{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solution Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Determine whether there is a path between two nodes in a graph.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is the graph directed?\n", " * Yes\n", "* Can we assume we already have Graph and Node classes?\n", " * Yes\n", "* Can we assume this is a connected graph?\n", " * Yes\n", "* Can we assume the inputs are valid?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "Input:\n", "* `add_edge(source, destination, weight)`\n", "\n", "```\n", "graph.add_edge(0, 1, 5)\n", "graph.add_edge(0, 4, 3)\n", "graph.add_edge(0, 5, 2)\n", "graph.add_edge(1, 3, 5)\n", "graph.add_edge(1, 4, 4)\n", "graph.add_edge(2, 1, 6)\n", "graph.add_edge(3, 2, 7)\n", "graph.add_edge(3, 4, 8)\n", "```\n", "\n", "Result:\n", "* search_path(start=0, end=2) -> True\n", "* search_path(start=0, end=0) -> True\n", "* search_path(start=4, end=5) -> False" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "To determine if there is a path, we can use either breadth-first or depth-first search.\n", "\n", "Breadth-first search can also be used to determine the shortest path. Depth-first search is easier to implement with just straight recursion, but often results in a longer path.\n", "\n", "We'll use a breadth-first search approach:\n", "\n", "* Add the start node to the queue and mark it as visited\n", "* If the start node is the end node, return True\n", "* While the queue is not empty\n", " * Dequeue a node and visit it\n", " * If the node is the end node, return True\n", " * Iterate through each adjacent node\n", " * If the node has not been visited, add it to the queue and mark it as visited\n", "* Return False\n", "\n", "Complexity:\n", "* Time: O(V + E), where V = number of vertices and E = number of edges\n", "* Space: O(V + E)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%run ../graph/graph.py" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from collections import deque\n", "\n", "\n", "class GraphPathExists(Graph):\n", "\n", " def path_exists(self, start, end):\n", " if start is None or end is None:\n", " return False\n", " if start is end:\n", " return True\n", " queue = deque()\n", " queue.append(start)\n", " start.visit_state = State.visited\n", " while queue:\n", " node = queue.popleft()\n", " if node is end:\n", " return True\n", " for adj_node in node.adj_nodes.values():\n", " if adj_node.visit_state == State.unvisited:\n", " queue.append(adj_node)\n", " adj_node.visit_state = State.visited\n", " return False" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test_path_exists.py\n" ] } ], "source": [ "%%writefile test_path_exists.py\n", "import unittest\n", "\n", "\n", "class TestPathExists(unittest.TestCase):\n", "\n", " def test_path_exists(self):\n", " nodes = []\n", " graph = GraphPathExists()\n", " for id in range(0, 6):\n", " nodes.append(graph.add_node(id))\n", " graph.add_edge(0, 1, 5)\n", " graph.add_edge(0, 4, 3)\n", " graph.add_edge(0, 5, 2)\n", " graph.add_edge(1, 3, 5)\n", " graph.add_edge(1, 4, 4)\n", " graph.add_edge(2, 1, 6)\n", " graph.add_edge(3, 2, 7)\n", " graph.add_edge(3, 4, 8)\n", "\n", " self.assertEqual(graph.path_exists(nodes[0], nodes[2]), True)\n", " self.assertEqual(graph.path_exists(nodes[0], nodes[0]), True)\n", " self.assertEqual(graph.path_exists(nodes[4], nodes[5]), False)\n", "\n", " print('Success: test_path_exists')\n", "\n", "\n", "def main():\n", " test = TestPathExists()\n", " test.test_path_exists()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Success: test_path_exists\n" ] } ], "source": [ "%run -i test_path_exists.py" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 1 }