{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "ChEn-1070: Introduction to Chemical Engineering Spring 2019 UMass Lowell; Profs. Manohar and de Almeida **30Apr2019**\n", "\n", "# Laboratory Work 11 30Apr2019\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Name: `your name`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Rubric for each assignment: \n", "\n", "| Context | Points |\n", "| ----------------------- | ------- |\n", "| Precision of the answer | 80% |\n", "| Answer Markdown readability | 10% |\n", "| Code readability | 10% |\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### <span style=\"color:red\">Guidance:</span>\n", " + <span style=\"color:red\"> \n", " Save your work frequently to a file locally to your computer.\n", " </span>\n", " + <span style=\"color:red\">\n", " During your work and before submitting the final version do: `Kernel` -> `Restart & Run All`, to verify your notebook runs correctly.\n", " </span>\n", " + <span style=\"color:red\">\n", " Save your file again.\n", " </span>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 1 (100 pts).</span>\n", "### <span style=\"color:blue\">Using `scipy.constants`, `mendeleev`, and a `for` loop solve the mass transfer problem: </span>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<span style=\"color:blue\"> A circular, thin film with radius of 20 ft shrinks at a rate of </span>\n", "\n", "$\\dot{r} = -3.7 \\mu\\!\\,m/s$\n", "\n", "<span style=\"color:blue\"> The film is saturated with water at a concentration of 0.002 gmol/L and the mass transfer coefficient is h = 0.5 in/s. If the film is exposed to dry air make a plot of the water removal in moles per minute for the first half hour. </span>\n", "\n", "<span style=\"color:blue\"> Use the overall masss transfer formula for film exposed to air with no water vapor. </span>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<span style=\"color:blue\">\n", " + Plot your results as follows:\n", "</span>" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEeCAYAAAB7Szl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVOX5//H3h6WD0sQNKoKKvaGLJRZgNSKarwU7JioaRU2MJpqfLcaCNfZuomIvq0ZUVBRRFxE7RINYULAgWIjSXETq/fvjORvGdXdnzu7MnpnZ+3Vd55qZZ86ccz+OzL3nPE1mhnPOOVefFkkH4JxzLv95snDOOZeWJwvnnHNpebJwzjmXlicL55xzaXmycM45l5YnC1dwJN0nySStk1LWJyq7PcnY8oGkltF/i+eTjsUVD08WLi9EP271bcOSjrE+ki6qEe9KSQslfSbpaUmnS1or6Tida6iWSQfgXA0X1FH+Tsrz/wdcBHyd+3BiqwQmRM87AGsBOwN7AyMk/c3MrshlAGa2XNKmwKJcnsc1L54sXF4xs/Mz2Ocr4KvcR9MgL5rZRakFkgQcBPwTuFySmdmVuQzCzD7M5fFd8+O3oVzBqa3NIoN9e0o6WdL7khZL+lTSmdEPOZIOlfSWpB8kfSPpekltshGvBY8Ah0ZFF0gqTYnxV1GM50jaUdIYSXNT4v5S0nxJ7euo4z+iffeLXtfaZpFyq2yXGvX9TtIDknrUcfwdJI2T9L2kBdHz7VOPl43/Ti6/ebJwzcW1wLnAm4S/8AVcCvxV0qnAHcDHwC3Af4E/Aln969/MxgGvA+2B/WvZZRfCLazWwEjgHmApcDvQiVXJ5n8kdQAOB74EnsowlJOBu4BPgJuAD4ChwPOSWtc4/kDgJWBgdPybopgmAGUZns8VAb8N5fKKpPNrKf7MzO5q5KH7AltGt7CQNAKYDpwJ/ABsa2bTovf+CvwHOE7S+Wb2XSPPnWo8sCOwPSFppdoTONbMRqYWSroVOBs4HrizxmeGAqsB15jZigxj2BPoZ2bvRccX8BBwMPB/wKiovISQRNsAg6JkVx3TScANGZ7PFQG/snD55rxatmFZOO6I6kQBYGZzCX8pdwBurE4U0Xs/Ag8TfiQ3ycK5U82OHrvX8t6kmokiimcW8CSwg6Sta7x9PLCCcPWRqWuqE0V0fANui15un7LfrsB6wLjURBG5BZgR45yuwHmycHnFzFTLNjALh55US9mX0ePkWt6r/lFP2y4Sk6LH2tYGeLOez90cPR7/vwNJ2wD9gDFm9kWMGGr7b1H9+S4pZdtEjxNr7hxdxbwW45yuwHmycM3FglrKlmfwXqssx1E91uK/tbxXX1fg5wltKr+J2ilgVeKoeTsrnfm1lFXXtySlrFP0+E0dx6mr3BUhTxbONa3y6PGNWt6rcyWy6FbRP4DVgaEpDdszgWeyHWRkYfRYWsf7dZW7IuTJwrkmImkQsANhsNzjDTjEncBiwhVFdcP27Wa2MmtB/tTb0ePPusZGjd+/zNF5XR7yZOFcjik4CKiIiv5mZrXdhqqXmc0j9FrqB5xPuHX0swbxLJoAfAbsIWmPGu+dCGyQw3O7PONdZ53Lrt0kVf+7akdoo9gF6A38CPzFzK5pxPFvJvQOWxt4zMy+rH/3hjOzFZKOBcYAYyT9izA2Y2vgV8CzwGAgV1c2Lo94snAuu8qjzQi3m+YC7xF+5O9L7b7bEGb2lqSpwBbEb9huyPleiAbmXQjsQ0gMbwD9gWOi3RbW/mlXTBTazZxzhUBSJ0K33jnABpbgP2BJbwDbAqtFY1NcEfM2C+cKyx8IAwlvaopEIal9lKBqlh9LGMD3jCeK5sGvLJzLc5I6AycQBggeR7iq2MTMcj4FuaQtCIMFxxFGbLciXE3sBMwDdjSzj3Idh0ueJwvn8pykPoQBeT8SRl//0czeqf9TWTt3N+ByYABhXEUbwuDBccBFZvZpU8ThkldvsogmW8vEMjO7MDshOeecyzfpksVS4P4MjnOQma2WtagaYI011rDevXs3+POLFi2iQ4cO6XfMc8VSD/C65KNiqQd4XapNnjz5WzOrbWLLnzKzOjfg+/reT9lvXib75XIrKyuzxqisrGzU5/NFsdTDzOuSj4qlHmZel2qE2Y7T/sam6w3VLcPk5HPEOOdcEas3WZjZ0kwOkul+zjnnClPGI7gldQX+QlhxrGPqe2bWP8txOeecyyNxpvt4gNBt7mHCMpTOOeeaiTjJYiegu5ktyVUwzjnn8lOc6T6mkP0lJp1zzhWAOFcWLwLPSrqTGss/mtkdWY3KOedcXomTLHYFZgE1F0ExoKCTxauvwj339OL116F161Xb6qtDly7QuXN4XG89aJXtFZmdc64AZJwszKw8/V61k3QH8H/AHDPbIip7CNg42qUzMN/M+krqDXwATIvee93MTmjouTPx8stw553rpd3v44+hTx+480647TYYNw46dIC33oK5c2GjjWDddaGkJO2hnHOuoNSbLCQpGuGHpDrbNyz9GsB3ATcC96R85tCU81wFLEjZf4aZ9U1zzKw54wzo1288O+00kKVLYdky+PFHWLgQ5s+HefPC41prhf3btg1XHe3bh9c33AD33huet2kDG24Im20G22wD224bHrunH0zvnHN5K92VxQJg9ej5csItp1SKyur9W9rMJkRXDD8jScAhwG5pYsmpkhJo1y5s6QwdGrZqV10Fxx4L06at2t58Ex5+eNU+W24JU6aE5zNnQo8efkvLOVc40k0k2NPMvoie96prPzP7PO2JQrJ4qvo2VEp5f+BqM+uXst97wEeE5RrPMbOX6zjmcGA4QGlpaVlFRUW6MOpUVVVFx44d0+8Yw8KFLZk+vSMff7waS5a04Mgjw3+mY4/txxprLOGyy94FYPr0jvTuvYiWLRs/XXwu6pEUr0v+KZZ6gNelWnl5+eTq3996ZTKBVDY2woL1U2spvwU4LeV1G6Bb9LwM+AJYPd3xC2kiwUcfNXvmmfB87lyzFi3MVl/d7IADzG691ezzzxt+bJ8cLT8VS12KpR5mXpdqZDiRYJzpPjoBJwPb8PPpPgZlepwax2wJHBAlhepjLQGWRM8nS5oBbERY9KUoHHDAquft2sEjj8Czz4Zt1KhQvuWWcOCBYdt8c5CSidU55yBe19lHCG0TjwGLs3T+XwEfmtms6gJJ3YG5ZrZC0vrAhsAnWTpf3mnbNiSPAw4AM/jgA3jmGXj8cbjgAjj//NBg/sAD0C/9haJzzuVEnGSxI+H20LK4J5H0IDAQWEPSLOA8MxsJHAY8WGP3/sAIScuBFcAJZjY37jkLkRR6UW22GZx2Gnz9dUgao0ZBr6jFaNSo0ID+l794A7lzrunESRYTgU0J037EYmZD6ygfVkvZo8Cjcc9RjH7xCzjhhLBVq6yEF16AM88Mr199FbbaCoqknc45l6fiJIthwBhJbwDfpL5hZpmu1e0a6YYbYNGicBWyeDHstVcoP+IIOPHEZGNzzhWvOBMJXgz0JKyKt2HK1icHcbl6VC+127YtPP007LtvGFG+xRZwyil9eeABWOJzAzvnsihOsjgM6GtmB5nZESnbkbkKztVPgl12CaPHZ8+Gyy+Hb79tw29+Az17wogR8O23SUfpnCsGcZLFJ0Dsxm3XNNZYA/7f/4N7732DsWNhu+3gvPPCXFVffZV0dM65QhenzeJeYLSkG/h5m8WLWY3KNViLFjBoUNjefz90w+3RI7x3/fWw/faw447JxuicKzxxksUfosdLapQbsH52wnHZVN0NF0Jj+KWXwqGHerJwzsUXZ4ry9HN4u7zVrh1Mnw5Ll4bXL74IF10UblUNGJBsbM65/Je2zULSF5JulbS/pA5NEZTLjQ4dwiJOEKZd/+ADGDgwJIuJExMNzTmX5zJp4N4eeAM4AvhM0jhJf5a0UW5Dc7l04IHwySdw3XVhUaddd4V99oGpU5OOzDmXj9ImCzP7ysxGmtmBQA/gUmBt4HFJ0yVdL2mwpDa5DtZlV7t2cPLJ4fbUpZeGFQO32gqGDYPP004675xrTuJ0ncXMlpvZi2b2FzPbjLAe9zTgj9HmClD79mH6kE8+CXNSVVSEJWLHjk06MudcvoiVLGoys0/N7CYz+7WZXZmtoFwyunaFK64It6WGD4eddgrln38Oy5cnG5tzLlnp1uD+gp8vpfozZrZu1iJyievZM8xBBWE98j33DF1wq9facM41P+m6zv62SaJweatlS7jkEujUKbxetAjmzIH1vCO1c81KvcnCzF5qqkBcfpJ+urLf5ZfD3/8OZ50V2jnaeLcG55qFjNssJLWSdIGkTyT9GD1eIKl1LgN0+WX48JA8zj8/9Jx60Sd6ca5ZiNPAfTlhGdQTgK2jx92Av+cgLpen1l47LPE6diysWAG77x7W0pgzJ+nInHO5FCdZHAzsa2bPmdk0M3sOGAIckpvQXD4bNAjefRfOOQceegg22QRuvx1Wrkw6MudcLsRJFopZ7opcu3Zw4YXwn//AllvCccdBeXloBHfOFZc4yeIR4ElJe0raVNJg4HHg4XQflHSHpDmSpqaUnS9ptqR3om3vlPfOikaHT5O0Z5wKuaa36aYwfjyMHBkG83XwGcScKzpxksXpwPPATcBk4EagEjgjg8/eBQyupfwaM+sbbWMAJG1GWJVv8+gzN0sqiRGnS4AExxwTlncF+PBD2GMP+OyzRMNyzmVJnCnKlwLnRlssZjZBUu8Md98PqDCzJcCnkqYTJjN8Le55XXI+/TQkirZtk47EOZcNMks7QHvVzuEHfyugY2q5mT2Q4WefMrMtotfnA8OAhcAk4DQzmyfpRuB1M7sv2m8k8IyZ/auWYw4HhgOUlpaWVVRUZFyXmqqqqujYsWP6HfNcPtVjxQpRUmKsXAk33dSHAw6YzdprL8748/lUl8YqlroUSz3A61KtvLx8spn1S7ujmWW0AWcBiwk/7C+nbBMy/HxvYGrK61KghHAr7GLgjqj8JuC3KfuNBA5Md/yysjJrjMrKykZ9Pl/kYz0+/NCsc2ezDh3Mbr/dbOXKzD6Xj3VpqGKpS7HUw8zrUg2YZBn8hsdpszgNKDOzfma2a8rWP8YxUpPUN2a2wsxWArcRbjUBzAJ6puy6DvBlQ87h8sPGG4dutjvsAMceGwb1fftt0lE55+KIkyy+Az7L1okl9Uh5OQSo7ik1GjhMUhtJ6wEbAm9m67wuGeusA+PGwZVXwpgxoavts88mHZVzLlNxksWfgFsl9ZO0buqW7oOSHiQ0UG8saZak3wGXS3pX0hSgHPgzgJm9R+iO+z7wLPAHM1sRs14uD7VoEdbLePNN6NYN9toL/vhHWJx5M4ZzLiEZ94YCWgODgMNrlBuh7aFOZja0luKR9ex/MaEdwxWhrbeGt94KkxFedx1UVsLzz8MvfpF0ZM65usS5srgZOBtYHWiVsvlEgi62du3g2mvhmWfCWhnduycdkXOuPnGSRUvgTjOrihqm/7flKjhX/AYPhocfhpIS+PprOOUUqKpKOirnXE1xksWVwJmSfC4olxMvvAB33AEzZyYdiXOupjjJ4mTgfKBK0szULTehuebmN7+BGTPCbSmAt9/uTIwxo865HIrTwO1LrLqcW3PN8Pjss3DqqX2ZPBn++U+fnNC5pMWZG8qXWHVNZtAgOOaYT7nzzvWYMgVGjYI+fZKOyrnmq97bUJKOzeQg0bgJ57KmRQs44ojPefZZmD0b+vWDJ59MOirnmq90bRZXK2hRz1YCXNEUwbrmZ9AgmDwZNtgA9t0X/va3sJyrc65ppUsWHYHlwLI0m09E7XKmd2+YOBGOPhouugh+/Wv47ruko3KueUnXZrFehsfxPisup9q1Cyvx/fKXcNJJoeeUzy3lXNOpN1mY2edNFYhz6Uhhne++fVf1jjIL5c653IrTdda5vLDdduHRLCzlus46cOGFycbkXLGLMyjPubyyYgW0bBk251xu+T8zV7BatoRbb131+vXXobQU1su0pc05lzG/snAFTQrbihUwbFi4RTV+fNJROVd80g3K+6LmPFC1bU0VrHN1KSmBp54K04XssQfcckvSETlXXNLdhvL5oFzB6NMn3Io6/HD4/e/hgw/gmmtCInHONU66rrM+H5QrKKuvDk88AaefDldfDZ9+Cg8+CB07Jh2Zc4UtVgO3pL7ArsAawP96t5vZuVmOy7kGKymBq64KVxonnQS77hpuUa29dtKROVe4Mm7gljQceAXYDTgD2BI4DUg7F6ikOyTNkTQ1pewKSR9KmiLpMUmdo/LekhZLeifa/hG3Us4BnHhiSBLTp4eR374Cn3MNF6c31OnAYDMbAiyOHg8izA2Vzl3A4Bpl44AtzGwr4CPgrJT3ZphZ32g7IUaMzv3EXnvBK6/Auef6rSjnGiNOsljTzF6Onq+U1MLMngH2SfdBM5sAzK1R9pyZLY9evg6sEyMW5zK21VZwbDTZ/nPPwY03JhuPc4VIluG6lZLeB/Y2s88kvQZcDnwLPGJmv8jg872Bp8xsi1reexJ4yMzui/Z7j3C1sRA4JyVJ1fzccGA4QGlpaVlFRUVGdalNVVUVHYvgT89iqQfkpi6XXLIJM2Z05JZb/k3r1iuzeuz6FMv3Uiz1AK9LtfLy8slm1i/tjmaW0QYMA/aKnu8FLCLcgjoxw8/3BqbWUv5X4DFWJa42QLfoeRnwBbB6uuOXlZVZY1RWVjbq8/miWOphlpu6LF9u9t//huc//BC2plAs30ux1MPM61INmGQZ/IbHWVb1rpTnz0jqArQ2swY3G0o6Cvg/YPcoaMxsCbAkej5Z0gxgI2BSQ8/jXLWSElhjjTAJ4W9+A//9b+hq27Vr0pE5l9/i9Ia6VtJ21a/NbGkjE8VgQq+qfc3sh5Ty7tHqe0haH9gQ+KSh53GuNhIcdhi8+SbssgvM9HkInKtXnAZuAU9I+ljSBZI2zviD0oPAa8DGkmZFa3bfCKwGjKvRRbY/MEXSf4B/ASeY2dxaD+xcIxxyCIwdC19+GbrWTpmSdETO5a84t6FOkfRnYHdgKPC6pE+A+83s6jSfHVpL8cg69n0UeDTTuJxrjIED4eWXQxfbXXeFxx+H8vKko3Iu/8SaddbMVprZODM7BtgC+A64IieROddEttwSXnstLKI0eDA89FDSETmXf2IlC0kdJf1W0tOErq3LgaNyEplzTahnT5g4EXbYIbRlXHtt0hE5l1/iNHA/AnxNGNfwFNDLzPY2s/tyFZxzTalLlzBo78ADoaICli5NOiLn8keciQQnAaeZmfcbcUWrbdtwG6qqClq3hkWLoE0bX7rVuTgN3H+X1FJSf2BtYDbwqq2assO5olBSAp06hdX39t8fOneGhx8O3W2da64yThaSNgGeBNoRRlX3BH6UtI+ZfZCj+JxLTEkJ7LtvSByeKFxzF+fi+mbgVuDK6tHWkv4SlXtnQ1eU/vjHVc+ffx623hq6d08uHueSEqc3VF/g6upEEbk2KneuqC1YAAcfHMZi+Ghv1xzFSRZfAgNqlO0alTtX1Dp1gtGj4auvYOed4cMPk47IuaYVJ1mcDYyWVCHp75IqgNFRuXNFb9dd4aWXYNmy8HyST23pmpGMk4WZjQa2BaYS5nSaCpSZ2RM5is25vNO3bxi817FjmBaksjLpiJxrGrF6j5vZR8BFOYrFuYLQp09IGHvuGeaUeuQR2CftepHOFbY4XWc7AScD2wA/WZLJzAZlOS7n8traa8OECWEuqQMOgPvug0MPTToq53InzpXFI0AJYVW7xbkJx7nC0bVr6E47ZIiP8HbFL87/4jsSljtdlqtgnCs0q68eEkb1oL3p08NtKueKTZzeUBOBTXMViHOFqjpRvPYabLop3H9/svE4lwtxriyGAWMkvQF8k/qGmY3IZlDOFaJ+/eCcc7yx2xWnOFcWFxPmgyolrItdvflFt3NAq1Zw3nnh1tSiRXDjjfCT+Q6cK2BxriwOAzYys69yFYxzxeK++8K8UlOmwC23JB2Nc40X58riE6DBjduS7pA0R9LUlLKuksZJ+jh67BKVS9L1kqZLmiJp24ae17kkDB8Of/0r3HYbHHUUrFjh09a6whbnyuJewnQfN/DzNosXM/j8XcCNwD0pZWcCL5jZZZLOjF6fAezFqttcOwC3RI/OFQQJLroIOnSAs8+GmTM3Y5ddwkJKzhWiOMniD9HjJTXKDVg/3YfNbIKk3jWK9wMGRs/vBsYTksV+wD3RDLevS+osqYffAnOF5qyzwtQgJ5/cnf33h1GjoF27pKNyLj5ZE7bARcniKTPbIno938w6p7w/z8y6SHoKuMzMJkblLwBnmNmkGscbTlgTnNLS0rKKiooGx1ZVVUXHjh3T75jniqUeUFx1eeyxLtxww1Zss818LrroXdq1W5l0SA1STN+J1yUoLy+fbGb90u5oZhlvQCvCtOSHRq87AB1ifL43MDXl9fwa78+LHp8Gdkkpf4EwaWGdxy4rK7PGqKysbNTn80Wx1MOs+Opyzz1mLVqY9e9v9v33SUfUMMX2nRSLxtQFmGQZ/H5n3MAtaUvgI+A2YGRUPAC4I9Nj1OIbST2i4/cA5kTlswjddKutg6+b4QrcEUeEXlKtWkGLOF1LnMsDcf6XvQU418w2YVWvqJeAXRpx/tHAUdHzo4AnUsqPjHpF7QgsMG+vcEVg6FAYNw7at4eFC2H+/KQjci4zcRq4Nwfui54bgJktkpRRc52kBwmN2WtImgWcB1wGPCzpd8BM4OBo9zHA3sB04Afg6BhxOpfXpDBYb8gQWLw4THfuVxou38VJFp8BZcD/GpklbU/4QU/LzIbW8dbutexrrOp95VzRkeDUU0Oy8EThCkGcZPE34GlJ/wBaSzoLOAE4LieROVfkfv3rVc/HjAlzS625ZnLxOFefOMuqPkUYLNed0FbRCzjAzJ7LUWzONQvz5sHhh8PAgfCVt8y5PBXrAtjM/m1mvzezX5vZCWY2WdIauQrOueagSxd44gmYOTMkjNmzk47IuZ+L03W2m6QWKa9LJV0NfJqTyJxrRgYMgLFjw5XFgAEhcTiXT9ImC0k7SvqCMAbia0n9JZ0KfEwY//CzBmrnXHw77wzPPQfffhsSxqf+Z5jLI5lcWVxJmLdpC8IAvEeBfYDtzOwQM3szh/E516zsuGNYpnXBgpAwpmfU19C53MskWWxGGIz3AXAu0AU40Mym5TQy55qpfv3gxRfhhx9Cwpjm/9JcHsgkWbQ0s5UAZrYUWGhmc3MblnPNW9++MH58GIMxY0bS0TiX2TiLtpJS16DoUOM1ZnZkdsNyzm2xBXz8MbRtG15XVYXpzp1LQiZXFhcDM1K2S2q89r97nMuR6kTx6KPQpw98+GGy8bjmK+2VhZld0BSBOOfqttVWsNtu0LNn+n2dywWflca5ArDhhvDAA2GZ1oULYcqUpCNyzY0nC+cKzIknQv/+8KZ3WndNyJOFcwXm0kuhWzfYYw947bWko3HNhScL5wrMuuvCSy+FGWoHDQrrYTiXa3HmhpKk4yS9KGlKVNZf0iG5C885V5t11gkJY621YPDg8Ny5XIpzZTEC+B1wK7BuVDYLOCPbQTnn0ltrrTBwb911Ya+9wqhv53IlTrIYBvyfmVUQLatKmHF2/WwH5ZzLTI8eUFkJG2wQFlN6zleXcTkSJ1mUAFXR8+pk0TGlLDZJG0t6J2VbKOlPks6XNDulfO+GnsO5YldaGq4qNtoIbrop6WhcsYqzrOoY4GpJf4bQhgFcCDzZ0JNHkxH2jY5XAswGHgOOBq4xsysbemznmpPu3cMVRrt24fXKlb62t8uuOP87nQqsBSwAOhGuKHoBZ2Yplt2BGWb2eZaO51yz0rVrSBbz54dxGI8/nnRErpjEWYN7oZntT2jc3hHYwMyGmNnCLMVyGPBgyuuTJE2RdIekLlk6h3NFT4KSkrA5ly0ys/R7AZLeNrNtaimfZGb9GhWE1Br4EtjczL6RVAp8S2gbuRDoYWbH1PK54cBwgNLS0rKKiooGx1BVVUXHIpjSs1jqAV6XxjALSQNgzpw2rLnmkqwc17+T/NSYupSXl0/O6DfczDLagO9rKRMwN9Nj1HPs/YDn6nivNzA13THKysqsMSorKxv1+XxRLPUw87pkw9ixZq1bm91/f3aO599JfmpMXYBJlsHvdNoG7pS1K1rXXMci+iF/L5PslcZQUm5BSephZl9FL4cAU7NwDueanZ13DtsRR8Dy5XCkrzzjGiiT3lAz6nhuwCvAI40JQFJ7YA/g+JTiyyX1jc7xWY33nHMZ6tABnnoK9tsPhg0LCeOYn93QdS69jNezkPS6mY3NdgBm9gPQrUbZEdk+j3PNVfv2MHo0DBkCv/tdSBjDhycdlSs0GY+zMLOxUUP0xsAahPaK6vd8ogHn8li7dqEr7YEHwvHHh4Tx+98nHZUrJBknC0m7EG45tQFWBxYCqwFf4FN+OJf32raFUaPg4IPhD38ICePkk5OOyhWKOIPyrgEuN7OuhJ5RXQndWm/OSWTOuaxr0wb+9S/Yf384/XSYOTPpiFyhiJMsNgKuq1F2GfDn7IXjnMu11q3h4YfDOhjrrpt+f+cgXrJYQLj9BPCVpM2ALoTJBJ1zBaRVK+gXDcO6+2645JJk43H5L06yGAVUz/46EqgEJtPIrrPOuWRVVoZ1MZYvTzoSl8/i9Ib6U8rzqyS9QWjgznp3Wudc0xk5EpYuhZYtYfHi0BAupf+ca14aPImxmU00s2eAvbIYj3OuiZWUhK61VVUwYACcfXaYW8q5VBklC0kbSjpQ0tYpZftKmgzcmbPonHNNpn17KCuDyy4LPaU8YbhUmcwNNQy4DZgLdJN0KrAbsBVwFXBHLgN0zjWNFi3g5pvD7agrr4Rly+Caa/yWlAsyabM4A9jXzJ6RtC/wKHA9cLCZLctpdM65JiXB9deHhHHttaHR+4YbPGG4zJLFWlHbBIQlVFcAZ3qicK44SXD11auuMJYvD1ccvkxr85ZJskidA8ok/eCJwrniJsHll4fxGJdeGhLGrbcmHZVLUibJooOk1EkBOtV4jZn5OFDniowEF18crjAuvBC23hp8u+N/AAAToUlEQVS23DLpqFxSMkkWu+U8CudcXpJgxAjYZJMwY+1rryUdkUtKJutZvNQUgTjn8tfhh4fHBQtacs45cN554RaVaz68yco5l7HXXuvGlVfCu+8mHYlrap4snHMZGzz4G6ZNg223Da9XrEg2Htd0PFk452Lp1Ss83n037LorzJ2bbDyuaWQ63UeJpPGS2uQiCEmfSXpX0juSJkVlXSWNk/Rx9NglF+d2zjVM584weTIMHAhff510NC7XMkoWZrYCWC/T/Ruo3Mz6mlk0yz5nAi+Y2YbAC9Fr51ye2G8/GDMGPvkkXGF8/nnSEblcivPjfwFwi6Re0ZVGi+otR7HtB9wdPb8b2D9H53HONdDuu8O4cfDttyFhTJuWdEQuV2QZTi0paWX0NPUDIgzsLmlUENKnwLzo2P80s1slzTezzin7zDOzLjU+NxwYDlBaWlpWUVHR4Biqqqro2LHwF/0rlnqA1yUf1VWP6dM7cPrpW2MGV1wxhT59qhKILp5i+U6gcXUpLy+fnHJHp25mltEG9Kpry/QY9Rx7rehxTeA/QH9gfo195tV3jLKyMmuMysrKRn0+XxRLPcy8LvmovnpMm2bWs6dZp05mr7zSdDE1VLF8J2aNqwswyTL4nY6zUl7O7kia2ZfR4xxJjwHbA99I6mFmX0nqAczJ1fmdc4230UYwcSL86lcwZEhoy+jQIemoXLZknCwgLHgEDADW4KcTDB7Z0AAkdQBamNn30fNBwAhgNHAUcFn0+ERDz+GcaxrrrgsvvwwffeSJothk3Dgt6Tzgn9FnDga+A/YE5jcyhlJgoqT/AG8CT5vZs4QksYekj4E9otfOuTxXWhoauyFMbX7TTcnG47IjzpXFMcAeZjZV0tFm9mdJDwLnNCYAM/sE2LqW8u+A3RtzbOdccszg+edh5Uo48URfD6PQxUkWnc1savR8qaRWZvampAG5CMw5V9gkePjhsBZGixbw3XfQqVOY8twVnji5foakzaPnU4ETJR1B6PLqnHM/07IltG0LS5bAbrvBQQfB4sVJR+UaIk6yOAfoFj0/CzgZuAI4NdtBOeeKS5s2cNxxMHo0DBoE8/xPzIITp+vsmJTnbwB9chKRc64onXQSrLkm/Pa30L8/PPssrL120lG5TNWbLCStn8lBokZq55yr1yGHQLdusP/+sNNOMHZsWIXP5b90VxbTCVNwqJ59DGjUdB/OueZj993hpZdgr71Cwnj88XCl4fJbvW0WZtbCzEqix7o2TxTOuVi23RZefz2MydhjD3jggaQjcunE7vksaV1Jv5TUMxcBOeeah/XWg1dfhV/+MrRfuPyWcQN3ND9TBfBLwujtbpJeBw6rntvJOefi6NIltFtU+/JL6N4dWrVKLiZXuzhXFrcQZoTtYmY9gC7A28A/chGYc655aNMmbD/+COXlcGSDZ5pzuRRnLOUuQA8zWwZgZosknQ7MzklkzrlmpW1bOPNM2HDDpCNxtYlzZTEP2KxG2cY0fiJB55wD4OijYZddwvPrroO33ko2HrdKnGRxOfC8pMsknSjpMmBcVO6cc1mzcCFce23oUvvgg0lH4yBGsjCz24BDCWtZ7BM9DjWzW3MUm3OumVp9dXjzTdhuOzj8cDjnnDB7rUtOrPkfzexF4MUcxeKcc//TvXuY4vz3v4eLL4b33oN774UiWTa74KRNFpLOTbePmY3ITjjOObdK69Zw222w5ZZw6qmw885hMsJevZKOrPnJ5MrifGAa8Ba1T/th2QzIOedSSXDKKWEOqUMPDbemRo1a1RDumkYmyeJU4AigH3A3cJ+ZeXdZ51yT2nNPeOMN2GefMBZj2jQfvNeU0jZwm9m1ZlYGHAR0BV6VNE7SbyW1yXmEzjkX2XjjkDCeeCIkiuXL4Ycfko6qeYjTG+p9MzsD2IAwcvsuYOfGnFxST0mVkj6Q9J6kU6Ly8yXNlvROtO3dmPM454pHly6hDQPg7LPDzLVVVcnG1BzEmRtqU+Ao4DBgBvA74NVGnn85cJqZ/VvSasBkSeOi964xsysbeXznXBHbbbewdKv3kMq9THpDnURIEu2Be4FdzeyLbJzczL4Cvoqefy/pA8DXznLOZWTw4LABvP02PPlkGJPRIvZ82i4dmdXfmUnSSkJvqEnU0fPJzBo99Zek3sAEYAtCo/owYGF03tPM7Ger9koaDgwHKC0tLauoqGjw+auqquhYBH+eFEs9wOuSj/K5Hrffvh7339+LsrK5nH32h3TturTe/fO5LnE1pi7l5eWTzaxfuv0ySRbnk6Z7rJldECu6n5+jI/AScLGZjZJUCnwbnfdCwgSGx9R3jH79+tmkSZMaHMP48eMZOHBggz+fL4qlHuB1yUf5XA8zGDkSTj4ZVlstDOAbNKju/fO5LnE1pi6SMkoWaW9Dmdn5DYogQ5JaAY8C95vZqOic36S8fxvwVC5jcM4VPgmOPTYspnTooaGr7ZlnwogR3sU2GxK9sydJwEjgAzO7OqW8R8puQ4CpTR2bc64wbb55mFdq+HC47LIwGeFnnyUdVeFLuhloZ8KAv91qdJO9XNK7kqYA5cCfE43SOVdQ2reHf/4TKirg/fehb1947LGkoypssSYSzDYzm0jtU4iMaepYnHPFp3p6kKFDYdmypKMpbBklC0klwHmEBugluQ3JOeeyZ/314dVXoaQkvL7jDlh77bCUq8tcRrehzGwF8AfAc7NzruBUJ4oVK+Cmm+Dmm5ONpxDFabO4GzghV4E451yulZTAxIlw553h9fTpMGFCsjEVijjJYnvgOkmfSXpZ0oTqLVfBOedctrVrB127hucjRsCAAXD88TB/frJx5bs4Ddy3RZtzzhWFW26BNdeEa64JU4XccAMccEAYs+F+KuNkYWZ35zIQ55xrah06wJVXht5Sxx4LBx0E++0HN94I66yTdHT5JePbUAqOk/RiNP4BSf0lHZK78JxzLvfKysJAvr//HcaODavyXXYZLPG+n/8Tp81iBGFa8luBdaOyWcAZ2Q7KOeeaWqtWcPrp8N57sMcecNZZsMMOsHJl0pHlhzhtFsOAbczsW0m3RGWfAutnPSrnnEvI+uuH0d7PPQezZoXpzs3g88+hd++ko0tOnCuLEqB6ParqWWg7ppQ551zRGDQIjonmun7kEejTJwzua67iJIsxwNXV625HkwBeCDyZi8Cccy5fDBgA550XbktBGKvR3LraxkkWpwJrAQuAToQril7AmTmIyznn8kZpKfztb2FQ35IloXvt+uvDpZfCggVJR9c0Mk4WZrbQzPYnNG7vCGxgZkPMbGHOonPOuTzTpg2MGxfWzTj7bOjVKySSb79NOrLcitN19m0AM5tjZm+Z2ddRecOXp3POuQK09dbw9NMwaRLsvjtcdFFo/D7tNJg5M+nociPObag+NQuidgvvDeWca5bKyuDRR0N32yFD4LrrYL314MAD4Ycfko4uu9J2nZV0T/S0dcrzar2B97IdlHPOFZLNNgtrfl94YZhCZOrUsAATwPjxYfGlzp0TDbHRMhlnMaOO5wa8AjyS1Yicc65A9e4dRoFXmzcP9toLjjsOrr8+jNdYsQJaJrrsXMOkDdnMLgCQ9LqZjc19SM45Vxw6dw5ToFfPcjtxIhxySOhNtf/+oUtu69bJxpipOBMJjpXUGtgYWIOU5VDN7MUcxOaccwVNCsu6VmvfHnbeGe66KyzA1KkT/PrX4eqjvDys4JevMk4WknYh3HJqA6wOLARWA74gR43ckgYD1xFGj99uZpfl4jzOOdcUysrgX/+CxYvh+efh8cdh9Gh44IHw/kYbhaRxww1hrqp8EufO2TXA5WZ2jaR5ZtZV0rlATtr8o3W/bwL2IExY+Jak0Wb2fi7O55xzTaVdO9hnn7CtWAFTpkBlJbz4Irz00qpEccwxsGgRPPRQeD1hAqy2GvToAd26NW1CiZMsNiL8lZ/qMsJkgldmLaJVtgemm9knAJIqgP0ATxbOuaJRUgLbbBO2U08NjeDVNtwwXIVUO/LIMKFhtc6dw5xVV1yR+zhlqZHVt6M0E9jKzOZLeh84CPgO+MjMOmU9MOkgYLCZHRu9PgLYwcxOStlnODAcoLS0tKyioqLB56uqqqJjx46NCzoPFEs9wOuSj4qlHlCYdZk+vQOzZ7dn3rxWLFgQNoBjjnmnwXUpLy+fbGb90u0X58piFLA38AAwEqgElpG7rrO1LWz4k8xmZrcS1tegX79+NnDgwAafbPz48TTm8/miWOoBXpd8VCz1gMKsS13hjh8/Ped1idMb6k8pz6+S9AahgTtX3WlnAT1TXq8DfJmjcznnnKtH2uk+JB0i6Rc1y81sopk9Y2a5WkfqLWBDSetFXXYPA0bn6FzOOefqkcmVxUXABpJmABOAl4AJZvZ5/R9rHDNbLukkwpVLCXCHmfnUIs45l4BMRnBvJKkU6B9tpwF3SppNlDzM7PZcBGdmYwiLLjnnnEtQRrPOmtk3ZvaImf3RzPoSRnBXj4H4Zy4DdM45l7yMGrijqcj7surqYidCY/PDwMs5i84551xeyGSK8qeAbYFpwERCV9VhZvZ9jmNzzjmXJzK5DbUxsIQwUnsGYVS1JwrnnGtGMhrBXaOBe1dCm8UrhFtQE83snVwGmQlJ/wUa00NrDaAYVtEtlnqA1yUfFUs9wOtSrZeZdU+3U8bTffzkQ1JnwjQbpwLdzawkfnz5RdKkTIa857tiqQd4XfJRsdQDvC5xNbSBexegMzAJuCNn0TnnnMsLmTRwP03o/dQaeIMwKO9G4DUz+zG34TnnnMsHmVxZvAxcDLxlZstyHE+Sbk06gCwplnqA1yUfFUs9wOsSS4PaLJxzzjUvGY3gds4517x5snDOOZdWs08WkgZLmiZpuqQzk46nMSR9JuldSe9ImpR0PHFIukPSHElTU8q6Shon6ePosUuSMWaijnqcL2l29L28I2nvJGPMlKSekiolfSDpPUmnROWF+L3UVZeC+m4ktZX0pqT/RPW4ICpfT9Ib0XfyULSsQ3bP3ZzbLCSVAB8RJkScRVhDY6iZFeQ635I+A/qZWcENNJLUH6gC7jGzLaKyy4G5ZnZZlMi7mNkZScaZTh31OB+oMrNcrFWfM5J6AD3M7N+SVgMmA/sDwyi876WuuhxCAX030TCGDmZWJakVYQqmUwhj3kaZWYWkfwD/MbNbsnnu5n5lsT1h+pJPzGwpUAHsl3BMzZKZTQDm1ijeD7g7en434R93XqujHgXJzL4ys39Hz78HPgDWpjC/l7rqUlAsqIpetoo2A3YD/hWV5+Q7ae7JYm3gi5TXsyjA/4FSGPCcpMmShicdTBaUmtlXEP6xA2smHE9jnCRpSnSbKu9v29QkqTewDWGsVUF/LzXqAgX23UgqkfQOMAcYR5izb76ZLY92ycnvWHNPFqqlrJDvy+1sZtsCewF/iG6JuOTdAmxAmAXhK+CqZMOJR1JH4FHgT2a2MOl4GqOWuhTcd2NmK6J1hdYh3B3ZtLbdsn3e5p4sZgE9U16vQ1inoyCZ2ZfR4xzgMcL/SIXsm+hec/U95zkJx9Mg0eJhK6L16m+jgL6X6L74o8D9ZjYqKi7I76W2uhTyd2Nm84HxwI5AZ0nVg6xz8jvW3JPFW8CGUU+C1sBhwOiEY2oQSR2ihjskdQAGAVPr/1TeGw0cFT0/CngiwVgarPqHNTKEAvleosbUkcAHZnZ1ylsF973UVZdC+24kdY8mckVSO+BXhPaXSuCgaLecfCfNujcUQNRV7lqgBLjDzC5OOKQGkbQ+4WoCwjQuDxRSXSQ9CAwkTLX8DXAe8DhhNcZ1gZnAwWaW143HddRjIOE2hwGfAcdX3/PPZ5J2IUz38y6wMio+m3Cvv9C+l7rqMpQC+m4kbUVowC4h/LH/sJmNiP79VwBdgbeB35rZkqyeu7knC+ecc+k199tQzjnnMuDJwjnnXFqeLJxzzqXlycI551xaniycc86l5cnCOedcWp4sXLMn6WxJtzfBeQZKWimpStLgBh7jH5L+luG+F0haJMlSRvc61yA+zsIVPUlVKS/bA0uAFdHr483s/iaKYyBwn5mt0xTni87ZG/gUaJUy0ZxzsflfG67omVnH6ufRmh/HmtnzyUXkXOHx21Cu2YtWS7svet47um1ztKQvJM2TdIKk7aJprOdLurHG54+JVmCbJ2mspF4xzj1M0iuSromO/YmknaLyLxRW3TsqZf+7JF0UPR8oaZak06L9vpJ0dLb+uziXypOFc7XbAdgQOJQwd9hfCZO2bQ4cImkAgKT9CXMMHQB0J8w/9GADzjUF6AY8QJjjZzugD/Bb4MZoau3a/ALoRFi/4HfATYWwJoMrPJ4snKvdhWb2o5k9BywCHjSzOWY2m5AQton2Ox641Mw+iNoELgH6xrm6AD41szvNbAXwEGHa/BFmtiQ6/1JC4qjNsmjfZWY2hrCk68ZxK+tcOp4snKvdNynPF9fyuvov/V7AddEtpPmEJVVFvJXKah4bM6vrfDV9V6Ph+od69nWuwbyB27nG+QK4uKl6VDmXFL+ycK5x/gGcJWlzAEmdJB2ccEzOZZ1fWTjXCGb2WNT4XBG1UywAxgGPJBuZc9nlg/KcayKS+gNjCYMCDzWzsTk+33nAqUAboEPUgO5cg3iycM45l5a3WTjnnEvLk4Vzzrm0PFk455xLy5OFc865tDxZOOecS8uThXPOubT+P9U8rSwb8sr6AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 2 }