{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "ChEn-1070: Introduction to Chemical Engineering Spring 2019 UMass Lowell; Profs. Manohar and de Almeida **29Oct2019**\n", "\n", "# Laboratory Work 05 29Oct2019\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Name: `your name`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Rubric for each assignment: \n", "\n", "| Context | Points |\n", "| ----------------------- | ------- |\n", "| Precision of the answer | 80% |\n", "| Answer Markdown readability | 10% |\n", "| Code readability | 10% |\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### <span style=\"color:red\">Guidance:</span>\n", " + <span style=\"color:red\"> \n", " Save your work frequently to a file locally to your computer.\n", " </span>\n", " + <span style=\"color:red\">\n", " During your work and before submitting the final version do: `Kernel` -> `Restart & Run All`, to verify your notebook runs correctly.\n", " </span>\n", " + <span style=\"color:red\">\n", " Save your file again.\n", " </span>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 1 (20 pts).</span>\n", "### <span style=\"color:blue\">Using `mendeleev` and `scipy.constants`, calculate \n", " + the molar mass of H$_2$SO$_4$ (g/mol) with 5 significant figures,\n", " + the molar mass of H$_2$O (g/mol) with 5 significant figures, \n", " + the number of atoms in one mole of each substance with 7 significant figures.\n", "\n", "</span>" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "molar mass H2SO4 [g/mol] = 9.8072e+01\n", "molar mass H2O [g/mol] = 1.8015e+01\n", "# of atoms per mole of H2SO4 = 4.215499e+24\n", "# of atoms per mole of H2O = 1.806642e+24\n" ] } ], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 2 (20 pts).</span>\n", "### <span style=\"color:blue\">Using `mendeleev` and `scipy.constants`, compute the values of:\n", " + Boiling point (Celsius)\n", " + Evaporation heat in one mole (Btu)\n", " + mass density (lb/in$^3$)\n", " \n", "### <span style=\"color:blue\"> for sodium using 6 significant figures</span>" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Na boiling point [C] = 8.82950e+02\n", "Na heat capacity [Btu] = 9.27913e+01\n", "Na mass density [lb/in^3] = 3.50796e-02\n" ] } ], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 3 (20 pts).</span>\n", "### <span style=\"color:blue\">Using `mendeleev` and `scipy.constants`, compute the energy density $\\rho\\,c_p\\,\\Delta T$ for iron where:\n", " + $\\rho$ is the mass density\n", " + $c_p$ is the heat capacity\n", " + $\\Delta T = 86.7$ K\n", " \n", "### <span style=\"color:blue\"> and express the result in Btu/in^3 using 6 significant figures</span>" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fe energy density [Btu/in^3] = 4.69725e+00\n" ] } ], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 4 (20 pts).</span>\n", "### <span style=\"color:blue\">Using `mendeleev` and `scipy.constants`, compute the mole flow rate per minute of 9.45 L/min of dodecane when its mass density is 0.75 g/cc; use 4 significant digits.</span>" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "molar flow rate [mole/min] = 4.161e+01\n" ] } ], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## <span style=\"color:blue\">Assignment 5 (20 pts).</span>\n", "### <span style=\"color:blue\">In a mixture of ethanol and water, their mass concentrations are 0.45 g/cc and 0.83 g/cc, compute the molar density of the solution in mol/L. Using `mendeleev` and `scipy.constants`, present the result with 5 significant figures.</span>" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution molar density [mol/L] = 5.5841e+01\n" ] } ], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 2 }