#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import Callable, Optional import cv2 import numpy as np import pyarrow as pa import torch from dora import DoraStatus pa.array([]) CAMERA_WIDTH = 640 CAMERA_HEIGHT = 480 class Operator: """ Infering object from images """ def __init__(self): self.model = torch.hub.load("ultralytics/yolov5", "yolov5n") def on_event( self, dora_event: dict, send_output: Callable[[str, bytes | pa.Array, Optional[dict]], None], ) -> DoraStatus: if dora_event["type"] == "INPUT": return self.on_input(dora_event, send_output) return DoraStatus.CONTINUE def on_input( self, dora_input: dict, send_output: Callable[[str, bytes | pa.Array, Optional[dict]], None], ) -> DoraStatus: """Handle image Args: dora_input (dict): Dict containing the "id", value, and "metadata" send_output Callable[[str, bytes | pa.Array, Optional[dict]], None]: Function for sending output to the dataflow: - First argument is the `output_id` - Second argument is the data as either bytes or `pa.Array` - Third argument is dora metadata dict e.g.: `send_output("bbox", pa.array([100], type=pa.uint8()), dora_event["metadata"])` """ frame = dora_input["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) results = self.model(frame) # includes NMS arrays = pa.array(np.array(results.xyxy[0].cpu()).ravel()) send_output("bbox", arrays, dora_input["metadata"]) return DoraStatus.CONTINUE