc5UCoz xbnoQMeiFzoKsfMHAdy61kLxzIcbgs8q4fM+b2uqmVsULh1LIQvrSPFcl2eo zdHXZOmrM/RwLVIK3FwHfeabNzZ44ua6Eyvd40YEfrPY7fMFbp/MgT4fnHDH 5xv4Nd6f/Lp8yOe7sM/D2zV5vINmEC6h7xZ3cXRUiDgI0ffjEroZS/TQB/xx o93wBwPsp9D4llAScfDrRnfTiEPxlpAtofEtoaSE3j/b94U5vkXryFJofqnd H5tpCR1LS+hEUkJfSjXiEhpOFKISGvfaVcHXr7xrOOTzNm8bKKFFRPs6FUQz JTQgmtwVvi5U0YBociLQWUvPOnokK6MVEulAu4l0kBTqrxWghkSrUiw+X8sb M/6VzLaPYeZsyXsUyoxxPgKTZ+jzu8jnt2m4cUh2OciGG6h4BjhbU8y2vd60 7ZkWz0y4UZdvqM01oJ2i+sp0vPZZV5YEfUbNG5p/Ij3/Xu/551qPX4HPK2C4 8fVit8/mu348x/Xd6S4Hxje/4/ON+xrvT35dPuDz462gz0OBz3wJ3UFeQjet V8Qx9H7i89KuzZ94WD+zq351D7IxSbWEZro4hFvCCewtoYfkllAooRcKs4Rs CR09OgSU0Py7V/iiUCihow2nY1AJHW84lwBL6AvJqN0Ol9AZtITOIav7q+Ab 3961W7zrtnrbJEQr9nKot9tZc4KtucFCR/Tr4qCD3RQtKaQl++7q1X3HK/0F r6gy1EL0oQAyPnZMRkfCskjmQHWZzTjTID5TnG3vU58P+wk+s+GGUvHMLQ6H ODNtdbZd6GbwST7cMNYVGGrzDHAhf5a+MlNfka4rT9WVJetKE4nPFzdrUHOd J7wcXO2RMDLwu6XuXy1yOzbf9aPZru9Md3l+XEP3ubEvGvr/mejdvM+oy04S cYytzy0hW0Lz9fOSrs2XPdIclNCjHhL1QgvrONhZb9rFoXxLKF6XJDTazRc1 2n3KNNpFjwrhe6H5iW+ccuCJFbYd+hxqhyYlNCIaL+Uoy6YldD4poetYotVS Drurk7jlrUXtHK+pE80q/a5Y6Q/Ud/urvZD1uRrUWFpiNfT5a3Fp7aBOxiYH KZvMs+yEzDjTgD5jnN8nAync2tbicMPPTvFsTTdzS8Lpzjp58WzC4UZdoaE2 31CTa6jK0Vdm6Ssy9OVpurIUXWmStiRBWxynzZ4YDHyGzRvY51Ue8SMDjy91 x5eDH852PfyEy3NjGrrPjd23xv7z/5vv66PvDUQ+4y7o4e2a4EVJ11RCE5/J uDetn+EsYXf4rsrohwLmdtfjEhq+6003jqJ1Sa7CiyojRSX0blpC41tCZpbQ U6HRjl/HsQKW0NGjgnEjB1tC8ymHUELH0hI6kZbQqUZSQtOJwopcr8o8WkJT ouu2e9fZCaLVO6Khz5KOOwnRdpSWhtL1LKQlVsuh/jIIvl3yVZDCUTYZHXsm 40NN5lkWZDbzMuOy2ZL7KIszTja4iNaicENePAOfD/hwS8OtaWZmJsVbWjyj cKOOM9YWGKrzDFW5hspsfUWmvjxdV5aqK03WlSRpixO0V+O0WROCL6DmulPr PH+P8Hh5lteL003fLnH7YiG8HDwyy/WtaS4pg/W3+g+xg6+x+9bYf/5/+Q0I v6sH8nko8hmU0I/fDVNokc+OSmg2hR58v/88eku4pGsz3mdQP8/pph+LNiax 497sLGEuU0LDFHqcUELzs4RCCT2bXcfBzKosIyV01Khgvhcal9CQaEkJjYiG JXS84Z8EVEInGy+l0BI6g5bQObSEpkTX0l6OOjSxUqdGtNLcN7estbTjjl1D KlH6bbHS11BIs0pLrJZD/QXy+csg6VEwOciRyYGqJhOWzQLL9CoQyAx9fj+A xdl2mPosLZ5bsm3PAGeUPPsoFc9eaJsoDDfqthhrC43VBYaqPENljr4iS1+e oS9L05Wm6kqSdcWJ2qvx2iuxGugz01yXOCqoaLk7vhz8eI7rezNdDk11Wdy3 oS8Xbey+Nfaf/19+rM844gAldG+0axTfEta3hIY+03dj+VnvVWRpfwtQP4/r GiAs7Rc32uWIS+jtTAnNN9odoI12oIRm1nFoJLMqm0YGC73QqNfuB3JRqGcv Cv+KoiV0HCih4dD3BWbo+2o62ZsEiCYldD70uQb1cuB2OzxUiOe+4eqkXb6i 7UlKd4XQZ0nHHbugg1+jpKj0O7LuDonSym3SNO44JrZaDvXnQbDf44sg6bku LH9Ej8RkEjXjTCPAkvMolJnBGcjMrWlNi2c/eVudNSsQ4kzbNpSLZxRu1G01 1mwxVhcaqvINlbmGimx9eaa+LENfmqYrSdEVJ2mvJmivxGkvx0Cfz29CzRvr PF6d7fXSTK8flqHweZ7bh7Nd350BlyMt6nPH5xv7Nfaf/998Vqu1P/J5cJsm bMQB6ufBCiV0U7USmm3kAD7PpY3QwGd+XRK/tB+/GzvhkYAlvQzMLaFrBrOx v3CUG9vIIV3HMV06q3JYNquyaUQw2wt9XHZR+Cu9KCQldCwtoRNpCZ0Kfcar 7croG7JVebCEri4k7XY1aC9HDSW6liwghUTXPU2fwZIRLW2KtvgrFNJ83KEc Sqv14AH6VJ7K+pTx81igKtRW5PPn4rzaSlm2Z3Kgo1JZxvIREcvkvOcPfX5X hDOQ2VoYDI5i8cwtb2XNDKRtG2zx7M0Wz3VPmmq3GWu2Gqs5Y1WBoTLPUJFj KM/Wl2XqS9P1Jam64mTd1UTtlXjt5VjtpRjNu4t8Di/wxs11SaODflrhfnyJ Ow43PpgFw+dXJ7d4as2wW/2H2MHX2H1r7D//v/k4jusXdlePDn6DWzdhIw52 Xb94VsVBCT3+fh15mhD5TG8JRe9e8e/GLu5lmNTNLL0lRI12BSPdttB1HOy4 t8KsCl9Ci2dVgM84hcYltJBy0BKaSTkMp6NhCX0WlNCIaFhCI6JJCZ1BS+gc UkJXUaKr6eokvN2uhhLNP4NVhx/7FhMNfeavC9lCWiGRdhRKy+MOidIfy5SW Qq1gNbeprSA2/AftmIyOPZPxUSqVRSwHkJoZ+Jz9KJSZwRmXzdzq1kLbBsS5 JcYZJ8+0ePZRLJ7rnjLVPmmq2Was3mKsKjRW5hsqcg3lOYayLH1phr4kTVec oruapLuSqL0cr70Uq7kYrbmwWZM+Lujv9Z6vz/W2zPL6Ybn714vdrAvcPpnr +v5MGD5b7gwP3vjvxx9/bOy/hWv+QP3cq42mewe/QdRnPuIYxRDtsITme6EH 3eePUw424gA+L0Ul9Cr8dCwuoemjKpO6m1f0NaB1HK7iR6/IrIqkF5otoV9V 32gXOSL4M9oLzU988yX0CfFFoVBCxwGfDedRyoFKaOPVNFMxSjnKskzl2V6V uQLRVWj7KCa6mt/h/xR8Bot/qbB2j28tJbruuZZ1iGhuSSuhKZovpBXjjtec jjvUQumPZEorQn2U4fcz5DNm2Z7JgaomCyybFRMMMcsBQpqBDvT5sBRn6POq 1kyy0ZJb0Yrg/KKvcvFMVvF71e0w1QKft5to8Ux9lhTPSdorCdrLcbB4vhil ubAJ+nx6vSconk+sdP8Ohxvz3T6aA8ONQ1NdDt4ZHrwpH7+Co1E3Cl7b162D H/D58dZNBrdpMpSPONCL3qM7kEdjnS+hoc/3k0YOIeLoSho58CyhvBF6eR/D lB7m1Y8Z00XrONy20HFvyTghm0IrzqpsGB78KX1X5fOVsNeOvSgskl0UYqLx An9SQifCEvoyKKFTaQmNUg5YQiOiK9FQISaa3+GPn8HCLxXCx753+9ZQomv3 +tZSoqHP+LpQrrTFuVD6LUeh9BF1pVmoVYpqLrKtuslUZtVSGbNsdoLlAJZl Emi842/JetT2thjnN+DhVrXCOFtzg6DMpKdOjPNzUpxtO6HPJNyAyTMTbmQx yTMbbkTDzufzkZ5pY4NSxgSdXO3x4wr340thuHF0ntsHs10PT3d5fYrLi+Mb us+3Ac622+V3cW3fI+2Rz63uwhHHMCbiGIWD6Hs0gs9KJTRLNPB51v3N+BKa f/RqSdfmoIS2s44jcaDLqr6GaT3Na/sb2XUcpIQeR0roPeKlo2wKzc6qrB8W jFPoY8u1bMqB947auSgkJXS84Txa4H8JEU1K6AxSQlegIJouiPaupNuTqtBL slWU6OqdPtW7fDHRNXt8axDRuIrmFrciWTTf1KEQd6h1d/irxx0BQiFtJ5RW s5qBGvqszHKgEyybnWAZ/KgBcplx2Qx9fkuM8+vwTtCaF8StbAXKZmt2kBLO PiKcSbKB2jaeMtVtN9VuNdZwxuoCo+hmMF1P2jaSdPzN4CVUPJ9DPr82x+uX VR4/LHf/Zon75zjcQJ11r052eX5cC/D/gd7qP8H2vttDttvjd3FtHygAQAk9 sNVdbMTBltCD79YMuUczTl5C36tQQj8OfRZ6ofkSGkccy7pJLwrZp2Nxo92a fsbpj5rXDzCyjXZsCU0vCtlxQk/m6VjYaAd8xik032vn5EUhKaFRygFL6CRc QkOiS9JhCV2OiC7n31iB25O8+ZdkK7d5VyKiq57yqdrhU4WIrqZE80EH9Bln 0XzfnWrcodgmLVNaVEgHqMcd/HEANbexrYzlQCdYNjvHcoCUZSFthseS2RPK zOL8moAzM41CY+f9ktiZXgtSnG1Pmuq2mWq3GGuEtjoDbavTl6ZAn0sStcXx 2qux2su4eN6keXuB99S+bX+L8Dix0uP7ZTB8/gx11r07w/XQVLhZtOG/3H17 yHZ7/C6u7eN9lkQcfAnNpxzKEQdD9Jgu2rFdtKiRA5XQD4pKaBxxgBIaXhSi lGODbNybzKoMcV3X3zizlznycRPfaIdKaHcyroJ77fBGDrYXmpbQwOeP6Dgh W0J/Lbso/Fl+URjDlNCJtIROhSV0KSihURBdRomGLxWil2QB0RVbvCso0ZVP +lQiotkqunYP4zN/XWi/kOaVth9KK8QdAaqD4RKrIbZSqKHPnzD/iCLLH1wD ywEKLNOyGeL8Fjh+0OdDAs7WfCizNTcIZ8602xng7Cu9E9zL4Ax7Nrwwzrit rpYz1hQYq/OFmZSKdD0Z6E7S4ZnBK7h43qz5J1KDw41f13j8hMKNL1H4/CEN NywTWyy94/NN+W6P38U1f126dBkAfKYRB19CE6I7IKI7sUQ3VSyhB3bxp40c zdRKaOAzHlfBF4VCyqE07r1xoHFW78DNg0z4lnDHeLiRA5fQ0otCZm8/KKHX DQ1mN3KILgrX2Lso/IteFIIS+jx9pvAyeekbldA4iEZEl9EF0YDo8kLvckp0 BSW6igYdNYjoWtrOwS1qJTTd2S+k5aG0tAdPSWm1uINXWhVqM4aa29DWOZbN TrOMjiLLtGyGOKOy2ZLREwfO1vxgKHMelBk3bJDYmcUZFM/P+Sg11Ak427aZ 8ExKDZoZrM4xwIUbGfqKND3choQWbpTwxTO9GTy1zjN5TNAvqz2KVrh/izvr 5rnBsUHYWQc31y25M5xyU77b43dxzR/0OfwuIeJQKqHHdGjSt5OfYgnNEw18 ZpbaqZbQK7qJLgrJ67FqG5NGum4aZJrTJzBmiIlEHMxSO/lF4VtzPSOGBJFx QjSuIiJaXEIjovXii0IDn3IIJXQSLqHhS9880aXZXnhBdBl6ZqVMTDQfdJDr wl2ijjvoM98XXd9C2plQ+m1HSjuC2rojFBy7LJvrw3KAgskSmZk+DeAzXr4K ZX6Vb6Vju+kYnPcxOIPimd4JsjjTgW4jXrhRnW1A2+r0Fam68mRdWZKuNEFb Eqe9GqO9HAXDjXcW+hya5/3nWs/k0UE/o/D568Xu1gVuH891fXem66FpLq9M cjkwvsXru+68bHWTvtvmN3IN34MdW/dHPuOIQ6GExkTfzRLdVJ5yAJ+fEHqh 7ZXQK+nE91p0URipsrdfaOQY7RY92DSvb+D8xwL5jRw4hZZfFK4ZEsQ+rcI/ 8M2uhiZEiy8K6TOyQglNXvpOJCV0caoJEo0mVkqyCNGlueQlrLIC73IadOAs umq7D+zoQO0ctYjoOkQ0fG9lLx1dkRTSPNH8vg6FQlot7nAulJZArWI13GX6 odxkdOrBcoA9lonM/nzabC0IBixvWvQYaaJjcX6JxM7csla2F3yV7gS9RXeC DM5o1bOxDvgMt9UZqrP0VXDVsx6tetaVJcKnrIpjtVeiYbgBcH5zvvdfaOfG yTUe8SODYGfdYibcmArDjefHNfTmDdttxNpt8xu5hg/81wz4jCKOJvZL6CH3 aIZ21LAlNJtyDEA+16uE5tuh5Rs5REvtmHFvQPSCxwKTRpjYEvogP/E9x3P1 4CDUy6F5byFLtHIvh9JFISmhacpBSugrycarKbCELkZDhXi7XQkluow8VuiN s+hK1HFHfH7KpwYPrezywXOF5D0sPF34LwtphR48f/WRQyynWdVqBmqya1rE srk+LKOjxrIQaPjzsyeoYA4u2nV30c67icwszgdJ7MwtbcXcCfqI7gQJzl4M ziaMs63ASFc9G6oz9VXpevROiq48SVfGF8/RcGbw7QU+p9Z7/rHW89c1Hr+s 9ogbGQQ76xYJ4cZrU2C4kTZEf6d546Z9t9Pvpb4f8LlXG01/GnHYL6EZoptK Uo4Bnf2nicYJRSU0nVVpLi+hHe+FZp6+whs5EoebFvYLXNw/kC+h+YtC4PNb 4tevPmIeKFQJovX8Ayvyi0JSQiehFBr1clxliOaDjnL8WCEiGnbcbYUdd9WI 6Brx6De3oBXczrFHTPS/LKTlSqv14L3DWh2gBjW3rg3DMsXZWZYDHLBMymZ/ a2Ewlhk1afgBli1pPQWZWZxx5nwA+fw8g/NeScOGF1kiyuPMQZxt+Ub0TooB v5NSlaavTEE+J+po8ax9b7HP4YU+ZzZ4/gmLZ8+Tqz1OrPKIHREIO+sWwnDj PRxuTIbhxp3NGzfzu51+L/X9dmZFdevgx0ccLNHD20pL6LEo5cA+Q6JpCd2/ s7/Qa0c2cjQTSmg87v2wqIReRZ++El0Uih74pntH8cS3sJHDnR8nBEQvGRCU MdqLXhR6rhochHs58Gpofm/SJ9J2O514O7Ssl4O5KLyYYLyUCEtonuhiupqj lK7xL6ePYfHvyVYxc4V4OwdeoAR9fprZofRvC2mVuEOi9NviXPqwHOoAFmro My9zPVgOcMwykhmyvLq1tSCYlxmzDH0maTOQWYzzCzB2hrud90tw9hbh/KQY 50KIM3pk0FCbbUCPDOqrUvVVyboKpnjOmhAMiudzkRq+eP55lcePK6HPXy92 /2yB24dzXA/PcIXhxiSX9KH6HXc2b9zE73b6vVzD16VLl37hdw0IJxGH/RKa JZpPOYDP5KJQHnGol9Ak4qApNNsOrbC6nxlX4XuhUSOHR/por2UDg5Y/HjSy R1t2Kcc74tWjMOUQDRUq7OWQD33zKcdlmnLwd4V4rrCU6bir4N+TxU9+I6Jr xDvuoM+7fYVNpKJC2vf6F9Js3OEs1AHc2jaOQX6H+TexDzKJMvy5Na2xzLSx 2U8UZbzc0pLaUyQzizPKnNHufYCzD23Y8GYaNmiyAXE2EZwLIM62XENdjqE2 y1CToa9J01en6CqZ4jl7YjB8anCT5jQqnn+L8PxltcdPKz2KVnjEDA/8chEc GxTCjYktFvcN+Oa5mFv9p9bBdzuZxo943+of5NZ8j7T3UyuhCdHthV47TPRj kOimPNH97/UXjavwJfQDshKamVVh947ipRyghI7p58KnHKko5cgSL+WQv37F j6sAolc8HrRyUFDBBG9KtCyIXqYcRIuIlvRyxDEpBw6iU40l4o678mxhaKVS vJ2jhq4hrUPL/Ln54WRTNCb6+hbSr6oU0pKpQxZqJauhz8rlMT3kX2tPY3xI iIFZFkZOgMx+ohwDHUtKT4gzL7MYZxxrwCdfFRo2mNiZxRkUz7kGW47Blm2o y9TXputrcPGcqCuLh8UzwPky2oZ0NlLz13rP39d6nlwDk40fV3h8v9w9engg Cjfc+HAjc5ghebD+6zs+39wP/3b+/9zCAXwGh70ltFdCdyAbOQDRfMoBfOYv CplbwmZqJfQytoSmEUck7bUDJTQe+halHMPpXjsURPPjKuxFIaii8URh3njv VYOD1gwJihgSJA+iRXeF6kG0pN2OJbqYEl1K51bwaCEe/a6kC5Twjjt+UzR+ bwX6jJf544dlb04hTZRmQg/WalldzUW0UdKYmqyuMTyHRCbDEOMNskNDVeaX 0DkIfO4hsEwyDRHOoHJGT3JjnL2dx9mWZajL0Nfi4jlJV54Ai+ecicFXYrQX ozT/bKLJBi2ef1jucXwZ9BmHG+/QcGPJYwF7Rjc/c/z9W/2n1sHXoHwuLS0d N26cu7u7n59ffn7+NfyCBvXbuckfx3GPttb0aqNBjdBNlEvodtISmicalND9 7vWfJFmaZK+Ebk5KaFmjHYk46FIO0ssha7dTTDlemAZ95rf389uhgdJrhwar Da3wKcf3Sh3R8rvCS4joq4joklRjKSK6LMNUjoiukK0hxcv8+fdWuLnhwpNY /JMr11JIt6xfIs0rLbUaH2lpbd0SAg4BGf6D9jTGB3bHocs+2IkhMfl1xzLj gtmS3EMssy+UmcEZVM7cwnASOys2bLA45wk42zL1dah4rk7WVSbqyuN1uZOC r8bAbUjnN2vObCTJBi6ei1Z4fLfM/Zul7lHDAo/Odzsy2/Xt6a6vTXHJGm5I GaLfPbL5rf4j6/hrUKAtWrRo8ODBJSUl3377rclkev996f+6OfwFDeq3c5M/ 4HPf0Lu6tacRBy6hFccJ2RKaEO0/rJMW+8zvtVMooR9UKKHtRxw4hcYlNPsA Fvu6iiTlWDowiN/eLw+iAdHrhwVvGB686wkfQrQ8iFa8K4wWVifJiDYBosvS TeWI6ApEdGWOV1Wu8B4WILoWEV23zRv6jF8tZB8uZJV2WEjvd7KQlsUdPNRq Vh9i1H3LHz1ZoqoxOW+Qmz5ocn6wSGOW5dcozgostyQFM6qZoc+8zGzZ/JyQ OUOfRXeCXkzDhonBGRXPFGdbhr4uTV+ToqtK0lUkQJyL4cCg9sJmDXMt6Pnz angt+P1yj2+Xun+12H3T0MBPULjxJgo3lj4WsHdMix0jGrrPDerZ7qqqKg8P j2PHjuG/XLNmzbRp0+r1C2z/3/vcJ/QuPuKoVwk9HhB9rz/wmfRydKKroWUl 9FxZCc3cErYQRxwufMSBUmjX9CEk5UDtdm6cSsqxZEAQbodmn/kWgmg6tLJz ms/G4cGRI4I3jQzeO9NHcTWHaGhFvN2OJbokxViaaiqjRFdkmiqzTJXZXlWI 6Oo8rxr+yUL0qiw3Jxw+/P2kj41/W1ZQ2k4h7eu4kFbYraSUeMitVuEaxcVS jfHBRTI+yhS/JmaZL5sVZWYKZktSD1Qz+xKZhbLZB2YaKNbgFoTDZEMRZ06M cw7G2QBxTtfX0uI5b3JICdy2QZKNv9lrwVUeP6Di+esl7l8sco8cEvjhHLd3 Zri+MdUle4Qhbah+z6jmr2/se6v/yDr4GpRmJ06c+M9//lNWVob/cufOnZ07 d67XL7A1sN/Rzf+6tvfrG3YXviUc0KoJJtp+Cc2kHKSElhDtVAnNNkL3huPe uIRWjDiEB7BEb8iSoe9F/QP3TfF4fpoHQ7Tna7MZohcoDK3smeGzeWRw1Kjg 6NEhMaNDXpjjq7yAVDZXKCe6PN1UQYmuQkRX53rVAKLzvWrpw9/Q523e8EiU lscde8RKOyikVeIOIfEQQ+0E19Bexm24DUMw2d8exex5RU3mlrKQGR5LYg+p zDzOONN4GvnMNmxsEzdssDhnQ5zrMM60eAY4l6JtG5eitTDZEK4FPU+sEorn Lxe7Wxe6bRwSyIcby/qZnxvbYtfI5l/svXM5WI/v888/b9q0Kf+XBw4cCAsL q9cvsDWw39HN/6DP11RC03Y7eFEoEM2nHLCEboZL6DlMCb2IKaHrFXHkDCft 0JKU4+mJ7gv7BbJD3/Igmh9asTNXuH+2b+yYkLgxIfFjQxLGhqhtT+KJvsIQ XU6Jrsw0VSGiq3O8ahDRtYDoAu86zpubHW7b4m3biommSivGHU+rxB3Pqdwb HlCKO+RQE6vpUeQaKY0jC2LySjjc54DiV8X/zq/g/zgqs8BySznLqGD2BSZD n58Ty8ziDC8EYeXMzQtDOHsx3XQ02ZDhXEtwhsVz/uSQsnhdMdzzrL0QpTmH eur+WEevBVHxfBwVz58vcj+2wG3D4MD3Zrm++YRL7khD+jADDjesz9zxuR7f 8ePH/+///q+urg7/5b59+9q2bVuvX2BrYInNzf/mT5/QJ/Sux2QlNCG6LSK6 Hem1GyUmGvs8viMhengn7SQmiFYroRc/fO0RR/5IN/4NWdhuh1KOBf0C904m QTQ/VCglmhlaIUTL1/gzC+4A0YnjQpLGhSSPD0mZEPrGYj87RJchoivSTZWU 6OpsrxpEdC0iuq7Am5sVbuO8CdFbaSG93W7coVZIP6dWSKtAbWGOstV+wGH+ zB55NzHZGYpfYf498bHUT2ZcMFsSejA1M5VZjDOonKHPqjgbaTcdwRk1POuP rmqZPyWkPEFHkw0tTDYiNX+u9/yNFs9FKz2+W+7xDSqeP1vo9ul8t/WDAnG4 sbyfef+4Fk+ParF9WPPT395p3qjHd/ny5f/+979///03/susrKw+ffrU6xfg r0H9pm7yhyPovmF39WrjXCMHSjnEe5MI0cPpdeEUGkTzKbSkhFaIOHoJEQcs oQe4JAyksyoqEQe/vR/4zK+2UyVaMleI2jnEROvEROvZ7RyvLWoJlE6dGJo2 MTR9UmjGpNDMyaFZU0IVia7KNFVTomsR0XX5XtDnQm9INK90feMOtUJa2oOH Dqu0uKLmlrfmVkgP663kL+1RTEDGRxxlEJZbqrDsK7r+e9bHEt9DVeZdQubM zQ1juumYO0EG59oMQw3GOVVfMCXk0xW+FXAgRccnG2fxtSAqnkXXgqh4PrrA 7eN5busGmd+e7po3ypA53IDDja1DG/rloK3hUda5c+ft27fjv9+vX7/ExEQb uhZ84YUX/vnnH7VfIPka2m/qZn5Wq7VHa01fVEIDn3sDohVTjnaycRW0epTe FTblO6JZonEQLS2hJbeEPZtHOBlxDBNFHJRo9/mPBUq3j6KhFSeI1uJ2DoFo eVO0+mNYoIrGSmdPCc2ZGpo7LSxvWlj+E2GfRvhjomuyvWoR0XV5XtzMMFuB FyS6kBItV/opJaXl94bP2lUaQc0tbQXPstbyI+JaqbqGPis6/LL4F0tMvlaZ cZQBfd4jRM1QZqZsppkz8pl000lxrgM4Zwk4H10Ny+bKJDSQksAnG1qYbGzU wGvBtZ6/rPGkyYYHvhY8tsD9k3luH85xi3jc/OYTriv6m1+Y0OKZMS2eGt78 5XUN/XLQ1vAoO3TokFarXb169ahRo1q3bg0KZvAPXrp06T//+Q9upVP8BZKv of2mbvLXtb0fjjj6MSmH/XEVdns/IrqphOgR92p5omfeB1MOcQltN+J4TBxx 4BIajRNKU2i0lwP4zC7wZ7fb8e0ckOi5mGiNeDuHVrRAabUC0ZL3Ck8p7VBi q+hP1vgDpcEpmA5P4Qx4Zj/eHhDNzQInHJ7Z9MxBZy498+iZT8+CVuQspGcR PYuVzpJW5CFaafRB5ZSU1jKuQYEtdZj9BS/JQD4oiTLEMgssg/9N8ZUlzOjs 8bHEdZfKzJTNMNOAsYYXNyeMdtOZJDjXMjgXTA35dGVLOI2CcC6J012J1V6M 1v5DrgU18FowwvPEalGyYV3o/ul8t4/muh2Z7bbmcXPBaGPWcAMON7YNa/7Z nuhb/SfV8dcAKfv2229BVZyfn3/x4sVr+wUN8Dd1Mz8cQfcNE4h2fFHYnvjM 93JIiB7eSQtXJzFEC0tHJY3QPcS3hH1ICS0mWpxCiy8K5/UN3Dne3SHRfFO0 QPRiBaIV5lZkTXfsk4VwjRLTF12aagREVzJBB66iAdF1uV62PC9bvhcspAu8 VeIOb+UevN0+orhD1oZXh89z4Kh0ekisFrhGhxgLuYY+Y4oPtnR8XmRZxv8p 8oLZnsy4ZrbEdmdYRocpm4HMuGyGPotxhus1MM6Zhtp0fcG0EIBzVbK+AuFc inAmyUaU9uwmzakNGpJsrPH8cZXH9ys8vl3m8RW5FnT/eJ7bB3Pc3pvlunqg eeUA84sTXZ4d22LniObckDvhxi37LMx3q3+WW/CRCBqV0EzKIb0oxD6zKUef jn506LvpOJpC89vt8PakUZ21uJ1j5v2kF1q4JewqvHtlr5EDPVAovSgc4YaD 6KjBppghJv6ZQnWiPeVN0cpEKz22IumLxgPgipvueKLZLLomy1Q4Pawux6sO ZR11KJGuK4D3hnWFsLujbgs6aJKlDs0b1qGtHXV0txLagIfObrJNGu/8J+cZ 8oQWeugQpx++ytGHHa6p2NbMIHBEekvOAaWjKPNz6Ciz7MMWzNBnRZkZnIHM 1s3+1k3+dHEowNlYR3E+FuEHcK5O1VcinMsQzsWocuaTjb83av5cr8HXgj+t 9vhhpcfx5R5fL3X/Al4LwuL5w7lu7892e2em66oB5uX9zc+Pb7FndIsnhzfP H9TsVv8xdfzdrnyxLRxY6f+vOjpwBM2X0ITotho7JTQmGvjMTKwQn/lGO7yX A/g8gDyAJaQcqo0caNxbdFGoFEQLRI9ym90nEAfRykRPc0A033EnEC0bLWSJ PqlCNNvUUUyzjgpUSFdlmKozTQXTw2pRIS0onU+VLmSU3kqV3i5TWgK13Gqq NJNR+0ozajnXSmLDZcvKAqsc5YLZCZlpwWyJ6W7b4U1YFsnsBWUWujVM3KxQ Fuc6hHPhE6FHV7fEOJcjnEsozpdicLKhPRMJi+ffybWgJ0k2lnl8ucTdCq8F YfF8ZI7bu7Nc357h2qVLl5cmuewbR24Gj90JN27pdxv/1pz5cAQNfBanHE3s pxy9O/qJhwoJ0ZI3ZKehN2TH3qebKd8LbX+c8DGXWEz0QNW7wlm9A/l2Dvax b0q03bkVMdF4x52caMmrsphotOlOWEaqEkeTrAMQXfBEWA0qpIHShOhctpD2 IkSrKc1DLbd6NzpMRS27SaRnX0vRURMbXS8y9kqOr3D2M0fEsq8Kyz6yhJnH WUlmjDOWmSOxBjcz1Mbg/Nlav8JpoTVpcLczwllfinC+SnG+AHs2YLJxmhbP 6FrQU5JsfEKSDbfDM10LxxhX9DcfmOCyF90MFg5u9tc3Db2zznZbI3Yb/9ac +bbnpeGIgy+h+/2/9s4DvKoifeOW9HZTCOimExQUAUkgQCCQTiAhCSGQECCB EEINHVIgNAEpQYgaICJKUVFUXNRdxbqwdsVdhC26iutfXdcF7IIi5T/lzJyZ OeeWtFvnfb6H596bm3DOvef+8uadb2Zu4hDN8lnp5bgV8ZnriFZSDnGb73jY azcuPii7X/g0JuXAA4Xsihy4l8PkWKGPgmgyVliRFtVcyHXctRjRRpYh1SIa zy78mEc0nb2C1yPVjaN/uSt0+5Ruv20NvbQNIzr0MmntgA3SyjQWOJPlMpkS jhfuwMsrKbUblspqraMmoNYNqEVWK8RmisE1HGFUbt+oUwf1ykIycwkzqgc7 P71mqIpllsyMbb66IxQGzts7NU+NvUrgDGzzO9VhvyE4/7I5+DyC848AzuuD vlsb9A2CM3DO/0MNz18g84yGBaF5RsmGP0k2/F4nyUbzuE5LRkTeXaCODN6b 7QDhxlWnhpgTn5oleu+99wCfWUQPN5dygErtE8ZOKoSIJqOENOUojSOr96MZ hQDROf3C8UAhTTkgonWDaIDoTM2MlRwf2hENEF2RGqntuKOIpvvJtg7RdIGO U3qI/pQimi52J8TRGxVEn98S2jS5G806AKUvNxJEU0pvJ5TeSSjdzLP6frwU HqoHTAXUcDBRdxLiAQ2ujRC7ee7N+vg1VvhH6WP5Bq1hpmTGhhnyebfGM3O2 OZRM30Z8vhvZ5imxl+4KAXD+lcD5JwTn7wmczyI4f70SJRv1hv+rM3xai4cF oXlmk43XlWTD976iTtvHdhJGBrcvtPc9U7CcGGJOfGoWCkccXMpx0/VpPQzp xhGd2jtMu4B/sRFEo1FCD5xCA0RPSAjSzvgmiPYyNlaonVQ4NTVye4GvFtH7 NIhWZ38DRE8zh+iFnIumTXd4jY6PKKLZ1mge0UIcfe/kbsqg4V2hv2FKC0aa pbRipzuroCaUZsYQAaW76AbUpN8D41HT8vGIOWI/ivjMgle31G83huUbjGC5 C5dj7O789OqhCMvGybydzhDs1FweC+qdmjAA54sIzhcInH9AcP6WwPl/sGEj 8CsEZzXZWBrw98X+Jxf6/3W+//G5fu/M8Xtjlu+fZ/j+qRLCecfYTn8sg23P T4z3fnis1240Mmj/G3ZjOTHEnPjULBSOOCii2ZRD4LMy6fsWxGedPVbcubHC vgqiydJ2yqIc4/sHjeofPnFAEJtysEE0v26St3asECO6PDUSjxWyTdEU0Q8Z RzSet2J6DSUR0fyIodm+O3YxpXvKYqGRRg3SGiPNe2nBTkNKq6Dm0mnVTnfR hh5kQQ8G1CyrtcRmoN1cdbMIcFqP3KBfApn1sdxFL8fo/PSqoSKWMZkZ2wzI fPVuCOdpI3te3hbyG4LzLwjOPxM4f4fgfI7A+b8MnD+rM+Bk4x9MsgHg/OYs P9yz8XIF7Kn742SfZ/CCSHBk0Ou+PM9lGUG2/mhaJOcmmHOfnSWiEYeQcmTd dP1QDaLzEKIBn0dr5xXqIZoNovG6SXigELjo3P7hpQODhKX7tUG0imh+rLA8 JZLtuGPnrSiInuD38EQ/cYEOvTWUjCEaDheSCeB8U0eQpqkjWLepAyD67tLY H5X1lFAizVMaDx1eAqAWKM3lHqgYOy2C+gFUemOICqX3s7hm6mFaCqib59xM oM2wV7fYn7O/xWSGdV/o06uSRCxDMnNwbp4au7M8FrdqIDiHQDhvgnD+EcN5 nQLnMwDOq0Q4f1ob8K/qgH8uCfgbSTberfJ7iyQbr0yDE1Kem+zzbKn3YbhV SuQjysig54o5E2z90bRITk8wpz9Bs6IRB4do4ylHSu8wPFbIIRoG0e5FvTlE s2OFMOUg6ybhGYXAReclhOcPiKC9HDTlMDZWiBANxwqnpETidg4O0ePgvJUH i+ECSnTeiiWIFpe5W0A6OphllFowYogQffZOGEfTxTpgIk1aO35BiNZS+hJe u8MCO02HEfXtNJtOY1CzZRzaaKcSDca1KGZr3w1GsNzFCJY7U8P89Mok82RG fXSXtobsmByL4XzeJJz/w8OZxs4nIZz9+YY6COfnp/j8oczn6UneT03wnpsR sR+NDNZnBgHfYuvPpUVyenw5/QmaFZ6owqYcGNHAQqfdAhGN+ZzTQ0E05DNp 5zCBaN0gWrtu0pxEj/yEiNEDIsoTg7mUAy2dtCJDZ6ywbFgk23HHLnBHES1M LTSDaH6BDuyi3+YRbWrE0HgcvW1SLDbSNJHGcccvJJSGlNaC+h5lHbxLWju9 Q7TTtN/DqJ1m04+9zCofGmKjlfCNQVhbxrDcxQiWOws5xtMrkhCTSWEy30vJ 3AmTGdvm7ZNjGTgHYzh/g+G8WoXzF8sN/7fM8G8Ua+DYGScbNHZ+c5Yfjp1r siOPlBM4T/S+Kz9kU27IHocaGbzqAvhy+hM0KzpRRQiigYXWphyjEJ/Zjju6 BilNOTCi2bFC1UIzKQdtt4Md0YmekwcFFwyImDo4WG8Bf2926nfpsEjczrE1 T+24Y9cgNY9okyuRCogW+u64EUPjK3XgrGPrxNhzdyp9HUr3HaX0ltALpinN g/qSjp3uLNhpviUPg7qL2kHNEFudRc4QW9lqHNdeobqotYcvC8nMxcuwFD43 ITI38WRuDLm0LeS3rSEX7wr5FdnmprKuFM6wVYOB89d6cP4YwfmfSwJOLfI/ scD//Xn+ONl4babv0em+NTlRL5T74Nj59xO9nyyB4YbDjQxedQF8ufIUbyq8 FoduyqFFdHKvMDpWSJuidYJoBtHqNoWkl4POWJnFtHPMG+w5JTG4YGBE4aAI dYE7zbzCSUMjN+Wo7RzsAkpaRAtTCy1ciZSdXajb1GFixJCNo++aGHuGDBrC BmmyfDTcylDx0koubR7UhNLKFi2cne6s3z6NQU1Z/QALbaUIZiGum2fehG5o CMxyWCgFy12MYFmfzIjJoU/XJ2Esv7c8bCchM8QyJfNdIb9sCbkAbPPm4HtL u/4kwjlIhXM9gXMtB2cSO8NkA8XOfscQnF+c6vPcFABnn8MTvQ9N8H58vPfc jEg8MlgxLMLWH8cWyOnBRU/Q6c/UhHQsdKw6UEhTDoxoyGdmuFAP0e7CWKHY btffKKLhcCGatzIGUXp6UrCaRZOgY+LQSDxWaBrRRqYWWoRonEW/ziMaTzBU low2PmKoxtFrQrZMiKWDhmxrx/esl+ZBDSmNm/G2ainNg3o7qh2wiJ3urO2d pqXE1EaIDWD73tpIUDr41a3dpPSx3NkYlpW6txPgMzTMU2PfrQu71NhJwTJH 5hBAZmybf9oQfPekrhTOZ9eocIaB83LDZ8sMn9YaPqmBA4IQzotR7EySjbdh Qx1MNmpzol6a6vP8FJ9ny3wOT4JwfmK892PFXnPSIx4s8NwxytOBzPNVF6CW 05+ghRIstJBysIgGfFY67gRE9+QRzYwV0iAa93LQIJqOFc4apG5TqHR0oBHD aUOCxw6KmDE0GGcdaLjQa0JSJAw6eETfrSBa6bi7T2/eijq1EC0W/ZTxxaL/ xCGaGzH8i7kRQziBhWQdDSWx0EiTRBq1dqhxB6U0b6c7YUqbtNOhgp2moL6k ULqzQmnqqHfxSTU7sEgKUBdtOM6wV1t4wb37O6ulS2ZdLN+LqxPG8sqK9Mt3 d8JkpliGaQYMNBQ4/7wp+CclcA5unNj1Wx7OX+nB+cMlAf9YDJxzwEnUUHd8 rj9tqANwfrnCF8bOk5UxwSdKAJy9HxnnNSst4v58z+WZjtFWh+UKm0C5wjla ImGUUEg5RtzkBvg89LYwwOdhvcLUpmiK6FtMIVoIoqfEe+huU8giGs9bwSOG lYDSiRFFiRF46krJkIg76H6yOeIad01681bYqYUsoulKpH/gFotWEQ1XuhOW 6dAbMVQnsPBZx+aSWDaRppPBVUrr2enzPKgvMqD+TVm8VM9ON3GUhtVMWM3i miE216qHwKtuaMvWrs5Gi8MyT2YRy6HNcE1sSGaAZVCHlyX9tq0TIDN2y9gw IyzzZN4Q/P2dwd+tD2qc0PWbOxg4rwBwDoRwrjOcrjV8jPqcBTjT2Pn1mX51 o6JemeaLY+enS32eQrHzwfHeB4q8HhrrNSM1ojnXc6WDtNVhuYi3dJHTNCu2 0Y5LOZCFBogecbMbQDTms3lEM+0c2o5o02OFdN6K0hcNmzrgiOG4xIjiwRHj B0esgnG0F+6L1u5XqItoYWqhFtF0sWiMaNgXbcGIoSaO5rKOTeO7qok0M25I KY1zaXN2upNgpzGl0XZa5u00rss7GVYrxIZ1hRbiLVoJnwGvsWpmaicqrWEm WH5vWTiLZWiYGztd3Nbpqbohv+AcA0cZiMw/YzIzthnODUR9dNsmdAVw/h+C 839WBH5RH/h/y9FoIIIzDpz/zsAZxs4k2QBwfnWa74tTfXHsDMcEJ0A4P1rk 9fA4r/U5wWtGBK/IDHaUtjosFwGXi5ymWWkttJByAD5jRCsdd6Sjw2jQ0csd I1rbEW02iGanFipTV8gaHRkDegBKAxc9ISmSnboirBRtZmphqd9BcYEOBdG4 o4NbL1pvxJDE0cazjvrgjeO7Kok0jDvIuCGJO5hc2oydvsCAWmunAaVh3WMS 1Dv4pJrUlWa1AGybK7tx7NVyWKgdnU1gGRvmd+vCKJahYd7W6detIYDMh2qH nFexHKJiWSUztM3fktHArSVd8fRABc7LCJyrVTifWhTwwQKYOQPnjJMNAOdl o6L+VOn7UoUvGzs/DuBc7A3gvL/Qa2ZaxH15niurHMk8X3UZcLnIaVoirYXG iB7OIBrwGVTGrQbLEa0E0cY6ok2OFTJTVzxrUiCiiwZHKFuuZHiVJEVMTIqc NDRyUUYInl0oLOYvIrpEnFqoRfRzPKI1I4Y6E1jErAMZ6Y+XB28o7oobpGlr B407aOKh2mm4wpIKakhp3DW9SWunO+lQmgE1LEppltWklN6PHWSZU7jSKeRt 87RuGvxqi7HKlMwClstVLF9SsayQGRhmgOUna4YALP+0CRRi8kYYZeA0AwUa wZTMMNNYE3TX+BgWzp/WGT6pNcDAeWnAPzCcF6pwfg/HzrP9luVG/Wm6L42d D0/yOcTEzvvHeu0d4zU9JcLhRgavugy4XOQ0LdHupi1CIwdroRGi3XC7Xfot Bjbo0Ef0bRDRxiat4CDa8rHCpQTR4xIjcEcH23e3IC0EULpsWOTk5Ei8EqmI aONTC7Xr+WNEsxtjaeNoTdYRqO3ruLOo68dsawfTgIe9tEBpxk6HUEqbtNN6 oOYoDeuSUiquL5NS9gtAdXU74jO6wRTPYW2JWA6/3Mhh+SLEcieI5btCzm8J +bkhBGMZ8FkXy5jMLJz/tzro61WBW8bHfLki8PP6wM8wnGtUOKNMI+AEhXMV hPNbs/2W50YdRfO4X5jqS2NnDGccOwM4P1DgVZkcUZHsSG11WC4CLhc5TQtl zEJTRNMFokEBRGebQzQ7VqizNEc/ZqxwADevUHesECAa8HkZNwHca+1w7/VM 0FGWHDklObI8JXLZiE5NBT54SyzdqYXs7G/WRbPLKClxtE7WYVCzDiN9HeuL un7ExB2f8pT+gs2ljdrpEH07TUANKb0FULrTxbuM2GnC6ktMXb5XqSu4mmAB 2MINx/Xwq1/3UCx3U7G8DWF5K8VyJ8UwIzL/tDnkx00hgMlPVA+BTBaxrHhm 1TYjMv93VeB/VgZuLo75fLkGzotVOP8FdWu8W+X/NoHzAyWhr1aS2LlMjZ0P FHkDOO8r9HqwAI4MAvO8aNEih+sTcBFwyRYOVvoWOlZd2g4vEI2zaIxonHUI iObbOZiUg++ItmSscD4/Vjg2MaJOsxKpdu9v4KJrszqVp0ZWpEZNS4tqtmz2 N0Y0brqDi5Gazjr0+zoC8ap3T06/8dD0G/+pzDQk44aU0qtYSgdbYKdDKKW1 dvoX1U530sk9GpmuD1SXcd0D6wpTaENb9e5Vbd0d+l6dwmSjWL5LxDIkM8Ry yA/ILQMsP1495DscYiAsfwMKMBljmQQawDb/FzfRoUxjU1HMv5cZTtcZPq4x fFRt+OdSJXBW4DxPhfO+SaEAzn+e4fcqjp3Lcezso4wJotgZwHnPGDhhsDIl AifPAAIOtM+dS1HLRX4TWSjAZ2MpB119NAu1c2BEAz7TpjtxSywmiC7SC6In t3yscOygCM1+K/zGsjpNdz4A0ZVpUdPTo3Q3lhVcNO6L1ss6UOvdbMMxpq+D M9KLVSN9x9iu2Ej/g44bolD6E7JqB/XSLKhN2+lveVBjO/2zxk7T3OMiBfU2 0kdNW6kb0TKnjXSx09Ard6MNbdENrtBGt6jgLL93alUm62B5SyeM5fMNxDBv BliGZP4ekRli+c7gg0uHADJ/g8h8DpGZxTIKNIK+wmkzyjT+b3ngxnExqFUD wZmOBi4M+OsCJXDGcK7Pi9ozIRTAGcbO03yPlPvC2LkUxs6Pl5AxwbEQzg+M 9tqV75k9qIfQtuEQoHYpZDU0NLjU+ZrW3sbVxlIOTGnAZ5xFU0TjvujMWw0m EK1NOdiOaJ0g2shYYeGgCHG/lQxxDSVh10J2DaXVo0JnZETNzIialRl1Z36o gGiaRR8mcfQfyKr+jJHWTjPUMdJrCmNOkuWjKaWRkSaURl6aCz1wm8dqQGkV 1JDSuHF6nWCnQ0zY6V+pnUb1G6ital3aGnppK8H1ttDLuBCHFWJvI0yeErtj SixGMaQx+QkXt2qx3An3Y8B4ebMSZQAyQyYjLH97J3TL3yAsH1wyBDIZYfnM HQjLa4K+Rlj+LyYzss2YzJ8tC/y0zrBhXAyA84fVBhg4UzjT0cAq//2lnYFt fm2m3zEA50oIZxg7T+Fi50eKvPeT2Pn+fGieTQwL2jOoXYpX+GTt842wiQCN TSB6SM8wlEW7CYgGRlpENF1AiaQcRcbWiO6nM2mFjhXSlaILBkaQZe48qYXW 328lR2f2dzO/QMe6vFBA6dnDo+YMj6rKito8pjNsusOzC6dQRHNZB2ek53BG +i1kpOmg4eoxMTSRPsU24DGU/rjerJ0OppQ2bqdDBDutzHBhow9dYt9FcQ0L oHjayJ47EJAhkynPme/6lRRmsg6WNyEsUzLzWD4H3XIwwPJjiwezWP7vaoTl VUEYy18q7c2Bny0PxJnGJ7WG9WNjPlyqwPnkooATCwL+wsAZ2Oa9E0MhnKfD WAPA+cUKEjtP8nligvdjfOx8/2iv5jzPnEE9LPk42CGoXZDPUlTAQptANOAz GS7UQfQwNAFcQLROu10fvZ2w+nNBNDNWqATRgM/CloXCxt/AQrOL+fOzv9UF OtTFopm+6I0FoYDSc7Oi5o2Inj8yesHI6MZxndk4mmYdZgYNFwS+tzBw5ZgY pbWDUpqZyfKhmkubt9MCqP+3VjuGyFGayz30cA3qreqw7ZNj2QL4xf/C2gLr V1L0uy6Qn6O0LgtY3oixDA4GYvkbhOVzKpaDqVt+dPFgHstBX66EUQZNMxCZ AzGZcaaxrjBGgfNCBc7H5/m/OxfaZgDn1+HyGn5HKZyn+j5f7vvsZAhnOib4 8DhvEjt73ZfvuWJ4cEt76iiobU4Mmx+ANeVSJ2uhAIp1g2hQgM9MR4eIaDbr yCXtHNqUw1i7HRtEzxgojhWOHhDB7IflWatZ4w6nHBTR3BpK+T5NpOnuPs3U FXaNDpp1bB3bGVB6YXb0ouzoxTmwloyKXjoqeueELgDRQtYhGOkVBTG4tUMZ N2Qo/Xc2l8Z2GkbTHKj/vcKMnRYorXppCOqQHxhW31sWq63Xl4RR2EJuo2oq i/2F3Fa/CiGPp12jiSSbVSZrsByCDTPF8lmE5TN3gIJWmbrlA4sG62C5XsHy v1GgAclca/gXyjT+udSwdkz0qcU4cIZwfm8etM0r8qKhbZ6FMo3pfq+gAcEX EJyV2Hmi90EldvZWYucCGDuvHB6cbZl5NibbgtqlkOVSJ2uhsIXWRfRgxGfT iAZGWllJiW3naEm7HdsRTYNowGe8wN2SoZ7VaDH/uhSv5SSIXk1dNBkrZNs5 mC1XfHaKE8C5le5g352w2B3fere9pMtSBOrq3Oia3OjavJg6UPkxy/Jjlo+O wUa6viDmHRp3kAY83CZNvTSl9D85Ox2kpbRRL40Sj1cWhG2bFAuqUa8AOTFC Qf24ERL1J9ynh202cdqgALfPwxshP2/i6idSP25Uiv5AguUQ1jAzWA5msfwV ccsPLxwMmcxiGZH5U+iZAwUyY9t8x5hoDOf358NM4yFom6PfgEs668AZdjuX +Tw10QePCSqxcyGOnWGyUZEc0V6bWNkE1K6GLFc7X0tEaSzwGRA7ubshI9YM onOQkR5lJIg2227HdkTTIBruhzXYkyJaCaKFsULUEc1n0epwIZld6COsdMc2 ddCVlMRBQ72+DpJ1BPyJGGlI6fyYotRb60fHAEoDI72yIGbVGFirC2PWwOp6 x1il1oIa13UdqvVFSt2JakMxrI24xnfdhGpzCawGVFsmxOJ6aX7Y/4ijxiOJ 55j0Q3HXdyKQYoON6oeNPLc3htxTGksJrHJ4g1r0ezGTRSyvCz6zFtb/7oD1 NYPl/yhuOeiLFUEAyw8tHEyx/CnFcl0gxvK/lA46QGbD35cEnEKB85qC6L8s CMCZxor86H2TOsNMY6bf0Rl+r073w4HzEdjqDJ0zGzs/AmNn770kdr4Pwbku o/1X27AmqF2NV652vpYIW2hdRONHMri+O4joLILokQyik/GWKy0KovuJQTRG dH5CuNBxxwUdmo47bUcH23Snu6T/PpNG+vfCoCHT1yEMGgJKv6H0SCsNeLS7 4y9q4hGIRw8FO82GHp/UB1EvrRNNK80ewV9BUx38X0BFJv1Quj5IDAKJjYsS mxZC7t3IbH+/gXmcKfgt60O+XU/G+xgsnxWwvAZhebWA5aD/I255/4LBIpYR mT+innkpILMBkxnb5lWjowGcHy7rDOD85mx/Fc6V+nB+coKPMiaIYucHSew8 LTni7mzP+o5cqq6jQe2CsHLBU7ZEApB175pFdA7adYVuLKvTEW0xovMSwmlT NL+xLDdcqJ23YumIIbMeqQVG2l800kwiXZcfo44bMpR+D1OaTAwnoUeg2uZR I1JaG3pgUENW66YfazCog5WuD1JneGifW8dDe33Itomx3zB3UZEBPqbOEibz WA5msfzlKoTllRjLQaxbPr0scO/8wQjLgQDLH1EsV0MsI89s+Bsh84mFAX+B mUbAyvxoUPtKO78x2x8GzjNxpuH30jTfFypQpjEFDgg+XYrgPNHnYIn3ARQ7 70Ox8+4CAGcvDOeaNCvtANtBoHZBWLngKVuiv771J5ppsEG0gGsR0TfpIBrv LQtqZC9DqxGdmxCudNxpphai1TmUeSt0xHCNsRFDEkc36a2kZLmR1p1piI10 bV6MMG4oeGk6esjb6UBKaSNjiEGfKKY6iMuoKahXqb76K1L/vUOtrxV0B/8P 1Rla64K3Tux6lokptIVRTOtrhOX/gtLF8oqgz+pBqVgmbjlwz7zBApb/jgzz 36hnXqSSGdvm4pRb3prjr8B5BgPnqSKcD5HY+WEYO3vvKYRw3gXgnBJxT47n 1hEe9bOtvVRd+4LaBWHlgqdsoRaVpGoRrbNYtDpi6KaNo+l60Xm3uI24zZDa Oyy7l6EViM7tH46HC3HTHTTSQ8zG0d5rmdmFSmu0ZsSQXTLaQiOt7MDCLHyn LNkxAxrpmtzoV8ki0nAmCzPf8C3ShvcuY6cxpY3aadqVh1itph/LMaiDKKgx qzGoaQaiEJsNQzC313DQvmtC168pwFn8auqr1bhULH+hi+XlEMufLAskbjnw o5rAD2sMD85N1GDZcHIxxDL2zH9VyBzw8GQYaAA4vznH//XZ/mrgXOmnZBrl vn+Y4vtMGezWeArFGhDO4/GYIITzAwTO9yI4L021knnWVbuA2gVh5YKnbKGo hRaw3BZE59/qNvI2Q1qfsJzegS1C9Kj+4bSjQ0U0H0dXG4+jTYwYshNYWmuk 1RWkAaWrc6Np3KFDaeyl5xswpY3aaeKoRVNdi0Bdx4Eam+pP64MgqKmpJr76 c+Kuv9Cg+z8E3VtKun6F2Psf3cL2mC/IZAbL/wbFYPnjOlgQy7UAy4HULT8w N/FvKpYN0C0jw/xX6pnnBzwyucvK/Oj9pZ0BmZfnRb82yx9mGjOwbfaDmcZU bJt9ny7z+T1spfN5YgKMNRQ4j/PGDRu7Ritw3jbSoyHLY7nVzbOu2gJqF4TV hx9+KGd56wq8MtXzpmuxbHoOuIjo7jqILrjVDbhoQOlRvQMtRDTgMzv7Gy9z ZyyO1p1gaGzEUI2jdYy08dYOvcmG2EgvHRWtxB0KpQPUySyE0oydNgh2moKa spqkH4EKqGtUUH8ogHq5AupPVwBWK/UZLCa1xjYbF4H25vFdVYAD9lL8CoVo TAtj+dPlQSyW/8Vg+Z9MiAGZvMSwuyoRYdnAYXkBxDLwzAqZyzrjQAPY5mW5 0Uzg7McEzgjOONNAA4K4m+4hDOcxEM6VKRFNEM6eAM6LU2xpnnVFQW355ETX xJSc5a0VXSZLGz7r8rkViB7T0y2nlyH99vCM28N15q3wUwtz+oWrw4V6iOa6 o1M8LY2jmWng25lNZk0Y6UeJkX5Ca6RR3LEkJxrGHTSU5imNc+nX5urYaSWd 1mO1CuqlCNSE1Tqg5llN61NS/xbRDQtuyLUSIVdb2BtrCmD5NI/lj1QsB/6D x/JJxS0bds1JhExmsPweqHkBK0dHr8BkrvLHgQa2zXCDKiXT8GMyDV8l04CB M+rW4OF8P4bzKM/GkZ5bsjw2Znossw/zrCvLZ5G7Mp+lqNg1DIXdryxEdKYu onvoIBpn0ZjSJhCd3S+8kl2gg9lYVkC0tvVO2x1tLI6mfR0mjPQj6m6zwEj7 aY304pxoNZQ2RmmtneYcteFdI6b6BBOAEFAHqkk1ST/+tUytj3loK+jGRaC9 sbjrpwzDkSUmz2Hqk2VBn+BUGTCZwfKHKpYD/85j+QPFLRswlu+bnUix/C4M mbsALNfnR2MsM2T2P4qGAmtGRamZRjm2zb4w05iEMw0fmGngSYIAzmO9HyRw 3g7gnK3AeUGy3ZlnXZkGtUutLMpK8pmV9jKYVV4iINoYn/mmDhXRIy1AdFEv d4DozL7huogGfKazC7kJ4BpEa+NoulKH3mJKmqyDn8PCTAZXjPRDRow0bcBb mB39LAml9SlNprRQOy04asZUI1YTUKvjiYtFUJ9SQB34jxoF1NRXK3k1KZHb qDYUdUXs5R6EVUciC74Uq1wb+E8Gy39bCplMsXxCwbIBYBkyeUHAM3O7PV3V DWD5nbkBK0ZDLO9DIfMbCMuYzH8GZMZpM7LN1dlRRyqIbZ7se7jMV7HNE3we K/Ghtnk/nIfCwDnX824A5xEemzI91qd71M2yX/OsK11QuyymXPbEtdL9HQ28 hzDXe0Cf7ib4bBGib9FHdHFvd4Do4X3DBUSPjA/HQYeKaGYOONvUIbTe6cbR xrqj2UHD7eYSaWNGesHI6KdJd4cupV8iEw9f1ThqFdRi+oFBbYCgXsiBmh1S PEVM9d9rlPoHLcBSpj4k9RGAbV3Q+nFd0Q1UhL1i1SAak/qHguVAjOWTDJb/ ymP5PeKWd85KXIFyDEBmiuXXMJaxZ57pT8mMbLPfkuwoFc7YNsMOZ5/HxkM4 P4xGA/dROBdAOO9AcL4LwHm4x/oMj3nDHMM864oFtctiymVPXJCJP6CElAPg GiBadw0lTdbRGkSP74MoHRdOEQ34XM6v0WEU0cz2hbqtd3CxjuFeYhxNsg7F SDPdd3AaC7NkB0qkfXVbO7CRnj8ymsYdWkofIZ14gqNGoA7AoGbTDyGmxqx+ dwEAteE9XVAvQb0fjK9WYhBSf9ej97qxMf9kYU4LP5+vvy3FpWD5AwbLf4FY NlAsv4uw/M68gIfKYI6xYEIai2XIZBXL/q+S9jlM5iMVfs9N9V08Mkov0/B5 pNj7IdRHtxe20kE47yZwRq3OngDOd2Z43JHm4XDbv+oKtzHY+ihsI5cNdliZ fRG0EwkBn80GHVpEZ1uM6Am3uwMjnRUXXhgXOCIufAq/RgeHaN0RwyT9OFp3 75VNjJEWuu/oqkrKfHA27ihR4g6mtcNv3ohoHHcYo/RzdE1pwmoKapJ+BBwl rNYBNWOqCagNCqj59APjmhbltuK0Gb+9dmyMAnDE3lPaAt+OTTIpyGQGy+9D LBsolt9BWH57bgB2y3tLu7w+x79pxiCK5aMMloFhVjxzpd8L0yCZcdp877jQ uwtDxUxjPLTNDzG2+YECOIMbwjnPC8J5pOdmBOe1aY6XbBiTizPKxS20Je++ kHKYbrcTg46bLEA0uxJpL24l0jF9A5Piuo+I5xHd3wJEG58JvkrTekeMtJpI N+bz44ZjeCONKL2P2TALU3puVhSOO3QpTUBNHLUeqJmYGoM6gIJaGVKcK8bU 7xJWHwecpKxGuFbcNakTuHh6wz1fOJgbPqAEFgrHFwyWj4P/l8Hy2wyWl+dF Ayy/RtzyvTMGQSbPBEyGBZk8HTIZ1IvTKJn9/kgCjYUjon5f6qtkGhOgbaaZ Bmub7ydwvncU7KbbnKXAuSrJgZMNQS4OKFc+fct/NWsHClkvbRGib24loif1 dQcWGlZ8+Mj48KJ+QSqizTV18DPBxdY7de1owUgz01hMjBvSuIOOG1ZlRT3G hNKU0nTzrGfIIh6oHw8WBfURGlOL44kKq4/NCfgz2/shgJo31RjXtN5fpNZf mPrrYgPc82UxvKGAVyhsj/lCWDa8y2D5rbkB+8u6sFj+M+OWAZbvmT7olen+ 1CoDJr9IogyAZUrmZ6f4Po2GAhdkRT05CdpmNtMgttn7AQTn1SOCAZx3Ejg3 ZHlsyPRYm+6xOsX98fu3dPRnxzpyZTphuewr0KK/m4xZ6HTjS/oLKYeA6JyW IDorLpwuRjouPghQOrtfeE6/cAubOixZmJQaaaG1g2/A8zEybui7H8Udc4ZH sd0dKqVJs7QuqP+ggNr/ecZU68TUs1RQQ1YzoMasfmseiakJrqm7Vjw2Lp7e qwpijvMwP06fydZ8AGRcAe8wWH5zbgDG8p7SLhjLxxgsQ6s8w//l6f6NlYNY q4yx/BzEskjmp6Bt9p0/PJJkGj4PFytDgcg2e1PbvDIrGDjnJtRNh+G8DsA5 1aNWJhtOJNfkcyveehbRApONxdEZmpQji5+3YiGi6XAh2VtWbY0GlB7VP1yd Y6jX1MHG0cZmgkMjzXTf4bhDGDfkjLSwthKKO2ZnRuH5hjjxUCgNRw/9AKVV O804am368RxhNQdqtL7HK3z6oYB6TgAENW+qlbCa1Nvz1XqHKcDblQUxkN7o 9jtCgW/EqQVTgMkYy/vKugAsL8uLfm12AMby0VmQySyWIZMRlrdNGwSZzGD5 D6AQlp+ZrJAZBRq+OG2emxmJbLMPzTQeLAS2GcJ59UjFNu/IVeC8ZYTnRgLn 8YPCO+gjY305DZo++OCDDRs2NDc3f/fdd9qvHj9+/BpGNTU17FftZHMxK6t1 58si2tgC0WYstAbRoyxAtNp015dHNDNiiCmd2z980oAg3aYOPo4Wt5oVlo/e yPRI07Xv9McNmTbpmZlRSihdolIajx4SO01AjRw1jT7EmFpNPwCo/Y9Uoph6 ugpqMaaeTUFNWE0HFpl6kxaD7vrRMeR2wFvEEotVFfAGqb0Ay/kQyw9O6sJi +VUOy/4vovE+JViu8NtaMeiPBMuQySyWKZkn+T6O0mZgm6syIwGcYaYxjtpm 7/sLvKanKrZ5ey6MNe5m4Lwm1WOOjJ3tTy+//HJISAigbmFh4c0336xF9O7d u5OTkz8nEp5AXweneUHMqi1nCq5/E7GGNo7WzivEfBamFppGdGbf8JLbNRtj GWnqmJAQBCidlxCenxBeNihYQDSMo5V9smDWAeNoknWgRJrbhwWOG2ZzRtpU 3DHOd0ZG1B7ipXUojew0BTVm9SHGVLOgVho/KKinYVD7H9GCeiYCNW+qMa5p vaagG9brfAHYvqF5EBb+LlR7ShUmEywHsFh+hWJ5OsCyP2QywTK0ylMhk7dU DHp2it8zKMSgWIZRBiHzE4TMwDYDOD9c7EMzDT3bDLs1GmGrsydudV6TBuHs HA11WE6Do7i4uF27duHbWVlZGzduFJ4wd+5cwTMLcpqXwhK1/WTpWKGuYdZm HexK0cIadxYiGk8Ap3sX6u+NpdfUMWlgEKB0/oCI0QMi2BHDxXwcrRppfh8W ftzQmxs3VNukfWib9PT0qN1FSuKBGjx8BUpTUCuOWjXVfodoTE3TD7ZDj7Aa gxqyero/BPV0NJ44QwW1klQzxKZ1jC2CboBcleTMEzCN60DlRu+e2OXorICj iMksll/WYBkymcHys+WAyRDLDVMHHp6MrDLB8pMKllXP/ChKm4Ftnp0RSTON 3WNU27xTsc0EziNVOK9Mca+srGyXD4g9yGmIdPbs2WuvvfbLL7/EdxsbG9PS 0oTnDB06dMiQIaGhoQEBATNmzLhw4YLwBKd5Ncyqvc4UI9pEfx1rpM1aaHb2 twbRcFcsuoySLqKn9POgiylNM97UMRpRumBgRHliMEW0Os2QSaRx3LFWP+7w FuMOJpSuTI/axXRKY0rT0UMlmmYctTqSSEFNWP0UY6pVUDOm+jk1/QCg9n+R N9XUWtOi6Fbpjao2N5rexjSuRfUqjixIvUJ8MsYyZLKCZX+K5T/yWH4aFLDK CMubygdSLD8BcwxYEMs8mR8q8tlf5D0rPXLPWGybvVePDIG2Od8LDgXmet2D Mo1tI6Fz3kzmoaxM8aid6SRjgleda1jwxIkT11133ZUrV/DdgwcP9ughbqHe u3fv2trac+fOgSeDr86fP194govwuX1P0yyiWSNt3kIzY4VaRKffHl7Eby87 kd9hdko8h2ja1CFsBY6DjimJwYDSY1BVDAmGrXdMgzTsvjMXd+h2dwBKT0uL amamHO5mmqVRJx4ENXXUavQhpB+lNP0AoPZ7ajKffpTz6UcFAvU0FdS4XsQ1 A9ZLagW8zNbMgF0TuoxLvqUW7UheMyr6ZWyJmXppuljgx75QCesI+E8Jlv/A Y/nwZD+M5afKEJNLfTdOGYixfFCDZYbMPvuQbZ6ZFvkAtM3e0DaPoGmzYpu3 joSZ8+YsTwznVc4F56sOiyPge7/l9fPPP7///vvu7u70OYcOHerWrZuJH/LI I4/ceOONwoMO+oK0SB1xjgDRJprrqJFWNpbl+SxsWYgttDFEp/UJx9vLFrUU 0SabOhYmeU4dHAwoXTgoYuygiHGJsIoGR8waFozjjhZ1dwBKV6RG7qBDh5jS YzlKU1Dv05hqLv2YxIO6DIIasnqK3+8ZU/0MMdUY1Gz68Tyx1rQAUatHReNa igrcaC7pDP59kfKcwS9bRxCNabFYfpbHMmYya5VRguG7YfLAxyb4Aiw/St0y qod5MgPbvDYnZM3IEGibU1nb7HV3juc2lGlgOONW51WpHrOdaEzwqiOzqK6u 7hpepaWlp0+fBjdoZLF37974+Hj2u86fP//aa69dunQJ3z1y5EhwcLDwkx33 NbFQHXeCZid6U0ondzdkMJQ2tqssG0Tn3aogOq1PGHDRFNGKkUYjhnxTh0fL Vupg4uglatzhOWNocBECdfHgiPFDIkqGRExIigRlNpSemhJJvTTOpdkeDwpq JfdQTbXvQzSm1jPVj9MmPdVUA1D7qelHuQpqXE3FnZfkRONajArcUJw2X0tz oo9oHnwe5ycVbPn9ERfB8jPlKMFQsOyHrTKbYCCrDJjsC4C8fvLAAwTLgMkQ yxoyP4DS5ulpkdNTI3nb7EVtc0OW56bhKpxrZ01wJjg7U7KBBcBrMBiOHz+O 71ZXV5eVlbFPOHfuHDDYL730Er47Z86c/Px84Yc4N5879OzAp8P0FEJt3CFs LGtsoNByRKtxdDygtIeZaeD8VrMY0bqUrktV26RxDx4F9cShkZOGRpYOiywD lRxJe/CmpETenc8lHrTHA088vJ/JPdTog4KasPphxlRjUDeMCZ2XFQVrRNR8 UgtAjQQVvZCvRdnR9xR1pu6a1h9w0dFGVIuzo/9IbitPwHkF5jCucrUwlg9j LE/2ownGEwyWH1Ow7AuZXAKZvK5soMLkYshkhGWfveMglimZ78dps0nbvBHB eR2Bc8dd2DaRU4Jo1qxZ2dnZP/7448mTJ0NDQ48dOwYe3LRpU0VFBX7CypUr wePAfk+cOPGGG2746KOPtD/EKV+Zq1Y5L4Bos4uOmo07dKd+05QDVGqfMJxF j72NR7TuiKHlWYcupYfpU1oZOhwuTjnEoJ6cHDliUI8pyZHlKbCmpsKqSI2c lgYqqhJXetR0UjNAZSg1k9QsUJmwZpOaMxzWpoJQzGou/Sjl0w/FVCt1mC0A VaaeYWrRyKhn+EeeJsaYlvpzEJMRlv0olh9nsPwowbISX4xXrPLa0oGQyQqW fbBhhlNOODJD2zwNruHM2ea7VNsMM2fgnKuGBjlZ5nzVGc0z1g8//FBcXOzn 59elS5empib84HPPPbdnzx76HADt9evX79y588yZM7o/xCn5bLWTshzRGejf IT3DhqDEQzDSJuatpPYOG43j6NvcdI20ZgKLZUYaIVpJpE1SWmzw0FB6c7Y3 oDRdB48bPUQ9HsROqwE1NdVc+kFM9T5iqh+CptpXST+IqVZAPYmkH5TVBNe0 nuILA5ZifOHIqMP49mSulOeXqXUIV6kfxTJkMsHygRLfR0BhJo9XrTJg8j0l MXeXxAAs7xnrA7FMDDNP5hDgmStSIoht9tLa5vUZHneke8wZGrRuZp51Lmxr yikR1F5qaGhwsl9eVn67dzdtsSTlYDvuUrobAKVTEKV1Ec3O/k7pHQYoPZpp jW4/I90SSqfpUxoPHZYOjaTr4LFTWtTQg+YehNUKqAv59GMcn34Us+kHALXv I+yQIsNqGlar0KaF42umMG/nj4g6RG4rXypVC32v7xMkvmCx/CiDZY7JBMt7 kVXeM87njtKBD471UbCMDfMY710F3vcVeCtkzvfajgKNqckRAM6NOV5bs0Xb DGcIpsHRQAlnFxTdp8A5XiibnAVu52gRojMJpZNuCxt+0/VZxpe5S+4dho00 RrRgpCGie/N9HbrTDI0baTbuYBdWYildY4TStA1v4tBItsGDjh7SfmkKahpQ b1dB7UO7PnbpgVrfVBNcH6BhNcA1ITatg3w9TqvUb15WFIS58gjCL62JSj3G FGSyimXfh8YTJhej+KJIYTIoxGQfwOQ1kwYALN/PYHkV8szTUiIpmWGgMcqr fFiEYJvvzPRcjzKN1akeYweGr3VGODtrstGOYoHm6JS24cFXVlZa0s4hzlsB /rnb9QDRiNL6g4bJvcJo1gEQPbonY6R7tYeRbg9K4x6PO5ml8GiPBxt6UEd9 z2jd9AOy2nT6YZLVXB3g69GJXAHezh0e9Rj74ARijNnC2QVmsoJl34dYJvNY fgBi2Wc3csuAyasnDsBYvm80JDPA8gqUZihkJoEGgDOwzVtGejaMUGzzemSb cZMzgPM9s9JtdWF3qByaNtaR07xENj8Rs3vIGkX0TTDlwJTWZh2ZtxqG9zSw I4Z81sGtp9QKI22K0knmKY2ntJQMibiD7p/FU7pBADUTfZhMP3zuY001ZTX1 1TSsphkIJjaBNq2H+aK8nZMZxbGXEBjXQ2wV++6H5bOvmDC5iGfyWMBkH9Uq j0FMLvBeOXFA82jvlSMgmeuzQiiWsWduhFGz19Zsr8lDIxoY27wO2eY1aXA0 cHSChLNLyzn+xLCH9xqvcWdh0106uwapgmiYcmBKp91iYNeLBhZaHTG8hUM0 yjrabKT5UNoYpRdrKE0nHhYPjlilWcGDTg9nQU2jDzWjzuPTD2qqC4ipVnDt Y5bVQu0TisE4qNmZUcptBb/8kwmHae1BTH6QZ/L9oBCQKZMBkHeiAlZ5WmFq RUrk8qwQ1S2jomS+a6Tn0vTgJWnBxDZ7rkW2eTVakm7KgMCqge7mrzzHlD18 Zh1Cjv5C2c/xY0SbnVpoGtGgAJ+H3haWfosBI3pYrzB2xDBPF9GtNdKtoPQS DaWLBkfUayYeriPb0WpBrTXVXPqhx+odAqshrn3upxMVmXpwnJKH0Nqjqb1F vrMyovYqd332sPjVKwXIKpN9IJARk5sZJu/I996e7w3cMsZyfcmAe3JVJkMs M2SGUfMIz7KkCGqb70C2eVWqx/jE8MkAzgPcPzp+1NYXdYfIfj6z9i+Hfq3s 7eApotuSdeDhQkxpWL3CdFdSUkcMtVkHGjQUp7Hwi/wLRpodOlQbPPhmaYHS sMEDUXpcYsQyvWWlKaVZR61EH8ZMNWU19dW0VW80YXUBYfUYyGpkrTGuxdot FCAtqRnpkQ+MI9Rl6v5C/doFmewjMHkHYTKoCoRlOJUSWGWE5WXjB7BMRliG 1YDIvAkFGpOGRGDbvAbZ5pUocJ43yH2O88LZOf5mt5rsDXGWyz6PvLm5mc5J sdRI6yKaZNED+3QHFjrjVoO2O3o0H0ejrMNNJ+sQl+zgjHTbKV04KEJnzVJC aRXUTPTBmWqR1d5bc725sFrD6iae1RTXCrRxFXK1i6/paZH09n1jzFQzYvLO Ao7JTaDyvIFPnpocCQozuXGU4pO35njVFQ+4CzF5CyqAZZbMGzIhnNdleALb vBrZ5hUYzgOdGc5X7fVja7dy0JfLng+brhRtuZE2gWhgpNNB3WoAlAZlIo4u VLMOtyIT3XdxGNHtQWkUSlcMCZ6GF8TTTA+ny5auwaBGAbVgqvVZrWQgCq63 wSKsziMxSD5hNZuE8LVTrypTI4VHdoz22YHZa6S2M0y+N897GcBySmR5cmTd 8BCMZcxkaJJRASDXFg9ogFj22kywTMm8HgYanhMGh1PbPDsJjgbOHeg+W8JZ ipEjvmL2f8zsxt8WGmkTiB56W5jaGo0SaUDp5N5hWT0NJhBtmZFuIaUH61N6 zMAIZkqLF9uGt5IBNTHVXpjVoq+mGchIwupsY6z2bszzbuRZLVQTW6MZkqMF 97aPRrC1rO5FTL4nFxawygDLtZkhmMnbeCZDn6ww2aumKAECGdWG4bDuJGRe mw7gHEFt86ykoCkDA50ezlcd4ZNrb3K4V8xRDphFtIWDhpoRQwXRgM/c7BUS dAzvaUjpHQZqxG0GdcSwJ4toN1ODhgylp9JQ2iIv7TGPX8QD8JldZ6km2YtS moJal9VrhuN5Ll4tYHUOAjXLagXXSt1tpO4hBawvvqF8Kdd8lUMsR0xJjlB8 co7K5AZUmxGTN4EiTK4elwCZTLBMyYwDjfGJ4YDM9ckeRYPQaCCAc4L74unO trwGK0f55NqbGhoa8ERCWx+IeTnWWywg2qyRzjDedzdCmGDIZ9FZCNSpoPqE sSOGY3tpso4+KqJZI906SlMvXTAwQjs3vCZFoTQOPbSsXqXjqyGr12V5rSNL T7Os3kRY3UBYfRf11SZrG19TkiO3aR7UFjDJAMuAyVOGRXBMziZMHkmZ7MX5 ZMTkpeMSMJMhlhGZ16R7riYdGoDMM4cEFSSEzx/kDuA8y9nhLIcFWy0MPft/ AR0Lzljs3t9mE2nKZ90JLKYRTUcMMaXT+oTl9DIwiHbTzzqQkTZB6Uo9SrOz WuaSXbRwG57Qg4d3aVFAnaKAehlJP4QARA2rM4mpRqxeD0tl9UbC6s0Mq4Xa YrImD4vUe9wLVHVGyJRhkZOHRYCqzgimQNZh8gjAZFgKkIcTk5ypAHnJ2IQ7 oFuGWF6T5knTDEDmjITu4waFlw8MxK0aTg/nq4754bUTOcRL5xAHqSsB0enM cqPGIg4tornZheYQjbOO7F4GQOn0PmGjehs4RPODhiYoXWGS0qyXzh8QDo30 YP11lpYmE1CjlmmW1ctTjQQgtAOEsHodYfWdoLCpJqxWrLV+eeHaTCvbq2xY BPiX1pKMYPBI2VBYS9ODG0hkQUtg8gZUCpOHc0xeC/sxFCYvLkxYTbC8kpB5 OYJzZWLQokR3DOeZCe5bpoubhzqZHPfDaw+y/1fP/o/QrOaV5goo1o07Mowg ml2jQ7uSkk5HBx0x7OkGjDSgdPrtYRmwwtmswwSly/UoPZ2ZeMhSOi8hnOTS HtwuLfzEQ+yoeVYrjXk6ppoGIBnEVGcSU636aoxrsTbo1UZSpUMjFqcHg39x LUoLxo9v0quNHJO9OCZnEiZnEJ8MEwzPVaBSPRcWJqxEvRmYzMtQ1Jzev/u0 xKAFie54NHBmf/dnmlfb+trsWNn/H+Z2Ljunn50fnuXa3bRFoLFuKC3w2UJE 55pANNd354YpnQmqb/jwvuGjbw/UUnqySGl3JZTmKU29NOAzTjzI+tIe4hYA zF4tWlYTUMPiTDXP6tU8qzlcG6n1BOML04InDY2AlRSRNbAHuHsnZjtTG/QK MdlrPSiGyXegUoBMmZzmuTLVE1pl5JYXjEmoT4GGGZB5xpCgcQPDq5M8xgwI p3Ce0d/tw/f+ZOurssPlNJ9fW8meX0An++WrzTqMUlqD6CE9w2hTB4vonBYi GlMau+jxfdzzbw/EoAaVFQer1BSl3bnEI0GhdG7/cMVOc9tpQTs9nzbj0WXx qKmmMfUwrakGoIaFNwhgWb0KF8U1ITYtwO15KcETkiImJkVMIDU/NRgTe0Fq ML1tlOqk4F0AZPNM9sRMrke1HOUY88ck1A1TyFyZGLRkiDuA8/xEZTSwpF+g K8DZyT6/tpJ9ItpZ31xt1qFLacFIAz6zfXfKYqRtQrSbOhmctHaAyiKgHoEr PnwkKYXSCNSQ0sROj+ofDr00HUDkKU1yD8BqDwXUeqxeqsdqYqoBqGHVpzG4 RgvojR+i7GYLavxg5UZVcvAajG5SdxDLPWFIBL2tKU+uKJMzjDHZs55n8jJU AMvzCxKmDw4aq5DZY/Fg96mDAicPCJyDbPOq6U64nrOu7BMsDic7fBmdFc5Y 2qzDEkrrI7p7OyB6fB8ukVZ78GgojWYdUlBno8rpp1RyfPeS/kHUTlNQAzut hB48q+crrPZgWT11cHDhwIjCQbDGMjUuUakiVPQGrvo0AG3PFaRWpqu1iqnV uDI8Ab3Bv2KlmyoI5DQFyIjJsJanqEDGTAZVO8yjZiicpj0pL2UaIfPCwe5T BgaWJQQC21zZz21RZYmtrz4ryQ6p4qCyt1fSueGMpZt1sJQWejwwnzP42Sst DjrE2StuRRDRbuP1jPQk2oNH4444EnfEQyNNvTRA9Pj+QeDfUbj6w8plKi9B qXxSoweoVQArojwxWEw/WFM9jJhq1lcz1lox2Lh4aK/AgEUFPDakd5qlpTA5 FTPZUzXJyQqQawmWqxGZCweGAyxXjU5YhMg8H/Vp5PUPn9nffXy/wObmZltf d1aSK3yErSa74rNLvbO6WYexTrzk7gZQGWTvFTx7pUVNd+wEQzpiSIy0m+VG mgul+7ln9wufBhMPd5p4sF56Fh9N6+YexE57LIRFoo8kBtRDVVBjVtfyrFaJ TUqH26mexcByM3fNFGYy+GkYyAyTAZAxk0FVDg4CWB4zIHzxEA+M5Tn5/QGZ 56K5J3n9wqcj2wx+I9v6crOe7Aopji772dzKpeCMxU4zNEFpbLbBDTrHkCJa 3L6QIroHQfQtLUF0y410dnw4CaURpRM4Ss8UKG0k9NABdZIIapHSxFTTqmWq LlmH20WJEct4jBst+BMgkxUg80xemgRrWmJQ4YDwqYOCFoHDTnQHNX8QNMyz 8vpXoSaNXPCXhSvZZiw7gYnTCL+eNqe0C8IZy0TWIYQeA/p0hxZaRPT1JuJo EdG36iC6jUZ6ZHz4VG7oEBhpdxXRupQeZCmlFyV5UERTO01Zra1qAeCoMLHH DYqo5RmuKTWyoExWgEyYvARjeSCMZcoHBuIEAxcwzHMHQs88M7f/zAT3Uf3C FlVOcCnbjCX53L6yBzDawzHYUOBTbOFW4ADRANQ06MjUIroVcbSOkXaz3EjD 1g42ke5HjDSktHsrKK1JPLCdxqwmuE7icM2XB66lGOOoqod6jh0UgbjtAWuo mcJAXoJq8RBYY1CIMTohfDKamj2XFmJyFVq6eTaaEjh9VP/k+O6uZpuxJJw7 QtI524MsoTTdRWtIzzBQKd0NAqK1WUcuMdImEG3ESLtRRLOULuUpPTIuXGfc UJfSA4xSugqVgmjeS0NWE1yzxF6UZL4WMwUH7whyTRcG8qIhHlMHBY1BI5j5 CeGYyVUDuZpDsDwrAZJ5Rn/Y25yTk2PrS8k2kh/kDpIN+SzfU0G7m7aYXuyO DhpmoEFDDGq0RofJEUM+6yjQjaP1jbSbaSM9Ii6cGzfkuzvMUloMpXk7reA6 kcO1QGy2FhovgFn27iK9WjgYVvmgIMzkMrT4p4piWgNELE/vD9vncuLDwC9Z l/WQLnviHS1bvbASzrr661t/mleaa2wZJXZBaW4OOKL0UL3F7szH0caNNEG0 mzEjDfjMxh2WUJqLO/jRQ8pqgdgirjXENl1TBgWBUsBOCtMY356fCAE+OiE8 v394KcIyS+PZfFEsQzL3A2R2z4kPr6ysxGmza2LKNc/aOrLJayvhbFqA0rPK S3QpTRGdEatdj/R6TGm8D7iK6O5iHD3aRNZhzkhPYIw0nhUuhNLGKF2JanoC LgXUlNUsrjliawz2XIbYpgvDHICXgn0+U5MHBmEm5/UPp0DmUEwrQQfL0+Ld iuMDh8ZxabMLkkp+ljtU1r+i5BtqoYxRmk05VD6rC/vDovuAs5vM6sfRukaa ULrYnJFWEa1H6anxYihNQU0ctVIzcA1wnwmLIfYADa55m81lI3qVnxA+F1Md 1Wg0TQYweVJC4OyBGhQTh8wWj2X3ini37PiwkXFh1DZTuSCfXfCUrSkr01LC uaXSpbSK6G4iorNIjbj5epx1ZDCbzILSzTrURLqnnpHmKT2BX7WDGzfsSxDN dEpTUFNWGyO2iOsEjGtYCJ4Q17MH6tccIwVQXDXQAzMZlADkmVoa4+qvZMss loviAwGZR8SF1U/L022fczVYyY+zFWS1i0q+m62WltL6iGYs9AiIaLH1Drho TGm8g6HlRppr7WAoPbxvuBJ36FFaAbWW1fEcq6f104C6v1FQzxTsLl80ncA0 TunXPQ/NNNcCeQZblMakKhksTwVkjjMAw1zY13BnhalF9V2Nz652vjZRQ0OD FbAp4dx2sZQ2HUSziB4pdEczWQemtLKJIarsXoYxJnqkxbjDDfCZ6+5g57O0 K6in80RVHS8idi6/7gdc+JQ8rkvj6QKNcWEmo6qAx+Y2Nc4NG2ZA5qd2rP7H u2aWBnUpXrnUydpQeJfYDt0rVsK5HUUpTZvx2CBaRPTNKqKzTbbe4bhj5G0G QOm0PkqlozJB6cy+YchL4+JBzTvqspaCWpfVCNej6IpMpGYIBCYFvqSPYp7G 0zRYHocM84i+YcAwH9ph6V4nroMs+Ym2mjr6opJvZUcId+LhSYXsYnfaLJp1 0WxThzBoKCbSTNxBQc1smAUr8/awIX27g38xpSmoJ4JiQF0qgLqvKVBnk1VM 4UKmQpF1TStZzBov7pkaFE/DvwvilQL/dXmcGyiM5YLbDcum5f3dnGEW5Dp8 dp0ztbk69KWWcO5QYUrHx8ezS97RuEND6etZI53DG2mtlxbbpNmhw9sULw0o je10JsK1Un1hDdcU3AIAF7sRAKqRpERTjapCa60tKIB0lcMaGtPCWJ6CyDz8 9rDRfQxPbl/ditUzXAdZrnOm9qCOe7UlnK0jnHjQ5aMxqHVDaaOU1vPSxux0 IUNpYKfV0IPJPZRhxN5uTPqBfDW01m6TlNKz1ry7Lo/TwbVQFXoF19bTe3J5 HC3IZJxjZPWFv1bqKvL27djS6nfBdajlOmdqJ+qIF1zC2coClo9aaExpPAFc f+iQ5NJGKd3DHKWRnR7VyzCqt4FNp1vA6tt1WM2Bui8Tg1CuxltUcO0mFcXg 293U6gutMijA5Pw+BlBPtMowC3IRarnIadqV2v01l3C2lbRLLVFWK0sqdRMo fb02mhZCD4XSt+hTGg8gUkfdOlATSruVwuJAzbKaxbWJggs3xblN7stVWV+3 EcQql/RyG9/LrXZqmwyzIFcAl/xc20Tte2nJN9Ee1NzcLKy2pC6p1DMstYeh pZTO01IagTqtTxibTrcI1MajD8pqVIiulhfgsHL7dnh7RJwSjI9Hh5Hb2/B4 UzsYZkGuwGdXOEc7VDu+7BLO9iYAau2aS+zyd2k9DEw0fX1Lo+m03mGsndYB 9W0iqEU7zTtqFdcmiG28suBAJKzh2Cr3hla5GBzDbW41U/P2tp9hFuT07HL6 E7SCnn/++ZMnT+p+6YMPPtiwYQP4tH733XfCl9rrlZdwtmcBxygsYYobp1MQ q9m1lRClr7cwmk7tHcba6RaBWsA1R+zeRoitKRbISXHdh98eNgEzuRdkMhzE 7BMGsNzRG5o4N77kR7vteuuttwICAg4cOKD90ssvvxwSElJTU1NYWHjzzTcL iG6vLa6c+xJ1JrGmOgMVbZxO7WEArKa4xmt3gMoU1lkilE7pHcaGHhaCehwy tPq41jXYpGi3Hm3no1/K72PI621QsIyC8XkVJVbbzcS5L37nPruO1m+//bZp 06YgJF0+x8XF7dq1C9/OysrauHEj+1X8y7GNlJbvoCOKmupkPBVRM8OF5h7A V1NWK4t4oHU88hCitWOILKhZVkNc99THdQYz+SWD4Fd4sJiHeTHxyeBLsJmk l6G6PM8KblkrJ77+pXluo77++uvMzMxTp07169dPy+ezZ89ee+21X375Jb7b 2NiYliYu89LGq8uJL07XkWiqtaC+6XoafdDcA4B60O3dVWKTxZfoyh5pzIRx EwX7QIw4bf3CnEc+OT4+HjDZthv/OfFHwIlPzcrS5fOJEyeuu+66K1eu4LsH Dx7s0aOH8BzpnKWogPmkrGabqIejYk11NirgqNWYmm/8UJIQPrVWzbau5UZV 2FMs/Hj2bQYAc4D9PdshkO1nM1Zn/RQ463l1hC5cuPAtr59//pl9gi6f33// fXd3d3r30KFD3bp1E57T6ndBvn2uoGai3U1baONHKm38uOn6obeFUVzD6n59 DrvQB4PuXF1093DL78HRG1Qqs7CevdFYK6f8IMhko0Wqq6u7hldpaSn7BF0+ nz59GjwTsB3f3bt3L/h7UHhO664up7wmpSwUttlADzRtmT21hA4psjUMVy+d ajYnW59fy+SUnwWnPCkbSpfPly5dMhgMx48fx3erq6vLysqE57TijZDvnZQU lfN9HJzvjGwuls8XL1588sknz5w5A27PmjUrOzv7xx9/PHnyZGho6LFjx4Rv bOkfMvK9k5Ji5XyfCOc7I5uL5fO33357zTXXHD16FNz+4YcfiouL/fz8unTp 0tTUpPu9lr8d8o2TkhLkZB8KJzsdJ5CF74h846SktHKmz4UcFrRDNTQ0mL3G nOkilJJqLzkZ0OTH3A6F3xQ8i1D3YpPvmpSUrpzpo+FM5+JMYt8XPN3b2Fel pKRYOdOnw5nOxZlk4n2Rb5mUlAk5zQfEaU7EKaX77si3TErKtJzjM+JkKbrz SXuZOceFJyXVoXKOj4lznIUTS2bOUlKtkBN8UpzgFJxe7Hsk3y8pKQvl6B8W mWw4hOhl5ujXm5SUNeXonxdHP34XEW2BvirfMikpi+XQHxZpnh1F4G3Cswgd +nqTkrKyHPrz4tAH72oCb5YlE72lpKSoHPfz4rhH7sqycLtY+eZKSV112A+C TDYcXSYo7aDXpJRUu8tBPwsOethSgrSLJsl3VkqKyhE/Do54zFImREMP+c5K SbFyxE+EIx6zlCUysQaplJQLyuFY53AHLNVSYTstKS3l4nK4UTaHO2CpVstY p4e8BqRcRA7nRR3ugKXaLjb0kHCWch05Fu4c62il2lfYTjc0NNj6QKSkrCQH Ip40TlJYss1DykXkQNe5Ax2q1Pnz55uamjr0vzDd6SF/lUs5gRwFetI8O5Au XrxYUlLSo0cP3a8+++yzXbt29fHxyczM/Pzzz9v4f+mOITrKVS0lZVqOciU7 ynFKnTp1avDgwTfeeKMunwGQ/f39X3nllV9//bWqqio1NbW9/l9qp+WlIuU0 coiL2SEOUgqrvr5+8+bNTz31lC6fN2zYkJ2djW//8MMP7u7un376aTv+77Jx WsqZZP/ok8mGI+qZZ57R5fPEiROrq6vp3a5dux4+fLjd/3cLl8iTkrJz2f81 bP9HKKWVMT7n5uauXbuW3u3Tp8/+/fs77jBMjCHKX/pS9i87p5+dH57L6tKl S/M1Onv2LH2CMT6PHTt29erV9G7Pnj0fffTRjj5arZ2W15WUQ8jOL1Q7PzyX FeDzSo2++eYb+gRjfF6wYMGMGTPw7StXrgQHB//5z3+20kETOy0vKilHkT1f q/Z8bFKmJfD5xIkTx44dAzcOHz4cGxv766+/gttvvPEG4PP58+etfGxyiTwp R5HdMlAOCzq0BD7Pnz8ft9Jdvnw5GWnFihU33njjzp07bXWEcgxRyv5lt9en 3R6YVBv1yy+/7Nu3b926dUePHrX1sUAZs9PyCpSyuezzIrTPo5JyYgl2Wl6B UvYgO7wOZbIhZUPJJfKk7ET2SUI7/JUh5WqycAzRPj9BUs4hOyShvOCl7Edm xxDt8BMk5TSyw6vLDg9JSkrXTstrVapDZW8XmL0dj5QUK3bxJXmtSnW07Ooa k8mGlENINk5LWUd2dY3Z1cFISZmVnIco1aGyHyTaz5FISbVIpu20pLdUq2U/ VLSfI5GSap3kNltS7Ss7uX7s5DCkpNouGnrI8RSpNsoewCgvYynnkxxDlGq7 7OH6sYdjkJLqIMkxRKlWy+ZstPkBSLmyfvnll717965fv/7111/XfUJubu41 jC5cuNC6/8jErrUS3VLGZHM82vwApFxWly9fTkeqr6//3e9+t337du1zIiMj Dx8+/DnRlStX2vI/akMPGe5JmZBt8SjhLGVDAfDGxMRcvHgR3H7zzTeDgoIE e3zu3Lnrr7/+p59+avf/moYe8iMgZUI2vDykc5CyraqqqiorK/FtvBMi3oGL 6uWXXwbQTkpK8vDw6NWr16uvvtq+ByDHEKVMy4bXhrwspWyrgoKCVatW0bs9 e/Y8cOAA+4R9+/YBLL/99tvffvvt2rVr/fz8vvjii444EklpKV3Z6qqQV6OU 1QS88bcaXb58OS8vD1CXPq1Pnz779+838XO6d+/eobslmuj0kH9puqZswkmZ bEhZU7/++us1Gn3yySdlZWU1NTX0aV27dhU+Dh8j0buJiYmNjY0dfbTa0EOa GdeUNM9SrqyGhobc3Fx8+/vvv3d3dz99+jT7hEWLFiUlJeGejc8//9zb2/v9 99+32uE9TSTNjGtKmmcpV9Znn33m7+//wgsvXLx4saqqKi0tDT++adOmioqK q4jJ4eHho0aNWrFiRUxMDMC19Q/SROO0lHPLJnyW5lnKfnT48OHY2FhgjFNT U7/88kv84HPPPbdnzx58+9y5c83NzevXr2/35o0WSXZ6uKCs/3bLC0xKqi2S Y4iuIyvTUiYbUlLtIjmG6Aqy8nsqLyEpqfYVHUO09YFItb+s+bbKS0hKqoPU ojYP+Teso0jyWUrKaWTJGKLMGB1IVmOmhLOUlNVkwk7LT6IDyTpvlvyVLSVl fWkbpyWcHUvWeb/kVSElZSvR0EN+DB1OVnjL5FUhJWUPklPFHU4dDU+ZbEhJ 2ZXkPEQHUke/TfIykJKyT5mgtPRUdqIO5ac0z1JSdi5t6CE9lf2oQ98L+UZL STmEaOghPZVdqeMQKuEsJeVwkmOI9qOOQ6j8LSwl5biSY4j2IGmepaQcTr/8 8svevXvXr1//+uuvt+4JlkuOIdpQHURRCWcpqQ7S5cuX05Hq6+t/97vfbd++ vaVPaIW0oYf8A9kKknyWknIsHT58OCYm5uLFi+D2m2++GRQUdOHChRY9odWS Y4hWVkeAVMJZSqrjVFVVVVlZiW9fuXIlODj42LFjLXpC2yXHEK2jdmep/MUq JdWhKigoWLVqFb3bs2fPAwcOtOgJ7SW5a21Hq935LM2zlFSHKi8vb+3atfRu nz599u/f36IntK9Md3pIerdF7YtTCWcpqY5WWVlZTU0Nvdu1a1fhc2f2CR0k 3dBDMqEtasdXTyYbUlJWUENDQ25uLr79/fffu7u7nz59ukVP6FCxdlrCuY1q xxdQvhdSUlbQZ5995u/v/8ILL1y8eLGqqiotLQ0/vmnTpoqKChNPsLLk9Ja2 q71eQGmepaSspsOHD8fGxnp7e6empn755Zf4weeee27Pnj0mnmATyU6Ptqi9 +Cx/UUpJSRmT2dniEuC6aheuSjhLSUlZIl07Lf/6Nqa2o1W+tlJSUi0S2zgt AWJCbeezNM9SUlKtEKZ0Q0ODrQ/EftVGuko4S0lJtVGWjyG6mtmWfJaSkrIH WbLitEsBp42/jFzqtZKSkrKOjFHa1YDTlvN1tT80pKSkrCkh9HBB4LSFz672 u0xKSsr6oqGHCwKn1afsgq+VlJSUDeWC8xBbh1kX/ENDSkrKHuRSK063js/S PEtJSdlQLrLidCtIK82zlJSUnci5d61tBZ+leZaSkrIrOeuK0y09F2c6dykp KSeTk7V5tOhcnOkPBykpKWeV03R6tIjPzvSLSUpKylb64IMPNmzY0Nzc/N13 32m/evz48WsYsRsptkhOsOK05ciV5llKSqrtevnll0NCQgB1CwsLb775Zi2i d+/enZyc/DmRLsNbJMddcdpyPkvzLCUl1XbFxcXt2rUL387Kytq4caPwhLlz 57baM5uQ0DjtEECz8CAd4lykpKTsXGfPnr322mvpfoiNjY3avWuHDh06ZMiQ 0NDQgICAGTNmXLhwoR0PwLFWnLYEvA7xh4CUlJT968SJE9ddd92VK1fw3YMH D/bo0UN4Tu/evWtra8+dOweeDL46f/78jjgShxhDtITP0jxLSUm1i95//313 d3d699ChQ926dTPx/EceeeTGG2/suOOxZMVpG8rsgdntkUtJSTmcTp8+fc01 19DIYu/evfHx8ewTzp8//9prr126dAnfPXLkSHBwsBUOzASlbcVAS4ILyWcp Kan2EgCvwWA4fvw4vltdXV1WVsY+4dy5c8Bgv/TSS/junDlz8vPzrXZ42tDD hgCU5llKSsrKmjVrVnZ29o8//njy5MnQ0NBjx46BB3/44YfevXu/99574PbK lSvB43V1dRMnTrzhhhs++ugjKx8hDT1sO/RmGr9yWFBKSqrdBVBcXFzs5+fX pUuXpqYm/OCFCxcAlv/973/juwDa69ev37lz55kzZ2x3pDYeQ5T7MEpJSUmZ lq3GEE38jxLOUlJSUqysPFvcxOrWMtmQkpKS0spqs8XtrZ9ESkpKyiEkhB4d wUzdnynNs5SUlJSFwrPFO4KZunyW5llKSkqqRWrRrrUWemAtiiWcpaSkpFon Czs9WrcqnUw2pKSkpNouE43TrV7SWZpnKSkpqfaS1k63yAOz3yjhLCUlJdUR at3e4pLPUlJSUtZRS2eLd2jznpSUlJSUIMtni+PnyGFBKSkpKSvLrJ1uRSQi JSUlJdVeMtY4becbu0hJSUm5iLQ0rqyslMmGlJSUlP3oaV62PhwpKSkpKU7A NnfQmh5SUlJSrqPnn3/+5MmTtj4KKSkpKSlOb731VkBAwIEDB7Rf+vnnn/E2 XmFhYdu3b7f+sUlJSUm5pn777bdNmzYFIenyuaqqatSoUT/99BPeBvfo0aPW P0gpKSkpF9TXX3+dmZl56tSpfv36afl88eJFf3//d955B9+trq6ePHmy1Y9R SkpKyqWly+d//etf11xzzfnz5/HdvXv3xsXFWf3QpKSkpFxaunw+fvy4u7s7 vXvo0KFu3bpZ97ikpKSkXF26fD516tR111135coVfPfgwYO33HKL1Q9NSkpK yqWly+fvvvvu2muv/eqrr/DdxsbG9PR0qx+alJSUlEuL5fPFixeffPLJM2fO gNtxcXG7d+/Gjw8fPnzDhg02O0QpKSkplxTL52+//faaa67BrXRHjhwJDAxc unRpYWFh9+7dgaO26WFKSUlJSak6efIksM3bt2//5ptvbH0sUlJSUlJSUlJS UlJSdq3/B00i9tc= "], {{0, 396.}, {360., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->96.], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{360., 396.}, PlotRange->{{0, 360.}, {0, 396.}}]], "Output", CellChangeTimes->{ 3.854018612010667*^9, 3.854019276247932*^9, 3.854019758784193*^9, { 3.854025727688561*^9, 3.854025732349434*^9}, 3.8540329628117943`*^9}, CellLabel->"Out[56]=",ExpressionUUID->"0c6443ef-5d26-4861-be3f-d63109ff86fb"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["By contrast, this is a not convex surface", "Item", CellChangeTimes->{{3.8540186787136183`*^9, 3.854018688251215*^9}},ExpressionUUID->"a50cd067-4879-4876-9054-\ a4d33a052ee8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"nonConvexShape", "=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", "f", "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"u_", ",", "v_"}], "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{"1", "-", " ", RowBox[{ RowBox[{"Cos", "[", RowBox[{"4", " ", "u"}], "]"}], "/", "8"}]}], ")"}], RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "u", "]"}], RowBox[{"Cos", "[", "v", "]"}]}], ",", RowBox[{ RowBox[{"Sin", "[", "u", "]"}], RowBox[{"Cos", "[", "v", "]"}]}], ",", RowBox[{ RowBox[{"Cos", "[", "v", "]"}], RowBox[{"Sin", "[", "v", "]"}]}]}], "}"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"ParametricPlot3D", "[", RowBox[{ RowBox[{"f", "[", RowBox[{"u", ",", "v"}], "]"}], ",", RowBox[{"{", RowBox[{"u", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "]"}], "//", "Rasterize"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{ 3.854018345294232*^9, {3.85401861745296*^9, 3.854018653193221*^9}, { 3.854019278570972*^9, 3.854019281322811*^9}, {3.854019764941596*^9, 3.854019766277007*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"3f695c09-f6f2-41e1-996e-d5dcf7d5cfaf"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsvXd8E9e6733e957ERWVmJLk3STaQct57/9j33H3O2fvc3ZKdZO8UkgAJ vfdicO9V7t24Db2FEkKvoQXTywCmYxvbYNN7McaALb3rWWtmNJJtQhKqPb/P E31kyUU48lc//Z5nrWUYFvjVqP/3X/7lX4Id0cVXQ8P/EhQ0NPJrGn3Qe1Lw 2NGTRo74ZFLIyNEjg/5j2P9AN675f/7lX86h/+C6RZasF6bVq1dnZ2evFlRZ WfmqH5EsWbJkyQI4i5dEiM8yq2XJkiXrFYpwmFyX8rnt58isliVLlqyXJjve dsRnqWRWy5IlS9aLVlsaPwufpZJZLUuWLFnPV9JMQ6pfyue231NmtSxZsmT9 alVitXvXb+Gz3Y8QWf1cvqEsWbJkdXo93dy+CJyului5f3NZsmTJ6gTqKNOQ 6kUjVGa1LFmyZNnpKZmGVC8TmzKrZcmSJevZG3avCpUyq2XJktUF9YuI9zrg UWa1LFmyOr2eJXC20+uGRJnVsmTJ6nz6dUPIrzMGZVbLkiWrE+hXE+xNQZ/M almyZL1x+hWZhlRvIu5kVsuSJev11zMO0T1FbzriZFbLkiXrNdRz2fWiM2FN ZrUsWbJeBz0vBHVWlMmsliVL1svXbwyc26rTE0xmtSxZsl6Cnkum0fZ7Pt9v +DpLZrUsWbJehF4QUrosqWRWy5Il67fruWcaUsl0ssisliVL1q/Sbx+ie7pk ItlJZrUsWbKeRS8icG77I17o93+jJbNalixZbfVCMw2pZPI8o2RWy5Ily/Li Mw2pZNr8CsmsliWra+olZBp2P+6l/axOKZnVsmR1Eb38v3GZKs9RMqtlyeqU emmBs51kkrwgyayWJatz6GUGznaS6fESJLNalqw3VC85cG7701/Vj+6aklkt S9YboVeVaUj1yh9AV5bMalmyXk+9wkxDKpkMr4lkVsuS9Zro1WYaUsk0eA0l s1qWrFel1+qP7rV6MLLaSma1LFkvR69D4Gyn1+3xyHqKZFbLkvWC9PpkGlLJ f+lvqGRWy5L1vPTa/hG9tg9M1rNLZrUsWb9Or2GmIdXr/Nhk/QqJoH4N36zJ kvVa6TUZonuKZD53VhFjILNalqx29Ub8Xch87gqSWS1LlqjXPNOQ6k15nLKe l2RWy+rKev0zDalkPndlyayW1aX0xj3PZT7LIpJZLatz601k3Zv4mGW9aMms ltWZ9AYFznb6LQ+b4zh0WbfKdG6V6fxqU/0aU8Ma04W1NnVRqOf3kGW9VMms lvVG680KnO30Sx/82RWm2lWmiuyPdoxyjvvCb15/3YHxioMTFYcmKY4EKo5O URwPUp4IVp7kSwEVpDg5RXFisuJooKJiovOVDSlX1psur5OJ/eZJZrWsN0ud 4In6FAtdf7T88OLkquWmFf0dtw53Lh/lvHuM8/7xQOOjU5QngpQpX/tVhimr IlTVUaqaaFVdjOp8nLohXt2QgC9JxanqY1XnY1R10aqzUarqCGVVuLIyVHE6 WHFqiuLYROdrG1LKF+W+zH+yrN8umdWyXme9uZmGndr+K85XlB/4Lmnmlw4r +zttGua0fZTznnFgkismgzc+E6Y6GwGwrY9RX4xT5/TVX01SXzNRN1Kom2nU rQz6TiZ9N5u+hyqLvptJ38mgb6dTt9Kom6nU9RTqikl9MVl9IRExXFUfpzoX raqNUK4b7bp6mEt90cdN1TteyS9B1m+RzGpZr5Xe6EzDTlI+71uQVPaZw5Jv HTcMcdoywnnHaMU+5JYDlccRlsNVtVHq+jj1pQTqWjJ1M4W6k0rdT6ebMunh H79XNMhYPNhYPMRYMtRYNtzIjvRnR/mjy9LhxpJhuIYai4cai4YYm/KY+7n0 3Rz6djZ9K5O6kU5dR98nVT21v/5GvKo+UlkdorjxY8or/IXI+i2SWS3r1aqT PfHQPwcZ5h/CP0SGeVk/J0TmbSOdd49VHJioODJFeTJUVRWpOoescgJ13UTd Sacbs+g9oR6IxqVDjewwIzscLi1FGkuxxlKqtZRpLdO0lhmodHA5HRe6hcVV pgFuj/IvG2ksHmEsGm5sLmaeTGVaCpiSIYa7GdRVE+I/hCG14coLJR83nZXt 9BssmdWyXrI6R6Yh6lxFuamn7/SeDkv7Oq0bDJ5511jFwYnKY5OVZ0JUtRGq hhj11UTqVgp1PwOwDEwe7s/FeAKNS7RQmMkIucBhxORZOstsnWUuKhfLPBd8 RWeZg2+c1U6xY/1RIVyP/Od7D6cyjXn0nSwameorJvWFeNX5KOXpKc7XN8jN xDdeMqtlvVB1msCZCJF5ceiHZZ87LPrGcc0gp03DIc3YP0FZMUV5OlRVG6m+ GKO+kUDdNVG7gjyKB4FJ5qIRlgWHPF0HhYA8E2N2jD9AGDF5vovlOxfLQleo RbjgOr5xQXuFPn++zjJPAPUoY/FwY9NU5l4efSubvpZGXU5SX4hVnY9Q3t6U cut0+av+tcl6DpJZLev5qjM9keqOlC8K/bDkM4cFvR1XDnDaONT5p1GKveMV hycrT4WoaiIRD9XXE6l7JnpPkEfZYCMX4Wkp0ECCgazyNB7IljkuvEOehxm7 wIWdEAA0Xuxq+d7VstQN6geh4EN8+xJJkQ8Xk3LhMn24NG8EastsLaJ9yUhj c6mmcSpzJ4++mUldS1FfjlddiFJeLP24uUYOPTqPZFbL+o3qTLaZ47jB/+09 +i8+2V9o1w523jYCZjO4ScrjwarqCHU9TjPupNC7gzxKCZnzNZapOMpgcXwx 20UwyYJDXkxg68YGdgMUL3ezrHCzrHSHWiUpuAXfJa3luJaRcmUnBSBQg9Oe B6kIO86/bIz/3gTPplLN/ULmTg59M426lqS+HKu6Mf0TmdKdTzKrZf0idbJM I2Z8/7iPNPN6Of7Qz6mkty7qM7/vBrkeD1JVhavPR6svJ1C3U+imDKZE9MxT ccJcJtjmOZjMBMtLBIeM0Lrc3bLCnSvw5Qr8LGvcLWs9LOtwrW9T6Ma17pZ1 uNCVNbhW88UGdQNcLwU7bVnkAqnIAh2X7s2ODygZ7f+I1TQVMffz6NuZ1A2T +mq86uaMTx7JlO6kklkt6+nqTEN0yDZHj+uf/w+Heb0dVwxw+nGY884xikOT lMuHu2b00V+Ko24m041p9L5QT3aYv6VQYynCZGZxyDwT2+Z52DNDfIGxjJkM xhihdQ1PYza0u2Wjh+VHT6hNnpbN7dUmoX70gE9GtYEvNqQ7QHslNtU/uAqR iAvgeiHkJ6WI0tOA0vcQpTOo65jSt2bIXrqTS2a1LDt1pmcCgvOYP9BZHzvM 7eW4YqDTxmHQCjw4UXkyWFUXqb4SRxX0NzxMZ0qHGLkoL+gAlmIywzCGC3hm ROYFOM1Ygsm8AocVqz3AJ6/HaN2IgbzZk5umR2XZ5gX1k5dlO65y4Yq00L3b PKG2elq28MWGd7dsQt+TmGo3yyohA1nmyptqROnxmNLYS9/LpW9lgJe+Fqe6 Pu2TxiqZ0p1fMqtldaZMA6ls4gfIOX/Xx3HlQKcfhzvvGANwPhGkqolQX46j 7iRDH3DUJ++BbRY9MyHzfFfwzGKasRwbZuKWN3jwJhmhdasA5HIvNqqHZYc3 1E5cu9rUbly7yCd4WXZggGOGs5E9gNhbsLXegEG9TmD1ShtKl43z35/k1cxq GouYu9hL30xWX49TbTR9RXZtktUVJLO6q6mTBc5IMwI/mNbTceE3TisHOW8a rtg5VslNAueM4HwpjrqN4Xww3NNcoGFH+FvJPI+Q2Y33zMuxZyZkFtwyYJmY 5HJvkclsdA8bDqPaY1c+bW7BtRt/LcG16Ks34QCEgNqW0lyGd9l4/31JXg8x pZGXvpNB5ffTX45S3pDnpbueZFZ3enWy/7P1R8uXRXw4/UuA8yoE5xGKneOU hwJVp0LVtVHqy/HUHTxBtz/cs7VAYy4G58yODQAyi2nGUlsybyCGGbtlWyyL TGZjemAm+0DtFWqfbbW9BRcb+45lL2b1LsFX/4RBvdmDd9R2lF7iwmV6l47z fzRLiyhdNMIIK8fTqduJEEq/6l+/rFcmmdWdT53JNtcdKV8Q/GHePxwAzt/y cN6F4DxZdSpMXRdNXUmg7qbQe4M9EZxbCjQtxdpWVmee6cKl+nCZvjyZl+EO 4OpnIDP4ZCuQ2Zh3rNTdL9QBSe1rc8sB/tPYuHfgCjCcxCAY1Nu9+Nxjky2l l7tCG/F7F3ZSwP5U75Ix/s1lmqZCpjGbupuqvhmnelK381X/r5D1iiWz+k1X J8s0ao+UJ/3t7dx/OEzr6fjdN04rB1rhfDpMfS6GuppI30tl9oZ4HojwbC3U Iji3lOlaZ7iY58CEBpfjy+X6SjqAQpohJbOYLUuwbGOD9xHq+loOSooTigBZ etdBH1Js/DtwRST2Pm8e1DuF3IOnNImmhR7iMvSwfUZ+8X7LfN3jmdrmEk1T Pt2YSd0zqR/+lPqq/4fIel0ks/qNU2caokOqOVIe/5e3sj9xKOvpuKCP0/KB zhuHK3aMVXKB4JwRnK8l0ffTmX2hngcjvcxTta0lutZputaZLq1zXFoXuFoW g21mg7pDoIHIvBHbZpIzd0TmfVI/DOwFPu/3sQL5kKQO40tC40O+bYtNeMf6 CaREUO8RKP2TbTS9lrfT7OQANjDgQLr3kznaR6zm4VTmQQ59P426m6h6sFXe EE+WjWRWv/7qZP9rzh4uj/7TWxkfvV3yOcw5LxvgtGGYonyM8mCg6mQojjWQ c07Dy0+ivMzFWnOZzjxdZ57lYp7riuDcutjN/AOe0FiLJ5lJoAEdQG8rnHcJ cN4riS8O2DrkAzimOCgAGdURP2sdlnD7iKTg03zZxHfgOictCaj3Cem0XTS9 3p0r8uUKfS0rXLlcn7KJAVYjXUA3ZlH3U9Q3YpS35G1LZbUnmdWvmzpZpoFU fbg8/L/fSvnw7amfOszp5bi0v9O6oc4/jVHsn6Q6HqKuiaIuJ9B3Upm9oZ78 kDNMOLtYZruY57maF7qalwCczSvw6r+NnlyZnptmsAk0RM+MajeBsy9PZk5i jzF+Iabg8PUKP6ijkqoQEC3eKyk26V1Lha/1E6TumrBaSmmIpnlKs2Hd8eA0 3z20GulpmofFzIM8ujGDup+krg9VXJIPQ5TVsWRWv3J1skyDqGziB4l/fTvv Hw4zvnJc0s9p7RDnraMUeycojwbBxhoX46hbJnpPiCcX6QVrAwmcyYTzIjdY ErjM3bzSw7zGw7wB4Q76gDCNvKODNGMPvjwgkBmwjL1xBb48hPl8CNtmBORj uI4LhW4R3DJ8/jGbYpPf5T/hkK21PizBNXHU+228NBvRnc+lSdxBjPSkgJYF useztM1lmoeFTFMO/SBNfStO2VD08Z0z8lZ4sn5GMqtfvjrlr7p4/Aexf347 62OHaV86LvrWadVg580jFbvHK49MVlWGqRtiqBtJdFM6UzbECFtqlLYDZ8sq D+KcCZyJbWaj37F65r0Ck1GRZIMkGEcEMosO+Ygft8gfFc9nxOQTeqiT+FJE tN29cMWPNb0LoK6QALwCf2jHapHSQi4N62K2WeMO3kgvdy1DRjrD+8k83aMZ EHc059MPM6kHyeqGMMUD+SwtWc8smdUvQZ0s0yAqHPdB5P99K/0j3BP8xmnF QOeNIxQ7xim5yTDqfC6aupZIN6YxpYONlgKtpUQHmx3NlsB5eRs4b8eZxi5v mJSzdgAlaQa6st+X53OFYJLBHov49WMT3+XtMWLvKUmhD48JgQa596RQp/TA ZxHgorsWgxEE6oo2lMaJB8xdi3GHOOCB+4Zcvi8Y6e9cnszRPp6meVTENOfS D9OpO/Gqx7UyomX9YmVnZ7/qh9DZ1PkCZ6K8MX8L/eNbaR85lH7hOK+30w8D nNcPU/w0Rrk/UHU8VF0TDbHz3VSmZJDRnK81k2RjJl4euFAC53X2zhliDdwE hE7fAducmYTD5MPDEszaOmR7Pp8xQJ3Gn3NcQO5x4d7TfLEp71oBflQSjEhB zdtvCag5/Dj3CnGHaKQlY3hlkwNal7i0zte1zNQ+KdU8LqAfZVEPTerWc/KM tKxfIGKhX/Wj6FTqrG9Jskf/LeSPb6X//e2izx1n93L6vp/T2qGKraOVeyeq KkLUVVHUhQT6VgqzJwRP0xVpzXyygdduL2kTa4hDdLt8oHDIzH3nj8pKZnEG 45CEz8d59wuMPcUjGjp9R4W70O2VBkuVAS5FRB+T3HsG31VpYFPeswL8mCT9 OCEBtcjnCiulYTCPxB27vaV9QyulV7uxQd0OZvu0fufSMlv7hNU8nso8yqEf ZVCNiaqmrSkP5bMOZf2cSOtK5vNzVGf9ZVYdKg/741uT/8wM/ZPPqL/6TPq7 b9Anfmxfl10TlIeDVKcjqfPx9PUU5kGmpmyoP/QEEZynu/DJxmI3yw/ulpVt 4LwTw1nMnPdByMwmvMu3/8ScWegDChkywSxm7BlriAGIFu0xuqsaI1ryCTb3 VvEAh4jjhGCYTwjkPymYc3JXha/1kVQIU3nYSEMwvtd+uoOflF4Dm1SXBQa0 LnJpnatrma59UqJpmco8yaGLB+in9tNvSftK3gRP1lNEYNJZkfKS1Ylf6Sq5 8q9/7z3gj94RH2pYHDuTpSizBrgmfKVP7qWvjaWumOh7mZqSIUaAc5kEzovc LEvx2u01eOG2HZzFVuBens/cogBuSQAfLBDTy5tYPyufSYJRZUNgGMY4Ibnr LEa0aKFF9pJ7q/l7IeI4qefN80lJ+mEXXx+1Jh78VB6x02R5i92kNNkTj+xc ugpWshzM9GldoDPP0ZpnaMtGGlsK6EeZVGOSqiFMcTb/I3m6Q1ZbiTDprFR5 meqUQ3REp7ntPf/dO/6vMLBR/LnjnN5OS/s7rxsKsfO+Sapjoeqz0VROf2P+ QGPxECMX42UDZ4id3SF2Xk121RAyZzs4kw4g5jMyzwBA6P21GcOwS5irBAJj RAOfT0rM81kjlBTR9vfCd4CI45SeTzbE9OMM/p5t42ucePBZylHJpAfpG+4V 4o6fJH3DtYBoLt8XjtNa5MKleXMmr9ZpmpYi5nEu3Yz7hpVTnGUjLUsqKZNl Pv9GddbAmShsTP/oP72V+ve3Cz91mPm146K+TqsHO28Zpdg9QXUkWF0ZSdUn 0DdSmaYcTdlwfy7O28Y5i3Beh9dut4WzOKdxULhyGHtUAlsxZJamxITPImYF RHPLAlDxuQe6scYIdZZ4bAPvh0Wqk3urDWzqe/AjpO5azK7P6Nuk03AJj81m 0sPWSJPtO7Z7CYi27rAES8IRpRe6mOfqWmZA3PG4gGnOoppS1NeilSezP3rV /6tlvRaSmj0Zzr9RnfsXGDq6f9gf30r829s5/7AO1P1IBuqmqE6Gq+ti6Ssm 5l6mZl+EFxfrxSV4s2MChIENCZx/xBtrbG8PzpxkyZ4dn08beDfLI1pv0wEk mJUgGsIKMdxAd9VKES1Jns8aBXobgc9nJO5aBLhI9RN6a+vwpBCkSMc8xJFp MZHeI0H0ZuvGHWxwN67Alw0MMC+G0Y4nM7WPyzSPpjIPc+imdOpekvrc1I9f 9f9wWa9esnl+LurEgTNR8Oj+U/7rrdi/vJ3+kQOZ2ZAmG0dD1NXR1IVE+mYa Igzeb78MT9PNdWUndLMObKzDGx9teSqcSUPwsB9/HQ9pWGFbJRmWOyE0B0UI C06Yn8cQfXWtUDUiwCXWWriLTcNfckpinqW2XJgPsQ6NkKlpcZHLMT9p69Am 69jlLUzf8acf8icernYrm9ztYJZP6wKXJ7OFGek8uimTepCivpOgatqWKh9x 2GVlh5TOTZgXp86daVjwMYLjf/+vEf/3LdOHb+f902H6V7BUcPVg502jFLsm KA8FqU9HUOfi6Ksm5n6WpmSoP16K4mKZjffbX+zGBnbjBzb4nqBkWsMOznZz GiKfTe/auFkSI0tjijYQ5lZ041Z24wlcJ1Qt9thVBhvzLHwhm/4e3Hja1jzX GO17i2I6fRo/sFPC7dIxabIKhmQdUkT/BEYaloQjUG/w4BPpPFjGAtN3c3RP pmkfF2seFTDN2XRjOnU3WX0rXtUQrry5MaVhtbx9RxdSWxrLfP4V6gq/tNwx fwv+w1vxf3078xNYjTIfbx+6Ybhi+zjl/smqY2HqszHUxST6djrTnCsxz5Jk gw3uDruGkp7gDsE5222mcUTo+h2XNAEr+CENCB/EXp7ogUU+20GY5MnIDxNu 19khWmCv7b3A52ohRRHNszS4ls5+4LwFjP1pyXTHUbtVh7aIJnH0TrzBCD/X 4QFzHbCxEnoVCygbH9BK4ugymJF+mEc3ZtF3U6lbSXAQbX248sQkZzma7gpq d8agK6DmOarTZxpEq9nESf/5VtSf3k79u8PUz8hqFEg2to5W7p6kOhyqPh1N nUukr6Uy97M1pcOweZ4umGdJssGG9eCmG6AnaDdKR/gshfMJIWE+Zh2ig7yi 2jbEqLKNKersEW3l8zmhyL3ky6uNdl/FZuDPJ+SXtg6J5Raj71O8wQaLvqKb TTR9tM3C8CN+ko4hOeQFrwcnG/5vxCsoV7vDVv8/uFmWuLITA8rG+bfO1rUg I10Ceyvdx+cb3kihriaqL8aq6iOVlUEKlmVf9fNC1gtUu2DpCrR5XurEQ3RS neG2j/s//xr2328lf8AnG/ypVSMVOycoDwapj0dSZ+PpiynM7SxNc4GWHekP ycYswTwvlSxF2eLFzTRws43CHs7CZhoin4+2ux5Qzw85V2I/LImLeVsr5bOU wySvILef97eck1StQF1inoXb2Yz34fYqg31wLY2gJaMdYOkrbVuHbVeFV9gu ezyA+bxTEkdvJEMdAqK/h1PL2QkBZWP9W2bqHrHapmLNvXzmdjZ9I526lqze NMEt5xs98tI1IcozUxS1hR9fXpfSsMZ08/RzHpw+sjiZVMXi5KNLoI59n7x+ bi56aUic1H/Shz6BH/pkfaZZ3MdhSR+H779xWPqtww/fOixD1ReqclmyXd04 JY92P5M64rDM52dUpw+cReWM/lvQf0GykY2TjXl9nJYNwMnGWOW+yaqKMHVl LHU+mbmWqWnM05YO94cdkHBb0PIdPoBbnHYmS1F2enNzjdw8Iw9nccsjkc8n hOig0nZUQ+RzrcQhi0mFaJIRh8U6JyC6zu52/i4B6VZuc2t7cGu688682mjz WlAtCb1P8wYbHk9VWz7r+XzmmDTl4BENi9bnG/FQh7cwdycG0RJEL0a/QBd2 fEDZGP+SUf6PijVNBUxjNl040LB9svvNRPX1ONWlKNX5cOXZEOXpKYrjkxRH JjgfHOe8d7Tz8eyPzq0y1a401aw0nV1hql5hqlpuqlxuOrMseeN8oOuUvwNa EWBPLE0+uTR5UW8HxFiC2SXfINI6Qn3ruPRbx2V9HVf0c8zvqZ38d5/gj33D PvEt6aUL+sgXFfqwpJd201CnzcOctgxz2jbc6acRuIZDbcf1k1jDrLUNLh3P rzadX2VCj/NVP8FfO3UE4S5iCH+jukimQbSKTQz8j7ei//x2Ok42Zn3ttKSf 89ohONmYqDocoj4VRdUm0pfTmdu5muYiLTsqwApncR23OFBXLmx8FPuOZNcj P+t+Gm3XA0r7gJUwpAERhK1J5tee1GLSnve3QzT+fH9LPS7pXXWCebZFNx9x tJ36IBHHaYNFMhfdDp+PCw3E45J8RsJn2J6a7JK6G+83gl6ztuDfz3oR0e6W ZXj/qEWulvkuljk6ywwdO8q/bITxd7/73b4wj+ZMuimNajRRdxLV12LVl6JV 9RGq2jBlZbDyxGTlkYkKROl9Y533jHbeNcp5x0jn7SOcETwRWiP/6VvWR7dh sNO6QXytRzXYCd1S/LUW8RZVCKlPfCP+6Rv5qW+fP72LKupTP7GiP/XbMcp5 52jn3WMUc/u7xH3uF/eFXzyuBFQ9/RJxxQs3LhrocmSCYuFAl3j0mZ/7mb6E Sv7SL6knVOIXqHwTUH3uuzrxKxbrVT/rX6WeAuGug51frS71EnaG2z72//xr uJBsTPsSH/mKz+PeOV55cIrqeARVHU9fSGFuZGsaC7WlI/15OC+QbLJB1nGT gbpd3sLRVOIpJ+LJU372fK42tNMHrDaAH5b6ZKkTPi9wuN4KZIgs2rudR3Qb pPMRh2ie6yQRBz/aJ6bTRns+269zRHwWloQL+/zjU2iFjax34dO7tnnhoTuC aA9ANHrTsdQNLDT6Tc51sczUWabh4KhIw0V5skONZUOMpYMMxQMMU/sb8vsa rsaqL0Sp68JV1SHKM8HKk1OUxycrj05SHpmkODRBgaiIwB7zGaIrIBpRFxX6 MFqoqM/8ZvbVbR/p/BOC+Ujn8lGKHaMVO0cr0F1z+rnsGq3YNUaxW6i9YxX7 xikOjFccnKDgJigPoZqoPDwR/SxlxSTl0UDlsUD46aemKE8HKVcMd0392i+9 lz6tlz71a/2qEa5nQ5XoQVYFKyuDIJxBzv/UZMXJQKgTk5yPT3Q+NM55TdJX Z5cnv+qn/6vRUyAs8/np6jqZBlE2Tjbi/vJ25scOxV84zu3t9EN/5w3DFNvH KPcF4mQjhjqfTF/NYO7lax+X6GApyhwBzrDJhod1k41tkGzw0xr7eecMex8d se2jVdjyucY2ZCY31hrZzPftc4y6Nnxu4Itb3wMV/6EdogmcbaEN37zWaDPX IY04xNEOHKq0w2fpntInBAvN8xlvfHoI//PJAvY9PsJcNEb0Rk/cK/QAC/0D TocWulrmwQJMdrS/hdVaSrWwn0mhxpKnMWczjzOYB6n03WQqr68h51tD9jf6 zD76jD769N48D1O+1vf/67uJX/ohhB6coDyAajzU/vFKxFhE2j24EHUJgeFD dPs4RcznfrFf+O0dhz4Naj/+EvTlHKExkB8DORAKmDwZmHxiivJUkOpMiApx GD0A9EjWjXY7F6E6H6E+H6muj1RvHOOW3Uef1Ud/MUp1IVLVEAHO/3y48nyY 8lyYsi5UWRuirAlR1AQrqqYoDo9zblhtutmVIuunE1jm81PU1X45yDxP+P1b kf8XThXM/xQOrlrU12nNYDi4avcE1eFg9alIqjaBvpTK3MrRNE3F5nmWi/1S QTJQJyYbEjgjWHGL8d5H0l2PxP1CxZE5MWSuFnp2hM/2fhjHHRIsS4vNet/+ RqmLtvPb6JvXCeYZAbzOX8Jn6WiH8Wl8PiXh81HhDcKRdvnsg4Nob/gtQRDt yVvoZe5CxOHKjgsACz1dBxtol2jhGJp8jTmHeZzJPEij75jo64nU1XjqUhx1 IUZ9PlpdF6muDVevHumGEH0ySIXgSUB6JBCgiujKYVwTYovsRXVwonLBIJf4 nn7oCicUD2T4Dqqjk6GOoULvnqaoTqAKUqEfcSoYsFwdpkJWGb1GrB/jVo+B TKohCuz9xWj15Rg1svrX49TI8+f31W+b4HYjDj68Hqu6FqO6GqO6Eq26HKW6 FKW8GKm8GKG8EKE8GwR7RtWt7Px2+mcJ09UQ9IzqUoGzqNH//q8hf3wr4a9v Z33iUNoT2oLLBzpvGq7YOU55AA88V8VS9cn0NWSe87SPkHkeLTHPP9jMbEiS DXEdCu+Wue8DuKUBvNs8LuS3J9sbaa4RKF0LPtkeufUCaS+0U/DJ4odtKd3Q hs9kwKPOn+dznW0ELS5sactnEc6nJJ3No0J6Y8fnvRI+8ymHl42FhojDjUv3 4VJ9YA+TmS7Qey3FfC7QmHM1j7KYxnTmTgp9E/2PSKKvJBBEU/VRakTINaPc qkLVp0MAnieDgaLHg4CrCLAVk1VHAlWHUU2CyyNCJXypXzzEFV2pmMzX0Sk8 itHXnsCFvtUpXOg7IyafCVVXhalrwtUZvRGZDeej1PWSAjJHqy/FqC/Hqq/G UdfjqZvx1K0E6k4idS+J2hnoXtjfcN9E3Uum7iZBnH47UX0rQX0rHupmnAoq VnU9Wlkfpjg2wfnSWtOt5z2j8proWYLTLkihn1WXCpxFxY/+IvA/34rGA8+F nznOxG3BdUMV5WOU3CTVsRD1mSjBPGdrHojJ87wOdqjbQZINX/4wFOnRJ8fx /hV203R2fLZrBQKfjTbIFcFrz+cAUmz2+5aLAeKHuNrYbAHRfHhSJwx11Eks NOGzYJ5t+WyQ8Jm0EfEtx/Q43PDjww30qiQe0SXyeQf2z+gXhV7LIIX2hFxo pTu8zC1xg9XxkEK7wtsT4LMORxza1jxNc7amMYO5m8bcSmVuIBedRCMXfTmO +nGc+4ax7shFnw1XV4cDPyvD1Aikp0LUiK4nggGzx23r+2GuyV/ryXXgMHwa +mQo9FWoTuNC36QyFL4b+p7VYfD9ayPUGX0Iman6aL4aoqkL0dTFGOpSDHU5 luLJnEDdSqTuJAGN75voByl0UyrdnE6XDDLuDfZAV5rT6Idp1MNU6mEK1YTK pEb1IFn9IAnqTrzqQrjidKBzVe5H9yo724L3Z2GvzGc7dbXAmUgceCb7ILFf OqZ9pp3ysW/4P/1ivvBDf7l1UdTFBPoaHnhuzNc+LsbmGRk80TyvajOzQRYJ kmRDevTJCWHhSaVkVw3rlhoCn88brTkz5jO3oQeqdhCNONxe8YgmdcG2bBHN 81k6LA189rdGHFVGYVEh4bPRymcCZzs+S8ONw7Z83i2Y559wvoH8849ewOe1 nvA7XO4O6+IXucGJM4TP011gYWaxDvG5JV/TnKN5kKW5jxF9O4W5lUzfSKRz +xo2jXdHLvp8NHUuiqqLpGoiqLOY0iKoT4Ov5sGLyvS1ftlwt5OI3pIS7z2N P/+MiGXM/LMR8G3XjHbPEMjcQLAcg7EcC1i+Egepy/UE6mYidQvZ42T6nom+ n0I/SKWb0oDMjzKYJ5lMazZzMMyjbIjRnMOYs9GHdGsW3ZIJ9SSDepJOPUaV Rj1KpZpT1HcTVJciFJWTnQ+Nceo0lH4W8HZNo9iRumamQZQz+m+T/+utmL+8 PeUvmhF/9hn/gW/eV7qNwxS7xirRG970PnpEgIIBxqmDjE15msfF2rJROHme KzlVcI3NwDO/w8ZByd50h4QDWIXd5/i12+KohpTP5yWNv/MCsRv8MXL9cYkc xtcvtVM2fLZDdAMpHtF8uG2dlJZYaMLnap7P3KruqKx8Pikxz6hOGnC40ZbP fnh4A/PZap69wTxvIvkG8c8e7JTu0GZFL3nfucF7k9mucEAYRNA6y1RtS4H2 UZ72YY6mKVPTmM7cT2XumJj8/obrifRV9NYmjr4YSzVgSqPX01pC6QiqKpwC RIuUDlWbeul5FIdCSeEskvkMBntVOIEzReCc3sewdoz7OQLnGOpCLGD5UhwY +CvxiMz09QT6ZiJ9K4nmyZxKP0hDZGaa0xlE5seZTEsWwBlh2ZLHWPI17DCj pUBjKUDXGTOqPMacy7Tm0q05dEs21JMs6jHeNup2PKK0smqyc03+G7/U/Rk5 02Vx1FZd+aXqOzZn/O/fGvlfzIA/+kT/XTPra8clfZ3WDXHePlrBTYKwEf0l XkN/celMY66mZIR/6Sh/dmwAHniWJM/rPGzM834fyQGv1mYZv3sz5jO3qhu3 urvNqAaedub5bNcNxHzmNvZA1RGQf4bP7SD6Z/nsz0fQUvNM7LTIZxHO5MPj bcKNQ36WgwKf9yDz7AO/IimfN2A+Q/7sAeb5e3fwzwskfJ7mgiMOXSuy0Hna xzmaR1mahxmaxjSmcIDxdjJzA/P5cjziM90QQ1v5HElVC3wmiEbsTemlPy2A 2gbOwo2EzJXIfodT1UKl9TYgOKNvi+CMvn99DLbNsfTlOPpKPH0tgUavESKZ 75roeylMYyrzII1pSufh/ESEcy7isMaMsDxVYynSsCOMlmINVBEudONUxlLI mFEVIGjTrfl0Sx79MJO6a4IVOhfClVVTnJuq31Qj/eyokflM1DUzDVH9/jf9 9e+9A//M5H7iMK2n48JvYCn31pGKfROUJ4JVtZHqCwmwz8adbE1TofZxma5s dACX6sNO6MZl+QKcV7RnnqUbh1ZIBupsp50Rn2HtXo1kh7qzpBtotDbyxCAC RxlAXSmHLwvVLp8vtck92rPQ1uEQO0TX4noanw02fG43fCZ8hnDDF5tnH4Az hBveduEGmGfIn93hXcl8N5xvuEK+wbog/2yeqmst0D5BfM7WNGdqmtI1O4M8 yyd73ExmriXSV7B/vhBL14t8jgI+I8YCnwHR1JkwKqWX4Qy+QljNwzlUgHMY gTP/VaRWjXJHcEbfCn3DOgJnbJ4RnC9hOKOXBsRn9BpxKxnBmblrYu4LcH6I 4JwhgXMOtDjN+RpzocY8VWMu1nKxXqM+fZ8d6W+tEUZ2pFAjrFU2zLAnzP1e GnUjSXUpRnkuTHGh+I3cK/vZqSvz2dLlfwlBo/ohOMf++e3MjxxKPnec1xuW cv8oJBuVsP0+dRHPbNzJ1zSVaJ/McIHRL3weN5frxwZ1BzivlyTPewTzLDpn 8fCRY5LdNoRuIKzdq5MM1Il8FsksjZpF6l7uuJ4R0Q1WREPnsV0+ixa6pgM+ 25hnzOe24Qbhs9U8+wjm2RuHG1443PC0mufF7jjccIPZmJmuvHku1pkLdS35 2ie5PJ93B3vunOJx28RcT2KuJgInJXymz0WDfybmmdSKUe6pvQ2VmNWIz1I4 YzITaMO9Is/RJfqSVaPdAc6RAGf0bc8DnOEHoR+HHPtlzGcwz0n0bQmcmwQ4 P85knmQxLdkagHMeD+ey4f5lI/zLRvpz8V6WaTqY9J4BSyYt07VQ03CxqDRQ ZXxxsZ7Fgw330tVvLqJ/EW26OJq6cuBMxHHc5//bKwIPPBfgs6tIslEOyYby RIi6ElmmRPpiGnM9R3N3qvYhqysbG2A98nWlu2WtBxvanWMN/MFVu7z5MwQ5 vHTObns6fqN7IYKu4tMMNvM9vg9IBupq+bTZCueLQmEysznvP43PElBbzfbT LHQAv57laXz2t2kOdsRnSfgMk96LA6zhMzLPuyXmmfAZmecNXvbmmYQbxDzP 4M0zDjd0LXnaJznaR1maPSGeu4I876YwyDxjPjMQbsTRDQKfEUvPRgCfAdER 1MpR7qiqBDifksIZsVogc6XEaaNLBOdqnGAT8ywkGwBnVOjHEURfJeY5CcLw exI448BZ8yRLA3DO1bTmacqGGgmZzSVac5nWzOrM03Uw5j1Lx471t8yGK1Az SWn5miHUdI2lVLM/0qM8yO16kupijLIuTNFQ/PGbcnTjL6VNV6ZTF880iEJG 9w/+Aww853ziwPaEpdx8sjFeeThIdTJCXR1HnTfRVzKZW/maB8XafQneXIqP 7cwGxM7cNANsbswnGz72u+6LJ0Odkux1f1ovphncuu6o+PUmtUYrn6VwlgQa z8rny7ZhyFMs9NMjaEB0B3w+bbAGHScMONzQW8ONw5JwYw8ON8ptw42NONzg zTPpDGLzPN/ePFtwuNEC5lm7N9QTmed7qcwtbJ6vJTFXEphLmM/EP9dF88kz qVUEzhESOOM6FUpJ4SzkHlArRoLZrsJfflZqnmPg+zfE8ogm+ca1RPpGEn0r GfiMzPMDHs4aBOeWLM2BMM+yIcayof5lw/xbp2pbi7XmUgRnnXkawNmMODzb xTLHhUv1RgULJ+eS0tnXHFyzwFSbi5iiwYZriaoL0craMBjAe/0R/Ss6XF2W z132Hy7Vd2zOxP+Agef0vzsUfeY4pxcs5SbJxsFAOJWbDDxfTGWuZ2vuFWqb y3RlY3BbcKErP7OxGm81T0593eHNxrwDu7QdlGy8Lx7nyh/tp7ceii0e8Ipp LEmArdMa9nAm1L0CBYi+EmBT7fI5xzas7thC/zI+Vxr5TTlswg0Jn20mN3C4 wZtnH6t53mRnnj1wZ9AddwbdhMkN3jybC3WtfLihLR5kbEzT3ElhbmDzfC3R ymdEznPRNILzWaFWjXZHJYEzRchshTOJOySF4LxilDsEHRLzjJiPww3gM0E0 NAet4QZz28TcFcxzc4ZmX4hn6WBj6RDjgQgv9MhbC7WtRQDn1lIdD+cZCM4u 5tku5jkugOUFsL0q5GZQLh2UzrIAURob6RKGi/LYPMENIbom9A1A9K9gThfE lJxpiBrw77R0h+fFfZ3WD3XeMVpxYKKyIlh1KlJdE0c1mGCrjdt5mqYi7f4E L87kLYQbbpK2oKfYFuQWGGEvILIv0BFf3jzzmycLZ7NWCke1npHs4VwvWR5I pjXqO4Rz+3zuANT2/cRfzeez7fH5jDBWh+B83IDDDcJnPew00o559uHNMwk3 7MwzdAbdcWfQTTDPLsQ8mwv4cKNksP+DdM3dVEg2bojhBuZzQxyN/C1iqQjn tD6GNnCGy1O2QD6N7wJih0IDUYQzMc9iZ1BE9HnCZzHcSGKIeUaWvhHMswa9 guwL9RRiDS1y/sg5m4u05hKdGfEZxxrmGXjD8NnYLc8HLLMTA2B7qCVtCt24 2MVaC3WWeTj9KINJjx1B7uvHuCBEn3qNES3D+VnUlYfo7JQw+ospeB+krI9h h+eF3zqtHez80yiY2TiMT+Wuhh2e6SvpzK1cTeNU7b44Ly7ZG70PFcINNwif yUzdFnxQtZg8H/JlE9+x7n0kGXjmTyeplgzUVVkH6iAEFpefEEoDnP3bwhkV t6kHqg4RfaVjC32p/YjDyudzbfPnjvksNc98+Ky3hhtW8+zLdwZ/8gHzjPi8 yVswz57sZME8i51BMM+uljJknl2QebaAeda15Gr3hXntDvG8n6ZBZvWmCfgM 4Qbm8wUM5zpsnqGi6PQ+hrORNIHz6fbgfIpUKH/XshHuCM6nw8FRS/ncBtF0 vdAfvJJAI/cumuf7qcyuIM+igUbknx9naVpgWkNrzteaC7VmxOdiHeIzrLWZ ho/amelCkg0CZwRhdlI3eN3/wa5c7Wupi2UR+iqdZbbWMk1jKQYjvWm869nX FdG/jrRdjc9y4CzqDLd94u/5s6tKPscDdQOdt4yAfcy4ycrjYarKaHVdInUp jb6Rw9wr1Dwq1ZaN8ef/lBaJ4Ya7NNyAzefFsY0jvmzSu9aDrU/48f5ZHM8Q B+qqbAY2+BXcxDYTULcH55+30MInoBo15H/Blew2lQUFrwjPzudqKZ9xSc2z NdyQmmc/yVgd5rPVPHtZVnty+Xou18+y1IM3zwvcLHOk5tkFzDPmMzLPxYP8 G9M1d1I0tzCfr2M+IzhfjKfrYzGco/hK6xjOIpZPSgrBeflId2viYYtoDHxA dG0U5Cf1VvMMBh45ecTn8skeUwcYdwZ5InvfnKl5nI34rDXnac0FsDIdXmVK 8EJ1Fh8iTMyzBM7wpFrmxk7uBk+tFW5PLUxpEdHQNGQshXT5ZLeVw11OTnq9 EP2rPWHX4bOcadhpwL/ToX+EmY2Szx3m93ZcPsBp0zDnXWMVBycpj4aoTkep a+OpCyn0tSzmboHmYYm2dDSBswskz3C2IDbPEG54SMMNSWcQkg02+V3YB+lo m4ENcYPls4KdrhV2orsgXSFoHdhoB79XA9jc99GltWyxzNNbbCZ24J8Rnwmo Rw36X+3w2TbcAD6nSvhsY55xuAF81vN8Fs3znmc3z+68eZ4ummcXMdwoGezf lKG5h8xziuamSXPDpLmOzfPFeAZiZ0g2cEXT6d/Yw1m0zehSZPIJVCFQpl6G ZSPdyV2nBEQTPtu4aPDPknAjgb6ayPO5oL8R8RksdJrmQYbmYZbmUbbmSa62 NV9rKcCbOxVjPovm2QbObgTOlhXubFA32MdvdXu1hpQb1EqM6MUufBw9Q2Mp YyxFNBfpnvON34lJTq8Jon/LG/Yugiw507DTajYx+A9vpf397eLPHOb2cvyh v9PGoc47Ryv2T1QewbHz2TiqHsfOd/I0TcU4dk7GjXU888wnG2uEzuBWT9jK eDcON2z5jLDMLQvgfgjA8xvYQldiC11j4DuAIqVrrHzmVwheksTObcgslh2i rVi2DTrsEd1uvoEonfk+v5Fdu+Gz1DxXtjXPYvisxxvWSczzbt9nMs+LcPJs Z56FcKN0iP/DTO19Yp4Jn5Mheb4kJBsIy6TWjHVfNca9KoK2cc6CbT4hwfJx fJncy8CzWvKZdogGSkcK5jmGRj/xUjwfbmyb5JHf33gLW+i7qQx6hDyfc2Ap TWtb80ySjTl4Z63vcC/je/ykWgHnyMCB72vwFuJr8ckypNbZ1np06WZZhZCO npC4aThXa5nJI9qcT+2Y7LZ0kO7+a4Do38LYrsBnOdOwUyW3Pei/AM5FnznM +dpxaT+nDUPg7AwhdlZVx6jrk6irafTtHKapULM/zotL8oKccJ4LP7aBfM4q d2EfUcE8k3CD8Nm2M8gtD0CUBj6fxBGHJHDmB+qsZ04ZSbiBO3rtJRtX7Uvk M7e5h5XVP8vnS+3zWTx7BY5TeTqfAc7Gdswz4XOH5tmnA/PsYTXPs9oxzwci vPaGeiHu3U0F84z4jMwzSTYuxDMk2SBlD+cwK3IJhI+HWGvpcHcEZ+mNIqL5 5Sok6MB8RoZcDDcInzdP9MjtZ9wy0QNZaPRicTuFuZumAT5nah5max7l8nw2 T9VZzXNbOJNX/OXu5EWfDekOTQ2x1ktqA66NuDagZ2B7iGYZSzHdmkPdSVal fe3Lcdwr/Fv7jYDt9Hzu9P/AX6HA/3wr7UMezj9gOG8f5bxvvOJIoPJUiOps lLo+nrqaQt/OZJrymf0xnlyCF6zqEsMNSJ7d4M0m3xn05DuDeyX+GfG5QuSz n+W0nluBEc13CbGFrjXwO9TVSyhN1gxeFBD9c3AmWBbqHcvVbu3GHTbz0j/D 5wAx3+Ap3ZbPlbZ8lppnEm4gPse/26F53txx8iyaZ1Y0zy5gnvN0kGxkau+l ae4gPqeCeb6WzCcb9TjZqMMlwhlB9XQ4ZrLENiP8HiMVDJX0tWHpCHfrLYKd Pmnrokm70MrnGJ7P2X0NmyZ4XE5ALhoy8Bsm5lYKcydNcy9D05ilacrRNudq H+drWwq15iIx2SA9QVf+NLSFGM5L3eBUgpV4VnMt5rOIYimQf8S1ycOyGdcm AdErMaK/J0MdWsssQLR5Kv0kk7qZoFo7wuVVnWz429+2d2J8yYFzuyoa/0H6 h2+XfOYwr5fjsv4YziOd947j4VwToboYq76eTN1Np5tzmLJhRi7OC5bZztTB BNQCF+gMLhX4LA03dmH/TPh80KctnxGTuZXdkJHmu4RVQsRB+AyjGoKdbuBn Nrgfbccz2oMzqd/97nfcFgLnbraI7ma50s3aSfxFfBbMM5v+Pre6h+WsP9nC DsJnsTNoY54Nonm2HMJ8BvPsh8fqfK3meYtonr1szPMibJ7n2ppn0hnEyUZz lrYxXXMX8xmZ5+vJmis42WiIY+zhHEmfiaClcD4pgfPRYL4QnMUPK4QbjwkW +oTYN8TfwcrnaODz+nHuWd8aEKIvkpQjkUEvFsDnVM2ddM29TE1jNuZznvZx gbYF/ROKSbIh9ATnuuLY2Y2Pncn+Las8SGLGhnaH92WkfsSnnG/CA5xbcKHn 2zZccAA6RvQaAdFLrIg2l8GuSs1p6uuxytXDdS/fRctwforkwLldFY//W/ZH b5d97rCgt+OK/k4bhzgROB+epDwVrERwvoDgnETdT6X3hnqUDTXCTmKleDOE WTocPrtAk/0H3EBfI05ueFp2iHz25vnMYUQf9bXyGTMZdqtb0Y230GcFC10v IJpQWpypu+xvkyS3JfM1Pt+AWONaN77s+Cwgmh/Ga5fPF57GZ1SIz2za+2TP DSufxXBDap6PYDgnYDiL5nmnrXne2MY8L5aY5xmCecbhhrlAVzbU/1G29kEG mOe7uDN4w6S5moRj53jmvGCeETnT+hikcCZkRow9HkrZoRjBmVw/EsQXuV10 0WKdxGtYKsOhRVgTBflJ5jeGdePc67GLbkB8TmCuJGE+pzC30MtHhuZeFuKz tilX25wv4bO9eXYTzDM+0mslPjtmHczSs2HdO2TyT+jNGn6/hiwBurIVu+j1 7tZ2oRTRJUxLNvXApLoSrVw5VPeS/9Z+O107K5/lwLld7ZyXlPvJ29O/cFjU x3H1AKdNQ53KrbEGhnOM+noitWOye/Egw4EwD3MBA3wuw3yejfm80AVWCvyA 7QriM5nc2Ib9807cH9xL5uskLcJjuC0o8BmO4Yb8Vhi0s7PQ4tjzBcJnIZfo CM7XcPjMX/m39hAtOOp2I442LcKO+IzDDX/0yLmV3YHPZwQ+t9cZ5M3zfol5 3iExzz92YJ4XtGOezYW6g5Fe+8O8SFuQmGecbGguJ5LYmTkHfGY6gjNvmzGK oTCHE782ECYfRjVFjepIkLoCVbDVXZMAxIbPkbDzM6paIehGLw0N8fTFBOZy EnPVxFxHjy1dcycT8zkH+PwQ+edCbUsRnnlmXYTk2RUnz244ecaHxSwXzTMY Zja8B4xrbsMbIW734mmMagd+mqHahWungOgfBUSvEBD9HSDaPF3TWghb/d9L Ul2MUOSHDXhpf2vPBa2dj89yptGRFoZ8UPiPt+d85bCsr+PaQU6bhzrtGOm8 b5ziyETFySnKs6GqhkjV5nFuBf0Muya7P8ygH+UwLQWMuVjC5/mYz9+78pN1 ayV83o7/dkQ+H8D++ZCQQosWugp75hqM6Gpx7Nlgz+eLon8WFqFs7vF0OHfA 524SPndrJ+Joy+dMWz7X2k8+Iz6PGvA/BfMs8PmYJNw4pLdwfmzcuwBn3jz7 Ws3zJmye17Uxz/xMHTHPrsQ8m6eCeYZkI1vbiMxzuhbxWUw2EBXr45B5Rnxm 6jCcqyPpSoAzzdvmMKttrhBM8uJh7olfGTCWqUNT1ByuQwKiwUVL6qjIZ7zx Hf4REHGgAiMdQ5+PQ3xmLiYyl5OZqynMdfTwCJ+ztfeR4Sf+eaqupRgWDArh hqttuOHOJ88CnDnWwE03YCZ7Q9MZvS/bjd+a7cHPLmntwYhGjnoLQjSe6Fgt IHoxINo8W9taxrTk0Y9S1bfjledCnF9OyvG83rx3MpTJmUa7qqsoz/ro7Rk9 HZb3c1w3yGnLMEzmMc6HJiiOByqqgpXnwpVZffR53+p/muh2J5m6m0I1ZtBN OXRzPvOkSGMuw5uGif6Z8HmVG89n9O5yK37XWY4tjRhxkHyDn+LAiD7lhz2z HjxzrYFNf4+ffK4RuoQNkt02Lln5zHO1DZy5LT1QiXzmtrwDEbQNojvm8+UO RuzqA6ynXNmaZ35D0Uojm/IeHMvVtjMomGfuuwBufoBlrx/AeZfQGUTmeTM2 z+ttzfMSD7wgRTDP05B5Bj6bi8A8lw31f4yMKDLPGQjO2lupJNnQQOwcz5zH fEacTG8D5xNCpkESjMO4Fg1zR3VoCgVYnqw+iAtdOSQgWlpHRD6HUSm9Ybk3 mbWrhCk7ugb551jM5wTmYhJz2cRcRY8N8TlDcztDczdTcz9H+yBP21yA+Vyi M5e5WMONeTjcWOTGZfmygd3YKd3ZoO5sSHc2rDtyzqN6/39sVA+o6B5sTA82 9h02Dlc8fwV2d9nvDYUQvRsbAxHR6wREL4U14GZkoWdoWosh5WgyqW7EKC++ +J1InyOFOhOf5UyjrZBbYFl23F99Jn3oE/SRT8Q/faM+9Y35zDf+C7+knn4p X/ml9/LL6q3P/UZ/PV59I1F900TdTqXuZtD3sujGXBjeaC7SPC7TtEr98xLi n0n+7A5vLUULbRdxkHyD1DFfPuUQh58Jomvas9BC+CzymYxnSPlsC+du5LKN hbZD9HPjM4IzuuSWdbPvDIJ5xuGGmGzsFDqDYlvQap71NjN1onkuw8nGVBdI NsK9Hmbx5vk2gbOYbPBwZtK/kcKZJnAG2yzA+RBYZYDzwqFuIpYPBEKJiLYr xGfkn48Fw1y0CY9G87MchM9RdE0M5nM804CcfDJzOQX4jPzzzTTM5yzM53xt c6HuSZFgnmFBiiuX4sOOC2AndGMndeNyfS0rSOyMW4GbIdPgt0Ak7Yy9+PzK /T7Wpgbnwy2E3V0wrntwcw3gCsrxM3Czh2WjgOjlgGgzsdAseidIP85Q309U XYlU7Fic+0L/6J4jVDsNnzvNP+S5CDF5RmjPCR/4ZH2uWdbXcc0Axx8HO20b 7rRrlPOBsc4Ezqlf+aX18ls7yhU559xv9YV99TsD3e+nwNjG3Sz6fi7TWMA8 mKp5WKJpLtM+nq5tma0zz9cJ/tkV+Lwa/y0QC72ljYUGPvsAmSuEOmabciAm 1xlgW/5aSZfQ3j/7W9cDSheh2CQb3cT6OT53az+Cbstn6crBmvb5bDllRHzm lnbjww3BPFsO4nBjr5g843BjKzbPG7F5XiOY56WCeZ7vjmfq3HjzXILNs9gW xOb5DkJfComdNRcSbOEcxcP5ZBh9QpJpHAkGz4zdMrVwqPt3Q90OYCzvx7Vv ElweaK8In5cMcycDHtKhaOBzpMDnOPo8svFJmM8mnD+nQP58O1NzN1vbmAvm uWWqrrVYdzDOmx0VwI4JYMfCmTt8srFUiJ3XCge+b/WybPdGthlnGviI8722 cCaJGRR+dnF4J65YcNrcTL1lm4eAaPz+brmreQlY6NYZmpZi5kku9ShVfSdO uWGky4tLOZ4viDoB1uTAWdSl4+VHFien/VOzqLeDiOWfhjvtHuUMnvlzX9OX 4Jkrg5XVIcqaMGVdhPJ8lKohRnUpTn0tUb090L1ooKF0kKF4sOFRHtNcwDws 0jSXah5P0z6ZqW2Zo2slfF6C873l+E+AWOiN+O9iK26sQwrtBRZajDgqcL5x VJi1s005eETXCV3CBqNt/my10NJ1KNLYWcrnn0F0RxH0z/L5rMBnPLZhDTdO GhCf2aT3pObZcsCPjX2XDzeIebZrC0rNs9gWROZ5Op88m6Et6IKTDV0TNs8k 2bhu0lxJ0lzEA3UEzqvHeqwc414ZKcAZZxqibT6MyYzs8XdD3BYMcROxjGrv JP6KXe2fxPM54Sv94mFuR4QU+pgQdJyOQHymq6Ppmli6Lp4BPidCvnEpibki 9AeReX6QAyfY7o/yKsX78B+M98adQVfoDM7HYxvfCzMb4rE7W6AbyM0ycHOM VjjbmGdfns/kRR9dYkRbDsBbNmSkAewk6NjIr1sx/wAWunW2tqWMeVIIh8w2 JauuRykLXkyj8Pnmq50grZUzDSRuUTLC8ryvHBb34bG8EbnlYU6R/4QoIxG7 5ROBitNTIGquCVXWhSvPRarqo1UXMJmvJKivJalvmNS3wDxTTVl0Sy7NDjOy w40HYz1byzSt07TmmVrzHB1sRPMd3jSMWOgVbvBGElJonHKgvwtxkMPOQh/F 5pnUCYzoSgmizwknpxALfcEu4vAX+SymHC+Dz3W2fBbMM7e8Oyq7ziDep443 z9yCAG5eQPvmeR02zysF87zYA5INW/NsLiHJhvf+cK9mbJ6lycalRD52bgvn 45JMg7fNkwHOiMzzh7iJWN4zsZ3aKxTic9yX+vgv9SSUFpuGEEQj/xyO+RxF V8fQNXHYP8cz9fEM8vOIz1dTmJt4ZcruUK+SIf6lQ/33R3u1FOta0SsO6QzO FsY2ePPsgc2zp715fhY4H8WXh/FdYhC904uN7M5N0/MTdzjlMC92aZ2nbZmh eYIsdB79OF19P151PkTx3FesPHecvum2801//L9RhxYlb4j9cP7XDkv6OKzo 57huoOPmIU4zvtFG/dM34Qu/xJ5+FRMVxyYpEJlPTVFUBimQZ64LU9ZHKC9G qa5Eq67Fqq7Hq28mqm8lq++kUPfSqPsZ1IMs+mEO/SiPhsmNIoaL9YTTOUf7 wy67s/HpFQuwhV4sSTnWuEHKsVHSKNyBU469uIMDFtoH89mXP9OqzSwHmGeC 6PO2FvpS+xbaFs72iOa7hNc7RHQ7EfQv4bPUPPOdwQpxKyRJuLHbNnkG8+yN zbMXmOccPSQb1pk63jybSbKBzfOjHJ2QbGilycZT4FwhyTQOTqaQE0Zknj/Y ba9A5t2oJqh3SWq3pOYNcovrqScW+mCgtXWIEI2wfzwM8zmSrozGfI6ha2Po c7F0fTx9CS9OQS8ihQONxYP994R5PYJlKZA8PynRtZa5mKdJzPOijsyzNznc oT0++1p3DKjAzyU4wlLCZ+QHduFG4XZPbrqeDe9uXVeIU+jWWbyFfpxFPUpR Iwud9pXv8/17fO44enP51mUzDRZr1J99xv7VZ8IH0PIL/4cvAvI3f37nd7/7 XQK2yslf+plwpXwFITMyzOcwli9Eqi4hMscAmW/Gqe8kqO8nqR+Y1E2pVHM6 9SiDepJFt+bQrXk0jD0XMpYixlKCT+ScpkGIZmFnUbwjOrHQS1wtSyWI5huF 2EJv98SNQi9+kEO00Mdxi5DUSZxySIJoHtH17UYcNha6HT4jGl+3tdAd85nb 9A6/SuVn+WwXblQJ4cYpo82aQcnMMzLPEG6I5vmnnzPP89wh2SDmudTVjNuC YrLBwzlVc82kuZxkhXNNNJPWxyCFs7UVGMRnGvsxnOcNdiMOWSTzzvHtV8wX +rmD3MBFT7JG0wcJn4Opo6GYzxGYz5F0VRR9Fi9UqYf962DzuoL+RgRnZJ7v 4+T5Qb62aaruYZHucYlLK+kMWs2ze0fmmZtt5OYa7eEsOucK4Y3YCfwqTyw0 MgD7BD6X40GOrdAoZEO7cUW+/NYci1zMc7Wt0/kUGlnoxgTV802hXwSO3lDE dYJY5pcKPZGmhfQc9zef+b0clnzjyLvloU7lI5yiPgW3vGigS8UExfFJipOB ijNTFNXBytoQwHJDuDKnD4xnkMr7Vr99otv9RPWDZPVDE/UolWpJo1ozKHMm bcmmLTm0JZe25DEWkc/FcBAnQTSy0OxYf3acP59yEAv9QxtEb/HAjUJPvlEo Wmgpok/isks56gxw/uD67vZ8llpo0T9fbeOf2/K5XUS3jTiehc/VtuGzNNyQ Js8H/bj5AWzMu9aZZ0iefdo3z6QtKJpnIdloFQeeM7V3021i53oE51gJnCOs cJa2Ag9gOMf21M/FcEZk3iWQeQepcapySc0a4Br1hR7dS+w0iTtIFg18DpLw OZw6JWzEURMFi1MuxjO5/Yx5/Y03cPJ8K0t7O0d7N097v0D3oFDXXKx7Umpr nhcKC1KsYxteNuZZhHNb28wfYYmfPOjyGEmhcf6Mnmk7BT5vwYu+N7pzxb5s cDeYtfse9og2z9K2lsIgx5Msqhmn0M8r4nhBRHoT+dzVAmduYfL6mA/n4mx5 eV/HtQMdNw1x2j7CaU5fXexnvsgt8wnGZMWZIMByTYiyLlR5Plx5IUJ1KVJ1 NVp1I1Z1K051F7nlRHVTknrvZLfSAYaygVDmdMpM4Jwl4XO+wOepEj6zGlii MlNrmaNFiIYT4sBCu/AWerlbO4i2NgoFRFcIiCZwPuVnXeUtpByA6A1tEC2x 0ATOP2+h8zqw0FdsI45n5bNR3LAO+CxdM1ghjm1AZxDz+R02+h1Lecfm+Xtb 88wvSHElyUapkGzg2Fl7IwVi54uJEPOeI3D+xmgDZyHT4IRMA6E1pqd+j2iY CZnHqRGKt4s1lq/Iz/UzB7iiuxC0d45X7RqPET0BZ9HIP09BfKaO4Fj7GB7h ICN21ZGwojzrW0N2P+MlGK7TXEnTXMvU3MjW3soFPjdi//yoRNdS5mKeLqxJ gZlndxxutGOeLTsxn3nb7Msf8SDugnhMSMbIM0e00KRLuB/75+14ym4LXk64 gR+0Y6d043J8YDnhHK15mqa1iGnJoR6nqu/Fq7J7+/32v9AXZxffOD6/cQ/4 twiReWZPhwW9HL7/1nFlf8cNg522DuMH5JBh/mGIC2aykmdyGDC5ATMZsuUY gmU1wfKDJPXDZPXjFOoJNszgmdPBNpcNMkANNpizaXOO6J9pG/9cIuGzgGjL PB07wZ/L8uYt9HLcK7RDtJhy2CH6mATR/KLvNilHQ7sptL+40PtZLXSHEfS/ tTMC/Sx8Pm3LZxJuCObZsh9PbsBWdb5s5DvcdKONeV7lZVnuCScMtjtTh5ON A5He+8K8rMlGCukJahownGtx7LxitLsI54oQaaZB7RfgbEPm8ZjMY1U/2daM /q4Rn+m3jYHr6F4R0ajQl+9F/nky5vMU9WFY+s2vVUF8XjnaPb2PIeNbw7l4 5nwS02BiLqZprmQgPmtvIP+crb2Xp0XmGcKNUhxuoBcgCDfcINxoa543S8wz wNlXcrKwr+Tkd6FtAYWvHxcs9GGccqCnGbIEZAqa8HktWavixuX6wJmGc2ED f3MJ05oPK76bElVbx7iWL/qts9AvDkpvEO66VOB8YGHSjJ4O823JvBOTedFA l+Qv/U5NUVYSMvPZsupipOpylOqqgOU7IpZNNliGSseVQbVm0q1ZuLLpsiEG VAfD3c0Izvm4Coh/Zmz4PAPzeRaPaC7dG5724izHSjJxJyB6q4dtEG2LaP7P DafQtimH5byA6AtGu5RDuhHH0y00dAm3dtAllEbQz8Lnals+m96TrBk0SM2z ZZ8fQAa2qgPzjPjMhvfgSgx4QYrEPC/ywG1Bd0g2iHnGbcHWAl3JEP+H2brG TPvY+VycFc7LR7ubehuSexmSvjYkfm1I+MoQj+pLQ9yX+nmD3RCcCZl38GRW I/ZuQzXGWlvHqKb3c53Wz3Urvg6IllAa+IxT6P3CLDTfIgymlo5wT+ltWDnG vTqGPhtH1yYy55OZhhTNpTTwz9fTNTeztHdytPexeYZww948u/HmGTqDgnne htdx7/ZhY9/hbTOfafhZbTM51oG8mleSk9+FiEO00AfwCMd2Ml+H5zcQn1fh jbyQhfjelR3vTw6TNU+lW7KpRyb1rVhl0he/qUv4QqH0phCv62Qa+xYkTfvC Sub1hMwjnfeNdT48QbF0iMuKYS6VwcqzIcpaROZwFU/maEzmOPWteGyYkyBe bjahN3HYKhO3nM57ZlItmbgwnKEnmAttwYMRsGEdO8wI5rmQsSK6VMJnBOfZ uPheoQ4hGt4/khR6lTBx94yIPiUgGiy0OG4nRbQ15cChhO2snWRxdzsWWhpx EERfs4s4urWzhLBdPkt247fhMwk3OMxnvBsSJBs7JMnzJm/EZza4B1eg79A8 47ZgqyTZwLGz9rpJs2mSZ3ZfY+a3xvRvjGl9jAM+eA/h8YeR7sQ5S+Y0qH2B QNSYL/TRX+ijcM0c4LZ9HFCXQBjVltF8hX+mZ/u5bh5tvYWntMDnXTiFJl3C g4HqQ5PVi4a5wU7Ro9xPRtKno+mqOPpsAlOXBHy+YGIumZiraZobGZpb2Tjc KJB0BqXmWewMriZjGzjZQHDeJYEzZBrCgZWkFWg99h0/TyrxdbuI47AP3ygk 23HwO9pJ+LzElcv05kxe5CRZ9IR/nAqDdhlf+11cY/p1f60vtBH2BsH5VT+E l6ELx8pLPxPJ7LRe8Mz8Wuwv/fr/9d2Bf3s3vZc+o5c+s7c+q48+u48+R+j6 lU90a0xWNyWrH6ZA1+8JZjJky2Jl0qisnpmQOZu2QXQ+TG6YC5my4TD8zMV4 QMRhh+iZApzn4sKIRs98dlIAl+eDFxXiRSu/CNFn/Pg/vacE0ZfIXv1tlqt0 bKHtu4RSI81HHN3aiaDt+GwbPltOGdnk96zm+YjEPO/34+YFcLP920mecVtw 1Jf/Nqrnv7ETu3PpfnZtwVacbIz45P3iwf5TB/kXDPTP62/M6WfcONGzPp6p jWXORjOpfQxnIuiT4fTxUJrAWcg0qH14dg6RGQwz8czjcHzxuZ7gd7Okwj/V bxqlIrVZKED0aN5C7xin2kUiDozoBUPc4r/SLxrufjSMOh5BnYyiz8QiPjM1 8UxdAlOfyFxIgvz5GjLPmRpinvnOYPtjdTh5FtuCEDv7cPP8uQX+9nAG26y3 sc38me/4Q2KhpRHHITxrtwenHFs9wUKj5+FKvFE55rNlkQuX5s0lelpKGHMB jd5CNiVBBH2u8KNf8Qf7oqcUXn/udZFMo+Fo+eqoD+dhMud/qQ352Dfyn76x n/slYCyfnKKsClGuGem6cYwrno5TX49V34xX305Q301EVpl6YKKaUqi9U9xL BhpK8eo/kiqzgwyWTJqvLL4DaBYrR6hcTOYce0Sbi5iDMR7sCCMq4DNpFEoR TeA8jyxa0cGTP9uHnRzAp9DktLgN7ngo+tkQXYVTDkkQza23IhqOI/yxh82K 76dY6OsdWOhn4zO3rge3toeVz1VP5bPUPMe8i8c2fEXzLCTPnrx5xm1BLtWX HduNHd0NljyPCCgbHlA6LADB+WG27n6m9nYa3xO8lKhBcK7DcF45xmP5aPdT tnA+IATOCM5zBrnNGuiGyawm8TKyxIjGYZ/qy/q6EhqjK+jDjSNVqH4USgQ1 QjSy0NutFlo1d5BbbE/9gqFuXJD6cCh1NJw6HkmfiqbPxOD551j6XBzw+aKJ uZKquU7Mc66deXaxSZ7JzPNaYasNHDtb9viwce8IgTOG8zFbOFfy29LyW7VU CREHsdDHJF1CDjcKScqxWViisswNutiIzwthioNL9uLiPC2FyJZAxDG1r/5s kPOv+LN90Wh6zdHXFYbozh8tXxbx4cwvHSZ84BP4d9/QT3ynfaMrH+m8d4yC G684Gqg8HaQ8GwrxcvY3+ssx6iux6qtxalhUkqC+lai+k0TdM1GNKdSDVOph GvUonXqSQbcgn0yGMbJpdogBajAU3CId0sB9QLNY+XDSRGseH3S0Cog2FzPm Eg0sURlpBD7ziNZYET0fr1hZ4CKsK3RhAwO4Al9+0cr6X4XomjYT0ReMsC1z 2005ftZC57Wx0PZ87taWz5bzAfzJgyKfK/nwmeezuJvoYX5BN96HH4fPVvOM O4MkeV7haVnmyU7qDsmzmGwQ84yTjQMR3nvDvEiyQWLnS0maBhw728A5zB7O eyfB+NzsQW44zQAyk6gZwRZR90dcpd+6lmIyl3zrumGEktRGVCOhfsS1aSQg Giz0GN5CR+Nx6H2B6gNT1FwIdSSMOhpBnYigTuH55+oouhZvjsSb5zTBPOdp 7cfqSPJMko0VOHZeT2Y2vEmyAeb5O3+cOfvxmfNxPQ/nMwKcz/IbasElAnXb iKNCiDgOCinHNk94+7YOW+ileLtRzGf0vIX1Vui5nUM/SVMX9dNfCFNcWffL Io6XAM/Xmc+dPnA+V1G+MOSD6A+ZcX8DMq8c4LRhsNOW4c47RjnvHas4NEFx LFB5JlhZE6aqjwQ4X4tVX49T3+DJTN1OosguoPdTqcY0qimdas6gH2XST3BY wU9iiBzGxQ41QA0RWC2OauQz1oG6QsAystCt+QyP6Kk8oi1lGnaUkUvwBD63 RfR3eFEhv67QBdrlU7rxiN4gLi1sD9FH2kP02TaIbhD43N6KFXtEX7daaPsu 4TW7CPrffgGf+d34JXwWww1+H34/Nuqd9syzl9Q8CzN1bnxbcKpLaz60BZuy tPcyIHaWLkWpiWGqouiU3gYE5xNh9FEM54MYzvtEOA8EOItkJrYZYZn4ZFK9 /vTu+hHKdcOh1qMaASVlNUK0aKEjP9dHfa7fOUG1Z5J63xT1gSDqEOJzKHUs lDoRxu+PdBZvjtSueW4q0j0qcWkpE9akWHfbEGbqrDMbPrx5hmTDj082jmE+ i5mz6Jzr8NmUNZKI45QQcRyVTHEcFCx0ubARxxq8l90SbCEwn2G91QgjsiUt GVRJf/2VKOXNjSnP/sf7cqzj68nnTp9p1BwpnzX5g8l/Ykb82SfjM+3Sfk6r B8IJgFuHO+8crdg3TnF4ovLEZGVlsLI2DDbMvxKjzu+rt8GyibonkPlBOt2U QT/MpB9l0Y9zYN8Mcx5jsS9aUkBjdqgRgZoLcxeNtBTRlqkYy4WA6FYpoks1 XLwnUDrRC/gsDTqEiAP4jBFtWeYKc6dTfXlE//hURB+VIlpvj+jzxlGD/udT 9k16Jgv9lIijIz7XtstnA+yGBOZZCDfICYN7/bi5Adws/6eZ54Uedm1BC8xs QFuwWUg2rqdorsC0swZZ01oC5z4SOAcDnEngLMJ5xgC3bWOtHcBNowHIG0aI pQz5px/CcvA//NYOU6IilBYL4ZogetNIJdsXJu6QhS4fr9o5Ub0nUL2PjNjh +Toy/3w6gqqKhs03ziUwDcnMpVTN1XQNjNXlau/l6xrxWF2H5nm1p9AW9Ibk 2aYt6GcNN07ohUOERTjj7Q3rDPyG4R3lGwfxqhaynJDM2m3CFnqVG79jP3qi ztGhpy4X68lFeLRmUqUDDDdilM8ecby09/WvIQY7faZRc7h8zB/okX/xSf6H ZkEfODh7zSCnH4c6bxvhvGuM4sB4xZFJyhNTlJUhqtpwVUMUBBqIzIX9DPeS Icq4n0I1plIP0uimdPphBt1MsJxNPwEyM615DMQUBZi0dpXfpgoYLtIDNkFC oI5wtzfSU/HwcxGOOAiuiwDRZpxvIBeN3iFySV78uJ0dopfgdYV46I7Lxwu4 xCB681MRTYai2xvnQHy2WVfY3qLCjiz0z0ccT+FzjS2fT+HhDT7cMPDhhmie SbghmueNVvPM5ei5TD/rTN10bJ7xJnXIPBcP9n+Qpb2Tbh87V+OeYLtw3jNR vWuiehaGM09mIdPYMFK1foSKOOT1GM5rhilXDwU+oyvWGopZPYxHdMm3LmGf +iE+o2/10zhV+QT4/nvwdkkwvwF7QauP4f2RzkTR1bF0bQJMPl9I0VxOh2Up N7N5PjcV6h4Vw4YbwoJuYcEgmalr1zwfINPOknBDesK7eELlOcE/P8U8HxD3 SpLwmU+hcQSNLDTiM3relmrY4UZzNvjn23GqcyGKxuodz/In/NKw+brxudNn GgjO/f/gHfuRZsaXjgt6A5zXDnbeNMx5+0jFnrGKgxMUFYHKk0HKqlBVXYTq QjREzcgzF/Y3NKXSD9Po/5+9sw5v68rW/j8T22KdI7BMMgU799659+tAZ4pp GmZmtGOHY4ghMTMzyg44zJw0zJwoaZiZOXHMtiR/e+19ztGRbKeZ3pmkM716 1uNHhtZpc/TTe971rrVrk+V1KfJ6bGI0pMsNGZQxkzJhJlupX3M6jqvc95V+ jgNxPyyEdB5L6QKsnwsIoikTO+6tj3GEjRzz2cRdU0ST0cL1al0A3oRAEL2b XUP6fkRfMyNav7mNfkvbpnEOvhHdTKOQQ/SL5oJ2H85nEq5jT7My85kzN7B4 Bj6HtWdX1WHx/KMzI57XtCCe4ewqEM/V6cp3KYpX2Nng287rfR3W+mgQnBEY f2LhTNYcHZ4GcC7FcN49iQlm7PCRcCYGqvyhKsRkROaNuAK45+Og0HOCaFSI 4QVDVdsninfhoN0+NsLB8Rl29c+SXQiRXZ4jvxYuvxkFybr75rEU4DMxN2rz lQayre694lk3ux363+Uz9D+ZaRQznF0tnA0OzvdYPt/G+vkql392tQhvnLDc xcHn8zp7uCYRn9GFilPQ6CJH4qRwlNu7KMmDENGLbT9vQf+W4fyp/wj/3Ide rx/xN+f8Xral/W0JnLeOFe72Eh7wIXAWA5wDJdeDJXdnSx+FS59HgZtRmSAr GO3ekEpScJQpA6oxkyI2BcNSM05pOMuVKRawHwLqPKaQogBFPd7D4l+bT6ZU YFDFRKqINpGNHKXs3qQFeGLFGtEqZjvHent9rlY3q43FGtJmpwutEI3jHHDG CtzeultvT2o6991skONFCxKamVJpbxHhaJbP1yz5zJkbp1lz4yhsqwPz2Uo8 bwDx3LjaUTe9LU88s9OCuC14NNipkjgbjO1ME9v52hx5/GB3Ds56BGc/GfE0 GDiPtOfIvBO7zVu9Gd6iQnDOG6LaME68fpx4Ay7/7q4bxoo3jBWtHyvawCIa /QzxPZCE3o4t6D2+5ogd4bPeX4qk+7lg2cXZsivhkHy+FUPdxWMpj/BY94tU +k06dAZrcpX1Bcriia11vrCHXzelDTkkRefHHl8V1E4X0g6ORznool/ooV/s CWegRHfQxeCK7WBuC1rBmc/nm9jfuMSf72bF83FWPJNdHHua8HkZy2cdvEb0 IQ6Fo9wrYiRPZovv5//MuVcf8+7+18PDf3vDuRHDObgTnYfg3M8M5z3ewoO+ omNTRPrp4nN+4suBkhsEzhHS59GyN3GyykQQzMVjPRoRkzksZ/GxTENxWCaz 2KQKcL0H1M2y2hLUSFdbCelG7EITPpuK2UbhXAVCNCT/eYlorlfITH/jXPQv QLR+Yxv9pjYWO0ibQfTPSOi/w+J4P59Jc5Cf3DjBiOfGwzDQbRbP25xh2wZf PHNtQSSeC0E8k7ZgVRpkNl4mKMy2cwR1fQ6VwMBZDnAOADgfZeF8YKo0tLcb sZpJSGMbgrOX2btA1M0ZrFo/VrzOXKJ1Y0R+3VzRR+AzRjRS1LmDVURFIz7j FqGYpKAJn49Nl570k+oDpdAcDJVdCoPk8w30J0QKPwabzzj2/DpNkTvOM3+8 Z6GXJ4Jzo47NPLfkPB9w1pcBnC1tZ8hs6OI7wNmOiZ/pkj7D78ssnPl8JhbH FTfgM+NsaBnxfIyIZ2xu7OfzWWPm8yLMZzylog91KBrjXhkrfR4mvub3Pgv6 I1uvvxIk/tt7Guixdl5Galeb3J4IznaLB9tBQ3CMcCfpBk4Vn54hPu8vuTJL cjNEem+O9HGE9AUPzoZ06lSIA7qKGrNpqBxcHJbzWCwTMhexu4yK2ecWrKYY Vn8wqPVhDgTU1kKa+y06M6L1cU66yZ76BCcmEb2kBUQHttEXulpsIuXWKJ1o BtG6xA78UDRvwV0ziG6ylKNlCf0L+ewOfD7LLhQl5gYRz2Ht8Z5nVjxvZZzn 5sUznF2lOoHEc5ATyWw8iwc4c7ZzwpDm4XyIwLmP2y4uPodbgVu8QAyTyh2i yh6kQhxea1mZA1Wo0BP0LfQDIKdZFc3oZ2+Wz5OAz0emSyBcFyA9HSQ7Gyq7 MMecfL4dKb8XQ22f6ZAxyiNrjAeCc2UWPmewAB8C29R5JgMpO9iBFK4tqGen Uc5zgTr2SPdbQGP0dkyKhbMHE4HmLI5zrsBnpi2Ih1M48bwP83kHy+f1Tfhc SKNru3ise1Wc9GW45Fag6PGWFi2OjwzMXwOffw1/hn/2I3NGv5SuNjk9bXX9 7BYOsls5XLBhlHDbeOF+n2bhLENwfhsnR3CuTZHXp1HQ9cumMSF5QM63xLKZ zOiujVc/C+oPYTUnp708EK6Zf5YV0gyiSxhEo8ueUPr9iNbnafWFWjhqmWsX toBopKb4RkfzO0h5RjRzusqHS+gP5zM2Nyz4fJrH58OsudFEPOvT3fQpruA8 mzN1IJ4NWcoChDU2s2FhO09yWD1Rcx7PoZxm4UxWanBw5uJzP3qDYN7IM5kR e9eMEa0ezdQaXKtHiWZ2dSWfIhWdNVDFqehN46z5vH+yBMJ1MyFcd2qW7Eww mBtgPuOTU5KGuqcM90gf4bHL3/FFMv0mTVGRoajJVtbnKU2FKmvxvEZjbgty cA5/L5xvMHDG5wV7wu3SPQ9dymf6LW0t+HwN5zfOu4K/oWfF8xGeeN6LF42S CDTRz6tZPs9HfFaga7h4gkdDqixvpNurCMm9oBZT0B+fVJ+Wjb8RT2P6N1RS F5usHrZFfW0XDLRbNlSwdiQ4G3snio5NEZ+ZIb7gL7k6S3KLB+c3cfKKRHl1 ClWbRtVnUA3ZtDGX1nl5NhYooAqhdN6euomW5cMrXyiIwJXgi1CHrbbmWU19 qKjmyWlm6JsvpC0RDfl/bk00IFrJIJptFzZuBESD17Gdj2i8L/qYE4doXWx7 RkVftR4tfI8RDVs1mpPQ+j1NgtAfwueblny+iMN1P/HGUuCcFNfGQ6y5sZM9 AXYTTzwvxeKZl6kzZauKIPCsxNMoCmI73+XZzhycT2LPmaxu3j8FbA0SnyMJ uq3e4k0TGHuZOMzrxgKTV42CYhA9SrQSfzqjq2vGANXMbq5EQnNGB5LQW8ab +bx3MoTrDs+QHvWTnvCXwuRgoHSltyZukHvCYHcE5zuRcvRW8jiOep5Iv06h 36UrqrIUdblKY76ykZ95Xm5vHkjZxk4LHnLRL8Sj3GY4c3OC7myajgfnBwyf YZh0S1td8mdgdt1kI9BX3KBFeBb7zydcGGeDL5534SlvPp+XW/O5Pk1WMMr9 daTkQYj47NRmLI5PEir7hHj8tw/RNWI4T/mKSuhsk9HdtqCP7bwBdosHC1YN B2djl5fo8CSRnoXzTUs4v0uUVyZT1WlUTQZVl00XofsvL8+JvX7PJzAD3lK2 5rJr5eYpcWEdG+sEoMY/r492YoyIn6X0+0FtRemCFoT0PCbRgRCtT3QCRHMd Qx6iGzfbM4jeaYnoo4BoXVR7/XJPs9Fx1Xq0sCUjWr/zgyU03+J4D5+ve7TI 5xOMeIZtoqHtzeIZOoMgnhtXOeimtbUSz6ZcVUOWMn+sZ0WK4nUS42xwtrMF nP0ZOB+0hDNJ0IGnMQHaf6QQnBF4EYdXjGSAvAqTGX0KXxkp6vd1B8RnIqf5 iN44TkT4vGOieDcTrpMcno6bgzOlUf3dYga4rfbWXA6RXWdnBh+RowbxObBw SHc2HNJtKlQ2luBVdc06G2Ra8AhvGsU6TWcJ5wcEzp6M88yaz4jPuqTPMJ+b WBzHmohnjs8bWf+Zx2fdRA9jLlWXLj/ib79vmvpRqPjidGH5NYuU3aeC1afi 82/BcA6eNNL3b/LYTjZp3WzzetmW9LMrG2S3fKhg/Sjh9gnC/b6iE9PE5/wQ nKUcnJ9Hy17Hyd8myN8lU4dnOeSP9SgY71GI3tzzFYYihVGHJ1JLlY1zcREO z8e1oIWaj0E9FwCO+IxBjWe0f9bx4CjdFNS8CJ8FpZsV0hjR+gQn9rwVcvA3 QjT2OniI1he5MoiGlf6O+gXuuvB2jIrmh+6uWiAaEnc/tm0W0S1J6F/O56vE 3PBovID5fIZnbhDxPIcvnp3N4nlGM+LZmK0qxM7G22TsbPBs53W+DqsmasgE N8B5JrMmlIMzm20GOG8cb27/+XUD74KgmPB5JX6yfARUan8VEs+oOF0NiB7N 4/ME8baJ4p0+4t24OXhgsqRstDqiL5wSe9ofTh68hGcGb4XL70bJH8ZSTxOo l8n0m1S6IkNRjc8ZNBHxPFfFrkLiTXNvc+LEM9jOXKCO72w0hfNDC/FsNp+x vwHdw8TPsMWBu4ScxUFiz5x4RtfVNgdmy+hanv/M8tmQS9VmyKsSpDnD3Z7M Fl/1Ez7YZGFxfBJO/tbeFD7mAyln77/KI79rldLVJrunbVEfOxDPQwRrRgq2 jhPumSg6MkV8eobkUiBRzjIC51dx8pyR7jmjPXLHeBwKdqzKoqtz6Np8RV2h okGnMJYqiyHDxrK3TAW1kCucmihrUpaUxl4HTSjN7NN4j4Tm14dSugUhjc9b 0Sc5tWhH52sRovXFrrrQtqj0890sjA4O0U0WdOhS8HmyHKL5LodVo9DK4njx Xovj/XyO+czC3DisZfjM38O/wQnE80qeeC615zJ1J0KdjwQ5lePA81Ownek7 kdTNcOrqbHncIPez7BzK8ZlMVIPAmQlpeEu2ekk2TxBvwHBeiwvBGVF3OaYx h+hlI4TLhgvRx+ldXNP6q0ghaAOfeYhGfN40TrTVS7zNC+YHd/uI545Uz+nj tnCM+vgMiR5iz9KLwbKrs2U3wuV3ouQPYqkn8RRs20ih3yLxnKGoy1YYc5WN nHheyK1CshTPcDB3+8ZjWobPfOeZ72zcZW2NBy3wmZgb2N/QJXbQr2sNFsc5 bHGcxBbHIWfQz3DEFTafCZ83YD6v5PiM/rSKYm+Phlx0oyqvTJTljnB7Mkd8 PUB0OcO8y+4TitiP/Bt/C4ZzI4bz+L/IZ3/Tijgb+b1tS/oj8SxYOVywaaxw p5fo4CQxiGd/ybUg6d05skcRsszh7lkj3LNGebxOot6kUuXpdEUWXZlDV+cr agoVdcXK+lKlYZ7SWKbSTWnduEj1AcWulVvYIqWJigZK4/V0+nDHZvjc7Bzi +yn9s0Ka53XoZrbW+bXW+bfRBbTRBbbRBbVhple4swt/FtF3LBH9yyR0C3zW b2mn39zOks+wsw74fLoFc4OIZ9IZXO2oT3PFe0Q1/IEU0hYko9zP461t57Oz 5CycZYenA5z3sXD+EZOZ8zQQlteMEWcOBD8ZqeVlI6AIn9HHpcOFpKZ10WIJ jSiNngiJ0cEgehSPzxPAfA7p5Rra23XeSDUk62ZITvlJfwqUXgiWXZktux4u vx0F2zYexmE+J9Kvk+mKNEVtpsKYo2x8j3gmq5D2Ouvn44NfEZ/5nUHG3GAz G3zxzDkbd3ixOsZ5ZvcjXXVDfNavaW22OI5ji4NJPmNz40d2y+gae2Z+EPMZ bkgL6focqjpDXpEkexMtTR/iditQdHKSgLyWP6EN+/GzIv/2nkYjhvPoP8uD vmoV871NaldbEM997eYNtFs2TLB+tPDH8aK9PqKjSDzPROJZejNUmjbUHcH5 eaz8RYL8VRL1OoV6m06XZ9IVOXRVnqK6UFFbrKwrVTbMUxoWqEyLVKeSXPTJ Lo1L1LAsrmktbrb4oFY0S2l0leojHAHUXEjDSjlny60rhyvzGAuhdPN2BxbS usmePn1/j0o3FR9fyNnRZGX0FntAtNXxslyigyD6ota8oINDNDGi7zdxOZqT 0M1aHMyUiiWfG+946pJ/b8Hnizw+88yNxgNaXUh7ZhsSidWtxeJ5urV4Nuao joc4H57lhEe5FY8t087ngprAebIZzluwbN44HuBM4hkZA1XpA1RINi8dLlo6 gkE00sxLhgkXDxMm91UiOBMVzYJauGKEcCUP0YjPG8aKNo8XzerhGtzTdZeP GJJ1MJYiOekHbcHzwbJLs2XXwuQ3IyBTdxfp5xjqaTz1Kol+l0LXpCsMWQoT XzwvaiKecWxDP9dDvwCfyn0c85mYz6QzSJxn6Pzy4EzMjaay+TpW2tfY/c94 xFu/urV+pSfLZ57FwZjPTfi8EPPZxxPdOSI+V2XI3yXJXkdLM4e53QkSnZki fHP14KftkX1MPv8WZDN5BPmODPhbq/DvWiUy4tkOiefFQwSrRwo3jxXu8ibi WXLWX3I1SJoyxP1xhOxlrPx1PPU2iSpPoSrS6cpMbGvkYVujWGkoVZrmKU0L sCpGWF6mhsOklquZWsbWUlUzZYFuS0rPZ0FtSWliRCMZzEwRTvCw4DN/yVIz uGaQTiDPpzRe1uEBcgV7HSCkp3qavY7VKnPHcAvuGHLTKxyiTzZBtNX099Zm jGhGQj9rQUK/x4Jumc/6VW30K9rgsUHCZxDP+nmeep2HlXhuXOGgm9qGEc+k LZgHbcGCsZ5klPtpHH0/ijbbzt6aM2zU+QgL55KRsBd0K3abCZzXjRWvHiNa heA8APyKZSMwnHEBmYcLFw0FOE/trEV8XopZjWpaZy14HcOFWEIjRAtXjRSt GSXKGqgK6O4a2MOVmBt7fMUHcOz5hJ/0dKD0bBBk6i6Fgn5G8v5WuPx+lPxJ LPUygSpPpqvS6PoMhSlbYcqHzLNprspUpjYttjct15hWa0zrHUybHU0/Opp2 gvMMzsYRF7N4Jp1BK+eZOBscnB9g/YzgbDY0rMjsxiwXPe+qX+GpX+YJ/sYx Vj/v5fGZhJ8Rn1cwfIYV0NFO6IJvQHxOl5cny17HSHdNUW/xVp2bJry7Mf7T Uuvj/PbfiKdBHrN8R874olXo161iO9mkdLXNweK5bJBg+XDBOiye9/iID08R n5ohOR8gTRzkdneO7EmUHNJ0SVRlClWdTtdm0nU5ioY8haFQYSpWmkqUjfNU jQuww7wYXVeYySvtdTPaNK5CSgCLAVIr2GLQrWJWfZLicM2n9PwWtTTjRWOX g1Aalt2R1RykMi1ZzSd2E0qDeRLpaCGkYVOHgvE6uOidVahjh+bvQHSzRjRB 9M9K6JZahM3y+QIb3uCbzwdwsm6XCxbPbGdwVfPiudDS2eDbzj9ZwnkvhnMh hjPZbrRhPHgaJDuHZHNqfxViMuAXy2OimRcOFSb2USI4EywvHooL83kpx2eM 6BldXf26QVKamBs7vMW7fcX7p0Bsg1n4jGN1Z2dJLwTJrobKbobJ70XIH0dT z+OoN4l0ZQpdm64wZoHzbCxUGktUxvlq4yK1cam9caXGtNbBtNHBtBXDea+z bk67xsOInPjgV+JscLENEngmbcH7HmbbmePzHcxnIputyMzCGf5tP2kRn/WL Pcz+M/E3wHx2gPAG4vNqzOclwGfYSKBTID4bs4HPb5Nkr2KlT8MlqYNdL0wX 5nn/5dPC5CNg87cQouMe1/T7p/y51awvW0V2tEnobEvEc+kAu0VDBCtHCDeO EW73Eu3zFR+dCuZG3EC3GyHS++GyZ9Hy8gSqJoWqS6cbMmlDjsKUpzAVKhqL 0d2iEh88YQnnFfaIzPoMrT5TC2KA1Gq2yMq4Veom3FYxxLZGdPOmNCC6OSOa WR+NN0jz10qbK8taTvv0/MzalOYcaa5pSOxormPID3XsaoLo0xjR560Q3aRX yEpoJmtnKaFb5DOxoH+Wz/xkHT4qBcznnVg8c51BJJ6nWYrnXFV9pjJvjCcZ 5X4ca7ad4wa7/zTLPCRoBedNnKcxVoxk88pRouldXVP6qRCWF2MmkydINpcN ESb0USI+k08XDoGPqJL6KImWJohO7aec3kW7ijU3towXbfMW7/IVw0z3VBhL Qfr52AzJiRmS037Sc4HSy8GyG7Nld8LlD6Pkz2KoV/HUuyS6JpVuyFAYsxXG fFhVZ5yrMpapjUvsjSs0xjUa0wYMZ3y2IKzaOAx76qzbgiRTZ2U7m9uCnsxk CrOwzp0hs6VsBjKfdWX2b5xyQXwGi/ugM5gbuzk+s+E6ls/6BGdYvcjyuTpd /iYJ3clKn4RLtvmoc0b/frW326flyUc4meW3A2f0GPFH+cy/tpr9jU1MJ5vk rrZZPe0KwXkWLBkK5gaSKDu8RQcmiReNVscMcLs0S3orVPYwQvYiVl6RSNWn 0aZM2pSjaMxDF4yysYiF83wM50Vq4mwQOAOQ12r02VpUjes1UOvsmVrLFoNu vD6OI/YKVktziG65b8gk7vKaWNCsfmaOZSEbpJueBYBBrZvgDitM51ia0kRI z2WENON1cOloLtSx2V5foP05RPPX3GFEp7KIbtHlaMHisGoR/iyfOfP5IByV AubzdgvxrE911Se5MuK5SG3KVxmyVQXjPMkoN3Y2GNt5ra/DSm8NmUNBcD6I 4bxrkiSolxuBM+Q0sOFMkswIzktHiIDAwxg+EzIvGCKc/IMWwZl8SgohGuln JKcXYzlNHGnEZ6QZ1owSrR8DzjO3dgPp532TxAcmSw5NkRybJtHPhIWil4Jk 10Nlt+fIHkTIn0TLX8ZRbxOoqmQaXbSGTIUhV2koUhpKVcYFauNie+Nye+Nq DOctjqbtjo27MZwPuXyQ7Xzfisy85MYtbpobhz2syPwTu38Dmxv6Mnf9fHeG zzu45qAGH3HF8Ll4sqcJXfPFisZ82pRN1aQBn19gPh8K9Mwe/fvjPoJPy5N/ 9png5PHP+xW/qscmXczUv7QK+qpVREeb+M62ad1sc3rZFfezWzBIsGyYcO1o IZIouyaK549ULxmrPusvvRIkRRf840j5qziqMomqT6dNWTw461g4l/HgvBwb GqsBzo3r4HrT57qiAmFAagNb6/FpxRyx1+CZqdUspflC+v0q2grRPDgzhZmM +AyHZ41jD2ThsRosEVZLg0lCKF1EmYU0z+vQJzuz6Wi2Y7iZyd01j2juyBXe 9DdjRN+zMKLfJ6GbnqXyfj6ft+QzNjf0c7H5zJ2TspaI57Z88WzMVdVh8cw4 GzGM7XwlVB470J3MoQCcp1nAeSMeDCSG8wocn5vWxZWo5YVDGW2MCLxgsDC+ lxLBeSFmMvp0/mD4SPTzlM5aIqGJIw0Wx3DhqpFCIp43jcP62Qv7G9AcFAOc p3Nwll4PYeEcJX8RC3CuTKJrsXhGt3uGAqVBpzLMw87GMnvjKo1pnYNpkwPY zruc9HPdoSd4BDsbP2s7W8nm+7y1SAjgzDQ3hvM5HpzPkM11bGcQmxv6ee76 UvdmzGcYTlHrprU2LVAaSxWmIgVsS8ii6tLA33geK30cLlk846+JA1y5CMen 4cnHOtbwtwDqq/r9k/70O/+/gXiO/t4msYttenfb3N52uv6ChYMFK0YIkUr5 cYKoZLiqbLSamM/XQmR3w2RPo+Vv4inw8TKws5HPwrmUwFkNcGacDQxnEM8Y zusxkDc56PNdUYG9tgWLBFKbOGKzoF5rKaeJ3QGONCekseHwgYjO5EEYH3HY mCZDZT7iMN189KHZ9CCUtsrglZi9Dn0iFtLEjiYdQzYarQtu+6GIvoVdjrvW LkdTCW0x692sBf0ePpPmIDGf+eYG1xlc7qCb0oYvnhuweC5PMTsbnO18JpAZ Ejw0DRqCu3wBzlu8JMTTWIs9jRU4PofgzBgXpLBmRiie9IM2vreSkHneIMH8 QQL0hIhn9LHPl+2n/KBFfF4yVLh0GPgb6Jpk+DwGJ+vGi7Z7iZF+2OcLcD6O 4XyOwDnUDOdnMax4RnxOo+uyFA15ypORzsW+rYsntz6VpDWRaW727Fe9zh1x 8udsZ3ez7Wwlm6121t3E/jOZ5j5nRWasnE/iX3TEmZgb+hI3fbGb2Xwm5gbo E3XxlNZGzGdjEW3KQ9II3cDK3yXKnsVKl/n/9V6IOHmg6+kpv+S42H/U4+Of bPhvDOp0307Tvmg166tWYd/ZxHayTepqm9HDNr+PXekAwaKhAvRC2DhWVDhU NXeE+shUdOVLLsyS3giV3Y+AC/5VAlWeQldlKOpyFMYCFs7z8PqChQTOeE6W OBurNZx4RnBu3AzaQDerLVyEP+LaimuLJag3WMlpNXOQsZXdwaXvSvFeL51F oqN5RPPg3JjKlG4MUFofpCHEZn6GZ03DiS2c3WEtpJWM18ENsKxXQ+5uqwZy d+9H9FVLRFsa0T8joVvi811PGFFpns+W5vN2y1gdXzwXqA25qtpMZe4Yz9dJ TGaDSzv/NAvSdMdmygDOUxjlTOCMPQ2AM5LNyf1UU7toF2HZzHkX84HGwkmd tEQtIzLPHSgAPg8WlMFXEKUFCM4JvZVESC8eChYH4vPKEcLVo4TrRovQlbl5 HIiHnTw4g+ccIL2M4bzJV5M61B1V2jAIgmaP9Mgd5ZE/xgO91xRM8Cz09jwR 5WzAzvOpZC1e8tyGWfIc3M5n8H8ybUEkaznbmezet7Kd30NmrjgLGv3jzEIk HpxPmMUzk9zY7Qhv63xzYxWYGyCeF6sM85WGEoWhEDbbGDOphlR5RaLsZFjr wyGedzGfz0wRXl8b96mQ8hE4mZ6e3qz//G8GaiyeW/n9rVXI1zYRHW3ifrC1 MJ+HwQshoLtr8TDV/kniY9MkZ/xAltyaLbsfKX8cSz1PpF6n0u8yFdW5inrc BDfDeRFe/7XMnhXPGp54xnDegpm8DV+HOxyhtjtYsBqBegsL6k14vnUDobQa 0Nei3cEKaaKiLeMcFogmp4FzcE4xlz5Qg0Dt0/0zht6oMmR8SsNmaTJyyAlp /qRhsrO5Y/iBiL5kRrTZ5eAZ0SChn1pI6F/I55gOwGeuObjPRRfcntlWt4EV z1N54jlPVY9XbbxNNjsbYDv7OKzw0pCoMwfnYA7O4GmIYeoEwbmvKqmvciFr Mi9gyRzbU0ngjJhcOhAK8Xk+1s/oK+hbvb9sH99LUTZYAHwewvCZmBvEfN6E 4QzKeZL4MAvnlRPs4we6xw50ixvotn6i5uZs2b0w2aNI+fMYuN2rSKQqU+mq TEVNrqK2UFlXoqqfr25YpDYsszeBuYGVw4+OupB2jXtByurC2+si28MGfvT/ 7byrec8G33a+z46iNEvmO1ZnppCdz67MtCAh8zFscRPxDMkNJzKZAuplE37J YHNDn+pyKtnFuAj43KBTNBSg+1bYD1mfKj8X2ebknNYPIySIz9cDRFF9tLc3 /DvzmfQH39Ml/DcANcxxf/67qX9pFfBlq9BvbCK/B/M5lTGfQb0greLXzZWY zwcnS05Ml5wNkF4Jlt0Iw3OycdSTJPpFGv0mS1GRp6wpUjaUqkzz1YyzsQTn /JcT8YzhvJaF8yYznAHLu+DloNe54W0D+Cs7HIDV+PrEhafzAvGYHip/XEjq zGwNNaO1bnprpCugpsLSOVg9N8kTr/tghTRBdC57jiFfQqdZwjnZXIjSPt0+ 08/SMAC3pDQ5+tBsd+hw05ANSDOIJnY0QfSWJog+7tx4ygrRTOIO9rqTQzfY uF1TCc1YHC0tgm6Gz3CmFXCGhDdIc3Av5vOPvM5giqs+UUvEs6lA3ZCjOhri fDDQiTgb9yLBdr4cKo8Z6K4PYOZQ9k+R7p4kKRquzhui3khCdGMYTyOpryqx j5KzMgiZEYd9O2ljeyoImUsGQBHxjD7G9FSg76Lnk3/QLgAtjfgsWDREsBj7 GyuQeB4J4nnTWAbO+7HnHNHXLbKfW1gft8Vj1Ogu76y/9NIs1nwOB3/jZSz1 Np56l0xDSj9bUZWvrC5W1sxV1Zap65fYN6ywN6zWGCHz7KALasseL+gM2DyJ jYhzrrq4Drr4Dvr1bSw31FnSmM9kfpEUNN+CPoPFMwNndq0oWVu3G78KtmED MFfLmRvF01obl6gMC1UN85T1OkU9Dj83ZFD1KfK1QX97FSN9FC65g/kc3Ud7 b9PPn3X1T3p8fH/j/T/5LwrqSJ++vn9qNR3MDZs539pEfQ/JujRsPqPXC3pR TO+iJebzbh94CZycKT0bKIXjNcPkN6Pkd+Ooh0n00zT6VZaiPE9ZzfF5IQ/O K38ezqAW9jjpS6Enogtpyy9m/wDR1Vs5OW1vNj34pvQylWmpyrRYaVqkNJUp TfMVxZM8i309i8m+Djxd2LzLwSLalMxWElPFo91PBWiKx7gDpVM4SsstKM3v G5Za5jq4juE6dnolqI1e59q41+HnEN2MEf0zEtqqRXi/CZ8vYT5HYz6z4Q0w N3bg5Aa/M1jGiGdjnqouS5k3lnE2HkSDs8HZzif8MJynMnDOH8rAGTyNUTAP iOCc0EfJWBmEzIMY/BLBrBsg0PUHOBPxjJ74fq+N6aFAz0FaDxIsGIT5PBj4 vGQomBurAM4QKNo2QRTcE6a5g3rC5OAeHwA1UtEnsIo+jy2OG6Gyu3NkDyPk z6Llr2KpN4nU21S6PFPxLldRUaisKlFVz1fVLFTXLrOvX6VpWKcxbnIonoXv 5sie50POAE9ibrCZDf2GNszBKHdZ55l0AK3qFrsKiaubrMXBWdB6slPUBe8U 5Yln6Aw6EnMDCRJibiARYlqqBvFcBnyuK1bU5dP12VR9unx9yJeVCTLE58eI z6HA57h+rvf/j89N/pF/IVAj8ez1+e8m/7nVzL+2CvraJuw7m+hOtoldbDN6 2OX3tUOvl6mdtStHCjeMheb4Xl/xkWl4YHYWHBJ0OVx+PZq6E089TKafpSte Zysq8pF+VkFOab7atEjNwlnDszUceLaGIwNnpBP2gtsGR23i0s/FyaJ92ILb w+5X5Cj9I4/SG1lKY7vDtEptWqEyLTcj2limNC5QGOcpoJNSQhuLaWMRXezt UezlUQwTK0y+jvDZlCozYT4bk3Alsh8TpcWj3NDHUwH2iNXwM0RmW1JaN8Hd LKR5TUMLO5pFNOTuipsg+gxG9AXz9Ld+Exwpy0AAuxwgoXe2M/P5+S/lMy+8 wZjPWyw7g4x4VtVj8XwgwOk53iB6J4K6Noda46NZ4aU56Sc7gqPOeyZJigmc J4CtQQznJcNFUzprE3orF3CaeZAQXVTRPRSoSjCZi/tDoSelWD/7fK9FRYQ0 ktagrgeSXiEgGvEZiWccqwPDza+r1r+bK5LQWzCod3qL0CV6cDJYcKdmSH7y l14IlF4Nlt4MZc2NaPnLeOpVMvU6nX6brSjPV1YUK6vmqqrL1LVL1PUr7BvW aowbHYoD2wIYd2FIHnBmzGcS2yDOMzlVELcFYd8+HLKAYxukA2hVN5oUObP7 IruTn1gcxzCfD/LEMzeWgs0N3cw2+nStPtXFRMTzAmX9XOBzbR5dm01djG17 IapNRbzsVTTmc4j4Gubzg83/2nx++fJlFO+xa9euf9Sv+JcANRLPPn9sNfUv rfz/1ioY8zmmEzafe9kV9gP1gs1nEU4+w06DQ9Mlx/3hnCDC5xvR1N146lEy /Txd8SZbUZmnrC1SNZSoDHgIy7QUHzzBwNmBgfMm3BnfysJ5D+SXCJYZJu93 0s93h6bMQbyffD+7ZXE3u2hxB2tQW1GaCGmsok2sijYuNCPaMFdhKKENxbSh iDYUUIY8ypBLGbLlxkx58Tj34rHuSCEbU2RGzGdDohRVQwKuROkJf3tUhgQp KsRqRGkj0diWWlofatk3ZIU02NEpzuYZw41sNLoYI3p/C4jGRjRsCb7jzrgc 75HQzVrQD5rj81mWz0x4AyefifnMmRvxWiKeDXnQFswb4/kSr9+/F8VzNvyZ OZQ9k+EYlFk93TZNgIYgH86cz0zITAgc1UNByFzUT1DUH8Qzqqjuionfa4uJ kB4gQPqZSGiGz1hCLx4qmNZZi27oZnTRrsESesMYaA5uI/6zr/gQC+ez/pKL CM5BAOe7YG7IniA+x8pf4l7Jm0y6HInnImVlqap6gap2sbpuuX0DOBsagPM2 zMbdrLlxBPvDiKJn8ayfOVPnTlwL/da2utTP9NvawXvobXaCm6trVuXG9AeJ /3yG1c8cn/dxM91EPJPkBvAZtiIsVUNnsExVPw922tQWKWry6AsJbS/EtKlJ kr+Ll71EfA4D//lagBjxeddYu08Clg/n3pYtWzw8PIRCYZcuXR48eGD13a1b t9rb23uzj7Vr1/K/+w8ZHvzVghqJ56Gfy33/1GraF60CvrQJ+cYmHDcHU7vb ze4CLxYke9C95JrRos3jIfy/bzKMzZ7wl54Jkl2YLbsaAccf30+gniTTL9MV SJBU5SnrilT1JaqG+WrDInvjUnvTyvfBWRfKqWVnFs54+flBcOF0Ye2Y2z2O 0nsd2XW4TRwP0jokQno12zRcynQMidFhnAsq2qBjEN1QQDXkUw25VEO2vCFL 3pAhN6TJisa4F42GQjQmcK6Pl9bhOu5njwp9igp9vYilNIAaael0M6VBlnN2 RwnP65jmaR5g2aA2I3rPzyGau49+j4R+P59vNeEzmexmmoPtwHzmzI2pbeCE QSKes1VHg532Bzg9Y52NK7PlsYPcTwdCmo5EnXf6MnBej+G8jAdnPpkRkwmB CZmRAEAfyXPvjtrIborifgyrUSGMI0rPHcDwOb6XYsoPWnQ3t2yYcAXTHERw FiLlvN1LtHsisTXEx2EgRXIOw/nKLOl1JJ5DsLkRDlsInsfJXyZRb9Lo8iy6 Ik9RWaysnquqXaiuW6puWGlvXKc5leuqL3BjxPNeIp6dmdjzGTCfLWIbt3Bz 8A5jQSMVrUv7PbyN3jRvpWNGua2KM5858cyPbezD52cR8Uxizzi5wfB5idq0 UGUg4rlEUVOkqM6l183+siZVXp0ofxcnexkFfMb6WXx2mnBWN5dPwpYPxB0C skQi2bt3b11d3fTp07///nurH0hMTBwzZsz//hd9yOPXBmqdTueNzY3pX7QK /NIGmoMdbeO72Ab9QId1A4VTNgQWHawdw/B5/2Q4iuKUPyycuTRbfi1CfjsG zqZ/mky/SleUZ5n5DN3whfYGssRgDWtrbHLk4IyAgOCMsYxrL/7IwfkQfl0c gb65vsyd9eXY434IpUFOO7COhwYozZnSPCGNcx1s9A6HOkylCpMOTu42FtKG fFDR0F7Jpuqz5PUZ8vo0WX2qrD5ZdjxAUzjKDdXxmfYIzrVx0po46dEZ9uRT qDgANaL0yQCNIQlTOpVHab7dQdJ3nNex7MMQfc4cioazv7e04TcKGQnNdgmt LA6LRXZ3PfWb2+k3teP4rF/ZRr+sNReug8mUIg9I1m1wYsyNyW3gkBTsPNcQ 8ZygAGcjEgJ1a3w0y700x/2YwAbAuZcFnBfz4MyRGWlmBGeC5cK+goK+DJ8j uim8O7oU9oVmdHE/u6J+MBIFFkd/AeEzuolDldBLgc1nGJVaia7JUbBtYOt4 0Q4vWAhzYJL4CIbzyekgnk/PlJz1Y/VziBSbz7LH0fJn8fKXydSbdOBzZZ6C dAbrFqoblqoNK+1PZWlhVAohEd/WgSQ4hDuDJFmHWHoei2eE3Bssny0Rjf52 ANF38RwKN8dNRrn5RZyNs2xzkC+eOed5BxbPW8ziGVbWID4vVpnKILkB4rkY NveuC/+qKpOqTpVXJcrKY4HPjxCfg8VXMZ9Dums/CVs+kHLJyck9e/Ykz9+9 e9eqVas7d+7wf2DIkCERERH5+fkZGRm3bt36xb/o73r8SkDd8/85+fyx1ZS/ tJrx11aBX9nM/tYmqpOtf0c6pDOd3xeaNQuHIj7D/vNNLJ+RZNIHSM8FyS7P lt+IkN+NoR4l0M8wn99lKarzlLWFKpJWql9o37DU3rAC8dmBOZV+M8AZ6RNQ a7udGCbvbQHOh/F95VEX/SIPOIWTOc7Y2Wx6mLU053jw7I4WhLQ5Hc0mOkz5 lDGXMmZThiy5IVPekI4RnSKrS5bVJUrrEqTHZtoXjHRDheBcHSvNH+FWHSOt iWWIjQr9AKI0uB9NKG22O3hCGiGa8TrYUAcMGBa/F9HXWZeDbRTqd7Qsoa0s 6Luejbc9dUm/5/jMbBYl4bqDrPm8mbcQaT7seTYVqJF4PhLstC/AiXM2LoWA s3HSn03T+UoKh6lzh6it4TyYgTPxMSK7KxCHEZARlvMJnOGjndd3LuHdaATn or4Q5iQV2Y2O6q6I7q7w/V6LCiF6/kBoDi4eguAMe2DWjRJuGguruhCcd3mL 9kyE2ucjOuArPjwZURqOjTjnB8tvrwVJb4UCnx9Eyh7Hyp8lUC9SqNcZdHmO oiIf+Fw3V9WAcLdUfSoNb4NBMER83k46g06seGbNDSR6IVbnxtjIZkSzlMZB DvA6NreF9i6Z4yaj3Pw6z3M2TrKrRHmZZxyrc8QLRR1gxha9caRr8c46tW5K a9MClQHEsxKJ53URX1Xl0JUZVFWKvDJB9jZW9gLxeY7kNuKzvwjxeXaPXzWf R40aFRISwn3q4eGxceNG/g+0bdvWwcFhxowZAwYMEIlEBw8etPo3/LuOkF/R 7+/5ufOkP4H5PPOvOLzxnc30b+nATnRWL7uCfsBnpJ+XNeHzmQBYdX51DqzS vYf4HE8/T6ZfpysqMJ9rClW1Jaq6eQyfjXDwMcNnfb6bLqitvsgdd15YMlvB 2SyeXQif4QVyHI4TQqA2B5D4Wpr40n+nkDYhIV1Cm4pBRRvzGSO6IRNcjvo0 OZLQdQjRSbLaRGltPEAYkfnIDHsEZ1R5w90OTVdXxUgQqNHXUSFcc5RuSJQi SoMpTSidZSmkcfoOoncMonHH8GcRfdXV2uVoVkJ/CJ8vsnzmwhsh7c3mxkrc GZwLq+qIeM4d4/k8nnU2QsHZ0AeY03SFOE23YbwZzpMt4YwU8sSO2vBuCiBz H0FeH7t8XGFdaQRn9ARRuoD9IoHzxI4uPh1dorrTJf3tSvvbzRsA5vMiDOdV SDmPFK4fzdSG0cJNSEWPE+6YAIhGfD4yGY6NAD77w8k+DJ/DZfejZI/i5E+T qBep1KtM+i0kNxTVOmXtPFXDQtXJZBd9mhaf0K0BybodX1H7nJjkBkIoMTcu 4qbtNTfGWL7BdgCtEH0PToBFtzzww0Qqn2enubliVyGZkxvEeeZiG6y5ATtq 0BvHSntYj7AEn20xHxb21usUF1LbnUtuV4n4nE5VJssr4mVvYmTPI6UPMZ+v +IvOTBWG9fpV87lPnz7x8eYO5h/+8IfFixfzf6CsrOzevXvkeUBAwBdffPHL ftH/8vHxQe0/ccTEz1tNwuaz399sgr62mfw1NfM7OqW7HeIzEjklmM9LR8AG 9Y0WfJZdDMZ7dCPgHIrH8TRzNn2WoipXWV2oqilR1c5T12F/w4T4vNqhcZ2D LqAt4jOc4LbDieHzHh6c+eL5kAt0zAmcWT6jy1i/xAP2Lh5nY6KHnJgDNPex dseHCWnIdSxkO4bEjiZedB5VnyOvz5LXZcjr0mS1KbLaZFlNkqwmQVodDxCu ipFWxkgqoyWIz15dOuQOdyuPklRESxCo0bcwriVHZ9oXjnKrxy1FE4/S+lAN I6SLGa9DH4+jd8vZUAczA97GGtFkh9KlJi4H1yh8xgtC78ZBaCs+38N8TkZ8 9jTzWc+ufT6Azeet7MK65Q66SW3gkJRCdX2OKh9n6jhnYzV2No7OMKfpzHAe geAsRHCePxgMZ3TxcMYyupYQllHlko+97SZ85zKnC02YjD5FRUAd0Y3u+bf2 CNHF/ex0/WDreOkAOySeywaBeF7M+BuCFcMB1JB/HgV8RkJ6p5do70TRQV/x 0Snik9PEZ2ZIzvtLLgdKrgdJb86W3omQ3Y+WP4qXP02mnqfTr7Lot3mKiiJF dYmybj5kIfAhC3gutSmfj/L4THKP70c0m3yG8aINbUBvE7X8E78InFln4wi7 SnSvOfOMJ7PA3ND5tWlcjV5HeEPCIlgFqfP1NJQo64l4zqUrs+iKdKoC8/l1 tPRZBOZzkPiyn+j0VGFEb+3zSwc+GlW4xweibPDgwTExMdynv//971esWNHS D+/cuVMikfyyX/SPenwcUF8+tb87NjeI+ez/pc3gL5ynfEPHdrZN7maXifms GyhYMAR2Oa7CfN7O4/OlYOYE5Acx1BPM57dpisosJeJzVaGqWgd8RvrZiPMb +gxXnV/bxo3Y3/iR8NnZrJ858czwmYXzEQs4Q5100S/11EW1x8NWzmZKW9kd LQhpE07fGVeojMtUxiVKwyKloUzZMF/RMFdRX0LXF9N1hXRdPlWXS9Vmy2sz 5DVpspoUWXWyrDpRVpUgrYqTVsYCnxGQEZZRHZimntClQ84wtzeREgJqhG6C 64IRboTSBkTpFJbSmTwhTdJ3CxTMso6VbKhjq701omFZNA5FX7Z0OawltLXF wYvYNcdnLryxz0UX1I7ZubHKEcwNIp7zsXge7fkkjr4XRd9knY0TfkxgY7uP JLCnG4Izevsmm+j4cC7qL4jorkBwJlgmEEaFsDzhWxf0JA992ssupxeGc2+7 cCyne/61fQFW0UVgR9uV9MP6eSBs6CL+xlKOz8MFa0aCft4yVrh9PLgc+3xE hyaJj00Rn5ou/mmm5ALhc7D09hzpvQjZwxjZkwT582TqVTr1FjcHq4sUdSVK w3xV8RQIRTB8Nvsbjoz/DMlnF8Z8vuTKuMpXOEpbeh23yZnszFEp8H66vo35 YO7TvNJbtQVZ8byTjW1ArM4Bx541plX2puVqE+4MkgOtjDrFhsivavLpqhy6 Iot6l0a9S5KXx0G47ini82zJrSDxJT+RfoowvJf28ppPMEL4gQTz9/efNGkS eW4ymWiaPnToEPfdx48fd+7c+fnz5+TThQsXtmvX7pf9on/4458K6nVFMT2I +fxnMJ8n/JXy+ZIK72hL+JzRyy6vL9yczh8CW3lXjbLmM9LP12fL70RQD6Kp p/H0yyS6HOnnTGUl5nONDvyNhoX2pqX2+lQt4jMcErQB+Gza6mTa7mTi/A2z s+ECxVfOhMwEziex2DjFLCvQRcOkLTMVe8zK8eBpaUh3sJRmhbRptdq0Uo0R rTIsVjYsVNYvUNTNU9SVKmp1dG0RXVNA1eRS1dny6kx5dbq8KlVWlSyrTJRW xksr4qQVMdJ3mM9vIyUIy/umqPdPVSNEZw9zQ8/RF99FMYVYnc9ROomldIas qZBmonccordgRO82I9p0io1zECM6+TPrRuGzZiwOaBHuaM9EOFrmMxwIuw2P DRJzgxXPDUg8j/N8mQjr929HsM6Gv+wgwFm6A8MZXRWrxwCcFw2DpaAEzsTT iOimCOuqQOzN6Q0QzsY1/luX2Z3pHIzl7J7wFYToMExsxG3G7ugDcAY+9wX9 PBf0M4/PQwTLhgpWDAM+rxvJMze8RQd8REcmi49PFeuBz2LE5yuBkhsh0jtz pA8iZI9jZGxzkHqXRVflob9rRUMJPq0YiVIrPu/AV9EB7D9D8pnl80UW0Zdw kMMC1E0ojZPPSELDwa8X2DmUU2wxcOa1BfeybcFtPDiv15jW2JtW2puWQazO VKYyzVOeinaK8vmhvkBRk0tXZdPvMqjyVKo8Uf4WNwefhksfzJbcnCW+OFN0 cjL4Gx9/BceHx942btzo6elZV1eHnh89ehTxubq6mvuu0Wjs0KGDt7c3+uKN GzfatGmTnZ3d9F/yaRt5/wxQj/3v3yE++xLz+W82A//iHPKNTVhH25jOtkmI zz2Bz8WIz4OFi3l83jdZgu5tT/vLLgTJrmE+P4ymnsXTrzCf32UqKzCfa3Xq +nlq40L74qltTqVqTas0xjUOhvUODZscG7Y4NmxzgtModhM4u6D7awsym+GM z0c+qWXgrGeLyI8zQGkkpxkHj8jpw6ycRpTey6M0sTsYIc3zOpbACZtc9M5Q omjAKro2n67Jo6pzqKoseWWGvDJNVpEiq0iSvUuQvouTlsewfI6QvI6Q7J2s zhrq9jJcvHcKPEGfvo4Ql0cyGptQ+pifPUNpEpbGQhomzdmmodmOXoP33ZET DHc71CNKHMFny5LRQuJ/3nCDoUK2UciX0Prd2OIgFvQTVkI3y2c2vAHNwa3O xNyAc2BjtEg8m/Ih85wz2pMsqUP3SqsnapZN0Bzipek2ToBlzk3hXNhPEM7C mWA5C5MZVVZPwHJmTzvyZDYmMyG217cuSEUXYD4XYkQTf4Ph80C7hYPsFg8W LGH5vGaEYP0o4eYxwm3jhDsnCPcSPk8SHZ8i1k8T/zQD83kW5nOY9EGk7GmM 7EW8/E2yHEnNqiy6No9uKFQU+3jCWlqGz2qGz1vwNbMb8xm99Z9g+QwH+5L8 M6b0BRbXTeU0N5ZyHb6I+KyL7wASmlu1Qcra2SCZOqYtyMAZiWdsboB4XqQy LVCZ5iqvprdf4v+H+ny6NoeuQuI5nSpPkb9NlL+Jlb2IlD4Jk94PldwIFF+Y IToxCfh8Y93H5vOHwwoR+Dv8iIyMdHBwKC4ubsRBjv/6r//S6/Xo+fXr1zt1 6iQUCtF34+Pjkcb+3/y6f+rjHwXqtUUx4/7nd6Q5OO2LVv3/7Bz4lQ3D5x9s E7vZpfdE96SCogGCeYNhSS/LZ8k+nK9DIuo8HBUkvx0ufwjnBNGvk8DfeIf1 cw3L56LJbRoW29cv09St0NSudqhd61CzwbEGIXora3HsxXw+ZCWbtUBmDs48 2cyRmamftPoVnojSTJ/lZHOU3sNm8EhMmu9Ic01DLtcxF6+8K6JNBdSpMIei CR6F492PB2vq0uW1qWB0VCXKKuIZRL+NAj6/ipC8DJe8CBNnDnHdPUn1PEy8 B3ANzxGx0Q8gjCNWH5qmBkrPBEobk6Uk4AGHAoSZm4ZmO5rk7lhE1yEhjRFt OIV7hZwRTU4qbCqhM//D2oJ+yK4Y5fgc3YHbjATmMzs2COZGiT0Sz4Yc2CP6 IgGW1N0MhyVIxHYmgY2CYeqcIaq1Y81wRtfJ3IEMnL06aud0VeRgOCMUh3Sm x33jktkDnmf0QGWLnod2phGuQ36gs3vCAWpIPCMVnY+NjoLejITW9QV/Y25/ u/kDOD7bIf2M4Lx6BBLPgo2jBVvGNuWzCPH57AzxxQDJ1SDJzVDp3TDpQ8Rn pC0T5G+T0bstVZNF1efSJyPwyX3v4TPJbxCLCV1vZPT+AmGyq7nx1zyoLU8Y vOiqi+3ASGiyaoOD8wHLtiB2NmAperbWtA6LZ2xuGBerjWUq4zylqVS5KfKr Ym/P+jy6JpuuyqAq0ij03/UmQfYaNwcfz5HcC5FcDxSfnyE6Pkk4p+evms/o UVtbu2jRooSEhAMHGJ+8pqYmKirq7t27H/hvaGmL3ad6EEr/4j9Sglen8ZjP k/+M+fwXM5+jEZ+7Ap9z+oCFOHcwHG+xkuXz3smSI9Olp/xk52bJrhA+R7F8 TsV8zlFWFahqilUFvq1rFtjXLLSvXmJftUxTuVJTucahcp1D7UZHwxZH6BLu xBbHPuxswLFBWqhj2uZl82l8YsUZXFyT5SxTupgO+uWe5m74MUJptnvYREgz u5XIYiVuq9JU8z4lnY+HPsIR6VtTDnUy1KFonHvhWPfCMe4Fo93zR7kdnmn/ Llb6NlryJsrM5+dzxLsmqXb6qp6Eip/OFiM+I2KjQt96HS5+jUFtpjQOeJjS ZPoQTdF4LKSLaWMJbcJ2tGm5yrBKBbm7zfbFnIo+6lSL/ovOuDBG9DWey4Ek dLpZQjN8trKgm+XzEVdoDs5qZzY3fNsQ8VyXBeKZcTbwNMoJPxnZTUfSdOvG ipZwcIaohhBdLQV9BV7faXOxoZGFaTzuW5fgH2iC5fTusLEWMRnhGn0xs4dt dg8M5840qtxetnm48nvbFvaxJXwuxXxeMADgvGSwHVLOK4cT5SzYNEawFZxn 4a4Jwj3ewv0+okO+oqOTRScIn2diPgdLbs6W3guXPoqSPYuVvUqQI51ZlU7V ZVEn5zjqI5xgSTji80Icv+T4jN7HzXwmXVoXfNiNJaKJhCZhjGYpzZ7KzRz8 urI1khOMhCZL6qwyGzsY8Uzg3MjBeYW9cRks3DAuUBnnKjdGf20sUhR5e9bl 0jVZNPrPqUil3ibJX0NzUPYsAsJ1d4Il1wLE56aLjvoKZ/fUXv918/kf8uvI FrtfiZAmD+6P9PeCevQffjfh//1u4h9b9fmTc98/Oc/8mw2fzwld7dJ6AJ8L EZ8Hmfm8baJkz2TJ4WnSk36ys7Nkl0Plt8LkD6KoZ4jPifSbVMXbDOW7HGVF vipvYuvKEnXFPPW7MvvyRfblSzXlyzXlqxwq1zrUbXA08ruESEIfwPr5KEtm C9nsCtUymbnSr2iti2kPlNa7mCl9xCyk9SVuuuC2UEFtLYQ0l77jAtJkhkUH azoMJNSRLa/LlNemy6FdmCQ77K/JG+mWO8ItZzjYzllD3XZPVj+bA1hGfE4f 7PooRPwwRIw+oq9kDHFFhb6L5PSrcKD0QUzp2ngc8MBTh7rx7sdmOxCvwzgf EH0s0bluOSDauMm+MBAQ3bAXEA2bSEmcgxjRxOWwkNAWFgc/Ymfm8wV3XVQH Jly3z0UX2A6SdcTciNaCeM4F8fw8HjsbYVTcYAjUHWADGxjOYqScF/LgTDwN r+9cONmMCDz2G5e07oDlNFzoCfpKUCcaPUFwzkJ87mk7uzMN/kZP21xUPD4X 97Ul4hkp50WDkGy2A9kMnrNgwyjBxlGCzWMEP44V7CB89hLunygEPk8CPp+Z Lj4/U3wlQHwjWHJntvRBhPRJtOxFnOxNorwiRV6TDrNIxdACoOHkvnn4L53P 5y2WfEYX0gkeos+xm7o5PhNun9Vag/oSe/ArHJICt3twr3fKxXoahXM2cOBZ n+eqz3GFTTUEzivtjUg8L1EbF6qM81UbY742FiuMBYqGPLpwvEdNJlWVRr3D 5sZraA7KiPl8O1gCwynTRUd8fit85j//VVG68e8E9ZrCmDH/jfjcyuePrb77 Y7sxf6H4fI7qBHxO7WGX3VtQ0F9QyvJ5w3jxj96SPZOQCJQiKfVToOxSiPxm mPx+JPU0lkY3wi9TFK9hBYfyQJjzgQjnNzr1m1L16/n2r8vsXy+2f71MU75S U7XGoX69o2mTI6S5tjvBaR17sMWBJPQRLJ4Bzq6Np3ARMp/mkZkDMj9H2oTS OPbP2B268Ha6sHa6OXiE3EpIW6fvmIA0id4Z5ikaShX1jB2NO4ZZ8iriRSfL 3iVKy+Olb2Klr6MlLyMle6aoMzGHEZy3+6jSBsHHB8Hi+0GiB8EiBGr0dVRI YCM5/SoMfI/cYTDwUoconSQlQlrn5WHIB6+jsojWJzgdT3I2rgREGzbaFwRg owOr6Ar0dvMT7hVeddMldmi8696ihCYWNPq6FZ/PsXwmzUHO3JjSBga6sXjO HOXBOBu+Dsu8NAenAZzRDVRAD9f145qHM/E0snqBbEYcntWJTu1mSyqtG5B5 zNcu6AlR0Zm4Qn+gUREVTRCN+FzYG8O5r21pP9t5A+zKMJ8XE3NjsN2KoXaI 0ln9FAFdtYHdtIWDlDvHA58PTBQe9hUdmyw6NVX003TxRT/x1UDxrWDJvdmS R+HS59FShK93SfLqVHl9BlU83gMOhEJ8LsamVpkSOhEr8GWArgd0YWxzAFts nyO8vx9pDtEEwswYoNlws6A070huJrxxykUX2d7a2dhtzmzgPaKusOBxraaR g/NSxty4ktXhSkZ7JJ4N+YqGXOBzdQZVmQrJjbcJ8te4OfgkHMznW0GSK/7i n6aJDvsIQ3tor330/uAn5POv+fEhoF5bGDP2v3/nhfn8+eefT/uiFeFz6LcM n+O7AJ+zEJ/7CUqAz3CgJ3pVbvWWoBfpwanS4zNlZwJlF4Pl1+fI70ZQj2Og Rfg8WfEiTbE31GnvHOeX+aoXRaoXJeoXc9UvFti/WGT/aonm3QpN9WqHhnUO ELRDTCASencTCX2yOdncLJlboLQupgMEPEjGo4mQxqfVN20aYiG9Um1arjIu xbmOMmXdfEXtXEVNCV1dRFcVUJV5VEU29S5TXp4uf5sie5Mke50gfRUnfRkt eREpeRYueTpH/DhUTPg8plOHsZ063AsSobo7S3QXg3ob+tZgV6SxQU6zlD6K TWlDMkQ7cka7nwp3aCymTaX08VjoGNYuhWh03Tp1nn+b+u0OVehPfswJ3n1I rxBcjg7McstHZgltwWcioe814TMJb4S0ZxY+r3TQ+bSBgW4snh/HgrNxdTYE 6o7NZNYfBfY0w3kSA2cBB+ds7GmkYzgjJqeg6gqFsIwKPWHgzFZmd9tx37hk ESGNEN0D+Jzfy7agt+3E72A+BZVvR5cpnVymdnKZ9oPL9M4uM7to/bpo/btq cwcotmD9XDxYGdJDiyRiWC9teG/XyD6u0X1dV41TXfYXX58lRjISiUmErBdR 0rexsspEWW2K/GSwwyl0t5KHj2woxpOkxIJG787oTgpdCZs0cG3sxAu69/8c os8z2tjcHPmJB2ruW3rOfHNhtsqQ6Sqzs8HCeQNe8wh7nrHtvBSL50UqwwLV xuivDTqloVBhyKPrczCf06nKFPm7RPnbeNmrGGgOPg6T3guV3JglvuQvPj1V dGjib4LPn+Q3/m8e7wH1iP/63bj/AT4P/6O8zx+dkX72Y/SzLfD5B+AzjKj0 FuRjPi8cBivW140Tb/GS7PKVoPvcYzOkpwNkF4LkEOEIhwjH43j6aZJi1yyn XSFOT7OVT/NUTwpUT4vVT0vVT+fZPwcJralYrqld5WBgg3aMhCZB6H0uZhca IfqUlWx2gzpHqmVE49KvbA2NmHPQjsF2H7E7nBlKt+BIA6X5TcOlKrI72jgf Vt416Oj6IrqugMa5O6oyU/4uXV6eKnuTjBAtexknfREjfR4leRoheTJH/ChU jJUzejtTpQx0RbXFS3Vnluh2IBRi9Y8TAeA7fFRPZ4uRnN43RZ2H7Y76RGld Mgjp3QGaxiKqtog6GOmom+r5doESIbp6tTpnZpuqLZrybQ6mo871x50BEZdd 9etbc41CkMr8LuEzHp/vW/I5sgPZjATmMzY3dDPaEvFcj8TzSI+7eP1+3GD3 U/6yvWyabsM48TIE56EAZy6q4fWddnYXGsE5A3saBMXJuAK/p0d/5ZLcBShN VDQgGldGN4BzJqZ0Vnfb2T/QE75x8frWxfs7FwRnJJ7n9rcF23kgtp2H2K0c ZrdmuN26EYINI8Hc2DIamxvjBLsnCPcx4llIxDO6qV8zTpU4wDVpkFvKYLft k+yfhUtfRUnLY2TVCbLjgRrEZ1MWZcqlLPhstjhICl0DPeXd7BkKCNFHsRF9 kvQKXcxGNNgXWvMw4CkXpl1yRsuXzWwWFJSzfgE+0JDAmRXP+gL2lGTsbEDY b7naxMG5TLUx9mtDqdKAxHMBiOf6bLo2g8of41GZLC9PkL/B5sZzMJ+ld0Mk 6L0J3UHop4oOegvQ+9fV/+Pzr/VhBepLJ/eP+gPm8+eteuH+YL8/M/5zMPE3 WD5n9hLksXxePlK0dizisxi9TvdNkUKL0J9pEd4Kp+5HUQ/j6B3+jttnOT1K VzzMUj7MUT7MVz0qUj3SqR9jCf1mkX3lMk3dSge8i8ORkdAwS+jMSGgrl+MU 4TOfzC0jGrfR9auAzOgjN06Lv9KeR2lLLc1Rmot2bGC9DjbXYVoI0TvTXGaf kgl3DI1ZckOG3JAqa4AFHbKaeGlVLISi30RCr/ApRvT9YDFC8Z1A0WYv1ehO HUZ93yF5oOsmL9XNABEqBOot3qpUbIM8DQUtncMK6cp4qT5YUzDOvSaHqi2g qnQ0QvTTYoVxjbpipTprRut3mzXl2x2q9zuVo/cabESDy3HP3Zy1s7Q4WD63 Bj7fwHw+i/l81BXWPge2M5sbWDwXjvN8FAOj3Ot8HZZN0Oxn1x9tGA9wLuPB Ob+vYAI2nEkrcOzXLgjICMtJXWwDOgKZ0Uf0PBmr6FS20rraoBr7tXPw99S4 r53HfeM8/htnxOe8nrYFvWyL+tgW9wFzY24/23mAaNtFCNGD7JYjRA8FRK8f KdiE+DxGsG2cgHE2vIXoLv7YJOHJKaIz00TnZ4hAPAeK7yDxHCrZOVmdNQw6 BZWxstoEWdFod0Oq3JhJGXMoUz5M9zN8ZiwOLt+ogeQ8QfQ+9pibo87NI/q8 lrE4iKt2klDaxSybT7JnV7FLNmCVLlHO+JwgfaGbPg/DmXU24LChZZCpMy5S M3Cep0TiuQHEs6Ihh67LpGvSgc8VSfLyeEjWvYwym8/XAsUXZopPTRHu9xYU DVJsX5z5MZnzSVD5L8pn7kFAnRI5C700CJ97/xH4TPqDAS3wWTdQWDYU9iqs GSPeNIFEOKRMizBQdhksaApprR9nOP7o53gvWXEvVXEvQ3kvW3kvV3W/QPWg WP2kVP1yvn35QvuqpZr6FQ4mmPV2xBIaWxzEhd6NJTRxOY4QlwMsDtMZV4bP 55urC+bSxXXQr25tvYLGzO0mlCbzLPvZAB7fkWa9DnNAeoHCNA8v68DROyS9 TNlyI15GWp8sq02UVcdLK2Kl5dGS15GSFzxEI9mMaHzDX7RhvCqxv+v68aqE /tqkAa7X/UWo0LcQvZHA3o619N7J6rzhkJSuTZBWJ0H67nAoeB3Ps6miyZ4/ hjnWrVC9XabKmNa6YrPm3Q4H4zG8nQOMaFfIclhKaGs+PzDzGU6GxeE6/TxP fa47sxNpYuvGAlVDtjJjpAdevw/OxqFpzPqjnMEqdA/Fwbl4gCCvD8CZtAKD sGwmZE7sbDvqKxf/72j0BOAMZYMqBVVX+DirI9Xti3aEz5ndbbK72+T0sGHg 3NtW18d2bl/b+f1tywbYLh6IDechdqsImUfYbRwp2IyU8xjB9nGCXRMEe4ly ZuF8epro3AwROM8B4puzxPdCJI9mS56HS19HSd/FSAtGun/++ecnAjXGVPi7 M2ZTxjxoAZtK4C8X+LxYCX/jxILGJ0UConeyiD7o1Dyiz+Hi89k8VMVeb+aN BNhz3o8PCdK5meGc70r2IAGcsbOBV23ACRdgO+d0uJzVAYnnhmJlAxbPDdl0 XQZVk4b5nAhjg6+jGXODmM/o/8D5maKTU9DNhWDbGDudTvcxUfN/fP7Fj9gJ ndBLw6vnn4b16ujT0QXxeSrOP/t/yeNzV4bPuX0FxQOFMEI4QrRqtJi0CJta 0JunOmye7ng7jr6dqLidoridpridqbyTo7ybp3pYpHpWon41z/5dmX3NYk3D cqQNHBqJhN7EutDbnc0uxwEX02EX01Gt6bjWeNLVqMf+xjlLGl+0KP0aHP6/ aP11K1ZbUJokpa2ENMlIW3kdZPEdXqkEiC5VIMVlKqCNeZQhh6rHoY7qVFkl Hl15Gyd9HS0lXvTjOeKHoeJ7weLbs0Q3AkTX/ERXZori+2sRny/PEMb306Ja P055dabwup9w4wSG0s/mgN1RMBLsjvJYENKZo93r86knGfLD0U47I52qlqpe LValT239Yq19xU6HN0iA/eTSeJF1OZpK6Gdsi/Bha1gxuqGdmc9HXHVh7clO JDA38AmwheNbP4imb4RR8YPBdiZpupwhqpWWcA7rqhj/nQvXCkSymSPzyC+d 43+wSehsk4grCRXmc3Jnm9FfOY/5yrn7F+3Su9pkdLPJ6gZwzu1hk9/Tltga vh1dJn3vMvl77Dn/AJ7zDPCcXbL6KTYgMo8SbEWyeSySzYI9E4T7vIUHJwqP +AqPTxKewsoZwfmSnwih6cYsJJ7FiFRP5kheREjfRsFg/jE/zYkADeJz8Vh3 Y6Yc9HMeZSqkTTp8f7RAaUJ8Jntf12IJTRC9HSN6Dw/RjBGNJ4bO4PqJ7Q+a BQDWAMddzKcKHmbX0+3nncq9HcO5wJVbIso5G3jVBkxzGxdAZgPgjMRzkaIh H8RzfSZdm07VpFKHAxwO+WnexoK58Yw1N27MkqA7CPR/48Rk4d4Jgq2j/4/P /zKP4f/5u9HY3+j5uTP0X/r8aVLfP/Xp+EfMZ9s5uD8Y18Uuubtdek9BTl9B 0QA4MG7xcLZFiC1odM/LWNDB8vW+DhumONyIom7E0jcS6BtJihupihsZyptZ yru5qkeFquc69eu56ooF9rWLNMZlmsaVDo2chCZBDuxymHY5m/Y4G/e7GA+6 GA9rDUe1BoRoYkT/xEpoRN1L7mzB8kY4pnNtG+vlupd4ex0vshknNoPKxPCY vWFsTJrfN9yKV/038TqYrXelCqOONhTSCJu1eAy8MkNeniZ/kyJ7lSh7ES99 Fit9EiV5FCF5ECa+FwqguDVLdD1AdNVPdGmG8OJ0YWxf7eoxygvThOhjXD/t 2rFKRGwE6g3jlamDXB8Ei57PEecOh5j022hJVaIse7T723T5u1xqR6jD3iin F/OVz8pUqVNa31umrtzlcAsprrNgROsSsMthltB8Pv8HRDhue+oSf8/wGW9G grUbeOEzFs/qhmxVxggP4mwsGa9BN0rbcGCDg3PpQGFxf8GcrorZXWjcCrQl sjmxiy0SzIjMcT/YxONKwAWI/sHG/zsKkRlVYEcKaQNUIZ2oCd84e33r7P0t YLm4N2NoINm8EMnmQSCbl7Oyed0Iu5z+ilndtEHdoYJ7aEN7aDnZjBCkh8AG 2BoIztewciZwfjQH3ihfRaL7GumRmfbH/DX1SbKGVLkhXV483r14gge4VaCf 8dLXMrzYcKmKWfpKEL2ZRfQuB2YjykFer/CkM+NjcMX5zJxgNq9bZBuCvPWh cORxYFsyys2IZ9bZaFysblwI04IQqCtVGkqweC5UNOQpkHiuz6Bq06jqFKoy UZ470v1NjOxFlOwJmBvSO8FgPl/yh3AdeufaM16w5f/4/C/yuHRy//D/Aj4P /h/50M/lPn9sNenPsPx56g/akX06Th/w56Ae2shOtrGd7RK72aX1FGRDBFpY yrOgN0+wtKCD5EhoXQ2jrkZSV6Ppq3H01UTF1WTFtTTFrUzl/RzV4wLVi2L1 21J15Xz7uoUa01JN43IHRkKvczRtdDRtdjJtdTJuczLucDbsdjbsdTbsd2k4 6NKAEW064drYLKIvu+viP9MlfAZHUZvLzaIsQM0LO51lpg5hNvyki0Xf0Mrr ILkOMgxOdpMuBK+DmQQvousL6KNzHHLHe+SMc88Z614I0yvueSOZXHTmULeM Ia5pg10RdZMHuiYOcEX6GQEZ8XnlaGVMH+2KUcqfpgjIc/R1hG4EaiSw0c/f DxLtwXbHiwjJ6xgpknw7AzSvMuTr/DTJ4zzuFCgez1cmT2p9db6qfIdj7RHc K7zCczmwhGaC0FyL8I4lnw9rdQHt0N+CPsNNH+lCxPP9KDhYMGagO/orxuuP XFeNNsO5sJ9gwnfa0M40eBqd6NFfuxDZjMg841sqtpNNHC6CaL9vqVFfOqMK wHwO6ghuM9LMOd1t8nraFPSyYdyMfqybMchuGXEzhlm4GYxmhlagYB/rNkf0 1kb1cUW1fIwKPI2ZoivYc74VJL4bIn4Qiu5fAM4vIyVIPFfESPNHutcmwkLv +lTY7030c7GXhz7SEQ9vwqIqzGdscaxgT/IliP6RQ7SjBaKP4yKg5qa2j+NO 9DF2jvWw1S5c3m7nHx18Bv4H2BqbLMUzdjbInrpNsV8b5yqNJUoDgXO+oj6X rs+i69Kp2lSqOklemQB8fh2NxwZxcuNWsORqoPiCnxjdUKD3r13j0X3Hb4LP /5CDrj7tY1VBzAjM5+7/z9nr81YTWT5P/6vNuL9S3l9Sgd21/oP+HDj4L5F9 XVMxnwv6C0sGYQt6BFjQGyfAlAqxoE/4yaIHul8MkV+aLb8UTl2Koi7F0Jfi 6ctJimupitsZygfZyid5qpdF6vISdfU8+/oye9NijWmZxoRdaONaR+N6R8NG R8NmJ8NWp4ZtTg07net3O9fvda7HiDYc0ZqOsXFoDtHgbwCcG6+4N17l1RWr sqQ0sTvOc0k8PBu+HCgNeVQyFd6812EppInXsUCBZww9dRM99OGOplxY7F+f Ia/hjI5Y6esoycsIybMw8ePZ4gch4jtBopuBomv+osszhRewhI7uox3+XXtU S0cqTk0SnJ4sQF9BX181Wnl+mhDheouX6nGoCBH+yAz7h2GSfTPt88a6v86Q 30ySx4x0v55D3y9VJvp6nilSPtvk8Aa98C9o9eta44NKPSwk9FNLPl/zgOUb x3Bz0L8dY24UwEB3yjAP4mwcmUECGwDnBSycSTeQeBpjvoHeH5LNo75yGfGl c8z3NqgQnwmiEa5JITh3/6IdwnJmEyyX9rWd1892ARLMAxGZbZfxfOZ1LJm3 4YQGIsxeL+F+b+Eh7GaA1TxZeBppZmxorBmnih/gun6CyiybZ0uehkngfS0K lHNlrLRgpFtNgqwmEbbF1qXK69PhFAZjNvgb6K9P5+OBW4QKiHAswRKaIHoV T0UjRO/AiOYSd4cxpY/iK+cYr4hgPuJsPon7IHeAJg/O2xyQeIYlG/5tQDlz bcHl9uBsIPFcprqa3eFqZgcEZ2MxZOoaChT1eYp6EM90XRpVk0JVJcor4uW5 I9z/P3tvHR3Hma39/vF5YmEziNmxQwNnvjkzE3IYnDh2zMzMtixmZsaWzMwg c2wndsx2m2NbZmYUc/fde7/1VldLTs6ce+/KKGtSay+ttqBVltS/eurZhJlB nCkquxHseDnA8QKazw7Hp2DzIFzXygb/R/D53/h9//86+r7ZAfmMk5HcRhGf x3M+z3jnlV5/dwvqykrsbMK/8Qwa8PfQQX9P6edtQAvavpUFvXeybOFwHJgD EvpMsOJMmPJMhPJMtOpMnOp8ovpyivp6uuZOluZhrvZpoa7SoKubo2+ar29Z 5NSyBF2O5pXOzaudm9a6NK13adro0rjJtXGLa8N214bv3Bp2uTV879601715 n4fpoCVXKCLaEPcaIBoFM0O0dPNmK2KLiJbyWaxKFTxDDwulf86R5klD3gnu Z56voWEdalySVYAbDBuyFHUZghddlYDuMfOiH4TDjbbDLUS0AyC6fKb9uen2 Z6banZxsZ5xod3S87eKB6gFdu0R291g0UH1kvO2SQeqo7iiwVw/TJPXy2DhK u3WsNqOfF9yt3w5zTBngtTfI+VSkPHqQ99k05eUCddxY34PZ6iugu06gEY0u h0RCM4tDGGR3i0b0Mz4f9DSEvSaYG2P8QDwXjfS7Gq5cP8F58QgnNv5ozXCh lA7gnNfDlk03CvwEZTMaGh+ioQFAjv4IA/g89X3loLfdBlP8lY6QT5SiicGK mZm9nNBNNelj9+SvVawqY/UAm7WDbDYMtiljhXOU/iOTGQXzjxIrg/nMp7ib gZqZDI3NY3Wpfb22jdfdD3V8RJ7Gi2jM2NbGyQqHeDcAmZMQzvUp8oY0WmGW qWjG/KDSRFMEDeN9jHGugsWxhFzon0P0Lo7ovSSkGaj3u1qYzGa/sMnkzG3e w3fQ72wNZ5ztDHxeZ50WJGcDxXPMe6ZSTYuB19QBnHNQPDemKxtSlXVJipoE RWWcImeQ9+NIwdy4hpV1jmhuTMNSQ7ic7Rhuu2HQ73z+bRz9ic+9/yLv+18K gc9/s/B51ruv9PmHe8iHHSM/ton73Calm21md9vkvt5RQ/4RO+wfcOcuVkEz iyO8p9fRGfITs+UnAxUnQxQnw5UnI5VnYlQXElRXktU30jR3MzWPcrTPC7SV xbraUl3DPH3zAn3zIqemJZgobFzp3LjauXGtS8N6l4aNLvWbXOu3utZvd60n RDf9gEa0ab+H2RrRhpjXrIwOEdGtdiWXS1S0wGcvS1GH2M8iVqgaPQxRSGlc 0cIozcqkvxMQzUZ2CHUdoh09V0C0qUDVnKtsylI2ZNAkJUS0/EWc7CnVRd+P cAQBfDPE4Vogpq7KZ9n/NMP+9FS7E5Ptjk2wOzze9sBY2/1jbMO+8gCmze+v XjgAA4jNnOqobzzWjsC28e8n6c7Nctg9Vb9usv5clDxygPe8KU4/Zakihvv8 mKG6Aa/xk2REJ78ubMF7KLE4QFGLfI56jfjcxbyezI1w95YcbfIAn0vkbMDF t2CALrO3dkF/u/EfI5zDv1ADnDO/wlQgymbKA07rqgQsR32IMeU95Wf/3Rki 4EMEcm63Vwq+eqXw61fESjnmYCzq3XGJRCqvHWgzk3oA83urqRNQzUwMppYZ lg9yLB+fLGD57Ax74M8Ff2w/uRKAmvlmkOOdEEwF7qRSuh+m6EE218Ti1huA c1MS1tjgKhyCc0M6whnXAefg3km4tsKvz1yiMsa6GuNdUUKLiGaUXqV9iYpm lP6BgZo4/KMk9kqWzn9PslkYSy7YGiKcQTYbMz2MGR4CnEE8o7OhE+FsMmha CM6spg7hnIniuT5FWUvi+UWsPHugN2YG0dyQWcyNqfZHJ9nvG2e3fbjt+l+X z/9GSP6m+bwyP4bx+Yu/uI74yx+Az2MkfGYldgHvd+z3tnvExx1jMUVom/G1 bW5Pu+LednP72eUO9k4c8Y+UUf+cP9p321jHoO5eP06RHZouPzZLbgxQGIMU xlDlyQjlT+RCX01S30rV3MvQPMrWPsvTVhTqagy6+jn6xnnocjQucmpY6tSw 3Ll+pTPNtXOpW+9St9GldrNrLSLarWGnW9Nu95Y97qZ9Hlhuh4j2BEQjWI7z omhW0UFeNEe0j/myD769aG16nLfOGJ613jd0StJHYHQ3LvVBSi/0QVFEQtpo wMEd+NoscxLmdQiI1oqIpj2GKlOusiVL2QSITlPUpMgrEuXP4uSPY2QPomR3 wx1vheJKZRB75HLYn51qd2qy3fFJdkcn2B0ah3zeO9r2h5G2wV+6Q/R9v8vc fuoF/dUA7WWDNRBxPT2WDdFk9PO8GuCwcKg2bZD3TxGyktH63NF6Y4oycJDP 96mqk/N16K6vJZcDJHTmG4LFwfh820/gc8RrWLwxm8yNSZ1APOcN970Spkzo 5w23RYUDdFl9tAsJziW97cK+UAd9qkrvZjOMZPOMD1SD3nFjZB74ttuMrsrA j5RhnyjzGZC7v1Ii9S7QVe7Ikn1MJzP7YgOrYRYr5Ugqzx2gCfvaI/Rrj4NU knF0or1xskUtwxXt/EwcqXFxtsPlAGzcvh6Mvdtw4bsf7vgwwvFJpIwZGvum 6fNxWaR30RDv5iR5c4ocK9XTcGcZg3NjlgDn5nxlSyGWQJvIggYJLSB6MTc6 Xoro7VQXzerudrsIoGasZgvof+DjbXfzzWs7LZ4zJgQ5nJlsNkzDxa+WtOAC tJ3NcxDOpmJNSyF2czdTTR3AmYnnei6en8XIswZ6o3gOlV0PQnPjPDc3Dk+0 h2sc/IRnfvar7u/+9/L5t4volQUxA97qMPiPHb78Lys+T/z7K1M4n2e/33Hc u6pJXVXA56QvbdKpxK6ol92cvpgiXDoYLY45I30yxv5z2qCPV070OzBVdmSm /Ii//Eig4liI4hS60KqLsVhodytFfTdd8zBT8yRH+yJfW1Wkqy3RNczRg4qu X6CvX+xUt9Spbrlz3Urn2tXOtWtdata71JQhouu3uTbucGva5dbyvbsJK6IF RCNVRC/6BO9bITva4nVc8uHRSkhbex1i9Z2opSVCGim9BCDGB3eUetHgR17X gYjW84yhluYpadDALKZ5DrlKU5ayOV3RkKpgKlowOiIc74c53gl2uBHoIBjR M+zPTsP1nQzRB8fZ7htju2e0bWlfdeCX7oFfuIOWhgd93usS+pU7sHr5YE3I Vx7h3T2ie6DdeniKfUgPzyXj9MUjdZnD9QfiFNP7eH+XrLq82sl8xgNdDi6h LRZ0Kz7P7Ixtg2P8joW6bZ3isn6C8/xherjyzvjSk8G5+Fs0nAHOgZ+osKT5 Q9Xnf+8CNA76WDkGXQu3iM+UWHpBFcsikEWRLPUu1lPTn5js20H2xa5Rdhap PJ45GPYglWN6Yo/2aZDK01EqA5bLSS2LWL4Rghe7O+GO9yJkD6Nkj6Nlz2Jl FXGyqnjsEGxIlB+Z5VQ8zBtbURDOiuY0rNlozsDlkgKccxmclVj/bED9LEzh BkQncEQvJUQvfRmit/Hule9oTMcuQrE0dnEyU4WzoJy3WSln0dMwTO2EBXVC WlBXnoO2s7kE4WwqVLcgnNXN2aomgnNjmrIhRVnHxTOW1UXK0/t73QqRYVuK YG44HJtsD7ce8LPdMtRmxn8Sn82/WUr3fqMD4/MX/+U6HPj8X8jnccjnP0z5 xyvT3n5lJvD5vY5BXTtOfF817UMV43NODyzhKOljN78/WtArhzqsG+Hg381r +1jH5RP88ie+XTjp7XXTOx2erTgerDgdpjwfqbwYo7oar7qRpL6Tqn6QoXmc rXmeq60s0NYU6+pK0Iium6evXaivXexUu9SpZrlzzUrn6tXO1YBonA7tWr/F tXG7W9N3bi273XnTiodxga9xoS+q6CN8dBIgWizqaCukBS1t7UtLKd02aXjS qiHXuNgHVPRLEC20GeqpOlrHM4ZkRxcLKhrbhwEIKYrGJHldvLwqVvY8ihAd 6nibEH11tsOlWfYXZtj/NM0+podH1DceSwZrwr/2mNdf/T2Aa4TNjmE2W4fa bB5sk9tTBfrH/3P3fu936d+1y7wBQG8sM4vp4Xlwov3cwdp5wOeB2tm9vb4L l0/o4bUxWvkETvUcczlQQqPFsbMLSxEaUgQ+488zy8sw/VVzPornS6HK6N7e O8c7zuyGcO7+TpdxH3uM6uqe81VH4PDYD9yZNjYwv4JoPO/bjgndVIlfYSzh pRcCkK1FsshkNmjuhzHYVAK33gckTBbzfcDkn2ZgeVhib8+NY3TXAh2uBTle DXa8HoJq+XaY413C8oNIHHkE9yZwh/ICfsKJ6CnVJ8ubUuXFw72PBTi1pCkg sNQ5nbpRMhXY9ZmNVetNDM4FEjiXUrRF9BKi9BJNa0RvphmkDNTbnQVQW8JF CLZnDbdhOreyNfDvh3saxhR3Y7K74GwsQGfDXKoxg3guUpsK1C156uYcVXOW qilDBXBuTLESz48pM5jWz+tGsOxKgGO5v6NobsCPFy5/m/+T+PybLuHoQ3z+ 7M+uQ//cAfg8kvN5AraovMIsaH/ic/hHHad+oJr5sZqV2OV/a8dShIsH2q8Y 4pDZR5vbT7dljON3VAi9b6ps7VS/oinvlEx7Z2vAqz+FK8ujVFdiVdcT1LeT 1ffTNI8yNU9BQudpqwt1tcWoomvm6Gvm62sW6qsXO1Uvdapa7lxFiK5Zhy5H /SbXxq2uzTvcWnD6KCIa29zm+5r38wHRRzythLSl9K5V0tDH4nhcsqb0hV8o 7UBQG6K6gIQWt94b53obQl41BL0qyRg6WdoMQUgvwq1wzOgwcUQDGZpSFPWJ 8pp4eWUM3n0/wr4Vx7S+Xil9PMvG4IyINSO0p6fiEs8jE+wOjLPbNxYl9Pej bHeOsN0+HBG9aYjNhkE26wZ0XN2/Y3p31dRP3HN6qgZ92KX3e12mfeoR/JVH YT9NWE/PNeMcJn3luWambGQ3zyWB8jtbnI1r0OUQJTSlCDsjny94G8JfgwA+ j/v2zeJRfpnfaiBmfuE57gP3qM+VAocJxaXcPRa1MfMrRBqzWriZn+PYolZA 3t5GJHMm4whQEHhwD35yqsDkczNQJ1/wdyif7XAxAOeCXgly3DxBB8rwQbgM gHwnSnYvSvYgWvYoRvaEsPw8Xl6RgEttajDxh/ZF0XBvwwhvU6YCooVH8Uhv IHNLNhbUteRiTrCFwZk5GyKcSyUqOp4QvYgjegl3pFfy7u8yovQmJwmoCcXS 2MbJTGtehTrn1nCmPpQlOsw4L7I4GwBnc5EG4GzKU7cQnJszVE0A51RlQ7Lo PCuYeL4XLkvt53WdMoPnZzmc5uYG/LR3jYLfiM30T/9T+Pxv/+7/X46+bfg8 +v+KJRwWi4PxOfpTmxkfqWd/qs7sbpsnWND2Cwdgo/f0LzzXj8Qs4fZxjrsn yvZOkR2YLj9MLvQW/05zZrwzb9Y7u0M7X4tT3UpU301RP0zXPMnSPM/RVuYj oquLdTQaWl81X1+10KlysVPlUqfK5c7Vq5xryIhuKHNt3OzavM2tBfu+3Y2l PsY5PrQDywMRLdrRjNJGid3BvI5zEkpL5fRLTI+XZA+xzTDmNVTRrTvB0Vc0 BHc2BL5qLPSkDUQkpNfocS4lMzrmarBZuEjdQunCxiwldhemKEDdVcTJWVH0 zon6uyG43uJaANbrnp+J5ipIx2OTENEHx2MV2d4xiOhdI213DLdliN44yCa7 p2rGp+7wWkvrrlrWt+MSQGVvZCaI2IkfYV3EsiG2kd3UcwfbhXVTG4bZlSW7 GyY6GYu1hmnOEBb2In7RJWZGcSnXw/HdVPBUDMKL6MkBxUuoVUQ0KxiNRXks WhZbicZB3VDYMyCLInn/eLuDExAXoOiYn8yZjCIZeAJMvgh3E4zJwY5XQxyv hzreCMOh+rcj0b7IHeS9d5rTs3j5kwT5k0T5syT5iyR5ZbK8OgV/tvVpWC93 NNDZMNLHnKU0ZyvNORg4JoUBOVeJrSi51C2YT1EgsZ1LrYO9pxWiF3NQi4he TzMPNxKoyySgtgTfvk1L5HFTVRld06Ud3BzOQGbDJD8BznO15hKNuVhjLlSb 8tWmXFVLtqo5U9WUrmzicK5OUFRYxLP8Tpgspa/XVTI3frKYG/bw8/9uhO3G wTbTfufzb+FgfP78LxI+/1W0OF6ZTBYH43PYR1hiF/eZzayP1UGfqXN72BX1 sivti1XQyT216b2060Y4lI1y3DbWcdcE2Q+TZfunyg7NkB/zV5wIVJwJUZ4P V+4K7rzQ/93FAe8eiOp8P1XzKEPzNEtTkautytdWUbldZamucq6+Yr6+YqFT BSB6mVP1CjSi69a5NGzAcrtmXCPrZiz2MRp8zMzo2CN4HQKlD3lY2R1idfRZ bytKX/ifKC1xPFBzrvYTBvYet16v/KOlUIplDPF2tYxU9Gp6rVG60DRX04Kt K2oadoe74arTcSZ87hBvGpIgo/VwOPTyRiBu8Lw4C5csA6IBXICvIxOxYmH/ OOzCQBVNiC7sjd1zeb3U8FpbN9BmzQD0EFb1t1nZz2Z5347I6j4Cq8WY9JE7 vF3QC+cLgfplAnhBr46t8MtD6Neb+qk7gzA8/+qBhOJBiOL1g4WpcWVDcTCR RB4Ls/G/H4Pj8ZlCjvjGc+Fg7eGJViL51DT7M9MdmHFxYRYTyY6XAh0vBzle CXG8Gup4PUx2I1x2MwKZDFL5brTsXoz8fpz8YTymWQ/Ocjro71SbqqhOU1Sl 4xTuukxFQxYWzBSN9Cke6WMMcUYs51LkKXEfDeMwBTwoHuNzLMIFu7mLMMzF 1s6GVEIXC4g2TPQ1L1RbEM0eiIheR5NIRVBvpKmkmyRR5sSYzNYICsGaUFbR NV3sQ1mA1XSzBv2jPOs15mwAnM0IZzXAuSVT1UxwbkzBmrpqcjaeS8Tz7VDk 85UAXIZL5oYD/OThsgiXyO1UXDftk9/53N6PlQUxbfk86q8Wi2MSWRw4Jalr x5APO0Z8bBNDXYQBn6pDvtCwLpV5/ewnf+a5fIjDmuEOG0c5bh3r+N143Bb6 4xTZwWnyozPlx2crTgcpzoUqyyOUV6JV1+NU+yI6Lw18d3nwe8fiujzP1gKi K/K1FUW6CgM2Fb6Yq39BiK5c4lS93Ll2pXPdGiy3a9ro2rzZ9ViBt7HIG6cn 7UQhzbwOYcwdo/RBTmlpA4vgSHNKn7M2PS55v8SaJkpj2cMaPyT8GXI5TtAC lyNWY8fE4Qm0xxNvWrHubkYn9KJpvXLLAk3TXE1Dibq+SF1HiD4Q7Jw/AodA VifIcb1ytIyqoRxv0ZwxKrdDcJ0mFS0ieh8h+ofROLzX0FcNMNw6DK2DsiGo iDYMxva6dYRQYClAdUU/BCy8XdEfMbuCv2dZP2TvUhrRuZw+aiGwGAOF0Z3A 4Vmfe5QRhzcxFA8XUAzBNpXs4h4yAnmc3b7xdgdoawlTyAzIJ6barxyujf3W 8+wMi0gun+2ITA5yvEwi+Voorm29ESG7GSm7FS27HSu/Gyu/Fycw+VGC/HGi /Emy4lmKoiIVh5wcDnI+HOzclI3ucWOesilfVTTaxzCGdqC0ikIKBmFJHIty gXg5lltJaEMbRLNYKEH0ah1Sei2FCGpLOLEwZnsYszzQ0GAhwFnfCs4gm7/+ +msBziCeC9TmPLUpR9WSpWrJUDWnKZvQdlai7cycDS6esawuBPmMZc9kbhi5 ubF7FBZvwB/Jr1lc9293gH/TfP70z66D/thhCPF5BOfz2L+hxcGqOGZSCUfw Byihoz+xoUUqtiChR3/oUdzbLra7NrGHdtlg+9XDsFFlyxi0OEBC70EJLT88 Q270l58KUJwNVlwIU16OVF6LUd2MV91JVN9PUR+J6bIy5L3VYe+dSHrteYH2 eZHuuUH3rFT/HFT0An3VIjSia1c4161ybljr0rTBpbnMtdi/s3mrm3mbGw5Q +jlKH+COtIhocVj0Ge54/JzpcdniSxvXdRLmeDA+n6a5TMdpWcBh2ha333qV J/FZHGtjmN7JMNXvWIp7y2Ic1QuIbipRNxapD4W7HApxqctQ1qUqapLgxSV/ FguvLNn9CNkdfGU5XqVRvRc4ooFsxxDRmHxfMAjrzfaMQbtg1yj0cneMQFoy UENsojVPoGzXkcqlwMczPnNfR+tT4TEI4DWCEsb3MCXM9kMxCG+yRnHAlx7A YSaMRW38w1g0K5DG6FfgDtZDE3ENqwTIeFsNcAAgwy32OQ7kxD5eDMgkkmXX wmTXw0Umy+/EcCYnyB8kKR6mKB6nKJ6kKp6mKp6nKXDkSLqyKlNZnaVsICwf DXMBJoMMLh7rYxjni6upMFSWKKYQ/1mCs51NkjgW62qMccVM7lxamzLn5yU0 IVqouFtArYViiIheSRO0GKjX0G6sdVYBZDZmeiCTV1Osehmc5yGcy6LfM0a7 GqNczUUknvPU5hyVieDcwuAssZ2fxSieSMTzjWBZcl+vcn80N05KzI2dOHnD Fu62/kOKn9vJCfy/O1rxeRjxeeRf0eJgfJ5AFsf0d16Z9V5HkNChrEtFrILu YTfmI4/xn3gu6I8rm1cNdVg/wmHTaC6hJ5GEno4S+sRsxZkgxflQ5cVw5ZUo 1Y1Y1e149b0k9cMU9ZN0zfNMjTHhtVXh762KeP9Y2uvPQEXP0VfMQyO6erFT 7TKsiG5Y7dK01qV45qumMlecQbrFVaD0Dk7p3ZzSe9si2kvIGJ60prTU9GjT eGhc3wn4bOVFn+YS2ihKaMnCOIHPLpaMD01OMKa6G6b4FU/yOxbv1jJXUzTO 90ika1OeqhEIk66sS1FUsz0XsfKHUfJ7cC8fhg25V2laL4jMs4hoTL6Dil4y RLtosPYAE9Jj7RildxMzAZ47SNAiq4ej27BZEv5feEj/uYmCPd5Cnw+xDb/c jnH4u1ECincxFI+xC/naY+84po3tpTRmfgXIs+NTcYEUA/IZDuTz/o4XZuO+ bMG1CEYgb5qk3zxJLwA5Sn4bmAw6OU5+Lx6YrHiQqHiURExOUzxNVz7LVD7P VlZkKytzlFW5qppcVW2eqj5P1ZCvaipQtRSqGJYN430FwLaNOdbB3jlPbeJh nk/GMiB3Hv9oycsQbSD5zRAdyxG9gGYosVgs6TFsDWo9A7IxgxpPGJPhE1aw 4LbzYis4M8/ZMMYXlXO+2pyrNmerTJmqlnRls5gTFGxnhPOjKPl9cp5vYs+g LKmP14VZjmcs5oY9/B7hj2QjJQd/53P7PxifP2N8/lOHYX8mPkss6An//Qpa HG9bJHT4RzYxn1kGJeV/a9f9ndfiv9GKVXYbRzluZhJ6IknoaSihj/srTgco fgpWlIcqL0cor0Wrbsaq7iSoHySpH6dqnqZrnlI5x5M87bGU11dFvr86+v0T Wa9XzdfXLHKqXeJUv9y5caVz02qX4hmvmnCMvytuX9rMKb2dU3qXm3n3zyDa yCl9wprS4oRSpqjPW8o5cJoH47bI5zNerSU0QzRI6D1uFj5vESePWUkjY6Lb uG/eKB7vWzzWt6UA66OaMpQNacraZFxF9Dxe8SSGIxpu82lmAugfAdHT8VUW 3cMTYAhUBC0ELzdAJQBzz1jk5/eM1SiqCdcsCLaA3MBuKIBF9orBCLyLvnD3 GEEVwxMSiu1/pG8BKIZvF/GNJ6Px0cn2x5DGeD4gzE4RjeEMz4La93c8N9vx QgAuyL4YyFwL2RVgBXMtyElGIMfI0wZ7342X30tQMCA/TFI8SmY6Wfk0Tfks Q/k8k5icq6rKV1UXqGqK1HXF6vpidYNB3WRQH4l2LSYmi1jmmlZjpWlZLHhZ 0IdMCy0ehTGBI3oel9BtEV1sQbRhgq/wyfMp2NMu4tXRIqhX6ARQr8QwTPMT sLxcJ5Q3LyMyL9WZFuPgULI1NOWZXcrTu6CnUaRGPnM4mzNVpnRVi2A7K1lO 8HmsAGd0NsJlt/CPR3Yl0HHDGN2aUbpTZG4cInMD/kK2UefglI/djUbjr8aZ 9oDH9nAO/9sjcsTHX78l7/EnucjnNhY08hmrOKjKLpCyhNGf2sTzRu9R3OKY /JnnCrKg1490bCuhj82UnwQJHag4H6K8GKa8Gqm8Ea26Hae6l6B+mKx+kqoB Ff04S/M4R/s0T/usUPeiWHcy4/U1Me+vjet6Nu+N+iVOjcudi6a92rLaxbTW BcdEb/gZSu9sg2ixqEOkdCs5fUpiUP8kZA8RzqCrLVOjJXw+RTtcjBKXQ+Tz TlfWDtZ6rPpyKpea5IevPiqUghdd8WjMYQGi61OVNYToF3FoIT6iW9RbNDaB IxrvUmO/9YTXGoARvY5J+Io7OBHhSZTG2DvWfg8GMvaHMZYoHaCBsLxnLIOw /R74EvpCxmEUxhOIxhPxyQ9ZtDF+0+ienie5NkYgz3T4aZYjymN/R9FDvhQs uxwiuxIquxomuxYuu44KWS4oZItroWCuReYwn8dpyifpShTJBOQXWcBkVWWO CnRydZ6qpkBVV6SuN6gbStWNczRN8zRH49yKJ/jCj9GY4NYatos0xiQ3Y7Kb gEdpLGGheXmwSmbK9Bkm+QqwnUcS2iCh9BwaZ1dCfG6FaFLjAqgXqC0FeFJQ E40NU/2smLyEYjEGg7NpvtY0V2Mq1ZRFvceqNUA5G0b7CnDOUpnJ2WhktnMi 2s4WOOOfjRydjRDZ1SDZJcoMwt8M/NaOiubGKLvNQ7FzcOp/UnKw/ZzD//bo 9XqHT/7k2v+tDgP/2GHwnzoMJT4zC3q0YEG/wqrsWKNKwPuYJYz8hFsc3W1H f+RRRFV2iwbaT/3cM6O3tq2EPjCNudCKUyChgxQXQpSXw5XXIlU3Y1R341QP EtWPktWPqJzjcZb2aa72eb7uRRGWc1SX6mvm6s/mvLE+ruuGhK5LQv6rZYWz CceQupillN7EKb2tFaLFdKGnFaUZqKV7wEVRDRCmIaUWwcxC3KKFPGcS2pMS hR4Cn/e6UYrQlXZ6MovDmRZ6OlnaDRLdRT4LdmK2qniET9Fwn4JhPgdmOcO9 6gt6ucFrDe5S6YWGiL442zGht9c5ulc9RUIamHl0ssORyQ5A0YMc1Pu5qG4V od09f7R+D3KYvurgJOQwCOPD9GzwnEenOByb4mCcikxGICOKHeFbrxutg0AU MxoHOFI1suxasOx6iCCPb0TKb0a1ArLifrziQYLiYaLicZLiSTIpZMG1UOWM 8qnIVVXmqaryVNX5COTaAnVdIWZRQSc3lqqb5miKJvgCk4sn4fgp6tfQviQ4 Bo1p7hBMqfJgIvbnY7mwn92C6AVE2jncxJYimknoQgHRxmgXY6xrK9tE0NIL eWkHP0PDFD/LxWIxxSItjjwCLLNAOGtbwRn+SIyhLsZgFwZnE7ed2ZA64YLO 4Sw6G/Crgd/U2lG6lSO0x6XmxkhMJU/7FFfr/pqcaQ9sbA/n8L892vLZYkFz Pk/kfBYaVbjFkfSlbcCn6tAvNIVYZWdPjd4Oqb2007/EQugyJqEnkISeKhdc aH/F6UDFuWDFxVDllXDljSjV7RjVvXj1w0RU0Y/SNI8zNE+ztc9ztS/ydZVF umqDrrZUXzdX37DAqWhSp/P5b2xM6FqW1LXc8JZ5tQtSeh2ntGhKSxG9h1dH A6IPegqUZqA+wnEtEpulEc94IZzPciaf4oFim++lZdvDj5OEBj4fog22P7qZ f2AWB0loZnGgBY3zIY1pHsgWGnFjnqOV8rkFq1hVDanKg/7O+UN8cgd7Zw/y 3jXF6V6E/BZpIXi5bRyrXz9GD3IIJOuZmY6nZjicBCE9DSkKOD1CaD08CeNQ 25hoH/6NJ+lh4T0CijmHEcXTHE5QwNMC/0/PgAsBKHaUx/AyBxRfCURJltLX C1Ecgmd1I1R2Kwyt8jvh8ruR8rvR8nsxVjR+yGzkZOWTFOXTVOXzNOWLdGVF prISFDJzLQrVB6JcIeoM6voSTUOJprFUA0BuBiaPRyYbJvrhHccikcA6wSt4 aXCn1zDDTyifEGPNzwR8/qrWiDYmUoUzQ7SYEyyxbifEsSpKC6JjXOmjEn8b KW1xUQRtn+iG/5dFHMsLeJHGfCLzPIo5mrLo90zFahOV0rGEIPyRGEb4MDgL tnOSUrSdH9PV/B7aznLubMguYk+KY1wvr1PT8FIOv324S2LmxqzPPVb2s5n4 0e98/g0crfjMUoTSKmjG58mcz7MkFkfiFzbDunqIs6BZo/eyIQ4rhznM+NIz p5+ulQuNtdCzyOUIQpfjUpjyaoTyZpTqbqzqfjwa0Y9S1E/S0IhmFXdV+brq Il2tQVdfqi+c0KlpvlPzQqeWxU6mpc7lhW8CpcuSPygveQuFNKP0RhcrRLOi DhHRrDr6AO9kYTV4rAxPrJc+7mlc2cm4qhOSmbkf6FdLgMyCae9jXD/Dkxyg DYl7aKEtszi2uBCfncnicMJZCkv11nzWtOJzHYoiZUW84lmsYvdUp4wB3un9 vVP7eaX080ru6wVK9WKA7MJsx3P+jmcFSjsySh+fKmD22FREbqsADkf28BT/ KdL45HR8BkTxTAwQyfC0wH94fo5lGZPHQGN44QOH0wd4AwfuRcrvUzyIkj+C O+sY+eM4xeMExZNEkMfKpynKZ0Tj5+nKFxnKigxVZaaqKktVna2qycHUXl0B yuN6g6ahVNM4V1M00a95gRbeFk/0YyKZmua4wmRYXs4JvEZvKYcQi9PE0ghe dYylxRv1lthgHesp1nF0r2L+gwXRKKHRtSbSGiS1HyWcz/C4UCkiGidFW5S2 WgC1YHpoGKixJE90Y+ZTzNOY5mHvErYvzRGiPKNLeVoXE2tC4XA2ZyKfGZwt tjP9nbCCjfsczlJnAy6vsd96wq3W0cl4b7V3LCYmtgyznf6Z+9I+Hf+jiuvY 8Zvk82vI535vYgn0oD+hBS21ONCC/m+hS2Uq53MAW3f1iU3CFzbDu3pksUbv Pnbz+qPFAYhePsRh9TCHrL46/6+8RBca2wmnyY/MlLgcoehyXI9U3YpW3YtV PUxQP0pSP0lRP0vTPM/QVGRrq3K1Nfm62iLdoSj3wzEeTXP1zfP1HNFO5mXO 5uXO5cUE6pQPykvfMq/nXscWV6H0TkT0Xg+MHyn2eQhl0lJoszSikeaUMrUs RbEFyExyE5aP0IDTQ+Rv7Cc+7yUJjRaHq3mrC1nQyGfD9E6YInw5n9Wczyrg czXn86NoBQDwLt6xyrdOcErp5w2ITurrldjHK6G313lO6dMzEbCA2VPTgdUY J/gDMZYP160YoWOPRSBLUUz1FTII4P+lQAwBy6Egj/Ec4OX/MEoOOi1rkPfT GMXTWIxncYrncYoX8YqKREVFsrIyVVmZpqzK4ChmNM5V1+Wp6/LV9fnqhgIs LGSpPZDHRRMQyEjjKX7jer4hWLIslvMQM2urqfiBEXgjb/FoG7xfz5jvacz3 sHTtbZbEJmrBZtBezxHNVpWxWCpBNEjoUuvyvBLOZyahCdHGKBcI609TS0FN NrXGEsBkonHLHLSaceQRC4OmLPI9Ec6mHJWJ4GxOVxUP92FwbmU7P6SCjbth gu0Mv7XLgbJyrHlGKyzmW08Qz4e5ufHdSLvZX3isGWCzqPevyud2AsYyfvy7 T+RfPc4e2WPFZ2uLw5Ii5Hye/s4rM9/tOJtb0NM/Us/+xNLoPaef/YIBiOil gx1WDMVE4YaRjoDoooH6ndROuE90OWYzl0Np5XLEIaKfJKmfpahfpGkqMzRV 2dqaXG1dvq5grF9Dsa6xRN80R988T9+ywMm0yMm8xMm81BkpvcLZvNK53PAm ULos9YPyeW/RelmxOtrdUnfHCqT38JZD1hvOiE1pRONSP+MyP9TMIo2PcQ8E wgJkLr8PknLeT0XXe7l+ZnxGCxquF86Gma+iBW3hs+4X+FyVqHwRr3zK+Yw3 reHytP7eN0Pl10LkgE2A58VAWQJROr63F9zAisFEdasAVRzby8sKyLNBhFto fDkIaXw1GF/a18i7gO8lYDmSYRlpDCiGC0fuEG+4rYaLSHUSRk0yrrqrS1PW Zajqs1T12aqGXHVDvrqxQI1Ll4rURWN8i8ZiUK2FH8YEP2O8G97do2uhY5YF DtJk9WarJSGVyuups2MjJ/BWPsWibbCpRDuccfTrDuExDb6g+Z/baCYGo7QU 0askfG6FaCahiySULuGPC6khkRBtGOuDn1No/ZkEamMMFVczVpcKYSpR4wIU ClxEW4zt/2WR7wpwziU4Z2EpnTldCcq5aJhPYzKDs5LbzgpWTXeXcoI3Cc7o bATgNRd+76emY0oXM4Nkbuwebbd9BJkb/W0m/eeZG2aJjIfzaQ96/n88lufF fNuGz0OIz8O5Bc34zLoIp70DErqj/3tYZRfxsc2gd92Tu2GKkDd6288jRC/m LsdaShTmD9AFdvcqHaKXuBwKsZbjUhglCgnR9+NUjxLUT5PUL1I0lWma6gxN Tbb2YKjboTD3hkJdY7GuqUTfPEffMk9vWuBkXuhkXswpvdyZ1sti0rB87ltl aR+UZXxQvuiPkupod9TSu4jVDNdSYgNd9yNvDZF8VOlRiUeNBohIYw9BKu/n sY++fA8zn8nc2EGbbbcin425XsYsT+KzkzWftQKfc4DPasbnWimfYxQPohT3 IhU7Jjttm+R0M4z4HCwHnAKfga4XAmRAWjHOzZbFE7HbxuCPX4O3CORAayCH yK+HyG+EygHIt0CAhWPcjWBYVjwmnQwcqExAVV+ThPbLIX+XQ/7OjSDk0vCa Ujjcp2iET9FICN/iUb7Fo30NY2m9F0PxeD/8n86lmEcxn3zXxTpOZoHJ2K+R 5WFpdl4vNNkJUpkxeTNNrtjKCbzTpXXs4sGHeRqCX8XlrbtpIPNOmiCHY6wI 0VsI0WXc7mgtodHoMCa7GhNdBQldZA1eVmVXSBI6DxFtjHCBoEZFpaVRkb4E 0S20zFgCgNxSrG6maClCt7ks4l0cfCQqZ4KzKV3ZkqZsTlEe9nc+OMu5NhFt 5xcS21mE8/Vg5mygAwYX4tMz0MKK6oElkfsnYEnPrlF2hX00WT3Vy/vZjP/w P5HP5vZ0Jv/KAXz+6I+uvd/o0PfNDsyCHkR8Hsqr7FiKkPF5yj8FCT2LpQg/ thn8nnvSl7Y0a9SugCyOOYDo/pgoFFwOsdZunGPxIH3IN17M5TgsuhxcQl+L QETfQUSrGaIrUjTVaZraDE3BSL/6XG1DnraxQNdUpGs26FpK9aa5evN8JzNQ ehFRWkS0mDHc6Fo+/62y9A/KMj8sX/xHpDQDNetk2SkhNveoDeFdLGUehymZ iCFi2UNA8V5Re/N//kCyWQrnLS7mTVw8r3X+WT7na0Q+16eqapJVlcDnBOXT OCXj8/1IRfoAb8AmUPSqwGf5pSBZOUc0i/PWrBbfz1wLbNYLlCX19U7uh5EC 0d87tb83yPK0Ad7pFBkDMTIHemcN8s4e7J0z2Cd3iE/eEJ/8oVhYUggxHItM ikf4jP3y9eIRvsUjfQ0jfUH8Y91XvtpcgHPV8KagRCMweZ6Q+cIUGJYo0JDM xVRUtpyTGRUy0XijkzCdfhObHeRsobFFEvPhnDtdhOn3e1xfFrRhim0q2eti CH2VxuO7IKVFRG+3RvRG8qJXWfMZQ2OY7Is1GKKEFhFdzLvFGZ9psodhtA/K aTblg3eUY6e5BddqFjgpq0jdXIR3Gc2F6pYC9YWUzuXJnU25KgwG5wyCcypW azQko+ecTzcvUtsZbq/gTkeE8+UA0dnAxIRxKuYdmHj+nswN/y881gy0WfLr ms/m9kTF9nMm/8oBfP6wFZ+tq+wsJRz/QIuDV9lhinDi+6qpH6oSv7BN+8qW WdBFvTFLOKef/fz+gsuxcihK6A1Ua7dtnOPOCbLgb7zCenqjy0GJwrNUa3cx lJfbRavuUK7wcaL6GSE6b7hvXYamPkvbkKNtzNM2Feiai3QtBp2pVG+eozfP I0ovtEY0qWik9AZXVtRRvuCPZRkflmURqFlXOKuUFltavpeMKj1AlR4ik/eT +yHYF6S3W1klTDbDk2DZBshmV7Q1NrmYNjgfy/I8lknieaWTeZnevMSaz0VS PquRzymqyiSBzyBfH0QrvpviBPr5drjCwudg4LP8YqAcVbQ1pa2wHCgEIzN8 IXz5NaaWw+S3UCor7kQo7kagRL8fpQDB/DBa8ShW8RhunOOVzxOVFUnKqmQl nFJdmqohHXePNmdgKhPIbMpG2Y9kzuNkLgYyawUyz+c0ZkBmJb5LuWBeybwL mgiEZCYmb3E2FngZC70wr8piB0exoIdpvAlbQbKH743CHX9uwpo/tpVVGvRO Q1hnYeUfIJqp6J3WiN7MEQ0SerkUzuRyMEQv4BJaoooFONPAJWH4Up7SMMpH OovJGO4CYc5XYfAxIKYCFY4xLFDhXtcCXL3dnKfaGP5uS46KGc4vhXNNIu7j FlpRYhQPhT5BuPexwBlrNrizcZwKeyK+8dw/nsTzaLuivpqcb9WrBtjM//Z3 Pv82DoHPr3fo+wbyuZXFwSxoxmcmoYUqjnc7snVX0Z9iipB1qeT2RAldDIju az9X4nKsGuawbqTjxtGOW8Y67hgvw1qOKbLwnt6RvbyFjsIg5XlrRN+NVT1g iE5W5w7zZSoaEN2YrW3K1Tbn61oKdaZinblEbwZKz7VGNLOjrQqkXcUCaQI1 KepFf0SDmnnUVIlnCOkiJBD3iUymlKIUy4zDLHZTfE+Pd1rDuczFtN65Za1z 0fRXW1YxODsRnPUI57k6cynTz1qBz1nqpgx1fRryuSpJhXyOVz6OVQKfQdPe jVTcCldcD5VfI0Rf5ohGShOoy9vERRb0ORvHOZWNd0IrI1R+I4z5GETmSIHM DxiZ4X4ZXvjxyicJymdwjUhWVqaoqlNVtSDsM1SNcAXJUjdnq1ty1MWjfU15 dGUpIAvdisw6gcwIZD1ekpbR7rwVei6YnQTBvIGKD4nMaNRvRxobgjqjdb+L LebjQBZoTENO9tFMV7ZxlW3HPuxmPtImDlMIK7NdDeGdkdU/MveDex0M0dt4 9rCMS+ilrfksuBzzSEJLjQt4wOCcR0Cm4aXI5xzhMbyzeLQPDi/NFQfooTxu yVMBkLG7P0/VAG9zEc44aT+bph5lvgzOCbSPe7A3jqdjtnMkJiZuiXCmgjpW fnl6huOJaVioc3gS1lUK4nmU3ewvPdYPtl3xq1fWmdsTFdvPmfwrR+iwj4HP vV7v0OeNDsyCFi0O6xThK0KVnVDFgSnC/m+7Y5fK5zZoQZPFkdfTrrAXTuwv JZcDEL2EEoWiy8EkNEsUHpouj+rlHdPb+0wg1nIAossl5RwM0btnuv4wy/VF iqYqTVOToanLFBDdkq8zFerMgGiDzoJo5nVI7ehVLq0pXSZE+QKyPjI+YNaH 0eBjLPGxTFgCLItM/p78agHCbU0S/s5tVDQCsnmjS8t65+Y1zk2rnIqmdmpZ /jNwLtIi33I1oEWBz43IZzXyOVn1IlH1jPj8MFpp4XOYgvH5CoVA6WBO6TYB 74dPANmc3M+bkflmGD6PFZmjOZljlE/i8KLwNBHh/DxF9SJVVZmmqs5Q1Waq 6+H0stVNcB3JVQOZi8f4IpaZZob/SGkrMnMmg06GC9MqitVOgmDe4CwI5s3O 6M9v4zp5F9LYENIZC2BY/CihMaKYBroepsnbRymOURjdzcd5GCmO0UdFUB90 My7yhkBF/T3ns2hHSxEtSmirxkNsAxQk9Bxhm6RAacZnCZzN2UpjiLMx2BnH TWfh42Mhzs00btoEkY2fwKZP40bXHFUDxfqwdxuzVU1ZOMy5OUPZQoazBc6J CgbnCtrH/VRiO8Ol9nqIFZzPUYKYORtHJjscnGgf1t1zz1h7EM8B3XD6ytqB OLFw7Ae/8/m3cXTv3EHKZ9GCHvwnsqAlXYTjuIRmjd6j31GNf08V8bENrSO0 TfsaLQ5ANLocvSxGtOBy8EQhk9C7sdZOzmrtQEJH9/aO7eN9Nkjo+74SYUF0 xmBfUNFPk9TPebqwNlPbwBCdB3zTmYsI0SVtvI4llroOC6WZL73eFVnNRXX5 wj+CnI6a9ln5sj8JjvRuHvBYSuDtBGEWUodkuwTOG1xa1hGcVzoVTu3UtMyp ZWkrOOtawbkpk+Ccrq5NVVVL+RynzBzkcz9aeSdScVPgM8bVl1K6TVxmhkao PKWfNyPz7QgFPNVdC5mVj2LwKvAkFu2UZyCbE5XP4bsDnNNUFenqykx1dZa6 LlvdkKtuytM052ta8jWmQo1hrB/+F0qIzCCb5+nMCziZlzIyE5OZVF7LfAxn QTCjqyximXrhmU7eQ0ze54ZaF+UxtcwfkgAZUUyTt09QnPTA7b3SEBaQcVCL lCYtbYjsjA/2WktoAdE8Y7iJJPTKVl3hyGdjEnWssI5vcVRpgUpwNnIFOJuz FOZMhWGEN7yFKB7hjUuBszGas3BBMItmGk/dkKWsz1KdTej8U3znxkxlU4ay KV3ZTBXOzSkE5yQLnDEhGKvIHuT9OMpiO2Opc7AVnMnZcDw+DZ2NQ5QWDO3u CeI5qJvH1uE4mXD1AJuFv25lnbmdIbGdVGL/iwfw+SPOZ2ZBDxAsaEuKkM8a fUXaqNLr7+6si5AsDtvUr1BCZ31jx1wOMqLt0Ygml8OSKEQXWmaR0DOw1s7o rzgxWxHTxzuur48U0VunuGyf5nI/Xv0okRXdaSrSNFXpmppMbX22tjEHEW2y CGnudQClpUnDZdZamoF6LRfVhGhcV73NDYQ0gLos+8PypX8SFPIO7lRvc0Pj Ygu1kAuzPii2uQof2uxqKnNp2eDSvNa5abVz40qnhmVOhVM6NS7WtyxicNZb wTkf4dySrWnMVNcBmUE5p6qqUlQVSQTnBNUT0s8Zg3zuRSlvE59vEKKR0mGM 0hgCpTmohaB3AsavhypuhClS+3vfiuCyOUoBwG9NZnKbnycRmVOBzKrKDHVl lroqW12To6nL0zTka5oKNM2FGlORxmTQGsb5mefoEMvzicwgmxe3IfM6Z4HJ GymQzC4omNFYboPlH5lORiAbIrtweexhATKj8Wm+Xf2sp2WHrxDw0V+itHGp D24l288ktMSIlhZ1bGFbb7iElo7sWMzncgirJHn6L781nM0ZCmOgE4RhuLcp AzfPNmYqGjKVAoEzlM30tjFDCe+sz1SuC3mnPgNnGDamK5vScNg+kJnV0bF9 KJXxQrXGk2jcxy20ooSj7cxKnbFlicP59HRyNkg8H5iIM1VCvvYs6a8p7KvZ NAxHyK7obzO35380n83t73x+4WD6+dvXO7AUYb+3BItDakGzKrsxXEIzi6PX P9xx1iitU4kniyPtKyy0y/4GXY6CXmhEl/a1n9vffqFFQju2ldCAaFDRx2Yh ok8FKEBIJ/TzYYhOHuBzi9KF2P2doH5MiH6RaoVowY4u0JmKiNJMSLct7RAp vdIFQQ3BcojUFW7w7ywBr1v5IgJ1FnnUWziWNzFjhHeRb5KwepMreRou5Gk4 N65waljqdCjJ41CCR+NCffMCvak1nLUCnDOQzNWpaiBzJQjXJNWzRNXTeBUo 54exyp1TnXdMcb4TqQS63gi3xPVwTukwTmkEtSWuksyGzwGqw9emDfC+w8n8 AODMyBzHyZwAcFa9SFZVwNUhTVWZrq7KVFdlqatz1DW5mpp8TV2BpqFQ01Sk bSnWmpibMU9nmOhHboYeycwMjRWiZiYyI5Op/Hsz9VEyMn/HveUfRCy7MyyT TvZgTDZEdyEm0xCq08ThnyjYUshznhg/WYeAa2tKn5BQ2uiOT3vIDWs5Wklo KaKlEvqlfGZzR8WyZwufFcjnDIp0BcAZ98+mKZrSFA3piroM3CMADxrTcRki REOasj4d4VybjtXj9anKBuo9ATI3JCnqkhQWOMdaBodmUPMm2c5ybOIOsobz DMeT1El6dDJ2c2NN3Tj74K88i/pqtpB4XjvIdhlW1rn9ypBpbzxsb+fzC4eF z68Tn9taHFazklBCs1mjoJ/FLpXYz2wSv7RN6YYuR2Z3iRHdBxE9v7+1hB5t JaER0dPlR6gi+jhV3J0NUsT39Uns7wN8ZunC24DoOPUDQvTTZAHRtZnauiz0 OhpztU152uYCIWloYkJatDvaUnq5JIG4zsUws7PF7rBmLyYT0z+AwIaXDcwb IaSLc/PKQDa7omxe59K0BsefNix3ql/qVLdIXzCxU/18feM8ffNcnUmEMyYE taZcTXO2poHgXAlUJDIDJJ8mqB7Hqx7FKR/EKO9FK9MH+gCcb0YgkK+FWeK6 JFpTmh7A+wHjDM5AZngeEOGMzI9i0TZ5IpBZ9SIBvzWcQCW6zeqqDHV1prqa ZHNtnqYW4FyorS/SNhZrm0u0LSVaE5PNC3SGSZ0ENwOtZkqAruZk3sDJjPYy 5Uy3uwpk/t6N+xjugoMhwbLIZEPsa8Rkmhl4jgfbNXbBS1gNaQlPC7HPvkxL M0qfcDeu8EUJvQ/XkLWW0CKipRLams/mhdSgPZe6S4qtM4MS8QxwNqchn02p tKU9VYH7F9IUtWmKujRFfaol1ge/UwsfSqUGnxRFfbICyFyfiGSuSRCWVUnh /CASm+upiVuwnVmpcys4U1rQ4cAEqqkbax/0lce2EXabhqJ4XjXAZkkfm9Fd f+dz+zqfXzi+7vx/kM+vdZBa0KLFYWlU4S4HK7Tr8d9ubNZoMFVBx3yGEjrp S3Q50snlkBjRWMux0FJrJ0jo7ayQY7L8xyny/dOwqfDwDPlRa0Svn+Cc1N8n ZYAPIjrGgmhmdFSnY8YQKZ2trc/RNuRqG/N1QvUdULrkZyi9xNliTZOKNkx/ 1cqdFlm9kR4Qk8vnvIWdiayFfJ3oYyOoUTavdSFPw7lhmVP9EoRz7Xx9wQS/ +rm6xjm65lI4GTLJJXCuz1DXEJwBy8+IzE+QzKoHscr7Mcq70crbkcpU+I9H IH6vhLaOq9IIswTSm5MZnuFOlBLInDHQB4APglyQzfHonwCZKxLRToFzqAIB n66uhlPKUtdka2pzEc4gm+sBzsXaBoO2sVTXPIeuMpgERM1smNIJk54rnLih 4YyGBroZVPW9hci8w1VwmHe5CWSWCuYjNJoVHQxPi1SmQdy46nGNX2smQ5S3 iQuSOP+LlCaHxBDVxXyQFdpR7GyDaKmEFvm8uA2fDdbJQeCzBM7mVEXxMO+i od5NyfKGZHltiqKaooa21tYmY5yN7nQmqlNNsqI6WQFva0EzJyqY21wdj4Zz azhH4Gy6tP7eAGdmO1/iTdwCnKcLcGZpwX1YU4dwDujmAeJ5wxDbNQPR3PiV 27rZ0d542N7O5xeOr4jPPTmfRQtaKqGlLgezOL75m9tU3BjLBiXZRH2KEjrh C9vkbmREd7c2olmikNXaDcdaO5xrN0723QR0OUBF750iF4Q02dEM0XF9fc7x ig4Q0qkDfbZNdQFEP+TdhRWpmDEEIY09hlna2mxtXa62Pk+HPSyFFkoLZdKi 47FQUuOxzNmY5gkhuNOrrQ3qdfSWvWc16e1VzuUlb5YlI6jZp5nWuDSvcWlc 5dywwrl+mVPdYqfahfqaefq8CX41pbr6El2jAbtpsBSQw7kpC+FcnaYG1Qpk BsFMmln1ME7FyAxQvRWp3DrZefMkZ0Du5RDFxWDFJYgQq7jcKkIxUDwDnyMU twjO8GwZgxDOJJtVjMwomxmZk4nMaUTmTICzpjZHU5erqcvX1BdoG4q0DcXa xhJtU6muaa6uZZ7OxOEMshlnPYlkFgwNIjPKZlEwE5Z/YGSmRktM+XlwwczH ugpwFpeOoVo2xL8mkBk5LNloc0kSF70sIeJaSmmp44H2tYchpgtmDH905Xxu g2hRQq/mEnqxhc/m+TRGo5T3qjA+53A+czgbhnm3JMuBz42J8vpEeW2SvCpZ XpmsqAIaJ2GcjuwEUZOIS3NYAJZbkfk52yTIZx9hk2CYPLWfl2XCRoDsnL8I Z0cRzocmOuyfgDO9g7/yZDV1ZUNxfxmI56V9bUq++Z3P7e58fuF4/03Xb7p0 YHwWLWipxSH2EqLLQRYH4/OUfwpV0KFkcUR/ioV2iYRo5nJkc5ejuI8wl4PV 2q0Z4cjaVUBC7wRET5T9MEm2Z4r8x6ly1vp9dBYiOraP95kgHNBRzuuit0xx SRvkI1Z0PEvWPBcpnaGpztTWZGtrc7TYaZhvoXRzsa6FKG1ilJ4nofRiJ8Pk Vy2+Byv2WMlQTLiGt+w9K1p/Ak5kSuq6Mblr0wrnhuXO5Gk41S5AOFeX6vLG +dUU6+qKdQ1wAoVaUwHCuSVX05ilqYNTTVO/SFY/TVQ9ilc9ACzHIpnvxSjv RCOZb0Qor4crU/r7AJyBw+XBivNB8gtB+KBVXGwTIK0FCR2hZPo5XRDPKuDz E6acCc5VyerqFLxM1KSrazM1tdmauhxNfZ6mPl/bUKhtLNI2GrRNJbom0P8A 5/m6lgWU5URPw8m8nGbxreZkRg+fk5nJ5p1uXDOzXZAMzh4CnI/+D3C28LkV li9TXOEPxMCPemFc/EVKn0EVjfnHAzxL+FI+b+W10Cvb8lljxecClcBn5jwT nM2pchDPzUnywqHeDQnyugR5TYK8MhFXjUPAg8oE+ZqAt6sS5BDV8fIqYnJV HAaQuQLIHCN/FiN/Gi1npRoczrTstZ8Xn7AhO8+mY7WCM3M2KC24kxpS8npr mHhe3t9mcZ9/Q+Wzuf3x8Dc0IgkupsDnHq91YCnCPm9aLA5C9B8G/9nicqDF Qb0qwOfJVGUnrrsCRDOXgxnR6dyIzm8roYdxCT1WBogGFb1rIk632zNZxrwO QHRkL2+jv+JkgEKKaGnRXdYQ3+9nuoqUfpGmqUhHSgtCGiidh5RuKNA1Fgot 4c0l+hYLpVFOGxM8ILjvQYqasVq0qZfzfy51kn7IBLEMo3mZ8/qErhDr4rvW zNdXz9VXlep+jHLfF+leU6itAxWar23KxzqTllwtwLk2Q1NFcH6SiIIZmHyX sHwbyBylvBmpvB6hvBqGkdTP+2KIArB8LlD+U4Ac3p4PBFC/JC7wKA9CnjNE 3whXMkSnDfS5F60kCa0SJTRDNPC5Jk1dS3yuy9bUI5/xhBuJz00GdGaa5+hw 1Ml8vUlQzk7MbTZMe5V7Gi5cObsKypnxebeEz+hpsDmuBOdjUjh7tYYzrRKz 8FmKZYirbeIKD4HVL6O0COpTlHwUC+12tkE04/NmLqGXsRmnFj7jJLrxvr/A Zyaem5Lkh2Y6HZzhVBsnr46TV8TLnyfIX0DEy1cHvF0B76GoZBErr4jFBe4v OJmftIIzH6+R3NcLlLNkwgbBeZoVnPcRnHeNsdshiudBtitJPC/o1TFyyuBf mTDts55NHGTXDs9NeljxmVscYhWHRUL/BRHNLI6Bf1MO/m8lyxKyQRwgocM/ FlyO+C9spUa00FT4Mgm9aQwa0dvGyXYwIS16HdPkEd96szGkDNG86E51XRhz p74fp945wzVzCIL6CaN0KlXfMSFNlK7N1dblaeutKK0HLS3KacOEThZ3milq xmqGa+ZUs39K3m+CWIzRstipaZFTPcjmhU4A5zXR72NEvZ87xq8qX1uTj9+9 IVfblKNtytY0EJwrU9XPk9WPE1E2A5lvRwlYvkFkvhauvBKGNsWlUEVCX29g L5D5zGyMswEYPwGrAxWt4hwPADiI6sshZESHow6/RXy+G42e9oNYdFEex6PX zRAt8rkO+JyFfG7IFfjcVKSlK5quBW1nqj9h+pl5zquc0bRH8UxwLmOeM+ez sKjXje8XcxembR9mzgaNaRXhbNn86GVZpH6e+AysvkB8Riz7YFzjcZ1C+Kc3 hhTXL6U0A/VpDyFLyArtdrZBtMjnjXocaieV0Itexudca3MjRV48FMVzQyIq 5/zB3jWxsqpY2YtY2bM4OYQx3O94mN/zWPlzojGL5xTPoonMUQKZH0RapoZa xmvQ3MILs9HZoD6Ul8N59xj770bZbRth5/+lx/ohtqtBPPezWdTHprTH7+aG cLTPs2p7wO+rO/C5S4dvpRbHz0hoVsjx1f91Y1nCKf/EQRwBXVFCh35kE/Ex uhytjGjR5Sjh7SqWju9RWMuxZQx60VZCeoqcDeg4MlNMFyqFlYURKjaJ9E4M CmnMGMarM0lOZw/1FeyOdIHS1VnkeHBKN5LdAZRuKkZQQxSP62SSKup5Tshq hmtG7IX8Mf+nCWIBRssCp+YFTo3z9XXzcP1WVam+0qCrKNLtDXdbHf7emvD3 1oa/V5etbQBdSmSuTodzw3Z1gPP9ODh/5c0oZDLD8lUksxLIDJoZAuB8LkgB QD49W37SH+OUPz5GVge0jrM8AOagoi+SF30VXQ5EdOoAH2ZE349RWRAdj9Z3 ZbK6JpX4jL3zmgbicyMI/gLiM/pCAp/NjM8LST+vcDavJj6vc7GIZ2EnAufz rjZ8FpwNvlBMVM6tyMxClNAXyNy4THxmTL7xsrguEpuzGiktdTw8kdIQZ3mW kBXa/TKf14sS2orP5lI1TuMvopEaUj4z8ZwkR9s5QV4bL88b7FUVI6uMkb2I kT2NkR0N8zsW6veUFDLEMx5PoxDLjMyPIjEVeD+Cbari23OolI6VOsf39jrn b+lDscCZcoKhX3t+P9Z+52i77SPttgy3m/m5x1oSz0tIPE/4dWfWsaN9krB9 nlXbA/ncuYPUgu7zJs8SskIO4DOX0MNJQn/1V7dxvFFlOs0aDeyKhXZh5HK0 NaKZyyFOhxYk9HBHQDSo6LLR6EWj1zFOQHTwN157pohetOL4bMWpQBxzdyGU 7VtBRN+MQq8DQc0p/ShBDZTOGea7d7YrCGmR0qiluSndVIC+dCPJ6SOR7hDN xfoWA1fULJPIcC0Q2+qxaR4OzYNooWiao6+fo68t1VeV6CuLdRWFuhf52pxR fi+ytZXZmuoszbrQ99aFvLc25L3KNM2LVPXTZDhJhPPtGBTMyORw5WXEsvIS kbk8RHEB3WZFfB9vAC8w+cQs+fGZGPCAUVqI2ZY4zeMM2iD4DJcERKOPDXwW c4VWiE5QVSRh6XVdurqe8Tlb05jLJlBpmzmfTaXE53kc0UuIz2ucjVlexmwv Lp7FzY+uknlTbpaprYJ49rQ4G6KtIYUzc5ulfD5vzeebLHzNt1j4YNzkYWH1 z1OaJLSQJdznKrE4XFrzuYz4vJaGji7hC74XSPhc+BI+o3hOlKPtHC+viZPl DfKqiJFVRMueR8meRMlW+L/9OFr2OEqIJ5Es5I8jEcsPI4jM4UhmkM1WcCZP o5yaBHHKN+3NOc77UAjODiKcd4223zHKbusIu7JhdjM+9wDxvIzE89xvOxbO 6vnrE6Z9krB9nlXbY15BxmevyxmfBQtakiV8qYQGPrMs4aR/CLPsZr/fMYgQ Hf6xtREtdTl62RmoXQU7vmk09OrhWG63nglpidcR9I0XLVuxIJoN8xcQHY5G B1D6eiSBOlrFeljuU2nH40T197NcQUvnDvP9McCVVXfUZmENHt68U9Tn6Rry dIWj/Rq574GKGgNZbaLAPhdWoUfB6I3VICWCQ9Jcom80YAawphiXJL4o0D3P 0z7L0eaM8H2RiZsFQDBXpaGef56iXhn4LsSKwHfvIZzhzJHMyORQYjLHMmjm nwJBNitie3sDjQHLx+C/PwPfGmdiHJ+FoLaEP8ZJHqfJBjlPmUR4chDkoMyx OjESXZQ70cp7MSqG6IeE6OeJqqoUdV0a8rkhU+AzVZJrmwu1WP2CQwJ1Zn5/ YQI+Lyb/GZ1nF8OsVwU4Mz5v5XwWkoPurfl8VHQ2JJ5zKzhfpAeEaIHPzIIW +ExYvk1xhz9g0ZbVUkpf4nw+52nJEh50w0K7ndaIbsvnVSShrfmM21IiXAQ+ ZymZ+VzMxHOCvJ7gXBWLyjlnoBfA+VmkbOWstx9GyoSIkD2SBPzzQbjsfrjs XrjsbpjsTqjsdqhM3Dspwvk8zT6K7eWF44+mO7aF8w8EZ+ZsbBpmt2GI7fTP PFb0R/E8v1fH0h4djUbjr0+Y9knC9nlWbY8luTFd33IVLehe1lnC/q0k9J8F Po/hvd5TcBx0R7bxioxodDlaGdGCy0GJwlKh49th+RBU0auGoxctFdKA6MDu Xjsnyr6fLNs7Vb6f6qKPSRBdHopGBwjpywTqa5EIalYgfTdWfT9eoPTTJPUe f1egdN5w3wOBbnXUbwhRxyJHWzDKD9NhwOp8QVQ3FVLJB6vNK8KGROx2EYPe KQZ8ZkOhrrZAV5Wvq8jDbbbPsrXZI3yfpWOyshLJjFYznAacDJzSg3hcU77Y /91Fs95ZOPOd8lBicjAxOUhxNhBXFZwJUJyGm4XZ8uhe3kBjIPPh6bLD02RH qH8HQT0Tw2gdAG0WDNE/URoR1DhDdHJ/n+sRaHHfJkTfjVaJKvoZSGiyOBif G7M1aJUDn/O1LZzP2FYzRwd8NlGWULCgV6PzbJjVWWjnERvet4treUVzQ7I4 TBDPXhJnQwpnH/MlnzZ85inCK2Q1A3UZme9axx0prn0srGaOh8jn8zxRKGYJ f2wjoXfQxOnNtBRA5PMKreBvAJ/nCfXPONUZ+Jwj8NkY4HTM36kpCcVzbZys muD8Ihr5/DRSdjTI70iQ34MI2f0I5PADSdxnZOZYZm7zDYnhfDEAt4+d53uB Y771OjndkS0FZnCeP1gbwuDMbOeRdpuH220cajvzc49VJJ4X9kbxnP/VK/8W wrRPErbPs2p7LCY+dyc+/7yE/oMooYf/5Q/d/uomFkIL4+zeRZeDGdFh3IiO +1wwotHl+MYuh0noPkLH95LBDssYooeR1zHCguiAr70wYzgR04U/TpUfmI7D /I9JyjnOh6CQFkCNLgHJaXI87sSo7nFKP8HxpJqKFM2+2a75w30LRvgdDHKr zdRC5I/wY6K6jqwPGv6PoroRIl/XRNFcgNFEb1vyLdGMgT5AXa62JkdbmaN9 ka19mqV9kqHJGu77lATzs2QcGPIoEY2X+3FolcPlAy4i1yLxsgKCee60d+ZM ewfeIpMDgMm4TeakvwL0MMAZIAxMPjRNdmAqxsFpMnh8eLqcgZqxWhqM24Do U/5yeEJgPsCfjGjkM8sVCioajQ7VPUL0E2weRIujPl3TmIm1f8DnZs5nvDzh 4ClEtGkOGTvzuAW9iunnzhbxLPL5O742XeTzQVq/y1bSHPeyiGeA8zlrOF+m t+VSi+N1wYIW+XyLUHzPz3yfxz1fjNasZnwm/XyZKqUvcD6foSzhcl/jYh+h 0E4qoVvzWS/weanWis9sJYpQvIF8Lh7u3ZxMzjOI51hZFcH5WZQse4AXwjnQ 92GY4/0wx7thjvcgQlmgWr4bioGCOYTIHIxkBtlsgTNv3z5DKyaje3oyOB/m cJ47UCvCmdnOZcPs1nPxvJjEc0mPjkeWxv5bCNM+Sdg+q0raHgKfuQUtSui+ b7aqhf6D2E4IfGaF0OP/LmQJmcvh/76VER3zqcTloI4VqYReONABVPTSwQ7L h1q8DkD0rG5ezI5mk6JFRB+ZqRDKOQKVZ4OUIKSloAY5fYVqpG9ECXbHPW53 ACrZeNLqNM3+AFeQ0/kjUFRjV0uGtgZwnSWI6nrqQ8RWROpGxHUtebp67org rA8xMPGHX1iVqa3I0DzL0DxJ1+ye7brbH0v+4LrwCAWz+l4cnsktIjNcPq5G 4nkCnM8GEZMDkMklU96heNs4C8UwYDbyW29AMTB5/1TZj1Nk+6bI9k8RKH2Q euEhDlvHEQoj2dTocpCELg9WbJjgvHGi89VwNDquc0TfjhJU9GPMEqorU9S1 acjnJsZnnN2qNRXSPBMDmw1ILjRD9EJuQa/lfGZwZgvTt1uWHVh2pot8NkrF s7fgbJT7WOB82VpCn/O28Pmyj2BxiHx+IAkR1He5kL5FML/GyzkYn8/x1kJq KhSyhHtd/wU+65DPiy3+BvAZt1mFOTM+G0Z4t6QqsFswUY4FdbGC5wzKefck /YqZ/0Q4E5PvQIQIcRtDBoFkDiYyBxGZA9HTYMP2rWZr0OyjqJ6eCGdsErTA ebcIZ+5srB1sO+0zj6Uknuf07FjUveOt03t/fby0Zwy2zwtHq2NRDvL5a+Iz k9C9fkFC/+kPn//FjRdCW02EFvfGikZ01CdCLUeSUMuBTd9MQs/pR9OhB9ov GuTAhPTKoQKiZ3bzEjKG42Q7Jsh2UTnHPmoAZ4g+MRspfTqwNajLuTV9jdsd LG/IvA7sN5TEqC/eYNbH/kA3AjWymknrWgmxIWqyKcOYhbM+0CTJ1DbA2wxN bToCnxJ/mqcpmscpmsyhvszKuB+nZoIZrhRwvQDNfCUCzw3U/nmCM2AZdPJx fzkw+dgsbJkESVw0+W0W4T29gcaA5b2TZXsm4dsfJ3NQo5zGRsuD1nFomvzw NBkIaSNzOQLQxz4frEjo53MpFFOQIqJvRGLRHSI6Bl3op4lqZnE0ZCCfm3Ow Thv5zAa30nhtk5TPggWNKUIrPm91s+x5lOwLI3PDk5sbXgKfz3hzZ0MC5ysi n30kFsfrPEXoY7Ggb3M+P6J4yBHN+HybPOqbEj5f8iZzg/P5tNDxjRbHEdq9 svtf5LNWymdzgQq3WeUojUHOxwKdmlMVjcnUjRJHzgbB+XGEI8A5o78Xwpkx OdjxFsVNSdwIdrwe5Hgt0PFqoOPlAMdLAY5A5vI2cGYJwcgengzOC6RwHm0P cN7K4DwU4bx6oO2UT9wX97GZR+I5t9vv5kbroz2fm3gAn99/E/nMquwECf2G pZCDS+g/DPwTIhr4zAuhX5FOhJ5GQ/slRnRH0eUQRyeJErqkL0c0Lvu2QvSM L73W07IVhmjWAy4gmnKFx2YhpY/PFubdEagVDNSsBu8yF9KiI/2IvA6gNIsf ZuHM/2fJmhfJmr3co94X4Aoau0psGCdpDVGVQaUgFDjxg3R4VSpCHr5c6jBn DPa1WBlR6IpfjcCTgVOCawecG5zhGYIzMBl0MsPy4Rmoh4GxB3jMGPRx/sS3 8ya8/f1EGcQPrL9yMoF6CoF6KoJaGqiup6IBIrgcsxXM5Yjv610eomSIZulC hmgQ0neisSL6cYLqeZK6Cqs4iM/ZyGdTHvG5EBFtYllCEdFoQTsxC9ow41X0 n9medJHPFnODr0SX8vkkF88/cfEswvmqr4DotnxGC5o+R+TzXQLywzZwFsUz M59Fc4PxmZsbyOfjHjjRDnsJrQvtfoHPizifSyR8zibxnK5oSlE0JMlrEyzi +UmE7EiQ76EA34x+XncBzsEI55tBjjcorosRKJD5CpB5NpHZH8ksGs6nSDaz DsHFQ7WLhmhbwXknhzPZznbrAM6DbFcMsJ38ifsCLp4PL/nd3Gh9tOdzE4/T h/cAn78iPrfOErauhRb4PNSyl7CVhO4409qI5rUclkQh1tr1AkTbg4pm00fn SxC9YqjD9C+9xKIOli4UEc3KOQ7PUICQloL6JAc1K5NmQtriSLPSjnhLZA7x BWI/4mnEZ0nq58maPf6uOUOxPA9wXclBzeTx81RqUSThDW/hk+FLQHk+5j4G PD/A+Y5FMBOZw3Bj14UQlPegmeEiAid5guDMmAwBNIb/1L6pcgZeiNAeXsBh APLuibLscf/MGf82xG4G6kkE6kkWUIvBpDVA/gh50SewAA9zjsDnC8HKcrY7 jBB9lSE6Ao2OezHYYC5aHA2ZyGcT8dks8tkK0ZQlBD6TBY18ZlvDGJyF5KC7 hc9W5gYXz6e9BXNDFM9XfBHOIp+lEppZHFYpQpLHjM+iuQFy2gJnLp6lfL5A nYk/cXPjBM1lOkZ8PmSdJfwlPvP65xJhi4ox1MUw0secoWhOUzSmKOoT5TXx cuxGiZZRTtD3UKAvKOf0fl53mGYGMgONAzCusiAsX6a4JJJ5Fsrmn7jhDHBm hvORybhM8MBEh7DunvMG/Qych9iuwYJn25Rv1Ilfqeb1sjH0+LdlBs3tm4Ht +dykB/L51Q5Si+OlEnoASOg//uEz4POfhVkcY/72cgk9mxvRYlOhNFGY2xPL oQt72xW3QXRKL21aL+2qYbzuDlT0WMdtlCv8nrcWHiCvg0AtF0F93F+Q02eC kIesUvpKhFVpB4t7ser0Qb736AHjtsBqrrFBV+dQeR4EYPlpsuZJEib74KMs 4DPhqxiWQS0Dlm9Hq9IG+jAyY+GcRTAjluHCcTIAryNwNTk6i2N5qoDlvVNQ GzP2QoR84wUo3jVB9t14xx3jMOBB9ri3RVDv5nJaGozYoKLhyQWXYzZa3HF9 sM/lPEc0CGmG6GvkRTOLA/5HL5LVcFNQn6FpztKacrTmPJpQXaBjLrSVhBYt 6JXUokLTs63NZ3dr85nWoP+CuXGZlPM1xmffl1scVilC39YpQoSz30vgDJ8s mhuMz2dpRJ7AZ5zbL/B5v6ul0O6lfF7+cj6DfgY+mzIUTakKnFOXiPM0KmIE 8bxi5j8Bzkw5p/b1uolS2eFagMOV2RiXMRwhmGa+KJJ5ppAKPG0NZ/Q0JjmE f+MJcN473v6HcQKcWakzwLlsKOYEEc4DbZf1F8RzKYnntcGf/rvamdszA9vz uUkP4HO3V//P11xC9/xFCQ18HiLuvfrbK9KlKm0ldKiklkNMFGb34IjuxRHN M4aTP/O0FHVQ3R3bKrudIxpU9N6pwiSlA9M5qNErEChNCUSqlBa8DpWYNBQj daAPe8D7EAVWP6CqD6kZkjXEN5PiAQH5AfWV34u12Ms3o1Q3qMAveYCPNZmV omAGLMO5HZmJpwonTFiWi1gG3u4iIEPsnCAL6u4Fb3eMx0WNW+HaBP/3cRg7 xgOxQVG/nU2g/p4aLcX4gUQ1qGiQ0ILL4Y81IbF9vLEBnBB9gSP6MlfRcFm5 jxaHmiwOTV26ppHxORcRjYtprBGN7SpzLBY08pktoNncls+tzA0vbm54cz77 cHPDV+DzNS6hBT77tOazYEFL+HyvLZx9LXC+6mNlPrPKOuDzSQufzYfdaXUs ZQl3vYzPazifl2iF+RtzBD7jYu5QZ+RzOvK5LhnnIFXFyV/EYLUzwPlBGHrO aDgHOab08RTh/P+wdx5gUV1b+7/fTaTDFBhA6dhiEmNuirmx94699957r6AI ioggqMjYu8ZYIum9mB5STCVFUzTFaOyN/t9rrb332efMDGJige/7n2c9PoAj zCFPfvPOu9619vfTfL6b5vOtqNypPt9M9SEyM838xWSfI5N8PpvkA8ucxXjg +2PBcH57tHevJrXeHOktlbMezl77+3nuhT1Injt6eIxpHraxCxfPxz/XOoOM z7cT1OWZgeW5d6leDZHPYHGUQUJzPgsL2omEbsAl9KwmTEJ7aBMrWhzaKw3j dhLR6wSix7aK2NFXl7s7iJuUnsVNSgzRr44FSr8+zkT77g4LUCOlQUtDA5G8 DtE0/B69jmOinh5XhRWDNgWnDaOIvwpQ/ylE8m8okpf3jcaqypj2M5oY7N8e wzGZH3AMcEmvaKdk/lC4Ge+gj8HeArw+DojKboRh+WXQyZBUeWEkrxkdIl9A Mj8z3PcZHH6H+fcRyGoC9UgE9SiuqF9BvJOoZohmsvxdftgBIBrO3p0BRgci 2swQLe3oY2BxQNCO3SZ0CWEXB1gcRSsln42ILmKIRgu6mPF5V2VYkXQA12WT xQF8xhMbnZjPkUI/I595eMMB0Y4SWrWgJZ+lBf2rAmdH8czNjSi9uRHBzeeP 8FjD9xQ+v6bn8yHB5ycUPm/ifM6JrcL4XJxuySI+LzNfWWq6lGi6EO93dqHf R7MhUPc7RjV+AU/DJ6l7hITzt1M5kxHLPl9P8fkSi5H5c0HmTyb46FbSIZzn xkTMwQlBI5whsCHg3NtzZ0+PJR2si9tZmXjOjHE/MLul0//rJahvKULLM5/Z lZKSUv63JI0b1rdt9bvI4tB1CR2CHL0euJvxuR8NEj4MFgdDtFMJTRbHbMza LcCh7/jWnspeDueIHtMyYmsfb8rdSRV9cKhvNsU5cEfHy0QkBPUb44B4bymU /oAJafI60I7+CgN4NM9CxUAKsy1UIjsNrFZATYqa/amJZAQy6WSq7/G7MUXK KrFntBMyTwEyv6snsyOWmUJmbxCIw6ymt49kfz49zDd7KDjw7LXpaaxnhmus lnJaVdSvjqEFgH7KeTSmhd2iqFf4BZ2QriCavab8FGthbx/+UCyOq5DiAAlN LrTK5yLi8/pAbkETn/cjn8HikP3BMH1/MMIooVVEf6Mg+gdHPgsJnXiv1iI8 Jvh8ohqWCmcH8azy+QvB508c+HyY+Bxi5POBoJInkc+7dHzOWRiSs6BK8Wor HMmdaskaFMX4fHmJ6WKC6Xy8X86cah/OqnYSQ85MPDM4/zgD+Mzg/B3C+Zsp wOSvJvt8iUVY/pxks0LmD9XFGghnOKwKFtNBWuPFod7P6+FMPcGdOMrNxPOG Lh5ZHZl4dj/x+fVjdbcO1OWcz+X86dFlt9vbVL+rHfH5ehK61YOh/eqoG/ud S2jV4iAXmhqFS9rqdvin41yhRPToFhGbcXpFjUYry+78aJOSBPWrY2kxqYk2 /PNzWKbwrR04z8JzHbIYSxmjZBmGXI4pM+MUWgZLeYGVkfx7tC8ojMH+YUKP aKie0V/Nho8/n6VqZjOR+W09mdkTfmk0x/JziOVnCMVUmP1mf7Ji98veOLB6 CicrDymsJlAL34NUN9jUjNIZoyH1oR4ZFtc1ihZMHRGI/oohGu1o9vpCFsdv 8Vb2ZuHMUv8LyRAavJYaULDSiOiiTJyapI0cjM9boUUIRxukRmoWx3MOFodq QVOLUEX0ly4Q7cjnBD2ff1KmvEuH83covL/GLR/c3IjgzUE0N0reDc3ZEpWz OarkDcHnF5DPTweXPCX4vEdsGUU+58SH5MSFFGdai1dZi1cinwdGFSQBny8k gLnxxNR6pxb4/jEPnOdf0HM+Ot1nabcIDc6E5UmI5Uk+RyYCllnR6VQ5430+ Gqd5Gu+M9t7c10az20w2z4KV+1pDUIXzE73Bdt7ew2NLN4/RzcLWoXje70I8 u7purk1d/ulX/p9hicZnsDi4hK5llNAS0S0fDO1bB3clPYQS+mFFQv9Xk9CO Fge60J4JbVwiekTzCJm70xCNy+72i+lCRuln4M2+3/Ni5Z0jpUlIk9fxqch1 sKK89OIe0fQpFcSnFVDLmXHMYDAsW78TQCa8Mxp/Kb7b5xjti+8e1bf5vYu6 w8Jqpt4lmZmqf0MhM1fLCpnZ7TDqPjWEo5jVlLaRBwb7Uu2DNDjc+AH04SWr s4cKSo/gvgcp6pdonGes36ox9VaPqbdmbD2G6NiuUTAaj170EXLmZ3E7msn+ owss7K3Br/Hc4qApHobovFQbD3IAogOL8fhdjmg7tgi3BNOUithiR1OEoTqX wwmiIzVESyP6q2gN0ZLSEtE6CxqbibJFqNbPCG0NztEczt9K8zkSk3XC3FD4 XPJ2qH1uTeDzq1VKXkI+Pyv4vB/31ynh55zFIR8tCinO8pd8LlqB+pnxORH2 Oe+dVu90rN+f82Ea5QQENtBznubz1FDbwaG2b0g2G7A8ATQzyObxKJuRzO+N gTOq3h7tvamvLkc3s12EDs4iTafCeXE766I2ViaeV7V3P14G8ez0uik29W2g 3+XLl3v37u3j4xMSEpKZmXmjD6gofG5d/a62NTSLoxQJTXzWziV0KqHra+OE s5t60MQ3BTkWo8uxlBLR0uhARA9vFp7VzVuNRksVvZfBihg1FDqG2RxQDpQm x4OEtOJ1fKrUom5R/GOc4PtMzLnIaURphrAPvhGWMgH5CNoXn87g3+oTUQu7 RbGXgwVdouaz6hxFZH4Ne3/Y7NNhmQTzIVTIDLz7EcWsnhzkM6ltxJMDfVjt FfUkfh0f4EusPqinNBUiWhxGI84LY4ie0q/52nH1cuhsdIHoLxDRTEKjxQF+ zu+L+aDl+WUB5HLkp9mKhIQuknzORAkNFjSsv+Ytwv1VSg6G8KDddV2O0hFt HCTkElrHZ7Kgf8L6WZQRztECztLciNSbGw58fh37g4zPzyOfoTkYrA9v2HIS Qz+KDyle51+U5V+0xlqUYS0CPps/nB78/tRgxudP5lX7aE61U7F+J+dr5gYT z9+h4ZzQNQLh7P35RO8jE70/m+D9Cavx3h+P986BAjJ/MNb7/bHejMy0yZnB eUMf22s0u42exvR24c86gzP0BHt6bIVpFI9RzcLsndzXxLjvm3Vj4tnp9U9s 6ttAvwkTJsTExFy6dOmLL76w2Wxvvml8PSr9ARWGz9XuaosWB0nojnoJrSKa 8bnPA2Jj/0PyaG+jhKYu4YzGfGmSlNDxrT11iO6gIXpYs/A1GI1e112ZXsEB Q0I0Z5Sg9NOuKf2mGDl8XwTwqOJQT34ks9PTtGAezLkIOS2lMmKZD2Kzh7EH UxhDrZ1Dg7cPCWaKnTTz6+NMsztGzsIiMuuwPIx7F6CQB/sy9jIIPzEQZnP2 DPCZ0CZiD37A3jXQ/ihWT6DJsxe5TSOWB0Q+PFt4I4ToF5XzwgjR7MWCqWiG aPv4+usm1P9UInomHHnwHXQJwcn5LZ6vKzmbFHAhOeAyuBwww15E44SrAjVE Mz6vxxahtKDxDHR+oq4TRIc7R/QnrhH9rdDSRgsav0h8diwDnCWfvxZ8PiL4 nIN8RvMZhlMOI59fQz6/iHx+RvBZCW/Yx1bLSQgp3hBQtM6/cK1/4WprYYal MM1SmAKHdGf2j/p8ASzePx0H++g0cwN7gmRrJHSJIDgzMn8qyTzO+6Nx3h+O hWJkfg/J/DbCmclmgPNwWkkHnsaaHgGruwc8PRByzgf7A5wpTYdw9mRw3tzV Y0MXj5FNwzJj3DPau930ge4bBfWtpl9+fr6vr++HH35In86aNWvw4ME39IAK wecSjHBwi8OphFZcjpYPhjA+066kAS4kNO8SakFoTUIvasVUtILo9hqihzYN X4U7lGh6RR0wJBVNHcMnDZTmAtJIaQp4kNchi0lc+oCGXCA+PUWZc1HkNGP1 Z5hbVgJy4F1QGb4n+yns5YAhkb00vIImM3smz430m9Y+clqHyIxegYeEpSwE MyczoXiXqPGtI9idqkVfB1wLVmOshVOaHA9yfp4drpxEg4jeOCB488Bgeeou U9FE6fUT6jNEf6VYHDTC86c4eFd1OYyIXouHOXILGvn8JJ2lG8Ibhc+ElOZy yF6hU0R/rRfS3xGfo3V8JgvaWC7g/E2U3tyIEOaG4PPbeKT4GyH22TXRfK6C zcHKhvCGfVy1kq22kk0BRRsCCu2Mz9aC1daCdEtBqqVgOYQ3GJ/3z6h3dhFs dT65wO83bm74HpsBgY1csDW8F3eJ4HCWZEYsg2YeA2R+dzSXzW+NBDiv720j T0MaztPahks4c88Z4byzp+c2BuduAOeFba2xra2rO7jvnXkTxLOrq4ygvtX0 +/777//1r39duXKFPt26detDDz10Qw+4DU/yplwN7gM+t63BJbTaJex8r87l aPFgSG+xzs6JhJYbk3RBaA/qEjIJzRC9sJXoFYo4Bx5W6DWkaXgGGh1r9AOG UkXvFKqyLJTG07J4tOPwBF7zOkcdxpG9d0R8+l0lm/eRkNOOWIYYBrrKjjUP DQ32s9hPlGR+ZgQ8JfbEDg71TesROLlt5OR2kak9ArlgFiKZEZjd146+sCqK 1bhWEexOqegrO+jGBavp9p9ALc0pjcznJ9GM0CGayXh5MPr7gGhzDkXEp5sZ ojdMrL95cn3lVEe+q+TMUp3LwTdykMuxGiW0Hc4mgENkdlS2T6jBD9Ill4Mj 2pURHeEM0VF8otAR0d8aLA7BZxo2pBOvZMnZQwOcvxJ8/kzwmcTz+3iYOCTr QkteD7HPqsnNZ2gOVpbhjZyUMPv4amg+I5/X+zM+F2Ra81dZ81da8onPSebY Ic0vLzYBn2P9/pjv+6ve3IAE3STv+M4RHM5CM38wBsk8mpP5bSTzmyO93xgB R2/LEN3ztPVokNfUNuFPOYUz2s4bu3is6+wxomnY6hj3tLZuP9+WbUil9xNv Nfo+/vjjSpUqyU8PHDhQrVq1G3rAbXiSN+UaN7SvweJwlNCEaMbnXrX5Lg5X EppbHPouIUlojmhaEK3EORiiBzcJX9lRG10xzIBv7XNjlH6RTssaZ3pDFEPo nE5RMOEyHiZE3hLQ5qMu+slxyGBMMTN0vyOafW+Od1Lsu7HvyWQzdABHw89l ZM4WJsZ+NDGkWk7pFjihTQSrXURm5PDWPqzg7sa2imCvRLLwi/C37O2DhmtG 6X7q7XPP56ByWNjzIogojzk4jKFoA6I/R4tjy+T6W6c02D61Aa2TOkmIduFy FOLOVZ6C3gIWNPB5D551vq9KqUa0cDkI0e/rEf2ZgmhHSqOE1lnQPzgrJ3CO 4nA2mBtMPL+vmRuU3AD9/KIwn0V4wz6pes7ysJKdgWLzBpgbBVn++WsEn1dY 8pPNX8VVn9K97iXG54V+f8b6/T4PYs9cPE8H55mJZ6acGZ85nKVmJjKPAjKT bGZkfn04wJnW7L84BDbtPzvIi2TzlNbhB/p57esLOWfynBmcqSe4savH+s4e WZ3chzcOW9nObff0FrcZIE77ibcafV9++eW///3v4uJi+nTv3r21atW6oQfc hid5Uy673d6q2l06CS343ElKaHQ5WtQBPvfGdUlOJbTsEvJZwkbcheaIbuES 0YOahDMVrZsuRC+aEE1eh47SpTsepCRpOg+L8eoVEfZ4DXFNcy40k6iOuryn T8cxtrPH06Teqw7Fvi3J5mdH+JFmJhPD4C1LK4M9eYZiVomdbOx1ZzPeGqvR LSPYbW4Un27CV6XNelzDFHxfnZbeaziGRh4WNgqOOXhFaRcaEP3ZDH7YAa2T YojeOa3BrukNwIhe6n/WmctRiIgWFnRw8bZg+/gasMtuTxWOaCdGdJgTI9oV oj+XQjpKQzTyOWd/jZwDNTifndZ3xvX+Gpw/jzSK5/eEeEZzo+RV1M8vCnMj OzgnPdw+uXrJ3iDZHMTJQeBz/lr/vDXWvAxrXpolL8Xy5aLqX8ZWX9M/6mI8 8nmB32/zYHHoT7N8j86AwPM3KJ6PTPBe1CmCw5nJ5tEAZ07mkSibR8BU4GvD vWa3D395qBctC6WcBsF5ZdeA1C4BBOc9mNbYIeC8CeFsZ3BuEpbR3j25ldtP n92BVaJ0qf3EWz30ce7cuf/5n//5/fff6dP09PQWLVrc0ANKKhyfXUho6XIw PkMQGndxOJXQclZlYj13OUtIQQ5yOVgRpReKY1YYogc0CpdGhxNE9+R29GZO aS4mS6f0syP9nh8FpKKaERNJwlIOuRCuidivi1GXwxOhRDrOxCdKaKjEWTEM Pidk88GhnMwMy7sVb5kMCvaE2dNmjN2C4F3c0TaqRQTDcnyMjd0g+5i9EtGd Um3sqeF6cy/O6m19uO+xU2yUkqtZD+rPc5zRAV44MNFhosPCaLSQEP2pcuqu XFRyIt7KEL1nRoO9Mxue4y6HDVyOlbAXujAD+bwW+bwJjsq1j61RsrMyIPoJ iejruRyOiP7YGaINQppJaGlBuypXcOax5whNPL8rxDOaG4zPJS9Vsc+oQXy2 T62eszIcm4NBYnIQzI2S9QFFduTzauu1dOu1NMu1FPPBWfWvLYGjYDP6Rp3F 5uCvc2EV0o8zeWfw68k+TDwz5bywUwQYzgjnd0d5vTPK6+2RXm+N8HpzhNcb w71eH+716jCvWe3DpWzWhej640mC6GlIOG+TcMY57swY92GNw1Jau+2YdmfE s4HGt4d7Dz300MaNG+nj1q1bJyUllWBbcP/+/adOnXL1gNv/PP/hlZOT07Sm qXV1TUITnx1djuZ1QjBo5yChMQs9/BGHLqFwoUlCM0TPE4iOwx3+dMxK/0bh PHGHO5QMOzrW9eC5u409ubDUSEVi0hmls4drCTQmbqd3iCTrgzxqmnN5UWBW zCTqsMzHSbDoH8p6ThT7tuy1gP049kOfHOxLZN6JOln1lsnKIDIz6rJ7WY83 Ze/uHdfBNqJ5RIf6tdjHdnGzrNZTSVwLUQ1vIvro7A6JaPWkMPbEdFa8QPT7 k6Er+rE80nGO2CUVpzOiGaKfnA2H25LLUYir+0FCZ0KLkCxo+9jqJTsql+wS iH5ScTnKiOgPFUR/GuVSSJPFofrSxnIN588Qzlw8h6OzoYhnSG5wPtun17BP q4HmczBvDu4K5ObzRuRzln9+pv+1Vdar6ZarqZYDs+tfTTLjzmfg8xnG5/l+ J+YazY0jE70/Gecd1yniwzFe74/2ehfJfBjhLMn8yjAve8+ArJ4BL+g9jacg pwGexqRW4U/w8W0mm6EhSHDeAHD2WNvRfX4r68xmlsQWd0w8G5SzU/FcWFjI ILl7927Hv7puktnp9eKLL5rN5pkzZ3bv3r1mzZpMMLMvnj179l//+hdF6Zw+ QL0qBJ9LsEVosDg6OHM5GJ8haAezhJV6O5HQlfRBO/dJyka72U08OKJRSC/A Hf6LIBTt0a9huBKKFnMrIs6RReBCr0OSioS0gdIi4YCurJi8O4SKemp7ACm5 H8+MADviORxIlMR+UehqMpOp0/ccPpLVM8P9nsF/rta09pHUBNw32HfvIHiN YGQmGm/rQ96yz5Y+3KPY3EsjM7sddlPs1jKpunoPbx7BagRWFv4t3bUktrx3 +SZimxDSHNEDdYc5sudGRsfLtKBVdEvfw9ihPIzmK3HqLh2Mzo1o4XJcWB7A EH1wbsND8xoiosmCDgILelOwfUx1WAdNiN7jgGinRrQTREe6RLRCadDP30Q7 VJRWX+MjNTILW+MTPPdQJ57DdOL55So5ayNHdr+fJ+v4ZApODnLzGfm8zr8Q zWfg80rL5wk1Pl9U/UqSGXY+A5/hnMGTjM96c+OLSZDZyBnrHdcxQsJZyubX hgGcXx7qxci8tkcAyOZBmqdBrUDyNCa0DBeGM0bp0HPegD1BBufVHdyHNApd 0tLtjS13Zs+z4XIKvfPnzzNIMnI65fN1k8yuLvZ4pooZ0s+cOfP3HpCSklLG n3UHL+KzkNB3t3fhcjSrE9KNb+So1Ot6EpqCHJrL0QRcDoboOc24kJahu74N w/WhaI7o1RjnyOyGlO7GYUUr76SQ3qp/y79bBIYZrPYP9pUjeFPaRVIa7ZAY cqGBREns54QfgqFlTuNskVumjJyh2Pfcz2TzIJDNuwbAywRjJolk1VsGY7mn kczsvtjdUa3qAvFvullWw5txVrOH0Y1ndXd675ojTYjeqyCavR6pPvxrAtHv iFPR+bo/3FKCRrQ8esZfxO0CeNwOXQ6G6EPzGx5a0KgoC04wL94QZB9dvWRL sA7RqhENp8eGOjGiVUS/54ho50IaLOj9NQDCTusrgnNUaXA2iudQJp5z1kXZ Z9bIyYxk4pknN3jymcyNQGk+F0Oyzj9/tfVqhvXzxBpHFte4nGy+vNSMO59N 6X2jTsdC8pnx+ceZvgZz46Ox3tv7BWztG/C2IpsZnF8Z6vXyEDA0MhHOTDY/ MxCW0RlyGss7+S/r6L9DD2f0nDmchzYKW9bKbWHTStf///zWX67gXLly5QED Btx3332OfL5uUPmWXndq+eoNXXa7vSXjszMJDYiuxRHd7IGQrmJW5ToS2rB0 FBuFDNGzmngQpcGObsaN6L4NwhIc5laky0HUylS09Hq93aEKac2YHchBvRem 8HwntY3UiD1EDE2rxOag5tG4p5Q9GAdEdJlHMkSx78m++W4hm5lU3tQbgSxM ifU9uU1BVkYWqmUiM7u1dKWGNg1nX1nVWYP26q4A7eGsmkdkEqgFpeneUUjz G9chehB/PQKjg9IsOP392lhwb2gEHlwO3FLy2UydEX2MG9EibpcUcD4ZDo65 Kl2O1YGHYhsdimuUvbCRfVT1ks3BJVuDS7ZXBiN6l9ordGFEq4h+2wHROQql JaIFpcHi+EpBsaG+UJVzpBM480wdF8/2OTXts2vmZEVS7Bn4nF0ZkxvBuBYp iJsbwnwGPmcin9Ot++fWv5xiuQxrkcyXEkwXGJ/7RJ5aAOGN42g+k7nx5WTo DH48zvuDMV7vjfaa1yH8MMF5GIfzSwzOg724bB6oehqeak5jfMtwNJw9ydPY 2EWBc4z7ynbuAxuGLmpa6cdP71hbUF6unA0mjN955x32wSOPPOLI57IElW/d JV9QnBrp5eQCPle9S5XQBpeDEM34zM/4diqhRaNQDXKojUKBaHcDovs0CIuX oei2PHFHEhqoJZCFlPZeqwhpx7f825WEA012sFreDTb/S2I/CZk3SL6pxJa4 1qEYH8lqL6uBvvQdZFFYjr0osB9tMJYJyKSWs7qRleGlkpm9+rAbTO0If7Ia 0jScfYVekrRCaU3qmkBNlJZC2hHR6MPD056M7xdoOysdQ0OBQ3W4kubfj8y0 yI3Z3IheZP1V73JcTrFxI3oVH1QptgfFjWyZvahxdnxjDdGORrTjag4Z5ygF 0c4obV98Lzc9jIVYlmRW4fyRhHO4cDbC7HNrMjhz5xlidVUwVgedQT7W7cTc CCjO8i9c45+/ynpgXoPLqZZLyy2XlpkvLYGdz+cXmV4fH/TK2KDfsDl4zMHc IGeD8flNhPOrQzmcX2BwHkSy2TN7gOeh/p4H8WhXNaexs6fnuBbhquG8DqJ0 Hpkd3Vd1ADgPbhi2uJnbxkm3uy3o9LquneuUz2UJKt+6q0JY0Dk5OU1qmhQ+ cwltcDmaIp8pC+1UQtPeUd1GDqVRyBGN7UKiNE1/964fZkjcLccsRxr2CtMR VqsEqLmQ7qYTk07tDlnjW0fIMT05jqdqbIIwMRlRzP9qj0zH6Wf9dmKNaw0T JUw2MzIzqbyuhwHI3pko+0H/I2aBzAhhhmX2BiFF1OAm4exTdr/UG1WL1LWU 1kRp2CXVXfM6tijnoYvt2aDt+ejKcL5AmxCtxTkm605F/5Ib0daj/PRG2H1t cDny0uD4coHooKyR1Us2BJVsCmaIzk5onJ3Y2CWipcvhqKJVo+MDV5SGSUN7 /L2aoj4SaSxO5kghm/HcFgXOOVui7fPuwW1IoaItGILiuQo6z5XtU6rzzqA0 N5h43mwr2RBQYvcvXgt8/nJpzS8Sa15eYbm43HwxyXwRdj6bzi00nY71W9Er 8ldsDh6dAebGV2hufILmBtnOczuEE5xfHuL10mCvFwZ5PjfI89mBnk8jmZ/q 78lk8/6+cLQrtQJFTsNzTPMw1XBmcF4T457RwT2tnfuKNm796odumlwx4Fzi gs9lCSrfuqtC8Jld9e8LaVnNpYQmRDM+y71J3WnpqCqhtb2jThqFUxqCy8Fq emNVSMMOUsZnmbhLFJv8U8ToNyeVALUQ0tzuKKVvuE0ZzSP3Q5bzAeqBRhTv lFN+/bQkhqyxrSI29YYfzchMrvJaZLL0llcJLBOZ0ySZO3gld4Dx9mSsgY3D 2esRuTqpHXUF6lrcfob2CuXNED2yecSoFhHxHW1OET0R/Rw6JuxpEYp+ydAr nGyWi/4cjegTeLquweXIX2kryACXoygzMGtE9eJ1QYRoMqKB0ksaZy9torkc HNGh10f0uy4o/QmntH1RLQ5hQ30qisish3PO9qr2BffY59+Tszma286vh2Jb UCeeSw4FA5/3q+ZGII0NlqwPKIGddf5fL6v55ZKaV9Msl1ZYLiSbLyw1X0g0 ncfk8ynkMzUHf5gOu/cp9kzmxjujvA6P8JrTPvw1gLPni4M9Ac4DPZ8RcD7Y z5M8jSd1syeQ00hs77+4nVUxnDmcU9u6p7RxH9ggdEGTSsfKsbNhuJzyuSxB 5Vt3VSQ+KxaHU5eD8ZmyHDSu4lJCu2gUMkRPRUqrQnpOU/de9cJknIMkNGU5 UhRkSVBLMYmtQ13fUI1Jb6HsBIYoGEjVcTx1hhpKIbYjikUMw2dLb6jNov03 BidKmGxmZKYMBmFZBXK6kMFkZbB7YRBmQGZkXtqOF3uzMADjhbSNJEXR1axW UHXU3kqs4slDfuMLY3iOGk830NIsE9pE7JXThZC481N6hdc3oqXL8Uei/6ml cnUSuByIaMhCf7gg7KO48BI9oqlXmL2kSXZSk+xlTXRG9LPiJNmXRLuQQnfq dCEhmlM6QtXS9oW1OKudlIHMETk7qtpj72FkztlaFXuCYTo4q+IZ4AzOM8yk SPGsNzdK1voXrfF/an6DvHTr1VTLpRTLhWXm80vN5+HAQdNfmHxmfD6OzcHv p8FM9xeTYA9SzjgwNw6P9HoTZ09eGQpwfp7gPEB4GkI262dPeCtwNC7bVw3n 9PbuK9q6L2/tltTKrdfjobPH9LtTxPgb04JO+VxShqDyrbsqykFXdru9BfHZ tcvRpHYIGdFOJLR+7+hQY6MQJLQjoika3bNe2DxxWGE8JqIZuJbhXCEiy5Mw JSktxeSaLrq+oWp3UKuOfA/GLnUcT9Cbs5eju68PezngNO6txTC0DEYvpeuH EyX2HloSY5Vs+SlAhoohK8OTkxmZzF6AqBLxz/6NwtmftDCK6WqlmMxmSIeS t0/JQxXRcikrULpVBHuzMK51xHjchvekiBpqvcJSjWg4FwyWrFpF3M5fxO10 Lkd+uq1gFWTtQELbg0rWB5VsDHLaKwRKJzfJXt7EiGhKdFAuWhsAdxDSktIf RdrjagGrpfXBC5mcw8mcs7OaPbYWIzOTzSXvaZ5zyVthGKjTw/l57mxQWxD4 LMWzztwIKMn0P7SgQUGGNW+l9Qqaz4zP55aYz8GBg6bTuBaJ8RnNZ99vp4G5 cQTNjQ/Her83CjMbw7xmtwtn4vkFCWf0NCScmWze08tzV0/PHSLeTJ7GKFi2 rxnOAOc27stauy1t6da3Xuio+uY7SIy/MS2o8vnChQsPPPBATk5OSRmCyrf0 qhASmvisWhwGCd2B+Iy9QnI5ZNZOtzTpP7pG4SilUcgR7UDpHo+HkRGtSuil aESTCQCURm2po7QqpLt6G+wOtUa34NPT6gC1nKGmWohT5wRkHYplv09t+XUH h2FNNw3LBp0M6hctC8IyqyRB5oQ2Wi3Ghav9GobDHGUbfstJ7XW1rD1Ja/ie qTFGRK9VfXiZZunr06lhrfGtIya2iZzUNjKtRyAN7Dw7Qrc/St2VLY5u1BnR 0uX4U3U5FESvHV6NeoWI6GAdolUj+kAIUDqlSfaKpqUh+i1nlJZa+sMIQPRH EYYCJsfVQizXAiy/H45kDueyWQfnUB2cnxXiGdqCwTkrwnNSwkv2BIF41psb uck1v0mqWZBuzUuzXllhuZRsOZ9kPpdoPgtrN0y4FskvpVckmc+5U3lnUJob b2Kabla7cCaeNTj3AzhDK7C3bp+G2gpc1NYa18YKhjN1AxHOTDYvaek2uYml 539DCW53/Co73xhkvvjiC/r46tWrcXFxP/30E3163aDyrbsqBJ/Z1bimiSwO QrSjEd24doiWiBYS2um4Cnc59I3CCfXdJ9Z3n9RAJ6S7/TfM8bBCxqtEwatl CqWX6ymturJruhpj0nIWbyRNT/fg0neDwxg1+/4z0W9h30dmldcpcWXR72Nq GQUzht8yKIahx7Jk8jJUy0lYS1EqE5DjlVqE2/z6QnzFk+IrUlovaQclbRD8 DYBxbUD0GvnChHdHiN6Clo48I2xF98DJ7SKntIuc1j6S5gpxC6uJG9GTnBnR 8yzfL7AeI5eD4naU5UCX42qqLW+lLT8jcO2waoWZgcVZQSVlQDQZHdkpTRml s1ObckRrdrTwOhwpLUDNCEyimmgsmFwNvvh+uEJmBc5vhglbQ8D5RQFnRTyX 7Asu2Rtkn1BdiT1zcyN3+T25y2oWrrIyPl9LtVxJQT4vNZ9lfI43nUFz4/d5 fi+MDnp2ZCCYz1O02PP7o6EziG1Bz5ltw58fpMH5QF/P/X0AziibPXb28GBw NsyejGwaJg3ntHbuKW3dl7ZyS2jhFt8cnA3GujsNDLgqCtxKuSrKLWxcs0KT 0NLlqA58JkQTnwnRUkLrsnYOp6uojUJAdD1EtBDSgOiG7t0fD5Ob/MVQoScl oqWQllo6WaG0S7ujG88b03AHDeXZlVqn0Jv9W4Izq7iWHgYyZ3ZzMJaxhjQN T9VhGVp+hOUkxcRgWE4UUpnd10Kt2Kee7Mex6tNAi69IaZ1I1ZYXOdXYNtUQ naH68CIZTvbOWGyJ8gNoBvrKXuEzOOo+IwZOEJjdKWpOp6h5nWGFNS1ZRSPa QqeffzvPSka0dDlkloOMaIZoxucC7BUCoh2NaBeIpkQHQzRUWlPNjnZE9NsI 23cj7AtqsRrZ+wH6QJPWxGTCMpEZ/pWUzY5wDtHDmYvnkieDS55APlNnEGLP 3NzIjm1QvNq/MMOav9J6bYXlynLLRTSfzyaYzqD5DDuf5/kdn+Ob1D3yOzSf j0yEJc9gboyGziC1BWe0DWfi+WkB530czh4MzjuEbN6sxJuZbB7eJIwM59R2 0A1kcF7c3G1RM7fej4fOunO2s3pVFPO29Kui8Jm9XQI+OyIa+dwO+SzjHFJC l+JyGBqFgGgcWpmoUrqhTkJTkAM3+fMjCyWllwpKE6hl99CZ3eEloxSZMJEX ntnNi6Y8ZBG6WUk4U7FvpZDZm0ll1cSgDAarwU3CJZaX6bGsMnmx0MkLEcXs 7mJbQsWJTyleKOIrXFcvVqsNlHw3QYheEaN7+6Amw8neke3CnZS4QyNaTURr K1jHm+Z2hsO5FnSJiusWtbBbVHz36MU9og+MrszjdnqXQxrR19JsmUOrkRHt EtGG0W9CtAzdPQdeB0N09sqm2elNqWNon3MP1FxR86AI1Pb596A2dlHsMYcd yPyaUzhX0cEZxXPJniD7+OoontHc2GgrWR+QHdegZI1/8SprYbo1Pw35nGy5 mGQ+v8R8ZrHpr0WQrPtjvt+vc/1+ng18JvP5M+wMSnPjlaGeLw0GPj+DDcED fT329fHY29uDwXmnAmcZb6acBoMzJZxT27ovZ3BuCbI5rqnbuIaWkSNH3mlU 8KuikK30qwLdRf37QqSEVhB9NyGa8dmQiO6idzn6uIhDU6OQqeixj0sh7SYR zfg8AzdF6zb5t+RCWlKaumlLhWkgfGkHu4MorSTcaHqahvLWKMXQzX6Wgc/s R6x1yGOkO9jLAxvDzr0kPZalqxwv1bLg8IIW2vo+WexTdsu96octEEeA4fkF noZSzwUzIHqlPne3VoQ64mNs5EVTnOOJgRDwptHvp4cbEc17hbgB+yPhcuwb VTmxZ/TSXtFJvaOT+0Sn9Kua2r9q2oCq6QOqZgysumpQtTWDqw1vd5/sFRav DeQuhyOihYq2T65hn1zTPqWmfWpN+7Sa9ulYM7Bm3sMo3aFDh9zdddCRFlqa 5DQqagD14XAXhVjmZA5TyBwKUToJ5+cEnMF2rizgDOK5ZDfyebvWGcxdcU9u 8j0lq/2LMqyFK635qZZrKZbLjM9LzecTgc+nF5pg57NYu7G0WySazz4Ue34P zY03hnlRW3B6m/CnsSEo4cyU8/buHtuwFbipi272hMnmoY3DGJlXtHVPbg3K mcnm2CZu8xtX+v9wvulXBboRsjgMiG4jEN2ilqnlvSYN0bWMLkfvUlyOx0BF A6JVIY2I7vrfsGnKYVhywZ0U0vGC0lJOLzF0Dx3tDhlyE9PTGcqcC1VCGyOc qQyRjJVGhxk0M+OzwVgGLLfSpHJcC47lBc05h2k31DzcPcKrmUfPemGG8wsM tbCV58LrIVp57wCIpsPQ0Yv2kWc4PoEuxwGeiIYdI8/T0IquV2j+YKo5Bw6R gUO+pMthyHKQEX0pxcYQvWZINaai17IaVi1reLWsEdWzRlbPGlU9a3T1rDHV 7WOr28fVsI+vYZ8ABSqaFnSoa+6eFQOGL0L0LndnHZLTuXskqDmrmZzmxH4z zEm9QWQOU8gcysn8AoNziBHOZDujswFtwV1BcFoKiedNttzUWrkp95Rk+pes 8i9KtxakWfNXWK4th7Hui0vM5xLMZ+JNp+NMZG78gsm6Jd0iwHyeRJ1BGEt5 awR0BiFTN9BzWpvwQ5DWQDj3RFuju8dWvaextiNsCmWymcGZyLxMwHl+E7e5 jSrdwTSd4frf4WzIKyUlpUJQmiwO1eVQJ1ZYNUIJ3R7jHDfgcmCj0BWiuzwW NlW/hpQW3KlCepGgtMH0UCm9QiQciNIrHaantVGXTl7JoifoWIzbBkNDJfMy lM0DMBSneMuMosLBEEwmGrPbYTfFd0OJDVG0JIpVj3ph6hEzqrqmihWUVo9u VBGdijMsitcB2/Ds3Xm7cIuDy3FwqIboFxREq71CaUQ7Zjk0RC8PWD2o2tVU 2zXoFXIVXbg2sNAeVLg+qHBjUNHm4GJHL9rxSCw5A/68RumSl8Nyd9VhlM7O 0EBtn3MP4LeUciSzAc5PV3EF55KdgTlLw3ISw7AzaMte2LAkK6BkjX8JHNVt LUi15qVYriZbLichnxeD+XwqTjM3jiGfyXz+aJz3+2O83h4Fe+peHQri+dkB nlNbhx/s6/EkwbmHczivieFT24MahiW1AjIvQVtjfmO3OeUAzrfzeJTbfNHt lNv9G+o1aWBHKaH1iEY+3x+iJu7K4nJICQ2IFpRWEc34PKWBXEPqrltDqhy5 QmcXxgsx6UhpbaQFKZ0q5jvUAWoq9vgZLuBMZTQ0MIQs239TW/hPae6fqFkZ nqSZybKQTAYsN/Fg+KVhSSwPKMQ1VffHw2YqR8zo1LVynEEsP3TGiGieu+uo 8zqGNYNNHXbKRdNoIc0VDtQS0XJoRSTuTK+LQ3V5InqG+YizLAcZ0dQrXDWo KsU5GKLzMmz5qwML1gQWrA0ssAcVuEK0tKONQlpzpDmlAdShGqjTm04dWg88 amOFasXJ7CCbn1Xg/BSDc2UB52CA824G5yBynu1jqjHxnL2oIY2llKz2L+Z8 hgNTri6zXIaxQfO5eNMZzdzwg7HBGb6JXSO+RPP5w7He7+JYyhvDvV4ZAuL5 mQGeU1qH7+/j8UQvDudt0nDu5JGFsnl1B/eM9pDTGNwwjJE5sQVGNZq5zWtc aWQ9c3mwNWTguULs5LyhqwK93FAQ2hWiic+6ucIyuxxMRY+oqxPShOjOj4XR DiU5VEhqU26KlpRW5LQDpdWRFpxqkQnkQWKAOkX81bxmfDrGFaXjW3noZLO+ A9i/UTj3mdHQUB1mgDOCF7DcWPspas3E8XYqxmd6YSJEGwQ2p7QQ0o6IXuZo 73T2GtosnIwOykVv7u1jMKL3a5v8OaJ54o4hWreaw/LFLF2W45dF/hS3A0Qn BaQPrErbk66k2q4iovNWB+ZlBuZlBeUJRBdLL1obXVGOXDEKaYXSRlCHMlDH TWwN1seuOsBhx3oJSyNzCCezAc4U2Ngr4LyLw7lka6B9dLXctFq5K+6hsZSS Vf7F6dZCNDfyliOfl5gvJACf/1LNjVm+308H/Uzm8wdjvN8R5sZLg2HJRnZ/ z8mtwph4lnBmynlDZwZn9yzhaUBOA1uB/RuELm4OsnlReYKzvP6XORt0VSA+ l2AQWkO0MrTCquH9ITIRLRFtcDl6OXU5HnHjiDZ4HYzPdUMNO5QA0XohrSlJ Bzm92CEvTSMhMoE8sHH4svZa8GNuM2fA1Nf8Zu46Q0PfBOzXMFyVzRTDmNdc WBlNOJzZvbAXINo6wnePyGrM95B0Q+9dIpoL7CZcXUtK688F44jWTHilT8oQ PaRpOBkdlIt2ZUQ/JeYKDYg+PNGly/ETIXoxX0C6ckDVc2h0XBKIvpoReHV1 4NXMwGtZQfmIaFrmD4imXLTsGNK+aJ7rEGcXqpR2Bmr7zJrsz9wdD1Dqg33A Ac5LJXOIJpuzGZyrYGDDBZyhLRhYstm2c8aDuam1QDxzc8O/eKW1MNWan2K5 lmy5mmS+lGi+AKd1m07FmkA8C3Pju+k+TD9/Psnn4/GiMzgczY3BIJ4P9fOY 1CqMiWcFzu4MzqqnQYYzgzPDclxTt9imAOfuj4WWKziXVDSUlfGqWDclLQ5H RDM+yziHNKINLgfEoZ25HEMfqeQU0Z3qhsKR3yIRrW7nkJtIJabmO5PTsn2m 5qVlCHlAIzifhRJ6i1t7ONW0jpRObKvkmSnMLNzmvg3DCc462YxwZmgl2czu gr3cdLsfXpim4jCOrgSxu/43jEZ15MA7fzKC0nP0lHZE9FLNgeeIZnxOR6Mj kxJ3tOZONaJVRA/3k2uiX6Y4BxrRqsvxpbI6SfYK/0j0T+tflRJ3hOjLqbYr K21XMgKvrA68xlT02sB89KL1iBZehyshTZSWoH4GSStAbZ9RkxMbK3f7A9mp TRirc7fXBiwTmQnOKplJOQOcK/PAhgbnIIAztAUDSzbZ4ka1hJlBEs+r/UvS rUVp1sIV1vzllmvLLFeWAp/PM/GM5gbGnrm58e00n4SuEUcmQrLu3dEgnl/H 5Mbzg0A8H+zrMbFlGBPPDM5burpv7OJuJzijp0HLjpa1dpva1DK+kWVBE+gG jm5g6fZY6MzR5aUhSFfF4ljZr4p1X6rFYUB0s3tMze8xyUS0zuW41zj0bXA5 Bj+sGB0KojvWDR0vshx8aKWRJqQlpaWcnqcE1QxhPDnVInFKcpcENnuMKzg7 IprJbE0264Jznn0ahHNPQ5XNiqfBnj+7i74PVmJ8Zn8yAk/BV5/JomjInVUX 9HYmi7uWMlvYIB7qiQbzmmmIXiTeOCxRkuFkRw9uEs5PN6DEHTeifTQjGnuF EtE8zkGJu7F+r6PL8Y56EhY3oq20w/+nhRzRK/pVPbUkQEP0CtulNNullbbL qKKvrQFEFzBErwNEQ+iOpgtVr8NRSBOlXYDaPr0mJ/BzCoqfDcndWjt7RRPG avYBPJLIrMrmAwqcnwgWnrMC581gO9tHVdPE8yr/kpXWolRrQYolP9lyLcly ZYn5YoIZd26Y/ligiefvp/vmTgU+k/n8DnYGpbnBxHNaZ+vyjlYmngnOoJxj NDgn47KjxBZuveuFzmsMOY1R9c1D/mves27FnSaB8apYHLuhq2LdmmpxGBJ3 TiS03uUwHLAiXQ5XiO74aOg4MbciRwvVfdF8GalCKkffA47KaimmWloLnLby mNjUn1V8a9i8NLtpaXB2RLQ0NBa3EX1AHPrr0yDMiWxuImQzwpm9L+h2/92M z6wklic5FOMzfTBZEHuqk0Wsmt3hFNGq18EQPahJOD9mlxJ3tKADXY6tYsHd ngG+hOiDauIOES1dDorbaUOFc7kRLReQpvSrejKR7yAlRF9YYbuIiL6SYbu6 ChCdzxAtjsTia5QMQpo3DSvzpuF+CeoqjqC2T6vJWe2icrfUhkUfKU1yN9Uu eaoKkNkpnFXljM5G7spauam1gM8MzpkBIJ4z/EvSrEUrrAXLLXnLLNeWmi+D uWE+s4iJZzA3js8F8XwUzA3fr6f6LO4S8ckEMJ/J3HgFkxvPDADxPLlV2O6e Hlu7um/q4r5eUc5yn0ZCC7c+9ULnNnKb3RA8jUF1zd99fOe3hhquikWwG70q 1t0ZLA4V0ZLPrlwO3dC34nKoiB6qIDrm0VBD4m6yg5A2LPZ3Kqd1kWl0pxeK 6WlWs5tcH84GSjN5nOAQ0mBs7F0/bL5ONnuospkxFoZuAM5U7H7hkIJJuH7E UJ0fC5Mfq6CW9y4orQnpecoUj8HbIUQPbByeIrxogxG9RRjRGOfwfdIhcQeh aMXleE/MfcvVSRzRcYDo5X2r/o6haIno84ToVNtlRPS1VYF5iOhCQjRtunMh pIufqFy8V0Q79imUPqi50/apNTmrdVVFV6CZq+RurJ2d3JhV7vr7S/bpAxtG OAcCnNNqlay32UdWLVkrxHO6tTjVWpRiLUi25KF4vkSdwYXQGfwVOoN+x2b5 fj/DN3eaz1dTfOK7RHw83vv9Md7UGZTmxoG+HpNahu3s4cHgvKEzNASlcl6K ZF7cHOA8p1GlEfXMXeqGZowtF/v2Ddf/yragelUsPssgtCOiG9wXog4VSkRL l6Oro8vxoHNED0NExzwSquaidUJaJdX15DSPTNMgnsJS1Lo3AGcV0fH6bDPJ 5l71w2QrkJFTlc1kYvStA78BFdFE4AlU9bTqXDdM/VRdTuK4LpsobUD0QqVJ Sl7HAMiriBlw2nSnN6LVXqEB0bJX+No4Y9yOXA7oFYo4R3KfaAhFOyI6xXYJ EX01nSO6IFNDdDHa0cWbg4u2BBdtCy7aHly0o3LRrspFuysXkZAmSj+pUJrL 6Sr2KTXQT3ZdT2GxB5Nm3l85d9392UmNWeVm3VeyJxijzgzOQcLWCOSBuvU2 sJ2zAuzDq3LxvBL4XCjMDRLP0BmM453Bn2Zz8QwL+Sf7PDHItnOA7b3RFHuG sRQyN/b18ZjQMmxbN4CzXcK5DewIXdTMbWEzt/ENLSPrmUE2P2b+vvzJZroq Fr7+xlXhbnBr+iInfK56V9Oapmb3mFpXv1tDtN7l0OLQ91dSXQ7niH7ErcMj oWR0jNHnoiehkJZ9Q6OkdJDT85TBFjkk0qte2Nwy2Bqual4zWJoUK7PNKJt7 1gubrfc0pGxmz5ndSDeMsqiIZjdIBB6vFcy5d0LvXRY8xtmWP4PdoRu0bGm0 o2Hhv2gXpjkzorfIIwsHaIm7g0qcA41oSEQfVocKZ1o0RM8HRCf1jv4FjY7f FESfdaWiEdGF63B6ZUNQ4aagws3BhVuCC7cFF2wPLthRuQARXSztjr0C1Irp AXw+WOU6JcgMsvnJytzTeCI4d+192UsaZSc2yl19rxM4k+28NsA+rCqKZzA3 ildYC9HcuLLUfDHRfH6xGTuDpt/mg3j+kYtn369gbNDn0wnesR0j3hkF5sbL irmxt5fH+BZhm9B2zozR4AwhDRjZdmtZt2ZXlM3lzdPIVq47/Vxu+VXh7vGz 99+4roRuU0OPaGdx6F4PXAfR7R8OHS6mV6SQFpuUuDOgk5QufI85eKCh9KXJ HGYsdZVDLmM5hjRw6A9lc2OdbJ6I2liDs4LoQQ9XIgKPe1xXjM+Gr4xXhLRT uwPvVxywq+TuJKL7NwrXBgwdjWiRiKY4h0S0mrgjl8N53E5B9NLe0RCKdobo c3pEXxVGR0FWUIE9KH99UP6GoPyNQfmbg/O3BOdvDc7fHpy/o3LhzsrFuxDR ktIEamF62CfX4Kx2UgqWicwSzkw279aUc+6qe7MXN2KVu/JegPMGBmcUz+Bs IJ9RPJeguZEPsToeez4bLzqD8/x+nu2niucjEyFZt6BjxNsjsTMozY0+MDA4 tnkYOBsx7qvau6e1hW7gQojPQSuwx39DB9Y1P7s+/k7/7+7y+l/vbNBV4fjM rml9mzmV0IzP6lChimjN5eBx6Epy+6grRLd7ONQwvTLGuO9OW6bkRE4rvsds Qem5fHwPlv//EzjPwCCHPqQBQ3/S05CymeDc54G7nfKZFeF3rL461g2FD/Al ib4iF7GWYneoiJ4n3jJIRPdrGL5EzoCTES3idmoimuIchGg1cSdHv53E7RRE 5861LOkVfTTWKhEtjY6/9IhW24U4vRKYZw/KWxeUtyEob2PQtU3B17YEX2OI 3hZciF5HMTnSuxwpXdk+qQZ3p/dVdllPkvZWyCzhvEO1NQJz02rBHLeEM7YF 7UOrMvFcrHQGryy1MPF8jonnRaY/43hn8MfZEKtTxLNPzjjvBTERh0eq5obn vt6w23lMszCynVe2c1uGcJ7TqNKshpVaPFozfnSn8iabDVdFBNffuCriy5BT i6OFwmfpckhEO3U5pBHtFNGMz9r0Sl3nmzrUlXelyOmZYrZlNipq9mn3f8xn hv05zUQfEGVzt8fDpuk9DTQu3EY8WskIZwXRAx+qxG5njL46Phpq+IpEtBTS jnaHNsXTVO+9I6L70oEshGhM3Akj2lsa0SqiDYk73isc6feCjNtN0OJ2dMwK ITqxZ/T3OLdiQPRpQnQyIPq8QPRlgeirmYFXswKv2oOurgu6uiHo6sagq5uC r24JztsaXIB2dDGrHcHQN1QzeAhq+8QayN5SC3iukjmYkxngHEQNQQZn3CCK ezbsNp7ZwLYg4zPAGZxnLp4vcfFsPr3QdDLWJDuDqnj+ZIL3h+O858dEvDkC khtMPD8tzI1t3dxHNw3L7OCe3s5teWvwnGc3hFZg80dr7rKXuwSd4fo/Ame6 aEtShdjCQRd7qk753EIvoQ1xDtXlEHs5uBEtEa2G7ro/bO7xsFmbXnFA9Fj5 3h/ltLab1Jk7PaMRb+3NwE9heek/4/MMMdknB0/Y95zakOflSDaPx6fX21E8 K4juXedudjuj1XoMsiuj8U6h9IjWhHR9J3YHfz3Sz8ITovs2CJcz4M6NaAXR 2/SJO8N2Dse4nYrohJ7RsJ1DGy3EBR2Kij4jEH2B56JtV1YFXlkTeCUz8Mra wCv2oMvrgi6vD7oMiA7K2xxcsCW4aCs0DYu3AaVLdmBJSiOoAdFPCFG9RxHY /CsGMgs4b3cCZ6acs+Maku1csiYAprkz/LOGVgU4o3i+5iieF5hOzPP7abbf DzN9v52O4nmyz6cTfXLGe38w1nteTPgbw8HceA5nuvf38diN5oa9o/uq9m4r 2rglNAc4D3vc3OnR8nI6VSlXRZSU/+SqWC9G9GxdudDEZw3RNQSihctBcegu 9ylGtIJoQy667cOhpQwYOlKay2lnvgcFp2l8j1XXm8HnGYLMJJvZ95SeBlO5 49CgYDfiEs4C0ex2RumL8Vn91JHSzoW0CB9yROtDHX0ahC2SazpEKFpnRGOv EBHtI+MchsSdzoiWcTtxEhYhOr5H9Ne0QKlURJ8ViL640nYpw3ZpVeClNYGX MgMvrQ28ZA+6tC7o0vqgKxuCrm0Myt8UXEi5jq3BxTyAR0lpJC2aHrCndLfA 9e5gJ7VLkHmHSmaE8xaCcyDBmSnn7NiGqJwDimEVkn9Run/WkKoA5xRrXrLl Corn84p4hs7gXN4Z/Gaa75dTfI5MAvH80Tjv98Z4z+0Q/vowbm48hebGju7u Y5qFrY1xX9nWbUkLMJy71oWR7fIP55KKxqt/flWg+1WfqlMXuv59IcpejrsN vcIO+mMKZdyOeoUM0ZrXgYhu+1DoYNcz4KVT2tH3IOeBpva6PnZz+KwaGl0w tEyeBsF52CPXgzMWez0a+ZgbVF1elF2RZaD0WH3T0CCkNUQ31iG6d/0wbQZc DIAvRyM6XewgXdtdxDkURBt7heJIWTVupyJ6UfdoOgyLEH3MEdFL/U8LRJ8T iL6YYbu4KvDC6sALmYEX1gZeyAJKX1kfdA07hpDr2MQX3xVvkTFpjdKwRX9n 8HWKPXK7SuYg6TmrcM5dXis3+Z5igHNAEex59i9c6b92SHQBOhvXYFud5QIX z2Ypnn+eA53Bb3EmRRXP744GPr861OsFxdzY2tV9VNOwjPZuya1gu37nR0On jypfI9uurgoEq5t1VZRbNjxPpxIa+KxbneTc5ZBGdLf79Yh+QIfoNg+Fghft FNF/i9JyXm/w49bhDaw3hc8U0piEQyVcNj8Oz4c9sdKcDaV6PXD3iLpuajE+ q5/qKK2/WadCmiNa3zHsJQ/MEok77BWiEd1JQ3SWiHM4Ju7UXqEat6O5b4no hd2iaG4Fd9yVhui/GKJTANHn02znV9rOp9vOrwo8vzrw/JrA82sDL2YFXkY7 Om99UMEGXEzKalNQ8WZWYt5wGwe1fVx17nu4KiOZg4DMDnAuyQpg4pnBuQjh XJgBcC5Is64dHJ2/3AptwSTLxSWW87CK33yKi2cTdgbB3MjVxLMPLnz2fnuU 15z24S8P9XpuEDc39vSEmZQRTcLS2rotbArdwG9z3rhT/1Pf0PV/zdmgq0Lw 2emTLF1CuzKiYxyNaAXRqh3d+qFQ8DoecrJJidvRN0JpQ/3zFiGVDGl0qhtG spn8iv4Plkk8Uw3G0wpktX8kVP1Uo/RjenvHqZBWjA6Ru4P4Sq96YXwGvJUe 0cKIlr3CLHX0W7/JXxv9FietSCMaeoWI6LhuUZ/OMKuI5gs6YIeShug/BaLP pAScXWE7l2Y7u9J2Nt12dpXtLCL6Ymbg5bXQNORbSTEgXbQBKF28CapkM2J2 K4DaPrY6Z7VWQcYiLBOZNwkyb9DgXJxlK84MOBTbsHB1QOEq/4IM/wKAs39+ qjVzUHQetQWXWs4nms8uNp8m8RxrOjGfOoN+383w/Waq7xd68TwvJoKSdWRu PInJjUVtrPNaWpa2qDRnTL9y7mnI9c70wZ1+OnfgKv+vSqX8d3HK5xYOElo1 oh1XJ1GvkLzoXgqiW/8nlKloiWh1wFB2DEfWvQHHQ63OuB9vSgOof8JnBkOS zR3rhpJsZq8a7Hmyl56uZeYzezFiNyWL8Vn91EBpnddhENKIaF2oQ0Sje9YL o0RHnEjc8elvYUTLXqHTxN0u/WErZERLl0ND9BRzbNeoj8UCJTH97RLRpwSi z6ywnUm1nVlpO5NuO5NhO7cq8ALa0VfWBl7LCsy3Bxas42MssPiO1UaaCueU to+pztlrqK2qYA7SBDMnM4dzMcK5KDOgcE3AoQUNC1YFMDjnp/vnI5zzUoDP vC24xHIuwfwXiuc/mHheYDo+z++nOaIzONVXL57R3Bjm9cJgbm480Qu2IY1s Gpbe1m3OnT765IauChRguOlXeX5hKv25OWbtOJ9dI9rpMVh0zIoB0a3+E0pG hxNESyH9qIMDUCqlgWP4FeKzrEn1AdTTGv4dVlNWuSM29djTYE+pZ+27ic9l RzS7KaqeD1tYyU/p9UiltJM71SNanYKXiY4e8kzDFjpEoxHttVys5pCI1iXu +jrb5D/cl8ftlPNkGaIXdImiuZXrIDoBlpECopcFnE4OOL084PSKgNOpttNp gOhzGbYLq2yXVkOu41omzbAEFtgDC+2BReuCitbzkfASQWng8+ag65QrMttt RVm2QoRzweqAp+Y3zM/wz0v3z0vzz0u1Xlthvbbc+t70Ku9Oq3xpiQUPgQXx fJKc5/mmn+f6HZvtJzuDn4F49iHxfHik15wOOnNjtzA3dk0rj/s0SrnKM6Nu 9VVu770sT8zR5TCe9139bonoNqoRrSSiuylGR09HRD/oiGjudXBqlU7p/xoH 9MY68NmR1WXnMwMjheIIzuwJSziXHdED/1NpyCNurNpBasUN6hFeBkqPMLxr 0CFaP8Ci5KJ7PB42W0wXxqqIxl4hGdGpzuMc2gIlQ69QM6IVRG8dHLx9SPBH NFpICzpKRfRJRPSp5IBTywP+XBFwKtX2F3od59OhaXh5le0qDrDkZ8IhWYVZ UEVA6cBiVnQy+IYg++jqnNVOSsEykRn+Lccy1FoGZ1sBwjl/FfCZwflamv+1 VP+rK6xXU6xXk61Xl1lWD4i+mGg5m2A+HW/+cyE4G7/ON/2C4vnoLD/sDPp+ Ptnnk4lcPL8zyvvNEWA+vzjESzM3unus6+g+pFHobfif9yZe5RZQt+cqh7df drvJsVFIfHaO6OpGI9oR0VxII6IZn13PgHMhPawMlB6jzOLRPEgpfFarLAbI lIY8dMGeA3t6BjiXEdFMcg9+2I1V24dD6QNZGqIVb2eEY9PQgGilVzgdR3Lk jg5+MBYeB2YYWtHFOeR2DmWTvzpXeEjG7fRHfs/vEgWjhU4RPV+H6N8Eok8m BZxMDji5POBUSsBfKwLOpkLH8GI6DbDACVn5a/Acw0w8bXZtYBFSutgOsGXI tY+qXsJYvV5A2LFAMCPS19mKBJkL12IhnPNXB+StCsjLCDg4r8HVNP+rqf5X VlivpFivJFuvYFtwVf9o3hZcZP4jjpwN089zUDzP9M2dzsQzmBsfT/D5YJz3 u2O8D4/yfmOE1+z24WRuHOjr8URPj+3dYMmz3W6/1f//3sSr/Buwt/oqb3y+ 0f8iBgnduKZJbooWiL6bEK0uUOrg0Cs0Irp2pZYPhjofMMSOoY7Sj5RGaRXU 5BJ3fLRMfC6jAcII2f4RGHhUnY0bldCDHsbUN6ZWeD1ciSP6YddC2jWiVSMa zpwVo4Vyh5K6QCmpvW6u0DHOsdXZqd/Zw3yfdUD0vC5RdF6hmP42fyEQ/Z0z RP++xP+Ppf6/JwX8sSzgz+UBp8GODjiXygdYrqTbrmXY8lfZ8lfbCvC02cJM qKK1gcVZUCX2QPvIagBqF4VYRtVNVgaSuSATi8lmAedrGQFX0/0PzGtwBeF8 OcV6ebn18jLrJQg8WzL6R1Nb8ORCaguCswGxDeoMTpOdQZ/3x3q/M9r7rZFe rw33mtUunMyNfXjO4KYu7sMbhx0/Uq5ntw1XeaPT7b/K1W/g771cupTQCqJb GRCt3+GvIlp6HYzPvcW+aEdEk5C+PqX1oB4tZkBuiM+lGyCTG4Av0aeOcziX EdG9H4Bx7zYPhbI/ZQ0Sro4jpTUh7RTReiO6Gz8THCV0c52EXtzGMwEPl1Hn CvlhWF2NcY4dDqd+y0Q0P/J7nGlu56i3YYHSdRD9MyL6BCL6t0T/35b6/5EU 8Cfa0WeWB5xLCbiwIuASHo91Ld2Wl27LR0oXrLIVrrYVrrEVrQksygwsXgtl H1GthIFaqWI7ryJRHMuCzPlrWAGZVThfWel/YG6Dyyv8L6VYLy23Xky2Xkyy XIRpQUt6v6gz4GyYf48z/brA9Ms8EzkbJJ6hMzgZOoMfKuL5lWFeM9uFk7lB 5wyu6+Q+rHFFMjfKFZru1FV+fgl/+72MoVEo+dxCf943FCFa6RV2dEB0N4Ho Fg+G9tSHOhw7hgZKD3WgtEFOUxevwyN/n89ODZBW/wkpBc5lQTS73wGY+h6A NzhA3KYrSl8X0aoRTSPtM3E/tiKhPRcJRDuZKxRrohmi1zs7UpYb0XI1hzhP dk6nqLfQ6HhPnPp9XUSfSPD/NRGE9EkKdSzDAcOUgIsrAi6nBlxNs+WthMpP txVkQBUipYtYrbEVZwZmDa9GoKYqgkJjmUohM2LZlseYTIYGkvlaesDVlf5X 0vwvp/rvn9OAwfkiwvlCkuXCUssFCDxbVvaLwrag+bdY03HRFvxhpt+3M3y/ ZuJ5iu9nk3hnEMWz92uwUNRrRtvwpwdAZ3BXT9i5kRXjVj7NDad+5v93NuRF Wzju7G/jH/7nMLgcjohWKM0RrRnRjoi+r1REKx1Dg5amgEcp1vRIBFrvRy19 61puCqKpmj4QQnGUf4LovnXubv0QpAplGSn9sKD09RBNazqkEd31v2FigRKX 0PNRQse1UhAt5gpT9HGOtQ6b/A1DK4Y1/rM7Rb1BC5TKjOjj8XAC+O8J/ieX wPTKX0n+sDI6OeDi8oDLKQFXVwTkpQbkpdnyWRGlCdSrOKjXDq9WBIraVpQJ frKsAlH5GpkBztcIyxkkmzU4X1rhv29OgwvLrReSreeXWc8vtZxHOJ9bbF7Z NwrEc6zpBIrnH+dozsaXsjM43uc9IZ5fHeb14hDg86H+nnthpttjcxf3jHZu 5TnwbFjs/Dd04759++KUq6Cg4GY/xztz0a/iDvL5n79WGhqFKp8dKd3aRa9Q Ilp6HS3qhPTQhzoMXoektIOcdjOYHlokT4yB4Ib8m1Aj6oLu7VwLHBt2F38b 0b1q390aIyuyXFP6OogepyCa+CxWc3AJrbocEtHGHaSdtF6hMKK9XQ2t8O1J o/xmdYx8DedWxPT39RH9C6hoK5wAnuD/Jy67O7PU/1yS/4VlAZeWB1xBRLO6 lhpwLY0VymnF9MgcVq1gNfoe4FHzIiBzLCOZActkZRCWgcwBVxQ4X0yx7pvd 4DzC+dxSy7kllrOJlrOLoS2Y1ieKiWfubMz1OwptQb9cjG2QeOadQRTPr6N4 fmGw1/Q24Qf7eu5B8byxc4VJbjAcMcXo+PVnnnkmOjray8urVatWx48fd3xA 3bp127ZtO1xc+fn5t/7J3o7rzlocN+uNzHURrdodTnuFEtFSSDevE6Kmox0R zSn9H4MPIOT0I07caVbD8AgA9vWx/70JfCZfovcDcCNUpVO6FERDZOXBSrJc UtoB0cMVRGtbWIUR3RXX66kSWnU5JKKNc4UdjUb0xlKMaIpzjPSbGROpJe4m aKOFhOgjAtG5hOgF1h9JRS+0/rrI+lu8M0QnB1xGIX1lBVZqwJU0MD2u0mlZ 6bb35oa+Py8UeohK5Ym6xotj+QqrlVgMy0RmAWemnJ+c1eDcMuvZpZazSyxn Ei1nEiwMzqcXmVP7RIm2oOkYimdyNiC2IcTz+2O93x7NxfNLQyD2PK1N+L4+ MDO4pav72hi3pzaV992hdDkFAgOyr6/va6+9lpeXN2HChGbNmhkeUFhY6Onp efTo0dv1NG/fdQf5fHNdJtXlcMpnNdchEd2+pktEt69tYiU6hvwEcLVjKCl9 PTlNqelKBGr2MSaN4a/G/LfSP4Ez+xEMnjDt+GAlktDXpXQpfG7xYAitiuIL o5xRunREa1tYFSO6y2NhU+REYRNx8De5HM4QbegVqucVlpqIhl7hjJjIlzAU /boIRb8rEE2jhQzRX87CHUpzLd/PsxxFRP9E+6IB0dY/Fvv/maBD9EX0Olhd Sgm4tALqcmrA5TSoK0jpNUOrkaLOy4C6BiWkMtYVQebLrIxk9peeBuPz2aXW M0ssfyVa/kqw/IVw/nOheUXvqF+lszHb77uZft9gW/Dzyb4Q2wDx7EOdwdfh nG4Qz88M9JzcKnxvby6eV7V3u1n/l93qyymOkpKS2rdvTx9fuHChUqVKP/74 o/qAr776ymq1vvLKK4mJifv27WO4vg1P9fZcd4rPt6IFcMOIVoZWNEQrXgeT 0MoAix7RYnF0/wcVhWmQ085ATUe0DOZ2biVx0t8N1+jH4EezJ9DlQTMr9oHK Z0lpR2vaFZ/ZzcIekjpQrihdCqKNi7Ifp9N1gc8Uh5YSWroc81twoyMODr01 7iBNjZFGtBcZ0aUnop8e7je9QyQY0RDn4Ih+mxBNoWia/pYLOgjR863HFjhD dCJH9PllrMCRvrAcC9MdF1khpZmcXjOk6tWV4Fdcwz95pQsspxOWAy6xklhG MiOc/bmnkWTdO7MBwfl0guX0Ykg7Mzj/EWdO6R3FxPNPc03gbMzyy53hJ9uC H0/w+XC8z3sont8c6f3qcC6eswd4TmoVtrsniOf1ndzXTOl8c/9Hu0WXKyb0 799/1qxZ8tPo6OhDhw6pD9i5c+e///3vdu3aTZ48OTw8vGPHjkVFRbf86d6W 647w+Rb1Z1WXoxQ+S0SrRjRHNLYLpZBuVidEF72rfbfBju6rUvp6oCZKA5aV sDEj9t9DNP1ceg40TcOepyOi6d2BgdKu+MxujYoWRvUWm1cNiB5wXUQrRnTn x8Im1XeXEnpGYw/niMZEhzJXCOcVOjWiN5MRrT9phYzoaR0iyYjGOIffG7iG FOIckzBxNxWNaIHobxDR6EVbANGxRkSfSvT/C4X0WWgaQt/wHG74P4cBD6L0 pdSA1UOqEqjVuqwUkfmiimUkM1PODM7gaSRZmXLeO7M+wfnUYsuf8RzOv8ea lveKkm3Bb1E8fwmZOl/ubAjxTLG6F4aAeH6qn+fElmE7eoB4XhvjVlFiz65Y xHibkJAgP61Tp8727dvVBzD9zGQzffzbb7/5+Pg8//zzt+553s7r9kdZbulP LCOiW1a9Sz2y0IBo6XW0vd/UrrbJIR19t2FxtKS0K1APeshYath4yI0jetgj /OfSc2B8pg+c8tkppZ3ymYbce+op3UdPadWOLh3RZER3rhs2UR36RpdjVlPt vEIF0Ti3ou8VujKilTX+3Ih+aqjv1PaRZEQTorVeoSHOMUP0CucIL1ogmtvR 8dbfF1tPIqLheKylWEn+fy3zP8OKNkgLSq8aXJV8D7A+yP1IBW5TMZnNsHxh BTKZBDNoZiGbEc5n0NZ4YkZ9DmcYRSE4Q1swuVcUiWd0Nvy+mub7uRTP4yC2 QeL5NSaeh3o9P8grG2YGPSe0CNvaDcTzwTktb9H/azf3KkUo9ujRY9GiRfLT ++67b8+ePaV8q/r16zttMlbQ63ZK6NvwcjB2aF/HcULXLoce0TX1iK51d7MH Qhyjd9LrUHdHXx/UcvrDIWw8/FGO6LJQevRjmv9Az4GmaVix51YKouVUjlNE N8e8CkVW5DaSXs6EtNYedYVo2SuEM8HDJtTjcWjlmBVuRBsQTZv8Za9weQdP 7TAsxYjWXA5uRPuQEc34TEY0QzQZ0YTowyLO8aFA9BGG6JmA6K8For+fbzm6 wKJ2DH+PB0T/mQh1CtN3uD7a//QyBHWyPySllwdkDKoKpkdKwEWsS/Cn0MmC zOc1LPufQyyfS4JCw9lKsvmJ6fVPxRvhfHyeaVnPqB/nmDRnQxXPY30g8zzK +/UR3q9grA5mUvqD+UwLkewd3d/bUX4P45ZX6ViYMmXK6NGj6ePi4mKr1Xr4 8GH1AYzGy5cvlw+oWrXqrl27bt2zvc3XbePzbdPq0ogui8shh1boMCyCmLSj KV1siN4JRN+tiUy9nDYa1EonkaoNhY0f1IpRt4yIZnjvLX4uIZTxWVoT7MWl dERLa9qRz93vr8SKKN3DgdLSkTYi+iEniJZGdKe6oeNFHFpZbedhRHRzBdHY KxTnFXpKI3oNGtGOcTtpRE9pF3lI9ApprlDrFU6gXqFJxjnQ6MB24WxLrrSj HRD9B0bvTiZi4RgLricFSjMtfTbZP31g1XPJnMAX9HVe1DnAMpD5LLkZSGYD nP9U4PwbwRkzG0k9o6R4Bmdjiu+nk3RtwTdGoPM81Ou5wV64cMNzUqvwHd09 wHnuUE47gwYOlI6gQ4cOMeTm5eWxj999913G5ytXrrCPjxw58tZbb7EPdu/e bTabP/roo4KCgsTExNDQ0IsXL97Kp39br9vD59s8BVMWRDtKaIlo6XW0uc/U 5n4TR7Rx5R0X0r2UJf+OrDaAmqrLf3hTT61RCqJdUXroIxqWewmE0igNlSsX +rqUlnyWJSntCtH9XSNa9go71g2lRqGGaL0RbUQ0bvJXe4VkRKdzI9qrlB3R k9tG8jX+w32f00a/9b1CJXGnIvobrWNo+XGBmruz/rYY6vcE/98Tof5YgohG Lf1Xkv/KgVUB1FgIYaGTRdFfEZbBykAsQyVapeG8Z3r9k4vMf8AQN8D5xAIz wBlsZ9PSHpEknoWz4fvxRGoL+ghnwxsyz+Q89/fc1wfM563dQDwfmFV+zY1s 5Sr9kUVFRU3wio2NrVy5clZWFn198uTJMmuXnJxcpUoVLy8v9rCvv/761j71 23vdBj7f/i5kTk7OpIEdbxTRqtEhEc0kdCexTElb1qGnNJfTZQM1FTX11GLC WOWzU0SrWO4phG6LOqE9GE6paldiryZlR7SkNIVVeN1fqZtCaWlKG49rVBGt GB2qEd3x0VAyotXVSZoRTYhuqkM0GtEe1CskI1omoo0uh+7Ib59JbSO1RDRD NM0VCkRTr5Cr6ClGRH+lR/SxBRbeMcSm4Yl466+LsRKsgGjU0n+i6ZE2oOpf COozWGcd6ozA8l9LsBKpIEQnDGfL7mn1hadhPjFfg/Ox2cDnb2f4fT3dT3M2 JkBb8J0xOmfjOXKe+8HM4PgWYRu7uGfGuB//vLx3Bsv4nvratWvbtm1j2vjN N8v7Hd3061bD8w5GrMmLLsWIbun6PCyJ6Ca1QzoJO7qLs0nwHk5AfXcpoJah CzVvTDXAAdEqpRkPFSzDD6WupYxqy7ohPlM1rm3c42FEdG2jHe0U0dopBojo mEdDxdy3u1MjWodo3Y47D4MRrboc6gJSPvfd32dim0jZK0REq71CLc7hiGgc XTE7dAwt1DFklP5lEdTxeOsJpPRvjNIJVjiKZYl/Wv+qp5ZAGxGKOolLhU5m TKZCMp9OxEqwYoIOCg1ny8mFZsZn9DQYmc2/zONwPjrb9MMsvyXdI2Vb8NNJ vuBsjPd5d6zPYSGeoS04WBPPe3p5jG0etq5TxYg9l58VQOX2Yq9ft24Lxx3/ /ROiyyKhnZwqKxH9gAOi79WcAUnFHtqSUgXUtfWgFtVKNPUM5QrRo+oyQvIf IX9it/s1d0I1kzvV+jt8luM5ULKH6OB1OEe0doqBzohmfCYjWludpF8QPaOJ ByU6VK9jQQutV0hGdEoHTyVu5yUXkG6WRnQ/nwltIp4Y6LNPHvk9jPcKGaJf cYXoqeZPppk/5R1D81ezzGRHS0TDAAvOsPy00PqzpHQ8OR7WPxKsqf2jTyZa /8Q6hUUc5kwWWD6VgLUYBDPDMpAZ4Uyexq6p9dHTMP8MQ9wanL+b6ZfYLfLr aSCeP5sMzgZvC7oWz7t6eoxpFrY2xv2Dct8ZvONwuJ3X559/npSUZLfbz507 5/i3HTt2/JdyXb16Vf3bW7SFo5z8/tnvhOlnV4imrJ1AtHOjg0loLRqtIFpN QXR3BLWDqFY5zJt6tZ3UyLpOEN2vjkZmiWWpdSmqrVZM2RqFKp/hBu+FGB5V KYg27CTp96DeiFYQ3eGRUNkrVBFNRrQMRRsQzY+UbakZ0WrcTnM5uBHNET2+ dQQY0QqiHeIczhH9sUA0eh0C0XMtP6DXcXSB5Vis5Vic9UekNJPTx8nxQEqv 6Bf9x2IA9UlRf2KdUmux9c/FFijE8slFUH8shPotzvxrrHnnlPq/IJx/hCFu gPP3s0wMzrkz/BK6RVJb8BMSz9AWBPH8BgykcPH89EDPg0I87+juMapp2Or2 5T32/H9qSd2rr77q7+8/e/bs7t2716hRwxHR4eHhhw4dOi6u4uJi9W9vBUjL CZzpysnJYXx2iehqRkQbQnelI/q6lHbifuDHLR4MkV83lAHRTJdyMuuxLOWu zJnI6nzjEpq9TehYC4MrekRLr6PH/S4R7apX2AGXQSmJaP0Ofw3RitehIJqM aEeXQw4VysMKt/XxGdc6gvcKGaJpaGWorleoIXq8imjTRwLRn2mINstQx/fz QUv/sMByNJbJaQvT0j8LSv+6yJrSNxp6iPEQ9sC8B9RJrD95WU7GYzEmI5Z/ x2JkZnUi1nx8gXnHlPo/IZyPzjH9oMD56+l+i7tGQltwsm/ORF9dW3CE98s4 kPLsIK9DAzz39/V8orfHzp4eS9pb41pbD8wu7+cMlis+3OrroYceWr9+PX3c pk2bZcuWqX/7119/3XXXXZcuXXL1z2/676oc/vI/e/+NkSNHlmJEc6OjmnNE t7rX1Ppek4pobVnHjVOaPoUVefoHyGL/UMKZsVp+ZwOWpdblTcx7dRVzo3yu HRIjjtCVWlrLFrruGLpCNCyDeiRU9godjWiXiKbzsPDU73g0orW4neJyaHE7 7BWObRWxQ4tz+OzXFtwhoke6RPQHhGj0Oj6bbv6cvI7ZZuoYfosnZH2HlCYt jZS2/BJnOb7Qurxv9AkENYQ9sH5fZKH6Ix4LsQxfYUwGLFt+ZRULZD6xwIyy 2bx9cj0um2ebvptl+lbA+ctpfvFdIz+DtqCvaAv6cGdjuPeLlKlj4rmf55N9 PHf38tjeHcyNzBi398u3uVEO+XDrrtOnT//P//zPr7/+Sp+mp6c3b95cfQBT 1xaLpWHDhm5ubrVr13799dcN3+Hm/rrK8y9/0sCOj9Wp6ZTSLfVCuo3D6Epj xJcO0aVSWgW1Uwi3wBV5xsJ/xf5tnzoc0X0eEILZAcscpLUU6auvG7U45M5V +d06q3Y0PEMnHUMniBa9wvZ4PKITRAsjWp6EJRDtrkN0C56Idu5yqCdh9fJm fFbjHHzB3RAR5zAi2g8QTdOFk0wfTDZ9NMWUIxAt7ehvRNPwWzHGwn1p6B5a fo6zJPeJPs5ADay2nMD6Fes3ff2KWD4RawHBjJr5F4TzT/PMTDZvm1RPyGZT 7ky/bwScmXJe1CUSnQ1f2RbUnI0hXs+o4rmHx9ZuYG6U/85geUbETb+OHDny 73//W1oWe/fuveeee9QHbNu2jWH5gw8+OHv2bEJCgo+Pz4kTJ9QH3MRfV/n/ zROi698X4kjpls68DonolveamIpWBwwlpbuUjdKG0nIXDtN89E16P3D3iLqV ut5rFMwSvxyk92jSt6NCV1Y35EI3Qj530H8HKcsd7Wgjoh80InrIw3D8ljr6 7bRXqCG6kUQ0HlnY1KXLkaY/ZgUS0T29x7SMkL3C3f35XCHEOQyIHqVD9GGB aPI6DB3DLyHXAXaHpPT387gvTZRO7h39MwN1rOUXrOOxFsL1CX3B12ORyQvM P8+H+gnhfAw9jS2T6qFsNjHZzOD8lYAzU84Lu0RyZ2Ocz9tjfN4cRc6GNzkb 2QOEeO4J4nlzV/cRTcL2zyp35oaKhfKPiL93MQKfdbiKioo++eSTSpUqyYcd OHCgWrVqpXyfmjVryow3XTfrN1ZRfvOfvf/G2KF9qWnohNKuEd1YxeA9GifL SmmHMuQuVG+56716wYw/woDlGFGt8LWDobWD8kWqMsK5fY27G90f0q6m8Tt0 VL2OUkMdBkRTnKMdLrs2zBWqRvSk+s4Q3VggWu9yLNG7HFrcDnuFo1tGqHEO F4j2NSD6TYHodzVEm9SOIac0N6XN32LrkCh9bL5lWe/oH0lOY/1MJXDNC75o ZvUTYvnHeVDH5gKcf5gDnsbmifVyZ5pINn81jeDsB7bGJN+4zpEforNhEM/o bHg91R/EM7QFe3hs6eYxulnYmg5u720vj+aGnEb539oWzMvL+5fDdfTo0WPH jqmRjK1btz788MPqP/wBL/lpvXr10tPTDd/8n6O1osBZXoRoorQB1A529F2E aJLQHeQMuGtKd5VV6tZlyWcDlo2aWSWzyl6qmvy1o72cfxRtzQ5l5nMbwef2 NXXf34joe112DHsr04XSiG4Ly64d5gr5AlJ3Mjp4u7CBExV9HZdDMaIZoke1 iFDjHOp2jv2iXahD9GhA9Otj/d4c53cYvY53J5reF17Hx1PNnwqvA5qGlL4D x4MobaaAR1Kv6KMkp0X9iPXTfE5szmTE8jGso3OhGJlZfTfb9O0s06YJ9b4W svmLqRqcP57oG9s5kuD89mgn4hkydX084ZDB7rBwY1TTsIx25drcqHCU+OdX YWGhyWT6+OOP6dNZs2YNGjRIfcC0adMaNmxIBsjx48c9PT2Z5DZ8k3/4e6ug v/acnByJZQOopddhQDTDIAFNU5jX1dKlng/Io3EOWHYum1UyI0up2qE70Q4/ aKd8XVbpcG6L/VDGZ3l4rlrSkS7djpaIVg9qbIvLrh1Hv/mO6HoaoqXXoUc0 GNGOLkdyB0/1mBVaQDqyRYToFToi2scpomG6cAxH9FsC0e9piDaR1yGbhgZK fzfHvLRn1Pdzzax+YDUP6ijWMX0dRSzDY+aYv0fN/B22AlE2mzZOqPfldL8v mGye6ndEwDkHeoK+CzpFAJypLThSbQuCeN6niOcNnd2HNw4rzwuRKigl/vk1 duzY9u3bX7x48YsvvrDZbLQ2RO4PYUwODQ2NiYmJjY2NiopiuHb8Dv/kV1fR f+0kpKV4lqBucF+IoWMoES2JVxql73WgtLNqd7+JlYHMBtlcCpzb4VNqW4PT VYa3dVW6cq7OqyF+B76ERPkRHfReh8GO1hCNiQ5Dr5A2XauIHvGoZkQbVLRu dEUgenYTHrdThwrJ5dDidtgrHNE8QolzeG/r47Ojr8+ufiJxN8jnABkdLhD9 hjNEg9eBlAYh7UDp3NnmJT2jviU5TYWs5rhW6vs5vL6bzTXztwjnr2eYmGze ML4ekHmq32dT/D4VcP4Qe4LzO0YAnEf7cGdjmLdsCxrE87pO7kPL8TmD/6cC z4brwoULvXv39vHxCQoKWrNmDX1R3R/y119/2e32JUuWOIY36PrbjK3ocKaL CWlGaceANFGaFWOXimgGQ1WXqoguhdKuiraYli6bS4czK/YMOWlr8I18atFh i471/9o7F6goqzXue5sZZmDE7PPzEBfzkpcsLDAVQUWQi9wUBa94RzQSRU1B S41Sw9QKE5PMk+hRO1YaaXk09ahdT4Gldi7Vqmy1qrXOsb7SkjS1b+/9vO+e /V5mGGCYGZjnt57VegcGeYPhx5/nffZ+yduT7pCK/gtyp10dv3V7HUpF645z wE7XoqL5HqSqm2HZ9lCKUUx0QCNav8uRJtzvO9OSG99FHOdwpOhZDhTdXlQ0 nY5mlj6zKPCjxYEqSxNFr87uSrI0jdNyfVos6BoK3si0/B/IzKyInCE2b5s3 +Cw1c/szhdYaWc7vzwvYOaXTjpxOIGepszHT8vp0y2tTLQfk8Lwr2++FMX7b RtMrg948VtcyROEpGvDVI78NW97XnPwW216+UfeiIVia1FC5uMocWHq0g7rT dkwXmAjvssXm3pqGs56ciZbjegeSSpZlm6wpPTnb1rZLfr7DttVqilBikNa2 o+GKYfZdOtcKYadr1boV1R6kKkWLlwv5tULe5XhEuXUSv983UXRuXJdnx/rr KzrHkaKP6ClaGuqQLV0N7Q7J0oFgaaLox7K6/lOO01D/ZvWfItnY9Djw30VM yFAkM9PYTOV8bjGNzc89MJjImZp5gfVDSc7W9x6g4fktIme57Xxkpj/tbEyz vDrF/AoLz7vH0Zm67ZmmilGmWcO8Nzy3PFG4mfpeXW3xf618/P7JyrIS3ek7 CNLEZpGRkcTSw+6WSnvpUMzSjnVNNzLtG1hnbLYnZ96gkMNwW2XRN47UROhE uXsD+2DDh/OtVlOEz5Ii9D3U7ei+jhSdxHa6Vu1xBxsoKe5XqLzrd6Fis2iq 6OJYk7bLYRu3Y9cKZ8WFieMc2x0reqa+ouW5u/Z0qEMO0vyioWTpxZKlzz3Y 4dGsrudJnGauhvrn0kAoquIiycn0LSQt08BM6zwp1m2mDY2F7SseGMxj8z+Y nN9l03QPpXc5OSfghLQahXc2LPtzzC9NMu8db+bh+dl004p5kz39Q6NPi3eF G+BfQ0jFjn/f+dQXXGtpsSPNur5twWMJfQK5q2OFGi6sDXdQw+VdmHRis2Bm e3JOkiM0OFl0Ly8SmEU5JyjfOxwSuKY3YmuSaNvRymXgimuFTNFJ94borlsh ip59n84tZecph+4WDxEa0cNNQpfDbw0sKhQUPXN4mDjOAYp+gSt6siNFH86z qhTNhjqkIC3NdSwI/EBp6Y8XB5aM7XqWxmla50gtCTwv1ydCnWdOpk9YHAiZ GbrNZwqpnHls/geNzZKcT88NWJbe5QS7JniUyZnObNDOhuVluiBFCM8ZpocT OlZXV3v6Z0UfDM8uQfVltGdgn5Izh1havD+4eBNDelmN9qWp/VLEXTug6dFL 2qQ0ViNtWuHBSX0DwcZJ8hJyRWzupRObNXK2ReWYvsEqJycIldSjrShnXvzJ vMUhltjQThHb0dqJDpWi4d61fOLuXv097rR3/da9ViiN26m2ThKuFc4YHiaP c9St6FemBRyYoa9oOndnG+ogQZpYuj0N0nqWfmRs149YnP6I6ZrU2cWCrlmd XSzVx8TJi9p/tIhm5o+YnKsXtN+aH8VjM5HzO/mSnElyLk7rcky+Jght51en WKCzwcPzc6PoVs9edWVQ/DMc5ewqnPlK+qacOR+/f1JlabE1Ta8eSqJup2pN i65WVeKdgVp7QzmIzbKc24pyTuyh9rNNwvLZsl8iio6NqGhocfCLjMk9lU1s TYpWDd1lahQN21xPEibutIpWpWi2n6rmWqGsaFhUuEoetyOKLpWvFU6PDRPG OdSKrpzgv2uivG5lSsBLoGg+0THL+nqu9fBs6xF5NJq3o6UgPa/9O9TS7VWW XjWmaw2b8YDuNG1QQ8m6/lh6CxMyq5pCqYicP5hvfTY/6n0pNlvfzg94S5bz idn+RWldjtJpZ//XYaBuimX/ZNrZ4OH5+UzT1gzT5lTjq3/e6OkfDgX8z3Bf 1oVrqdPPPi5nLSRU84JhjyF9g9lFuraCq2ml9qQL9OqcQ07rJa8ElDfEkEq+ IsnMDHuDKMwsNjRgLDBBT84O9oaCIh+rvbyYJJQDRYuXC7mi6b1rNUPRKkXP FtatyKu/hfutCOMc0IhWbJ2UZLvf97TYMHGcgyh6q1bRk9SK3q9R9N/yrFzR fAHLabWl24OlV2Z2/ZCIWk7UNFTLdWYhMzYRsuzkaubkD6HmUzmT2Lzl/qh3 aWy20th8f8ApWc4kOS9N7fI3+ZogtJ2hs7FnvJnO1MnhefmIWzz9o6APhmcX gj1nl7C9fOMDMycN7x2YBGtbhAKppsidEC5tVSXcGUgK3is0NKjth94lzZBA JWk6zAlaPzuUsypIs/itELJYifVXNGxz7VjR4gZKc23XCo2Kbe6EcQ5YVLhy hPp+31OHhYnjHA1Q9EGm6DckRVvfnGPrdZy0Y+kVmbf/Y0F7qA9IFdL6kFW1 XPQhvJcG5vb/IFVgfR8aGvOs5XOj3s638tj897yA47MDoK2xJKULkbN8TZC1 nVlnQ1qQwsLzM6mmA14WngE0hmtx4Gf8UteX6urqioqKGHl8WlUj5IuMI+WY LZUcvON7BxIVj+gTKL5dFZshKkPF9grkjiXH0sPuTslZtDRvj4hOptVDLkHR /Hbntq3zREWz1YVw71pHilbeD2uOcpxD91oh73KsHGG73zdR9JShYbCuUKvo 5xwqmg/dVYmKpr0OOUiDpe/XsfTDo28HUdNELZdN16z+wZxM31VAyvpeAdXy u/OgoWHdPDcKYvPfSWxmcn4z1/8IHXX2f3BkFypnuCYot51pZ0MOz+XppmUY nn0DexJGOTc1uzaVqKusZGdZCY3isyaRnBzH0rjuSAZ3Ml/z6Ph+Xo4rWlgy aafaJak2x1ZO3PF2NOzRQfwsXi6c5ISida4VRiuuFfJxuxVyI5oqOsmcMzRM NXFnV9ETdRUdcEBW9KFZ1jdsvQ4SpK1qS+dLln5o1O1vF1BR00Qt13sFgq7h IXk7c/I7pB6g9fYD1rfyrafvtz4zJ4rG5jkBx/MCjslyPjzT/40Z/otHhoGc 4Zrgi7TtTDsbL4xlM3VeHJ5Rzk2B9quKcvYeSCbfybzNq1I+UDnW3h7XTvpZ vGKYoDPpIShanLjT7Bo9hm4AFaKa6NDbzN8g3lVWca0wSv9aIe9ygKJZo8Nv 8pAwcem3tIGSUtHP21H0Pq7o6dYqVTsagnQeWNp6fK5VtPTyUbdTUcuJGuod ud6VDiQhg5OplpmZT91vPTk3YFNelBybA47Kcn59OpFzl9ckOVv2TZLkvIt1 NrZn+lWQ8JxmKo73xvCM0mgitCN2+HVuLpxVLqiBOF3fIM2fr77CqLa0fiNa u5MS3aBPuYeS7v1WZoCiNeMc9q4V2sbtmKJXslt+T4oJVe3O4UDRbOLOpmhp Lloa6ghQtKPtWtpKLL0s43YQ9Sk5VDNdW6HehgMQsuxkpmVqZtrQmBNQlhfF YnMA9DRAzgenWRaNDDtAp+ksLzE572EDdZVjWWdjNL0suCnFuH87hmcfQvzC opybLzBSAnvxaXdPdVCw4SpvR+vOeEiK1rtLY7oQpEHRsDvfWGEPJf3N/CP0 xzkcXysERcO6QmLpiTGh0s2w2DiHY0X/2aZof6JoukdHTsA+2xVDougAEqQP QpCepWfpOdTSxRm3M1FLdZLVqXypTsOB/Pa/z4WiWj4hNzSenh11NDfgb3JP g8nZv2qqZWFyGMj5rxOpnP+STdvOdLVgph+dqUszLYnzxvCMcm46+MpBlZxR 1M0XCNX2bkbgIELbm/GwbY6tVLS4jRIf6hgeHpwp7Bet3SmaK9rexJ09RfNr hcXsciEJ0hOiQ21LC6WhaIWiyyVFW0RF00bHRH9pGyWxHc2CdNWMABqk7Vu6 KP12EDXUCVZUwlza7CF9O3kacTJoGVrNswOImZ/KjaJmJrF5hv+h6f6vMTmT 5FyYFPYSH9gYZwY5Pw+djXTTkyONr3hHeBZdgaGuSQE55+XlYZBuYcDKGmcs 7bglYlfR4kbTgqKlG4trV39rFG1v4k4Y5zDaXfrNgvT46NAV0tJCP9sGSnUp GiY6dlJF+++BdjQL0kKvAywdoLB0rmTppWm3U1EzV0OohjouFH0Lc/KbeczJ ULShQWPzk7mDwMwHmZxfZXJ+JccyPzGMyxmuCW7PpJ2NZzNMm1JNf1nsRTex 4qtRMDw3KdqvMMq5JSFaumF+Vlla1YgWd7oDS8fKNxbXLi1UKdq2+tu5cQ7V xB1R9LjBoXxpobhuhSj6SaWinxUULSwAp4rePcl/r6rXAZaezi0dIFp6Sdrt f4NEzeponlRv2koS8hFSubT+BjUrADLzxlmDDkqx2f9VNufM2hqWgsSwvTCw IV8T3DZa6mysSzR+9dEpT7+a1KCc3YCoaFye2SIBS9u7eujkJUVhN792fMuO lJ5qRcfeHQyNDnEoul6KnjNAb5xDT9HEz6ptop1RtGKPDroGnCpa0euwa+mA 8vH/l9QbuZKraagm4p1N6wgvWciHZ0n1BjVzwOsz/Q/NoJl5w8xBVTQ2+x+A RShMzutH/591GbeygQ0zlfMYJmfW2Xh6pPHvO7xun2cMcu6EmHnDhg34BW/B cEtr2x3OT32Iihb3UOKWhjvqZggTd1l3tcvWvd/KPfWeuJOGoodIE3fZg0Ol 3TkSbLtzPK5U9NMaRVdkWaiioR0tbdMBvQ5/3uvQt/SMgMUpXQ4xUZN6Xa43 WB3OleoNm5ClIloGM7823Z+Y+YmZgyQz51heoqN0lhcnmgsSwiQ5s6UoRM4V bCn3plTTY3GGur+7bgfDs/txZq9RpFlTWVaibXfUaypPX9FykKa3axQWgMtL v9upd4rWKNqZiTvVupXsqFC+9Ful6HU2RZuJojcpe9EVYy3b9NrRrNfh/6J9 Sy9K6QKiJnVwplSH5JJsTIUccFAq6uTXZDOzzOy/bsagV2Qz/5XK2bJngnle QhiRM6wTZNcE/ehqlDTTE0ne2NnA8OxZcCuqlo0qSNd3ahrG7ZKU29xBkB7K 7tXIN4vOrJ+iNeMcAxXjHCpFZ0WFFsnb+MPSb5Wi1wuKFofuSJCuoL0Oi60d PV7sdSgtPcVm6cKRXUDUUFVyrpaMzYoeExtDESdDETNP9d8/xZ+YuXT6oH2T JTPvnWDZwy4IPjAijMp5rE3Om9NMT4007ljoRZcFORjhvAEHcRrV3dz5+P2T 4nRHAyI037VDVDTcqBGuFSqWfjuhaCcm7ozzBxuJomHdytioULr0W56IljdQ 0le0bQG4oh2t1+tQWNpftPSC5C4gaqgDrERdvzqd2vgAFDgZiprZ/+UcS8XU rlundKVmZrF5N0xrZJvvjw97gcn5udFMzummp1NMa0cYvHATfpSzt6GK0/gN ajHwdkdDIrRyYyWwNL9LY1pv9dJvR4p2cuIOhu5kRY8dFLpkqGLRClf0ageK 1ul1WBS9Dn1L+++b4j8/uQsTtT/UK3JRA09jxY7pG6fQehkqx/8lUiwzPz59 EDOzhZp5vHkXk/OOLPPcuFCQ89YMek2wLMW0Psl44gW8LIg4C8TpvLw8T58I 4krguuHAfr3q5Wc+dMc36EiSb4kIjQ6+052Oou/WV7R4vxV7e9yxoTs6F10Y bRozKHTxEMXSb5Wi1yp70RuZohW9jkyx12GhvQ45SCssDX3pyf4FSV3+Cq5m un5JrpeV9VKOVPRpky20mzHZ8uIkmpnXThu0e7yFm7ky2/wCkXN86PNjmJxH +VE5p5o2JhsXDPPwakHdCWfMZo3kypUr5eXlTfopsDvd8gBF13eTpQSNpfkN s1IbqWi9oWhuaVB05sBQkqJ1d+eQFe0nTnTQBeBCO5oEaVWvgyoagrQdSxM/ 750suRrKpmu5/jqZF3UylJSZJ1jWTB3EzUxi8wtjzdvH+M2JCwU5w8AGkXNp gnHfNq9YLfiHIGpdOZ87d660tLSiouKnn37S/fA6n+A7XLt2bdKkSb1799Z9 76FDh7p162axWBITE7/55ptGfi4c9mhhVFdXN6DRoQzSbWOEe4Lr3hVL566F gqLFuxbO1AxFi/f+JoomfiYpelGM8n6Fyj3uHmOKhrloZa9DZ67jOanXQSxt sVkaLh1OoJZ+ILHL7kmSq6H2QnFjS2+xkNoz0VbEzH8ZbyFmXj11oGTmLPOf mZy3ZfrlDQ+lcs4wbUozPTmSrkZ5asFoT78c1Oh2No4fP37rrbcWFxdnZWX1 7NlTa+A6n+A7fPLJJ9HR0UFBQbp+JkK2Wq0nTpy4evVqQUFBXFycqz6vvTiN AbvZQRTt/MYdupamG/7b2S+6HorWHYrmQ3dsqGPUgBDe6FgkT0RrU3QJV3Sy uVTsdaSZn6JB2iz1OkbTXsdW6HUoLG15YZyFWzo/ocsu5moI1TRXy0V1DSqG IkLmRcw83rJzHM3Mj00ZKJvZ/DyTc8Vov9mxoeXpNjkXxt7SXC4LRkREbNu2 DY6Tk5PXrVtX3yf4DitWrFi/fv2BAwd0/Uz+xEhNTYXjS5cuGQyGr776yoWf XRWn8TpC84WPdtRX0SPkG7LY29JfuZm/vqJ1hqLFXjS0owcaM+4Lmcd70TE2 RRdretFU0UI7Wup1pEq9DhKkyzLM0OuAdrTC0lnM0tnU0qTuTwirHG+B2jlB ql2suI3pQxAy1DhakJn/nGUuyRnIzGzelik1nGcPZ3JONW1kcl4zwrg8f7Kn XwJqdOV88eLF1q1bf/vtt/CwrKwsPj6+Xk/wQQ4ePKjr55ycnKKiIv6wW7du VVVVTXECuHFKy8DeYsMmV7TuuhVQNBu6g3Y08TNJ0bqKZinaJCkaNuhQDnWU quY6WJDm7WiVpekMnhyn544Ig0RNQzUU17VcleOkou/NJmXewS4Cbh9LtfxI zkBqZhabWU/DLzc2lCRnkPPqEcaCoV63iai9rHX27Nk2bdrcvHkTHu7bt09l njqf4IPY83NGRsbq1av5w379+u3atavpTgO70y0A3cWGdRa/Z5bTilZfLlQM RSsVzS2dfl8I9KJB0XwoWlQ0Xf2t244W5zpS+UVDc9ko8zNgaT1RE0vPiQ8D UUOohnoh26Zrqm54SzZNy1DUzGPN28aYn8s0r5o8EMz8LJPz5nTTzGGhRM6l RM7xxlXDm9PA85kzZ8if4fzh/v37e/ToUa8ntEgOHTpUqGT37t38vfb8nJ2d XVJSwh/27dv3xRdfdMPZ4rBHs+bj90+Ccp0P0uDzxihaXLcyzaZowyx5AThR dFr/EH65UKtoerlwmG2n6BXqXoefrdeRIvQ6ZEtvIqIerROn8+LDqKiZq6H7 QRsgrIiot0vH5u2yk58XzEy1PNpv5aSBYObydL9n0kzLEjoWxXd8PMH4GJFz rOGl571lZoPjIGJ9+eWXrVq1qq2thYeVlZWRkZH1ekKL5NixY6uUkF9M/L32 /Lxw4cK5c+fCMfmLo2PHjm+99ZabzhiXIjZzYJNSJxXN/dwUigZL5/anfrZt Rioomu+htETZjuZ3xSqxjd758YuG6+WLhjZLZzBLjzJvHm0uZ63p2XFhW0HU cj0HuVoqs6KIk6GImTPNxMxUy6P8VkwaWE5js9+mNNNTqabpQ0NJcn403rgy 1vDEvFGe/j7r4MDP169fDwwMrKmpgYdFRUXTpk2r1xN8EJWfz549e/r0aXJQ VVXVvXv3q1evkuN3332X+PnKlSvuPz1VnMbLiM0F5y8aqvys3dXfGUVPFBTN J+7Y0hXJ0qmRIdDosG2jJCnaSBUdo6NouGKo6HUk+YlzHY4tnTs8bEumGepZ VltJjTFXqCpTKvre0bTAzKDlhycO3JTmV5ZqejLFtGGkaUpMyKNxxhWxhrnR HTz9Hdahzv5kfn5+amrq5cuXz58/36lTJ1DNpUuXwsPDoVGj+wRfRuXnwsJC GKW7ceNGLGPlypVBQUFbt2713Dna4jTKuRnhYIdSHT93V/vZaUW3s6doeXUh rZTIEJKiuaLznVd0vFbRfvyiIbQ7NqTqWHrW8LDNTNQsUdPawurZTKFGS0Xf NYqUzczP0Mzs99CEASQ2b0wxrU82PRjXsWDoLSBnL2k7ww8m/FQ6k52IiidM mBAQENC5c2e+LK62tpb8UX/hwgV7T0B0+e2333bu3LlmzZpTp7xlx0K0dLOj zouGun4Wt1FyUtETBEXDuhWY6ABLEz+TFA2KnqNZujKfKDpaq2g21KG6Ymjr dRBL++lYGial080zY8M2EVGzegZCNatyTW0e5bc5Qy7ZzE+n+REzLxs/gMTm J5LpBcHJ0SEPDzMUDfG6a4J4cR8RwddD88JxkNbzc1vVZqQNULR0Y1nZ0iMj QkiKntXfMFu5X7RN0YP1Fb18uElUdIloacjSycTSfutS/FSWnhEbBqImVcZK crWt/EhtIpVuqzJi5lQ/yMzEzMXjB6xLMj2eaMyJYXKOMRTN9bpp5z9wnw1E DwdxGjO2t2Hvzob8LdzPXNHOp+jsu4if242/W2cnUrB0ckTI9AjaiM5V7het VfRCQdF07i7WpmjejrZr6ZHE0n7rU/yIpacPCwNR00RNwjCLxE8TAwv1dJqy qJn9wMwkMxMzLx03YG2C8bERxnFRIUu9Vc54VQhxgDZO4wvGO9GdvhP9bE/R fJxDV9HyTqSg6HaiormlJT+zCG1T9ADbAnCq6CiFoh9UK9q0AiwNWRqWsSTY tfS0oaFU1NTVfhtZPQnFXE3qyVShUoiWFWZ+PNG0NsG0JHvAo/HGiYOpnJd6 pZz/wPCMOAdfiohy9mZ4kNZu9e+MoqVt7mA/f7ixrH1F8yBN/CytLnSg6EFc 0UaFoodJil5OO9IgahO1dLzS0onM0knU0lOGhq4DUbNanyLVBlZMxdLxBvJe WvQKoGjm1QnGh9PClqeGrYw1Zg0MQTkjLQPsTns/EKR5u6MuRWuGop1UtBCk k+8NmXqvPBcNiua96DoVPZQqGhawgKgfYqJmljatijdpLZ0zJPRxiNNyKXQN B8l+VMjMyaWsZDObHhthLIk3Ls4asCLWmD3Ie+WMf6giDcbJLI2vMU9BgjTI WdWUBkUn1FfRffUVTf3cz5B0bwg0okVFsyCtsLRG0UaqaFhjKGfpYkHUDw8X LW0qGSFZenJM6BomakjUNFSzknXNbMxqbaJUa5iZH2VmfiTOuHK4ceHYAXnR Hbz5DheYgpBG4jhOo5w9CwTpgf16qZrS9Va0+q5YakUTP+eI+0Xb1oBrFD1Q qWhmaZjreJBdN7SJmln6IR1LmybFhD5KYjCr1Ym01si1lh8zIbO0TOtR8oHx xlXMzCQ2Lx9mnJ95n9cm5z9QzohL0cZplLM3QBSdP3OS2O6QFK1aVNjDvqL1 b1zIFd2OKJr4eTLfjFRUtK3XYVApeh5T9HxYwCJZmhYXNfQ9SJxeLlo6jlp6 YnQoiBrqUVaPycZ+TH5LSbxUJDCDmR+ONT40zFg8xJAb1SEtLc3T3xy74M8O 0hSIcRoDgPcAita2O+pWtHbiDnrRfRWKTrw3BBoddSj6PgNV9ADajqaKhp06 mKgXsDjNRb04xvjgECO39DKlpScMDl0pJ2qoR1RFNE6LOpkGZm7moYYlMYZZ UbSt4W2vT3EZr7edG9LCwEkPL6SyrERracXSFbnXYXf1N+tFZ2oUnXhPCO9F O69oftEQLC2KemE0ZGnjkiFGVZAePzj0oeGSq6FWyNEaaoUsZKiHWDdj2VDj 0hjD4mjD6PtCYIWg1zoQf3AQ94DDHl6I1tJaRSff0RYitKRooRcNQVo10ZFw TzA0OmyKvseRovMG2Cydr7T0/MG21rSgaCMoelmsaVxU6DLWmqbXEOV6iHkY ajkTMnUy03IxMfMQauYZgzo8OGfyp9Un4evgtS9Lrz0xpKWCcdqrgCXhjizN FK3tRYu9DlHRxM+8F61WtGbujl0xhCBNS5y+4x0PMUU/KCuaWnoonYgrYge8 iodJtYx2MGjRt5MPIR9IDB9tKIwyZA4IeWSOYstQ79Sgd54V4gvYi9P4mvQI zllab3UhC9K8Fx3fL1h5ubCdvqJ1gzSz9NwBBm2QVjQ6mKWhsgaFLGHGFmup XEuYkx8kFW1YFG1YONgwbWCH9MjgT2vUu5B54asOLwsi3oAYp73wx8SngBk8 nb60UtG6c3egaOJnzUSHjqK1vQ6hIw1BWrK0NN0hKBpqUbRxzMCQRfIFRJ2K prVoMNXygihq5lH91bGZ44UvPC88JcRngTi9YcMGT58IYmtKc0vH9gpMUHSk dRQNlwvjwoO1Ex0qRWuvGNqCtGBpFqQNoqLhiiFU4WBj5oCQQnbAa6GtaB+D aHn+IMPUAR0y+odM7N/h02q7m/d6mwy97XyQ5s7LL78s3tjr999/b9i/g91p L4G3O/i8dIzt9rL6iiYpenh4sGLo7i5R0e0mO+51qEY7mKWZog1SO5pVgTzg MXpAyHzwNvGwsgoGGeYNNEyRzbxhTrzj/1mv8iF2NpD68uuvv8LdFoKDg7ds 2aJ9woABA0aOHJkrc+3atcZ8Ohz28AbEpjRUDLM0KX7RUKVo4ufMPu10FH03 VTS3tE6vI0IO0pGKIE1TNLM0iBrqAeZeUvOIh3kNpPUAe0LGfSHp/UMmRHZY Pyf+P/KQhgO86pXmVSeDNAsKCgrS09N/+eUXuFuZ6j4v169fN5vNX3zxhcs/ r+MF4y7/dIiWyrISlaUTZFEPuSuYWJoquqek6NjwYBiNVila2esgim4n9TqE IM0tPUtod+TxLM1cDUWMTYLx/aBuoSbfRwNzWmTI7Mh26/OcMjPgWSWKnx3l jNQXEoatVusHH3wAD4uKiqZPny4+4Z///GfHjh2PHTu2Zs2al19+mejatSeg bXrgy9j9kDgttqaJpRN7tB3CLD30ruCEOwOJomPvDtbZ7E4TpCeFU0VzS09V tTtkS+dGypcO5cqTJz1IPJ4je3tS/w7pTMskMM+KbFe1tcR5MwMefznhhr1I g/n8889btWrF7ypeWVkZEREhPmH37t1t2rRJSUkpLCwMCwvLyMi4ceOGy0+D Nz08/tOEEFGDqxPYRUOSouP7BBJLR93Tiyia1Ci4Yuikpfu1m3JPO5ulRVHz RM2NHUlvEU7+S4RMihyPj+gwM6IdqVe3ljTsf8dLXlFechpI86KmpsZgMPCH +/fv79Gjh/gEkp9JbIbj7777LiAg4PDhw013Ppg0vIez75+EIE0sTYJ0Ss+2 0OsYxiw9nFR4cFx4cMpdgWPvpIrWb0qHS5bOuQdETWsad7Ws65SIkJTIEPLf oRG9UiKCZ9zbbjqrA1tL/l3PwKzCG8SIlwWROjl06FChEpKNP/nkExKPb968 Cc/Zt29fnz59HPwj0dHRbpiUw2uI3gPJ0tCUhizNLZ3ei8119G6X3DcQRE0q vl/wCFYJ90iVCHVvcJJcyXoF3h7JDh7Pjd//bMm/P2yUlgEveQl5yWkg3syx Y8dWKSFp+aeffmrduvX3338PzykrKxsxYoT4UcTG69evh2Oi8e7du+/Zs8dt 5+w4TmMmcQ/V1dXbyzc+ODmOdzxG6okamh6048HidDaP06wmQKi+myZqqMlC rZkV/1DuqF1bN7r2zL1BjN5wDkjzJSIiYvv27XCclJRUWlpKDs6ePXv69Gly sHfv3g4dOnz44Ye///77mjVrQkJCLl++7OYzxAXj3sPH75/cWVZCasnkuERw NRV1Wy7q0X1souauBl2Pu0sqcvzIjPiXtpTsK29gV9lJPP4Kwc4G0kiOHDlC DLx06dKsrKxevXqRRE3eWFhYGBcXB0944oknbrvtNovFEhsb+69//cuDp4oL xr2TSmbsXZtK/sKqKCceMrYcs9um9Wy7d3MJqT3PNK2QVXj8ReLxE0BaAOfP nyexecuWLT/++KOnz6VusDuNOIn3DD8jiK+Bwx6IYzxoSOxsIMgfGKcR+7jz VaESMr4gEUTEQZzGJOObuFmSuMwKQRyjjdP4w+KzeORbj50NBKkTTDKIR777 +JJDECfB7rQv4/7vO77SEKQBOD/sgT9iLQb0M4I0I+qM0/jz1ZJw83cTXzwI 4hJ04zRe2WlheHC+DkGQRiLGafz5anm4088YnhGkicCliC0SlzvT3isE5Ywg TQ0Oe7QwmsLP2lcI/uWFIO4E43QLoEl/zzbFVooXL14Ut2d/8803XfLPIkiL xHGcRnt7OW74O4i8Bpy/ndCvv/46YcKEgICA4ODgLVu2aJ/w+uuvd+7cOVfm lVdecenJIkjLRBunsQfi/bjHz87/mi4oKEhPT//ll1/Onz/fqVOnU6dOqZ6w du3aqVOnuvocEcQnwN1vmhdu+DY5/ymuXbtmtVo/+OADeFhUVDR9+nTVc8aN G7dixYrNmzdv3Ljxiy++cOWJIojPgN3pZkFT+7le//7nn3/eqlWrK1euwMPK ysqIiAjVc3r27BkUFDR//vwxY8b4+/vDDeYQpCXx22+/kRc/+VPxnXfe0X3C uXPnSktLKyoq4E5eDQaHPbycJv3W1Hdmo6amxmAw8If79+/v0aOH6jk7duz4 +uuv4XjRokWDBg1q/HkiiPdw48aNEQzyd+Jtt92mvQpz/PjxW2+9tbi4OCsr i8SVRioawDjtnTT1/Ia9dx06dKhQye7duz/55JM2bdrcvHkTnrNv374+ffo4 +PePHj1qtVpdfNII4lGqqqq6du167do1cvzee+/dcssttbW14hPIH5Xbtm2D 4+Tk5HXr1rnqU9uL0zgc6ymazs+Ov6fHjh1bpYSkZZIEWrdu/f3338NzysrK SIoQP+q7775LSEj473//Cw/J34C9evVqovNHEI9QUFCQl5cHxySrdOzYUWzi Xbx4kfyMfPvtt/CQ/IzEx8e7/BxUcRobIJ6i6b7yDfuXSTbYvn07HCclJZWW lorvJX/6kUSdm5t75cqVzz///I477nj66addcK4I4jWMGTPmkUce4Q/79u27 d+9e/vDs2bOqvzF79+7dRGcCcdr54VjE5TSRnxv8zx45cqRDhw5Lly7Nysoi 2Rh6a5cuXQoPD6+uribHn332GQkMFoslKCho9erV/IWKIC2DUaNGkRc2f9iv X79du3bxh2fOnKnzGo3Lwe60p3CVn8VvXyO7VefPnyexecuWLT/++CO8pba2 dtWqVRcuXHDBiSKIdzNt2rTi4mL+sFu3buIP6ZdfftmqVSveka6srIyMjHTP ieGwh/tx4VcbR98RpPFs2LAhIyMDjn/++WeSlomT+XuvX78eGBhYU1MDD4uK iojP3XyGGKfdhstdinJGkMbw9ddfW63Wo0ePXrt2raCgAC7/iS2+/Pz81NTU y5cvwxpbTy0BsBen0QAuxLVfTJzDQZDGU1VV1b17d7PZHBcXB6MaYouPuBr2 qOncuXN5ebmnT7ZJtkFDANd+PfG7gyC+CWyDhgZwLS78euK3BkEQ7E67EFdJ FTsbCIJwcNij8bhQqviNQBBEi+M4jaHOARieEQRxA7pxGkOdY1y4OMUl/w6C IC0bHqcx1NWJS7yKckYQpF5gd9oZGvb1ERtK+EsQQZAGU19L+5RtGvP7C38D IgjiEpwcyfM12zTy/9fXvlwIgjQdjiOfD/6p3sj87GtfLgRB3IA2TvumbRrj ZwzPCII0HWKc9k3bNPj/2je/XAiCuB+fXTDeMM365t8aCIJ4EB8cSGjwfJ3L zwRBEMQZfCdON8C0KGcEQTxOncMebj6fpgD9jCBIs6YFD3vUV7YoZwRBvJAW OexR5/8ILuVGEKQZ0ZK6007+ovHBK6cIgjQF586dKy0traio+Omnn7Tvramp aSVQXFzcsM/SApRVrzzcrP9PEQTxBo4fP37rrbcS62ZlZfXs2VOr6O3bt8fG xn4jo+vwetF847TzysXOBoIgjSciImLbtm1wnJycvG7dOtUT5s+f3+DM7IDm OOzhvJ8xPCMI0kguXrzYunXrb7/9Fh6WlZXFx8ernjN06NCYmJhOnTq1b99+ 7ty5tbW1rj2HZjTs4aR1Uc4IgjSes2fPtmnT5ubNm/Bw3759vXv3Vj0nPDx8 2bJlP/zwA3kyeW9hYWFTnEmzGPZw5sS89pcLgiDNizNnzhgMBv5w//79PXr0 cPD8PXv2BAUFNekpeXN32hk/e+0vFwRBmhdffvllq1ateMuisrIyMjJSfMKV K1fefvvt69evw8MjR4507NjRDSfmncMezgw/u+dMEARp8RDxBgYG1tTUwMOi oqJp06aJT/jhhx9IwD527Bg8nDdv3ujRo915hl4Vpx3rFzsbCIK4lvz8/NTU 1MuXL58/f75Tp06nT58mb7x06VJ4eHh1dTU5XrVqFXn78uXLc3Jy/vSnP332 2WfuP0kvGfZw7GcMzwiCuBai4gkTJgQEBHTu3Lm8vBzeWFtbS7R84cIFeEik vXbt2q1bt/7vf//z3JlSdOO028So+kTirwwMzwiCIH94bthD93O9JuO200AQ BPF+iBU3bNjg8f4GyhlBEEQXtw176H4K7GwgCILUSVMPe9jrbzTRp0MQBGlh 1BmnGyxw7b+JckYQBGkALh/2UH0sdjYQBEEagxinG2lU7XxdY08OQRAEafSw h8rtKGcEQRDX0uBhD/FDsLOBIAjSdDgz7CEugRH9jOEZQRCkqakzTm9gwNP4 h2B4RhAEcRv24jS/sEgs7eW3D0AQBGnBqOK0GJXhjcTS9foHr1+/npSUtHfv Xt33Or5zOoIgCKJFu+sRpOt6dTZ+/vnnrKysVq1a6fq5zjunIwiCIPZQbZRX r84GkXNQUNCUKVP69u2r6+c675yOIAiC1EkDRvJ++eWXd955hxz0799f62dn 7pyOIAiCNCm6fnbmzukIgiBIY6itrf1/Sn799VfxCbp+ru+d0xEEQZD6snz5 8lZKpk6dKj5B18913jkdQRAEaWp0/VznndMRBEGQpkb08xNPPJGbmwvHundO RxAE8VlOnTp155136r7r0KFD3bp1s1gsiYmJ33zzjas+Y0VFBTEwHB8+fHjH jh1wrHvndARBEN/kjTfe6NChg+6kBBGy1Wo9ceLE1atXCwoK4uLi3H96CIIg vsm6deuCgoIWLFig6+fS0tLU1FQ4JsnWYDB89dVXbj0/BEEQX+W99977+eef Dx48qOvnnJycoqIi/rBbt25VVVVuPDsEQRBfx56fMzIyVq9ezR/269dv165d bjwvBEEQX8een7Ozs0tKSvjDvn37vvjii248LwRBEF/Hnp8XLlw4d+5cOL55 82bHjh3feust954agiCIT2PPz1VVVd27d7969So5fvfdd4mfr1y54vazQxAE 8V1EP1+6dCk8PLy6upoc37hxI5axcuXKoKCgrVu3evQ0EQRBfI5PP/30mWee gePa2tpVq1ZduHABHv722287d+5cs2bNqVOnPHeCCIIgCIIgCIIgCIIgCKLg /wM0K+ya "], {{0, 326.25}, {360., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->96.], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{360., 326.25}, PlotRange->{{0, 360.}, {0, 326.25}}]], "Output", CellChangeTimes->{3.854018669632399*^9, 3.854019281733317*^9, 3.854019766750051*^9, 3.8540257582761383`*^9}, CellLabel->"Out[4]=",ExpressionUUID->"8c721653-5a5c-43dc-9f75-6d735afb289d"] }, Open ]] }, Open ]], Cell["\<\ \[OpenCurlyDoubleQuote]Non-convexity\[CloseCurlyDoubleQuote] mean that:\ \[LineSeparator]for any point {x,y,z} on the surface, there are other points \ that can be connected with a hyperplane (the higher-dimensional \ generalization of a line) and have part of the plane be \ \[OpenCurlyDoubleQuote]outside\[CloseCurlyDoubleQuote] the surface. \ \>", "Item", CellChangeTimes->{{3.854018702656827*^9, 3.854018770626891*^9}},ExpressionUUID->"5d95e7db-3773-46aa-9048-\ e2c2b70a2683"], Cell["Convexity means there are no other such points.", "Item", CellChangeTimes->{{3.854018702656827*^9, 3.854018776201687*^9}},ExpressionUUID->"cd7cb819-5715-42a2-b169-\ 52c16729cbf6"], Cell[CellGroupData[{ Cell["We can \[OpenCurlyDoubleQuote]convexify\[CloseCurlyDoubleQuote] regions \ by constructing a convex hull ", "Item", CellChangeTimes->{{3.85401911202075*^9, 3.854019134668003*^9}, { 3.8540193254985*^9, 3.854019325500429*^9}},ExpressionUUID->"23dbe14b-461c-4cf7-99d9-\ 8787cbf8beaa"], Cell["\<\ We will revisit the concept of a Convex Hull many times during our course!\ \>", "Subitem", CellChangeTimes->{{3.85401911202075*^9, 3.854019134668003*^9}, { 3.854019327280501*^9, 3.854019347951603*^9}},ExpressionUUID->"927b2b97-8651-4250-89b6-\ 20b762d574bf"], Cell[CellGroupData[{ Cell["\<\ For now, we note that it\[CloseCurlyQuote]s a convex envelope which includes \ all points on our shape, and satisfies the convexity criterion above\ \>", "Subitem", CellChangeTimes->{{3.85401911202075*^9, 3.854019134668003*^9}, { 3.854019327280501*^9, 3.854019385965695*^9}},ExpressionUUID->"eecb161d-d8d9-44d1-8539-\ c6e3bf71ce7b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"nonConvexRegion", ",", "ch", ",", "points"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"nonConvexRegion", "=", RowBox[{"ParametricRegion", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", " ", RowBox[{ RowBox[{"Cos", "[", RowBox[{"4", " ", "u"}], "]"}], "/", "8"}]}], ")"}], RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "u", "]"}], RowBox[{"Cos", "[", "v", "]"}]}], ",", RowBox[{ RowBox[{"Sin", "[", "u", "]"}], RowBox[{"Cos", "[", "v", "]"}]}], ",", RowBox[{ RowBox[{"Cos", "[", "v", "]"}], RowBox[{"Sin", "[", "v", "]"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"u", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"points", "=", RowBox[{"RandomPoint", "[", RowBox[{"nonConvexRegion", ",", "10000"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"ch", " ", "=", " ", RowBox[{"ConvexHullMesh", "[", RowBox[{"points", ",", RowBox[{"MeshCellStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "All"}], "}"}], "\[Rule]", RowBox[{"Opacity", "[", "0.25", "]"}]}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Point", "[", "points", "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "ch", ",", RowBox[{"Show", "[", RowBox[{"ch", ",", "nonConvexShape"}], "]"}]}], "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "750"}]}], "]"}], "//", "Rasterize"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.854019391466201*^9, 3.8540195011110487`*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"73ac019b-ec9f-479c-b12b-fa137614521b"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsvXdwG1ee7+v37j9v8+7s29nZvLO7t+rWfXd2wo7H4yCLkigiAwwgwSTZ loNsS5atnCUqMuccwBxEKlGJEilRFHPOOYOZhKIle2b31nul9zvndDca3Q0Q VKIsnW/9CtXoPt190CCKn/Pr7/n1Tzd87f7Z//nGG29s/7/gxf2j3au2bfto r8efwxvPLdu/2Ljl008UW3Z8uvHTbb/d8N9gpez/eOONeVhAy4+pqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio qKioqKioqKioqF4aTc7enpy9MzVH4m5N62Bt22BtKxttQ3UohvtGZqfn73Ox 3L2moqJaXA8efg8/8OrahsnS6Kmy6N6zJ+syD9RnHWj8+scNO/+lJvrDmtNx NUVxtafjp+sKIeZvRMOv+9tHv1vujlNRUVFRUVEhTSFKv1vd1Ffd3F/fPlLd MljDBlpuHaptGyFR3zHORV37WG3bKG/TWAOOmYUHMwsU46moXgp9++h7+HV3 Vl6+mXni1qm40kMu1w+7lB1cfdDnN5WH3qs+vKLumFP9caeGE07NQatbQta2 onBpDV7bErS2JdC56YRTY7CqIUjVCHE+eaa+aKq2cLk/ExUVFRUV1Wsn+G/e MzRV2zJY1dRPoqaFQfS6jrH6zvH6LlNDp81g6L1jDACejVFM8gjmGzrH6jHD P/zu98v9QamoXjt9++h3bdfyrmcEXvz8p9e++Z+lO35Ztu/dWwFO1UdX1Z9Y 3Ry0pjl47YkN73VHuPREyfqiZX2xsoE4+WC8fIgELMfKBmNk/dGy3ihZV6RL Z4RLe5hze6hza9CatnBNU7AqOeTQzEDLcn9QKioqKiqqV1kPH/0ecL2udYiw enXzAERN6xBQN7A34HoDBBB790RD10Rj14Q9dEdhlYEXM3x9+2hDx1jfyNzM wn3K8FRUz1uN106fPv5h0Zc/u/rRH1/b/NNre94uP7ii5tiqxsDVbaHOXRFr +6LWDsTIRuLkxftWlx94yxzz85hNK2M3o4j7amX8VyvjtjjFfeUUh9dcP+Y8 kaIYT1GMJsuHkwDsAe9lfTEucJCE7R59EfKuCE1zcTL8uuldNioqKioqqmeo ydk71c39NSjBPkBwvbp5sKZ1GOXMCXsTYu8yNXZPNvZMolcITO8kGgjGkwUc 9Ry98wDeFsPDQn3HKGV4KqpnronhvoozqTmbf3tuw0+ufvbja1v/V9nedyoO rag9vqo5eE1nmHNftMtwvMtYoqz0yOq4TSsTNq8M/+L9jzRvRX7xrjnuZzPJ 75qMClOG0pSpYgKW05VXTzhHbFoJkbRTmX3YM2WX8nqg82S6YsaoSN3rOZ4g 64926Q5f2wH0btzWVHmD/rqpqKioqKieUhMzt6ub+iob+6qaB6tRDNW0DAOx Y0vMOMPemNgRtPdMNvVOWaLHEoDxfGhn0L3LxAShd3sAP8YaaUaRH76TmuGp qJ5WpqHeM5G70j/71akvfnbhq59d2fX2jX3vVh56v+GYU1vQ6u5w54HotaPx sphN70d/+T6weskx5/E0JYQ5RzWdpYr92smcrzYXqM2FGnORxnwaRxEbhWrz KRQz+ZqJXI0pR3Uz2s0YYMgK8Nq/2b86UmdKU4wmyQfjZL3RLl0RitaM7Y3n k8mvu29kljI8FRUVFRWV43rw8LvuwcmK+h5kiUHzTIdqW0dQtI3iHDtD7PVA 4N0ohNBuDfBMBp4XEvRuA+BtJeFh7NCIzDnA8LQuDRXVEjTV23A6YlfSxnez v/zNma2/vbjrnbL9KyoDVtYfW9kauKo33Hkoau21g6viNr0fvnHFaJJsKl2x kKdmKL1AYz4FWK6J2OKE+PyMxnxWYz6vtYpzEHi9KGaKNBN5mt2b12UGeOUE 6KcyFONpiuFk+QAAfKRLd5S2uTiFP0LvH52DXzdleCoqKioqKkk9ePh9V7+p srGPg3Y87XS0Dgd2xUw0dGLqJsSOvDHTNqHdBrcLAN6K3rukLTSLMTwqSjNr fjCz8GC5LyEV1curc8f94z/5bfrGN0999daFne9c3ftuxaH3646tbAl06g5d DcReenBV1OcrLh9aPZLoMp8pX8hRLRRomKT6GQLqWoiSMJeGNHdzsdZ8UWu+ hOOyznxJxyxfwusFcQFHscZ4zHumSDuRpzUGGDIDPKujdRMZirFUxXCifCBG 1huja03f2XjrhuAuG/11U1FRUVFR8dXZN36rvudWQ9+txj6SZseumFHCyfVo VimGdoLr2M3e1AvQPoPDBr33LIbu3SJut9A7DhG922d4kqajt9qpqPiqrm34 wuP9japfbXH9dczHb5XseffGgfdqjqxsPunUGbJqMMr52qHVCV/LgNgnUmRz GfK5LJxmP4UNMGdxFv08Bm8C4Zd0xpM+5is6c4nOfFVnvuYqjKvsJhKwfIUJ tCMc4TzJwGtvxnlkHfXKOeY5la00GRVjyfLhONlgrKore1fTrXLrX/dog2WE Tu+yUVFRUVG9pnrw8PtbDd0367oA2isb+wmx1xBjDAZjnBiftJp5iqG9mYH2 GWl6t3a5LyHlLqZ32wBvsygNrgxPGZ7qNRf8uoMO79nv+37qp7/O2/TmmW1v x3329vENq5qOO3UEO/WFrxqNXZu1163spHoyVT6XiYh9Lkcxn6/GOXYO13Uo o86AOiLzm+leDbme5uuuKG64icLVEqRNmau5FIUx2BeR/GU2CV+smTmjNRXq jMe88457zeQqJzMU4ynykQRE791A75Xltkbo9NEPVFRUVFSvmzr6xirquyvq exG0Nw0I0ux1HVbQDjSO0B1QHEM7CRG6c/Q+bYXuPTa53VF0X1oS3mpCa2Pn OGH45b7eVFQvTg8efrd3x/YTPr9M/ezN/M2/Kd7xTum+96oOr2g4virua81Q 5OpbJ1Upuz1GkxVzmYr5bMV8rnI+X7VQqFk4jfwwyAlzCRN7Cc6il2L8vo7J vNzNGOprrnBDcQtHpSjIetLmJhNorxv4UCUkD8/6ai5oTUUcvasmM5TjqYph RO9qoPeGW+X2nHJd43SETkVFRUX1ygugvby261ZDb2VjP6obYw3tpH4jR+wk mvtmmBBxO+/tNC/EthlLwIhAus6MfW5/0iQ8BPyLB4anaTqqV14TM+bwnR8H +f3KuPHNAmxov7b3vcrD7zefcOoOXtUXvsbgvQ6gfS5dPscQu3L+lGrhjAa5 YorZHDshdoLr5Zi9CahXuhvD/czV7ihqcNRKBdkEbarcSBjDfdHuN3lJ+GvY S0MA/gKbez/hNZ2rmshUjqUqRuJlQ7HqjsxdsamFi95lQyN0WliSiuqZqqGh wc3N7S+woqOj/4IVLHMNuGUqKqrnoQcPv8PemO5bDX1VTeghSrVtw3XtI/CP jzzSFJdkR9COYJsF75b+WYjmvlmywLztlWB4e9wuQHfkcredeLfP7U/N8KQo DWV4qldMnf3j4Ts3hK37j/TP3zy15a2LO98t2/9eVcDKphNOXcGrhiPXGHe7 D8fLU/bp53IIsSvni1QLEsSOs+sE1ysBvN05Vp+u9MiO8TXXepjrRFEvDndz HYqb+YaGM16I4W+xefhyzPCl2BV/RUfofbxQl3XCUJfgNpWrMmWi3HvaXs/O cEXLReNS7rKN9Y/O0183FZUjAvb+EU/w9jFL7H/wB3/whg01YJEG3L6U4amo nq2+ffh9RV0XQDtyszcPEmIn0I6efMqm2QmxN/dNkwBEbx2Y4xM7h/EoHOH2 XpbbremdQXcW4Oufht6fmOHhg+Mpb4+++8/l/n6oqJ5c8OuurbiRevCT2I/+ I+PzNwu/+e3FXQjaq4+ubDnp1B2yaiTaOW23+3iifCZdPpmpzDziiYj9rHrB FrHj7DqL6x4oWFY3RvpZKL0BQs9EIw5YgxY8mGhgwhiF9yLZ+Co8HKjAGfgb OAPP5t6nz2lvJuqB3mcK1UDvyQcMphTFaJy8L29PY1XFkn/duCgNxHJ/P1RU L5EAud3d3YG04VWhUPCBHFAc1tshdq6ZYEcicliO/6moqJ5YnYyhvQdD+wB6 jlI7eSwpA+2N3dNNPdOS0G6P23HY5fZpIbf3SHE7Dgl0fwJ6twvwdm+1owmt lOGpfnACaI/b+3HIujfjNvw644vfALRf2vXu9QMrao86tQQ69YStGo1xNu5h oH02WzGXp5wsUGWfNLAzT0XEXsUj9lpBRl2PCLyepXQumtjgv+U1MEb7W0i+ DttpiJHmFkvvpSy9X9ZOn9caT3jnB3mlBhimc1ST6UpTknw0QdNSc+spR+iz tLAk1esqYOmYmJi//Mu//MM//EP7WP70glP8JRYFeCqqJ1Bn/3h5bWdFfW9V U39NyyCBdvgfh4kdYgJD+wyK3mkxtC/K7ZzvXQrgBdNUbaP7E8xUfZZJeOET WhHDL1CGp3rZBdB+fP17gb6/iN3w6/TPAdrfvkig/ZhTa9Cq3vDVY7Fr0wHa k+UzGYrZbOVsnnL2lGrhnOZmsmdjth4ViillfewVXI7dKsFOcJ3LqN8s9G4s NjBk3sxGC45mvXA9G8YYf8tWAvD1GOBrrOm9zGJ9v5msNx73rk92my1QTWcp J9MUphRtf8GeluqKJx6h07tsVK+hYrCeDNffeustyfW7du2ytUkA8B5YFOCp qBwR/E8HaL9Z11XZyBnaOWgnxpgpBtoBvAmBI2if4UO7Q9zeZ6vIjBW3W9G7 I0b3Z4LuT8HwDXjKG03TUb2c6uwbi9376UmfX8Z89KZx429OffP2hZ3vlh1Y UXPUqQVD+3i8S/ped1OKYjZTMZujnM1Xzhaq5s5qFi4gY4wxyNdC7LfccZqd JXYC7TxctwB5E06eN7GsDtHKCwLnLcIwxvozW7lAB2TT73x6Z6zvOmOQz/QF HdB7QbBhrlA9k6uaylBOpChMSdrevL2NlRUO/rptMXxD5zgpSkNH6FSvsICZ nwDXQZs3b75z545SqZTcGhwc/P333585cwaaOXI0AHjYZbkvBhXVSy1kaK/v AmhHT0FtHkRFY5Ch3VIxphmzOg/aEYG3oPmnc3xod4DbxYYZ6/qQInTn0bsV tz+XlPuzMNJANOGiNJjh6ZQ3quVX18B45O5Pjnn/MurDX6dtfKvg67eLEbS/ X33UqTlwVU/46rE4l4y97hOpClSePVc5V6CaK1LNn9POX9AtXEbemOlrbjmR vhZjDPGxW1wxImJnk+qI28nbNjbacbSxWfdW3iYcxjh/ZqsgmkX0Tqzv5a7G EF+Uey/RjZ3VZQeyifds5aRRMZEkH43TtGbueWYj9E706x4Ym4df9yNalIbq lVBsbOwTQzuIHMROg/8bC06xa9cuB9GdtF/ey0JF9XLqW/xYpYr67qqmATwL daSuY6y+c5yp8YihHRP4HB+8MbHP41iE2yXp3Sa320B3EsvA7ZThqX7Igl93 14ApbNcnh71+Gbb+1ykb38r/+p1zO969tu/9qgCnphNO3eFrRmJd0vcgaEcV 2vNQscf50+qF89qFi7qFK64LV10XriM3e3m2ofGMl9XMU5Jjr9cz3M7ZYFpZ Gm/Vl5/2brxkQG/bPVF0sAHLrWxjsokNxO3tesvWVnaZC0Lv9XjuajXKvRvD fLlZq9MXdOXJ+oY099ki9UyeaipTOZWqmIiX98a41xdnPItft/Au28DYHP11 U/0Q1djYCMQOhPzExP4GtsGQoznS2FZO/je/+Y3ker1eH8tqea8VFdVLoq7+ cYD2Ww291c3omUqoNjuCdq4w+xRBdBSIyRl0b+0HXF9guH1wAcUAg/EtEP0W eufDvKRhhlcicrpJ6lGqgqy7Q1aZ58Ttjv2Lt2+XRWk68wNaO5rqBYjcRwvZ +ckBz18F+/866bPf5m5558z2d6/ue7/i8MqG405doWuGo12qgtRlQbr5LD60 69ADlVDdGDeA9oWbjJvdGOFnIXa+MaaBdbwwxM5COEZ3xvcCbztxdOFA6M7i PbcJhzHeH21t47ayqXgBwPNy70zVd9Y2Yy7Rlafos4O8585qZk+pZ3JU0+nK qWT5aIyszVbi/RmN0OfM39KiNFQ/CAESP82009u3b2/C+v777x/jIYCTkxMH 4WSrg4eClocPH160GXQ4Li5uuS8bFdVyqgvPQsXQjrwx3PNPSZq9yRraWwfn MboDis+3EVYfXICFtiEzBEZ3luEHFzC9zwpS8SK3zAw/cNZdWMtdmtutakIu E7o/bZoO/sWPUYanen6amr0NQ/KUyKC9Hr8K9P91wqe/zd789ult717et7L8 0Mq6404dIWsGo1wqAxG0z2UoUJ32AvRYJQu0l+K6McwUVJRmn6rU58T5WfnY m9lqMITb23hJ9U5Pgt+I29vIGi9zNxvsVqY94nkvEsaEdehtuyAVzzPY8AEe 0zsqOFntzthm2CmrUxd1xpM+DUb3udPq2XzVTJZyJk0xlSDvL9j3vEfomOHH 5mhhSaqXVSEhIU9M7ER/9Vd/BQcBXI/D4ifSv/vuu8eY5M2sTp8+LcD432CR ZTjOlStXHD8vHHm5rx8V1YsW9sYgQ/uthr7q5iEpb8w0A+2Y2JnAZM6xOj84 YrfEgIT1fTF0l3gMk7C8jOPo/sNieFxYcrn/LqheEZEh+flzl/YZ3gZoj//0 t5mb3i7c9u7FPe9fP7iy+phTa4hzf6TLeLwsZa9+Ll0xl62cy1ctnNagxyrZ gHaUaa/Xl5/ybrxoEPvYLdzOh3AM59j3gtd3YWLv9TL3sOjOmWfIph4UiNu7 2HR9B5uH59w1fHRv5Vz0foxtRlRwpjzVMyfYe/6cZq5QPZurms1QzqQohov2 t9ZWvqi7bPDrpiN0qpdFnp6egL5/9Ed/tFRQLyoqAgLn4/cfYYlbAocDycOm v2LlicWHdgB1LscOLZc0joAxwnJfRSqqF6oHAO14FmolmoU6VMvVZudBOzG0 86EdcL196LaY2HGIoN1Rbreid2HKvdchbncI3V8wwz9xmq7b1ETM8JThqZ5U HLTvxdAe98lvQz9xOrX1vQu73y89uLLyqFNziHNPpMtovCxjv4cpVTmXpZzL U80Xaczn8JOVbEE75nZUIibG31Icpo01tHBOdT6EYzifavLMSfZjYB5W9hlQ 9GCw5zLzpH0viqkOQ06KP0PpHayvposH8O1W81hzkvymGoDeWdsMl3hn6X3q smtOiHeD0X3+tBqGJ7NZytk0xXSqbjRRf6ko//y1uhc1Qh9r6honI3TK8FTL paXiOqcf//jH8fHxfPy2JfuDAicnJ6B0OBS/GX8ZBgj2j79z5074IE1NTXAQ eF3uK0pF9Xw1OXsboJ3MQq1pYTLtuMqZcBaqGNo7hu/Aa/uQuf2JuF3KKmOF 7k29opS7+ElMAnR3pCzkS5yEd4jhaWFJKscEQ/Kqxh4Ykp8/f/ljD9kmzzVb fOTb/RVhG9ce/EQT/IXq1F5ZY7BzZ4TLUJysJlRTFuLKQHuhZuGsFpV8RNVj 3Mx4IqoF2jlDO+b28iLvpiveFhM7srt4MtnvdhbCew0ouhk4Ryn3TjbZTri9 F7/tss7DM5sMjFWGS90Ta02XF0Pv7azBBjtnsA+HHTs0cvNV3blqMwTdy1M9 C8MM82c1c6dUc7mq+Sxl1gHPq8dcO8O1DRcyX8iv25rhmaI0lOGpXpAAcb28 vBal7mUR541/A1enKSwsfPPNNyVbfvnll9999x18EIL68Lrc15WK6jmqe8BU XtNR0dBT1TQI0I4ehMqD9qaeaVzaUQTtAOrDCNpJwDIEH9pJLMbteNaqzZT7 LOuTEXF7rwS3N4q4/UnQ/QfE8F3j8F9+7va3j76ntaOppPXto99x99E26JWH fX8b/OG7SRvfydny3pkdKy7vXXnloHPuHnXcdvcbgWpTijx1vydA+3yeeoFA e7Fu4ZIrerhSmRS0N1jNP0Uc3mHtY2/3ZEie4XOGwAlvG+PXsXBuMPfjsKC7 F5OH521irDIk2c76Z5gEPjenle0AU3+mjastiR/VBN3mKr2T+arXdKPnXHOC vRfOaxbOaHKOGyaz1HMZyplkxViMrDXCo77y1rL8uusxw8Ove8787XL/EVG9 miLELpkG37lzp2DNF198IV4pFnA1tAwICOAjtySHL1UhISHQZ4BzOL74pI9F 5vwf//jH8Olo4p3q1RNA+806/izUUW4WalP3VDOC9rnWfjz5lAft7UNmjthF 6G5tmyHWdzbYKpFW0WLXLWP17FS7Vhlya+Cp8u0/JCON6Fb72Pyc+QFleCpO U3N38H00GJIPHNh74JD3W6Ef/jb+s7czN79XuG3FxT0rbwSsrjnp3Bq2tiNK fvmEbv9m38pIHYF281mtGUP7QgmG9nL8ZCUG2nl1Y5rYaNGXn/FpuubNIDeb VLc2sXNwjtC9/LxvU6k3Y5KB9QPs1h4vq2Q7u8mYuI4xwHNbew2MMZ5/Ls4/ L7C+WyXeiePdjZSambrkagz0KQozlMfrF4rU83mqOTJfNVE+FKttSHd4yupz G6E3MgxP77JRPTP98R//sSR4w6t4EzBwRUWFJFHv2LGD7FVYWPjo0aMlZe8B wi9fviw42vz8vLglHJnrOZd1L8SCTcDnKpVKvBespOhO9cro20fM3fNbjXgW Kob2egztTbhuTAvyxszh6o7zllmoCNpvi6Gdh+4MwFsy8E/I7fx5qSJ0l5yd irm98cks7i8VwD8dw5PCkpThX3Oh+2i4MFRV0+D+fQf2Gd4KXP9WzCfvGDe9 l//NiuJdK0sPra46vqYpZG13tGw4QV4Trrke6nojwqMp2d18BkG7+ZKr2Q60 86egkvmnqMr6OospvZtnVudM7ATCWXRHKXSShIeVgyy6k4R8j5dgE+J2Dum5 rRznWyw0KFDdSP7EVS7x3sRzvBN0ZyerJhz3zQ3xXijWzJ/RzJ1Sz+aoZtKV 08kKU5y8I+cZobtjv+7FGd78gDI81dMIaFYSpCVhXnITR9ewHpAe3to5rKRO nToFu/CLPcJBCJ+LG4eGhnI9Jz1xcnJKSEhowrLf7b/+6782GAzLeLWpqJ5e AO1Ws1DbRjC0o1moBIZbemdbWWhnkBtXjGm3Qewst1tBO4PufG6XRndxLXdB KUgRutuoKsND9+fD7T8Ahre61U5qR9N/8a+V4NfdPTDO3Ufbt/fALv1bx/ze itzwTvIX7+VsWXF258qSA6tvHl1TH7S2I8JlIE5mSpan7PNcyFWbT2lvxOqb jB5Wc1FvsY9DFUM7v/piu+dUs1duqj/rh2HRvdPLwu0cn3OW9V4W5gf5m3ic z643Jq1jjslZbvjWmk5eYr+bmHDYWavtPHRvxT1vwJ4Znt29qUB/I91r6jJO vIcbuFIzMxnoCU2TCfKxZK/Oq9mNVbdekhE69+gHOkKnWpKam5sTExPtgO6i +vWvf02Qm1sD7A1vJQ8LjSUP8vnnn5P+XLp0iWvJdXJubg7eQhvBKR5bcz7B cgc/ywu+zlRUz1Bd/WOV3LNQWyzQzpRn75lmoH2AmXzKxBDKpXeM3O0YWSK3 8wwz9rmdRXdxCXd73G5B924Ltzc+v5T7S2ykscPwzd2mpi7K8K++0JC8oRsN yfF9tIuXSre5v3XY562QD9+J/+y9jM0rTu9YeWn/6usBa2pOOreEufREy0YS 5bUR2hthHuYCjblIaz6nvZHoeTrSm5mLClhbZQvaOST2ZOef8lLonOmFT9rW fI5S6Hw4t0J36/aDBmMybtzN873z8/NdXvz5qqgb3Ep+vXcO3a3t7ujhqsQ2 c003ctYtN9i7Mc19rkg9m4drvBuVU8kKU7x8JF7XE+vZdCmr7tazBvinYPiG znHqlKNyRADtkpTLJ2S+duzYIVhTUFDAWVY4Jq+oqPjJT34ieQQ4HewiXk+G D/AKx4EG0AFyWG9vb7KevCX7cltBarXaEUoXjxfgyOR0VFQ/LHUPkrvneBYq 8saIoB0Z2nGmXRraMbfbQHcxtIvpXQrdLdzO0ruA2xdxy9jh9heH7i9ZEt7u rXbC8PRW+6smFtq7uftoobs/32946+T6t6M/fTdt03sF21YW71l97fCaWyec G0JdOiNlg3GyiRRF2gGDOU9jLtQSW7v5suvweffcCB9mLioH7fXY086Hdv4U VMztk62GXKO/0K/Omdut+XyyEzcmcD6Eg2zqN1hMNQJu7+El2znI7/Gy+Oqx S4fhdq4gfAevkyK7e9M5rxs5Bpx4d0Oemau6yQu6G0n63CBDY7LbXAH2zGQo J1OVpiTFaJx8MErWHaVtDNPXXch6OX7dQoYfxAy/3H+PVC+XgFptQS9QN0lx C9aL25PjQPukpCRgaeBq2NF+xjs0NHTjxo38NU5OTmQXeAWc/gkWHBZacufl ug2N4VwEubkGi0qyS7CS9JwCPNUPQuju+aBoFmr7KDMLlQ/tJNM+RKDdjLPo HLTf7Ri9h17tWdxtx9BtSW7n0J2/bJfbpdC92wrdl4fbfwBJeKtb7ehf/Pj8 PC1K88NX94DpFnsfjVRzzUiI2e351jH/dyI2vJv8xYq8rSvP7V515eCam8ed a4PXtka49MbJxpIV2Ye9JjO1KNl+Wms+zz5iqcxt8pp7brSvcCIq4XYLtLPA 3GGpG4Oy6P08vzpJnnPcPsRDdOJ+GcBvh3mbBnjQzq5E3D7AO9SADW7HDRgz POef6bCB7k3IM2OM4j9Z1c1citDdfFk7eU53I0Gfe9LQmOQ2l6eeyVZNpivH U5UjiYrBOHlflOzqEXXCvo+bL2c3XMx+YT/wpMyzEKWFmWVFTFxnIgOi8kaF 4C4b/LohlvvPk2r5ZT9THRYW9vDhw+3bt3Nr+Muc/uZv/uZP/uRPyDIgN7yF V/sIDeD92IES8Wos7i3pM/SK2/pYZJJ5A+fVJfP59gUfAbq9nF8GFdVi4u6e M7NQ2yzQzhraZ0jpGMbQzhRyNFsR+8jdztF7nWP3Ebo/EbdDAybrLuT2eRuP ZJLk9hlJz4yQ27ufRTXI14bhLWk6yvA/QHGFodj7aKNXSm7s8VkZ4PtO6Efv Jmx8L+trp9M7V13at/r6UeeqwLWN4S6dMbKhJMVUutp4yNuczybbL+jMV3C1 dvSIJffJmx658X7C6jEct3danmfKEDJeM9luyM3wF/peONPLMBsY3RG3Myu9 cViQXsDzDLf3GQS+d0ttSdZCk2v0n+wwSHN7B8/Yw6K7Mcqfqe7OFJnB6F6C 0N18UTt5RncjXp97wlAU6DmTq5rMVJmMSjTeOeBx4YhrZ5iiJ0zWHixrjvBs CNPXGPfXXciuKc6uLrZH8klZ5yCKS+srb1aWnc7i4jobF2P3Fe53L9rvfvqA +5mDHoFbPwjc+uGxrR9D5G13yd/ucn7XmuJday7sXnNx95pLe1Bc3oui5KDy 6lH3q0dQlAS4QVxP2HPrTEZNcVbN+cyZoc45yvCvn5qbmwGw7aPspUuXHvPc 5mSNJLqLRRL1tqzs5Mj8rbZacsrPz3+MoZ0bI7yBSZ7fPSJoAOuhPRxz48aN DnaYyMfHJykpaVm/GSoqaTHQXt9tPQt1jA/t7CzUBRbacXl2AbGTGLuP0N1e yl2a3pmtQ7cthhlLXfcFW+jOcrs4bLhlLAUhJ5h4SdD9B8TwHagyPGH45f7j pVpE8OvuIffRGq3uo4Xt/fKgz9tBH7wT+9l76V85FWxbdWHv6tIA51sn1taH urRFy/oSFeNGVXaAYTJbi6D9jNZ8HteQuerKPGKpyt1c6zFZqc9N8GOgncw/ 5bi9i2dc72FnoeI1DI3z8upMhnyI43OG0m9c8muu8EFwPuKNgqP3QTbZzjY2 pqxnLDTW/hmLxZ3tDGOb7zFYuJ2MKTol0D030W+yRo8NMx7oI99i3TLXCLrr AN3NxdrJIt1wjs4Y4J1z1KvwmGfWIa/eWPUEXMM4+Ui0vD9S1g30HiJrCZI1 nHSpOeZSeWRtRaC+/KT+xgl92Qn9teP6q0f14Ts+PLHt4+PbPi7YIcvfITu9 T1O8X3Vut/N5HGlbVUFfukEEb0IRsslt2yc+xzfpIQ58boA4sUkPcXIzisDN +iAcwZs9ICK2uMd+44ria9eYr12rjjhDFO1RxmxxjdmiC9nsEbLZPXiTe/DX PsHbPwrc4h3wqWa2tuDs2bN9fX3L/SdM9dzFp19J/cd//Adp2dLSwlVZd2RH osOHD8/MzFy8eFFwzM8++wzWkyM/fPgQ1pBN0BLWA2xzLblNb2Boh24kJydr NBpuJUnag2BHfuM3sLueHF9wFgcFo4MX/41QUdlR94Cp0vruufQsVGRoR7je Nmwm5RytWN0a2pmUuzXV899KEjuf2/kPV7XD7fynqUqhO4/b+Q9j4qfcWXRf flx/iQHeDsNjM7yJGmleTonuo40QaM9Kit/r9faJde9EfboiZZNT7lanc7tX lxx0vnkMOWRaIlx645UjaaqpLLXxsLcF2rkaMuWsrR1n2m+c8m6+bLCqHsPP t/fxzDCslX2y05CX6S9IrTPcTvici2GcSB8WrPRmdhm2rJns9c7LWMcMAcTz WFHan5nNikYNFm73svh5+OjOcrsxxh8NSRoxuqNpqu6s0Z3LuuvMF9B0XeQj OqWZzNbE7/OJ3+udtt9QFKAvPKw/dVBfFaQdiQF6l3eHydtCZM2I3mV1JxDA Vx91qTzqEvONWxDm7cgtbhFfuUVsQRHylQdBcRIp27Tn98mL98sv7Jen7dAe +dLr4gF5ecBaEjcDXCqOuNzCR6uCwx5zqTmOovaEC5yo8qjsxhHFzSOKiqOK gr3aXZ/5Rn6jJ1F9XNEW5NIa6NJycm3zCeem486Nx5wbjq2pP+J0bd+q8iPK sqyw6cHO5f5bpnpe4qwmkgLKBRIm0PvY2ojyt3/7t7Z2ycvL494CnHO7c8wP C9xKTsSHA5vgyL6+vlzHYHQA7E14G14B2iXHC7AL2RGOw1/PPwXQPhx2SQ94 gnPBXi/gi6CickTo7jlTw3mgpnWYy7RLzUJ1ANp53M4HdbLJmtvviIl9MW4X P03Vitul0F30PKZeG9z+EmbdfzgMTzC+oXO8uZsC/EukqbnbxNCO76MN8u+j 7fNbc8T3nbAN7yV+sTLr61Wnd62+fGDN9SPIIdMU5tIVqxhKUU1kqHOOGCZz dRjatQjar7CFHyuwaaTOg7PH3Cj0aS4xMA8/RcRrze0DfCs7TnoPYBrnwTnL 4SJuH8GJdNFKBt0FLZPXM+ca5E1iZbjdwM1XFXJ7J+9RUJ2sFb+Vx+3NxOiu Z4tD8tD9mqv5Ch7RnMejm0JNHnqmqsacrTJnqoYSNUPxmv5YzdXjbom7vOJ3 esXu8IrZ7hW93Stqm2fkVs+IrZ47P/Pb8Znf4S+9Q7Z4Xj2suHpIUYLjyiFF WYAMUPzmEZfyABSwAG8rjrqEf+2RsUtXFiAHSheAeu0JGUQdxElZ/UlZQ6Cs MVDWFIhGCpcDNGm7PKK3eZ4+oGsJhhGErDVY3hCoiN3mGbNJFvv5+71hLhA9 oS7dIS5dIWs7g9d2BK1tD3RuO+ncEqxuClT23iyiv+5XTCkpKfZz5hcvXiQt gZahMT/FbUvA9hxyAyHDXtzp+M0k89j8cQH/XH+CBVQPTC42sQvEH4nALtzB bQ00HNHfYsFFeN7fCBWVLQFdVTf1iO+eS81CJd4YM/HGOATti3G7PRfN0O12 zO3tfG4ftMntVnXdHeB2PrpbcXv3BJmsuvyI/sNh+LoOa3pHf0KoJvyQaYH+ f19e9QxOlNd2kmeh8u6joSF5zJGdB3zeCf5oRcxnK9O+cirYserCvjWlh5FD piHUpSNa0Z+oGktTTWepjQHepPCjxdbOFX6s9WCqxzQxddqNsf7CwiydrDVl gGdZIYn3AcNkjyEvS4TuHLePWuL6Fb/mKl/mrQDdxYQ/aLBy4PAt7otyO/Mo KC/M7ehD5SX7TdZ7WrgdPnItRvdb7qzR3Q3dg2BT7s0p7tej9Gg6QK7anK02 Z6jMRtVcimoqSTkWrxiOVQxEy/ui5D2R8q4IeWeYvOSIpmC/a/UJBTB2HYkT shqI47Lq47IqiGMkXKrwmjP71YD35UflsFyNW9ayiF4fiCgdgXqQHKIpSN4M ESxvC0FnSdqpP3PQtS5I2RMhxyHrjZD1RcgGImWDkbKecHlz4NqgDSuSNq0c jZKNRMmGo2RDkbKhCJeBCJf+cJe+8LV9oat7Qpw7ow2NGQdmh7uX+w+c6hkI KHRRXvX19f27v/s7eP3TP/1TBxH3T7H4azjc5XtUOGcLvz/2zwIkD53h83xA QACXh+dWAthv27aN6wx0vgXLwf7b/2gv/FuiokJ6+N3vSDk4fPd80PYsVAzt LD8z6XFb0C7idkGIbDN2J67y0J3ncrc1O9UK3ZsluF2I7k3W6C4uMkMBfslJ eGD4jjFYaOicqO8wNXZNDJnM3/3uv5b7j/11FEA7GZKL76NdK6vc4/XO8fUr Ij5ZmbzJKWfrqrO7V189uObmUefaIJfWSEV3nHIoGSfbj7LJ9mLW1l5m7ZBp 5Gah6s1tnpONnnmp/kzZlk62mIy4wCPPyi6RSB+2InYujKnrhSvFGXjC7QTX h7xRCCzubOlIIbdz0M5xO2OS8USDEVJVppHP7R5WKXe4MpddYWjTnO5+PVaP RjqnNKhsZo7anKlaSFfNpqomk5VjCcqReMVQnGIgRtEXpeiNlGfs8Sg66NoW Km8JRoANAbDdEIgCILzupFWcP6iJ3qbP2etah7aiQC0xoiNKZ48A0RKCAg7b Hia/elSTtEt/5pBra6iCEHsvRKS8L1I+ECUfjJYPR8tHYuRjsfLxWDl68Guo S+gnKyqOOE/Eo7emWNk4jrEY2Vi0y2iUy1i0bAR2D1nTHGGYa7m83H/pVE+u RSHZjjgqdlDcQ5EuXrzIN7ELuiSZSJ+enrbvSIdPAUMA/mc5jMVvA6gv+WEF R3bE+v53WH5+fi/6C6N6jTUzf+dWQ5fk3XPhLNRBa2gXEXsXn8/50E7WWzO8 VPp9sYIzEugu5nYrqwyH7s0Mt1t73XnczhaZmRQEH93ZWG4+/0ExfGOX5Ro2 dU8OT9ym9P7CBEPymuZebGiXvo+21885wH9FyIb3479wyvh6VeHO1Zf2ryk/ 4lwf6NIWruiKUQ6Ik+2SDplGPrczVR8nmr3y0vwtU1AF3D4ktLJfv+zXXO0r pHF4HRMG4vYxH+atGOz53E78M8PeVujOL1kj4HauPmS3AQUpWYmtPs0lhutF PhZuB2iv06MxC8Pt7ojbr7uh2xBwfS7qjMd9GJd7oRal3IHbs9QLGaqZNNVk imo8STWaCOiuHI5VDkYrUnd7NoSousLlHWEo2kPlraGIt5tDMMAHW4AcInmn R94+1+qTCvKWi2bcHvZqDUG7t4UyuN4RLr92TIuJ3a01TNkTCcMEFDBe6I9S DEQroAPDMYqRWMVYnGI8XmGKV0wkKqYSFdNJytlkZfG+NQmbVs4lK2YhkhSz iXKImQQcifBW+TDoH+ZCf9kXJusKUw7k73lkalvuP3yqpam1tVWr1S7KqLb0 7bff2kf3gICAX/3qV9xbjttBsO8UlrhXYm4HIP/7v//7JY0vcnNz4RQXLlyw 0wDOTpYFR17UgcMXdCw8PPzFfWdUr6t68GOVJO+es7NQhdDOGNHZGo8kutiw ye2i6JBIv0s8ocl+oUjE8Iu6ZYRZd+vyMotxuw10pwzvEMA3dE4At6PgXczm HkrvL0L4PloXeqySjftoYccO7/ddcfLD949ucDnwsebQZ7rDn7ud2OQevdXD uNsja79+JEFpSlVNZ6pzjxomxMl28pSlWoutnSkgwz4LFeh3os2Ql+4vfBBq v3WBx2EW40cIkItAfdxHEMa09czyGC9GfQToziTwSYUZMbf32+B2Au09mNs7 vVhzO062wwKf22sxt1eJuL3ENS/Ue+KMK+L2M5jbCzTmXI05G7hdPWNUTaWq JlJUpiTVeIJyNE5p3OvZFanqR1l3RXekoitC0RmOYBuQuy2MAXiG4UPkcTv0 N48rm9m3/GjBtM8QexgmdgTtiqRdnqc5Yo+y4Doi9hg+sStNCcqJROVUknI6 GRH7XIpqPlW1kKYyJSqStjgtGJUo0hQQ86mKhVRYRlsXUuW/C/u7b8P/bTxO AfTeHqpeaCtZ7j9/qiVoSYDKCSgagByQ+DHGb/vozj8F4DGMFCR7AutTU1PJ MhzzE6wn6BsRdIk7Wg4Wf/gAgrewCXhbcvel3oCw87moqJ6Jega5Gs62ZqHO SkE7441hQF2S26VAvUucgZewzYjQnTdr1eaTVS2Jd6sHqtpFd2ludzjlLgHw PwCGf4FJeCB2C7SL0B2j4+TwJKX356XugXHLLNQWiWqu18trdxpWHln3/vb1 6mOfKlO2rD21c83Vg2uqjrvUBioaQtStkZqkfYbsAK8zJz1Rsv00z9lOku23 3FGqud6Db2tngjjbMaVfL/ZtuenDTEHtseZ2i6eFeXu9xK+lxtc87o2DkLkE t18v8W+p8bOH7mJuJ+g+6G1lzhmU5HYDw+0Wc7sUt1uS7R7Y3+6OrgmamurW kqO/nuiFrtV5PNgpAm7XYquMZiFTPZehnjWqplNUU8mqiURVxj6v3mj1UKxy IEbZF424mkH3CAUgd1uYoo2lccDy+B362iCFBLSHiqFdAdyevscjertXc6iy O0LBQDuL60MxKNU/EocGDjB8IMQ+maSEXs0kq2ZTVATa5wHLjSpzhsqUokj6 xsmcpTJnKeH1dpaaiUwc6Yr/jP77RzH/HZh/NEbRGybrjvM1j/Uu9++AyiFJ Jts5Dv/444+BeBeFVQB4QsXA81NTUwJChmZ8sIcz8jtAjgD8TFDZ398f3qZh wYLgUJxsreef9A2cCSfHF9xWgP7A0ID0XLyvnY9s/4xwFtJzyvBUz1APH/2u prmPPwuV/FtfwixUDtR50G6L27t4ja0w3ha3j9wRzFptt13mnaF362czEW63 onf7KXe73P4EAE8ZXphp77K+mKx5prl3iqL7M9fi99H6ZiMPbv3SW/XVOteI z52JQ+by/jUVR10ag+QAjQOAc0CV6arRDE3cfp+4g77nwjCIXtZZku1kOipn j+HqPbbh6MAF23tQAZnrF3xbKnwss1D7RNw+itF9BOG6JZduN6ya2UB3K8O8 JeXuzVjcB6Ty7fxku8XczuP2Zk+2mAyP21Gy3Z2Zl3rVzXjS13zRFd2bOKdj fDKE27MRt8+nq2fTVDOY27P2e/XHqgGeWW5X9tjmdoD2uiBFC0Z0PrFbQXuY gkTJUW3iLs+qIBUchw/t/dHKwRglB+1j8Ry0q6aSVBZox8Q+b0SG/IVM1QLg erbKuOVXO/zezd6zOgfFmqLD6uJALxKRm1ZGffle9Bdvp25+czoV3UcYjJb3 hTjNnNqy3L8GqkX0D//wD5II+md/9mdkgVA0cKwtgOd8L9wugKwPHjyA9gJ7 DH+viIgIshccH3aEbvChmusV2foGHj6A+EcQDDdI9ySLOsIR4HRc96BX0Lii ooIANmziWsLuk1j8lUsSdxbyoUDwEZ45w3MjEbKQtpi4NnQ08UMUQHtlI07E LXEWKh/aBbguCAGfd489gOgSkbyNaap3xAXeBeUibRhmpLmdj+42y8v0OIru TwDwryfDWyXb8UVrkriSDLqPTN1Z7p/FK6KHj77vHZpY9D5amjH3M4PmyIer YzY6pX21Kn/76gt719wIWFsXKGsLk3dHKwYSlaNpqsks9Wy+xngU+bQHT7kZ A31b8vTMdNRbZDqqBw/a9VYFZHjczpR5HOSVfxwU1YoZY16F3G5ygNvHBdzu szi3s8n2vAz/iQ62MiSXaRdxe16y30S9J8PtnEmmmphkWG4nyfZckmx3Rcn2 s5jbT2nN+VpzDuL2+Qz1nJHh9row3eXj7qPxqqE45WCsEogac7uScDsD7Tiu HNVGbvOqD1K2hioE0N7CQDvgPYF89Grc41F40K0xVAnQDoeCA/YQe0y0ciAa DRBgmDDMZNpVpkTVJIb2aTG0Z6hqQ1yyd60O37QSojdZUXBwzcXja3tTlP2p qkGjdjjDFUW6690CDcSdAs1c2tsRm1bOGFXjSTBAUPSEOncXHqVj85dW69at 44DzV1iSLArNuF3EWwHRBZu4dDps4o7JAS1HyI8xeYoPuHXrVvFKwvl2gBmg lP9xBOLzPPH2cP0R8D/pudg7JNkrBwXngr4RjOeTMwfVgmUuaQ97kYV/sBYZ FPwZlq2RF19cG0FP+GBP9XJqduFuZWOPnbvnNmeh8krH2CF2ROnjDyAsbzG0 89FdCPkcurMhXSgS14q0x+28lHtLP8SckNt5Fd2bBeVllsjtSwR4K4Z/2TH+ WXF7lxW3N3HRYxWNbKl8iu5PLzQkZx6rZOM+Gjsk/+iDDwPWO0V8ytSQObd7 Tekhl+oTssYQeTswXpxyIEU1lq6aylXnnjBMnNKh1DHOtF9P88qP9kHQXsVO R+WgvY2H64ICMgOGiS5Dfpa/ZRbqAMvtHLSPM272iQGf/Nx1CNfFYYfbxwXc jtBdyO0Wq4zF6M4k2wXc3s2Z272sTTL8ZLueNcl4YJMM5naSbL/kirj9nI41 t2vNeVqUbM9iuT1V1RCuu3LcfSxBNRwH3K4i3N7LcDvi7XbC7eEI2gsOuMEy hnaFNbSjla2Y1ZmFUEXCTv2tQDVgfydO2iNoR8l2NCjoxzGIuR05ZOJVwO0T HLSnWKD97FH92eP6tIOGayGuPYmKhTz1Qr56oUBjLtREbHGCwcid0zoURbCg vVvEBiyf1twt0tzJV1dFuteE6QDdu8NkHfkBFN1fTvHRrgLLFvj94z/+Y1tb 22MROQcEBPwjK/56DvUB3Tds2CCGXkEOnAhaTkxMkF0k2//yl78kb7kFW4Iz wqFIM3jl8uewbDQaBR8kOzub28p1W3AKnU5n/4wOipAz/4rxl9dhCS7LcxL/ LKQPcGq4OOSLpnoZxNRwbuh2fBaqsHSMXWLnoF0Y1ugunaLnDDZ2ud0Wugu4 naV3odG9ia0t0yxA954lp9yfPgn/sjP8U0K79cXhc3tzLwoxvbf1TdN/7k+s h9/9jjzpmLuPxkG7YEh+4mTYAX+nkI9XxuEaMkU715QccKk4KqsNkjeFyzti FH2JyuE0lSlL3ZjoVhattyrYfsNtotTdGO7XUuyF8LVJCtq5CopdVhNRyy75 tlT5CJ+pxEE7Z2g3YSaX5HYewJdd8W+p9bOP7tLczkd3Mbdbku0GbG4Xcbsl 2a5nk+0ejEkGJ9vLEr2QSYZLthdaku0LmRpsklE3RriWnHA3JapG4hluH4ix cDuBdhIlx7QFB92A3lvDMLSHct4YBQftJODtlSM4LR+ihB07MLR3YYcMHBO4 vTeaQfdBnGxHJhmSbMfQDsTeFK47e0Sfd9grbb+hL0nbl6ydz1Yv5KgX8jQL +ZqFU5qFQo25SDuep07evebOOdc753Rc3CVxHkJ7D+Ks9u4pzc0IfX0EQveu MFl7fsDIJB2bv1wSZKeBS+3jIjR4bDfjLRD/XJJTXwWnA04GYuS4UbI9Qfri 4mKOom097RQaA4hCMzIQEJxUMMoAqgd0Jy25Pou758infgVELh2l9+WVg3fP 7ZWOsZFm77YP7aZvrbgd5eG5sOGuWYzbJdGdeSQTQ+wLAnSXLAvZbN8q07Nk bn9KgH9lGF4M7Qy6s5ROuJ0feD3sNdHcQ+3uT6KeQVOVY/fRSm617/Z1Ovnh yqiNTqnIIbPm4v61N464VJ+UNYTI23DB9sFklGyfzlGnkemo5OmoJXg6KnHI VLuX5XnnJ/oJHTKdrDeGTEFlCsh4ccYYFqTZByGNSEA7xMSg7ZQ7D90XTbmj 6jSOc3uvdbKdcHsb4vaWq95lhb442e4pTLZX2ki2oxmpOnZGKuZ2lGzXYJOM OmWvYSJJBdg8Eo+T7XGqfsbcruyKVHYQbo9QXD2mPWUF7QqO2FtYVufCuNuD pOWhPZds72Lz7XDkHpxyt5hkeMn2hnBd7kGv0kD3vnjteAq6KTCfpQZon8/V 8KBdu1CEyuPcPq+L3LbqzgVXiLv4FS1cJKG7dwkHLAC9F2lmsrWV4W4VQdru cFlzpPdwNyWBl0Xr168X0Novsezg3NatW2HHrKwsO834m0hamwhIW7wXHJBb CcxcUVFBUBleYRfJ1DqBySWlo+GTQk/styEWfTg48CrXbXEb+OyOn/d5CMYs L2z4AEMeuHRwQbiZCFQvTPy751X8u+edJt7d81mpWaiLQ7s9bgdoJzFu4fbu 8W9J2KR3B7hdjO6WR6kOLPC5XZreHUm5k+eoPlHi/XVmeAG0N/FCjOtSAD/R 0kuz7ksTeqwSuo9mbxYqNyT/5kOPI+tXhn26MnHTqtxtzuf3ri077FJ5XFYf LG+JkHfFKvqTGGd7U4JbWZQe137Umi/prGo/1qDajxPV+vxkP6aATJvekmwn oM4VkGEt7gDqEz3e+dn4oaijBmYi6pgQ2s0TKIzG9WSBCSl0l57BykP3iR4f 5nSS3D4g4nZ+sr3TwJnbjbHrhMn2GjbZTkwyONmeH+4zcc4dz0jFJpnTOjbZ rmWS7dgkk3vIayhePZ6oAnIe5nF7bzRyyAC0k0ja5SmCdkUzD9SbeRG/U3/z pLo1jLHWkGQ7g+6RxN+OUu48k4yKS7afDtBfPeE+mqjGnnY1gvZMNc60axZy MbQXaJBFvxDVogdoB0qP3L7qzmXXu/wocb0niMu6e8Xae2c0905pJoya6lBd d4S8Jcx1tKd9uX8xVAhQJTntz//8z8XrAVY/wrp//z7ZnbPTOGFxLQEpoQ0f biMjI7kzwib+Yb/55hvYSs4Iy4+tc/KwCdrDSU0mE39H6OQ//dM/PRmI2hG5 lcB9fOBV6LCA0sW3G6Dbz7wn9gWfHToZEBDguF/o6QVnXKa/09dUDt89tz0L 1bahned+kbLHcNzOoTuP223Ru01ot+Z2AbpzPZfi9gWuOKQNdOeVl+mxeh4T g+6I3rl40QD/8jK8FLfbgnbJNHtLn3TuvYVm3R3Tw0ff17b0MvfRmnn30TrH hdA+gKDdmFlw0P/9oA0r475Ylb11zbk9a68dWnvrmKwuSNbMOWRSVROZqsZ4 DO382o/XXPGDltz4znZTnT4/xa+l1IC4vR3n2zlu56ag9lq4HVi97DKu9DjG VmvkuJ0H7RBlJf4t9X5W6G7N8C11fgFHPzx/Zp0wTq9DJSJJyn2EZ5WR5PZ+ a5+MINluMcmsQ9BOZqQyyXY9k2yv8LBOtrvhZLsrMsmQZHsuk2wnJpmmSMYh M4qT7YTbB2JVfQDtyCGjJMgN0N4QohJDuzguHdHG79DXBClRBp7l9nYhujPJ dhgdYJOMiiTba0N1yXsMndGa6RT0FFdcPUa9kKleyFIvZKOqlagGTj4P2s8h aL9zyXXinC71wJq7V92YuIbiXqmrVVxzvX9Fd++C7t5ZlHifztJWhbuVHde0 hrqO0Kz7cmtJBduBFT/44AOyI9AsvLXl9CZk+5gHt3Ai2AV2B/YT8DafxgkZ QmOOQrkxQhvW86DTzMxMPv0KxjKkS4Jd+G3IIGXRmxTPSdA9bjAFQ5vnfTry vcP3mJ6eTv0zz1W9QxNM6Rje3fO6ZzQLle9aZzncBrRz6G4N7ZZwBN1Fj1Ll 0J3rOS/lLuD2BVJkxpZhprkPhbCouwDdrej9yRn+aQD+pWZ46F73hC1obwIm 77MEIfaWPks08xgeJecRuv/ncv+AXmoBtOMhOXMfrVZ6FqrlPlpJZcfhDYrj H66M/dwp65s1Z3avLTm49uZRl5pAWVOovD1K0ROvHEpRjWeoZnJZhwyCdpxs t5hk3NADUuvZGamtelODZ9lpn9YyA1NJpovH7WTuZz/7kKNBnGMfZR+uNM57 rJI1tEun3HG01vsVn11nTFsPYH/h7Dp47W/zFUTZZX84RX72uuKidRLcPmjN 7YkibueS7ZjbW696l53yxeUfeSaZKj0v2e5Oku0m28l2YpJpjnK9etJjIlk1 xnE7mpGq6othHDLA7RDXjmtPHXS3D+1NECEI2vP2u1UHKhm7e5gQ3TuYqak8 k0ycagRze+Z+z0vH0AhiKhkVk5/FyfaFDLU5U23OViNoz8XQXiCE9jtX3O5c dYvatfpuqTuKMre7193ulrvdY+M+Wbjhdr8Uofv9i7r757T3TmvuFagn0jTZ u2GI4TraTbPuyynJvLp9tbe3O7JjRkYGNPvwww/JW6BK/hjhF7/4BbcAzbi3 Tk5OhO1B33zzDYAo6Se3EgSNgbTtnNrW1kws7lyc4PjQvQ+xXF1dxR8NSFVw TH4bMhKB18jISMHp4FxwTPEZBbKVrueunn3xv1BbbcingxP9Aotbb8LiOiDY Kpbgg5M/BqpnLmRod/juuTS025l/OmY95xTY2/TQCt2F3P7QJrRjbhdPWRUa ZqS4naA7n9vZlLsA2knMWXE7ihlBiLldiO7SDL8MSfiXjeERtPdMknkBTYIQ QbtE9Ful32GvQZN5uX9DL69wYSgyJF9kFip3Hy36yO7jH6yM+3xV5tdrTu9y vrx/bbnF1i7vjlMMJCtRDZlsVd5xgylPZz7LOmRKdCjZfp3/gFQPy4zUduSQ KTvj03rdG3M7m3IfYJ+CyhWQIXNRR71Nvd7Ivj7OOtuloJ3h9kkfJjCx5+dh UO/w5RLvdizuph6f/hbf3Xs/AoBvrfYVJdutub1XkGznzO1eTLK9iTXJkGQ7 4XZbyfYz/GS7lpuRmrrPGyAZOWQwtw/HE4eMqifaIWhvYnG9EUf8Dj1AO1nJ WWg4bieBuR1l8nvxjNSBWMTtBYf0CbsNvTHIq2NKUk0Ct6cibp9Lx9yepTYL ku3wWc5qMbS7EWgHXI/avfrudXcUN9zvVrjf48V9HP9fyT/dJ+heort/SXf/ vPY+Rvdvo/+5JnBtS5jr3EjPcv+MXkcBcf3zP/+zI1goEEmAO9KSeGPGsQh4 c5sAj8lCRUXFY4zN4t2hDddbATrC0cSzUAlzAi0/5g0E+FvJocQuHe4scFhb n8XOJkmR05FrZf+mBnQYmknSMv+kttie+1xE/AERv9k/Y3FjH8G+3LAFFpY0 lON/R1TPRI+++13f8KTE3XMxtA9IlI7psGdoZ+0ufG4n0E6CoLsY2u1zO/HM jNusNgPRMWoz5W6b2xesY17E7UJ0l0y5N0ly+zNl+KcE+GVneAu094igvccx aO9nE++sW6axe2KUFoeUEgzJ8WOVhLNQ4YrZuo92KjsDoD3+c6eMr9cU7nS+ tH/tjQBia5e1Rsi7Y1DB9rE01VSmKu+YlylHa0m2cw9a4pLtddYPSG0nznbP srO+CN05qwz3UFSugAxXQ2bMu+yKX2utr01ox6xuGvQBUCfLiNiv+psGhIaZ xaempqw3dXuXXfJD9F7la8Xt/VLczk+2M9zujx0ygmS7HiXbywXJdjdLsv0U l2zXIpNMhibvsNdwggZNR8XcPpKAHDL9sape7JBB3B6pLD1BoF0pgHYC540h lojboa8OVHJvBejOM7oriUmGcHtFkC59n2djmBZZZRJQTxC3p6imUlUzRjVw +3wmcLvGkmxnof12seudi253LrvdKXG7e839bpl7wmH13XIPiHsVHvdukXCH uA9RieLxtZ8ggAd0L3O9f1V3/zJG9zOa32X8+/fJP5tMVFw+6TtumlzuH9Nr J0mYtJ9rJQlbQoAEI+0nk7nHMAkS0YI2cBBbIwjYl+Tt7fSKEwAnYCTpHjcu EHfmsTXVnz9/nlsv2GXRPLmtBnBxOHsPCE5h5yAkZQ3t7ZvkxTgNZ4eLwz8R /2uFK2CrwA4n/jUh47gnGMpBH8g3CK/P/K/0ddOj7xadhWqB9iXOQhXgOutX 56CdCZFDxorqpYJtIDlTlUu/o0cyOYDubEHIBXG09ItT7rMibhehu7DUzLIz vD2Af/EMbwXtJKxt7dKsLub2fp5thkV3WjtOIATtaEgufR+tSeo+WkV1c9BG RRyG9qKdKNN+/fDaqmMuDcxTluSD8YqxFOVUuirvqJcpS2su1KDpqITbr/CT 7W7mGtYkI+J2wPWyc76tN7z5j1sinnYLvZO3Y7znopokiJ0Lo3F9a4MfvJoG fUnWXYLbTQ6VgjR1eZdd8CvIWmfF7X08bhck25FJBnN7jL8l2V7LJtuRQ8Z2 sp2r2U64PVPTEu129aTHJE62E5PMUDy2tceoiEOmyy60A5k3kAhWXAjQhm31 qgxUwjIKwu0hVpl5JvFuze1pez3PBrh3RKoHY1UWbk/G3J6GuH0Wz0hFyXY+ tJ+xhvarCNrv3vDIDPO/exPh+v1KNqpwVOOo8fjPil/drwKMR7YZBt1x1v33 OT//r9R/vZ2hMsUrzh3zp+j+giUm2zd4aXCxPvjgA0C7v/iLv+Bajo2NZWZm cmvsYKGdhLN9pv3pT39KXuFcZM3XWHZ2WbQzgs/OvyaCI9v5aG9gbIbOA7XC lREA/L179wRX206fuZS1nYsveXbxWexfarHgAwJsw+UlBiHHd7Ql+Hugzpkn 1uzC3aqmnpsOzkJ9YmiXxnUmeiYeSkM7R/U2oJ2AvS10R/l2EgJ6R89XlUR3 HIPWgdBdzO2zIm6ftsPtjgL8UzP80wP8C2B4CWjvWRq0t/ZLcDuD7vgifP/7 /73cP6yXQjAkr23pY4bkTRKzUJuk7qPdrGoO+VyZ8MWq7G8YewxAeyWB9lB5 b6R8KFZhSlI2RunSDhpMGQBsaobbUflHAbe7m2sxtzewj0m15nZzL0b3cm9h yn2EjWELt5v6fAry1lm4fVIiqiv8WLeML2eYsfLSiLl9XIrbWXO7qdPbmLS+ uNCfmGRaK3zKzvmJku0Wk0xBir+pWirZjmq2e5Bke4Fksj0Pm2QwtLfGuF0L 9JhKUZuSGJMMccj0YYcMSrZHLQbtwUwAtGfvc4OFeogg9GpBdzYtT3aE47Sj apCI23P2e8TsMLSGq5ipqXFo1DACI4gklSlFNZGqmjKqZ9LVs5nq+SzWIcPZ 2s+73rngRhwyCNpL3e9eR2n2zAj/u5U8UMesfr8WRx2K72pWoeVq9wcI3V05 dP+vvP/+OPVHD7JXLaQpx2IUuXt1g4ODy/3bel300UcfLRXJoqKi+BwLILro QaA9nAtYDva15QN5bJ3lhsMSc4jAaE0AnhwTCJO/adGs+BsiyuXWOzk58Tlz UejlIzqXqBcPXqC3cHGInR6OL7h0YhFvz6Kfgi8yDIGD/xQrk5X9Ezmu9PT0 JxsfQQfIx6FakvqGJ8trOxjLKzcLVdLyOigoHbNUaH8gBeQMtFtzu+0GYmi3 oLuNfLsY3Ucs3G6Jodttg2YhsVu4XdItsxi62wX4JTL8Mrhonh/Dc9Au5HYH M+2Y21uluB2CpNxbeqeW+7e1/AJor2qEIfmS76PlBO9M3rQ6Z6vz2V3OV/iZ 9lBZT6R8OFY+kag4d9SjNNjdnK0y56rNBRpzkcZibgduL+VVkhFwO0m5d+gt tvY+r9Lzfq03fYQpdzwjlSn/OMo420uv+LdyRWNE0N7a4Fda4o+53ZcNFt1h eQK53E39LPwvyu08c3tfg09Bpj9Auw2TjMFikolZh5PtnjaS7e4o2R4oSrbn W5LtCxmatP3e06nqiWRkShnDDplBxiGj6mZNMlHbDRjaleI0e30wE6m7PbL3 ugGu1wUpaoPkdUFyWOay7iQIwLfgJ6i2RyhKj2uTd3tWBWm6o1i3TCw6+1AC 4vbRZMztaWrE7RmY24mzHfqPk+23z+rusMn2uyXu2CHjcfeGx90Kj8xI/3vW oH6/HkcDjkaPhw0KWHhQ6/GgiofuJbr/LPrZ48y//F32z+9kq2aTlUNR8qtJ +5f75/VaCDByqTD285//nM+08NbNzc2RHfm8Ld5K+sPnQ4L6Y2NjgNnnzp2D E0ketqKigtsEzYghxFZjcjT+FeBvhTMCY5P1cCj7HwfOC4cCpoVjkl0cGbxI DgfgU/M7vNSC8HBY2GVRSodT8C+vrUsk1qJjDfvq6Oh4gX/RP3j1j0yW16FZ qJVN/Q7ePXdwFqpUpt0ek/PQnbeJhLDBItzebV0inpupyk5WtXC7pSzkEBOS 0E7CBrfPirhdCt2fPgn/3Bl+cYB/VhgvnWzvcQjaCa7zQzrl3oM+8mtudO8d muDdRxty8D5adW1zyk6vtM2rT213Lt7jXHJg7Q0C7SdlbSGyngj5YLS86JB7 yh5Dd6xmIUOFuD1PbT6lMZ/WWMztJSy33wJuxz6ZOg9LPZkWHG1syh1zu7nf gNC9wocsW1Luo2wBmTHLjFRL0RgpaCdWGSG3M+l3X0esMpLcDmFq94ZOHgn4 wKpsu3Wy3dziZYz2Z6DdUv7RRrKd1H60TrYvZGryAwwjiVqUbCczUlmHTC9K tiNu74pSJu32rAtRtYaLoB3jeh0G9djt+qtH1bWY2Lkg6M6BfT0GeI7bk3bp Tx10bwhRoRmvkXh2agzi9oF4zO1JmNtTGW6fRtyumWdMMojbb5/RoYeiFqNk +93L7pZk+02Pu1Ue2dHr7tfp7zfo7zfq7zex0YyjRf+gVf+gxfVBk8cDFt3v V7jdv4HQ/cEV9f9b8E//O/undwrUtzOUUwmK1kCX7+dHl/tH9upLjNyL4hwA LX8vAdEBx0rutehhCTADCfNb/su//AvXVdi0fv360dFRwSnuYY1iccMQ6JX4 jECt/M+ehQVH+zkW14xrIP4I/OdSiS+m/Q9IxPnM+Se1xfOLmtLti/+h4FDk QsHnhU8Br5JnFFwKItjraboBn46iuyN6iO6e90rcPRdDu3gWKkD7oml2x6Bd wO091ut7Jx5BWDWYkLbZMDZ4HrQ/GbdLpNwtLndbKfdZEbfbRfenB/inYPhn CPBPxvB2oL2pV9r6YgfaLejOg3buYUwNnRPf//41reiO76ORWah9Nbz7aI12 76OVnD9j3KbO3br6/G7nK/ucyw6urQhYW3PMpemkS3uI7PoxjXGPPmGXV2u4 eiJZOZ2mnM1QzWerFhC3q624/arOXOaKJqVWYH97NZtyb+SVlCFuGTQj1ZOx xwwYSov9Wm/5WKXcRw2W8o8I2hG3A5yjlLsNaIcYH/QtyBejuy+Xcme43eQA tw96C8ztsZHrCzL8bSXbzc2eiNsbpJLt10XJ9nPCZPtClrY1xu1qoH46BS4y MskQh8wA45ABaFcBtCdbQzvxupA0O86rM9BeflwJoF4TyASf3rmAXRqx0T1j j3vkNq/aYCVbVQZzezRwu6o/TjUIY4dE1UiyajRFNc7Pt2dp5pFJBpvzi7R3 zrrewSaZjhzPy3E+lxN8Lif6XE72yYzwP3now6Sw9dmx67LjUCSHuEUFOBtD XArj5UXx8taL2gftng/aPB8AwAO611uj+zXX7y6suF+svHNacydXvZCmNMUq ig9ql/t39opLMtluP7MK6LthwwZbWwHp4bCSiA7st6jXgvSK8Dm3EjrJ7zMQ IMA8UKgRRu/4maewErr0L1j8zpMhAIg0hrNHR0dzx4HG3PFhGMLfkWsj6B6x o8DoAI4Gr+Lr6YiZhBvyuGGRZeikYMDyBBIMK94QfZWC3kpyO3SJDIK4NeQK P2XfoCf8IRiVWGgWquXu+cDSZqE6Au02S7Lbg3aG0k2P+NAu5na76P6gW/Q8 VlF9SAu0M9w+ZBW2uN1GYRlb6L4Ytz8TF80PjeHtQ3uz1FTTRaFdgO78JzHB Z2zpee3mrz387numMFTjEmahZhZdi4uMOPapJnSTLvIr19ivXRO2uiZvd03b 6Za52y17j3vcDq/zh127I5Wj8fLxJIUpRTmZppzKUM1kq+byVAtW3K5luP0G 9rdbUu7uVqUgyfNS27Fbpgen3HHVR4TulT6WCpBcyn2c5XZxvUd2Oqr12w+e E7cbE9eNtxgK0v15M1INzIzUFq+CZL/xKlGy/SZOtpfhZHuEz/g5d/MFNtle xJaRydUu4GR72n7vmTT1JEq2q/kOGRbaVRZoxw4ZvjeGQDtEzHb9jeNKYPXq QHnVSRTVgRaA55M87HXpiCZhp/76cTXzZFV2dmpnFOb2WB6343w7w+3p6plM zVw2ekAqSba3p3lcivQuDPXNDPS7kew9cMZz4JznQLHnwCWvezX67Jh19xs9 7zd53m/xvN/qeb/N636712StR991t74bbpczlNFHndPDXIDhLehe4/6g0oLu 9y7r7pzV3jmlvp2lmktWjkYpavKCl/sH98oKAPhHP/rRUgHM/i5AfXBYSSCs qKhY1DHO7x63kowFSIf/9V//lesAB+GwIDgOQCahzbt37xI25naEBZL7tfOJ uD6MjIzweZU/m5XrUnZ2NpdMXtRaI6l169ZBP0lvBWcUfy47xyEXH46wZcsW biW3DAuP8QDnX7Ee2zbwk88CF5C8Je3h4HBkfk+egOTh7M/2b/iV0ZxgFmqr nbvnT1E6xlY9dilu5xCdB+qPnoTbeehu1bHxBxIpd9brLkB3Ycqdx+02Zqcy 0WT1ENWloPuzAvgnZfhnC/C2GH4J0C7idglWHxChu0TKfbKhc2LW/GC5f3Mv Tg+tCkMtch+tpKrz3LmLh7d9XnTI2/j12pytLgW7FKf3KIr3KdJ36kK36E9+ ZTi0ySdgk8+RzT4Ze/SnD7nXhWjGExXjKUpTmnIiHVWAnM5RzeSp5k6pF/jc zhRvt5Fyb2ahnXA7Mbr38tD9gl8boLtdbh/v9ynIX8dROiyPD1hhfGnJurZG Px6684LsTizuJse53UCetYT87T2G8WaDMX5d23Ufq2R7iyjZztR+xMn2Unem jAwzHdXV8qClPO1CDkC7tuCIYSQJOWQmktXjSbjwYzy2tcew0L7HAu1NoUpB mh2iBkP79eNKgusoTsgty7wAbq8Lksft0Gfvc7uF60OSCaqI2yOUHZHKzmhl T4yqF0YN8aqBBOSTGcb+9vFU1QQ2yczhZPuFYK9TJwwZR32vxxr6cz0mz7jf vYIdMsTWfssDoP1+vT47dt39ZgztLV73W70It9/v8Lrf5fUAohu9TtV7AMNH H1mTHrL2dIyMRXe3+zfd7l93vXdVd/eC9k6R5nae2pyunI5XdB38f4aGhpb7 Z/dqypFiI4CUtvCMrBdv/RGWYCss2B8mQIO0tDR+9+AtrIQO2OowvAVmfixF yxxgw0nF54JuwHpbn4vrBhkmwKAA1qzDInTNiftE8Mq1518cB8U/ICFkyWZO Tk4w9rF/KOjJxx9/DP3kOkB4G0Q6z7WEz8WfF8AXNwzh8z9Zzy3DFX6yQQr5 yqj44t89J7NQbUK7rVmojhra7UE737UugPbeie9EGO+wVYZFdwG089cwM1WZ B6pKcLtVyn1AwO1zdtBdxO1Lz70/F4ZfToBvcATae0TQbo3u0tA+YBPdOW6H aOyeaO6ZWO6f3QsSOwu1W/gsVNF9tPILZzJiQ7J2abO3rjmzY9XF3auv7V8T 941r4jbXmK3u4V975u11LT+mrA9SdIbJuiNkvZHytnBFQ5jq4lG3lL1eeYc8 m6J1Mxmq6WzVTK5qNl89V6ieP6NZYJ6UqjVfwSn3UozutlLuBNoJt1vcMl7k uUsI3at8hFYZ1idD0L20xL+tEeXS4ZVzyPDKyPhap9z53O5rsbiLuX1EitvZ ZLu5l+F2kmwvLfJrK/Phyj8yJhl+sv0WTrbf4CXbz7LJ9jM42V7AQnuWtjUW O2RSUbJ9PEk9moht7axDhg/tLRjaG62hvSZQUR0oj96uLzumqDwprzyB4tYJ ZkEQwO3nD2tCv/G6eULJFZkhhpmWcMztUZjbYcgQq+qLQ91A3J6kGktRTaah SjLFJz3zj3qlHfLuSXWdyHW7c8YVOdsvuN29hKejlnowtvZKD+xp98yOI9zO g3aIThbae3B04+j0nKpx77umiz60prfgF4+qnAm6P7y66u5l3Z1z2junNOZs 5JaZDfyfhRv/x3L/8l5Nubu720cswLbOzk4Otv/93/+dD3IcssJ6f39/wb6w nrAibALuhQU+dcMugvZnz54V91DAyQJuJ/0H0IVOwin8scjByY5AsLZGCnAo aCPuxhs8iuYn9uFQ5ES2+iO4mwDLkgcXi6TBBWfkbxVf80UFveV3hnQeXh9b 32UgEvcTLqzkBSdnJ9dZMApYkvhupddcD7/7vn9kitw9X+os1KVDu0Qxdo63 CatjGn8kgnbC7UJ0FyfeHUF3/iBCXGSGy73zS8o4wu220J3H7WJ0f1KGfyYA /xIwvJjVHYT2FjvQbjflzh2/vtM0OnV7uX9/z10wJK9q6uUNybn7aCbyB1Nd 1VBeXJS/36vokOHUtlVnd666uGdV5GZNzBZN8GZ96Bb91UPKsgBlzQl5e7Cs M1TWE4ZmofZFyfuj5YOx8uE4+WiCfCxJMZGsGE5UXQtyNx40XAzStya6zheo FwpJvl2D6kBaUu7ELcOie7WbMOVOoL3Dk5mg2uPJpdyB2I0p65gS7iM8buel 3DlvjMgzw/C5PW4XW2V43F560b+txtcmtyes45dtLy30vZjjR0wy5iZPY5S/ VbK9wkay/SxJtut4Dhlt2n7v2TT1FOuQGcYOmT7ikIlSlZ7Q5R90Z6FdAdBe j6Gd5NhrAuXnDmmit+lLjyoIrlfYjrMHUcuMPa6c6b2OM7qHAbcr2yIZbu9G KXdlH56XCt/7eLLq7DF93mGv1APe3Qmuo0btfK7WXKC7U+SKnO3FbncvulmS 7eWWZPvZVP/pGoMF2tusoR2i1+tBH37F3I687q36B836S8ny01GyB9WMW+Ze iStJuZtz1QvpqrmEtTO7/6j2Ii0l9ywF/Plv//Zvi/IV4TqyDPR4F0vcjCS3 xfjHp1wBQsOyYMYlNM7B+jcsASET2Rpo8O0rw8PDHO3z26RhCXYRozuhaMH1 4XpO8uqcYKzBtRG8hSPbGRZxJyUjGu6AgmYkwb6kGuziPvMFn8uRltxQQvLU 8FVy3w5/vYPjFHJG+KKf9o/4h69H3/+evXve88SzUJ8U2m1Z2SXhHEP75He2 MvCSM1il4lurzL/omaoC24wA3Zla7tYmGczt9lLu1txuB92XFeCXzvBPD/D4 iZwY0XnxDKB9QMjwZF/yiFWO2+HsdR1jr3Y5dxiSo/toqDCUcBZq6dn8czEH Enb6ntzs+f+z957RcRxX3jc/vPu8H3afd9eWJXuDH9urtS1ZVrBE5USJBDA5 ByRStpUoMScwE2ACSABEzsAgk4gkARKROUcAg5wBggCIMCQAyqJkW14Z762q 7p6a7p7BAKQESvvcc8+cmZ7u6uqamXN+/Z9/3Qr+SB76iSJiiTJ6mXLV++aF /v57l+qqAqXXgj2vh3jW7vG07vUkxN66z6sjUtIVLemJkfTGSfriUeHH/mTp QIr0VppsKF02kikfzZY3J6uqw/X5u011KRpUB7IYW2VKcAl34nKvVju4ZS5o Wcldz5aUwWI7SUej+41Gc36Ov7hVhkX36gr/8Ij3eA4Zjs9vtPvm5y1yZpVx we2M5D4lt5MZqXWm5pPm/FS0QGp+st+NMyZnYns+J7Yz01EdxHbGIYNqPyp6 kxTI1h7P2tqj5MeCHaCdkdlZaD8fIjm4TWlZr6naIeWI/dQu8Uxcp7MEaI7t kNK+d2aCapj0+j5pbQTmdrwYayOuJ9Mehxw7xUGG5I1ma4y6M1l5K1NxK0s5 lKMcPaC+XaAhYvsYEtt1drH9tH78vMEutgO0Ozpk7Eo7gfY2/Ahb6tkJqtdR bZmWI6r03R61eYqJk5rxKs34UeRytx1QjmYpRlJln237p6Q/PD3bP8HvVczA 1g4IR7ga6JRHaISBhYzH4bTQf06CU5KhQV6XOMmXCxc3GjytntwCwCP3LwAH oqmpqbRcPInRnW4KOJl3Lbx/GXLYIIfDbQK0CY/cS2gc+vPBBx846+0c9p+C OQLlGZrijS3sCT0k3aa3w0vY6OIUohQ95T8sJLjxdPY94T4d7izktg4uX/jn yzM4hP/I/A9X3e998Wfq33ORhVdEZ6Hed+kYgTcGu9abpxDVEbS3OnD7PW7n Vj7Pf04KRTqp9O6K2zl053M7mw6LMXXY0Z0FeBF6nya3z7aL5htheFfQzuP2 67jqo0MtxykdMi6gHacDt9OSe/2N9hujs/1D/EYCbskvMcsq4f/RahG0l1Rd TNi7ffOy97ct/2DD7xVb3lcVrHk3f63Hrk+0Gz40JaxSlW3xOhXkUR0oObFd FrXKGL3KGLPamLtRe2CT9sxuZWeUpDta0hsj6YuT9MdLBhMlQ0nS4WTpSKp0 NE02apGh8o+ZcluW3JYjt+XKb2QqqyL0+SGmOovWdpCV3I9S6H7C0S1zWceX 3Am0N/LdMgy686wyjpK71ucDQRV3XwfJfUBccq8q96+77Cvqb+dzO4J2b2Ju tzWz3E4qybDO9hsXTADtO7a+51BGRlRsP8yK7flq3nTUwTTFTeyQcbC1R8kb IuVRa8x8aGe9MecwtKcFaBg5HcP5yZ2SE4Is2KwMWW46vE1+mvXPEOs7w+2h DLfX4HoyVlxPpiVadnqPuiBQn7jBfC1KdSNVfsOiuJmh6M9UDmYrh3NVtnwN EdvH7GK7nojt42f1ExcNE5eNTRXeJ/P9HKC9AdvaCbS34mw3M9wODN9IFZa5 or97Sd9/THM0TlIU7jl+TDNerh4rUd0pUNpykOR+N+xXnWv+v7y8vNn+LX5P wjVSOotHHnmEYzYeos+bN29SjNvhkF/+8pe5ubnOFOOYmJhUHHfu3OG9tWzZ Ml63nXWMB+3QJukqPMKpofHOzk5on7582E7r+XAuus+wA8e3AJxwLLT5DBvc nnBposMLLXNjJQxoAfpDn453OJyLdwj0FroEp6MbgT3pLaJjS1+XsBvctQj5 H1qGw12MOenAJPUPCFwIOYQMNbcn9OEOjknBPzJwiOi/Kv8TorUL1XBm/z2n Z6EylldXs1AfELQ3O8w/JVh+TwzdsdLuwO3Unni741scvX/OK/OO0N2R252h O78ypOiSTATjOxzQnUxTpel9ptz+cIjwzd+ICO8a2oVk7q6t3Q1ut1tloMON SHKf7d/ig4975H80qjDUqROniyI3piz3yl7yet6KNw6ufvPo+rdzV3vsW6re s1QLuH5p5/wru+Zf2z2/NsSjfq9nI1bX2yKQun5lj/zaXvmRIE1ygCllvWn/ FkNJkG4kSTqSLB1NkdpSZbY0mc0is6XLbI7cbtsvtx2Q38hWVkUZ8veY6jK0 dsm93BHdz3JuGYzuNRS6E2gniSR3Ct1z/UW4HaN7ft7C5jpfeHTG7VXlC+uu ic1OpS3uwqWXCLd30txuFuF2qoyM7brpxjnT0qV/qDticigjQ4vtxWJiO3bI 5AWZuxJVpIZMD3bItMcxc1EbcAGZC6Fy4mm/QnljzocgzfzgVgbaT7HEjqB9 hz2P44xYaUhepzmB34XdAO8JvSNu3yO5uFdKuP0au3BqfYTsRLDKstF4cLv+ 4j5VZ5K8K0XenabotSj6MhQDmcpbnNhepBk7hLmdiO1VaDrq+Gn9BE9sr7V7 2iccZHbz3Q7z3U4zg+4trOQO3H6VreV+AdWEbC5UpgfNR5L7EfVYsfL2ASV8 D+/t+8XI7l+djnp/tn+O35NwAXtuBo/DCTkDm3FgRqPpHNbsDeGHg4ZGQEQC b0KoI73lGNuZDYOnzPP6BjBJWoCAJx9++KHwKGe3FdBVuDRyCOFSnl7N8S0d zqA9BYeQYHktiB7LBfSHuw3hNS6kdOgtbBdth1xOUFAQuQq486JNPnPY8Rc9 FoYFRgyGhXfjQG6U6EGew967cUgv/DfhAX+5vwuBllVC/54LZ6H2icxCFS0d 49ob4x6088RzFr8d0b3/Hpet5Am7Z+vAF0w64XbxuatucDuL7lNxO1dnxoHb 4U6Hr7pz0H7dMb9jAP+AGJ61YLkL7TzhfbrQ7oLbIS/X3xi+/dls/yIfZAzb xulZqOX5WZlr1VkrF+QsfbVw5Rsla9+o3PDWya3zIpcpM9cqzmz3uBY8vyZk ft2eBfV7FzSFerTsY3C9K0rSEy25ESO5GSsZiJfcSpAMJUqGE6U9cbLGKEXa RlPeNkNtpGo0VTZKuN0izu22PFTF/cZ+VVW0IT/UjCR3Bt3VfHTnuWWE6E7V lgF0ryr1q7voIyq5O/G3+9Aau7jkjizuvlNzu8Akw3B7o90kwznbbVeRub0q 2yc/wZdfRqbCUWwvZBdaYqejVgQbBlKJrV1BoL01VhzaKW8MmnxavFWRGqA9 RWvsmNKPUZm3SbF7melIoOw4S/II3XcidEfcHoK5HftkuKmpVbtUKRuMBYG6 65GKlnh5W6K8I1nemaLoSVMQvX0wSzm8H249kNg+dlAzdhiL7WWss/2UfuKc fgI521Hhx+z4RfbqMXZoN99txaxOoL0TPyGSezOW3K1UIffzuCDkSe3NUlVU wDv1ya+P49mpt7MVf9v7z0OxCyJMP/tisGm2f5Tf7diPQ0hiTz/9tCihOQvO mg6sSMgWAlrmtGIh0UFwthkiwHLvku2whUf7HBkShuTRNddnnjJfXFzMOzXX Ad7hZP/GxkZnpE12cD0UQsGctwN0D84FhAwnEu2kXq8no+fO6U6fPs3tSX9q MFCiVwG7deKgL9zZhdAv4SN2pufD9ula7qFx6DaMAFws7y16WL738fm9L/Es VId/z7Hltde+8AozC/X+S8d85j6022ncTu8I2gmZc9yOKf0LUW53PJxpWazm jNAqI47ubnI7RvfRKbmdLJ96XYDuMwX47xLDi0E7yutM2rndWT12BtrdQHRx bufmpdLojrn9SkPf96mWO1MYCt+SHzmQkb5GZfn45ZwlrxSufL1k7ZsV6988 seXtpJXy0KXaszs8rgcvqA1ZYN27oCF0QXOYR2u4Z0eklx3X4xxwfThJSjR2 lCkoexLklcG6tE3mo7v0o0RvJ5J7Fl4s1ZHbbQUKW5GiN09l2eVzNMZory1T xaK7qNGdRvdmzO2cWwZXgxRB9z7vuivI6wL03tvu40Jyd2GVEbG4i3I7Z5Jp Mded9Kkq8mPFdjMntgO35yf79Z4y2i4Yeo8bLeH+dcUmRmyv1NbtN1TFm20l lNjOOmRGMlWpxCHD2drZuagNeC7q/i26ip2qjI369I06ywZd2npd6npdCmSA joN2mtirIbfb88AmReJaLffyGN6HoDvD7djizk1NLduuTAwwHNiquxSuaIiR N8XJWxIwt2O9vQduLizIJDOUqx49oLmdrxkrwtzOE9vPsGL7VeNBi//AJTNX 8hFBOyH2Nhbau7zvdnsz3A5b6NmptVhyJwswnUHcPnFcO16tKQ3zrEmWjhUq 71le+HrfP9+Oe7t92xO1RWGz/bv8rgZQE62C8sIZhokyHmzk9hfysGt4o7tE nx1eEvin96cnrsIdAbAu15+Ojg7gfF8ctAdmEnO4O52B1sj+zvrP3Q64vqnh +J8L6Bu9A1wdd+/wKxxwmbAbUcKh//Q1ku3QJmwXSuWwnTRFWoALF5XZhZfA jQkMqZCchWeBs7todo4A8skhrpsVHsVt/B+C7p8zhnb+LNRLYrNQ674laBfn dgznX9jJnE7Rt+ijHET7e/wy72QF1Rs0vX8miu5TcLtjaXcK3TG3tw9fx24Z 1jMzBbd/9wHeXYYXQLs9XUP7zIidhnZRbofb1e+N5N7egwpDnb7SfDg3LW21 wvLxS0Ds+ctfLVnzOhD78U1vnt02L2a5smqbV03IAiKwN4YuaAJi3+cBxN4d 7YW867GSm/GSQSB2jOsMqCc7EDtO2UgaTousMU6Zttmcv91ojVUjvT2TRXeO 2wHaC3EWKW0HlU3Z2vwwszVXa6tQIW7nysu4QPcGCt0ptwygOyovg7jdzEnu DHVjlzsAvPWqr6jk3tvmm5+/SFRyR0g/TW53ENutfLGdqtluqLJ4W0L9yhK9 GbGdqf2ooWs/juCC7Z3YIUNs7edC1fmB+gNb9akbjJs+9Qte4R2x2py9CdBd WbZDcXS74kiQojRIURKIiD1wiXfwclPCWm3BZgXS2ClcrwpCGb5Cn7BGWxnE vKwOwui+HaE7x+1nWYt7SaAyfq0he7P2XKi8NkpmjZY1xGJuj5e3JSBu706R 96Yhk8xgtsouthdjsb2UFduPY4fMOexsv2KcuG7KTljEGdonms12aAdK78DE 3oOzy9vBKkNqQlqxW+Yy3AXoJk7pJk5oJ45p0QJMFZrSUM/aBOn4fsnfo/7l T1G/te19KsTvudn+aX73AqDoo48+cs1pzridx3gEz2JjY52xHw9xgf2Sk5Pp jTShcRvh7EJTNy8InMMjtAnwyWnOwpjyPgIOB7SGMXH278Mc9r6ANEhuEJzd whAap68LXnLvwoGiY0v2hLPQdxnc/xEwwrwhmoMHk26KO6Ozz44Yy0XHxDVj 82bmwlVAP13fvMD3YcpP0PXh9/89f8hj5Pb4+Wst38Qs1PuDdlFuFyPzQTZF YX7gnh3p+79o6ae5/XNeQXiqLORnXArRXdTiLsrtlFtmmON2PEd1mJqp6ha3 PyQA/w2J8ORrhr5p8Mjj9paB2jY6p4L2jmk4ZBzQvcWB24lV5vp3XHKHW/LL tW1wS34wOzVlpTz1oxdzlrwc+/7Lez9YEPmJV+wSSeQSedhSTcAHxuClhuiV uphVutjV+rg1+vg1wG/6rI364m3ag4Haw0E6wPWhRCStjybjTGESsXoqpAwl IXbuSbpsJEPWk6Ko3Ku3bDWX7dEjbudUd0B3Rm9XoixG6N6br66KM5bFGRl0 r9a4Qvc6UXRn3DK9jkZ362XfqjI/YU1IB8l9YAqrTG+rb/6BhW5wu6O5nTbJ sGI74vZIf+RsP8eWf8Rie1OBwRLiu2PdwrIYc1mU2Zqm56ajHt1jPBps3L7C v2SXIWerKXGDOX69uShIf3av6vQe1aUwReQac80+xh5zca/d0A6kXbxVkbxO SzT2os2KpLXa8JX6AxsVgOgk929UhK3QH9oiqwiUkKzEWYXRnUjuxCoDraUE aGPW6DM2ak+FyK7uk16PlGFulyO9nRRvT5B3JiOx/YZFMZClImL7HQexnanZ Pn6KhnbjwXT/gctmO7S3ct4YoHQW2nt90CMnuXNWGSK51yG3zMRFPdLbEbdr CLePH1WXBnvUxEj+HvMvX4U9Yot8KdTws5GLToHt/4YwgE5/9KMfuaamH+Hg XvrgEHLa0qVLgSd//etfu26Kew4tAI/B/vRSQTShwVm4o1yIwHBeThuHDnCn gEsTvWRhC3Dv0N7eTncM2nFxFRDQbdIa4PGvccB5oSdzHO9NuH8E4F1hB8jF CrmaSPQf4aBH7Pbt2wcOHCAjTDpADwK8S7tr4EAyArAdGiQfGXkyB3+IpDXY R/gHBFx+Ow4YGeG1k5bhcHgX2oGX0Bk4hLwU/XpA92ZWrJKL77fkbje0k7VQ 6/gLr0w9C/W+De1chfb74/YvXdI7he43BVZ5qtqMkNt56N7gZHaqKLQL3TI8 breju9vc/q0y/DcB8AKGv9Y8yEE7nUDsNa08aJ+K2zvc4nbhEqv0kqk0t0N+ 8ee/zvbPdIYB0H7+WnNhZkr8MmnyB3M3meZu8nkjwOft6I/fKVr3bsn6+WWb 5p/fsSBptfpaiGfrPo+2CI+OSI+uKI/uaI/eGM+bcZL2GHldhNIaqayPUqZt NEFaNpnLduohrZEqW6pslGQamxYks/MzAxeBzJI3JqqA3vN3Gq0Jasbobkd3 BeF2Ul6mKVdrCfaxHtAxkvvx6aB7mzi6I7HdsbYMktyviUvuVeULrU5mp1rS 3rP1+brF7Zy5vcHRJAPQDnnFaInw58R2NCP1OFwvcrbn7/NpytU3ZeubMnRV kUZLkI9lm49lq09DvDYqwLcuRnM9St0Uq2Tmosai9ZXqI5Gt/dxeOQ/azwbj wuy7JCHLTZyPHanr2yWHt8jiV2v3b1AAouduUMBzgPbyQEk5y+0kqwIZtwyx yhRtUUSt1pcEKo7vkl0MlV4Ol16LkAG3k/rtjXjdpdZ4eUciI7bfzFDeylYz YnsBK7aTMjIA7Sf1E2fttvbmau+TRX4Y2s0MtCNvjDcD7Uhm97l7A2ePmFWm GReKrDdO1MBdANwO6NCqqcDtlZrxMs34Ec34YVXUsnmTcT/4OvyfhxOl+0w/ G8j+YLZ/pg91HMABoAWPU9KpaMCBk2K0OSX/O9ufdyD0jYM0biMAMMHOpKQk 4ElCyCSgJwQdCTzTTYnCHs/fDpA5SRlF4BSwgzuQSURv+ozA4dA33uJKws7Q TEv3GS4Krg76Ax0QfjRw1Mcff8zrAOxPUBzufcgI8I4iHzQw9iQGePIEOjmJ 73HIPsIPjown6W0SG6KXT/eTHm1em/ASekg+xDkzCroC//cs2rvJv+eCWagN bsxC7brzQGahOoH2ezRgz5zbRUkeq+6OdndhocjPnKF7g6CW+9Tc3slNUB2t cUD3mRhmHkIRfuYAD4e3iEM7ytbB2rbBunaUQnS/X2h3RHdxbm/oA24fGJmY 7V/qTKK16+bB7LTIT71WqJ5frJy7yvRmysevFKx8vWL96yc2v3lu21uXd8yr CX63Ye/8mFU6IPb2SI+OKI/OaI+uGI+eWC9SgH0gUTqYJB1KkQ6nIBUdzTNN kzXGKCGrgnXA8AWBxrJdemuUysZOQR1Nx5nBJJLc0+3oPpot77EoqsL1BbuM 1kQ1H90P4pWYDqlIZciqBGNBpNmar2fQ3UVRd2fojo3uVmx0d+B2Ft35kvsA Jbmni0vufG7vFXB7u90k48jtZIFURmwvSPLrPWHkie22Sq2tXGvZ7Yuc7cx0 VCy256hGslS1MdqyYEN/CrK1c0ssNUUjaK/apcrZrOMmogK0n2Oh/dQuSeQq /dFA2THWyl4ZxDA5IHrcam3MKm3sas3RbV6QZWyW46wI9KIl94iV+pQAbeUO GZqauld6KUx6Bbg93L5ealOMrMUutqMKkINZarvYXkg52yt148f1E8ghY3Bw yDATUVl7DIF2YmjvxcTehx+J5E5bZVjJfQK4vc4wQSR3PDUV6e2E20vUQynP 5y/52d+i/20s/vUo7591r/3n2f6lPnTR1NSUl5cH1MfjuumSNhfQDhDgb3F4 e3tPub+Q+lwHUafp3gLyEdkfrmUSIyg5O7TsgrENBgNcODmEC97+MCyTFGfC IcJ9yLl4jRO7CL0FwBu2FBUVcUfR7RBmJp0XHRAaTekDvXFwzdKjRD6ISQEn 84IeAXgueo8DI8y7o+HcOCSgz/RnLazJDz3k2ud1gHx8c9z7ygmHmhz4/Sv0 imo417YSQztvFuqVBzULtXdqbwyGdhGZndPGaZ2c4XChkM5A+5d2gKfNM9wh zD5f8qascuelXzYLJHeuvEyDE3R3Bu32VZnYJZlYbh8SzRk4Zx4egJ8uwyNo Z29YaiBbbolCO52I29sHxJncHW53UvhdlNuvYIv79eabs/17nXbUXLm0cZHX UskvF3s8nmD6cd7yVw6ueqV0zauVG944teWtc4FvXdn5Tm3Iu42h89MCNNYw r84oj65oj+4Yj+5YzxtxXn2JUrRqUpJ0IFl6K0U2lCobxlo6ml5qcUgAyMZY VVWIzrLZXLZbb41WsYUfmRoyo0wCussB3Ucwuo/myHvTMb3vNiJuF6L7YbwY U6mq96C6KtFYlmiyr6PqDrpzRncW3SMiFvU28VZiQtze2+ZTwJugOpVVBlvc 3eb2Jszt9ZRJBkM7EtujxMV2a66hKs6Mp6NqmNqPZDpqBirYPpCquJHssMRS Q5S8arc6Z4vuWjgL7SF8aD+yTUaIvQpbYgDXy9gMXa7ftNh8ZKvXUUGWsehe FSiJX6PdvcwE8H9qt+RMiOTcHuB2CZwLzngNF4FExds5sR3PSO1F01FVgznq kVxxsX3ilEBsL/TDc1HNdxmx3Zvh9m5WaQdov8lyezfm9g4Hizty1yBuh7sA aFY/cR5uDXRoamoFw+1f5j53IuA/OoP+zZYqj/H5+eD6f7R11c727/WhCMI5 wFEz5nMX8cQTTwCzEWiccmd6H6CytrY20d3oeabQbfoQ7jlwNbkNAWwGsIQn otxOEyZBcTgKEB26LRwNnrjN2wd6C5cJjfCOIjcXXJ+hkxyZE4EaXnJ9I0hP ek4omken0GHu8En2xmQOvuUhPYcDRa+O95ZoEKImQV8arw+8kSHjxsXHOLhD YGd4yQ0LbCcX6M5fFdB/+h8TXrj4uvJuwb7T8fm9L89fa+agnavQjkrHPKhZ qA8E2vsdLS7ObDCDFJM7ADx1CPVuG4fuYmVnKK/7Z46quzi3s+g+JsLtjrXc 6zo4bh9xwe0PCuAffhcNH9ods7b9lhDaqRSge4cb3O5slVWK2xG6k3mpLLd/ t6wy8OvOjt75seqlANnPI43/p2DhjwqXvXhw1atH175avfGN01vfuhD49tVd 79SFzG8Knd8W4bH3g7e7kcDu2YuI3fNmvNcAxvXBFNmtVNlQmmyYeF3S8dpJ /GT5HGdjnKpyj74gyFi+W+dQth1PR0W4niXnVHdA99FceW+GwhJoLg830LVl GHTH3E4qQzbm6QqivN1Fd1QW0sibo7p+4+95c1SnlNx723wLhLNTb/pWli20 XvGbNrdbHbn9MjbJnMPQTtZa4sT2YF/bYUpsJ7UfM1X5280dCaqbqFq7ojOB WWKpMUoOwByxxoyhXUag/Wyw9Cy7/mnEKn0pQDs2xlRhmb1sm+QoSqSu712u L9wojV6pyQpQlG7xOkIlh+65GxQ7l5ryNymQVWaX5BRXwj0E1ZMBbr8eLq2N kCKTDNxHsBUgu9F0VFV/lnooRz26X80X26t04yfExHaro9jexortPRjUAdr7 WW538LebidiOod00YTVO1LLcfgG53MdPaMeJVQa4ff/vJhN/mPzHX0wkvxPn +/ORjf80UBI427/a2YwmHACfcwQI+mCDSKCLFy92tgNR4xMTE6FX8EiQD45y cQjdOPecZmahcgugSPMnOSN9CniXd/PCg0Zok+ueMMjtj+hbNPDzKJcE4DdR y+EJ1wcC/ByZk4B3oc/wecEjYXvYAW4ZJsW0dPqmRjR4A0J3iX4Lhg4u3EUj 3FG0qUYUuWEMoee8qRDOAu656MuHBp3dyvHie+OWQTWcrzWfvoJmoaJlldj1 zS+zpWNczEJ9kKVjbroB7f1CPhdDdzuQ/5lLAcnbod1NbmfcMnZ6Zyq6C7md pfc7NKsL12DiEqF728iU3M5bpOn7J8JPAe0dVDpCu7UDpQO6d4ilew4Zod5O l6kk3P5dscoAtIdtXbPS82f7zP+V+v5z+xc/W/LRTw+vfrUs4LXjm988A9Ae NO/a7nete+Y3hS9oj/TojvEM/eCNm/Ge/QmeA4let5KlQymy4VSmGgy2u8hR ZrL47Ub2pigA4C1bzAXbjdYYlR3dOXrnEqP76H55Y4raEuRtTdUgbue87o7o 3ntIY9njYy3UOy6lKkB3VBmSj+7WCz5FB/wL9ostxkQk93yB5D4wpVVmKm7H JhnE7fEL7eb26yYittsuGxC328V2PRHbbWVayy5fJLYXaZjajzkqWxYS21M3 eXMOGc7Wbo2UJ603nt2juBomuxzKQPsZR2ivYmV2gHaE66ycDtBesFFassUL MuhTI3lCkjB8doAc9olbrUGSO7G4s/NSCbdf3ish66XWRcnqY2SokkyivB2V bZf3WJQ3M1SDWUhsv33AUWyvwA4ZVmw/lu17LNcvLvS9K0d8SOHHu5yznQft N1luh+e9lNjO1oFEzA/kX2ecqDFOXHPk9irNeLlmvFQ9XiSdTPrhRNgjeR8/ vu/9V+9s+aeOjf8+2z/cWQhgufz8fALq3xyrTyuAsvJxkB7SSiwtrU8rhNAI F8uBPbxLBoHeoaioiCcC88YH3qUntJIwm83cc2c3GnSzHOVy1wtBUJzQOL0z saDQW4SGcKIti57aGTzzWoNLIORPBwAz3f9JfEs1x9ELRJ7TKj3dVeFfD3Pw IPO2uPiIObNTGw7yR4Oz+yY66L8kvrvR3j1w4kI9Mwu1hnhjUFKlY0RmoTqU jnFC7N8ItPeLQbsYt9PELpo0tLtGd7pLXM+5VZkab9xtcI7uTqHdkdsZdHdP dXcK8DNi+IcH4K+zYrsQ2mvaHKHdMQm0E25Hjx0DkOLc7kjvbkI7n9uxxf1q Y99s/3anjntf/Dlq6/Kduv+KWfRMygdzc5a+cvTDfy1d/WJ5wGsnNr91Ztvb F7fPux78rnXv/OZ9CzqikMbeH+8Z/uGbQ0leQ8kSYl8ftchH0ylFnVRuJBVg SJKXbgB8TyouI7PFXB6i59eBzMHQnmNHd9sBeeU+fUGIyZqmYcpC0uh+FK/H VKGqTDKWJ5vcRnemMqQleaGt09zT4M1Hd9boXlnGm6DqS9C9snyh9bqfUHLn W2Vcc3vcQkZsr7WL7QVJfj3HjEKxvWCfT0++jq39iMX2bEZsb09Q9bEOGc7W nkxDO/a0I28MC+0l22SVLLGXb5MAqx/BiYB8mT5/g/TwZi+SwO2HN3kd3uQJ z0s2I3SPWqmJWakp2iTFVhlUEJKUlOG4Ha27FCa9tk9aE4krQMbJmxLkrXBP kSTvTlX0pasGMlXD2eqKMHPVPnNVpLk41Cdzt1/mHv+sMP/sff7ZEf7ZUQuz oxe2VnmfyPMryfQ/UeiXk7QoJ3nR8WL/4wf9Wy744rmojtDOcfsN7JNxIbZf Zbn9LMPtY2WasRL12EHV39L+YzLuB8dX/nv4h2+NBP+qd80/DtvuzvbP99sL wsaPPvrolNjzLQfXpbi4OOinKO9NKwDtbDabC8DjDQKBT0Bf14PDA3s4Coh3 Sk17DsXtHOUSzH7yySfhOVw1b2eu53AV0L7rXsH+Lv6YcD0OJKAb0MIkvqfj nk9S/x1AB2A79LO1tdWGAxgeLuRRHE9SAfvQp4PngOVBQUFkI7lncQe8SXD/ TZCbTYLxcHbXRy1ZsmQ2fl4POADaT15sOHWpEaD93PV2FtpRkXay6s11zh4z zVmobkD7n2YC7f1CUZ2l9AEC5ATC7Xze7ojr7bf+AsnuSR+CXoqiu+OaqsJV mZg5qk64/Y473F7LJkZ3d7ldDOBnzvAzAvgH5qIh0C5C7Bja+WI7nZ23rJ12 dEfZyaC7K4B3H9pZhwyP2y/W9cz2z3eKaOvuj9i0eKfmF9HvPZ/8wQsA7YUr Xzn+8Q/L1wO0v3lm21sXdwC0v1MfOr8FoD3aszfOsz/B61ay176P3hxJlaAJ p4Dr6RSuZ1K4nkPl9AG+IV4FAF+wwwgA73AjgEvKjOba0b0nS1kZgendokHc LobuDfm6gmhva5FegO46UXS3nvWuPORHDDOVJX7WS/zFmIjRXdwtMyAmuTvh 9soSf+t5X3vxdsLtjRS3E5PMFWySiWRNMqfwjNRqnthun45qy1TVxWqPBhtu pmCHDGVrr96tzt6sI9B+EUP7aQztJwm0b5Vx80/LtkkA10uxkJ4VIAcmz9sg PbjJC6cnZOAnxoMbPQ8Bt2/yzFgn37NMD7uVYrcMsbjzuP38HsnFUDQp9XoE rgAZI2+AXsUhbu9MVlyK1paGmNK2+aYH+jan6JvT9M0Z+r583dgR7XilbuI4 39nOOGQaTXexQ6btvG/bRd+Tpf456e/lZLx3vGzh8fKFLTV+dwcwt/ex3N6D fTLA7S0Y2nli+xXDxCXkbx8/Y+f2u4c8gNu/yHpuMv4H3YGPxS/65c3o+f0B /9h+6vs2hU0YhHk++eQTN2Hpmw5aoOYFgcD7PwVpBx6BLQE1p9w/EAe9BWgT DkxISOC2QLcnMTRy2AlUCaNKQ7Uz6Rgab8UBh5MPhXsLWuDdpxAwDsIBewqh ndwvcC9d3OZA/0mfedciGvS1AH4L70fgXdiH42dnBnW6w9xz0klyXwb9MePg LsdZlwiBw1GkHXiEl1N+k0k/Z+nX9gDi3hd/vlTTeuJi/clLDQTaL9R2EXsM B+3XmpDYjrhdrN7jtA3tDxra2ygzTPvgX5hkmFyc2wm0U+jOR/rWARHV3Rm3 s+hOVZi5cVdglRnjoTv3hwWN7rX3je6uAP5bYviZAzw2YmEzDJvuQnsHhnYa 3TuZvH9uJ0o7NyOVXssVcbu1d+ghVuTOnL+y2fi7vdqfRi16LumDFzI/eSl/ xStHVv3u5MrHj29+A0H79rcB2q17320On9/JQXuS13CqJGLxW6O0EZ0nsOcw dI1WSiKZi1PI8FPL78qGeLVlqxkAvj5ObUd3Qu/75aNkgmqevCcb6N1QEWlw hu49JZrKZFO9e+huSVxIV4ZEizF1m/nojiX3ejHJ3X1ut3V5W5IX2bkdi+0M t9exyy1hsd12iTXJnDYgsf24zlaps5Vr63MMlTFm+3RUIrZnoNVROYdMW5yD rZ0P7XghVID2w1tlXMWYsm0I14kBJhOgfYUGQL14I5MH8eM2zO2QEcs1kSs0 +RukJZvRUUe3UNy+HftkdkvOhuBJqeHSKxGY2yNl1ihZY4w8P0ifsdWYtNnn yB5jbbxuJFtt26++k8c620vRdNSJat0Ecbaj1VERtB9K9++/ZOag3V5DpptR 2ttq/drq/E5WLjxRsZAR25mSMtgq026eaOGJ7UYktmNuHwduPw3crhur0t49 4vn1/n+9W7hgPF86mfDD5D/+Z9KiX9yMk9wI+q9Lqetm+0f8zUZBQcHDI7Cb TCZCki0tLU899ZT7BwK/wbHTOoSE0WikMQ/aEW0ESFJIob/5zW9IV0lwQzrl eApPUVhYyPtcRLthwgHvwqnJFp4UD++Si5p0YqSH4YVr5F7Cp9/c3MydFK4C diCndj2eMBouLpN0YGaF1gm6k4DOQDdg8EnH6J6ToSC3OXA6bjtdw991wOdO X/t3JQDaz15pQtB+seHMFfvKSkhvR9Deh4gdFdBG0I6ybRgRO+ONuV3f/WCg naVfQYX2fufQzrhZKF86x+1OmLydQnd6H2c6vHCWawttcedJ7rwKM338JZnI BFWW3lEKub2Wl8jrPg23zFT0LmD4h2xFp+utfGins85NaEc5SGddp3PDDEA7 STccMuLc3tAH3N7WMzzbP2XxqL10ZoX0l3u0P41Y+FzS+y+kL35p/7JXile9 cmLF42cDfns28O1LOxC01yNof7c9Yn5vrOfNBK/BJK9bKZJhiyTik7dFQJ3D dYbYFbYDXDoyPE+Hdw/gkfy+01gfr7afNJddRBWjuy1f0ZCmtmz3rogy2CvM UOhuq1IDulekmmynNC7QvSDDr+eaia4M2VOP3TJi6C4quVeWL6wXWGV6WnwL 8hZNm9uvm4jYbrtosOzz54vtR3H5R0exfTRTVRejPbLbgBwyiQra1p683ng6 RMGDduDqgs2K+DVaQuzl2NDOQXtGgByYHCi9CCfh9qINnoUbELdb1siDl+jS 18qI6n54syef23cgJZ8pJhMqvRwmvRomzd6sy9mii15njgkwnwtXN8Sp+tKU gxmq4SyVLVd954BmjHO2H9WOV7HQTqajXjW2VHufKEAF20WgnRSQAVAfYBIA PifzvRPlC+2lILu9JzpYbreaHKD9sn78on78HOL2sRPauxVeXxf+22Tuo3/N +fVYgepvSf+e9Mf/vLHvxcQlb/fueeHKjncf5hvz+wwO/77lmDdvXnx8PG9j UFAQwchPP/0UOsbDQmBIgDdnDRLupfnNRTjDUdhOpOyncNC9ncQiMPSZR7Ok q5/iaMYhHFLh6XhACxdOAyRphHf5gKxw+QVscNt5Yj50gzwH+qUpdw47gMJR Iho1HYST4QmMquhAwSCIDjV9peQShP8vwD4wjLwRpoMwv2hw/YFjyRYYCu6S ue2izYqG8Nof8gBoP3e1mUD76cvN5661na/pYLjd2iMK7TVtI8jKTrJ7jHi5 HwS0fy6EdnFi76eNMV86WtMdaVyA7oTb22+J7CaqwztbpEmwrOrnDtzOTVlF nhkRbrcDfOdtmtv50G4vDjlz1X0aAO82w39DLhoE7W1YVG8Th3ZrB5NTQTsf 3etYdHcK7bwFUttcQbsot1+o7Z7tX7NIxIUGBSsf2yv732G+z8T94fnUj1/M XvJSwYqXS9e+cnrdU+cC3768cx4L7fMB2rujF/TFe6HqjqnSIYu0aPO7K8yv Ryx5m2T8Orkl0NueQSJZGGyqCDfUJ2vsAJ87E4An9F6401ixV+9wp7Dfju62 AkV9mqZwr6k+XYPRXclNU0XoXqmuL9AVxnjbTjouyXSZQfdCi2/PJSNS3R2L ulce9qu/5OOA7tgtU3nUv/6625J72ntucXsD5nZuuSUsttcfMVWm+7BiO56R Wq61HcEmGar2IzcdlThkaFt71W5V1ibdZby+EoH2kxS0M2UesTcGcJ042DPW ySNWaAilQxYRYl+Pc4Pn8vd99y1X7w+QENWdoHsJy+2VwO3b2WIywZJzIZLS IEX8OsO+1aaqXarjwaqmGFlrnLwrSdGbquy3qIYyVaPZ6ju56jEith/SIGin HTK4hgwH7aiATLMYtJMCMoMsumNze+t1v5yM91qv+tm5vdU8QSal1iIBHzvb WbH9rH78lG7smPbLI3MnCx4Dbp/M+NHdAwu+SH8WuH04TRb2wVudkV41u+f3 tX9/SsbRwZNqpxszELe5ICQsKqo7U3EJmRPkE74LrEtDpou+wW7ApQCHvH0I TxL8JvROv0vgnIybM5olXm7eRmhWKDsLaZaGVdERgEamdZMFp+C1A6eAFkQ7 TwrIc/cOsA8ZB3jOg/85+A7C2TcHOjnlt4LMYIXhdfZBc0zOBflwSX/IXxtE ZqeJnQS0Cdc4ranK3+hP7IEHBe1IaQdoR1nbeQGvi3q1sZ9wO4H22raRuvbR ug4bMsYAsePSMVMY2t2o93if0E5mlXIGdVFu57Acc/tfOpzsI5LIKs+6ZagZ ry0D92h0J8kS+58cuf2uK26nJXdX3E4WVB2ubb8v7d05wH/LDC/O7XZop7MV P1LQLpJCaO8S4/bOwVpHdK8R5XYsvF/nOWQcuf2aI7dfeii5fX90UMD8R/Z4 /q9Q79/E/OH5pA/npi9+cT+q+vhSecDLp7a8gZT23fNYaF/QHePRG+d1Idgj f8O7KSvnhX/y1tUor6bw57LWvMJo6XkKph4jKcmIUkkl2tKTrapPVfdkKgHs C3cbK8L0Iug+HXqvx+aZilA9H91Zeu/JUVZGGhjh/TD2zBB0L0fo3lOqBXSv LzYw6H5ea7uoqy83Fqb69pwzsoYZ/npMFLo7GN1FJXeG2wcEVhkX3I4rQEIW Zvj3XPQWMclwYvsxRmwvDPfuydMxYru99qOpNV51Ixk7ZGLlzTGMrZ2D9vN4 IiqB9nwO2nGlR4B2wPVDm1CGLNVHLNcAnxesZ7idPIdMWS1f96F59xJd0QZG hCfojrh9syfD7du9qrG5/dROSWqAdu8KU8YG7elgeU241BqJ1khtiZV3Jip6 UpQ305S3MtASUbdz1HcOqJHYjms/jlewDpkz2CGDbO2m7Hhia8fQ3sJWfeRB O+D6oC/N7URsP1m2sCR/Uctl34ku74l280Qz5vY6rLcTh8wFLLaf1Y+d5HP7 12k/zln9Ql/sS0Npsvx1754OWmANWdBSkTLbP+gHGYSCgI4ee+wxHsMACLlJ 46I4Sra72QJA8qTbCvkcli2h5/E4eAfyrkV4aVwQQoZBcHYIPCFXIRwNjmzd JEM4fHR0VIjKot3jPiDRplxcER1cx3gnFf1QuI2TmIHJhXMwDC/Jxjl40Miw wwjAFTkzwMD2KfsJ+/BusoQ70K4h7pOCR/JfDOmks4GaVpAv4Xcl2nsGGWi/ 1MSDdsztPQDtKJsHcAEZROyQ1s7bDLdPCe1ul45xF9pFZHYRX/qU2TEkuvGv Yjtz1povqRWaHOvGs8mHdtbuTtCdK+QulNztSy9Nwe0MunP5DdC7GMC7x/D3 CfAOYjsv21lFXQza6zuZdIB2J9xOozsf2iluvy4U252YZBhuR1NTux+qf9KT YqNXy5/YveB/hWp/GvXe8wkfzE37+MWcJS8WrnjxyNqXqja8fD7orau73q4L mdccNr890uP0jvm5a+bt+eDNAxveuRjm2ZIguZUtH8pV/CnzuaSPHx/Lm8/A eSGbRU6yEPN8PiL8nkxVfbL6fIzWEmiuT1RXhupFuN2duatZckLvTAucnZ4W 3i1YeM/QMHb3I9gzw6J7RYqpvlgP6F6ZYS5M9KnI8u45ZXD0urPrMbHoLmp0 rxCT3HvafAsLFolwO7G4C7m9leX2RlwEkjPJXEXQjkwywO2c2F5Nie2kZjsr tg+nK1M2eXMOmWZsa6+LkEesMV8JlTHQHoyg/TiG9rjV2nJSmx1PQQVoJzNP g5fqcgMkgOj5GNQL8WNeAMrkVbLwpZqAD81EdQd050zvwO2lwO14XmpVoNex 7ZKktdqQ5abD2xSoAmSo5Fq4tC5CStZaasfQ3pemHEhXDWWobJzYXqQZO6wZ P6qd4E1HvWI8bPHvv2CeqDfdZVZZwkssdXqLQbuvA7SzJpn+Rt/jR/wP5y1s ueBjt8rUIL19nIjt5/RjZxhu//rgv0/mM9w+mfpI8of/OZKluJUmv5kgDfnD mw17FpxLWjvbv+kHE4U4XJAVsDFQmTvg7YzQptWC0CrjIqDnnPZLcMuF3cV1 U9COO9ZrgFXeboRsgR7dPBfHn84Eau42B3ibuym4z/9BOGka2oHG4SqCgoJE 74+4jVN+EDy+pf0q3D5wCfRwkVMLJfHHcLjYjbzLlXyh26QPpL8A0AJc8gz+ AIJDviu1ZUjJx5MXMLRfaztPuJ2FdsgrDX0stw8iTzsmdpJkImqjE26frqF9 xtA+XW4HMkeJud2O7kPMSyG3M7tRrnh7wckBEXRvRpUh/+Rwe3LDju7OuL2+ i1lKVQTd24XcPvItAvwMGX4GAH8dzzmdAtrpFEC7PbscUsjtGN0FDhnHRNze 6gjtzeLQTnF7T//Q2Gz/rJmICQ9ZJns60OuHYfL/vW/h72L/8ELyh3OzPn0x f/mLh1cjsf3kltcu73y7PfDxtKWvxyx+Y/cf38heO+908IKeJMmNFEl/umwg S34rRzF0QPFZ9nN3En6cv/ZXY4ULbMUqsVQ6JI/e8xVEG+/JUNYnqc9Hay3b EH4jAp9OzRma3usT1CLCe4GiJ0dVEWWojDbYPTNHVZWJxsokY2WyKWq7365N C+sPGnqqdER15wwzoujeY/UuFDO6uym5VxxdWH+VXX2J5nauCCSP20klGeD2 C9jczontlaiMTH2OoSLGLBTbW+JVvUmohgyytUcztvZTwYpLNLTvYKAdyexb GW/MIYD2jSgB2nPWSfIxpSNuh8cAjzycOz/RhS3VFAR4bPnYUMAaZojqznA7 riezf4N83wr97mWmoi2KM7sl50Mkl/YiaEdrLUXLmmLlbQmKziRlT7LyZqry Vjrq+Z0c9Rgrto8f0U4IpqO2VHofz/MDzL7L4/YuR1s7QPugOLRPdEN6T3R5 91t9jh/2bznrw0xNrTWOXwNuNwC3j53Vj51iuP2/D/6c4fZMzO0f/OdIpmLQ grh9zx/fbNrrcW7bO7P9s34AITQ8CKOgoAD2BPCestAimf8oDCAraMHZu7w9 3dlNNAjzO7sBcUeadmcfgEkOGmmPCt1teE5WpxIeDtjc0tJShGMSU7QBBzzh WqO1azJ0JKBBstsMJiCQiaskoH13aipOORrki0EHuWrhfQ39nEwWnrK3MEqi uxGPPW3mpwOuC74DZNFb7mJdjxgpOOnsRA9z9N8aPX7eevJC/amLDeeutiJo hwRoZ7n9cn0vB+3Xsa2d6O0ctzeKcfsMZqHeD7QLuZ03I1Wc21EyoI5ymNv4 VyG0M3jPuOL/Il4i3g1uJ0Z3J+h+B2UXWpWJb5Vxxe3iAH8/DD9tgJ+K4acD 7agDtUw6cLsT7zqjq7uGdi553I6M7lNCe2v/NYHYflWU2+tvALdfsva09z4U U1P7bvYv8nxhg+K/giX/FOrz2+jfP5+IpqPO3b/0xeKVLx1Z+zIR20vXvxnu /YuLAf95Zc+77TGeXQle3UlevSmSG2mSgUz5YI7i1n7FcL5y4sBrf8969NjW nzUmvGQ7pHLIg6JJAbyA3olnpj5RDewNBH4+Ulu5V4/mn3Jwbl9l1TEzZdw+ FXuQ751P76zwbtnhHb3Fd9c6f8sub8sun/ocbf1+bf0Bna1KXZFsKoz1pg0z 9mmqVhF0rzgkYnTvafEpLFjIk9zFrTKcxd0Ft/PM7ReRub3C4mMX28mMVE5s P4DE9tEsZjoqcci0xmFbexSytWdu0qFFUfdIzwqg/QhAO55/enCTF5HNg5fo stZJiLSOuB0e13kcWOeRtEq2+WND5hovoPfkVbLQpWqAeRrdgdtLNnnGrNSE 4XWXSrbKSAXIcxjar4ZLayLQWksNhNvjlV1Jyr4U5WCaciRDdTtLNUaJ7RNl fLG9pcJ8/IDfRK3pLnA7NyO1DYvt3dS6qATaIfsdiB3AnhD7RKf3RAc2ybSZ s5MXEW4fR9xuHL9sGL/AcvsJ3Vi19svSFybzHpvMQXp74cqfj+370e30dwfT 5H2J0tq9HlEfvnlp+zuDp5Jn+8c98wAscb22zhzMpbxlOl3vLzycez4tFX3K ZkUxDDDP/Vol7tMvbY2G58QZAvQOI0OYUPQoAEgYYXrB0zlsqRmOYwHdaTiE 1gj3TjrqyadPn4ZPitvZHduJaEALpB36cySTZ2fQ2hxq+SQIeAKNkwtxBtW8 cD3+Lu6/CJzzzkK3xkNuGFjeLYAoqPOCvtN5COPzL75EBWSQ2F6PCsjguah4 Oiri9ou1dmc7Be0juPyjrY7m9gcO7a5Lx7iEdiB219xOQTvJryA7h7n8G97y Vx60M8lNU2VKxItNVu3/Alnc+z5zze0I3XsE0I6TruXuNrR/+wD/gBleAO10 uoR255QuTAfJvQNbZdoHpoZ2ituvOoF2bslU4PYLtV2z/eOe7O3tXeIjWyv7 r0DF/9ltejJi0fOJC3+Z+tHc7E/ncmL7qS1vlG6an7zkjb5dvxzb+S+9UW90 x3n0JHreSPa6CdCeLh3Klo/sV4zmKUcLlKNFqrGiBX/JfyJ2xfPIfwJ52DEP iaaSAXgevefZ6Z24ZawJ6u5UpWWLuXCHsXKPHlWAJKCeLkgK4LtTlAy9J2J6 3y+vT1YXBhstQWZrqsaapmGEd9rujovMdJdqEbqfconuLU7Q3bnk3i1qlaGn piJu9+FzOzcp9Tprbr/AmmSI2F6ls5VpbaVay05ftEBqPrPQEtBv6ibvPjwd tT2esbXXRcj2rTaz0C49haG9ertk51ITV56deGOKNnqmrZFtXWzMXGuHdkB0 IPb9az32LlEDqB/AAA+55WMDvIW4PcCjcD2kZ/EGz8jl6qBPjdkB8uLN0qpA LzgRnI6Uf0RlZMLRGqm1EdKGKFlrnKIzQXkjWTmQqhy2oGrzd7CzHS2QegiJ 7ePluvFq3fgJ/fhp/fg5Q0u5+fh+v4ka0906LLY34dVRydKootDOcTsL7Wgu KiF2Au2t5okW881r5sPZ/hNW03iNcfwq4vYxjtuPI24fL5Nz3J780eOT8T/8 POmZgTT5jURpV7RX2GLJ1Z3v9hz7rlrcAWzc1J+JFwL2B1gqLi6e8hAugAbp 4nvC0+n1+inJWVS15nkq6BASozMoBZbjugd07YJdeXIxecJBHbTj7ELIPuQS YnHAzpOO9z60nE4HXAhpk9wpcDu7+EPB/YBPk+swnIi7+6CvYh6O6bZMvi3w PYFm4apnRuZcuDhc+B2gyZywPU3v7nXfIbgZxw9nnLncANCO1kW91MgWkOlk swtVbidiuyO0E27nrDI8bv+Wob1tmkp7+xDF7cN/JaCO087tJCk1HufwXwm3 k8RzYJ1w+wCxuDvl9iZ2gipdzp3mds7rbsX0LmZudzP5AD8zhp+K3p0DvEuM dxvah+o6hqydXE4F7d1UuuB2Au2Y2xG6O4F2O7cTdG/pv9rsFNovWXshL9Y9 FNz+vvqtFbInN6h+td3wVJj3kwnGx1IX/iJ98dzcpXOLVrxYuualyvWvHNow P32NtD703Z69z3+2+wef731sIO6N/iSPgVSvWxbJUKZ0JFcO0G4rUNmKsIR+ COF6Z54ifet8xMBclrJZQqUDz4tp73lUrUjO656FUNwaqwYaB4ZviFVVhegQ q1uo5AM8S++7jJAVofrudKVdeC9UWC2awlCT3e7OzlS1o/uZqdC93WQ3unfb 3TLdzc4ld2dTU6fkdp5JhhLbC8O9uw9oeWJ76S4D45AhtvZIedJ6w4ndCrIo 6qndDLSHr9QXbZKRSo8A7cUbkWCeukYWtkwDrI7IHFti4EnuWpQ7PtEmrpTt xy+B4eE5MDyxzQC6p66ShS9Tb1tsTF8rL93sWbYVVZI5tsMLlX/EZWQu7JFc 3IvM7dfDpNYIKfStI17Zk6jsT1EOpSlH05HYfjtXfTtPc6dYM1aqGSvTjlXq xo/rx0/hWaIXDdmxC+3Q3mhiysh04ErsrEPmM7tDhjW39zFVH+86yuwE2tGk 1CbTzcvmwxn+49eN41cMY5cMY+eJuR1x+50q7Z1yzd/yfzaZ/Wjh6p+PRT9K uL0/VdabKOmM9sxY/nZpwLxzm1+d7d/3TAJ45sc//rGb9AJ7AoZNub9QvoZD XNshnBkhePtM+acAHXB1PIlb2HPoZ2NjY0JCAvcWnGJkZATwew6+m3CTVycx oD799NNwONwCCCHT2SI+vN3I1FoS0CChTe4z+jEObmfXfyjQfXDxhwI0Atfb iIOcl7yER3o3GIfpGnLgA4UBId0mzbrZAowVGX/67O5/S511xtmYCwO+NrzR g85/U7/A+462rv4T561IbMdLo57DnvbzFLRDonXbmwZwyUc7tJM1Uvk+mZ5p QDtN7M0zKh3jFNqnmFuK8Zv1wwCld438jQN1HrfDW3Z0Z46yc3s7h+5OuB0V dYcrperJUIkGh77ZoW0zjgszMaXdKcPMtLj92wf4GTK8C2ivbaehnQ/wIqJ6 t5Ok0Z2DdsLtbSingPYWFtqb+6808aGd4vYewu3Dt2dzauqZQ5YlkifXKn+z Rfubnabf7vN/Ju4PzyZ/NDfjk7n7l71YtBLNSM1b/VbKSs/rIe82hM1vi1zw RcgPvgr74b3oxwdTPIYsXkMZkuEs6egBAGwM28UYv1FpdLXtiLp4j0dNhtxW rraVsXlUjaZ/kuTxfAlL73bhXclH91zx2jLdyUprjOp8uMay2VwVrIN0AHiL g/wOnB8V4FNFT1mFxvOR4707V2XZ4d2QqeHs7jS6Nxwy8NG9lkX3Jju6d9eJ GN0taYtsNx0k94qyhQ01VCF33tRUF9xOmWRs5w2WcH9kkjnGln8sxSYZVmwf zVYNZ6DpqDfQdFS0yhKxtVftVmVs1PGgfd9KfSGG9sPY0M5A+2pAcQ2S1qnM WeORsEK26SODZbUXAvg1DMZv/tgAe+atQ9wetlQNmbpaTsztR7Z4VgR6VW0H bkfFak7txD6Z3ZJLeyTXQiW1+6RNUfK2WEV3grIvSTmYqhyxKG2ZqIzM7QPq 24WaO4dR7cexCt3YMR2C9rMI2g+n+d88a0YOmXrWIUNqP7qG9gFsbr9Bqj4C sbPQjoidgfaJRtO41dR33nzI4o+4/YJh7Jx+7DQyt985prtTqb1Tpvmi6Hng 9uTFj08mPwLc/uf4/xpIlfXEe3VEeTaHeWz1fe30mqdn8dc9s5gWtE+Lkabb rDv7T7dNAr28jTyCJSUHeQAMtLls2TJgV3h050TAmQRQSfAsOnocAOSEw+ER moVH8hHAWWhG5VidI15ndzQxMTFwu+GChAsKCmAfaBweATudQT5NpNCxp3GQ l7x7FthTuMyomygOLU86emboA7kRgI3wHE5Ej7zo2qZkTx7e0+8KO0b6QLcs 3I3cx006zr+ATwGOejgt7sTWThwyAO1nrrYQaD9vh/ZuwA+yQGqtANpJUtCO uL2JJNA7TewuoX3GRdpFoZ3H7aLoznE7gXaSzrgdoTvZn0uW5LkiM865nVmV iaF3uqI7RncetwuT5XZ2NVVq5JmFmR4QwM+A4R8AwLc6QDt8x+pwCqHdUWx3 yPouknYmb+hGSUC9wQm9owmqYtxO0L1W6JBxhHbE7QJoF3B79yxOTR3qbV1n en2V/MkN6icDDU8Fez+9b9Hv4t6fm/rx3KxP5+YtR+Ufoxe/E790wfmgN2pC 3mkKX9ARteDz0H/9et8P/x71yFCa51C610i2bHQ/hvYCTNpoSSMM4UcwpZdr ikM9awCwKzW2CrU9y9lEME8xPKF399GdtrgTad0is0arIC2bzIVBhoZolRDg gduB3q2x6sKdxgbWNsNNVrUVKioiDUh4F6B7RYppKnQ3EXSvOOjX4Gh0d0dy 727xLcxfZC8pI+T2erMlluL2CwbbOYMlzN8+I/WotiHbUBFlYsT2HNVIpqo2 Rnt4p6EnCTlkmmKQrb0aoH2Tjltf6fhOSRUL7SWUN6Zgg2cKhnYip+eyGnv2 Go/ti7Uhn6qB3rmE7YkrZHuWqPev9QhdqgaAT1opKwjwKN6AireXbvE8utWT VG6vCvI6vl1yaofk7G7JxRDJVYD2cGljpKwtRtEVr7iRqBxIVg6nKm3pSiS2 71ffLtDcOaQZO6IZq9COVevGT+rHz+jHLxgOp/rfPGNGYjtta8c1ZD7r9vmM c8gMOBI7VwHyBp6L2ulNyexmQuwTDaZxyDrT+HVj3xnToVS/sfN2c/udau2d Cu1tzO2Fa39xJ/axvyc9Mhn3w79H/uAW5vZ2xO0LgvxfP71l3mz9umcc3wS0 f3Px5JNPTmt/IFUhePMIllArPAobb21tdd2+TqcDJG5oaOBJ08CZ9CmgfWiK E8zp9rkPAtrh6JSo0/RVCE8NAEwuzcUnePDgQdgHHskpnHE7WXyW7MzbSO8G PRR+YWDQ4H6ExnsXnxE5C7cb1xQ8h7dgGMnlPPPMM/Sp4V3e8JLL5243oGPc duLngZEcwSHsDN0y2c1sNpOXOhykWdH7NfK5PFRx74s/E4fMyYsNJy81nr7S fPZa6zlmOiqGdrzWEkAIQPu15gFUsB0TOw3t1k4bqdxOuL2J5na75H7fs1Bn BO20id3RJEPw+6sOCtoF6G6H9u7R/6bRnYA9Pvyv7UN293vb4Jc8aCdJX2Cz vTIkx/B3XXM7K7nftqM7tZqqA8DPhOHFAX66DO8ewLtieATt7Qy000m43To1 tNuzoXuIcHuDM2gnqjsW6jlzO83ttWSVJTFut0O7mNgu5Pabs8ftKUGLl0mf XKt8crP2N9uNv93j+0zke79D5R8Xz81eMrdgxUu7/jg/e8Wbp7a+cXHHm7Uh 81r2LeiK9rgZN+/z6Mf/EvdzgPbhLAl2yCgYaC+m1iFFPhOM6JWao/H6hgK9 rVpjq6KyUo2SY/gySoQvJcI7vgsQNcyIoLuMb5JJk3UnKCp26SybTEh+T5Mx aZFZNpuJ/N6djGwzRbuMosJ7UaipIUtrX5ipUmWrRjNV3UN3syV5oa3LTBvd K474N9hrQjqxytBTUwm303UgOW5HFSARtxcl+HaXG/lrLRGxPReJ7UO49iNy yCSgGjINUfJabGvn1lc6gaE9nIX2QxjaCzegWjHhy9R7OWhf65GzFvF5/HJp 0GJt2kovoPes1R5ZaxDGI25f47HpI8PeJarNHxkSV8qI5F643qN4o+ehjaRy u2c58ckEeZ3aiZV2AbT3JihvJikHU5QjacrRTLjvUN/OUyOHTIlmvAytjso5 ZFqd2doRtHsDtH/W5/OZC2i/6TMB3N6Dub0dQzshdgLt9Rjaa03j14xjVww3 ThgPJfkhk8wp/Z3jWGwv194+om5Oerl6y8++Sv/p10mP/D32h5ORPxhKkfXG e7VFeQC3b1/4+pmt8x6qWq+uA6ARAEmUr3i0M11a5gjKnd3y8/PdN04DYk3L ZS3cmZhVOFSDWL58ORkQIQALcZEXMICEbyEA+chGeAIXxeN2UWaG3ehPhN4H ekXvJjx2yr7RQW4Q4BCuk3QQVOZthCHi3baQRoS78caNnEX0O0OfhTfTlowA twVGlXtORgmonm6T0DV348O7LugV2Q67wYHcu+QGgdcy3T0I8n0Qdp7EN/d7 nFk0tPQQWztyyFxuPnO1Fbj9/PUOHrRfbugDaIe83jJYgzzGdmKHrO+6DYm4 vXucInZnqyx949DuKLY7TD6loP0rLnnczqL7VzS0E24nuN418pXjbl/R7ncH 4V2U25kKMzS329FdlNtZdGe43WFBVScMPyMvzQMAeLfpnQ/wBNoRt9NJ0L19 2NoxXN85LM7tAmiv7ybczqRTtwzrigdur2sf5HF7TetAzZQOGZJTcfuV+p5Z +XVXHTm4eMHjq2RPBqie3Kp/aqfpt6F+z0a99xxaawmbZHb8YX7+qterNrx6 JvCNyzvfqgt5u2Xfu50xHr0JHjdTPD9PevKr5J9OZL4ysl82mq8YBbQuxph9 GAvmSKZWc9wOxF6ebG4oMtiOa1Ee06CspgDersCrGIC322You7v76E4QPVVq S0FZF6G0bDRVB2vRljSpZZOZADxL7wrkkBcI7905qvIoQ0Om1m53x+he7gLd G1h0bzN113oXEbcMZXR3nKDqW06sMjPkdmyS2UdMMjpbJZ6RWoJnpFJie/52 U1OcqjtRQRwydajwo+H4bgUH7dXbJQc2KqJXaUsYbwwD7Ts/1SWslOeuZbR0 eAREj1suDf5UnbLSC4g9czXidgLtRIFf/b45frls/1oPYpXJx9xur9y+xbNy m9ex7XxoP7FbWRxkOLjdcHiHYf9Wc+pGn7TNPpYtPunbfNODfDN2+GUF+2Xt 8cve65cd5p+9z78k0fdUtk/o9t+3VXvfreXb2j/r8v6sx+ezGz6fEYeMkNhJ BUjg9j6fiV4fvMqSN8PtDbjwo5WF9hrjGHA7mpFquFFtOJTge+ek/k414vbb ZRrg9shV7/x5/69teZI72e/+KfWFr6L+bSL2d71xiNubwhacDnwn+L3XZvHG fFrByb/CALbhQeYD0eQBmDnuogHsgQv+NKvTfE4CUI1mQhKiRDoHg1x0dLTr 2xZag23AQZ5zY0juFITaL2FIOqBvwnORw6EbWhzkCTmL+/dTdCendRTvJQyI qGWFuyLoHnct9Hbos4vG4TnQMk31sOVJHHAg13MYQ3L50IdDhw7BIZw4Twaf 7htsWY6DfLjkLbI/7ElGkhwovBBn97PcIQ9J3Pviz9VnapDSjqC96fSVlrPX 2s5BXm+/gAvIEGiHBBRB3I7nDNa2DRNc54id4fYuxO0oexyh3ZHbm/tI3i+0 T0nsVAWYv/KTgvZOMW4niM4RO5csxvN35k9cHfpL6wDpHiO/43VU7dzeLMLt 9pWYnKUVjfMdktjrfrvOfYD/1hl+OgA/JA7tbFo7h+u7ELdz6UJpF0A7SVGT jAO3kyTojqEdpSuHzBTc3kMSuP18Tees/MBXK55YJnlijeLJjZrfBBp+u9v7 mTD/Z6N//1zyR3MzP30x8Pfzc5e/dnTdK8c2vXYu6M0ru96q2zuvMfyd9jjP rkTPvlSv8ZRnvk760WTao19l/uxO3rvA7aPFylEyo9NuksFAXoUR/ZimPMXU UKy3ndDYTmj5AI8YXs0o8OXqhgO66gRjdTzOWJwxBkzvnPDuiO5Zjm4ZiwO0 c0novSjQsHuFL3oXMzxH7+UhSHhvSFQxwjs7WbU80lAUZuIVmQF0r7aYHdD9 OoXu7FKq5QK3TLlryZ03NRW4PUWM269T3B6OTTJkRuoRbVG4d3eulhHbs5DY nrzRuydJ0YFryBBbe/pG3fk9aFFUHrSTYo8FG1CtmJ2f6NJWS3KwJYYkIHrQ x9rdn6oRsa/yyFiFHhG3r0YwD29t/MhAVHcyQRW4vSDAo2iDxyFcAZIH7RdD JDmbtEkB+ojVpv1bDCeC1Wf2aM6Hapqi1QPJyltpyqEM1TDcd+SpbxcjZ/sd 5GzXjh/TTZzUX8k3H0zyayrzPn7ALydhUWm2/+lDfiLQ3u8E2vtZaKe5vZVd IJVAe41p/DoyyYxdMY5dNBCTTJXFp6nYCNx+u0Jz+6i61iIr2uUxWqwayVeO 5CpGshS2NM/RpAV9cV7twO3hC+pC5m/yfrWnrWlWfuDTCiCZn/zkJzwmAdwl pASsK3yXAzAXL+mmhBsB5IaHh4GX6uvrnbVPR1BQEK/9xYsXT3mU693grUlH sZ0EsbgDlQkPAfBLTEx0wbpC/OaNMBxO0BEunx4Z2OHZZ5+lDwEWhX1gfOj2 YTd6H8KisCdp0FmvhJz8LA44kHQMhkK4jzsBoxeEgzfOMA703wdw1fQl0H8f cOH6rxM4Ci7wEA7aUAQt874/0Di5NPpmAbZwHYbDef9l0EMKA+7OvYzoBz27 ceZyw7GzNSy0N5+92srleeB2Bjx6L9f3Xm28eRWJ7bdqgNvbR8Sg/Q4khnY8 L7VHfHVUFto/I07vFpKuS8fMFNrptZOcQbsLbhdCO83tNLqjgjOOkjs2zJAu ka6iQpEtA/da2Om3zQJo55WFFNXbOWivZ6epUvNVxRj+OwLw9pqiKAXc3oGh nZcE4LuGG9BLBteF0E5x+5AzaCdLNdmhHdWTccrtItAu4PbLDX0PA7dnxwZ/ /Pa/rZA+sVb55CbtU9uNT4f4PLNv4bOxv3825aPntyx6J3Ppq4dWv1wW8MqJ za+dD3rjyu63ava+0xAxvzXOszPJqzdNci/hJ18lP/p3y6OTmY/9d/a/jxYp Rg8ibh8tUY0e4YvtCM4B109qylNNDQf1tlPoOU5tdZoZ0hLqa9nL5h6f8gRT Xa4OZY6uLltXl6Wry9RZdnqj3OFt2e5dtMdYHaGv3qdvSFbx0Z2W3Gl0T2ay O1aet9UQu867IUqJtlP03p2kAHqvDtMxthnOM5OjAnRvyNYydneM7nUF+qI4 7ynR3cEt0yucoDoFt3fX+RTl+otw+xU8KRWZ2/0YkwxX/hGL7aM5quEMJLY3 xqqIQ6Y+Sl6zTxa+2nxhD1pf6cQuSfUOB2hHhvb1ngcItK/yIip6Fib22OXS DR8akld4IWJf6ZG+EkF7Jgb4QID5T9QbPzSkrvRiuH2Nx4G1HvnrsElmg8dh CtpT12ksAZo9y017V5gObVWe2CWrCZc1RMhbouQdsYqeeEVfonIgRTloUd6C m4796hG4lkMaW6nmdpn2TpVu7Liu9bDpWKbPxEXD3avGu9jZ3n/F3HzGJyft vSP5C8+UL3RwyPQ7COxM9mGHDEnE7T5oamobNrfjuagY2lHN9rGrRlRGhsxI PaO/c1KfEep/u0p7uxyJ7RGr3hk9qB4tUg3nK4dzFcOZihGLfChZdjPOqyPK ozHcoy5kQZD28Y5j6d/+D3y6IYrNxKjsgqgBb3jECzsLgUcUxggwczElI3Ht 81p2B91FVWsS0P8VK1aIHkI6FhUVJXogjAxNudA+jAYRwHleFxK8geJsG8KW gUInKRaF7sFL+lz00NEDAlwqei31OGBn12MFTQHoCuuWR+FwcSDdAnlCRgMY mx4BoS9oBrcJ3AVyNy/cfYdowDCKXjWMP89rBLgOjcMYkrsn+Hzhql3TO30D 9TBE/y1b9ZmaY+dqgdtPX2o6fZni9mtt52o6LtZ1A3UAtAOHXMWTUpFJpvUW j9g5aEfZzUA7k8y8VJfQjhIr7W4vruQutA87LJ/E43benFNRaO+xfQ0ppHdx bufqzGCrDNUxhtsZdO+/h7n982Yht/f9qdE5utPQLuT2KQD+wTC8U4B3k+Gd cTsF7bxE0M6I7WLZ0M1LF9A+5GBrd83trRS3tzBJaj+KQLuQ21mTzCxy+9FD hX987UeLF/xyhfRX65RPbNb8Zrvp6RBf4PZngv3nrjDPS1n8UuHKl0rWvFyx 4dWTW18/u/2Ni7vfuho6zxq1oCXBsz1Z0p0m+SL+R1+lPPp1+mN/z3psMuex L/KfwdCuHC1VjR5VjSJo1zhAO7D6aVRH0RLuW51uKor3toT5WMJ8a4v1tcUG AHiUxzn/DGd9V3GzVtEdwWEVOkuxsitXXZuqqU3RlIUb0gLNlm3mol3G6lBd 9V4dktwF3D6aLB1NcsjI1d7lO3XVu7WjhOopeq+NUTPCew4rvBcounJU5ZEG xu5OZqpWqbtKtU7RvZFB964a7JbpsrtlyksdJPeuVt+iwkUct3c1+xZxU1O7 fGydeOkljtutmNvZYjINpabyVG9qRqq+PNJExPaRLNWtdGXSRm/OIVMbIUta bzi2S342WHoSQ3tFkGTHEhOBduKNSV4l2/GJLnWVFyH2TGyGiV0m3bVYzRE7 ZAbW24M/Ua3/wJC03CtumRTQPRt7Zhhux2I7gfa4VeqE1ZodS4w7lxhz1ysO bFCc3OF1ZpfkQrDk6l5p3T5ZU6S8NVreGavoTVD0JSn7U5X9GcqBHNVQvnq4 WDNyWDN6VHO7QnunWjd2Up8d6T9xXn/3EsvtxNmOq7X31/s0X/LLzXjvTNXC u5xDps8xCatz2YO5nUxNbTGPE24ntnaA9stGpvzjWf2dU/o7J/Q9pfriKO/b RzW5u+QdOXCvCncWquE85VAO4vbhNPmtJGlfrGcn0tsRt+/S/qznRMa3/AOf bhw+fFgUS/Ly8lwQEaFH0aNcoI4z5nHnEGEACnp7e7ve54knnpjEQrSoJ9zZ IW1tbVzfRMGPCPLcS7ic5557jjA2RBsOFxcIpziMQ9gyaYoeedKC1WrV4KB5 eMprgc5znXF/zSn6cLgo6A+v8y4OAfKHDwUuDQ6ER3J2eAIIDSQM/ef2hGbh zovewrVPj7kzET4Rh3A73T04VvQLSb4V3P0IvOQNDvkUhN8uXme4T/xhCCK2 Hz9fd+JiPXD7GYrbmXmpdV2I2xtukEoy15h5qXxup6D9Dp6aaof2xl4xe4wA 2lsJtNN5//YYe+GXr8jaSTyxHUH7CMouVkXnJYF2PrrDc+alHd2ZGu/2OjNO uZ2pFYkuDa4Rye9N9BxVnM4mqPK43TW9zwTgp8Hw9wXwomK7GLSjtHaO1HeN TA3tPSgbSbIAXy+SrNje5QDtNLc7iO0tDgnffxFop9CdVdp7edz+7Zdw/0D5 8uIX/+FTj1+ulP0qQPnEFt1TO81P7/V9ZqfvCxt9XrMsfj57yQuFK18sXfdK xcbXjm99/fSON8/bud2rI1nSY5F+nvgff0t59L/TH/s6+7G/7//xZN6Pvyh+ loV21ShPaQdoP6OtzjABtJdbzHmx3pZ9vmgZI8gzwPN4ByLCn3BC70eRjM+h +0ixcqRIOVKgGMlXjOQpRg7IOy3Kmnh1TZw6bYsZ0rLZXB2iqw7WAZZDjiRL R5KkI4mQEpJl27X1+xQ1Ycq0DSZC76MMvSPm70pUENuMg/COPTPVcQbGM+MO uuPKkHZ0F5HcfRnJneV2B4s7j9sbzUUZ/l3nzFwxGcbczppk0IxUVmwfwmJ7 fYzK7pDZpUrfoDuH11c6hqE9bIU+b6OMQHvees+kVbKQT9WprHcdMgPL6TsX q4HVLTgJt8cslW77SBu5RAYkj6B9sTqL9czkrPHYvwaZZCKXqUKW6AI/MaSt kaevlR9Bk1I90YpL271O7/Q6t1tyeY+0JkxWv0/WHClvj5F3xSl6ExU3UpR9 FuXNLNXgAdVQoXrkkGb0iMZWjsX2E7qSRN++auPdi4a7lw13rxnRjNQG091m xO2fUdNRm6/65WS9d/rYQmaJJbK+Ek5UQIbLLhba2xG3jzebUQ0Zwu3EIcOK 7Xew2H7nuO52lbYiwXws0XRoj8x2SD1SrB4uwNyerbiVLruVIh1I8LoB3B7p 0RyGuH2b94sX8yO/5R/4tGLlypWiUBQZibot+hZ5l9Cj8C0XR9HBY2PXKMgd wtttSncNTbnuU+tPcAC2uTiQTJwUdnslDtICPOEuUHgKNzsDp4B2CADzPjtn N1zCa4EAxBUlWCBkGCVn4y+8dgBX9zvPdYA8J5fA2wE28rYALXOHuPhi0LuR gK8l+cS5o8jtofDOC66L3FDAW+TLPIObGhLc92R2Y2DIBtB+7Fzt8QtW4PZT Fxs5pf0sWnQJQTvkRWs3oMiVhj4C7WReKtCUM2jHOc6Ddp7MPjW0M+h+bybQ PsSDdru6juhdAO3OuJ0T2x3Q3cZyO4vujtz+FXdSUtHdObff47LZObfb0zm3 35cC78jwtTNheFcA7w7D492mhHZeuoR2NslGeJeP7mLQjrgdofstXP7RKbST FOf2ppuXGzG0U9x+sQ7PS61BU7yHRie+tV/30UMFH8z9fz996R+WLvjpKvmv A1RPbNM/tcv7mUDvFwLMryZ98Lv0T17IXfpC8fJnSgNerdj46vFtbwC3XwhG 3F4fvaA1waszRdJrkQ5mLLiX9su/pT/239mPfX3gx38v+Mlk0U8+K3lltEw9 Wu4A7SUxXkUJ3kDstQcNCNTPoeyq1hcleSPWPSdG7ycx7dP0ToR3XGoGoftB pLrz0H0kVz6SIx/Jlg9nyoczZNej1dejVGmbTIWB+qrd2voIJeD6MM6hBMlw guQoRnd4eZ2ld8B7B3pPQvNVjxHbDCu816Zq7HZ31+hOrcdUXuzXSC2iWl7q 31jj69Qqw3F7N8vtbQy3M4suscVkGHM7Z5LZ4Utqto8A91qQ2N6ZIG/FNWSQ Q2aV+fweplR7JQftm70KNzLQHvypmtHYsZxO4DxhmRfgetoKlAjdV3jAxp0f q2E7YfgNHxiA3jluT1guDVui2vKxIXmlLGet18ENHoc3eh7ZjKC9OtDrxHav Mzu9zu+WXGGhnYjtHTHy7nhFb5KyL1V5M0M5kKsaKgAq1oyWaGxlmtuV2rHj upIE374qw8QFPYL2q8a7142o/GOj6W6L+bN2zO3E2U509Zs+Tdf8Sg8tarf6 oZdoUVSfu13YzU6yk1ojlYjtTfYyMng6KnG2Gzix/fYx3e0KbdMBfdRW/9uH 1baD6hFkklENHVAOZskHLLLBZOlAvFdvjFcHcHuoR23w/HOfPBISHPKt/bpn EKIoYrVaJ7FoLPou0SqFOwACkQN5rAXbhfRFoAuYB6C0pKQkKSnJNR1BCwBX bor5XJDGCS5yx7pzj0CCWFYIB6rVagA8uv88VVw0uHGebs/pE5EncC5yLc/h cHbDRUJ4jXA4HCvUrskfB9A90WFxB9HhQ4eRgfGZck9yLt6J4NT0wPKCp3jD Wcj+on+CkM9r0vFWS/SG5SdUwEiSj1L0i+pOcOedxTh7pRFBOxbbiU+Gg3Y0 KbWOFJPpuoB8MjcQt6NV3RG0QwJrORC7A7SPNfSMMYulinljpgntdDqp9zgo 5o0R43YmR6gnHLcL0J0H7Qy685JFdyG348I19k62Oud2oeTe2HtXiO5NvRP1 Pew6qt8XgEezUDtGrB3TgnaUDd0knUK7ndupJAZ4K0lHaCfcXou4fbCGRXdR aEerozqD9oYblyDre7mVUu3cXtN189adb+3XvdDrdx/N/X+WvPwPyyS/Am5f r3oiyPj0ZtPza4yvxv7+2eSPns/4FLh9bvHy50rWvVyx4ZUTgW+c3fnmpeC3 roXOs0a805bg1ZUsuZEmHciQDmbLxrNf+Ev2/0/dfYfFdV0Lw/cfX970m++W JE7ivIljJ3YS5+a6xJZsVWB6LzQ1W733BogmEL333kEgBBJdQkISQqKI3nsv AwOSQNc3TuLkfvrW3vvMmTNnCkiOlHv3sx49MHPmtJl59DuLddb+v3+7+MP/ zn/1/yt89W9X/y+gXQvMxmhvuSgKdbaqvygeuqZCrK0maFfO31PO31cO3VSl hG7qLFXP31foAC9HgKcND3pn5t51iXddj3fUZ0Z7WaK9JEYNbS6K53IQ3Wez RLM6us+mCDXJwv4YcWOItNRbCTi/7i1vCxGD22diUCSdtYOfSTQGSfLdVYj3 hnpviZBdvqDuJPerosS7eCgTzc3UScrdcZOZoSJFSuCmziIVOgoW3cl8TMxC d6OU+1CPQamMvsTdpNvpZjJ0cfs15XypojNTVR5qN59Lku2SvPN2bRFSZoVM 5QUR3ao9+Kgqz1l45RzOtJ/RoR3n2FOPI41HHBJ47UM4B64n4QCxhx8UnNmp jgHJ41+J4eMO89Jwubv/fqnzbrXfAVnsUSEqbj/DKTgLaOcA2ivcEdpxeQxC e50fvzFQqHO7sDdc5/YEyXiyZCpdosmRzoLbC3Fle7ni0XVFUcym8Qo1qpCp VS814GR7C1Uk86TX/smAPX1Hqr4kZsJxonfTzYqt/a2bUcp9SKd0aqIlXfSh m1KZyfZHzGT7PSrZvoCT7Qvl8lTfTRVRdl0ZyvkC2RxOts9ki6bShZPJwsl4 /iR2e38opzOQ0+xj3XLiJ+c8fF/at/tZBzjQpEPIs+YykEApk3UXRGXw1I9+ 9CPm4z/CY1n87N2719xToE2APax5Wd6b22Gw2bvvvku2wqIgPNKKh7FpYbfJ qYCXvIuHha0Yw5WkyuFVcJ4tn4GVc3HZMwmmhWPRaDQmr5WMlyfvGgx4CbzQ 3Ltgbg/hJU91dUGE33AeyMLkX1gh/VrYBNkQc21PGReAxtdHzAFvEJxMOAPk X+N9gwdZ12jkQTj/5MrC8sUFnB+Tn3l6ryz8VeKlfm+NxtTsAkJ7TSvVth3N kdpFOkCiZDurc3v7KJ4pdZL0k2lEJe6atv759oH59sEFJhdpt3eMkGT7V0M7 CWzdPirYdF8B2v/CRvucju4stzPobpxsR7Fg5HZM9yGtfpZVuq873RkS9I4B b9btxin3TsNpmHQdNbHb6VgZ4M0ZfoWAfy7DLwN42vA02ul4RrTjGKFiWbRT uXe929l0x2gngehukGxnoJ2ECbcTtBu5HRXJvFy3j42NbXvvG/v+8LXDq752 hPf6CfFbTrK3z6rePaZaHbL136N3/EciuH3/+9kHP8B1Mh9dA7e7f1zjtbbe bz24vTVkQ180ZyiOO5bEn0wVTGUIprIFmlzOYt4H/30J3P6jp0U/eljBA2a3 5IjSLtjkh/Lmq5W6AJYrKbRjtyPf1inL0x1uZNmjn4neEeDlFODv6BLvSO8y XdmMPvGOukSS6ZmoFpEibY5ImyXSZormMkRzDLprkgSaBIEmXvAgSFJyXgFc v+YlbwkS94QK81xV0zEU4/vChKXnFZTe47Hek5HeSdkMlXhn1Mx00neqXpPC HpYn2Junu91Qk0PBRf0kqiZS7jq3l5ds7WzcTLWCXNbtN3RFMt76ZHtLlPyK t5qukLl2QZripET3omK05ziLw44pAO2XDdGehsWecozjs0/qtVeGxH4EB/rB xm234vweGfyQfNQm+QiKiIMC732yyEMCv31Sp13qiEPCrBO4SOYUVdxe5MLB d6QitN/05N06z73thfLttX6ChgBhcyDD7VEiOMkjiZLxVMl0lkRzUTp3STZf KF8olj8qlxdFOY6XqBfvqJaoynb1UostmWvpSbfdE7pIZgQXwxjSfWnKEehe UrBtcYQhdjLRki4Q2jt1yfZmg2T7w7uqh3dwsr1SsXBNURjuMJyvWCiSpcLZ vgw7KdVcFE9niibThRPg9jj+RDRvJILbF4Lc3uH2zn2PDcc2cV/Ot/tZx/Hj x00ihE6nW6gcIHRnGRKwBK9aCdHNrdP4QSa0TPrfuHjG8jBeA9ltc5cwcKVg 7kSxxp07d0JDQ8n+ECIyTyBrJ1m7DUvCa5nPWriKMR70qkj1EbnEWOEbAZuG A4Tl4d+nGNUmF4O10Rc4LHXDC8lbAz8QWsNbCYvBqYNzCyuEX0mdOf3ZY7oa XkWfKPpCiXk2XsEfA+MTQs4hPM68mqMJzVqYrjKy8GmBp2BvyXUH84NHLjee Gl1x0AMO8MV/Xy0NVNle01J1r42gHeXbG7qrEdp7SQdIEDtCuyW3a1Eguj/U B8EkovvjrrElS2ifWBnacfSR0DVmofW+QrSbdPsQg+vAbxbdzbndNN11L4dX DeoavGO3/4XV1J0qmDGaULVn8r+M3d5lFB1Mt78EwFtOwi9veEt0R2If1KIw pDsV5tFu4HY92plhFu16tw/q3M64NdXA7b3Txsl2Gu3GdEdl7YZu1yfb8SXw vabBl+b20LDw3e//P/tXfevI6q8dt/7BSfFbO0R/OKRYFbDpd6Fb/z1m57vg 9tR9yO2XsduvO6+65fbxPW/k9qbADW3g9iiboVjOaAJ3PIU/kS6YzBJM5Qrn LlmhOpnCH/2x+HdtWZx0b5v8YG5/kRTfiKpzuym0z9epIJpL7AoSHfGv8Lhh 7l2feJchulfKDBLvJfrEO9UiEuh+UaTNRtUyiO5pwrlUTPckoSaRovsMTrY3 BEiKPBQJZ+zA7bmuqsko/lQ0fzoa/dsbKizx1Ok9ga/V3bLaHCEtoBPvuGam PFRdEGynbzJTaYrurTq6k2qZekeTKffy0q2dLZvZJe4m3a5rJlMQt2moVE1N t1SsSDnvSCfbE1wchuOoCpmmEGHQcfsaP33Xx/Bjiqum0E7qYdz2KIIPCIHr iUdsSIQdEJzeqY46yAO0QyQeRv+GH+Sf3aVGNTP7ZOEHhem4VIZ0ksknd6Q6 I7cXn+OUnEN6r3DlXvfgVp3n3b3Ar/UTPggQttBujxD1R4sH48UjSZLxdMlU tmQmV4o6yRTKHxbLe3NVNxIcFm8ql8DtNaqlWhVye7PtUrvdk067Jz12uiIZ 7HaTdJ90nOjZVHx52+IwVRLDjMc9OrS36SpkmJXtd1CRzEIVSrZ35akrou0X imULV7Hb86VzJNmeIZxME44nCSbi+OPRvOFwDri9I4DT7L3mnseGMw7rXs63 +5mGhcQ1rZSLFy+aW+YVw8rnt956q6WlhbzKwkueY7z33nsWnpVKpbC35q4v WPYzt4b+/n4LW7Gs37fwoHcVBuidPoHMHYMHpXjA8vAvnFumkIlX6V8d8Vh2 5+kBayOsXfZPG8wdprdF/wz7z/pgMBeGNRcXFz/FfCWPwxk2946Tix14CX1u 6ZfDgHPOXJjeZ1gt/RGln4VDe2p0FQkPavBgHS+cCvJy1rtPHocdYJ1Y5gHS r4XVwh6Sv7+QY6QHPAUfdeOLiBfxJV3hQJXtNc0o2V5LJdvJNKnVpP1j8+A9 kmnHgRBC+slQ9e3TZDJ6jHbkdhwLCO1DTLc/6hx9jIPOun81tE99oQ+s335U 064Ls2g36/ZBQ7czBW4B7SbpznwEXk67fdCoMySVeDdyO6E7nXXvnsB9ZvTd 72m3Pzbh9r8T4J+/imZ5w5twO0F7OyNYaCcyXzbZ3mkUHfowQjsOk25vpetk +im303RvXNbtnYZox/EPdLvS+sM9H3xtr80bR1d/7dS6b27lvntG/o63/Tv+ m34Xsu330TveTdjNdvs99z/Un/+wwW99c+CGdobbx5K542m8iSy+5qLVlzmv IbcX/Oh64HuX/K17L4vmbkq1t+Ra2u1MtOvdjtA+X49i6JY6JXxz5zXb+Xql PvdeozCge5VO7yjxLmUl3qmK93xc7n5RNJeDC2YyRJo0oSaVSrnPJApmEgTT cfzpWP5UDCL6ZDS/zl8SdMzh4jlVY4B4IpJPAA/REyos9lRcvyCfjePTeh+K FZf5qm4G6xPvQ5lSoHtnlgLtCaZ7mUm6k86QdLUMTrmXmUy5L+92W+J2dFOq rkimIMRhKENBJ9sLvdT90aIuXYXMdW8RaSCT60KhHdW0Y7T7HJCl69AefkgA aI86xEs4bEOH626F5x4Z/JCoewR+ALTv3LbFa68s9hAv9ahN6jEbcHsmTrZf xPl2UidzWV8qw6lA9e3c2178mguCOj9BI8PtPZGi/hjk9tFUyUSmZCpHOpMn nbuMOkD2ZqsqYx0WryuWqthuf9Jm9wQVydhRRTLDDksQIw5suo/hPu0TjuNd m4ovbUMp917c8rELTbSEatoB7foKGTuqjUytrkKGoP2GsitfXR5rP18qny+S LVyRDWcpCgPsZ3PEMyTZnioYSxSMx/LJTam9IZx2f5sHFzbWeGxwclzzcr7d zzQssBDEQpZh4cpYTbR5SK6VvOqZEsXPPWAr9JWCSbcT7MEyltcDTF25kIFw zKMjJwGgzlwG1ganArAK/xKrw1li2o9WPfP0wqosX6FYGMS6K7ytEt4py7VG sAAtXtgr1tG9gkFOEuzkDMOAY1z53pLPicmLCzgQWtfMswGHBo8wXwKipk8j cw30LpFBX86QU2TykoT8pQMOgeVzenP0tQZzGF9EPP9X8SuPzr5Rg2R7Xcft euJ2POlS8yA14xLD7Q30ZKm02/VoxzE4j6YE0qGd4XZS6YH82T2G9f4V0Y4D oZ0EQvufBmb/jGM5tK/A7cOmytoJ10cfohh7hP6lxW7MeHrOJuOUu66vuzm6 f66bQ9ZEX/cuVPS+1DFqke7PCPivmIQ3DXhLhjdItrebiY5hrQHOdYBnP7gM 2hlB1qCLNoNJV/Vop91O0I7cjug+Tf7G9AB1ksHBonvnRANKto8boL1tpFY3 U+pLdntPZ7vo/df2rPnhfuvXj338fzatfvWY6Neuqt94273j5/g71Lx9+7vx 2O1Z4PbjH4LbK11WN7r8qtf535p9PmrBbu+PshmO5YwkcEeTuWNpvOmM9Z9n vf3fOT98eunVgnNvNMZ/PFcumbsumbshnauSzd2WQ2irFdq7CsNkuwoF7fYG 1fwDFGWZDgVJjsi69Tj3TvTOTLwTut8kiXfs5HLcwaZYOlckncN9ZmYvi2cv iWdzRZockSZbpMkUzaSLUK+PFOF0kmA6UTAVL5iK40/FIrRDTETxxyP5ncHC wKMOXoc2lXnKxyL5BPAQoPrEs3YsvTeHy6jEO75ZdShDWkZqZnR3qpqgO2nq 3mNrUC1jmHI34fYxI7dHYbeTZjKsIplc2bwu2T4Yq+8hk+ykvONDdX08f9CO RnucEdrB55EHefGHbUiE7Oef2qGOgEcO2ZAAtIcd4LvtlgPaSfo9BdBOud0m 8ziHrpMhbocodOIUO3PKznGuuXOrPHnV3oL7PoJ6nds7QoTd4cLeKNFArHg4 STyeJpnMlMzkSObypPOXZT2Zqspo+8Vy+VKlzu2oTka11Kh+0mL7pJ3h9kGH JYghTHeid0J3HItj1BRL4+2bivO2LvZTrdoXSZq9naqQedRskGynKmRuqfRo L5ejCcXwHanz+dIUT4e5bNFMhggl25MFYwmCsVj+aCR3ANwezGnzt37gvfGu +4Yzdqtewrf7mcaycgM1gSotUJD4CuzEdCzhljHJiLEtbPE5BmzlxIkT5BLD 5H6aq5dgDZM9Bt/SDdbjLOQTOrK2znwVLA8LJCQk9OPBfAtg5+kTFRISYq46 xdyamQN2yfKb9UwD3ix4H8k8SrDnFrL38BT5UwXrioNcqljYBBy+yQXgvTD5 lpm8sIJNwzlkbpr88YV1hsn+kz9nsORPP0XeJlghk+jMbZEFTL53ZFVwov7e 39GVjj9+8afKu03MyvZbdZ3gdoT2B713m1DbdiINukgGub1zvLELo524vXfG AO0DjLlThx9itz82rNAmeeMn3WP/CYG6tRsXt68c7VN6tA/o0W7s9i+N3T40 9zcSw9r/fj60kyC/mnY7o05+kHmnKt1qBk2laiblPkHRvWvcyO0oqBmsyFn9 Xwp4WN4y2jtH9MGEeucIu0Jm5W6n0U6S9ky302gn0dynd3uzMdpZbtehHbm9 3cjtbVSy/WW63efEDvH7r+22/uXB9T9w+OjVo+u+d0b6NrjdS+f2SHD7rvdS wO2HwO0fEbfXuK/qcfnBsNv32/1XdYDbI63B7cMJ3InE9Q+Tf/unlB//LeOH Y1E/iT/8y9n0NzTF4tlyyew1iaZSOnuTcvvcHflctXzurkJ7T6llop2IXYf2 +UYUQ9XqlIjNN3Pt5x/o9F5rMvdO9C6dvybTluPOk7hL5NwV6Vwh0F2iuSTW 5Ik1F0Uz2aLpLBFq95EmnEoRTiULphIFk/ECVIocw5+I5o9jt49F8Ecj+AVu ikI3RdwpuxJPOfwKgB/Hhid6r2TofShGl3gnN6teEpWFqm/GqPV0j7fvvKrS 1ii0QPcHqrlGTHfUXsau7PLmznoHUi1TVkSn3DeVlehLZfS3phq7nW4CGbgZ dYAkRTKejvM5aILU1ih5wXk1qZCp9KHK2m/oGshcdBJedkYzKzEz7clHOWEH EdrB6nGHUIDYXXbJ3XfLyK9xB6kHXXfJPXbLqJoZXC2TfAS5Pe2YTQZyu002 cTspcT+N8u1XnTglLpxyV84NDx5OtvNrKbcLWrHbe8KF/ai4XTSWLJ5Mk8xk SmZzJPN50oeXZZm+mxeL5Ut6tyuR2+tVT1hu77dfGrBHbh+0x8EA/LAD6tA+ iuk+gno/jrc6Fudu7bvviJLtZGrUVkYPGeMKmZvKhUpFasBmdH1UJp8vls1f kc0XyLSXJGWBqvY46Uy6cDJVMJ4kGIsXjMbwRyK4A6GcniBOh8/HDd4bq902 nLZb9TIbRq1krCTD/OMf/9gcBZnFDCvhIqzq/ffft7wMXAhYxh69aeavcCDm Dgc2SvZw2X1jPQIMm5mZAYkZr5ZeWCKRALaNzwA8zvyVPvAf4wE/08Bjrpa0 lDQ+/D179jQ3NzMXg1/hQZNHwdxb2DfLJ9PkVQnrGJcdsAaT7z4cC5xAOBXM B5m7DecBjkWCB2vTROMr2TpzP5vxeIpF/T4ecJ5Zy5eUlFhYFWyXrBDWUIIH 8/yQzxLZN3OfZNZ12Usbw+Mzhsl2hHY8WWoP6SRzz8jtDe3jDzomSB9Inds1 LLG3DS60DdId3XEXdzNoZ4Ye8IZo7zODdr3YcQwgt+vy2Gy9m0A7WJ0dFtC+ YBbtLL2bKHc3mI/J6K8Amr/AzsPhGLu9Z4Kiuym3LxkH3eb97wh4k4b/SmXw DMNjtM+368MS2pnRNarV+3zUhNhXjnam21sHNEy0o2Q7w+0mku0st+MWqTq3 j1pwe03TwEtwu2ZiZNu6X4hWv73H5peHNvxAufr1E8I38KRLvz5v946v4++C sdvjdr0Lbs/Gbi85veq68+rb7p/UnV895PbDSc/vj/r/qj/Caix67Vz0b/4z 5kd/Svj+lyk/GA3/SYXr64t572sKONNFoukyyXSFZOY6uF06d0uP9rkaxdw9 xdx9FNo6pRZMzhR7ky6aUTSV2xWkOHZW2qJnG4zq3llF79dlJPGuq5mRoJoZ 3GeG9IecJVn3DNF0mmgqFegunEwUTCQIxuP44zH88Wjkc3D7CEQ4/7KrIttZ Ve0jiT1ll+2srPcTjUbw4FkAfK2f5JKbqi1EPBvPJw1nmsKkBd7qzniceM8T NSXKqXL3MkJ3O6A7umCB421g3KPay6iWYaXcU6iUe1nx1s4mfGvqkJHb8U2p nSV2ZQkOdJHMYJpiPhtNkJrg4jAQI+qKFLWGoqlRa/wEN70R2oOZaD9GoT31 OLrn1G2PwgPQjokee9Dm/B6J2y5Z2H4e/EwCxH4OGL9LGn6ABz9EErTjMHK7 De32/NOcwrOcImdOqQunwpVz05N/5zy/xptye5O/oDVI2BmK3D4QLRpJEE0k i6dTJbMZEm2O5GGetDjYfvyiYrGEdruCuP0J0+3dyO1LfXZLFN3t0Q/kZyx5 quUj6J1q2I56P461OFYWbumrcaS7PhpVyKj1FTKVysJIx6FCJUq2l8q1RTI0 R2q+FPUvyhYludrPpAkmkwXjiYLReP4IKm7n9odwugJt2n3W1nttvANut101 Pr3wor/gKx8nT540BxhW8tlcfTuojF4V0Q4AjCnM5xjAzpWIETbNgivTUSyL wlMWtGZhWDhFZND8hvXTuw1nD7ZIfjUHY/pqgn6WvghiUhMehFNKzjP9IPkL wkrOkuX0OylHgZUvux4LA3YPVmLO7WQwH2TttrmrKtZiJi9SXsGHwHyKmJl5 Ap/p7gBYlfGBwJUF8x2k31lzg66Nf8njbn3HzXutpGc7qpCpw2iv76pu6Klp 0rv9Hq6WqWsbaWgfA7Sj6JzArSAN3a5Du+H0qaTW/VHnyGMIc2jXx8TniKw6 uj8P2plh3EaGUvTfLLudlWYnJqfDGO1MvZtoMmPZ7TN/NqY7cbuO7p+vxO1s wC9bRfOiAW8xCd9KiqkgDOiuiyFLaNfHGPw7R8czVMgMMd0+y3C7xrTbccvT JhbamS1lGMn2el2yvZ6Bdrjy1bu9sX985oX/t16YEv7p+l+IVr211+aX6rVv 7+W9fVz0FnG7p+1vfR3/PWjLv0dsfzcW3L73PeT2Ex+VnFl9zXl1levH986v abywauL8D+cv/Mt8wGuPg1/9PPzfvoj+/p/ivz8U/OPCc7/XXFw3kScYvywY KxSOFYkmSkUz18S4VAbn26sN0D5Xq5irU8zV42hQaB8otU1KWuxUtKgG79qW ZTtWXbJHT7H1zug2Q92vijq6VCWoq+LVVbHqqhh1VbS6KlJVFaGqClMV+Nmm uNsnu6H5mJLP2V8+r670U1z3VbSESibj+JM6uhO3D4fxmwMEWU7KgVBeS4Aw /5wiC+t9JJw3GsHvCBZecVcQvc9hvQ/ixHuX7mbVQVzuPl8kQdU716QlsXZd V1VaTHd0FDq6DzbaU9UyOOXepUu5026fH9eVyjDd3mGfEkm5PSV0i75I5jxO tmdK26IUcHQ9uEImETV+FNMNZEKPKgpcDNF+DKN9tyLiII+IPWgf33mn3G+v MOaATcwBawh4xGWn3G2XNGwfN+6gNQDeY7c04ZB14mEUSYetU4zcfvGkTR5G O6psd+KU4CKZSlQkQ7ud3wBuDxC0BmO3RwoHY0WjCaLJZPFMmmQuQ7KQLSkK tB/Lki9elS0x3V6tfAJur6Pdbovy7d12S4TutNv7qED1MBAD9qimne7WTqZY 6rXPiN9GlbU3M9DOqJBZuIXK2g3QXiLTXpVpC2RzeZK5HPFsFrjdbjpVMJkk GE8QjMbxh6K4Q/im1M4A6xZfqzqvjbfOrT9lu2qkr/tFf8FXOAYGBiwbhtD9 V7/61SuGJGYih14bUzXLZtRNDjEewcHBK1yepGrNLf9MtSKwEnKYKx/08kTU xkldeoDxcnJyTD5FTh1dN25SsCQ5D29WaWkp/SCs8OnKbvuF82ABmfRlF/Pw f4XHSlb+CqOgBVYl1g16PSv5pNGLWXjr4ZNm7hzC47Bpss+wGDldzEOGPSTP wo6x8M88TPLZg1UZb2gTHhYOgTVe+FfX1PjjF38iE6Tq3E6jvRvcXv2gh5S4 32saQNE8APAAmTDcPkXfmroM2rHbdW0hH3eNYLqb1Du6DfNzEqj0HfdFfH60 05OianT9GOe+JGi37PYRFt0X9KXsltE+pnuWLpghiXpCd9Nun6XcTgKXu3/B dDul9/H/XCHaTQL+73UTqznDPyvg9WhnBYX2+Y7h+c4REubRjt3ezQgm4FeI dnryJtB768As7XaquL2PojtBO3zaTbqdhXYcCO11NNqJ21uH7rUMwlXwy3H7 Ifmqz9a/IX7/tU83vmW3/jeHBW+dwG53UfzGQ/2bC/a/9d/02/BPfx+z4/dJ e/4j88C7l4+vKj69usIJub3G85P6C2vafFfPe//LQsCP50N/sRD5i0exb/QE vJ7t/MloFm80hz+Syx+5JBguEI5cFU2UiKbLRJpr4tkbktlbstk7ON9OxG6I dhQPFHONSggtoTvIlkQriqYKkOrmrhu2KCcP7mXVvd+Rd11RVqXaFkTZp/g7 NmUrm7KUTZnKpgxFU5qyKUXZlKxoSlQMZkjncZMZbRZqDtkfL2kIk9WHSou9 lYlOdgln7XJdVWVe8lJPeYO/eCiMPxjKa/YXRJ+0vecj6gvhNfkLLp1TxJy0 LfGQDYfzwPbtQZTe24nekwRlPqqCC2pys2p/Guru3pahmCuRaCukV6Mx3WsU 2nqlBva/lSp0L8vf3NXgQG5QpVPuZcVbu1o2G5S4Dxu5vQG7PWQLKZLpylaV BdmhZHs6SraThu2VPqis/bYPQvtFjPZCjPY4QPt+hHZU0H5Q4ApoP4DQHnPQ xnO3xHWXLGQfL/qANUTgXh4Y3nWXNHQfN/aANUY7D9Aef9A6/pA1oTvtdlTc foxCOymPuaLLtAPar+PK9tvnedVelNsf+Ang4qg9GN2U2hctHI4TjSWKppLF mjTJfKakN1FeGWK3eFm6pHe7fOmW4one7aonLWrk9g7Uv32ph0H3AYz2HrtF iF47dAtqHw5keKr9I2og02U/WmdflLmFuh31AaOsnVEhUxgFaFctYLTPl+Bk +xXZXL5kLlc8m42mCUg6ZzedLJhMFIzH80dieEOR+KbUYJuOAOtmX6va8xur zq07pV7VfS3lRX/BVzhWSBEL6oM1AMmeWszbk8HK3puUIazkqSGAl9UjoPSD Dz4wt2+WX8scT83nrll73tTUBLqDfwF45Ien2KWszbH2HBYwFiO8nLwRzEsM UidjvBus3YNlaMZbZrY57tI7BqcdVgWnnciW2JVImLkkrXGTK/kAD3JxASuE kwbLwzrJ45az08yG5+aS6rAGWA88y7I97CT5BJJ9NnexBi8nVyisswGPk10l 7yM9gvF41ks5eryEL6/xIEUyN++1UW5Hbds77+jy7YTuTLffbx6qax1BdO8E t0/qWsqgbpAtqMP2itCO5k7VhS73/sQY7cTtOJBaMeD/aALtMytDu+ZLFLNf Ds1+OaTPtxvR3YjrdGGMOaiPPzbtdkJ3qrqGMcWqiRJ3nG8f0EU/mZhp6oue KfxHB73eP2fQfaVuZwCe3Mf6d+tC8/yAx2FC7IzoGFnQoZ0ZJpLt3aYCHkfF M7pgV8iYaiaJU+7E7YjuhmhHd3BAkCIZoDs96RLdVUZfIUOhfYygvc4U2l+O 2+GqfMvaX3y24Q3RH34u/uSd/dxfHhH8Cufb33IT/sBd9Rtv+9/4bfpt2Lbf R29Hbs848F7e0T8UnV4Fbr957uNqj0/qvNc0+a4d9v11f9jagWjOYBy3Jsg6 /ez6oTTeYAZvMJs/eJE/mCcYvCwYvSKaLBbNlIo0FWLNdbHmhkRzS6K5I5u9 J5utlc/VyfVoB7E/UBK0o2hSzjWj0Lao5ltVxO0kyrIdC1IddXpHde9V2XZV WXYpIY5lSXZN+arBUgV1syrVZ0YyXyqZL5bMX5XMo5oZMamZmb0o0mSRO1WF 06hgBolrIp7fGS6q8Zfc9ZNcdlfEnrKLOWVb5C676i7LdVFkOCl7g3k9Qbze YG6VlxgwX+wuGwoDvfOI3iu95Zo4vjaRPxCNJlftiKNqZkpDbdszwHvSuQpp QaRdVxGiO7ru0N+jiqtlSMr9qmHK3bCljN7t7fYpEVupZjKBm8k0qSk+m+Yv Usn2S55qqkLmuP1dX9T1MRe3amehPfkYKmj32CMLP8CLPUSl2X32CKL2W6M4 YO20U35upzRkHzcaZ93B7cH7eO67pKD3eBzgdkB78mHr1CM26UcR2rOOk0w7 uN0m/7RNAaY7viOVe92Nd9ODcvu9C/w6H36jn6A1UNARLOyNEA7FCEfjhZNJ opkU8Vy6uCdeXhlsu5gnWQK3F0qXimWU26sUT+4on9Rgtz9QPWlWP2m1XWq3 XWLSvd9O7/Yuu8VuXfTYU4DHnWRQD5kOdC/q9dzNfVUO1CxLpEKmRl8hUxjt OHQF0K5YKMNoL0bJ9rkC6VyeZPYiSrbPpgt7Y0V5nsrJBMFYHG8kmjcUgW5K 7Qmyafe3brqw8Z7nhpsu69w+448ODb3QL/gKx7LJ9hUOAqpnegnYCXRq0nKg PiaAwVoAKstbf6ZNmxvGnVLIMJbbAB7kBJbqhvFuwFEwwQ8HQi/j6ekJT5Hz Zsxa8u6Y4ysZ8Czz6iYxMdFklvgV3R9ELJxD5qbpXYKXnDp1yvhKYdmVMF+y wg8YnGE65/90uVskyN8j6F/JaSS7vezLyQUR828W9CBXHORtZY5lP37mxj/k 1lRUJKNzu266JbNuv988WNsyDAE4QdlFTHed26ea+2b196Ky0K6fgMkA7QaA B1uOP9G1T2Gi/XNmzrl34o9E7/26xo/PjPbZv6LQ/hWjnRmG+XbC9QVLhTEg dmaYLJhhuR2n8f9GF9tTQe8qTfeZP+M5Vf/YO2Xgdgbdn9ntOJD5CeBJGbwl wz874FdueNJrCE2qi6bZNYX2UcMgbh+d76JiGbSzghTAd1hCO+V2OuXe0q+h 3d5kwu0GdDeVbGe7Hc01/HLdXpGfuW3VDz7b8Kbw499K1ujcLvyVE/f7njZf 9xL/0MvuN36O2O07fp+45z/SD7x/8fAHhSf+UOa06sa51XfcP671WtPou7Yt YG1X6IbeKOs7/lapp9f3J/P6Unl96by+TF5fDr8/lz+ULxgrFE0ViWZKRJpy lHLXVEo0NyWa21JNtVRTI9XUymbr5bMstDfp0c4MJuBx2YxDbPDmwhTHlIjN jcV2jUW2KPFOV7zfoqdnMqC7tkgyd0UyWyCezUd3qs5cFE3niKayRJO4DchE Cmq7PYaLHEZi+MNR/KEI/mA475a3BJQedcIW4tDObXe9Rd1BXBI3zoujTyDY D4byhsN4d30kCWfs0Bys8fy5REHpBdXNIKU2G90PWxyMinZmiyWz5dL8cFTr PnVbDnTXNFD3qA4+sC/MpapldCl3fakM7fayy1u6ah2R29vA7Vuom1LJnZKl +I7UbOkcTrb3RInaw0WJTupr3qIbXvwKD/75g7Y02i/sl9F3oQLaSZo9cC8f iB60lxu53zpyn7XHLvHxz1TwKwCeoB1Vy+zlue2Soqw7DtrtvnvFfvvE/vsk AfslXnvl53arXfeo3fao3feqPfaqPfepvQ7Y+hy08z1k53fYLuCwXeAR+6yz 8hxnxY3zkrZAQVeosD9SOBwtHI8TTiWKZlNEC+niDE/HxYuSJdrtRbKlMvnS NfmTm/IntxVPapRPalVPGlDKfalZvWRMd1Ih04O53mm32IH/ZRie6vqo69Z+ LXtzb6U9a5alhVvK7gJ1eZzDQgVC+0IJuh0Vof2KdC5fMgsXgDni2UyhJk0w kyJIcLaFS7/RGN4IKpLh9odyugKt2/xQM5kajw2Vzus8dor//Je/vtAv+ArH 36vlyHMMEOZKth4UFFRWVvaHP/zhJewS0Bc2Z/y4MYZ/ggewFv41Xp4431j7 Kz8KWBKOmpW9F4lEzF+BoKwTCPtvcn9gPeTtXuHWLewtrIScItbOmBtw6laS r4bdJu8y/AubmJ6efo59ewWfAVgD/CvCg/UsKcWBZy3sBnlb/4AH0/DLHoLx +IdMmaovkqGnScVoZ5bKELffJ90gwe24B7We7t2Tjaip9TS4vXVgjoTuplQd 2onbzaMdxdgSiS48MVPPxH/iMEA77XYSfVN/pBrIPCva5xhon8Nh6HZUzb6g C1NoZ4ldH0Z0Z7sdXw6QghkcdHNI4/gzPZuqrmBGfy2DW7s/n971FfL/KMDr 0c4MDPgOk2jXRdcYDnD7GIpuFMujnSC/kwTuSGMK7QZux2hHYSLZbpRyJ8l2 I7SPEbTXUWgfZrq9pmngJbjd6+i2bWt/xnY7//VzG78ObvflfcNP/kNweyjl 9neJ2y8f+6D49IfXXVbfclt97/wnD3zWtvqvbQted9N7feKJtV2x1l0JnO5k bncarzuD15PF77/IH84XjheIpq+KNMUiTRkj5V7FoPt9qaZONtsgn22EUOjF 3oLDSO/wIAC+65ZtYZpjY4V9iO+WW/mk6F2pb/ZOd5shFe+MxLsW0117RaIt EM/li2dRkxmxJgc1mZlCdBdhugtH8X2Fw7H8oWj+YCR/IJzXH8rrDebV+woq PcXZznL3A46FrtLOQG5nAIrrnkj1RW6ygRDeUBivwE1xyRUXvSfwG0JkeefV XQnS2RxRfZy8IMhuolAyWybNDbXVVMlHKuVzdcqJ+0pS6F6qq5YZ7HAsvLx1 ftJxsGsz+mFi02Dn5sJLW+dHHecHHFLit4HbC9O3DN6xA7cXJmwavKpGRTI5 qtJAO22mtD1anuep7owQ3fSVJp9VVnmjro/BR5XZZwW5hmh33a0gjWJiDtg4 47x6xD5rCPedSOwXdglA75E48R6NI2a/9cntKgL44L08791i3z2i0ztUZ3aq QvcLwg8KIw4Kow4JU4/x8k6iTPvl0zaFZzhFTpxSF+41V16lG6/Kg3fbk1d9 nnfPm3/VVVriLs10VkWetM9ytS31Vo7GCCdihTMJIm2yqMjHbjRJtpgjwfl2 CeX2UtmTCvmTG/InpFTmPk65N6iWmlRLLTq6d+rpjvPqOre34yB677TTz69E Gsg02T56YJsesZVCuy7Z3l2oLgO0X1MslMsXSuULxaj3I0L7ZcncJZRs12Sj ZLsmVTCTLEhwsh2P441G84YjuYPhnN5g685A6xY/6wbs9utOa+HEvtBv98qH SeZZGCsxGCzT2NgYGBhoYWEw1VNTJTrGLzl9+vQz7SEZGzZsgB141leZq04B vz3T2uC44AxYvip5jt0DkTJ/hfeOdQItFAUBVuHQnmmjJt8+Qlk4uqeGxfDm Buzzs37GEvGwsEsWtkufAXK8u3fvZj5LIL3y0inYc9A7fAJNfiqWHfTl0ksb eLqlFpbbGWjvJin3msa++02DVLJdN3cMBHF7Q9ckQnvvTEufRud2fS+RdtD7 4MLyaB9luF3HS93ETFTKHYmdgfZewylTDQG/YrTTbp/T/Yrdjqy+YEB3lsYn Fk2HycQ7a5ImHH8b0v6VDhNon0XV+P0zQPcvDG9T/dxA7xNk2tlnAryJfpIs wJs1/N8D8Fjsj9ho10XnyMOusYddQHRzaCcxjqIbgtI7ZXgTaDdyuzHddW6f M+F2k2hn0B0VydDJdgO0j+rdTtDeAle+g3Rx+0tw+6aPfrht/RvbN7wp+vi3 4k9+C24/LPjVKat/dub+G3F7kOgbwapXw7b8Ogq5/b20/ailzKWjH1w9+UGF 86qbrqvvenzccGFts/+6a+5r4o+uaY+yaouxbouzbkuwaU+26UjjdGdyB3L4 I5eEEwXCmSsiTZFIUyrSlIv1KfdbUs0dqeauVHMP071epmmQaYDuTYq5ZoXe 7abiZr5dSZZ9/12VthVFIy561+u9QVf0ztQ7mVyVJN5LJPNFknlMd1QzkyfW z6maLppNFc4m49lU4wXTuKn7eBS6RxU0PoDp3h3EBa7fvyA4s3dz0BG7lNOK yy7Sdn8uxDUPceRx26tusv4QbkuAsNBNceMCKpvpixKV+qhuBCnnskVtiZL8 QLuRS2JNqbQsVtVWqBq+Lod9nmtWIbp326bEbzWRcqduTd2GUu46t6NJlxpt 5+ts0U2ppEjGexOdbMcN24XBJ+xu+1ANZBDazwLaBQTtSRjtqDbmoE3gPv7x 7arAPdzwvda+u3lnt8u9dgngZwB8pC6i9llBOO+QQbjslIHew/dxA/YKGEUy 1ulHrTOPWWcft7l4wga5/RTl9mInTvk5HqqQcefd8kBor/Hi1V7gN/jym/35 7UGC7jBBU7C42l+W6Oxw+bxtR4S0O1J6zc/2cab4cbbkca5kMV+yiN3+pET2 pFz+pFL+pEr+5A5Oud9H3SCXHujo3qanO+J6r53e7SD2Nhx0n/Y2qoHMY4z2 R/W2FembesvtHt3FsyzdUfVcsS2Ld1i4riAVMgsl8oWrqPcjhfZcuOgTa3Cy XZMimE4SXDmvaAoWjUbxhqkOkNYd/lbNvlb1Xhvvuq+vOLvWfcf/CLcPDg4y mQHIsey6X/7yl5s3bzZ+UIgH/QidZszOzja3qqdm0p7G63++AcfCOjp6wDHC Ppt8Cpxm8jJhenra5N6y1kP/CluHA7R8LC/nLwj0IASlNwrXNeZOAj3gfWS5 l14PeX/htJC33mTHe5MPrmRsxsPkU+QSwOSFABwOXE0wl3xq9Ock+NVCst3C eL5XwS695G90Z9/IzXuoSAbQToJRJEO5/W5DLwADud0Q7RCoISSq7EUpR+AN BAvtqMUf1eUPSPYYwrTYTaBdL8zusSeg9166OSRV5W6Adkb8CRWKY7pTYreM dnbKHU+NuvC3UYiHer0bJ9tZXJ9cMnC7cf0MqxcNrp/R0505oSoryISqdPQa 0Z0N+BUZ3mQreAPAL5OEfy7AM3sKQVClU4ZuR2hnBga8gdh1bu82jjEqD28Z 7Sy6M9A+R9e349mgNHApasntpLEMqhZDF7BMt2O0jxqgneH2muaBl+D2nq7O TWt/AW6XfvzrT9e8tn3D66p1vzlq/aOTVv96RvwmcjsfuT1C+s1Ih9eidvxH AjX10vt5Rz4oPP5ByekPbp5bXe3xSa3XJ42+az22rWoJ29gcYdUSZdUSa90S b92aaNOeYtOdZtOfxRnJ5U/mC2YKRZqrIk2JYcqdVMvo6D5TK52pl808QHTX NMlnm+VI7y0KPddbUXRUqZMiHRvKbcmvVLQota3KB+V2JvROd5thJt7LpYxy d0J3kTZXpM1Bd6pqM0RzqcK5ZOEsnk11Ks6A7iTr3hXE7Qjgtvlzy9zFXgcd Ms7Iw46pk08pqjyF8GC5uzhCp/c7FyQk8T4Vy68PkV32Vk+lCzsSJbHuDnXJ 8qliSWagbTvQvVI+dU853aCa71APNtgX5m1BKfd2KuVOlcrQLWUGGW4nzWSC N89fw0UyHo7aTGlHtDzXQ90eLkpyUpd7ici9qCFHFQjtRxHaU49zIg6hu1DD DvDILaguO6Xh+6zD9lqf2S533iH1340AH7HXikQk/tdjp8hph8x1p9R3tyB0 HyfugFX8AevEQ1jsh63TjlhnHLPOOm6dc8Im96TNJUrsNlfPoh4yFee4lRjt t/Vo5zX48Jv8+K0Bgs4QQW+4YDBSOBotnIwV9kZKynzU5w5/ejdYRbn9ouQx 5XbpEnH7dV2pTLViqUaJZk01ojtSepcdVSTDdLuu2SPV9bHZlkY7uRc1PWwr uhcV0H4Vo71SQVfILODZUbUFUox2iQYn2zUZVLJ9OpE/EcePO60eiSSdZKy7 A63a/ayafDbWoSaQ68vPrHX7n+F2ln/MqZVGiLHEwHWANxDyhx9+yFwP/AoP PjWTpSSsfaElOnfu3DGX5oV9M1fHToYxaOElJiUJhwBXAXBaHuBBOxZ+MHfs /0MGHCPspDHLmQMOGU7UL/FgPVVeXj6IB/zwfEcKZwlOHfxreR/MDeMLTHLO mbv61OjKEZZhfuroS06Tl6vMVVn+rJq7Anr5dTJ4uqUWkmzH+XZwu0G+HdBO ub15yBDtw6SXO6qT6Zogd6c292pYaG+lZlBdQIES76TQnQF4hthNol1Hd5J4 /89e3F6mb+q/+qb/qAu220n0T/95YIb0kPnLMmg3itEFRjz8m8kiGabY6WC5 nQl7Y7ePovqZv9E3q9IN3plBUu6k1r2P6jPzR93Fi3nAY8Pr+r0/m9tfKOA7 MNq7cHQyQnfvw8POUSO34+gex2FB7Di66KABjyvhjdFO090Q7SbcbgHtyO0k 2d5JzZHaoKO7odv1aKfc3tSPAtz+Its7p0f5b16D3C764Gd7PvrmvrX/Jvvo Z8fWfPO44I3T0rfB7T68bwQJvxku/WaM8ruRO9CUqSn73s88+H7ukfcLjr9f fOqDSpePbrutrvf8IHjXquueaxtDNjSGWzVGWjVGWzfFWbck2LQn2fSk2vRn cEZyuBO5vOnL/JkrgpkiIaJ7uRjTXQJ0n6mSzNyWzlRLp2uk0/el07UyoLvm gZzQXdOCYrZVPteqQGK/pb6cZl+cbT/XppxrU+lCaQB4Su+bkN4bVezEO5lf lW7wXqan+zy6U5XQXajNEs4Bw9LQhKrkTtXxOMFoLH84mj+EC2b6Qnk9wbzO QJRgb/XnNvty00/Lk04pClzEaaflhS6SS87SFl9OmRvSe5Gb7IGf4LIrSryP RPJ6I0VJLvbtcdLxDGG+v7ohWTZxVZIRYNtaoBq8Lh+4IUfV+524WuaBA51y H9CVyph1u//m+XJFYZjDQLIcJdudHbpwhUziWWWlroFMHka79345oD3sgMB9 twzQHrSP77RT7o1T6247xUc/Vfnv5oTttSIRjsNvF/fsdpnTdtmp7YqQPZzz u0Reu0Teu0UJB62SDlmf2alygtilcoHYraZq2veqY46IIw9Loo9Ick4JKly5 N9x5Ve6oPOYuKo/h1QHafQna+R3Bgp4wQX+EcChKOBYjnIoTziYIr3rbjsRL WiMVJf52/Ylykm9fKpAsXcVuL5M9uYZLZarkS7cVS3cVS/eM6N5quwh077TT RwfD7U3I6kjsEI0E7Wp6iqXhcturcZsQ2hMcFm4omRUyKNleKNVekszlUhUy mkzhTDp8WgQzSfzJeP5ELC/8EFzlcQZCbVCRTIBVq69V44WNtec33HZbX3Zm ret20Yv7dq9wrDyFuAEPUvrLegpcBHgzKWRQ35kzZ4wfDwgIIMSC1y6b8jU3 AvCgfzVej2VowbPMPxCwxsrrOsgVyisY9vSJhRMCBw6gNd4r2Kjxg/CISbvC hcBK9sHCgdDrN36QkJJ5MWJyMfKmJyUlmXvqFXzsllPrJo8aTtGHeNDvFGsZ 5joJsOkFSB6b+QGAzxI5+TTUyTKsDznr+gv2n1x6MP80w7oKIxtlfiSMD9bc B4bk/F/a+OJPf0bF7XiaVJbbdWjv0budSrYP6wNV7aJZU7HbMd1RSxktRCsd NNqZQQMewGYx006jneozg6N38vM+Zkd3A8Dr0U4FvsdzEOfeV4j2ESO3j0E8 IsF2OxPtNN1NhkHKnVGBw+wzY+x2UjND6K4DvAHdVwp4E4Zfnu7GgLdk+BUA nkY7K8jj3WMQj7pQmEI7HRMPe8YXeiygXa93FJ2j6G5W42aS2O1aVr6dgfZZ lGzHbjeLdlLZzkA7TXed20fxl2WotkWXbG8eQMn2Ztrt8y/uC+5yYCu4XfLx rz99/5t7PvwGuH3PR99yWPXD44JfOPF+4GHz9Qu8bwQIvxEq+6do5fcS7P8l fsc7SXvfSz/wXs7h9/OPvX/15AfXnD665/K7iE/fLnVefd93TV3QhvrQjfUR VvVRVg9irFvibDoSbXpSbAbSOCOZnIkc7lQeb+oyb6qQN13Eny4RzpShdu7T lZLpm5LpKsn0belUtXQK011TJ9PQdG8Gtys0rXJNq+LmZdviLPu+GjVGu3Ku nRE04Nuo3DtEQ6ltcoTjrUu6WVZr9Y0iqcT7dVbNDKL7PKb7XI5QkyWcyRBO oYkvhU1RknI/RZmvvPSCvMRbXuwlv+opv+IhK3STFbjK8s9JQemVHoJbnvzU 0/KEE4pr7oIrLqKQI+o8J0mTD6fEVRR2TF1zQVjlLck9p2wNFo9G8694KSsC FANJglwfVXGoaqRAkuFv25CrHLgmn7qvRPeodtmi3jIj9gPMlDuzFSS4vRe7 vcG2q8KuNNaBKpLJlHbEKLLdVG1hopATdlXe/FwXA7SnHKPQHotvQXXZKQ3Y w/XdzTuzXea5UxCyxyoUR9geK99dXIhjn6o8dwoB7a47pCe3q3x2CwP2CAL3 CoL3CVJIjv2odRYqjLHOPWFNCmMKzthcOWtT5GSTekKUflJU6Czwx3eh5pyV Zp6RlbmJ6n34jbg8pi2AjzLtCO2CIZxsn4gVTscLr3jZDsVKHqaJHqWLR5Ok 14NtS4PsBtPk4PYnV6VPiqXI7RU45X5DvgR0v2NMd/Vii3qxzZYKADypbKeS 7RTXqSBor8Vov0eVx6QFb8GZdiWqkKlgVMgUSufzJdo8cjuqiHxUZtJwsj2B P4mm7uLFnVINhdv0h1j3BFl1+Fu1+Fg1eG+457H+luu60tNrz20Xvrhv9wrH V093A2BAX6+99prJZ3ft2mX8YENDA9k6SKmiouLOnTtMfbEGkEmAByzDQt1H H30EL6dfC1pjrQd4ZnIH6OWfYvg994WD8YBTAbsEq6VPCCtF7+npCQsYn3ZY fmpqSqAb9ONwjCvZ7tPl0t2wfuNTAbvB1DgsAPsAJ8Tk2SaDfjtWctJghWR5 WBvznJjcPdYPzEGQDPsGK4F/yTpppdPHBa+lP9jkKMhLlv2Qk42yNg1nHt5N 8in9ioVbL/MbPTKuuVHTbFgk00G7HaH9AXb7g76apgEDsVOzpuI6GYbbH3RN NfVqmnsBPHNm0U7H0MM2JD1EPpR0HV1cCdrRnaqTn5PQNXVn1cyQ5pB6tKOs O5V4B7oTvZsFPE6AG7h97KEuHukD3G4sdstu19N9wUSYoztd7s5w+59QxTtd 9L5ywE+wAL9St/+9AN85/Mgk2rt0aO8Zf9xNhw7wJtDOCnNuJ2gnwWpKo0N7 x/A8q1QGF3oRtM82ozDrdn3bdl0HSGa+ndCd9H5kup1CezNC+90HvS/O7V98 8Wf7j18Htwve/9mu97+25w9f27/qG4dW/R/Fh6+dXPct5w1fd7f+ujf3G/6C bwSofx685Z1E9bfSHL6Xve1fs/a8denA21cOv1127NfVJ1+P2PTT6yffrvZc Xe39cY3/untB6++HbqyLQCn31ljrzgSb3mSbwTSb0QzOZDZ36iJ3Mo83mc+b LOBNXuVNFvMnywSTFcKp6+Kpm5LJKukkpvs0KnSXGdP9UqpdbblK06aAmCXJ 9naliYDHWxl3szYp6kvUSeGOt/LstPWK+ToFTrwb3axK18xckcwXiLX5qGbm VpjiVoiiwEeV5GpX7KOsD5XVBsvuB0pr/KXVvpLbPhJA+A0vyfXzkgpPcZm7 OP2MPOSoOviIOvmk3GWvg98h2zJXQYGz6JKT+JqboNJdAAuknVEUu0nyXND9 qkMRvLv+0oue6pEU4bVgWbyHuueiOM1ffS9L0V0q67upmG9XD9RT1TIk5V5a vLW7dfNAx+bC/K0Gbq+3TQnbQqZJTXF31GagZHt7uCjZWV16XlSOG8jkO3Fj dWi/sFfitlsWc9DaeSeqh8GFMbKz26U+OznBu61CcLjuEJ35TAZiP7tddvwz FYjdb48g7oAVSrAftEo+bJV62Dr9CK5jP2adA2LHVTEFp22unEFcL3HilLlw ys9xrrtybrpzqRw7Loy56ipNO6NMPqOq8hK3Bwq6QgR9qDxGMIIz7ZOA9jhh Z7i0zEc9nyJaSBM9TBc/yhQ/zhGPpcluhNkOZcifXMFuL5U9KUcp96Xr8iWg +y023RcfqBaB7s04WmxRtOIgYifJdiz2xw1qJtofYbT3ovIYxytRjgjtdLId V8jMX0ZonyM9ZLJQhQxKtqcKppP4UzjZPh7Ny3eV1Xht7Aux7gqwaiNFMuc3 3HVfV3VuXcmptS6f/W91O0jJpNwIqPz9/Wl/EmUxlwGDAVzPnj0LLqK9BDQy l60FWJJdhVeZTPnCg0A4ci1gvIC5A4RDoE8C7OTKjnulY1lsm9QpOSdn8Xim zcGxWDiBFjYKHGU+SG7IpYdJrMIy5O1bCWXh5MO5rcDj6VcuGaI/CbBOON6P 8IAHmW8xc//pZSxcLyw7vuLLjffqRY/OvlF0U6phsh2iur4LZ9qx2x8gt99j ur0NBUE7cTsulSGN3KebUJU70F1D0b1/vs1Myl1/lyJ9oyICPICQWdmuFzsL 7Uy9003d9X3dZ0h/SAO00zFkBvAE7TTd9WJnBXL73yaXSDwD3UH7JtFuju7M PjMm3E7HVwL88wQL8GYNzwD8MmgfRWhnRTf1w6NuKkyhHUc3CXNuN+5LgzvD A9ppt9N6B7cTtC/ndgbaDfPtrPtS0VemhXK7Ptn+4t1efjnT4ZPXN6/9hfC9 13YSt3/4NXD7bus3Nq1+1Wn9112tvn6e8w0v6Y8vOLwTtO0/YhxeTbP/ds6m bxds+07pju/c2PPd6gP/VLLnX2M3/6Te+c1bHqtve31S7be2OmDd3aB1tWHr GyM3tsZYdcVb9yXZDKXajKVzJrJQyn3iIncijzeRzxsv4I1f4Y0X8cdL+ePl gvFrwvFK0USVZOqOZJq6R9WA7pdSbHuqlQTtmnZ9zCKrGwKeyrfrSuKbFUD3 uUZFfbE6KczxVq5tV4VKa5x4p25Wlc6XSLqz5LejVSnn7R/EyR/EyAeSxNoM 4SwugZhOEkwmoNLl8Rj+KG4OORDG6w3hdQXxOgJJtQzngQ+n3psDXM93EiWc kMccU2Sellxz5SeekMefUOQ7oyoa0HuJuzTulO2DAFGtvzDmrF1tuORWiDjq nKojU5zmp76Vqmi9KpttRIXupZc2dzc66lLu+O5UcmvqiJHbK3CRTJK8M0aR 5aqq8pMmnFHie1GV6acFcccotLvuVvjtEwbhW1ADdnNJYQyIPWiXVfAuK+8d 3HPbRXu22h/9VLl3q/32LZsJ11GvmB2qsztVQftFMQd5gfvF2cetL54Arlsz itix2J2R2CsosXNue3JrvHj3SVUMatLOb8aFMfd8xDkuqkwXdV2AhKTZx3F5 jCZe2BUhLfdFaJ9Ppdz+MAu5fTFXsnRJciPctizM/kmR9AkulVkqly3RdGdk 3RdrVYtA9was90Y1AjwVNNfVKBrUerSD2GtUj+5SaC9PcFyoVKT6b0aZdnI7 ajFOthdI5y9JtLliMjvqbIZQQ9CezJ9O4E/F8SdieGOR3OFwm4DdG3uCrEiR zAPvDfc9N1S7r7vpsrb45Nozm6xf0Ld7hWNoaOj5TAKvYnmJjC1bthhvBR5c yQqZvwJEAf/0rwS0Fl4LAxZ4auoyBLb+5ptvmnzVtWvXyB6ac/Jz31P5kscW PEw+BafR5OGbHHBO4FSQc2LuhJv8wPD5fJMLA/LpcwsrNN6TZzrD9GSsTxmp e/Luww+wcjhY8lGBAZ9t4w8DXzfexIO12+RBy/tAv4T52mVP8ov/KuuH6SKZ us47dV3V9T2kkwxxOxiDgfYRGu0st5OuMs29CDzgdjrYgGehXR+P8NxMIMBF MpsqaSljAe04/osE0vukfj6mgek/Ub3QcYk7Dobb6dABfqVop92+SNOdrffn yLcz9U7TndUfkqCdnlC1j6V3RtuZlQP+Kxp+hYDvGH3cNfpsaCfRO4Gih8Qk /PyoB4UZtxsB3jTacXQMk5hntZRB+fb+2Vad2+m27UZNIHVoN3S78X2perc3 691+t6nvbmMffLnGXpjbM6IDHD95Xbz67U2rf0y7/cDafz7AfXOf1WtbPn71 3Mavuwn+zV31W2/7dwK3/j7a8aepdt/K3vTt/K3fKd7+nWu7v3t7/z+dk/28 8dj3apx/c9N9dZXXmls+a2/7r6sJWlcXsr4xfENr1IbO2I29CVZDydajaTbj GZzxLO54Dnc8lzuWxxvL540V8Mau8EaL+KMl/NEywViFYLxSOFklmrotmrkr mbmHmrqT9jL5SbY9txW6ghks9g6DmO1QzhKx03UyreRuVtKUBtOd6L1IXZJm V5ho31Wu0t6Xa2vkSO+k4r1S1p2vuBJuVxpp25CiIOXu83kiPKcqqnWfTRNq UPWyYAoXQozFoCl1BiN5/eH8nlBeVzCvPYjbGsBt8uM2+HDqvDn3znPuenBK XfhBh1SZp8TRRxXRxxRl5/iBh9WJJxVA+sRTihxnRZazsi+Ml+GiuOwtvxMq DjhtdzNGmnxBfS1R3lwom6pX0dUyJOWuc/unaOol4vZI1LwddW4vw3ekZkhj nRzawkTBJ+wqvRDaM3RoTzpi47pbHrqfd3632HmHlBTGeOwQBO6ygvDawT20 TQ2GP/mZwm2nNGAvqoSJOsBNQal1q3RywylOracc48UeEeaftkEt2fepweqx RyU5pwXl5zjXXDmVmOtVHpw7npy7XtzaC7x6H/4DXMfeHMBvDUR9Y7qCBd0h gr5QQUuwpMBTfclD3RIqmY5HNe3dkdIKX/VDLHYU6aKHmeJH2eLHF5HbFy+h VpDjObLycPuhi4qlUtkSoXsFaudO032xWrEIdL+vQnqvowGvXiRW13H9cb36 cR1Js6sotOOWjzTaF64pyqIdevJUKNOOb0edv4IqZObzJHMX8eyo+JoO3Y6a wp9O5E/H8ydj+eNR3JEIzlCYTeQxOboj1d+q2Wdjg9eGGo/1d9zW3XBeW3Ry 7WH5h8t/UV/kWHmynVCH+QggKisry3hJwPAQnkwK/gVErVq1aoWbYA5S8PCs r4JLCZOqtHCYsHsWNmSOoyscu/BgPrJyQi87ViheOCfGb5Pl3TD5ri3rUpOP s848vDv19fXMPTcu3THmNPPlsGOwe/DRMt4fUhLDXJj1YYCX0J98WBjODPN6 jdQIwVj2SOvxgB/IgZA/3Fi+OH1p3+g/fvFn0rm9qrYDBW4CidGOox51krlT T5pAotzgveZBBtppt4816G7Ka+wiLWU0LLQbAF43tb0ptGO34+gY0t24Oopm U+3GkzFZRjtxu6455BcI7dN/RqHBxe2zBjHEovvsl8NzXw5rv8R6/+uyaEdu f4TdToch4M2hnZ6JybLeabobN4eksu7Tf2KGCcP/DwC8vqUkiH1skQpTgLeM dn1MPu6bRP/2GgKejXZddI2jMEn3jhGm27XsOpn+OSrf3qthuh3HNERjz5Te 7bpmMg1mmkDSaNe5nUZ7H3y55h4uvaAv+Ge89x0+eZ2/+nfb1r+54w/f3P3B 1/Z9+LV91j8/wHnzsOBXmza8fWz9d89K3nRX/9bL7h3/Tb+Lcvxpit23shy/ nbfl21c++075zu/mffYvofY/qT/6vesuH113W33Da83NC2vv+K27F7iuPnh9 U9j6tsgNndEbe+I29idsHE62GkuzHsuwGcvijOVwR3O5o3m80cu8kQLeyBXe cBF/WEf3iUrhVJVw+o5oulo0XSOeqZXkJ6h7bioMblNt1WXdabqT9Duqn0Gh uztVR3eG3rWNCu0DRf8tJdH7rRxbbY1Me1fWXaS4EmNfGmc3UKhANTOk3L1Q Qsrdge7z2UJthlCbJpxLEWgSUQ3zRBx/NJY3HM0biOT1hfO6Q3mdQby2QF6z H7fRh1t/gVPrxak5z6n24Nxy59x05Vxx4h/ZsSniiDzjpNjvoDrgkDrhhCLk qDr+JMq93/YWFXtIkl1UFf6SWBdlUYg07ryqOEZWkyMZq1UO1NldubRloM3x SsHW0qKt3S2bkdtH8ZSpvXjSpTp1it/m7lxVqb9t4QW72iBJsrO6yF100VkU cEiB0L5PHn5IcHKH+sIekfNO+fldQred4jOfSV23C10+E4XstjrxmQqsjqHO ST6EoE6q1nE7R+scklcnheumUutZp0Uxx+SRRxVXXASI6+c597w4tRe4FNf9 EdfbggQdwagqpjtU0BcmHIgQDkcJx2JRNXt3hKTkgvqKl211oBLQ/ihV9AiV tYseZogB7Q+zxY9yxOim1Dzk9sXLkieFkvGL8htRdoNm6L54G9O9RsnWe73q MUSdLmpRUGLHaH9E0B5PoR3VxpTJU303IbSjhu3S+csI7dqL4jlAeyZCO7mg Q2jHyfZJXbJ9INQ64qi8ExXJbGy8gItkPNbdcl17zWnNlROfHPpf4naTMoHX Ap9M6hG8ZDLb+cqKtUm26Ofnt5KF6cECKgEYrIq15yyYGZfW0MlY2AdzijN5 ICxzGs+I9Bx/3SC3A5t71oJyyYBjN0b4c+yG5Y+KuaszFoPhQFhLwp6wzjDB OfMR4mTWMuSF9Gtpk5vbQ9g0gT0ZTk5OrAXori8mi6boDdF/o6E/NuTTbm67 MOBj/NK+0cPjM+D2G7Tbaztug9tr9W6no6axD7t9QCd2PdpptwNdmnA/GQto RwEiGtC24M6QeFamBZbYKbRjt2O6k7r3xa5x/VSqltFONXWfQpTV3ZHKCDbg /0KhXRcj2i9H578cXfirBbSbcLsR4I0rZIznUbUMeNNN3f8egDdpeCbgv4rh WYDvGsOXXfAvqn1aZAN+lC6GWRHamcEEvDm0s/pJGridojtVLdM2qNWjHUdz nzHaZ2i0I7cjuk88MOV2fed2RrKdBMvtL+4Lbrv658jtH78Dbv/sk1eR21d9 c6/Nm+D2Q/xfHhW+9eknPzjGfc1V+Wtwu6/DOxGbfpFs+60Mh2/nbkalMiU7 vnNG/PPb+//p/uF/Knf66Jrbx5Xn11R5r632XXc/YF1D0Pqm0PWt4Rs6ojZ0 x2zsi984mAh03zicajWcbjWSZTOSwxnO5Q5f4g1f5g0X8IYx3UdL+WPlgolr gkmg+03h1G3h1B1hXqyiq0IyfV88UyedaaCaQ1KJ9zajxLtO7wTw7MR7iy7x 3ihH8UDeX6Wsv6JODnG4naUuTrTtL5Frq6Ra0meGlLvj7u6Y7uL5XET3eUL3 ZAFqDkkyq9G8kUjeEJ6PqSeY2xGI2kJiunOA7vcx3e94cKrcOMknJJdO8yOO yJKPiw9s3+y139bvgMplr4MvGP6wOs9ZknRamX9OmuasuOItijijzPERR7mr LkfIWopk823qkjxULYNS7vju1JKrW7ubN1FuD9/Sfc2uJNohxXcTSbbf8pPG nVbmuogDD9No57vtkgXt4+/b5uC5U+S1S7h726YT21Ueu6RHPrOP2M/DULei oI6T6qwaGHKTabEzp5RRBlPpxkitn+dUuAmSTsnjTioq3IWNvtwWlF0XtDO4 3hsm7AsXDkSipjGjIPZ44XSCUJMonEsSzieL0t0cLnra98dKH6eLHmeIH2eK H2WhTDtC+0UJSbaTfjLgdhRXJZU03ZHb4V9E98VK+eJN+eItxSJKvCsX7yox 4FUA+Mes0BXGILFD3FH1oe4xjuhGVB3aQeypPptQWTuqkJHgChmJNkc8lyUi aJ/FPWQA7dNx/Cl9st26PwS5vcN/Y4vPxgfeG2p1RTIVZ9YUHPvkkOwf7Pbk 5GRz2GBqanJy8qmRiH6KB3N5Ho9n7lkydu7caXJDfniQNcCAn8kWYdDrpH8g C5ukLItPILG6ujrj3YDHWbvKWhssAOS+jgfsCSy8wjw5XDgwTxSs2XIa9qun 38kWV7KeFW7L3GLGp3HZHYOTDydw2SqpZddM/nxj/Dismb6agJVY/jy/Ypj0 NrnD9LPGF4zMnYStPDW85rVwUQMn4SV9mfEYHtfcuIs7QNa2V5HplgDtOrff ruui3V79oLemCbmdWdZO0M50O65pJ4XBy6DdoEvkoAHdmWin3a5r8I5vXNUD /nNLaJ+iZmLSVbmbBjxy+xwVerQzgwl4xn2p8Ktpt+OYWESFNCTMzcRkoqO7 odvNT6JqCHjNMwJ+yhLgWXr/6oDvGX/CCqbhuycWqRqYZ0S7MeB7GIA3gXZd dI6iYLm9fQgFcvvgMm5no13n9gcmmkAitBO302iHQGh/8W7v6eoibheufRfc /umGN3d9+M3dG38Obt/PefMg780jvNedNnx9x9ofnuV+30v9lo/DO0Fb/z3B 7nvpuMT98rbveMh+kvvpP1ft++7Noz8tOftR+bnVlZ5rbnmtueuz7r7fuvrA dY0h61vC1rdHbOiK3tAbu7E/fuNQ4sah5I2DqVaD6VaDmdaD2dZDFzlDl7hD l7nDhdzhq7zRYv5YqWCiQjB5XTh1A9E9N1LeWSKeqhZN1Yim74mna8XT9ZKZ BulMowzTXU7VzJjXu4aZfqez7s3yuSYcjfKu68rCRLv6AlVysENhrG3XFbn2 plRbKdVek2rLJVrGnarz+QZ01yYL5hIFs/H8mVj+ZBRvLALNjtoXwusORpMx tQVwb54X5jlLge6Bh9X+h9S3PVBGutCJX+FiU+Zsk3JclHRMFH9UfGaX/dnd 9vu2b/U7qAbAhxy1TTktjT6piHdS+R6RR5+Th7oos4OkzSDGDnVKwlaScqdL 3FMSKbej4vZyVCRz5YLd3QBJ8An7PBfxid2OsUcE5/fKAveLD39m77dXFHWA G7xfGHOQS5SefhRl1BOPcJOO8MIPihKP8kkrmPzTqBsMM6leiu8wrcA1MDfc ENRvYatXn+fUeHHue3NrL3DrfbgNvtxGP+5tb2G6kyLdSd0TguZR6g4X9oZT XB+MEg5HC0dihOPxwqlE4UyyaA4XsffFyDI8HEYSpI8yxNcCbO+F4YbtpKb9 IkL7Ywbal0DsVyi6L12VXge65+roXi5bLJMtVsgXr8sXb2C63wa9K1FUKx/f hVA9rtHFXZ3Y76A0+6Nbqoe3VGlBW/QtH0n3mGIZXBpcDbFHPWR0yXZtlmgO V8jMpgo0yfyZBFQhMx3Ln4jmjkVySLK9N9g6cA+nzW9j04WN9V6kk8zaSuc1 ZafXXD768cF/tNstIIfubU4XFfv6+lpY3iQgWb+a5A2IaDUerJsiyXB2diaL wc+wCU9Pz6eGPINHmKtirdkk5Cz8pYA+FnpVxkizMJY9q6xhmawmL3OYg04y w8XFsgvDIZisa2INwPCyq1rJgHeTfu++4uUJyYQbf/zgHWReFLDeJualGb1L 9OfKeG2wtyv8apD9YTb/t/A+wgebfIRezrjb0EHcfhNXyNyubafdfpvt9h5A O8T9lkEW2onbH+D69qbuaUtuN4V2HPOk7QyamAm5/ZEB2plu1wMe37U6TmZT xfOomkc7M9h6Z7ld+5eReRRGdP9y9CHEXw3c/uhvE49Nif0xSsWz47FBD0lL dNfNxzSMZ2IamP2LPszRXfcsBXhDw5sqg//jSqpojAH/HIYn/fZ7qElv2YDv mVjqnVzqmVykQgf4Z0K7PvFO9I4B3z3B7iTJcjsVI7hOBru9bUiLUu7UbL/o 1lRjt5Oydgrthm436ABJ3I7RznL7vaYB2u1wOQxfrhf07c5LCrNb/XPBqrfs 1/2SuH3Hhp/vsnpzj/Wb+zhvHuC+eWzjvzihljLf2Lz2pxdkP75g/07Apnci Pn0nYevPMjf/v5e2fue44GelO79btv/V64dfKzr9YanTR5Xun1SdX1N9Yd09 33V1/useBK1rDlnfFr6hM3JDT/TGvtiNAzjrPpC8cSDVqj/dqj/Tuj/Luv+i TX+ezdBlzsgV7mgRb6yEP4E6zAimrgtzI+QdV0VTVcKpWyjxTvQ+dU+E9F4n mW6QzDRKZ0DvrabKZlh6b5XPtipmWxkFMzg6byqL0mx7byjmauVz92R95Yri BNvkAPvbaaquy3LtNYm2Augu1pZItFfFONEqNiiY0WXdp2L441G8xgBhmYcU 6B55XF3sJqn2FhS5ihp8OLXenLvnbe7gahkQ73VXDqF7iZPNVbDxaeuM41y3 Par041ww/Mmd9nFHRWFHFIGHFW4H7UJOKvxOKgPOKBMvSKpzpSUXN6GUe9K2 kqKtd25u8Q/4LDJwc/d1RYqvbYqPbXe65OweB4jcUzYnd9mHHBCF7BfGHuQi n+uITnLp1P2kqGEjSqcjpeOMevZJfvwxccxRiR7qpF7djXMDJ9Vve1J59Rov LsvqTf685gBeSyCvNYjXFszrDBU0BErizjg0BkmHooWDMcLhWOFIrHAsDol9 MkEEYp9NFWnTRL1xshI/O7A6UjpENormGGVpgB1GO06z51FoX7yM0U7cjukO vy4VSa9HA92VQHeE9lIc5fLFa5juVQqk91uKx7chlI/vKB8D4KtVKO7oxA5R pXwIn4eYTYNX1bjlox7tC1dRA5lUb0dU1o5vR0Uzc2UK5wjaU/gziRTaUYWM rrKdtH8MOyJr9aWKZKpRJ5m1153WlJxac+nIxzdSfV7QF3yFgwkMltaYFKGX r6urM+buG2+8weVyh4eHQT5AFKaIMjMzWeCxwKGtW7fCGojhYW2VlZU0/F7B rCK7BM+uPPcLS8L+wB4yH4SdtLAGOA+wafpXctnCXB4WgOM1+VrYbdi9Fe7b smPZw4QzRs4SDPh52bWt8Lw9a2p92ZV8xRWSP74w35RX8KeO+TO8y7AM8/Nm /EZY+PDTC5CTCe+jubcYHif7Y/xhZn3M6AFvzUv7RldWN92oaWW7nUK7sdv7 Cd1RC/c2g8Bun2zsmoLQ0f3Z0E7THd2vitPveHaeR6bRjgJXYmC9Uw1nMDV1 k6iaRrsx4IdmdcFAOysQ2im30/FXulQGlM7Uu2m04yApelYTeJN6R5OoojtS qRhAercI+Nm/sJ5dCeB1v5pIwhsBnsQzA56aJOv/p+6+o9q49n2B559zzntv vfv+uPfdV25JdcqxHceOG6YL9U7Hdnpz4rj3inun995MdcEdd4PBYMD03pGE QAhMtdPOSbL8fnvvmdFoVMBOyL1vr+9iCSGNRm2tz/z4zd6soDOLUUDsk619 k216UwDwjOHpBphpoZ3jdlx4p+eT1Iw2m08Fb4Z27Pb6bip1qN4+xKAdu32w yry/3czt1NynZmin3Y6PbWm3lzLN7VUdJVXtf4zb0yNP+C97TeI0/wOX1z5C bn/jc96sLzxmfQV0F8xazX9ls8ufwe2B/P+yk//fV3jM3uk99/iKuSEfz4v8 bH7CZ2/tkv9LwscvZ3/z15z1i+5+8z9ubnztyo6l1/c43DngXHTIpeSoa9lx 14pTrlXBbrWhbg3h7k1R7q0xvHbc6N6eyGtL9mhL9WhL92g7zW/LQnTvBLqf FfTkCzWXRLqrkr4CSW6YZ8N5uf4WLrwTuhey9F4q1+Pae3+lsr8K9K4eqPEc AMDXWZTfmZln6ojwEeBJ50zjXZ9L6f7GSk9jhafxoaexVG0sURuLVcYi1cMc 78txvvlRfoWpPkjv1xRDlxVDF+TUgqo5cmMWtSRTf7JMnyjVxUmqg+XnAr3u HVF2hKLpZUjJvfq4kO6WESC6HxDc2y+4Q+i+R0joHrNesf9r3/gN8rNb+We2 IEvnbOInrxdFrpFFrJElbxTHrxOf3iKIWy+O3ihJ2adO2ylJ3Sm9eFwCJg/F LMcmJ0EyZzrS93zlAzgnPs/dguZUB6ITpZO+l/wdpJwuZLe+gNJPb5MfXeN7 bqfUvKgueoCh/vCIqOKoqPKYqOq4GKxeA1YPQlavD5Y0hEgaQyVNYZKWCGlb lKwjGkH94kHf+nBVX6JcmyTXJcv1KYqBFIUxTTGcrmiNx2I/5deTrB7PUo5n K5HScWkd0pOuvhbsP5GHJpCZOItzju6QuUBlgrj9AqJ75smV41dU41fUKJfx z2s03e94jt3xQrmLc8+bZBRyF+eO9+htQPuKzgu+ZvO0E7TnowlkrgT7Nad4 kg4ZtJxuusyYijpkDIm42I46ZMTaKFFvpLCLLrY3neKFrlNXoyYZXukBt8JA l9u7Xa7vdL68xTlvvWPdtaQZ+oJPOQiz2boAhxB4gFQ5hodbOuLBvgu5DdwF sMSWMFwuKysD3hBKMZiBC0VFRXAl+ZP9ou40e2ymhBPc65l5aZQzYGc495qy aA/XwOtgtVzPOU75g4ctN/5/PeAlfcb6twsZ8Lay3yamq8ry3yvs14TzFbAs uTN3h43DFwQ+xpwHhWuYr4/lR9TW4Qnswx/2vb6Fm9vxSql1gHachkJLt1e0 gNuBGcTtD2q62Gh/iNZdQm4nwaemGp4X7WaTQ1J0f4xmhgS6947RMUc77Xaz wruWntEduX0quht+7DT81Dn4E7i92/i3niEcS7o/pmJOdxTNyM9alt7tod1m nzyX7rjMbj3WAT9oOwTwFl00FsvLTgfwcPk7q4C3ZXgu2vs4edKmf8J2OysT kFb9OM5Ym/5F0M6dT5IC/Kgdt8NHjuN2mu520d6kQ/Mpmc8AidDObpKh3U7W SDW5vaK1vWdghr7dO7/5CNwucpiD3O76xidub3wGdPeY9aX7K9+4/M+1jv8V 3L7D7S97PP5yQPBf9nr/dZXkr/s9Xwn6cG74p+8lfvTv30pmpayam776/ex1 i25//Q+F3/6Pm5vfurZz6a29ywoPOhcfdi095lp+wvXRKdeaELe6MLfGCPeW KPe2GF5bHK8tgdeaxGtN8WhN9WjFdG/PFnTmCrrOCHrOCXox3XOClQ1npPrr Ev0Nqf6WlPTMmPR+X6YvRoV3oLu+XKGvwHp/pALA9wPgaz0HgOg2m2covZ9L 9b+Y4Y+q7o9ot+OSu7FYbbyP6G4sVLZeVpdleSUfDyhM8m7OUQ9dkg+dlw+d lRtzZYM5aJ2d/gyZPk2mT5bdPu6Zf8BbGy3ppRvdm4PpaSGPCyuPoLllcKM7 RffbgYKbewWJm5WHVvumbJZf3on8jCCN697ngNZbUSWcGJ70mSeul6RsEJNf s+hkbzKxnI4AQnpdTq1Rp2+S5G+nWtMpotNKZ5fTbwaa2tRRRf0ggnpBoDRn p/JaoIxVVBebF9Ul9SGShlBJQ5ikKULSHCFpiZS0Rknao6VdsfLuOHlPvLw3 Ud6frLhyzO/CEX9jumIwA6IczlK2JXleOel/I9i/J0VNcT1XiYhO6upnlGO4 ut57Wl0Q4k+4TsQ+wUY7ST7+6wVlb47n1YiA8csqhPbL5nS/5Tl203MMft72 QsGGH4XchiCxj97yvhy9ojPfB4n9uufjAs/hq57DdKUdzfqIJ5BJ2R+A0J4l H8qQGckZykkSQ4JkIE7SHyvWYbR3hws7w/htIfxmtNYScjtpkiFnpN7a7Xxt u/OFzc4565ZlpyXM0Bd8ymFZLQQgMfCYToH0NB6WtUfSacwMpg5M6r2Af3I9 3PHo0aPAZvhp/4HIbeyTGBQNpuK0i8C9yO7ZeTpWXwrOgLtbPWrg0B14Bpyz v6kZHVOW3P+YYf/wwVYd29YgHyf2NfCyw9vKfjg7n2rmPWLfbDce8GZxPlSc /xHAZ5XzV3L0Cnd8rlUP/rB6e//gYzyZTB1x+73SegjL7U023I6WaC+lVkpF aH9Yr2HQzqL7oEnsL4Z27HYS0DsNeG6xnaCduB1X3Z/Q07l/18paickq2qkM /tg5+GO38SeIfbezQ7udyc84lMnto52zEmvP41+7h0l+6bKN9ikAP2UMaF4d XIR/McCbZUrAN0+B9qdt+qft/ShY7ybAt/ezM0HS1j/eZgPw00E7TXeUJkgv fJZG6SYZE9ohtZ3DbLSzS+4Y7XpLtLPdTp+USp+RimeALKXdTortJrojt7do 9DM1CaTP0lf9HV+TOs9f6fLah66vf+z2xqfub3zGm/Wly/9ZvfTPa5f9eZPz n7e5/mU37y97xP+02/PtI16vrOP/n4Ner4R+/O4GFZrOPXHVgrTV72etXXRz 1T/c/vafLm+Zf2Xbkus7l9zd53T/kMuDI64Pj7tWnnStCnKtDXFrCHNrinBv jUZV95Y4XksCrzmJ1wx0T/Noy+B3ZPI7swVdeYKes4Le84JHGeIzwQrdZZHu qkh3TdwHer9J9C6l9M6h+0OidwXWuxLrXdVfwwI8R+91XmfT/Jrv41klq9SD VZ6DlZ7GcrrkztC9UGW8pzTeVhpvKsvSvS5F+iQf8S+K9WxKVw6elRtyZQPZ soFM6UCG9Nxhn5IQtT5B2hcr0URLuiPFHeHiVjItJKZ71TFRBdAdn6OKG2YQ 3SM3eJ7epqAK77sRpK/sAlQLLmFgX8DYPocL4+fxz31f+5ILWPVUztH9LUTm TC7uEJIqOhwXgM+v7aZq6df3UmeS3tpH9b2woC4iFfXSI6KyowTq4srj4nuH ZcnbvatPkaK6pC5EUh+KrN4YTls9StIaLW2LkbbHSTviZJ3xMrC6JkmhTVbo khV9qYr+dMVQhrIjSX3phP/jbOWDSJ+rQf43Qv170j0J0Umoijouqo+fpwvp +creLM+sYyu6Mz2R1S/Sbe2Wbj+vHM9X3ojw78zyGr9E0/0SRfex6zg3cAjg b3mNQm5SuRy1ovO8D9XQfg2j/Yp6+KJ6+IL68Xn18FnVcJ5iOEeRvC8AVdpx h4wxVTqYjNBuoNra8RwyEYB21CHTGsxvPMmrP85L3SIv2OVaesCVapLZ5Xx1 m/P5TU7Za5clJPwncvvt27c54LEU9Rt4kMtOTk4vv/wy/HxmXtD+/PPPn2Ea OeFhyZiUlBTOzsAD2cIe7AbsGNwG7mVfR2SzjMTIbpA9sXMv2MMpuQubmtJp QqFQp9P99sVn7Q94leCBZvQh7Ax46OmU9DmvJ7x67HtZ/UjYH5Z3gbeVeR3g Q0g+ITDgLRDiwdwS/kouwFsD3mZ/kGA/Oe8X7Op09gfu+Fz/WGE+ijM9ujUD jNvvUaHRXt5kcntFC8vtncTtpORO0F5eD2LRcehe1TIAQWvW/Ga0szJKJhUk dG+iW9wx2icJ2pvNl1KlAf8dB/AmtBsQ2ruMpnQP/TQl2im64xC3U700KD9b nYiGKJ3MDG+5QmsXifHnTtNyS9PM7wN4q4Z/YcC3IJZ/RxHdLtrN8wSH5faB yQ46LMCPswHPRbsNtxO0cwKAb+gZYdBeh91eY+F2QneMdn2l1WJ7oxnaGbeT 9Q4YtzNoR24nTTIVzRr90Ax9wX0cXpUsedvPadZK59c+cH39I9fXUcmdN+tz j1nfLPnzGoc/b3D681aXv2wV/e9t8jd2qt/e7zvnmN+stZLXdyv+/XPZgpgv 5iesej919fuZaxddWv1vV9a+lr958aWti6/tWHJrt8O9/Y7Fh5xLj7qUH3d9 dNK1JsitLtStMdy9OdK9OZrXHMNrjuM1Y7q3pqBumQ50jqqgO0fQkyfoPSuI ClTpLgh1F4W6S0Kk9yugd5HuurjvhoTS+12pvlBK0R03zJj0zgC+SmUCfJ3n QL0n4/az6f7N971R1b0GT01TpTZUqg3lqsGH6sEyNd0to0Yl93sq4x3kduN1 hfGawnhZXgb4DPFOOuBXGOXZmKxsTFQm7vVrjpMPoA5nKV5thyzGJG4PF1Mz uoN4T4geHcMzuh9BUyMWHxTGbPS8vFtyd5/gTqDgFqq9o6J3wR4K2CBtbHhk b5LMrdKQdZ7Mr5d24GCZX8bgJ/VzsjgpqaJfx9uM2uh5bqcUiE5q6fcOEKWL 7h8SFR8SlRymWl8w1MUE6o9OiKtOik1QD5ac3uNddFzeEE5bPRKsLqWsHgtW l4LVuxJl3UmynhS5Nk3Rl67Upyv7M5QDp5WGTKUxSzmcrWxN9kw/uCJ450fV iT49mV7j51VmyVcxUJ+AyxfpXKJyK8q/O9sLLbR0UWVqa2fRffwcznnljXBM 94sqpPdLiO5jl9VjV9VjoPcCHAz4Uch1Ku1nfK5FLx+5htdCBa6ToHna1cPn 1UNnVUMY7UNZissnfJvjlKhDJo3qkDGQE5OjqbZ2QHtHKL8NdcigYnvtcV7V Ud7elctK9ruammS2Op/d4LjTb0lBQcEMfcGnHIxn7AxLL4GLgD2lpaVs4ezZ s4fZGvwJVGPfZqTzgQygFOG95f4cOXKEuQwPytagVT3CDQjMSvGAXYVfOQcj 0xzsh4bLOjyImeFXwkL4lbkZU8vlNORMf1Eh9usJlzmvMHuDz37zqqMvPCyf oNXB2fOX8Xjex7J8i5nNMgxm45lzMMh+B9m7wT5Mg4fguH2ah11kB6b/XJgZ Jmd6oEkgS2rQ5O0mt9ffI2hHaUZup9EOxoAU4yncH+C12stqQSYI7dbcriOr pla1GSDVbQZMIHK6nz20U2K3gXYmpnndEd0nmjVW0G6xmup3uH/mu/b+73H/ zA9W0W4G+OGf7KCdcTuE2wnPAjxjdSZW0E5bnbUO1M9dLwj45zE8BnzHNLpo zACvnxrw+EDJlFb9U5Qp0P60Y4AK0vvAkw4W2jssAE8M36p/vmK7hdvhGBDT HaOdcnu7Lbf3U263RHujzWJ7GdUng6dtt+Z24/D4THy7+wcfg9tFy+Ytd3qN cfvHLLd/6/Dndc7/bb3w5Y2yt7Yo3tqhejvQB88GuWKur8f8z6Tzo7HbM1a9 nbFmUe66+WfXzz+3afHFrYuvblt8Y9fSO4HLSgPfKz7oVHbEqeK4c9VJl9pg 14ZQt6Zw96ZI96ZoXlMsryme15zIa8WN7h3p/M5Mfne2oCdHkHVUXpsm0p4X 6PKFJr1fIbV3ka5A3HdT0ndbYqJ7iQxV3a3pXU/K76gCr0SArwPAqxsKvS9k +KHzWInbccnd8EhtqFAZHqoMZSpDqWqQKbmb3K5Ebr8iN16UGy/IjOdlpXHq pP1+J7cFFIapG2PlhlSJIUnSHy/WxYo1MeLuKHFnhKQ9TNwSgmd0P4lndEd0 FwHd4zZ7FgRK7h9EfeP39guQ3vehzhkEeBTk7eu4Dl9A5/C3vgWsXxmZE5zf CKQaXcjZo3foQjpWuujEOj9G6SV0Of3hUXH5MXHFcXHFCQrqVQjqEoB6Lbv7 hYK6NHu/z4NgZWuMtC1W2h4nQ3X1BGz1RFlPsqw3Ra5JlWvT5fpM5UCW0pCt HMxRGXOBu6riKN9LQQHph1ZeCwnoOu3Vk+V1LSxg/CKuhF+kc0nN+BzlsmoS Z+IKlUmcrJMr0fWI7qZqPHH7OHE7OXH1vPL00ZXjF1QoF1VjkAuqMdD7FdC7 J8o1z1GSApT2PO9rUctHsNhRN/slLPZLuNierx46B88Czx6ThWZ9HMqQJe/x H0pFHTKDiVSHDGlr70Ft7UKC9pYgj4aTvLrjPNTZfsR9z0qH4n2kScalYIfz xc1Oeesdv/DymIlv9zTH9NVBhkAgAAsB0V/CnmeLlH15OtVU2MidO3d6enqe 2e5Ref3119kFdg78bDmQwIwM2P4LcPElWmXwZAV4MK8Y0J25TI4L4MIBPMhl eFIff/zx8z4cvHrgT/auwkZg561uijzBF3hSv33AOzLNl/TFXnbOY1k+feYa 2D55F9gPxNiYfLRgTGc/yRbIGw3v+HTcDvtG3m7O9bAF+BP5yfnTH+n2Wxy3 l5m7HZ+OyqAdux3P4o7c3vWwtqcc3F7HqbdTc2ug4mRLf1UL0jtaiQnrHQMe UETRfdpldjO006upUmnqnTCtyqSzs6AqESONyX4E+A7DD52DP9hye9cQCujd OuBpq3ebhwF8zzAKWciJWYnVptjZaDdbyPUPATy7CD8l4KcqwrdRpwabXmom oPc2IPqAPbRTMTztNMCFJx12AD8w2Yb0PtGKAD+OppF5TrQTtzf2wCeKdjs6 nBxi053qk8H/PzJHO1kjlXJ7eQNdbOegHbv9AeP2R2y3t8AXbaa+3ZoBcLtw 6Wxw+wpwu8vruFXm9U/dkdtXLfuHr13/ebXgtTXiN9dL39ose22n/OXdXu/s 9519dPncj8XvHV7x7heyBeEr38j+7F/Sv12YuXZxzvrFZzcuyt+86PK2xQU7 Ucm9ePe8+/sdHxxyRHQ/5lR10rk2yKUh1LUx3K0BL8bUHIu6ZVqTeG0pHh1p Hp0Z/O5MfmWCKPeYTJMn0J4V6M4JdIzeUeGdpffrYt1Ncd8dSd89UnVn6b2U 7pxhAE8q8I8Q3evuqs+n+cAFdB5rNZ5JsgrnES65V1BuN5SoDPeVhiLl4D0l cvstpfGG0lgAblcYL4Hb5eD2pjTFxVPexhxZaYTq4lGvpN2+hSdV946r9Jju vdHi7khRZ7ioLUzUHCJuOCWuJXQ/Lkrc6nXrgLTsiKgEF97vHyB6x9ImgMcd LExu4Rxd40suMNcDzu/sR0F3PCC6d0AERC88KDKrpR9BSg/a4EcpHUMdKR1D veakpAYrvTZEUheKu1/C2N0v0tYoaVu0tD0Gdb90JMhidgV0JaGieneyvCdF Tlk9Ta5Ll/dlgNjlA9lKY55q6IyqIVF+L1x1OSQg7cjKyiTfriyv0Xw1BPA8 flndA06OXD5+1RMHTfyClky6SueaepKTApyras0Zr+uRAYTuExdMdEdoP0+7 PQ/RvSfTEx0dANfz6RC6X0YZveJJ5Sr6mX7sg5HL9PmnpJudhIV2I0a7MQO1 xyTv9kdoT5IMJkgM5m3tHWECgvbGU7z6E7waNI2Me/kht90rHIr2ud7Z43Jj l/PV7c75m5wOfy78ROYwQ1/w6Qw7MrFaJSb1TLZ5LEuabLFY6oUzgGGwwYyM DMuNAH6ARuw/Tbk1y/ECeiQPXVRURI4spnwNyVHMS/jFmbKN57l2dTo7P/1i /vMO2DJ5c+EFefDgAbEoPEG2peF6uM0LvC/TeXR49+3fxhkP9jXkXSPviGWF H47F7OwqU6tnPnLw1OAJWr0xvAjk0TmvP1wD22H/74kZf5jb71c0oJNS2W5/ 2AApLG8kaC+qsOJ2SGl1V1kNAgnl9jpNRb2WETueEFJHFoKvYodeR5WsylQL em/HejetvvTcaMezRJpW9mlh6G4N8FTVFwcV3ge+64AYvus0fI/CAfwQN2Z6 t4F2U4bYc0v+nQ7it3W023L7CwMe3ezvv6mL5oUA367/vl3/AwnuTfqe7fZ2 /IKTIL0P2ED7AEI7O5aAbzcP0rt+ohXNJDk+fbSTZVvB7fhjBgeP5N9AQzTd 6akgMdofIbf3A9eZMG5HaG+gOmTKOWjHfTKWbsfF9pbChzPl9tqaWtWS16VL 32a7/SPX13GL+xtoVhlqNsg310ne2s77b3s9/rJb9Uag9193es1ZrZgX/NHc yE/f2+L57hG/Wamr3z+9dlH2ukV5Gxad37To4tZF13YsvbFr6e09Dvf2Otzf v6z04LLyI46PjjlWn3SqDXKuC3GpC3dtiHRrinFviXNvS+C1J/E6Ujy60jy6 M/iRO5WaLIEmR6DNE+jOCHRsvV+k9Q50L6Dorrst1t2V9BVJ++5Lkd4pwLMM jxgvR4avVOirlHEhvqiFphLNIYkvqAYq8VTwlNtRtwyiO3F7odJwV2G4rRi8 pRi8qTAWKI1XUasMKrnny5MO+BnPyMDtxkypMUNiTJWUBisenFIk7PA5G+h5 +4iyKkjWHSFqDxO1hAgbg4So0f2k+O4hWep2r8pjqHsc6F56GOv9kJDU3gtx 7u2nc4DKhd3SmM1e9zDOSRifE6IXH6Zq6Q8Oi0uPiEuPissw1CvxaaShm/zx 4kc4QZK6IAma+CWYmvgFlN4UIW2OlDbj1he6+0VGOtW7EkhFHUG9Nk6VtV+l zZBDdKflfafB6or+TMVAtsKQo6iLl906Jc4KFIRt5F0K9i5LUHfleo9e9mQy RqB+zXO8wPN6zPLOs95oivUbeHlTViat5jpF95vRAd25XhOXVROskjtCO8lZ 7HZM9+th/p2nvcbOKcfOqcbO03S/qIaMQi6ReF4JW96Z4z1y0RO4/jgf5zzq jUE5p4ZjEKbSTtBuTJUm7/aj0G7R1t4Wwm9hdchUH+VVHHYrO+i2e7lD4V5X 0iRzZZvz2Y1O2z+SHPpaPUNf8CmHnWqkrRZfUMrevXvZN3tmgX8QC4MZ4M3h w4dtPQoZYGOOvl6iq6l38CA7A9sEldlyly2+Tp+UcEsAG2wHHhoelHEX+Y8A +0WDvYUXgZRz4ZbsfZ7pzvY/eBCXMv9isLQoeSmm0zZja8DLDp8Qq5839idt msP+kQ48Fzv/CoH7MnR/gAe5POUHeJoDPl1/zPf65v0qltvrcbGdcTsquRdV NFmpt6PVlzoJSB7W9uLFZYArGnJeHkF7JVNs52agusWATlklZ61iGtV2GNGk 2V3MtB7PjXamYYZqm7EGeDbaTVVfRMTvOtiAH/y+0/iDJdrNAE83wNtCexcL 7eb5O5NOjsbto92G4e2hnZ3fAPiO5wF8e/8PHXQQ3fupYL0jwDNoN89TKjbQ bhXw5mi3Np8kBnyzNbez0Y7dPkY+bGy303rHk8mY0K43R7sOo53l9rqecnO0 l9VitBO3P6LcXlzVjjvQmh/Wts/QtzsvMcxj0V99l70aQLmdbnHHbv/c442v +G98LZy1WvTmev6/kLNTd6pm7fV+ZwV/3vGVc4I+mhvx6bzYL947sGL+Vp/3 oz5/N3vNvNz1i85uWpS/ZdGVbUsLdi69uWvpnT0OhYEOxYTuh5dVHXOsOQF0 d6oLca4Pc2mMdG2Odm2NdWtPcO9M4nWl8CqjhTmHZJrTfKC7NkegyxXo2HrP F1BtM+R81QKx7gZN9zugd7HuHgZ8EV2BJ4YvIeeuyvUVirxkr4bbKqoC/xDP IQk/qSgHyiGqAeL2BypDscpQpDTcUxruKAy35IbrcsM1+SByuwLcnh/s05qh MOaZud2YLDYkigfixY1h0qJjCtB7zBafrF3qK/sVJUelDYjuwrCNPjUn0fSJ IOryY6KHWO8PiLqJwA8BxRHj2Tmx1pcQ/T4mevFhcclh8QPa55CHx1CYinrl CUnVSUkNVjoQ/cFxecYu7+ZQCZUwSWu4pA2CpmqUtsfIOojS2VBPlPcmyTXJ cm2KXJuKK+oA9UzF2aPq6ljpQI7SmCMcyXa9cVIEydzDD13vnndAWBwpbctQ IKVfMXWhkIxholO5iWZ3uR6/vOuCz8QdT5TbOPjy5G3z3PKcvAlup+l+DdG9 i9D9Aj4X9Tzd2X6OLrnnUnTPOLJi7KySCq33URT16AWUK6HLO7O8R4jYz6se n8M5qxrGQWjPZaE9DaHdmCJN3uVH0D4QZ5qtnTkXlaAddcgcQx0yDw+6PTjg umu5wz10RipuktniePQLUewqp8Kz/4lOSmUG/IkRL5u+bBeBtUB0lvjnUBks ZKto+ZLdcjHDNuZB4QI8oqXxDhw4YGs7cBeyP/CTfUdSQ+Y8NauoI/8RYAZ7 ZyyVaIuFYDY+Hsw1M1cnf4FB9s0WUJnnbuvuL9AXxAzSqw9vq9UjLHiP2C/a C2yc/euU/79gem/YAz7h7O3YeaHsj5n+OjODmgTS5PYGttsB7UX4Z3FFSzFB eyVGe1XHg6rO0mp0qh1qcUdd7ia3A2NQsb1ZbxXtlNsR3Q3Uyqrtg7WQDmNt 51At0vuwOeC5aCfLMNlBu1XAt/bRIW7vN7ndUu8dg991Gr/HsQZ41umrXUM/ TYl2siQrN2jJp59wyDU04583RO9G22L/AwFPne07QIcAHp9KQPTeMfB9h+F7 S7d3DrLzFMW22ym9G+Bde4LDRTsH8C06BHi7xXbyiUIld6ZPxuT2NqrejtyO 0K43RzsK7Xb4FvRYur2UoB25vZO4HdBejDvb4Vs2cyelpkWeoNzu+Bpqcbdw +5f8N1YJ3lgtnLVW9PoWl7/s4v1lu+rtPd7vrBTMO7p8zqkP54R98m7U54ju wZ/M3+Hzboj/v+asnZe3YeH5zYvQGkzbl17fufTWboe7ex2K9i0rObCs7OCy yiNA92U1Jxzrgpwagp0bw1yaIlxaolxbY1zb4906E90jt8l7UnmadA+guzaT r8sW6Dh6P0/T/QqL7rcw3W+zAH9X3HdPgrrfkeFxHb5UnpfgVX9LhQrvqA1e TgUX5PtLFXTQ5QHIA+VAidJwX0WV3G8pDDeQ2w1X5IZLssZM5cVgb+M5Gcvt Urbb9XFiXYy4N1rUHSGqPCm9flCeuUsdscl7/7f+qdvV5/cq7h6SVp0QPjqO ZlYEbCO9k/I7zgOLnFrvSy7g1nSK6OXHJRXHJUD0R5CTCOqQasx1UlFvDEFK bw0Doktjtvl3REo7SaKkXVHS7mi8ClKcrCcBKz0ZKV2TQkM9Td6XJteny/sz 5AO4om7MFt44ISo+Mnv3h/PO7ZoXs2ZOzNo5lUFziiIkLemKEVTB9jQT+w08 Twues2Xsttf4HfPghZAyQz+YKPRiZ5LJPU+Uu56TdzDdb1B0R8uhXlNnnlyJ +t4vqaga+1mW20nJPVc5lqfsSldfDfYfw1NKEr2PnlWhnFONnle1Z3hdCw0Y Oa8mVkc5oxomyaN72rO5aDcmSVsi5Of3eVm2tQPam0lb+wleDTod1f3hIbfS A27F+113Bjjc2e1yY6fL1W2O+ZuW7fxYkvr1kv/AyWReeeUVW8YAt2u1WsI5 csHyNnB3FxcXzkbglmBUtsHgBrYK+y9g12fTXrSUGaBKeCDYjdTUVPZewabg qU1nC+ySu/1bfvbZZ3ZeKxjPs+N/0ACFMs+upKSEY3h4K5m/Mm+rnTfOkt/w mpDNste0ZQapQsMrDO8OuRn7r3Dsxn7XXmAwTwS2DHvCXM88U05bF/Nk4aHh /YKf7E84PHHyYSB3f64GoRn/PtPjNuP2B7bdXo7djumO5pNBaEdTQSK3426Z hwzdgS6N2vJGQvc+PM213jraTW7HIW4nwXqv7RzGzcasaWTYa6dOD+003VHw Ej8U3dGUg+i0x6dWY0ZKFuApw9No72SliwX4qdFOr9OKF34iM9v8ROf3APw0 gx+I1Qk/PcwzgDc3PFnECq9jhUJN1MMA3oD03jmIYyAxAd4c7d91GalQgLdm +A7zgN5tzQPf2mcKBvwEPQ+kWbHdVG/vsmiVwYv/wmeVLrbrraHdzO0P67q5 ne0Y7cTtxY/ayfSPEPii9fbNlNuP7NnGXzzHj3E7u8WduN2Dcvsa8ZubXf6y TfCP4PZNyr9+IXn3SMCckyvnhH48N/LTedGfzYv78r2krxeE+v/LRvms+C/f PbNxYf6WxUB3U7dMoMP9fcseHFxWfgjRvfrYstoTjvWnHBuCnZpDnVvCXdoi XdpjXDJ2iyrDeV1Jbr0p7r1pPG2Ghw7onsXSO0V3ut2dTXdSeCe5RUv+DgoC POi9RBZ7ypuC+gNWSkio+nx/sRzlPk6RfKBQMXBPMYBbZZDbC5DbG7KU+SFe hvNSwxnpYK50MEdKuT0N3C5Bbk9g3C7uihR1hItaQ4UtIcKmEGH4Ru/L++SX 9slTt6tCN3iHbPA5u1txZrcib7fy5gFZBdH4Map4zg5qUKfL6ZWsBvVq+kzS OjzrC9P9givq0vYIKVgdE10atyOgN0amgcTKtHEougRZX6K8L1nelyLXU0RX QAZOKwDq148KbxwV3jwmvHlcFLLOPWS9e/i6ZaD0yuA5lSFzYtfPHb/AG70k QdObX/EcucKc5uk1et3LJPY7eD2je97jhXSK6Nz3nij27rnuV5C8Ai6glHhP khRDvCaLcBi6UyV3zwlM956zXgVRAWiJpXx6GsmzLLefwcs24cWbCoL9O1I9 wfAoZ5SjecrRMySq9EMrRyiuK1HylMO5yqFcFUqOkpqkHdB+Wk7maSdoJz3t Cdt9MdrFvbhDpgN3yDBoxx0y7qRDpuSA6/1A1x3+Drd3uRRsd7q8xTF1rcve FY7hnzsaDIYZ+oJPOewYgzgzMDBwOjfm4ARgw8E8/MomExmHDh2avnmYAYoD bD+Xl2zdGDb1jGVR5sb2zyiE3YYbWJKPDFCofWfORCv4bxm2mjeYQy1ygPOM pjXYG8hqa2vAWnh34CVi85v8wwI+S8w18GE4hAdsiv2BgY/c3bt3LbdpZ//t f4rggcgTgd1+xjpMg3sxzxSuZJ4R82TtfODZ/38hT9bODjCDfUQw08PC7aY+ GQbt98ubiytasdvbSLXQ3O1dHLdXNDIl9z46/WhuGQu0s93OhAY8ojsJKr93 jdJrp44+F9oZt7P0Dpx7Qs83SIdxu8EUDuA7BnELDcGnudvNAG8H7QZTOsgc jFamlP99AP8chn9BwFM/yXPpHPgbpMv0TwRzwJsm7fmhaxCFAXwX9arSbjea 3M4OG/AWaDed2cqZB56NdpbeJ8mHwazY3j1qcjs1hTsL7cjtg1WmerveAu1a urkdoZ2EdMiUstCO3F7Vgc4QqWxl3P7jT3+boW83uF3ouMB3GZrCffmyfyct 7h9Qp6a+8TnP5PZvRbM2uv/jZtG/bFO+7c97d5/vbHD7iZVzQj6aE/7Ju0D3 mM/nJaxakLJq7rkv/tdhr3896DsrafXCC1vQCarXdixhd8uU4W6ZR5judScc G045NgUB3Z1aw5zLTrpl7hJ2xbp0xbt2J7r1JLv1prpr0kHvPG2mB9J7Dl+X y0d0P4fpjnrdRexJZlCu49wwlzxqgBfnxqjqr8lR33uxRe7jFOE54XH6C+X9 d3HuyPpvy/pvyQZuygZuyAcKZIar8oRDvoYLMuJ2Q47EkCUxZEgG0yWDqWZu 18aIe2i3t4WKWkKFGTvVJcck9UHC2lOCmpOC6hOCqhOC83tl5/fKIcnb1MEb fEI2+ELO7lFxkrLdi1idWvDolLguSFyP1icVo/VJQyRNyOpSCIvrsp5oBHVt rKwvTpa4M0AfL+9PkA8k4iTJC095FQV5FYV43w/1vh/mfT/cO2SNe8ha9+T9 y5MPLC8MFqOEoAyfU6FVhy6ohi+qhi+rhq+qQ7fw0DznkOteIzgY6mjpImoN IyL2Qp/RIp+xEp9xJg/olPpMlKHcSFvZdkUFFyZJSr0nH9B6v4/pXuiF6H6b oJ0E0f1GTEBXjheaMeYci+44Y8Tt2RTdMw6tIKuvjrJy5RTy/Eie6nGukmQY rE7HCGI/jWLMkA+mo/kejckY7YkI7QOxkvhtvtookVlbexC/8aQHjXbcIXPI 7cEBt/v7XAv3um73d7i50/nqNseLWxy3BLhlrF66PoA/Q9/u6YzpeMMVj97e 3tdee83qDeB6hi5w+ZmNejhH8gAqNuSYu3t4eDAPBLexNNsnn3wCd4Sfln+y tYe26vOArmeYXswxBWFnenq61Vsyg/mVs2Uw8L1792Df2LvE2Ss7/+P4Dxmw t7DPlp8N9lMrKip6xvrvjOUbxwzyAeB8usiV7JvBxuETdQ8Py5eR886yX0/L AVuwej2p7b+CB7mGfJKZpwAD9sFyb8nRnP1vB7kB8xTs3JIZ5DX8YwaevB3Q jt1exqq3P2wkYifBbm8tAbdjujNuB7STILcDWpgJ8bhu1yO3o+CSO1vs5min Y2TP8Y6mmqEmhxxp6B6hqu54AabnQjt2+wTpfKbX92HTHcfw1DImvVPnVH4P hu8Y/KHDHPAdg+wJ4X96AbTbAfyLGJ59HuvvCnjqlkYcsm8GnMG/sQKHMKxY dBmB4buB8bTkAfAoNtzOAXzHoBW0s0MAb8vtKFqUZvwhwcX2UeZ8CkL3mvYh vGoYOgujGtJKLZkKn+QKut5ugXYy/SPt9jqEdo7bSbGd7faZ+3Yf3budv2SO r8Or/ov/efmifwS3r8RuJ60yyO28N74SvPGNcBbQfR3//26QvrkV3O7xbqDv 7MP+yO1BH6KSe8Qn86JQyR2twZTyzYK8Va+kfDHrsP+bEZ/MvrzlvSvbFhfs WHxz15K7e5fe3+fw4ICJ7jXHHOtPODaecmwOcmoNcQpdK+6IcO6Mcu6Kce6O c+lJcO1NctWkuGlA72nuGqx3LUV3PnWmKtPrTvROAE9SQELpvSZfmhet1BVK dEUS+Ika4EkKce7h3JWZ5Y5MD2K/Keu/Ie0vwLkqGbgiORfi2ZSlGMiXGs6Z ud2QJjakiA1JIkA7pI/t9gg0pUxLqChys09jiBC7Xci4/RHkuKCSDvr1hDB/ ryI/UHmBzoFvl4dt8oOEk2z2i8CJ3IIShXPtoLrgEMTzxhHP2O0BcTsC4ncE JOwMAK4n7gpI2hWwffVHybsDUPZQKQvzLovwLov0LovyLov2KYvxGc6ju0To Bm/E9XxG7Gq0FBG2enOe8swpxeNb3iMkdF2dQH30vs9YMeL62AOfsVKf8YcW KfeZqDAl8aR6stJnssJnstxn8iGtdwu6T9xk3I7oPn5NffrESjRDez49jQym O+qHyaXr7VnoZ0GQf2ey52i2kp20AytGspWPsxVMhrKUECOKwojFbgSxp8kG 0eJK0kGEdimePUaij5HEbfUBtKO29nBheyh1Lmo9Qfsx3qOj7g8Pu5UeRB0y RXtdI9ZIz2xyKtjudGWrY+q3ywJXOqV9szQmInTmvuD2x3O1H7D9YwkSAMxB PAho7fSxeNDDaoMKA2lym+n3w7jjYevsSEuHk8G8FOwHgufCfmVgs6RUSwaR Xi8egED2awL4t3yJ7Lxu5CAFXjQCe7g8rac6M4McmrE/HuwXDX7dt2+fnbsz xyZgbGY7DL+J0tnHL/AWMy8LuNfqS2T5D5rpj2ne12p1HZ44uQbeGlt3hE8I PKPnOgT7wyaT6TcMI7eX1NwDtD8gaG8kAbczaLfidiwQM7fX9QBdKqy7HS1V U0W5neqZqcYzQ9pA+yA9jweacKYOzzZTTwXRHemdXji1ScPO1Ghn3M7EBPgB 83D0TvfAt9PhAJ6Ndgjb3i+AduuAf+Ei/IsCvpMLePzo1HYot+NzbMksl3/v oae+RGvO0uke+okd1rm9TBDg0U9ywQh6twn4TlZA7+itse52KnRzlDnaGbfj wAepgaL7qMntHcTtDNoNlNtb+iubqZI7FrvONI0Mx+21tNs5xXba7UXlM3hS KowPxYs8Fv8VuX3hP4LblzubWmU+cXsdTSnDw6emCtCsMmtEs9ZL3lwjfedj 4dy9PrMP+c85tmLOqQ/mBH84J+xjdIJqzBfz479akPT1gtTVCzLWvJ+37j1w +1bP2eFfLLq6ffH1nYtv715yb++S+/uWlux3KDvoUAF0P7qs5jiie9MpxweH XTK28tvDnDrDnTsjnbuinbtjnXviXTSJrhpK726adHfNaZ4m20Ob66EFup/l 40lmQO8CSu8kV+hcNXXRRB9RM33vptxB00jq7+BVnG5BJKb1WMk1N6X661J9 gUR/VdJ/RaK/JNFfkMTt9+o/Lxk4Jx44IxnIEw/kiM3cnijqjxfp44S6WKEm RoTdLiZuP71LXXZcCm6vCxLWgdtPCatpulN6Nw++Hm4DtxSFbfJF1XXSA0NK 66GSljCqcb09XNoRIb15RH3riPr2Uc87xzxJJ0xfgqw/UWZIkhuS5cZk+aUj vi0xqqE0xXA6zmnFcCZaC2k4RzmcS1ud1NWJ1UmA65fQCkRoNaICr5Hr3o9v egPXH9/xTgv6cOSezwipqBOll6Aq+ngZDu3z8XLf8Urf8UesVPlO0JmsUkxU +3bc8jwTIZ6s8kF6t0l3fOIq7fbxAuT27jyvgogAtL7SOXoamTN0sZ24PRvT PUuZcWDFaKaSSpbyygn/jiTPx5kKJsOZiqFMhTFTMZipMJAaOxF7CkZ7IkZ7 PIV2XbQ4dqtPd4QIt7ULSFs7G+3lrA6Ze3tdD3+luLHT6eo2x0tbHDd4L8la 65C0akn66ZyZ+4LbH/ZVbFkotoMfGAA/q1tmXEqG1QonGcA8Dh2ndDtnDwGN jLWYP/F4vGfWDAY3YBDOBphVaZMabGFhIXmmlreBrU2zVZ4ZjA/hjsXFxc9Y 0P0DhuWbS54a+ByeJvxkStMw7KP9JfP/aMC7wHl/X6EH+RWeJjzElHv4W/4x AS8p8wTtf4zJOwufAeYaUpYn19u61348nmuX/rjJ28liqSU1d0uY5nba7eWc ensLontlG8oj1nmp1KmpXWhimfreCqA7E6rFnSV2E9pJBqrbBqpNSzJx0U67 nQrl9k5qrkigO86YNcCPTxPtpugn0LmNaHVOa4A3b4BvQz/NAN9u+L59gOQH Bu1m9h746cXQbh4u4J/b8C8EePruP6MYf8GhtwNcf0yld4QOWXNqmIotwHcP /8hOD8nQDz22AW+Odov5JAe4aGeHAN4S7ajejhuuGsy7ZdDqSzTaOW5HaQa3 92G068yL7SSmYntpNdvtZsV2+Ir1zthJqTBUi18WOswDt/st+ueAZf/Ong0S ud3UKkNmg5y1TvKml+vcHep39ni/c9BvztHlqORO6B7+ybyoz9+L/XJ+wqr5 yd/MT1u9IGvdwtwNC/M3vgdu3+y7MHrVopu7ltzZs6QwcCmm+9Kyg0srDjtU 0XQP+lbUEuTUFuLUEYro3hXp3B3l3B3j3Bvn0puA9Z7sStE9w12TCXrnaUDv eR5apHe+Se8X6bkimcner4lyQ5W15yRm566SBvibVDtN3w1J3w2x/rpEfwPn Jg5cgGuuAdrF+svivovivnxxbbrs7ElV/xlxf66oP0fUny0ayBQOnBYNpIsG Uk1u74sTamOEvdHC7khhJ6m3h6Nie3OoqDFEhNwehNxecxKxHOWEsIoGPDvV lNvRFDT1waKGEHFTiJgWuxTE3ka3xHRGmp1nqolHvev6RFl/kgzQPpgiN6bK jWmKlMDlwxm02LPMxc6uq1+kVh1C85mD2K/hZpgbuK5+22fkjg/iepHPteSV ndf9x0pxRR1B3RcRvQIrvdJE9PEqv/Fqv/EanFqUiTpTntSqJmt9J2t8Iw/w n1QrEN3LzelOembue00UeU3QJffxAk9AO5n4/XoU7pahS+5j+HRUDtoh1wDq CZ6jp5WjGUq4AG5/DK9DhuIxDlwYylAYMxSDGXJDusyAxI5Dyuyop90M7b2R opgtPl3hZm3tNNp5FUcQ2pkOmTu7XQ59JSfF9rRvl+1dviTzW4c9H3oMDg7O 3Bfc/rAPj1dffdWyTG2fQIR8z1ilWsu2GY1Gw+yApaXhQcmfiKjhxp9++in5 0/3795nLZMCvcHvOFuCOcEvYAfIncixAIMq5JfASbuPm5ma5EctnStBl57kT hNu5ATPgWcOhBOwk5+3g7CHcZjpbe+EBr+3vuDXOawiveVpa2m/fLLwL8DpY rXuTP1l+IOHG5LVlumvYnyLLQT5ylt8Fcj37odkbgdvDZqd5YMvcZYa/0NRA i6VSbq8Ft99luZ10tjP97fdxczsT0ioDIMEyIW63pLu2srHvUZOexALt/Rjt 7KB53TloZ7udKrzjhhncLUPHGuCbtUymgXbsdiZcvbN64Nssgujez17I6Tt6 wsMfKGzTZ2520HOw/Aa3c4rwf/tdumisip07sTyZc96IQtEdfh2GWKB9xC7g qRWp/tY7/BOVxz/1PP6RyjAr1gBv5nbr80kiw7dZozuzVCuaX4h2O/m/DEJ7 7xjjdnJqah1eNZWgnXE7g3Z8aioJ7fY61hqpdd2ltZ0ct7PXSMVuby582GgY Gpu5Lzhy+7L5Pktf9UMt7q8St680rb70+me817/gvf4Vfxah+1rxm95uc7ep 3t7l+fZ+1Coz++jy2SdWzD61cnbIR3OB7tGfvxf3xXuJX81P+WZ+xpqF2esW 5m1ceH7zwktbF4Hbt/ktivtmMdD9XuCSokCK7uWHlz46svTufufkTR5Mw0w7 oXsEontPtHNvLNZ7okuvqfDupjkNendHes/haZDePbTn+VpSfieGR4wXkPJ7 9EG1qemdtjq6hvTSXKMr81dFfQViCOJ6AYhdTIn9EqBdpMsXa8+JYgI9dXki fa5Iny3szxT1Zwj704X9acL+FOFAsnAgUdifINDHC9lu70BnLArLjksyd6nB 7Q3BlNtrSbcMVXhnBRne9Cv8tRa53bs+WAjmbwoVNYeKW8PEbeESM7FHybpj ZD0Y7b0JMk2iTJck0yfLBlLkhlT5YBqgXQ4uTdm3HHGdqbHnccSuRp0wV7DV r+ICOxb745s01+9SYh8p8Rl94Dv20Pd05EcsqPtRRK/2e1otRqkRj9f5jdf5 j9fjNPg/bRBPNPmjNPpPNPhPNvih1PtN1vl13PG8EPH+kxqlqeTOovtEifdE MZ5w5rYnmvL9mmnBJsjp4ytJyZ0SO7tJBpKpHD2tGM1QpO9bMZqugKQFrhjO UMILMkT+9ZCGLkCM6QoQ+0AqTgoc8kgNuMzOQruYoB1NE3RCmrVLRWZrbzyF 2tprjvGqENrdyw65PTjoVnzAtSjQ9e4e11u7XA58Kbu6zTF9zbJ9K5bmrnNI X710jS9v5r7dUw5b3SPMeGZeAQYmTafGCBJ+Rq8fSpROhAODNJwQSBPhW4KK VDKJqOEGDAjBgexHh523ujOk2Mv+k1WW2x+wq5yNkyfCcRoPD3hSDMItt2O5 ccZvnH8usG8DL4vl1n7fMZ2K9wsPeI7spnQ7bLY/4L0jL5flUQxcD0+hqKiI eQvgAnwq4ErywjK3hE+OHbrbOiODXM8++mBfJp0/nI+WrUMJMph/r8z0YLv9 bmkdcXuhhdsR3VlupyagftROWEKjnXI7TXeyfKqecTueWAbHOtpNq6malmTq YKPdzO1curMAD3pHs4Ww9I4m8daNt/aNTwftXMCzGuDb2GHo3k8t4URCrT1E MR4DHs1hjrlOFiEioWdN/E8OeHw9Unr30K/dw7+inxTXfyFrv/Y8/qUXMvKL dbdbGF4z8nftKIpm5G8oAPjHP7FjxfAM4Id+6KLm9jErtlu4nUobnuqTMTzl dh2OFuj+pFkzaYZ2PKUMg3Y8q8wQy+1maKfdrsMfda7bS2u7KLdXU24vqeow uR13yMDXCr5rM/oFV2K3ey95FZXcwe0QVos7Q/cvPd74Crt9lfu/rvCYvVX5 9k712/tQq8zsIwGzjwHdV84O+mBO6Mfvom6Zz9+L/3J+0tfz01a/n7l2Yc76 hWc3LrywZeHlbYsKdiyO/Xrxdv9FCasXUw0zByi6H1vFrz7mUHfcoeGkY1OQ Y0uIU1uoUweme0+Ucy9Fd+feeKx3UnhPY+vdXZPjrsnjac54QLRn+dpzdBH+ oiA3SFGbI6Gb3sVUrtFcvyJCZfnLdH2eXo+176q474oIl9lB7CIQu/aMqDpF kntMqcsR9mUL9ZlCfYZAny7Qpwr6k4X9iYL+eIE+TqCL5Wtj+ZoYQW80vyda 0BUpALe3hwsjN3k1hwiaggX1QQLidpPeg2i9swGPfwWxw23qg4Thm3wQ2kMA 7aKWMFFruKg9QtwRIemMlJAye0+MrDdW1hsv02C0a8kUManygTS5IR2VkSFD mdjtSOzK4Tzl8Bklfbapmha75/A11L6OO9g9H9+gxX4XNcMgrt8HsfuOlvqO lvmOlvuNPfIryPyg7aYXVU6v9QeiP60V/1wz51n1vz+reflZ7cs/18/9uQHl x0bHyVb/71okky3+KM3+k004jf4U3ev9zsXwtDcXUSX3hya6T5R6TxC63/ca v4PdftXM7QWRAV3ZXmP5uEMmh3Y7XWwfzURoB66nB64YTVN0xKqvHPUbSlMM piqMOEM4cAGOcYDr/ckoA0nSgUTpABK71BAnBbT3xYi1NNo7w0VwOBa50bOV bmvHsz7S56IitLuRDhk896PT/i9kl7c6bvRecmaDQ9Zah5Svl0SFhczoF9z+ sF8RtaQjGH6aBibd5rB95rE0eJDLzEbgGvsHAuw9/BQP5le4o639h4d+rh4G 2CzZYTIJ/Kv0YG+QOQBh33HK19NWvz05BoGHILtKHt3y4V6Yu887mP9NvMAx jp0NkgHPAp7Ob2kB4hyysR8CfjKfK7gZcyX74Yj8bX0kmPeC/Er+U8N8em0d AHI+Iey72HrTZ+prbDFYbq+5+wC5HdEd693C7c1MnwyzcIw52rHb6/DZqfVU sR2FRjvb7UysoR23zbThGd1Ryd3IRjvb7VYB39hDMopWrseAJ27HaOdkCrTj lTdZPfAct+O09j8xW8sJyfA7Ttog7OVEGbrTgP9d9E530ZgB/rd00Zhq7KZg ug//2vOYBKN95BcNTq8p1t2uGUXRjv2sG6PobgL86NSAp9ppgO5I72bTSFpF Oyfk8IpxewsEux3RvXeCapLBLe4mtJu7nYN20xTuxO11JrfjYruZ20uqKbQT t2O0Nxc+bCqrbpvRL7hs0WsSh7neS17xdXgF3B6ASu6vrnA2uf0T99c/5b3+ OSq5owWYvJb+2wbZW1sUb+1Qvb3X+68H/Ci6H18x++TKOcEfzQ39ZF7Ch/8W +8V7Cavmp3zzPlVy37Dw/KaFF9FKTIuu7Vh0fcfiuG8W7whYlLbRhaH70VX8 yiNLge41xx3qTy5rPLWsOdgR9cyEOaGqeyTSu6nwnkDpvTfVFevdndJ7Fg34 XB4xvPa8oOa0KDdIToEcmVxo6n4nVid9NReE1CmuTI/NJXSNNl+gPS8EtGvy hJpcYfRulSZLoMsU9GUKGLTrkwX6RIE+nt8HYo/m90bxeyL53ZEeXREenREe 7eH8tjB+a5ggArld2IDdjuh+itG7CMLWO5NafIP6YFHxMWnGLnUTmpEGob0N 0B4uBrd3RqDm+e4ocU+MpDdWoomXAtq1SQjtuhQy9bpiIEMxeBr1bAPah7KV KfuXU2I/C2hXIrRT7eu02K97DSOuez2+5TVy23vkrjdVYC/2HXngOwJcf+g3 WuE3Wuk3VgVWR1CPOCgYr/efrFc/bZD8XDf3Wd3Lzxpeftb4CkoTyq/Nb/3Y 4jTZHoDjP9nmD4BHIXpvNun9Sb0qYf87qG2mguX2h9S0M4juxd5o1veb5vX2 K+rxy6jkjpZDPWua/pFye6aSoJ2I/eoRv7S9K4ZTUO+QAWcQx4h/DiSjziI9 irQ/QToQLx2Ig6BKe180jfZwCu1tIfyIjZ5NdFs7hXZ8LmoJ3SFzd4/rzV3O BTuc9n4iPPjB0uRvHHLXOZz+dmn8F4tu3S2a0S+4/WGLhWx1W73BNAfT9MIZ zA2I6Bg0Wm4BCESuh9tw9hbuyJkMnGPF6aOXuI48FgyrdyRHMZydJ9dYHo+w t2xVcVMi1hKNv3HYf0R4LuSfI+znbucunA4l5h2EJwt/4jxlYtrpuN3WbTjH UJxXlXyK7HyeyfvLVj17g5afIvbEL+wjDlsHNeQuZB9ga1Zvxnxa/oABbr/F 1NtZbi8sayh6yHX7fXxqKuX2Kku3dzNufwhur0f19grk9j4ztJu7HQf1DHPQ Tq3E1E7rHU8sYxXtbL3TaGeld6RZO9qsHWvRjbGq7qzox6dEO1q4B6dVP9nK AnyrnrWWUx9aj5WdVt13TJAS6TVbWxjbm+v9dwS85UQ0zwv4bhC78eceM7Sj 0GL/tXeEimbkV+3orxpa77YAT8ROohunLzN6H2NV4EesA777MUX3rmE8Fw09 kyRb77bRTgcdPZFWmafNOqrebmqVYbmdoB0vukSdlErQbu52gnYtHKjSbu+l 0Y5jKra3s5tk8HcKNcloZmzmdjLcF77jueQVryWv+Cx9Bc8Giei+cvE/rXR5 7UOX18xL7q9/LXhD7fTOeulbmxVvbVe9vdvrnX2+sw/6zT4cMPvo8jnH0Tmq c0M+fjf2g3+L+mxe/Ffzk75eYCq5b1qYvwV1y1zetujq9kUFOxbd2LU4eb3T gc/5GZtcDn/Jv7bbsfzwUqB7FaZ73QmHBqB70LLWEMcOdKYq6N2J9Mz0xNCF d9B7EtG7Wy+pvWeYAz7XHegetUeB+meA36RtBnJJQHH9Ap6OJh/PS2NqsKEM D7fXnBdozgp68wS9OYKebEFPliB6l0pzWqDNEPSl8/VpfH0KX5/M1yfy++L5 uliP3mgPhusd4R5tYR6toR4tIR7NIR7pOxTFR0X1Qfw6yCk+RjsdFuBrcWro C3WooR0lHDfG4zK7uA2LvQPQHinuikJo744W98SKe+PEvfESbaJUlyzrSwW0 KwDt/RkKQ6ZiEE+QAmgfzlWmHFiOxM6ceUqfc4rQft1z+IYncP3xba/Hd7HY C72x2FGNfYTh+iP/sWr/sRr/sVr/Mdz6EnFY8HPD3F8b3qKg3ozTAnkV8lOb 05MOz8mOAMiTThR0uc1C74TuTf75sY4dd70mH5lK7hMkqOruM17iPX7Pa/wW 7m8nbr9Cuf1aREBnpidaETUPu51ubicdMoD20VTFaIoibc+Ky4f9hpLkg8mg dBQDSZLMkCgbSJT2J0r7EmV9CVJ9vKQ/ztTQjtAeRSrtwnaEdkFLMD98g2cD nviRtLWXH3Y3oT3Q9e5e19u7Xa7vcLq23Wmz75KU1Q5n1jtkrV2a/s2S3R+4 z+i3e8phFSHsYbWgbbWrnG0YNp84c99ZYptcSW4GP93c3Nh/JRYiKGLvDFxj uW8c9U3T7UzB1v7NiLvY9XaiQeI0UiG3vBfZsuXLNeW+MQ/3exXApzM4j/XM toQ5BXDGumSHn6u07kYPpipOLtvZSfJZ4hw4WF3RiQxyVAKDPJ0pj+k4xr5/ //6URz3kWMDOcQf7tI6ZHia3P6D6ZIjbix42IrfTVXeMdnQaHXL7I7Reakl1 xwMcC7cjtJfXg2SI23WVjbpHTRCs9xZIv1W3U3pvZSrtHLcbidttldyx26mw 3d6kGWlmYgl4vWVsop0dAngztOtYwSxkp1n7hIoO5T8/4AnaSXqHfyUBomtG 6RCxY7TrxtBPEkvAa0Z/YcRO0E5iuhJdNqvAM4Zn0R2F0N18JkkzwE/hdtLI hENef3gvmjSmFnc0mUzXCJp0tNNsvVQyc7sl2isbabTjJhlSb0eroxK011B5 wBTb8UwyRbhJpvAhapIZnMnm9mcWbicl9xVL/+9Kp9c+ALq7vv4RXXL/wuP1 Vfw3VC5z10nf2iR/a5vy7V3qtwN9Zu8HuqOS+5xj+BzVoI/eDf14Hp5b5r0E 3OWe/u2CrLXv5254/9wmNJ37RXO63969OGWDs7dKEbnG7druZQ8PYbofpeiO q+5A92VtIY7tYY4d4U6dkU5dUU7doPdY5544FzO9p7ia9J5B6z3HPXKXjOqf OeuhPcenDE+Ifp6vO4dzFuecgJpb8rxAC2I/J+g9I+jNBbHzuzP5XRkemQel ldGC3jQPbapHXypGexJfn8Dvi/PQxgDaeV2RvPZwXhskjNcaymsJ4TUFezQG eTSc8ghZp6o76VFzklcFwDvhUY0u8yG1pwSmBJECOyV2fBaqqDEUNbRHbPZp CRcjtEfgMnukuDMKob0HxB4j7sVo1yRINIkSbZJEmyzVpUj70mV6vMipIUsx mK005uDGmLPKlIPLTSefXsK9MVdNaB++5Tl8x8usJeaB32gZEvt4lf9EtfpJ jQSlTvKkXjLZqJ5oCZhoDdDcX3op/t2fW1B+bHV62iZ92o7yXSfKZNfyyU6c ruVPUAIgiO6k9k7K76zC+w9N7rEnZJM1vsTtE6ygmWpKfNCCTXc8x2/gkvsV yu1jl9VjF9UZR1citzMzt2fjqWPoYjugfSQZ3L68LUo1mIiU3p8k1yfJ4Wc/ XE6Q9cdLIX3xUl28RBcn6QOx0w3tmii60h5mQntTED9svZq0tVNoP4TRvh+3 taMOGdcbu9Dcj9kbXX1Fy85tdMhZt/T0t0tTvl5ydP2KGf12T/31n8pXlm3e L2Gz9fb2cuYPYf+VXdjkPCJna1YL8qQ2yzQ2s0dhYSGgjjQzW9JrypMELQ0M 15BeaNggcyU8OpEkc3u4DDdjn4fI3NH+o5PWa/ZcJVb3ijTzs49ZmClZnuvM x9932DrvkiCZ/SfmfWS/v5xDMMuNvESfCkEGvAXMCRHPbB9GkR5yO23k03l0 O7v0EuvFh/154bOD2Tvwh52RSoZVtxea3M6gHbu9EkK5/QHX7WSJmZ6Htb0U 2pHbtTTacegJIUm/gSXaabdTMUe7sa5ziBUu4Bm0s/T+uKmXhXYO4EHvfZDx Fut6H7eDdkizzrSKE84Tbkj7NFZ6k3aSxKT3PxzwpoloWIC3Y3graH9MyxyH cB3SN46in6AusAGvHUXRjaFoqZjcbqL7OKG7eQXeHPA9DN3NZ5JkA75z8Ees 9x86Br63hXaO2zHdyVEV6pYhbofUmru9ps2IFw4z65Ch3a5hu72M6mxno70T fVPgK8MU28HtFc2F5U1wgDzTX3C3he+oLdy+HOhO1k5ldbl/4f7yx7xZvq5/ XSN5c6Psra3Kt3eoUckd6H7Ad84h/zmI7ivmnPrw3ZCP3sVzy8xDXe6r5qd9 s+D0twuy1y7I27Dg3Mb3z29GDTOXti66QtP93FaH0G/cLm5fFrHa7fCXHjlb nSsOI7rXooYZRPemIErvraGObWGO7eGOHaD3aKfuGErvPRy9p2LA49p79iFx VbyHRf8MT3OWrz1DRZdH5wwO/OksX3MGob0nV9CN0d6Z4dGZ5hGxTdGZzOtJ 5vUm8bRJvL5Ej754D4L2niheVwSvPcy9NdS9GRLi3hTs3hDMqw/i1Z3i1Z7k Ba9VVR/nPTrGqzjGq4TAZcgJjyoUfvVJCFqGiaT2lLA+WIjRLm4OFbeEiSO3 +BCxd9BiRzX2aHEvRrsmXqJNkGgTJToi9lRpX5pUD24/LevPlA1kyQZz5EN5 iiHUGKPKOyxrSpObib2AFvttz+G7Xo/pAvtoKRZ7ud94hfpJteTvj+b+UvXm s+qXn9W+8qzulWf1r/zQ7DHZtvxJBzJ5bLB8onP5eAedzuUT3csnIT34J335 CaQbZRLo3onTYdE50+qfFOY1WeeHzk5lo72MXq2pmFVyZ9DOdvtZfHZqNprs kXI7LraPpCg6olWXDvmm7AoYTJAN4Pl2+hLRT32CrC9OCtHDz1iJNlaii5H0 QaIleDlUcU+kmEJ7qLCVoP0Uv+GkR+g6NWlrJ+eiMmhHbe34dNTrO5xyNrme XCXc/akkb71D1pql6auXJH21+Fxe9kx/we2P6fCDnOjHzMcCtuHRg/wKPuGc u3rw4EG4F1xpeSIex+2cEzOfsU6VBZYD5EBx5LGY9nj2ubSwS2QHpnOK5asW 0+Mw005aTlcCjwWPzsiQPBH2zjMSm/JxX5pqZhh4FNg+Oa2SXAPPCK4hc85M Z/vTHM9LWfbbyj7kYV4WuAG8BbBZ5kQG5iUikrezXhJshH36A2cComdTTRc/ 5YAN2l+tiTPg4eDDQA7WyGfPzuTtUw54aPaHjb0W1R8wujXY7WTdpdI6slgq WnGJdjuN9maMdux2XDlk3E63ylBoR26vI5IhLe5aFtr7zJZhQnofgFhFew3d LUOWTzVHuxng67tQLN3e1EvFmtvp6MwAbzI8q5EGX28d7UzwnJNochJG7C2Y gsx0JSi03u0DvoUD+N9Z76bzWO0Anl1sp+j+2ARyNteZgNuZcP5E3G7KOBNa 77Tb2aRneuA1dHpR+d3mVPCdxO1MWIC3VWxnuR2/Tb0TZNXUOnO3k6mNrKLd 5Ha62F5Kiu01ZsV24vYSMv0jcnszcXtrl36mv+Dui2arF78MbvdeilrcSavM ctzlzpTcP3H4p8+X/vcvnf6n3HH214I3vhXNWi99c4viLTyrzDt7vWfv851z wG/OYf85RwPmnPhgbtCHc/EJqu9SJfev56evXpC5ZkHOugV56xec3bDg/Mb3 8zeb2t0DP/W4vXvx3T2LCwOX3N+35PQm5yNfesStc7+zz7H2+FKgewNudyd6 bwlxbA1zbAO6R4DeHTujnNAKTbTeexKoOWcYvUduk1LNM0z/DGP4HDyTZLaH Nhut5UQt55TL1+Jocvk9OfzuLH7XaX5nukdHqkd5lOB0oLQzkdedwOtN4Gni ebo4nibGvTfavTvSvSPCvS2M4nojiD3Ivf6Ue91J95qT7tUn3JO2ym4f4Fcc cy8/6v7wiHv5EV45MO8oMnzFcWT4yuMelSc8Hp3gQ9Dcj4jugjpMd9TTHk65 nUI7W+xxEi1Guy4Job0vRaoHsafJ+jNk/QTt2TJDjsyQKxvMkxvPKoznFUMX VaGbeagx5qrnyDXpeIHH+A0+KbMTtH9ftPTH+wt+LFkwcJU/WuE/Wuk/Ua16 WiP+sdbx15o3GbT/2vgWoH2yffmTTlRFz079BNXSe1ZMMull/cQXnqAsp4IN P9kdQAG+I+BJuz9KG/rZW778QpJ6strXDO2ltNvZJferNNqx2zszva6F+lNu z8FoP61ExXaM9pFkedqe5UMJsuRdAYZ4WX+crC9epoXESRHUsdUh2mixBnfF gNipMjuZpJ1Ge3OwgKC97gQvZK0at7XzHh52LzkIaHczoX23y/WdTrmbXE+t EuZvXrbrY0kO7mxP/WZxwid/Lbh+Y6a/4PaHHcMwl8FmxXhotdp79+5xipx2 Vkclg7PMKKfyzKzTxAzOpthTcHOWUn2JXu/J1nNhZpUnK1paXYiHrO5keT3n PxFE6ezFmCyXFrIznncecvYu/Y4zusOb+Fy3Z7/UtorbzBJazPtLJn6HC+wZ 1MkbwbkveVXhM2D5tpKtcVaenXKwX2fO6gP23wL26kvT+QcH05PDmfafeY6w Ec7n7ff+7tobXZr+53V7Cam3m+jeWVrTXVbTwwS3yqCUN/TSs7jrKq3SHS+i imrvLZZoN3O7tZI7lfouEjPA42I7N1bcbgZ4luGtncdK2V7HFTt3pSd8qiMX 7ezYArz2PwrwJJTeOWjHbv/FFtetup2kfxJFj9NHYf4X/QQV9Cv8xDHjunk1 XgMxuf3v1KySaGknNJmkSe/Gn9ir1rIBD3pvH/ihHc3qQ7mdcxoCcjs+NbWp Z7zRdGrqY1O9HU9GCh9Rq2hn3E53yHRbKbajPpm2EjL9I3E7nknGMDQ6019w 3tL3VItf9gS3UyX3V/zNS+4fLvvfn77/p88X/unLJf9VvuztVXjt1HWSNzfJ Uckdd7n/FdHdZzY5R/XoCjyjO15ENfLTd2O/mJf41Xup38w/jbplEN1z1y84 gwrvC/I3vX9x88LLWxfu+cTjxs7Ft2i6F+9fUnpgScHuZbFr3Y6v4p/f4YL0 foLWe/CyZlbhvR3rvSPKsTPaqSvWuTvOmaV3l+xA4aNId6r8zvTPnDYPdSVP k+mhzYLwNdl8TZZHb5ZHd6YHLrPzOlJ57Um8sK3yjgReZzyvO47XC2KPRWjv iXLvjHBrC3NrDnFtDHatD3KrOwVxrz1Fif3RcbdHx9xOrVGUH3UrO+L24DBK 6WH3siMAeJ4pR1HKj0E8KsDwxz2qUQsNvz5I2BAsbAoRRmz2aWXX2wndY8Xa OIkO0J4o7UvCaE+V9QPa0xHaBzJlhiyCdvngGbkRck5hzFcYLyhCNrsbryiH CtQj1yXj1z3Gb/KHbyO0Dxd6o5NPS3zHHijHSpUj5X4jFX5j1ejMUzRhY1PA Dw08gvZnDa/+0OoBaJ/soLpfGLcjnGtWPNWueKpb8QRnUosCF572rXiipfJU sxxCAb6L6nt/QvTegfSeFOo1Uec7UUmdkYrQznb7farkPlbgSaH9EnL7WL4q 48hK4vZRxu2k2J4sJ8V2Yzxy+0CcrD9WqouTaeKk6JTeGJxoSS+2OkokEntP BDkLFffGILQLGbTXHkftMcFr1Y+OoA4ZNIEMoH2fCe03djrlbXY99bXo4pZl aWudAz9wzFrjQIrtuz8SzPS3e8phiyUgLsZLbDlbritEwGPH7cyS8bYeFHhD rieHBnD7aSoXbsY2f2BgIPMnAnWypCn5K6fSbpWRzIA/WR4+kMeCzQKk4Sez ouuUO0kQO51nxIw/cvUl+8PWnnCWnWLeRGbAC2652BZnI/BeW85Eyl69y9ZH y9Z7Z+tzSKrfnNWB2fsPT/MZvUqv1S3YGvCIzHasPkdmB36v7+x0ht4wzPTJ ILSjsNxOmmQosaMUE7c/anvALrlXm7vdhHbK7ewVVCvZDTPNzDwz/dWI7kjv NOC5aGeHErsJ7aY0dA839qBYuh1Fg2LF7aaM2jmPFX5lTwvPBXkvFTyHvDWx /zbAt84M4KnlXHG6jH/vNkc7RDvyS59tsdt3e/8TUwbo9E/+QpHeVJ8HyVsB PJmChoTtdg7gwe1M2IA3rWCL1r1CU3HCC2jh9icE7SQN3ajkjqvuj+s6hgna a9qMVa0stzfqGLRbcbsF2pHbcbGdBE0m83DGZ4AkQ7LodeJ2qlWGmVUGz+WO WmWcXv5kwZ8+A7cv/pPc4W08q8wba8WoVWazgnTLvMOm+5Hlc46tnHPygzl4 Ove50Z+9G4foPi/1m/cyvp2fuWZ+9toFuesWnCGF900LMtYuPv6589VtC6/v WHRr1+K7e5cUBS4pwXQvP7Sk8siS3K0uoPfE9W4AeHyyqkMjVXhHeie1d0u9 d8cjwEdsEhPAUxV4VITHs0eyQ1/Tmw5xR8ngQbrTPVCZHdCe4t6W5N6W4B62 Wd4e594Z694d495LyuxR7h002huCXGtPulafcK06TuJWhcVecRTlxLeKssNu JYdciw+6Fh9yhQsY8O6QUio8SBnyPA8CgK884VF10qPmFL8uSNAQLAjf6NUc JmwNF7VFiDqiaLrHYLfHU27XJ0v7Uyi3D5yWGWi3D+bKjXnY7ecR2o0XleGb lw1fERmvKYeuq4ZvqlF7zB3P4bueI/cR2kce+I2U+Y08RGgffeQ3Uec/CWhv DAC3TzYHoJNPG179tektCu2dKya7VoDYe6tW3Mr/6Ek3cjuI/SlW+lM9le9Y Qdf0UXmipeneHUD63kHvTzs8Qe838j7sKQmYeORr0+2FqOQ+dsNz7ApGO+32 zgyvghD/UXA71dyO3D6SonicLE/djYrtg/GyxjBl/n6fvhipNkbaEy1BicLB /TA9EeLeCPSzK1zUZeqNodDeGIQr7Xh9paqjvKA1atLWXnwAoz2QoN31xk5n QHvQ16JLWx3Pb3LY9bE4e61DxrdLU1YtTvhyUV78qT/gC25/2NJIRkaG1eo0 SAzIynHLM/NCNEfdYKESPJgHZQObDPjroUOHXqJ5DP5hL3xvlfEALdhJUoEn TSxkCwTVnKfJLvySAc8OHtTqcwdikX2wfO7wQORROPVhWwP2nFjO1mNZHZxX +D/n4NST4UWDV4Zde2cTmqlmM2+li4sLfAyeWbAc3j7YDnM4xsE/81jsTXH2 ytbeWv4V3hrYDXKZHF2+wKkEZBZ3eC7kU0c+HpbD8uh1pgd2ey3L7fWFTLG9 nFNsbyl+RLm9hF1vr+4yub22h6CdcnujmdtxdBUEPwzamwHtrLTSU7jbQDty O6I7jhW3DzX2kFgDvMYsZmLnttNwAW+OdtOqrJZoZyYVxEtBjU/NeFt6twp4 PKvk7zuBJOP2zkHs9uFfmaAOGVJpJ5ke3Sm0m9N9wDzoSkz3PrPWGgL4X6h6 +yiH7qy1nCi3U+lGi7GimAA/aOZ28kzJUQ+alpN+MVt0Txm3N5q7HXXLYLfD p7Gq1VBJtcowxXZT0DQyVLGdcvuDGhbaUWc7hXY0cztG+x/QJAPDW+yuWkS5 nbTK+FmU3D9e8KdP3//TF4v+pFjyKl479Y1vxahVZqP8rS2Kt7ep3t7piege 6I3OUT0UMOcIOUGVLrnHfD4v4ct5yaveS/36vXSk9/ey1sxnema2f+B2YfP7 l7e8f3Xb+9d3LLy1a9HdPYsJ3csOLnl4COv98JKbex1zt7mc+Jqfv9Ol6KBT 40mHpiCHJtw208LonaI70ntnDAJ8+EYxATxVgWcMj9vg0fpNyXgN1hS3Xkgy ur4nxQ3SneLWmezWnozE3prg3hrvnrFXUhrs0R7j3hnt1h3l1h3p1hnp1hHh 3hrm1hTiWo/RDlyvPOZacRTl/1F339FRHOuCwO8fd/ft27PJd+99911jk01G oJxmlHPOiZyzSEJCQjkBEiBEEBIi5yxyEkIoo5xzRDlLGBtjG5/Zr6q6a3qi BozBW+c7c0Y9M9093T2HX398VZUXpZcbqZcTwUePkXrR62zA6i9C9dJD9NJD 0RMCeBz6EJnhBhBZJEDvEYjuBbsNge5FMcYlscYHNjtU7DepOmBSHWdae9C0 /pBZw2GzpiPmrQnI7e3HLTs4bu8Ct59l3N5zERW3C92eYvvmlmrSlmnvb0/8 +e703ge2fdTtaahIZijTdSjLbSjHbSgPVciMFLuNloHbGbS/rvF4W20kqJj4 ttaYov01WB3THaXcm3CynaK90/NNF4ofSHSywXoeJeTb4COM3t80Ob6r5/1W M+37erfRarfTh9xHi11G82S6fTjVcfixw/B9B8btt5Hbh2/YnY3wHLrMuv2M 7eBpprI9JQwl27txpv24n/urI5atiOt4LM1D6LEx3gzFQdL/1Kw+zqzugFkt iH2fafU+jPYY47K9RiXs6DH5kYYxG+xy4PSxaH9G0O7PoP2Oj87NbdrXNmvt 8DI+v0Hr9FqN5JXqCctVU9Myx/59/sFNEZmIVQIIMLwJeODP5uZmAYYxeUNo aOjkyZO5H6d/Amnodp89e7Z48WJZECLvgTUT3YkJUPIjsAkwPP1TrPBGoNho iuRuArYIHIUVGhsbS93QmOsRe79AtuVkNamb/qOb1NMxZtqfng7uqIwk905v 5eA9VK2U+vQcST015PjDzY7Um0dYCB8nZ1zsepB1UUltZB+e4ca9hsl6YCG5 zuX/7w/sKpxfemcq621ioyp9hobHby9JZeZdYtz+gsyRKnQ7Q3cG7cjttTjT 3shGE4P20mZRtLeKo50ToKBCnGwv5LqdJN6FKXc8caost7MhgXZuYMC39Iuh XUTvUruvigKezuUkETLRzo1PCvg3QsB/ivQ7TbnTMdup21EX1GGG7q8o4D+F 20kIC2nEC+NRMXwrhKTbORM5Ubdzo6kPMb6h5x0KVAuE6F7X/VNt11vW7cwE WIzbUZ0MQntF03AFdjvTNRVHMev2AjKkTGV7AZNyZwIu7BxhkUyTSFk7M5JM LXE76txNku05Fd29f3iRDDT/4GhbtfH2quMc1MeD20nK3U005b5Q/X8vUfkv C1X/u5PaP1fx/3OVyZR1ZlM3Wny32QoNLAN090WF7jN3Ad2dZ4W5zY7wQB1U 2ZT7XJpyT1497+SaeaeB7uvmnVs/7+JG0Pv8HV76N7YopwDdfVTu71B9BHTf qfosQC09SD0jRD07VCMnlNH7ywiNgkgN0Huit8HeNcYp/vyMcJ2KWC0m9076 q5LEO45zO41yY/gE8CgDT0poEtkhaKjkj+uRaCaRpNeUpNeYpFefyK9N1KtO 5Fcl6FUd0d+/xar6kH4dWB3EHq9fd1CvNk6v+oBe5X59QHvxXr2C3YjruZEA dT5wPTuCnxWOIjOMf8Tb7La/wfNQflowhF5aiN7zEAbwxPAvwkjoQ2SEIcZn 4cT7yyjUg7Vwj1FahOmJHTZl+4zL9xtXHDCuPmBSE2dSF2/acMi05aj5q2Pm aMTC45adHLd3c9zeC24nKffryO2CG/8Ctwtuf/3+7sTeh3a9j+xYtzuhHqmo O6rbUK7b0Eu34UK30VJwuzubbPcAt7+u9fitajoSO4t25PYmodvftOAimXYW 7d0QXvD4Aw2W8fCG74Hu7UTvHj+2WP/WMF1QN1FQO+FtndFojdupw+6jpa6k VEbS7cNp2O1PHIYfclLut+zB7fWnHe7HuiG34+L2QVQkY3MqwB3Q3oPR3nHU MsnPHaE93rwJD4Nfj+dRAquTqD+AcuxI7KgLqklVrEllrBS050UY7llvl4XK 2hm0Pw3Qe+zPZ9C+Qzdlu/b1rVpXvLW2exqdWa95YrV60gq1I5usPsOve8ym CG9AVmAYqhQAVUREhACDh6AdmoKg5W5alqWJ8UBBxrjBtrh4gy1KfgRkxV0b 3SvaxAokpDZwIHwj2Jyc9wDnPrRSnXtDwVXlh67nj26yzqB8CdNPwTmi34jU nEALDAzkXiTc643enSleFiV1u/QJrAQ2B9tSnO5wamRdkOQiJP9VJPXIiJUJ kSbn4vl0P1lFm1S3p0txe5Wo2+uyChs4bme7ppY1i6K9VRbaiduJgkjWHQG+ hlTLdEkrdJeJduz23vImJqTRva+iBaKfhBS9y+rBiqOyRWQuJxwjrMNHgHxj ov2DAd/6uQFP6E6nW2KS7YMM2sXdLk3v0tHOobtUt9MaeNFKeDw0Ddk06gyL BpMUc3szxAAb0un+S2PvL41wP4IHw0TJdnA7iU7G7WT2JQgyDiSlu6jbe4Vu R5OIiaOdcTume05xk3iFDB5Ghibbids/w0gypO0MirJRHW8/9386oGqZ8Uyp DDuQO7jdU3fSAs3/WKzy3yxVvlmh+T9Waf77av7f15hOWW/+3SbLaUD3bdZM tQzQPdBpZojr7HD32VESKffElSjrnrxKmHg/t27e+fXztnvwr3jPv75VhO5P /VWf7VJLD1R7EaSWEayeSQAfxuTeCyM1i6I0r+7gJ2022LvW+HYAPzNCt3qf du0B7bo4bVT0juPAJlMC+AZcP4NKaI6iIWhQJ1bUjxUPAn8MPUF9WjnRlMBv SODXJfCrj/KrjvArDvEz9uif3GFaFcevidOrwVyvQmLXK9+nVxqD0R6NEuyI 68TqmOsZYfwXofz0UH7EastnQbzUIN6TQN7TQHjCf4b1TuI5N0JRAOaB7tkR BrlRBmjwmd1GsRvtioCLe43KYo3K9xsB3StB73HGtQdNGg+bth41a0+06Dhu Qdzedcqqm7j9nFXPeate7PYeCNIv9ZbN21tzkrZOE9z5+s19NeL2vif2/c8Y tw9kOA/muCK3F+Bke6n7aLn7KHK7x+tqxu3f1zsK0d5M3e6J3e4h6navNz04 er1+6GGDBTxg/vtOFD+2W//aOk/QNOm3xum/Nsz9tW7um3r70Vq3xhyPawkW o7h3qpjbh9Op2x2R2+85ULcP3bAbump3JswTDSZzznYQu/1epGt1vG1PolXX MYT2V0ctrwY5F8daNx00b4wzrz9oXodT62wQsZuC2CsZsZuUM2g3KooyLIC7 KkB7uGFOuMHu9bYvQvSfBwvRfnW7Pot2VCFz1Vvr0iYtn4Xmp9aoH8fJ9rQr Rz/PD1x+U4Q3y5cvl3znq1evpK4H1DR+/Hip64GX6PtBOJIc4vF4qamp5FXJ j8OrsAYTExOSBIY/wWk83EBrXHSJ7Rs0WDJm6vgsblJ3G/YKtgWPzbjJX49Y g6NHn4sNR/NB6/lSTcE7MjjpcGTgXJA/4TSJnQI4p7CQvv/kyZPkvEi9EiQb HHy6cslNE7GTTcABJxeGrOuQ28h+vsKNnin4IFkotmNwJdBLDvZf8TPIvfI/ W5NwO1vfjqd05LqdFrdnFuB+qYWcfHsxGg0ST7qE3S5Ee6v0TDsX7Uywhe7s HEwS3VTxyJBMfbs8t0sBfItYcAAvrQxeGtqZKEcxhINFOK6vUBDtfyzgf18B PNftTX3vWwaFyXYxukstm5Hn9teKup1b9C7cNGdsSTqdkxDtYgFoJ27vZQL0 3tDzC6E7Uy2D9Q6HSzj4T+tr5l4Mn03s9gEcyO24vh3PuySKduL2vPLW3LIW uGlFwbhdFO1iyfbcipyims/z6/YNCEVun/lvDvP/zqTc0agyqMrdTZulO2/S Qs3/a6ExbanBlOV649Zo/ftag/9cazZ1g8U0b8tpW6xRofsO2+k7caF7kMts lHJ3Z1Lu+3DK/fAyRPdjKxDdj7N0P712XsIqlaAF2hc3zruyad71zfNvbVNG dPdVfbQT0z1ALW2X2vNABvCZwepZIeqg95e47r0wSrMoWrMkWvOaHz95i0Hs OuN7gXo5UbpouMj92tnRvFM+RrUH2b6rZPAZYvjDZAR4EjzJaDzCrzvMrznM rzrEr4jnl8fxYjeaV+znVe3TrdynWxGrWxbDK43hlezlF+/lF+7h50ejYphs zHVidcT1EP5zFLy0YF74Kkvg+uNdug8DdB/hQIAP4qcGI8AzESIi+fQwvUyg e6Q+oXvMRrtCPOQ70L00Bum9Yr9R5X4joHt9vHHTYZPWBNP2RLOO4+ZA965T lsjtZ6x6iNsvAN2x2y/jUpmbNgO3zZDb745Dbn9k1/sYRR+4/bnTwAtwu8tA lsvQS1eUbC9ByXbkdk6y/XWd5+t6DtqbWbo3erYUej1NWYTcTkplOli393n9 QKOXDWR4oLvzrx3zf3s1410b78c2qzctjqSb6usGd3D7aLVbfLjJaLHr6Es2 5Z7lPAwh6XbSO/W2/RC4/Tp2eyhy++A5VCQzcApVtvcmMRUyqKz9iEXzIYsE H1eE9jhzsHoNxH6z2v3osZpUxYDYEddNyvealO01Lt1jXLLbCGXaAe0RhrmA 9jCDzDCDqLW2CO2BDNoPrDePYdF+c5v21c1al/FES1vcjU6sUk9coXZoqWpz Y8Pn+YHLb3KwwWVPZGSkmIIAOVlZWXQ9u3btgjeAZ4h+peY8QVZgIfgUrE3q Fmn+U+qrAk5Wn0IIVgj0gnWK8Zj7HSUBRhvsNvdP7tvo9yW1LtCycJO18/Ib 7DBIj7v+Dy25EWvjcfs9a1BwKwq+kx4luoSbzZY8aOTeSip9Je+waAJf6qbh 1JPLQGzlcL0pSPfJuJE/4SPknkJy37j/cQCbkHqXJ7V95sHbSXv6oig1oxjR PasEuT23guv2dNbtTK86gnYxtxcLp14CwIiivVUq2gukoZ32URWbQZVBO4k6 oncRwEtFOxPNKCTczgG87E6sUtDeJBlDuCKaoXhZ09AH0f1TAb7qFXe2VjRq ykfoHWTLdTsEnjJJutsly2bkoR2Hom5ni97R+kfE3E7naX3fMvBeqtub+nH0 /UrRjt1OC/h/JnNRMX1UUb79DXE7HgcSl7g3o3w7Hg1yoLi+v7i+D6KotocU yUiinet2UicjrJDBEy2B21GZGf4PLJJs7/osRTLQDsYfArfbKX1FUu60dyoa y11bmHL30vnWXGvWEv3JywymrDCYsMpoAkm5b2TpzgwLiUtlUMrdDVW570Yp d2ZMSEL3hBUo8U5rZja78c/irPslSvet8+9sV77vqwJ0f+Kv+jRA7RmOtF1U 72rZoeq5YepE70VRiO5lezQr9mrd3Kl3YisC/N1d/IDlQC/Sd1W7No4dfAZH PSmnQZLXrY/XbcDRGM+jUX+QV3uQV32QVxnHA7S/iNJL3mZSHqtbHqNbtle3 ZI9O0W6dwmidfIgo3bwoXnYELzOc9yKUlx7CQ1AP4aeF8J4F81KDUY79aRAv dJUlWB3Qft9f9wFEAAE879EulIF/EsgHwz8N1ktlAxgPdH8hpLv+ng22+bvx hE2Y7iWY7uX7EN1rDxo3HDZuOWrSdgzoborpbt55yqL7jGXPOcte7HZU4k7o Tkrcb6N+qcjtD1i3P7HrfWo/8Bwl2wcyXQayXQbzSI9Ud+T2CnC7xyhJthO0 N0hzO6b7pdNL3jRz3N7phYpk+hb80E/D622fLTE8SsJ3O73r4L/pcGSqZVqZ 4WVG67Hba9wuJ1jUpzmOFroQtw9ny3b7XZRyH7qJ3X7Fri7Z4f4et8GztgOn be5GulQfskMDth+zQsn2I5YthyyaDpqD2xsOmNeB1ffBBcNEVSyI3bQy1rQC i70UYo9JyR7j4miUac9n0Z4dZpgZavAiRD9yjc2zICHaL23Vv7tD9zYpa9+C 0H5xo1bYEqO4JWo42a52cL3l5/l1j9nkY4P7p1RnZmdnm+AGjAHVUDtJvhng KsfP9FOwQgG+C5D8OHdvyX8BCGTU51DmkcYlvVjjYk+scT8F7JT1zsW4yVoJ bbCfnzbBzqXmH9c+aBNieIbPmrBN8s10alQ5K6TqJglwin/Jexax/Tx37hy5 kOCaTE1Nlbyc5DSy2+R65m6F7IOAvVWkWwTky18h+Z+Iz/eTZtuTF4XU7WnZ YuPJYLdTtDNu5+Tbixs4aG/MKR3b7WOjnRs1tNa9u7iOoJ0bCPCA9jHdTkME 7ZI18KKAr2gWmYBVXOyNKDgTtiLpQaC5e3D8OQD/Yen3BlBuH4N2EsDjMelO h4iU73apeucOFyni9hHx9RO6M24f4AYA/r0Ut/f92oijQdTthO4o687Ut/+A 6f6mqvV7km8vx3UypTjfTtCOU+49cEHmV7Rz0M5xeynrdjbfTiZIzShg8u0k 2Y7cnlf57HMVyUBLSkqyVvnWFtw+86/2ZEBImnJnqmUmkZQ7uH2R3qQlBpOX G05eaYx6p641m0qrZUihu5/DjF3scO6oWoZJuc+NA7ovmXto6dwjy5QS2MQ7 0N3blU/K3Qndr3rPu76F0H3+/R3KD0HvfiqPce49VVLvIWqgd1Q2E6VZHK1Z uluzHI0VqQWAv+6n57fELGYtAnwWLqGpptM2kYhDs6/CYw0EWqJbd0C3no3a /fARnFrfp1sWqxuzwRy4XrpHt2S3TlG0TgHiuk5epE5uhE5OuE5WmM6LEO3n wTqpQRC6EE8DUTxBgVget8H0so8+cP3eTt27O9HjPX8u4HkQxPCPd/GR4QP5 qUEo646qZcL0s8LR6JF71tu8jDbI321QgOZaNSzea0joXrHPqPqAUd1B46ZD xq1HTV6B25PMOo6bdZww6zxp1n3GvPusBei95wLrdrbEff82g5/vTUNuf0zc bt+bat//3JEk29FgMngEyKEitxHkdo/RKuz2Wk/xZHsLg3bi9jdNom5vZ93e 6/Wmf8H7fhWIX/q0f+7TY9zeg+rev+9iq9zbGLe/BrfXuQPaR6tQxIeZjBa5 jORhtBO3Z0h3+xB1+2W7oYu2Z0I8we31CXYp4S69x63QgO0Jlu2kL2o8Ko+5 6O/4crcVQnusWSWOihhTEjjHjsW+26R4t3FRtFEhW9DORXtakF7EGpunuC9q 3HoLivZb29DUqFcA7Zu0zm3Q3OpuSJLth5eppl069Nl+4PKbVCaRJoe7kk1q LQ1pT3FrampSEK6mpqawqqds09XVBXfBx0FiYm+DJnUNXLePmR7/nSMuwheH fVMkrztlypTfs6E/Z+N+cW7X1DEbyWnLP3RwwZBXxa4uWC5Ly2L/SUQrpujC RYsW6eIGT+TsHpwsuLq4PwGyBNYpdh5hT+TfF3yRZDu0x+kFrNtLidvZlDt1 e00GJ4jbMd3ppEtCt+eUNedVtObJKJIB9nwA2tkoquksqgW9dwHdSVC6l9Z3 lzVAgN6lAb5ZZkivgecAnqJdNKSjnc7figL+RCEE/EcY/osAnpS4c9FO6U4T 73Lc/mqEUfcH0Z0ulFriLoZ2MlurNLqzgO9/3wTRJ3Q7QjsNgnaScqdub2NS 7rTKvZypbxcm24vreuDmkXU7E3A955W3oSgj48k0czulZhbWY7STOVIp2tF0 S9UN4vWZf1wDt1uB2+d+ZTfrv9qr/BMNLKPJSblzqtyR2/mTFhtMXmY4eYXR 5FUmU9aYTl1n/h2qljGfvNViPKmW8XeaFeg8KwRXy9CU+/5Fcw8snnuQpTut mQG3056qFzbMu7wJ0f3GlvkpOOt+10f5no8yArwfSr9TwBO9ZwSrZQWr5YSq 5YWrF0QwifeS3SjA8HvXGMPjNT+941sMCOAzw3XQEDS0H+t+HXhEo8GTiNWp xgFPKmNQlO/VKdurU7JHZ+9aM5JgL4jSecnhemaYTkaoTnqIdlqQ9tNdWo8D UDwK0H6IQueBPwTKqwevsASlg9jv+One9kOPd/0YwN8ngA8QiYeoigaV0CC6 4z6q2RH6u9fb5EUZ5AHdow0KdhsU7jEAvZfsRZOxVu03qo0zbog3bjli8uqo SXuiaXuSaccJU3B71ymzrtNmnWfMus5adJ237L6IB4REJe6250KNKi9ZDTw0 x263B7f3PXPoS3MAtw9muzJuz3cbLHQbLHYfKXdHbq/BbmfR/rbJFKGddfso uL2ZdbtI11QvtlRmgaBvKsSP/c4o644LZtBy2jsVJdvRrEyvGz3QDKq12O2V KOLDTUZKXEdesm7PFHH7yCMr4vYhcHuK/dAN+6Fr4HbbwYu2p0M8B87anAr0 6Dth3XPcqivRqiMBV8jEmzcdNG+IM6/bb354q0s1I3az8r2m5XtMy/aYEq5j sZsURRsXRhsXRBq9jEBozxFF+7NAvfDVNk/89Q4K0a57a7vO9a3aVzajsvbz eHbU9fZaSSvVjy5Xi1uiMtz7OYaKUqSJWUUOP4h5AgICZL0ErhazEOjoLxjY UVFRsC0QjhjSZJnt3Llz8ndVrImth5hwzE/Jb7K+qeQW4Yt/QpPLL4D5DLUx ijTYDTi5cFfFvRdT8P4FLhL4IFwS5MKQczcHK6QHlnuPBgvhCqEzH9EGuwQf 4S6BdwLd6Wdh9+AN5ML4VP/9AeuHbyHnDV/K7S/yyp4yQ0GKuP05uB1N7FhN JosRdTtOuReRfHuDEO04cstbWLqLjCTzkWgnbq8R1zsH7dxgAS8X7SiEtpei 9/KmfrGJnDh59QF5aP8DAK/AUPCvieEVAbwsvZPqEVIqI0l3VDMz+F7S7dTS JIDc3LT5mHoXWyKGdllubx1kQsztzBg4fRDMPou7HQd1e13nWzQNE4t2WuKO 62SGShuHGLTX96J6rZourtuFaBe6XWTkdg7aa1ClGet2+H29fffzZ/t1Jycm gNttlL+2VfkaDeSuNs5BfRxLd+R2mnI3V52wENyuP3mpIaL7SuPJq02m4pT7 tE3mk7br//ftpv/cbjPN12FGgNOsIJfZtIPq3gWzYxbO2ceh+2GW7ptceMmr lQjdz61n6H6N0H0bijvbGMDf91F+wAKe9Fp9jhPvDN3D1PKx3gtx3fuzYO1j mwyKcB6eMP6qL9OJ9U4AH6IiBgEeHstjtJlAs7KiqZ3K9miX7tYu2a1dHK1d FK39LJiX4G30MlI7L0I7J1w7O1w7K0wbuP4iRDs9GIn9WZD2k11aj/y1HkDs 1Lrvp3XPT+suhK/WHfREO3C5+W1fnRRfnVs7dG756qb46t72ZQB/h2Tg/Zm4 zwbQ/TEqgOelsdUy4HY0T1MUmm6V0B2iaA+a3alin2H1AaP6eCNU5Q5uJ9Uy SaadyaadoPdTpp2Y7ijOmXddtESlMjdte+/YHvQzRZ1S2WQ7drtjf4Yzcjse uZ26fbDEfbjSY6TaY5STbH/XrPe2xXS0xWu02XOkEcVrnG9vKfRKJSXuxO0d HLf3Tv2tdxY8Qel3XN+OXsJuf8MUycBKPF43iLq9wq0m1fHaUcuRApeRXHG3 //CI9z5l/C+3vkNuv8O6/ardIHZ7baLDPp8F1UfsepOte5Lw7KhHcbKdoP2A ec0+s0NbXSpjGLTjehiG68XRIHaTwmiTgijj/EijvHBS0I7RHmKQjtGeGojS 7GGrbFCmfZvBXV8h2q9itF/AA7afWqPh7Wp4bIXa4aWqjxIDP9uve8z27bff Kk6UFStW5OTkSC7X0dGBl/4iIX+uZ9rb2wU4v8q1Pfz55MkTyRVSXJFGPkt3 VTJDDtvlrlb+F4S9hUdYboCb1G8KaJeDMfgsV33yM7cf2mDNchLXcJy/yJRM YoeRXAlwXsh5h1fhIMAS4PSYV9SJEyfgbfRP7pGEUwNHHtYAT+BrmpmZyVqJ 1BulKNzkvJNLaO6uyjqkivw6xrxlE7uYP1trauti3J5dSutkGLfnV6fnM26n dM9kU+5ZhXXZRWzKnUU7SbnnloPb20gwMy79frRzori2q6S+q7Shm4Y44EHv TT3S9S6zooaIHQVnQHhG7+BwBuoNnJCDdpGggP/IKhrF0u8M4KXoXRTwUidg Zd3ODOEuNUjNjCTXabRJ0F3BDDzj9rHQTqvcxULC7b814Wjsfd/Q+ysOUbST EWa639V2vEUl7q9Isp3jdnyO8Kyp/cjtGO3U7eQ/jyjaWbcL0S6ebBe6vbK6 of1z/rpvXzlrrjLRRnW8rdp4NJD7/K8gwO14LPeJJOVO6G6mPm0BcvukpTjl vpym3M1Qyn2zydc+hv+LTKK603EmoXuoKxoTcjeaQXVOzAIh3XG5u5Kvu1bs EmUyyAyl+0VC983zge43cc0M6P020vv8u9uF6ffHO9nEu7BmBukdh3rUSsOX eNxI1H01UhP1YMWdWIHxV3bwr/rqAeBPbjVI8ecX79YsRil6LRLF0VpFUVrw /oJIzZeRWnkRWlGrTXLDtXLCtLJCtTJCtF8Eaz8P1koL0noWqJUaCGLXfhyg 9dCf5bqv5h1fzds7NFMgfJgIWGp600frho/29e3aN7br3PDRuckCPsWXk4HH SXiah38YgAefQXRHI9JEr7POitCndGdqZnajKVnLYg2q9hvUxhk2xBu1HDF+ lWDSkWjaCW4/btqRjOOkaccp047Tpp1nzTrPm3dftuq5bt2TYpMc6dbzwBbV tz+x70t1QG5/7tj/whkVtyO3uw0X2I8WWv1YzBsttRos8xis8BipQwO2jzZ6 ft/s/FvzrJ9btEZavEbA7U3I7aO46J1JuUt2Te1d8L5n/k+9pvCEGWGmm0V7 BzOP6utmnGwHt9dht1djt5ej2VrjQ01GitiUO+N255FU6/d3Jghu/lNw7T+G 7mO3o06pjNsHLtjc2+16KtCj/6R1T7J1V5JVxzGUbG85ZN4UZ14PaN+PymPi t7hU7DUlaC/GYi/ECfbCKGMk9ijjlxEI7TlhBtlhBlmhBhmA9mD9tGA8udIu vRs7DFd5OXPRfoOg3ZtF+1qNoIUGsYvUji5TO7hEpSL1wuf8gctvvz9RDLYR KJDWhg0Bw4BVwDayBKRH9kHsnSB5sjyHbeSzhIiyGvdVkq4HVcLmyBfk0hoW wibkrE3WNyLgh8cm3HRwA2fSb/RJ2hTc/oIx+QS3D7q34jb4oPz/NfigvZKz kO6zrHdym0A01819Tm/uFLmiSPuggwNnilxahPewq6GhoXLu3ehZVnwTkrv3 uX/SbJPi9rxKEjjfXoVKc0lQtxfSfqk45S7mdhQtOXjWVAT48rYPq2kfC+3Y 7Z0ldTjqZQC+kY0mUcDLQjsbuNhGZCInMjerEOH1IiYvqe+DUEzvNAn/8WXw vw/waEk1HrFcGLiEhrod0A4hK+WOS99/bR18Lyl26nZgtpR+prINT3uzykK7 mNsl0S5Od9btgHZuIL33/ErdXkdK3Dt/QqUy7ehQVLa9ZtHOuh1VuaNTXFTN ur1SCtqx25vJ/zqJJtvrXuRzKttxj9Tuvs/UI5X+ug00lKxVviV0t1cb5zj7 35hqGS1SLYNmYnJX/w8zzVngdlLizqTc8RxMa02nbjCftlE4tgyaicmPGVtm VpjbrEiPWdGecxi6L0R0j8N0X+fEowUzhO5nCN1xH9Wr3kjv16UAHun9wQ7l R34qT1DiXRUl3oPVMkPUsnCA4SOWG8BjdqhaTqg6HfsdDF8QyQC+JFrzaZDO JR9+9GrjJG/9G768/EhNEi8jNPPCNXPDNXPCNLPDNCNXmWSGaGYEa6VTru/S fBKg9dhf86G/5oOdmvd3aoLYKddv+Wje3K55g40z3jqRKwyvbdO8ulXzylZ4 1Lq2DQPehwJeh+idBjAe6P4gQJf0Wk3FdI9YY5URxs8M10PdVCP1Kd2L9hiU opS7QfUBw/qDhk2HjVqPGrcfM+5INOk4DoHdfoLQ3aQd9H7OvOuSZdcVy67r lkmhzl13rLruW4PbB1Kt+p459qU79Wc492c7j+Za/Jin+z5/mqBwoqB4oqB0 4k/lGuD2wSr34VoPIPqPjSa/Nc8UtEzBbveibof4XmaJ+wI2KNq9vscVMmTi 1Nck2U6KZFBxuzsqbq90GwG3l2C3F7oO57tw3f7uoZLg9j8Zt9/DbkfF7faD 2O0NyfYpUazbj1t3Jlq1J1i2HjZvxgM/1qFBY8wqY0zjtziXsWhHCfZI4wIc +ZHGL1FtjBGuZkdizwxh0R6kjwva+dd3GADaL27loH2b9tUt2ngAGVTWfnqt xonV6ls8TI/hYWSSN/A/5697zPZxGuFSh1iI8gmEzKXUt2yjS6Kjo8kTmocU S7nDG8Dq9G0f0cBj8HEuCGGHufsgmcjlvgqk527d398f5AaPZFfFDiDsKjzC qx+tazmNbAIO1Mfl2MmpIfv/SfZH7FQq3rj7T74RParcGyhualr+btDncJbh a3LXL2sPybmDWwOp/2ck2eAaoDsj+b9CYleUrPalku0C/C876pqapYDbcQDd s4rqcDB1MijlLoJ2PJY10B1HXhkzHXy+sFPqJ0I7N7h6b2SirFEa4OWJXXR4 SSHacdSjKJEdH6B3aYD/IMMrDnjMdWGIoF2o9zdsffsvJCTFjoIZauZXOW5H dB8Zg+4U8Nypmn4P2hm39zMBekf7LOb2HuT2hu5f6ruB7j/XdTFur21Ho8qQ Wxs4XDTZjgO5HY3fzrodLl0paC9rxZMXiCfbX+TXMr8a7PbnuRXZhdWf+df9 40/v9FRnWrFut9OY4DALud1Bk+2gqjXBVXOcm8a/TDVmevImLuJPXKw/eQlK uU9ZYTRllfGUNWgaJpRyZzqo2qCUO9A9yPLvIbb/CnGYFOo6M9xtZhSudcd0 n7N/MeqputaJxx0fkqE77qMKdL+0ESXer3iLAJ7q/e52nHj3VX7ip5Lqr5IW qJoeBIHS7y+C1MKWGWQEqaEIRtl4hHk8BA0Z/j0fZ+DB8PA8L0LjfoD22a28 yJVGCRv1L/voZoVqQGSGoMgI0QxfaZwepJkWqAlcfxqggbi+E7iucd9P466v Bua6xi0fFDe3awDUr2/XJEon4bfYFIl9i+blzZqXNqPHy1sQ4K9s1bq6Teva du3rrN4J4EkguuOUO6mWSQ3mR6y2Sg/lv8BjwoPec7Dege6Fu1GpTPk+g6oD hrUHDRsPGbUcMXqVgOjenmjcnmTcDnpPNuk4YdJ+Etxu0nHWrPOCeddli65r lkcDbbtuW3bdtep6YD30xFDo9izn0Ryz13lmP+Zr/1Iw533xtB9LdIbLHAbK 3Qcq3Acq3YfrPXBVjNObZivk9hbW7YTu9Ry3t3Hc3rOADQbtwrJ2HLhOnimS GUXJdndSJDNSitxe/cjh2hGL4ZcuwzmM279/ZvLrg+8EKf8U3Pjnu1uzUXH7 beT2Qez2hlP2KdGu/WdtUiJd647Y9hxHyfZXRy1aD+HKdlwhUxVrVrHX9NQO h4xwC1QVE2UCXH8ZwURehHFuOEY7K/YXwQzacXkMQvu+tRYhK23u+vJYtOtc I2jHfVFPr9M8uVr9+Cr1ze6mR5apxS1WrvwzJduhLVy4kBqD+1x+41aYmOOW np4OBnv8+HEjbvSdoDL4U2ot8fnz5+luKLhd+U0s7821HOwed68k29SpU2W9 BH4D7OXm5pJsMDzCEvjK0bj9BR8BeCJnDR/dyKbhQIktBzFq4ybns2KZXjg7 v39/4DtKnkrY0AetXMAWPpEndDlcfnRvYbnk1UicDI/cEw1nlnvk4VOyqoxg tR96muglyt1P2uBQjPmT+YN/vvJaU2snuP0pGb8duR1VyDB0l+F2lG8nI1Sz bmdT7s2i0ZJb2gpup4EAX9GWX/mqoKr9U6Kdo/eShi7qdhHAc0toJHqwSkF7 A2eGVhG0MwvJRK7sdK5/asCP4Xa2+h3T/WexlDtX7JxZmaSn3CmwpVbLyBrv ket2ye6ukm7n1rRLur2ZdTuz/1y3d/9Cor7r5/qudxB1ON+OioiI29tel7eM iLm9BNxe003oTvLtIhUyZWQwGeL2Bo7ba5lkO51rKbusq3fw8//A+SrTLZW/ sQa3Q6hPsFcbh9xOO6gC2pX+zU35fyG3605cAHTXm7TYYMpSwynLDaewKfcp KOXOGVgG3L7LelyE+b9HW/57uN2/QlxmhrnOjHSfGe05c++CWbin6py1jjzu +JB4hBmlUyzdL2xg9H5JNP1Ocu8M3X0Q3R/7KT/difT+DCJANWWHxr7V/Ge7 8NjvdPKmIAbwNAMPjzlhGtlE6Rjqt/20T27mha0wOrRe//xW3edBGofW6d/Y oZO6S+MJErvGw50aD/zU7/mq392hDlxPQVZXv7FN/fo29WvbNK5t1biyhYTm JTZ8F5nC48XNmhe8UVz0Rs8vEcNvIYbXurZNi2bgSRL+Nq6Zue/Pe7gL0f1J EC98tRUpmHkRSujOz4rQy4nQexmtX7RHvyzWoHK/YQ0ulWk+bNSKqmWEdEdu TzZpP4HdfgaVynResui6arlvi15XCnJ7z33T3ocmPU/tUH37C6f+TER3PJ6M 22CB23CR/UCx20CJ20Cp+0AZpnsVQ3fE9WYvplSG4/amfK/U24vEu6Z2cwKh 3YszUyqubAe3N3qM1nuMkmQ7dvsI6/aRIteDwSYjebZvM7XepmsNZTgPPXce fub0/SPD7x8YjNwzx8XtjNtrk60uB1v2n7fpP2PTd8rmZIBHdxJKtrcdNm85 ZN54ECfbY1GyHZfHmB7wdqJox1xHkRNulB1myKTZkdgNngcZPMNof4zRHrvW 4p4vP3iFdQoX7ZvRADLnN2idWa95co1G8ir1XQsMYpdoxy9RTl7/50q2C0Qr Fn6PPOGzYJvdu3cDYuGRm4qE5VLNDAvpbiiyCbgpIPnenTt3Sk11iu0/9094 Djsm+RFYjyJ3K2RVZCV/hM/lb1qypIck0uE4S76fkJ7cQFEekwYLFb81k7M/ 3D9hhWRDku/ciRvsjNjJgjsgciRBxWIFMwIsZPIGaPTOC56Qb0QeyXchX5O7 BvKqrA6nUi+AMb8sOXRSTzrs1ZgXw2f7IUu2H9/+JOr2cgXcXovd3sBxe4ME 2ptzcbJdNJiufCzd2wurO9j43WhHbmejQRTwUsrghUPQjIF2iDom6JyteP5W ZhbXPz/ghW5HUzXJdDtb9P5TXRcqdG9kx1EUQztD9wEpdBcae1ghurePioZc t0t2RBUJVuxctHP0/mtjD0E7SrYTtJOAb02K/8ngPHTyLHT8Sf8FOK21PcW1 PaD3/KoO1GtDhtvJNKks2mtfvGTcjuZayinPKfxMcy2JNcbtKuNpyt2edbuT xjcuc//Ndc5f3eb+FdzuoTvRizeR9E5dYjBlGXY7rnKfso4zlvs2m+k+ttN9 7aYHWf0z3Or/AN2DnGYSuke4zYxyn7nbc2ao2+zNzppxi+fEL52D6L6M0n0e ofvZdahmhgt4Mb2n4KJ3pmYG6V2FROBi/Sd47Pcn/mpPA9TQAJK7RAaQzMKA zwxRzwhRfxGskR6sAUQnkRao8WyXxrXt2kkbeSHLjJa5WJzerPNopzpw/T4W +x0Qu4/6LR/1m9vVbmxTu7ZV7eoW9Stb1C9vVr+0Wf2it/oFbw2I85s0zsOj t6bPQlN4PL9J89wmDQh4AiFmeJKBR+l3nIEHut9CdNe5i4aaQXS/4ae3f735 s2A0kZMI3cP1ciP18qPRhK3lqFTGoO6gUeMho+YjRm1HjV8dY+l+3LiduP2k Sftp1Du186JF1xXLfZv1um5Z9twx+f6eStcD6+5HNj1P7Hqe2femO/ZlOPVn Ow+8dB3Idx0odB0ocpOk+0iDp5DuuFSGun20Dk+cKixxJ/1POdGJk+0U7RAt KEbB7XUeKNnOLZIpRdO2Ere/z5gsSPtakPr1mzS9oTTnoVSnoSeOQ48cSXH7 YIrD4E372pPW5wOM+y/agNv7wO0nrU8GuHcnWr5KsEBFMvHmDXFmtWyyvWyP afFuk/2bnAqiTF5iseeEGUFkhxllhRoSsaM0e5DB80CDZ4GoPAbQfo1F+50d vMDlVgza0QAy2gTtpKw9ebV60kp1b3fTw0tVDyxSrniR8kV+4HKa4qNqaGlp yX8Dd1UrV66kz5OTkwUcmX/zzTewKhAddzdAXGLrh7eJIZNk9Qnb4HHM/Rmz gbtgPdxd/YINKA5fWcF3koNGl9APwhNyfDo6OsgtBjxyjzO8Kkl3WKL4wRT7 OGwiLy9PKl9hH+hGuXvI/SxcG/RPOBFwJyJLwrIuYLoGMvgnbPSDTmgobrJ6 KMDeCmTcH/1FgftcsYv88zfi9tQs6vYKrtszRMeBxEPK1DBuL2LQnl3SmF0i km/PK2vBIQXtEMKRIUUBXwTxsWgvrUdRIhYE8JwCeEnAlzb0iM3BKol2DtR7 yKiAYkvkAP7D9C7Sj/WTAV5Rt7P9VVGX1e53aDh3aWgn0SJR6N7GKZWBIBpX EO3kI5KjTSqC9uYx0Y7djukugvY6XCeDR3F/Q9wurG/Hxe24R0Mf4/ba7oLq jpeVwskI8oTjtzdjt9czI0AyaEeRjitknn/GuZbEGn/ueAvlb2ipjK36eHuW 7k7KX7nM/qvQ7TrI7TjlPnkxqnKfsgLobjxltekUMn0qLZXZzla5+zvMDLKb uMtpJpfuke4zF5oq7fWaGbtg1oFFsw8umX0YjQ85N2HFXKD7CTwlE5lQlQBe qt5J2czt7fPv4s6qD9gIWKhHnjz0ZcafIfM3EcCTUWgggPGAeViSukudxNMA 9ScB6o/9hRG01Ojoet6uJYYxq/iJ67VvbVe7uQ1x/fpW1atb1a5sUbu8We3S ZrWL3moXvNXOb1I/t1H9LI4zG9TPwONGje0LTOARxQYN8uTsRg1i+HOs4ZHe t9D0O6quueGjdWuHNqI7Hm0meKUlKZh5hgaHRHRPZ+mOU+56hXv0SmP0Kvbp Y7obNh4ybAG6i1bLILqfNAW3d5w177xg0XWZcfsPt+f23jXuumfV/dCm57Ft z1NE9540+54Mh75sp/48F0T3AtC7ON2HajwYuhO9E7c3YrfXe144uQRNw9SK ZI7c3unFZN272OcdHLS34vEkYQ0N2O0k2V6Fi2Sw24eL3YYLXK/s0+29/S1y +9Ov36ZqDKU5DT11GnrsOPTQcfCew+Bth8FbDrWnrc/vMu6/bNt3wabvHOP2 E+B2XCSDeqQeNKs/gGZZqsQDyJTsRuUx+zY5vYxEVTGs2I0yQw0zQvRfBOun B+k/D9JPC8S1MQTtPhTt/BQf3V3LLEmmHdB+iYP2Exjtx1aob3IzObhYOWkd 74v8uuU3xd0OepEFPOANEIW7qkePHsES8pxsCP4kYieMpw2gBfAjxhNDkSTA YEke27iags0piF7JL0W/wkd8/BM2qd9X1jvJ4aLnAg4pHF74k/4XBvdcWOAm 54zDCmXRVLLBxxU8VvB16Ebhhoucfa51ibQVuWUgfiZXC+wqfB14hGuALKFv k8N++U3Wp8h/AXzECkn7o360Crcn6QVPM4qx20uf5+DBZPIw3V9WvsD59gzO YDLMUJBMqQxTJENCAu1cuktBu8h8TJWvCpHe24tqOjjxYWjn0l1oeGndV5mo R8GdxUlE7NLQTmdxFU7n+v8D4AnapbidRTvYlXG76FAzZJAZqdHY+0tT/3s0 dSkFPKlaYd1O6S5V72Ji57pdGHSdcjLtA4qiXdLttR1vySjulO4ctHMGC6pD Q0EW1nTmV7VTt1O0Q7BFMvVMvj2/huP2yue5XyzZDi3Sbz243VL5W2tVTHf1 8XYa47Hbxzup/N159l9d5iC6m2jMdNeZ6Cmacl+O3U5S7utxqYw3LpWhKfed 9jN2OswMcJwZ6DQz2FlI9wWmStEeM/d4zozxmrVv4ay4xbPil8w+smzOMUT3 ucdXgd6VTnD1LpF7v8ZO0kQ6q95lw3+B3l08dCQd/v2Br/IjPzT8+xN/Ru+I 6wFqT/1Vn+xUhZceolB7gEKdGyD2u75qt33UTm/SjFut67fQ8Mha7ZMbNC5v Vr3orXphEwkQu9q5jWpnN6id2aB2er3ayXVsrFfb6ml8cp36yfUoTq3XOLVB 4zQOjuE1z3uzesdxZYvmta2oT+stH80UX607O3UCl1vgbqq6mO6om+pzlu5Z EXp5UXoFu1HKvSxWvxLRXb8uzqDxkEHLYaNXCUZA91eJrNtPmLafYtzeedli n7fe8E2tH2/NRr1T71n1PLDpeWiL6Y7dnm7fm+HQm+XYl+vcl+fc99Klr8Cl r9Clr9i1r8S1r9S1r8x1sNpjqM5juN5juIGpkwHJD9ejrDu4HQ0X2YJZ3u6F 6E713oHR3s5BO5lxtRG7vdaDFsmQ4vbRYvu3+bq/5Mz5LXNS0s7pgmdfv01T ++npvKFnrNsfOAzedRhOsbwabno+0Lj/qm3fJez2szZ9p216T1hXHLS9HeL4 6ohF0yGUbKdFMmV70GCPBZEmsRsdCdqx2I0yQg1xjl3/eSAS+zNAOx465hGL 9rsM2nkg9oCllle36FzerH3Rm6Bd6/Q6zROrNY6vQmj39zKIXqgR5zGt7Pmt L/UDl9M+aBRrIjGxhaRSQiBhRWAVeb5nzx5CR/g4edKBG3lOS1Dg/X5+flK3 OyYUBWwGHhqsRP77pb760dUvfxz4gbWwcqnHhJKYVJLAEabHExr8KXkLQEq1 x0xHj/l1YIsKXjO0Xh02SupeYN+k7pX89cARkHo/8hf8xT952RL3CMDtBmxC 6kuKrOez/5rFW0VNM3Y77prK5NsZvXPdnskMAinm9kah23HKXRTtxO1tL+Wi nbgd595RgN65gC+u7Sip65BfHlMqEUK0ixXAs4AvqUchNpcTmpi1luG3ImgX iT8Q8P2SgFfc8KD3Md0uRDtLd84QkdLdLtJ9FU94hBSNJ0XiUpybVJd0O/ed XLfTGwGyQnC7LLozY8hIQzutkKFoJ8FNtgtnTcWB3I4GbxcZ4RMNKVOLimRE 3F4udDtFe1YRniA1n5tsL0/L+TKV7aQlJSWZz/2HJZNy/5ak3DHdxzsC3Wf/ ldCduN1Dd6InSrlPWqQ/eTHtnUpKZcxESmW225KUO8q673SYsUuU7gtMlFC5 O6X7gln7F846uHjW4aWzE5aD3ucQvScjvSudWqNE9M6tnCGTNNGaGRLnN6lG LNEhz29vE5KeGUDSl6Tf1cDw8OSBn+oDX9X7O1Tv7VC566NyhwnVOztU7+5Q A7EHLDZM8VG7uR0n2LeoXtmsGrNCJ3gJf7uX4YGV2sfWapzdoHpmg+ppiPWq p9arnlynemKdavJaFMfXqu1apLd/hdbxNWrwHCJ5nfoJCGR4DWp4pPdNQr1D ILpvRZ1br2/XvOmDxqjZtdTsrp/2A38doDsaYQbRnfc8hAd0z2RLZYpQyl2/ HOi+X78GZd0J3Q3bjhq2HTN6lWTcnmyK3H7StOOMeed5i85LFvs26f16feLI TY2uFMvuu9Y992x6Htj2PLJF1TKp9r3PHXpfOPTirHtfDqG7M0P3IhdC98FK j8EqD9D7YI3HIAC+AQEe3A56f3BtcVuxF2gcp9y9gO5I7yiY0WOYZDtnulUy AiTj9ir3EZxsHy5xe//yO0HuN4Ksb0ZzbI75z337XG3ohfO7J3OJ2wcfOQ7e R26/EcYvT7YeuGbXdwW5vfe8Te9Zm55T1j3JVj2Jlsf9XMHtjfEo2V67nymS Icn2/EjjmA2OKNNO0B6C0M6IfReIXf/pLv3HAXqP/PUA7TEY7bd9eATtZzbx I1aYIbRv0haifQ2D9qPL1Te6GR9YpJyw0exL/brlt4aGhg9SjUBCWd99950l biSnqshKgI7wKcnlFy5cePjw4YIFC8SWc6spxBqRLf06L3GTT1N4FVb4SUZB h12V+kU+VYOVw9eBYyJ5YOHLwuHivpP7Knw7TU1N7hI40fCRMfd2zHQ6rEGR /xeArcMWAb1wYcjZKPmCYgvFLgBYA7yHnN9PNVmSnAabgCsK9l/s5MJCxc81 HENywL9sw0NBoilTARjI7STljqtl5Lm9uB5HA9ftEmgn48kwbpeJdtbtNCjg i2vbMdrF4qPQLgr44jrhBKxMkPw5iRoMeFQdoRjaPxzwH6P3jwU8SrxLrZOR TLZ/nNtxNLN056bcpdJdWNAu4XZu4Y3sqVHFB37EYz/KRTvH7YTuNNlO0Q5R 2fpabFj+koY+iMLaLkC7cBxITrI9t7SZRXs9/C4y8hm3p7+sRve/OeXZBZ97 GBluS0lJMZv/DS6V+Qal3InbUbXMeAeg+7z/CW63UPq7vdZkN+2JNOWOeqfi OZiWG+FSGdI7lZbKsCl3oLuv/QxcMCOke6jLTC8TJVIwQ+kei+ket2hW/OLZ oPejy2azep+L52Yielc6s06J6p1JvOOaGRI7PPn0+c2tKBvPHUCSmb/JV/m+ rwqy+g5VgHrKdpVbENskYrvqzkWGN7apXtuqemWL6iVv1YubVOG+4NxGZPWo pToBi/jBi/kxy7VPrlNJXovi+BqVpDUqiWtUE1ej8HY3gsdjOBJXq0EkrUGR vFadGP6kiN41SfX7RW+mYIah+3bNgCWmt33RXE73d6L5WJ8E6j4N0iV6zwjj Z0fw86KZlDvQvWKfftV+/do4g/p4gyZUMGPYetSwNcEQ6P4KDSxj1nHanJS4 g9vfX53QddMS3N5zx6bnrk3PfZxyf4SqZXrTHAjd+zId+7KdpdIdjQxJ6E70 XusxVM+4/TVJuTfhlDu4/ZVw3Bjkdhbt3wvR7olHkkFoH6l2H6l0pxUy7/KV BTnfCDK/Gc51ObjLGPVITXceeWY1lOo0+MRp+L5VwwXz+C265SetB27YIbdf tu29aNtz3qbnjHX3Sevu45bdxyyP+7q2HTZvPGhWxxbJkGR7YZRxXrjR3g2O JNP+IsQoPdjwORV7AIrH/noP/fUe7OSHrLS5g9F+azsP18bo+C+1ZNC+UQTt iRjth5eprncxivWaX5p28wv+wOU3xUlDUoiSriYNOAdWoeoTcyO3yVoDkGnv 3r2SOoKN+vr6/kUi4Qk65eqI61juPktC9FPxj/t9P1WTXCF8L8lj0tHRIf92 hltAQnO/crYL5wtuEKRuS7KRWwn4iC9u8KfYGwDbcCrHXI/UJvV7wY6B3uFR 1gGXtVzODZrU6xA2QY4V9yIhB1CRj5MGx/Bz/4yltY7u/qeZxcwQ7jll1O3p eUy/VCHaOW7PLAK6k66pBO2NuaVNuaL5djICJHG74mjn6r2oBgXoXSrgJcWu CNqLa1HQOVgJ2kXgXUOiiwm8sLBGYbd/RsArWEVDamYqUMEMGjiFi3bAfA3w lQSuGCGMF52SSTrdJalM6C7H7fJ7oYr3dZVwezMbzJ99Mt0uWSEj5vaadnG0 kwEhJd1eXN9bgItkwO3skDIs2staskuahJXtuEiGcfufINlOmqHaDIt5/8K9 U9kqdzVEdwf18Y7Kf3ea9VfjeeNcNL8hbvfAdOek3CevkOidutl62lab6duB 7nYM3XeydA/CdPc0URJ2UxWl+4FFKPGO9L4E6T1h+ezElXOk6V3p/HolOtj7 FRw+nvyraOjI+YB50oNVbAR40DsEMD4Fk/7mVuUbW5Wvb1W5RmKLynU2opfp gq6vbFa+5K1ycZPK+Y2q50h2HeXVVSBOrFOJW6ERvljH290gYCEvbrn6sVUq CauUjzKhstHdEB6PooUQqhDHIDDgExHg1QHwWO/qRO9nid7ZindE962I7v5L TFN8NO/4oqmdHuxEc7M+DtB+GqidGqybHsJDVe6R/JfR/MI9fFItwxS6xxk0 xBs0s3RvO2bUlmiEsu6nzDpYt49c1ei8bgF0775t3X3Hpvuudfd9m+4HNt2P bHpTHRi6Zzj2ZTkhuosVzBS5DJZ7MHSv5NC9DtFd6PZmNDA7UxLDDZppR2L3 BLF/X+/0ptZmtNpxhE22j5Qgt48W2AqyvhFkfDOc43Ihxqz+jj24nXRKHXzs VJigeitg0psb2gM37Qeu2w1cRW7vuWDTc86m+7R19wmr7iRwuwW4vfWQGbi9 9gAatr0iBg3YXhSNku25YUZHN9viTDtBuwFCe4DeE38IjPadevd38vevMz+3 xYBFuy6g/cpmnZ1LLAnaz6zXOrVO8+RazeOr1RNXqiesALSr7fDgh3mqn43a 9GV/3fKbVHhoaGiMGzeOPCcTysOS48ePd3Z2ynIdMEaAE/jwTrCcAGObeJs0 WCG8BE9WrVoli0xS10zy+cA5SW/D/tAvIvYqbA48CfsDmxPbT8XdTg+CZIOv Ro+GnLd9aJM8vFIPOHyp/Px8OSuRHKpFwN7+SG1whGUdf9LoKYMvK8B3SbAD cATI2ZHzQW5T5EDBysl1wm30IEg9d3CiFbndAMNzdwBWJXV/4I4Dvhdc7dx3 wpcVuwUQu664jfwW/gyNcXuWhNvzqjJe1khxO5NybyDBoh25ndKdRXurPLTL EDtBe2G1MCT1XlovFh+OdmF0FbI+B7EX4j+FQceoZJb8TsD3fmLAN4wNeMbt 3C6ruBtmFXnEEzCRYOj+sW7HdEeiZnqYitJdiHkJsZMuqGJol+yOCmInNTkQ jbC5XtiiFLePiXY8AuSPomj/obrtTVXraAUcPTiYuL6doL0Q7tpquxm0V3K6 o5a15Ja2kGHbucl2iPS8avgFwa+puv7Vl/5xC/gqM82VmFIZa1V2YBn18fZA d40JjrP+agRuV/nKVXsCJ+U+CfVO5abcSe9U8+9Iyp0OLIOz7jN87UTo7mms FOoyM9x1ZqQk3dnEO9H7oSWzj6DimdnHVszGep9L9X52Hab7BtA7AjzEdg/+ JTr2Ozv8u9gI8IjrW9CfsBCBH7/zsvf8y5uVL3sLw8dL/9Im5Ysblc9vUD67 Xvn0OmXE9bUqJ9jUOgmUYF+tErtUY4cnf4ObQcRizZilaodXKENscDU4hJ9A HFmpAnEUAgMeGR7l4Zn0Oy6eUSeJ93Ncum9B3VR3LjYlBTMM3f1R1h3RfZf2 syDtF6E6WeG83Ejeyyh+4W5Cd73KfcJqmebDhm0JRiiA7klGr04Yt582bT9v GrOR33nZvOOqOaL7LauuFKuuO9ZdLN17n9ojutOUexaulhGle3+JG6I71TtO vA/VILqP1HteOLFktJGtXW9hRox5jWOUk2b/vt75TZ3tLzXz31fNEFRM/KlS l0m2l2G3F6Eeqe+y5/+WMWk422U40znO32gwzWn4mU3DdYure8wexlm8TtEf THFAbr9mN3DFru8Scnv3WeuuU1ZdyVZdSZZdCRZJvi6t8WaNcUyRTPkek5Ld KNn+MgJ1RAW0J262AbSnBSG0P8VoB7E/2onS7Pf9ENrPbjFI8eHdxGi/itF+ yVvHb7HluY3aGO1aXLQfWaYWv0RlrbNhtMe85rov+b9pYzapdAGVgXi5dAHJ SE2GAwU1cIM3i60ZPmJlZUXfCZ+lOVh4Lidd+RcMPLEd+w43sbeBnejmuHv7 FzbnKWZR2Ch8L8XdTrcotjPwJ0COvioVjWJIho/AkgcPHiiI/I+4F6Afga/J PRr0fyWkypyeCPgWcjbKlTNdj+KlI4Be+O6KHHnCZniz1CtEqpbl33HQRs4+ /VPqFUVfEnBuaT+0GurPUCRD2uMXhcTt3CFl5Lq9LrNQWCSDx8ETcTsH7WjM dhwfj3ZJwJfUtUu4vaOEhOxieKloFx09vgsFB+0F1Z3c4AD+w/X+hwO+nwBe 0vBS3M7SnQH8q+/F6C7qdul0l+p2RHe20J3bU1Wsz6l8tHMrZESGi+n/rRGN Ko+DjM3ObPS3RlkVMtLQXivF7YD215VwfFpGwO2I7o0DuLK9pxD/b0tBFTt+ O8ftOSXNWUWNJNmeSZPt+dXPcXfUtOyyH9+++9I/bkHkLh+z2X/DvVMlUu7g 9tn/1UhpnLPKV3ju1IlAd5Ry501C06eKp9yn4jmYgO7f4WqZ6dtI1p1D9wDH mUB3DyOlYJeZYaJ038vSnZS7H5DQOyqeWT47aeUcqneUeMe5dxJb3XnnNyhd 2MDUwNMR4NkpnJgMPOE6LLyE30Pej2LjfBSblCG2eeqf38iKfa1y8pr5x1fP T1yFY7Vy4ioIlWOrVUiO/chKhPNDy5UDvLS3ufPWuxiELtRc52JwcJly/HIU 8BJreBVqeKJ3Uj9zfK0ayb2jxDtb7k7o7rfYlNa6i9E9NVD7ebBOBtA9TCcn QudllC6mO5+lu379QVQt03rUiKF7otGrZONXp0zaz5rGbOB1XDLvYOhu3nnL kkv3nsd2van2vc8Q3fsyHPsynSTp3l/sOljqPljmIZZ4H6rxHK7zvHN5cUuh FxlzZhQn3uGRxptG2zcNtr/UKv9Sq/a+evYPNeY/V6oKyie8L5s+UuE+jCvb EdoL3YZeur7N1nqXofw6w3w03Tzej/fDY8170bNuhUyuPsMfuOcwcMceuf0G cTsqbu8+b9N1xrrzpFVnsmVnomXHUYsruxxLYy0bsNvZHqloRtTccNQXNSPE KHqdw/Mgg9Rdek9Rmh2JHaXZ/fj3CNo3G9zioP0yRnvyen7wUlOC9hMI7RoM 2perxy9V9XHnB7urn4r4UyfboUmFEPgK7MR9SVJcD3Djrgo+ko+bnDXTJsZs 0khOHtpF3EiqX37jptx37NjBxZ5AIglPbi6AVVKBOo5tki+JyU0+5GANsCcC 0f/LgI904ib/sJAGBxZ2UtatjeRNBBwx8hHYLnlCjgYsJ3tCmtTd5i5UBKjw HllfAfZEzo1JTEyMggAmx4r7Zvl3MXBa4WtK3R9u6p78h5FY2hwOstSVp6en f9x/o/x5ku3QXuSVPSVux3THyfZKMs8jGoOaM54MSbZnFbLjt4u4vVlKvp1B e5uY3j8O7ZTuWO+vQO8U8By0S6+EHwPtVSjoRK5iXJcMBvl/JOB/R/pdJMqa Bsubh4SF7pJop6NEctw+ZqlMXdc77rCQDb2/0JBai07GdZdKdylolzrGI9ft 3OlQhZL/VSzTLt3tXe9qOt7iOpkfuRUyBO0QJOVOeqSibg41aPB2ON0vkdvR Zcwk25Hbm7KLGxHaC+sySY9UPN0SSbZX/QmS7dCST5w2mzeOuB0PLDNehO7z v0JuV/4KTZ9KU+68SV58NuWO6b7SZMpq06lrTaeuN0d097b8bguuluHQfTql +wJzdWZkSEJ395nRDN1n7fWaJaL3RUTvs4neSel7wrLZSSvmJK+ae3L13NNr lUiA4be48eDxLIv58yjmnd8gMhANw/UNqEge4hwEHm2SBBm75uz6+Vs99M6s Vz65TvkEK/aElfOPrhALodgB56D0uGXKByCWKu/01Ha1M/fx0A1ZqBmHlx/E wTCeBTyuomGKZ0gPVlI2gzurahC6k0lXWbprIbrvZOj+NBCl3NNDEN2zw3Vy ge6ROoW7eSV7eWUxvMp9/Jr9/PqDes2HDVCVO6mWOW786qRJ+xnTl4eNLwTq E7p3At2vAd2tulKsge7d96y7H9r2PrEn1TJ9eER3Mbr3vnTuL3QVjgxZ5t5f 5tZf7tZf4TZY7T4MdK/1PHnUCwBPYqSeHSiy0fOXOmVB7aQf6ywgXtd5vK71 GKn2+KlCV1A6QVAyQYj2ArehfNehXNefMlUEz8cJnn0tePJ1xJqZiduntZ6Z /OM9lYH7DgN3HQZu2w/cskduv2rXj4rbbbrPWXeetuo4YdVx3LI90aL9iHnb IfOE7S4NqLgdz7XEJttzcLL9RbBh9Dr7Z7v0hWl2P4T2u778y9sMdq+xuLWd d3Mb7/pW3tUtuoD2i946Fzbp7FhkgdC+Vhzth5aqHVisssbJMMx13lDPn+IH LqdJtccq3LhL6uvruYwB/ADDrHGjcp42bRp5lahbPm/gg7ASdXX1+/fvU3QR V8NLijMJNkp2g+wD2U8qZ+5uw+borsJy2C73G8HzerbR5R8kN3jzfdyAfDG4 Se4qPUTyG9lPWdlpsZXADoud04KCAvpN4Qk5PrLOCJwCRXZJkUb2BB69vLwk X5W6UFbj6hr2UOqhIGcHXiXfVLKUnRQI0asLDoLk8Ye9lbpy8kV24PZBl4Hk 6fiCramt60lGMXZ7CUq5U7eT6ZawRpjRIFGFDMouSnF7CUE7iRaSk5Rwexue MpXEx6OdGwTwxXVSe7AyUVzb8QFoZwMPITKG4X8v4EVGkvwk6fcBMbqD22kA 4Ctahiukup3SHVe/13AGhKRur8PoxfETO7/qz1yxy3E7Sby3cuZmGhPtImM8 ynE7pnsDundgg3RElYZ2pkhGzO1tbyjaSTBohxOB3Q4BZxldEuiukztsO7i9 AaG9sJZWtj/Pq0zD3VH/DMl2Aeqaett03jhz5W8slMeB261EU+72yn83VBrn qPyVk+YETHecctedRFPuS/QncKvc15oB3aduBLrjahlCd+4IM0tN52y1m4v6 qIrR3YMpmAG9A91jCN1p2QzW+yFc936E1Xvi8tnHVyLAn1g9N9BL8+BylVNr lE5xJE8Yf5b0Zt2AuA6Gh+eE6BCn16I4JRZr5nm78k+smQdiT1o179jK+UdW zD+8fB7EIRrLUMQvnXdw6by4ZfPjls4/sHT+/iXz97Gxxlk/fIGan4f2Whf9 7e660YvUwPPE8IjxOAlPSmiO4tJ3TuId6f3MBnVMdw3fRaakmyoZHJL2UX2A C91TA7XTgnSA7pmY7nkROvko647oXo7pXnuA3xCv33RIv+WIfutRg9Ykw7YT xuD29rNmsRt4HRfNOsHtVzDdr2O637bGI0Na9zyy63liB3Tve+5I6d6b5dSb 7dSb49ib59iH6I6y7v0lrv2lbigw3Qcr3YerPUdqnBMiVX6s1X9dawuGhwC6 j+DR3d/V6vxQZzFa50nQPlrtMVLl/lO5LqBdUDz+x2LeSJHDcCF2+0vX4Rx7 Qfo4Qdq4qlMTEndM27Vs1vv744ceWQ48cERuv2M/kGI/cNO+/7pd/xXbgQtm Pedtus5adZxCbm9PsmxPsHh1xLwVu73+gGlVLHJ7cbRxQaRxHi6SQWXtQYZR a+2eAtp3smj35ZPBHnevtsBpdt41jPZLgPZNOuc36ZzdqO2z0OLkWq3kNQjt xzhoj1usss2V5++idid575f+ZY/dFDEJWFQgamBuo8UqdAnoSMxCgCupn6XC JOIVWw9tkp/18fERWye4lHwc9hPkXICbQFS/sGOxsbH0Je69Cbwkpnposr6y 1EbLyBXEOawZvoXU9ZP95K5H1n8EcL84afBBugbuSuAJbI6sikto+Nbwp+TK PyLbTHYAjq3UI8A92rIMTylOzxosgW8hNcNPtgIaJ+dU8g30jMjaYVKrL/Us w1El1wmsHJ7L+b8YboMj/If8Sj+2oVlTM4oQ2rlu586UisRek1HIoD2zoI64 ndBd6PYyFKzbSYjTnUW7WHwk2iEK2ZDVgxWjvUNsZHj5aCfFzML4HID/VD1Y 5bkd032Y9FGVdDt+zhlzhqTfmcT7O5p+ZwPVzyC394jrXeYIMFy60xHaZaOd un0MtOOQRLvI6Dfc4R87sNtRP1yG7lWtryvgsLABdzdwDFm396J8ezWqkyEX hjDfjv93CefbyfCPtfAzQcPI5FamZZd19nzh7qjcZqAy3Wz+OOT2uf9XOJY7 S3dwu8P8r9AMqloTnFG1zAR3XU7Knf/tUoPJZCx3MrDMOlToPnWTxdTNVjjr zuqdZN1dDefudJi+y3FGoNOMYOcZIS4zwthqGUJ3Ru9jJd6p3lH1+/LZG5x0 jq8ihkfDv5/E/VhJOc0plvFnseRPY5mfJLF63gkcyaKxyYWXuBLN4npkudLh ZUqHlinFg9KXIaUjqJNYMu/Aknn7l8zbt1gpdhHEvBgU82MWz9/qphO6QC12 8XwIMHzYArXNbjyQfLCXZvQiVQT4pTgDz+qdls0krVFl6a52Gs/f5LPQ5NJm jStbNSTp/jBA+8ku7dQgVC3zAugeppMfplIRNqM0SrV0t2ZpDK8ill99gF93 UA/o3nwY0b3lmH7bcSOSco9dz+u4YNZ50ZzQveOaecd1c1TrftsK0f2+ddcD m67HtsywkOmOZGTI3iyH3mxHTHenwQK7d0Xz3hXPGy62Gi6xGix1ALoPVrgP V3m+r5qZFDlLUD0JYqTaGSQ/XOM5UsvEKAqP1zUM2kcq3X8q0xUUTRAUjhcU jH+fP+3Hl7oj+Q5Dea7vM6ZWnZ2Y6Dc9K36S4NHXt8KmNFwzG3jkOPDAARXJ sMn2/mso2f7D6Xk95627ziC3tydbtSdavDpq8eqweUu82dHtLrX7TatIj9Qo YZHMi2DDtED9yNV2j3FtDEa7Hho3Bo/QDmi/vlWI9guA9o0I7afXa29bYE7R fhTVtGO0L1GJXai8ytEwdpXJn+SuXH4DtIw5KCLQhbyZa+Cvv/6aPhewXKQt KSmJvEcNN7IhUvfC/SC01atXw2dBX11dXYW4Se6AmANBfWR/4LPcLcIS+Dis h75faoqVviS5FTEDCz5k7EHYGdi0QOEheuD9AjwM75jvhO8LR0/WO2EPyXGD wyj16JEGhx12D04BfEfucZvGNjAnPTXwRCxtTk6l2LnjNriKyD6IbVTqm6We FFgDWQ4rga3D/sAWubv6oQ0+S64HWbtBrhmxC0nqHsKfcDM45h3Z5/jFfmB7 8qIIl7gzbn8u6fbCWsbtBXVctxO003w74/ZyodvZxHurbLSjKKhqK6xu+0i0 S6uBJ4CXhvYOMj0riqqOsdH+2QFfJBfwCrm9Qabby5qGcKH7KBftHMNLuF2i bIZlPAqh2zl0lzNyo/iIMXLRTtzepKDbCddZt4sX9tD/KSDJduJ2FPDt3lS2 jHLRXoaK29HUS8V1fcTtJNlOrg10PbNozylpRvl2VNnOoD09ryotp/xPUiFD G095Bk65j7OY/b8t5/4dd1AV0h25ffa/oVp3knLXmuCmw6TcF+pNFhvLfTWb ct9gMXWT5VRvVOtOamaYnqouBnP97Kf7c+ge6jIj3HVGpNuMSPcZRO9s7n3s spkjbKx10CaMxzXwc4+zY0gmY8afYIejgccTeOFxiFUokkisVEpkw99TK2ax ylEs9vilc+OWzD2wmITS/iVKxOoM1xcrxSxS2rtQaQ/EAqXdTMxb5ai/Z+H8 vWB4zPgYDHiIHR7a3q4s4BerxbHFMzjxjkahObZKBdNd9QSevAnovs3L+Pwm 9Yve6pe3AN01EN13MHQn1TJPcAdVoHtu8Lz6XV81B/2tLeRvbeH/2Ro1oWKv Vs0+7ab96q1xGq/iNToPa3Qe1UAp92TjrlMGR9bOeXvmu5/OTfvpwrS+S/wO THc0MiSh+13rrvs2XQ9tuh/bdj+160kTDurem+XYn23zLk/p1/zpgoKJgqKJ guKJgpKJQyW2/aWug+Xuw5WeP1eqJUXMElRNgnhbxQfJowC613gwUY2jygN1 RK1wf1eiTtAueDlekPutIOfbngfTyy4qJ+6cnnlksuDp14LHXwse/Etw719x O4yYZPtdB5JsH7hu33/Ftv+SzeA5455z1l2nrTpOWr06btl2zKLtqHnbYfNm cPs255p9ppUxJiW7jXGRjDEpkklHfVH1Ilbbspl2vbs7ENpvoRHaSW0M7wpC uy6g/RygfYPOqXXaR1fr+i8yTmLRfphBu2rsQpUtLjwfR7XGmqov/ZtWtClC IBsbG/AP1RQlFmmSWqNZX0JZaLROAxbCGiQ3oUiaGtZ87949WorAXS7gpJoV +UZSG0lTUwNzbwEU/zhwlwtFsdyy2P0ObII8h0PKlTP3ENHvS98AjyR5Dk8U 3MMxq3TI+SX3WQS08OfXuMG2QK0k86zItug3UnDfyEbFdkbyLuDjmpwvDle1 4lsZ8w6C3k7+qVpFbevTzOJnZPal3Iq0PDSejGi+XcTtuFQGRXZxY04xM+kS 43Yh2sXczoRstIvFx6Bd9CPtOOSgnVi9HcdYaBcFvEI18B89BI0I4D+oAH5M t5NqmRGxahn5bq8RHdRduttZvTf1/So/5S4k+qDEEtFo+lC3g9h7pHShJXtb K0T7Wzr0ZTWqbOe4XThf6kBp/UBJXX9RTY/wnq7iFUY7CVQng+ZIxWhnx36s zC78s1TI0BbuvxW5ff44i3n/tJz9fyxVONUySn8znvMftrP+G5pEVXOCk+Z4 Z63xrtoT3ZHbJ3rxge6oWmap6PSpJOW+0eK7TbjWnegdj+s+zcVwHp5KlaF7 kBNJuSO6R7hRvc8QK5uR6K/K0J3GGgftw1jywlT88tmJK+YkrkRzsCatQoyH gCfwZyKOYyuYSMBxdIUSifXOvCPLlA4tnXsQi33/orn7cMQunAMRs3AuikVC sYPVo72UoryUIj1RRHkqrbDnw5LoBfP2LJy3ZxECPA3CeAL4tc76Ph66oQs1 hXRfqZywCo1Rc3ytyol1qkD3rV5GZzeqM3TfrH51q/qN7Rq3fET6qNJC99LA CQ2BX7UE/+1V6N/aI/5ZsUejJlazP+abN7F/f7v/H7/E/ePX+H90J6i3JRn9 cHxawpqZP5+aJDj9n4Jz/ym48K83l2Z3XDXvum6JB3W3ItUyaFjIhzbDT3jd qcJB3XszHAcyrQQ5EwR5EwT5EwQFEwSFSO/9RUzZzHCFx9ty3s1DM/ozJwsq Jr2vmDlc6UECrD5chZ9XQLhDANpHyt0R2vMx2vO+rb4y6VH81Ot7Zz88bvX2 hbogdZzgydeCh18L7v/rp/tz43yw2++xRTKoR6p9/2Xb/ovWfeese85adZ2y bE+2bEuybD1m0XoUFck0HTQ7ss25OtakfK9JiUiRDEq2P/XXC19l+9BP7x5F +3Y+WxvDu7yZd9Fb9zxG+xmM9hNrtbYuMMdo1ziC0R7Poj3MQ22NAz8lafeX /kF/QJOTROU2WnVAqSlLL+A9yU9xE9f79u37uJmPaE6bNIo9cKb8vSJN0odj bu7jdpJCkSSuua/CS+SAkwQ1l5QCTOXt27fDvQk8344beU4bvAGWXLp0Ccwp dQ8/qIyc26QWZpOCf+D6R9wNKX6KBfg/SrhLJDcndjf00U3+SujRkzyMsETO NyIn+o/4ef7O1tE98DSDur0cpdxzKyXcXsegHbm9DvdOrc/Gs6bmlDRKc3ur VLeL6V0G2oVRVNP2oWiHIJM3sbM4MXOwSqC9nRvY5KTSXlG9fxDgP64A/kMA PyAS0tBOs+4i3VQ5g8xwx3inaCchhnbxUhk2Gvt+bZadchch+qBw6BhuF1Rh WXufhNuloV3E7bLRXissknnLoP3V9+B2WidDku0U7cjt9UK342R7Gxft2cUN eOxHtkIGV7b/qSpkSIN/+EyUxpnNxyn3OX9jOqgC3ef93XbGX+1m/NVQaRxy O5lEVXM86qBKxnLnTURV7ngapmWE7iTlznZQJXTfxNJ9i/V3bqYaPrbTfO2m Ad0DOCl3oDvVe4RQ7zPkJ95prLHXjseY53qeFMMfAcOvQNOwcog+9+jyuUdo LJt7GMchHOuceCjNjsUei7keswDF3gVz9ngxsZuJuVFecyO9lCI8lcIhPJhY Zs+PYA1PAL8bYuH8PSRYwMeiEhp1P0/tdS4Gvp664Ys0Y5epUbonrUFjTm7x NDy9Qe3sRrXzm9Qo3a9vU7/lo3HHV/Oen+ZDf20yontakE5msFrNrn80Bv6t KmxqcZR60R5eWSy/Yp9eT+zkH2L//u7AP345+I/mI/otCfqtSUYxa3XbT5kM nNb8/uycn89NGr6o1nHZrPOaBR4Z0pKk3Lsx3fsemXWTeVQR3R17XzgC3X/I Ukd0z50geMnovb/ABVW8F7kMlXmMltkLSicmhc0UlE2EeFNugqGOxV6Oo8yd xmipI6C9/8nE6quTEwNnZCZOabs5YSTHZjDLZTDT5benEwWPULL9t3uosh25 XVqP1P4L1r3nrLvPWHaeRG5vTbJoTbBoPWLecsisMc70rJ9DbpSZ2EgyL4IM UgNQX9SwVbZMpt1HiPYrgHZvDtrXM2g/vkZzi5f5sVUE7WrxqCOqasxCld1e yisdDHav+P+jQoa26dOnKwIeWlQg5/3/j733gI7i2Pa9Weu9dd93zz3hnmOc CUZIKCMJ5ZwmKUeQSCIHkXMGiSCiBEIkASLnHAwmGpFzlAgiSEI5AE4Yh2Of q29X7e6amu6e0YA5Btt3r71m9fRUV1dVz8Cvtv61q2PHjkVFRTxCw1VA6VFR UXCVHJngDKApvLpSYyflJRkyQT184/fv3w+3wPrlhSWGl0Aj2Rm4nN0LWmKi +1CnMeQzdjs4D6PRQAmcP684HcA/GaBdvXo1iprkSbHzJtopfzqN4i4+BfkX 4yo1eJqvNn8xdl+8HXvcYJIeKY4nPGVzNEuK3zF2jN9PYw2DT9noybts+mfC 5qdvoR3FpakCt98CbudD7qa5HVXu+n2XjAfb9V5I/PLtUjOgXeJmQbviolfk c0Vop9yumOLmbQd4jt5fjtulSWaoM7k7Q3d9ikiC7j+Y5nZhK9V6IZF74/5U mdj13F73i7hdAu3oyO1k56nH36AL0P5IUMggtINfK6q7yieBvFkqQnvxuWuP MGc75pChwfaCwvuP3/TvWMF2796tsvuHEHJ3oUJ3TOdu/9dI6/8L6B7UzjLa o2UM3YyJhtyFxDLJviTkjujejXI7ywnZX2NF0J2jdwy8xwe1HRHRZlQkQXcW ckehe2P0bju3E8kVmcnROzowfN8Y7wX0ALNH8ki/UK+rcSCOiN7dAXyh6Nng 3QTvF+ebleKQ2UVgdcR1BPWZHYlngCc7zEh2mJ7kMI2449Qkx/Sktsx7RPtP TSIAj/QuxOFJTN4JGH5mF+dZXfTontXNeX53lxld3ceTNJL+A9sHZXTznNnN cxlF96HJQXmprmsGuq4b5ErR3W3LMPftw913UnTfO9qDorvX4Ylexyb5fD7F 99Jku+tTLM9N970gLFD1vzXPv2yu7Tdzm77IbPrFgtbFiwKLlwSW5gbP6etT tjKkfHVo+VpVxXp1xQY1Waa6leaW2aGt3EXQnW7GFEWE7oeiqg9H0QwzcQTd 8wm6/3ymdcPZFgTdL7T8+aJl/cWE+ksJdZcSnl5LenYj6V/XrJan2zZcJxKa H254fHEzWfSkL24kvbju/+WNODi4uCfmxk6v3Mk2u+a1ObW8dcOZ5g2nm/1w 2ukZQPupxKcnE784Ef6vQy0bDnz4/DPfJ4fiCLeTYLteJEO4fXNU/YaI2nXh 1WvCKvPCyleElebqSpbqShYTkcyD+eq7marsofE3qbhdEMmkka1Rj9IEMlN7 R306OsAItPuuGyhA+0qA9r6e2b18xnQOBWjP6eGWTaDdbW4X15mdXKZ0cO0W HXx4/9u7O6qiNcpCTShKXRXNRDFgGx6h4SoeyfLz84G+eCpDCEe4baAQDlZE DbgO+GoENTjJwzayKzamQUmCrghmCMZAobxQHO+O94VjhEljXGcOvkquxXY2 GE4WFK+CyrOysiQK+c2bN5v5pKB+YwJ4Y8DJmgq3jhIN2oD3ggP55YpTKmMG Fyr2mk0AzawHDb48JjrCZgHym8IYSm6tyP/wNTNzAis3nA78Gr/VV7JTFwvY 7kuU2zmpDMbbMXM76tsB2hm306wyBN1vPML8eGZC+yXK7czN5PYr6DItjWlo V9yk1Qxo/7cC/CumoDEC8Lh8tZ65CW5X3FNVMT+kXjZDnahlKg1C7hJo51O7 F5tB72QrJZqAnW3bZIrbjUE7k7XXKEC7nNsJupe/YNCu53ZJsJ2IZKoxCaRC sP3qQ9xoiQbbUSFz962NxQU4NgduF0LuLpgWsnmEzX8At0cCt7vaRLmLm6h6 CFIZgu7iAlXMLcOpZSwxnTugu0HgXWcVF+AwPNxqZGSb0VFtxgrobj053pqg Ow28E+fonUN3m9kdbeYQdLed19k2s7MtoDth+C6E4ftEe2d1EYQ0PM+jQ7Fx sTYL8GQKuD3xbg4LUhzmi57VVfC+sb5zu9jP6Ww/u5P9LOozO9pnJNvPoKw+ I4ngOhL71A4O6e0d0to7TEl0mAKv7R2ndABv2z3aP60DAXgWgWdOSF6MwM82 RHeWZ2ZCZ5+JnX0GdQganBTUNzF0bg+vValkq1aK7q6bh7htHea2XRDMILp7 HBznSdFdWKN6ZqrP+em+l2b5XZ3tf2Ouf9lsyy9nN30+r2ntfLtHOYHFi4NK lhJuJ2tUV4aUrQoR0H2ThmR0F9eoVu7SVu4Nw6TudJlqRDXJ6x4rRN3z456c Cvv5NEX3cy2/Pe9dT1K7kyyRTy63f3q1w/dXPZan2ZLVpuDXWn55Ix4oHf3F Nf+7uywOLm2bna46sCri1ApL1LQjtDecbPbdKa9npwm0Pz2RAP7FsfCfDlg+ ORz/5GDcgpEhBsH27TFPtkbXb4qsXx9Ruza8enVY5cqwshVEJFOyRFeco3mU rS7KUt2Zp1owNB4zQF6YFnI2Pfjk5MDPJ5Js7Z+NDUjvHbVPkMf4I7RvBmgf 7LeeQvuaAd4I7cv7ei7r4zm0o4ZCu3t2N7esFLd5XVwzOrpMT3LuGRO0dtXK N/07fmkzjZSNWrt27cws2a9fPzkaAY8ptqq6uhqI65powFoffvihvE4oI8Ew KJabmwsYxp+EPsKNgEVxZsHOwxkeVhvo3IGRvDmd4kcPbg2NweW3fGvxvsZq gAFkXcCJDPsIOsKPiYlmQA1mYifLim+sPA6I4kfQHhhGc+7SRBwN/gxgM4wq PFl8pviMPqQmvxxKsocIBUx0H5mZvTXWL5gwwq0b6ExNfkfTf8UwbW8ztDeQ bJDVR09fP3aacvs5MYs7SwV5GZNAFun17cjt1/TcfhbVMkJWGULv5kO7Ir0r Q7tyZN48aL9FHAAMnS6VbRTXX57hzaP3y784h6Qc4FnyGeIP6s3ndgHdG+N2 siUTcDu6IbfzwPyw9iduB1Xi/CJTZHK9gl1p01UDbq/Tc7tBvkd5DhklbpdD +73y7+6S9I9fMy8s+VISbCcKmXtC5naYZxFuF4LtlNuvPaIJ2ym3k2A7VcjU vnUKGWZTR/VTtf2YR3cScnd8JwK43fr/Bjm1jHRrHuXWgoXccRumJHGBKhG6 +7cSdlANtuhDcsuQdO79NVaphoH32ACHYeFWJOQuqmUA3SfEWU8S6Z3F3tMT jdG7LaP3efja2bZ3tDfG4XlHkgefGGczNNx6WgcbRP15nUmeyXldwO2Jd3Wg 2nX7udR7x/gQVtfjOvHpSfbTqE/tAG5A7JMTHSYlCD6RvqZE+U9u74joPlXu lN4zOhEJzewuTnNSnAzQnVupurRPu+7xqrSuPkOTg4YlB6el+C3o47Wgt/vm Ia5bh7luH+62a6T7nlHu+4Sou+cRgu5eJ6Z4n0zzPjPN+0KG7+VZftfm+Ndl vPNsVtOv5zStyrIlaSEXBRUvCV7U274815+he9na0IqNmopNWkR3EnXfqa3c ravaG16/L6hmvwbRneR1PxpLt2Qi6P71Sb+G0y1+PtP62bnwJ+einp3T1Z1P qL+Y+OxybMOllsun2BL1++WW/7piWXIi/OKemIu7YxakqZZOaXtqpWXRpz7P rnR4eqk9IfazFNpPEWhvONHsu3yvZ6cSn+YnPP084enxhKfHEp4eTXhyKK7+ QOz1NRHbM9T1e2Lqd0fX74yuF0UydesiatcQcXsFcDsVtxcv0T4k26Sq72Wp bs9VzemruT6LiNuJSCYtKH9S4PEJJPfjwTEBab2j9o4SoX0ojbQP9tswyHft QJI6ZpUA7V4A7Ut6ewxO1izs4b4AoL0ribRndHKZluQ8MM53QNfEN/0jfhUz LT8AdjIG9gA/8CnUIIHklzKEc9aYatEk9AXMD3Qkv5E1Nf4Mg6h9+/YxPIMy prsJpMrmCEh3cGBO+6Fh7JiHZ/683KAj2DaAdskjwPGET/EjNGwYPIh21Fi/ 2AF/O3wuijD8Coa1YVPlz0Vi0EIYdmwkQL5kEPBZsxqgNiiMf16BW8CxBNTx IWKZBo7MJUIaLGlOf+HW0IDo6OhXDq3LjTX1rbWK6vqjp64Bt9NdU2/mky1T gdtvg+fDK3I7VchQJ9xORTISbn+E3H4RoJ13Q2i/aATaOXovfRloF/zybYXM 8MagnXN9qvnXzPC/NsBLud1YyF2R28HlySEl3E5C7hXf6dG98nuUykjUKUQq I0VxupOp4Rk8aXTfVY7bSYZ2ljHGNLfX8ND+vQK0VyC0Y6SdQPvt0q8KSsR4 +0OmkKll0C6uSBUzyVwvPnv1IeH2y2R3VMwh83YqZJjt2rULpTIaqpYR0b15 uM1/ALoHOn4c2e4jIaO7e4s4KpVJFELurZJZyJ2oZVqRbZhCWgO690PBDAm8 W7LAe6y/w5Awq+ER+pC7gO408I70PjnBWqKcYUtWAd2R3udQehdeO9n2ivJC mEctDRHDUz08eFoCgXbwCbE2SOxzOhGf3dEO007O6ghuN7uTHeB6enLb1FhP xPXpIq5Ppbie3p54Gnii/ZRE+8mJ9pMS7Ccm2E+IF3xivAMedI3wnRhvPynR YUoHQu96TxKcqGhE8cyszmR967wUp0ygd0N0H9fJd053D9S65/Vvl93bc3p3 32kpngNjXQfFuaZ1dl3Ux3VJXzeC7mM8Doz1OETR/TiJunufSvc+O93n4ky/ K7P9SjJa1c9854vZTSsybYuyAx7mBBUvDl7ay/L7xc2qcr0JuueFlK0OKV+v ZugubMa0U/fFbu+GPR//tM+ifn8woLuwJROgOwbe8+P+edLm2enwZ6e1P51p 03C2xQ/n2v5w3unnC9ZPjnySMdTu3g6Lw0uscqb4rcvSfpoXAf70cocvLkd9 fUn17HL7p5c6PL3Q/l9nLBpO66G94fOPvzvh+QyD7ccpsR+Jf/ZZZP2BmPpP Y+r3x8wfHly/h0I7TdtevzmyfgNwezjh9lWU23N1pUu1jxZpHi5U389S3c1U Fc4l8XYUt5+bSoLtJyYGHJtAgu0HxgRM6RW5e6T/jhEYaffdNNiXQDsNsxtA ey/P8Z2DM1K853dzyxSgvd3UJJfxCa7JHZIrKqoa/5m9faYYfmQGcAUAJgEV LA9UNn/+fKAgeG1iGHk2HcPnb4cEBZXAjaAea9HkV2GZ4cOHm+YoqIRNBHge lqumjfUa7g73Mn0XRYORlJ+EoZDfCAgWCsPA4gDy/cVw9JYtW+AjnEEwpQcM OHtkDGjlncIovbF5irFey/9uwjMzHDTIljbIuwYFsM1oijdixjTh+OjxqcHz hZYoRrCN1QPX4pjAtZLvaqMm6cLLLpeGO77lwXa0I4Tbrx8/o+f2/IuFJy/d Jm7A7fdOXy06jcF2BW5/dOGWjNsJulM3A9qR25m/JLQbeKPQfv5mKe8I8K8/ CP+SAP+q9F6tl83cr7tmFN2fGeN2lmRGvxkTn2FGHnKvxETuCtzOh9yFDVXJ yX/ilqYmcJ13iXbdKLrrZe1Ecs9vDtWoQoYsSi0Rxe1iyJ0PtuOiVBHaBW4/ c+UBg/YT5wvOvDW7LJmw+GAXfcjdWQi5hzm+E96GcrvDXzEtZIx781iyOpUk hCRqGZ9WSWLIHdA9JaAVTeduQdQyNKN7P5rUnSSHpPkhYyi38yF3QPexMW3G c/Q+UR9+t04zFXgnr+g9ozzhreiU52kSeMByhHb0WfQkEjsmnMxIIrs+Te9A Pcm2R5TP9CQ7Ca6nUUdWR1yflGA3Md5uQrzd+DjR4Tjeflwc8S7hvuPj7Am6 JzgAvU9KdJzcHrztlA6CS9B9ZmeSl2YuTQKPgXdE9wHtgxazDDP9SIaZ1QNc 1w4kaplNQ4DYXWd0dZ2Z4jo83ml4guuIRLdZ3d1XDfJYM8Rz/TCv/eO8T0/1 OTeDqGVuzvKonfHO05nvlM2zvTs/4MHC4OqFLkt7WP606L2fl7z3ba7li+WW X+Q5la9RVazXALrXbQr4brP1d1utv9rh+tPOVg27PgJ0b9j38VefetQc0NYc iqboLm6oejLum5M+9zZZ3NtscW+Lxb2tFrkTbcB3zm0zvo/9ieV2Bfu0Ty4m 1l9IAH9yETzx6cX2gOvUOzw91/75mQBC7PkU2o9/3HDs4++Pu1Boj39yNP7J 4bj6z2K/3ef6fK9H/b5o8PnDg4Rg+3bK7VQkU7c2vGaVrmqlrmKFroyIZIDb 1Q9EkUzBHNWCIfFXZ5JtUs+kBZJgOxXJHBxLlqNO7hW5c4T/NgrtGwm0s9Qx 3iv7eef29Vrax3NxL89FPT0GJamzurnN6+o2h0J7epLL5ETn5KTkC1duvemf 76ubiVi0jY0NYnkTKrEALrp37x6cVCzJjqHCvXv3AhG5UOOLwUmoITk5WXK5 6QA1KwOt3UtNUq3EgHuBBvk64aby2szkNLgXEJq8zbwhLSueh1tLxgGad/36 dXmXYXD4YYTjBlk0XmKSy+Fepp8pa4w8as2/hf6yW8BIQmvhVVJVfn4+dERy EtqM6M6+NsYMmwo1sC7zzM9uHUPN9JTNnG+yxOBpwgjYUDPzEnkNr/VX+G+0 W/dKgNuPnblxnHE7htwv3eG4/Z7gV4swCaQBtN94dOEmdTm6C9xechn8domZ 0M75K0C76AoxdgVo5+n9l6lojDP8v30Fq5j7/X6t6HTJqsFOTM9u8S6Tytw2 ye0YckfHPDM0ReQPEm5nIXcG7SK3m0vvD/mdT02guwDtPzDnd4mSK2TuPH5u oGwn2ezpXks4PqiQKarluV0h2H7l/lueQ0Zua5bMI9wuRffmYfZ/C3D8mGjd nd+PavuPaPfmBN2FkHvL9pTbmVqG5pZphTuoGqC7uCVTTIAj2ZKJhNzbjIwk 6D5apPdxHL1PMI/eZ+JBkk2PSE8MxbOAPDh8NCKyzdBwdMLt42NtZonQzhP7 1PbE0xNtUyK80hLJRq5p7e3Apxji+kQR15HYx8XZjY0VXXzbK8J9SLQT0Dug OwvFT4gnEpqJCY7A8JPac+iebIDuAr2nEHpf0MM5NTEoh+6purSPkF5GELqL 6L5lqOu2Ya67h7XdNdJtzyi31QPdFne3XtTTPruPR2ZXmynJbSd3bDe5s8eU Lp5nRn14fvSHJ8bbfTbJ9/CUgKuTWk1LblMz+wNA938tee9/lr3XsPz9yryA inWaL9e7YGbIhs0fNmz9sGH7R0/WNru3tOW9ZS3vLW9ZuML6bJ7u3OqwbXPV mWOCMscELxzrmTvO5uSi1icXWxJfYvnz6dYvzrh/fS506xyX4sNhT84n1IOf Iw7HT89FPYGDc4lA7MTPtn96JvFfJ1o1fC5Ae8ORjxsOfUSg/Uhc/aFYgPb6 AzHP9mte7HZ+vsu9fk/0/GFBQrBdL5IJr1mtq84j3F6eq3u8VFuyWPMwR30f RTI0A+T8IfFXMkLPTws+NSXwxKTAY1Qkc2AMySED3L6DKGQQ2n3XidC+AqG9 txdAe05PjzndvIYlBc/t4jans2tGRwLtkxKdh3aO2Hvo1Jv+7f4iM592kJxN lwEmhGJAeky7PmzYMEat+BEwm4kgPxARXKJ4njEkVguG/Am18ZcgkvFv4Soz +yg3vJ3pWC7cDvBSchJ6zY9zozeSTy54rOVBEccBjB9GeI4MdGHwFUcYGVje GEnjsZIFCxawBsCrpEJjxKs4FPy1OAGUf/fwu8GPGLsFfvHgKvlUix8W87/J r4zrzN7mHDISq6h+IsbbcV0qhtxJsB2dStyl3C5uvSQG2wUvBnS/IIH2Agrt vMsAXhHaTS9fNQPaS2VuFNpfN8ArMfxLhN9fFuBrBHTXc3stL5tR4HbeS77g U8rIuR2zRN4ue86SQyK3ozN6Fyn9J+p63ua4XaD3V4F2CboTbv/BkNuNQLuB QoZ4IVHIEG5nynaAdpJDhg4jOF2RWkFmeSK0n7v26MyVB6evFBFup9D+litk mJWWloY4fIAhd07o3iysXfMAx+bhjv9NNmOy+/+i3JpH05C7oJbxaYUh92Sm cqdqmZ4E3QXBTF/UzFB6jw9xG6i1HKKzHBZuSdUyVoDu+sA7pXdUzjCA5+jd GpesThfpfUYHIfNM90hP8jZJQHp0qEqEdr2TvVmTCbEjtE9DYqfQPiXRtmu4 1+R420nxthP1LmV1wudxdmNi7cbEGPhYeqZTmM9o+nacEIonAD8+XnAE+El0 BasU3almBtB9Dgm8t81MceqXEJDdwzmHbqi6jKH7AJJeZv0gA3TfMcIN0H3v KLeDY5wPjvM4PNHzxESXs5Psz6a1OzPV+8J075WDvFYN9l4z1HvdMJ/tw5wP D20+Jt5ma2qrpT0tl/WyzO1tmdvHcmFfp7mpvktTbXNTrXIHWOUObJM7qE3u 4DY7x1uenNnq81ltjs223zUnBHx3puryOl01TTLTcLRZw7HmDceb//x5q3+e sH6R7/b0VHj96YT6MwTOF0wMrT9LjtGfnE14ccbrh9OOX5zRPYG3NNMj+PN8 f0LsRwVobzj40bMjEQzaUR5Tvy/6563Nnm93J9y+I0oItm+OrFsfUbdGV7NK V71SV7VCV062W9IUU5FM6Zx2xbNcCueqblJuvzQj5Fx6IK5IpZlk/PeP9t8z 0n/V4GCyIyqD9gF6aF/Sm0TaiaC9u3tqe/WcLm6zOrnO7OQK0D4x0XlIp4jt +z7/9rvv3/Rv9xfZsmXLjMGJHJN4JHN2dv6AGjsDEAWwh8f9+/evqam5ceMG 3mXv3r2sGI+j/L2Q2DESy6rFNsBbICXGkFBzA43WsnvBjVhrTfTItLGJAG9I aHBHfMv314RBf9kIL6DW6CXyMvwowbBAAegmtISdBz6HG8GDAKblRxUGxBjE 4uiZ0wWshz829kcHOG96WCSPG6rCIZV/DbCDOG7sJDwU+OLJC8N92Z8YGhrj drYm97UYf9+3346eUuJ2mjSDZJW5xHH7lXtnhOTtdL/Um4Jf4NFdoPfiC4rQ LgX4kkahXQ7wrwTtpZj3hnrj9P76AF7G8K8f4KXcbqB4v1+nyO0S6bthQshv DIhd9DtcXnfG7TJ6/5GHdjm6S+Q0LwHtHLpLgu0muF1JIQPQ/iUMCEv8eJ2H 9rvV4BfpHqlMIYPB9lOXabCdKmS+ffGb+W89RuUH3M7UMiK6Nw9qZ6V1/ljY R5UsUG0uqmVaJHp/0l5EdyHkThaoErVMj2CLngTdyTLVPiK6xwe7DdBYDtZa Dg0DdLcaTgQzSO9WGHhnyhlC7zLpO9B7eiJxDLxPEzPPdIvwnMYlkAQH4JdD OzjAPLA9uxbD7GkA7Qm2kxNsu4Z5EVaPs50QZzsu1nZcjM1Y9Fhb6gKuA5mP iqYeI/ho0TuGeY+Mth0tkjyLxtOAPFHRMHqfQtauOrKMkTRRpIjuNPDeNz4g q5vTgu5OOT2dl/R2WdbXhahl+gtqGUD3jQzdhxN0303Q3f3TsR6fjfc4MtHz 2GSv/DTv0+neZ6d5X5jhfXmmz7XZvrfmBdzOCqzKbJPdzfq7rHd/WPDuPxe+ i1H3r3KtS1YGVa32/3qNw4/rPvlxQ6vnmxz/udmiYcuHP29rUbsjuHKnrnKX rnJPWOW+8OoDkdUHowDdGw41azjSDOj9+TGPmuMkx3tdfnzdSeJPTifMB24H hj8lOJz54lR4Q37zhvxmX58MrIcypxKenkx4mp9AiP2wAO0NBz569pmWQnss g/b6vdHf7PBs2PjekkGO9duj6rdF0e2WIuvWhdWtFri9cjlwu7Z0MXC7+mG2 ujb9veKMtgVzVTdmq7IGx12cFnTWQCTjj2lk5vTVbBnqu1GAdp+8fnpoX0Sg 3QOgfWZXr8HtgzM6uoJPTW43MdGFQPv+z++XVL7pX+1rMOBVM3GUN7jwHjV2 RkJW+DY2Nhbp3Vgx/jxrElS7Z88e9lEaNfYWJwXG6oGPzO8O33doquRT+Aha IkFinu2N3YjBp1xMYvpCY8bqkUiSGui8QDIUUDlMXozdghWGAop/2mAm+WJA 3xW/KnAeRsl0VRKD8eEnBZLm1VDDtzArkc8XnKkhPLPpofnxdv6r9QoGPf3V f6O/yArulQK306Wpt/RSmUt3qBNu50PumE+Gbpaq5/bzEm6n6H6xoPhSIXjJ JePcfgX9Dnoj0M78l0G7xM0C+F+wgvVXAHgDbpdAO03z/sQYsTMvKPkKXKT3 b5RdDLlLoF10gs1kyapxbufO/PQq0C4sRDUabCfcbgDt3xlA+2MB2mGeIs0h w0H7pduVF4Q9UjHY/pBskHrlHvwcTpwnwfaK6idv+if7ErZn1w6B2w3UMs3A A9rZkGWqZB/V5hhyj/FoIahlfD5haplOfuICVZIW0qIH1bqTwHso0LtFX1Xr uGC3VLUlhtwJuodZEnQPp+gu0LsV0rsonrGWL1zF2PtUAvBC5pmUcM90bh1r WoIytKMDtGMxKJ+WSDLYTE4gaeQnxdt2CfMCYh8fS6AdcH1MjM3oaJtRUTYj wSPpa5QtYDn4iCjieIwOGD8y2q6jzhvPjzaMxo/h5DTjcB1rAslFk9beYWoH x2nJjpgiktfM9Inzn5fiNL+bUzZBd6fFvZyX9XFe3s8lL7XdGgm6k/QyrjsB 3ckaVfcD4zwOTfA8Osnrc8wtM9X73DTvi4DuGT435gYUUHSf0d37m8wPEN1/ pOj+09L3apa7lOSFlK5Wla0lGd0rN2qqNoc93eL99Vbnym06sisTovvuMLor E0H37z5zbPisGdD78yPuNUejiQs7NMUCls8fH1qfn0A9HvzJSeI/nGjb8Hmz n45bPjkRWX8iHpM9fnfE9adDVj99ZgnQ/v0BBwLtB2mwXYR2omnfFfWvjR+X Zn+0I11FoH1zZN2G8Lq1YbXA7Xkk2F6ZqytbqiHcnqMuzfSsTv8ARTLXZ6ky B8VemBp0Oo2JZPwPjPHfQ9LI+I3vHrGJpHz0JdDeXwrt87u5z0tx75eomtHR dXqy69SkdmMS3Pp0jNvx6QmYlb/pn+xrM/OZhxlQLtLp0KFDGy0MZAWgxd4a Q0q+SdnZ2ey8RIqM4Xdj90KMBDaDhuEfBYyVhI8a6BzBWAEkQ2P3Qjw21gb5 wDL+BPKX1Gm6nU0oovP3xQOAeX6UmCH6QuNhBPZQM1YnPj72aKBmOMYz8CoZ HBSlKMa9G5RmKMZ6JBEyKbafFYBqJWMFl7O/47DpG4xDfn4+fIQtN7EeAT4y /y8Oipf/Wj/K12YV1fVEKnNWHnIX0Z0mchfSuV8pwn2XzitwezHzi7eKLxWI XqgM8FduGzqld9My+EuFyhuwviq0vxzDvz6AL5MAvDn0LjC8QgoaATsVoR3d GK7zIXdEd0rvesGMYshdz+qGDI/kzDQzXJBc9BoFdH8paFdWyAirZQ2D7TJZ u6iQ+ZIlkKEKmVqe22GExWC7qJC5ShUyl+9iDpn7Jb+9FBMhTi2UQu4fBzhb 6fdRRXR3ax6LuWW8P0nkQu6dBbWMBUN38F4ivccGu/ZXtx6gsRyktRysE+k9 XKR3MfbOAzwNv4uxd4rujN7B4QBguFeEG2aABw6fnGA9PMIotIMD/6dTaJ+C 0E6I3WZivM2EOJvOYV7jYm0wzD4mWoT2SJsRkTbDI2yGReiXuA6LsBkOJyNt h0cRHyF6ss57WKSA9PKAPE/vFN3tJ9Pc7+lA70kOQO8zOjoius/q3LZ3nP9c KpiZ390puweNuiO693XJ6++yekC7tQPbIbqzzJA7R5DMkPtJyB3TQtLcMhTd z08n6H5ttv9Niu7Tu3tVZtp+m9kU0P17QPecd39c/N63S5uVLPcryQsFdH+8 Rl2+DtBdW7lJ+89Nn1Ru0QnovoPS+57w6v2R1Qcinx9wazjwccPBZvWHNDWH o2uOEKerVmNqj8fOHxcCZK73fKD0yJ+OWRJ1zdFm3x7zqD8e9+R4PE32GP/k WFz9kdgXB1xIsF0P7TEE2vdQbt8Z9WybqmHtu/MHBxFo3xhRuy6sbk1Y7Spd DRXJVC7Tli3WlC7SFC9U36fbLaFI5trM0GVDI49OCjk9BdO2+382zn//GP/d I/22D/cd1y1i4yDfNQN8VhFo91rWh0J7T8/sHh5ZFNqHJwWO6+A1Nck1rUO7 MYnuXaOCFy9e/vnZm791hQxvZnK7BFNZhFyCSYrAxkezTYTKsUJjYWrWDGPR 2iYijYPdvHkT8VWxPUjdWFKxHkZoimAPnwIoYqfklMjawA+sJFTOl4d6+Ozo cDnANqsWw/7Yi0ahFw0nDjepyR8QXwYN8V4i/8Br2bwM7qs4TcB65F8hxTXI L2uSP7Uwi6UmWcnbhAI8NMbE16PR5ajG5qEw/k5OTr8thQyzo6evoVQGQ+50 41QWcr8j4XYh5H7joSluL+C4XYnepdB+W5DNMP2MHOAvFUq5nfNfDu0vwfCv FeDLXjb8flkafkfsrJbmhOTcNLSL6P4li7rflq5U/ZoPuQvEzpzndiFR5I8K 3C4jcBTDvyS0/8jv3Crldj7YXvZCEdp5hcw1Q4XM5TtVF/V7LaFC5oFEIfOm f6mvYlPHj0Rulwjd/R1oehm6jyoTzBC1jHuLeJoTkqllaMjdoqu/hYDuIr0j ukcHuvRVWaQSdG89UEsEM3zg3YDexfD76GgrFnvnA+/ocNxZ50GO42kOyXib 0VGmoB0cqJ6F2ZHYJ8YRaB8fa9NJ5wlzhDEx1qOjrUdFW4+MsibETqDdeiiF 9iFh1r1VbcAHhVkPDrMeAgwfYTMUAZ46cPvQSFtEd+LRxEeKoho9vQvobkfR nax+TWtvn96B0Pv0ZAek996x/rO7YJIZopZZ2MNpERHMILo7r+znsirVZe0A l/WD2m0c3G7zUFe6HxMRupO0kOO8Do33OjrR6/hk7/w0mhZyGhG6X57pe20O 2YxpWjevokzPr+c2/XZe0xfz3/0++93vc979fvF7dcvsH60ILs1TPV6lKl+j qlyvebbBo2HDB882eVZu0ZINVUmKSILuVXsjavZHPt/v1rD/44ZPP645GFnz WVTNoSgh4Qz1BWP8nhyPqj8ej/7k88ifjlgSPQz1b4941B+NA38C0A4Hh2MF TftBUSHDQ/uuKCprj/p+vc2SVIf6TZG168NrabC9Nk9XvUJXlastX6otzwku yVE/4jLJ3JgdemVG8MVpQbNTo09OJiKZw+P9USSzc4TftqGE29cN9CEpH/t5 5VJoz6HQnpniMber29ROHqkJQWkdXKe0b5ca59+/U/SatZvg/74HvwuFDDNz uB0oV14ML9+6dSscA9UA80AxePtqcmK23M90e+Li4uQn2R1tbW0bxHA9HENh eMWPoHm7d++GV2jq3bt3WfeTkpLkFTKqb+D09swAs1kjoX5WAOmOXWssIA+X YzPYGdZINg7QQiyDtfEF5CbpAuA9Y2x4HMbGEwYHpjZx1HDSBK+I63g5nlcc H96gDLSWHyW4BGow3WYTfWHwbEvtpS5X/HqYY9h+6L78IxhP/gvzm7Nbd0uO kV1Tb2HIHbgd/KQYcgduEVO4F52+WnTmGkplHpwHdBddIpKRQrshwF++Xczg XA/tRgTwCPCXZMF2dD2i33yN0G4uw78mAfwvAnguIaTR/ZhM7KOqqJZR4nbB 75Z/awDtHLob5nj/sVFuf1lHWTu/c6sgjxFvalQhU6qkkCmSKmQuFlZIFDKn DRQyN7996xM/Ktr+A4cJtNs3lQhmgNvpJqrNUC3Dou4odMd07rgTU0eC7hYE 3QMU0D3Cx65PqEU/Ib1M6wFaSu86Pb2j6N1Y+F1C7xPo8tVOOg+2jhWgfUiY lWluJyr3WGshzC4SO4bZgdvHRFNoj7IeGQnQbg3ETsPsbYaEtwFQH6Btk+xv lRJkNUhnDT6QOmF4QHoA+AibJK33kAjboREE3QWYFwF+ZLQ+9m4U3duT5JPT ksj2rD1j/GZ1dsTs7gK6U7XMUoruK/q6rOzvsqq/y5pUl3UDXTYMcsGo+47h RC2zn6A7VctM9Pp8MlHLnEa1TIbPldlkM6apKV4FmQFfzm4K6P48k6D7i+x3 X+S8W7vE7uGywJIVoY/zVGWrVRXr1F+vc2pY98E/17es3hTCobu2aldYzd6I 53tcG/aSLJE1n0bWHIisORgF9F4L6H4o+stD/stHW/90yPK7wy4E0Y/FPTum ++po4FdHiMP5Z0d09UdiiTNibwza67dFPdusWt7PEoPttWKwvZoG28uXaL6Z 9UHJQvWDBeq7WWKwPSP48oygC1MJt+dPDjw6gQTbPyUiGb8dw/22DPEdmxK+ OtWHQDuRx3jRSLvnvBSPOV3cZ3Z2HdnBd0p717EJHv3i/If1Sfn04DE6K7/9 pn+pr9lMczLyjISg4OSQIUPgWoZJwIcNjeGlaWNoBAcvey0PjTiPkBucxxA0 C+wrdh/Zmy8A7QHg58v079+f7ykc76bG0x0ysGLCSTZDUWwnP2VooHHvRlnU xGpcaJuJ58t6AT2C8cG3CxcuNHG5EzWJ9B1HyUk009+oIdSMfYqD0+hkoQl9 UuYUM9NMROnhLq/5J/fr2rcvvj8qSmUoumPI/fYpom+njhun0mA7jbffl3C7 gO63MBukKW6/XEj9tgG9m1q+Wlhy6Tbxi4XSzVgZsUtI+7VCu1kM/wYBnqG7 yO0SrzWf24W0kCa5/fbjbxTQvfK7uzJ616O7EWjHdaxmE/uPfLBdyu0VyO3f idAuT/xIcsjwCpmrL6uQKf4Nx+IiAtxYyJ0F3gMcPta4tJCiu1vzKHdUy7TU 78QE6O7Xqov3B1293sWoewqH7uHedr1DLPoCuoda9FdRdCeB99aDtK0N6D3M kN4jePW7FaP3cTGE5DtqPeg6VnIM0M67iZA7CmMEaCfCGBJm76j1RGgfIUL7 UCq5GRIG0N5mkK4NEHt7X0twJPYBog/UCgzfXu01ONwGHNB9aKQtxt7l9I6B 97GxenSfRLNNTuHQvUe074xk+1mdHADdM1PaikJ3Z0T3XIbuqS5rBgjovmOw 7TbcR3U0oLv7QYLuHkcnen4+2fNkmhdVy/hcIpsx+aeneN2c518x24Kh+/P5 736b/W7NIrsHSwMfLQssXRlaRkLu6q/XtG1Y80HD2g+er7ev3KSp3KwV6B3Q fWfY893tGnZ99PPuFjX7SPi95tOoaqD3A1EA8D8esF4+0rrh4MdPD2nrj8QR Pyo6vhWJve6zGHCB2PXQHiOH9rqtkXWbIxcO8KgTgu1hLNheuVRbs9Drq1kf PspW35+vupMZSlakzgq5MiP40vSg81ODZqVGn5gkBNv3j/bbNcJv+1CSRmZy dy1A+3Ka8nFRLwLtmSkeszq7ZXR2G9I+cGSC1/B4754xQVkzpuSTWXnB8bO/ 1Vm5CTNNWampqez4/fffB+LatWsXAioPeIhbijVA+bbUjNEacBGU4ZsEhRvB LENbunQpO+Y1J9BgdsAYFWPyzKAvrBj/aS01PL5165aJuyPXQWEYECiJIyOf wrC7QAuxpLwAdFzydBTviCVxYHHoTLQNOggjj4/AWDGoUPFrIDkPb29Rk0yO cNbGxsr09A0L82PehBsc/GrxD5TvCz8PkqwUeI0MLzFozOv7tb0ZO3nhFpPK fH6uQMbtd3luJyH361Qqw/vNh5TbH10seHSJuHFo5/zSbb1+Rq6BZydZVknR jUL7r+W/FsCbQe8U3fWsznAU/fr92hsP6s3hdobuprkdE84waFdMMmOA7krc Lkn83iixi8F2XH9qkLAduZ1Ae/mLe+XfNaqQkSZ+1EP7YwLtUoUM2WXp9KXf dixuWfY8ObeTkHs7a8btYRK1jEdL/U5M3p8k+37S2fPdrq5/6uLzUVeyTFWP 7sDtvciGqgK69xM1M+CDKL0P0tHwe5hy+B3onaB7FKA7ofcxVEKTrPGAVzg/ 1BDaTQM8DdGTMDsQO4F2GmZP1npSbYz18EjrYUjs4ZTYw9oM1LXpFSpAOzgc p2rbiG7NPEHliQeDwgi9D4mwHRJhSO+Gshk9usfbTUoQ0D2NonuPKB/g9oyO gO72czo7zuvqOL9bWxS6E3TvQ9G9H9G68+i+ZShNCznKfe9okluGpIWk6H58 EqC759lpPhcyyGZMaV29rs/xL55t83QW2UoV0P1riu7VC+3uLw58uCSwODcY 0L18tfqrVW0b8t5vWP0B0PuX69tVbgR011B0J4r3b7c7/ryjxVe7PGr2RAC6 V++LrAaA/5QAfP0B9dKR9i8OONcejCZYfpgqYXg/JITZ6w7G1B2IoSkfWQIZ Bu3RCO112yIR2us2RswfGFhLNkjV1a7S1a7UVS/XVS3TVizVlC3SlCzUPCRp 20Nvzwu5NSeUBtuJSOZcetDM/lHHJwYcGu9/YIzf3lF+O4f7bR3imzfAf80A b7ojqgjt3Txmdnaf0cltUpJHn7ig/rEBgzpFbt24gWV2vV9c8aZ/o6/fgJTM ZB5geKBTJLecnBw52yheFR8fj1fBgfxTADZoANSGxbBJkspNG2IzQiywHEIj VAtNAkQMosbDPBjULxkBxo0MwvFPDNAq1hgoA3fh0RH5GVGTwaqkmwjMUBJG D66FViliLY4DaxI0IJ4a3012LCdJY4MjqZP/iO9IKjV5k/jW8nMfieFkB5+y pAZjTYLXwYMH41ODA3i7ixprLZyUXCiZWUDbsBKs4Zf8rceESWaUv1HDRO48 t5+4cPvkxTuSkLvA7VeB27mQ+029A7dfKpC4cWhH16vfDQDeANoNt3O6cIu6 Eag+d6OY91+f4V+3AB4B3tQKVn6BqsSB5M2UuBNuf/TMJLdza1TpPqqKSd15 elckcxo5/16UqSujuyS6Lr415HYqay+iq1AptL+QZGs3opCRy9qVFTL5okLm 7d8a1bSVV1RF+9rrud3xA5XdPwDd/VyshYzuHLoTtYyQzr0lr5YBdO8krlHt Ku7H1C3QIszbricVzJD8kHzgXaR3jL2z8PsQIfxuqUjvo6mEJknjDq9A+Mag XZHeR0SSoD0j9lE0zJ6s8RS1MQZhdoD2/hqrZH9Lxu3JfpapmjYS76+xjg/1 hNf+5Jjw/ACd9SBC7zb62Lss8I7oPp6i+0QO3btH+VDBjIDuczs7ZHZ1mJ/i sLB720U9nXCNam5fAd1XU607oPvGwe22DXejGd0Juu8fI6D7sYmeJ6Z4nkr3 Ojfd90KG35Sunldn+xfNsq/LIFupArp/NbfpN5lNKxY4FuUEPlgc+GhJUPGy oLI81bO8dv+z4v3/yXv/n6s/ebLOs2ID2VO1YpO2YrOuYovuyTbvL7e7V+8K r94dUb2H+l4A+Egae4/MGhmIDA9edzBaL4bhvO5AdO2n0bX7o+v2i8SuBO21 WyJqN0fUboqo20C5XVS216zQVedqUSRDVqRmqx/MV92dF1I4J+TGrOCrYrD9 bFpQRv+oYxPpitTRfntG+u0Y5rdliM+YlPC8/lTW3strIUJ7J/dpHd3Sk117 xKlSYlQT+nT47PCJk+KsvLDot7EdwytYoxJ3BmCKdATUhPUgazk6OkoKGKsf 0YsFbxH/+FguwKojNRNtw1A/QCNP+xJhDxxLKikoKGDdh2sZtSJVKjYYmyc5 A2iNVSm2DcYNb8EaI/n7BeumBLD5xuMIINnCARttMLw1vLLCUIanZf4p83VC JfLJWhI19lYyF5ODPW8wDvLvhuQSaLz5GCzXOxmbfEke/Ws0fqh/63byQoGB VObC7XxDbmfQzqQy52484KEd/OKthzJuJ3658JECtJtcvnoRXQLtFNfRz98s 5lwZ2n9dgJcy/L8D4C8Dvcv9TpUJbr9WVGuOVIblijQuleHTy3xtOqm7JM+M CZcE3jlJzPfKAXYhVbswNRAj7cRJ5nnFxI9KChkx8WPFxcIyQ4UMQDvusvSb V8gwW5aVoed2h/dVNn/juV2H3M6pZaLdW8SRdO6GahkR3Ttz6A7c3iOoVQ8R 3Q0C7zy9M4DXKajfGb3D64gIqyS1+7BwQviimwvwSOy8mj1J4zmMamP4MPsA HQmqdw3UQzt6P7UVwDzv/TRW8aEe/TRt+pHjNpTeSex9gBY18ATgJbIZCbrz cvdukT6i1t1+Zkf72Z3t53YR0D27u2NOD8clvdou6+20nAhmnPP6Oa/u77x2 gPOGgUTovm0YoLs7SQtJo+6fjfM4MsHj+CSC7qen+pyb4Te5i+flWX6A7jXT 32HoXpVpdTc74N7CwPsE3YMA3UuWhwC6f73S7skqj/K1JMNM+XpN2QZN2UZt 2SZt2WZd2RZdBVG866p2hlXviiD0vjuiZm8k8X2ReZOD720JIwxPvZYgepSB 76e+L6p2b1TtnsjaPVF1e6PrOGiv2x5ZuxWJPbx2Y3jthvDa9eFZAwIw2F6/ IqQuN5QE25doHi/SlORoHi5QFWWF3pkXUjAn5NpMMdhOM0DO6Bd1dIL/wbF+ +0b57RpORDIbB/uM7hq2gipkFvb0zKKR9vRktylJbn3jg1M7xS7JmEj+lCbO yk9fvv1bn5WbMNPcHhQUZJrZME4O9AgHO3fubJBBrJ2dneKFcD4hIYGvXNIY +AjRVB59ZXbnzp1Gu9CEYp5EbQ41w93hlb8W+6Ko0+jQoQN8pDiJgKuwhcDM cIDkDAfYNn5AsEATMZqNN4JxQApFBOWHC2+Kw4tDgWXgGGEVuiApDDdlZ+BT LAxX8aohxT5K8rfgVYqDaeJxmDBoCaqPcNgbDMVIEpN/5fAPFvwZc769r2y/ J2gHK35cfezMDTEhJHB7IXD7yYt3wVEqw3O7EHK/IUV34PaLtx5dvCWHdt6N QLvoFwsFv8BC69T10I4ZP9AN6N0otP+69C5l+NebQ1KJ2wW1jBK0EzdHKiMm eH9WUCzfRPVrQ2IXvUyP7mZyuxGY/4Ft3iSVrys5l4tSD+0k2M5xO6eQedpI 4seCMvwunbv+iCpkivQKmd/LarXHxQ8MpDKA7m0/9ne2VDk3F0PuzRm6Y8g9 xr0F3YmpZaLXJ+316N5Kgu6R3jadAyy6E3Rv1TOolSTwDvSOsXfF8LtePyPm jYRXOO6gchuCwXkdT++NA/zwiDaE2EVhzPAI6w4aT32YHaGdKmF6hlhJoB08 JciS8rne+2qs4kI9+tKDvvSMEHhHeqcCeJqFBujdhslmDNCdk7unRPqgYGY6 RfdZnQi6z+vikNXVYQFF90U92i7p5UTR3QnQfRVF93WA7oNcNpPNmIS0kCSj +1iPQ+OpWmayZ/4UrzPT/SZ19ryY4QfoXjntHUT3sjlWhVkBd+YH3M0OLFoY dH9REKD7wyVBpbhGdZW6bLW6bI26bJ368TrN4w3axxu1jwm6a8u3aCu2UHTf EV69MwLovWZ3ZM2eSKT3rBGBJPwuOkF09P1R5MzeSELsCO27qe+Kqt0ZWbcz qm5HVO22CDHMjtAeVrs+rHZt2KoRQUWLNbV52h8XtqxfFkAUMovVpYvUNNge ei8ztHBuyM3ZIVczgi9ND74wNehseuDJKQHA7YfH+386hgTbUSSzfqD3xBTN MroWdX43j9ld3NOS3CZ1cOsfHziyT5dDR06Ki80FhUxlzdM3/dP8N5oipiqa ovIBgGrRokVNKH8ihsnLAHEB8SpezpcBnAPslBSDyqFOgFLFq+BTuKkE3ozd SHGhKM/JjLQHDRrEGgzH6enp27ZtYx9JRgxHAMrg5fCK8xdmcMn71DCIDZ/K pxvQd0k0HhqA5XF4m1AONzYJakIj5EjFin2Ee2HonslsJKNxhxo/MVG8F2K/ 4kg2anbU8Bg6hW/x+TZQjE+gBkNtTm14lelJ5SsYdFDy+H4H9vzb747qE7nj Bky3kdsJulOJ+5mrvIvoflPwCxy36+ldCu3kjDEBPIF20S8UiFuvitwu8DAP 7bwTaH/E+dsD8CUSgH/t3H5F3J7JGLcTdDcZcmfQzjZXlQlmvlGIwBNufy7N 626c240H4X8wI8DOVVJhBNpFbldUyCjK2kmwXVTInL32kI/FkXzOv52tURu1 4X06S1XubUnIXczojuiOmSGbsdwycbgTk3dLEd3JZkwCvfsJ6K7ztutGNlRl 6N6qd0grDLwL9I7KGQR4Sfhda6h+pwftQzluf0mAHxFB1qhSNTsJs7dXeyCx ozaGaNeBwNVWSX5SaAeHk/CRxAm382d4eteSWQBLQTMk3JrSu80Imukdk8yM 45LMpET4TEmky1STCLqLQneHeV0dslIcFnSjghk9ujuvpOi+JtVl/UCXjVTo vh3XqI7Sq2UQ3U+me0/s7Hl+hh+g+4Ppnzye/tHdWU435/kXZPpTdA+8lx14 j6L7fYruJctDSvNUpatUpavVpWvUpWs1pes0pRs0pRs1ZRs15Zs1FeBbdZVb dVXbw6t2htfsiiToTuk9a3igEH7fy1H6XoLu5AwtJhJ7JBA78R2Rtdsja7eF 124JR22MGGkPozlkdLWrdVn9/J/legO0Vy7VlJNgu7o4R/1wQSgLtl+fFXIl Qx9sz6fcfmic3/7RfrtH+G0f5rt5sM/aAd7p3UIX9/LK7u4xp6t7epL7mETP zrHa+RnpMCs/c/XBKf1i89+zQobZjh07zEEaYD9AUDhwcHBgJ3miRtUKluEN Q8HmhEah2IABA+QnlyxZYuwSKC+pGWjQfLB8jxoeNFBITkxMXEQNagbKhbdY EtG9rq7OGDwztpcbUrHkpIkB4Qubbj88C2g5vEJJE1QPH/G3lrMxdNPE7eAJ 4l3gQfDXwjjj6Bkz+ZdBblAhP6omesEbPCC4ypySL2XQwV/+g3oLreBeCYbc xZQyXMidcPs9CbfTBapC1B38ws0HCtxeYEDvIrQrCOANoP1WMZ9YEhzFMFL2 5pzs4op+49FvAeBfLfwu7NakzO0ydJekl7n+QFnozoid53biyoF3A27n0V1R 7q4cJ1dGd1NymnuVHLQz13P7c8btRrdG5RQyl+9UmVTIkFhc0e9rtdq+TSsk 3K6i3K52Ipuoap2biUL3ZmHtmglqGTcUureI92yR6NWScDuiuw9B944U3bv4 t9J52aWQDVUN0J3Re59QDuBVeoBXDL8T11omhrqRPPBaGbpL6V0B4IeGC5qZ IVQeD9zOh9lR+tIl0DLRl7gc3bsHE3Tvw3lciEcflZXgIr33E4U0qXp6J07o PYxMGUZEAbrbSvJDdo3wETLMdKDobih0p+juCOi+uKfTUoruKwDdScidJnUn QncXmhbSHYXuB8Z5fDZej+5bR3ot6u8F6H51hjsKZq7P8afoTnZTBXS/kx14 l4u6P8oNerQipGSVumS1umSNumStumSdunS95vEGTTmg+yZAdxp1B3TfFla9 IwID7+CZwwIFhkdE3xOFTgLyuyNqdhEXiT2idgd1Au0RFNrDaaQ9Qg/t4u6o wO3VyzVVyzQVSzRlizUli9SPyF5LJNhOVqTODrk2M+TyjOAL04Rg+4nJAdP6 Rn421m/fSL9dw323DfXdOMh7dX+voZ10OT1J1sepye6jAdo7ddmwaYdsO4bC 05fv/J5m5SbMBMkgsA0cOBD5CiCf56X8/HxGbox5oAwjZ/gULgQsNIfHGCQz Y1oRfoIA9bO3UD9QLjTPNEAaM2gzXA4VwuvixYsln/JthmPouHxawQy6bGKE 4VrJGTm3s6GGwoXUoBi8xU/lfWTaGHiVNP490fiSJm7dRJx3sNsxgzNwC3jQ i6nxIwDVwkcO1PgHBPeFqyRflSZG/uQBFZrJ6hJ7tauMGbQZGvx6fk5vnz1/ 8T3unarndjHkLi5NvaeHdiZ0R7WMntsVpDLmuDK0U+c0MEY4nEE77y8D8L8u vesZ/iUBvjFuN0R3eWZIQHelwLsStAvo/qxRbke1jDFniN6Y7v0HOaXzwH+3 QtykFfPYlBO/R1/1Chn6KipkvjChkKHQXn6h4DGb9Oljcb+LHDKKlhjUVsLt vs7W+s2YOHSX7MQU59EiwVMQunfwbsWjeyc/4HZ7DLwzdO9hgO7EDeidhN8N 9DMDxeQzA2n694RQt0F0C6fBYir4lwX4wWFWg3RWA3VWCSr3ATqrVK0VXWRq 1U9t1T1EgHZFdO8caAl83pvz2BAPdoz0ztBdpHchC80ARHcd0eQMCW9D6d0G 6H2MqJkBbmfLVNOVhe6O2d0cc3oI6J7bm6hlcI3qOorumwa7bBtG1DI0o7sB un8+2XN8R/cz031J1H2mH0P3W/MCAN0LswJvzw+8S6PuRRTdHywJerAs6OGK kEerVI9Wqx+tUT+i6P54vboM0B18k7Zik7Zys7YK0H1rGNB71bbwqu3hmUMD qnaEowPM14rRdST2mp0RNTvIq0jsEYTYwbcyaA+vEaH9yzzP73Otnq3wqc7T Zvb1q1qmrlyiJgqZHHVxjuphNlW2k/SPITdmB1+ZGXxxevC5qYEYbD8+yX9q n4gDVCSzY7jvliE+6weSYPvs7v7zu3nM6OSeGh8E0L7/6AWcleu3Y6Cz8orq J2/65/grmZxhgLvs7e2R2RpELARSkpAbnIECUFLCPCbgCgrjK1xiTw3xEs/z hjiNFfKoefv2bSbkhsZgAV7a3cQIIsoNcRo6JZ8ysKEw0Re+AEwBoDasCoyF 3/EkXMti2vIesRrwI3YjRGX2EU4xWHnWd/kTvCMa8jMOI7aEHz3eWG75HYYG Z+ASvu/sefF/F5ArjiRX/Tvs1SZrcuO/ab9XIyH3szfEVJBcyJ1yu5hVRp/I Hfw8hXbkdobulwrQeSynjqH4ApYu0vDTApoEXgLtRsPpAnKfvf6IuRn0/hYC fInZAF+ugO48tBuiu3JS9/s0qfuDerJakzC8kWA7KmcePjWV1L0M91FV5Pbn 6Ma4XRaKl7hBXF0fxkcvF7j9LlmLaiBr5xQyjSR+NFDIYCxOVMgc/30pZJjd uHZNwu3Bjs0CnFszdNfp0V0mdKebMbUX0J1o3ZNEdA/3a4eBd1yp2p0F3oPl 9N7KdPgdPFXTOj6EcLse3bVCKN5MgB9MiR18gNYqPtQdcb2v2hK8t8qyg58B t8vRvZfKqleo3oHb2XHvUJHeDTQzFN25wPsgEngnovqh4ST2PjKS0nusbZdw H7ZMNU2/H5MgdJ/bxTGzqyNBd6KWcSLo3tsJM0MKmzENoJsxDXbZPkzMLTOW oPshEd0nJLmcTPMi+zFN976Y4Suie8DNeQG3ZOh+f3HQ/SWB9wHdV4Y+zFM9 BHRfTaLupWuJ4r18vbp8o7aCetVmXdWWMILulN4zhwRQhtcR3x5GEH1npIDr 6NvDwQ2IfWt4zebwmk3hNQDt68Nr1oXVrNXVrNb9uKzV/yx6p2qltnKFel4f v8ql6ool6seL1CUI7QtC72aGFpL0j3RFakbwhWnBZ9IDT00JPDE54NhE//Te EZ8SkYzv9mE+mwd7r0n1GtFZt7AHkbX3SwjNypi6/+hFth2DgULm/u9fIcNM wj8AhO2p3aYGByaYZ/v27awewEIoLA9c8wbF+EsaKODhGb4YClcANbFCAFe+ kXyTEEfljeRVHPApP0fge2qitQC90DYTfWlCJxHbqTUYojjcC3vHn4R7sV5L xD/QQuyIYntYbWB8T9lJvs3QGHl4H4zNjOBTjKvzowGfKl4lfy7YZfxuKJaR n5HUgLvc4vSQPy/ncNPzL0memVczaIN5v5Lftj1/8f2pi4VU5V5gEHLXc/s9 fgMmcQ8mAdqV0J24ntglXmDgFNqZK0G7jMZ5aP/tAzyJwJtcwWoet1N0N7IT U41sN9WncmgHXOcduB1debGqlNuf8363Qgi5G+N2PKZY/p2c26XymwpRGMND O5O1i7ssGSpk6gwVMiK0Kyhk7vwuFTK8jZCo3G3/Lgm506i7sEaV5ZYR16jK 0Z0kmdF6O3QSNTNd/VsJmplAQTNjhN5bSdTvDOD7q1vHhbgOEvUzgwzR3RyA hwIDtJapWkLUcSHu/YDYVZZ9VJa9Qy07BbRO8CFugttTgiyNcbtA70YC76ks 8I70LqA7DbzT5DYddV5jY20nxJG87lNEdOeE7o4M3anQ3WlJT6dlfZyX93Ve 2c9ltbiPKhG6D3HZMcINc8swdD85znZaewu6H5P36XTvs9O8z0/3vjQT0D0A 0Z2Put9dGHh3EfXFgUW5wfdXhN7PUz1apSqmcvcyMc8MeMV6TeUmXdWmsKrN YYTet+gyB/vTCLzgNcDnOyLhVfBt4cS3Eid5Y+BgS1jNprDqjWE1GxDawwHa q1frqlfpvsx1+XnhO0+Xuj1b7JTTw65ycRANtqseLVTdX6C6Nz/0thhsxxWp fLD9yHj/9F4R+0f57hzuu3WIz8ZB3qv6e83oFpjVzWNUt5hVWz7FWbm42JxX yNz+Xc7KjRkAmPmhSwkhA+8hc0pAVB4/R5NAO298MQz/skoQFBVnEMaE4kiY UAPAORwsoWasVRKDS1g75ZewMzi5YMa3hH0kGRZWWKIhgWvlN2IPBWtDTmYV 8neH1mJPsWZ8KNhlPOCHDscWkFhyRz6AzxvfDIz8szawUeLrR6Q3MbZsGFnL weCSl8oPA3f85flkTHwbf39WXlUvrk4tQG4nIXeR21nI/ew1dAVuZ/QuQvtD Xj8jd4LrUmgnfv4GcWUNDPWz1x9y/m8B+DcUfi9RSkFTLnFj3M5vpdoot18n qWb03C4hdnTMMMO7Ibc/VyR20b81tmSVd5HMvzMB7QK6G3D7c6ENpV8ThUzJ VwXFVCHz0JhCpuqPqZBh9vjR/SgfWwOpjOMnuBMTorsGuN2Zhtwdm4bjDqpu lNuFzJB0mSrQO8rdKbqHedok+bXu5PeJAbqL9G4i9t7XkN77qYSDuGDXgRoL cEbvcnQ3CvAU3VM1lv01lkDswO2E2Cm0dw0UoJ13Obon+Vn2DLViHhPiwb81 M/Auyt0ZupOlsskaz1FRJL38+FjbifF2kxPt0trzQncHshlTF8esro5E6N6D JnUX9lF1zqPovlZco7p1qMvOEW57hLSQZB/VS6Pem5rY6vOJriemeBN0n0rR fYbPZYruN+YE3BKi7gGF8wNuLwi4kx14JyfwzqLAO4Duy0OLVoQ+WBkK6F66 SvWY5pkpX6cpX6uB18oNuqqNgO7UN+syB/mTCLzg2mog820RjNWJbxF9MyF2 Cu266vW66nVhAO3Va8Oq1+iqVuuq8rSVKzVfL7Z5sbDlP7P+sbSbxbMF9mQ5 6kIabJ8fejcrtHBe6K05wddnBV/JEJTtp9KEYPvhcX5pvSL2jvTdMcxny2Dv 9QO9V/b1GpysndIz8tPPr7BZ+VlxO4Y/oEKGmfkIpIi+8pNARMYur6+vhzvi K298MWgPL+dA1JTHoiXw+e6770ouQTPWGN74a+HWHUSDdkpKNtD1s9u2beMD zg2Uq1kl+fn57DwjVfiUnZQ0Ww66+PcO+AjlSSggR6U6asIldzfzUeK9FAcE 7qgoF+GbAcTOS9mZqp/vO6tNckbytolhkvmX+hI2oV+kX8Lt0Bhj85TfsZGQ +zmK7lQnQ6UyArqfvlwk7p2qR3dFbqfojv5Q5hyxUz+PlH5TcA7aH3JuCO3X Huq9MXr/7QO8EW5HRDckdv7kVSV6l3A7Ucso4bpiyJ3zr8FFbjfu4g5NMkTX L181JHMhV4witN8t13P7nbJvGbSjE2gvNlDISHZZQmhnChkuFicoZM78AVar rV2+WGXfVL801dkqxP49tRzdnd4Heqcq9xZR7hJ0F+i9g7dA72F+LjS7O6D7 J2xjJj26N07vrZDeEeNTQqyTgh1RBs8AfrDgCvQuB/iBWoD21n3VrWND3Hqr WvcKbd0juHV7XwVuZ/RusDo1xLJHiBV6TLAHO+4hoXdZ4J2hOwu5D+bQvYPa fWQkSS8/JsZ6XIzN+DibSQm26e3tpiXZUaG7g4DuXQm6Z3dru7CnE9lHlaL7 SlHovoYK3TcPpug+3HXPKDdA9yOjbS8N/+/0hFZnx7U+Ptlbj+7TvS8Aus/y vzbb/8Yc/5tz6UpViu6FCwIKswMLFwYWAr0vDQZ0f7A89OGK0OKVoaWrQgm6 r1aXryHoXrFeW7lBWwW+UVu1SUu4fZOW9+rNOj2rbwmv3hxWvUkHrF6zMQy9 dr3qu7w2T1f7Vq0Nq6LQXpmnrVipKV+hKV+u+SLH/sfMfyxJsXg6374kR43B 9ru4QaoQbA+6NIPstcQH2z8b6zelZ8TukT7bh/psGuS9NtUru6f37L7hx/PP C7NyBYXMrYJ7pW/69/cGTM5dv9BMVDhw4EBgP+AuyXrJ1NRUpoiWYy2WMSHa gWISGTyr2RzAky/JlLekCcVRE8PIbsTUFzg9wa6xJvFzAWg26md4NTjrMruE fQSDJtk1Fd4Cb7N5kInOQjOgQigv7yzcHU/iVEX+9ZA0A41NjnCZg+QjyWRE UgD6CDfik+2YVljJDSp8l9pLXdVEHAeTP4jfp5VX1R87e4Og+/kC5HZUuQvx dhm6n7t+//xN4or0LrgM4C8Q56Dd0M9Jod0A4A2g/RcCvAK9v4UATwTwVANf hk43UdVz+2UlaGcuQXcJt5uD7pKQO8pRxNj7NyagHf0ujborBM8VuN24G8ra 9QF/A2g3VMgoytqVY3G3/yCxOJiYSEPuDi1ZyJ2iezNEd9S64wLVaBS6M3Sn 9C4G3ltqvOyTfT/Ro7vfJ139PyFyd4ru6N1F8UyPYAHgZcoZ4n1CSQqa2CDX viLG96UAn6qyGKRpDT6YTz5jHOD7qloDsccGu/UMaQ3e0d8iwYd3GbpTR27v FADoboUeHezBjrtz9K4YeBc1M8ro3l7lOiKSpJcX0D3WZkKczcR4mymJNlM7 2E1PssvoaEfRnWSGpEJ3p5yezmQfVSHq7sLWqG6kQvdtQ112DG+3e6TrqaHv Xhj2t7T4VqfHtKbpZbzzp3ifEtDd58IMXxJ1n+V3HeidovutrICC+QEFCwIK sgMLAN0XBRYtC72fG/pweWjxitCSlSGlK0Me54WWrVIBvVes01Su01au11at J/SeOdCfADz6BsGJfH0zEjuNrm8QvGZDWPV63Ver2v28/MPKNdrK1dRXacsp tJct15Tlqp/m2P8wl3B7faY9QPsDqpC5kxlSMDf45uzga7OCr8wIIukfmbJ9 gv/hcf4HxvhO7hm+a7jPtqGCSGZoR+3eDSsA2g1n5UWiQqbgzB9MIcPby6oU TBdooLDXaIbt7du34yZE9dQUU7VDw6AA8qpitB/hDUHR1tYWjuG+fNcalamb MLkuCCq8S43Vj2+h/WwMEUqxwZLpCSpDsBi0VlElLhFdy2P+TODB8smzS3DY oWbJ4MMZaKRixn78QwB7y/+pAh8KPiD+6eCwQEckm6syw34Zy8eOK2TZOOAQ mb+bADPU2JhfHnpqImPnH8HI9qlCyP22Ht0v6aUyCuh+A9HdJL2L6vcLopMN m248NCB2poHhOJzndqPQ/jL0/gsB/o0E3g0dVTR6ejfB7VcMZTOvwO18yB2h nXE7QfcyI+hexqG7ERqXcnv5t4Kb4HYh0q7ndlTI3HqkrJChW6PKFDLXpAqZ gqLSN/2z+5Xs9OkzBtze1kJl944E3bXK6N4c16hK0F3lYdfBp2Wyb8uOvi0Z unfxJ/SeEvCJMr2z8Dujd+p4HBvUjud2CcAPwAi8zhTAp6pb9wppHRPk1iO4 dZdAiwRvCbcrAzzSewc/y+7BVt2oA7d3E495elcIvBsmeOeF7phhpoPGYzgV uo+i6D42xgbQfVJs6+lR70yPazYt0XJaB9sZybYzk21nd7Kb18U+K8Uhu4fT op7OJOrexzm3L1mjmkeF7uuZ0H2I0+HBH50e/LezQ/82Ob7ViTFtDk/wPDrJ S0D3dO8z03zOT/chy1Qpul+j6F4wz+f+PGeg91sLAm5lBwC6310SfH9Z6MNl oY+WhxQvDyEJ3leGPl4ZWpYXWr5aVbFWU7lWU7VOA+ieOcC/ChkefJ1G8A1a xPXaDaGE2NfrqtbpqomHwUHlWl3tqsCK1dqKVRpK7OoyCu2Pc9WPl6mfZNt/ N+fvi7ta1GQ5PcwWgu2F84KJQmZ28NWZQVem+Z6fGnQmPfDk5MDjE0mw/dBY v09H+07qEY4imXUDvJb38RycrFWclecLCpmbf4RZuTErLCw0n3927NhhmslZ hhnT9bCFh5hOULGMsfOsBrgXXp6UlAR4iRkUmcEZ4FXTzVA0RF+oDecC7Dzc BQ8wLs1yvPBdAIrm50FJosElfKwbrsXzSL98WhucyGD75SOAIXrWEjR+KiEZ fKhZUpjvET4sdgYTwqOxW/NtkPxpA+7LroUbbaUmbwNvOMvgz5i5j8ArG7QQ nqPku/EHtG9ffC+G3AsNQ+5Fp8R4O4/uwO2I7hdu8m4q/M5BO3MlDYwBh8Pb BzL/owC8DN2R3svM4nZONiPVybDcMmaE3Bm0G3C7fg8mBWhne63K07zLyPxb o9xuEGx/zgvsBVl78Re3HhnNIWNEIVOkX6126Y8VixveuxNbmhrctmWA3Xsq xw/16E5D7kzrjmkho/To3jzOozmP7ipPewy8J1F67+Tbkkf3rgFI7590C1Cm dwnAwzHldr0Anvd+oqeqiUvTv3MOxB4d6JYSZNHeh3K7twl6t5Cge+cAskA1 JcgqKsgDXlNEdGf0LkX3UAN0Z/kheaF7B7XHsAiykevIKOtRNOQO6D5d958Z Yf85K/w/50T85+zYpnPjms5KspyVbA3oPreLXVZXB5JeBqPu3BrVDf3tNw2w 3zrQ/lBq0+MD/po/8G+A7pPiWh0c0+6z8Z5HJnodm+T1OaB7GqC7D00O6Ut2 U0V0n+NfOfOjytkf3cr0uZEVcHMBCbzfXhhYtCT0wdKQh0tDipeFlOSGlC4P ebwiFLw8T1W+SlWxRl25RlO1VpM5wE9g9bXEK9fCeeJV67RfrPH8Ic8CQJ34 WoLrVWvDKtfoCLGv1pav0pbnacoA2perH4PnqkuXqUuXqusX2L+YTbhdvxwV oH1u8I3ZQRhsvzWxjbAiVQy2Hxzju2+Uz8TuYSiSWdPfa1lvjymT0wwVMmyx OVXI/GFm5cbspSQHwIGY9hAgTS5XYLlTFAkKX/v37//KEmVjmRt55mwwAr1m 1o81LFu2DHoKVMmazcoAfPIxdnlLTJ+U0y+P9HCMMxH+JI4z8KexsZVIXFhr 5ZMyeEDw4Nhb6CD/xwJWg/wWKOyRaFrgWrwX1COZPkgaz97CR/AF4NvDv33t 9r/EzuzeowphgaoYcqeJZe4ZQff7DN3RjdH7edFJ4vfrmPtd4HYzwukPzoj+ EgBvxvLV3wTAK3F7KdHMGIbcjUE782tFtcxvmM3tmBPSKLdL0N2Q2M1Fd57b +ZIShUwpl9OGKWQefXHzwVNB1n5fAu1mKGRq/lixuNKHRdGolrH+MxA7Cblb /j/cRJVF3dV6dG+uR3c3Ht2bo9w91N22vaiZIejuQwPvhN5bCujOAbyU3g0z zyDGc9zeShHg+/GrWVUE4AdopFs49Q5tHRnoluRrEe9NPEHiRgAeuT3Jr3WX QMv4QKekQLuugZZdAd2pC+iuRO88urMMM3zIvb3aYyhdoMqH3Kfq/mt62H8h us+N/FNm1J8WxPxpQdzfFiS+Oz+p+cKOLRak2C3sSaLuS3oTdM/rY7+554e7 e/xlX6+/HOjz10N9/3q0/18/H/DXk4P+NjG21dHhrT4d4w7oTqLuEwm6n0z3 OT3Vl0f3uxn21TPeqcl4p3z2R9czA25SzUzhgoB7OcH3F4c8WBLyaGlICfgy QPfQx8tDy1eoyleqgN4rVhN0z0z1qwKAX6OphLfUK0SvWxMIXkmJneD6Gl3l ap1A7AK0awRip9BeslRdskRdN9/++cy/L+piQXM/qgSFzJyg67OCrswMvjQj 6Noku7NUJPP5pABUtn86xmfvSJ8J3cO2DvFZP8BrVT/PRT3cc1ZsPi/Oys/Q WflJUSHzR5uVK9pLhdybiBHm5ORkwDbJtXDyyZMn9+7dk6fyg8Lp6em4clMx lR/wmxzLmzZtamNjs2XLFvgUXhctWmSsVXyP5FAN9TShUXo84G8K1bK3UH+D 4Way0FO4CrrJXwgnTbTEtEHfFa+FbhojWLYfE5qkC9geGHP+gW6h1sBBMowt jD88nQZDbQx2De6OfUeTt4Q1gP9I8ucSmOxAgSfU+FvwjwMbAJXYUMM6+RsZ m5q9rLER+F9jVnCv9DhJLCNkleHRned2cBZy59FdHn6XQruBI7QbRXH4p1jv vxTgTdG7FOCV6V0Z4H99br9wi6hlXorbAWVpdneR2ym0m4Put4q/UER3PqM7 QruQ2l3O7TT5DGI5SUFTxu21KoF2JW4X1qJy3C5RyCC0XzNM/HgJod1AIXPf UCHzB8rnzGxj3lIx5P7ffk6tQyz/Q2X7d14twzQzPLrjPqoxbs1j3Sm6U3qP 8mwV5mHF5O5J3gTdBdmMb8suftSl9P4JT+8M4MG7B7WKDmzHi94VAb6fxFVi QniaDR4AHl4jAlwR2nlvFOATqQO3Rwa6wyt6V+pyejcf3YHbcT8mPuQ+Ptpi QoxFeuS7M8P+c3YEQfcsiu45sX9aHP+nZQn/tazDfy/r9NGKzh/kdflgTcoH m7v+eVvKn3d2/8ueHn/Z3+svBwHd+wnoPiGmVf6QpntHuR4Y6/HZOA9A92OT vE6k+ZxM9wV0Pzvd98IMv4JpduXp/6ic9o+qGe9UZbxTNMfhRiaRuxdmBdzJ DijKCX6wKPjh4pDiJQTdS5eFluaGliG6U3qvXKVeOcyndJEbHIBX5KkrVhEv F71ijZY4BtgB1PM0lNi1ZeAU2kViVwG0Fy9RFy9W12TZf5Px95zOFkQhM19V SIPt12cHXZ0VdDkjmCjbcUXq5MBjE/wOj/M7MJYE23eP8JnQLWzzYLIidWVf j3GdAnFWjn+uJX9K4xQyz19896Z/bW+F9evXDyDqZdEI6V0CWqZ1LxgYl3A1 3Boa0KA0g5DES3kg5A0vxykDHMjBmM0U+OYh18FVmFqcYaQc++Vtw0EDg0qM jZ4csNkIyOc1cDI3N5fvEeI0DO89amwQEMuhgLwGicFV8ICa0AkLdnzQoEHY cmweVAXdh5NwayRqZpLKoR72kYmvCtQjgXm4Nf848DuDpngvaJK8ay9l0C/8 PvyvSez5t9+dunjbMLHMXVTLSLj9zFXgdmV0ZwAvHitA+9nrAnKfITnhFVDc ANqV6F0J4H9p+N1sgFdg+F+R20svctzeOLTruZ34S3L7s0a4nW2iqgTtenTn vVxEd2PcLlHIYPYYhPZSA4WMBNqNKWTOyBQy8D1/0z+1N2PTRvYV0N3mb772 H6ta/x+J0B1d3EqVZnRnUXdhN1UB3UM9bKlmpoUBuouBdyH2LqN3AvCBUoAH jwpo1zNYWK9qGuAV6V0MwrfW+LrGeUm53RyAB27v6N86ItCtc2DrzoGW6Azg Dehdhu69JeguCt0TgdvD2khC7mOoyh18eth/IbrPA3SP/lM2oHvcn5bE/1dO 0gfZKTa5nT9c1env6zv9eWPnP2/p+uftKX8h6N5TQPfD/f56LPWv42JanRz0 t8+GWe4b7Y7ofmSi1/EpPifSfBHdr6XbFU/+x+O0fwC6V0z7R+X0d6oz3rk1 1/vWPP+CTP/b8wOKFgY/yAkuzvGvzXEqWRxSujQU/PGy0LJcVdlyFdJ77Ur/ BX1dK1aqyzkvY54H9E5wHY4fg6+AVzjWQ3sJhfbiJapH4IvVDxepqzPtv5rx 3ws7tyqar7qTRRI/UoVM0JWMoIs0jYw+2D7BjwTbR5Ng+67hPsPb+20Y6LWq v+fSXu7Z6aMN/5SmV8gUFVe+6d/Z22US/jEz8mkM1BWptQnVVPAgB8X4NvBA K/kIwNLYvaBO9inG/IHcrK2tWT08ijMsBMhs4LTcRdQalP4cgA1gPZLsgtpg iNzM4KaKY6j45wZ+SoIdxzkLa14yZ9BOKA/0ztff6APli8G1kvoR6U1cy2+P a+Z3AzoCz9rYbEtxNYSJlptp/6uNMWEV1U9wGyYhkTvlduMh9yJj3M6csb0e 2gUyv2/gHMBTSsfzrw/gX4be3x6ANxZyfwVuR3SnWy89MQvdHxE3we2cbMYo tBfSkjJu1wfhZW64NSrL+ojQXoIKmWc3HzxFaJcpZCpMKmT+oPmcmZU+LIoP cCTc7vCen+37JORu+f8w6s5rZjROH7N9VHl0Z4F3cLWXI9C7iO4taIpIPbp3 9NUrZ6h4Rg/wKfrw+yds+WpyQJv4AAeC7iEG9K4I8FJ0FwG+Z7CFzt812sMi xtPCBL1LAV5E9/Y+FsDtnQJaM5fRu2W3IAV07yWNugtCd+B2XKDKh9xHU5X7 uBibCTEWU2Kap8c2nxbXYkZ8i5kJLeYlvJcT9+fZnewyUxwXdHda2MNpZdeP NnT686Yuf94K6N7tL7u6/2Vvz7982ltA97HRn5yggpnjQ5vlD292fHSbQ+M9 j072AXTPn+J5abJd0YS/P5j0dx7dq6b/ozLjo5tzKbdn+d9bEHQ/O7h6geP3 WU0rFnoAupcsCaHornqcCx76mITfVXP7+tG1pQb+WHCVgOsriIi9FH2FplSE 9uKlSOyqh+CL1A9z1JXz7L+Y/t9zUtrdzVIVzgu5OTuYKmSCLmUEXZjOgu0B xyb6HR7vd2CM7/5RPntG+OwY5jM60WPtABJsz+nhtnD5RmMKmTf9I3vrTMI/ O3fu/CX4ZExJUlBQAPfavHkzYrCjoyPcCBsgATwsycyEKl4ixmCpUTAkDvXw jeF72rFjR0lVcAYIVn4SroJ6WIXYWuRnydAxvIebKip2jEE+m1DwkhVjXUbM Zs8IJinsEqi/IzXFC1kBjLHzDWsQVS4NYkyeN75VbDwTEhLgUcrvgudxoIw9 OKxQMhrQMBhVuNyamrHuGzO48DX/Kn53hkJ3ug2TyO00J6Q85G5MLcOxOttl 1eCtFNo5ejfy0W8M4P/dIfdLslzu5nA7OEvh3gi6U2jHkPut4i/Qkdt5oTtL 7W6a2w2i7uX6XJG8sw1YDbZG5bO149aoVCFzvajeTIXMaU4hA9Be+IdfrXb9 6hUh5G79ZyHk3vr/8tlmkN41zgK6E7WMDN1j3JtHuJMNmAi6ezZHdKf03gLl 7hJ658LvLSXhd8w/Ax7h3w5eewcLeWZMA3w/Gb33DbHo5G8RHuCa4N0q2oN4 o/QuB3i4vKN/a8ER3Qm9t5bSe7ClomCGrVHFzZgSVR7CTkz/P3vvHV9VlfX/ 88f3mdEZxzaOZSQ9QOpNbk/vhSSkAGmkN0oIoST0GjqhVwVERKoIKoLoqECQ 3iEJHRREsPvM6Mw8vz/zW3uvc/bdp9ybG4oBPeu1Xvd17jn77HLuhbz3up+9 thhy5xeojs3yGdfbd0If30l9fadk+07N8Z2W6zs712tWP9+5RYELSoNIWsjy oNeLXthQ+MTmIqKW2Vb6FyJ0p+j+4YAnR6e776l+cl/NU021zxwc+tS+Otfd Y63/mBAK6L5/ovHkeI/z454DdL/Gofvtqc9en+GFqd1b5kVeWBB1aVH0lcUx txfpry2Nvb4s9vryuM/BX4n/Av3V+BuvxgO3f7lKXF4qOkX0hBur4qnDQeIX AOqrEr5YSZxoY3hoX5ZwdWn8laUJV5YkfjXX7/Zs75ll4RfI7qhklyWqkCHB 9sPTaBqZyVF7JkR+Mj7io7GE29+vJyKZef3jNw4JWTvIurLKPL0qRVTIXBUU MseYQub3LmtXmjNcZC+KjpeQtTZTgwoHDBigLMYoneEcoHsbJUY44EvKuie7 yhtc4mFbBvxQ86pVq1gk3x7QOja4i/W8jQIz9gc7zwgTuBFaZ08AjvlK8Kpq /aj8h7ugn9AWdBgbcvDAoQyr1vnPkd2FnccD/EkCLgVS204NL0F/YHTwUco+ DhwjPmp7w8GpDftooBXoKivjoLdwC/724XgsSpN99JqpGtmJ6RAVuou5ZcDt ofshZPKz1Dk4t+dwF3V1RD9wilZut0D79O4UwHeQ3g85S+/3GeAdS2WcgnYp t5++8m0HQu4Ct/MuMLwz3A7Qji5B91vCqwq03/y34By0k3g+Jn78gmRrp7L2 7wm3X0ZoF7idQLsdhQwfi/vdKmR4WzR1tLAHk99LJOTu8xTP7QK9B72crEd0 F4XuMnQ3ucRZ/HubhfWqQO82dA91zQ9zldG7BOAjJfoZ4pHuaZF63HpVgu4O AX4gB/BFkZ4FEZ6pkQDensjtIr17tEvvDOB7RhjzI7xs6C6ndy8u8O5dFust QXdxSyYmdO+bYKnp2Z0PuXNqGUR33/G9fSf28Z0M6J7jOzXXd3qe78x839n9 /OaXBC0sDVpSFrSizHddwZOolkGhO1ujOird/eNBT346+Jn3Ruh2j+ixY6R5 1xjLh+NCEN33Tg47MNl4eqLHpQnPIbp/PuVvl6d50uSQEYjurfMizy+Iurgw 6vKi6MuLo68sibmyNAZery0nAH+dLln9/JW4xv7hNwDFFf75ynjirxIHaP/8 1QTBiZo9AaGdhtkTgNgvL4m/vIj4zcbAiwvjZ5SF02C7oJAhGy1Nj6YKmah9 Ewm0/2NcxO4xESTYXh+2fXjo2JKe60mw3fxKpXnjinmqCplL17/q7H9bD6Op YjYaEFr37t0Bumpra7tQUFSWYdto8qYshkT3448/YlVgf/3rX9sUUVll4NR5 eAP+vHLlCjSBNyqB/6+iOV9nFxHR0fjeImPD02Mca6/beFW13aVLl7Zx8XMw 7D/cMoAa3NWdGl7lPwLZk3c8CtXPDnGdf8sPsN1vDn49WN+60J8PoP+sTpw0 yX4WwXmQg28dFOjQZ6QF2520f//n/xOF7ucdoPuhU9TpJqqHFDF2FlfniZ0B P+cctEvnBYTh1QHeqfC7AuDvQ/j9VwZ4e9yOUpm743aC7s6E3GXcfp26NPbu gNsZtKugu5TbL7AlqyK3sxi7UD+uRf1cXItKoZ1sjcoF2zmFzE1bLE6az/nW HfnOcb9b6xPmjWoZEnKniWUkTlNEJgWrozuTu8dbA1Ezw9arZlsFdEd6zxPp PV+N3gu58HsR5fYicQsnObfbp3dE94oYj34RHv3CPVMAvMM9s0M9MszUpfTe LsAnk9u9iEdQF+m9gKP3omiv4mivElvgHejdWxXdkdtZyF0V3ccBuvcR0L2B htxnUHSfWxQI3I5qmRXlvq+X/H1NudfaSq+tpU8xofvIXu4fDXzy/SHub48w ba8zv1tvJkL3sVZA948nhn5K0b2pIfzwFGPzJM+rE587Oc10bAbJMHMS0H12 xNk5Ec3zolrnRyG6g19aGH1pcQw4Xa8ad3V53DVK73P6h3/xasIN6l+Ifv3V eJu/AoQfT0AdfQV9Xc5De8KlxfGXFsZfmh91fY7+/Ly46SVh5xoptM+KPj4j +uiMmEMk92NU06RImrOdBtvHkGD7O3WhW4cRbl9XbVlVZV5abnrvH4fprFyy 2FxTyLRrPIB14bCQP9m/f3++wKZNm5T1qAokgMQYsaMxQIU6kdN4hoTCUKCA GjQkAzm8i2GbrC3sBt9VNKB61oTzAI/cvnr1ajiAzvCjg07CGbjEJgvMsIdg cCCDYTiziZqsMF8t1Am9Vf2YHKA11AMfIlTFwzNWyMrAVdkHLSvG942NS/Yr icz4SqAPygcLszb+Fwe+P6o5iOCpOvpIpKYF2ztkF6/eIlF3Kbo3Hbv42XFh M6aDEnS/LA2qKwLpJ+UKeT5uf+DkJdHtFrOP8c7G4dsn+Y5j/N2R/L2j+4nz X/FuH9rv4B5MzIV9VBX0rqqWsRG7lNtlIXfH0N5qW8cqlvlSvl71PMH1X8CB 0m1+QwyzX/8Jenjmyvc02P7d6UsYaf9WEWm/IUbarxyQ/k3XIu0y++LqpThd V0Ho7vO0MuQuoDsTzFCtO2pmWOw91uzH1qvysXcC8MjwUoxnKhplKB5eUyKC CyLc0cuigd6Zq2G8SPJFUR554R55YYKnRBjgNYehO+8ixmfZCcInRRhzwr2Y 54Z75YkYzwBeSu9eJTFepbFeZbFehN4JwHtXJXij1r1PvKVauhPTMBHdiWBG XKY6Rk0wM6ufP6D7vGLdwlLd4jLd0oogto/qhvK/o2CmLs19V9VfNtYatgwz bh1u3DbC+E69acco887RhN4/Gh/6ycSwPSK9f9YQcXBqxKFpEUemRxydEXF8 ZsTJWSS1+9m5kc1zo1rmRrUCwy+Ibl1I/PzC6AsA8EtjLy+Nu7IsbnZlOBD4 dZvHX1sef3UFySEJbE+SSYIvo07EMPAKx/FwTGLsS+KB2C8uIjuiXpuj/3bK 019PfvrcnJipxaEA7SdmRR+bEX14WtTBhigSaZ9EFDL/GEeWo34wCtPIhL49 LHRzbcjIwqTVA8zLy017Pm1SpnW9eO1WZ/97ejRMRkSFhYVwsk+fPvgWDmRl EFmvXr2KgAevcItOp5PV061bt6VLl8pOwhm8t80O6vMnAfw2btwIzAl9aGho wLvgLZxsbm7m74IC0KtCag5gD1qHG5VszzrM4BMO3nnnHXaJjY6nUzgpe5Iw NOgG9pONHX9icPLhdxGnNrxBhfz0R9biVdFkzxPYGDvDKsSBQ3/YpIlvEauC W2Bc+B1wHIdn3xAcIHxYMhrH56AcGjTBn4RPEz5c5ffHgeF3UrMOmRq6AwsJ iveDFN0Fem+P2w+etIvuuCsrnQtceigA/q7o/ZCz9N4xgLcrcW+9JUN3dXq3 x+0U3W3cflV4lcfbr9vldhZyhwPH0N7K559RppqxEfvPEmj/Qg7tZ2zQjmF2 gPY7srWoBNpZpF1UvX6lRdrVbPb0hjj/5xO8/l+4f1dVbkehuxh1J+ieKkX3 WLM/k83Y0N1C0L2v1TWbeg6nfhcAPtRVld57RgTDqxicdy+XoLs6wFfGeeSG CZ5DvWeEAd/2trhnmNHVAZ7Su4eM27PFnZiU9N6P0ntBpATdiyXo7lUR51UZ 510VD+juDdzO1qgydGdR93oMvGf6jBa17hM5dJ+R5zenMBDQfT6ge4mObsYE 6B4E6L6qf/Cm8he3l/1lRKr79v4vbRhi2DTU+JaI7u+ONIvobkHBDKL7/inh n00Nl6P77EiyoeocopkBem+eHw3esiC6hdL7hcWxF5fEXloSO6sy/ApwOPVr 5JXA/JXlgl+GY8D7pbHgl5fECb4YnKhiLi2Kv7gw7vz8uAtzI29PfRGg/fak p87NimgoCsVI+5Hp0QenRn02BaA9cs/EyE9IpD1cXI4aun146FtDQzfUWOsK kl6tNK0YFKMWadcSTThrSi567bXXGEfBAQCYDMnwKrwCibGSrAyAXFVVFXKg rGY4g+WBDFW5nUd9QEEkPdYEsDTrNmA2a87J3Z2gUURcxpyyq6weaFG1Thle ohCImayf2Aog92vUlECu+vDZSls0fvrQRaqTgUt8f3i2Zw+nizTQjVOeNimT I6jLhgaVQ0l4tlAVfJrKnrOrKPtRBW+oBFrkG4LnwBeQzY+cNGxRs47axatf cuh+kbmwWBXpnQu5211zagfdGbQ/cHp/iAH+LqUyCm5XAXgH3E7Ty0j2UZX5 tR8ccDuf3Z2Xyqhye6sE2iWyGZqhXRFpp66E9jP2sj6Ka1Elqleq9Wq5dKOz /w09vDZr2pQ432djdC5RQZ4O0L2n/mVML5MiojvKZmKN3XuZ3FTRHQPvEoC3 OgJ48J7hwXlhbswLItwqY90U6C4B+HwaWkfPDiOeHGHAA3CR2+0AvILegdv5 TVQZvecyeo8g9C6gexRB9yJVdI/3qor3yoozD0wkgpnByd1sgpnUHhJ0z7Ch O9O6o2BmdkFAY2HgvKLABSW6RaW6JTZ0D1pT5bu19KnhKe6bB3i+WWPYWGvc DOg+3Pj2COP2OtN7I4lgBtB9N0nqHmLbTZXQe9iBhrCDU8MOTws7Mj3sBKL7 7MgzQO+NkWfnRZ0Dnx8N3rwgunVRzAXwxTEzysMAxa+QWDoJp19WOLD9ZUr4 lxbHEV8Ue2lRHPX4iwsItLfOi7020x+h/daEpy419JhSFHpiZvRRGmz/rCGq aXLkXpS1jw3fPSZczP1Igu2bhoS8OdgypjB+ebnp7VfnSNK6Hm3dc0hbi9oB AypzBpaeffZZ5Ul7tMbIHzjT29tbtULVe4GEoT9wCzSno8aTHry9du0a6/lG agCQHd2V1V50lz8PdeKTUYo60KCHsifJ16MkYWV8vk3B7VAncvVPP/2EPx8M HTpUVobd62DUspr5+Q4atAKje5aaag1LlizBYvDKP3PsG3woOM2xNxB+yPaa 6KKQwaMpf6bhTfnYNXPexKi7nNv3H7/42XFMNXPJnmRdxu0ydFdC+68B8Gr0 fvAB0Pv9AnhHGzDZR3eB3qXQrkD3bxm688R+RvRzMnS3QbttmSqP7vagneN2 ReDdXrD9838CtJ+7/iPpicDt355WgXbZWlSJQuaz462aQsaxEXQPeDFG5+YA 3VEtIyaH7CpBd7O/LNWMTfEuB3gXHuAlEhqaAT45LBjzSTLPDyfoXhWnTu8l URTXbe7eN9Q9KVzflx70DQUmd+9ldk+nbhfgbQJ4D+B2yUpVRPcwSeA9L0KQ zSC9F1F6twlm4mzonhVn6p/gNTDRW0T3bkNEtcxwTjAzKsMHfDTRuovong3o 7jcjz392QSBB92IdoPtiQPdy3bLyoBUVBN1fr/Idmuq5ttqwrsawfoiRR/d3 6s2I7mSZ6ljrR+NCPh4P6B4K6L5vciig+2dI7xTdqWCGoPvpOZGnG6POzI06 M484AHzz/KgWopyJmV4eemExYHk8daB0ElG/JDiJyV+Eq+AU1y8uir24EDyO +IJ4hPaWubHNjbGfN7jdmvjUzfFPXZvwwuSi0GPTow9PJwqZ/TTY/unEiI/H hX80hgTbiUKmPnTbsJAtQ0M21FhnlMWsqjItLTN+8vFeTSFzj+YAk3gGUz3P MNveje3Wz+gRkewaNQdQCtwo6z9AJqtBWV41us4uwb2sAH87nOdDwXAJRorb NnURARsJFgy7xGZA9p5GUVGRrPP8pAm6gZzcZid83UVKrWzUSpPVLIvhM1NO eaBC+DRZgB16C33GnrO7+F8lWDF7sxu4EYqpzg2hLZiVKEcqE0HJDCcUmt21 wX+P8J9kkwLdkdtFxpYtOFWw9EkJujuGdjv0/nsEeKIAUaH3m0db2kP39rjd Fm8Xuf2M1M/K0F0C7bYkMxTdyQLV9rhdIZixD+005aNMIfMNC7YThQwldolC 5pRcIaNtd+6MEXTXdY0I7kYU72rcrobuXRHd4y0BaSY3WaoZFni3D/AuTELD AD4rtFuvUN8cug0r88IIt6pY6nESgAeeB1AnHuLel/OkMH2fEHfilN6B2xm6 KwBeHn5PCgvOCvXqE2oTz9AtmSSBdx7d+4nojlr3Uim6Z8WaqhK8BiQiuntX J3tTdO+mQHcfjLrTZao+otDdb2qu38x+/hK1TKluabluuRh1H9DLsGaQ/o3B hjdrjOtrjZtqjVuGEXTfVmdCdN852rJrjHU3ovsEG7o3TaH03hB2aKoN3U/O jjw1J+pUI3jk6bmRZ+ZFnp0XeW5eZPP86Olloa0LYi4Aky+OI+IZqV9YRJzi OrB67AXwBeBxF+dFIbQ3z409RzdXap5pBWi/NNnz+tgnpxSYj0yLOkQVMk2T o/ZMxMSP4btHh++kwfbtI0K3Dg3ZNMT65mBLXUHiigrT0gHRB6QKmc+OaQqZ DtuGDRuUBFhZWemAxhl6YTBWGRZmtmbNGqhfle2REoHTcH8iQDikxC72pwms GPYcWkcShkqgFdVuwCV7A0FuBEN0f/fdd7GrMPY2aUCbx3hgVLgRmmadxLf4 JMGUMMyOlQjNLvEaGGVXoVdQAHoI4+VHrTorwaswCvYElJMdNLjEiuFA+Kv8 QIqowafJRs0mEaofFt8xuEsJ9ko+hwrhLiisrI3ZvX/bNbt49RaXYUYF3Yni Xc7tuOb0sgq6n3CW2+9r+P1+APyZewZ45+j9CHP1CDzh9nbQnc/xTgUziPFA 7OJOTN+ykLsS2pl4xobucmJnTgUzN/7lNLf/QrdSAlz/WV0hg9B+VYT2KzKF DEC7RCHDy9pZLE7LC+e8zZw6OSsyIFLvE69zUeaWEYTuVDAjRfeuacaucVad MkskpprhAb43B/B9OIDP4TTwyWFBOWQvJzfeiyNFdBfpHRx4Hi71Fb2PlXhv q3timB5emWPIXYbuDgA+KdzQO8QDHQG+b6gauofbEs7gYlWgd4buyO2ZwO3x Xv05dB9M0N17SM9uQ1O6DSNa9+4j0rrXcUlmOHT3m5LjNy1PQHdUyyykahlE 91cqg/r30q8aEEzQvVq/brB+Q61hE1mjathK1TIydP/H+JBPJoR+SvLMhO4R 6J1E3Qm6TyPofmJW5InZUSfmRJ4EB3RvjDwzlzig+7TS0Jb50eCtC2PPgy8S WB38q0bP83iS4vp58PnocZcaQ1rmxjQ3xpKdlWi+x1OzYlqm6k7MjG6d4DEr 2/3Q1MgDU0iwfe+kSNxl6cMx4bsw2F4X9vawkM21JNj+RrVlRL/EZWXG7a8v 5Tc+3nPo3C/aT2l3ZcClSkBSnpQZcnJxcbHjYtjEuXPnvKgxjsXYKSBlUFCQ 4xrA4Eb+LRAsAh7cC8fYhOqNUD827aBy1gGo6vr162uowTH/Q0C7ahzWDTZS QOL169fDW9mQcdTQUBtH13wkWVYz3A6V812FV0Rxe8t74RIDYPiAoDy8sh7C vcXU8AzfECsA5mDIUBI7zDqm7IODe+GxKIcJnWz3IT+wfwG/L/v6u58OHCf/ Z9LA+wUbt3PoLo+6n2S5Yi7bpDIdh/ZO1M+oA/y90bsTAM+hu4p4hnI7estN wNf2uZ3zU9wOqqiWEejdDrcL6K5K7GIovgWj7vbQXbpVE4N20VWD7RTaLyO0 fydVyOAWSzaFDHwEBxQKmc7+5/KI2dWrV3tFGcINfhJu9306wfcZDLlj1J1l mGHoHm/xTzW69TJ2laF7plmQzcgAvo+dIDx4Uqiub4iL6K7MiyNdbege61YS 5dqHnkdcp8RO3eLWy9o9JcS/t8WdOSB6LxNxJborAT4xzJBlFUTvBN1DOobu TOteHku4vTLOi0f3ahm6p3QbngrozmtmAN17jOvtM7Gv7+Rsv4Zcgu6zCvwb CwPmFXNCd4ruwO0r+we/NiD49YH6tYP066r162v0G4fotwwl6L5tBKC76b1R iO4kr/tH40lqd5IicqKA7vunhDK5+9GZkcdmET8+OxLp/dQcSu+NkVNLQs7N jSJpZxbEtCyMbRUdWP37Gc+2LohtXRDTOo/3WBJmb4w5Nyfm7JwYhPaTs0ie drK/0vToo9Oip+QHH5gSKeSQEYPtZDnqqPD36sO2DSfB9o002P76QPOMkohF JQYurSuZlV+4+mVn/4t5hK2iooIHpNdffx3AsoIaHyztTc0xXMkgTdYQYi2S m5PQ3kUxO+Dvwkg19Fb1RphcIOLKuq0ahJd1Bt4CnUKH25yYxSAbI41jf+At PEY2cYAniZfYqOEqvF1PjT0ffqQx1ICNlUCLcM56BaPjZweqOM3C6WyYcAB9 gI7BvdBDfiaFZm+w+Eza7E9n4LzsG4WGExm8V3nV8VcLrt7/7/3v1X75z//R 1O4tLMmMKrqLrqJyuRdiv2t6v98Af9/C7w4B3nG8nUP3ZoLugLJMOkLeOtpT 9Q5B94tqQnc73E7RXbENk0T6LqB7qwzd5ZurijuuUlxv+fxf5K7P/6mikLmK C1HZFku2fVGPtX6F3C5XyJzgdk7UYnEdN0D3EfWj5UJ3r/+X4PdMoiiYEQLv wRJ0j7MGArdTdO8qQXen6R0PEkN1fDQenZ5xrYixoXtOiGtvi2tvK/EsC3Eg 9izRE0ODxWN38EyR2wm626d3BHjg9ky4BdHdytDdo6+omVGuVM2nWnc5usd4 ZcSYKmK9CLoneIlCd6KWkaN7mg3dR/byBnQfm0lC7hP7+qFaZjqJuvvNLQyc T9A9cGFJwOKywKXluqo0PaaXIehOo+5vDtZvENAd08tQdCdad4Luu8dZPwR0 Hx/68QQFujeEHZoWfmRmBKP3E7OJcgbo/fTsyIaSEKD3s41R5+ZGN8+LaZkf i36lUf/dtGeuzNG3wMm5xJtJgD36XGM0QPtZguvR4KdmRZ+cFX2Cbq6E0H54 WvSEgpDDE/RNk6LIctQJuMtS+K5R4TtGkuWoW4eFbKHB9rWDzK8NMNfmJrwx dSBdbI4bH7e0/O43Pr53e+aZZ2SkBFAnA+bFixfbwzkZ3gO2eXp6Mkhj9vnn n//v//4vHjsJ7Y4NugT9ZO0qJRnDhg2DRqEYGyB0DN5iDx1XjjSOHVYtoHxo 71LjW5c9AWWKRagfeojHqq0o8Rg7BgbjRRgGg+HgFEAVpxn3yvoMrfMfk/Je uNGTGj4xNgEBg8eo2mFMtqPk8Nep4YxGeZfqSTTos/K7pNm9GBDR4VOX9hwm G6oive8HP35hP4fuggs8z/nxi9KTvzbA3xf9jArA3zO92wF4xytVb0rQnQbe OW6/1S638yF3PreMKreTLJHXf1QhdlE/02Jbo/ovB9BOnII6QjuRxwv+T4R2 qJAE2xm008SPJ6mfuHBHXIt662jLl/YUMtpqtXuxxiljwoJ7xOpcBW6nuSKZ YIagu5TeAd2TTZ6J5h4M3Sm9d+0wvVtc0i1eKVYfua6GHgOrI7oXRVBWNwue iW5h7pYQGgyvvGfI0N0+wCeE6qEwRXcbvYvo7kHR3TMHnE8RyeeH5NA9PcZU RgPvLOquQHdvFMwME9F9dPILY1JdSMidqWUA3ckaVb9ZBX6Nhf5ziwLmFwcA ui8qC6hM05Ok7v2D11Z6S9HdQLTuQ41vD0fBDKC7ZecoQTCDgXdA908Q3ScR dKcrVcMPTgs/PCPyyMxIQu8zI4/PjDwxK/LkrMgpxSGn50SemRN1pjH67Nzo c/Nizs2LbZ4Xe3V2wJ1pL1xotAKunwMHVm+MJsVmExeIfWbU8RnEj82IPjqd ZH0EaD84NWp8vxCaQybqU5KwPfzDsaiQCacJ28ly1I01IeuqLWsGmFdWmYbl xm5bs2S/mEPmM207hvthwEWOA55vvvlmm3PrWHnEAiwsKSlBLkUwA+b8X2rO VOXAENGhcnYGINleYWgO04wDavKjdqYhDG6zt/xTUoKrLE0KACf/HOAJ8LMV eCxwEs/Agb3+QLcZbAM2wwfBX2UCGGayDvCjwA+aR3cZD8tGBE3DUy2hhkPA A1Ze1hk01C851r1AQzgdUK1BZrKsm5rdLwM0+uz4BRJ4J/Te2nTsPHVC78SJ hIbfrQnBnrgN3W0Af9/p3T7AtxN+VwN4+/T+oACeQ/f2MszY5XYgW+R2NXR3 yO3q6P4DupzYeW4X00IiurcwSucyvSO0i9wu5pMUnRI7+I+ojRGg/SIJsxNo v3jHlkOmRdhlSVPIPAhrHF+bEB0WHtRNoHdAd9+n+WWqfOAdPFXfNdYihNyl 6E68XXrnPSFE15srY3OLS3aIS3m0K33LEbvZNYN6uujxocEZZjebW4j3MqFL 0V0B8HGh+l5m9wyLe4aVeCZVyEsC7yTDJKX3cE976F5M0b1XtElIDhlL5O6q 6F5Lou40yQyVu49Kfml0z5ekaSH9GnL8puf6zcz3m00EM/7zigV0r0zVL68M fqUy+I0y1w1lL60ZoFsroLth4xADLlOlW6kSrfuOUdb3R1t3jbZ+wKE7ibpP JOiOKSLBD06LODw9EvzojMhj1E/MjGwoMpNVq4Dic6LBz8yJPguIPjfmLAX1 s+QteYXzp2dHnZrFPPrETMB14kenRx2ZFnl4auShqZFki6UpkePyQ/ZNFLZG BWgnW6OOCn+3PmzbiJC3hhJl+/rB1rUDzav7mycVRi4sMfAKGW3j4/tlgHDl 5eX22AnLtItYXTiSBMDj1eM8192XYLvzBvDJxOH8kJ25F4kXngzgLnDme++9 B8dwAK/KGqAhxqtQnk0TnBkvLtGVGVaCHw1OnWSN8mta165dyyYCrD94wA8c a8MhYLSfR3EcqbInrFr8EQHuwuZUxwKF8ScAZsrB4izAnkieN3tZcTS7d/u3 qJlR0DvzC0rH4Lyc3h8UwP9K+hk5wN8PekeAV5XKyBPLILS3yNHdDrff4bld RHcpt3PoLuN2YR9VJbdfl2WYQVdw++c2b5ZyO4X2H+laVAW0X/z6BE38ePy8 IGs/IlfIcPmctVjc/bCrV69mp8ZG+L4QHuQF9C6kmuGi7gzdkym6JxlIyD3N 0LV9ejdJ6F3midYAgG08zlQ4fzKDOCV2k817mVzjQoLIsYDxbumU3tNNDN2J y9HdJMjgkdvTLRTdLQLAZ4qrXFngnUN3z9xwTxm6F4ncXhJDuF0edU/wHpQo oPuQnt0oundj6D6CrFEVMrpPIOguqGVIyL2f3+xCAd0XlARUpOqXVgQBuq+q 8N1c9MSm0mfXDAym6G5YXwPobtw0FNDdRNHd/O5Iy45RlvdHUXQfY909zkrk 7uNDPqHovndS2L7JYU2A7kTuTvZmOky2ZyL0fm5qQGO+J9D7CTH8Dg4Mf4pG 1HmHMydnEQdcRz8+I+oIIfaow9MosU+NPNAQCdDeNDlibH4IQjvNIRO2czRV yGCwHZejDjJjsL2hMHxtw0BNIfPgzMPDQwlOWVlZeHXdunWqUMcbkiRAXXBw MI9e7d6otGeoOV8eg/ANDQ3QYXtl+OAtMKoHNVlDUA+MFC+dPXsWC8MBDAqu lpaWMtBVznRg1OuosRvbnJsgyIoBrmMl0NYX1LAqaJ0vxpgWJhTt1i8zqBk/ I3jl0R0adTCDgwfVbltd6FNifeaHBrdD5WxCAU07+LDQ+Cep2X23X/7zfxeu 3hIU74Jspn10F+j9QQL8Awy/OwXw90/9zjJDcvTuJLfbkbgL3E7TyzB0V3C7 iO48tOO2qsDtKuguTzgj4XabC2KYf7bw+zdRpzu0QhPfk3WylwQ/Sbn9BK5F Pd9+DhlNIXN/bcbksZnGFyJ9nosI8goP7hHb4y9xfs8Bvcvk7hh4jzX5p+hd 0zDPjMEevXdtl94TQnQCnJvUnUjozS7pZpLEhjrB9V5G4mlG1zhrELymmYj3 ok6RXsLtFN3l9J4G3B6iT8MIvMXmGRYWeHfvQ+jdXYbueeARngK6i2oZwu00 w4yA7uJ+TP0TvAckeIsZZroBug8R0J1oZkbQzJCjMmxpITHkPg3QPZ+sUZ0D 6F4UAOhenqJfUh60lKSFDN5Y+ASg+7oKzzVkjaphHUF3ktR901DTWwTdzTuH ++6o079H0X3naOsuiu4f0tTun0wIPTTOb99EK9B70+SwzxrCD0wNPzSVoDv4 mYaAqQVBGHun4pkI6pGI6LwTUJ+JkphI+kqg/TBJ9ohh9kiyEJVC+96JEWPy rHQtasQndQFkl6VRYe/WhdJgu3WTuBx1VX/Tigrj4Jz4jz78B/0prfWAppB5 MKaEc6CsL0Rrl9mAxGRsiScd6FgY0ckQDm4BZoP+tIt2yubsNcGG+QY15FUY lOwWLANXef5kVx1vPKR8pHwH2DQBp0jwWlZWBmOEYnDASiKsMrTuQtU+sqr4 2QEvccE1re32ipeyQCuyq/ZmTNCQ89tdwYNFWRSrDW6Hx86XsfdhsWHe3ddY sw4Z0PuhExf2HDrXocD7IxV+77B+5uB9Cr8zbre3NxOguw3anZK43znBpYXE zJAq0C7ZR/UHlpIRuJ2huzq9c9yOqd0FMv9ComBvlnI7atrJWtQr31Fi/wZ/ EcBgOyaQocF2Mq4jNIcMQjtTyOzV8jk/GLt69Vp+kjmu+xOA65FBXhE6j3Cd Z1zAi/FBXZncnaF7jDmQKN71ArqnqcXeM22ujuWJ1oB0s5s6rpsYq9u8l5Fk kqfummpwjbUGwStxo+AcwyvRXQD4NKN7qpFyu1HMG4nczsLvVo7eSa54utkT lbvn2tDds1+kJ6J7WpSJ5XVnahmC7gleA0R0r8YtmSi9Y+B9OM0MKeSWyfKh uWUkC1QR3ecWBZT1DF5UFgTovrwiaG3xC4Dub5a+tHqAnqB7tWEdyetu2DDE sInsx2T6qOaFPdVPfjjMY1ddwI5RFobudFem0JMj/9Y03oCBdxp1D+fpfWKh 9ci0iKPg0yOOziBOyHwmc2B1AHVBV3N0OjqB9kPTog5yYfb9kyOppj3i0wkR o3OtH40N+3BM+If1+vcptG+ny1E311o31FjeIMtRTa9WGheWmaeXx9Of0jSF zIM1oMGnn37aSTZz3oAzHVQ7fPjwRYsWyU4C4wE5wyV7dznTTyjDYuA3qLGZ BfKqrDz+ZPDPf/6TISV0A86wtqA/UAkU4E/y98oMgByKubu7wwDx8WJPGhoa sBK+JBSDV3zLEzJOFlhzyig03qv6QNgvJrzJnqpMRo4zJuR/Vi122HluDxYN 28LpiZP32humZg/Ovv72J4HeDzXvO9IC9E4A/qgququE5R+q8Pt91M/cI8C3 y+1Hmm9gInc1dL+FIXcZtAswz6G7erxdzZHbBXonEXI1zcznP3E7NKmI2GXc zhQyJNjOoJ3+LnDiAiaQuXWcydptChkG7ZpC5oHbhzvfy0sOjQtyxQTvBOCD u4UH94gO9owPck0MdkF0T9B7xhu7I7qncgDfUXqPt+pkuJ4hBXXeEdpTwQ3E k4zeCWafFER33iUML0H3NKNbCnXk9jRxEast97sU3Qm9h4iB91APgu5hBN3z KboXEHT3BG7nt2SSoXt/Su9E6852U0V0TxUyzNT3EtJCju/jN4mG3EV090d0 L+0ZtLBUB+i+tDzolTKf1aWer1YFr+wfvHpA8GsDgwHd3+DQfccQ7x1De2yv s7xTb3mPamZ2Urk73ZXJ+o9x1o/Bx1s/nRiyZ1LY3slhqHgHej84NXxCgZUA vBiBPzydSmiIRyClHxFfj5BLUCaShNkptH9GiR2hfR84TdX+yfjw0TnGT+p1 H4wOI7ssjQx9Z0TItuEhW2qtJPdjNQ22V5Fg+/C82K2rFqJCpvnSF+1/TTW7 BwNech6unIR8IFUkYXvl+YCzzNypKc8DQyIVO2gXiBTxWBbpRWtTsDf2RBYH Vp6Bt1AtPKgyauy8DMXZ8+Tfsp4A0Dr4FHhCxhqwOZxHtHsLdgwKq9Kvcsjw AUFheJV1kv89Ag4cc7uDj0M2/WnXVKcbmj1oE+j94Dkafm/eKwD8+SYVCY0d en+YAP4+6mdsAN8Rem+f2ym6S+idD7lT4uXTuatyO92MSY7u/K5MqtxO/KpA 7xKAl+ypKnL7dQbtPzZjYQ7ahWC7qGk/RfI93kFnC1EJtCsUMlo+51/Tdn2w u75uZGZ8WJq1Oy5TjdG5RQV7Rxl6RBr9os2BiXr3OGP3OJNvCqaaaY/epW5D 9FSzV7KlR4YC2ntJoZ3s2WoQcJ15isEl1hqUQg5clc7Q3RaBN7qmECfcHhsS nGokGM/QPU0EeBV0p/Tel2zbCujukRvmgehOQu6RwO3GwijPoihPlhmSCd1F wQxq3bvx6M62ZMLNmEZn9BjX23cCpnOnapnp+QTdZxf4lyQHzSsOXFgSyO2j GvyKiO5rBtmi7htrDZuHmraOML9dZ+HRneSHpHL3D4Hex1J6R8X7JBJ4B3rf R+l9fD/rQQB4wvARh6j6HV3AeELpNqo/RMscbIg4QKF9/xTiTZTY904k0P7x +PBPR+kmZrgRaB8ZumMkVcgMJwqZzUOs62mwffUA0yuVxmXlxvElSaiQ+exY qzYr/xUMKEsVlZUGIKfUxjgwx9IIVcMuKVthNMvH6nk+j4mJwZCvvUkBm03c hakKZpSaEyB5pGJlYYBYBx8BT8hOplVh61sdQy90ycG4cOrBj4i/qhThdKGC dvi2wGubw0mfcvrjwLRgeyfa198Rev/04Nk94IeA4ZuphEYMwjsJ8L9R/czB joTfneJ2qe6dR3fkdsHtoztwO69yR2J3kttZ4F3w67I07yK0XxegnRA+cx7a r9ig/SRC+/nbPLRjDhmAdnh0wo7nxy9QhUzr/qMtnf2V/x0ZzM337W0aNbi8 b4yez/SeGPRyjNEHPNKijzIHAcbHmAOTDe7gPQ3uwMy89D1dBHiZZ5BXgugJ 1gAaD1cPs/PEThBdb/OeepdYS0Cywa2nwUXqrj0puqcZRTeRVzxPLvHcTtCd 0DsJv1PnA+981J0E3kNR8Y7o7pEf4QHonkq5XUR3T1V0HyBkmLGhO2aY4dF9 TAamhfSZ3Ne3Icd3Wp7fjHwSci9ODppbGECSuhcHLioJXFIWuIwuU1Wi+/oh ROtO0H24iO515nfrzTtGmneylapjKb1jikgxwftekigybFy+df/k8M/ApxA/ QJg84uBUEooniE4pXfCpEeRqQ/iBKeFwS9PkiCYaZt87KXIPQPvEyE/GhX40 Nmz3mLBxGZ67Roa+Vx/6bj2B9q0A7bXWjTWWdTTYvpIG25eUGuYuXaMpZH59 cwbIz5w5AyUzMzOd5LEOGZAt0iAa30pDQ0O5aLzqgy2rhHvvsVeOg8M4cLCb N2/y53fs2ME/Q71eLzvPSjLyB1Ret24d1MPC9fCW3egY75nxt8ADQXUQ1Ckr Bk3wNSvHhb2y99Gzex0MGe6Fmt3c3Bw8vXbNmSFr9kAN6P3ClS+BqT4V6F0I wiPAOxGBf+jC7w8E4OX0LiH5DnE7r5xR4XYuM6Qatwvo7gDa5dwurlR1iO6A 6yK3E1CXcPs5qo1BaD9Dl6OeunjnpBhpP976FRkFg/bmm0fOkMSPJNiuKWQ6 2+CZw7/uV5cu4ekd16smBb2coPeIM3bvGfxyrNE3zkQ81uwfQ0k+xhKYYOqe YnRPMbmnUk9Xx3iXOKtOXRjDQ7uU2Kl3TdZ3jbHo4LWngRyL7oIOdzF0B55P Fh3QHVrsafRIY+huc4ruYtLIDH6xaginmQkjgfe8MI/8cI+UCH1BpAeie7GA 7p6lMZ5lsZ7lsZ6VcZ6Vwlaq3jy6E7WMmBlyRFp3ppYh6N7bZ1IfnynZPoju xUlBjYUBEnQv1/Ho/tpAPaL7mzVGiu4mAd1HmLeNMG+vM79H8kMKUXch8E5S RIbi3kyE3icQeh+bbwF6b0IX9TOcRxyYIjgcA9g3TQ7fPym8aVL43onheyeF 75kY8SnVtH8CPlq/e0zortFhdX0tOwDa60K2jwjZOsy6pZYuR622rBWD7UvL jGPyIyi0awqZTrCSkhLH+IpZCpUqdFlg1l4lquso2SWolidPQGXnwQ8Ik4Ws 25Vn8AUAODHPITTH+gYF1ooGl+CV9UpWlSx1ofI8awsV720c26NyBjCYr5AV Q3uTGg/5ylt444vx0N5Fuq8T61VTUxNWzjI9wiU4tvcxdaGPGidQrC2c1Nw1 ujs5VdHsV7Cf//3fO9/+eOjkhf0UsZjvY4tYnQZ4FXr/TehnCMA7Qvf2M7qr BN5bbsqgnS1TtSeV4fwbdW6/+r0qtMu5naA7z+0/UWj/qZkpavCArnU9exVq ZgtR74AL0H7+K5x6HOWgXVPIPIQG/7o3r1szsrqciWeQ3uP1HtGmwES9W0+y ZJVu0hQsyGaSjZ7xJl/iZuKxlsA4cCvxJHN34Hn0JHOPJLKdkx1hjF4J7TZK j6bcDp4UzKO7APAI7SkGFwbzxCm905C7Kw/tqdTxmG26Srid7sfaWxF1R81M otWvX4QHQfdIjyIO3YHbEd0r4jyr4j1pUncvMb2MN1HLALfTkPswTi0zNrPH +N4k6j6prw9G3YuSgmYXBBB0LwrArVQXl+mWlActo4IZspUqEbrryX5MVC0j Rt2Nbw0j9A7o/k69+d16y46RBN13omZmbOjucaGA7gK9jyf0PibPQpasTgwj jhkjSdLI8P28T46gAfbwfZMEB2j/dEL4J9Q/Hh/+j3FhH0LlBNpD3x8VOqKv ha5FDXl7OEC7ZfMQ64bBlnWDLGtosH15hXFxqWHu+FpUyPzy7/929nf892jA YK6urk899dTdMRgaVPIUtbu491//+heQKmDhl19+aa+MauUjRoxA2pQBP5Aw XxhGBwUw02MXus8UNIRjZ2XsJRLnNw+COrEqOP8ltTY68cFLCxcu5J+nKvlD sTapQgbPMOP5HGgZuwrG3wKV84Nl7bYpNkWFS/wxdCkzMxPBHl6x81AbPEYH ySFlD1z2fJy5S2la2vaH0OC/3/NXbgLAS8Lvh5oJwDuln3EYflfu1vqwhd/v DeDb3URVRTAj18k4ksoo6F09qbs9brcXcj9HlTAYWifOFaMJaii0X7ZB+0na q+PnbxNcpykfMdflkXM3Dp9WKmRa9h/TFDIPhcH0/MypE2NqKnpHB/dBjwkG gI82+iC9Jwv0/nIKcRvD8wJ48J4mzwSzb4JF8KgQU4w1KNaiA08xevSknmJw S5FDe1ce2oHV4w2escYecMB7snhA1e8uScHEk4Ml9A7NUbk7rmN1kzlFd7qa FdDdzKG7qHVn6J4cphM0M5TeiyI9iqM8ZOheKaC7J6A7SeouZIbsXiuiOy90 H5tF0H0iCbkTwUxhYtAsInQX0b0kcGEpoHuQDd37A7rrBXSvNrwpCmY21SK6 m7YRwYzlXSZ3J0lmQj4YG7J7bMiHQO8U4AHdR+dZaOw9DHwP+ETi+wDRqROS nxi+T6T6PRMJscMr4joh9vHhHwG0jwn9YDSF9pGhO+pDh/exCNA+1LJpiGUD VcjQjZYw2G5oLDLOWfyappDpdEPalDGhkwY0COzd1NQEXHcXt/ORXntRXz01 e8IYGfBjYfa2gposZA0dhlEzvEf6BU7GfUtxKgHH/C0wOqyHnYdjBHtoDitU GpxnNWArPF0jnGMxGIW9Bwi34MwFngAUZh8THPBt8aCOY8RpBRaT8T+K6h1E 8qEt5feBTXlkQ3PeYBRMg6TZQ2h3vv3pwPHz+4+2SvUzzgvgf+P6mUN26B2h 3Rm1DON2iVrmvIDuzJ2MutsAnnH71fa4/ZqQKJLG1QVoZ1s40eMfTl9GIb0K tB9rvYXLbHEgZFBnPgdoxxwybJclGovTFDIPl93+5keYnh+ky1sWzpsHvmje vJrBNb2S4hKRk4NeZgwvYjzx1GAVjAePM/snmrqnGrrGm/3QY80BMRYdUcJQ 8Xyy3lUgdimlR5t1Mm5PIrkru8pPYq8Yt1uCRLk772TVqgzd6WasArqzwHtf YWMmj54RBpvc3RZ49yiJ9igR1TIVPLonILp3w5A7Q3deLQPoTtQyfX0B3QsS g4jQXY7uOhp11yG6r+TQnQpmbOi+ZaiRRN3riGCGrFQFp+i+c0wIofcxIbvH hKBsZlSuRYi9jw/7ZEIYvBKGp/T+KfHQPRTpwT+h6hoo0zQ64JNxIf8YR4md CNoJsYvQHrJlWMjoHPPWYZa3CLSbNww2v1ltfmOgZW2FLwbbF5UahhT0ogqZ G539ddZMsOLi4o6SmF405295/fXXGRM6T/usCQx9d7ST/FsM+eJsBTrTJiVY ZZfYlIGvhz/mY9EI4UjyPCqjUFxG12Dr16/nq1L+sqDnDOcOUAl2GwxuZ83x Hx+OEYtBmS7SB4j3yh4L3zTe3kVh0AGskK/N+a+NFmx/JOwXop/5Cf++8+H3 vc7qZy48aP3MfaX3jgG8/ah7B7j9qP0Fqk6iO91Klfm3NnRXQDuP7vT4Rxpa /4EmePxeyu0kDzxC+ylOHkMVMrcx6yMldnTK7WeuHz7N7bIk5nP+8vZ3nf0t 1syusek5+9c9f+HSmpqhPcP18cFuvCdhEngFz6fqX07Rk9cko2eCqXtPElqH M13Re+q7Etm8yTfG7A+IHmfskaB3Twx2ZUAuCblTYpe5IhovcDu8ssWqxI2C 03Q0HLqbEd3dMolTdKf0jqndkym354azlaoCuhdTdC9VRfdEIb2MDN3r0rqP TLcJ3Sf28QV075cYNC3Pf3q+P6aXIZsxiei+qFS3pAzQXbeiMuhVskZVzwlm jOtrjBtqhd1Ut2LgHfdUpYF3QPf3R4fsHB3CYu8jc80E4AmHC+KZjwWMDxFA fTyBeThDCpBAfdjhYX/bV9999xiyBPUDCu07RxFof68+5J36kGF9CLRvqeWg fZD59QFko6VXKsRg+6LVmkLmYTNgsHuUzbRr66nd9e3IfvfSSRk9AvQaDAZ2 NSMjgx27uLjAA1FNkMh3AEkY6oFxYVXw2ialdJY3xjHlwo1QANq1N0ADtcrK ylu3brHHyCYO7K7Tp0+zAfJDgy5BYbi3TYrlcJ6lrMG39iLq0DT/1h7hqxrf K80efrvz7Y/nVZav0vC7cwD/29PP2Au5S3ZQbZfbMTkkSzLT8mWHuJ0RO+6p yove1bn96g/yaLzg3/PQTndE5aD9gizYfuuIuAmsAO0wWKKQsW2NigqZFi0W 9ygYquP46fmGt3c3LlrZuGjV3MWriS9ZvWj+fOZLFhDPiQuWeZ8Ea2ZyTFqk nkC1noB9suiM0mNMvtEm/yizLpYyPLA6HCtx3TG9I7dTdyVucE22rV0lGM/U 7wp0d8uyuAG696HonhxuAHq3j+62NaoVcQK6D0B0F3LLdBfQXaaWIUJ3X0D3 /HhdQ67f1Fzf6Xm+M/N95xT4zy0k6L4Ao+5CckiC7iv763l0X0fRHTPMbKYb qor0TmPvdeYdI63vjwoh9E4D7/U55t0onuH8o7GA8ejA6mEU10M/HIse9mm9 zwdjwnaNDts1KnQnFbTvQGivC9k23Dq0t+ktomm3bKyxQftr/clGS8vLjYtK SLAdvie/aIvNHz4DuFqzZs2Dpve7NqTW999/H9jSnrTGMRvzsnAwBu0YOobh wwESu6wAbyhf6ULZHioEEpYVQ1Dny7MW+e4pnzOWYczv5Adxixo0CpXDxwc1 wFulIoh1Ei7xMxSAeb7/srmMPYOxw40ykrdn0Nyv8fXV7H7bz//+7+1vfpQF 6Pjwu/MAr07vvxrAn7oP+hn73G5Tyxyxj+42buccs7Lw6H7iArpdbmfEznM7 Rffvz1xVcRu3X0H/nkL+97xjnkmojeyFeoHsr0S3WEJo/0rIRS9yO1XIXJcr ZI60fnb8vKaQebTs9jc/0Ok5r45r7uj0fPO7Hy9avHzpwgXgdQNL+sYG9Y0N 7hsjOj0GFI/Te0YbfQHaw0OsCUGu7aI7D/BsQatkySq3drUntw1rOofuGTZ0 dwN0Twoj3K6K7kTrTtUyEnSPR3QXMkPWiOjO1DKA7qPShZA7oHtenG5yX98p Ob5Tc3yn5/rOyvfj0F2HghmC7pVBNL2MFN0HGyi6mzZRdN8C9E5SzZgw1QxN 8G7dMcpKY+/Wumwz7q8K/gEl+Q9GExUN+EdjzADqJLXj2FDwD8agE2LfKcbY d1B/V4T2t4ZaarNMCO3rq83rANoHEmhfWWUkuR/LDI2F+tkLV2mLzR9mQ3rv 2rXrk08+6QyV2UM1/vYnqd11bTKzFySHJqD/Dhr6+eef+ZGy83V1dV9RgwNg 0Q0bNsgKyFrHDkB5VXCV3btgwQK+UYbl+Jz53rLIPM5KoBUYXVFRUTuPgxsC DBA630Wc40CF8DkizPP9gaZVK4HO8M8W3sLtqlMkbMVJ04Ltj7oBj8Hfd7l+ 5nCz0/lnLjhK//5I6Wcco/sRO+iuCu2M2230bofb+bSQ9rldkLurcPtVgdvP XCb7KIGfvaKEdsrtF0iediW0S7idKGSuCcH2Exf3H9cUMo+24fT84Inz+4+1 8v+6nZ6et6eOO35xycKFdQNL+wgA7xVtCog0B8cHuzlJ78DtihQ0CnQ3CAtX Kbq7pptd5ehudUsK0/cNcRfQPVRI7d6PojsK3dUyQ0qF7tI1qpzQ3Wdslk+/ aO+pvf42I+NvDdndpuX4zsjzm5VPBDNzC/3nFQUCuotqGSG9DKC7oHWnW6nS qLsJfOMQ06Za0+Za01vDzFvBh2OWSMs79dZ3R1oB4Edkm4HhCcaPsu5ECc2o kF2jQz6p8/ls6POU5EM/EBXsBNfJLqhCjH1Hfeh7daHv1Idsrwt5ezgRtL9d 7TMk07SxxrJ+MIH2tQPNawaYVlUZX6kwLis3LCoOqsmJ++xYa2d/TzVzygC3 XnvtNeBGgDcn6ZEZg1u0999/30EU916Qntd4YGTbHpR2EQESmLOqqsoxeSLh d3TUUB6eGDaBZ2QR/jYuhg/PBHuLw8dJBwNvNKBxe/3EtmQnZQ8ZbmftwoeI J2HsQPiqzxzKy2qDTjo/fFXTgu2/JYO/762Xb8Lfd0WArvVR0s84G37nAf6K 4wTvh2lyyCN20N0Zbj/GcTvDdalm5q64/aot2E6h/VvqNnTH24Vg+/k7J8/f Bj/R+tXxVoD2m1JuR4XMNXw4CO3wie890tJ8Ucvn/MgbTM/hX7d0ek7/dd+/ 6TkAPDgAfHpiDNB7lFkH9J4Q5OKY21FaI8s/o6B3ye6rvcwE3Rm9I7onhgX3 sbpRdCcO6I553ftFuIOLUXc5ugshd4Lu3QZL0Z2oZdK6UaG7z7i0rgURLtOT H5uV8nhj6uMzertMy/WbkedP0L2ff2MBQXcidMfMkJXBbCtVlhxyLaF345uD Cb1vGGKi2d3NW4aakd7fHmHZVmfZXm8Feh/e14wAv4N4yPvUd9cFHqh5al/t S++PtFJWJ6COvkNUxbxbR2Ls20eQMDuuQt1Sa3x7gGdNpmn9YMu6agbtplcr jMvLDYtLDXPy/GcvXKkpZB5RKywsZLB3H4PnMTExzggz7Bl/L4vrKothhzdu 3AjU6ky1WJWMWh38atDQ0IDELusATCUAxaFdDIbDK38JCyMtw0CgmDOPYsGC Bawt+FAcF+Z/YuB/m5BJ9xnV8wblVRX+HTLZzw2a/QbsF1E/Iwu/38cA3a8f fm8P4KXcrthclXD7GS7kLkV3p7hdCLmrJHXnUkTK0V3k9m9Oc5khpdz+PUH0 K99z0C5y+xUMtn8jQjsQ+1cI7bgQVRZsp4kfKbSfvHIAnjORtZMcMvuPtWgK md+S0X/d8E+YW97SgX/dzk7PFyxaXjewNCnCBAAfa+jugN7j9F5QgClneIbn w++49WoqQ3ee3i2ugO6JocG9rW4M3XMIurvnhbnnhxNu5wQztsyQFbGeVXGe /ek+qiTkbkN3shlTffxf6xOfJ2qZVNeJ8Y/1C3dpSHxMQPe0x2f2cZ2e58+j +/xizAwpJHVfXhlElqkivdNdmdZWGwHd1xF0J/S+sda8aaiZKt7NW4db3h4O 6G59p840vI/hHQrw4O+JvqPeuqtOt2uEDg5QCfPeyBD0d+tRFWPdPsIKxP72 MOtbwyxbhlo215q3VblsrDEPzjARaB8kRNoB2leUG5eWGhYU6wflpZy/It/q UbNHyDACDwYHL3P2IHi+o3Cois3MnJ8awBAAhrEenlpx1MjYCPBQDHCdFWCE zNM+/7sD3wd4aA5mGcouycZSRQ1bVEbdlYWVw4HzrFroTJt0ESucgdHt3LkT bsFi7U4QVI09Sc1+k4bh94MnzjsKvzsD8I/G8lW76C5Au3QrVefQ/aYM3YU8 M4qk7swV0C7mlgEC57md7aZ6VQnt1OlVWs/Xp2zQ/hWNtAO0f8mgnXE7DPAQ /emByNqPX9x/7LyokNHyOf8GDeZid7798YD8X7dNHXdfpudvbds5YkBJVpwV 6N2BckZ1NSsXeBfoXYLuUnoHdE8ICcqyuNpHd3GNaiTZkomge4yQXqYqzouh Oxd17zY84aXhyW7D07qPiX9qXOxjeeEukxMem5r02Izkx2cjuvfl0L3Av5EI ZsgyVSqYCVoK6E40M0GvUHqn6G54fZDxjWoB3TcMEQLvQO9bhlkAtreOsL4/ xLsuK2DbCAs4Ec8Qkif+Lng9dXKAoXW8JBL7COvbYph981DLJpgU1Bi2lb8w qzxqbgkH7ZUE2peVGRaV6OeWhr713sed/U3U7IHYqVOngPRWr14NB6ro/qB5 3mg0bty48fbt29ifjt6uKjKHCqFaPIn8CRzLmoOR9u/fX9YHBOl2Y9QymlV9 OOzXDXiFtuAtPz9iLd6mhm8RtlVrw45BPUyszqqFTw1/EWCF4TwOH5sAg+kJ lOH75niAaNDWr/gd1Kwz7fa3JPzOB+hs4ff2Af7XD7/frX5Gskz1mlrg/fph 3rkkM05xO5ci8oQddKdad8btkpyQNnTnXAy2S6D9NA250+wxRMrOoB0Ojrd+ JYN25PYjZ7+wQTtZi3oePllNIfN7MDI9v3Kz6UjLA52eL16wICnChMoZJ7ld jd4B3V0EdBfpvReld0D3GJMP0Duie98Qt+wQVMuI6B7BoTtwe5RnabSA7kQt E0f2UaWCGUB378FJ3jXJ3hh1H5ravT7pxbExf8wNc5kY/9iUxMemJT02s+fj s1MJus/I9hTQvR+H7iS9TCBBdwy8VyC6BwG6r6HovqnKjWhmMEXkEOI08E7p fbhlaG/T1uEW8G2UxsG329yCTs/TED0pRg6A2LcOJWH2TbUE2jcCtJc+u7nS o7Zv2BsU2lcjtNPEj4tL9POKgt9cOkdTyPweDKhvtWgFovEnwVigHi7BWz7w C+YME9qzTZs28YTJjA+Myyw9PZ0nbcDUndT4Mjg0vlib2uwACkAHGO2rGurY 26iUHZAbXtmsB8P4+EzYk4R5xG3RZPpzmTE4x4fMX0IUb7OT5YYfFzatHB0/ KBgjP5x2R6rZ78R+/uW/rZdvKgJ0Lb8d/UxHub19dLfL7STkbsdR6041M5xs 5rJc635a5HNZsJ2cx1sw0yONsZ9ovYXB9mOtt3hZu+DnbiC0H4SHc+ISXYva SrdGbYUPvbO/d5r9GgYf9O1vfnig03OMvSO9y2Qz7WaPZLIZklKebr2aSlwM vFN6j7UEAL1nCujuCujeN9TNhu7h7tKtVCXojpkhMeouLFNN9GaCmWGp3UfH PAbcPiHusckJj1G1zOMzU/40I/25hhz/qbn+BN2FLZnoMtXigMXFPRbZtmTC /JA6iu761wYaKL3Txao2ehfWq75ZY67PNm0ZJkrfqX4GfZt4sHU4OU9AnbL6 W0MtXJjdsnGIeUON+a1Kl21FT7xRba5ONxFo729cWSmsRQVoX1Cke2VcuaaQ 0cyeAVWuooZv4eDvUgMI/As1B9SqSpjO3AKtyyLkUAN/BirBjs2fPx8rBLTm 2VW16QULFqi2zoAZC8PrL7/8Am/hFYPbAwYMwLcDqClnAfhAHNTcxv00AMYe LNSpWpgfLLQIQ7tz585dPG2ZweN6wF8czR5S++prkl9OEqDrwN93JwJ0xztv +aoqup9pJ+SO6N4Ot7dKnKjc7aE7l23G3jJVwWmWGJJAEi5d+oaH9pM0aQzh dgrt6McUCpnDdMZxWMz6CE7XohJoJwoZbcfz35/h9Fy5fPV+Tc8Feo+0ME27 TOLeDr0Duht4dHcRUkQaXeOsQekm1wxEdytB9z4U3XNC3XLBw9z5rVSLUC0j TepeFU8EMwNFdB+c5D2YovvQlO51iS/mhLqMj30MQ+4NyX+emOk1qa//5Gx/ gu50PyYbuhcFEK17CfHFNMnM0jLd8nLdigrdqxW6lbgx0wA90PvaQUYieq+2 rVcdkkXonTjF+E2YNJKsXaVwTnl+S62ZrDkdKhyDb641U2K3bBhiXl9jXj/Y sK3wTxvL3V4fZKrNjlxNsz6+UmEAaF9Sql+c792Y2+OD93d29ndNs0fYgDxP UQOYRJLv16+fM2BpT7IC90INUE96ejowalNTE19bTEwMci82x4LVbeIUo80J KQ40DYWhfv4k1raZGl+yTQrPcNWB2AYKK4cPb7GfOAvgb/+FmuxkfX09Pyjl wwQgx0eNDwEL4HNrd+xd6K8Yv+pXRLOHz2iATli+Kv6Jb3649TPtht8l3G5D dym3H1LjdnvoLuF26RpVZ7hdtlJVDu0X6T5KLP07pffTPLSfF6AdNe08tAOx o8NwRHnMJYT2fUdaYCKmKWR+5wbTcxJ+P3Kv4XfV6TnQe2ashQ+8O7Nhkw3d BcEMT+8uwO29aJZIgu5mIereR4i6U3pXRXdJUncvGbpX0y2ZEN2zw1zHxv1p fPyfx6W+PCbLZ1yW74Q+fgK651J0F6Puc2h6mflFgQuKRXQvFdB9OaC7mGdm NUF34+uA7oLo3fRmjXFwJgV4zDmDTjEek89sRkQfYhIO0IeYMcYOxP5mjXnd YPPGCo8thU+urfJ/bYCpOitUgPYyw5IS/aJi3YJslxUTB/2sbY2q2f0wGUI7 RveXXnpJSb/Ak0CeWA/AOQt6I5DLcpUzrbvS2p01ABjLouWo95YpcLqIIhZl zF+1Wqjk66+/buN+pECDrsJ5bJHHfiiPYXzZXIDnavYcZAbn2TPH5nDS4Xjg /KA006yN/n1vuXRDkn/msCS/3KMB8Kqid5Wk7tcl6M5xO7hqyF1ldSrFeIc6 mTuqIXeb1v0ScvvXPLcLTjZXui3UxiLtAO3NNxmr26D97OcHT109QOUx8JyJ rJ0pZLQ/65qJ0/PPFLlh78v0fHhVUWK4GSPt0aaAdjNGShXvLkQzo7ehe6xV l2Z0Qa074XYe3UMIuhPBTBgVzNAMMwURysyQXpUcutNlqgzdvXtHB47o1aM+ 3Wdkhs9omtF9fG+/iX39JmX7TaHoPo0KZmZSrXtjYcDcosB5IrovKgkU0F3M 7o70vnqgQZTNCOtVqzOMbxKAN61nTpevCotYqdMD80YR18HhlnXU36g2ra02 vT7I9NpA0+oBplX9jf3TDCvKKbSX6heVBC/o12NWkbX1sqaQ0eyB2MmTJwHO u9iJA+/atUvJ7SaTqY0GpYFyAa3Zedkmp2hwO5ZEG0gNqsWm+4nmpKSkCw2V 812Ce1euXMmPBYcjs169ekExvhWMnzODtzAu/hYYGtwlq4cfL9PJwL38eVl5 oHRZW84MkymLNNOMt9vf/AB/3zl9rJ3wu/qfeCfo/d70M84sX1VdrCqTuDsO uavuyqTC7fZD7jJuPyklc8btQrBdiu40J7xYlaiQOU6hnaR55GcZyO2nr+HA SbAdPgUK7TDtuqntsqSZ1Mj0/PJNFXXcvQH8W2+/XzuwMtbgDdDuZMidoXtS sIuN3vWE21OB240u6SaXDLOLDd0trn2o3D07RER3MTkkibpHeXKZIb0Q3YnQ HaPuIroPjXs+KypgWFp3RPdRGT1GZ/YYm+kzLstnIo26T6GCGYLuuWSZ6uwC /zmFgXMLCbrPF9F9cWng0rKg5RU0u7uwN1PwqgH61QPJ9kxrBhnWVhNuf4Mq Z9ahUwE8+np2QEQ1ZvQ3B5sprpOg/esDjWsGGF8bYFwN3t+0sr9xfLZ+Wl4w hXaSQGZ+UfDsgqAVS5d09rdJs9+4AdMC9LYpkBJQFvFVxtVQUka5UADJXIbN 8+fPl5XsIpI/b8D8qpuKssrxID8/v43yOZ7Et0pTzgJwdDxdy6TjqqIax2lt kNuVwA8mmyPwihpeIe/ANGW7Zg7s51/+S8PvrbK/74+Kfkad20/Lud1eyF2V 4TsUcrcRO9W64G6qbFtVFWi/yEP7bUwRf7wFncwOoC05tFOHIdigXZS1w4el rVbTzJ6x8Lt0eq72r7sj0/NF8+YlhpvCQyyJQS93EN3F7O56lxiLLtXgQkPu DN1dssAFdCdR9xyK7nkcumN6GRHdCbdXxHqxzJADEr0Juid51yS49g7zooKZ biPSutf16kH3YwJ07zG+ty+JuovoPhXRnWSGDAB0b0R0FwPvNMlM8LKK4OVk byaSZ4ZsqyrIZoIB3QemC8oZJn1/g2Z9x8Tv5ECgeluAfX1VN0bsr/UHYjeu qjKuJHna9dXxLiv7uSwtJWtRAdrnFASNzo/SfkrT7FczIGGAxhdffJFnSOBS nmCfeOKJNo7wY6gxdt2yZcur1KASeG2zE17G5v79739D+W+++UaJvrzNmzcP OLahoQFKwl2DBg3CXsHtqqNAsGcG8w48LxsCb9AEuwTWhc4R2ElVQ25X9hyb k52Hng+i5nikaPDoHsSHq9lvz776+vtWaYBubwcCdBceNMA7oHcZutvj9kMd 4Ha1kHurWsgdxe2oTke5i0TuLspmeGgXHcsjqB+DmYLo9qBdopChsnaikDna 0tlfHM0eAQP2U1XH3TXAb9m6o3ZgZaSgeH/ZGYBn6I70Hm3RAb0DuvdyjO5i ZkjwfuHuNDMkW6PqJUP3/gneDN17W11qkr1qVdBdFMywZaq5/tOo1n12v8A5 BQTdMfAO6L6oLGgxzQ9JUkSW08WqdGdVEnsnOd71A9MNawDC0QcRhideTRh+ LQbVaVz9dVTXEDduLHnxNQyz9ye4vpLme3ylwrCq38sD41xezX6WJpAJbiwI mpoXfHh/U2d/dzT7fRnCNrIrMyBhBvMjR45UFuCNVYVcrVoSL6lCrLI8D/Zw IzvPlCpwEpD4rbfeggMoDAf87Sy8z2oGIFcOPI/aSWpQ4BtqSqkM/0zapLMS /MkAmtu1a5e9u9o1NsvQTDMn7edf/vvV1z+gPlY9QHfkIdHP8Fp3mVqGD7k7 y+0ydFfldvWQOyN2NeWMEtfJKlSC+ncQ2gm3NwvcfvTcjXagXVTIkGzth1vg 09FicZp1yPBft3R63nLX0/Pq6pooc2CsoZuI7u0DPEP3aLOOaWbSDLxgRkD3 PlY1dI8g3E7WqEYDunvJ0L0q3puhe2ZYt9rY52uSuwG6D0uVoPu4LF+C7myZ Ksrd8/xn5gfO6hc4uyCQaWYWlOgWlYITzcwS6svKJcqZ/r0MqwcYVlOtC6Vx A/iagQzmDWvoGfTV5FUg9lWM2EmSdsPycv1rvR8bEOuyLM91QTGB9pn5upUz R3X290Wz36kBlL7wwgtIkkCzcIZnUQBjB3HjNhGkoQy8yqLfaADGPIHLLjnA WrjK8BtqlvG/vV7xg8KJiapBbd9++y28snpgksIqwVA81AAPhFWiOiuB2x3I fhwYQDtOBzTT7C7sluPlq50tgFcsU1VuqHr1oEDvUnR3jtvV16iKIXfkbbtJ ZljI/cIdlitGOCZ7KmGyRxHauWD7EcLtX/C4jg4DwSFTaL8gQvvZ1ss3Ovtr otkjaTDdo/ln6PRcNfzuBMDjv25A9/RoI6B7AsHyDtA7cHtycFdE91SK7qiZ yTAhursK6E4yzIhbqVpfyg9zL7CtUfWSo3u8N0P39Aj/wfGug5O7Ceie1p2h ++hMAd1ZhpkpOQTdp+cFUHQPmN0vYE5BQGNhAK+ZIYp3sl41kG3PBPTeP83w an/9yv6GVf0NK6v0q6r0JA5fpScwTxJIwiu5xJwQe39G7AZK7IZlZfoVBV4T kp+b1vNphPYZeYGziqxXr2tJojTrTHuFGh6bzWZnyBMlKLyu5oMPPlDCLeAx j8S8VVdXq1aLB1D5iRMngJyhY1AJ9Eq1PG/2dh39lhoT28ABjtHeSGFQ0DRf AwzNycfipGkbpGp2Xwz+vu8/Bn/Hm+Xhd6cAng/Q2aP3u9TPSALvp66oofsV yX5MHMa3y+3SvZluyhaotsPtGHK/QOTrLFcMEjs6L2WnxH4D/CiNtB+kPeSg /dpBuhZVGDVRyLSQxI+Hzu07cq6zvxqaPfKG2aW4f90KdZyj39ds/7qHDKiI NvnHB7tK0d0RwEeZdXyeGRu608A7Rt17W1wourvb0B2F7uGE3oX9mDCpe4xn eQzuxyRE3YHbUTBD0J2qZXh0H5XRYwyhdx9Ad0HunkM0M4Du4DPyA2blE3on cnde8V5MU82U6XBzVUD3qjT9iopg8FfQK4NfpQ4Mv7bUbSUgPSF5/avglfpX KuHVAI4xdsB18KWl+iUlQSszH6uKcVnS5zkSac/TNWQHfrRjW2d/OzTTzGZO kifQOMAwHzMHsgW+vReaBWgHYOYnEWBbt26VlXFQg1IJz25H2Q/02fEqVBwI ux0qhBqch3b244VjUxXwaKbZ3RnqYwX9jGr43ekA3f0Kv0u07srdVGWaGfmu TMDGSrebYYZ4C9D7zY5xO39GhHYSaUdcb7nJQfsXCO3oSOzoMAQltDcdadYU MprdL8Pw+z1Ozxc0NiaGG9QC7+oAH20KSAx2YQneU6jWnaF7Bo/uIW7clkxq 6M5tpcryuvcK9x+Q6CWiuzcmdVdDd7pStQ/JDzk5238qkbtTdM8LmEXl7uBz ZfReoltcFoToXpGqp9L3oOXlweArmFcEAau/UokejGy/vFwPvoy8GpaW6ZeU BoMvLgla0efpFRl/LE/wmUsi7QTa35xZ29lfCs00k9jzzz/vJKOCDR48OC0t TXneyUqw2J///Gd8O2rUqP/85z/fffcdvLL+8OWhJEPoP1OTVQg1yIbD34sM z0M4qwEOWJ9hRN9Rg260C/kyk80yVC03N/fX/Ug1+72YIkCn+PvuXIDuvgC8 fLGqCrcr0F2S3f2aM9wu3aHpJgA8+nH7Sd2p4v02z/YctN8iUnbc5okSuwza RXSn0H5agPb94lpUeODw5LXEj5o9COvY9FzxD3zzW+/V9C+PMvnbR/eXZSF3 fm8mHt15rbsYdXel+zEpo+7iMlWK7sKWTLGeaeF+/UmGGUB3r8FxfyfontKd oHsqonv3+l49RqX3GJ3RY2xWD5of0ncSCbz7Tcn2a8jxm5rrNzM/cGa/wLm5 nnNIgncJvS8sCVpIdO8BFSl6AvBlwejLiBOMB19RqV9RoV9eEbysHF0PrE5x nRD7YuqLSvTLez+9PP2P8zOfK+8ZDNA+JTtwaj/zlWufd/Z3QTPN5JaTk+M8 qarGoqESGVQr8R4KQLGGhgaAbVltGPFGeObLnzhxgr1FNYsS3fmBAHjz5dlx TEzMihUroOkPPvjgeWpz586F8iuosf5AN+A8uwvKYwHZWDokccdRa6bZg7N/ /fKfW3e+V/59l+hj2wP49ui9fYBXSTJjB91te6qecYDudrldgu4itx8j6K4W cm/9ShmTJ9B+3gbtpM6zXyC0H8GVp2rQLmZ9JNBOBQzN8KiBrDr789fsN27w r/uup+e15f0Swkwx+m4JupfBHQA843Yn0Z3uxyQXzBRG4FaqHiVRHqUxomYm 1jM1zK8q3rN/giege23YHwYnedX07Dakp4DuwwHd0wi6j0R0p5qZ8b19JvQh WSInk72Z/KbR1O7zM59ekPX03Bx3kmqGxt7nFgbMK9bNLw5cVNi9rKd+UWkQ QvgSchAEr0toNH5ZRfDScoHnl4ATXNcvJo7EHrywOHhxvtey9D8uyHYtThKg fWxWwI4t6zr789dMM3UDdEdGdZ5ImQHWtlF1Og/VysA1UPHgwYNlTMuOZZdY eWRmZHjAcuWsgQ3h7bff5q/yzA+VwFU8BnTnb5G129TUBI+CdQyuQjEe5lVN OZtghhMEzTT7FQz+vjdf/ILbn1Hl77v9AN29ht9VM0OqcfsVB9zO6P3IOTVu B5hHV6D7MTV0J6xO4VwQ1XAbNlFBuwjtZ0idHLRfVXL7gVNXBGgnCWSa9x5q 3nPw3L7Dmqxds1/J7np6vvmtd5MsfpGmwHhdVwf0HmUOhFcuOaQE3aUZZrj9 mNTQvZBsyeRREi3I3ftGdM+L6lYR61kZR9B9cORT1fEu1UTo3h3QvTal+/Bk 15GJz49KemFM0nPjkp8bm9oV5e7jBHT3nUwD7zOzXp7f6/H56X9uzHYhqWZw ySrRvQcAvY/IChqXHbSgJGgh54tKdOiLxaA6oXSy+SnZ/5TgOiX2BcXBC/O7 L01/fGHWc7P76QoTgif3DRyfFfDK9Pr2PxjNNOtsc0CnqampfKj5b9SAco8f P4738nwL3M5oVpV7oSo474B40UaNGrV8+XJswmKxKIHZXs8ZqEO34Xa+wv9Q 2717t73a+EkHFGuj8xoHXVV2DNuFnv/qH6BmmhGA30/U181O/X13BPAdC7+3 m85dhu5KqQxzObczYleiO8ftDN2FADtCe7PtKtD7CSHfI5XHILSfuY7cThUy V5UiGVTIkP2VCLS3kEg7hXZAqc7+qDX73RlOz/crN2+yD/CA7rXl+VFGfxZ4 VwK8yO3ohNtty1TFkDu/myqgO+6jKkf3CMzrLm7JFO3ZM9SPrlR1q4x1q4r+ O6D7wESvQUnePLoPS+02PLXb2NjHxsc9Nj7x6VEZ3cdk+owl6O47gWhmAN19 Kbp3nZ4XOCMvcGZ+APE8Ycnq7IKA4qQgEnsv0s0vFnwBeJFuIXUbpXOsjj6/ KHheUfDcwuDG3O6z8nW16UFDe+kA2l9rqO7sj1ozzZyy7Oxse4DK0yki7jZq vDodYJUVBlpeTk0Va7GGdvXkUCGrnL8XDLrKpgzQDXs1QBMyRLeIJmtIdQLS 1NSEJ3E4bIBgODp70XiWhV4zzTrFgCrZ33e7+li7v7A7GX6XAPx95HZbyF1J 7KJL16jayJyD9i8V3H7zBEK7qIoh0I7uDLQfbUF5zL7DzT9r0K5Zp1pHp+fz Zs+SBd55gJdy+8uU20nIvafu+RRxSyaK7q4ZZlcB3a0M3W1a937iVqqodQcH bi8PfabK/D9VoU9VxglR94FJ3oOSulF07zakJ00OmdJtZOLzY2P/ODr5xZFp 3UeTlao+Y3v70pWqBN2R3qfmBEzLJT49l6xXnUHSRQbM6hdQlBREcs4Q8YwO fJ7o88GLgOGD5hMPnk9BHX2eQOxBcwrgXt3MfN303MDaXrpxWQGDMiznz5/v 7E9YM82cNQDUP/3pT45ZGsoMGTIE344ePZrdy2AYamAnVSuBkm3tcTtU0tjY yOoBUIeTzz333HFqfJ9V78UDqMGZ1aaMz8F4zod+/ve/tmQRfFVYUnVWAibr oWaadZZhgA5Q08Hf93sD+EuM3p1Hd3urUzl0t0vskpA7x+RCmne6K5Nk51MW jadqGVyCykP7YZo3xsbtp64yHT5Cuxhsb95D98C68dW3nf2paqYZMcX0vNnB 9HzTlncywvyUgXfwKJOE25P0HLqLUXc5uov7qCrRvYBuyUR2ZYryTA7xKzf+ T6XpD2V0jSqiu5BeJtG7Osm7Jtl7CM3rPjzZdUzMH0ekdqtL6zayF6C7z5gs X5rd3XcCpXcEeLpYlWSbmZbjPz3Xf3o+yRVZlBhEY++Bcwp04I3U5wpOYH5e URChdBpaB1YHbwRi76eblR84K183I083LTdwaJa5OiWwtk+EBu2aPXIGzNm3 b1/kTzgAVF62bBmPstu3b+cJmd3Il2EnsSrlXACgFxqCyu2xNF8JwDM2ylM0 M1Y5zCmwt0wbA+VZKw7a4mcfMs6HbsAkBQUz7BKO2t6MgP+ZQDPNHgYj+tiv f1CG3zukn9mvrp+5ZHOF0N1ByN0xtytTu6ujO0fsNm7noZ2Pt9Nkj0Kw/YyN 2xHUD9j8CvpnJy/D2CXQfuBM80Utv4RmD53duvODk9PzIWV5ysA7vGXKGTHk Lkd3Qehu7Jpu6ppJte69peiey9A9wqMgwrMA0D3Ks6fJs8z4h9LIl1l6GeD2 KhJ19x6YIEf3UdGPDU/pJqA7WaYqoDv6+CyUzeBiVbK5KqF3skmTf2Fi0Exh q6bA2dTncE4wnoJ6YwFxwPXZlNhnUtXN9Fzd1NzAKdkBRUmmsX2NX15p6ewP UzPN7tKWUcNjoF8HdA1E/eOPP/IwD/YjNby3oaFBGZdmShIAewRveGXHaKwz jJAZzENzgNOI8UDmf6XGotwsZg7loRtQMiYmhh9FKjX2lp99NDY2KmcZWE9T UxPfDVVu5yU3mmn2sNmXt79rvnhj/7FW+Pv+qTP62KPOhN+l6I7Oxd7tJZZx HG9v16la5qbMAdrZqlWe24/D+XM3lAqZw7ibkrih0n7qn9EzdLDnUda+5+CZ Tz47rUG7Zg+z4fLVdsPvmza/kx7qG8kF3pHbedE7J5hxkUTd9S+k+/8pQ/dk pulltpUqj+55QtQd0N0D0L2nwaU45DnblkyU3tmWTAOA3mngfTChd6/h8c8P pZoZRHeSHDLTB+gdXsdk+o7N9KWKdz+S453RO0nz7l+YEESUM7kBM4n6nTgN pAfOpts2keM8/5m5vrP7eMzIJVF6iuuB03ICgdgbcgIn9fWvSTcMT/V7d/Mb nf0ZaqbZ/TGr1WqP2x0bsK69e48dO8bqh+OlS5fCK6A1vAI2A4QDwyP5t0kJ GU5++OGHeAyVq3ZYlaj5nowePRoaYm9lW5pif8BkAM/XAH1QtpKSksKPSzPN Hlr7kv59bzrS4qx+ph2Av8T7AUbvJ+xrZhwmlnGG22m6yBsSbsfMkLYc7zeQ 23F/paNMMM/kMaevMX3+fs4B2vefuMhD+6cHTp+7oEG7Zo+GwfT83AWaXQqn 52r/urnAuwvjdtl6VR7dU3h0D3gi0/d/MnGZKofuuB9Tbph7XrgHeL8Ij6QQ v8IoT8luqnQ/pso4b4Lu8QK6Vyd6DYv6y/Dov6DcfSiiey/MD+kzCjyDAPzY 3oDufuN7+yG9Tyb07j8pm+hkpuYEgAON49pVIn3P9Z+Z4zsjx3dO5gtz056a m/LY9L5eZDunbH8gdsD1KdkBk7MDJvb2HZvmWd3LNH28lkBGs9+OOYvpThiQ LR7U1sq3IXvnnXcAjOE8oi+8xWIM5lX5WbXDWB6sT58+9roBxVhneCF9G/2N ANqFDjQ1NcEMQrUGKzX+DDSnQbtmj5b965f/Ao42cQG6uwq/X9yvQHeR3i8L rqR3xu2KzZgwhbtz3P4FRXee3m3QToQ054SoOwftnwOxE2g/dfXAySsyYhf8 +MV9R0nazL0E2ok8RoN2zR5Fg+l505Fme/qZjZu3p4f6RBkJvfOidxm60wwz UnS3ZYYUlqkSdLe6iujuRtA9zCM/3CPJ6keE7pEcusd6lsd5V8R5c+juWRPx xNCwPwwP/0NNshdDdxJ4p3uq1hP3AYAfnek7JsuX0jvVvffxm9THPz8+CAgc vCE7YGpuIC5cnZbjNwdYvecfG6nPSf7jjPSXpmT7T+nrPxk8O2BSXyB2v/FZ vhMTnixOi7h5ubmzPyvNNLufhvT7+OOPd5TSn332WSXusuMPP/wQ6/8/avz5 n376ib1FRQ0fHmeVQ8fgRigMr1gVwDYgN5w5Rg07z/ccjuFGuAS3sM6w29HY +TFjxrQ5N22BaufMmfNrfiiaaXYfDf6+n7v4xd7D5xwE6BwDPLAuumN0V+7B JOH20x0ItrPtmQRQP3dDfZ8mSuwwFxAmBacFP2gH2puOX9xLd0QFaN8Lj+Kg Bu2aPdrmeHpeU5KbZPELs1ok6C6nd1tSd5vWnaC7wO1ZFluGmZwQFxp1JyH3 JKNnQYSnDd2jAN29ymO9bege5zko7ImakD8MCf0DoPuQ2L9Rubt3bXI3qpnp Ppxsq9qjDtE9gwbeiWyGJIokuSKzfPLiAolyhjowOYHzbP/pGX+fnfxH8FlJ xGcm/XFqr78D5INP6O03gRC7H9HMxz9Vk+Lb2tra2R+RZprdf1uyZAlwqTME y9vQoUMbGhpSUlLgduVVBF0Ms/M8L4tjMzEMHzzHgDljbyzD9DNduElBm5T5 oSROE3iViwy5eRqHt85MWDRo1+w3YPD3/RYN0DnWx9oBeBu68/Quj7efvCI4 RXc5tAvo3qF4u4DuQt5ItQ2b2Lan0CgLtqtH2k9c3Hfs/F6ap53ur3Tm7IXr nf2xaKbZ/TF70/ONm7fHhhpjgz1RNmMn8M7tx2RDd1t6mSyrIJjJMf4VBTP5 pr8m6bsWmp8pJFsyuRdFuBdHepREewG6lwG6x3pXxHoOCHlikOUP1dY/DKbo XhP91+oklLsTp4F3uq1qag9K7z716cRHiQA/NtPn/2/vXoOiOtM8gE9V6IbE K65G5d4CTTcg0ALdzb0bGhqau4BXQPGC1ywaUcHcxlw0oyZhUvMhO7sfNsZM kpmtjVvZKsuJ0IpcolFQB2onGivOJlW77oeIOpXLJ/d537f7cDjdjZgLTfT/ q6coaE6fc7otqv/n9T3Pu8yauK8qbp+raWS8COfPL9W/XBhI9RKVLfBFW5A8 rrdXxu+lKpzfXJyI0A4PN6/x21eOVQRvKf3OcRP7vO+uKKKLQXX5ILzIyfLs 7XQ65T9K972K0Xhp5N9isZjcpI1pG/nLrK6ufpwTR5FuR/WF3pbJ/FcA+Lmx z/dh3l9u4sPv/SK6e6T382Oi+2hu59G9x2t099FSZpzc7iu0s83cc+Z535jP xg/tznPuxZXohVNoH0Joh4eN+/J8zO2rb7//0bbGuuJUjZg2M7q+atK40X1s Z0h5hxmK7sszogpTo1clq1Ynq+pTVI0GVWPatEZTcGNu1Jo8zVqLZoNp2sZ0 VXO6apMsurtaRLpuVo11T5uh9B63ozRuZ5lOSu97HJHtxfOX5WrbyzVtVfo2 1nOGwnkC1fOOhfttgfsLAn9Nla9+tmRBe1V8W6V+L1WFfnd5/M7S+K3FOoR2 eBRQpg0ODr5v2DabzfIfT5w40d/fT8+lJNzi9vXXX98bN7fT9h0dHfRExd6K i4vFydDexOWAGBinLeUn8O+c+J5OoIOj53o9Fm0gf5n9nPhecXQ5Oi6d5OT+ CwBMnr99ddPZR6H9snz4ffz276dd6Z0H+POsXN3deXofk9s/5bn9wjVWXnI7 i+7jp3dZOP9cGeP549Kuzl68Ki4cxLR2z8QuQnunmAzMFqMcuPEV+rTDw+wG v31Vfnl+9NgfRXrPNugshpgCL9E9tFiK7nwpVY/oHimP7oUpoSuTAkaje4pq jUG1domKNYfMnLfOPHNDeuDGdDWP7qrNJvUWs3qTNcx1s2pRLNXWotjttvCn qBzaf3TEtZSOSe+7y3W1lqQ9FXpevO1MVQLVc4Uzn89XP2dl9axV3Va2aG+F dk95XGu5fleZvqUwcn/bzlu37/r7XwBg8kwkustJ00gUGfjDDz/0NQtFCuf3 PLK9fDVSp9NpsVhot9988w1lb18nIHWM8TXbR9FSRm4irwvgIXbr9t8Hh6+P 9pfzkd6lAO/q9E7R/fywiMTy9O6R293RXQrwHr3cvaZ3cZ+pK7RfvOYZ3cVq Sj18egwL7bzFjbeRdhHah1nrmJ7Bj88OdPUO4jMdHh2Ky/Ojxz4oM8dZkqOy U7R5yRrFnBm7FN2XuKO7mDCTJqJ7pBTd64zzKbevWBwgj+4N6TPrs0IbZE1m mnLD12c/2WwMbM6YtdESLu8zIwbe+cwZPvDuiJNFdzbpvakwYaM9nt24Wh63 i/Wf0e6ujKcM/4xFTbUvj1V7nnpv4by23MDWwgUtJdoGq/613Q3+fssB/KCj o2P27Nme6dcz3AYFBdH2t27damlp8fytCN5iM+nrr/ggOW0vhsEVT5FGwu/J psrQ9uMsjSqP+lVVVeLM6at0wvIN5L799ltf+6T9/KzvMMBUwwforov2FOPP nzn9Ca9zbN2iM+dFyQbe3XNm3LndI7p7S++eud2V2KUS29BXHvW7L7hug5X6 Up45x7o7eg3tna7lUAcGh675+20G8AO6PGe3r7pvb3n1pf2lJq0rvSeKGe8L C3nZ42cUp4SWGMIU0b08bcyEmbolc2wpocsXB0jRfZVxnrhNVTSHdEX3vEVr rdFN1uh1ozer8uhewNdmso1Om9leon2qxNVqRlR1buJOh1Zeu8p0e4oWtOWq qfZS5aj35Aa1WmfvsEdtseua8qL+471/8fc7DeBPlF19xVoJJWpf6VcMlUub HTx4UD7XRTwoHYUiPX3zxhtviEPTPnfs2CEfwPc1oYWOIo/69ES6iKBj0dMV B1KgLX3tE6EdHln0+S4G6Lr6LvtK785+VlJ6P0Pp/dxodD/zKauxQ+5Xlbnd I70rh9wVoV2K7hTaL15jcZ3ndrasEjsuWyJKdHd0sgk8rn6PfDnU4U4+m72r 59KNLzE3Bh518stzSu/FqRqW3hdrshLCCmJUhdGPFcY8VhQXZE8JYdHdECZF 9zIe3Svc0b0mfaEtOXRZYgBF9+Vpc1eYQ1dkLlopllLl0b3eHd2p1oo+M1ZX dN/Iq1mW3nl0j5XNeGfdZqpzE1pKYniG14raURrXapmxO0fdmq1uzQnaaVvY 4tBtK9attup/vWvT9Svo1Qxwj4K0NEjuS1tbmzxFi288n0UhWZ6lxTbHjx8X MVuevU+cOKFI1OOcAx2RErh4Iu1NPNEzkMtflOdFgfxAlZWVk/oWA0xJI2MH 6DwDvLf0zpdYpRQtraaqmOjuGd09msz08GQuj+uK+1ulbpMU3UVoZ/m8f8iV 29nJiMTO7kL9mK2FemFw6PMRzI0BcBthl+f/R9fmbx99b0tDDaV3W1Jodkqs SO+2mIAiLYvuxYZQHt3DeIeZCKry9IgKI+8wY4y0LVlUlzy9zrhQdHQXTd09 o3sD6w8Zs9YS44ruVveou3zgnc94d0V3lt61223htabQp7PUO3Nn7LDOlYo9 kh20o2DhUyW6rfa4VRZdbY7++Lv/7O93FGAK6evrmzVr1vjR3VNGRsb4G1BC lkI+bSw/omJKjN1up2AvRXfK1Z7HEk9U7F/+o7RzCu2+zo1eJh1oUt9cgClP fL53jb19lSKxyO2y9O7O7eekgXd5n5mrZ73epko53B3dXSWCumexza6OhnY+ p/0M72zDIjrvyi5VJ7vcGPhz98VTZwf+9tVNf7+FAFMUX331+rF3P9hSX8Nm yywOyV4cmb1YY9EF2+KmFaWE2A1sxrt74N0V3SvTI6xpejHXnd+jGqWM7u70 7h51j17DWkS60vuY6J4vprvHbi4Ud6pq2XT3vLnVxrCWDHVLhmpMZQZut8zf atduLtSuzNNVmDSHd9Vfv9J//9cJ8Oh5/fXXf0B6H8cLnGeuJhSe5VuKWE6X DxUVFXQa9D19QydDeV7aZien2L/8x3s8sY+MjHgN7bQ3sWcA8Grk9t9v8Pkz 0vA7T8gitw/Jb1n1SO8swPMMz9dj4gn8rJfiSzXxhjAiqMtXceI/KkP7aVdo H5bWP2U9HnmbR0rsJ89cGBy+jltQASbixpc3f/PS/nKjxqabSendkhyVY4jN TtJYF4cWGcL5jPfw0eieFmFJ01WluzvMmMJrzRHLMii6Ry3PEtFds4rKHd3l 6Z2i+zoLi+7rrNHr86M35Ee771Sl6E6BPHZb1vTtZlVlehh9lWpb9qxtefO2 5vxDc/a8lVlRFakhTTlhH7/b4e+3DWCqo8A8c+bMwMDAHxDUFc86cOAARXHx oMVi+e677+QHkmdy+u3t27cVGxDawzhnosjnlOp9DbPTTibxLQT4ZaPP98Gh z6Xh904W4L01nPE2/M7Su2w1VUV1U2g/LybYuDrSdH/qju6ffiat7kQl9ZAX ob1TrH/KEzsP7Re6egcxmx3gQdHl+b+98/sK0yKHMUa0mrHEz82JX5CTFJWf FFpsiJCiuyVVV5EWXpkWXrXkyZqEgNqkJ2rMEbVi4J1H9xVZkRSwV2csrDcG 12curM/RNIxJ79FNFn6/qpWiu7hZNbbZpt2cMX2LUbXZqK5KD9lqVG01qTfn zt9kCW/OnrvRGFieHl5h0qzJDv3gdy9i5hvAxFHefu211x40t8tjsxSV29vb pd9SOJcO4dk9Rj6XhjL8be6+s3Hue4lBG9DLmex3EOAXTgy/d/Ze6pQ1n5E1 nBmW12iAF9NmWBT/69mLn7mKzVQXk9X/y11/FSXawrNH+PKsrrju3i2751Qs fupO7KLNIxI7wI9El+e/f/PI1oYaR2qEPe7xwujHrHEzcpMicpfobMnhjsQ5 ecma8vjHK3UBVfqA6viApVRpC0bnzGRpViapViUFrE4OqE8OaEgJaEid1mAM bjQFrzHNoVprntNknrMuY05TTojoNrM+P3ZDgXZjxqxN6arytLBNRnVzznx6 ZF1eRJkputwUU5mTtDk/8j0kdoAfqry8/EGju2cIVzz+9NNPi3F1r10fpd/6 iut2u10R1MfpHknnT1cfCO0APwYFeDb83jfaPVKx1upogOfRvVvqFXnBVezG 0k+k3pLuJVk/Ga2uviHXkD67+dT1PV0miKx+qmeQqrNnkE4DiR3gJyQuz985 9v7BZ1tLE2eW6IKKkkMKDFF5htiM5DjL4lBLUli5Xl2hV1fFq6rSI5YaI2tM UbXmqLpMSu+aFYbprEWkO73Xp7AA35gSwJZnMqialvBKn9bIh9/Z1HdL9Lqc 0KbUQEdqOD29NDOhzBhdmqHfaIt9obnq4tlTdD7+fksAftmOHDkyY8aMX01g WNvTyZMn73lb9kj0Wu/t7S0qKvL1W1/7zOQUj3jdEnNjAH5a9PlOyflULx97 77uimDzj/IRKyuTDrjzPu76cVhYfS+8fLZHS2d54Q5tTPXyOPa8/dw909V66 +JerI3fwgQ7wc6G/L/rrPnb0ndK0yKL42fbYgNzEEIf2sdLEWRZDrDVVa03T WdP0VCVLwqtT5lSbopaao2oyNa4G76LHu2z4vZFXg0FNtTonuj4zrNisp7hO lZeqdWTEL8+LX58f+8yGyt8deAbX4wA/LUrvBw4ceMDY7krgZWVlisfb29vv 3Lnz0UcfeY3cdCD61YMeS4EOStcF/n7bAB5Ct27f/eLL/6Us7ey77B4Pv8Tm wLvqCpWTwryofvp6Rd6Uhof8YflwvRhsZy0oey530t4orncP8Lh+eXD48y/+ +3/8/YoBHiH01/1Pvz1cZE4sSZ5nT5hdog1waANK9U+UpYaxtZnSIyi3F6Tp CpJCbFTJIbaUMKpCXkUGV9ndVZy2qNikLzGzajDNrc/R1OYmLM/Vvvnqi+8f O0rHujVyx9+vGOChdcTNM4r7yu2UwHft2jWRjdVq9XTunu/B9okQZ+jvtwrg kUAfuzdEhu+/fLr/CkVuPqHlkhTgRc9Giu6uVN8nHhwSU9aliet8aH2Anku7 ovriy5tfYPwNwK96u0//6e23nntqTWWGtipTW2mMZG3e2cqq4RW8UWRVemR1 8uylVKlP1hjDa8yRtRli9ruGTaFJDV5uClmVG9tg1VPtXl/721dffPOVZ47/ 50kW1zGDHWByUXSnjE1hWx68FRF63759E0zsr7zyiphUI3juanx0JuLr4cOH /fieADzieIwXvWhY/Hb2sjBPdab/L10UzrsvUp2mB3svO/suiwVbu/ouUd34 6iYVPsoBpiz66/7jv771p6NvHXrphRpL8tKsuNocXZ05bJk5rM4UVmsMrc3Q 1GXHrcjTr7TEU3Xsb33j4P4//OH9gaFr7A8cV+IAU0Bvb6/I2PR1nPtDxydN WW9tbb179+7333/vdDqlBZvuiw5NZ4LEDjCVUSanSI9JLwAPn1sj9NfN/usN f+AAU19PT8+hQ4d6uAcdJ/cqi5tIXC/l6Lj+fg8AAAAAAH5JKEI7HA6vGfvH 5/lp06ZJe6OjIK4DAAAAAPwYh7gn3Oj7l19+2TOHq1SqiYd22ljaMxI7AAAA AMDPxOFwUIYXXwX54LzI8PSg+FHahjb4DYesDgAAAADgR1Isp6/Sj/4+KQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA8O7/AeTmN4E= "], {{0, 245.25}, {750., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->96.], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{ UpTo[600], Automatic}, ImageSizeRaw->{750., 245.25}, PlotRange->{{0, 750.}, {0, 245.25}}]], "Output", CellChangeTimes->{{3.854019479728488*^9, 3.854019506218142*^9}}, CellLabel->"Out[47]=",ExpressionUUID->"7c73da6d-9b05-470b-aa27-02d2ea589516"] }, Open ]] }, Open ]] }, Open ]], Cell["\<\ Such \[OpenCurlyDoubleQuote]convexification\[CloseCurlyDoubleQuote] is what \ one would use if the molar internal energy were a function of two molar \ variables\ \>", "Item", CellChangeTimes->{{3.854019529297659*^9, 3.8540195751337013`*^9}},ExpressionUUID->"735d84ed-b78d-49b7-bc47-\ 8dcf5737afdc"], Cell[CellGroupData[{ Cell["\<\ Another very important application of convex functions in Materials Science, \ is in constructing equilibrium crystal shapes based on the surface energy per \ unit are of different crystal orientations\ \>", "Item", CellChangeTimes->{{3.854019529297659*^9, 3.8540196448450613`*^9}},ExpressionUUID->"296696f9-af7f-4c8a-b969-\ 749916366a0e"], Cell["We will investigate this later in the course!", "Subitem", CellChangeTimes->{{3.854019529297659*^9, 3.854019652254149*^9}},ExpressionUUID->"d522ba63-f87d-4d45-adbc-\ 73b1d57f7378"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Geometric Interpretation", "Section", CellChangeTimes->{{3.853962551139008*^9, 3.853962563933239*^9}},ExpressionUUID->"b4da4253-efde-4519-bb88-\ 52b1f8d51157"], Cell[CellGroupData[{ Cell["\<\ Now that we understand convex functions, let\[CloseCurlyQuote]s go back to \ our Legendre transform and start by looking at a convex function in a single \ variable\ \>", "Item", CellChangeTimes->{{3.853963250623623*^9, 3.853963268867978*^9}, { 3.854019657011619*^9, 3.8540196825437613`*^9}},ExpressionUUID->"b90d0a04-61d7-4da1-a092-\ c55332f61509"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"convex", "[", "x_", "]"}], "=", RowBox[{"x", " ", RowBox[{"Log", "[", "x", "]"}]}]}]], "Input", CellChangeTimes->{{3.853963271212873*^9, 3.853963277109429*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"32e4b580-8b39-47c3-ac6e-1eca74e60ebe"], Cell[BoxData[ RowBox[{"x", " ", RowBox[{"Log", "[", "x", "]"}]}]], "Output", CellChangeTimes->{3.853963278040592*^9, 3.854019776402343*^9, 3.8540260873556843`*^9, 3.854033019369665*^9}, CellLabel->"Out[1]=",ExpressionUUID->"425ed651-a80a-46ff-b7e6-b5e2ce68ab9e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ We can use the built-in FunctionConvexity to ensure the function is indeed \ convex\ \>", "Item", CellChangeTimes->{{3.853963329818265*^9, 3.853963349212956*^9}},ExpressionUUID->"c150c1ca-9467-4f52-adcb-\ 762c6767c0d0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FunctionConvexity", "[", RowBox[{ RowBox[{"convex", "[", "x", "]"}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.853963353085846*^9, 3.853963357670171*^9}, { 3.854026106182271*^9, 3.8540261089057198`*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"c50322cf-12a1-4d5e-a00f-9ddc65cadc0f"], Cell[BoxData["Indeterminate"], "Output", CellChangeTimes->{3.853963358012795*^9, 3.85401977862076*^9, 3.854026110214188*^9}, CellLabel->"Out[6]=",ExpressionUUID->"9d3150e9-a2d6-479e-96ac-125c03ab0dad"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ This is because Log of a negative number is complex-valued.\[LineSeparator]We \ will restrict our range between 0-1 for now\ \>", "Subitem", CellChangeTimes->{{3.853963362527121*^9, 3.853963416014484*^9}},ExpressionUUID->"3143222a-b214-4c9e-b852-\ 7a8f760d747a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FunctionConvexity", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", " ", RowBox[{"Log", "[", "x", "]"}]}], ",", RowBox[{"1", ">=", " ", "x", ">=", " ", "0"}]}], "}"}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{3.8539634212306757`*^9}, CellLabel->"In[7]:=",ExpressionUUID->"c3439b4d-e106-4c9e-a339-fd6b61dafa47"], Cell[BoxData["1"], "Output", CellChangeTimes->{3.853963422119657*^9, 3.8540197804610853`*^9, 3.85402612661663*^9}, CellLabel->"Out[7]=",ExpressionUUID->"0d3a77f2-7b37-4f40-92b2-bb74a590c4be"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Of-course an easier way would be to just plot it!", "Item", CellChangeTimes->{{3.8539634312725897`*^9, 3.853963446605955*^9}},ExpressionUUID->"22e6490a-8df6-460d-aca4-\ de1ab49cc2f6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"convex", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.853963279573874*^9, 3.853963321149292*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"b64d120b-b556-4931-8e40-75defdb41e00"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV1nk8VF0YB/BIyyullLK3Sd6oZM2SR1FZK0skUqFdC9mj7KRCRSghW9Fi yU4OZcluzMw9M5YhiYiGN0uL5T39NZ/vZ+7MPee59/k9Z6P9VbMzvAsWLFDg WbDg76fhma+0yqGj2o/Eg0RsdeIq+HTFrvWIKsMx4d7Sm+aOSCkpLuGtqB6o 4pqHfjEuqF9C2t9D5hDICGttnj3mjYyacd5TUQs47ieRFo/9kPRdyfT59dYQ o+HTufp4EJoxdIg9LWMH/KLo3vbyUGTlOP3ugagj3Ew1LfVWikDVumJFHxLO woWMlXMlz6OQwuY9ORPrL8Djj3k8H+QfoKV9ASmWMlfg0nir0Pn1Mah7Z6ju PVFX2Oom3tdY9BhFJ4lUbrFxAwt7/c5LKxOQoWCWVkWCO4jWSjsdcXyKCr83 qXDXe4F64cGi0bkkFPFaSNZU5ibk7EyXex6QgpKFD4eEiwbBSlXNSxu1nqMb zbHVlqVBcGyyfKtC83NkGdzLu9kmGKoZt+YWn3iBBCadb5UlhADNhiW7yysT eTKiPUfW34bFKafTrdNeItOHHRcPyURAnZtqaltjNvJf+nbrbdFoSLql99Wz 8i3advB+WN61aLiw2OSdzIJ81B58daizLhqCbo+le0A+kl4o/3KHewwsGkgs X/ouH9XOpu1gtD8CYcHjWYL5BUjgxyOV9XfjQZJ9pLfxQRGK6/bWLZhLhPs3 vn1VEitDx6yfZY+Np4GcTf/GqvJKxO204E8RS4dDkym3BOmVKMRu6Rlz3XSw VMoAw6FK9NbhqlhhdDqIVq71CRauQiuu7Am+oZYB1gUne9ZerkI1Aezji32f w5dYh4sfRN4jxVerFksszQLPzBPDEg4f0LJ5f9uDUtlQ2NvFd72+BsVdsLKT P5ANX7aZ4tOdNUiaIX9q1ZVsuGxcMqY7WoO0M7FD57tsMDNj7u5bWYtKMh8V FO3IgXBmACvMqhaNmo+UG7XkQMCTmcw7fbXo6IvYxuvL82AdXZynkVuHtph+ //rhTj6ki4QMDg3VI48WdYibKAGDJHagYH4zWpe/isPDg+DDjt3xn2zbUGGf blOr1nsQEfge/baaht5ffCpuPVINSS42A8n/taNJmT2Cry/Xga53faxePx3x /nq5UnxLA2xY07I7+gMDiTfv+wE7G6CpxU0lspaBlJ+xmY7qDbB7bK1mWD0D nTFY8uSNSQMYSh92dG1loI/x9lv2uTfAx8pSXZVOBorUENW4UNcAkUcKu63/ YyAJnxCHoguNsOR8xGOl9UykOn+q0PxNE7S06Ngeuc5ExiaVAfuLm0Bq3bL4 Wjcmcniy/rDa+ybQ1V0jqenJRFFqnEExqgnU/fVmpXyZaOiqjWjfbBMs0Hqz oz2EiRJ6j/pcM2mG5Za9rIF4JuJ5b7jv3kgzNIfjw80VTNQUpNxSu60VVgtp FrxeSCENwUbe+yqt8DWqr2BgEYVexJ9Ws9FphQnpFWzJpRQKfBORzD3aCtzQ oNshAuR61lcXEf9WiDfvSNsrTK6Xe7ruIm6FaAEJ85MyFNo3FJCzeF8bzC6X G9Q6SKH1Ud9+ZX5vA3+ff+1TAilUcfpWZt6PNpBqW+VhGEwhO6XV1mU/2+CN kfHy8RAKJVAaxU28NHjo64vUwykkIhnuzl1LgyKPbQdLoigklCX7QxlosDMp Zb/zUwotqj4zgiJpkJFvw/OxgEJpMb+efIymQWqvz7q9RRTSO3fPiBZPg1vu KeXFxRQK4C/I6kulgeyH5ILUMgrNHeG7sKiYBlf/+3L5fBWFfnanfDHspUH9 hhyz100U+jbdw2EqtMNNvT2lW/soVHgu8r2hajsYOATrRn6mkB/WzkCa7ZBu cmDbZD+F1hY9vZx5oB0KNLYKlQ+SerjbzPjYtsOs2GJr1VEKPZ6gRKXD2iHv j+HO7mkK6Y83W7j0tMPCspLD08swWn3ad/dgfzucS9Fxk1uOEadNXsJ2uB1i d9gusVuBkWvOnc/7J9uhz2XT9YqVGCVdNXARXUaHutIYNydhjKZGqyMrVemw rTEi3FcKo7ThsoYVEXQI9NZe5rEToyuxhzdffEiHJ68Gv7oqYKSm9/lGTRwd yqZMDjvvwqjhKf92n1Q63P72reiMEkbjR6wjh4rpcKUxduEeNYy0i6bMqz/T oTXdpDtdGyN24K5uL3UGLN+92MLBGKMUhRoVpjYDKh+MLFMywcip+1iEgh4D qmx/HeM5hNECNT8YPMSA5DeL8uMPYyQz3PLMwpEBRSbHPUvMyP6OOJ3dGcmA /nB8t+AYRiskn3P7+xmQwqfkkuKAkY5lYPfnIQaUJKQ/0HDEyCXyZGPfdwb0 /I7xpxFTPCLPe38yoPPO6qY/ZzBKHAiz6xJgQv2Mi/i+8xjtyLnYTFdmwn31 jr4YJ4xODR0oa1dngonisuXilzF6sGlzJk2bCR+u7uZPIp6K7gxq1WeCV0nK zdQrGFV4GWs12jJB3MjJKvEaRia6O16+D2KCb6LwYltXjG768MdX3WbCMzTm 10KcUzAQUhnBhAz9LXRww2iNbJJ9RRwTpq68npNyx6hLYKVY6SsmPNpc5NXq QepFjYflMpjA83SX5i9vsn7BFvccNhN+NsYaWd/AqE0/yzGbw4TAuGi1YmLl Mnud11+ZkCd+ItXFB6OZJPr0ixkmbHx6jcb2xejuhYKzydIUyXu3Kmc/jIZ1 Xoct20bB3lUhyrXEB0XSs9x3UjCj6W0h6o8Rb130d2MNCloeWyWUEXtJu7r/ OkxBzLNvFmMBpL5/LsU5HqVgq4zkbo1Acn+6Q2nrcfJ72eqGAOIxf/O59DMU lDQVzwsGYXS2RzHE7AYFwV+kcsWCMaou3PbinR8Fuo09IseJN0VsapANoWDU M1ExjrhbS2jFfBQFLk6WvitDMLJ4PB7zMoMCM35nz3HiPOehorWvKHCK+eQp E4qRoMEntn8uBZsCW7YfJ26YbpM8Vk4Ba9668B3x3qM56XztFJx9SBm6hZF6 yr+ou4opMDFrmE4inlmYPNTRRUHmo2ybeuLivMjtuYMUGPuGGIjcxmhteOhh iVEKxLNWM/YQXz99yzn0PwrSnOvX2hPvWHm14MQsBSfN+msyiO8OnsUfeTGI 0D4r1hEPV9j9UlqKoaFAx3qAOP3yoT38qzHwje6nbwgn9d5/4KSbCAb9wNCt WsSnJLT9eyUxKC6xVrUklmjcXlMoiyGb0RUUQuydsmVw4w4M9rpbaxKIsZfk P/eUMOwc3lWVS6xsKiz3czcGToC+Vw3xA9nlJg7aGD6nFo5i4rF5vqstuhgu V9ZJDREfwjNR6gYYomTrBH4Rv3ozkZd2CIPRPwuKl9zB6J+QEYagBYaXTu82 CBOfPdE/5W1N/k/d8OBG4mrlLpEBO7IelXE5eeJNAgwNU0cM3xbMtqgQ+31u tC2/gOGVeLGCNjGn9MPNrVcxWPc5me4n1nxQlvzAFcOByDO7jIjjLrx9P+uF wU1jpO0w8ZTOy/7ztzCUsg0VzInL07498QjCsOVnsMpR4oCl8uYhtzFwI8yk LYn1nZz4YyIwMJ1HZv5+v6LtVVXqQwzDxyORBTFDadQzLw5D8rC7kxnx49jt ClVPMbCecxb+vd+pP5cHW1MwTM7zhBgSy5x8k8h5jmHkgMQPPeKR99+Pjr7C YFZ03ujvfvJkdi6fycVwzWVTpCqxZ/jVav4iDKZ+QRXbibW/Z98QLcfQ3lrP 3kzMZzamKFuFIVd1+ycR4oYChWHVWgzPnIcYAsSWvrnHLNowxLEtA8b/Pv9P 44IOTAyHF/pq9RH36SnWOXdgePT7y2ca8RWBtyqR/RgSNC78ef33+V/7MfJ0 CIN46fSlx8S/6Uppr75jqHPNbQgmDnmSL9TwE8O+P/fMrYmN5yfqWbNkferS N/cSCzmo+A/yskAtvilWljhxWyGXbzkLKqPV43+Q97egpKgJNrJAZOfHDh9i b8mfgYdkWFDWohRkS6zjv1vzhBwLJmjeUprETfolmd4qLNDl+MpMkv7qx6Uh BQYsCOeEhNsSZ2n+2VN9iAV8QrOVSsTXkjQn281ZkPJr1fA/f/vzbLnD2AkW iLdNr3lL+nnN1DsdORcWdI4303+SPOiwnptW92AB73uL9Dri5Hfa2fo+LNjy Xu1SDLF8MJI8G8KCizZcxnZivTVVv5Mfs8BDVU7GjOSNq2J1/toPLIiMfsc9 T/LrrPKG5PsfWWAnSo/eSHxM1eeOQAsLtLxyF7JJ/mlqKNvzslnQ2NYBesS8 +9IEv39nAXXdSl2A5GWkadDFGjE27P1p5mR/k7z/5r1HdTawIYPDaF5C7HJU a2/ZFjaoKxyffUny2dJ6Yl2uAhu0cr3qxkh+S5x2rEk4wIYD4kcEnUi+Z13T 2+DqwgbdVvHn/3pilOCSvIzrwYaPm/CScjIv7rnOTF3wZUOo+VsNE+JrnvnN J8PYUN9AW+dE5ouan/QNo0Q2HL9cUviEzKPqSD5qUwMbuvsuofdkfvW8qb5D 29gBj4wiineR+dg2yjeiuLUDEhfrhz07h1Gl/H7jaPkO2L4uXWslcXJWjYCV WgcsXK9oMUzmq31G7b0u4w6o6BzTu0/m88DTj5GDHh1g8unGySw7jEbvNj2c be4A2QDmkmUWpP8bBSbs6B2QZLG808ocoxZ+E4tKVgd0bF34OJXM/zdhzWsC P3fACYXFXWqmZD9BLTFLf3XASJSLuzk5P0zcaItdLd0JwxV9ylb6GP25yHjy r3cnGPKlmD/QJPNC9cT9Hbc6IefxsVONGiTPeAZClII6gX3jVsBCYru4aec9 EZ0wply/xHk3RlU1YvqmKZ2gXDwltlcFo9ANpyc8GzrB5icrrGAHOY9Ro8Yf xbqgdjbqxdgGjOT2Lpk7W9YF7g/KJ4t5yXzPermVVdkFNw32LU7lIf235oip QW0XLBIVE7y7ACOtwbg0OVoXXD4fym8zR6FD97YZjQ10gf2Nj69HflHIhW0S 5yXUDSOV0jTOGIVKnKMV717oBgdh/0/z3RQ6mLLxXO46Drxa1ZQE5HyrHLdC plaCAxW38Pz8WwptiPjT37GRA1LXzwWhPAr99mLa88lzIGfwxR/NHAq9Nr1t Z6XDAR2dsoxtLym0mmf86Ox5Dixiawv2JFOo52SlnkEpB07bGsim36GQh+TJ TZ9se+AFM/DgGzsKyY8cXYZNeoE9amG1aJaJVguOLa3+3QvnJmu3mAYzER96 kr054RP8y11ttvMfJrqkXMb+x6gPTiffbElwY6CXBvbJFVN98NnUUmoRi44m v4mtHHj0GUo1rhwU0qCjAvODC6P1+uHVBuspjcB2dEs/OCl/oB+yI6fNBFpo aGO3ISs1+AvQzJ2+9gvRkIZaULSo4gBcPHPG2WVPG7KVav3FQx8AxVf0zjx2 C5psuNd3zX8QChLaJpx4mlEcn52rmfRX0Aw9dm+raiNazSlI4a3+CvY2E6dU HerRIl9/C3XnIfDv8Y4Nt6xDCzLtsvuEhsEmNXuthm0NcnmcfU/o/TBk/ue4 /9OWD+idXNjSVVe+QeK38PsXv1aiVYYu8gErRuB8f2vi7aB3qGt7G92rfAQU uHc5YmXFKCcRpPvtRuGswS4Nsy356ES26irJuVGw459JLFmbjfyCn/l3ZX2H shnh0ElOGnr9VfLJCmMuGN7hX+Sh/QiFPQ0+xTnEBeHtPD1eAzHI0Wx0yxtT LlxqCU1zjYhBEuXlOSZWXJDJlZs05USj8Eib2rv2XFi0Vrjqpe9DdF41fpzf iwsq1zXSu0qj0KagNfpLMrhQP9xh7GwXguZ2+yzHL7jw8K1ZtuurYMQe/dye 8ZILoQxq7fnfQSjK6u2JA7lcsIrN+S31KBDNbzO7HlzOhUFb8z3NTX6oixaZ uJDOhTM2j5nWV9xRcci0A53JBYNzHpH2S91QtObJf1NZXMhvfuRnlHIdGaXv yN/H4YJZGnN1BfMaKvVsrvcf4oL2v/fijd3PokfbVSJNR7iwTfS4lP0LB+Tc l2CxkcuFqf/ctHd3nEKyxk49lRNcuHqL3WzsbYn4eBhpUdNcaO7smvDpOoJ6 CzQvnvrNhRrurjlbnwOo/GLqToVZLlQkV3CCfVVR7Pplk/PzXOh4Bi2VQ0cr /gdd3zU1 "]]}, Annotation[#, "Charting`Private`Tag$13938#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1}, {-0.3678794245445109, 0.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.853963285286367*^9, 3.853963321480657*^9, 3.854019782605598*^9, 3.8540261305845537`*^9}, CellLabel->"Out[8]=",ExpressionUUID->"0121ad65-8b7d-40d0-8bb6-db061a9c0208"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["We will now treat this as a \[OpenCurlyDoubleQuote]cup\ \[CloseCurlyDoubleQuote] and fill the inside of it", "Item", CellChangeTimes->{{3.85396346898316*^9, 3.8539634860465527`*^9}},ExpressionUUID->"e42278ae-6177-4576-90b6-\ da5f32a9fb7c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"convex", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"Filling", "\[Rule]", "Top"}]}], "]"}]], "Input", CellChangeTimes->{{3.853963556160001*^9, 3.8539635563360367`*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"49c0136c-9fc3-402b-b244-b73e19017d19"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJw9WGk4lV3UpjS8UkopcynJG5WMGbIUlbEyRCIVmjWQOcpMCg2EEjJUpAyZ yaYMmR3nnGefYzgkEdHhjTQYvt11fd93/pxrXWs969l7r/u+19qPtMMV89ML eHh4lHh5eP7+G53+QqsaPqLzUDxYxE43vjJg6Zstt0RjIPmm/hevqjfoqM3T nPGJdJC3HZCurqhCy+YD7A5I5UBRXzfftYZatNns25f3twsgQyR0aHi4AXm2 akD8ZCkYJrODBAta0LqCVRxeXgTvt+9K+GjXjor69ZrbtN+BiMC3mDc1NPTu whNxm9EaSHa1HUz5rwNNye4WfHWpHvR8GuL0B+howa+XK8U3N8KGNa27Yt4z kNr8ySKL183Q2qprd/gaEzUHq7TWbW2D1UJaha8WUmj93a+/Mr+1Q4Dvvw6p QRT6Ot3LYSp2wA393WVb+imUPlLeuCKKDkE+Oss8d2C0QvI5d2CAAal8yq6p jhjdOV94JkWGAitl92oXf4x+6L4cOHcTQxnbSNHiNkZuSjUFa9+zIDrmLfdc EEa9r2tu06Q74aFxVMnOcxj9ucB4/K9PFxjxpVrc18JIfs+SuTPl3eBxv2Kq ZAFGB1Klz+at40D2quZkKKSQp+SJjR/teuEFM+jAa3sKKYweWYZN+4A9Zmm9 aJaJVguOL6353Qdnp+o2m4UwER96nLMp8SP8y11tvuMfJrqoUs7+x7gfTqXc aE10Z6CXhg4plT/64ZOZldQiFh1NfRVbOfjwE5RpXj4gpElHhRYHFsboD0D2 BpsfmkEd6KZBSHLB4ADkRE+bC7TSkHSPESst5DPQLJy/DAjRkKZ6cIyo0iBc OH3axXV3O7KTavvFSx8EpWx6Vz67FU01RvZfDRiCwsT2SWfeFhTPZ+9mLvMF tMKORm5Ra0KrOYWpC2q+gIPt5Ek1xwa0yC/AUsNlGAJ6feIirOoRT6Z9Tr/Q CNim5azVtKtFro9yIoXejUDmf077Pm5+j97Khy9ddfkrJH2NuHfhSxVaZeSq ELhiFM4NtCXdCn6Lure1070rRkGRe4cjVl6CcpNAZsB+DM4Y7tQ031yAjueo rZKcGwN7/pmk0rU5yD/kaUB31jconxEOm+Kko1dfJB+vMOGC0W3+RZ46D1Hc +mVT8/Nc6HwKrYQXlSnCh0IjRINhpZrWRWnt5yi+x0evcC4J7l3/+kVZrBwp Za9aLLE0C7wyj49IOL5HR17ENV1bng/r6OK8Tdx6JOEb6lh8vgmWnIt6pLye iXjfGe2NHG2Blgh8qKWSifYOB+Yu3tsOs8vlh7QPUGhRzelRFE2DZwW2vB8I PgwmWixdeztgYXnpoellGLGDdvZ4azBg+a7Flo4mGJnqbX/5LpgJfknCi+3c MNpzJDeDr4OCMw8oI/dwjApLi5tBmgUiOz50+t7CKOuq/gY3VzbotYk//9cL o7E7zQ9mWzpBLpC5ZJklRqupMZMPYt1QN3v3xfgGjEpdYpTunO8BR+GAj/M9 FOo9UaVvWMaBU3aGchm3KbQxeI3BkmdcaBjpNHGxD0U9O8L0IkXdYIu7eH9T 8SMk8P2h6vo7CSDJPtzXdL8Y1Qayjy32ew6f4xwvvBd5h8YsRiuMW3Mh8PFM 5u3+OhStKap5vr4Rog8X9dj8x0CJfUd8r5q2wHKrPtZgAhO9kH+y7gJugxgB CYsTshQSypL7rgI02JGcus/lCYUeTVKiMuEdkP/HaEfPNIV0in9Y1HyiQ1uG aU+GDkbbcy+00FWYcE+jsz/WGaMzvUqh5tcpCPkslScWgpGVX95Ry3YM8Wyr wIkIjKLNgi/UirFhz09zZ4cbGA0++RA95NkJph+vn8iyxyhsw6lJr8YusP3J Ci/cjpEr2zTeW6gHRqtkaJxxCq3mnTgye44Di9g6gr0pFDqnljDB780F1Wua Gd1ld5HZg84LB2WjoN5dLa29KQf97En9bNRHg4YNueavmin0Y6wmukqNDlub oiL8pIj+HHY+syOaAQMR+E7hUYycqYnwPAYTeJ/s1Prlg5FE07baIjkMOYzu 4FCy/jU/3urKu7Kga6KF/jMUo5poPmpjIxt6+i+id1cxmrzeHrdapgtGKvtV rA0w6qZFJy2kc+G07SOmzWUPZO00/fa+qBPcSDMr81GOQnWz6dsZHQ9BWPBY lmBBIVpxeXfIdfVnYFN4onftpWpUmvmwsHh7LkQwA1nh1nXoQ4LD5r0ejfCh qkxPtYuBhq/YivbPNgOP9uvtHaFMpMn64ioS0AYJFp3pe4QpJCIZ4cFdS4Ni z60HSu9SaK+H7YyvXQfMii22URuj0MRhm+jhEjpcbopbuFsdo6TBcPtuASY0 zLiK7yX66y3j5vHrEAWxT79ajgdiJHvidRLnOYbR/RLf9Yl+L9ibLvjtGwuo a9YaAgEYOTyri+w26YTKrnH9e0T/q2vFDMxSu0Cl5IfYHlWMDkZuNR4f7AaH 6x9ejf6i0CuzW/bWuhzQ1S1/tvUlhSKibevuOHBh0Vrh6pd+D5AXI8ZrdP0t WJx6KsMm/SWaO8x3flEJDa789/nSuWoKJV8xdBVdRof6slh3Z2GyvpHWp5ZO DCg2PeZVak7OX2ClWFk2Ex5uKvZu8yR4XXml8PgsBSfMB2qfEf4O4LLQQkMW RHBCI+wIv9X9Za4bJ7Hh2KXSoseE/1eDW2OX/uqE0buuHhYHMZrfan4tpIIL Q3YWu1ua/VHUKyE5M9kbkLsjQ/55YCqq9DbRbrJjgrixs3USwYPlo4nYl88o MOd38ZogeAl9XCDU+BPD3j+RFjYETxKnnGoT97Nhv/hhQefrGM0k06dfzDBB +slVGtsPo39CRxmClhheOr/dIEzOW39N9e+URyzwVJOXNSf8KvNqaQgY5oLO v5EJJh5nkHELzn8iagnH/CXSE7A/klmo8HK7RywsGkyqWPq2AL1xvCJWFJMB olVrfUOEq5FOJnbsepsD5ubMXf0r69BpwyWPX5s2gpHMISe3Nga6q84ZEqOa QSNAf1bKj4mCXkelcI+0ATcs+FaoAIUSKc2S5gU0eODnhzQiKLS2+MmlzP0d UKi5RahiiEKNT/i3+abR4dbXr8WnlTGieEWe9/1kQNft1c1/ThP81Md8M9Gk oPWRdWI5wc+K9uzqtAcYRo5FI0uyXy1NFYcFbBY0tXeCPsFfSlatgLV6Jyxc r2Q5Qp63j5922R3VBeMqDUtcdmGkPRSfLk/rhkvnwvht5yj025vpwKfAgdyh F3+0cikkUVGRa2rNBdk8+SkzTgwSmHK5WZ4YCjRbltxO70wUyF+Y1Z9GA7n3 KYVp5RRyy739ad9UB/S7brxWuRIjHnV/GDrIgJTXiwoSDhE9kEt2qIxnwo/L r+akPDAqyY/eljdEgYlfqKEIwVezQWmmjyoL9Dh+slMEX1e9ClpOhLOhoZG2 zpnEvw5vWRP0qROOKy7uVjfD6K71m+P787hgHZf7W+phECr61qzKXe8NGkUH isfmktGPmK7gNgMmeJem3ki7jFGPttCK+bsUuDpb+a0k+Los8EY1egBDoub5 P68IvqxsJtflKbJBO8+7ftwXI5VyB91XX5iQL348zZXY9+WWmzrqYPiUVjSG SbxCCJI8E8qCC7ZcxjaSzzhje8FeDhfM05mrK5lX0dL+wFQr2ctwcaJN6Nz6 WDQeYDGXcZqC0uaSecFgjHS+5VwXrcDQ0dbA3kTql3Hp4G7+1Rj4xvbRN5D8 M2cqHMePs0C8fXrNmzCMGqfbJY9WUMCatyl6S+ykrUVcvuUsqIrRSPhOzs// U5NdxXkM2eIlijokn5yJc2/VJBeu3GS3mPhYIeXk+MQ3ovqghmsf+Me6oo6Q K8Nd9TEQfGs8wxMKUKj90tMWehlk/nwGRsNVSIahcHLV5Ry4ZFI6rjdWi1Se splOGo2wa3ytVngDAzk+Xn9I/V0z6OmtkdTyIv0x4ZS6rW4bTMqsYEsupZC9 8mqb8p/t8NrYZPlEKIX8sc4zpNUBGab7t04NUEhd/9P12ng6lP8wPeSyk/Sv 6BNN/d8Y0Ps7NoDmROZVkYwsjx0UzGj5WIoSvAcuVbAIvYWBG2UuY0X2d1TN 97ZAKwu0vfMWsgneqxT2mcQodMK2dRnaK89ilM07GKoc3AXs6zcDF2qSeq45 bGZY1w2LRMUE7/BgtCHqz0CnNAekrp0NRvkUcjIf2/zajAsXW8PS3aJikVVI 34JNtiFQw7g5t/j4C6R/NtKYlkCDmx6pFSUlFOK0K0jYjXRA3Ha7JfYrSD/s ORqlqM+AartfR3mJ/uUWDoZWRTHhmcFmOriTei5MGe7spiDzYY5tA8G3bsAu rePyLJik+UhpkfpFus38OO/HhjCLN5qmRH9b+U0tq1id0Lll4aM0os/ssU8d z15yIYxBrT33OxgZCWZpVyZ6gGidjPNhpyfo/sZNmTQdJry/sos/+RJGG6M2 NsqFUjDmlaQUT/SvX1+p3qUTw8Pfnz/RCL5cj2jvKd/MBg3FY7MviX62G2Q5 5XCYEBQfo15C9BV7S/4TqYxhx8jO6jwSn/JWJ8fAlwWb36lfjCV4j9E68W8a iwsFLQ/9jVOvIcVNu3Mn15+HRx/yed8r3EcqdMeytmOkfnI1jYHkvpIvu2P5 TB6Gq64bo9VI/UYq7X8pL8XQWKhrM0j2fzVZa6rDggWpv1aN/EPOR9DwIzsg j4KNQa3bjhG8CzmqBgwtYIF6QnOcHFlPjUq3yKA9BgfVCXkFks+lP9FSmsuF H/+56+zqPIlmjBzjTsnaA78oitxWEYYexW1TrH6CgfWcs/AQib926qZL2H8U pLs0rHUg7/9NV07P/oah3i2vMYTkP4hn7moYYrgrVy/wi9iNhYojanUYnroM MwTI8ycldAL6JDEoLbFRsyJ+rfvlKffdMOyPPr3TmPj7CrUunPzNhVruzjk7 3/2IT0/saq+oChwV7iu7YeGEth64F55/NQbOLzZ9K8tTgLhdlvypYhlwcCr1 piC9CsWft7ZX2J8Dn7ea4VNdtUi8Ze932NEIza3uqtF1DGRiWhW4r6QZpNYt S6hzJ/OMYNOCe6pt8OVuf+HgIgpVnrqZmf+9HaTaV3kahVCo6Gz0OyO1DjB0 DNGL/kShy3GHNl14QIfH2UNf3BQJHq2Cej4NM6A0MeO+JuHfiO6r8GVbKdiz KlSljtxHK9K/PvYMxrD5Z4jqEbK/MyobUu59YIG9KD1GmtS3fYxvVGlLJyQt Ngh/SvhnqXb83vabXZD76OjJJsK/3KyXW1hV3XDDcO/iNF7Cx/gVsnUSHKi8 iefn31Ao/EnISc5BLghv4+31HoxF11viaqzKguHoVMUWxZbnKD321+MPMTRI 6/Ndt6eYzLen/HYNDXTA2VRdd/nlGKUq1qoydRhQdX90mbIpRjd8+ROqbzHh KRr3byXzSZLCi/ormAJT88bpZIIvH8mfQQdlWVDeqhxsR+qf6JqyjOvJhg8b 8ZIKwj9Ok8CkPb0Tki2Xd1lbYDS3y3c5fsGFB2/Mc9yyQ1BMskjVZlt3sHQw 6Lq4MhGdHN5f3qHBBFOlZcvFCf9qira+eOtPgV5Tr8gxwj+JjxOCjkwMhxb6 afcTvPhb9B3R3cCGZxxGyxIy3ycJtnrkspnwsynO2Ibwzyd185D0doJvvS21 iSS+02ZuWsOTBQveWWbUE/6VhE470plcMDzrGe2w1B3V6IkVv088A+efrZwr fX4XUX8uxjsdoWCLrOQuTVKf0XffjoxlYzAvPmf8tz/cGTqDPyzAIEL7pFT/ 936m9Wd3zUEW8AnNVimT88l3GS5em02Bc+xHL1nCP5P5yQbWLOlXGjI39pD1 nDk+8MPHhvRDDaMD0iTfw22q0WajXNgqekzK4YUjkrkjmTG/3gZiNX27Vh8L RgzlMa/8eAwpIx7O5iR+bUTYIYkxCsSzVjN2k/erXP0++mQYg3jZ9MVHJP/4 PN+VVj0Ml6rqpYaJzWc+riRXjSFPbdtHkb/z9L79J9xFMBgEhW3RJn5O2fsb W65gsOl3NttH/Hy8jPS701xo6eqe9O0+jAYkZAI8ZQ+CrLD2ptmjPsjA2Zk/ NgoD02V05i+eVcyE5X/uwsAJNPCuJfm8Iq7U8BdjMPMPrtxG/BsFGJpmThi+ 8sy2qv7l/59LQ22pGKbmeUONiJ39ejI//SAG4394SpYQO/78m3ez3hjcNUfb /+pNxYW0HYqzXKhMqeSE+Kn9/32f539///c97P/s/wEzkj69 "], {{ {RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.2], EdgeForm[None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwl03ecz3UcwPE7ScVRXISK7BVydkqk7JFLqJCuQuRORkYio0LZs+xoEYVQ mZFRhCIjoyJCyVZpPt8Pfzzv9fl8f9/H/b7fz/uuUFpGanqmhISERFL8SNEK iVfWce0MH1PSZrgW1J/1CfJYH9IPqEt2+2/1bV6kIle5tkWn8RwPE993lk8Y wZPUo1Lczzk+5VWeoj6Vycx5VvAaHWhAFa4mC9dwLdeRlWxcYCUj6UhDqpLE RVYxik40olq8C5dYzWiepjHVycHvrGEMnWnCnfGM3nerTqc3j3A9f7CWsXSh KTXiud3/lc6gD49yA3/yGeN4hmbcFe/o/m06k760ISeXWcd4uvJAPKd7d+s7 DOLuOB/Xtuss+tGWXK59p/N5Kfb8xXomkM5N7vleP6R5vJP9Hn2Xwdxsf0Q/ ombMwH6HzqaQ9Ql9nnzWP+piilmf0nYkW+/X0vq+FtFftJy+rLfqUb1dl2lx /U3La7L+zeeUsp+ot+lxLasZmld/0DK6SIvqr5oa5229V9+jsPVJHcIt1j/p Uu6Jvyn7r/VN+pPf/rAu4TFutD+gC3gl9vzDBibRjQdjXu7bp/MYSi2yuvaN zuEF2pObf9nIZJ6lBbXJ5v6dOpcBPE4e/mMTU+jOQ9wb8yP+oTfL6/SgJXXi bOIjn32hb9CTVtwX84r3jPnGecQcKEDBOOOYbZxZzCvONGYas6EEJWMeMdM4 95hdzCNmGnPjDiqQyXd/qVPpRWvuJ8n1XfoWA0mLM3HtoC5kWDyL/TFdHt9p fTp+r/4PU4qGlw== "]]]}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1He4j2UYwPFjJI5RodOwOkInm5I9GigjkhWyUyp7q8xomU2FjDKSsiJU tqxoijKy994l43Nf/vic7/O8v/e6fu/73Oec5Nad6nVMlZCQUNyP6CkWkmLz lubRg9qGJOudOotqZLbfrFMZwAOkcW2DjqMnz5Ca0yzibdpSnQfjfs6wmHd4 jscpRVrO8h3DaMcTPMRNpONm0pOBRDJyju8ZzvPUoDSZOM8PjOAFalIm3oUL LGEk7alFWbJwkaWM4kVqUy6e0fv+pOPpRRNu4RLLGM1LPEn5eG73b9RP6U1T buVflvMuL1OHCvGO7t+kE+hDM27jP1bwHh2oG8/p3j91GgOpGOfj2s86kb48 S1bX/tYvGRJ7LrOS9+nIHe75R2fzVLyT/RadziBy2O/Vb6gUM7D/RSeRbH1Y X+Eu6906l/zWx7U52ay3aUGdqffqUS2qQzWX7tfCukAL6Aktptn0f1Zxv/0H eo8e0iLaSe/UXVpI52g+Pab14rytt+oX5LU+ooPJab1P51M5fqfsf9XJvMrd 9nt0Hi3Ibr9dv+KN2HOF1XxIZ56OebnvL53B61Qh0bXf9DNeoyW3c5Uf+Ygu 1OdhMrr/d/2cfrQiiWusYQxdacAjMT/iD3qtfEw3GvJonE185LN1+gndacRj Ma94z5hvnEfMgdzkiTOO2caZxbziTGOmMRvuIyXmETONc4/ZxTxipjE3ilOC 1L57vY6lB42pSibX/9Ap9Kd1nIlrO/Rr3oxnsT+g38Z3Wp9MuPG/q6ReB2vV hi4= "]]}, Annotation[#, "Charting`Private`Tag$13991#1"]& ]}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0, 1}, {-0.3678794245445109, 0.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.8539635568364153`*^9, 3.854019784348852*^9, 3.854026151996825*^9}, CellLabel->"Out[9]=",ExpressionUUID->"8d282b78-e3bf-4d7a-b6b9-61fdd5d5fc33"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Mathematically, this is defined as the ", StyleBox["epigraph", FontWeight->"Bold"], " of a function ", StyleBox["f \[LineSeparator]", FontWeight->"Bold"], "{{x,z} | z \t\[GreaterEqual] f(x)}" }], "Item", CellChangeTimes->{{3.853963560738639*^9, 3.853963617255602*^9}},ExpressionUUID->"20b371a1-77cc-4696-9f11-\ 74048672927d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"convexEpigraph", "[", RowBox[{"x_", ",", "z_"}], "]"}], "=", RowBox[{"ImplicitRegion", "[", RowBox[{ RowBox[{ RowBox[{"convex", "[", "x", "]"}], "\[LessEqual]", "z"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", "z"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.853963515223652*^9, 3.853963534437871*^9}, { 3.853963695899288*^9, 3.853963706602457*^9}, {3.8539637547083607`*^9, 3.853963763451366*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"4ebb88e3-afd4-4fd0-9131-167ed4079ff6"], Cell[BoxData[ RowBox[{"ImplicitRegion", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Log", "[", "x", "]"}], " ", "x"}], "\[LessEqual]", "z"}], "&&", RowBox[{"0", "\[LessEqual]", "x", "\[LessEqual]", "1"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "z"}], "}"}]}], "]"}]], "Output", CellChangeTimes->{3.853963535556333*^9, 3.853963715012093*^9, 3.853963764831979*^9, 3.854019786238738*^9, 3.854026154660715*^9, 3.854033023609233*^9}, CellLabel->"Out[2]=",ExpressionUUID->"2f123afc-6b9a-4a08-8c20-dc25ef56cbf8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Region", "[", RowBox[{ RowBox[{"convexEpigraph", "[", RowBox[{"x", ",", "z"}], "]"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", RowBox[{"{", RowBox[{"Automatic", ",", "0"}], "}"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.85396374425965*^9, 3.853963745715302*^9}, { 3.853963821324316*^9, 3.853963837180377*^9}, {3.853964028810359*^9, 3.853964050153204*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"95dcb2e0-a18c-415c-abdd-98dc69015112"], Cell[BoxData[ GraphicsBox[ TagBox[ DynamicModuleBox[{Typeset`region = HoldComplete[ Region[ ImplicitRegion[ And[Log[$CellContext`x] $CellContext`x <= $CellContext`z, Inequality[ 0, LessEqual, $CellContext`x, LessEqual, 1]], {$CellContext`x, $CellContext`z}], PlotRange -> {Automatic, {Automatic, 0}}]]}, TagBox[GraphicsComplexBox[CompressedData[" 1:eJxF1GtIU3EYx/E1rxWFTchEzMwok0QDh85LRysSWVppKWglVqNQms7I3mQq 4nQxBS0qYZKRqW9SZ2YguJOboWZe0F284HAmNrfSqc1CTSvo9/TicPjwPP83 5//l+F7LThRxORxOwp/n7zvR9lSplw0wydtdMwK81xjTjQ1tuFJDdiw/uvX9 YDczWL7S7vJ8hMW8KC+930M8wuK8cN3Z26tRx5pau2xRyjd0/vqKsjWlop2x 5O+elYj6aZ5k0uSejOljC9Wb2QHGZyewD9faPzXvnflJtpgqN7kNP8ghg8nx i1mr5AcdXorJYDu5t37a0mNfIbs9eiVo61gmpxZkltUWLJHrsoIM8tM28lSz WbjMWyBLynLnPyqsZKeMDenLw/PkaoH00P2WOXIgz019MXyW/N5SnR7YbSI3 SmPXdiqM5MHQNH5n8zh51SzOEWu05MgQpxSmaYgsf3Js4IXuA7ltqUHquvaO HD0+0c/3qyRzbqU93HAwqIYe17VfscmZAzvuxkwON7FVQdMS5zv1jGCan6qV d7FR8efupR+Zo/vLyPQvDFN+JvsnvLg9HTBLPWB/39JMmKtwmMV+z4R+wMdn lC0p3SbbE2Gi8zBPcX791CUdmxj31k8nm6I5nNb99ZdKr2ebxixJ61uLNB+x ay5rZd/ImKMXGL3A6AVGLzB6gdELjF5g9AKjFxi9wOgFRi8weoHRC4xeYPQC oxcYvcDoBUYvMHqBOTnc6KQWtSre6ODYy12gXvD9L+z6UhVnaWXtvBrRa3cr 3QdzNT/mTJSVesJcKJkvsnqoWc/gPLG0xkz7sG/FflWEro/lGCLLte5m+l9U F9/kl9aM0T4s8po7e7zEwJo6PWMFytH//69/dikONRr5BvY3z0+sLQ== "], {Hue[0.6, 0.3, 0.95], Opacity[1], EdgeForm[Hue[0.6, 0.3, 0.75]], EdgeForm[None], TagBox[PolygonBox[CompressedData[" 1:eJwtzstWQQEAheFDoiQkSUkcpNKFrko3lZKkQY/QA+T9Z33WMvjWv/Zsh7/T n79oEAQRvued7TjLJFkhxSppMmRZI8c6eTYosEmRLbYpsUOZXSpUCVkiQYwF Fuc/vmhxQJMGe3wyYsg7A1554Zk+TzzywD139Ljlhi7XXHHJBeec0aHNKScc ccwbH9Sos88hYyb8A0SFDg0= "]], Annotation[#, "Geometry"]& ]}], MouseAppearanceTag["LinkHand"]], AllowKernelInitialization->False], "RegionGraphics", AutoDelete->True, Editable->False, Selectable->False], BaseStyle->{ Opacity[1], EdgeForm[None]}, PlotRange->{Automatic, {Automatic, 0}}]], "Output", CellChangeTimes->{ 3.8539637467604713`*^9, 3.8539638379344473`*^9, {3.853964030278967*^9, 3.853964050531681*^9}, 3.854019787733992*^9}, CellLabel->"Out[9]=",ExpressionUUID->"6269fe40-1e4a-4b61-8a0d-60a62f295a25"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ConvexRegionQ", "[", RowBox[{"convexEpigraph", "[", RowBox[{"x", ",", "z"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.8539637872432737`*^9, 3.853963787732411*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"3962bdb2-f2a1-4e85-a386-61440f003cab"], Cell[BoxData["True"], "Output", CellChangeTimes->{3.853963788398313*^9, 3.853964040517591*^9, 3.854019790271686*^9, 3.854026254810052*^9}, CellLabel->"Out[11]=",ExpressionUUID->"397d11bc-c21e-44ae-a5e7-1ca4e6249bc5"] }, Open ]], Cell["\<\ It\[CloseCurlyQuote]s easy to notice that the epigraph of a convex function \ forms a convex set\ \>", "Subitem", CellChangeTimes->{{3.853964052388345*^9, 3.853964069528718*^9}, { 3.853964114657857*^9, 3.853964125393441*^9}},ExpressionUUID->"4ace9583-4203-47a2-81b0-\ 4985b3fcbde8"] }, Open ]], Cell[CellGroupData[{ Cell["We now want to do the following:", "Item", CellChangeTimes->{{3.853964257866609*^9, 3.853964317620387*^9}},ExpressionUUID->"7508b625-cfcf-4d9f-9257-\ 96e37aa5c3e6"], Cell["Start way down below our epigraph", "Subitem", CellChangeTimes->{{3.853964257866609*^9, 3.853964354898314*^9}},ExpressionUUID->"abb9f900-55f8-4145-9bc5-\ ae1b18b513c8"], Cell[TextData[{ "Make a straight line (y = m x + c) with some slope ", StyleBox["m ", FontSlant->"Italic"], "such that it does not intersect the epigraph" }], "Subitem", CellChangeTimes->{{3.853964257866609*^9, 3.853964409934484*^9}},ExpressionUUID->"62ee822c-c979-4afd-9c08-\ 1fc50aaefbb6"], Cell["\<\ and start moving it towards the epigraph (increasing c) until it touches\ \>", "Subitem", CellChangeTimes->{{3.853964257866609*^9, 3.853964417914591*^9}},ExpressionUUID->"17abb7b3-28e1-4ee4-8adf-\ dfc00fe23dcd"], Cell[CellGroupData[{ Cell["record the values (m,c)", "Subitem", CellChangeTimes->{{3.853964257866609*^9, 3.853964422175036*^9}},ExpressionUUID->"1945f436-64eb-4283-a875-\ 38a3a2eadcdb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"convex", "[", "x", "]"}], ",", RowBox[{ RowBox[{"m", " ", "x"}], " ", "+", "c"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"1", "->", "Top"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"m", ",", RowBox[{"-", "1"}], ",", "\"\\""}], "}"}], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "2"}], ",", "\"\\""}], "}"}], ",", RowBox[{"-", "2"}], ",", "4"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Paneled", "\[Rule]", "False"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.853964473183382*^9, 3.853964495367819*^9}, { 3.853964631849866*^9, 3.8539646375786667`*^9}, {3.8539646965078373`*^9, 3.853964702035741*^9}, {3.853964742924532*^9, 3.853964763806343*^9}, { 3.853974651832797*^9, 3.853974653233659*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"1304cdce-496c-4487-bd47-ad1dcac795c9"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`c$$ = -0.21999999999999997`, \ $CellContext`m$$ = -0.542, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`m$$], -1, "Slope"}, -1, 1}, {{ Hold[$CellContext`c$$], -2, "Intercept"}, -2, 4}}, Typeset`size$$ = { 450., {136., 142.78833892048306`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`c$$ = -2, $CellContext`m$$ = -1}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[{ $CellContext`convex[$CellContext`x], $CellContext`m$$ $CellContext`x + \ $CellContext`c$$}, {$CellContext`x, 0, 1}, Frame -> True, Filling -> {1 -> Top}], "Specifications" :> {{{$CellContext`m$$, -1, "Slope"}, -1, 1}, {{$CellContext`c$$, -2, "Intercept"}, -2, 4}}, "Options" :> {Paneled -> False}, "DefaultOptions" :> {}], ImageSizeCache->{475., {194.025390625, 200.974609375}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>($CellContext`convex[ Pattern[$CellContext`x, Blank[]]] = $CellContext`x Log[$CellContext`x]; Typeset`initDone$$ = True), SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.853964637964184*^9, 3.853964702383782*^9, {3.853964760134181*^9, 3.853964764052637*^9}, {3.853965723460125*^9, 3.853965724098062*^9}, 3.853974653621231*^9, 3.854019792592779*^9, {3.8540263010778418`*^9, 3.854026302745593*^9}, 3.8540330269253187`*^9}, CellLabel->"Out[3]=",ExpressionUUID->"786de0c5-db33-45f6-9517-b1eca8af7b28"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "For a given slope, ", StyleBox["m", FontSlant->"Italic"], ", there\[CloseCurlyQuote]s (at-most) one value of the intercept ", StyleBox["c ", FontSlant->"Italic"], "that:" }], "Item", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.853965216141645*^9}},ExpressionUUID->"96cf82d7-cfcd-465f-96da-\ e823b79032d5"], Cell["intersects the epigraph", "Subitem", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.853965238262834*^9}},ExpressionUUID->"810fc4a4-fe57-4296-b725-\ ac9a477a697a"], Cell["\<\ and the entire epigraph is contained on just one side of the line\ \>", "Subitem", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.8539652516568937`*^9}, { 3.853965302997388*^9, 3.853965302998328*^9}},ExpressionUUID->"ab912c0a-113b-4711-8e07-\ 4dbb86d033ab"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ If we now graph these c vs m, we will obtain a concave function\ \>", "Item", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.8539652516568937`*^9}, { 3.8539653077139893`*^9, 3.8539653548822203`*^9}, {3.8539656986067*^9, 3.853965712723607*^9}},ExpressionUUID->"5f28c6c5-64a1-416d-b460-\ 7b966d358f0e"], Cell[CellGroupData[{ Cell["Let\[CloseCurlyQuote]s check this for a few values", "Subitem", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.8539652516568937`*^9}, { 3.8539653077139893`*^9, 3.8539653548822203`*^9}, {3.8539656986067*^9, 3.853965720358756*^9}},ExpressionUUID->"e56954db-2a87-418b-a805-\ 1d151265379c"], Cell[BoxData[ RowBox[{ RowBox[{"eyeballingPointsFromManipulate", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.925"}], ",", RowBox[{"-", "0.15"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.45"}], ",", RowBox[{"-", "0.23"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15"}], ",", RowBox[{"-", "0.32"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.015", ",", RowBox[{"-", "0.38"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.33", ",", RowBox[{"-", "0.51"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.605", ",", RowBox[{"-", "0.68"}]}], "}"}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.853965750494969*^9, 3.8539658073180637`*^9}, { 3.853965844351096*^9, 3.8539658898689423`*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"687c2f90-e77f-4dad-9f91-d40daaf4f115"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", RowBox[{"eyeballingPointsFromManipulate", ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.8539657339444036`*^9, 3.853965749502487*^9}, { 3.85396589276506*^9, 3.8539658991980457`*^9}, {3.853965989645906*^9, 3.853965990717594*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"9725d38f-d46a-4f39-bfcd-631e15f58e92"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{-0.925, -0.15}, {-0.45, -0.23}, {-0.15, -0.32}, { 0.015, -0.38}, {0.33, -0.51}, {0.605, -0.68}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.925, 0.605}, {-0.68, 0}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.853965893678753*^9, 3.853965899570579*^9}, 3.8539659909869137`*^9, 3.854019808652727*^9, 3.8540330431549053`*^9}, CellLabel->"Out[5]=",ExpressionUUID->"7c1fc38c-92d2-4a16-aa52-58976a1c6e3d"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ That means if we instead plot -c vs m, we obtain a convex function\ \>", "Item", CellChangeTimes->{{3.853964737056089*^9, 3.853964739274446*^9}, { 3.853964785051094*^9, 3.853964819170183*^9}, {3.853964993036756*^9, 3.853964994558297*^9}, {3.85396517732794*^9, 3.8539652516568937`*^9}, { 3.8539653077139893`*^9, 3.8539653548822203`*^9}, {3.8539656986067*^9, 3.853965712723607*^9}, {3.853965946860599*^9, 3.853965964588696*^9}},ExpressionUUID->"528864db-3a06-4aa3-b117-\ b19cf97eee03"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"-", "#"}], "&"}], ",", "eyeballingPointsFromManipulate", ",", RowBox[{"{", RowBox[{"All", ",", "2"}], "}"}]}], "]"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.853965970268754*^9, 3.853965995021595*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"553ea942-145a-4ffb-9ee3-7112128ec5ca"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{-0.925, 0.15}, {-0.45, 0.23}, {-0.15, 0.32}, {0.015, 0.38}, { 0.33, 0.51}, {0.605, 0.68}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.925, 0.605}, {0, 0.68}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.853965985963263*^9, 3.853965995387499*^9}, 3.854019811202754*^9, 3.85402641331212*^9, 3.854033045651546*^9}, CellLabel->"Out[6]=",ExpressionUUID->"dd549c72-574f-4542-a349-1c21a81bafa0"] }, Open ]] }, Open ]], Cell[TextData[{ "This means we can define a new function which takes the slope ", StyleBox["m ", FontSlant->"Italic"], "as argument\[LineSeparator]and constructs the supporting hyperplanes of the \ epigraph of ", StyleBox["f", FontSlant->"Italic"], " " }], "Item", CellChangeTimes->{{3.8539660265895033`*^9, 3.853966109452725*^9}, { 3.853967247570257*^9, 3.8539672483686543`*^9}},ExpressionUUID->"0484377b-b1c0-4008-94b5-\ 9cd9bf51be3a"], Cell[BoxData[ RowBox[{"\t", RowBox[{ RowBox[{"h", RowBox[{"(", "m", ")"}]}], " ", "=", " ", RowBox[{"-", "c"}]}]}]], "DisplayFormulaNumbered", CellChangeTimes->{{3.853966118852221*^9, 3.8539661403964443`*^9}},ExpressionUUID->"33ddefb6-8963-4334-82d0-\ 3416d7a0ca34"], Cell[TextData[{ "This new function ", StyleBox["h ", FontSlant->"Italic"], "is the Legendre transform of f!" }], "Item", CellChangeTimes->{{3.853966141600774*^9, 3.853966159332219*^9}},ExpressionUUID->"ff6c82da-1e0f-4cf5-8c81-\ a6ab75edf73e"], Cell[CellGroupData[{ Cell["\<\ Let\[CloseCurlyQuote]s try and see if we can find an explicit expression for \ the Legendre transform\ \>", "Item", CellChangeTimes->{{3.853966816740901*^9, 3.853966867237246*^9}},ExpressionUUID->"f3a8a150-9be4-4eb1-acfd-\ e1ff6943eabd"], Cell[TextData[{ "Note that our approach of trying to draw the the supporting hyperplanes of \ the epigraph of a function is similar to drawing ", ButtonBox["envelopes of curves", BaseStyle->"Hyperlink", ButtonData->{ URL["https://en.wikipedia.org/wiki/Envelope_(mathematics)"], None}, ButtonNote->"https://en.wikipedia.org/wiki/Envelope_(mathematics)"] }], "Subitem", CellChangeTimes->{{3.853966816740901*^9, 3.8539669001271887`*^9}, { 3.8539669311197577`*^9, 3.85396699830343*^9}, {3.854019823564513*^9, 3.854019824397314*^9}},ExpressionUUID->"ea763bcf-5523-40db-adb7-\ 8c4e7a149c68"], Cell[CellGroupData[{ Cell["\<\ This is also very related to the surface-energy construction we\ \[CloseCurlyQuote]ll see later!\ \>", "Subitem", CellChangeTimes->{{3.853966816740901*^9, 3.8539669001271887`*^9}, { 3.8539669311197577`*^9, 3.85396699830343*^9}, {3.854019824076673*^9, 3.854019839967445*^9}},ExpressionUUID->"3508442f-315f-4d94-929f-\ 882c60d73431"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", "30"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{"Thin", ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"t", ",", RowBox[{"convex", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{ RowBox[{"convex", "'"}], "[", "t", "]"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", RowBox[{"Rest", "@", RowBox[{"Most", "@", RowBox[{"Subdivide", "[", "n", "]"}]}]}]}], "}"}]}], "]"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"convex", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"Filling", "\[Rule]", "Top"}]}], "]"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.85396664882053*^9, 3.853966661016206*^9}, { 3.853966701294972*^9, 3.853966775927268*^9}, {3.853967013929462*^9, 3.853967052348744*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"18997eb3-043e-4eda-bb07-63cd83f75c6b"], Cell[BoxData[ GraphicsBox[{ {Thickness[Tiny], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 30], Rational[-1, 30] Log[30]}, { 0.03333333333333333, -0.11337324605540518`}], NCache[{{1, 1 - Log[30]}}, {{1, -2.4011973816621555`}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 15], Rational[-1, 15] Log[15]}, { 0.06666666666666667, -0.18053668007348067`}], NCache[{{1, 1 - Log[15]}}, {{1, -1.70805020110221}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 10], Rational[-1, 10] Log[10]}, { 0.1, -0.2302585092994046}], NCache[{{1, 1 - Log[10]}}, {{1, -1.302585092994046}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[2, 15], Rational[-2, 15] Log[Rational[15, 2]]}, { 0.13333333333333333`, -0.268653736072302}], NCache[{{1, 1 - Log[Rational[15, 2]]}}, {{1, -1.0149030205422647`}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 6], Rational[-1, 6] Log[6]}, { 0.16666666666666666`, -0.2986265782046758}], NCache[{{1, 1 - Log[6]}}, {{1, -0.791759469228055}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 5], Rational[-1, 5] Log[5]}, { 0.2, -0.3218875824868201}], NCache[{{1, 1 - Log[5]}}, {{1, -0.6094379124341003}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[7, 30], Rational[-7, 30] Log[Rational[30, 7]]}, { 0.23333333333333334`, -0.33956702094159646`}], NCache[{{1, 1 - Log[Rational[30, 7]]}}, {{1, -0.455287232606842}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[4, 15], Rational[-4, 15] Log[Rational[15, 4]]}, { 0.26666666666666666`, -0.3524682239952852}], NCache[{{1, 1 - Log[Rational[15, 4]]}}, {{1, -0.3217558399823195}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[3, 10], Rational[-3, 10] Log[Rational[10, 3]]}, { 0.3, -0.3611918412977808}], NCache[{{1, 1 - Log[Rational[10, 3]]}}, {{1, -0.20397280432593612`}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 3], Rational[-1, 3] Log[3]}, { 0.3333333333333333, -0.3662040962227032}], NCache[{{1, 1 - Log[3]}}, {{1, -0.09861228866810978}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[11, 30], Rational[-11, 30] Log[Rational[30, 11]]}, { 0.36666666666666664`, -0.36787743991672106`}], NCache[{{1, 1 - Log[Rational[30, 11]]}}, {{ 1, -0.0033021088637847917`}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[2, 5], Rational[-2, 5] Log[Rational[5, 2]]}, { 0.4, -0.3665162927496621}], NCache[{{1, 1 - Log[Rational[5, 2]]}}, {{1, 0.0837092681258449}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[13, 30], Rational[-13, 30] Log[Rational[30, 13]]}, { 0.43333333333333335`, -0.362374143820268}], NCache[{{1, 1 - Log[Rational[30, 13]]}}, {{1, 0.1637519757993815}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[7, 15], Rational[-7, 15] Log[Rational[15, 7]]}, { 0.4666666666666667, -0.35566535762188517`}], NCache[{{1, 1 - Log[Rational[15, 7]]}}, {{1, 0.23785994795310328`}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[1, 2], Rational[-1, 2] Log[2]}, { 0.5, -0.34657359027997264`}], NCache[{{1, 1 - Log[2]}}, {{1, 0.3068528194400547}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[8, 15], Rational[-8, 15] Log[Rational[15, 8]]}, { 0.5333333333333333, -0.33525795169193284`}], NCache[{{1, 1 - Log[Rational[15, 8]]}}, {{1, 0.3713913405776259}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[17, 30], Rational[-17, 30] Log[Rational[30, 17]]}, { 0.5666666666666667, -0.32185762131003226`}], NCache[{{1, 1 - Log[Rational[30, 17]]}}, {{1, 0.4320159623940607}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[3, 5], Rational[-3, 5] Log[Rational[5, 3]]}, { 0.6, -0.30649537425959444`}], NCache[{{1, 1 - Log[Rational[5, 3]]}}, {{1, 0.4891743762340093}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[19, 30], Rational[-19, 30] Log[Rational[30, 19]]}, { 0.6333333333333333, -0.28928032158061945`}], NCache[{{1, 1 - Log[Rational[30, 19]]}}, {{1, 0.543241597504285}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[2, 3], Rational[-2, 3] Log[Rational[3, 2]]}, { 0.6666666666666666, -0.27031007207210955`}], NCache[{{1, 1 - Log[Rational[3, 2]]}}, {{1, 0.5945348918918356}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[7, 10], Rational[-7, 10] Log[Rational[10, 7]]}, { 0.7, -0.24967246075711266`}], NCache[{{1, 1 - Log[Rational[10, 7]]}}, {{1, 0.6433250560612676}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[11, 15], Rational[-11, 15] Log[Rational[15, 11]]}, { 0.7333333333333333, -0.22744694742281557`}], NCache[{{1, 1 - Log[Rational[15, 11]]}}, {{1, 0.6898450716961606}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[23, 30], Rational[-23, 30] Log[Rational[30, 23]]}, { 0.7666666666666667, -0.20370576039530436`}], NCache[{{1, 1 - Log[Rational[30, 23]]}}, {{1, 0.7342968342669943}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[4, 5], Rational[-4, 5] Log[Rational[5, 4]]}, { 0.8, -0.17851484105136783`}], NCache[{{1, 1 - Log[Rational[5, 4]]}}, {{1, 0.7768564486857903}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[5, 6], Rational[-5, 6] Log[Rational[6, 5]]}, { 0.8333333333333334, -0.15193463066162882`}], NCache[{{1, 1 - Log[Rational[6, 5]]}}, {{1, 0.8176784432060454}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[13, 15], Rational[-13, 15] Log[Rational[15, 13]]}, { 0.8666666666666667, -0.12402073115525014`}], NCache[{{1, 1 - Log[Rational[15, 13]]}}, {{1, 0.8568991563593268}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[9, 10], Rational[-9, 10] Log[Rational[10, 9]]}, { 0.9, -0.09482446409204372}], NCache[{{1, 1 - Log[Rational[10, 9]]}}, {{1, 0.8946394843421737}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[14, 15], Rational[-14, 15] Log[Rational[15, 14]]}, { 0.9333333333333333, -0.06439334672115465}], NCache[{{1, 1 - Log[Rational[15, 14]]}}, {{1, 0.9310071285130486}}]], "InfiniteLine"], TagBox[ ConicHullRegionBox[ NCache[{Rational[29, 30], Rational[-29, 30] Log[Rational[30, 29]]}, { 0.9666666666666667, -0.0327714999531587}], NCache[{{1, 1 - Log[Rational[30, 29]]}}, {{1, 0.9660984483243186}}]], "InfiniteLine"]}, {GraphicsComplexBox[CompressedData[" 1:eJw9WGk4lV3UpjS8UkopcynJG5WMGbIUlbEyRCIVmjWQOcpMCg2EEjJUpAyZ yaYMmR3nnGefYzgkEdHhjTQYvt11fd93/pxrXWs969l7r/u+19qPtMMV89ML eHh4lHh5eP7+G53+QqsaPqLzUDxYxE43vjJg6Zstt0RjIPmm/hevqjfoqM3T nPGJdJC3HZCurqhCy+YD7A5I5UBRXzfftYZatNns25f3twsgQyR0aHi4AXm2 akD8ZCkYJrODBAta0LqCVRxeXgTvt+9K+GjXjor69ZrbtN+BiMC3mDc1NPTu whNxm9EaSHa1HUz5rwNNye4WfHWpHvR8GuL0B+howa+XK8U3N8KGNa27Yt4z kNr8ySKL183Q2qprd/gaEzUHq7TWbW2D1UJaha8WUmj93a+/Mr+1Q4Dvvw6p QRT6Ot3LYSp2wA393WVb+imUPlLeuCKKDkE+Oss8d2C0QvI5d2CAAal8yq6p jhjdOV94JkWGAitl92oXf4x+6L4cOHcTQxnbSNHiNkZuSjUFa9+zIDrmLfdc EEa9r2tu06Q74aFxVMnOcxj9ucB4/K9PFxjxpVrc18JIfs+SuTPl3eBxv2Kq ZAFGB1Klz+at40D2quZkKKSQp+SJjR/teuEFM+jAa3sKKYweWYZN+4A9Zmm9 aJaJVguOL6353Qdnp+o2m4UwER96nLMp8SP8y11tvuMfJrqoUs7+x7gfTqXc aE10Z6CXhg4plT/64ZOZldQiFh1NfRVbOfjwE5RpXj4gpElHhRYHFsboD0D2 BpsfmkEd6KZBSHLB4ADkRE+bC7TSkHSPESst5DPQLJy/DAjRkKZ6cIyo0iBc OH3axXV3O7KTavvFSx8EpWx6Vz67FU01RvZfDRiCwsT2SWfeFhTPZ+9mLvMF tMKORm5Ra0KrOYWpC2q+gIPt5Ek1xwa0yC/AUsNlGAJ6feIirOoRT6Z9Tr/Q CNim5azVtKtFro9yIoXejUDmf077Pm5+j97Khy9ddfkrJH2NuHfhSxVaZeSq ELhiFM4NtCXdCn6Lure1070rRkGRe4cjVl6CcpNAZsB+DM4Y7tQ031yAjueo rZKcGwN7/pmk0rU5yD/kaUB31jconxEOm+Kko1dfJB+vMOGC0W3+RZ46D1Hc +mVT8/Nc6HwKrYQXlSnCh0IjRINhpZrWRWnt5yi+x0evcC4J7l3/+kVZrBwp Za9aLLE0C7wyj49IOL5HR17ENV1bng/r6OK8Tdx6JOEb6lh8vgmWnIt6pLye iXjfGe2NHG2Blgh8qKWSifYOB+Yu3tsOs8vlh7QPUGhRzelRFE2DZwW2vB8I PgwmWixdeztgYXnpoellGLGDdvZ4azBg+a7Flo4mGJnqbX/5LpgJfknCi+3c MNpzJDeDr4OCMw8oI/dwjApLi5tBmgUiOz50+t7CKOuq/gY3VzbotYk//9cL o7E7zQ9mWzpBLpC5ZJklRqupMZMPYt1QN3v3xfgGjEpdYpTunO8BR+GAj/M9 FOo9UaVvWMaBU3aGchm3KbQxeI3BkmdcaBjpNHGxD0U9O8L0IkXdYIu7eH9T 8SMk8P2h6vo7CSDJPtzXdL8Y1Qayjy32ew6f4xwvvBd5h8YsRiuMW3Mh8PFM 5u3+OhStKap5vr4Rog8X9dj8x0CJfUd8r5q2wHKrPtZgAhO9kH+y7gJugxgB CYsTshQSypL7rgI02JGcus/lCYUeTVKiMuEdkP/HaEfPNIV0in9Y1HyiQ1uG aU+GDkbbcy+00FWYcE+jsz/WGaMzvUqh5tcpCPkslScWgpGVX95Ry3YM8Wyr wIkIjKLNgi/UirFhz09zZ4cbGA0++RA95NkJph+vn8iyxyhsw6lJr8YusP3J Ci/cjpEr2zTeW6gHRqtkaJxxCq3mnTgye44Di9g6gr0pFDqnljDB780F1Wua Gd1ld5HZg84LB2WjoN5dLa29KQf97En9bNRHg4YNueavmin0Y6wmukqNDlub oiL8pIj+HHY+syOaAQMR+E7hUYycqYnwPAYTeJ/s1Prlg5FE07baIjkMOYzu 4FCy/jU/3urKu7Kga6KF/jMUo5poPmpjIxt6+i+id1cxmrzeHrdapgtGKvtV rA0w6qZFJy2kc+G07SOmzWUPZO00/fa+qBPcSDMr81GOQnWz6dsZHQ9BWPBY lmBBIVpxeXfIdfVnYFN4onftpWpUmvmwsHh7LkQwA1nh1nXoQ4LD5r0ejfCh qkxPtYuBhq/YivbPNgOP9uvtHaFMpMn64ioS0AYJFp3pe4QpJCIZ4cFdS4Ni z60HSu9SaK+H7YyvXQfMii22URuj0MRhm+jhEjpcbopbuFsdo6TBcPtuASY0 zLiK7yX66y3j5vHrEAWxT79ajgdiJHvidRLnOYbR/RLf9Yl+L9ibLvjtGwuo a9YaAgEYOTyri+w26YTKrnH9e0T/q2vFDMxSu0Cl5IfYHlWMDkZuNR4f7AaH 6x9ejf6i0CuzW/bWuhzQ1S1/tvUlhSKibevuOHBh0Vrh6pd+D5AXI8ZrdP0t WJx6KsMm/SWaO8x3flEJDa789/nSuWoKJV8xdBVdRof6slh3Z2GyvpHWp5ZO DCg2PeZVak7OX2ClWFk2Ex5uKvZu8yR4XXml8PgsBSfMB2qfEf4O4LLQQkMW RHBCI+wIv9X9Za4bJ7Hh2KXSoseE/1eDW2OX/uqE0buuHhYHMZrfan4tpIIL Q3YWu1ua/VHUKyE5M9kbkLsjQ/55YCqq9DbRbrJjgrixs3USwYPlo4nYl88o MOd38ZogeAl9XCDU+BPD3j+RFjYETxKnnGoT97Nhv/hhQefrGM0k06dfzDBB +slVGtsPo39CRxmClhheOr/dIEzOW39N9e+URyzwVJOXNSf8KvNqaQgY5oLO v5EJJh5nkHELzn8iagnH/CXSE7A/klmo8HK7RywsGkyqWPq2AL1xvCJWFJMB olVrfUOEq5FOJnbsepsD5ubMXf0r69BpwyWPX5s2gpHMISe3Nga6q84ZEqOa QSNAf1bKj4mCXkelcI+0ATcs+FaoAIUSKc2S5gU0eODnhzQiKLS2+MmlzP0d UKi5RahiiEKNT/i3+abR4dbXr8WnlTGieEWe9/1kQNft1c1/ThP81Md8M9Gk oPWRdWI5wc+K9uzqtAcYRo5FI0uyXy1NFYcFbBY0tXeCPsFfSlatgLV6Jyxc r2Q5Qp63j5922R3VBeMqDUtcdmGkPRSfLk/rhkvnwvht5yj025vpwKfAgdyh F3+0cikkUVGRa2rNBdk8+SkzTgwSmHK5WZ4YCjRbltxO70wUyF+Y1Z9GA7n3 KYVp5RRyy739ad9UB/S7brxWuRIjHnV/GDrIgJTXiwoSDhE9kEt2qIxnwo/L r+akPDAqyY/eljdEgYlfqKEIwVezQWmmjyoL9Dh+slMEX1e9ClpOhLOhoZG2 zpnEvw5vWRP0qROOKy7uVjfD6K71m+P787hgHZf7W+phECr61qzKXe8NGkUH isfmktGPmK7gNgMmeJem3ki7jFGPttCK+bsUuDpb+a0k+Los8EY1egBDoub5 P68IvqxsJtflKbJBO8+7ftwXI5VyB91XX5iQL348zZXY9+WWmzrqYPiUVjSG SbxCCJI8E8qCC7ZcxjaSzzhje8FeDhfM05mrK5lX0dL+wFQr2ctwcaJN6Nz6 WDQeYDGXcZqC0uaSecFgjHS+5VwXrcDQ0dbA3kTql3Hp4G7+1Rj4xvbRN5D8 M2cqHMePs0C8fXrNmzCMGqfbJY9WUMCatyl6S+ykrUVcvuUsqIrRSPhOzs// U5NdxXkM2eIlijokn5yJc2/VJBeu3GS3mPhYIeXk+MQ3ovqghmsf+Me6oo6Q K8Nd9TEQfGs8wxMKUKj90tMWehlk/nwGRsNVSIahcHLV5Ry4ZFI6rjdWi1Se splOGo2wa3ytVngDAzk+Xn9I/V0z6OmtkdTyIv0x4ZS6rW4bTMqsYEsupZC9 8mqb8p/t8NrYZPlEKIX8sc4zpNUBGab7t04NUEhd/9P12ng6lP8wPeSyk/Sv 6BNN/d8Y0Ps7NoDmROZVkYwsjx0UzGj5WIoSvAcuVbAIvYWBG2UuY0X2d1TN 97ZAKwu0vfMWsgneqxT2mcQodMK2dRnaK89ilM07GKoc3AXs6zcDF2qSeq45 bGZY1w2LRMUE7/BgtCHqz0CnNAekrp0NRvkUcjIf2/zajAsXW8PS3aJikVVI 34JNtiFQw7g5t/j4C6R/NtKYlkCDmx6pFSUlFOK0K0jYjXRA3Ha7JfYrSD/s ORqlqM+AartfR3mJ/uUWDoZWRTHhmcFmOriTei5MGe7spiDzYY5tA8G3bsAu rePyLJik+UhpkfpFus38OO/HhjCLN5qmRH9b+U0tq1id0Lll4aM0os/ssU8d z15yIYxBrT33OxgZCWZpVyZ6gGidjPNhpyfo/sZNmTQdJry/sos/+RJGG6M2 NsqFUjDmlaQUT/SvX1+p3qUTw8Pfnz/RCL5cj2jvKd/MBg3FY7MviX62G2Q5 5XCYEBQfo15C9BV7S/4TqYxhx8jO6jwSn/JWJ8fAlwWb36lfjCV4j9E68W8a iwsFLQ/9jVOvIcVNu3Mn15+HRx/yed8r3EcqdMeytmOkfnI1jYHkvpIvu2P5 TB6Gq64bo9VI/UYq7X8pL8XQWKhrM0j2fzVZa6rDggWpv1aN/EPOR9DwIzsg j4KNQa3bjhG8CzmqBgwtYIF6QnOcHFlPjUq3yKA9BgfVCXkFks+lP9FSmsuF H/+56+zqPIlmjBzjTsnaA78oitxWEYYexW1TrH6CgfWcs/AQib926qZL2H8U pLs0rHUg7/9NV07P/oah3i2vMYTkP4hn7moYYrgrVy/wi9iNhYojanUYnroM MwTI8ycldAL6JDEoLbFRsyJ+rfvlKffdMOyPPr3TmPj7CrUunPzNhVruzjk7 3/2IT0/saq+oChwV7iu7YeGEth64F55/NQbOLzZ9K8tTgLhdlvypYhlwcCr1 piC9CsWft7ZX2J8Dn7ea4VNdtUi8Ze932NEIza3uqtF1DGRiWhW4r6QZpNYt S6hzJ/OMYNOCe6pt8OVuf+HgIgpVnrqZmf+9HaTaV3kahVCo6Gz0OyO1DjB0 DNGL/kShy3GHNl14QIfH2UNf3BQJHq2Cej4NM6A0MeO+JuHfiO6r8GVbKdiz KlSljtxHK9K/PvYMxrD5Z4jqEbK/MyobUu59YIG9KD1GmtS3fYxvVGlLJyQt Ngh/SvhnqXb83vabXZD76OjJJsK/3KyXW1hV3XDDcO/iNF7Cx/gVsnUSHKi8 iefn31Ao/EnISc5BLghv4+31HoxF11viaqzKguHoVMUWxZbnKD321+MPMTRI 6/Ndt6eYzLen/HYNDXTA2VRdd/nlGKUq1qoydRhQdX90mbIpRjd8+ROqbzHh KRr3byXzSZLCi/ormAJT88bpZIIvH8mfQQdlWVDeqhxsR+qf6JqyjOvJhg8b 8ZIKwj9Ok8CkPb0Tki2Xd1lbYDS3y3c5fsGFB2/Mc9yyQ1BMskjVZlt3sHQw 6Lq4MhGdHN5f3qHBBFOlZcvFCf9qira+eOtPgV5Tr8gxwj+JjxOCjkwMhxb6 afcTvPhb9B3R3cCGZxxGyxIy3ycJtnrkspnwsynO2Ibwzyd185D0doJvvS21 iSS+02ZuWsOTBQveWWbUE/6VhE470plcMDzrGe2w1B3V6IkVv088A+efrZwr fX4XUX8uxjsdoWCLrOQuTVKf0XffjoxlYzAvPmf8tz/cGTqDPyzAIEL7pFT/ 936m9Wd3zUEW8AnNVimT88l3GS5em02Bc+xHL1nCP5P5yQbWLOlXGjI39pD1 nDk+8MPHhvRDDaMD0iTfw22q0WajXNgqekzK4YUjkrkjmTG/3gZiNX27Vh8L RgzlMa/8eAwpIx7O5iR+bUTYIYkxCsSzVjN2k/erXP0++mQYg3jZ9MVHJP/4 PN+VVj0Ml6rqpYaJzWc+riRXjSFPbdtHkb/z9L79J9xFMBgEhW3RJn5O2fsb W65gsOl3NttH/Hy8jPS701xo6eqe9O0+jAYkZAI8ZQ+CrLD2ptmjPsjA2Zk/ NgoD02V05i+eVcyE5X/uwsAJNPCuJfm8Iq7U8BdjMPMPrtxG/BsFGJpmThi+ 8sy2qv7l/59LQ22pGKbmeUONiJ39ejI//SAG4394SpYQO/78m3ez3hjcNUfb /+pNxYW0HYqzXKhMqeSE+Kn9/32f539///c97P/s/wEzkj69 "], {{ {RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.2], EdgeForm[None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwl03ecz3UcwPE7ScVRXISK7BVydkqk7JFLqJCuQuRORkYio0LZs+xoEYVQ mZFRhCIjoyJCyVZpPt8Pfzzv9fl8f9/H/b7fz/uuUFpGanqmhISERFL8SNEK iVfWce0MH1PSZrgW1J/1CfJYH9IPqEt2+2/1bV6kIle5tkWn8RwPE993lk8Y wZPUo1Lczzk+5VWeoj6Vycx5VvAaHWhAFa4mC9dwLdeRlWxcYCUj6UhDqpLE RVYxik40olq8C5dYzWiepjHVycHvrGEMnWnCnfGM3nerTqc3j3A9f7CWsXSh KTXiud3/lc6gD49yA3/yGeN4hmbcFe/o/m06k760ISeXWcd4uvJAPKd7d+s7 DOLuOB/Xtuss+tGWXK59p/N5Kfb8xXomkM5N7vleP6R5vJP9Hn2Xwdxsf0Q/ ombMwH6HzqaQ9Ql9nnzWP+piilmf0nYkW+/X0vq+FtFftJy+rLfqUb1dl2lx /U3La7L+zeeUsp+ot+lxLasZmld/0DK6SIvqr5oa5229V9+jsPVJHcIt1j/p Uu6Jvyn7r/VN+pPf/rAu4TFutD+gC3gl9vzDBibRjQdjXu7bp/MYSi2yuvaN zuEF2pObf9nIZJ6lBbXJ5v6dOpcBPE4e/mMTU+jOQ9wb8yP+oTfL6/SgJXXi bOIjn32hb9CTVtwX84r3jPnGecQcKEDBOOOYbZxZzCvONGYas6EEJWMeMdM4 95hdzCNmGnPjDiqQyXd/qVPpRWvuJ8n1XfoWA0mLM3HtoC5kWDyL/TFdHt9p fTp+r/4PU4qGlw== "]]]}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1He4j2UYwPFjJI5RodOwOkInm5I9GigjkhWyUyp7q8xomU2FjDKSsiJU tqxoijKy994l43Nf/vic7/O8v/e6fu/73Oec5Nad6nVMlZCQUNyP6CkWkmLz lubRg9qGJOudOotqZLbfrFMZwAOkcW2DjqMnz5Ca0yzibdpSnQfjfs6wmHd4 jscpRVrO8h3DaMcTPMRNpONm0pOBRDJyju8ZzvPUoDSZOM8PjOAFalIm3oUL LGEk7alFWbJwkaWM4kVqUy6e0fv+pOPpRRNu4RLLGM1LPEn5eG73b9RP6U1T buVflvMuL1OHCvGO7t+kE+hDM27jP1bwHh2oG8/p3j91GgOpGOfj2s86kb48 S1bX/tYvGRJ7LrOS9+nIHe75R2fzVLyT/RadziBy2O/Vb6gUM7D/RSeRbH1Y X+Eu6906l/zWx7U52ay3aUGdqffqUS2qQzWX7tfCukAL6Aktptn0f1Zxv/0H eo8e0iLaSe/UXVpI52g+Pab14rytt+oX5LU+ooPJab1P51M5fqfsf9XJvMrd 9nt0Hi3Ibr9dv+KN2HOF1XxIZ56OebnvL53B61Qh0bXf9DNeoyW3c5Uf+Ygu 1OdhMrr/d/2cfrQiiWusYQxdacAjMT/iD3qtfEw3GvJonE185LN1+gndacRj Ma94z5hvnEfMgdzkiTOO2caZxbziTGOmMRvuIyXmETONc4/ZxTxipjE3ilOC 1L57vY6lB42pSibX/9Ap9Kd1nIlrO/Rr3oxnsT+g38Z3Wp9MuPG/q6ReB2vV hi4= "]]}, Annotation[#, "Charting`Private`Tag$21020#1"]& ]}}], {}}}]], "Output",\ CellChangeTimes->{{3.853966707770424*^9, 3.853966776281509*^9}, { 3.853967026508074*^9, 3.85396705285781*^9}, 3.8540198151807547`*^9, 3.854026497524087*^9}, CellLabel->"Out[14]=",ExpressionUUID->"b45f1238-5253-49ba-9759-ed87610bff6c"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "We are therefore looking for an ", StyleBox["x ", FontSlant->"Italic"], "such that the point ", StyleBox["{x, m x - h(m)}", FontSlant->"Italic"], " on the supporting hyperplane ", StyleBox["y = m x - h(m)", FontSlant->"Italic"], " belongs to ", StyleBox["f", FontSlant->"Italic"] }], "Item", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967175540945*^9}},ExpressionUUID->"93727be3-b0c5-42c2-b8e0-\ 69f2e88fc006"], Cell[CellGroupData[{ Cell[TextData[{ "Let\[CloseCurlyQuote]s perturb the slope slightly to obtain another \ hyperplane\[LineSeparator]", StyleBox["y = (m+\[Epsilon]) x - h(m + \[Epsilon])", FontSlant->"Italic"], " " }], "Subitem", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967275286491*^9, 3.8539672752877893`*^9}},ExpressionUUID->"98762ce9-d42b-4ed7-a887-\ dd2ee658cb93"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "==", " ", RowBox[{ RowBox[{"m", " ", "x"}], " ", "-", RowBox[{"h", "[", "m", "]"}]}]}], ",", RowBox[{"y", "==", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"m", "+", "\[Epsilon]"}], ")"}], "x"}], " ", "-", " ", RowBox[{"h", "[", RowBox[{"m", "+", "\[Epsilon]"}], "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.854026807754148*^9, 3.854026841576931*^9}, { 3.8540330658495283`*^9, 3.854033106048771*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"34a5c55e-08eb-4e0d-8492-c247530bb38a"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"x", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"h", "[", "m", "]"}], "-", RowBox[{"h", "[", RowBox[{"m", "+", "\[Epsilon]"}], "]"}]}], "\[Epsilon]"]}]}], ",", RowBox[{"y", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"m", " ", RowBox[{"h", "[", "m", "]"}]}], "+", RowBox[{"\[Epsilon]", " ", RowBox[{"h", "[", "m", "]"}]}], "-", RowBox[{"m", " ", RowBox[{"h", "[", RowBox[{"m", "+", "\[Epsilon]"}], "]"}]}]}], "\[Epsilon]"]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{ 3.854026841874235*^9, {3.854033082827373*^9, 3.854033106513714*^9}}, CellLabel->"Out[8]=",ExpressionUUID->"d2244b87-99ee-4b2c-97b7-c7ca3c223156"] }, Open ]] }, Open ]], Cell[TextData[{ "This perturbed hyperplane intersects the original hyperplane at point\ \[LineSeparator]x = ", Cell[BoxData[ FormBox[ RowBox[{ FractionBox["1", "\[Epsilon]"], "[", RowBox[{ RowBox[{"h", "(", RowBox[{"m", " ", "+", " ", "\[Epsilon]"}], ")"}], "-", RowBox[{"h", "(", "m", ")"}]}], "]"}], TraditionalForm]],ExpressionUUID-> "5985f66b-f43c-460e-b77d-bc4ab5e9183a"] }], "Subitem", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967276162486*^9, 3.853967323879202*^9}, {3.854033124188253*^9, 3.85403312543439*^9}},ExpressionUUID->"9838cdde-da68-4d52-8281-\ ede4608fb658"], Cell["\<\ As we take the limit of \[Epsilon]\[Rule]\[Infinity] this approaches the \ derivative h\[CloseCurlyQuote](m)\ \>", "Subitem", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967276162486*^9, 3.853967372269232*^9}},ExpressionUUID->"1a5b417a-295b-4772-ba23-\ a911f3e54f7f"], Cell[TextData[{ "As such the point\[LineSeparator]", StyleBox["{ h\[CloseCurlyQuote](m), m h\[CloseCurlyQuote](m) - h(m) }", FontSlant->"Italic"], " lies on the graph of ", StyleBox["f", FontSlant->"Italic"], " for all ", StyleBox["m", FontSlant->"Italic"] }], "Subitem", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967276162486*^9, 3.853967417795553*^9}, {3.85396748894275*^9, 3.853967488943988*^9}},ExpressionUUID->"b2914c2a-8357-4cd4-acd4-\ 1b548751498b"] }, Open ]], Cell["\<\ We\[CloseCurlyQuote]ve already seen that the supporting hyperplanes are \ in-fact tangent lines\ \>", "Item", CellChangeTimes->{{3.85403317303586*^9, 3.8540332196335707`*^9}},ExpressionUUID->"cebaf803-198c-4f42-8fd9-\ 045a213ae690"], Cell[CellGroupData[{ Cell[TextData[{ "We can express the derivative ", StyleBox["m", FontSlant->"Italic"], " at point ", Cell[BoxData[ FormBox[ SubscriptBox["x", "0"], TraditionalForm]],ExpressionUUID-> "07c87650-a806-45b1-88ad-5a047c386786"], " as ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"f", "'"}], RowBox[{"(", SubscriptBox["x", "0"], ")"}]}], TraditionalForm]],ExpressionUUID-> "82efdbef-6b9e-4a23-b19a-07dbdb637d2a"], ", and thus express the equation of the tangent line as\[LineSeparator]", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"y", "-", SubscriptBox["y", "0"]}], "=", RowBox[{"m", "(", RowBox[{"x", "-", SubscriptBox["x", "0"]}], ")"}]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "5d3869e6-6c65-457f-89cc-7dfa0325f71f"] }], "Item", CellChangeTimes->{{3.85403317303586*^9, 3.854033272098406*^9}},ExpressionUUID->"b4fed9eb-0ea1-471e-9e10-\ 9adf434c158c"], Cell[TextData[{ "To give a y-intercept, ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ RowBox[{"-", "m"}], " ", SubscriptBox["x", "0"]}], "+", SubscriptBox["y", "0"]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "da35d39a-7415-414d-8931-083f6d159e03"] }], "Subitem", CellChangeTimes->{{3.85403317303586*^9, 3.8540333092319307`*^9}},ExpressionUUID->"a68536f7-c8cc-4084-800d-\ 7962fd96031a"], Cell[TextData[{ "Therefore our {m,- c} pair can be expressed as\[LineSeparator]{m , ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"m", " ", SubscriptBox["x", "0"]}], "-", " ", SubscriptBox["y", "0"]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "87be87fa-01c1-40be-b25e-3454cee0cef4"], "} = ", Cell[BoxData[ FormBox[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"f", "'"}], RowBox[{"(", SubscriptBox["x", "0"], ")"}]}], ",", " ", RowBox[{ RowBox[{ RowBox[{"f", "'"}], RowBox[{"(", SubscriptBox["x", "0"], ")"}], SubscriptBox["x", "0"]}], "-", RowBox[{"f", "(", SubscriptBox["x", "0"], ")"}]}]}], "}"}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "31f08ed3-1ad3-44af-aaa4-fb55460bf785"] }], "Subitem", CellChangeTimes->{{3.85403317303586*^9, 3.854033370125772*^9}},ExpressionUUID->"f009bce4-a4a4-4be4-a066-\ 23df9358d571"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "This form is exactly the same as we got earlier:\[LineSeparator]", StyleBox["{h\[CloseCurlyQuote](m), h\[CloseCurlyQuote](m) m - h(m)}", FontSlant->"Italic"] }], "Item", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967276162486*^9, 3.853967417795553*^9}, {3.8539674897640333`*^9, 3.85396760572259*^9}, 3.8540332190326023`*^9, {3.854033377939623*^9, 3.854033434225457*^9}},ExpressionUUID->"124d4aae-33d9-47fb-8fdc-\ 08e2a86bfc23"], Cell[TextData[{ "I.e. going from ", StyleBox["f ", FontSlant->"Italic"], "to", StyleBox[" h ", FontSlant->"Italic"], "and", StyleBox[" h ", FontSlant->"Italic"], "to", StyleBox[" f ", FontSlant->"Italic"], "have exactly the same form, and the Legendre transform is its own inverse!" }], "Subitem", CellChangeTimes->{{3.8539670774147243`*^9, 3.853967228970046*^9}, { 3.853967276162486*^9, 3.853967417795553*^9}, {3.8539674897640333`*^9, 3.853967603757475*^9}, {3.853967642324782*^9, 3.853967678826523*^9}, { 3.854033442902603*^9, 3.8540334511662397`*^9}},ExpressionUUID->"f24d8883-f416-466b-b946-\ deef0ac43cf4"] }, Open ]], Cell["Let\[CloseCurlyQuote]s write a function to do this", "Item", CellChangeTimes->{{3.853968540781848*^9, 3.853968543437251*^9}, { 3.853968727998486*^9, 3.8539687389272823`*^9}},ExpressionUUID->"06885c1c-94ae-48b4-a6e6-\ 200d8f2ef58e"], Cell[CellGroupData[{ Cell[TextData[{ "First, we need to define our new variable\[LineSeparator]m = f\ \[CloseCurlyQuote](x) and invert this equation to get an expression for ", StyleBox["x(m)", FontSlant->"Italic"] }], "Item", CellChangeTimes->{{3.853968540781848*^9, 3.853968543437251*^9}, { 3.853968727998486*^9, 3.853968809992282*^9}},ExpressionUUID->"925203cd-1e89-403b-9096-\ 3df14fd4274f"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"functionInTermsOfDerivative", "[", "f_", "]"}], "[", RowBox[{"x_", ",", "m_"}], "]"}], ":=", RowBox[{ RowBox[{"x", "/.", RowBox[{"First", "[", RowBox[{"Solve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"m", "==", RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}]}], ",", "x", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"m", "\[Element]", "Reals"}]}]}], "]"}], "]"}]}], "/.", RowBox[{ RowBox[{"C", "[", "_", "]"}], ":>", "0"}]}]}]], "Input", CellChangeTimes->{{3.853968822726983*^9, 3.853968900364045*^9}, { 3.8539689427214127`*^9, 3.853968945066187*^9}, {3.8539689887859783`*^9, 3.853969019210823*^9}, 3.854027761272757*^9, 3.854027893541604*^9, { 3.8540280638161077`*^9, 3.8540280681068277`*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"6ec61302-98e5-4aec-8b2a-f59bbfd19ebb"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "And then we can use this to evaluate our Legendre transform as\ \[LineSeparator]", StyleBox["h(m) = x(m) m - f[x(m)]", FontSlant->"Italic"] }], "Item", CellChangeTimes->{{3.853969068680244*^9, 3.853969132043044*^9}},ExpressionUUID->"ba3598fb-9820-4e2f-84b4-\ d043849e63ed"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"naiveLegendreTransform", "[", "f_", "]"}], "[", RowBox[{"x_Symbol", ",", "m_Symbol"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "xInTermsofM", "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"xInTermsofM", "[", "m", "]"}], "=", RowBox[{ RowBox[{"functionInTermsOfDerivative", "[", "f", "]"}], "[", RowBox[{"x", ",", "m"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"xInTermsofM", "[", "m", "]"}], " ", "m"}], " ", "-", " ", RowBox[{"f", "[", RowBox[{"xInTermsofM", "[", "m", "]"}], "]"}]}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"m", "\[Element]", "Reals"}]}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.853969141195456*^9, 3.853969257997559*^9}, { 3.853969584079687*^9, 3.853969588058772*^9}}, CellLabel->"In[10]:=",ExpressionUUID->"8bbf9684-84be-4e33-909f-257facf034cc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"convexLegendre", "[", "m_", "]"}], "=", RowBox[{ RowBox[{"naiveLegendreTransform", "[", "convex", "]"}], "[", RowBox[{"x", ",", "m"}], "]"}]}]], "Input", CellChangeTimes->{{3.853971294002033*^9, 3.8539712994017353`*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"1ffd0f3c-f0e9-4f4e-a8a4-1af68b3cffb6"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "1"}], "+", "m"}]]], "Output", CellChangeTimes->{3.853969491398798*^9, 3.8539695891530333`*^9, 3.8539713019780407`*^9, 3.854019847745702*^9, 3.854027822212208*^9, 3.8540334702022963`*^9}, CellLabel->"Out[11]=",ExpressionUUID->"22f37dec-bf97-4610-a650-b1b8f3a0f539"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"naiveLegendreTransform", "[", "convexLegendre", "]"}], "[", RowBox[{"m", ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.853971278776147*^9, 3.8539713074645853`*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"a3e63bfb-cecc-48dd-a87e-24b7c1bf56c9"], Cell[BoxData[ RowBox[{"x", " ", RowBox[{"Log", "[", "x", "]"}]}]], "Output", CellChangeTimes->{{3.853971280925948*^9, 3.853971307992141*^9}, 3.854019849749722*^9, 3.8540278346043797`*^9}, CellLabel->"Out[22]=",ExpressionUUID->"5e47ae80-3d32-4780-9b29-f03c7bb2f70f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["In-fact we can combine these steps in one Solve function", "Item", CellChangeTimes->{{3.853969276617848*^9, 3.8539692879319973`*^9}},ExpressionUUID->"b20f12ef-baaf-498e-82f9-\ d459f98665da"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"legendreTransform", "[", "f_", "]"}], "[", RowBox[{"x_Symbol", ",", "m_Symbol"}], "]"}], ":=", RowBox[{"First", "[", RowBox[{"h", "/.", " ", RowBox[{"Quiet", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"h", "==", RowBox[{ RowBox[{"x", " ", RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}]}], "-", RowBox[{"f", "[", "x", "]"}]}]}], "&&", RowBox[{"m", "==", RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", "h"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Solve", "::", "incnst"}], ",", RowBox[{"Solve", "::", "ifun"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.853969296812825*^9, 3.853969395766635*^9}, 3.8539694298158703`*^9, {3.853969471304174*^9, 3.853969503823267*^9}, { 3.853969553095245*^9, 3.853969556617228*^9}, 3.854027578198036*^9}, CellLabel->"In[12]:=",ExpressionUUID->"32d1382e-de84-4038-9aae-dada87eedcb1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DynamicModule", "[", RowBox[{ RowBox[{"{", RowBox[{ "function", ",", "legendre", ",", "slope", ",", "intercept", ",", "x", ",", "m"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"function", "[", "x_", "]"}], "=", RowBox[{"convex", "[", "x", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"legendre", "[", "m_", "]"}], "=", RowBox[{ RowBox[{"legendreTransform", "[", "convex", "]"}], "[", RowBox[{"x", ",", "m"}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Manipulate", "[", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"slope", "=", RowBox[{ RowBox[{"function", "'"}], "[", "x0", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"intercept", "=", RowBox[{"-", RowBox[{"legendre", "[", "slope", "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"function", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"function", "[", "\"\\"", "]"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "400"}], ",", RowBox[{"BaseStyle", "\[Rule]", "14"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Blue", ",", "Thick"}], "]"}]}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"PointSize", "[", "0.025", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"x0", ",", RowBox[{"function", "[", "x0", "]"}]}], "}"}], "]"}], ",", RowBox[{"InfiniteLine", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x0", ",", RowBox[{"function", "[", "x0", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "intercept"}], "}"}]}], "}"}], "]"}]}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"legendre", "[", "m", "]"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"-", "3"}], ",", "1"}], "}"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"legendre", "[", "\"\\"", "]"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Red", ",", "Thick"}], "]"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "400"}], ",", RowBox[{"BaseStyle", "\[Rule]", "14"}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"PointSize", "[", "0.025", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"slope", ",", RowBox[{"-", "intercept"}]}], "}"}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"slope", ",", RowBox[{"-", "intercept"}]}], "}"}], ",", RowBox[{"{", RowBox[{"slope", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "850"}]}], "\[IndentingNewLine]", "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x0", ",", "0.5"}], "}"}], ",", SuperscriptBox["10", RowBox[{"-", "6"}]], ",", "1"}], "}"}], ",", RowBox[{"Paneled", "->", "False"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.8539699483231497`*^9, 3.853970000132443*^9}, { 3.853970049796462*^9, 3.8539700985333977`*^9}, {3.853970152280115*^9, 3.853970160333684*^9}, {3.853970203567082*^9, 3.8539703826812983`*^9}, { 3.8539704380587187`*^9, 3.853970497811015*^9}, 3.8539706347342443`*^9, { 3.853970679678815*^9, 3.853970711668729*^9}, {3.85397074686845*^9, 3.8539707575114193`*^9}, {3.853970791222282*^9, 3.853971010968896*^9}, { 3.8539710436912613`*^9, 3.853971052560954*^9}, {3.8539713195801077`*^9, 3.853971345429317*^9}, {3.8539746720024014`*^9, 3.853974674082285*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"e8256cd8-b6f7-4e79-b988-e4ffcfc1fec8"], Cell[BoxData[ DynamicModuleBox[{$CellContext`function$$, $CellContext`legendre$$, \ $CellContext`slope$$ = 0.6866585487566299, $CellContext`intercept$$ = -0.731000269, \ $CellContext`x$$, $CellContext`m$$}, TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`x0$$ = 0.731000269, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`x0$$], 0.5}, Rational[1, 1000000], 1}}, Typeset`size$$ = { 1062.5, {163., 167.99691927539357`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`x0$$ = 0.5}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> ($CellContext`slope$$ = Derivative[ 1][$CellContext`function$$][$CellContext`x0$$]; \ $CellContext`intercept$$ = -$CellContext`legendre$$[$CellContext`slope$$]; GraphicsRow[{ Plot[ $CellContext`function$$[$CellContext`x$$], {$CellContext`x$$, 0, 1}, PlotLabel -> $CellContext`function$$["x"], Frame -> True, ImageSize -> 400, BaseStyle -> 14, PlotStyle -> Directive[Blue, Thick], Epilog -> { PointSize[0.025], Point[{$CellContext`x0$$, $CellContext`function$$[$CellContext`x0$$]}], InfiniteLine[{{$CellContext`x0$$, $CellContext`function$$[$CellContext`x0$$]}, { 0, $CellContext`intercept$$}}]}], Plot[ $CellContext`legendre$$[$CellContext`m$$], {$CellContext`m$$, -3, 1}, PlotLabel -> $CellContext`legendre$$["m"], PlotStyle -> Directive[Red, Thick], Frame -> True, ImageSize -> 400, BaseStyle -> 14, Epilog -> { PointSize[0.025], Point[{$CellContext`slope$$, -$CellContext`intercept$$}], Line[{{$CellContext`slope$$, -$CellContext`intercept$$}, \ {$CellContext`slope$$, 0}}]}]}, ImageSize -> 850]), "Specifications" :> {{{$CellContext`x0$$, 0.5}, Rational[1, 1000000], 1}}, "Options" :> {Paneled -> False}, "DefaultOptions" :> {}], ImageSizeCache->{1088., {205.025390625, 211.974609375}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]], DynamicModuleValues:>{{DownValues[$CellContext`function$$] = {HoldPattern[ $CellContext`function$$[ Pattern[$CellContext`x, Blank[]]]] :> $CellContext`x Log[$CellContext`x]}}, { DownValues[$CellContext`legendre$$] = {HoldPattern[ $CellContext`legendre$$[ Pattern[$CellContext`m$, Blank[]]]] :> E^(-1 + $CellContext`m$)}}}]], "Output", CellChangeTimes->{ 3.8539701087206984`*^9, {3.853970243648511*^9, 3.853970312950787*^9}, 3.85397038361898*^9, {3.853970701441327*^9, 3.85397071192859*^9}, { 3.8539707512076883`*^9, 3.853970758159506*^9}, {3.853970793333967*^9, 3.853970888614703*^9}, {3.853970928723613*^9, 3.8539710112302513`*^9}, { 3.853971045117969*^9, 3.853971052947364*^9}, {3.853971331282694*^9, 3.853971346080714*^9}, 3.8539746743360043`*^9, 3.854019855324181*^9, 3.8540280896879177`*^9, 3.8540334761792793`*^9}, CellLabel->"Out[13]=",ExpressionUUID->"dd1f6013-1647-4dac-ae0c-31ee14b24360"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["This generalizes nicely to higher dimensions", "Item", CellChangeTimes->{{3.853969276617848*^9, 3.8539692879319973`*^9}, { 3.853969514333828*^9, 3.85396952281469*^9}, {3.8539698007904663`*^9, 3.853969802072543*^9}},ExpressionUUID->"4e775c70-d29b-4beb-915d-\ 02ecfc506af6"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"legendreTransform", "[", "f_", "]"}], "[", RowBox[{"x_List", ",", "m_List"}], "]"}], ":=", RowBox[{"First", "[", RowBox[{"h", "/.", " ", RowBox[{"Quiet", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"h", "==", RowBox[{ RowBox[{"x", ".", RowBox[{"Grad", "[", RowBox[{ RowBox[{"f", "@@", "x"}], ",", "x"}], "]"}]}], "-", RowBox[{"f", "@@", "x"}]}]}], "&&", RowBox[{"m", "==", RowBox[{"Grad", "[", RowBox[{ RowBox[{"f", "@@", "x"}], ",", "x"}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"Append", "[", RowBox[{"x", ",", "h"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Solve", "::", "incnst"}], ",", RowBox[{"Solve", "::", "ifun"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.853969296812825*^9, 3.853969395766635*^9}, 3.8539694298158703`*^9, {3.853969471304174*^9, 3.853969503823267*^9}, { 3.853969595704368*^9, 3.853969704771626*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"0ab1c6be-b14b-46c7-a54a-7280e922272f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"kineticEnergy", "[", RowBox[{"v1_", ",", "v2_"}], "]"}], "=", RowBox[{ FractionBox["1", "2"], "m", " ", RowBox[{"(", RowBox[{ SuperscriptBox["v1", "2"], "+", SuperscriptBox["v2", "2"]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"legendreTransform", "[", "kineticEnergy", "]"}], "[", RowBox[{ RowBox[{"{", RowBox[{"v1", ",", "v2"}], "}"}], ",", RowBox[{"{", RowBox[{"p1", ",", "p2"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.853969706357215*^9, 3.8539697600891047`*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"39bb2045-e34e-4fae-95fd-2d8272dfaeee"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["p1", "2"], "+", SuperscriptBox["p2", "2"]}], RowBox[{"2", " ", "m"}]]], "Output", CellChangeTimes->{3.853969760829071*^9, 3.854019860840621*^9, 3.854028181796013*^9, 3.8540334928961687`*^9}, CellLabel->"Out[16]=",ExpressionUUID->"57d0dc6e-d351-40ce-a28d-69ac9c78d45d"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Physical Systems", "Section", CellChangeTimes->{{3.853962551139008*^9, 3.853962563933239*^9}, { 3.853971399249202*^9, 3.853971406618059*^9}},ExpressionUUID->"c3e52510-2267-489b-b2dd-\ 2e409ad6b308"], Cell[CellGroupData[{ Cell["\<\ Like the simple multidimensional example above shows the Lagrangian \ \[LeftRightArrow] Hamiltonian transformations we did early in the class,\ \[LineSeparator]are in-fact common applications of Legendre transforms!\ \>", "Item", CellChangeTimes->{{3.85397139518081*^9, 3.85397149249015*^9}, { 3.853971529927044*^9, 3.853971529928258*^9}},ExpressionUUID->"56efb5b7-ec4f-474a-a57f-\ 69807f56ab51"], Cell["This can be seen by our definition of the canonical momentum", "Subitem", CellChangeTimes->{{3.85397139518081*^9, 3.85397149249015*^9}, { 3.853971530738656*^9, 3.853971555354982*^9}},ExpressionUUID->"ba3ad49d-2ae2-4faf-8ac7-\ 475265479d2e"] }, Open ]], Cell[BoxData[ RowBox[{"\t", TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SubscriptBox[ StyleBox["p", "TI"], StyleBox["i", "TI"]], "\[LongEqual]", FractionBox[ RowBox[{"\[PartialD]", StyleBox["L", "TI"]}], RowBox[{"\[PartialD]", OverscriptBox[ SubscriptBox[ StyleBox["q", "TI"], StyleBox["i", "TI"]], "."]}]]}], TraditionalForm], "errors" -> {}, "input" -> "p_i=\\frac{\\partial \\mathcal{L}}{\\partial \\dot{q_i}}", "state" -> "Boxes"|>, "TeXAssistantTemplate"]}]], "DisplayFormulaNumbered", CellChangeTimes->{{3.853971627115081*^9, 3.853971650747848*^9}},ExpressionUUID->"d8e88530-cf6f-41c3-b323-\ 5bd7e54cf26f"], Cell["\<\ Since the Lagrangian L is a function of the time derivative of the \ generalized coordinates, \[LineSeparator]and we\[CloseCurlyQuote]re using its \ derivative to introduce a new \[OpenCurlyDoubleQuote]variable\ \[CloseCurlyDoubleQuote] in the Hamiltonian\ \>", "Item", CellChangeTimes->{{3.853971654457562*^9, 3.85397174976045*^9}},ExpressionUUID->"e61a84d2-03b4-4786-aaa7-\ ea3a70fba94e"], Cell[CellGroupData[{ Cell["\<\ Let\[CloseCurlyQuote]s see if we can use our general function above to do the \ transformation for the double pendulum we saw in the second lecture\ \>", "Item", CellChangeTimes->{{3.853971654457562*^9, 3.853971813077888*^9}},ExpressionUUID->"1523c2cc-7059-407f-be1e-\ 9b994f0ce392"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"lagrangian", "[", RowBox[{"\[Theta]1Prime_", ",", "\[Theta]2Prime_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "g"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"\[Theta]", "[", "2", "]"}], "[", "t", "]"}], "]"}], " ", RowBox[{"l", "[", "2", "]"}], " ", RowBox[{"m", "[", "2", "]"}]}], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"\[Theta]", "[", "1", "]"}], "[", "t", "]"}], "]"}], " ", RowBox[{"l", "[", "1", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"m", "[", "1", "]"}], "+", RowBox[{"m", "[", "2", "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"m", "[", "1", "]"}], "+", RowBox[{"m", "[", "2", "]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "1", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], "+", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "1", "]"}], "[", "t", "]"}], "-", RowBox[{ RowBox[{"\[Theta]", "[", "2", "]"}], "[", "t", "]"}]}], "]"}], " ", RowBox[{"l", "[", "1", "]"}], " ", RowBox[{"l", "[", "2", "]"}], " ", RowBox[{"m", "[", "2", "]"}], " ", RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "1", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], " ", RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "2", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "2"], " ", RowBox[{"m", "[", "2", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "2", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}]}], ")"}]}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "1", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "->", "\[Theta]1Prime"}], ",", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"\[Theta]", "[", "2", "]"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "->", "\[Theta]2Prime"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "1", "]"}], "[", "t", "]"}], "->", "q1"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "2", "]"}], "[", "t", "]"}], "->", "q2"}]}], "}"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.853971816311159*^9, 3.853971926450288*^9}, { 3.8539727080367804`*^9, 3.853972708132345*^9}, {3.853972845686602*^9, 3.853972848670497*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"00c30372-d28d-4423-b4f4-41764ff5039e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"legendreTransform", "[", "lagrangian", "]"}], "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]1Prime", ",", "\[Theta]2Prime"}], "}"}], ",", RowBox[{"{", RowBox[{"p1", ",", "p2"}], "}"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.853971938798965*^9, 3.8539719603678007`*^9}, { 3.853972754252163*^9, 3.853972766770665*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"734e8094-5d23-42de-89e0-33bc04b33295"], Cell[BoxData[ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["p2", "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", RowBox[{"m", "[", "1", "]"}]}], "+", RowBox[{ SuperscriptBox["p2", "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", RowBox[{"m", "[", "2", "]"}]}], "-", RowBox[{"2", " ", "p1", " ", "p2", " ", RowBox[{"Cos", "[", RowBox[{"q1", "-", "q2"}], "]"}], " ", RowBox[{"l", "[", "1", "]"}], " ", RowBox[{"l", "[", "2", "]"}], " ", RowBox[{"m", "[", "2", "]"}]}], "+", RowBox[{ SuperscriptBox["p1", "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "2"], " ", RowBox[{"m", "[", "2", "]"}]}], "+", RowBox[{"2", " ", "g", " ", RowBox[{"Cos", "[", "q2", "]"}], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "3"], " ", RowBox[{"m", "[", "1", "]"}], " ", SuperscriptBox[ RowBox[{"m", "[", "2", "]"}], "2"]}], "+", RowBox[{"2", " ", "g", " ", RowBox[{"Cos", "[", "q2", "]"}], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "3"], " ", SuperscriptBox[ RowBox[{"m", "[", "2", "]"}], "3"]}], "+", RowBox[{"2", " ", "g", " ", RowBox[{"Cos", "[", "q1", "]"}], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "3"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "2"], " ", RowBox[{"m", "[", "2", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"m", "[", "1", "]"}], "+", RowBox[{"m", "[", "2", "]"}]}], ")"}], "2"]}], "-", RowBox[{"2", " ", "g", " ", SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"q1", "-", "q2"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"m", "[", "2", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "q2", "]"}], " ", RowBox[{"l", "[", "2", "]"}], " ", RowBox[{"m", "[", "2", "]"}]}], "+", RowBox[{ RowBox[{"Cos", "[", "q1", "]"}], " ", RowBox[{"l", "[", "1", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"m", "[", "1", "]"}], "+", RowBox[{"m", "[", "2", "]"}]}], ")"}]}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"l", "[", "1", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"l", "[", "2", "]"}], "2"], " ", RowBox[{"m", "[", "2", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"m", "[", "1", "]"}]}], "-", RowBox[{"m", "[", "2", "]"}], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q1", "-", "q2"}], ")"}]}], "]"}], " ", RowBox[{"m", "[", "2", "]"}]}]}], ")"}]}], ")"}]}], ")"}]}]], "Output", CellChangeTimes->{ 3.853971962489153*^9, 3.853972711808099*^9, {3.853972757034609*^9, 3.8539727673538647`*^9}, 3.8539728561488533`*^9, 3.854019866052106*^9, 3.854028286739007*^9}, CellLabel->"Out[38]=",ExpressionUUID->"358dc02d-d4ff-4e66-8f66-5051a0a1a03a"] }, Open ]], Cell["Which is indeed the expression we derived in lecture 2!", "Subitem", CellChangeTimes->{{3.853972775073246*^9, 3.853972806966401*^9}},ExpressionUUID->"36bcef30-a0c8-4f83-8e7a-\ 41f85ea5b4f4"], Cell[TextData[{ StyleBox["Note: ", FontWeight->"Bold"], "above we defined the Lagrangian as only a function of the derivatives of \ the generalized coordinates.\[LineSeparator]This is because the generalized \ coordinates themselves are actually \[OpenCurlyDoubleQuote]spectator\ \[CloseCurlyDoubleQuote] variables in the transformation. \ \[LineSeparator]In-fact while the kinetic energy is a function of the \ derivatives/momenta respectively, the potential energy is a function of the \ generalized coordinates.\[LineSeparator]Hence the mysterious \ \[OpenCurlyDoubleQuote]flipped\[CloseCurlyDoubleQuote] sign in the \ definitions\[LineSeparator]", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["L", "TI"], RowBox[{"(", RowBox[{ StyleBox["q", "TI"], ",", OverscriptBox[ StyleBox["q", "TI"], "."]}], ")"}], "\[LongEqual]", StyleBox["T", "TI"], RowBox[{"(", OverscriptBox[ StyleBox["q", "TI"], "."], ")"}], "-", StyleBox["V", "TI"], RowBox[{"(", StyleBox["q", "TI"], ")"}], ",", StyleBox["H", "TI"], RowBox[{"(", RowBox[{ StyleBox["q", "TI"], ",", StyleBox["p", "TI"]}], ")"}], "\[LongEqual]", StyleBox["T", "TI"], RowBox[{"(", StyleBox["p", "TI"], ")"}], "+", StyleBox["V", "TI"], RowBox[{"(", StyleBox["q", "TI"], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\mathcal{L}(q,\\dot{q}) = T(\\dot{q}) - V(q), \\mathcal{H}(q,p) = T(p) \ + V(q)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cc6a15ef-20ee-4b09-9d20-797dba51fc65"], " is there to ensure ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["H", "TI"], "\[LongEqual]", StyleBox["p", "TI"], OverscriptBox[ StyleBox["q", "TI"], "."], "-", StyleBox["L", "TI"]}], TraditionalForm], "errors" -> {}, "input" -> "\\mathcal{H} = p \\dot{q} - \\mathcal{L}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ca843249-7952-4046-b538-637dd63623dc"], " (which again has the same form as ", StyleBox["h(m) = x(m) m - f[x(m)]", FontSlant->"Italic"], "!) " }], "Subitem", CellChangeTimes->{{3.853972775073246*^9, 3.8539729338374043`*^9}, { 3.8539729678763638`*^9, 3.853973063233245*^9}, {3.853973119454833*^9, 3.853973123546752*^9}, {3.853973163439191*^9, 3.853973173079365*^9}, { 3.8540335212022676`*^9, 3.854033521449109*^9}, {3.854033617500893*^9, 3.85403362338246*^9}},ExpressionUUID->"98a83e0c-d7c9-498c-b069-\ 41153b4a18ad"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Of-course the Hamiltonian \[LeftRightArrow] Lagrangian transformation is also \ a Legendre transform, so let\[CloseCurlyQuote]s look at one more example:\ \>", "Item", CellChangeTimes->{{3.8539731767459707`*^9, 3.853973226451775*^9}},ExpressionUUID->"9f5cff2f-ba17-486e-87f9-\ d9087bc8c08d"], Cell[CellGroupData[{ Cell[TextData[{ "Consider the Hamiltonian for a relativistic particle in free space\ \[LineSeparator]", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["H", "TI"], RowBox[{"(", StyleBox["p", "TI"], ")"}], "\[LongEqual]", SqrtBox[ RowBox[{ SuperscriptBox[ StyleBox["p", "TI"], "2"], "+", SuperscriptBox[ StyleBox["m", "TI"], "2"]}]]}], TraditionalForm], "errors" -> {}, "input" -> "\\mathcal{H}(p) = \\sqrt{p^2 + m^2}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "977b6c20-37c8-470b-852d-9e946800df47"] }], "Subitem", CellChangeTimes->{{3.8539731767459707`*^9, 3.8539732544361486`*^9}},ExpressionUUID->"a5e3193e-a024-4579-9cc4-\ 77dbd5362d7c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"m", "=", "1"}], "}"}], ",", RowBox[{"Plot", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["p", "2"], "+", SuperscriptBox["m", "2"]}]], ",", RowBox[{"{", RowBox[{"p", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.853973282169167*^9, 3.853973319962974*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"7ec2794f-e09d-4977-9d24-30e42893737b"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw113k0VdEaAHBDIjMpyazcopIkkuFLiVIyNymSDM+QMiaVsUIqISHzUGS4 5MqYnSnTRSGKriTKfM91uaHp7dZ674+zzvqt9a1z9jpn72+Qv+Bp4cjBxsb2 G1//7iqwfurvXzqaGEW2aRks8FzeFLG8QkdWhdFZA2ksKCnbRWIu0hHNSpxX JJUFaltNLnybpiNO1h2D8CQWaIqED1IH6KipvcHZPZYF+78y2pPIdPSzj9vz YDgLLO50Fuy2oyOzjuBafhcW+HeHezjXzSG7DBNNQVUW9PXxTdXbzyIOWX15 SuUiSL/2FNOUmkHOQhHW9KOLUO7WxCVEm0JPLnRYsb4uwPnoXcTH0Ekk6V7v dNJvAZZiAyMQTKDLXX8EVNcuQLbgsETil2/IMdemzL6ACSnGu7x6I8eR6Moo /cIRJoS6219VOjKGXKS4A8iMeQjkfO7vNTuK7uY4ltIS5sE+uHtzf94X9Gen HMXCcB4evRpPTHEdQUKW8hn3fjKg+vNW/kKFYURShLc2ZAZsEt5/wCptCL0w 7fom7cGAF8oRrqNfPyBDttmIIWUGfG4uldPQ6Ee5paTTBXQCxrc/UkMvexFZ JPnY1CsCRG7ma6iwv0OCbjYMqfsEbNegb89lUlG9c/G8vzMBTipBQVU0Kipe VHelORGQThLq6WyhImcpMD+ILSq+05/1hIr4TIQuCTsS8OPHpXojAyqyPrP4 lXyBgIaqOeup+A4UmHilg9OWgFO6czd3arSjSYmrn/5aERBmMPu26moLMlp8 GHHUAMcfnjFVd2hBLieKIroPEsBmMt1VbNKClNdz/rDEvm49Sc1WaEHBs+Ey tgcI8HMab71HfYPuL8wn+e8nwCWC9tpe7g2K5/1ujHQIOEbtLFnT2oT6qwQG MvcQEPWWujP8RRNSdBgr2Y3d2tdR/CelCa27I7fSrE7AIVpbIfNKE/J4ODM4 vZsAvbnmPJpkE6KotPXrqBGgKlyXUerZiPqmFBFThYB1VsUxp8UbUFSF8b3y rQS8IN2tPsTZgBxNw/pssM2Wncd20etR8vuEGxzYUWnye3lb6tHdVS6LZlsI +DMR/7narx41TV64Pq9IwLcbgSpS/a/R42TFWaNNBFwyfZj4SgmheZmRMB0Z AvIWjGcesSOUWXtAlC5NwGjSqv2XPtYh06d6nFnYJ8b8v8tE1qHvlzcIrMGG AFuN4IlXSGNh5vWQJAHC2dv6DjyrRT2G1KI4CbxeVrNQ6+Zq5MVKeG2yjoD7 z7Ma9Jar0NZRYg83tpttkG95ZxUSEWPK1osRsPnN3qEsvyoUvJ7HQgM74VHB 0xutlWifmMRO0loCrqk/1N3tXoESI4feSYrg9Ux4EPn7K1DIimf8J2ECdqcY Z8utq0C7ormpqdgznKvWCNa9RPxXrZPlsW17/fomhF4iIVk2iooQAQe8zrql lVHQdz3BEVsBAmRIWjLrIijoaNaBRRL2z4/r3t09S0FcpzuC6PwEUPS7NQK4 KKitYmYhBJskcoDD6mQZCvzAsCvkI4C3ZEvSmp+lSNJyRUecl4DcofF7k+HF SJM9W/UQNwGD19enp+4uRtO/t5TKYAvKGJWYjxahHJJL4tJqvN/O5/VUQRGa d1J8UoRtOO4qHrVSgH58/XJFCntijp6hfDkfSXfVOAlwESAVI/diWCYfpRrs s5pdhffDLvPG2M48REil5XViV3q/GF9RzkMFPrK3H2BHLvkod4w/RS9Tj4ht wFbmWClzs8lBvLeVgnQ48ffJVm6W5c1B9uf5PilgxxrY9PdWZqMx0mL6GuyV 27VL2uuzkaHAxNkPHAR08AXp8r/LREUZNwuuYbMVkY+/DspEGd69+y9iqx8f sfNRyUTecXq6x7FTYvRDP93NQBInbd02YX9Q5rl/+l4aWokkUnrYCdjv8Z+S +qlU1PhosxvCziO39ygdTkUZdoEZhdgB6vfEVzhS0IeehP0R2Bv1RDOTryah NWsKThhghwZ7N3L0J6JUAUlbdezphr5x192JiGpWSd2MXWv0WFl7LgHFQtDn 1djnzKUoQw7xSLPx3FA3G94vzEUt36Y4pHXL3aYR+3pCNxJUjENqkUV6Fdgp Q6Ed+t8eov6+NpUM7O03z5oPGT5ETm1PtR9h18hpDPg8i0GVp6sKorApHT3N pu/uowOnQsv9sPuEb78Ljb2H3mjtM/XAZlpr0coto9HTVOVjF7HVRtIXJPsj 0WBYhacltrmiJZvp4wg0CNYJR7Evu67mDz11B0UzdsgZYJMX3DdNDIYjqTOx 5zSwu7TkdkqmhKHfwrIiqthzN3v3HT8XihJfTWxRxhZoum0YIhOCvnfSMzdj nxL1yXFBQehFnnqQLPbjlMGaLv0bKKKoAm3E7ifp96o3XUP16gEO67HFSp9N JRteRSEPAlxFsS21BTnY23xROXdVnyB2bLOPhPNRbyQyopnFh/3WdEi1s/My Erdi9fBgy1DCYpwy3JFg4oLTauwnrWZILdcZ8XxUs12FvYEmPfcn/wL6olNa yYG97et7rYRzNkh71NOPHZvEf/mxirM5ujVy6TEbdnDf1j7JRl20YFQs+c/b hWiuXDs2wx15Fc5/7meEpgsvHYbVnnMm/0yYbpn39DoBHNvoP/85MM6w3U39 PPQfVhX4974/NwOepO90hCxKaQjnv+e7Frr3KruClaX3aS5szhOfdblJnpDF 4RvPjd0oF3knVdgLuJNeqvFihycoXNa87wPUcU11AWxD/tpT7/j8gb10KVEY mzvUWt8tMgCCa5bOi2G3/phT4uK+DtN1mtEbsKM8IkTTw29CiUf5Rmnsp4yY G1IhwcDlfYVfAdvZWdnp5Z9QIPFmS+zAPqzgfyZMNxzMusT37MbeSms8bnb9 FjSbtJVpYU9ZnNOcWr4DK3Ejg0bY7QLPt1XsjQQ3y0NhptgFrSzZcP8ouIPG 7p/EdteL4ZFZjIaP8K7bBdtk+dOvqd33YcNaaS4vbBWKEqPC6wGsFclMDcRe iv8ys3UpBtbWHl96gF3FG/i+wTcOKkO3Wb3CztixrpesEA8OkqJl7di3zchv U7rjIa3o5e0P2FYJXzv8lBLAd0U9evHf/5E/1qBMS4SM/FGhPfh8Dhh8Q+JR SRDT+kjMELvOOfjVKs1kuGX9695J7LtFlMrhmCeQ9ZI2HIhN0pImxxqkwZhV 81IbNv/ZisIgRhoMT3zPGsZm3jR/7p6WDjWjJfVM7POjDRabrmeAXYvKOVmc j1S2/jD5/T4TfB1y+a5jt5XZGZRG5gAnrdzgKM5/Os3bG7eM5IBLmdleZ+yS /mX9NI1cCPK8nBGGnbAcB3e/5kLGsHrXK+yL0LrPUfcZFJ6+m66J8+3fdtVd Eox8cLomJa6P87fXp9/kB0bPwd6/0/wi9rfZdpXVac8h8ecAWwQ2VdhxO9O4 ABxcZ2veYiefSNrSmVMIq70acp1xPdgzyi4TcooMLWlahwpwPVGpPslQzSdD Oi17sgebFFvUNLJMhqBvaswVbL7Mwj0ZJiUw7F+25xgPAb/MTn36O1cCvd8n /ZnYtBKyEtr1AtJsLs1Z4fqVftm2SbeCAoLpLtEOuB6mnF1T/OgzBXoW5bsf Yycepjye5S6H6V1xflTsGDlet9RT5SAwcI+pIYjPz9tykd/L5RBc6JsrjOut vaqAXa1OBeiU3h7vx/V4E1GzvK+hCkyiiMpiXO+vdx4MX5itAp/m+d8L2P3P OwSLJarBYjqzUhv3C1GOQ5vkr1RDd8Hc/XZsYnDFhFuuBnx7H9XNrsf7o1kr q/dGLXi8SdpsjPuPM08qjN21ENx+cY12Bvc3lKvwXtERgXdKRgcZW/BEi93n GAQfPqWpcMkSUC884GMxgaDNmtuyFFvsYKBpytHXkPe2WkxIHueLyuSA0JXX cL1ZwXcE909Hsj92Hj/VAHU8Hd6DSng9t4qdmj0aAKSOSOko4+/jEvZXO6wB uvJ81NOwJ3bs2KVU3ACEPaXMYRsBEZXB8ZyrGsHjx+IMczvOB51bbCrJjTDT 6nBQSZUAoyXfCXnuZlBkHT/0XQP3jyainIvlLeDrblVcfAj3U/ZrGMttLfAx uTV6kyGup75sn//QWkD6hE97IrZr2lw1z+pWmDSycAg3wvH0di+pE62gRz7E e/4Ijn8YNnqQ1Qq0pTFFJRMc379QH6vRDsrPK05zWBPwwG4gWLWCCg0/kru7 cP/dclxawEz0HYjP+q7SfEDArPy6mz3JveDuffwWrYYAX59t9g/W90Nmh16f 2Cw+v5+ELZxaPwCF/QTJbisDzgfofOc+NgQzF3fosDsyoHGbZlQj1zDsfCBE O1zIANKa2omcwyNwT2idUy+TAdK1boe4Ir7ArTGLAVe9eWBb4cj3Gh0F6oxT pEj8PPwwf2XbrDgG4ZN+dO2JeRhSt5NUDB8Hi53a/J1GTLh8UlhE4dM3UCk8 Ch35TJCIHzu1SnoCbHo7aBU8C1Bsk/GMeXUS2CejhvW9F+CkbtDh1ldTcOmm cOP0xwUotfVQ2PdrGg42h4dc1F+EJd6DnFXWs7D3+5bqLMoiWLzT1pBOnAOH tX4/uxRYwKvNV1+bOgeWA1cDXm9mQX3O4NGz2XOg56K25QWJBapXA+yfFM9B eOVjkQRlFgjKVkRLNM/B831UufNqLGhzV/u6bn4OGsII6d/6eN7kUYoRPEYH zVQ3nTP2LFi6srSx2JwOxj9Vk8wdWEAeask1OUmHc/7ym484skCG7FQTfYEO tlstm/b+hwW/rHO+8QbQwftl7vaNV1hQkS2ry/2UDqMyPrHjwSy4JEBveVpA hxU2oH4OZQHJv87CsJQO/ZPeuwfxfBtvfM7lVi0dln9MR3ZHsMCLkRzH2UsH 0a431rUxLFC2cZXJ/kCHa4lxyxV4Pv7SpJV/YJgOe/nc2sviWWCW+KEuZJIO 7315mQWJLODhyDsiT6fDg5pq47xkFiA3/77XC3QwP2TYnZPCAr/3hnbnV+jQ q58ZnInn8//N7/D/+f2/lEABmg== "]]}, Annotation[#, "Charting`Private`Tag$12914#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 1.000000011847167}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-1, 1}, {1.0000000118471648`, 1.4142135335115942`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.853973308566886*^9, 3.853973320213873*^9}, 3.854019870706869*^9}, CellLabel->"Out[27]=",ExpressionUUID->"a6f59bd5-9fda-4f2c-ac6d-65d4c48104a7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FunctionConvexity", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["p", "2"], "+", SuperscriptBox["m", "2"]}]], ",", "p"}], "]"}]], "Input", CellChangeTimes->{{3.85397333489046*^9, 3.853973338842585*^9}}, CellLabel->"In[28]:=",ExpressionUUID->"f94000ee-ecc6-4325-a14a-18e89d481ab1"], Cell[BoxData[ TemplateBox[{"1", RowBox[{"m", "\[Element]", TemplateBox[{}, "Reals"]}]}, "ConditionalExpression"]], "Output", CellChangeTimes->{3.8539733393852262`*^9, 3.854019872530263*^9}, CellLabel->"Out[28]=",ExpressionUUID->"77cd6e74-53cd-494e-a4d8-1c129593622f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["The Hamiltonian is indeed convex for m>0", "Subitem", CellChangeTimes->{{3.853973278517438*^9, 3.853973279928855*^9}, { 3.853973324544299*^9, 3.853973326146027*^9}, {3.853973363113101*^9, 3.853973382851383*^9}},ExpressionUUID->"03408946-06aa-4e55-aacc-\ f02ca5b92ce3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"legendreTransform", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["#", "2"], "+", SuperscriptBox["m", "2"]}]], "&"}], "]"}], "[", RowBox[{"p", ",", "v"}], "]"}], ",", RowBox[{ RowBox[{"{", RowBox[{"m", ",", "v"}], "}"}], "\[Element]", "Reals"}]}], "]"}]], "Input", CellLabel->"In[29]:=",ExpressionUUID->"7c5c5f36-6554-4940-a71c-921a6c240e96"], Cell[BoxData[ TemplateBox[{ "Solve", "nongen", "\"There may be values of the parameters for which some or all solutions \ are not valid.\"", 2, 29, 1, 31261813658257585567, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.853973968934972*^9, 3.854019875868402*^9}, CellLabel-> "During evaluation of \ In[29]:=",ExpressionUUID->"ef5f63e1-6ec9-4c5a-a077-b24465d6dc07"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"m", " ", SuperscriptBox["v", "2"]}], SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]]}], "-", RowBox[{ SqrtBox[ FractionBox["1", RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]], " ", RowBox[{"Abs", "[", "m", "]"}]}]}]], "Output", CellChangeTimes->{{3.853973919156808*^9, 3.85397393532929*^9}, 3.8539739689470787`*^9, 3.854019876308498*^9}, CellLabel->"Out[29]=",ExpressionUUID->"faca8a94-23c8-4840-8bde-16c81654cdb2"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Hmm, our function seems to struggle a bit", "Item", CellChangeTimes->{{3.853973970095043*^9, 3.853973987572448*^9}},ExpressionUUID->"150121aa-b3f1-4b11-b72a-\ 072e71d570bc"], Cell["So let\[CloseCurlyQuote]s do this one by hand", "Subitem", CellChangeTimes->{{3.853973970095043*^9, 3.8539740010147333`*^9}},ExpressionUUID->"f3c09403-b6bc-4618-b2eb-\ a5335ab53c34"], Cell[CellGroupData[{ Cell["\<\ First, we define the velocity as the derivative of our Hamiltonian\ \>", "Subitem", CellChangeTimes->{{3.853973970095043*^9, 3.853974025208372*^9}, { 3.853974136529565*^9, 3.853974170825589*^9}},ExpressionUUID->"2fe941f5-9716-4282-8f65-\ 6b68cac4547c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "==", RowBox[{"D", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["p", "2"], "+", SuperscriptBox["m", "2"]}]], ",", "p"}], "]"}]}]], "Input", CellChangeTimes->{{3.853974164563264*^9, 3.853974167364893*^9}}, CellLabel-> "In[261]:=",ExpressionUUID->"1a587283-29b4-4280-a41d-03b38ee900bc"], Cell[BoxData[ RowBox[{"v", "\[Equal]", FractionBox["p", SqrtBox[ RowBox[{ SuperscriptBox["m", "2"], "+", SuperscriptBox["p", "2"]}]]]}]], "Output", CellChangeTimes->{3.853974167691082*^9}, CellLabel-> "Out[261]=",ExpressionUUID->"72ce877f-0fd2-4dcd-9200-bd1ff2eb6c10"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["And re-arrange for the momentum", "Subitem", CellChangeTimes->{{3.85397417376716*^9, 3.8539741878592377`*^9}},ExpressionUUID->"35d26b33-f2e6-4648-a007-\ a0050bdc91d0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{"v", "==", FractionBox["p", SqrtBox[ RowBox[{ SuperscriptBox["m", "2"], "+", SuperscriptBox["p", "2"]}]]]}], ",", "p"}], "]"}]], "Input", CellLabel-> "In[262]:=",ExpressionUUID->"5646176c-1c6d-496d-8b66-48ae71acb9b5"], Cell[BoxData[ TemplateBox[{ "Solve", "nongen", "\"There may be values of the parameters for which some or all solutions \ are not valid.\"", 2, 262, 47, 31261415990195106410, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.853974191951358*^9}, CellLabel-> "During evaluation of \ In[262]:=",ExpressionUUID->"9d82cad3-753b-4a09-9a93-a44740aa0e87"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"p", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{"m", " ", "v"}], SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"p", "\[Rule]", FractionBox[ RowBox[{"m", " ", "v"}], SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.853974191963575*^9}, CellLabel-> "Out[262]=",ExpressionUUID->"3408154f-e139-43d0-9f4a-33530d717db6"] }, Open ]] }, Open ]] }, Open ]], Cell["\<\ Aha, here\[CloseCurlyQuote]s the culprit! \[LineSeparator]Two branches - we\ \[CloseCurlyQuote]ll pick the positive one\ \>", "Item", CellChangeTimes->{{3.853974195337043*^9, 3.8539742239798117`*^9}},ExpressionUUID->"be6e6777-e23b-4447-8919-\ d2a8a9cf688c"], Cell[CellGroupData[{ Cell["We now use our definition for the Legendre transform", "Item", CellChangeTimes->{{3.8539742688228817`*^9, 3.8539742785235233`*^9}},ExpressionUUID->"5e499ca4-5678-4562-8bd1-\ 3e90ef4ec8fe"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"p", "=", FractionBox[ RowBox[{"m", " ", "v"}], SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ RowBox[{"p", " ", "v"}], " ", "-", " ", SqrtBox[ RowBox[{ SuperscriptBox["m", "2"], "+", SuperscriptBox["p", "2"]}]]}], ",", RowBox[{"{", RowBox[{ RowBox[{"m", ">", "0"}], ",", RowBox[{ SuperscriptBox["v", "2"], "<", "1"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.8539742323401957`*^9, 3.8539742569958*^9}}, CellLabel->"In[30]:=",ExpressionUUID->"7c1f000d-e209-4dc0-a7aa-db555b30a166"], Cell[BoxData[ RowBox[{ RowBox[{"-", "m"}], " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]], "Output", CellChangeTimes->{3.8539742586351624`*^9, 3.854019893291403*^9}, CellLabel->"Out[30]=",ExpressionUUID->"1672386d-27de-4651-bf6e-80bd1d931d91"] }, Open ]] }, Open ]], Cell["Which indeed is the Lagrangian for a relativistic particle!", "Item", CellChangeTimes->{{3.853974264701145*^9, 3.853974265371031*^9}, { 3.8539742987392673`*^9, 3.853974316843706*^9}, {3.853974396453244*^9, 3.853974396454739*^9}},ExpressionUUID->"e32bab96-584e-435e-838c-\ 13799e73f05a"] }, Open ]] }, Open ]] }, WindowSize->{720., 850.5}, WindowMargins->{{Automatic, 0}, {0, Automatic}}, PrivateNotebookOptions->{"CloudPublishPath"->"/Published/3029-SP22__L06__\ legendre-transforms__02-16-22.nb"}, Magnification:>1.25 Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"3c98a82d-ffe1-43ba-90f9-dc155dbc070c" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 483, 7, 106, "Subtitle",ExpressionUUID->"958f9c1d-ad79-42c0-9cd1-04c275b85126"], Cell[CellGroupData[{ Cell[1066, 31, 392, 6, 85, "Chapter",ExpressionUUID->"90fb45e3-9a6d-44ac-8c50-7271e7a354a1"], Cell[CellGroupData[{ Cell[1483, 41, 481, 9, 92, "Item",ExpressionUUID->"7ed0fc45-744e-4e58-9b44-ca4b9b46df9f"], Cell[CellGroupData[{ Cell[1989, 54, 339, 5, 34, "Subitem",ExpressionUUID->"ff19d89c-11b8-4d4a-9865-1cf5ab1f2bec"], Cell[2331, 61, 430, 9, 31, "Subsubitem",ExpressionUUID->"e6b9142c-9564-43c2-b4cf-bd0cc6617139"], Cell[2764, 72, 460, 9, 31, "Subsubitem",ExpressionUUID->"03b82fb9-68ac-4d27-a9d5-dab79560f475"], Cell[3227, 83, 411, 8, 31, "Subsubitem",ExpressionUUID->"706be27e-4db0-42e8-9590-de19bbd28323"], Cell[3641, 93, 310, 5, 31, "Subsubitem",ExpressionUUID->"305de2c2-8b63-4695-9336-b04d97a30c22"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[4000, 104, 418, 8, 66, "Item",ExpressionUUID->"0fd63084-ea24-4637-b9d4-a1ffb9bb02c6"], Cell[4421, 114, 467, 8, 34, "Subitem",ExpressionUUID->"77f4bb3c-2b98-4c76-ae97-8a560e330214"], Cell[4891, 124, 699, 16, 38, "Subitem",ExpressionUUID->"a16a81dd-4908-434f-a687-078844a6642d"], Cell[5593, 142, 446, 8, 34, "Subitem",ExpressionUUID->"1b7e5d56-146b-4440-9887-672541eb71df"], Cell[6042, 152, 482, 9, 34, "Subitem",ExpressionUUID->"0399ed5a-cc6c-42ab-84be-c2be41347e6a"], Cell[6527, 163, 494, 9, 34, "Subitem",ExpressionUUID->"3996be77-55f5-4136-bb4d-46bb822eeb04"], Cell[7024, 174, 1487, 24, 362, "Subitem",ExpressionUUID->"22488823-34dc-483d-8304-931cb539bef2"] }, Open ]], Cell[CellGroupData[{ Cell[8548, 203, 434, 9, 66, "Item",ExpressionUUID->"bf2451c2-6806-4cf5-b709-f919598536f3"], Cell[8985, 214, 477, 9, 59, "Subitem",ExpressionUUID->"17f52756-26d1-4f46-a7f9-befd7f51a586"] }, Open ]], Cell[CellGroupData[{ Cell[9499, 228, 163, 3, 83, "Section",ExpressionUUID->"b5603d8e-d5e9-4e6d-a5bd-1e5552478b83"], Cell[9665, 233, 269, 6, 66, "Item",ExpressionUUID->"2bc40ec0-d34a-42d5-88cc-c9b732ecb312"], Cell[CellGroupData[{ Cell[9959, 243, 228, 4, 40, "Item",ExpressionUUID->"24c01a6f-7bee-4da3-bea7-a0893677d276"], Cell[10190, 249, 2098, 60, 160, "Subitem",ExpressionUUID->"bf60c70e-6e97-4eb1-969d-f3a000f0195a"], Cell[CellGroupData[{ Cell[12313, 313, 234, 4, 34, "Subitem",ExpressionUUID->"d2c0b190-fc75-40b8-9266-8bd6435ebfe1"], Cell[12550, 319, 8764, 191, 556, "Output",ExpressionUUID->"a2ead71e-2ec5-4b4a-9224-769ed83b00ba"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[21363, 516, 373, 9, 92, "Item",ExpressionUUID->"4a515486-8936-4d11-b126-a5553643b5ef"], Cell[CellGroupData[{ Cell[21761, 529, 247, 6, 59, "Subitem",ExpressionUUID->"c6168a29-5d7e-49ab-8dc4-fe7613783382"], Cell[22011, 537, 746, 18, 77, "Subsubitem",ExpressionUUID->"9f5357bf-88fe-404e-a8fd-a0e97c70f451"], Cell[22760, 557, 1158, 29, 77, "Subsubitem",ExpressionUUID->"34c834d9-3e4d-43bd-822d-b484cd194b19"], Cell[23921, 588, 3761, 102, 105, "Subsubitem",ExpressionUUID->"bde76c9d-8677-483b-a42f-5a4f6cab6277"], Cell[27685, 692, 77825, 1290, 317, "Subsubitem",ExpressionUUID->"e723510c-7110-43b1-94d7-639ccf665cd2"], Cell[105513, 1984, 76558, 1269, 286, "Subsubitem",ExpressionUUID->"c6eb453a-3485-46d3-9144-2f20f0f22c49"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[182120, 3259, 178, 3, 68, "Subsection",ExpressionUUID->"741695c9-85b3-4b75-8c6d-7736778a6485"], Cell[182301, 3264, 691, 18, 68, "Item",ExpressionUUID->"7768fa9b-a8e8-42c8-930b-7cea9c7648ce"], Cell[182995, 3284, 361, 7, 66, "Item",ExpressionUUID->"a1ca6af6-3e75-475f-9bd1-665bc6b2824b"], Cell[CellGroupData[{ Cell[183381, 3295, 372, 7, 66, "Item",ExpressionUUID->"f2c8ae61-5ad5-46e9-a31c-f9186673da3e"], Cell[183756, 3304, 435, 8, 84, "Subitem",ExpressionUUID->"b17a0696-5f56-445b-b8c0-e426d6073dc2"], Cell[CellGroupData[{ Cell[184216, 3316, 335, 5, 34, "Subitem",ExpressionUUID->"d9ff8a5b-a8eb-43f0-9ca8-b11483c06155"], Cell[CellGroupData[{ Cell[184576, 3325, 1351, 34, 164, "Input",ExpressionUUID->"d70efb9d-a927-4b7c-82a8-083545ed53c6"], Cell[185930, 3361, 99636, 1638, 516, "Output",ExpressionUUID->"0c6443ef-5d26-4861-be3f-d63109ff86fb"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[285627, 5006, 185, 3, 40, "Item",ExpressionUUID->"a50cd067-4879-4876-9054-a4d33a052ee8"], Cell[CellGroupData[{ Cell[285837, 5013, 1536, 42, 189, "Input",ExpressionUUID->"3f695c09-f6f2-41e1-996e-d5dcf7d5cfaf"], Cell[287376, 5057, 145211, 2385, 429, "Output",ExpressionUUID->"8c721653-5a5c-43dc-9f75-6d735afb289d"] }, Open ]] }, Open ]], Cell[432614, 7446, 494, 9, 118, "Item",ExpressionUUID->"5d95e7db-3773-46aa-9048-e2c2b70a2683"], Cell[433111, 7457, 189, 3, 40, "Item",ExpressionUUID->"cd7cb819-5715-42a2-b169-52c16729cbf6"], Cell[CellGroupData[{ Cell[433325, 7464, 292, 5, 40, "Item",ExpressionUUID->"23dbe14b-461c-4cf7-99d9-8787cbf8beaa"], Cell[433620, 7471, 275, 6, 59, "Subitem",ExpressionUUID->"927b2b97-8651-4250-89b6-20b762d574bf"], Cell[CellGroupData[{ Cell[433920, 7481, 348, 7, 59, "Subitem",ExpressionUUID->"eecb161d-d8d9-44d1-8539-c6e3bf71ce7b"], Cell[CellGroupData[{ Cell[434293, 7492, 2365, 64, 366, "Input",ExpressionUUID->"73ac019b-ec9f-479c-b12b-fa137614521b"], Cell[436661, 7558, 234849, 3856, 266, "Output",ExpressionUUID->"7c73da6d-9b05-470b-aa27-02d2ea589516"] }, Open ]] }, Open ]] }, Open ]], Cell[671549, 11419, 313, 7, 66, "Item",ExpressionUUID->"735d84ed-b78d-49b7-bc47-8dcf5737afdc"], Cell[CellGroupData[{ Cell[671887, 11430, 353, 7, 92, "Item",ExpressionUUID->"296696f9-af7f-4c8a-b969-749916366a0e"], Cell[672243, 11439, 190, 3, 34, "Subitem",ExpressionUUID->"d522ba63-f87d-4d45-adbc-73b1d57f7378"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[672494, 11449, 169, 3, 83, "Section",ExpressionUUID->"b4da4253-efde-4519-bb88-52b1f8d51157"], Cell[CellGroupData[{ Cell[672688, 11456, 365, 8, 92, "Item",ExpressionUUID->"b90d0a04-61d7-4da1-a092-c55332f61509"], Cell[CellGroupData[{ Cell[673078, 11468, 281, 6, 36, "Input",ExpressionUUID->"32e4b580-8b39-47c3-ac6e-1eca74e60ebe"], Cell[673362, 11476, 271, 5, 41, "Output",ExpressionUUID->"425ed651-a80a-46ff-b7e6-b5e2ce68ab9e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[673682, 11487, 233, 6, 66, "Item",ExpressionUUID->"c150c1ca-9467-4f52-adcb-762c6767c0d0"], Cell[CellGroupData[{ Cell[673940, 11497, 322, 6, 36, "Input",ExpressionUUID->"c50322cf-12a1-4d5e-a00f-9ddc65cadc0f"], Cell[674265, 11505, 206, 3, 41, "Output",ExpressionUUID->"9d3150e9-a2d6-479e-96ac-125c03ab0dad"] }, Open ]], Cell[CellGroupData[{ Cell[674508, 11513, 276, 6, 59, "Subitem",ExpressionUUID->"3143222a-b214-4c9e-b852-7a8f760d747a"], Cell[CellGroupData[{ Cell[674809, 11523, 375, 10, 36, "Input",ExpressionUUID->"c3439b4d-e106-4c9e-a339-fd6b61dafa47"], Cell[675187, 11535, 196, 3, 41, "Output",ExpressionUUID->"0d3a77f2-7b37-4f40-92b2-bb74a590c4be"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[675444, 11545, 193, 3, 40, "Item",ExpressionUUID->"22e6490a-8df6-460d-aca4-de1ab49cc2f6"], Cell[CellGroupData[{ Cell[675662, 11552, 364, 8, 36, "Input",ExpressionUUID->"b64d120b-b556-4931-8e40-75defdb41e00"], Cell[676029, 11562, 8038, 151, 300, "Output",ExpressionUUID->"0121ad65-8b7d-40d0-8bb6-db061a9c0208"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[684116, 11719, 249, 4, 40, "Item",ExpressionUUID->"e42278ae-6177-4576-90b6-da5f32a9fb7c"], Cell[CellGroupData[{ Cell[684390, 11727, 414, 9, 36, "Input",ExpressionUUID->"49c0136c-9fc3-402b-b244-b73e19017d19"], Cell[684807, 11738, 9970, 184, 300, "Output",ExpressionUUID->"8d282b78-e3bf-4d7a-b6b9-61fdd5d5fc33"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[694826, 11928, 355, 11, 66, "Item",ExpressionUUID->"20b371a1-77cc-4696-9f11-74048672927d"], Cell[CellGroupData[{ Cell[695206, 11943, 617, 16, 62, "Input",ExpressionUUID->"4ebb88e3-afd4-4fd0-9131-167ed4079ff6"], Cell[695826, 11961, 554, 13, 41, "Output",ExpressionUUID->"2f123afc-6b9a-4a08-8c20-dc25ef56cbf8"] }, Open ]], Cell[CellGroupData[{ Cell[696417, 11979, 550, 13, 62, "Input",ExpressionUUID->"95dcb2e0-a18c-415c-abdd-98dc69015112"], Cell[696970, 11994, 2225, 50, 188, "Output",ExpressionUUID->"6269fe40-1e4a-4b61-8a0d-60a62f295a25"] }, Open ]], Cell[CellGroupData[{ Cell[699232, 12049, 278, 5, 36, "Input",ExpressionUUID->"3962bdb2-f2a1-4e85-a386-61440f003cab"], Cell[699513, 12056, 221, 3, 41, "Output",ExpressionUUID->"397d11bc-c21e-44ae-a5e7-1ca4e6249bc5"] }, Open ]], Cell[699749, 12062, 298, 7, 59, "Subitem",ExpressionUUID->"4ace9583-4203-47a2-81b0-4985b3fcbde8"] }, Open ]], Cell[CellGroupData[{ Cell[700084, 12074, 174, 3, 40, "Item",ExpressionUUID->"7508b625-cfcf-4d9f-9257-96e37aa5c3e6"], Cell[700261, 12079, 178, 3, 34, "Subitem",ExpressionUUID->"abb9f900-55f8-4145-9bc5-ae1b18b513c8"], Cell[700442, 12084, 300, 8, 59, "Subitem",ExpressionUUID->"62ee822c-c979-4afd-9c08-1fc50aaefbb6"], Cell[700745, 12094, 225, 5, 34, "Subitem",ExpressionUUID->"17abb7b3-28e1-4ee4-8adf-dfc00fe23dcd"], Cell[CellGroupData[{ Cell[700995, 12103, 168, 3, 34, "Subitem",ExpressionUUID->"1945f436-64eb-4283-a875-38a3a2eadcdb"], Cell[CellGroupData[{ Cell[701188, 12110, 1405, 35, 138, "Input",ExpressionUUID->"1304cdce-496c-4487-bd47-ad1dcac795c9"], Cell[702596, 12147, 2382, 46, 418, "Output",ExpressionUUID->"786de0c5-db33-45f6-9517-b1eca8af7b28"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[705039, 12200, 477, 13, 40, "Item",ExpressionUUID->"96cf82d7-cfcd-465f-96da-e823b79032d5"], Cell[705519, 12215, 311, 5, 34, "Subitem",ExpressionUUID->"810fc4a4-fe57-4296-b725-ac9a477a697a"], Cell[705833, 12222, 412, 8, 34, "Subitem",ExpressionUUID->"ab912c0a-113b-4711-8e07-4dbb86d033ab"] }, Open ]], Cell[CellGroupData[{ Cell[706282, 12235, 455, 8, 40, "Item",ExpressionUUID->"5f28c6c5-64a1-416d-b460-7b966d358f0e"], Cell[CellGroupData[{ Cell[706762, 12247, 437, 6, 34, "Subitem",ExpressionUUID->"e56954db-2a87-418b-a805-1d151265379c"], Cell[707202, 12255, 946, 28, 88, "Input",ExpressionUUID->"687c2f90-e77f-4dad-9f91-d40daaf4f115"], Cell[CellGroupData[{ Cell[708173, 12287, 399, 7, 36, "Input",ExpressionUUID->"9725d38f-d46a-4f39-bfcd-631e15f58e92"], Cell[708575, 12296, 1483, 39, 301, "Output",ExpressionUUID->"7c1fc38c-92d2-4a16-aa52-58976a1c6e3d"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[710119, 12342, 507, 9, 40, "Item",ExpressionUUID->"528864db-3a06-4aa3-b117-b19cf97eee03"], Cell[CellGroupData[{ Cell[710651, 12355, 464, 11, 62, "Input",ExpressionUUID->"553ea942-145a-4ffb-9ee3-7112128ec5ca"], Cell[711118, 12368, 1471, 39, 305, "Output",ExpressionUUID->"dd549c72-574f-4542-a349-1c21a81bafa0"] }, Open ]] }, Open ]], Cell[712616, 12411, 453, 13, 92, "Item",ExpressionUUID->"0484377b-b1c0-4008-94b5-9cd9bf51be3a"], Cell[713072, 12426, 286, 8, 32, "DisplayFormulaNumbered",ExpressionUUID->"33ddefb6-8963-4334-82d0-3416d7a0ca34"], Cell[713361, 12436, 251, 8, 40, "Item",ExpressionUUID->"ff6c82da-1e0f-4cf5-8c81-a6ab75edf73e"], Cell[CellGroupData[{ Cell[713637, 12448, 251, 6, 66, "Item",ExpressionUUID->"f3a8a150-9be4-4eb1-acfd-e1ff6943eabd"], Cell[713891, 12456, 603, 12, 59, "Subitem",ExpressionUUID->"ea763bcf-5523-40db-adb7-8c4e7a149c68"], Cell[CellGroupData[{ Cell[714519, 12472, 347, 7, 59, "Subitem",ExpressionUUID->"3508442f-315f-4d94-929f-882c60d73431"], Cell[CellGroupData[{ Cell[714891, 12483, 1517, 39, 164, "Input",ExpressionUUID->"18997eb3-043e-4eda-bb07-63cd83f75c6b"], Cell[716411, 12524, 15961, 323, 298, "Output",ExpressionUUID->"b45f1238-5253-49ba-9759-ed87610bff6c"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[732433, 12854, 453, 16, 66, "Item",ExpressionUUID->"93727be3-b0c5-42c2-b8e0-69f2e88fc006"], Cell[CellGroupData[{ Cell[732911, 12874, 393, 10, 59, "Subitem",ExpressionUUID->"98762ce9-d42b-4ed7-a887-dd2ee658cb93"], Cell[CellGroupData[{ Cell[733329, 12888, 725, 20, 36, "Input",ExpressionUUID->"34a5c55e-08eb-4e0d-8492-c247530bb38a"], Cell[734057, 12910, 856, 25, 59, "Output",ExpressionUUID->"d2244b87-99ee-4b2c-97b7-c7ca3c223156"] }, Open ]] }, Open ]], Cell[734940, 12939, 649, 16, 63, "Subitem",ExpressionUUID->"9838cdde-da68-4d52-8281-ede4608fb658"], Cell[735592, 12957, 312, 7, 34, "Subitem",ExpressionUUID->"1a5b417a-295b-4772-ba23-a911f3e54f7f"], Cell[735907, 12966, 505, 14, 59, "Subitem",ExpressionUUID->"b2914c2a-8357-4cd4-acd4-1b548751498b"] }, Open ]], Cell[736427, 12983, 246, 6, 66, "Item",ExpressionUUID->"cebaf803-198c-4f42-8fd9-045a213ae690"], Cell[CellGroupData[{ Cell[736698, 12993, 947, 31, 90, "Item",ExpressionUUID->"b4fed9eb-0ea1-471e-9e10-9adf434c158c"], Cell[737648, 13026, 442, 14, 34, "Subitem",ExpressionUUID->"a68536f7-c8cc-4084-800d-7962fd96031a"], Cell[738093, 13042, 985, 32, 59, "Subitem",ExpressionUUID->"f009bce4-a4a4-4be4-a066-23df9358d571"] }, Open ]], Cell[CellGroupData[{ Cell[739115, 13079, 490, 9, 66, "Item",ExpressionUUID->"124d4aae-33d9-47fb-8fdc-08e2a86bfc23"], Cell[739608, 13090, 639, 20, 59, "Subitem",ExpressionUUID->"f24d8883-f416-466b-b946-deef0ac43cf4"] }, Open ]], Cell[740262, 13113, 243, 4, 40, "Item",ExpressionUUID->"06885c1c-94ae-48b4-a6e6-200d8f2ef58e"], Cell[CellGroupData[{ Cell[740530, 13121, 384, 9, 66, "Item",ExpressionUUID->"925203cd-1e89-403b-9096-3df14fd4274f"], Cell[740917, 13132, 913, 21, 62, "Input",ExpressionUUID->"6ec61302-98e5-4aec-8b2a-f59bbfd19ebb"] }, Open ]], Cell[CellGroupData[{ Cell[741867, 13158, 298, 8, 66, "Item",ExpressionUUID->"ba3598fb-9820-4e2f-84b4-d043849e63ed"], Cell[742168, 13168, 1083, 26, 164, "Input",ExpressionUUID->"8bbf9684-84be-4e33-909f-257facf034cc"], Cell[CellGroupData[{ Cell[743276, 13198, 345, 7, 36, "Input",ExpressionUUID->"1ffd0f3c-f0e9-4f4e-a8a4-1af68b3cffb6"], Cell[743624, 13207, 350, 7, 41, "Output",ExpressionUUID->"22f37dec-bf97-4610-a650-b1b8f3a0f539"] }, Open ]], Cell[CellGroupData[{ Cell[744011, 13219, 286, 5, 36, "Input",ExpressionUUID->"a3e63bfb-cecc-48dd-a87e-24b7c1bf56c9"], Cell[744300, 13226, 275, 5, 41, "Output",ExpressionUUID->"5e47ae80-3d32-4780-9b29-f03c7bb2f70f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[744624, 13237, 200, 3, 40, "Item",ExpressionUUID->"b20f12ef-baaf-498e-82f9-d459f98665da"], Cell[744827, 13242, 1231, 32, 113, "Input",ExpressionUUID->"32d1382e-de84-4038-9aae-dada87eedcb1"], Cell[CellGroupData[{ Cell[746083, 13278, 5181, 114, 733, "Input",ExpressionUUID->"e8256cd8-b6f7-4e79-b988-e4ffcfc1fec8"], Cell[751267, 13394, 4066, 79, 440, "Output",ExpressionUUID->"dd1f6013-1647-4dac-ae0c-31ee14b24360"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[755382, 13479, 284, 4, 40, "Item",ExpressionUUID->"4e775c70-d29b-4beb-915d-02ecfc506af6"], Cell[755669, 13485, 1274, 34, 88, "Input",ExpressionUUID->"0ab1c6be-b14b-46c7-a54a-7280e922272f"], Cell[CellGroupData[{ Cell[756968, 13523, 683, 19, 81, "Input",ExpressionUUID->"39bb2045-e34e-4fae-95fd-2d8272dfaeee"], Cell[757654, 13544, 338, 8, 60, "Output",ExpressionUUID->"57d0dc6e-d351-40ce-a28d-69ac9c78d45d"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[758053, 13559, 210, 4, 83, "Section",ExpressionUUID->"c3e52510-2267-489b-b2dd-2e409ad6b308"], Cell[CellGroupData[{ Cell[758288, 13567, 412, 8, 92, "Item",ExpressionUUID->"56efb5b7-ec4f-474a-a57f-69807f56ab51"], Cell[758703, 13577, 252, 4, 34, "Subitem",ExpressionUUID->"ba3ad49d-2ae2-4faf-8ac7-475265479d2e"] }, Open ]], Cell[758970, 13584, 761, 21, 55, "DisplayFormulaNumbered",ExpressionUUID->"d8e88530-cf6f-41c3-b323-5bd7e54cf26f"], Cell[759734, 13607, 404, 8, 118, "Item",ExpressionUUID->"e61a84d2-03b4-4786-aaa7-ea3a70fba94e"], Cell[CellGroupData[{ Cell[760163, 13619, 297, 6, 66, "Item",ExpressionUUID->"1523c2cc-7059-407f-be1e-9b994f0ce392"], Cell[760463, 13627, 3396, 95, 211, "Input",ExpressionUUID->"00c30372-d28d-4423-b4f4-41764ff5039e"], Cell[CellGroupData[{ Cell[763884, 13726, 493, 11, 62, "Input",ExpressionUUID->"734e8094-5d23-42de-89e0-33bc04b33295"], Cell[764380, 13739, 3711, 104, 201, "Output",ExpressionUUID->"358dc02d-d4ff-4e66-8f66-5051a0a1a03a"] }, Open ]], Cell[768106, 13846, 200, 3, 34, "Subitem",ExpressionUUID->"36bcef30-a0c8-4f83-8e7a-41f85ea5b4f4"], Cell[768309, 13851, 2811, 68, 265, "Subitem",ExpressionUUID->"98a83e0c-d7c9-498c-b069-41153b4a18ad"] }, Open ]], Cell[CellGroupData[{ Cell[771157, 13924, 305, 6, 66, "Item",ExpressionUUID->"9f5cff2f-ba17-486e-87f9-d9087bc8c08d"], Cell[CellGroupData[{ Cell[771487, 13934, 840, 22, 90, "Subitem",ExpressionUUID->"a5e3193e-a024-4579-9cc4-77dbd5362d7c"], Cell[CellGroupData[{ Cell[772352, 13960, 566, 16, 47, "Input",ExpressionUUID->"7ec2794f-e09d-4977-9d24-30e42893737b"], Cell[772921, 13978, 6913, 132, 304, "Output",ExpressionUUID->"a6f59bd5-9fda-4f2c-ac6d-65d4c48104a7"] }, Open ]], Cell[CellGroupData[{ Cell[779871, 14115, 329, 8, 47, "Input",ExpressionUUID->"f94000ee-ecc6-4325-a14a-18e89d481ab1"], Cell[780203, 14125, 282, 6, 55, "Output",ExpressionUUID->"77cd6e74-53cd-494e-a4d8-1c129593622f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[780534, 14137, 280, 4, 34, "Subitem",ExpressionUUID->"03408946-06aa-4e55-aacc-f02ca5b92ce3"], Cell[CellGroupData[{ Cell[780839, 14145, 483, 15, 80, "Input",ExpressionUUID->"7c5c5f36-6554-4940-a71c-921a6c240e96"], Cell[781325, 14162, 399, 9, 56, "Message",ExpressionUUID->"ef5f63e1-6ec9-4c5a-a077-b24465d6dc07"], Cell[781727, 14173, 548, 17, 70, "Output",ExpressionUUID->"faca8a94-23c8-4840-8bde-16c81654cdb2"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[782336, 14197, 183, 3, 40, "Item",ExpressionUUID->"150121aa-b3f1-4b11-b72a-072e71d570bc"], Cell[782522, 14202, 192, 3, 34, "Subitem",ExpressionUUID->"f3c09403-b6bc-4618-b2eb-a5335ab53c34"], Cell[CellGroupData[{ Cell[782739, 14209, 268, 6, 34, "Subitem",ExpressionUUID->"2fe941f5-9716-4282-8f65-6b68cac4547c"], Cell[CellGroupData[{ Cell[783032, 14219, 347, 10, 47, "Input",ExpressionUUID->"1a587283-29b4-4280-a41d-03b38ee900bc"], Cell[783382, 14231, 295, 9, 64, "Output",ExpressionUUID->"72ce877f-0fd2-4dcd-9200-bd1ff2eb6c10"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[783726, 14246, 177, 3, 34, "Subitem",ExpressionUUID->"35d26b33-f2e6-4648-a007-a0050bdc91d0"], Cell[CellGroupData[{ Cell[783928, 14253, 312, 10, 64, "Input",ExpressionUUID->"5646176c-1c6d-496d-8b66-48ae71acb9b5"], Cell[784243, 14265, 380, 9, 56, "Message",ExpressionUUID->"9d82cad3-753b-4a09-9a93-a44740aa0e87"], Cell[784626, 14276, 584, 20, 61, "Output",ExpressionUUID->"3408154f-e139-43d0-9f4a-33530d717db6"] }, Open ]] }, Open ]] }, Open ]], Cell[785249, 14301, 271, 6, 66, "Item",ExpressionUUID->"be6e6777-e23b-4447-8919-d2a8a9cf688c"], Cell[CellGroupData[{ Cell[785545, 14311, 198, 3, 40, "Item",ExpressionUUID->"5e499ca4-5678-4562-8bd1-3e90ef4ec8fe"], Cell[CellGroupData[{ Cell[785768, 14318, 815, 25, 133, "Input",ExpressionUUID->"7c1f000d-e209-4dc0-a7aa-db555b30a166"], Cell[786586, 14345, 275, 7, 44, "Output",ExpressionUUID->"1672386d-27de-4651-bf6e-80bd1d931d91"] }, Open ]] }, Open ]], Cell[786888, 14356, 298, 4, 40, "Item",ExpressionUUID->"e32bab96-584e-435e-838c-13799e73f05a"] }, Open ]] }, Open ]] } ] *)