{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solution Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Find the shortest path between two nodes in a graph.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is this a directional graph?\n", " * Yes\n", "* Could the graph have cycles?\n", " * Yes\n", " * Note: If the answer were no, this would be a DAG. \n", " * DAGs can be solved with a [topological sort](http://www.geeksforgeeks.org/shortest-path-for-directed-acyclic-graphs/)\n", "* Are the edges weighted?\n", " * Yes\n", " * Note: If the edges were not weighted, we could do a BFS\n", "* Are the edges all non-negative numbers?\n", " * Yes\n", " * Note: Graphs with negative edges can be done with Bellman-Ford\n", " * Graphs with negative cost cycles do not have a defined shortest path\n", "* Do we have to check for non-negative edges?\n", " * No\n", "* Can we assume this is a connected graph?\n", " * Yes\n", "* Can we assume the inputs are valid?\n", " * No\n", "* Can we assume we already have a graph class?\n", " * Yes\n", "* Can we assume we already have a priority queue class?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "The constraints state we don't have to check for negative edges, so we test with the general case.\n", "\n", "
\n",
"graph.add_edge('a', 'b', weight=5)\n",
"graph.add_edge('a', 'c', weight=3)\n",
"graph.add_edge('a', 'e', weight=2)\n",
"graph.add_edge('b', 'd', weight=2)\n",
"graph.add_edge('c', 'b', weight=1)\n",
"graph.add_edge('c', 'd', weight=1)\n",
"graph.add_edge('d', 'a', weight=1)\n",
"graph.add_edge('d', 'g', weight=2)\n",
"graph.add_edge('d', 'h', weight=1)\n",
"graph.add_edge('e', 'a', weight=1)\n",
"graph.add_edge('e', 'h', weight=4)\n",
"graph.add_edge('e', 'i', weight=7)\n",
"graph.add_edge('f', 'b', weight=3)\n",
"graph.add_edge('f', 'g', weight=1)\n",
"graph.add_edge('g', 'c', weight=3)\n",
"graph.add_edge('g', 'i', weight=2)\n",
"graph.add_edge('h', 'c', weight=2)\n",
"graph.add_edge('h', 'f', weight=2)\n",
"graph.add_edge('h', 'g', weight=2)\n",
"shortest_path = ShortestPath(graph)\n",
"result = shortest_path.find_shortest_path('a', 'i')\n",
"self.assertEqual(result, ['a', 'c', 'd', 'g', 'i'])\n",
"self.assertEqual(shortest_path.path_weight['i'], 8)\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Wikipedia's animation:\n",
"\n",
"\n",
"\n",
"Initialize the following:\n",
"\n",
"* previous = {} # Key: node key, val: prev node key, shortest path\n",
" * Set each node's previous node key to None\n",
"* path_weight = {} # Key: node key, val: weight, shortest path\n",
" * Set each node's shortest path weight to infinity\n",
"* remaining = PriorityQueue() # Queue of node key, path weight\n",
" * Add each node's shortest path weight to the priority queue\n",
"\n",
"* Set the start node's path_weight to 0 and update the value in remaining\n",
"* Loop while remaining still has items\n",
" * Extract the min node (node with minimum path weight) from remaining\n",
" * Loop through each adjacent node in the min node\n",
" * Calculate the new weight:\n",
" * Adjacent node's edge weight + the min node's path_weight \n",
" * If the newly calculated path is less than the adjacent node's current path_weight:\n",
" * Set the node's previous node key leading to the shortest path\n",
" * Update the adjacent node's shortest path and update the value in the priority queue\n",
"* Walk backwards to determine the shortest path:\n",
" * Start at the end node, walk the previous dict to get to the start node\n",
"* Reverse the list and return it\n",
"\n",
"### Complexity for array-based priority queue:\n",
"\n",
"* Time: O(v^2), where v is the number of vertices\n",
"* Space: O(v^2)\n",
"\n",
"This might be better than the min-heap-based variant if the graph has a lot of edges.\n",
"\n",
"O(v^2) is better than O((v + v^2) log v).\n",
"\n",
"### Complexity for min-heap-based priority queue:\n",
"\n",
"* Time: O((v + e) log v), where v is the number of vertices, e is the number of edges\n",
"* Space: O((v + e) log v)\n",
"\n",
"This might be better than the array-based variant if the graph is sparse."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%run ../../arrays_strings/priority_queue/priority_queue.py"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"%run ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"\n",
"class ShortestPath(object):\n",
"\n",
" def __init__(self, graph):\n",
" if graph is None:\n",
" raise TypeError('graph cannot be None')\n",
" self.graph = graph\n",
" self.previous = {} # Key: node key, val: prev node key, shortest path\n",
" self.path_weight = {} # Key: node key, val: weight, shortest path\n",
" self.remaining = PriorityQueue() # Queue of node key, path weight\n",
" for key in self.graph.nodes.keys():\n",
" # Set each node's previous node key to None\n",
" # Set each node's shortest path weight to infinity\n",
" # Add each node's shortest path weight to the priority queue\n",
" self.previous[key] = None\n",
" self.path_weight[key] = sys.maxsize\n",
" self.remaining.insert(\n",
" PriorityQueueNode(key, self.path_weight[key]))\n",
"\n",
" def find_shortest_path(self, start_node_key, end_node_key):\n",
" if start_node_key is None or end_node_key is None:\n",
" raise TypeError('Input node keys cannot be None')\n",
" if (start_node_key not in self.graph.nodes or\n",
" end_node_key not in self.graph.nodes):\n",
" raise ValueError('Invalid start or end node key')\n",
" # Set the start node's shortest path weight to 0\n",
" # and update the value in the priority queue\n",
" self.path_weight[start_node_key] = 0\n",
" self.remaining.decrease_key(start_node_key, 0)\n",
" while self.remaining:\n",
" # Extract the min node (node with minimum path weight)\n",
" # from the priority queue\n",
" min_node_key = self.remaining.extract_min().obj\n",
" min_node = self.graph.nodes[min_node_key]\n",
" # Loop through each adjacent node in the min node\n",
" for adj_key in min_node.adj_nodes.keys():\n",
" # Node's path:\n",
" # Adjacent node's edge weight + the min node's\n",
" # shortest path weight\n",
" new_weight = (min_node.adj_weights[adj_key] +\n",
" self.path_weight[min_node_key])\n",
" # Only update if the newly calculated path is\n",
" # less than the existing node's shortest path\n",
" if self.path_weight[adj_key] > new_weight:\n",
" # Set the node's previous node key leading to the shortest path\n",
" # Update the adjacent node's shortest path and\n",
" # update the value in the priority queue\n",
" self.previous[adj_key] = min_node_key\n",
" self.path_weight[adj_key] = new_weight\n",
" self.remaining.decrease_key(adj_key, new_weight)\n",
" # Walk backwards to determine the shortest path:\n",
" # Start at the end node, walk the previous dict to get to the start node\n",
" result = []\n",
" current_node_key = end_node_key\n",
" while current_node_key is not None:\n",
" result.append(current_node_key)\n",
" current_node_key = self.previous[current_node_key]\n",
" # Reverse the list\n",
" return result[::-1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_shortest_path.py\n"
]
}
],
"source": [
"%%writefile test_shortest_path.py\n",
"import unittest\n",
"\n",
"\n",
"class TestShortestPath(unittest.TestCase):\n",
"\n",
" def test_shortest_path(self):\n",
" graph = Graph()\n",
" graph.add_edge('a', 'b', weight=5)\n",
" graph.add_edge('a', 'c', weight=3)\n",
" graph.add_edge('a', 'e', weight=2)\n",
" graph.add_edge('b', 'd', weight=2)\n",
" graph.add_edge('c', 'b', weight=1)\n",
" graph.add_edge('c', 'd', weight=1)\n",
" graph.add_edge('d', 'a', weight=1)\n",
" graph.add_edge('d', 'g', weight=2)\n",
" graph.add_edge('d', 'h', weight=1)\n",
" graph.add_edge('e', 'a', weight=1)\n",
" graph.add_edge('e', 'h', weight=4)\n",
" graph.add_edge('e', 'i', weight=7)\n",
" graph.add_edge('f', 'b', weight=3)\n",
" graph.add_edge('f', 'g', weight=1)\n",
" graph.add_edge('g', 'c', weight=3)\n",
" graph.add_edge('g', 'i', weight=2)\n",
" graph.add_edge('h', 'c', weight=2)\n",
" graph.add_edge('h', 'f', weight=2)\n",
" graph.add_edge('h', 'g', weight=2)\n",
" shortest_path = ShortestPath(graph)\n",
" result = shortest_path.find_shortest_path('a', 'i')\n",
" self.assertEqual(result, ['a', 'c', 'd', 'g', 'i'])\n",
" self.assertEqual(shortest_path.path_weight['i'], 8)\n",
"\n",
" print('Success: test_shortest_path')\n",
"\n",
"\n",
"def main():\n",
" test = TestShortestPath()\n",
" test.test_shortest_path()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_shortest_path\n"
]
}
],
"source": [
"%run -i test_shortest_path.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}