{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Multi GPU Computation in TensorFlow\n", "\n", "Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n", "\n", "## Setup\n", "\n", "Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "This tutorial requires your machine to have 2 GPUs\n", "* \"/cpu:0\": The CPU of your machine.\n", "* \"/gpu:0\": The first GPU of your machine\n", "* \"/gpu:1\": The second GPU of your machine\n", "* For this example, we are using 2 GTX-980" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import tensorflow as tf\n", "import datetime" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Processing Units logs\n", "log_device_placement = True\n", "\n", "#num of multiplications to perform\n", "n = 10" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Example: compute A^n + B^n on 2 GPUs\n", "\n", "# Create random large matrix\n", "A = np.random.rand(1e4, 1e4).astype('float32')\n", "B = np.random.rand(1e4, 1e4).astype('float32')\n", "\n", "# Creates a graph to store results\n", "c1 = []\n", "c2 = []\n", "\n", "# Define matrix power\n", "def matpow(M, n):\n", " if n < 1: #Abstract cases where n < 1\n", " return M\n", " else:\n", " return tf.matmul(M, matpow(M, n-1))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Single GPU computing\n", "\n", "with tf.device('/gpu:0'):\n", " a = tf.constant(A)\n", " b = tf.constant(B)\n", " #compute A^n and B^n and store results in c1\n", " c1.append(matpow(a, n))\n", " c1.append(matpow(b, n))\n", "\n", "with tf.device('/cpu:0'):\n", " sum = tf.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n\n", "\n", "t1_1 = datetime.datetime.now()\n", "with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:\n", " # Runs the op.\n", " sess.run(sum)\n", "t2_1 = datetime.datetime.now()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Multi GPU computing\n", "# GPU:0 computes A^n\n", "with tf.device('/gpu:0'):\n", " #compute A^n and store result in c2\n", " a = tf.constant(A)\n", " c2.append(matpow(a, n))\n", "\n", "#GPU:1 computes B^n\n", "with tf.device('/gpu:1'):\n", " #compute B^n and store result in c2\n", " b = tf.constant(B)\n", " c2.append(matpow(b, n))\n", "\n", "with tf.device('/cpu:0'):\n", " sum = tf.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n\n", "\n", "t1_2 = datetime.datetime.now()\n", "with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:\n", " # Runs the op.\n", " sess.run(sum)\n", "t2_2 = datetime.datetime.now()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Single GPU computation time: 0:00:11.833497\n", "Multi GPU computation time: 0:00:07.085913\n" ] } ], "source": [ "print \"Single GPU computation time: \" + str(t2_1-t1_1)\n", "print \"Multi GPU computation time: \" + str(t2_2-t1_2)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }