--- comments: true difficulty: 中等 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0300-0399/0370.Range%20Addition/README.md tags: - 数组 - 前缀和 --- # [370. 区间加法 🔒](https://leetcode.cn/problems/range-addition) [English Version](/solution/0300-0399/0370.Range%20Addition/README_EN.md) ## 题目描述

假设你有一个长度为 n 的数组,初始情况下所有的数字均为 0,你将会被给出 k​​​​​​ 个更新的操作。

其中,每个操作会被表示为一个三元组:[startIndex, endIndex, inc],你需要将子数组 A[startIndex ... endIndex](包括 startIndex 和 endIndex)增加 inc

请你返回 k 次操作后的数组。

示例:

输入: length = 5, updates = [[1,3,2],[2,4,3],[0,2,-2]]
输出: [-2,0,3,5,3]

解释:

初始状态:
[0,0,0,0,0]

进行了操作 [1,3,2] 后的状态:
[0,2,2,2,0]

进行了操作 [2,4,3] 后的状态:
[0,2,5,5,3]

进行了操作 [0,2,-2] 后的状态:
[-2,0,3,5,3]
## 解法 ### 方法一:差分数组 差分数组模板题。 我们定义 $d$ 为差分数组。给区间 $[l,..r]$ 中的每一个数加上 $c$,那么有 $d[l] += c$,并且 $d[r+1] -= c$。最后我们对差分数组求前缀和,即可得到原数组。 时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组长度。 #### Python3 ```python class Solution: def getModifiedArray(self, length: int, updates: List[List[int]]) -> List[int]: d = [0] * length for l, r, c in updates: d[l] += c if r + 1 < length: d[r + 1] -= c return list(accumulate(d)) ``` #### Java ```java class Solution { public int[] getModifiedArray(int length, int[][] updates) { int[] d = new int[length]; for (var e : updates) { int l = e[0], r = e[1], c = e[2]; d[l] += c; if (r + 1 < length) { d[r + 1] -= c; } } for (int i = 1; i < length; ++i) { d[i] += d[i - 1]; } return d; } } ``` #### C++ ```cpp class Solution { public: vector getModifiedArray(int length, vector>& updates) { vector d(length); for (auto& e : updates) { int l = e[0], r = e[1], c = e[2]; d[l] += c; if (r + 1 < length) d[r + 1] -= c; } for (int i = 1; i < length; ++i) d[i] += d[i - 1]; return d; } }; ``` #### Go ```go func getModifiedArray(length int, updates [][]int) []int { d := make([]int, length) for _, e := range updates { l, r, c := e[0], e[1], e[2] d[l] += c if r+1 < length { d[r+1] -= c } } for i := 1; i < length; i++ { d[i] += d[i-1] } return d } ``` #### JavaScript ```js /** * @param {number} length * @param {number[][]} updates * @return {number[]} */ var getModifiedArray = function (length, updates) { const d = new Array(length).fill(0); for (const [l, r, c] of updates) { d[l] += c; if (r + 1 < length) { d[r + 1] -= c; } } for (let i = 1; i < length; ++i) { d[i] += d[i - 1]; } return d; }; ``` ### 方法二:树状数组 + 差分思想 时间复杂度 $O(n\times \log n)$。 树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作: 1. **单点更新** `update(x, delta)`: 把序列 $x$ 位置的数加上一个值 $delta$; 1. **前缀和查询** `query(x)`:查询序列 $[1,...x]$ 区间的区间和,即位置 $x$ 的前缀和。 这两个操作的时间复杂度均为 $O(\log n)$。 #### Python3 ```python class BinaryIndexedTree: def __init__(self, n): self.n = n self.c = [0] * (n + 1) @staticmethod def lowbit(x): return x & -x def update(self, x, delta): while x <= self.n: self.c[x] += delta x += BinaryIndexedTree.lowbit(x) def query(self, x): s = 0 while x: s += self.c[x] x -= BinaryIndexedTree.lowbit(x) return s class Solution: def getModifiedArray(self, length: int, updates: List[List[int]]) -> List[int]: tree = BinaryIndexedTree(length) for start, end, inc in updates: tree.update(start + 1, inc) tree.update(end + 2, -inc) return [tree.query(i + 1) for i in range(length)] ``` #### Java ```java class Solution { public int[] getModifiedArray(int length, int[][] updates) { BinaryIndexedTree tree = new BinaryIndexedTree(length); for (int[] e : updates) { int start = e[0], end = e[1], inc = e[2]; tree.update(start + 1, inc); tree.update(end + 2, -inc); } int[] ans = new int[length]; for (int i = 0; i < length; ++i) { ans[i] = tree.query(i + 1); } return ans; } } class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void update(int x, int delta) { while (x <= n) { c[x] += delta; x += lowbit(x); } } public int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= lowbit(x); } return s; } public static int lowbit(int x) { return x & -x; } } ``` #### C++ ```cpp class BinaryIndexedTree { public: int n; vector c; BinaryIndexedTree(int _n) : n(_n) , c(_n + 1) {} void update(int x, int delta) { while (x <= n) { c[x] += delta; x += lowbit(x); } } int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= lowbit(x); } return s; } int lowbit(int x) { return x & -x; } }; class Solution { public: vector getModifiedArray(int length, vector>& updates) { BinaryIndexedTree* tree = new BinaryIndexedTree(length); for (auto& e : updates) { int start = e[0], end = e[1], inc = e[2]; tree->update(start + 1, inc); tree->update(end + 2, -inc); } vector ans; for (int i = 0; i < length; ++i) ans.push_back(tree->query(i + 1)); return ans; } }; ``` #### Go ```go type BinaryIndexedTree struct { n int c []int } func newBinaryIndexedTree(n int) *BinaryIndexedTree { c := make([]int, n+1) return &BinaryIndexedTree{n, c} } func (this *BinaryIndexedTree) lowbit(x int) int { return x & -x } func (this *BinaryIndexedTree) update(x, delta int) { for x <= this.n { this.c[x] += delta x += this.lowbit(x) } } func (this *BinaryIndexedTree) query(x int) int { s := 0 for x > 0 { s += this.c[x] x -= this.lowbit(x) } return s } func getModifiedArray(length int, updates [][]int) []int { tree := newBinaryIndexedTree(length) for _, e := range updates { start, end, inc := e[0], e[1], e[2] tree.update(start+1, inc) tree.update(end+2, -inc) } ans := make([]int, length) for i := range ans { ans[i] = tree.query(i + 1) } return ans } ```