--- comments: true difficulty: 中等 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0300-0399/0307.Range%20Sum%20Query%20-%20Mutable/README.md tags: - 设计 - 树状数组 - 线段树 - 数组 --- # [307. 区域和检索 - 数组可修改](https://leetcode.cn/problems/range-sum-query-mutable) [English Version](/solution/0300-0399/0307.Range%20Sum%20Query%20-%20Mutable/README_EN.md) ## 题目描述

给你一个数组 nums ,请你完成两类查询。

  1. 其中一类查询要求 更新 数组 nums 下标对应的值
  2. 另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的  ,其中 left <= right

实现 NumArray 类:

 

示例 1:

输入:
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
输出:
[null, 9, null, 8]

解释:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // 返回 1 + 3 + 5 = 9
numArray.update(1, 2);   // nums = [1,2,5]
numArray.sumRange(0, 2); // 返回 1 + 2 + 5 = 8

 

提示:

## 解法 ### 方法一:树状数组 树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作: 1. **单点更新** $update(x, delta)$: 把序列 $x$ 位置的数加上一个值 $delta$; 1. **前缀和查询** $query(x)$:查询序列 $[1,...x]$ 区间的区间和,即位置 $x$ 的前缀和。 这两个操作的时间复杂度均为 $O(\log n)$。 树状数组最基本的功能就是求比某点 $x$ 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。 对于本题,我们在构造函数中,先创建一个树状数组,然后遍历数组中每个元素的下标 $i$(从 $1$ 开始)和对应的值 $v$,调用 $update(i, v)$,即可完成树状数组的初始化。时间复杂度为 $O(n \log n)$。 对于 $sumRange(left, right)$,我们可以通过 $query(right + 1) - query(left)$ 得到区间和。时间复杂度为 $O(\log n)$。 对于 $update(index, val)$,我们可以先通过 $sumRange(index, index)$ 得到原来的值 $prev$,然后调用 $update(index, val - prev)$,即可完成更新。时间复杂度为 $O(\log n)$。 空间复杂度为 $O(n)$。 #### Python3 ```python class BinaryIndexedTree: __slots__ = ["n", "c"] def __init__(self, n): self.n = n self.c = [0] * (n + 1) def update(self, x: int, delta: int): while x <= self.n: self.c[x] += delta x += x & -x def query(self, x: int) -> int: s = 0 while x > 0: s += self.c[x] x -= x & -x return s class NumArray: __slots__ = ["tree"] def __init__(self, nums: List[int]): self.tree = BinaryIndexedTree(len(nums)) for i, v in enumerate(nums, 1): self.tree.update(i, v) def update(self, index: int, val: int) -> None: prev = self.sumRange(index, index) self.tree.update(index + 1, val - prev) def sumRange(self, left: int, right: int) -> int: return self.tree.query(right + 1) - self.tree.query(left) # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # obj.update(index,val) # param_2 = obj.sumRange(left,right) ``` #### Java ```java class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void update(int x, int delta) { while (x <= n) { c[x] += delta; x += x & -x; } } public int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= x & -x; } return s; } } class NumArray { private BinaryIndexedTree tree; public NumArray(int[] nums) { int n = nums.length; tree = new BinaryIndexedTree(n); for (int i = 0; i < n; ++i) { tree.update(i + 1, nums[i]); } } public void update(int index, int val) { int prev = sumRange(index, index); tree.update(index + 1, val - prev); } public int sumRange(int left, int right) { return tree.query(right + 1) - tree.query(left); } } /** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * obj.update(index,val); * int param_2 = obj.sumRange(left,right); */ ``` #### C++ ```cpp class BinaryIndexedTree { public: int n; vector c; BinaryIndexedTree(int _n) : n(_n) , c(_n + 1) {} void update(int x, int delta) { while (x <= n) { c[x] += delta; x += x & -x; } } int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= x & -x; } return s; } }; class NumArray { public: BinaryIndexedTree* tree; NumArray(vector& nums) { int n = nums.size(); tree = new BinaryIndexedTree(n); for (int i = 0; i < n; ++i) tree->update(i + 1, nums[i]); } void update(int index, int val) { int prev = sumRange(index, index); tree->update(index + 1, val - prev); } int sumRange(int left, int right) { return tree->query(right + 1) - tree->query(left); } }; /** * Your NumArray object will be instantiated and called as such: * NumArray* obj = new NumArray(nums); * obj->update(index,val); * int param_2 = obj->sumRange(left,right); */ ``` #### Go ```go type BinaryIndexedTree struct { n int c []int } func newBinaryIndexedTree(n int) *BinaryIndexedTree { c := make([]int, n+1) return &BinaryIndexedTree{n, c} } func (t *BinaryIndexedTree) update(x, delta int) { for ; x <= t.n; x += x & -x { t.c[x] += delta } } func (t *BinaryIndexedTree) query(x int) (s int) { for ; x > 0; x -= x & -x { s += t.c[x] } return s } type NumArray struct { tree *BinaryIndexedTree } func Constructor(nums []int) NumArray { tree := newBinaryIndexedTree(len(nums)) for i, v := range nums { tree.update(i+1, v) } return NumArray{tree} } func (t *NumArray) Update(index int, val int) { prev := t.SumRange(index, index) t.tree.update(index+1, val-prev) } func (t *NumArray) SumRange(left int, right int) int { return t.tree.query(right+1) - t.tree.query(left) } /** * Your NumArray object will be instantiated and called as such: * obj := Constructor(nums); * obj.Update(index,val); * param_2 := obj.SumRange(left,right); */ ``` #### TypeScript ```ts class BinaryIndexedTree { private n: number; private c: number[]; constructor(n: number) { this.n = n; this.c = Array(n + 1).fill(0); } update(x: number, delta: number): void { while (x <= this.n) { this.c[x] += delta; x += x & -x; } } query(x: number): number { let s = 0; while (x > 0) { s += this.c[x]; x -= x & -x; } return s; } } class NumArray { private tree: BinaryIndexedTree; constructor(nums: number[]) { const n = nums.length; this.tree = new BinaryIndexedTree(n); for (let i = 0; i < n; ++i) { this.tree.update(i + 1, nums[i]); } } update(index: number, val: number): void { const prev = this.sumRange(index, index); this.tree.update(index + 1, val - prev); } sumRange(left: number, right: number): number { return this.tree.query(right + 1) - this.tree.query(left); } } /** * Your NumArray object will be instantiated and called as such: * var obj = new NumArray(nums) * obj.update(index,val) * var param_2 = obj.sumRange(left,right) */ ``` #### C# ```cs class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void Update(int x, int delta) { while (x <= n) { c[x] += delta; x += x & -x; } } public int Query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= x & -x; } return s; } } public class NumArray { private BinaryIndexedTree tree; public NumArray(int[] nums) { int n = nums.Length; tree = new BinaryIndexedTree(n); for (int i = 0; i < n; ++i) { tree.Update(i + 1, nums[i]); } } public void Update(int index, int val) { int prev = SumRange(index, index); tree.Update(index + 1, val - prev); } public int SumRange(int left, int right) { return tree.Query(right + 1) - tree.Query(left); } } /** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * obj.Update(index,val); * int param_2 = obj.SumRange(left,right); */ ``` ### 方法二:线段树 线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 $\log(width)$。更新某个元素的值,只需要更新 $\log(width)$ 个区间,并且这些区间都包含在一个包含该元素的大区间内。 - 线段树的每个节点代表一个区间; - 线段树具有唯一的根节点,代表的区间是整个统计范围,如 $[1, N]$; - 线段树的每个叶子节点代表一个长度为 $1$ 的元区间 $[x, x]$; - 对于每个内部节点 $[l, r]$,它的左儿子是 $[l, mid]$,右儿子是 $[mid + 1, r]$, 其中 $mid = \lfloor \frac{l + r}{2} \rfloor$(即向下取整)。 对于本题,构造函数的时间复杂度为 $O(n \log n)$,其他操作的时间复杂度为 $O(\log n)$。空间复杂度为 $O(n)$。 #### Python3 ```python class Node: __slots__ = ["l", "r", "v"] def __init__(self): self.l = self.r = self.v = 0 class SegmentTree: __slots__ = ["nums", "tr"] def __init__(self, nums): self.nums = nums n = len(nums) self.tr = [Node() for _ in range(n << 2)] self.build(1, 1, n) def build(self, u, l, r): self.tr[u].l, self.tr[u].r = l, r if l == r: self.tr[u].v = self.nums[l - 1] return mid = (l + r) >> 1 self.build(u << 1, l, mid) self.build(u << 1 | 1, mid + 1, r) self.pushup(u) def modify(self, u, x, v): if self.tr[u].l == x and self.tr[u].r == x: self.tr[u].v = v return mid = (self.tr[u].l + self.tr[u].r) >> 1 if x <= mid: self.modify(u << 1, x, v) else: self.modify(u << 1 | 1, x, v) self.pushup(u) def query(self, u, l, r): if self.tr[u].l >= l and self.tr[u].r <= r: return self.tr[u].v mid = (self.tr[u].l + self.tr[u].r) >> 1 result = 0 if l <= mid: result += self.query(u << 1, l, r) if r > mid: result += self.query(u << 1 | 1, l, r) return result def pushup(self, u): self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v class NumArray: __slots__ = ["tree"] def __init__(self, nums: List[int]): self.tree = SegmentTree(nums) def update(self, index: int, val: int) -> None: self.tree.modify(1, index + 1, val) def sumRange(self, left: int, right: int) -> int: return self.tree.query(1, left + 1, right + 1) # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # obj.update(index,val) # param_2 = obj.sumRange(left,right) ``` #### Java ```java class Node { int l; int r; int v; } class SegmentTree { private Node[] tr; private int[] nums; public SegmentTree(int[] nums) { this.nums = nums; int n = nums.length; tr = new Node[n << 2]; for (int i = 0; i < tr.length; ++i) { tr[i] = new Node(); } build(1, 1, n); } public void build(int u, int l, int r) { tr[u].l = l; tr[u].r = r; if (l == r) { tr[u].v = nums[l - 1]; return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); pushup(u); } public void modify(int u, int x, int v) { if (tr[u].l == x && tr[u].r == x) { tr[u].v = v; return; } int mid = (tr[u].l + tr[u].r) >> 1; if (x <= mid) { modify(u << 1, x, v); } else { modify(u << 1 | 1, x, v); } pushup(u); } public int query(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { return tr[u].v; } int mid = (tr[u].l + tr[u].r) >> 1; int v = 0; if (l <= mid) { v += query(u << 1, l, r); } if (r > mid) { v += query(u << 1 | 1, l, r); } return v; } public void pushup(int u) { tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v; } } class NumArray { private SegmentTree tree; public NumArray(int[] nums) { tree = new SegmentTree(nums); } public void update(int index, int val) { tree.modify(1, index + 1, val); } public int sumRange(int left, int right) { return tree.query(1, left + 1, right + 1); } } /** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * obj.update(index,val); * int param_2 = obj.sumRange(left,right); */ ``` #### C++ ```cpp class Node { public: int l; int r; int v; }; class SegmentTree { public: vector tr; vector nums; SegmentTree(vector& nums) { this->nums = nums; int n = nums.size(); tr.resize(n << 2); for (int i = 0; i < tr.size(); ++i) tr[i] = new Node(); build(1, 1, n); } void build(int u, int l, int r) { tr[u]->l = l; tr[u]->r = r; if (l == r) { tr[u]->v = nums[l - 1]; return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); pushup(u); } void modify(int u, int x, int v) { if (tr[u]->l == x && tr[u]->r == x) { tr[u]->v = v; return; } int mid = (tr[u]->l + tr[u]->r) >> 1; if (x <= mid) modify(u << 1, x, v); else modify(u << 1 | 1, x, v); pushup(u); } int query(int u, int l, int r) { if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v; int mid = (tr[u]->l + tr[u]->r) >> 1; int v = 0; if (l <= mid) v += query(u << 1, l, r); if (r > mid) v += query(u << 1 | 1, l, r); return v; } void pushup(int u) { tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v; } }; class NumArray { public: SegmentTree* tree; NumArray(vector& nums) { tree = new SegmentTree(nums); } void update(int index, int val) { return tree->modify(1, index + 1, val); } int sumRange(int left, int right) { return tree->query(1, left + 1, right + 1); } }; /** * Your NumArray object will be instantiated and called as such: * NumArray* obj = new NumArray(nums); * obj->update(index,val); * int param_2 = obj->sumRange(left,right); */ ``` #### Go ```go type Node struct { l, r, v int } type SegmentTree struct { tr []Node nums []int } func newSegmentTree(nums []int) *SegmentTree { n := len(nums) tr := make([]Node, n<<2) for i := range tr { tr[i] = Node{} } tree := &SegmentTree{ tr: tr, nums: nums, } tree.build(1, 1, n) return tree } func (tree *SegmentTree) build(u, l, r int) { tree.tr[u].l, tree.tr[u].r = l, r if l == r { tree.tr[u].v = tree.nums[l-1] return } mid := (l + r) >> 1 tree.build(u<<1, l, mid) tree.build(u<<1|1, mid+1, r) tree.pushup(u) } func (tree *SegmentTree) modify(u, x, v int) { if tree.tr[u].l == x && tree.tr[u].r == x { tree.tr[u].v = v return } mid := (tree.tr[u].l + tree.tr[u].r) >> 1 if x <= mid { tree.modify(u<<1, x, v) } else { tree.modify(u<<1|1, x, v) } tree.pushup(u) } func (tree *SegmentTree) query(u, l, r int) (v int) { if tree.tr[u].l >= l && tree.tr[u].r <= r { return tree.tr[u].v } mid := (tree.tr[u].l + tree.tr[u].r) >> 1 if l <= mid { v += tree.query(u<<1, l, r) } if r > mid { v += tree.query(u<<1|1, l, r) } return v } func (tree *SegmentTree) pushup(u int) { tree.tr[u].v = tree.tr[u<<1].v + tree.tr[u<<1|1].v } type NumArray struct { tree *SegmentTree } func Constructor(nums []int) NumArray { return NumArray{ tree: newSegmentTree(nums), } } func (this *NumArray) Update(index int, val int) { this.tree.modify(1, index+1, val) } func (this *NumArray) SumRange(left int, right int) int { return this.tree.query(1, left+1, right+1) } /** * Your NumArray object will be instantiated and called as such: * obj := Constructor(nums); * obj.Update(index,val); * param_2 := obj.SumRange(left,right); */ ``` #### TypeScript ```ts class Node { l: number; r: number; v: number; } class SegmentTree { private tr: Node[]; private nums: number[]; constructor(nums: number[]) { this.nums = nums; const n = nums.length; this.tr = new Array(n << 2); for (let i = 0; i < this.tr.length; ++i) { this.tr[i] = { l: 0, r: 0, v: 0 }; } this.build(1, 1, n); } build(u: number, l: number, r: number): void { this.tr[u].l = l; this.tr[u].r = r; if (l == r) { this.tr[u].v = this.nums[l - 1]; return; } const mid = (l + r) >> 1; this.build(u << 1, l, mid); this.build((u << 1) | 1, mid + 1, r); this.pushup(u); } modify(u: number, x: number, v: number): void { if (this.tr[u].l == x && this.tr[u].r == x) { this.tr[u].v = v; return; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; if (x <= mid) { this.modify(u << 1, x, v); } else { this.modify((u << 1) | 1, x, v); } this.pushup(u); } query(u: number, l: number, r: number): number { if (this.tr[u].l >= l && this.tr[u].r <= r) { return this.tr[u].v; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; let v = 0; if (l <= mid) { v += this.query(u << 1, l, r); } if (r > mid) { v += this.query((u << 1) | 1, l, r); } return v; } pushup(u: number): void { this.tr[u].v = this.tr[u << 1].v + this.tr[(u << 1) | 1].v; } } class NumArray { private tree: SegmentTree; constructor(nums: number[]) { this.tree = new SegmentTree(nums); } update(index: number, val: number): void { this.tree.modify(1, index + 1, val); } sumRange(left: number, right: number): number { return this.tree.query(1, left + 1, right + 1); } } /** * Your NumArray object will be instantiated and called as such: * var obj = new NumArray(nums) * obj.update(index,val) * var param_2 = obj.sumRange(left,right) */ ``` #### C# ```cs public class Node { public int l; public int r; public int v; } public class SegmentTree { private Node[] tr; private int[] nums; public SegmentTree(int[] nums) { this.nums = nums; int n = nums.Length; tr = new Node[n << 2]; for (int i = 0; i < tr.Length; ++i) { tr[i] = new Node(); } Build(1, 1, n); } public void Build(int u, int l, int r) { tr[u].l = l; tr[u].r = r; if (l == r) { tr[u].v = nums[l - 1]; return; } int mid = (l + r) >> 1; Build(u << 1, l, mid); Build(u << 1 | 1, mid + 1, r); Pushup(u); } public void Modify(int u, int x, int v) { if (tr[u].l == x && tr[u].r == x) { tr[u].v = v; return; } int mid = (tr[u].l + tr[u].r) >> 1; if (x <= mid) { Modify(u << 1, x, v); } else { Modify(u << 1 | 1, x, v); } Pushup(u); } public int Query(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { return tr[u].v; } int mid = (tr[u].l + tr[u].r) >> 1; int v = 0; if (l <= mid) { v += Query(u << 1, l, r); } if (r > mid) { v += Query(u << 1 | 1, l, r); } return v; } public void Pushup(int u) { tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v; } } public class NumArray { private SegmentTree tree; public NumArray(int[] nums) { tree = new SegmentTree(nums); } public void Update(int index, int val) { tree.Modify(1, index + 1, val); } public int SumRange(int left, int right) { return tree.Query(1, left + 1, right + 1); } } /** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * obj.Update(index,val); * int param_2 = obj.SumRange(left,right); */ ```