{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Convolutional Neural Network in TensorFlow\n", "\n", "Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n", "\n", "## Setup\n", "\n", "Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "# Import MINST data\n", "import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.001\n", "training_iters = 100000\n", "batch_size = 128\n", "display_step = 20" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Network Parameters\n", "n_input = 784 # MNIST data input (img shape: 28*28)\n", "n_classes = 10 # MNIST total classes (0-9 digits)\n", "dropout = 0.75 # Dropout, probability to keep units" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# tf Graph input\n", "x = tf.placeholder(tf.float32, [None, n_input])\n", "y = tf.placeholder(tf.float32, [None, n_classes])\n", "keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create model\n", "def conv2d(img, w, b):\n", " return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], \n", " padding='SAME'),b))\n", "\n", "def max_pool(img, k):\n", " return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')\n", "\n", "def conv_net(_X, _weights, _biases, _dropout):\n", " # Reshape input picture\n", " _X = tf.reshape(_X, shape=[-1, 28, 28, 1])\n", "\n", " # Convolution Layer\n", " conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])\n", " # Max Pooling (down-sampling)\n", " conv1 = max_pool(conv1, k=2)\n", " # Apply Dropout\n", " conv1 = tf.nn.dropout(conv1, _dropout)\n", "\n", " # Convolution Layer\n", " conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])\n", " # Max Pooling (down-sampling)\n", " conv2 = max_pool(conv2, k=2)\n", " # Apply Dropout\n", " conv2 = tf.nn.dropout(conv2, _dropout)\n", "\n", " # Fully connected layer\n", " # Reshape conv2 output to fit dense layer input\n", " dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) \n", " # Relu activation\n", " dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1']))\n", " # Apply Dropout\n", " dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout\n", "\n", " # Output, class prediction\n", " out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out'])\n", " return out" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Store layers weight & bias\n", "weights = {\n", " # 5x5 conv, 1 input, 32 outputs\n", " 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), \n", " # 5x5 conv, 32 inputs, 64 outputs\n", " 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), \n", " # fully connected, 7*7*64 inputs, 1024 outputs\n", " 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), \n", " # 1024 inputs, 10 outputs (class prediction)\n", " 'out': tf.Variable(tf.random_normal([1024, n_classes])) \n", "}\n", "\n", "biases = {\n", " 'bc1': tf.Variable(tf.random_normal([32])),\n", " 'bc2': tf.Variable(tf.random_normal([64])),\n", " 'bd1': tf.Variable(tf.random_normal([1024])),\n", " 'out': tf.Variable(tf.random_normal([n_classes]))\n", "}" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Construct model\n", "pred = conv_net(x, weights, biases, keep_prob)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Define loss and optimizer\n", "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n", "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Initializing the variables\n", "init = tf.global_variables_initializer()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iter 2560, Minibatch Loss= 26046.011719, Training Accuracy= 0.21094\n", "Iter 5120, Minibatch Loss= 10456.769531, Training Accuracy= 0.52344\n", "Iter 7680, Minibatch Loss= 6273.207520, Training Accuracy= 0.71875\n", "Iter 10240, Minibatch Loss= 6276.231445, Training Accuracy= 0.64062\n", "Iter 12800, Minibatch Loss= 4188.221680, Training Accuracy= 0.77344\n", "Iter 15360, Minibatch Loss= 2717.077637, Training Accuracy= 0.80469\n", "Iter 17920, Minibatch Loss= 4057.120361, Training Accuracy= 0.81250\n", "Iter 20480, Minibatch Loss= 1696.550415, Training Accuracy= 0.87500\n", "Iter 23040, Minibatch Loss= 2525.317627, Training Accuracy= 0.85938\n", "Iter 25600, Minibatch Loss= 2341.906738, Training Accuracy= 0.87500\n", "Iter 28160, Minibatch Loss= 4200.535156, Training Accuracy= 0.79688\n", "Iter 30720, Minibatch Loss= 1888.964355, Training Accuracy= 0.89062\n", "Iter 33280, Minibatch Loss= 2167.645996, Training Accuracy= 0.84375\n", "Iter 35840, Minibatch Loss= 1932.107544, Training Accuracy= 0.89844\n", "Iter 38400, Minibatch Loss= 1562.430054, Training Accuracy= 0.90625\n", "Iter 40960, Minibatch Loss= 1676.755249, Training Accuracy= 0.84375\n", "Iter 43520, Minibatch Loss= 1003.626099, Training Accuracy= 0.93750\n", "Iter 46080, Minibatch Loss= 1176.615479, Training Accuracy= 0.86719\n", "Iter 48640, Minibatch Loss= 1260.592651, Training Accuracy= 0.88281\n", "Iter 51200, Minibatch Loss= 1399.667969, Training Accuracy= 0.86719\n", "Iter 53760, Minibatch Loss= 1259.961426, Training Accuracy= 0.89844\n", "Iter 56320, Minibatch Loss= 1415.800781, Training Accuracy= 0.89062\n", "Iter 58880, Minibatch Loss= 1835.365967, Training Accuracy= 0.85156\n", "Iter 61440, Minibatch Loss= 1395.168823, Training Accuracy= 0.90625\n", "Iter 64000, Minibatch Loss= 973.283569, Training Accuracy= 0.88281\n", "Iter 66560, Minibatch Loss= 818.093811, Training Accuracy= 0.92969\n", "Iter 69120, Minibatch Loss= 1178.744263, Training Accuracy= 0.92188\n", "Iter 71680, Minibatch Loss= 845.889709, Training Accuracy= 0.89844\n", "Iter 74240, Minibatch Loss= 1259.505615, Training Accuracy= 0.90625\n", "Iter 76800, Minibatch Loss= 738.037109, Training Accuracy= 0.89844\n", "Iter 79360, Minibatch Loss= 862.499146, Training Accuracy= 0.93750\n", "Iter 81920, Minibatch Loss= 739.704041, Training Accuracy= 0.90625\n", "Iter 84480, Minibatch Loss= 652.880310, Training Accuracy= 0.95312\n", "Iter 87040, Minibatch Loss= 635.464600, Training Accuracy= 0.92969\n", "Iter 89600, Minibatch Loss= 933.166626, Training Accuracy= 0.90625\n", "Iter 92160, Minibatch Loss= 213.874893, Training Accuracy= 0.96094\n", "Iter 94720, Minibatch Loss= 609.575684, Training Accuracy= 0.91406\n", "Iter 97280, Minibatch Loss= 560.208008, Training Accuracy= 0.93750\n", "Iter 99840, Minibatch Loss= 963.577148, Training Accuracy= 0.90625\n", "Optimization Finished!\n", "Testing Accuracy: 0.960938\n" ] } ], "source": [ "# Launch the graph\n", "with tf.Session() as sess:\n", " sess.run(init)\n", " step = 1\n", " # Keep training until reach max iterations\n", " while step * batch_size < training_iters:\n", " batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n", " # Fit training using batch data\n", " sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})\n", " if step % display_step == 0:\n", " # Calculate batch accuracy\n", " acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})\n", " # Calculate batch loss\n", " loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})\n", " print \"Iter \" + str(step*batch_size) + \", Minibatch Loss= \" + \\\n", " \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \"{:.5f}\".format(acc)\n", " step += 1\n", " print \"Optimization Finished!\"\n", " # Calculate accuracy for 256 mnist test images\n", " print \"Testing Accuracy:\", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], \n", " y: mnist.test.labels[:256], \n", " keep_prob: 1.})" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }