{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Recurrent Neural Network in TensorFlow\n", "\n", "Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n", "\n", "## Setup\n", "\n", "Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "# Import MINST data\n", "import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)\n", "\n", "import tensorflow as tf\n", "from tensorflow.models.rnn import rnn, rnn_cell\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "'''\n", "To classify images using a reccurent neural network, we consider every image row as a sequence of pixels.\n", "Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample.\n", "'''\n", "\n", "# Parameters\n", "learning_rate = 0.001\n", "training_iters = 100000\n", "batch_size = 128\n", "display_step = 10\n", "\n", "# Network Parameters\n", "n_input = 28 # MNIST data input (img shape: 28*28)\n", "n_steps = 28 # timesteps\n", "n_hidden = 128 # hidden layer num of features\n", "n_classes = 10 # MNIST total classes (0-9 digits)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# tf Graph input\n", "x = tf.placeholder(\"float\", [None, n_steps, n_input])\n", "istate = tf.placeholder(\"float\", [None, 2*n_hidden]) #state & cell => 2x n_hidden\n", "y = tf.placeholder(\"float\", [None, n_classes])\n", "\n", "# Define weights\n", "weights = {\n", " 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights\n", " 'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))\n", "}\n", "biases = {\n", " 'hidden': tf.Variable(tf.random_normal([n_hidden])),\n", " 'out': tf.Variable(tf.random_normal([n_classes]))\n", "}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def RNN(_X, _istate, _weights, _biases):\n", "\n", " # input shape: (batch_size, n_steps, n_input)\n", " _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size\n", " # Reshape to prepare input to hidden activation\n", " _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)\n", " # Linear activation\n", " _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']\n", "\n", " # Define a lstm cell with tensorflow\n", " lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)\n", " # Split data because rnn cell needs a list of inputs for the RNN inner loop\n", " _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)\n", "\n", " # Get lstm cell output\n", " outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)\n", "\n", " # Linear activation\n", " # Get inner loop last output\n", " return tf.matmul(outputs[-1], _weights['out']) + _biases['out']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pred = RNN(x, istate, weights, biases)\n", "\n", "# Define loss and optimizer\n", "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss\n", "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer\n", "\n", "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iter 1280, Minibatch Loss= 1.888242, Training Accuracy= 0.39844\n", "Iter 2560, Minibatch Loss= 1.519879, Training Accuracy= 0.47656\n", "Iter 3840, Minibatch Loss= 1.238005, Training Accuracy= 0.63281\n", "Iter 5120, Minibatch Loss= 0.933760, Training Accuracy= 0.71875\n", "Iter 6400, Minibatch Loss= 0.832130, Training Accuracy= 0.73438\n", "Iter 7680, Minibatch Loss= 0.979760, Training Accuracy= 0.70312\n", "Iter 8960, Minibatch Loss= 0.821921, Training Accuracy= 0.71875\n", "Iter 10240, Minibatch Loss= 0.710566, Training Accuracy= 0.79688\n", "Iter 11520, Minibatch Loss= 0.578501, Training Accuracy= 0.82812\n", "Iter 12800, Minibatch Loss= 0.765049, Training Accuracy= 0.75000\n", "Iter 14080, Minibatch Loss= 0.582995, Training Accuracy= 0.78125\n", "Iter 15360, Minibatch Loss= 0.575092, Training Accuracy= 0.79688\n", "Iter 16640, Minibatch Loss= 0.701214, Training Accuracy= 0.75781\n", "Iter 17920, Minibatch Loss= 0.561972, Training Accuracy= 0.78125\n", "Iter 19200, Minibatch Loss= 0.394480, Training Accuracy= 0.85938\n", "Iter 20480, Minibatch Loss= 0.356244, Training Accuracy= 0.91406\n", "Iter 21760, Minibatch Loss= 0.632163, Training Accuracy= 0.78125\n", "Iter 23040, Minibatch Loss= 0.269334, Training Accuracy= 0.90625\n", "Iter 24320, Minibatch Loss= 0.485007, Training Accuracy= 0.86719\n", "Iter 25600, Minibatch Loss= 0.569704, Training Accuracy= 0.78906\n", "Iter 26880, Minibatch Loss= 0.267697, Training Accuracy= 0.92188\n", "Iter 28160, Minibatch Loss= 0.381177, Training Accuracy= 0.90625\n", "Iter 29440, Minibatch Loss= 0.350800, Training Accuracy= 0.87500\n", "Iter 30720, Minibatch Loss= 0.356782, Training Accuracy= 0.90625\n", "Iter 32000, Minibatch Loss= 0.322511, Training Accuracy= 0.89062\n", "Iter 33280, Minibatch Loss= 0.309195, Training Accuracy= 0.90625\n", "Iter 34560, Minibatch Loss= 0.535408, Training Accuracy= 0.83594\n", "Iter 35840, Minibatch Loss= 0.281643, Training Accuracy= 0.92969\n", "Iter 37120, Minibatch Loss= 0.290962, Training Accuracy= 0.89844\n", "Iter 38400, Minibatch Loss= 0.204718, Training Accuracy= 0.93750\n", "Iter 39680, Minibatch Loss= 0.205882, Training Accuracy= 0.92969\n", "Iter 40960, Minibatch Loss= 0.481441, Training Accuracy= 0.84375\n", "Iter 42240, Minibatch Loss= 0.348245, Training Accuracy= 0.89844\n", "Iter 43520, Minibatch Loss= 0.274692, Training Accuracy= 0.90625\n", "Iter 44800, Minibatch Loss= 0.171815, Training Accuracy= 0.94531\n", "Iter 46080, Minibatch Loss= 0.171035, Training Accuracy= 0.93750\n", "Iter 47360, Minibatch Loss= 0.235800, Training Accuracy= 0.89844\n", "Iter 48640, Minibatch Loss= 0.235974, Training Accuracy= 0.93750\n", "Iter 49920, Minibatch Loss= 0.207323, Training Accuracy= 0.92188\n", "Iter 51200, Minibatch Loss= 0.212989, Training Accuracy= 0.91406\n", "Iter 52480, Minibatch Loss= 0.151774, Training Accuracy= 0.95312\n", "Iter 53760, Minibatch Loss= 0.090070, Training Accuracy= 0.96875\n", "Iter 55040, Minibatch Loss= 0.264714, Training Accuracy= 0.92969\n", "Iter 56320, Minibatch Loss= 0.235086, Training Accuracy= 0.92969\n", "Iter 57600, Minibatch Loss= 0.160302, Training Accuracy= 0.95312\n", "Iter 58880, Minibatch Loss= 0.106515, Training Accuracy= 0.96875\n", "Iter 60160, Minibatch Loss= 0.236039, Training Accuracy= 0.94531\n", "Iter 61440, Minibatch Loss= 0.279540, Training Accuracy= 0.90625\n", "Iter 62720, Minibatch Loss= 0.173585, Training Accuracy= 0.93750\n", "Iter 64000, Minibatch Loss= 0.191009, Training Accuracy= 0.92188\n", "Iter 65280, Minibatch Loss= 0.210331, Training Accuracy= 0.89844\n", "Iter 66560, Minibatch Loss= 0.223444, Training Accuracy= 0.94531\n", "Iter 67840, Minibatch Loss= 0.278210, Training Accuracy= 0.91406\n", "Iter 69120, Minibatch Loss= 0.174290, Training Accuracy= 0.95312\n", "Iter 70400, Minibatch Loss= 0.188701, Training Accuracy= 0.94531\n", "Iter 71680, Minibatch Loss= 0.210277, Training Accuracy= 0.94531\n", "Iter 72960, Minibatch Loss= 0.249951, Training Accuracy= 0.95312\n", "Iter 74240, Minibatch Loss= 0.209853, Training Accuracy= 0.92188\n", "Iter 75520, Minibatch Loss= 0.049742, Training Accuracy= 0.99219\n", "Iter 76800, Minibatch Loss= 0.250095, Training Accuracy= 0.92969\n", "Iter 78080, Minibatch Loss= 0.133853, Training Accuracy= 0.95312\n", "Iter 79360, Minibatch Loss= 0.110206, Training Accuracy= 0.97656\n", "Iter 80640, Minibatch Loss= 0.141906, Training Accuracy= 0.93750\n", "Iter 81920, Minibatch Loss= 0.126872, Training Accuracy= 0.94531\n", "Iter 83200, Minibatch Loss= 0.138925, Training Accuracy= 0.95312\n", "Iter 84480, Minibatch Loss= 0.128652, Training Accuracy= 0.96094\n", "Iter 85760, Minibatch Loss= 0.099837, Training Accuracy= 0.96094\n", "Iter 87040, Minibatch Loss= 0.119000, Training Accuracy= 0.95312\n", "Iter 88320, Minibatch Loss= 0.179807, Training Accuracy= 0.95312\n", "Iter 89600, Minibatch Loss= 0.141792, Training Accuracy= 0.96094\n", "Iter 90880, Minibatch Loss= 0.142424, Training Accuracy= 0.96094\n", "Iter 92160, Minibatch Loss= 0.159564, Training Accuracy= 0.96094\n", "Iter 93440, Minibatch Loss= 0.111984, Training Accuracy= 0.95312\n", "Iter 94720, Minibatch Loss= 0.238978, Training Accuracy= 0.92969\n", "Iter 96000, Minibatch Loss= 0.068002, Training Accuracy= 0.97656\n", "Iter 97280, Minibatch Loss= 0.191819, Training Accuracy= 0.94531\n", "Iter 98560, Minibatch Loss= 0.081197, Training Accuracy= 0.99219\n", "Iter 99840, Minibatch Loss= 0.206797, Training Accuracy= 0.95312\n", "Optimization Finished!\n", "Testing Accuracy: 0.941406\n" ] } ], "source": [ "# Initializing the variables\n", "init = tf.global_variables_initializer()\n", "\n", "# Launch the graph\n", "with tf.Session() as sess:\n", " sess.run(init)\n", " step = 1\n", " # Keep training until reach max iterations\n", " while step * batch_size < training_iters:\n", " batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n", " # Reshape data to get 28 seq of 28 elements\n", " batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))\n", " # Fit training using batch data\n", " sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,\n", " istate: np.zeros((batch_size, 2*n_hidden))})\n", " if step % display_step == 0:\n", " # Calculate batch accuracy\n", " acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,\n", " istate: np.zeros((batch_size, 2*n_hidden))})\n", " # Calculate batch loss\n", " loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,\n", " istate: np.zeros((batch_size, 2*n_hidden))})\n", " print \"Iter \" + str(step*batch_size) + \", Minibatch Loss= \" + \"{:.6f}\".format(loss) + \\\n", " \", Training Accuracy= \" + \"{:.5f}\".format(acc)\n", " step += 1\n", " print \"Optimization Finished!\"\n", " # Calculate accuracy for 256 mnist test images\n", " test_len = 256\n", " test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))\n", " test_label = mnist.test.labels[:test_len]\n", " print \"Testing Accuracy:\", sess.run(accuracy, feed_dict={x: test_data, y: test_label,\n", " istate: np.zeros((test_len, 2*n_hidden))})" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }