--- comments: true difficulty: 困难 edit_url: https://github.com/doocs/leetcode/edit/main/solution/1400-1499/1463.Cherry%20Pickup%20II/README.md rating: 1956 source: 第 27 场双周赛 Q4 tags: - 数组 - 动态规划 - 矩阵 --- # [1463. 摘樱桃 II](https://leetcode.cn/problems/cherry-pickup-ii) [English Version](/solution/1400-1499/1463.Cherry%20Pickup%20II/README_EN.md) ## 题目描述

给你一个 rows x cols 的矩阵 grid 来表示一块樱桃地。 grid 中每个格子的数字表示你能获得的樱桃数目。

你有两个机器人帮你收集樱桃,机器人 1 从左上角格子 (0,0) 出发,机器人 2 从右上角格子 (0, cols-1) 出发。

请你按照如下规则,返回两个机器人能收集的最多樱桃数目:

 

示例 1:

输入:grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
输出:24
解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。
机器人 1 摘的樱桃数目为 (3 + 2 + 5 + 2) = 12 。
机器人 2 摘的樱桃数目为 (1 + 5 + 5 + 1) = 12 。
樱桃总数为: 12 + 12 = 24 。

示例 2:

输入:grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]]
输出:28
解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。
机器人 1 摘的樱桃数目为 (1 + 9 + 5 + 2) = 17 。
机器人 2 摘的樱桃数目为 (1 + 3 + 4 + 3) = 11 。
樱桃总数为: 17 + 11 = 28 。

示例 3:

输入:grid = [[1,0,0,3],[0,0,0,3],[0,0,3,3],[9,0,3,3]]
输出:22

示例 4:

输入:grid = [[1,1],[1,1]]
输出:4

 

提示:

## 解法 ### 方法一:动态规划 我们定义 $f[i][j_1][j_2]$ 表示两个机器人分别在第 $i$ 行的位置 $j_1$ 和 $j_2$ 时能够摘到的最多樱桃数目。初始时 $f[0][0][n-1] = grid[0][0] + grid[0][n-1]$,其余值均为 $-1$。答案为 $\max_{0 \leq j_1, j_2 < n} f[m-1][j_1][j_2]$。 考虑 $f[i][j_1][j_2]$,如果 $j_1 \neq j_2$,那么机器人在第 $i$ 行能摘到的樱桃数目为 $grid[i][j_1] + grid[i][j_2]$;如果 $j_1 = j_2$,那么机器人在第 $i$ 行能摘到的樱桃数目为 $grid[i][j_1]$。我们可以枚举两个机器人的上一个状态 $f[i-1][y1][y2]$,其中 $y_1, y_2$ 分别是两个机器人在第 $i-1$ 行的位置,那么有 $y_1 \in \{j_1-1, j_1, j_1+1\}$ 且 $y_2 \in \{j_2-1, j_2, j_2+1\}$。状态转移方程如下: $$ f[i][j_1][j_2] = \max_{y_1 \in \{j_1-1, j_1, j_1+1\}, y_2 \in \{j_2-1, j_2, j_2+1\}} f[i-1][y_1][y_2] + \begin{cases} grid[i][j_1] + grid[i][j_2], & j_1 \neq j_2 \\ grid[i][j_1], & j_1 = j_2 \end{cases} $$ 其中 $f[i-1][y_1][y_2]$ 为 $-1$ 时需要忽略。 最终的答案即为 $\max_{0 \leq j_1, j_2 < n} f[m-1][j_1][j_2]$。 时间复杂度 $O(m \times n^2)$,空间复杂度 $O(m \times n^2)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。 #### Python3 ```python class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: m, n = len(grid), len(grid[0]) f = [[[-1] * n for _ in range(n)] for _ in range(m)] f[0][0][n - 1] = grid[0][0] + grid[0][n - 1] for i in range(1, m): for j1 in range(n): for j2 in range(n): x = grid[i][j1] + (0 if j1 == j2 else grid[i][j2]) for y1 in range(j1 - 1, j1 + 2): for y2 in range(j2 - 1, j2 + 2): if 0 <= y1 < n and 0 <= y2 < n and f[i - 1][y1][y2] != -1: f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x) return max(f[-1][j1][j2] for j1, j2 in product(range(n), range(n))) ``` #### Java ```java class Solution { public int cherryPickup(int[][] grid) { int m = grid.length, n = grid[0].length; int[][][] f = new int[m][n][n]; for (var g : f) { for (var h : g) { Arrays.fill(h, -1); } } f[0][0][n - 1] = grid[0][0] + grid[0][n - 1]; for (int i = 1; i < m; ++i) { for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]); for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) { f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x); } } } } } } int ans = 0; for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { ans = Math.max(ans, f[m - 1][j1][j2]); } } return ans; } } ``` #### C++ ```cpp class Solution { public: int cherryPickup(vector>& grid) { int m = grid.size(), n = grid[0].size(); int f[m][n][n]; memset(f, -1, sizeof(f)); f[0][0][n - 1] = grid[0][0] + grid[0][n - 1]; for (int i = 1; i < m; ++i) { for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]); for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) { f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x); } } } } } } int ans = 0; for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { ans = max(ans, f[m - 1][j1][j2]); } } return ans; } }; ``` #### Go ```go func cherryPickup(grid [][]int) (ans int) { m, n := len(grid), len(grid[0]) f := make([][][]int, m) for i := range f { f[i] = make([][]int, n) for j := range f[i] { f[i][j] = make([]int, n) for k := range f[i][j] { f[i][j][k] = -1 } } } f[0][0][n-1] = grid[0][0] + grid[0][n-1] for i := 1; i < m; i++ { for j1 := 0; j1 < n; j1++ { for j2 := 0; j2 < n; j2++ { x := grid[i][j1] if j1 != j2 { x += grid[i][j2] } for y1 := j1 - 1; y1 <= j1+1; y1++ { for y2 := j2 - 1; y2 <= j2+1; y2++ { if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i-1][y1][y2] != -1 { f[i][j1][j2] = max(f[i][j1][j2], f[i-1][y1][y2]+x) } } } } } } for j1 := 0; j1 < n; j1++ { ans = max(ans, slices.Max(f[m-1][j1])) } return } ``` #### TypeScript ```ts function cherryPickup(grid: number[][]): number { const m = grid.length; const n = grid[0].length; const f = Array.from({ length: m }, () => Array.from({ length: n }, () => Array.from({ length: n }, () => -1)), ); f[0][0][n - 1] = grid[0][0] + grid[0][n - 1]; for (let i = 1; i < m; ++i) { for (let j1 = 0; j1 < n; ++j1) { for (let j2 = 0; j2 < n; ++j2) { const x = grid[i][j1] + (j1 === j2 ? 0 : grid[i][j2]); for (let y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (let y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] !== -1) { f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x); } } } } } } return Math.max(...f[m - 1].flat()); } ``` ### 方法二:动态规划(空间优化) 注意到 $f[i][j_1][j_2]$ 的计算只和 $f[i-1][y_1][y_2]$ 有关,因此我们可以使用滚动数组优化空间复杂度,空间复杂度优化后的时间复杂度为 $O(n^2)$。 #### Python3 ```python class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: m, n = len(grid), len(grid[0]) f = [[-1] * n for _ in range(n)] g = [[-1] * n for _ in range(n)] f[0][n - 1] = grid[0][0] + grid[0][n - 1] for i in range(1, m): for j1 in range(n): for j2 in range(n): x = grid[i][j1] + (0 if j1 == j2 else grid[i][j2]) for y1 in range(j1 - 1, j1 + 2): for y2 in range(j2 - 1, j2 + 2): if 0 <= y1 < n and 0 <= y2 < n and f[y1][y2] != -1: g[j1][j2] = max(g[j1][j2], f[y1][y2] + x) f, g = g, f return max(f[j1][j2] for j1, j2 in product(range(n), range(n))) ``` #### Java ```java class Solution { public int cherryPickup(int[][] grid) { int m = grid.length, n = grid[0].length; int[][] f = new int[n][n]; int[][] g = new int[n][n]; for (int i = 0; i < n; ++i) { Arrays.fill(f[i], -1); Arrays.fill(g[i], -1); } f[0][n - 1] = grid[0][0] + grid[0][n - 1]; for (int i = 1; i < m; ++i) { for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]); for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1) { g[j1][j2] = Math.max(g[j1][j2], f[y1][y2] + x); } } } } } int[][] t = f; f = g; g = t; } int ans = 0; for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { ans = Math.max(ans, f[j1][j2]); } } return ans; } } ``` #### C++ ```cpp class Solution { public: int cherryPickup(vector>& grid) { int m = grid.size(), n = grid[0].size(); vector> f(n, vector(n, -1)); vector> g(n, vector(n, -1)); f[0][n - 1] = grid[0][0] + grid[0][n - 1]; for (int i = 1; i < m; ++i) { for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]); for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1) { g[j1][j2] = max(g[j1][j2], f[y1][y2] + x); } } } } } swap(f, g); } int ans = 0; for (int j1 = 0; j1 < n; ++j1) { for (int j2 = 0; j2 < n; ++j2) { ans = max(ans, f[j1][j2]); } } return ans; } }; ``` #### Go ```go func cherryPickup(grid [][]int) (ans int) { m, n := len(grid), len(grid[0]) f := make([][]int, n) g := make([][]int, n) for i := range f { f[i] = make([]int, n) g[i] = make([]int, n) for j := range f[i] { f[i][j] = -1 g[i][j] = -1 } } f[0][n-1] = grid[0][0] + grid[0][n-1] for i := 1; i < m; i++ { for j1 := 0; j1 < n; j1++ { for j2 := 0; j2 < n; j2++ { x := grid[i][j1] if j1 != j2 { x += grid[i][j2] } for y1 := j1 - 1; y1 <= j1+1; y1++ { for y2 := j2 - 1; y2 <= j2+1; y2++ { if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1 { g[j1][j2] = max(g[j1][j2], f[y1][y2]+x) } } } } } f, g = g, f } for j1 := 0; j1 < n; j1++ { ans = max(ans, slices.Max(f[j1])) } return } ``` #### TypeScript ```ts function cherryPickup(grid: number[][]): number { const m = grid.length; const n = grid[0].length; let f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => -1)); let g: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => -1)); f[0][n - 1] = grid[0][0] + grid[0][n - 1]; for (let i = 1; i < m; ++i) { for (let j1 = 0; j1 < n; ++j1) { for (let j2 = 0; j2 < n; ++j2) { const x = grid[i][j1] + (j1 === j2 ? 0 : grid[i][j2]); for (let y1 = j1 - 1; y1 <= j1 + 1; ++y1) { for (let y2 = j2 - 1; y2 <= j2 + 1; ++y2) { if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] !== -1) { g[j1][j2] = Math.max(g[j1][j2], f[y1][y2] + x); } } } } } [f, g] = [g, f]; } return Math.max(...f.flat()); } ```