--- comments: true difficulty: 中等 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0000-0099/0034.Find%20First%20and%20Last%20Position%20of%20Element%20in%20Sorted%20Array/README.md tags: - 数组 - 二分查找 --- # [34. 在排序数组中查找元素的第一个和最后一个位置](https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array) [English Version](/solution/0000-0099/0034.Find%20First%20and%20Last%20Position%20of%20Element%20in%20Sorted%20Array/README_EN.md) ## 题目描述

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

 

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

 

提示:

## 解法 ### 方法一:二分查找 我们可以进行两次二分查找,分别查找出左边界和右边界。 时间复杂度 $O(\log n)$,空间复杂度 $O(1)$。其中 $n$ 是数组 $nums$ 的长度。 以下是二分查找的两个通用模板: 模板 1: ```java boolean check(int x) { } int search(int left, int right) { while (left < right) { int mid = (left + right) >> 1; if (check(mid)) { right = mid; } else { left = mid + 1; } } return left; } ``` 模板 2: ```java boolean check(int x) { } int search(int left, int right) { while (left < right) { int mid = (left + right + 1) >> 1; if (check(mid)) { left = mid; } else { right = mid - 1; } } return left; } ``` 做二分题目时,可以按照以下套路: 1. 写出循环条件 $left < right$; 1. 循环体内,不妨先写 $mid = \lfloor \frac{left + right}{2} \rfloor$; 1. 根据具体题目,实现 $check()$ 函数(有时很简单的逻辑,可以不定义 $check$),想一下究竟要用 $right = mid$(模板 $1$) 还是 $left = mid$(模板 $2$);     - 如果 $right = mid$,那么写出 else 语句 $left = mid + 1$,并且不需要更改 mid 的计算,即保持 $mid = \lfloor \frac{left + right}{2} \rfloor$;     - 如果 $left = mid$,那么写出 else 语句 $right = mid - 1$,并且在 $mid$ 计算时补充 +1,即 $mid = \lfloor \frac{left + right + 1}{2} \rfloor$; 1. 循环结束时, $left$ 与 $right$ 相等。 注意,这两个模板的优点是始终保持答案位于二分区间内,二分结束条件对应的值恰好在答案所处的位置。 对于可能无解的情况,只要判断二分结束后的 $left$ 或者 $right$ 是否满足题意即可。 #### Python3 ```python class Solution: def searchRange(self, nums: List[int], target: int) -> List[int]: l = bisect_left(nums, target) r = bisect_left(nums, target + 1) return [-1, -1] if l == r else [l, r - 1] ``` #### Java ```java class Solution { public int[] searchRange(int[] nums, int target) { int l = search(nums, target); int r = search(nums, target + 1); return l == r ? new int[] {-1, -1} : new int[] {l, r - 1}; } private int search(int[] nums, int x) { int left = 0, right = nums.length; while (left < right) { int mid = (left + right) >>> 1; if (nums[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; } } ``` #### C++ ```cpp class Solution { public: vector searchRange(vector& nums, int target) { int l = lower_bound(nums.begin(), nums.end(), target) - nums.begin(); int r = lower_bound(nums.begin(), nums.end(), target + 1) - nums.begin(); if (l == r) return {-1, -1}; return {l, r - 1}; } }; ``` #### Go ```go func searchRange(nums []int, target int) []int { l := sort.SearchInts(nums, target) r := sort.SearchInts(nums, target+1) if l == r { return []int{-1, -1} } return []int{l, r - 1} } ``` #### TypeScript ```ts function searchRange(nums: number[], target: number): number[] { const search = (x: number): number => { let [left, right] = [0, nums.length]; while (left < right) { const mid = (left + right) >> 1; if (nums[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; }; const l = search(target); const r = search(target + 1); return l === r ? [-1, -1] : [l, r - 1]; } ``` #### Rust ```rust impl Solution { pub fn search_range(nums: Vec, target: i32) -> Vec { let n = nums.len(); let search = |x| { let mut left = 0; let mut right = n; while left < right { let mid = left + (right - left) / 2; if nums[mid] < x { left = mid + 1; } else { right = mid; } } left }; let l = search(target); let r = search(target + 1); if l == r { return vec![-1, -1]; } vec![l as i32, (r - 1) as i32] } } ``` #### JavaScript ```js /** * @param {number[]} nums * @param {number} target * @return {number[]} */ var searchRange = function (nums, target) { function search(x) { let left = 0, right = nums.length; while (left < right) { const mid = (left + right) >> 1; if (nums[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; } const l = search(target); const r = search(target + 1); return l == r ? [-1, -1] : [l, r - 1]; }; ``` #### PHP ```php class Solution { /** * @param integer[] $nums * @param integer $target * @return integer[] */ function searchRange($nums, $target) { $min = -1; $max = -1; foreach ($nums as $key => $value) { if ($value == $target) { if ($min == -1) { $min = $key; } if ($key > $max) { $max = $key; } } } return [$min, $max]; } } ``` #### Kotlin ```kotlin class Solution { fun searchRange(nums: IntArray, target: Int): IntArray { val left = this.search(nums, target) val right = this.search(nums, target + 1) return if (left == right) intArrayOf(-1, -1) else intArrayOf(left, right - 1) } private fun search(nums: IntArray, target: Int): Int { var left = 0 var right = nums.size while (left < right) { val middle = (left + right) / 2 if (nums[middle] < target) { left = middle + 1 } else { right = middle } } return left } } ```