{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Ridge Regression\n", "\n", "## Rückblick Lineare Regression\n", "\n", "Lineare Regression: $\\mathbf{y}=𝑏+w_1\\mathbf{x}$\n", "\n", "$\\mathbf{x} \\in \\mathbb{R}^n$: Einflussgröße (Feature) \n", "$\\mathbf{y} \\in \\mathbb{R}^n$: Zielvariable (Target) \n", "$n$: Anzahl der Trainingsinstanzen \n", "$b,w_1 \\in \\mathbb{R}$: Gewichte/Parameter \n", "\n", "Linear Regression Straffunktion (Loss) ist definiert als: \n", "\n", "$\\mathcal{L}(\\mathbf{w})= \\sum_{i=1}^n \\left[y_i - (b - \\mathbf{w}^T \\mathbf{x}_i) \\right]^2$ \n", "\n", "Zum lernen der unbekannten Gewichte $\\mathbf{w}$ muss man die Straffunktion $\\mathcal{L}$ minimieren. \n", "\n", "### Simuliere und Plotte Daten" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/vnd.plotly.v1+html": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "(120, 1)\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "data": [ { "marker": { "color": "#4C72B0", "line": { "color": "#4C72B0", "width": 0 }, "opacity": 1, "size": 10, "symbol": "dot" }, "mode": "markers", "name": "_line0", "type": "scatter", "x": [ -3, -2.95, -2.9000000000000004, -2.8500000000000005, -2.8000000000000007, -2.750000000000001, -2.700000000000001, -2.6500000000000012, -2.6000000000000014, -2.5500000000000016, -2.5000000000000018, -2.450000000000002, -2.400000000000002, -2.3500000000000023, -2.3000000000000025, -2.2500000000000027, -2.200000000000003, -2.150000000000003, -2.100000000000003, -2.0500000000000034, -2.0000000000000036, -1.9500000000000037, -1.900000000000004, -1.850000000000004, -1.8000000000000043, -1.7500000000000044, -1.7000000000000046, -1.6500000000000048, -1.600000000000005, -1.5500000000000052, -1.5000000000000053, -1.4500000000000055, -1.4000000000000057, -1.3500000000000059, -1.300000000000006, -1.2500000000000062, -1.2000000000000064, -1.1500000000000066, -1.1000000000000068, -1.050000000000007, -1.000000000000007, -0.9500000000000073, -0.9000000000000075, -0.8500000000000076, -0.8000000000000078, -0.750000000000008, -0.7000000000000082, -0.6500000000000083, -0.6000000000000085, -0.5500000000000087, -0.5000000000000089, -0.45000000000000906, -0.40000000000000924, -0.3500000000000094, -0.3000000000000096, -0.25000000000000977, -0.20000000000000995, -0.15000000000001013, -0.1000000000000103, -0.05000000000001048, -1.0658141036401503e-14, 0.049999999999989164, 0.09999999999998899, 0.1499999999999888, 0.19999999999998863, 0.24999999999998845, 0.2999999999999883, 0.3499999999999881, 0.3999999999999879, 0.44999999999998774, 0.49999999999998757, 0.5499999999999874, 0.5999999999999872, 0.649999999999987, 0.6999999999999869, 0.7499999999999867, 0.7999999999999865, 0.8499999999999863, 0.8999999999999861, 0.949999999999986, 0.9999999999999858, 1.0499999999999856, 1.0999999999999854, 1.1499999999999853, 1.199999999999985, 1.249999999999985, 1.2999999999999847, 1.3499999999999845, 1.3999999999999844, 1.4499999999999842, 1.499999999999984, 1.5499999999999838, 1.5999999999999837, 1.6499999999999835, 1.6999999999999833, 1.7499999999999831, 1.799999999999983, 1.8499999999999828, 1.8999999999999826, 1.9499999999999824, 1.9999999999999822, 2.049999999999982, 2.099999999999982, 2.1499999999999817, 2.1999999999999815, 2.2499999999999813, 2.299999999999981, 2.349999999999981, 2.399999999999981, 2.4499999999999806, 2.4999999999999805, 2.5499999999999803, 2.59999999999998, 2.64999999999998, 2.6999999999999797, 2.7499999999999796, 2.7999999999999794, 2.849999999999979, 2.899999999999979, 2.949999999999979 ], "xaxis": "x1", "y": [ -0.9652265111212932, -0.9563445692585602, -0.9826483654899265, -0.9977154157742639, -0.9776307839822501, -0.9837552527028381, -0.9994797695273089, -0.9998468035352951, -0.9939803027335864, -0.9997391767614422, -0.9989264123633589, -0.9998851341346121, -0.996215446179222, -0.9952914128080986, -0.998903765943952, -0.9949188588654654, -0.9961994043923177, -0.968580970947965, -0.9871435045119046, -0.9900037385911287, -0.8957307810351677, -0.9482882221584775, -0.9272694266717505, -0.9648479228420022, -0.9266538868535982, -0.8859160338983258, -0.9258356786147242, -0.8410145476609432, -0.8749698382332967, -0.843122033336221, -0.8428989995469296, -0.6637594986976759, -0.7713728861574329, -0.815736365310866, -0.6702603874060817, -0.787956152021579, -0.6691734040918048, -0.7947122219655769, -0.733847792051068, -0.5972342088940323, -0.5264943711279393, -0.5478280021861752, -0.5455552530111611, -0.5347240204254576, -0.6055899612125125, -0.5168979845713587, -0.46699274874809465, -0.2980935926198499, -0.3359647114786903, -0.49851007178912815, -0.2780379057311548, -0.31575434553046433, -0.3136357908793998, -0.15807798247412014, -0.08529185484456667, -0.06390803802021004, -0.20805444751052474, -0.1248424300680887, -0.029701141348117494, 0.06609037824642926, -0.047899088853827314, 0.012849675232691428, -0.04778344197130973, -0.025370160448809395, 0.20544294818180814, 0.28854191903912796, 0.18030305501395497, 0.3148178839075318, 0.28354710788276355, 0.21650327467816155, 0.34317850104698394, 0.478880334462787, 0.3647911764894711, 0.5353072063996278, 0.17691238270159915, 0.5256075832147095, 0.48936331892293605, 0.48308089301108453, 0.5435517466062375, 0.3877097621197332, 0.5698730381808622, 0.6407277085086207, 0.7439350496744521, 0.6215652876269055, 0.6234385520934167, 0.6707521660000176, 0.7884926306961978, 0.7714425413112564, 0.7356798951564911, 0.8205591472722453, 0.8146848591489821, 0.8775642926813619, 0.8046610326047859, 0.8436036354420002, 0.8567479966313652, 0.8152761590118438, 0.9170367182477198, 0.9278084967267087, 0.9299646032175956, 0.9326762652396448, 0.8979547954289456, 0.9477120573697846, 0.9594931055228867, 0.9552953397104175, 0.9791374300684609, 0.9932012428888003, 0.9980189957004394, 0.9970530965904278, 0.9993127336687545, 0.9992450250829974, 0.98164799414028, 0.9995863291720576, 0.997630439553239, 0.9425637597491929, 0.9943419256498542, 0.9825227933217305, 0.9829317653086372, 0.9946956957192457, 0.9339059578090384, 0.9366216987229501 ], "yaxis": "y1" } ], "layout": { "autosize": false, "height": 432, "hovermode": "closest", "margin": { "b": 54, "l": 90, "pad": 0, "r": 71, "t": 51 }, "showlegend": false, "width": 720, "xaxis1": { "anchor": "y1", "domain": [ 0, 1 ], "dtick": 1, "mirror": "ticks", "range": [ -3.1, 3.1 ], "showgrid": true, "showline": true, "side": "bottom", "tick0": -3, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "x", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false }, "yaxis1": { "anchor": "x1", "domain": [ 0, 1 ], "dtick": 0.5, "mirror": "ticks", "range": [ -1.1, 1.1 ], "showgrid": true, "showline": true, "side": "left", "tick0": -1, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "y", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false } } }, "text/html": [ "
" ], "text/vnd.plotly.v1+html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Importiere Python Libraries\n", "%matplotlib inline\n", "import pylab as pl\n", "import seaborn as sns\n", "sns.set(font_scale=1.7)\n", "\n", "from plotly.offline import init_notebook_mode, iplot\n", "from plotly.graph_objs import *\n", "import plotly.tools as tls\n", "#Set to True\n", "init_notebook_mode(connected=True)\n", "\n", "import scipy as sp\n", "from sklearn.preprocessing import PolynomialFeatures, StandardScaler\n", "from sklearn.linear_model import LinearRegression, Ridge\n", "from sklearn.pipeline import Pipeline\n", "from ipywidgets import *\n", "from IPython.display import display\n", "\n", "#Funktion zum Plotten der Daten\n", "def plot_data(X,y,model=None,interactive=False):\n", " fig = pl.figure(figsize=(10,6))\n", " pl.plot(X,y,'o',markersize=10)\n", " pl.xlabel(\"x\")\n", " pl.ylabel(\"y\")\n", " pl.title(\"\")\n", " pl.ylim([-1.1,1.1])\n", " pl.xlim([-3.1,3.1])\n", " pl.xticks([-3,-2,-1,0,1,2,3],[\"50\",\"60\",\"70\",\"80\",\"90\",\"100\",\"110\"])\n", " pl.yticks([-1,-0.5,0,0.5,1],[\"200k\",\"400k\",\"600k\",\"800k\",\"1M\"])\n", " if not model==None:\n", " X_new=sp.linspace(-3, 3, 100).reshape(100, 1)\n", " y_new = model.predict(X_new)\n", " pl.plot(X_new,y_new,\"r-\",linewidth=4,label=\"Learned Regression Fit\")\n", " pl.legend()\n", " if interactive:\n", " plotly_fig = tls.mpl_to_plotly(fig)\n", " iplot(plotly_fig, show_link=False)\n", "\n", "\n", "#Funktion um Beispieldaten zu simulieren\n", "def generate_data():\n", " sp.random.seed(42)\n", " X = sp.arange(-3,3,1.0/20.0).reshape(-1,1)\n", " y = sp.sin(0.2*sp.pi*X+0.1*sp.random.randn(X.shape[0],1))\n", " return X,y\n", "\n", "def generate_polynomial_features(X,degree=1,return_transformer=True):\n", " transformer = PolynomialFeatures(degree=degree, include_bias=False)\n", " X_poly = transformer.fit_transform(X)\n", " if return_transformer:\n", " return X_poly, transformer\n", " else:\n", " return X_poly\n", "\n", "#Generiere Daten\n", "X,y = generate_data()\n", "print X.shape\n", "#Plotte Daten\n", "plot_data(X,y,interactive=True);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lerne Lineare Regression auf Daten" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Anzahl der Trainingsinstanzen:\t120\n", "Anzahl der Features:\t\t1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Library/Python/2.7/site-packages/plotly/matplotlylib/renderer.py:384: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/Library/Python/2.7/site-packages/plotly/matplotlylib/renderer.py:481: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "data": [ { "marker": { "color": "#4C72B0", "line": { "color": "#4C72B0", "width": 0 }, "opacity": 1, "size": 10, "symbol": "dot" }, "mode": "markers", "name": "_line0", "type": "scatter", "x": [ -3, -2.95, -2.9000000000000004, -2.8500000000000005, -2.8000000000000007, -2.750000000000001, -2.700000000000001, -2.6500000000000012, -2.6000000000000014, -2.5500000000000016, -2.5000000000000018, -2.450000000000002, -2.400000000000002, -2.3500000000000023, -2.3000000000000025, -2.2500000000000027, -2.200000000000003, -2.150000000000003, -2.100000000000003, -2.0500000000000034, -2.0000000000000036, -1.9500000000000037, -1.900000000000004, -1.850000000000004, -1.8000000000000043, -1.7500000000000044, -1.7000000000000046, -1.6500000000000048, -1.600000000000005, -1.5500000000000052, -1.5000000000000053, -1.4500000000000055, -1.4000000000000057, -1.3500000000000059, -1.300000000000006, -1.2500000000000062, -1.2000000000000064, -1.1500000000000066, -1.1000000000000068, -1.050000000000007, -1.000000000000007, -0.9500000000000073, -0.9000000000000075, -0.8500000000000076, -0.8000000000000078, -0.750000000000008, -0.7000000000000082, -0.6500000000000083, -0.6000000000000085, -0.5500000000000087, -0.5000000000000089, -0.45000000000000906, -0.40000000000000924, -0.3500000000000094, -0.3000000000000096, -0.25000000000000977, -0.20000000000000995, -0.15000000000001013, -0.1000000000000103, -0.05000000000001048, -1.0658141036401503e-14, 0.049999999999989164, 0.09999999999998899, 0.1499999999999888, 0.19999999999998863, 0.24999999999998845, 0.2999999999999883, 0.3499999999999881, 0.3999999999999879, 0.44999999999998774, 0.49999999999998757, 0.5499999999999874, 0.5999999999999872, 0.649999999999987, 0.6999999999999869, 0.7499999999999867, 0.7999999999999865, 0.8499999999999863, 0.8999999999999861, 0.949999999999986, 0.9999999999999858, 1.0499999999999856, 1.0999999999999854, 1.1499999999999853, 1.199999999999985, 1.249999999999985, 1.2999999999999847, 1.3499999999999845, 1.3999999999999844, 1.4499999999999842, 1.499999999999984, 1.5499999999999838, 1.5999999999999837, 1.6499999999999835, 1.6999999999999833, 1.7499999999999831, 1.799999999999983, 1.8499999999999828, 1.8999999999999826, 1.9499999999999824, 1.9999999999999822, 2.049999999999982, 2.099999999999982, 2.1499999999999817, 2.1999999999999815, 2.2499999999999813, 2.299999999999981, 2.349999999999981, 2.399999999999981, 2.4499999999999806, 2.4999999999999805, 2.5499999999999803, 2.59999999999998, 2.64999999999998, 2.6999999999999797, 2.7499999999999796, 2.7999999999999794, 2.849999999999979, 2.899999999999979, 2.949999999999979 ], "xaxis": "x1", "y": [ -0.9652265111212932, -0.9563445692585602, -0.9826483654899265, -0.9977154157742639, -0.9776307839822501, -0.9837552527028381, -0.9994797695273089, -0.9998468035352951, -0.9939803027335864, -0.9997391767614422, -0.9989264123633589, -0.9998851341346121, -0.996215446179222, -0.9952914128080986, -0.998903765943952, -0.9949188588654654, -0.9961994043923177, -0.968580970947965, -0.9871435045119046, -0.9900037385911287, -0.8957307810351677, -0.9482882221584775, -0.9272694266717505, -0.9648479228420022, -0.9266538868535982, -0.8859160338983258, -0.9258356786147242, -0.8410145476609432, -0.8749698382332967, -0.843122033336221, -0.8428989995469296, -0.6637594986976759, -0.7713728861574329, -0.815736365310866, -0.6702603874060817, -0.787956152021579, -0.6691734040918048, -0.7947122219655769, -0.733847792051068, -0.5972342088940323, -0.5264943711279393, -0.5478280021861752, -0.5455552530111611, -0.5347240204254576, -0.6055899612125125, -0.5168979845713587, -0.46699274874809465, -0.2980935926198499, -0.3359647114786903, -0.49851007178912815, -0.2780379057311548, -0.31575434553046433, -0.3136357908793998, -0.15807798247412014, -0.08529185484456667, -0.06390803802021004, -0.20805444751052474, -0.1248424300680887, -0.029701141348117494, 0.06609037824642926, -0.047899088853827314, 0.012849675232691428, -0.04778344197130973, -0.025370160448809395, 0.20544294818180814, 0.28854191903912796, 0.18030305501395497, 0.3148178839075318, 0.28354710788276355, 0.21650327467816155, 0.34317850104698394, 0.478880334462787, 0.3647911764894711, 0.5353072063996278, 0.17691238270159915, 0.5256075832147095, 0.48936331892293605, 0.48308089301108453, 0.5435517466062375, 0.3877097621197332, 0.5698730381808622, 0.6407277085086207, 0.7439350496744521, 0.6215652876269055, 0.6234385520934167, 0.6707521660000176, 0.7884926306961978, 0.7714425413112564, 0.7356798951564911, 0.8205591472722453, 0.8146848591489821, 0.8775642926813619, 0.8046610326047859, 0.8436036354420002, 0.8567479966313652, 0.8152761590118438, 0.9170367182477198, 0.9278084967267087, 0.9299646032175956, 0.9326762652396448, 0.8979547954289456, 0.9477120573697846, 0.9594931055228867, 0.9552953397104175, 0.9791374300684609, 0.9932012428888003, 0.9980189957004394, 0.9970530965904278, 0.9993127336687545, 0.9992450250829974, 0.98164799414028, 0.9995863291720576, 0.997630439553239, 0.9425637597491929, 0.9943419256498542, 0.9825227933217305, 0.9829317653086372, 0.9946956957192457, 0.9339059578090384, 0.9366216987229501 ], "yaxis": "y1" }, { "line": { "color": "rgba (255, 0, 0, 1)", "dash": "solid", "width": 4 }, "mode": "lines", "name": "Learned Regression Fit", "type": "scatter", "x": [ -3, -2.9393939393939394, -2.878787878787879, -2.8181818181818183, -2.757575757575758, -2.696969696969697, -2.6363636363636362, -2.5757575757575757, -2.515151515151515, -2.4545454545454546, -2.393939393939394, -2.333333333333333, -2.2727272727272725, -2.212121212121212, -2.1515151515151514, -2.090909090909091, -2.0303030303030303, -1.9696969696969697, -1.9090909090909092, -1.8484848484848484, -1.7878787878787878, -1.7272727272727273, -1.6666666666666665, -1.606060606060606, -1.5454545454545454, -1.4848484848484849, -1.4242424242424243, -1.3636363636363635, -1.303030303030303, -1.2424242424242424, -1.1818181818181817, -1.121212121212121, -1.0606060606060606, -1, -0.9393939393939394, -0.8787878787878789, -0.8181818181818183, -0.7575757575757573, -0.6969696969696968, -0.6363636363636362, -0.5757575757575757, -0.5151515151515151, -0.4545454545454546, -0.39393939393939403, -0.33333333333333304, -0.2727272727272725, -0.21212121212121193, -0.15151515151515138, -0.09090909090909083, -0.030303030303030276, 0.030303030303030276, 0.09090909090909083, 0.15151515151515138, 0.21212121212121238, 0.27272727272727293, 0.3333333333333335, 0.39393939393939403, 0.4545454545454546, 0.5151515151515151, 0.5757575757575757, 0.6363636363636367, 0.6969696969696972, 0.7575757575757578, 0.8181818181818183, 0.8787878787878789, 0.9393939393939394, 1, 1.0606060606060606, 1.121212121212121, 1.1818181818181817, 1.2424242424242422, 1.3030303030303028, 1.3636363636363633, 1.4242424242424248, 1.4848484848484853, 1.5454545454545459, 1.6060606060606064, 1.666666666666667, 1.7272727272727275, 1.787878787878788, 1.8484848484848486, 1.9090909090909092, 1.9696969696969697, 2.0303030303030303, 2.090909090909091, 2.1515151515151514, 2.212121212121212, 2.2727272727272725, 2.333333333333334, 2.3939393939393945, 2.454545454545455, 2.5151515151515156, 2.575757575757576, 2.6363636363636367, 2.6969696969696972, 2.757575757575758, 2.8181818181818183, 2.878787878787879, 2.9393939393939394, 3 ], "xaxis": "x1", "y": [ -1.2983471807357594, -1.2721797145002656, -1.2460122482647717, -1.2198447820292777, -1.1936773157937839, -1.1675098495582898, -1.141342383322796, -1.1151749170873022, -1.0890074508518084, -1.0628399846163146, -1.0366725183808208, -1.0105050521453267, -0.9843375859098328, -0.958170119674339, -0.932002653438845, -0.9058351872033512, -0.8796677209678574, -0.8535002547323636, -0.8273327884968698, -0.8011653222613758, -0.7749978560258819, -0.7488303897903881, -0.7226629235548941, -0.6964954573194003, -0.6703279910839065, -0.6441605248484127, -0.6179930586129189, -0.5918255923774248, -0.565658126141931, -0.5394906599064372, -0.5133231936709433, -0.48715572743544944, -0.46098826119995556, -0.43482079496446174, -0.4086533287289679, -0.38248586249347405, -0.35631839625798023, -0.3301509300224862, -0.30398346378699237, -0.2778159975514985, -0.2516485313160047, -0.22548106508051083, -0.19931359884501698, -0.17314613260952316, -0.14697866637402912, -0.12081120013853529, -0.09464373390304144, -0.06847626766754761, -0.04230880143205376, -0.016141335196559928, 0.010026131038933914, 0.03619359727442775, 0.0623610635099216, 0.08852852974541563, 0.11469599598090946, 0.1408634622164033, 0.16703092845189715, 0.19319839468739097, 0.21936586092288482, 0.24553332715837867, 0.2717007933938727, 0.2978682596293665, 0.3240357258648604, 0.3502031921003542, 0.37637065833584804, 0.4025381245713419, 0.42870559080683573, 0.45487305704232955, 0.48104052327782343, 0.5072079895133172, 0.5333754557488111, 0.5595429219843049, 0.5857103882197988, 0.611877854455293, 0.6380453206907868, 0.6642127869262807, 0.6903802531617745, 0.7165477193972684, 0.7427151856327622, 0.768882651868256, 0.7950501181037499, 0.8212175843392437, 0.8473850505747376, 0.8735525168102314, 0.8997199830457252, 0.925887449281219, 0.952054915516713, 0.9782223817522068, 1.004389847987701, 1.0305573142231947, 1.0567247804586886, 1.0828922466941824, 1.1090597129296762, 1.13522717916517, 1.1613946454006638, 1.1875621116361577, 1.2137295778716515, 1.2398970441071455, 1.2660645103426393, 1.2922319765781332 ], "yaxis": "y1" } ], "layout": { "annotations": [ { "align": "left", "font": { "color": "#262626", "size": 17 }, "opacity": 1, "showarrow": false, "text": "Learned Regression Fit", "x": 0.11272401433691757, "xanchor": "left", "xref": "paper", "y": 0.9165074440960291, "yanchor": "bottom", "yref": "paper" } ], "autosize": false, "height": 432, "hovermode": "closest", "margin": { "b": 54, "l": 90, "pad": 0, "r": 71, "t": 51 }, "showlegend": false, "width": 720, "xaxis1": { "anchor": "y1", "domain": [ 0, 1 ], "dtick": 1, "mirror": "ticks", "range": [ -3.1, 3.1 ], "showgrid": true, "showline": true, "side": "bottom", "tick0": -3, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "x", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false }, "yaxis1": { "anchor": "x1", "domain": [ 0, 1 ], "dtick": 0.5, "mirror": "ticks", "range": [ -1.1, 1.1 ], "showgrid": true, "showline": true, "side": "left", "tick0": -1, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "y", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false } } }, "text/html": [ "
" ], "text/vnd.plotly.v1+html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Lerne Lineare Regression\n", "print \"Anzahl der Trainingsinstanzen:\\t%d\"%(X.shape[0])\n", "print \"Anzahl der Features:\\t\\t%d\"%(X.shape[1])\n", "model = LinearRegression()\n", "model.fit(X,y)\n", "#Plotte Daten und die gelernte Funktion\n", "plot_data(X,y,model,interactive=True);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Model beschreibt die zugrundeliegenden Daten nur schlecht -> Model ist Unterangepasst!**\n", "\n", "### Polynomiale Regression\n", "\n", "Polynomiale Regression durch hinzufügen von Features höherer Ordnung, z.B. Polynom des 100. Grades: \n", "\n", "$\\mathbf{y} = b + w_1 \\mathbf{x}_1 + w_2 \\mathbf{x}_1^2 + w_3 \\mathbf{x}_1^3 + \\dots + + w_2 \\mathbf{x}_1^{100}$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAGACAYAAADWEmi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcVfX/B/DX3RfuZW9FQBzgXiiC4l64MftZmkpq7lGp\nlWl9yyzTzETNvUrTppbixIk7KTOVQBzgQGWPC9x9f38gV87dzMt4Px+PHo/u53zOOZ97vMD7fsb7\nw9JoNBoQQgghhJB6iW3tBhBCCCGEEOuhYJAQQgghpB6jYJAQQgghpB6jYJAQQgghpB6jYJAQQggh\npB6jYJAQQgghpB7jWrsBtUF6er7ZOk5OtsjOLjR6nJN0B87dgowel3cNRe7BY+VqX31i7jmTykHP\nuXrQc64e9JyrBz3nYrxzZ+D46gjta3lYL+T+dhAugX5gZ2VpyzP+ewDbqK9hu2m9tkzyv2VQduwE\nxxHhL8/XiQ8sec5ubnZlajP1DFYSLpdTofNZlO7RIhV9zsQy9JyrBz3n6kHPuXrQc35BrWa+ZrEs\nP9eCulXxnCkYrCkoGCSEEEJqP92/5+wyBINWQsFgTUHBICGEEFLrsTQV6Bm0EgoGawoKBgkhhJDa\nT+fvuYZd80Otmt/C+oKCQUIIIaT2q8icQSuhYLDGoGCQEEIIqfV0/5xTzyCxmO43CUIIIYTUPtQz\nSMqNhokJIYSQ2k/37zmr5odaNb+FJkgkEvTr1w/79u3Tll29ehUBAQEICAjA8ePHDZ4nl8vRpUsX\nBAQEYP/+/dXVXNMoFiSEEEJqv1rYM1hrdyDJzs7GzJkz8ejRI4PH2Ww2Dh8+jIEDB+odi42NRW5u\nblU3sWyoZ5AQQghhKJQqEZeYhlyJDA5iAVr5OeN2cpb2dVCAOwCUuU5QgDtshdwy38vcOUEB7uDr\n5Rk03O92+fYzNE7NRetKelYVUeuCQY1Gg2PHjuHLL7+EVCo1Wi8oKAjnzp1DQUEBRCIR49jhw4fR\nqlUr3L59u6qb+5K5YI+CQUIIIUTr0KVkHLmcAplCZbTO7uOJAACVWudvqEaj7ZEzVGffySQMDvHF\nsFA/i+9lyTn7TiZhpvo5+pQ+0UjP4I+nkjD6CQWD5fLkyRPMnz8fERERGDt2LEaNGmWw3uDBg/Hn\nn3/i9OnTGDZsmLa8oKAAZ86cwdy5c6s3GDSHgkFCCCEEQHGgdSD2vvEKGg38MpLR/c4lNMp8BLFU\nApGsAGKZBGJpAQRKGVJcfHCydV+cadELBUIx43SZQoUDsfeRkJINIZ+D60kZZttUck4JQ+2TKVS4\nlviMEQzKVBrE3kjFEIUaQjP3iE/OQvMOZptS6WpdMOjk5ITjx4+jUaNGePz4sdF6DRs2RIcOHXD4\n8GFGMHjy5EkIhUJ0794dK1asqI4mW4RFq4kJIYTUYyVDrhk5RTj250ODdRpkP0GPhAvokXgejbKM\nxwAA0CT9AZqc2YbI2O9xIaAbjrUdiASvANgopGiQnQqvnKdocPUp3PLS0FspB1elLP5PrQRPpUCa\nnRuOtx2IO17NGdc9fCkZMDENkKXTuXPjXiZ2HU1Af4XKbDD4X0o2fOXGeyerSq0LBkUikd6wrzGD\nBw/GypUrkZeXB3t7ewDFQ8Th4eHgcCzf6NnJydaijaHd3OyMH8ww3WYuh2X6fKJFz6l60HOuHvSc\nqwc95+pR3uf808lE/HoqCVK5Cn7pyej1/C7si/JgV5QPe2k+7Iry4Zn7HI0zkst8bYFKjr7xZ9A3\n/gwkAluIZYUWnzvg9imcCwjDd2HjkW5fPPdQrjTdecPSWRGqNraa2MCIoFKlxsOMAniUKuPzOHrP\ntbI/z7UuGCyL8PBwLF++HDExMXjllVeQnZ2NS5cu4fvvvy/TdbKzzX9w3NzskJ6eb/Q4J6sAzibO\nVypVyDZxPilm7jmTykHPuXrQc64elf2cNRoNWLVghWh1M/WcDS20KFmMcehSMqJPJ6D7nYsY8s8R\nBDxLqrI2liUQLNEz8TxC7l7BHx2H45cur6BIYGuyvm7PYAmNhZ+ZtKwCxmu5QoXcUs/Vks9zWYPF\nOh0Murm5ITg4GEeOHMErr7yCo0ePwt3dHR07dsS9e/es3TwmmjNI6qHZs6dCLpdjy5Zd1m5KlXr6\nNBWvvjocCxZ8gJEjRxus8/ffcZg7d7peOZfLhVhsh8DAFpg6dSaaNw+s6uZaRffuQRg3biJmzJhT\n5fcq+fcw5ezZK0hPT2P8u2k0GuzatQ18Ph/jxk2s8nbWFcYWWvTv3Aie+emw37gJO2/GwKEor0zX\nVbI5uO7bAZeadUW6nRskQhEKBCJIBGIIlVL0uX0GA2/GwD0/vcLvga9S4NVrv6H/rZO40jQYmWIX\nZIqdkSV2RqbYBU+cGkDB5QPQDwaN9gwaIRbyKtzesqrTwSAADBkyBJ988gmysrJw5MgRxvzBGoWC\nQUIIgLlz30XLlm20r+VyGe7fv4vdu3di7twZ2LfvNzg5mRpnqJ02bdoJNze3ar3n2LET0KNHb4PH\nuFwuXFxcsWnTTjRs2BBAcY7a7ds3480336rOZtZKJT2Bf8Y/R3xKtt5xVZEUXp8vwZB/joCjsXzO\nvBos3GzUGrEBYbjULAQSG8M9YBLY4eeu/4dfu7yCDin/YOC/J9Dl/jVwNGoo2Rw8c/DAU0cvpDp6\n4ZmjJwoEIijZXCg4PCg5XAgVUoz+8zc0SX/AuK5jUS4G3Tyhd79sW0esGTgXfzfuqDdMbGp+oS4u\nh41AHyfLT6gkdT4YHDBgAD799FPs3bsXcXFx+OSTT6zdJMMoGCSEAPDx8UPr1m0YZR07BqFhw0ZY\nuHAezpw5hVGjXrVS66qO7nuuDg0aNDB5Xz6fb5V21Xbm0rR45D7H+9Er0ey58RG66z7tkOLqi3wb\nO+QJ7ZBvY4d8oR1SXH2Qa+tocVvUbA7+atwJfzXuBKG8CHZSCTLFzlCzza8DuNQsBL3jz2L8xT1w\nKdAPaEtzKszBm7G7ioPBCvQMtvB1goBv+ZqGylLng0EHBweEhYVh06ZNCAwMRNOmTa3dJMMoGCRl\nwLsQC/H774KbdKfK7lGWPhpls+aQrFgNRfceVdKWhw+TsWnTt/j772tQKpVo1aoNZsyYg8DAlto6\neXm52LFjCy5evID09OcQCARo0aIVZs6cqx1a3b59M44ejcbIka/gxx/3QKPRYNOmnVixYhm8vBqg\nWbPm+OWXn5CRkQZf38aYNm0mQkK6a+9RUCDBli0bcO7cGeTm5sDHxxfjxkViwIBBjPZGR/+Bfft2\n4+nTVPj7N0Vk5JQKPwM7u+JFcKXnqikUCnz33XYcP34EGRnp8PDwwqhRo/F//zeWce6JE8ewZ89O\nPH78CJ6eXpgyZQY2b16PAQPCMXnyNO0Q9cKFH+KHH75DVlYmFi78EAMHDrbo2V+7dhVbt25EcnJx\nL0qLFq0wZco0tGnTDgAgk8mwbt1qXLp0AdnZWXB1dUffvv0xefI08HjFQ2K6w8RyuRw//bQXx48f\nRmpqKlxcXNC//yC8+eZb2nM+//wTPH2aiuHDR+H777fjyZPH8PT0woQJkxAePrTCz7z08H5wcKh2\naHnnzq3YuXMrLlyIq/A9aiNz8/9MpYQJvnsVbx+PMjh3TyKwxalWfXGk3SCkOjW0qC0cdvHPg16e\nQQN1pHwbSPk2Fl0XKA4kT7XuiwsB3TDq2gGMivsdQqXMaH2/zIfgKeVG5wxaRoMbdzPQs1RJVp4U\nF2+kGkx6XVnqfDAIAEOHDsXp06cxdGjFfzlUGUotQ8pAvGAeuPdrzrxXbtIdiBfMQ/aV65V+7SdP\nHmPq1Dfh4eGJhQsXg8fj4Zdf9mHWrLewceN2baD33nvvICMjHVOmTIeHhyceP36Ebds24aOPPsDe\nvb9pMwikp6chJuY4lixZiuzsLDRq5AMAOH/+LO7du4uZM+dAKBRi69aNWLz4Pfz222E4OTlBoVBg\n3ryZePr0CSZPno6GDb1x7txpLF26BIWFBRg58hUAwO+//4ZVq5Zj+PAIzJu3APHxt/Dpp4stfr8a\njRpKpVL7WiaTIinpDqKiVkEstkNY2Ms/Ex999D7i4v7ExIlTEBgYiL///gvr169BVlYWpk+fDaA4\nEFy6dAkGDAjHzJnzkJLyAF9++RkUCrnevbdu3YC5cxeAw2GjffuOFj37J08eY9Gi+QgNDcNbb83Q\nBqjvvjsHv/12CPb2Dli79mucPn0Sc+a8Ay+vBoiPv4UtWzaAxWJh2rRZBp6BBh988C5u3LiOiRMn\no0WLlrh9+xa+/34H7txJwFdfRWmD4qSkROzYsRmRkVPg4uKCH374Hp9//gmaNw9Ekyamv/yr1RrG\nsy7B5er/aXRxccX69Vswe/ZUDB06AkOHjjR57drK3C4cGblSxFx7pDf/b3CIL8YMCMSRyykGr8tR\nKTHxwveI+Oug3rHn9u74uctonGvRAzKefvIVLoeF8GBfuDoI0aqxM24/yEJOgRyOIj6CAl/sLpKQ\npi0zVefqf88Rn2y8l69Dc1f4edrrXSexpTfe7DAUrR/fhqskAy6SLLhIMtH17lXYKF5ugOGWn27x\nauI2TZzRLNUR+Otl2c37WUgqfMgIBjNypdh1NEH7nCeNqPze6lodDHp7eyMxMZFRFhwcrFc2ZMgQ\nDBkyhFHWpEkTvXrVScNiMb89UM8gIQbt2LEFLBYLa9duhIND8fBQaGh3jB//f9i06VusXr0OGRkZ\n4PP5eP/9JejcORgA0KFDJxQUSLB+/Ro8f/4MDRoU9zSoVCrMnj0PnTt3ZdxHJpNh9er1cHQsvoeN\njS1mz56Ka9euYMCAcBw/fgQJCfFYu3YTOnYMAgAEB4dAqVRi8+ZvER4+BHy+ADt3bkVoaBjee684\nAOzSpSvYbDa2bNlg0ftduPBtvTI+X4D27TtiyZKlcHUt7rP9669ruHAhFosWfYwhQ4p7rDp37go+\nn49du7Zh1KhX4e7uga1bN6JTpy74+OPPAABdu4bCyckZS5d+pHefYcMiGL2cn332sdlnn5AQD6lU\nildffU3bE+jr64c//vgNhYWFsLd3wD///I3AwBYYPHiY9t9GKBTC1tZwyq2rVy/jzz+v4IMPlmiD\nrs6du8LR0QmrVi3HlSuXEBLSDUDxRgIbNmzXBn6NGvlh9OihuHDhnNlgcPXqFVi9Wj/f7C+/HISX\nVwOdfwM+WrRoBQBwc3Ovk8PHluzCYUhJMuanWYV653JUSoTcvYJXru1H0zT9HsPLTYIRNXCOXlLo\n0oZ1a6zd9QMAwto10KujW2asTli7Bgbfp4DHYewuUvqcQqkS87+9CJmNHa40Y/7eWP7Th2j9JF77\nepQPG/efMu9r7K/7lCGt8Oz8L0aO6it5ziIRH30MvL+KqNXBYK3GYjEDQAoGSRlIVkVB/MF8cO9Y\n7wtNacrmAZB8+XWVXDsu7irat+8AkUjM6MUJDQ3D/v0/Q6FQwNXVFWvXbgIAPHv2DE+ePMKjRym4\nePF8cfuUCsY1mzXTX5Hr4+OrDQSB4j/4AFBUVASgeChULLZD27btGe3o0aMXjhw5hPj423BxcUFm\nZgaj9w4A+vUbaHEw+PbbC9C6dVuo1Wr88891bNu2Cd26hWHx4k8gFL7sNbl27SoAoHv3Hoz2dO/e\nE9u3b8Zff11D27bt8fTpE7zxBnPla58+/fH555/o3bt58wDGa0uefatWbSEUCvHee++gd+++CA4O\nQefOXTFz5jxt/U6dOmP//l8wY8ZkdO/eAyEh3fHKK2OMPoO//y4efu3fnzn8PmjQEKxatRzXr8dp\ng0FbWxEj6HN3L/53M7VdaYnx499Ez576C0hKAu66rnQvYPKzfJO7cIikEthJ8yHlCSHjCSHj8vXm\n3cX991z7/875mRh08wQG3jwBZwPz7ZRsDnb2mIiDHYYZ3a7NWIBWUcNC/dCvkzejNzEo0B02AsMh\nUVximtEA+bmDByMYDBVJEdS7CXDsZZ0urbzwZngg+Ns4QNHL8iKZEvef5pV5O7pfTyUhxER7y4OC\nwepiaOPqUkPDFZtjQOobRfceyL5wrcquX5Py3+Xk5OD8+XPo1aurweO5uTlwdXXDyZPHsXnzt3j6\nNBVisRhNmjSDUFg8P0j3x8vGRn/ekEDAHJ5iv9hcXvNipWNubg4kknyj7UhPT9cOL5YOKoHiIUZL\neXv7aOfjtWzZGp6eXvj44w+gVCqxfPkqbb3c3BwAwJAh/Yy0Jw3Z2cV/hJ2dmauPuVyutqevNBsb\nZv40S569p6cn1q/fit27dyAm5jgOHjwAgUCAAQPC8fbbCyAQCDFnzrtwc/PA8eNHsHHjOmzcuA5+\nfv6YO/dddOmif+38/DyIxWK9fxOhUAixWIz8fAmjrLSSfze1BVNvPDw8GHMf6xNLegFtZQUITbqM\nXv+dQ5tHt8DW6eOScfiQ8QQo4hcHiFKuEFKeABoWC60f3za6SjjdzhUrhixEYoMAg8c5bBZe69sM\noa09KzXgKc1GwDXYe2hIrsT4PMHnLxJRl+A8TAHf149RJnhxLwGPOVz8z90MqMoxRUwqVyEuIc3i\n9luCgkFr0f0mRMEgIQbZ2dmhXbsOGD/+TYPHHRwccfPmDSxd+hGGD4/AG29EwtPTCwCwf/8vuHr1\nUqW0Qyy2g6enF5YtM7yNpZdXA+TlFedJy8zMZBwrCdzKo0+ffrh4MRzHjx9FdPQfGDp0hLY9PB4P\nGzZsM5gA2dXVTRsQZWVlMY6pVCqL2mTJsweAwMAW+Pzzr6BUKnH79i2cOHEEf/yxHx4enoiMnAIe\nj4fx4yMxfnwkMjLSceXKJezevROLF7+HQ4dO6AV0dnb2kEgkkMmkjICwqKgIEolEL9gmZWNqkQdH\npUTQg7/QK+Ecuty7Br5KYbAeULyzh0Alh73U8i+Ol5p2xfr+M5FvY2+0zvDujdG3k7fF16xqDmKB\n0WPPHTwYr9kPU6Dy8WVWMjJnML9ABsuXszDlFOjP+a2IsmVCJJWHrfPoKRYkxKD27TvhwYP7aNKk\nGQIDW2r/i4k5jl9//QlcLhf//vsP1Go1Jk2aqg0EAeDKlYsALOslMqdDh05IT097kQD6ZTuSkx9g\n+/bNKCqSolEjH3h5NcDp0zGMc8+fP1ehe8+ZMx/29g7YtGkd8vJyte1RKBSQSqWM9uTn52PLlo3I\nyMiAm5s7vL19cPbsKcb1Llw4B5XK/LwwS5790aPRGDq0H7Kzs8HlctGuXXssXPghxGI7PHv29MW/\nyzisW7caQHGQOnToCLzyyv+hqKhQ+35KK5mTGRNzjFF+/PiRF+3qWPaHWAnKso1pTVUoVRpd5OGT\n8RDrdr+NJQeXo/udSyYDwTLdkyfE4XbhmDVhLf6YuwKjR3XBsFA/CHjM5yngcRDRw7/Sh4UrKijA\nXa+tJdJ0ewYfpegvCDUyDG4nMh5kmuMo4pf7XEOoZ9Ba9HoGaTUxqZ+ysjLx88979cpdXFzRt+8A\nTJo0FdOmReKdd2Zh9OgxEIvtcOpUDA4dOoApU6aDxWKhZcviWTdRUaswbFgEpNIiREf/gcuXi4NB\nqbRI7/plNWTIcBw48CveeWcWJkyYhIYNvfHff7exffsWtGnTDp6engCAGTPm4n//W4SlSz/CwIGD\n8eDBPezZs6tC93Z0dMTUqTOwatWX2Lz5Wyxc+CG6dg1Fx45B+OijDzBhwiQ0bdoMKSnJ2Lp1I1xc\nXODv3+TFat2Z+OijD/DFF5+ib98BePLkMbZvL55fydb9UqrDkmffoUMnyOUKfPjhfIwdOwE2NrY4\nfToGBQUS9OnTH2w2G23btsdvv/0MR0dntGrVGunpafjxxx/Qpk07uLt76N03ODgEQUFd8M03XyEr\nKwstWrRCfPwtfPfdDnTuHKxdJFTduFwubGxscPPmDfzzz99o165DrduWztj8t5Cky3j7WBRsFcbn\nWmaIXcBRKyFUyBgraI156NIIh9uF40zL3lCLxHrz/wYF+1g8b8+abIVcDA7xNdibqtszyHmYoj/S\nZ+Qj0r6pK66b+Rk0RMjnaFdIV5aa99TrCxomJgQA8OzZU6xdu1qvvGXL1ujbdwD8/Ztg48Yd2Lp1\nw4uUKAp4e/tg4cIPMWLEKADFvWQLF36Iffv24Pz5t+Ho6ISWLVtj/fqtmD37LVy//rd2JWh5CYVC\nrF+/BVu3bsC2bZuQl5cLV1d3jB49hrEjRZ8+/cBms7Br13YsWjQfDRt6Y/HiTwyuEi6L4cNHITr6\nIA4d+h3Dho1EYGBLrFy5Bjt2bMHPP+9FRkY6nJ1d0Lt3X0yZMgN8fnHPQe/e/bB48SfYs2cXYmKO\noWFDbyxc+CGWLHnf4NzJ0ix59p6eXli9eh22bduE5cs/g1QqRePG/li6dLl2PuCsWW/D1laE6Ojf\nsXPnFohEYnTrFobp0w1vPcdisbBixWps374Ff/yxHzt2bIG7uwfGjZuA8ePfNBvEVqXIyCnYvXsX\nFiyYiz17ftV+CagtdOe/sdUqjL38I8ZcNbyq9bm9O8606IlzLXrisfPLoVuWRg2+Ug6hQgqhQgah\nvAhChQwCZfHrDDtXOHTrDD8vB7xmJNAry7w9aysJYnXnWUqc3KDicsF5scCKnZkJlkRn2NzI59VG\nwIW/l/HhcmNG921W6UEzS6OhKMQcSybSm5twz0lMgHNYF+1rja0tWIUvk26qGnoj63q8oVNJKTVp\nYUNdRs+5elTHc46JOYZmzQLg59dYW3b//j1MmDAGK1Z8g27dwqr0/jVBbf88m0ryXFaxN1Kx62gC\ngOIVwvOPfoPOD/7SrxfQHYc6DEWCV4DRYU5zBDwOVs/uViN7+8qrSKbU681sGNYJnOSX29YVvTER\nNnu+e/l68lRIlq+CS4vGYJeaT5wRfx+2a1fDdtN6bdn2HpFI8myGL39+mZv0VsOWWDTmC+3q6kkj\n2pj9PLu5Gd6mz5i68y9U61DPICGk6sXEHMPGjevw1lsz0KBBQzx//hzff78DjRv7W224lVjO0Krf\nkuTD5ZlbFxTgjn0nk+D2PAVLfv8CDXNSGceVbA629J6Co20HGQwCBTwO+nduhOw8KS7eembyXjJF\n5a96tTZDvZkqHz9GMMhJSWYc1xjryTbwd7+NvwuatvEBfn5Z5uogxJvhgVU6jE7BoJVoWCxmOEjB\nICGkCixZ8ik2b/4WW7duRHZ2FhwcHBES0h3Tps3SDiWTmsnYqt+S5MMAyhwQ2gq5GO8mQa+1H8Kh\nKI9xLNvWEV8Oew+C3j0QYWAXjtLz+g5dfGDkDkyVveq1JlL5+DBe6waD2qDagh7Wln7OUDZlpqJy\nthdWeUBNwaC16K0mpmCQEFL57O0dsHDhh9ZuBikjU6t+Sxy5nIJ+nbwN9hYZG1rmXYjFsP+9BXaR\nhFE/wbM5Vo/6EF0HdDS4C4cuU+lWSqvsVa81kVonlQz78SNmBSOpZWoSCgatRfcbAu1NTAgh5AVT\nu16UMDYMa2xoeTr7Pvqufg8sGXMRyZ0+I5Aw/zMsaWs4sDSkZLjZVBsFvMpf9VoT6eYVZFmYWqYm\noWDQWnQ+HLQDCSGEkBKmdr0orWQYtqQn8M/454hP0d/+rds/Meh9Yj1YOmnMCufNh9OHH6NbGQMW\nU+lWSgwO8a1Ti0eM0UsyrcuKq98tVff/lWoKve3oaAEJIYQQw8oyDGtqazm2WoVRcb9j4oXdesck\nH3+Gotnz9MotZSzdSlXtKVxTqXz8TFegnkFilN6Hg4JBQgghxSwdhs3IleLQpWSDx5s/vYMZpzah\naRqz907DZkOyKgrSNyZWuJ3DQv3Qr5M34hLSoADAA2ps8uiqonFzg8bGBqwiI8ntqWeQGEVJpwkh\npN4zttCjZBj24Jk7cC7IgkApxzMHDyg5PO25/Ts3wolrj/SuaVeUhwkX9mDAzRiwdToaFBwuYuev\nQNtKCARLlKRbqe35HMuNxYKqkQ+4dxKNHq/pKBi0FgoGCSGkXtMd3nXPfQ7cPokWRc/gVpCF17PS\n8GZ2hnZOuYLDRbKrHx54NoEoNBjS50rcePYUYqkEYpkEYqkErvkZGPnXQdhL9YOyAr4tvhz2HliN\ng5FzI7VCyasJk8rH12gwaDTPYA1CnwJr0V1qTsEgIYTUG7o5BLvduYi5x9eZ3BuYp1Ki2fO7aPb8\nLnDjOACgr4X3iw3oju093kSWnQuQlIHrSRkVSl5NmHTTyzDU/I5BCgatRaOXWoaCQUIIqQ9K5xDk\nqhSIjP0OI65HV8m9Hjs1wKY+03DDt53esYokryZMJheRUJ5BYhQNExNCSL1UkkPQJT8D70d/hRZP\njcw1eyHb1hEaNhvOkiyL7yHj8vFT8Ks40GkklFyeybqmklcTy6ga+Rg/SHMGiVEUDBJCSJ1hbCGI\nIbkSGdqn/IMFR1brbQmn4HDxQ8hYxDdsgQw7F2SLnLSLRlykufBLTULTtHto8vw+fDMfQs1ioUAg\ngkQghkQoRoFQhDQ7d8QGhiHd3g1eLrZ4mllosu11cQ/h6qb2NTFMTHMGiVEUDBJCSJ1gbMcPY/Px\nWvwTi4n7l4KjkwD6ub0bVgx9D0mezQzeJ1PogEz/IPzlH2S2TQIeBxEhvoBGgwPnze8jXB/2EK5K\nJhNPU88gMYqCQUIIqfV0F4KUKJmPl/w0D36edtreQrv7iQj+6gOwdQLBa4074ZtB85BvY1+h9rT0\nc0JwCw9trr/YG6kWnVcf9hCuShpHJ6jtHcDOy9U/SD2DxCidDwdtR0cIIbVL6YUgxlx/sXIXAA4d\n+gvrfnoP7MIC7XEVi429oa/jly6vQGNioQGXw4JSZf7vRHALD8ZwL+0hXH1UPr5g3/pX/4CxnsEa\n9He/5oerdZVez6DacD1CCCE1UslCEEuw1Sq8/fsK2D1/wijf3n86fg5+1WQgCACDgn0h4HFM1jEU\n1JUkrzalvuwhXNXURhaRvMwzWHOHi+lfv7rofgOgPIOEEFKr5UpkFtd9M/Y7tH/I7DUqmjAJgz5f\nBteENOQUyJHyNA+3krMgV7zsHCi9zy+PyzY4JF3CWFBHewhXD6PzBmnOIDFKb2tiCgYJIaS6lWUV\nsC4HscBTo3jFAAAgAElEQVSier3jz2Dk3wcZZRmtO0HzxUrY8LmMYd0imRJxL4JDRxGfsc9vRYK6\n0nsIG7o2qTiVsRXFlGeQGEULSAghxKrKugpYlyXz8Zo9vYPZMRsYZeliF8QsWIX+fP1FGyX7/BpT\nkaDO3LVJxRjdhYR6BokxejuQUDBICCHVxtwqYMD8rhwl8/GMDd265aVj8cHl4KsUL6/P4eOL4Yvg\nobZBoVRZrr2BKairmYzuQlILVhPX/BbWVRQMEkKIVViyCvjI5RQUyZRmrzUs1A8RPfz1FnfYygrw\n8YHP4FKQzShfN2AW7no2xcVbzzD/24s4dCm5zO0nNZPKu5HhA9QzSIzS/aZAwSAhhFQLS1YBl2VX\nDt2h20ePszB85f/gl/mQUW9/p5E416In4x60N3AdIhZD7eoKdkYGs7zmx4IUDFqN7jcFNaWWIYSQ\n6mDpKuCy7MqhHbrVaCB+5yvYPLzBOH6paVfs6jHB4Lm0N3DdofLx1Q8GaZiYGKUTDFLSaUIIqR6W\nrgIuz64ctmtWwWbvbkZZgmdzrA5/x2guwZJeSFL7GUwvUwuGiSkYtJZa8OEghJC6KCjAvVwJnM0R\n/PoTRMs/Y5TlezTEspEfQsYzHYDS3sB1g7qRfjCooZ5BYpShYJB6BwkhpMpV+q4cKhVs1kfBbt5M\nRrHa0RGXlm9Frq2j2UvQ3sB1g+HE0zW/84cmKNQkGg31GBJCSDWorF052I8ewm72NPAvX2SUa/h8\n5H23D4EdgiFIvEh7A9cTBoPBWtAzSMGgFWnYbLBKLxyhnkFCCKk2FdqVQ6OB4Od9EH/4Htj5eXqH\n86M2QBHSDbaAyVyEAO0NXJeoDe1CUgs6eejTV10MBXqGVhRzTM9jIYQQUnnKk8CZE38bgpXLITpy\nUO+Y2skJ+V+vg3zocG0Z7Q1cf6gaNoKGxWIuCqWeQWIUi0WJpwkhpJZgP34Ewf5fIfztZ3D/u22w\nzuP2obD5fifUnl56x2hv4HpCIIDa0wucp6kvy4z1DNagv/n0KbQmCgYJIaTmUiggOPArhHu+A//K\nJaPVZBw+dvaYiMPtByPivgzDPA3Xo23k6ge1jy8zGCzpGazBw8UUDFoTBYOEEFLzSKUQ/vgDbNev\nAeeh6W3r7rr74+vwd/DYpXgrMkogTZT+TcC7eln7WiMSWbE1lqFPqzVRMEgIITWHRAKb73fCZuM6\ncJ4/M1pNxWLjH592ONOyFy407wYV5+Wf0rJsY0fqJunr4yH8eR9YKhXUrm6Q9+hl7SaZRcGgNdH+\nxIQQUq0KpUrEJaYhVyKDg1iAoAB32Aq54J0+CftZb4GdmWn03LTmbXCgYTAuNO+OHJHx3IGUQLp+\nU3YNQfapC+DevAFFz97QOLtYu0lmUTBoTbQ/MSGEVJtDl5L1VvTuO5mEadxk9PtqPlhy/SBOw+dD\n+tobKJoxC+clIkQfTTB7H0ogTVQtW0HVspW1m2ExCgatSmd/YmhAfYOEEFL5Dl1KNpjrr23CZfQ6\ntBIstZJRrrG1RdGESSiaOQcSRzfEJaYhI6cIXA4LSpXx39SUQJrURhQMWpGGxWKGgzRMTAghla6g\nSIEjl/UXggTfvYr3o78CTycQzJ0xD7F9X0M6xxbJF9NxOzkRcoVlIzeUQJrURvSJtSZaQEIIIVXu\n4r+petvBdb17Be9Fr9ILBC/O+Bjf2HeG7NLzMt2DEkiT2oyCQWuiYJAQQqpcdp6U8bpr0hW8f/gr\ncNXMAPHX1xbiO5uOgIl9hEvjclgID/aFq4OQEkiTWo0+udXFku3oKBgkhJBK52Qv1P6/f9p9vHd4\nFSMQVIOF9f1n4kyj7oCJ+YC6lCoNXB2ElEaG1Ho1f8O8OosFsCkYJISQqtatbQMIeBxwlQq8c3QN\nY2hYDRbWDZiFM+0HmFwYYgylkSF1AQWD1qSXWoaCQUIIqWwiGx4Gh/hi7OUf4Zf5kHFsff+ZONm6\nH5p5G88baAqlkSF1AQ0TWxMNExNCSLWI4D6Hw18HGGWnW/RCbMdBiAjxhYOIj/9Ssst0TUojQ+oK\nCgatiYJBQgipMiW7jWgKCzFoxhSwSyX2L3BxR8EXK7E6qClsBFwUSpXYdzJJb9WxKZRGhtQV9Cm2\nJgoGCSGkSpTebWTq6a0QpzLzDCo2bEbXboHa17ZCLgaH+BpMTK2L0siQysCqQdtMUDBoVRQMEkJI\nZSu920jbhzcw7J/DjOP/DXoVrr376p1XEtzpblnH57LRyt8Zfp72cBTxKY0MKReNbgdQDUKfZivS\nsJnrd2g7OkIIqZhCqVK724itrADzjq9nHH/q4IHPW7yKL2RKgwHdsFA/9OvkjbiENOQUyCn4I/UC\nfbqtSW81sWXbHRFCSH1XMh8wVyKDg1iAoAB32Aq5iEtM0/bqTTq3C+756dpz1GBhzcC5yGXxEZeQ\nZjQ/oI2AS7kDSb1CwaA10ZxBQkgdZyxoq4jS8wFL7DuZhMEhvtrfo+1T/sHAWzGM8/7oNBzx3q0A\nUH5AQkqjYNCaKBgkhNRhpoK28i6+KD0fsDSZQoUDsffRoZkrhPIizI75lnH8kbM39oSO1b6m/ICE\nvETBoDVRMEgIqaPMBW3AywUblvYelp4PaMztB1mYfGkPPPKYw8NRA2ZDzhMAoPyAhOiiYLC60N7E\nhJB6wpKg7cjlFPTr5I2Tfz22uPew9HxAY5om38Tgv5mrhw92HIbEBi/TyFB+QEKY6KfBWlgsCgYJ\nIXWSJUGbTKHC9uh4/J2UYfCYbu8hAORKZCavKVDIMO8Ec/VwqoMn9nQbV3yc8gMSYpDV9yY+d+4c\nXn31VXTo0AF9+vTBsmXLIJFItMelUimWL1+OsLAwtGvXDuPGjcONGzf0rvPnn3/itddeQ/v27REW\nFobVq1dDLn85QXj//v0ICAjAvXv3quV9WUQntQwFg4SQusBc0Fbixr1Mk8ePXE5BkUypfe0gFpis\nP/bSPjTIecoou/vRCrw6vB3eDA/E6tndKBAkxACrBoNXrlzB9OnT4ebmhnXr1mHatGk4ePAg5s2b\np62zcOFC7N+/H7Nnz8bq1asBAJGRkUhOTtbW+ffffzF58mS4ubkhKioKEyZMwI4dO7Bs2bLqfktl\nRKllCCF1j7mgrYRKbfoLsEyhQlxCmvZ1UIA7BDyOwbrNn97BiL8PMsqKIiejxYQIjOkXgLB2DWho\nmBAjrPqT8csvv8DFxQVRUVHg8XgAALVajU8++QQPHjxAbm4uTpw4gaioKAwaNAgA0K1bNwwYMACb\nN2/G8uXLAQBRUVHw8/PD2rVrwWKx0LNnTwiFQnzxxReYOnUqvL29rfYeTdJNRk49g4SQOiAowN3s\nPr8cNstsMAgA/9zNQKcXC0qMbRlnIyvEvONrwdG8/EKt8m6Ego+Xlv9NEFKPWLVnUCaTQSgUagNB\nAHB0dAQAZGdn4/z58+DxeOjTp4/2uFAoRO/evXH27FkAgFwux9WrV9G/f3+wSs3BCw8Ph1qtxrlz\n5wzeWyqVYsKECQgODkZ8fHwVvDsL6MwZrEn7FBJCSHmVBG2mtG3iYtG1ridlYP63F7E/9j5ib6QC\nGg06NHMFn1f854urUuDDQ1/CJ+sx47z8VVHQiO3K9wYIqWesGgyOGzcOz549w4YNG5Cbm4uEhASs\nX78e/v7+aNOmDe7du4eGDRuCz2fmg/Lz80NWVhays7Px6NEjKBQKNG7cmFHH1dUVIpEI9+/rpzaQ\ny+WYNWsWEhMTsWvXLrRs2bJK36cxevsUUs8gIaQWKZQqEXsjFYcuPkDsjVQUSl/O7xsW6oeIHv56\nw7oCHgcRPfwxeUhLo0O+umQKFaIvJWPX0QQcOP8A15MyAA3QsakzVl3fifYP/2XUL3r9DSj69Kv4\nGySknrDqMHFISAhmzJiBqKgoREVFAQAaNmyI77//HjweD/n5+RCJRHrnlZRJJBLk5+cDAMRiscF6\npRejAIBSqcTcuXNx69Yt7Nq1Cy1atKjst2U5vWDQOs0ghJCysiShtLl9fg0N+VpKrlSj3fbVaPLX\nEUa5omMnSL74qnxvipDqVIM6gKwaDC5duhQ//vgjJk2ahJ49eyIjIwMbN27EpEmTsGfPHmjMPCgW\niwW1mUUXLJ2Aa/Hixbh58yYWLFhgcSDo5GQLLtf8N1g3NxNDEs7MoJbLZQM85uN3drIFTF2DADDz\nnEmloedcPWrjc/7pZKLJhNIiER9j+gVoy328nQxeZ9KINhCJ+Pj1VBKkctOpaHQN//sgRv31O7Ow\nWTPwjh2Fm5ubXv3a+JxrI3rOJnCYg7EuLmLAljnyKRYLAEdbRhmfx9F7rpX9nK0WDD5//hx79+7F\nxIkT8f7772vLu3btiv79+2Pz5s2ws7PDkydP9M4t6e2zs7ODVCoFABQUFBisp9tj+PjxY3To0AHb\ntm1DREQEXF1dzbY1O7vQbB03Nzukp+cbPc7JKoBzqddKpRpQaxj/AFkZ+VCZuAYx/5xJ5aDnXD1q\n43MulCrxy8kkk3V+OZmEkFI9gKb0adcAIYHu2BYdXzz8a4HuiRfw1tkdjDK1mzuyf/gVaggBnWda\nG59zbUTP2TRntQalu5UyMyWwKZSjdOgnkcigzCmEY6kyuUKF3FLP1ZLnXNZg0WpzBlNTU6HRaBAU\nFMQod3V1RePGjXHnzh00btwYqampjHyBAJCSkgJXV1c4ODjAx8cHXC6XkWoGADIyMlBYWIgmTZow\nyqOiorBq1SrIZDIsXWrllWY0Z5AQUstYmlC6dEoYc2wEXLRrav6LuUAhxWuXf8K7x9YwyhVCW+Tu\n+xVqv8ZGziSEmGK1YNDX1xdcLhdxcXGM8qysLCQnJ6NRo0YICwuDXC7H6dOntcelUinOnDmD7t27\nAwD4fD66dOmCmJgYqFQvf0EdPXoUbDYboaGhjOu7urrC29sbc+bMwfHjx3Hs2LEqfJdmUDBICKll\nLE0onVMgN1+pFFM5BNlqFfrfjMHmHTMw7vI+8FQvF6oo2Rxc/WQdlG3bl+l+hJCXrDZM7OzsjEmT\nJmHbtm1gs9no0aMHMjMzsXnzZrDZbLz11lto3LgxunfvjkWLFiEzMxNeXl7YsWMHJBIJpk2bpr3W\nrFmzMGHCBMycORNjx45FUlIS1qxZg9GjR8PX13B6g8jISERHR+Ozzz5D165dtSltqgztTUwIqQMs\nTSjtKOKbr1SKoRyCLI0aHZL/QeT579A4w/Bex98OfhsR4yLKdC9CCJNVF5C8++678PLywt69e7F7\n9264uLigY8eO2LBhAxo1agSgeFh35cqVWLt2LeRyOVq3bo2dO3fC399fe52goCBs3LgRa9aswezZ\ns7WB5pw5c4zem8PhYOnSpRgzZgyWLVuGVatWVfn7ZaC9iQkhtZAlCaUFPA6CAt3LfO3hzcVodO0R\nck9fQJPUBDR7dhdimf58cADItbHH1l6T4TxlIu0sQkgFWfUniMViYezYsRg7dqzROmKxGEuXLjU7\nv69nz57o2bOn0eOjRo3CqFGjGGVt2rSxXsJpAGDR3sSEkNrF2C4gpQ0O8bUsQJNIwL90Hryzp8E/\nexrcu0nob+YUGYePPzoNQ3Toq+jVqyXtNUxIJaCvU9akuwOJhvYmJoTUfCUBmG6eQQGPw8gzaAgr\nMxPCH74D//RJ8K5dBUuhsPi+Kf1H4Mr/zQLPzwfLLFytTAgxj36SrIh2ICGE1FbmEkrrUSoh/G4H\nRCuWgZ2TY/F91A6OUHTvgcJ3FsC2bXv0MX8KIaSMKBi0JgoGCSG1mI2Ai7B2DczW412+CPGiheDG\n3zJZT8PlQtmqDZQdO0HRMQjKTp2h8m8CsK26cyohdR4Fg9ZEwSAhpA5jP02F6NMlEO7/1WgdZZOm\nUPTqA3mvvlB06w6NmHawIKS6UTBoTRQMEkLqKN65M7CfPAHsvFy9Y2qRGIVvz4ds1KtQN/KptHsW\nSpWIS0xDrkQGB7EAQQHusBXSnzlCzKGfEmvSiQUpGCSE1AWCfXtgN38uWEql3jHp6DEo+Hgp1J5e\nlXrPQ5eS9Ra07DuZhMEhvpg0ok2l3ouQuoaCQWvSnQdDwSAhpDbTaGC74nOIVq/UO6Ro3RaS5aug\nDO5a6bc9dCnZYKobmUKFA7H3IRLx0ceCuY2E1Fc0K9eadIeJ1ZRahhBSS8nlsJs1VS8Q1LBYkCz5\nBDkx56okECyUKnHksuHdSUr8eioJRTL9XkpCrKoGdQBRMFhNWDD0j647Z7BamkIIIZWKlZMNhzER\nEP76E6NcLRAib9v3KJr7LsAxvO9wRcUlppncDQUApHIV4hLSquT+hFhMtwOoBqFg0Eo0tB0dIaQO\nYKc+gePwQeBfPM8oz7Wxx5JXP8NvLu2q9P65EplF9XIK5FXaDkJqM5ozaE0UDBJCajHOnUQ4jIkA\n58ljRvkTxwb4ZNRHeObohZsv5vJV1bZxDmKBRfUcRfwquT8hdQH1DFqT7nZ0NE5MCKmhCqVKxN5I\nxaGLDxB7IxXKi5fgOGyAXiAY36AFFr7+JZ45vlwtfORySpXN2QsKcIeAZ3oIWsjnICjQvUruT0hd\nQD2DVqSh1cSEkFpAN21L0P04DI1eCbaSOfR6uUkwVg1+F3Ies7dOpiies2fJbiVlZSvkYnCIr8HV\nxCVG921G+xgTYgL9dFgTrSYmhNRwumlb+t4+hTknvgVHw/x9dazNAGzsOw1qtuFeuqqcs1cyBK2b\nZ1DA42BwiC/G9AtAenp+ld2fkNqOgkFrojmDhJAarHTaFp5SjinndmDwjWN69fZ2HYN9Ia+ZXC1Z\n1XP2hoX6oV8nb8QlpCGnQA5HER9Bge7UI0iIBeinxJooGCSEWIGl27aVpG3xyn6K9w9/hSZpzKFY\nNVjY2HcaTnYMB1TGf38JeNUzZ89GwK2SoWhC6joKBq2JgkFCSDUztW2b7orfXIkM3e5cxNwT62Er\nL2Ick3N4+Dr8HVxqHoqWjRwRn5xt9J6DQ3yph46QGox+Oq2JgkFCSDUyt20bUCoFjFSKnjtXoEn0\nXr36Tx08sGLoe7jn0QQAENzCAwE+Tkbn7FVVWhlCSOWgYNCqKBgkhFQPS7ZtO3I5Bf06ecPu+jXY\nvTsbbneT9OpcbBaCtQNmo1AgAvByCNhGwKU5e4TUUvRTak1sCgYJIZXL2HxAS7ZtYxdIoJg1G04H\n9XsDFWwutvd8E4fbD2aMapQeAqY5e4TUThQMVhdDgZ7eMDGlliGElJ+p+YDmvmx2evAXZp3cCLf8\nDL1j+R4NsWzgfMS7+mvLaAiYkLqDgkFrMbA3MYt6Bgkh5WRuPmCHZq4Gz+Mp5Zh+ajMG3D5l8HjR\n+EjI/vcZZglENARMSB1FP8nWRAtICCGVwJL5gLcfZIHPY0OueDkC4SzJwocHlyPgmf7cwFQHT/yz\nYBk6T/s/AIANQEPAhFSmGvQ3n4JBK9JQMEgIqQSWzAeUK9Xo2MwVfycVDwM3e5aExX8sh0tBFqOe\nisXGHx2HY2/o64DEFq1lSuoBJKQymEjKbm30E25NFAwSQipBrkRmUT1fL3v4etkjf9t3mHF0Lfgq\nBeP4Y6cGWB3+DpI8mxUXVOGewoSQmoOCQWtis5mvKRYkhJSDg1hgUT1HIQeDDm+DbfQ3esfi/Dri\nqyHztSljSlTlnsKEkJqBbb4KqTK6PYNqWk1MCCm7oAB3CHgck3UEPA76/xwF23X6geBvQSPx2cjF\neoEgUPV7ChNCrI+CQWuiYWJCSCWwFXKL08eYMFt+C3Y7tjDK5BweVg+ah109IqFm6weT1bWnMCHE\numiY2KooGCSEVI6SfH+GtoQb20COnos+Y9RXu7nj+MLVOPNMbPSatKcwIfUD/ZRbE/UMEkIq0bBQ\nP70t4To3EMJrWF+wCgu19TQCAXL3/oKu7Tog3UCiakooTUj9QsGgNVEwSAipZIwt4TQa2EeOA/f+\nPUYdyZdfQ9muAwDDAWRQoDs0GiD2RqretnaEkLqHfrKtSXc1MS0nJoSUgbF9iEvYrFsDwdFoxjlF\nb0yEdNwERpnunsKmtrWj3kJC6h4KBquLBXsTs2g1MSHEQuYCNl7sWYi++JRxjqJdB0i++MrsdU1t\naweAAkJC6hhaTWwtLBbtQEIIKZeSgE1315GSgO348Ruwnz6Z8QVT7eSEvO3fA0Kh0etasq3dkcsp\nKJIpK/YGCCE1CgWD1kTBICGkjCwJ2ByiVoGdka59rWGxkLdxO9Q+ptPPWLKtnezFriSEkLqDhomt\nSXebQgoGCSFmmAvYPHOeYtDfhxllCWOn47KgCRxupJpcCGLptnYV2ZXE3DxHQkj1o59Aa6KeQUJI\nGZkL2Cae3w2e+uUwbrq9G5Y494L8/AMApheCWLytXTl3JaGFKYTUTDRMbE0UDBJCyshUwBaYmoDu\nSZcYZd91ewNy3stzSuYVHrqUrHe+pdvalWdXEnPzHA21h5A6rQb9zadg0JpYOo+/Bn0wCCE1k9GA\nTaPB5HM7GUVJHk0RGxhm8DqGFoJYsq1deXYloYUphEC/A6gGoWDQmnQ/GJRahhBihrGArfudiwh8\nmsgo29EjEhrdL50vGFsIMizUDxE9/PUCTgGPg4ge/uUazqWFKYTUbDRn0JpomJgQUg66+xBzlQpM\nvLCbUedKky641ai1yesYWwhibFeS8u5TXB0LUwgh5UfBoDXV4C5jQkjNVjpg8/5hKzxzn2uPqTlc\n7Owx0ew1TC0E0d2VpCKqemEKIaRiaJjYmqhnkBBSATYCLno0EiDowHZGuWT8m8h09zF5bnkXgpRH\nVS5MIYRUHAWD1cWS7egoGCSElJHtmq/Bzs3Rvlbb2UP+3qIqWQhSXlW1MIUQUjnoJ89aWCxo2LSa\nmBBSfqy0NNh8x+wVLHx7ATSurhjm6goAenn9BDyOVfL66c5ztHZ7CCEvUTBoTbSamBBSAbYb14FV\nVKR9rfL0QtFb07WvK3shSEXVtPYQQorRT6A10ZxBQkg5sTIyYLNzK6OsaM7bgFDIKKvMhSCVoaa1\nhxBCcwati4JBQkg52W5aD1Zhofa1yt0DRW9EWq9BhJBai4JBq6JgkBBSdqysTAi3b2GUFc2eB9jY\nWKlFhJDajIJBa6KeQUJIOdhs/hbsAon2tdrVDUUTJlmxRYSQ2oyCQWuiYJAQUkas7CzYbN3MKCuc\nNQ+wtbVSiwghtR0Fg9bEpmCQEFI2Nls2gi3J175Wu7igKHKyFVtECKntaDWxNen1DFJqGULqokKp\nEnGJaciVyOAgFiAowB22wrL/+mXl5sBm6ybmtWfMBUSiymoqIaS61KAOIAoGrYl2ICGkzjt0KVkv\n0fK+k0kYHOKLSSPalOlaNls3gZ2Xq32tdnKCdNKUSmsrIaQK6XYA1SAUDFqRhuYMElKnHbqUjAOx\n9/XKZQoVDsTeh0jERx8Lc+6xcrJhs3kDo6xoxhxoxHaV0lZCSP1FcwariwV7E1MwSEjdUShV4sjl\nFJN1fj2VhCKZ0qLr2X69grkHsYMjiiZPrVAbCSEEoGDQeligYJCQOiwuMY0xNGyIVK5CXEKa2Wtx\n7iXBRievYOHsedDY2VeojYQQAlAwaF0sncdPsSAhdUauRGZRvZwCudk6ok8/Bkv5sgdR5d0IRVNn\nlrtthBBSGgWD1qTbM6im1cSE1BUOYoFF9RxFfJPHeRdiITh2mFFW8NGntNsIIaTSUDBoTTRMTEid\nFRTgDgGPY7KOkM9BUKC78QoqFUQff8goUnTqDNnIVyqjiYQQAoCCQeuiYJCQOstWyMXgEF+TdUb3\nbQYbQXFSh0KpErE3UnHo4gPE3khFoVQJ4U97wbv1L+McyWfLa3SKCkJI7WP1YPDmzZuYNGkSOnTo\ngODgYMyePRuPHj3SHpdKpVi+fDnCwsLQrl07jBs3Djdu3NC7zp9//onXXnsN7du3R1hYGFavXg25\n/OVcnP379yMgIAD37t2rlvdlEQoGCanThoX6IaKHv14PoYDHQUQPf4zpFwCgOAXN/G8vYtfRBBw4\n/wC7jiZg8Tcnwfn0f4zzpBGvQBnUpdraTwipH6yaZ/C///7DG2+8gfbt22PNmjUoKCjAmjVrEBkZ\niUOHDsHW1hYLFy7ElStXsGDBAri6umLHjh2IjIzEgQMH4OfnBwD4999/MXnyZPTq1QszZszAnTt3\nEBUVhZycHCxdutSab9E0vW/3FAwSUtcMC/VDv07eiEtIQ06BHI4iPoIC3bU9gsZyEQ699AtsszO0\nrzVCIQqWfFpt7SaE1B8WB4MSiQRisbhSb75y5Ur4+flh27Zt4PF4AABvb2/MnDkTN27cgI2NDU6c\nOIGoqCgMGjQIANCtWzcMGDAAmzdvxvLlywEAUVFR8PPzw9q1a8FisdCzZ08IhUJ88cUXmDp1Kry9\nvSu13ZWGrbuamIJBQuoiGwEXYQaSSxcUKQzmInTLS0NE3B+MssLps6Fu5FNlbSSE1F8WDxOHhobi\nnXfewdmzZ6FSmc6dZYmcnBxcuXIFr7/+ujYQBIC2bdviwoULCAkJwfnz58Hj8dCnTx/tcaFQiN69\ne+Ps2bMAALlcjqtXr6J///5gleppCw8Ph1qtxrlz5wzeXyqVYsKECQgODkZ8fHyF30+56G5HR6uJ\nCalXLv6bqpeL0EZWiMV/LIdA9XKai9TJFUVz36nu5hFC6gmLewaHDBmCmJgYHDt2DE5OThgyZAhG\njhyJVq1alevGiYmJUKvV8PT0xKJFixATEwO5XI5u3brh448/hpeXF+7du4eGDRuCz2emXvDz80NW\nVhays7ORlZUFhUKBxo0bM+q4urpCJBLh/n394Re5XI5Zs2YhMTERu3btQosWLcr1HiqKtqMjpH7L\nzpMyXnNVCiw6tAJN0h8wyuNen4kAsR0KpUrEJaYhVyKDg1iAoAB32AppV1FCSMVY/Ftk+fLl+PTT\nT3Hq1CkcPHgQ+/btw549e+Dv748RI0Zg+PDh8PT0tPjGmZmZAICPPvoIXbp0wdq1a5GWloavv/4a\nb8lOGCIAACAASURBVLzxBv744w/k5+dDJBLpnVtSJpFIkJ+fDwAGh7BFIhEkEgmjTKlUYu7cubh1\n65ZVA0EAxbuQlEbBICG1XlkCNid7ofb/WRo15h5fjw4PmQvk/vQPQtqI13DnUjKOXE5h9CTuO5mE\nwSG+GBbqVyXvhRBShWrQ3/wyfaXk8/kIDw9HeHg4cnNzcfToUZw8eRLr16/HmjVr0KVLF4wcORKD\nBg2CUCg0eS2FQgEAaNy4Mb7++mttuY+PD15//XUcOHAAGjMPisViQW1maJWl0/u2ePFi3Lx5EwsW\nLLA4EHRysgWXazpfGAC4uZnYMN7RlvGSx+WAJ2I+I5EtHyJT1yAAzDxnUmnoOZfdTycT8eupJEjl\nLwO2H08lYXTfZtqVw6V1Ewux9febkMpVmHBhD3onMKe1JHo2w9qR72OQCgYXmcgUKhyIvQ+RiG/w\n+uQl+jxXD3rOJnCYM/NcXMSALXPkUywW6MULfB5H77lW9nMu9/iCg4MDRowYAWdnZ9ja2uLEiRO4\ncuUKrly5gi+++AITJ07E9OnTweEYDqJKevd69+7NKO/YsSPs7OwQHx8POzs7PHnyRO/ckt4+Ozs7\nSKXFwywFBQUG6+n2GD5+/BgdOnTAtm3bEBERAVdXV7PvNTu70GwdNzc7pKfnGz3OzS6AU6nXCpUa\n8kI5Svd7FkikKDRxDWL+OZPKQc+57IytCpbKVdhzNAEFBXK9Hjw3NzuEd/WFImotRl/bzziW6uiF\npSOXoEdoM/x+znRKrF9OJiGk1AplwkSf5+pBz9k0Z7UGpSOizEwJbArlKB36SSQyKHMK4ViqTK5Q\nIbfUc7XkOZc1WCzzbw6VSoXY2FhER0fj9OnTkEqlcHZ2RmRkJEaOHAkA2L17N9avX4/nz58bTe1S\nMsevdC7A0vcQCoXw8PDA6dOnIZfLGfMGU1JS4OrqCgcHB9jY2IDL5SI5OZlxjYyMDBQWFqJJkyaM\n8qioKDRs2BBDhw7F0qVLsXbt2rI+gspDcwYJqRMKpUqDq4JLO3I5Bf06ecNGwNUOJbPyctEleh9a\nnd3OqJtt64Blr36CJu2a4Em6RG+RiS6ZQoW4hDSDK5YJIcQci4PBa9eu4dChQzhx4gRyc3PB4/HQ\nu3dvREREICwsjNED+Pnnn+PRo0eIjo42Ggz6+/vD29sbR44cwVtvvQX2izQrly9fRmFhITp37gwP\nDw9s3LgRp0+f1qaWkUqlOHPmDLp37w6geOi6S5cuiImJwYwZM7TtOHr0KNhsNkJDQxn3dXV1hbe3\nN+bMmYOVK1fi2LFj2mtXO0otQ0idEJeYZnHAllMgx78HYzEw7hB6x5+FUClj1FMIbfDz3K/xXOOO\nR0kZRq6mL6dA/4s1IYRYwuJgcPz48QCA9u3bY+TIkRg8eDDs7e2N1ndxcUHz5s2NHmexWPjggw8w\nd+5czJw5E+PGjcPz58+xevVqtG7dGgMGDACXy0X37t2xaNEiZGZmwsvLCzt27IBEIsG0adO015o1\naxYmTJiAmTNnYuzYsUhKSsKaNWswevRo+Poa3g4qMjIS0dHR+Oyzz9C1a1c4OjoarFel9HoGKbUM\nITWJpYtBciUyvTJnSRZc8zMglkpgJ82HSFYAccJBNLl5DZMe3TR4PzWbgzMLVyG6wBVA2X4fOIr4\n5isRQogBFgeD06ZNQ0REhHbXD3O++eYbs3X69++PLVu24Ntvv8WsWbNga2uLvn374v333weXW9y0\nqKgorFy5EmvXroVcLkfr1q2xc+dO+Pv7a68TFBSEjRs3Ys2aNZg9ezacnZ0xadIkzJkzx+i9ORwO\nli5dijFjxmDZsmVYtWqVRe+rUtEwMSE11qEyrN51sOHCLz0ZLVL/Q8sn/6FF6n/wyEsv0/2kXAE2\nhM/BRXkjlDUQFPA4CAp0L9M5hBBSwuJg8J13qibhaVhYGMLCwoweF4vFWLp0qdlt5Xr27ImePXsa\nPT5q1CiMGjWKUdamTRvrJZwGDASD1mkGIYTJ2GKQktW7QPE2c5BKIfpyGSL27MIreXnlule62AVH\n2w3C8TYDkGfrACjKPkIwOMSXFo8QQsqNfntYk+4OJNQzSIjVlAwJZ+QU4difD03WPXI5BQM9NHCf\nHgnejevlut+thi1xqMNQXGkaDDXbfOoqQwQ8DuUZJIRUGAWD1kTDxITUCIaGhE0JvPs3XAeOBy8v\nx2gdBYeLh86NILF1gJ23B+DkhLg0JfJs7HHDpw2S3RobPdecjs1c0a6pK4IonQwhpBLQbxEr0tBq\nYkKsztiQsEEaDUbFHcCEC3vA0VnwpXZwhCK4Kwo7BeNf9+ZIbtgcdk522oCtUKrEz99eNBlw8rls\ngAXITQwVC3gcTB7akoJAQkilod8mVqXTM2hmNxVCSOWyJD9gCaG8CG8fX4tuSZf1jskGDUH++k3Q\n2DsAAFq++K80WyEXg0N8TQaeQ14M95qqQ/MDCSGVjX6jVBdDvX40TEyIVVmSHxAo3jf4vcNfo/OD\nOEa5hsVC4QdLUDhvvn7eUANK5vbpDkkbmvtnSR1CCKkMFAxaC4tFwSAhVmYoP6Ahw65H6wWCakdH\n5G3aDkWf/mW657BQP/Tr5I24hDQoAPAAvbl/pevkFMjhKOLT/EBCSJWh3yzWRMEgIVblIBaYreOf\ndh+R579nlClbtETud/ug9mtscWLq0mwEXIS1a2Byj9GSOoQQUtUoGLQmCgYJsaqgAHfsO5lkdKhY\noJBi4ZGvwVMptWVqewfk7vkZ6kY+ZUpMTQghDDXob775SS6k6rB1gkHKOk1ItSpZ1GHM1DPb4J31\nhFGWv3qtNhA8EHtfL5AsSUx96FJyVTSZEFJb6XYA1SAUDFqT7geDVhMTUu2Ghfohooc/BDxm4ude\n9y5jwK2TjLKicRMgHx5h0SrkI5dTUCRTmqxDCCE1AQ0TWxMNExNSI+gu2PCSpGPgto2MOsqmzSBZ\ntgKAZauQZQoV4hLSaN4fIaTGo2DQmmg7OkKs5v/bu/O4qKr+D+CfGWbYNwlwQwVMUAERxV00t0rN\nzNLU9FGj1J9b+WiLWvakWT5ZmWs+ZpmVS/lUPpVCuS+5Ru4LuLC4oCg7wzAMzNzfHzYjdxYYFLjg\nfN6vl6+XnnvunTOH68yXc+75HksLP2IiGwE6HbwHT4C8zF7DgqMjClavBdzcANi+Cjm3UFstbSci\nqkoMBiUkcGSQSBLlLfwYdmE7lMeOiOoXzp2H0ohI479tWYUMAN5ujlXTYCKiasRnBqXEYJCoxpW3\n8GP3b8fh+N48cXmffiiaMFlUFh3qb/aMoSknpQOiW/pXTaOJiKoRg0FJMRgkqkkVLfwYe+BbOKnv\n5f3Tu7lD9ekKs1/cKlqFDHDbOCKqO/hJJSXT7asYCxJVq/IWfrRMT0S/c7tEZerXZ0PfoKHF+pXZ\nWo6IqDZjMFhTbNmbmKlliKqVtYUfcr0O/7drtaisNLQlisb/X7nX47ZxRPQw4CeWVCztTcyhQaJq\nZW3hx5Onf0fzOymiMtW/PwGUygqvyW3jiKiu4zODUuICEqIaZWnhh5c6F/84uF5UVjj4OZR0i6nJ\nphERSYbBoJQYDBLVKEsLP8Ye+BbuxWrjv0ucXaF57wOL56s1pdh/Kh2/HkzB/lPpUGu4wwgR1X2c\nJpYSg0GiGld24Udg2jmzRSPFs96yuGikvNyEXCxCRHUZg0Epma0mZjBIVBMGdQ1E3wh/ePWZISq3\ntmjEkJvQVHGJzljOgJCI6ipOE0vIdAcSGVcTE9WYR/6zFF6pl0RlqoUfmy0aqSg3IXB3lLGomFPG\nRFQJtWgAiMGglDhNTCQJhwvn4brkY1GZZtgIlHTvYVa3vNyEBsUlOiQk3q7SNhLRQ8Ysg0jtwWCw\nNmEwSFT9dDp4/HMKZCUlxiK9rx9U7y20WN1abkJTuYXaKmkeEVFNYzAoJY4MEtU4l89XQXn8L1FZ\nwYefQPB5xGJ9a7kJTXm7OT5w24iIpMBgUEoMBolqlDwlGW7/fk9UVjxgELRPDbZ6jqXchKaclA6I\nbulfJW0kIqppDAZrii3b0TEYJKo+ggCPma9AVlRkLNJ7eUP14SflPstjKTehqQFdmnELOiKqs/jp\nJRmZeWoZbkdHVG2c138Nxz/2i8pU8z+Avn6DCs8tm5uw7GISJ6UD8wwSUZ3HYFBKpqMRTC1DVGlq\nTSkSkm4jT1UML3cnRIf6w9VZ/NHmkJQIt3+9JSrT9uyF4hGjbH6dQV0D0bd9ABISbyO3UAtvN0dE\nt/TniCAR1Xn8FJOS2TSxNM0gqqts2RVEducOvEYNg1xVYKwjuLqh4JNllU714OKkQExkoyppOxFR\nbcFgUEp8ZpDovtm0K0i7BvAaOxIOV8VJo1XvzIe+afnPARIR2QsGg1Iy3YGEwSDZOVumfA31KtwV\n5FAqhq99F8qEY6Lyon+8CM2LL1dpu4mI6jIGgxIy3Y6OI4Nkz2yZ8jWwZVeQ5/ZvgNuRn0Rl2h69\noPr3x7V6JwAioprG1DJSkpl0P4NBslOGKV/TAM8w5fvroVRReUW7gjx2fi9GHvleVJbftDk2T5iP\n/efvQK3hPsJERAYcGZQSVxMT2TblezgNfdsHGFfulrcrSFTqCbyyY4WoLM/FEzP7vo6M41kAsqyO\nOBIR2SOODEqJ08RENk35FpfokJB42/hva7uCPHZ+L9753wIodfdG/rQOSiwYPAcZ3vfyCVobcSQi\nskcMBqVk9twSg0GyPxVN+RrkFmqNf7e0K8iQhP9h5m9LoNCLA8ulT0xDYqOWFq8ZdzgNRcWcMiYi\nCdSiASAGg1LiyCBRuVO+Zd3OVoue9RvUNRBDegTDWSFD7L61iN2/TlRfDxn+02s89rfsYfWapiOO\nRETVp/YuXGMwWFMsxXkMBomsTvmaOnj2FmauPCia2h0U3QjrLn6LIX/9Iqpb4qDARwNnYlvUwAqv\nW3bEkYjIHjEYlIpMBsgZDBJZmvK1RvSsn0oFr9HPw+1/P4jqqB1d8O6Qd/BHaHebrunt5ljZJhMR\nPVQYDEqJq4mJANyb8rVlhBAA9u8+C8+hT8Nx725ReY6rN2Y//z5ON21j03WclA6Ibulf2eYSET1U\nmFpGStyBhMhoUNdA9G0fgI07LuLg2VtW69VTZePdH9+FU9ZVUXlJYDDeemI2rrn52fyaA7o0M6ar\nISKyVxwZlBKfGSQScXFSwL+ei9XjDXJvYtH3sxFoGgi2aYu8bTsQ3b+TTa/jpHTAkB7BzDNIRASO\nDEqK29ERmbO2urjZnVTM/2kefApzROXart2R/+13EDw8Mcjv7qig6bZ2jgo5woJ9ENjAE95ujohu\n6c8RQSKiv/HTUFIMBolMRYf6Y9POS6JgLvBOChZufhvuxYWiusVP9Ef+5+sAl3ujiYbp5oTE28gt\n1DL4IyKqAD8dpWQ2MihNM4hqE8Pq4i37kwHcfUbwnf+9bxYIaoYOR8HSzwCl0uwaLk4KxEQ2qpH2\nEhHVdQwGpSQ3eWSTI4NEAGB8lm/n/ot465eF8CvIFB1XvzwRhQs+NP8/RERElcZPUimZjQwytQyR\nwaDOTbHm4nqE3rokKi+KHY/C9xcxECQiqiL8NJUSF5AQWeX60UK4bf2fqEzbqw9UCz60sK83ERHd\nLwaDUmIwSGSR04+b4fbJh6Ky0tCWyF+zDlDw6RYioqrEYLCmWAr0GAwSmVH8eRQe06eIyvSPPIK8\n9ZsheHpJ1CoioocXg0GpyGQMBolMyLKy4Bn7D8iKi41lgqMj8r7aCH2zQOkaRkRU1WrRdz6DQSmZ\nPADP7ejIrgkCPP45BQ4Z4q3oChYvR2nnLhI1ioioitTiR50ZDEpIML0z9FxNTPbLed2XcPotTlSm\nnjodxc+PlKhFRET2gcGglDhNTAQAcEi8APd/zRGVlbSPRuHsuRK1iIjIfjAYlBKDQSJAo4HnxFjI\nNBpjkd7NHfmffWFxdxEiIqpaDAalZPb8AINBsh9qTSn2n0rH7UnTobhwTnRM9eEn0AcFS9QyIiL7\nwoRdUuLIINmpXw+lIu5wGsKTjuK5bRtFxzTPDkPxsBEStYyIyP5wZFBKDAbJDv16KBVb9ifDJTcT\nr25fLjqW4emP/z43nTuMEBHVIAaDUjLdW5XBID3k1JpSxB1Og0JXgllbF6GeOs94TCeT46MBM/Dz\n6WwUFZdK2EoiIvtSa4LBBQsWIDQ0FMVlks1qNBosXLgQMTExiIyMxKhRo3Dq1Cmzc48dO4YRI0ag\nbdu2iImJweLFi6HVao3Hf/rpJ4SGhuLKlSs18l5sZjr6oWcwSA+3hKTbKC7RIXbfVwi7cUF0bFOX\n4Uhq1BLFJTokJN6WqIVERPanVgSDhw8fxvr1683KX3/9dfz000+YOnUqFi9eDAAYN24cUlNTjXVO\nnz6Nl156CX5+fli6dCnGjBmDtWvXYsGCBTXVfNtwOzoi5KmK0ev8Hgw6Kc4neKJpJP7bcajx37mF\nWtNTjQwLT349mIL9p9Kh1nAUkYjoQUi+gCQ/Px+zZs1CgwYNcPPmTWP5yZMnsX37dixduhRPPvkk\nAKBbt254/PHHsXr1aixcuBAAsHTpUgQGBmLZsmWQyWTo2bMnnJ2d8cEHH2DChAkICAiQ5H1ViNvR\nkR1qdvMyRu1YJSrL8PTDRwNnQi93MJZ5uzlaPN+w8KS4RGcs27TzEgZ0aYZBXQOrpc1ERA87yUcG\n582bhyZNmmDIkCGi8gMHDkCpVKJ3797GMmdnZ/Tq1Qt79+4FAGi1Whw9ehT9+vWDrExg1b9/f+j1\neuzbt8/ia2o0GowZMwadOnXC+fPnq/5N2cokGOR2dPQw06RnoPO/psJJd2/Ur9jBER88PRsFLp7G\nMielA6Jb+pudb1h4UjYQBIDiEh227E/Gr4dSq63tREQPM0mDwbi4OOzevRsLFy6E3GQxxZUrV9C4\ncWM4OopHCAIDA5GdnY2cnBxcu3YNJSUlCAoKEtXx9fWFm5sbkpOTzV5Tq9ViypQpSEpKwrp169C6\ndeuqf2M2MtuOjsEgPaS2HriMnMFD4Xbnpqh8Zb9JSPYX5xMc0KUZXJzEkxaGhSfliTucxoUnRET3\nQbJp4oyMDMybNw9vvPEGmjRpYna8oKAAbm5uZuWGMpVKhYKCAgCAu7u7xXoqlUpUVlpaildeeQVn\nz57FunXr0KpVq6p4K/ePq4mpllFrSpGQdBulAqCQAdGh/nB1frCPiW37LiLg3TfRJk28+OvXtgOx\np3Uv47+dlA5Wp3sNC0/KY1h4EhPZ6IHaS0RkbyQLBufMmYPw8HCMHGl5E3qhgsBIJpNBr9dXWKes\nt956C2fOnMFrr71WqUCwXj1XKBQOFdbz8/Mo5yKuon8qlQ7weUQcxCrkFVyDALCPqsv3O5Pww65L\n0GjvBV3f7bqEoX1aYHjf0HLPLSwqwcHT6cjJ16CepzO6tWkENxcl1JdT0fXVUQhJTxLVP9u4Nb7s\n+SIAQOEgw8tPh6NXdBO4Olvefq7Uxt+TSlD37o+61t66iv1cM9jP5XAQDwA94uMGuIpnP93dnQBv\ncbzgqHQw69eq7mdJgsENGzbg5MmT+Pnnn1FaendaxxDY6XQ66PV6eHh44MaNG2bnGkb7PDw8oPl7\nL9PCwkKL9UxHDK9fv46oqCh88cUXGDJkCHx9fW1qb06OusI6fn4euHOnwOpxRY4a9cr8u6REh4Ic\nNXzKlJWW6pBTzjWo4n6m+2N4Hs+URqvD+vhEFBZqrS7QsLSo4/MtZ/CiZyb6fPw6QnIyRfWz3Hzw\n4VOvQ+dw9+OnVCegWFOCwgINCgs0sERhYw5qJVCn7g/ezzWD/Vwz2M/l89ELKDuslJWlgotai7Kh\nn0pVjNJcNbzLlGlLdMgr06+29HNlg0VJgsHffvsNKpUKffr0MTsWFRWFIUOGICgoCLt374ZWqxU9\nN5iWlgZfX194eXnBxcUFCoVClGoGADIzM6FWq9G8eXNR+dKlS9G4cWM89dRTmD9/PpYtW1Yt789m\nXE1MtYAtz+P9ejAFJaU6+Hq5ICzQB+dSs5GnKkbqrQKcuCQO9iAIePzoz3hi/1dQ6MVTuze96mPB\n4LeQ61ZPVF5eKhng7nT1pp2Xyp0qtrbwhIiIyidJMDhv3jyz0bzNmzdj8+bN2LRpE/z9/ZGRkYFV\nq1Zh9+7dxtQyGo0Ge/bsQffu3QEAjo6O6NixI3bs2IFJkybBweFuzB0fHw+5XI6uXbuKXsPX1xcB\nAQGYNm0aFi1ahN9++814bUkwGKRawJbn8Up1ArYeKj9g9C7MRXRKAnokHUBUmnly+L8C2+Hj/v+E\nysX8N1ZrqWQMXJ0VGNClmcXRSwNLC0+IiKhiknxyBgcHm5UZ0sWEhYXByckJAQEB6N69O2bPno2s\nrCw0bNgQa9euhUqlwsSJE43nTZkyBWPGjMHkyZPxwgsv4NKlS1iyZAmGDh2KZs2aWXz9cePGYevW\nrXjvvffQuXNneHt7W6xX7RgMUi2QpyquuJIFcr0OTbOuITrlL3S8cgyhNy9CDsv38PedhmFjlxGi\nXIIGto7oGaapTaeky1t4QkREFavVv0YvXboUixYtwrJly6DVahEeHo6vvvpKFExGR0dj1apVWLJk\nCaZOnQofHx/ExsZi2rRpVq/r4OCA+fPnY/jw4ViwYAE+/vjjmng75riamGoBL3cnm+p5qvMQeusi\nQm9eROjNJITcugRXbVG556gdXfDfMW/hB89wq3UqM6I3qGsg+rYPQELibeQWauHt5ojolv4cESQi\negC15hN02rRpZgGcu7s75s+fj/nz55d7bs+ePdGzZ0+rx5999lk8++yzorKIiAhpE04DME0ziApW\nRxNVh4qex6unysbEPWvQ7dLhSl33sn8wPhkwA/2G98WQQm2Vjei5OCmYPoaIqArVmmDwYSezNH3G\nHUioFijvebzuSX9g0q7V8NTYtkLwsn8wjjbviGPNOyLZLwhOjgrjyB1H9IiIaid+EktFJuMOJFRr\nmD6P51GUj//b/Tl6JP1R7nn5zh5IahiKP4Pb48/gaGR6+ImOl50C5ogeEVHtxGBQSmYLSKRpBtkv\nw44jeapieLk7YcHLnZD9/U9o+8nbcDXJDwgA13wCcKpJG1xs2AKJDUNx07uh+X0MLuogIqpLGAxK\nyexLlNEg1RxLyaIHnd2OCds/M6tb4qDA+q4v4H/tB1tcEQwAUSG+CGzgySlgIqI6hp/WUmJqGZKI\npR1Hgm4n48Vdn5vVTa4fjE+eeBVXfS2narI0CqjWlGL/qXTjiGNV7HFMRETVg5/OUmJqGZKApR1H\nnEqK8XrcYih1pcYywcEB6n++DsXkf6LPlRzjwo+wIB+cS8m2uhDE0ojjpp2XOG1MRFRLMRiUkunI\nIFPLUA2wtOPIS/vWokn2dVHZsVkfIfjVl+ECICbSRXTM2kIQa3scF5fojOUMCImIahd5xVWo2nCa\nmCRguuNI58tH0P/076Ky7WF9cK5D30pd15Y9juMOp6GouLTcOkRE9sBiyjmJMBiUEoNBkkDZHUd8\nCrIwbftK0fEb3o2wptfLFe4XbMqWPY6LS3RISLxdqesSET0MBAuZF2oLBoNSYjBIEogO9YeT0gFy\nvQ4zflsiSihdKnfAxwNmAO7uNu0XXJatexznFmordV0iIqpeDAalxGCQJGDYcWRIws+IvHZGdOzb\nbqNwucGjGNqnRaVTw9i6x3FlRxyJiKh6MRiUkCATdz+3o6Oa8ox/Cf5xZKOo7FSTCMR1eQ5DegRj\neN/QSl/TMOJYHielQ6VHHImIqHpxNXFNsRTomY0McjXxw850xw+p8u+5vfsWHErvLeTQeHjhxqIV\n+KR7xH0niy5vj2ODstvTERFR7cBPZYkIMhmnie3M/ebfsyWArEyQqdy7G07bfxOVaT/+FB36RN3/\nm/ub6R7HBtyejoio9mIwKCUGg3bjfvPv2RJAVirILC2F+7/miIpKOnZG8TPP3d8bs2BQ10D0bR+A\nhMTbVhNTExFR7cFPZykxGLQLtubf69s+wGwnj4oCSACVCjKdN3wDxYXzorqq9xZa2Cf7wbg4Kawm\npiYiotqFC0ikZPr9y2DwoXQ/+fdsCSC3HUrFtsOp5dYpm+RZlp8Htw8XiI5rho1AaVT7cq9BREQP\nNwaDUjIbGZSmGVS97if/ni0BpLZUD21J+YuOygaZrp9+DHlmpvGY4OqKwrf+ZVPbiIjo4cVgUEpy\nk+7nyOBD6X7y79kaQNoit1ALeUoyXNasEpWrp7wKfaPGVfY6RERUNzEYlJLpyKCeqWUeRveTf8/W\nANIW3m6OcJ//DmTaeyOPuoaNoJ78SpW9BhER1V0MBqXEBSR2wZB/rzym+fdsCSAdFXI4Ksv/L+yk\ndEC3nEtw2vaLqLzw7XcBN7fyG05ERHaBwaCUTIJB7kDy8BrUNRBDegSbBXhOSgcM6RFslgLGlgBy\nYNdADOwSWG6dwW184PvaNFFZSVQ7FD/3vM1tJyKihxtTy0hIMF9OLEk7qGZUNv9eZRI4W6sz7NsF\ncLiaKrquav6/zZ9XJSKimlWLBoAYDNYUm7ajqz03BlWPyubfsyWAtFbH+5cf4PzjZtH1Lj8zGvtL\n68PrVLpkW+EREdmlKs7nWpX4TSAVmYyrickmtgSQpnXkKclwf2OGqE6aXyDeaPo0Sg6kALBtKzwi\nInr4MRiUElcTk4EgwOHcWThtj4fDxSSUdOwMzfMjAXf3yl+rpASek16CvFBlLCp2cMSi/jNQoriX\nvqairfCIiMg+MBiUEqeJ7ZtWC+WhP+D0exwcf4+Hw/VrxkPOP/0Xbh/Mh2bUGBS9NAH6puUvJinL\nbdEHUB7/S1T25WMv4qpvU4v1LW2FR0RE9oNPkUuJwaDdcvw9Ho+0bQXv55+By5efiwJBA3l+HlxX\nLYdPx0h4vjgaysMHK7xHlLt3wGXZYlHZkeYdEd/mSavnmG6FR0RE9oXBoJQYDNol5cED8Iwd23A7\n9wAAIABJREFUDXnmHZvqy/R6OG37Bd6D+6Ne9w5wWbkMsjtlztXr4bg9Hl7PDYL3iOdEKYoKffyw\n/PGpFT64XHYrPCIisi+cF5ISg0G743AxCZ7jRkFWUmJ2rNjBEaeD2sKldUu0PhQn2kfYQHHpItzn\nvQ2399+F9okBKIlqB+cN30CRkmxWV5DJ8Nesj5B/y7PCdpXdCo+IiOwLg0EpcTWxXZHdvg2vF4ZC\nnpcrKt8R1geHH+2E000jUay8uw3d0NHTMOTmn3Bd/RkU58+aX6u0FE7bfjHbWaQs9Rtz0GzE03Ba\neVCUg9CU6VZ4RERkXzhNLCXuQGI/1Gp4jRkOh6tpouKvu4/Gsiem4c/mHY2BIAD8+tct5D47Ajl7\nDiL3p60oHjAIgsK23920Xbohb/33UM988762wiMiIvvCYFBKlp7jYkD48NHr4TllgtkK3+3hffFD\nh+csnmJc1CGToaR7D+Sv24Csk4lQ/WsBchsHmtUvkStwqdcg5Ozcj7yf46F9vD/UmlLsP5UOCAKi\nWvia7WNsbSs8IiKyLxwOqG0EoVZnKafKc5s312w690SzSHzW5//K/VmbLuoQ/P2xOeppbHk+DK3S\nE9Hn3G4E5FzHmYAIxEU+iRx3HwxReWMQgF8PpZptUeeokCMqxBeBDTwr3AqPiIjsB78JJCbIZOLp\nYY4MPlScftwM11XLRWV5gS3w74FvQOdQ/n8/00Udak0p4g6nATIZLjRuhQuNW5mdE3c4DaWlevx6\nKNXsmLZUjxMXMxHYwLNSW+IREdHDjdPENcVakMcVxQ8tefIVuL82XVSmq98ABZt+hM69/BW+CgcZ\n7uQVYf+pdKg1pQCAhKTb5S4EAe5OL8cfTSu3TtzhNBQVl9rwDoiIyB5wZFAqhiCQweDDqbgYnhNe\nFG0JJzg5IX/993BqHogBXWDcCs6SUp2ArYfuBnWGPYRtvTdKdeXXMzyPyNFBIiICODIoPaaXeSi5\nLXgXytMnRWWq+QtRGhkF4O5ewEN6BMNJ6VDhtQx7CKfeKqiy9jHJNBGRxGrR1z1HBqVmOjKo10vT\nDiqXWlOKhKTbyFMVw8vdCdGh/nB1tvzfx3F7PFxXrxSVFT81GJpxL4nKBnUNRN/2AUhIvI07eRr8\ndjSt3FG9cynZcFTKoS2xfo8oHGQVjgwCTDJNRFTjavHiUAaDUuM0ca1naWWuYeq2bFoWtaYU5/44\njd6TJorOL/BrhD2xcxBZrDMLIF2cFIiJbIT9p9IrDOK0pXq0a+GL45fMdyYxeLJTM+z48xqTTBMR\nkc0YDEqNwWCt9uuhVIvP9hmmboG7I3y/HkrFbweT8c7Gt+BccG+HEZ1Mjnl9XkHSHzfhdPS2WQBp\nkKcqtqk9zRp6ollDT7Pg1EnpYLy2UiEv93lEJpkmIqKy+I0gNQaDtZYxlUs5DKlctv1xBRP2fIHw\nG+dEx9d3G4WkRi0BmAeQZXm5O8EW3m6OiIlsZJxezi3UmuUMNFy7vICRiIjIgMGg1BgM1lq2pnLZ\n9cdFzPr1E3S5clR07ESzSPzYYYjZOXGH09C3fYBodC461B+bdl6yeXrXML1sTdnnES0FjERERAb8\nZpCYIJOjbDgog1CbFhjZNVumbr0LczH3f+8jJOOSqDzH1RuLn/wnBJn5gn1LqV0MewhX5fRuRQEj\nERERwGBQelxNXGtVNHUbkHUN7255D/Xzb4vKs9x88O6zc5Hr5m31XEupXTi9S0REUmAwKDVOE0vO\nWtoYa1O3cr0Ona4cwyvbV8C9uFB0LMU3EPOGvI0sD99yX9NaahdO7xIRUU3jN4zUGAxKqqK0Mcap\nW0FAi4zLeOzCPsQkHUA9dZ7Ztf5qFoUPn3odRU6u5b5mRaldOL1LREQ1icFgTeHexA/EMHpXKgAK\nGcpN+mwrW9LGPN3cBZH/3YkG8VvQOPuG1Wv9Ht4Pq/pMhM6h4jYxtQsREdUm/EaSinFvYpNyBoNm\nbE36XBnlpo0RBLRKT0SL2YvxyOXD8C0pKfdaX3cfjR86PFdhdnk++0dERLURg0GpmY0MStOM2srW\npM+VZSltjLJUi14X9mHgyW0IvpNa7vkqJ1ccbNENv7V5ApcbPCo61q6FLyIf9UVYkA/OpWTz2T8i\nIqrV+M0kNblJ6hGODBrZmvTZNGefLUzTxgTeScWbWz9CQI71qWBBqcSxwPbYHdoDfwZHo0RhvgjE\nSemAl55qbWwPn/0jIqLajsGg1Jhaxipbkz4bcvZZWxVclqFO6q2CuwWCgCfObMf4PV/CSWee7gUA\nSoIfRXHsy9AMHY5ziQU4xK3eiIjoIcJvLclxAYk1tu7Xm1uotem5QtM6LtoiTNnxGXomHTC7pk4m\nx5/B0djWdgASm0ehf3gQBvk8gkFdHwHAXIBERPSAatH3PYNBqZmMDHIHknts3a837WY+jl/KNCsv\n+1whANHfA++k/D0tnG523s6w3tjYZQTueP6d/qVUED2fyFyARERUaRUsMpQSv70kJjC1jFXWkj77\nFGSh6+XDKHFQ4kTz9jh1pfz/YNsOpRoHYF20RRh67Ac889cvcNSJVwkXKZ3xWZ//w97Wj1m8Ttnn\nE5kLkIiIHhYMBqVmJRiUZWfBdfkSQK+H+tUZEHwekaBx0hLt1ysIiLh2FgNOxaPL5SNwEP5+tnIn\nkNggBIdbdMbhR7vgZr2GZtfRluohE/Toc24PxhxcD5/CHLM6qY80xYeD3sB1nwCr7bG0pzAREVFd\nx2CwGlhayOBlrbKV1cQeUybAadcOAIDj3l3I2b4PcLJt2vRh8nSED1pt24SAn9ajSdY1i3Va3rqI\nlrcu4sUD3yDFtxlS/QJxx8MXdzz8kPn3tnCjDm3Eo7ctL/z4Pbwf1vR6GcXKivvX0p7CREREdRmD\nwQdkujNGZp4GO/68ZraQIdY9AwMsXcDSamK9Ho57dhmLFBfOw2X1ShS9MqN63kQNs2XVLwAozpyC\n56jn0eXWTZuvHZSZhqDM8tPRGGS71cMXPWNxoGWMzde3tqcwERFRXcVg8AFYWsFqSXGJDgdPpdsW\nDAoCZIUqyExSzLgtXoTi556HvrH1acy6wNbdRBTHE+A1/FnI83ItXufqI02gdnRFy5tJlW6D1kGJ\nLdHP4IcOz0Lj6AIAcFTIARmgLbGe2qeiPYWJiIjqIgaD98nazhg2M25HJw4GdyVchbtHplngKFOr\n4f7OHOR/+c39v6bEbN1NRHH0CLxGPge5qkBUT1AocK1rX6yq3w1nA8IBmQw+BVnocvkIulw+gvDr\n5+49S2jFgZBuWBczBre96ovKB/4diJb3M2UOQSIiehjxm+0+mO6MEZB9Hd6FuTjfuBX0cgebrpGZ\nVwQlYBYMbj92DY6lWoujiE6//g/KvbtR8ljv+2+8RGzZTeSXP1IQmPQXHps3FXJ1oehYwegXoX1j\nFhLVTji7+aSxPNvjEWyLGohtUQPhWZSP5hlX4FeQCd+CTPgV3IFf/h3UU+fier3G+Ln90zjfuLXo\nupbyAzKHIBER2RMGg/eh7M4Y3ZP+wGtxi+Eg6JEQ2A7znn3HpmvcydXgr0OpGFZcCo+yBwQBrsVq\nq+fJpr8KHE2wupjE1ufxKmLpOgBs3uHDUCcs0AfnUrNx6nJmhdPpESkn0G3JB5CXihdpfNdpGH5o\nNAQDkosx/PEgfL7ljMVr5bt44kRgFGQy2zL0dAtvgBf6hYhG+5hDkIiI7I2k33B6vR6bN2/Gxo0b\nce3aNXh7e6NLly6YMWMGfH3vrgLNycnBokWLsHfvXmg0GkRHR2P27NkIDg4WXWv79u1YuXIlUlJS\n4OfnhxdeeAGxsbGQ/T3ytnz5cqxYsQKnT5+G0wOuyi27M8YTZ7YbpyajU4+jfu4tZHg3sOk6v/yR\njAHFelEwKIMAV631YNArPQ1xk95C0aszzAK01FsFOJeaLXrubdPOS+jXoQl8vZzNAjRrgZ6l63z7\n+91n83T6e1HWxh0XERbkg8AGHvBydzJfPCMIqJ9/G8pSLdLrNQKsjJoGZF9H73N7MPi4ee6/b7u+\ngM2dnwdK9diyPxlubo730s1Y0bJpPVxIM08fY8rfx9VikMccgkREZE8kDQZXr16NZcuWYdy4cYiJ\niUF6ejqWL1+Oo0eP4ueff4aLiwsmTJiA27dvY86cOVAqlVixYgXGjBmDrVu3wtvbGwCwa9cuvPLK\nK3j++efx2muv4dixY/joo4+g0+kwYcKEKm932Z0x3DUq0TH3YhUybLyOTg+YPuEmE8oPBgGg929f\nY3KDDvjW2//v65gPg8n1OrRLPYEmWddw9lo4tjZoYfV6lgI9APAuzEGDvAxkejyCTA8/s/O0pXqc\nuJSJE3/v/iHX69AsMw1hN84j7Pp5tE6/YMzpp1Y6I7FRS5xr3BrnG7dGundDdL5yFL3P70HorUsW\n27U2Ziy2dBgiKvth1yV8MqUbAOvTuV5ujjYFg1wZTEREJGEwWFpais8//xzDhw/Hm2++aSxv3rw5\nRowYgbi4OLi5ueH06dP44YcfEBERAQCIjo5G3759sX79ekydOhUA8NFHH6Fnz56YP38+ACAmJgYl\nJSVYtWoV/vGPf8DFxaVK225tZ4z7YmE7OtNp4qPBHdAqPRGemrsLKpxLizF55yqs7fkirvkEiK7h\nXZiLx8/uwJOnf4dfwb0t2i7Wb4FtbfvjQGh3lCjEQZBQWorGOekIvp2MoDspCLqTiqA7KainzjPW\nOds4DNsj+uJQi66ifHwu2iK0T/kLXS4fQbvU43C3MsXtWqJBu7STaJd20uJxU6t7vYytUU+ZlWu0\ndxM/lzedq9aUVvjz4cpgIiKiuyQLBvPz8/Hss89iwADxUolHH30UAJCRkYEbN26gUaNGxkAQAHx9\nfREdHY29e/di6tSpuH79OlJSUjB+/HjRdfr374+vvvoKx44dQ8+ePc1ePzs7G2PHjkVhYSG++eYb\nBATYnrJFtDPGAxJgEgwKgKu2SFSW4VUfx4I7YNrOz4xl0anHEZ16HLkuXjgbEIYLjVsi5OYldL10\nGEp9qdnrhGRcQsjvl/DSvq+wPaIf0r0bovnt5L8DwFQ4lxabnVNW+I1zCL9xDhN3r8G+lj1wxT8Y\nHZP/RFTaSbOp3QehdnTB571exq6wPlbrGBI/W5vOteXnw5XBREREd0n2bejj44O5c+ealW/fvh0A\n0KJFC+zfvx9BQUFmdQIDA/Hjjz8CAK5cuQIAZvWaNWtmPG4aDObl5SE2NhZqtRrffvstGjduXOn2\nG1aWyjaIgzlHhQOe6hoIL1clvtt92eIUblmCSZpBGQS4mEwTqx1dsCOiL544swMhGeIpVe+iPHS/\ndAjdLx2yqd2emgIM/fMnm+pa4qZVY8Dp32yuX6R0hlbhCK+i/HLrnWoSgT2tH8OhFl1R5Fj+SK4t\n07uGnw9XBhMREZWvVg2NJCcnY9GiRQgJCUHfvn2xZMkSNGxovtesm5sb1Go19Ho9VKq7z+y5u7ub\n1QFgPG6gUqkwceJEFBQU4Ntvv0WjRhUvFKhXzxUKhfnih9jBEdDP80TZhwTnTegCl66RAACZ0gHr\n4xMruLp50mnTZwbVjq4QZHKs6DcJi76bXeEonkGxwhHJfkFodR+JmYG7yZkzPXzRKNf2HUDynT1w\nvnErnGvcGucat0ayfzB0cgcE5NxA6+vnEXbj7rOEfvl3cMu7AXa3egx7Wj+GO562Tdk6Ozrgye7B\ncHVWVlg3dnAERjzREgdPpSO7QAMfD2d0i2xk07kE+Pl5VFyJHhj7uWawn2sG+7kcDuLtZ33quQKu\n4sENd3cnwNtVVOaodDDr16ru51oTDF64cAHjx4+HUqnEypUroVAoIJSTH8SwSlivLz/JsMzkmbyJ\nEyfizJkz+PTTT20KBAEgJ8f6gg5vnYCyP16NuhiqO3ef7esd2QiFhdpy8+sJZs8MAq7F4mniIqe7\nN0aKfzAmj1uO7kkHEXH9LMJunDebUgaAG96NENf2Sexq3RuFzu5omHMT/U/Ho9/ZXXAvLjSrDwC5\nLl5I9g9Csn8wUvwCkeIXhBv1GkEvd0BA9nX0PbsTvc/vET1HaHDLqz4OP9oZh1p0QVLDEAgyuVmd\n6z4BuO4TgO1tHgcAOCnkeLxjU/x6KNVq31gytE8LFBZoUFigsfmctsE+xr9X9lx75efngTt3Ciqu\nSA+E/Vwz2M81g/1cvnp6QRR0ZWcXwlmtRdnQT6UqRmmuGt5lyrQlOuSV6Vdb+rmywWKtCAZ37NiB\nN954Az4+Pvjyyy/RtGlTAICHhwcKC82DF5VKBTc3N8jlcnh6egKAWT3DiKCHh7hDcnNz0aJFCyxZ\nsgS9e/eGs7NzdbwlI8NCh7RNWcAP5sdNg0EHGdDKRzwKqS4zbXrH0x9bOgzBlg5DINfr0Px2MsKv\nnUWLjMsodHLFHyHdcbpphCggu1mvIdb2jMWGrqPQM3E/2qUeh4Nehyv+wX//aY5sdx/zrfH+dt0n\nAOt6jMO33UajQ0oCuicdhHtxIS7VfxSHWnRGil+Q1XOtGdA18O5uIwq52VSug/zutcpOsRumd4f3\nDeWHDRERURWSPBj86quv8OGHHyIiIgL/+c9/8MgjjxiPBQUF4fjx42bnpKWloXnz5sY6hrKoqChj\nnatXrwKAWT7CdevWITMzEyNHjsSSJUswa9asKn9PplycFIgoMzpVlukCkt5tG6LBVfECEN8mlqdQ\n9XIHXGrQApfKSRtTVrHSCdsj+mF7RD+b6pflIJcBciWOPNoZRx7tXOnzDUyf2bO2KhgAEz8TERHV\nAEm/XTdt2oR///vf6N27Nz799FOzUbqYmBj88ssvOHPmjHFFcWZmJhISEhAbGwsAaNq0KQIDAxEf\nH49nnnnGeG58fDxcXV3Rrl070TX9/PwQEBCAkSNH4uuvv0b//v0RGRlZze/UnPzv0S/TifCekY0g\n2yAe+RoysC0EfSObRtAcFXKEBfsgsIEnvN0ckZmnwfayiaAtsOU6pgFa2s18nDVJTO2kdEC/Dk3g\n5+VsDOLCgnxwLiW73KDO2qpgJn4mIiKqfpIFg7du3cIHH3yAhg0b4qWXXkJionihRf369dG/f3+s\nWbMGkyZNwsyZM+Hq6ooVK1bAw8MDo0ePNtadNm0aZs6ciVmzZmHAgAH4888/sW7dOkyfPt1sYYnB\njBkzsHPnTsyZMwdbtmyBo2MVJSC2ZR80AC0CvPFi/5bw/NEJyBKfLysQr7zVu3tgUPj9j6A92amp\nqI6lAM2W6wDiAK2ouLTS5xAREVHtIlkwuGvXLmi1Wty8eROjRo0yOz5+/Hi89tpr+PLLL7Fw4UIs\nWLAAMpkM7du3x9KlS+Hjc2/a9amnnkJJSQk+//xzbN26FQ0bNsSbb76JF1980erru7u7Y+7cuZg6\ndSpWrlyJf/7zn/f3Rir5rJyBXC5DTGQjeLqZbI0nCJAViEcGhb+fi7zfETRL51XFSBy3bSMiIqr7\nJAsGR40aZTEINOXv749PP/20wnpDhgzBkCFDrB6fNm0apk2bJirr168fkpLuL+1KlbGwA4lZMOjB\npfpERERUPcxzgFCNEuQmPwK93myaWHBnMEhERETVg8Gg1ExHBlUqyMo8dyi4uABKJkkmIiKi6sFg\nUGqmwWA+RwWJiIio5jAYlJrp3sT54h0+9HxekIiIiKoRg0GpmY4Mmj4v6OFZk60hIiIiO8NgUGom\nwaDcdJqYI4NERERUjRgMVjUbk04bycQ/Aj4zSEREZAcqGy9UI5kg1KLWEBEREVGN4sggERERkR1j\nMEhERERkxxgMEhEREdkxBoNEREREdozBIBEREZEdYzBIREREZMcYDFZCr169EBoaavYnISEBAKDR\naLBw4ULExMQgMjISo0aNwqlTpyRudd1z5swZxMbGIioqCp06dcLUqVNx7do143H284M7evSoxXvZ\n8Gf27NkAgJycHMyePRtdunRBVFQUxo8fj+TkZIlbX7fs27cPw4YNQ1RUFHr37o0FCxZApVIZj/N+\nfnCCIGDdunV44oknEB4ejn79+mH16tXQ6XTGOuznB6NSqdC3b19s2rRJVG5rvx47dgwjRoxA27Zt\nERMTg8WLF0Or1dZU8+sMa/1c1tdff40ePXpYPHbkyBEMHz4cbdu2RY8ePfDpp5+ipKSk4hcWyCY5\nOTlCSEiIsGrVKuHEiROiPwUFBYIgCMLUqVOF6Oho4bvvvhN27twpvPDCC0Lbtm2FlJQUaRtfh5w/\nf15o06aNMGbMGGHv3r3Ctm3bhH79+gm9e/cWCgsLBUFgP1eFgoICs/v4xIkTwtSpU4WwsDAhISFB\nKC0tFYYOHSr06NFD+OWXX4T4+Hhh4MCBQrdu3YScnByp30KdcPjwYaFly5bCpEmThAMHDgjfffed\n0KFDByE2NtZYh/fzg1u4cKEQEhIizJo1S9i3b5/w448/Cr169RKmT59urMN+vn/Z2dnCiBEjhJCQ\nEGHjxo2iY7b066lTp4Tw8HBh6tSpwt69e4XPP/9cCAsLE+bOnVvD76R2K6+fDbZs2SK0atVKiImJ\nMTt24sQJISwsTHjllVeEffv2CatXrxbCwsKEefPmVfjaDAZtdOjQISEkJES4fPmyxeMnTpwQQkJC\nhPj4eGNZUVGREBMTI8yaNaummlnnjRs3Tnj66acFrVZrLDt16pTQrVs34dChQ+znanT06FGhZcuW\nwtdffy0IgiBs3bpVCAkJEU6fPm2sc+fOHSEyMlJYvny5VM2sU2bMmCF069ZNdD9v3LhRCAkJEZKT\nk3k/V4GsrCyhVatWwowZM0TlSUlJQkhIiHD48GH2833S6/VCXFyc0KNHD6Fjx45mQYqt/RobGys8\n9dRTgl6vN5Z98803QsuWLYVr167VzJupxSrqZ0EQhJs3bwqvv/66EBISInTs2NFiMDh27Fhh8ODB\non7+6quvhFatWgnp6enltoHTxDY6d+4cnJ2dERgYaPH4gQMHoFQq0bt3b2OZs7MzevXqhb1799ZM\nI+u43NxcHDlyBCNHjoRSqTSWt2nTBn/88Qe6dOnCfq4mJSUl+Ne//oWIiAiMHj0awN17ulGjRoiI\niDDW8/X1RXR0NPvaRsXFxXB2dhbdz97e3gDuTsHzfn5wqamp0Ol06NOnj6g8JCQE9erVw+7du9nP\n9+nGjRuYOXMmunfvjrVr15odt6VftVotjh49in79+kEmkxnr9e/fH3q9Hvv27av291HbVdTPAPDx\nxx/j1KlT+M9//oOYmBiz4xqNBgkJCRb7WafTYf/+/eW2gcGgjS5cuABvb2/MnDkTHTp0QJs2bTBh\nwgSkpKQAAK5cuYLGjRvD0dFRdF5gYCCys7ORk5MjRbPrlKSkJOj1ejRo0ACzZ89GdHQ02rRpg0mT\nJuHmzZsA2M/V5fvvv0dycjLmzp0Lufzux8KVK1cQFBRkVjcwMBBXrlyp6SbWSaNGjcKtW7fw2Wef\nIS8vD4mJiVixYgWCg4MRERHB+7kK+Pj4ALj7hVpWbm4u8vLycO3aNfbzfapXrx5+//13vP/++/Dy\n8jI7bku/Xrt2DSUlJWafJb6+vnBzc+MzyKi4nwFg4sSJiIuLQ69evSweT0tLs9jP9evXh7Ozc4Wf\n2QwGbXT+/Hnk5OSgRYsWWLVqFebPn4/k5GSMHDkSt27dQkFBAdzc3MzOM5SVfWCcLMvKygIAzJ07\nF1qtFsuWLcP8+fNx9uxZjB49GiqViv1cDXQ6HdauXYuePXuKRgELCgrg7u5uVt/NzQ1qtRp6vb4m\nm1kndenSBZMmTcLSpUvRsWNHDB48GEVFRVizZg2USiXv5yoQGBiI6OhorFq1Ctu2bUN+fj6uXLmC\nGTNmQKFQoKioiP18n9zc3NCkSROrx23p14KCAgCw+lnCvq+4nwGgRYsWcHBwsHr8QftZYUM7CcD7\n778PR0dHhIeHAwCio6PRrl07DBgwAGvXroUgCOWeX3bYliwzrHgKCgrCJ598Yixv2rQpRo4ciS1b\ntrCfq8GuXbtw48YNLFq0SFReXl+zn20zf/58fPfdd4iNjUXPnj2RmZmJVatWITY2FuvXr+f9XEWW\nL1+Od999FzNmzAAAuLq6Yvz48VCr1XB2dq5w1Sr7+f7Ycv9W9Esj+75qPOhnCYNBG7Vr186srGnT\npmjevDkuXLgAHx8fs2kK4N5vnB4eHtXexrrO8Nuk6TB4u3bt4OHhgfPnz8PDw4P9XMXi4+MREBCA\n6OhoUbmHhwcKCwvN6qtUKri5uRmnk8myjIwMbNy4EWPHjsWbb75pLO/cubMx9Qnv56rh4+ODZcuW\nQaVS4ebNm2jcuDFcXV2xefNmBAYGoqioiP1cDWy5fzUaDQBY/SyxNJJFlWe4hy31c2FhYYX3OD/N\nbZCfn48ffvgBiYmJZsc0Gg3q1auHoKAgpKenm/0GmpaWBl9fX6vPAdA9hmcdLP0Wr9Pp4OzszH6u\nYqWlpdi3bx8GDBhgdiwoKAipqalm5WlpaWjevHkNtK5uS09PhyAIZkG2r68vgoKCcPHiRd7PVSQu\nLg7nz5+Hu7s7WrRoAVdXV2RlZeHWrVsIDw9nP1cTW/q1adOmUCgUZp8lmZmZUKvV/CypIs2aNYNc\nLkdaWpqoPCMjAxqNpsJ+ZjBoA0dHR8yfPx+fffaZqPzMmTO4evUqOnfujJiYGGi1Wuzevdt4XKPR\nYM+ePejevXtNN7lOCg4ORkBAAOLi4kRTC4cPH4ZarUaHDh3Yz1Xs8uXLKCwsRPv27c2OxcTE4Pr1\n6zhz5oyxLDMzEwkJCexrGzRr1gwKhcKYlN4gOzsbqampaNKkCe/nKrJq1SosX75cVLZ27VooFAo8\n9thj7OdqYku/Ojo6omPHjtixY4coCXh8fDzkcjm6du1a4+1+GLm4uCA6Ohrbt28XfX/Gx8fDwcEB\nnTt3Lvd8ThPbwNnZGRMnTjQuaOjbty/S0tKwfPlyhIaGYtiwYVAqlejevTtmz56NrKxMFDdvAAAE\nGUlEQVQsNGzYEGvXroVKpcLEiROlfgt1gkwmw6xZs/DKK69g8uTJGDVqFDIyMrB48WKEh4fj8ccf\nh0KhYD9XIcNot6XfGvv37481a9Zg0qRJmDlzJlxdXbFixQp4eHgY08+QdT4+PoiNjcUXX3wBuVyO\nHj16ICsrC6tXr4ZcLsf48eMRFBTE+7kKjBs3DnPmzMGSJUvQuXNnHDhwAF988QUmT56MgIAABAQE\nsJ+rQfv27W3q1ylTpmDMmDGYPHkyXnjhBVy6dAlLlizB0KFD0axZMwnfwcNl2rRpGDt2LKZMmYIR\nI0YgKSkJy5Ytw/PPP1/hAhUmnbaRXq8XvvvuO2HQoEFCmzZthK5duwrvvPOOaCeGgoICYe7cuULH\njh2Ftm3bCqNHjxZOnjwpYavrpv379wvDhw8XIiIihE6dOglz5swR8vLyjMfZz1VnzZo1QkhIiKh/\ny8rIyBCmT58utGvXTmjfvr0wYcIE4cqVKzXcyrpLr9cLGzZsEAYOHCiEhYUJPXr0EKZPny5cvXrV\nWIf3c9XYsGGD8Pjjjwtt2rQRBg4caJa0l/38YK5du2YxGbKt/bp3717hmWeeEcLDw4UePXoIn3zy\niSgZO91lrZ/LmjlzpsWk04IgCLt27RIGDx4shIWFCT179hQ+/fRToaSkpMLXlQlCBUtQiIiIiOih\nxWcGiYiIiOwYg0EiIiIiO8ZgkIiIiMiOMRgkIiIismMMBomIiIjsGINBIiIiIjvGYJCIiIjIjjEY\nJCIiIrJjDAaJiIiI7BiDQSIiIiI7xmCQiKiGHD58GC1btsSIESOg1+uN5fHx8QgNDcWsWbMkbB0R\n2SsGg0RENaRLly4YPXo0Tpw4gU2bNgEAMjIy8O6776Jp06Z4++23JW4hEdkjmSAIgtSNICKyFxqN\nBs888wzu3LmDuLg4vP322zh06BA2btyIyMhIqZtHRHaIwSARUQ07deoURo4cicaNG+Pq1auYPn06\nJk2aJHWziMhOcZqYiKiGRUZGYuzYsbh69SpCQ0MxceJEqZtERHaMwSARUQ3T6XQ4fvw4ACA5ORlJ\nSUkSt4iI7BmDQSKiGvbFF1/g5MmTePXVV+Hi4oI33ngDWq1W6mYRkZ1iMEhEVIMSExOxfPlydOrU\nCZMnT8Ybb7yBixcvYvny5VI3jYjsFBeQEBHVEK1Wi2HDhiE1NRW//PILmjVrBgAYM2YMEhISsGHD\nBkRFRUncSiKyNxwZJCKqIStXrkRiYiKmTp1qDAQB4L333oNSqcSsWbNQVFQkYQuJyB5xZJCIiIjI\njnFkkIiIiMiOMRgkIiIismMMBomIiIjsGINBIiIiIjvGYJCIiIjIjjEYJCIiIrJjDAaJiIiI7BiD\nQSIiIiI7xmCQiIiIyI4xGCQiIiKyY/8PzJLOAk5zv84AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Funktion um eine Polynomielle Regression unterschiedlichen Grades zu plotten\n", "def render_polynomial_regression(degree=150):\n", " #Lerne Lineare Regression auf polynomiellen Features\n", " transformer = PolynomialFeatures(degree=degree, include_bias=False)\n", " scaler = StandardScaler()\n", " model = LinearRegression()\n", "\n", " #Polynomielle Regression mit Feature Scaling\n", " polynomial_regression = Pipeline((\n", " ('make_poly_features',transformer),\n", " (\"scale_features\",scaler),\n", " (\"run_linreg\",model),\n", " ))\n", "\n", " polynomial_regression.fit(X,y)\n", " #Plotte Daten und die gelernte Funktion\n", " plot_data(X,y,polynomial_regression)\n", " pl.show()\n", "\n", "#Render einen Interaktiven Plot\n", "#interact(render_polynomial_regression,degree=IntSlider(min=1,max=300,value=100,\n", "# description=\"Grad des Polynoms:\"));\n", "render_polynomial_regression(degree=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Model beschreibt die Daten zu gut --> Model ist Üeberangepasst und führt zu einer schlechten Generalisierung!**\n", "\n", "## Einführung in Ridge Regression\n", "\n", "Ridge Regression Loss ist definiert als: \n", "\n", "$\\mathcal{L}_{Ridge}(\\mathbf{w})=\\frac{1}{n}\\sum_{i=1}^n \\left[y_i - (b - \\mathbf{w}^T \\mathbf{x}_i) \\right]^2 + \\underbrace{\\alpha \\Vert \\mathbf{w}\\Vert_2^2}_{Strafterm}$ \n", "\n", "Zum lernen der unbekannten Gewichte $\\mathbf{w}$ muss man die Straffunktion $\\mathcal{L}_{Ridge}$ minimieren. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "marker": { "color": "#4C72B0", "line": { "color": "#4C72B0", "width": 0 }, "opacity": 1, "size": 10, "symbol": "dot" }, "mode": "markers", "name": "_line0", "type": "scatter", "x": [ -3, -2.95, -2.9000000000000004, -2.8500000000000005, -2.8000000000000007, -2.750000000000001, -2.700000000000001, -2.6500000000000012, -2.6000000000000014, -2.5500000000000016, -2.5000000000000018, -2.450000000000002, -2.400000000000002, -2.3500000000000023, -2.3000000000000025, -2.2500000000000027, -2.200000000000003, -2.150000000000003, -2.100000000000003, -2.0500000000000034, -2.0000000000000036, -1.9500000000000037, -1.900000000000004, -1.850000000000004, -1.8000000000000043, -1.7500000000000044, -1.7000000000000046, -1.6500000000000048, -1.600000000000005, -1.5500000000000052, -1.5000000000000053, -1.4500000000000055, -1.4000000000000057, -1.3500000000000059, -1.300000000000006, -1.2500000000000062, -1.2000000000000064, -1.1500000000000066, -1.1000000000000068, -1.050000000000007, -1.000000000000007, -0.9500000000000073, -0.9000000000000075, -0.8500000000000076, -0.8000000000000078, -0.750000000000008, -0.7000000000000082, -0.6500000000000083, -0.6000000000000085, -0.5500000000000087, -0.5000000000000089, -0.45000000000000906, -0.40000000000000924, -0.3500000000000094, -0.3000000000000096, -0.25000000000000977, -0.20000000000000995, -0.15000000000001013, -0.1000000000000103, -0.05000000000001048, -1.0658141036401503e-14, 0.049999999999989164, 0.09999999999998899, 0.1499999999999888, 0.19999999999998863, 0.24999999999998845, 0.2999999999999883, 0.3499999999999881, 0.3999999999999879, 0.44999999999998774, 0.49999999999998757, 0.5499999999999874, 0.5999999999999872, 0.649999999999987, 0.6999999999999869, 0.7499999999999867, 0.7999999999999865, 0.8499999999999863, 0.8999999999999861, 0.949999999999986, 0.9999999999999858, 1.0499999999999856, 1.0999999999999854, 1.1499999999999853, 1.199999999999985, 1.249999999999985, 1.2999999999999847, 1.3499999999999845, 1.3999999999999844, 1.4499999999999842, 1.499999999999984, 1.5499999999999838, 1.5999999999999837, 1.6499999999999835, 1.6999999999999833, 1.7499999999999831, 1.799999999999983, 1.8499999999999828, 1.8999999999999826, 1.9499999999999824, 1.9999999999999822, 2.049999999999982, 2.099999999999982, 2.1499999999999817, 2.1999999999999815, 2.2499999999999813, 2.299999999999981, 2.349999999999981, 2.399999999999981, 2.4499999999999806, 2.4999999999999805, 2.5499999999999803, 2.59999999999998, 2.64999999999998, 2.6999999999999797, 2.7499999999999796, 2.7999999999999794, 2.849999999999979, 2.899999999999979, 2.949999999999979 ], "xaxis": "x1", "y": [ -0.9652265111212932, -0.9563445692585602, -0.9826483654899265, -0.9977154157742639, -0.9776307839822501, -0.9837552527028381, -0.9994797695273089, -0.9998468035352951, -0.9939803027335864, -0.9997391767614422, -0.9989264123633589, -0.9998851341346121, -0.996215446179222, -0.9952914128080986, -0.998903765943952, -0.9949188588654654, -0.9961994043923177, -0.968580970947965, -0.9871435045119046, -0.9900037385911287, -0.8957307810351677, -0.9482882221584775, -0.9272694266717505, -0.9648479228420022, -0.9266538868535982, -0.8859160338983258, -0.9258356786147242, -0.8410145476609432, -0.8749698382332967, -0.843122033336221, -0.8428989995469296, -0.6637594986976759, -0.7713728861574329, -0.815736365310866, -0.6702603874060817, -0.787956152021579, -0.6691734040918048, -0.7947122219655769, -0.733847792051068, -0.5972342088940323, -0.5264943711279393, -0.5478280021861752, -0.5455552530111611, -0.5347240204254576, -0.6055899612125125, -0.5168979845713587, -0.46699274874809465, -0.2980935926198499, -0.3359647114786903, -0.49851007178912815, -0.2780379057311548, -0.31575434553046433, -0.3136357908793998, -0.15807798247412014, -0.08529185484456667, -0.06390803802021004, -0.20805444751052474, -0.1248424300680887, -0.029701141348117494, 0.06609037824642926, -0.047899088853827314, 0.012849675232691428, -0.04778344197130973, -0.025370160448809395, 0.20544294818180814, 0.28854191903912796, 0.18030305501395497, 0.3148178839075318, 0.28354710788276355, 0.21650327467816155, 0.34317850104698394, 0.478880334462787, 0.3647911764894711, 0.5353072063996278, 0.17691238270159915, 0.5256075832147095, 0.48936331892293605, 0.48308089301108453, 0.5435517466062375, 0.3877097621197332, 0.5698730381808622, 0.6407277085086207, 0.7439350496744521, 0.6215652876269055, 0.6234385520934167, 0.6707521660000176, 0.7884926306961978, 0.7714425413112564, 0.7356798951564911, 0.8205591472722453, 0.8146848591489821, 0.8775642926813619, 0.8046610326047859, 0.8436036354420002, 0.8567479966313652, 0.8152761590118438, 0.9170367182477198, 0.9278084967267087, 0.9299646032175956, 0.9326762652396448, 0.8979547954289456, 0.9477120573697846, 0.9594931055228867, 0.9552953397104175, 0.9791374300684609, 0.9932012428888003, 0.9980189957004394, 0.9970530965904278, 0.9993127336687545, 0.9992450250829974, 0.98164799414028, 0.9995863291720576, 0.997630439553239, 0.9425637597491929, 0.9943419256498542, 0.9825227933217305, 0.9829317653086372, 0.9946956957192457, 0.9339059578090384, 0.9366216987229501 ], "yaxis": "y1" }, { "line": { "color": "rgba (255, 0, 0, 1)", "dash": "solid", "width": 4 }, "mode": "lines", "name": "Learned Regression Fit", "type": "scatter", "x": [ -3, -2.9393939393939394, -2.878787878787879, -2.8181818181818183, -2.757575757575758, -2.696969696969697, -2.6363636363636362, -2.5757575757575757, -2.515151515151515, -2.4545454545454546, -2.393939393939394, -2.333333333333333, -2.2727272727272725, -2.212121212121212, -2.1515151515151514, -2.090909090909091, -2.0303030303030303, -1.9696969696969697, -1.9090909090909092, -1.8484848484848484, -1.7878787878787878, -1.7272727272727273, -1.6666666666666665, -1.606060606060606, -1.5454545454545454, -1.4848484848484849, -1.4242424242424243, -1.3636363636363635, -1.303030303030303, -1.2424242424242424, -1.1818181818181817, -1.121212121212121, -1.0606060606060606, -1, -0.9393939393939394, -0.8787878787878789, -0.8181818181818183, -0.7575757575757573, -0.6969696969696968, -0.6363636363636362, -0.5757575757575757, -0.5151515151515151, -0.4545454545454546, -0.39393939393939403, -0.33333333333333304, -0.2727272727272725, -0.21212121212121193, -0.15151515151515138, -0.09090909090909083, -0.030303030303030276, 0.030303030303030276, 0.09090909090909083, 0.15151515151515138, 0.21212121212121238, 0.27272727272727293, 0.3333333333333335, 0.39393939393939403, 0.4545454545454546, 0.5151515151515151, 0.5757575757575757, 0.6363636363636367, 0.6969696969696972, 0.7575757575757578, 0.8181818181818183, 0.8787878787878789, 0.9393939393939394, 1, 1.0606060606060606, 1.121212121212121, 1.1818181818181817, 1.2424242424242422, 1.3030303030303028, 1.3636363636363633, 1.4242424242424248, 1.4848484848484853, 1.5454545454545459, 1.6060606060606064, 1.666666666666667, 1.7272727272727275, 1.787878787878788, 1.8484848484848486, 1.9090909090909092, 1.9696969696969697, 2.0303030303030303, 2.090909090909091, 2.1515151515151514, 2.212121212121212, 2.2727272727272725, 2.333333333333334, 2.3939393939393945, 2.454545454545455, 2.5151515151515156, 2.575757575757576, 2.6363636363636367, 2.6969696969696972, 2.757575757575758, 2.8181818181818183, 2.878787878787879, 2.9393939393939394, 3 ], "xaxis": "x1", "y": [ -0.9640154747995322, -0.9675162068264254, -0.9878745552129937, -0.9854419440843512, -0.9808572993876232, -0.9816755554034365, -0.9875317123307464, -0.9959829661787898, -1.0047191982465746, -1.0120872329603094, -1.0170625488886191, -1.019094412274323, -1.0179559422861582, -1.0136289982113467, -1.0062231869133709, -0.9959213013858376, -0.9829435602103938, -0.9675247047634059, -0.9498997078734236, -0.9302951748368629, -0.9089244676732433, -0.8859852373148824, -0.8616584901136218, -0.8361086108293176, -0.8094839615845155, -0.7819178077150627, -0.7535294089610407, -0.7244251726704115, -0.6946998043708779, -0.6644374166842898, -0.6337125744316098, -0.6025912647907085, -0.5711317884581436, -0.5393855722292379, -0.5073979061236845, -0.4752086097375592, -0.44285263329593577, -0.4103605991829888, -0.3777592897200334, -0.3450720867685773, -0.3123193684366144, -0.2795188678160191, -0.24668599831228108, -0.21383414976751983, -0.18097495923781542, -0.14811855997479245, -0.11527381188377138, -0.08244851648897876, -0.04964961923110643, -0.01688340175395945, 0.015844333295354125, 0.04852808252476806, 0.08116246474737855, 0.1137420442825772, 0.14626115225813402, 0.1787137035181147, 0.21109300665985212, 0.24339156460375644, 0.275600862941012, 0.30771114310450337, 0.33971115716587685, 0.3715879007749786, 0.4033263204261354, 0.43490899085923823, 0.46631575798497693, 0.4975233422690496, 0.5285048970317594, 0.5592295156379808, 0.5896616811026003, 0.6197606512733731, 0.6494797725629972, 0.6787657153181923, 0.7075576245388816, 0.7357861811039865, 0.7633725713890542, 0.7902273678814045, 0.8162493311784628, 0.8413241562107361, 0.8653232051129235, 0.8881022995985, 0.9095006926443078, 0.9293404114057578, 0.9474262737342428, 0.9635470494666063, 0.9774784949223824, 0.9889893792334167, 0.9978522072130042, 1.003861206842815, 1.0068613715692245, 1.0067939307043718, 1.003765222920236, 0.9981460673587111, 0.9907023152796334, 0.9827289635257498, 0.9760665300685959, 0.9726095820275065, 0.9722802195612991, 0.9677164923942452, 0.9392924941523442, 0.9161223264156418 ], "yaxis": "y1" } ], "layout": { "annotations": [ { "align": "left", "font": { "color": "#262626", "size": 17 }, "opacity": 1, "showarrow": false, "text": "Learned Regression Fit", "x": 0.11272401433691757, "xanchor": "left", "xref": "paper", "y": 0.9165074440960291, "yanchor": "bottom", "yref": "paper" } ], "autosize": false, "height": 432, "hovermode": "closest", "margin": { "b": 54, "l": 90, "pad": 0, "r": 71, "t": 51 }, "showlegend": false, "width": 720, "xaxis1": { "anchor": "y1", "domain": [ 0, 1 ], "dtick": 1, "mirror": "ticks", "range": [ -3.1, 3.1 ], "showgrid": true, "showline": true, "side": "bottom", "tick0": -3, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "x", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false }, "yaxis1": { "anchor": "x1", "domain": [ 0, 1 ], "dtick": 0.5, "mirror": "ticks", "range": [ -1.1, 1.1 ], "showgrid": true, "showline": true, "side": "left", "tick0": -1, "tickfont": { "size": 17 }, "tickmode": false, "ticks": "inside", "title": "y", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false } } }, "text/html": [ "
" ], "text/vnd.plotly.v1+html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Lerne Ridge Regression auf polynomiellen Features mit alpha=1.1\n", "ridge_regression = Pipeline((\n", " ('make_poly_features',PolynomialFeatures(degree=100, include_bias=False)),\n", " (\"scale_features\",StandardScaler()),\n", " (\"run_ridgereg\",Ridge(alpha=1.1)),\n", "))\n", "\n", "ridge_regression.fit(X,y)\n", "\n", "plot_data(X,y,ridge_regression,interactive=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Optimale Abwägung zwischen zu einfachem und zu komplexem Model durch L2-Regularisierung!\n", "**\n", "\n", "### Effekt von $\\alpha$ auf die Gewichte" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "line": { "color": "rgba (76, 114, 176, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line0", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ -2.2904028019560135e-05, -2.5951403483938005e-05, -2.9394827980520507e-05, -3.328307060590518e-05, -3.7670123776081896e-05, -4.261552997748557e-05, -4.8184652177520164e-05, -5.4448855523185285e-05, -6.148555832072205e-05, -6.937809862650135e-05, -7.821534891986717e-05, -8.809099522089188e-05, -9.910237881540258e-05, -0.00011134877894373458, -0.00012492899438863703, -0.00013993806257735667, -0.0001564629393119814, -0.0001745769546068281, -0.00019433286606116167, -0.000215754358433995, -0.0002388258964862527, -0.0002634809396492869, -0.00028958868505641016, -0.0003169397333692606, -0.0003452313805797281, -0.00037405363302592915, -0.0004028775146219974, -0.00043104775813659966, -0.0004577824931077001, -0.00048218297569290256, -0.0005032566294665687, -0.0005199565305802334, -0.0005312398136254994, -0.0005361461539210376, -0.000533895421582766, -0.000524000845263173, -0.0005063907771006541, -0.0004815288104399106, -0.0004505191267368597, -0.0004151821785625276, -0.00037808574216475945, -0.00034251837868773237, -0.00031239646917806467, -0.0002921018735626398, -0.0002862541904594041, -0.0002994286416325984, -0.0003358368610562484, -0.0003989926379684954, -0.0004913875891359583, -0.0006142028012463525, -0.0007670818975998698, -0.0009479889931931982, -0.0011531717254285008, -0.001377244875840806, -0.0016134037339927423, -0.0018537679783006725, -0.002089846374648394, -0.002313100437660815, -0.0025155724532407156, -0.0026905316827174064, -0.0028330843344755397, -0.00294069012169993, -0.0030135324109427626, -0.003054700428192902, -0.0030701596094106828, -0.0030685075077238905, -0.003060534406251016, -0.0030586265568443285, -0.0030760630971566555, -0.003126263793992616, -0.0032220438943005984, -0.00337492587214026, -0.0035945478280511338, -0.0038881969440405454, -0.004260485528728989, -0.004713177870047004, -0.0052451686117315184, -0.005852607314379003, -0.006529158560629616, -0.00726638175853505, -0.008054209355408227, -0.008881496651947278, -0.009736611437544942, -0.010608028196537011, -0.01148489063665392, -0.012357508464293065, -0.013217759855996125, -0.014059379503327913, -0.01487812242134547, -0.0156718045280258, -0.016440230871836787, -0.017185030081284493, -0.01790941835783613, -0.018617917909434577, -0.019316053429647623, -0.020010046765643975, -0.020706525189556187, -0.02141225360518512, -0.0221338963502144, -0.022877810513772582, -0.023649870126408137, -0.024455319189883248, -0.02529865110445979, -0.026183512317163173, -0.02711262862146948, -0.02808775319186478, -0.029109635932462474, -0.030178013972219992, -0.03129162318040127, -0.03244823051694009, -0.033644687009494675, -0.03487700125481318, -0.03614043357047667, -0.03742961114714615, -0.03873866454955094, -0.04006138544280841, -0.041391404311783196, -0.04272238518845596, -0.04404823221168907, -0.045363300600417315, -0.0466626028109961, -0.04794199972222246, -0.04919836693789455, -0.05042972776462691, -0.05163534690376827, -0.05281578197980566, -0.053972893212094704, -0.05510981434010922, -0.05623088997120903, -0.057341585645457015, -0.05844837708927482, -0.05955862448879693, -0.06068043637482939, -0.061822526134224565, -0.06299406248164795, -0.06420451366051572, -0.06546348383523017, -0.06678053921258849, -0.068165020966134, -0.06962584209762036, -0.07117126603493636, -0.07280866608743841, -0.07454426694123345, -0.07638287218070182, -0.07832758533347904, -0.08037953594519995, -0.0825376263524958, -0.08479831852986532, -0.08715548296130195, -0.08960033206265837, -0.09212145858318375, -0.0947049941662931, -0.09733489496420128, -0.09999335039492174, -0.1026612991998839, -0.1053190254637286, -0.10794679803131425, -0.11052551138645805, -0.11303728547762885, -0.11546598625741171, -0.11779763727039401, -0.1200207037900569, -0.12212624332982146, -0.12410792794784557, -0.1259619530402872, -0.12768685400822283, -0.12928325537991608, -0.13075357739276428, -0.13210172301475465, -0.1333327651351327, -0.1344526489093796, -0.13546792029322022, -0.13638548723939878, -0.1372124166914338, -0.13795576778577837, -0.1386224594887931, -0.13921916961774478, -0.13975226160913237, -0.14022773482986364, -0.14065119443796256, -0.14102783706059768, -0.1413624487073433, -0.14165941218817532, -0.14192272131432546, -0.14215599982006272, -0.14236252346992062, -0.14254524387275333, -0.14270681302863233, -0.14284960784041653, -0.14297575403409327, -0.143087149136535, -0.14318548412001036, -0.14327226370386217, -0.14334882517985292, -0.14341635565477345, -0.14347590794203607, -0.1435284148934704, -0.14357470247146853, -0.14361550149944627, -0.1436514582193234 ], "yaxis": "y1" }, { "line": { "color": "rgba (85, 168, 104, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line1", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ 0.0007505513977647225, 0.0008518420048886233, 0.0009667129515117153, 0.0010969593415903138, 0.0012446062147958882, 0.0014119358950410753, 0.0016015179842971813, 0.0018162420751154892, 0.00205935319287296, 0.002334489891446586, 0.0026457248075137173, 0.0029976073217738482, 0.00339520777206225, 0.0038441624050076593, 0.00435071793099022, 0.004921774153955343, 0.00556492267760361, 0.006288479141208108, 0.007101505817207621, 0.008013820724458349, 0.009035988705840513, 0.010179289236556744, 0.011455655144311466, 0.01287757603810372, 0.014457960193558527, 0.01620994909427165, 0.018146679966541013, 0.020280993658210202, 0.022625088262852942, 0.02519012306832795, 0.027985782676313405, 0.031019817269924754, 0.034297581528944465, 0.037821600862445716, 0.041591198449063574, 0.04560221888439483, 0.04984688287833489, 0.05431380151705635, 0.05898816772469637, 0.06385212711892423, 0.06888531174559429, 0.07406550034482319, 0.07936935056997774, 0.08477313480344408, 0.09025340431829458, 0.09578750803355905, 0.1013539022829726, 0.10693220587221797, 0.11250297820524024, 0.11804722475476932, 0.12354566080933806, 0.12897778864317339, 0.1343208628724247, 0.13954883215333164, 0.14463135142274106, 0.14953295693730953, 0.15421248631805173, 0.1586228081902906, 0.16271090218577183, 0.16641830232184393, 0.1696818881974984, 0.1724349826288985, 0.17460869474923837, 0.1761334368415573, 0.17694054239424373, 0.1769639213451199, 0.17614170366997686, 0.17441784047928507, 0.17174364813956378, 0.16807929148586367, 0.1633952039411582, 0.1576734340569801, 0.1509088904296203, 0.14311043294527478, 0.13430173240055115, 0.12452179840906823, 0.11382506314031121, 0.10228091114158604, 0.0899725667400207, 0.07699529092006428, 0.0634538962010855, 0.04945965441589902, 0.035126739170690646, 0.020568401746291293, 0.005893116815883477, -0.008799053842857804, -0.023419647440490677, -0.03789434470755889, -0.05216474014828786, -0.06618927230106945, -0.07994331389036391, -0.09341847785059025, -0.10662123664776703, -0.11957097738393453, -0.13229762517299085, -0.14483896573541236, -0.15723778964426202, -0.16953896971561644, -0.1817865733399849, -0.19402110531495376, -0.2062769744646157, -0.2185802778197172, -0.230946996761847, -0.24338169677282628, -0.25587681258103634, -0.2684125805634822, -0.28095764886961877, -0.293470353816284, -0.3059006022016439, -0.31819224915159766, -0.33028581712705624, -0.3421213708962943, -0.35364135102077676, -0.3647931771635319, -0.37553146114712505, -0.38581971366836526, -0.39563148109384505, -0.40495090218587193, -0.41377272199709514, -0.42210183647234745, -0.4299524638899698, -0.4373470479938691, -0.4443149942901246, -0.4508913285347621, -0.45711534833228534, -0.46302931845287126, -0.46867724060961186, -0.4741037112176781, -0.47935286729582793, -0.484467411915116, -0.48948770656955753, -0.4944509183598984, -0.49939021444432175, -0.504334004048405, -0.5093052385245845, -0.5143207911339358, -0.5193909489726366, -0.5245190578223269, -0.529701365022685, -0.5349271038310184, -0.5401788542070084, -0.5454331991690256, -0.5506616738565866, -0.5558319783938812, -0.5609093989627625, -0.5658583580490817, -0.5706439984337166, -0.5752336987032244, -0.5795984227271731, -0.5837138202643289, -0.5875610194160948, -0.5911270797381334, -0.5944051044005207, -0.5973940367054413, -0.600098188170524, -0.6025265599947992, -0.6046920273389396, -0.6066104555337588, -0.6082998116635815, -0.609779324343702, -0.611068731675876, -0.6121876431713296, -0.6131550284700764, -0.6139888339833728, -0.6147057197694512, -0.6153209027506306, -0.6158480887744465, -0.6162994750111215, -0.6166858045243795, -0.617016456739727, -0.6172995600930438, -0.6175421156066555, -0.6177501231233627, -0.6179287041191479, -0.6180822170404557, -0.618214362985437, -0.6183282803968726, -0.618426628623477, -0.6185116607766128, -0.6185852864405594, -0.6186491253774897, -0.6187045530629139, -0.6187527392268539, -0.6187946802457414, -0.6188312263949898, -0.6188631046313706, -0.6188909377237204, -0.6189152602104612, -0.6189365318303685, -0.6189551487285677, -0.6189714528769843, -0.6189857400159295, -0.6189982663145873, -0.6190092540197567, -0.6190188962207972, -0.6190273609034591, -0.6190347943904396, -0.6190413242737248, -0.6190470619387453, -0.6190521047000148 ], "yaxis": "y1" }, { "line": { "color": "rgba (196, 78, 82, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line2", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ -2.9108228383752255e-05, -3.2983591117852474e-05, -3.7363331575580206e-05, -4.230976471519418e-05, -4.7891940043652484e-05, -5.4186082357077246e-05, -6.127596689800903e-05, -6.925318889867082e-05, -7.821727527969705e-05, -8.827557139836344e-05, -9.954281790167938e-05, -0.00011214031176569748, -0.00012619452153550656, -0.00014183500001972658, -0.00015919140919068442, -0.0001783894435605696, -0.00019954541274809856, -0.0002227592257524995, -0.0002481055150022225, -0.00027562265630051794, -0.0003052994927557187, -0.00033705967071157624, -0.0003707436597308749, -0.0004060887736647736, -0.0004427078506048568, -0.0004800676946263111, -0.0005174689278319454, -0.0005540295232113945, -0.0005886749342902596, -0.0006201383170620712, -0.0006469747239531831, -0.0006675931741324085, -0.0006803099873471778, -0.0006834255435979998, -0.0006753245972914424, -0.0006545974539242444, -0.0006201759072759589, -0.0005714742349815444, -0.0005085223401532189, -0.0004320759832839749, -0.0003436886044986429, -0.00024573090920550894, -0.00014134823430729786, -3.4351345122654864e-05, 7.09570394744095e-05, 0.00017001103967901178, 0.00025825110514834785, 0.00033141566575016495, 0.0003858345941966263, 0.0004187043530391999, 0.00042832654148943107, 0.00041429445856242566, 0.0003776157376528814, 0.0003207627530515065, 0.0002476462610099636, 0.00016351171434815487, 7.476203275133826e-05, -1.1284635958316777e-05, -8.668866822576116e-05, -0.00014321607429461798, -0.0001726771979120468, -0.00016725350923345905, -0.00011978981177509777, -2.4032816489526898e-05, 0.00012519680651736475, 0.0003319039583998931, 0.0005988870434726182, 0.0009277638630273325, 0.0013190399597169012, 0.0017722017741239862, 0.0022858179667381347, 0.0028576359715194034, 0.0034846664470264566, 0.00416325470425243, 0.0048891443062782855, 0.005657542869666977, 0.006463202904587907, 0.00730053086605313, 0.008163735346216143, 0.009047020764022659, 0.00994482659415741, 0.010852105010068438, 0.011764622880946115, 0.012679268485373638, 0.013594340055102397, 0.01450979296090433, 0.015427425124646869, 0.016350985672658396, 0.017286199049940252, 0.018240704615014168, 0.019223918902294693, 0.020246833238524765, 0.02132176258225765, 0.022462062148408946, 0.023681826871703362, 0.024995585691509024, 0.026417998825675287, 0.027963562465663557, 0.029646322342904617, 0.03147959581295004, 0.033475701620346895, 0.035645697216900626, 0.03799912507932585, 0.04054377146478207, 0.04328544300196123, 0.046227768079583634, 0.04937203097463204, 0.05271704708055334, 0.056259087659139076, 0.05999186255390418, 0.0639065695249713, 0.06799201934365172, 0.07223484624775381, 0.07661981320154675, 0.08113021982380332, 0.08574841709511316, 0.09045642665860174, 0.09523665393067329, 0.1000726743297721, 0.10495006227429887, 0.10985722502753803, 0.1147861995862279, 0.11973337157723962, 0.12470008058172047, 0.12969308554737205, 0.1347248753538004, 0.13981382124215477, 0.14498417788867504, 0.1502659470384919, 0.15569462112659557, 0.16131082416228604, 0.16715986384610534, 0.1732912032828877, 0.17975785377821468, 0.18661568299683634, 0.19392262618439313, 0.2017377828764972, 0.21012037826325544, 0.2191285677213284, 0.22881806555960113, 0.2392405855209179, 0.25044209160097125, 0.26246087402658397, 0.2753254868761048, 0.2890526105378197, 0.30364493238293344, 0.31908917003323173, 0.3353543888326436, 0.3523907835196424, 0.37012909723872056, 0.3884808339918379, 0.4073393800031809, 0.42658208625750044, 0.4460732826356105, 0.46566810415190985, 0.4852169234172069, 0.5045701143385407, 0.5235828319829274, 0.5421194893946838, 0.5600576444283442, 0.57729107393884, 0.5937318963907734, 0.6093116962378654, 0.62398169020694, 0.6377120450895747, 0.6504905066847797, 0.6623205235135466, 0.6732190520984782, 0.68321421556224, 0.6923429629953394, 0.7006488416190645, 0.7081799643046134, 0.7149872208780742, 0.7211227567327385, 0.7266387219190276, 0.7315862775025594, 0.7360148365136515, 0.739971512334637, 0.7435007431674799, 0.7466440627866002, 0.7494399897029731, 0.751924008002518, 0.7541286194494075, 0.7560834465368939, 0.7578153710519406, 0.7593486966932464, 0.7607053246769898, 0.7619049350264492, 0.762965167813626, 0.7639018001721875, 0.7647289164430663, 0.7654590685095153, 0.7661034262642279, 0.7666719171578376, 0.7671733540617557, 0.7676155531227249, 0.7680054400804144, 0.7683491472516469, 0.7686521007118845, 0.7689190986430374 ], "yaxis": "y1" }, { "line": { "color": "rgba (129, 114, 178, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line3", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ 0.000639223966530084, 0.0007254064209210911, 0.000823119329423531, 0.0009338797951090614, 0.0010593971944368597, 0.0012015954358759596, 0.0013626371799756259, 0.001544950003784046, 0.0017512544186258617, 0.001984593550152073, 0.002248364156932469, 0.0025463484914196787, 0.0028827462868434325, 0.003262205876986228, 0.003689853114422601, 0.00417131633924666, 0.004712745159530496, 0.0053208202361133645, 0.00600275062433619, 0.006766254531268, 0.00761951863125288, 0.00857113039792874, 0.009629977335477125, 0.010805106634173826, 0.01210553877643994, 0.013540029151720904, 0.015116772996433117, 0.016843051158031648, 0.01872481746264366, 0.020766232945366662, 0.022969157855292095, 0.025332618957690883, 0.027852276762374218, 0.03051992417394674, 0.0333230536946834, 0.036244533555508454, 0.039262432849034246, 0.0423500309769, 0.045476037100919235, 0.048605031152363934, 0.05169812052421148, 0.054713787867880545, 0.057608887976863726, 0.06033973815174738, 0.06286323879100683, 0.06513796034183875, 0.06712513901786747, 0.06878953545251959, 0.07010012540158207, 0.07103060704938156, 0.07155972294170716, 0.07167140432409698, 0.07135475099951966, 0.07060386111599254, 0.06941752383791719, 0.06779878547541583, 0.0657543982687471, 0.06329416221907609, 0.06043017496946913, 0.05717601268483802, 0.053545875127989494, 0.049553738911401565, 0.04521257208442194, 0.04053366874912927, 0.035526162761114956, 0.030196774044664712, 0.024549829793587052, 0.018587586736519356, 0.012310861073522677, 0.005719951137868881, -0.0011841842886056372, -0.008398550542477236, -0.0159166227329485, -0.023726827350593668, -0.03181110688636543, -0.04014368044256692, -0.04869011101172575, -0.05740677779232013, -0.06624082860403727, -0.07513065355641509, -0.08400687887589185, -0.09279383343681301, -0.10141139585154098, -0.10977709335097209, -0.11780830086969493, -0.12542438354297375, -0.13254863917587922, -0.13910992699006255, -0.1450439102835525, -0.1502938871609673, -0.15481122856113974, -0.15855548073802592, -0.16149421623232524, -0.16360273136723222, -0.16486368946572233, -0.16526679877449274, -0.16480859476473586, -0.16349237066234532, -0.16132827034932737, -0.15833352670215298, -0.15453279848239587, -0.14995853264654674, -0.1446512590928893, -0.13865971413687941, -0.13204068981453318, -0.12485852005076604, -0.11718414195376463, -0.10909370921447684, -0.10066678088526126, -0.09198415686346723, -0.08312547441935776, -0.07416671145834988, -0.06517775690586496, -0.05622020437782318, -0.04734550310670774, -0.038593563934202255, -0.02999187414207543, -0.021555129790409445, -0.013285354365010604, -0.005172442421411548, 0.002804950962385821, 0.010678259592819083, 0.018487673720190834, 0.02628069163898807, 0.034110602849658216, 0.0420349305293736, 0.0501138423600168, 0.05840852379893648, 0.06697949809528632, 0.07588487410973882, 0.08517850688154074, 0.09490806719409783, 0.1051130348190093, 0.11582265462285134, 0.12705392369525212, 0.13880970799228054, 0.15107711514981254, 0.16382627082330364, 0.1770096545135477, 0.19056214187113768, 0.20440187113027683, 0.21843200059286322, 0.232543355007027, 0.24661787786428874, 0.2605327241759818, 0.2741647558472791, 0.28739515081480693, 0.30011381537687437, 0.31222330225302164, 0.323641980784403, 0.3343062766725144, 0.34417188394711395, 0.35321394218499136, 0.3614262547907649, 0.36881969207210874, 0.3754199687732487, 0.38126501023487175, 0.38640212136710916, 0.3908851557185242, 0.39477184929008313, 0.39812144373709873, 0.40099267906922664, 0.4034421949443785, 0.4055233425194856, 0.4072853808147862, 0.40877301176055636, 0.4100261967861841, 0.41108019471778634, 0.41196576217261127, 0.41270946389194485, 0.41333404898669196, 0.4138588571736871, 0.41430022884627804, 0.41467190000752935, 0.41498536965049726, 0.4152502332034157, 0.41547447843630875, 0.4156647439131389, 0.4158265418974361, 0.415964447993765, 0.41608226151468924, 0.41618313963757453, 0.4162697092976233, 0.41634415977012523, 0.41640831928805927, 0.4164637179362248, 0.41651163949845776, 0.41655316383634605, 0.4165892018518865, 0.4166205240081768, 0.4166477837793865, 0.41667153699861664, 0.4166922576790552, 0.41671035114248717, 0.4167261648294886, 0.41673999728116995, 0.4167521055955086, 0.4167627116276635, 0.4167720072325961, 0.41678015858880274 ], "yaxis": "y1" }, { "line": { "color": "rgba (204, 185, 116, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line4", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ -3.467509038964161e-05, -3.9296352633025195e-05, -4.452044384193985e-05, -5.042224300833681e-05, -5.708484213815158e-05, -6.460012406670268e-05, -7.306927584387217e-05, -8.260319319725611e-05, -9.332271763265657e-05, -0.00010535863062197551, -0.000118851308668574, -0.00013394991854391586, -0.00015081100357916658, -0.00016959627985162987, -0.00019046942627573582, -0.00021359161668553695, -0.0002391155078779253, -0.0002671773698059526, -0.0002978870293212955, -0.00033131530631377263, -0.00036747866300327004, -0.00040632087878493333, -0.00044769172230387676, -0.0004913228385129916, -0.0005368014191687937, -0.0005835426926794963, -0.0006307628535709181, -0.0006774547330426744, -0.0007223692407178897, -0.0007640062964878034, -0.0008006194907153161, -0.0008302388927088027, -0.0008507160809161087, -0.0008597944142061394, -0.000855205682641862, -0.0008347915687456479, -0.0007966449918787968, -0.0007392627796210185, -0.0006616977789506696, -0.0005636961611678999, -0.0004458049281224618, -0.00030943592625085856, -0.0001568760893923533, 8.761211060205074e-06, 0.00018364270727509692, 0.0003633726021831102, 0.0005431887229431848, 0.0007181823219580842, 0.0008835255273612892, 0.0010346917089682779, 0.0011676568904111261, 0.0012790740418879068, 0.0013664158322966515, 0.0014280845463414734, 0.0014634899757420682, 0.0014730970560300578, 0.001458444981029749, 0.0014221388091597755, 0.0013678135932324311, 0.0013000702306050565, 0.0012243818736272936, 0.0011469700515505362, 0.0010746506549764903, 0.0010146514775385474, 0.0009744048256368333, 0.0009613204673015321, 0.0009825455946176106, 0.0010447193257722952, 0.0011537295343601727, 0.0013144795884626114, 0.0015306721512551927, 0.00180461681483677, 0.0021370682231878916, 0.0025271015534374087, 0.0029720326340232093, 0.003467390257605512, 0.004006947938123749, 0.0045828209869722735, 0.005185631983159008, 0.005804743381287066, 0.006428550385769551, 0.007044820941790453, 0.007641063679478693, 0.008204899964543945, 0.008724413837439191, 0.009188454225690165, 0.009586867555486267, 0.009910645370646797, 0.010151979893842254, 0.010304229426541302, 0.010361803806964878, 0.010319986742902847, 0.010174715998919502, 0.00992234389999311, 0.0095593996141339, 0.009082371726884433, 0.008487525430051577, 0.007770763940845336, 0.006927539161688177, 0.005952812517230704, 0.004841063592848292, 0.0035863416990537605, 0.002182353718908677, 0.0006225804016078393, -0.0010995875492474795, -0.002990702879359938, -0.005057114607132884, -0.0073048309939927345, -0.009739404441352758, -0.012365851397281974, -0.015188621772114849, -0.018211633579680152, -0.0214383890672016, -0.02487218789078318, -0.028516450377933662, -0.03237515922496254, -0.03645342111072901, -0.040758141140398114, -0.04529879373541401, -0.05008826483803108, -0.05514373346581307, -0.06048755682699776, -0.06614812293841482, -0.07216063782273015, -0.07856782007320345, -0.0854204825274485, -0.0927779874881896, -0.10070856696785624, -0.1092895018051294, -0.11860715269497855, -0.12875683221575207, -0.13984250026329043, -0.15197625669238166, -0.16527759541759166, -0.17987237469515047, -0.19589145008614753, -0.2134689107201756, -0.23273985747593784, -0.2538376651058709, -0.2768906809298707, -0.3020183328501675, -0.32932665087352303, -0.3589032511700839, -0.39081189028138646, -0.42508676851904775, -0.4617268414882654, -0.5006904799051777, -0.5418908882884126, -0.5851927394179103, -0.6304104871572698, -0.6773087726733351, -0.7256052297907885, -0.7749758271721258, -0.8250626688665877, -0.8754839382690761, -0.9258454439998605, -0.9757530454820365, -1.0248251315620398, -1.0727043152441946, -1.1190675925773983, -1.1636343821865187, -1.206172081172818, -1.2464990144867791, -1.2844848817748982, -1.3200489873864627, -1.353156669978825, -1.3838144109456745, -1.4120641092209798, -1.437976970941148, -1.461647398989933, -1.4831871750509886, -1.50272014998896, -1.5203775692008914, -1.5362940946458883, -1.550604532126358, -1.563441229530034, -1.5749320871689771, -1.585199109463916, -1.5943574163098808, -1.6025146365044691, -1.6097706105541514, -1.6162173331764353, -1.6219390822379123, -1.6270126811695327, -1.6315078545402484, -1.6354876469139337, -1.6390088760823582, -1.6421226015736807, -1.6448745934839923, -1.6473057906796942, -1.6494527414507736, -1.6513480188923366, -1.6530206108854417, -1.6544962818337878, -1.655797904203078, -1.656945764138593, -1.6579578372245927, -1.6588500400618065, -1.6596364564241048, -1.660329540536063 ], "yaxis": "y1" }, { "line": { "color": "rgba (100, 181, 205, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line5", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ 0.0005619063602371934, 0.0006376096274538468, 0.0007234254162381264, 0.0008206796480290311, 0.0009308649346833436, 0.0010556594690984264, 0.0011969474495699321, 0.0013568409708808492, 0.0015377032366472461, 0.0017421728427066492, 0.001973188744110521, 0.002234015341485366, 0.002528266898339019, 0.0028599302210728633, 0.0032333841899276215, 0.0036534143148183435, 0.004125220000446205, 0.004654411640124208, 0.005246994024551621, 0.005909331868238491, 0.006648092555531994, 0.007470160543597243, 0.008382517310135793, 0.009392080408076384, 0.010505495229578611, 0.011728873660162118, 0.013067475116113801, 0.014525327704880088, 0.016104790603876016, 0.01780606332383717, 0.01962665328952585, 0.021560819928389048, 0.02359902076156023, 0.025727392127151257, 0.027927303168348346, 0.030175025459895533, 0.03244156099853506, 0.034692667351220285, 0.03688911013863245, 0.038987160048268264, 0.04093933536558508, 0.04269537347857546, 0.04420339830785041, 0.04541123749505135, 0.046267835261158866, 0.04672470493402587, 0.0467373688050354, 0.04626674058895258, 0.04528041490077259, 0.043753836187053315, 0.041671324267631524, 0.039026933892146155, 0.0358251216985611, 0.03208118728910011, 0.027821448549261076, 0.02308310813062132, 0.01791377132171488, 0.012370587490748165, 0.006519008388515253, 0.00043118529294498343, -0.005815940290428228, -0.01214276587052396, -0.018469265251718905, -0.02471720763413883, -0.03081223195356743, -0.03668566383491929, -0.04227598857113239, -0.047529927389853906, -0.052403100607157756, -0.05686029484795887, -0.06087537816231516, -0.06443092409778312, -0.0675176129747762, -0.07013347677846951, -0.07228304543294344, -0.07397643958113521, -0.07522844124645921, -0.07605756141209587, -0.07648511444628807, -0.0765343043886991, -0.0762293274556371, -0.07559449797429493, -0.07465340997815888, -0.07342815226017284, -0.07193859922235678, -0.07020180219953, -0.06823150549012201, -0.06603780818480115, -0.06362698768919159, -0.0610014945715164, -0.05816012204996931, -0.05509834787096435, -0.051808841921460985, -0.04828212960740354, -0.04450739835480596, -0.040473431816193846, -0.036169652684442874, -0.031587249744399165, -0.026720357574519137, -0.021567248280594278, -0.01613148454891709, -0.010422973537078897, -0.0044588536284344065, 0.0017358568434566602, 0.00812791591755214, 0.014675874039951346, 0.021330483105548626, 0.02803550241720441, 0.03472887085359091, 0.04134417893745193, 0.04781234309915588, 0.05406336225537813, 0.06002802769270368, 0.06563946293311161, 0.07083438995769803, 0.07555404883953427, 0.07974473480617557, 0.08335795475640218, 0.08635023965210323, 0.0886826764196085, 0.09032024139228108, 0.09123102665383055, 0.09138545208920396, 0.09075555124072132, 0.08931441043705282, 0.08703582949355067, 0.08389426016500733, 0.07986506556871138, 0.07492513009551244, 0.06905383400215395, 0.06223438901256519, 0.054455509795653015, 0.0457133704590812, 0.03601376537425951, 0.02537436066538137, 0.013826889404902147, 0.001419113569522851, -0.011783645060076108, -0.02569760933784753, -0.040220476552155396, -0.05523232528722147, -0.07059758751856117, -0.08616808893058418, -0.10178706149430056, -0.11729393165035563, -0.13252959894201008, -0.1473418573700059, -0.16159058443899668, -0.1751523375975978, -0.18792404989122602, -0.19982560178351022, -0.21080114908696046, -0.2208191966063018, -0.22987150827300512, -0.23797102819770644, -0.24514904433742263, -0.25145185765447503, -0.25693722078837367, -0.26167079018739686, -0.26572279579540514, -0.2691650828569501, -0.2720686249378127, -0.2745015557719718, -0.2765277208285498, -0.2782057141959252, -0.2795883413709043, -0.28072243443010947, -0.2816489422881076, -0.2824032208823985, -0.28301545627681607, -0.2835111648561691, -0.2839117252824455, -0.2842349094949088, -0.2844953893203887, -0.28470520364923896, -0.28487417880993443, -0.28501029835866926, -0.28512002304146433, -0.28520856398693833, -0.28528011260770814, -0.2853380326746367, -0.2853850189060519, -0.28542322730246855, -0.28545438126710315, -0.28547985789882213, -0.2855007574220029, -0.2855179592251883, -0.2855321665732074, -0.2855439425851264, -0.2855537387334847, -0.28556191756942867, -0.2855687708963558, -0.2855745340645525, -0.285579397415492, -0.28558351532100534, -0.2855870133665429, -0.2855899940614433, -0.2855925413421414, -0.28559472422877363, -0.285596599655833 ], "yaxis": "y1" }, { "line": { "color": "rgba (76, 114, 176, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line6", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ -3.9568249435918445e-05, -4.48460657602985e-05, -5.081363638679459e-05, -5.755701092497974e-05, -6.51717894186591e-05, -7.376383135342213e-05, -8.344990412764476e-05, -9.435822329670389e-05, -0.0001066288215731182, -0.00012041366467643354, -0.00013587640919426357, -0.00015319167024990967, -0.00017254363477904903, -0.00019412381975574615, -0.00021812773450224321, -0.00024475016385433826, -0.00027417874726035925, -0.00030658549239338974, -0.00034211583730736096, -0.00038087487208611894, -0.0004229103620492082, -0.00046819229600882854, -0.0005165888339862062, -0.0005678387701807536, -0.0006215209791133393, -0.0006770217910006432, -0.0007335018504720977, -0.0007898647349260347, -0.0008447304000542674, -0.0008964172969124045, -0.0009429376401740989, -0.0009820106324312824, -0.0010110982701915998, -0.0010274674850877172, -0.0010282806748849165, -0.0010107141336197067, -0.0009721006502810955, -0.0009100889667985332, -0.0008228094152622109, -0.0007090325519446198, -0.0005683066090684185, -0.00040106053597503027, -0.0002086623874617697, 6.572512897729701e-06, 0.0002414236144555843, 0.0004918518718877655, 0.0007531212971642907, 0.0010199430455871455, 0.0012866296552647924, 0.001547249154709759, 0.0017957724552701234, 0.002026211865865665, 0.0022327527135342475, 0.0024098830203298175, 0.0025525273155568495, 0.0026561896399688997, 0.0027171077111170956, 0.002732415551592753, 0.002700306468369636, 0.002620183183849896, 0.002492778293175372, 0.0023202270328140286, 0.0021060761730015416, 0.001855217697275106, 0.0015737431755691142, 0.0012687232034972172, 0.0009479245089844799, 0.0006194839040183229, 0.00029156214363928226, -2.7998499359876514e-05, -0.00033199132600567733, -0.0006141197481058293, -0.0008692176311163331, -0.0010934095268919628, -0.001284209912877466, -0.001440564405055882, -0.0015628384542731293, -0.0016527604372454751, -0.001713326652716007, -0.0017486759019973536, -0.001763941364946887, -0.0017650875257672113, -0.0017587399493778743, -0.001752015629840083, -0.0017523612466329907, -0.0017674058162549758, -0.0018048328450457937, -0.001872275219460834, -0.0019772338658205447, -0.0021270188979223468, -0.0023287097924845498, -0.002589129304083859, -0.0029148245047805293, -0.003312047585784573, -0.0037867288984104568, -0.004344435099578779, -0.004990306135710474, -0.00572896606936103, -0.0065644043408377, -0.007499825872712439, -0.008537470363901197, -0.009678403058386787, -0.01092228106956212, -0.012267100845151657, -0.013708933442387234, -0.015241654874461991, -0.0168566789020859, -0.01854269939618783, -0.020285448990891786, -0.022067480408997787, -0.023867976734850492, -0.025662597025773125, -0.02742336375132327, -0.029118598162706268, -0.03071290823290154, -0.03216723075476221, -0.033438924318311775, -0.034481903473859835, -0.03524679722676651, -0.035681108353678076, -0.035729345300456926, -0.03533309688275518, -0.03443102243590101, -0.032958736543125734, -0.030848577402896833, -0.028029260154853013, -0.024425429696514556, -0.019957140416010256, -0.01453930186080946, -0.008081139161859173, -0.00048572493335395, 0.008350354364566166, 0.01853712961846866, 0.030191105812076756, 0.043434769120199175, 0.058395667128960146, 0.07520498473057124, 0.09399554118878879, 0.11489914170964752, 0.13804323172515848, 0.16354682681629024, 0.19151572794697228, 0.22203708283190796, 0.25517342017646993, 0.29095636303082323, 0.3293803155883903, 0.3703965064500726, 0.41390784729593055, 0.4597651146054164, 0.5077649658761884, 0.5576502472225942, 0.6091129275932763, 0.6617998097279234, 0.7153209312737278, 0.7692603114745478, 0.8231884524183684, 0.8766758077354868, 0.9293063187730952, 0.9806901077252493, 1.030474510032974, 1.0783528115819818, 1.1240702944595868, 1.1674274570285048, 1.2082805202790368, 1.246539529587108, 1.2821645028069193, 1.3151601438362914, 1.3455696498717686, 1.3734680984193692, 1.398955831373651, 1.4221521534473938, 1.4431895791229785, 1.4622087656179843, 1.4793541990797376, 1.4947706436467907, 1.5086003164807487, 1.5209807253618217, 1.5320430923804291, 1.5419112754768318, 1.5507011039303265, 1.5585200491581885, 1.5654671554702746, 1.5716331731139797, 1.5771008363296912, 1.5819452427245893, 1.5862343016451432, 1.5900292202206905, 1.5933850063661155, 1.596350972548482, 1.598971228427359, 1.6012851548399578, 1.6033278507345599, 1.6051305529244952, 1.6067210254978217, 1.6081239168040524, 1.60936108856183, 1.6104519128649812, 1.6114135431700887, 1.612261157910189, 1.6130081794960658 ], "yaxis": "y1" }, { "line": { "color": "rgba (85, 168, 104, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line7", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ 0.0005055421429222333, 0.0005736133752363906, 0.000650766532107319, 0.0007381891785767323, 0.0008372172278055972, 0.0009493514659356301, 0.0010762753241880937, 0.0012198738017566556, 0.0013822533630619444, 0.0015657625270765634, 0.0017730127286654808, 0.002006898855354033, 0.0022706186400852967, 0.002567689813440064, 0.002901963579737757, 0.0032776325737902297, 0.0036992309746995224, 0.004171623900290345, 0.004699982588023289, 0.0052897412036886, 0.005946530440967665, 0.006676082436154526, 0.007484101001142769, 0.008376090882005425, 0.009357139820022831, 0.010431647797314843, 0.011602999183274263, 0.012873175758741175, 0.01424231195580385, 0.01570819821868116, 0.017265744150567953, 0.018906419867251868, 0.020617701302142643, 0.02238255240931221, 0.024178983358567913, 0.0259797278181528, 0.027752083185738165, 0.0294579542905853, 0.031054133257121013, 0.03249283618787044, 0.033722502172477666, 0.03468884364388755, 0.03533612148318184, 0.035608605681828415, 0.0354521744044697, 0.034816001555959465, 0.033654284822302934, 0.031927970877096444, 0.029606439548527944, 0.026669111654544577, 0.02310694396504601, 0.01892376857541078, 0.01413742367875264, 0.008780610702382702, 0.002901402674766604, -0.003436675272072001, -0.010155066329164486, -0.017161157927811296, -0.02434983650386463, -0.031605603071800964, -0.0388051851439826, -0.04582053607711341, -0.05252207793004023, -0.05878202466415365, -0.06447762259026406, -0.06949416430532629, -0.07372766720736128, -0.07708715138667235, -0.0794964962134165, -0.08089589251320897, -0.08124293188182108, -0.08051338328762975, -0.07870169969549733, -0.07582127706677848, -0.07190446014725563, -0.06700226075602866, -0.06118373194180969, -0.054534931610621555, -0.04715741627424094, -0.03916623069610482, -0.030687400202153107, -0.02185498363099741, -0.012807798047594675, -0.0036859720334325675, 0.005372486023282872, 0.014234910637483257, 0.02277681536199254, 0.030884202786308018, 0.03845526229889801, 0.045401430015812816, 0.0516478440001362, 0.057133277286274854, 0.06180966614547203, 0.06564136917684672, 0.06860429446242303, 0.0706850193651756, 0.07188000383610445, 0.072194966939878, 0.07164446118677, 0.07025164331497227, 0.06804820622659091, 0.06507440747782711, 0.06137910759585586, 0.05701971896222066, 0.052061965101903036, 0.04657936220869116, 0.040652359541769184, 0.0343671111061762, 0.02781389397746427, 0.021085233284165474, 0.014273833819932505, 0.007470447364944136, 0.0007618184021884535, -0.005771153138189905, -0.012054914295398496, -0.0180243428202486, -0.02362336997326472, -0.028805143000644972, -0.03353176648726374, -0.03777369180824946, -0.041508843255423485, -0.044721577825789595, -0.04740157450863011, -0.04954274044019572, -0.05114220822132469, -0.0521994833007764, -0.0527157846675919, -0.05269360722089813, -0.05213652070691132, -0.051049207890361714, -0.0494377332171815, -0.04731002197033245, -0.044676518219177064, -0.04155097744811916, -0.037951336701841684, -0.03390059230933223, -0.029427604045598247, -0.02456773720719883, -0.01936325262013932, -0.013863361612349719, -0.008123879844574158, -0.0022064410598984507, 0.003822732154713305, 0.00989446185477116, 0.015938571422966598, 0.021886047186371212, 0.027671260263177386, 0.03323409218342821, 0.03852181357718626, 0.04349058664027281, 0.04810649738498247, 0.05234606664484592, 0.056196234785919306, 0.05965385776789013, 0.06272478774763897, 0.06542263603532186, 0.06776732986004466, 0.06978357532942953, 0.07149933072693741, 0.07294437748338652, 0.07414905499781052, 0.07514320165681912, 0.07595532212615803, 0.07661198073776548, 0.07713740546560738, 0.07755327610001649, 0.0778786641526739, 0.07813009043442475, 0.07832166730405778, 0.07846529622734504, 0.07857089630255176, 0.07864664407304608, 0.07869921053953566, 0.07873398540001172, 0.07875528223585694, 0.07876652172169378, 0.07877039152174303, 0.07876898346510426, 0.07876390959005498, 0.0787563988081786, 0.07874737673708922, 0.07873753077881769, 0.07872736281933225, 0.07871723143161978, 0.07870738555669762, 0.07869799100666486, 0.07868915133886041, 0.07868092402936415, 0.07867333307534127, 0.07866637858486199, 0.07866004408601598, 0.07865430208883806, 0.07864911817313643, 0.07864445404048181, 0.07864026971557911, 0.07863652510845831, 0.07863318110631062, 0.07863020028160529, 0.07862754736829645, 0.07862518950374259 ], "yaxis": "y1" }, { "line": { "color": "rgba (196, 78, 82, 1)", "dash": "solid", "width": 3 }, "mode": "lines", "name": "_line8", "type": "scatter", "x": [ 100000, 88048.83581643464, 77525.97488629464, 68260.71834272392, 60102.76782070388, 52919.78735958436, 46595.256686646775, 41026.581058271906, 36123.426997094306, 31806.25692794119, 28005.03894183631, 24658.110758226037, 21711.179456945054, 19116.440753857038, 16831.80353330955, 14820.207057988571, 13049.019780144015, 11489.510001873086, 10116.37979766207, 8907.354638610439, 7842.822061337682, 6905.513520162331, 6080.224261649421, 5353.566677410724, 4713.753134116724, 4150.404757850472, 3654.3830709572544, 3217.641750250735, 2833.096101839324, 2494.5081352303164, 2196.385372416547, 1933.89175045523, 1702.7691722258996, 1499.2684327860457, 1320.0884008314167, 1162.322468679852, 1023.4114021054527, 901.1018251665018, 793.4096665797492, 698.5879746785242, 615.0985788580498, 541.5871378079471, 476.86116977144695, 419.870708444391, 369.6912707195025, 325.50885998350566, 286.606761694825, 252.3539170434766, 222.19468609395238, 195.63983435170627, 172.25859653987857, 151.67168884709224, 133.54515629298987, 117.58495540521558, 103.53218432956616, 91.15888299750819, 80.26433522257175, 70.67181273927491, 62.225708367302246, 54.789011795939395, 48.241087041653685, 42.47571552536898, 37.39937302478794, 32.92971255097148, 28.99422853882875, 25.529080682395165, 22.47805833548725, 19.791668678535554, 17.42633386009649, 15.343684089300117, 13.509935211980265, 11.895340673703183, 10.473708979594486, 9.221978823334322, 8.119844993184008, 7.149428986597577, 6.294988990221888, 5.5426645206631076, 4.880251583654424, 4.297004704320835, 3.783462617131925, 3.33129478793467, 2.9331662783900425, 2.5826187606826747, 2.2739657523579275, 2.0022003718155843, 1.762914118095948, 1.5522253574270448, 1.3667163564620046, 1.2033778407775881, 1.0595601792776148, 0.9329304026284677, 0.8214343584919422, 0.7232633896483533, 0.6368249944718586, 0.5607169938205459, 0.4937047852839004, 0.43470131581250177, 0.38274944785163073, 0.33700643292719246, 0.29673024081888666, 0.2612675225563326, 0.23004301197729168, 0.20255019392306664, 0.17834308769319093, 0.15702901247293774, 0.13826221737646535, 0.12173827277396596, 0.10718913192051265, 0.09437878277775372, 0.08309941949353387, 0.07316807143427193, 0.0644236350872137, 0.05672426068491978, 0.0499450511585514, 0.043976036093027124, 0.03872038781812549, 0.03409285069746808, 0.03001835813575586, 0.02643081486974103, 0.023272024789604072, 0.02049074689815846, 0.018041864093920716, 0.015885651294280528, 0.013987131026472357, 0.012315506032928237, 0.010843659686896087, 0.009547716114208047, 0.008406652885618317, 0.007401959996915637, 0.00651733960488242, 0.005738441648302393, 0.00505263106533568, 0.004448782831127577, 0.003917101490809253, 0.003448962260405753, 0.0030367711180354544, 0.002673841615839944, 0.0023542864143224155, 0.0020729217795953697, 0.0018251834943190425, 0.0016070528182616384, 0.001414991297434573, 0.0012458833642950055, 0.001096985797892382, 0.0009658832241158709, 0.0008504489341802668, 0.000748810385759, 0.0006593188271333542, 0.0005805225516094884, 0.0005111433483440165, 0.00045005576757004885, 0.0003962688638701478, 0.0003489101213406767, 0.0003072112998861759, 0.00027049597304631317, 0.0002381685551976151, 0.00020970464013232305, 0.00018464249428955387, 0.00016257556664437935, 0.00014314589375234756, 0.00012603829296797275, 0.00011097524964120699, 9.771241535346502e-05, 8.603464416684492e-05, 7.57525025877189e-05, 6.669919663030115e-05, 5.872786613189465e-05, 5.170920242896755e-05, 4.5529350748669384e-05, 4.008806328898465e-05, 3.529707302730643e-05, 3.107866187782014e-05, 2.7364399970746662e-05, 2.409403560239517e-05, 2.121451784910628e-05, 1.867913599020777e-05, 1.6446761779946626e-05, 1.44811822767453e-05, 1.2750512407130129e-05, 1.1226677735108113e-05, 9.884959046625586e-06, 8.703591361485149e-06, 7.66341086800743e-06, 6.747544053110686e-06, 5.9411339849650155e-06, 5.2310993080562585e-06, 4.605922041145094e-06, 4.0554607358408275e-06, 3.5707859649004554e-06, 3.1440354715915e-06, 2.768286630392061e-06, 2.4374441501222218e-06, 2.1461411978584013e-06, 1.8896523396912038e-06, 1.6638168860761274e-06, 1.464971398307282e-06, 1.289890261253308e-06, 1.1357333583431028e-06, 1e-06 ], "xaxis": "x1", "y": [ -4.392083280074321e-05, -4.978305731365485e-05, -5.641252124235424e-05, -6.390526391969116e-05, -7.236808059261876e-05, -8.191935257745332e-05, -9.268982152942063e-05, -0.00010482325758446736, -0.00011847695464055795, -0.00013382196564450398, -0.00015104296587437941, -0.00017033760237059235, -0.00019191515256860187, -0.0002159942748618872, -0.00024279958887740493, -0.0002725567751459081, -0.0003054858353247672, -0.000341792109656421, -0.000381654614704541, -0.00042521125128033404, -0.00047254045293728005, -0.0005236389162288218, -0.0005783951952711416, -0.0006365591775246138, -0.000697707807477392, -0.0007612079081340383, -0.0008261775742847411, -0.000891448364778821, -0.0009555313628334441, -0.001016591024663798, -0.0010724314736049857, -0.0011205003523145564, -0.0011579153232185416, -0.0011815176119492582, -0.0011879554739112146, -0.0011737980924854327, -0.0011356773171660136, -0.0010704511514108663, -0.0009753795256748197, -0.0008483002840458078, -0.0006877921035971355, -0.00049331170197016, -0.00026529527722799075, -5.218338368934987e-06, 0.00028438681286960417, 0.000599951704000901, 0.0009369223467982711, 0.0012898300061918349, 0.0016523726876106696, 0.0020175007181888536, 0.002377504201000716, 0.002724105187409872, 0.003048562005120908, 0.0033417962029921758, 0.0035945531596177863, 0.003797605064796176, 0.0039419997329133896, 0.00401935111882573, 0.004022158604542702, 0.0039441336666689595, 0.003780506169914814, 0.003528279854106659, 0.0031864086361719423, 0.0027558723036151577, 0.002239641175095508, 0.0016425325697305454, 0.0009709751239861965, 0.00023270775675826791, -0.0005635534471133445, -0.0014084459378136565, -0.0022922584040677334, -0.003205172922961029, -0.004137439491585141, -0.005079481973407506, -0.006021944479326576, -0.006955694757802474, -0.007871805479108634, -0.008761535075818363, -0.00961632722373478, -0.010427842683901262, -0.01118802995360567, -0.011889233083926556, -0.01252432730613235, -0.013086866918957865, -0.01357122616422453, -0.013972713130758532, -0.014287639164179432, -0.014513331397628443, -0.014648082990133173, -0.014691043324998463, -0.014642057588446748, -0.014501470800049576, -0.01426991483060145, -0.0139480979829418, -0.013536615509372775, -0.013035796498951317, -0.012445598564744387, -0.011765557386767852, -0.01099479400424838, -0.0101320791991909, -0.009175951568071276, -0.008124883955807941, -0.006977491712906162, -0.005732775544923144, -0.00439039133552616, -0.002950939026263192, -0.0014162622368881677, 0.0002102503394470469, 0.0019233717125518319, 0.0037157627805222367, 0.005577730597717831, 0.0074970326438921165, 0.009458741567653086, 0.011445184145621633, 0.01343596561941971, 0.015408085796298867, 0.017336146367084224, 0.01919264035165633, 0.0209483054746389, 0.022572514998382018, 0.02403367356235806, 0.02529958310240637, 0.026337745593718768, 0.02711557510638642, 0.027600500710986253, 0.027759952852171185, 0.027561237444235543, 0.026971312780310005, 0.025956493377490873, 0.024482111598647157, 0.02251217224257961, 0.020009037608642366, 0.01693318132844928, 0.013243049046129, 0.00889506325645201, 0.003843808410811651, -0.0019575692740826196, -0.008556715497582336, -0.016001147498199437, -0.02433703886155436, -0.03360769924716406, -0.04385175387255052, -0.055101048244901266, -0.06737832994677469, -0.08069479071962857, -0.09504758661393257, -0.11041748841041174, -0.1267668436456625, -0.14403804981300686, -0.16215273894655854, -0.18101185173237333, -0.20049673136753463, -0.2204712951220202, -0.24078524966386922, -0.26127821639561977, -0.2817845379800919, -0.30213846177121123, -0.3221793526031327, -0.34175658356518523, -0.36073378937147216, -0.3789922376229195, -0.39643316509406334, -0.4129790270570608, -0.4285737024291329, -0.44318177342672727, -0.45678705296772376, -0.4693905593453691, -0.4810081412099798, -0.49166793975497414, -0.5014078485810799, -0.5102730932939961, -0.5183140209789266, -0.5255841525200159, -0.532138523743418, -0.5380323192287834, -0.5433197847166689, -0.5480533938834573, -0.5522832401746036, -0.5560566198695792, -0.5594177742113153, -0.5624077604212439, -0.5650644226952853, -0.5674224410355393, -0.5695134359412712, -0.5713661121675052, -0.5730064291475875, -0.5744577860386284, -0.5757412134265055, -0.5768755654660472, -0.5778777078809568, -0.5787626989184164, -0.5795439600227782, -0.5802334361812174, -0.580841744698752, -0.5813783116142339, -0.5818514974754057, -0.5822687108625015, -0.5826365119765657, -0.582960705767027, -0.5832464256614395 ], "yaxis": "y1" } ], "layout": { "autosize": false, "height": 432, "hovermode": "closest", "margin": { "b": 54, "l": 90, "pad": 0, "r": 71, "t": 51 }, "showlegend": false, "width": 720, "xaxis1": { "anchor": "y1", "domain": [ 0, 1 ], "mirror": "ticks", "nticks": 10, "range": [ -6.549999999999999, 5.55 ], "showgrid": true, "showline": true, "side": "bottom", "tickfont": { "size": 13 }, "ticks": "inside", "title": "alpha", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "log", "zeroline": false }, "yaxis1": { "anchor": "x1", "domain": [ 0, 1 ], "mirror": "ticks", "nticks": 9, "range": [ -1.8239964265376694, 1.7766750654976722 ], "showgrid": true, "showline": true, "side": "left", "tickfont": { "size": 17 }, "ticks": "inside", "title": "Gewichte", "titlefont": { "color": "#262626", "size": 18.7 }, "type": "linear", "zeroline": false } } }, "text/html": [ "
" ], "text/vnd.plotly.v1+html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Funktion um den Effekt von alpha auf die Gewichte zu illustrieren\n", "def plot_effect_of_alpha(interactive=False):\n", " coefs = []\n", " alphas = sp.logspace(5,-6,200)\n", " poly_feat = PolynomialFeatures(degree=10, include_bias=False)\n", " scaler = StandardScaler()\n", " for alpha in alphas:\n", " model = Ridge(alpha=alpha)\n", " ridge_regression = Pipeline((\n", " ('make_poly_features',poly_feat),\n", " (\"scale_features\",scaler),\n", " (\"run_ridgereg\",model),\n", " ))\n", "\n", " ridge_regression.fit(X,y)\n", "\n", " X_new=sp.linspace(-3, 3, 100).reshape(100, 1)\n", " y_new = ridge_regression.predict(X_new)\n", " coefs.append(model.coef_.flatten()[1:])\n", " fig = pl.figure(figsize=(10,6))\n", " ax = pl.gca()\n", " ax.plot(alphas, coefs,linewidth=3)\n", " ax.set_xscale('log')\n", " if interactive:\n", " pl.xlabel(\"alpha\")\n", " else:\n", " pl.xlabel('$\\\\alpha$')\n", " pl.ylabel('Gewichte')\n", " pl.axis('tight')\n", " if interactive:\n", " pl.xticks(fontsize=13)\n", " plotly_fig = tls.mpl_to_plotly(fig)\n", " iplot(plotly_fig, show_link=False)\n", " else:\n", " pl.show()\n", "#Plot Effect of Alpha\n", "plot_effect_of_alpha(interactive=True);" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "028d16e7af6b48ac8e80fd199671c4b7": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "02f6fa01107249f3a58449c8e4efd736": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_afb570762675471bb40b696c59704859", "IPY_MODEL_982285c675d943a4a53025cc7354035a" ], "layout": "IPY_MODEL_c8f0a839b5e84dc88ada5234ba6e149e" } }, "095ee759e2ae44c38fe2d4c3d20ce1a2": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad der Polynomiellen Regression:", "layout": "IPY_MODEL_ea27862ab0164b9a8e260ee6f953c3e4", "max": 300, "min": 1, "style": "IPY_MODEL_1d2f3b27839e485f8faab4ff555fc930", "value": 150 } }, "0c0b4cdd490243eaa31d122ebedfde87": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_d56410ba5403484ea6f0055e18ffc06d", "msg_throttle": 1 } }, "0e3b1a64482a487faf4f60fd522e3a2a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_095ee759e2ae44c38fe2d4c3d20ce1a2", "IPY_MODEL_359315b467a14ace9fea40dcbcc8c7ee" ], "layout": "IPY_MODEL_29f39b2f10e0479a98a06b4475313fda" } }, "107bcbf7406c46c0932578c694f514de": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "10a4c4eb726e4ec49c2fba0c0ae2875d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "1a70f930a4504e8cb0576245ab0c276d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_d0ad997241a34b548f50bd3c865451f9", "msg_throttle": 1 } }, "1a9335c5fcf14b87a92adb7cafa9220d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "1d2f3b27839e485f8faab4ff555fc930": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "25f56eb5d4fd4472882136e89873beec": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "274781a2b5ec4c96981000ab5aa4439a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_10a4c4eb726e4ec49c2fba0c0ae2875d", "max": 300, "min": 1, "style": "IPY_MODEL_93291b4b44e94d0c974604273e9e5bbf", "value": 123 } }, "291ecda8d9b7403882325896bb554d81": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "2995815e2c004fbaa1ffae416ddceb6a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "29bd46da1d7441b785c5df7584fbbf5e": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "29f39b2f10e0479a98a06b4475313fda": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "3063b6af2b004c2fb4da16f9165f87e1": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "degree", "layout": "IPY_MODEL_fdd00f15a21242e290529fdd0e6bd8d9", "max": 300, "min": 1, "style": "IPY_MODEL_367a0f8ca83f4936b5cab0dbab84256d", "value": 145 } }, "3292ecc45d924a85a4f9683b0834ac15": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_ece879174dad47a28336476774de1498", "msg_throttle": 1 } }, "33a4cdaf63f14825be2a5b3e8a1537ea": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_88231adb36ed444d9a82ff800014a26b", "IPY_MODEL_70e30fea488d403fb9b93de8682f44e3" ], "layout": "IPY_MODEL_e1e5bcd64bb44b02b9ddef6c87cbcba5" } }, "359315b467a14ace9fea40dcbcc8c7ee": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_574b7d07ebf84d049178591c54574e08", "msg_throttle": 1 } }, "367a0f8ca83f4936b5cab0dbab84256d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "3b56550881f24de1a0efefabee3d54d0": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_a6c1123352784cbe9b58559b0f419de0", "IPY_MODEL_95fedfc05dc64bcf8de1b8d5d21e7983" ], "layout": "IPY_MODEL_75b3527baed2452f813406f64fc7b408" } }, "3e5abedc3930426ea252bac2d98582f5": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "4003adfc138046119966d653b3a8765f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "410a8719af32437094c66934510cf617": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_725310ebe9fc4c2783a23c1471ef5a1a", "msg_throttle": 1 } }, "436c72c4aa314323a90f433cb5044dc8": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "45ba226200704d0c8cbe2917daca7646": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "4b562e86e10e4a8dbfd4c4a46cc439ce": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "4d5cacd21f3f4014bb0af9a1841f624a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "4de8070bdebb42cd982e9e2acb086203": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_556fce2eda7b4bae850eeb636ddb8528", "IPY_MODEL_3292ecc45d924a85a4f9683b0834ac15" ], "layout": "IPY_MODEL_ccfd7b259acb4084909c844a1193b77f" } }, "4f6dc0594ce34d04a3953d349120f70f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "4fed4eb9432241fe897cd88bdf6b646d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "52b96fbafad942efadbc65add11cc3da": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "556fce2eda7b4bae850eeb636ddb8528": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_52b96fbafad942efadbc65add11cc3da", "max": 300, "min": 1, "style": "IPY_MODEL_e8413592f90e4077a8682256d6d059b3", "value": 100 } }, "55b79dc1b9894933aa86558d550de3bc": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "degree", "layout": "IPY_MODEL_291ecda8d9b7403882325896bb554d81", "max": 300, "min": 1, "style": "IPY_MODEL_107bcbf7406c46c0932578c694f514de", "value": 150 } }, "565828af999d40e1a1b27973483a6bcd": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_e167bcbade594159ac3e2865f4449beb", "msg_throttle": 1 } }, "574b7d07ebf84d049178591c54574e08": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "58af0f33a0064e2bac840ae596344055": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_274781a2b5ec4c96981000ab5aa4439a", "IPY_MODEL_64584f6113b84e90af1afb8d5493d0f1" ], "layout": "IPY_MODEL_f4582c51527d4ef5b26d7e3a1eb6d6dd" } }, "5bd142e286e645e3a4d484a34b88820e": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_67bfc8c8a1fa4f00b1e825e81fe19020", "IPY_MODEL_c5b69cfca21143e8bbd9c90df33bae5d" ], "layout": "IPY_MODEL_f3dbb9ab43a54144803009dfc4397011" } }, "5d540caa96dd47d0a291047aa24637b0": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "5f8868f6758c4658b1cbf73586ed0db2": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "608ffe066be549f3a62c7f4476b3c7d8": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "FloatSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "alpha", "layout": "IPY_MODEL_436c72c4aa314323a90f433cb5044dc8", "max": 0.0001, "step": 1e-05, "value": 3e-05 } }, "61be304421ee42db94377e009bc202aa": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "64584f6113b84e90af1afb8d5493d0f1": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_cf04f91f89f94153b0fdf98b6f9683f9", "msg_throttle": 1 } }, "67bfc8c8a1fa4f00b1e825e81fe19020": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_e12596dfa4c24d84a62e584a29943039", "max": 300, "min": 1, "style": "IPY_MODEL_4f6dc0594ce34d04a3953d349120f70f", "value": 100 } }, "6a4082e9634a434b9ca71617920a2a9c": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_7099dc0f1b924b6a912c22677ec201d9", "IPY_MODEL_a7d86026c8ec48e4a5865a86a795727d" ], "layout": "IPY_MODEL_5f8868f6758c4658b1cbf73586ed0db2" } }, "7099dc0f1b924b6a912c22677ec201d9": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "degree", "layout": "IPY_MODEL_b624902418e4436190f448cecf38cde5", "max": 300, "min": 1, "style": "IPY_MODEL_b128d5d13c9c4057aed2937c529b6278", "value": 232 } }, "70e30fea488d403fb9b93de8682f44e3": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_74eebf93df754ac58412720c1a1d438b", "msg_throttle": 1 } }, "725310ebe9fc4c2783a23c1471ef5a1a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "74c782880b5e4a36818a91fd118af863": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Verwende Slider um den Grad der Polynomiellen Regression anzupassen:", "layout": "IPY_MODEL_74d803e9a6364e33bc1582ca5c64a985", "max": 300, "min": 1, "style": "IPY_MODEL_916ba5c2bea64f35bbda09db3bd6acff", "value": 150 } }, "74d803e9a6364e33bc1582ca5c64a985": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "74e9e77214f04a87966d4f50359f88f7": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "74eebf93df754ac58412720c1a1d438b": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "751199635a6f4adb9104c8cfc0f6ff52": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "75b3527baed2452f813406f64fc7b408": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "7a7b18608afc4ced93c691443dcfebed": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "7c1f998ac7f24d0e80295ac9302ed975": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_edbacc9ec2524f508e5225fa04ec409d", "IPY_MODEL_565828af999d40e1a1b27973483a6bcd" ], "layout": "IPY_MODEL_e78988d7d77b4af48f54742618fad6e1" } }, "80547f216c944c6ab65981699c490df5": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "847bffd708b94ff89af25294921c8dcc": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "8569ed10eaa44045941c8b914cd7e2f1": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "857cfae23a7a4acfb453747b8b81bf72": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "88231adb36ed444d9a82ff800014a26b": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "FloatSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "alpha", "layout": "IPY_MODEL_847bffd708b94ff89af25294921c8dcc", "max": 1, "step": 1e-08 } }, "8eff615c7d474f2f8291ed790c3684bb": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_f56ac9fdf65c4f70bf76eeaf364381cc", "IPY_MODEL_d6ba1fe57eb54dbc8c14aefbb4048587" ], "layout": "IPY_MODEL_e98f0efe57d244edac18d8dd712cf90d" } }, "8f943f8f0ad84d5aa5ef4fbb5227b20f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "916ba5c2bea64f35bbda09db3bd6acff": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "93291b4b44e94d0c974604273e9e5bbf": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "94284ffaa6084da1894bd9eb7c223534": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "95fedfc05dc64bcf8de1b8d5d21e7983": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_f29301419a31407487687b3b75f6cf45", "msg_throttle": 1 } }, "982285c675d943a4a53025cc7354035a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_028d16e7af6b48ac8e80fd199671c4b7", "msg_throttle": 1 } }, "a0a120acdd534fafb1b659d87c61a95f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_80547f216c944c6ab65981699c490df5", "msg_throttle": 1 } }, "a381b2b4c8114d3a9b8f516af87e20d2": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "a62112b0b7c24b7f94b674851f3f3c98": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "s", "layout": "IPY_MODEL_de02d899d1d3417190ebe7ddfe7d185e", "max": 300, "min": 1, "style": "IPY_MODEL_751199635a6f4adb9104c8cfc0f6ff52", "value": 150 } }, "a6c1123352784cbe9b58559b0f419de0": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "FloatSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "alpha", "layout": "IPY_MODEL_f4a49e2a1ce8415cbb97497741c3eb2b", "max": 0.001, "step": 1e-05, "value": 0.00073 } }, "a7d86026c8ec48e4a5865a86a795727d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_f5059419426b40f388cd8aca5e4e9a88", "msg_throttle": 1 } }, "ac6ef5dc224a49aaaca18b51f51f48dc": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "degree", "layout": "IPY_MODEL_ec5bb0106df848fca1ab37c2d17ba5e2", "max": 300, "min": 1, "style": "IPY_MODEL_c27c40656359421694de5486aa56cc9f", "value": 50 } }, "afb570762675471bb40b696c59704859": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_29bd46da1d7441b785c5df7584fbbf5e", "max": 300, "min": 1, "style": "IPY_MODEL_7a7b18608afc4ced93c691443dcfebed", "value": 150 } }, "b128d5d13c9c4057aed2937c529b6278": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "b1348fe396834c02a6e0774fa59dab14": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_f80ef08e8dca43cfb0b0ae9cd86ead6a", "IPY_MODEL_0c0b4cdd490243eaa31d122ebedfde87" ], "layout": "IPY_MODEL_857cfae23a7a4acfb453747b8b81bf72" } }, "b624902418e4436190f448cecf38cde5": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "b755111a5ca2401aae76d7570f094571": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "degree", "layout": "IPY_MODEL_94284ffaa6084da1894bd9eb7c223534", "max": 300, "min": 1, "style": "IPY_MODEL_1a9335c5fcf14b87a92adb7cafa9220d", "value": 24 } }, "b986edad9ddb402b8001b2304c0ba1f2": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "bc3820daef46487e90a6801d6f1503a3": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_a381b2b4c8114d3a9b8f516af87e20d2", "msg_throttle": 1 } }, "bd2d2a57e9d44bbea0a98bce4c7c070f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "bef81b704e064805b7a440a3ab102936": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "c1fcf3c063b34ccaadad0385ad87e094": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "c27c40656359421694de5486aa56cc9f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "c2d68605bef840f9997a2c4a82c020c4": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_3063b6af2b004c2fb4da16f9165f87e1", "IPY_MODEL_410a8719af32437094c66934510cf617" ], "layout": "IPY_MODEL_2995815e2c004fbaa1ffae416ddceb6a" } }, "c32d2ca1e66c49adbc567e2f257c2595": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_4b562e86e10e4a8dbfd4c4a46cc439ce", "msg_throttle": 1 } }, "c5b69cfca21143e8bbd9c90df33bae5d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_45ba226200704d0c8cbe2917daca7646", "msg_throttle": 1 } }, "c8f0a839b5e84dc88ada5234ba6e149e": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "c9d04c230ad9486887a4cf52a3824492": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_4003adfc138046119966d653b3a8765f", "msg_throttle": 1 } }, "ccfd7b259acb4084909c844a1193b77f": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "cf04f91f89f94153b0fdf98b6f9683f9": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "cfaae8bf13784019be06f1a500f3f050": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_d6f966ff68b44ef692c31398f0830fc4", "max": 300, "min": 1, "style": "IPY_MODEL_25f56eb5d4fd4472882136e89873beec", "value": 150 } }, "d0954057fd444e44abb88ca5b4583b4c": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_608ffe066be549f3a62c7f4476b3c7d8", "IPY_MODEL_fd938d61b050495cbca7662875baf25e" ], "layout": "IPY_MODEL_e27c58e34ea2401aac57d36daf198fef" } }, "d0ad997241a34b548f50bd3c865451f9": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "d56410ba5403484ea6f0055e18ffc06d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "d6ba1fe57eb54dbc8c14aefbb4048587": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_ddd388a9cb624cbf87ee04a5f4488d8b", "msg_throttle": 1 } }, "d6f966ff68b44ef692c31398f0830fc4": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "ddd388a9cb624cbf87ee04a5f4488d8b": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "de02d899d1d3417190ebe7ddfe7d185e": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e12596dfa4c24d84a62e584a29943039": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e167bcbade594159ac3e2865f4449beb": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e1e5bcd64bb44b02b9ddef6c87cbcba5": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e27c58e34ea2401aac57d36daf198fef": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e726ea0d28d4438382ad9a9775c52f4d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_74c782880b5e4a36818a91fd118af863", "IPY_MODEL_1a70f930a4504e8cb0576245ab0c276d" ], "layout": "IPY_MODEL_4d5cacd21f3f4014bb0af9a1841f624a" } }, "e78988d7d77b4af48f54742618fad6e1": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e7b5966a3c0b4af29a80d3ff91baede5": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_ac6ef5dc224a49aaaca18b51f51f48dc", "IPY_MODEL_a0a120acdd534fafb1b659d87c61a95f" ], "layout": "IPY_MODEL_5d540caa96dd47d0a291047aa24637b0" } }, "e8413592f90e4077a8682256d6d059b3": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "SliderStyleModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "e98f0efe57d244edac18d8dd712cf90d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "ea27862ab0164b9a8e260ee6f953c3e4": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "ec5bb0106df848fca1ab37c2d17ba5e2": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "ece879174dad47a28336476774de1498": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "edbacc9ec2524f508e5225fa04ec409d": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "FloatSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "alpha", "layout": "IPY_MODEL_b986edad9ddb402b8001b2304c0ba1f2", "max": 0.0001, "step": 1e-08 } }, "f29301419a31407487687b3b75f6cf45": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "f3d33c86f309463da438167b07ea53d8": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_55b79dc1b9894933aa86558d550de3bc", "IPY_MODEL_f64eb71e161a45c69144b5b06fde005c" ], "layout": "IPY_MODEL_3e5abedc3930426ea252bac2d98582f5" } }, "f3dbb9ab43a54144803009dfc4397011": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "f4582c51527d4ef5b26d7e3a1eb6d6dd": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "f4a49e2a1ce8415cbb97497741c3eb2b": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "f5059419426b40f388cd8aca5e4e9a88": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } }, "f56ac9fdf65c4f70bf76eeaf364381cc": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "FloatSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "alpha", "layout": "IPY_MODEL_bd2d2a57e9d44bbea0a98bce4c7c070f", "max": 1, "step": 1e-08, "value": 0.03369 } }, "f64eb71e161a45c69144b5b06fde005c": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_74e9e77214f04a87966d4f50359f88f7", "msg_throttle": 1 } }, "f80ef08e8dca43cfb0b0ae9cd86ead6a": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "IntSliderModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "description": "Grad des Polynoms:", "layout": "IPY_MODEL_8f943f8f0ad84d5aa5ef4fbb5227b20f", "max": 300, "min": 1, "style": "IPY_MODEL_4fed4eb9432241fe897cd88bdf6b646d", "value": 150 } }, "fb835d38f8a84955bac0dc4f542aa13c": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_a62112b0b7c24b7f94b674851f3f3c98", "IPY_MODEL_c32d2ca1e66c49adbc567e2f257c2595" ], "layout": "IPY_MODEL_8569ed10eaa44045941c8b914cd7e2f1" } }, "fd1f8016db984da099e462feaa9b22dd": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_b755111a5ca2401aae76d7570f094571", "IPY_MODEL_bc3820daef46487e90a6801d6f1503a3" ], "layout": "IPY_MODEL_c1fcf3c063b34ccaadad0385ad87e094" } }, "fd39988968f94c468fca344393bdb721": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4", "children": [ "IPY_MODEL_cfaae8bf13784019be06f1a500f3f050", "IPY_MODEL_c9d04c230ad9486887a4cf52a3824492" ], "layout": "IPY_MODEL_bef81b704e064805b7a440a3ab102936" } }, "fd938d61b050495cbca7662875baf25e": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "jupyter-js-widgets", "_model_module_version": "~2.1.4", "_view_module": "jupyter-js-widgets", "_view_module_version": "~2.1.4", "layout": "IPY_MODEL_61be304421ee42db94377e009bc202aa", "msg_throttle": 1 } }, "fdd00f15a21242e290529fdd0e6bd8d9": { "model_module": "jupyter-js-widgets", "model_module_version": "~2.1.4", "model_name": "LayoutModel", "state": { "_model_module_version": "~2.1.4", "_view_module_version": "~2.1.4" } } }, "version_major": 1, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 2 }