--- comments: true difficulty: 中等 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0700-0799/0743.Network%20Delay%20Time/README.md tags: - 深度优先搜索 - 广度优先搜索 - 图 - 最短路 - 堆(优先队列) --- # [743. 网络延迟时间](https://leetcode.cn/problems/network-delay-time) [English Version](/solution/0700-0799/0743.Network%20Delay%20Time/README_EN.md) ## 题目描述

n 个网络节点,标记为 1 到 n

给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。

现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1

 

示例 1:

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2

示例 2:

输入:times = [[1,2,1]], n = 2, k = 1
输出:1

示例 3:

输入:times = [[1,2,1]], n = 2, k = 2
输出:-1

 

提示:

## 解法 ### 方法一:朴素 Dijkstra 算法 我们定义 $\textit{g}[u][v]$ 表示节点 $u$ 到节点 $v$ 的边权,如果节点 $u$ 到节点 $v$ 之间没有边,则 $\textit{g}[u][v] = +\infty$。 我们维护一个数组 $\textit{dist}$,其中 $\textit{dist}[i]$ 表示节点 $k$ 到节点 $i$ 的最短路径长度。初始时,我们将 $\textit{dist}[i]$ 全部初始化为 $+\infty$,但 $\textit{dist}[k - 1] = 0$。定义一个数组 $\textit{vis}$,其中 $\textit{vis}[i]$ 表示节点 $i$ 是否被访问过,初始时,我们将 $\textit{vis}[i]$ 全部初始化为 $\text{false}$。 我们每次找到未被访问的距离最小的节点 $t$,然后以节点 $t$ 为中心进行松弛操作,即对于每个节点 $j$,如果 $\textit{dist}[j] > \textit{dist}[t] + \textit{g}[t][j]$,则更新 $\textit{dist}[j] = \textit{dist}[t] + \textit{g}[t][j]$。 最后,我们返回 $\textit{dist}$ 中的最大值,即为答案。如果答案为 $+\infty$,则说明存在无法到达的节点,返回 $-1$。 时间复杂度 $O(n^2 + m)$,空间复杂度 $O(n^2)$。其中 $n$ 和 $m$ 分别为节点数和边数。 #### Python3 ```python class Solution: def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int: g = [[inf] * n for _ in range(n)] for u, v, w in times: g[u - 1][v - 1] = w dist = [inf] * n dist[k - 1] = 0 vis = [False] * n for _ in range(n): t = -1 for j in range(n): if not vis[j] and (t == -1 or dist[t] > dist[j]): t = j vis[t] = True for j in range(n): dist[j] = min(dist[j], dist[t] + g[t][j]) ans = max(dist) return -1 if ans == inf else ans ``` #### Java ```java class Solution { public int networkDelayTime(int[][] times, int n, int k) { int[][] g = new int[n][n]; int[] dist = new int[n]; final int inf = 1 << 29; Arrays.fill(dist, inf); for (var e : g) { Arrays.fill(e, inf); } for (var e : times) { g[e[0] - 1][e[1] - 1] = e[2]; } dist[k - 1] = 0; boolean[] vis = new boolean[n]; for (int i = 0; i < n; ++i) { int t = -1; for (int j = 0; j < n; ++j) { if (!vis[j] && (t == -1 || dist[t] > dist[j])) { t = j; } } vis[t] = true; for (int j = 0; j < n; ++j) { dist[j] = Math.min(dist[j], dist[t] + g[t][j]); } } int ans = 0; for (int x : dist) { ans = Math.max(ans, x); } return ans == inf ? -1 : ans; } } ``` #### C++ ```cpp class Solution { public: int networkDelayTime(vector>& times, int n, int k) { const int inf = 1 << 29; vector> g(n, vector(n, inf)); for (const auto& e : times) { g[e[0] - 1][e[1] - 1] = e[2]; } vector dist(n, inf); dist[k - 1] = 0; vector vis(n); for (int i = 0; i < n; ++i) { int t = -1; for (int j = 0; j < n; ++j) { if (!vis[j] && (t == -1 || dist[t] > dist[j])) { t = j; } } vis[t] = true; for (int j = 0; j < n; ++j) { dist[j] = min(dist[j], dist[t] + g[t][j]); } } int ans = ranges::max(dist); return ans == inf ? -1 : ans; } }; ``` #### Go ```go func networkDelayTime(times [][]int, n int, k int) int { const inf = 1 << 29 g := make([][]int, n) for i := range g { g[i] = make([]int, n) for j := range g[i] { g[i][j] = inf } } for _, e := range times { g[e[0]-1][e[1]-1] = e[2] } dist := make([]int, n) for i := range dist { dist[i] = inf } dist[k-1] = 0 vis := make([]bool, n) for i := 0; i < n; i++ { t := -1 for j := 0; j < n; j++ { if !vis[j] && (t == -1 || dist[t] > dist[j]) { t = j } } vis[t] = true for j := 0; j < n; j++ { dist[j] = min(dist[j], dist[t]+g[t][j]) } } if ans := slices.Max(dist); ans != inf { return ans } return -1 } ``` #### TypeScript ```ts function networkDelayTime(times: number[][], n: number, k: number): number { const g: number[][] = Array.from({ length: n }, () => Array(n).fill(Infinity)); for (const [u, v, w] of times) { g[u - 1][v - 1] = w; } const dist: number[] = Array(n).fill(Infinity); dist[k - 1] = 0; const vis: boolean[] = Array(n).fill(false); for (let i = 0; i < n; ++i) { let t = -1; for (let j = 0; j < n; ++j) { if (!vis[j] && (t === -1 || dist[j] < dist[t])) { t = j; } } vis[t] = true; for (let j = 0; j < n; ++j) { dist[j] = Math.min(dist[j], dist[t] + g[t][j]); } } const ans = Math.max(...dist); return ans === Infinity ? -1 : ans; } ``` ### 方法二:堆优化 Dijkstra 算法 我们可以使用优先队列(堆)来优化朴素 Dijkstra 算法。 我们定义 $\textit{g}[u]$ 表示节点 $u$ 的所有邻接边,而 $\textit{dist}[u]$ 表示节点 $k$ 到节点 $u$ 的最短路径长度。初始时,我们将 $\textit{dist}[u]$ 全部初始化为 $+\infty$,但 $\textit{dist}[k - 1] = 0$。 定义一个优先队列 $\textit{pq}$,其中每个元素为 $(\textit{d}, u)$,表示节点 $u$ 到节点 $k$ 的距离为 $\textit{d}$。我们每次从 $\textit{pq}$ 中取出距离最小的节点 $(\textit{d}, u)$。如果 $\textit{d} > \textit{dist}[u]$,则跳过该节点。否则,我们遍历节点 $u$ 的所有邻接边,对于每个邻接边 $(v, w)$,如果 $\textit{dist}[v] > \textit{dist}[u] + w$,则更新 $\textit{dist}[v] = \textit{dist}[u] + w$,并将 $(\textit{dist}[v], v)$ 加入 $\textit{pq}$。 最后,我们返回 $\textit{dist}$ 中的最大值,即为答案。如果答案为 $+\infty$,则说明存在无法到达的节点,返回 $-1$。 时间复杂度 $O(m \times \log m + n)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别为节点数和边数。 #### Python3 ```python class Solution: def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int: g = [[] for _ in range(n)] for u, v, w in times: g[u - 1].append((v - 1, w)) dist = [inf] * n dist[k - 1] = 0 pq = [(0, k - 1)] while pq: d, u = heappop(pq) if d > dist[u]: continue for v, w in g[u]: if (nd := d + w) < dist[v]: dist[v] = nd heappush(pq, (nd, v)) ans = max(dist) return -1 if ans == inf else ans ``` #### Java ```java class Solution { public int networkDelayTime(int[][] times, int n, int k) { final int inf = 1 << 29; List[] g = new List[n]; Arrays.setAll(g, i -> new ArrayList<>()); for (var e : times) { g[e[0] - 1].add(new int[] {e[1] - 1, e[2]}); } int[] dist = new int[n]; Arrays.fill(dist, inf); dist[k - 1] = 0; PriorityQueue pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0])); pq.offer(new int[] {0, k - 1}); while (!pq.isEmpty()) { var p = pq.poll(); int d = p[0], u = p[1]; if (d > dist[u]) { continue; } for (var e : g[u]) { int v = e[0], w = e[1]; if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pq.offer(new int[] {dist[v], v}); } } } int ans = Arrays.stream(dist).max().getAsInt(); return ans == inf ? -1 : ans; } } ``` #### C++ ```cpp class Solution { public: int networkDelayTime(vector>& times, int n, int k) { const int inf = 1 << 29; using pii = pair; vector> g(n); for (auto& edge : times) { g[edge[0] - 1].emplace_back(edge[1] - 1, edge[2]); } vector dist(n, inf); dist[k - 1] = 0; priority_queue, greater<>> pq; pq.emplace(0, k - 1); while (!pq.empty()) { auto [d, u] = pq.top(); pq.pop(); if (d > dist[u]) { continue; } for (auto& [v, w] : g[u]) { if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pq.emplace(dist[v], v); } } } int ans = ranges::max(dist); return ans == inf ? -1 : ans; } }; ``` #### Go ```go func networkDelayTime(times [][]int, n int, k int) int { g := make([][][2]int, n) for _, e := range times { u, v, w := e[0]-1, e[1]-1, e[2] g[u] = append(g[u], [2]int{v, w}) } dist := make([]int, n) const inf int = 1 << 29 for i := range dist { dist[i] = inf } dist[k-1] = 0 pq := hp{{0, k - 1}} for len(pq) > 0 { p := heap.Pop(&pq).(pair) d, u := p.x, p.i if d > dist[u] { continue } for _, e := range g[u] { v, w := e[0], e[1] if nd := d + w; nd < dist[v] { dist[v] = nd heap.Push(&pq, pair{nd, v}) } } } if ans := slices.Max(dist); ans < inf { return ans } return -1 } type pair struct{ x, i int } type hp []pair func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].x < h[j].x } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(x any) { *h = append(*h, x.(pair)) } func (h *hp) Pop() (x any) { a := *h; x = a[len(a)-1]; *h = a[:len(a)-1]; return } ``` #### TypeScript ```ts function networkDelayTime(times: number[][], n: number, k: number): number { const g: [number, number][][] = Array.from({ length: n }, () => []); for (const [u, v, w] of times) { g[u - 1].push([v - 1, w]); } const dist: number[] = Array(n).fill(Infinity); dist[k - 1] = 0; const pq = new PriorityQueue((a, b) => a[0] - b[0]); pq.enqueue([0, k - 1]); while (!pq.isEmpty()) { const [d, u] = pq.dequeue(); if (d > dist[u]) { continue; } for (const [v, w] of g[u]) { if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pq.enqueue([dist[v], v]); } } } const ans = Math.max(...dist); return ans === Infinity ? -1 : ans; } ```