{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Challenge Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Find the shortest path between two nodes in a graph.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)\n", "* [Solution Notebook](#Solution-Notebook)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is the graph directed?\n", " * Yes\n", "* Is the graph weighted?\n", " * No\n", "* Can we assume we already have Graph and Node classes?\n", " * Yes\n", "* Are the inputs two Nodes?\n", " * Yes\n", "* Is the output a list of Node keys that make up the shortest path?\n", " * Yes\n", "* If there is no path, should we return None?\n", " * Yes\n", "* Can we assume this is a connected graph?\n", " * Yes\n", "* Can we assume the inputs are valid?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "Input:\n", "* `add_edge(source, destination, weight)`\n", "\n", "```\n", "graph.add_edge(0, 1)\n", "graph.add_edge(0, 4)\n", "graph.add_edge(0, 5)\n", "graph.add_edge(1, 3)\n", "graph.add_edge(1, 4)\n", "graph.add_edge(2, 1)\n", "graph.add_edge(3, 2)\n", "graph.add_edge(3, 4)\n", "```\n", "\n", "Result:\n", "* search_path(start=0, end=2) -> [0, 1, 3, 2]\n", "* search_path(start=0, end=0) -> [0]\n", "* search_path(start=4, end=5) -> None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%run ../graph/graph.py\n", "%load ../graph/graph.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class GraphShortestPath(Graph):\n", "\n", " def shortest_path(self, source_key, dest_key):\n", " # TODO: Implement me\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The following unit test is expected to fail until you solve the challenge.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# %load test_shortest_path.py\n", "import unittest\n", "\n", "\n", "class TestShortestPath(unittest.TestCase):\n", "\n", " def test_shortest_path(self):\n", " nodes = []\n", " graph = GraphShortestPath()\n", " for id in range(0, 6):\n", " nodes.append(graph.add_node(id))\n", " graph.add_edge(0, 1)\n", " graph.add_edge(0, 4)\n", " graph.add_edge(0, 5)\n", " graph.add_edge(1, 3)\n", " graph.add_edge(1, 4)\n", " graph.add_edge(2, 1)\n", " graph.add_edge(3, 2)\n", " graph.add_edge(3, 4)\n", "\n", " self.assertEqual(graph.shortest_path(nodes[0].key, nodes[2].key), [0, 1, 3, 2])\n", " self.assertEqual(graph.shortest_path(nodes[0].key, nodes[0].key), [0])\n", " self.assertEqual(graph.shortest_path(nodes[4].key, nodes[5].key), None)\n", "\n", " print('Success: test_shortest_path')\n", "\n", "\n", "def main():\n", " test = TestShortestPath()\n", " test.test_shortest_path()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solution Notebook\n", "\n", "Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb) for a discussion on algorithms and code solutions." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 1 }