--- comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0100-0199/0118.Pascal%27s%20Triangle/README.md tags: - 数组 - 动态规划 --- # [118. 杨辉三角](https://leetcode.cn/problems/pascals-triangle) [English Version](/solution/0100-0199/0118.Pascal%27s%20Triangle/README_EN.md) ## 题目描述

给定一个非负整数 numRows生成「杨辉三角」的前 numRows 行。

「杨辉三角」中,每个数是它左上方和右上方的数的和。

 

示例 1:

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:

输入: numRows = 1
输出: [[1]]

 

提示:

## 解法 ### 方法一:模拟 我们先创建一个答案数组 $f$,然后将 $f$ 的第一行元素设为 $[1]$。接下来,我们从第二行开始,每一行的开头和结尾元素都是 $1$,其它 $f[i][j] = f[i - 1][j - 1] + f[i - 1][j]$。 时间复杂度 $O(n^2)$,其中 $n$ 为给定的行数。忽略答案的空间消耗,空间复杂度 $O(1)$。 #### Python3 ```python class Solution: def generate(self, numRows: int) -> List[List[int]]: f = [[1]] for i in range(numRows - 1): g = [1] + [a + b for a, b in pairwise(f[-1])] + [1] f.append(g) return f ``` #### Java ```java class Solution { public List> generate(int numRows) { List> f = new ArrayList<>(); f.add(List.of(1)); for (int i = 0; i < numRows - 1; ++i) { List g = new ArrayList<>(); g.add(1); for (int j = 1; j < f.get(i).size(); ++j) { g.add(f.get(i).get(j - 1) + f.get(i).get(j)); } g.add(1); f.add(g); } return f; } } ``` #### C++ ```cpp class Solution { public: vector> generate(int numRows) { vector> f; f.push_back(vector(1, 1)); for (int i = 0; i < numRows - 1; ++i) { vector g; g.push_back(1); for (int j = 1; j < f[i].size(); ++j) { g.push_back(f[i][j - 1] + f[i][j]); } g.push_back(1); f.push_back(g); } return f; } }; ``` #### Go ```go func generate(numRows int) [][]int { f := [][]int{[]int{1}} for i := 0; i < numRows-1; i++ { g := []int{1} for j := 1; j < len(f[i]); j++ { g = append(g, f[i][j-1]+f[i][j]) } g = append(g, 1) f = append(f, g) } return f } ``` #### TypeScript ```ts function generate(numRows: number): number[][] { const f: number[][] = [[1]]; for (let i = 0; i < numRows - 1; ++i) { const g: number[] = [1]; for (let j = 1; j < f[i].length; ++j) { g.push(f[i][j - 1] + f[i][j]); } g.push(1); f.push(g); } return f; } ``` #### Rust ```rust impl Solution { pub fn generate(num_rows: i32) -> Vec> { let mut f = vec![vec![1]]; for i in 1..num_rows { let mut g = vec![1]; for j in 1..f[i as usize - 1].len() { g.push(f[i as usize - 1][j - 1] + f[i as usize - 1][j]); } g.push(1); f.push(g); } f } } ``` #### JavaScript ```js /** * @param {number} numRows * @return {number[][]} */ var generate = function (numRows) { const f = [[1]]; for (let i = 0; i < numRows - 1; ++i) { const g = [1]; for (let j = 1; j < f[i].length; ++j) { g.push(f[i][j - 1] + f[i][j]); } g.push(1); f.push(g); } return f; }; ``` #### C# ```cs public class Solution { public IList> Generate(int numRows) { var f = new List> { new List { 1 } }; for (int i = 1; i < numRows; ++i) { var g = new List { 1 }; for (int j = 1; j < f[i - 1].Count; ++j) { g.Add(f[i - 1][j - 1] + f[i - 1][j]); } g.Add(1); f.Add(g); } return f; } } ```