{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "ChEn-3170: Computational Methods in Chemical Engineering Spring 2020 UMass Lowell; Prof. V. F. de Almeida **23Mar20**\n", "\n", "# Laboratory Work 08 (24Mar20) Session 802\n", "$\n", " \\newcommand{\\Amtrx}{\\boldsymbol{\\mathsf{A}}}\n", " \\newcommand{\\Bmtrx}{\\boldsymbol{\\mathsf{B}}}\n", " \\newcommand{\\Cmtrx}{\\boldsymbol{\\mathsf{C}}}\n", " \\newcommand{\\Mmtrx}{\\boldsymbol{\\mathsf{M}}}\n", " \\newcommand{\\Smtrx}{\\boldsymbol{\\mathsf{S}}}\n", " \\newcommand{\\Imtrx}{\\boldsymbol{\\mathsf{I}}}\n", " \\newcommand{\\Pmtrx}{\\boldsymbol{\\mathsf{P}}}\n", " \\newcommand{\\Qmtrx}{\\boldsymbol{\\mathsf{Q}}}\n", " \\newcommand{\\Lmtrx}{\\boldsymbol{\\mathsf{L}}}\n", " \\newcommand{\\Umtrx}{\\boldsymbol{\\mathsf{U}}}\n", " \\newcommand{\\xvec}{\\boldsymbol{\\mathsf{x}}}\n", " \\newcommand{\\yvec}{\\boldsymbol{\\mathsf{y}}}\n", " \\newcommand{\\zvec}{\\boldsymbol{\\mathsf{z}}}\n", " \\newcommand{\\avec}{\\boldsymbol{\\mathsf{a}}}\n", " \\newcommand{\\bvec}{\\boldsymbol{\\mathsf{b}}}\n", " \\newcommand{\\cvec}{\\boldsymbol{\\mathsf{c}}}\n", " \\newcommand{\\rvec}{\\boldsymbol{\\mathsf{r}}}\n", " \\newcommand{\\gvec}{\\boldsymbol{\\mathsf{g}}}\n", " \\newcommand{\\norm}[1]{\\bigl\\lVert{#1}\\bigr\\rVert}\n", " \\DeclareMathOperator{\\rank}{rank}\n", " \\DeclareMathOperator{\\abs}{abs}\n", "$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Name: `your name`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Rubric for each assignment: \n", "\n", "| Context | Points |\n", "| ----------------------- | ------- |\n", "| Precision of the answer | 80% |\n", "| Answer Markdown readability | 10% |\n", "| Code readability | 10% |\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Guidance:\n", " + \n", " Save your work frequently to a file locally to your computer.\n", " \n", " + \n", " Before submitting, `Kernel` -> `Restart & Run All`, to verify your notebook runs correctly.\n", " \n", " + \n", " Save your file again.\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "### Table of Contents\n", "* [Assignment 1 (100 pts)](#a1) Reaction rates for silicon vapor deposition.\n", " - [1.1)](#a11) Import reaction mechanism.\n", " - [1.2)](#a12) Species and stoichiometric data.\n", " - [1.3)](#a13) Compute rank.\n", " - [1.4)](#a14) Compute reaction rates for given production rates; explain.\n", " - [1.5)](#a15) Provide a production rate vector that allows for an infinite number of reaction rates, and compute a unique one.\n", " ---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assignment 1 (100 pts): For each item below respond in a separate notebook cell. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "1.1)\n", "Import the following reaction mechanism for silicon vapor deposition from the course repository `data/silicon-rxn.txt` and display the reactions.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "r0 : SiH4 <=> SiH2 + H2\n", "r1 : SiH4 <=> SiH3 + H\n", "r2 : SiH4 + SiH2 <=> Si2H6\n", "r3 : Si2H4 + H2 <=> SiH4 + SiH2\n", "r4 : SiH4 + H <=> SiH3 + H2\n", "r5 : SiH4 + SiH3 <=> Si2H5 + H2\n", "r6 : SiH4 + SiH <=> SiH3 + SiH2\n", "r7 : SiH4 + SiH <=> Si2H5\n", "r8 : SiH4 + Si <=> 2 SiH2\n", "r9 : Si + H2 <=> SiH2\n", "r10 : SiH2 + SiH <=> Si2H3\n", "r11 : SiH2 + Si <=> Si2H2\n", "r12 : SiH2 + Si3 <=> Si2H2 + Si2\n", "r13 : H2 + Si2H2 <=> Si2H4\n", "r14 : H2 + Si2H4 <=> Si2H6\n", "r15 : H2 + SiH <=> SiH3\n", "r16 : H2 + Si2 <=> Si2H2\n", "r17 : H2 + Si2H3 <=> Si2H5\n", "r18 : Si2H2 + H <=> Si2H3\n", "r19 : Si + Si3 <=> 2 Si2\n", "n_reactions = 20\n" ] } ], "source": [ "'''1.1 Import reaction mechanism'''\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "1.2) Make an organized output of the species and stoichiometric data.\n", "" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Si2H5', 'SiH4', 'Si2', 'Si2H2', 'SiH2', 'Si3', 'SiH', 'Si2H4', 'Si', 'Si2H3', 'SiH3', 'H2', 'H', 'Si2H6']\n", "# species = 14\n", "\n", "s_mtrx =\n", " [[ 0. -1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", " [ 0. -1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0.]\n", " [ 0. -1. 0. 0. -1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", " [ 0. 1. 0. 0. 1. 0. 0. -1. 0. 0. 0. -1. 0. 0.]\n", " [ 0. -1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. -1. 0.]\n", " [ 1. -1. 0. 0. 0. 0. 0. 0. 0. 0. -1. 1. 0. 0.]\n", " [ 0. -1. 0. 0. 1. 0. -1. 0. 0. 0. 1. 0. 0. 0.]\n", " [ 1. -1. 0. 0. 0. 0. -1. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. -1. 0. 0. 2. 0. 0. 0. -1. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0. 1. 0. 0. 0. -1. 0. 0. -1. 0. 0.]\n", " [ 0. 0. 0. 0. -1. 0. -1. 0. 0. 1. 0. 0. 0. 0.]\n", " [ 0. 0. 0. 1. -1. 0. 0. 0. -1. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 1. 1. -1. -1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 0. -1. 0. 0. 0. 1. 0. 0. 0. -1. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. -1. 0. 0. 0. -1. 0. 1.]\n", " [ 0. 0. 0. 0. 0. 0. -1. 0. 0. 0. 1. -1. 0. 0.]\n", " [ 0. 0. -1. 1. 0. 0. 0. 0. 0. 0. 0. -1. 0. 0.]\n", " [ 1. 0. 0. 0. 0. 0. 0. 0. 0. -1. 0. -1. 0. 0.]\n", " [ 0. 0. 0. -1. 0. 0. 0. 0. 0. 1. 0. 0. -1. 0.]\n", " [ 0. 0. 2. 0. 0. -1. 0. 0. -1. 0. 0. 0. 0. 0.]]\n", "m x n = (20, 14)\n", "matrix shape = (20, 14)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMcAAAEJCAYAAAAgkDO2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAE8BJREFUeJzt3X/wHHV9x/Hny0DQIpYfEfgm/FQjShkJkglU1AZRBIaKIlZSFHRwEqlYnZG2qBUCzLSoRTsaq4mYAVuMWBGNSoUUdZAWlJiCgICJ+EW+JCYqCMSAGHz3j/0cHvfdT753t3ff2/vm9Zj5zt3tfm73fXf7+u7e7t5nFRGY2XjPGHQBZnXlcJhlOBxmGQ6HWYbDYZbhcJhlbLfhkPRdSUvabDtfUkiaUaVNHQ1r3Q2SDkj1z+31tGsdDknPlfRvkkYl/U7SRknXS3pNU5tRSed0MfmTgff3rlr+FxgBft3DaXZF0mWSvtFm80p1Ny2cT0rar2XcbpIe73ThlbRY0h1tNr+fov5bOyi7LbUOB3AVMA84E3ghcCLwX8AeVSccEQ9GxKNVp9M0vSci4hcxREdVJe3Yw7ofAN7eMuw0YGPF6WZJmh4RT6b6t/Z8BhFRyz9gVyCAV2+jzXdTm6f+msadDNwO/I7iv8sHAbU8d0nT4+nAPwH3pefcC/xtGjc/Tf8Y4PvAFmA18NKm5zfazOighlHgPOAy4NHU5s3ptX8R2AysBY5ted0HA99Mz9kErAD2TuMWt74nqbYD0v0FwLeBx4CzM3Ufmdr8FngYuB6YmfkMGtO9EPhZy+v7P+CCNH5u0/CLgXtSDaPAR4BnpnFvK6n/bWlcAO8CvpJq+5em+c9NbT4E/ALYs2l+K4A1wPSOlsFBh2AbC/4O6cP/ROONK2mze1qgLgD2blpADgeeTMNfSPEfbDPw7m2EYwUwBrwReB5wNHB6y4L/gzT8RcC1wF2NhaF1IWuzhlHgQeBvgNnAJcDjwDXA6cALgM9RBKCx8IwAvwI+DLwYeAnw9VTbM4BnA1cCqxrvCUXwGwvRKHAKcCCwT0ndh6aFdhkwJ81jEbDfBOE4EtgAHJOGH5Y+vz9jfDg+BByVnnsC8HPgojTuWRQL/d1N9T+rKRybgHekz+hAxodjGvA94Bvp8ekU/8xe1PEyOOgQTBCQN6aF53HgpvSmHdHSZhQ4p2XYFcC3W4YtBsbKwpEWzACOy9TRWIBe2zTsqDRsn0w42qlhFFjR9PjZaRqfKFn4Gh/+hcD1LdPdLbWZlx5f1lg4Sqbzvsxra6775g4+o6fqowjsFWn4EuDS1voz03gnsK7lfbqjpF0An8zNv2nY/sBvKNZIjwBndbP81fo7R0RcBcwE/pLiu8bLgJslfWCCp74Y+J+WYTcCsyQ9p6T9YcAfgO9MMN0fNd1fn273rFjDU9OMiM0U/+Vubxrf2GZvzOdw4JWSNjf+KNaeAM+foH4oNge35TCKzahuLAfeIGlv4K8p1nrjSDpF0o2SfpHq/ziwX1nbEhPVT0TcB7wH+Dvghoj4dJvTfppahwMgIh6PiFURcWFEvIziDV8safo2niaK/yalk8y0b8fvS6aTew/breH3JeO2NZ9nUHzfmNPyNxtoZw/VbycY3+57MU5E3EOxbb8C2BgRN42buHQkxfepayn+6R0G/COwY5uzmaj+hldSbNbuJ2mnNp/zNLUPR4kfU3wfeWZ6/ATFdmZrm5e3DHs5xSZN2R6qNRTvxdE9rrOTGtq1hmI7/r6IWNfy15hu2XvSyfRfVaG+z1FsqpWuNSg2Rx+IiIsi4paIWEuxGdSsSv1IOpniO96rgOcA/9zNdGobDkl7SPq2pLdIeomkAyW9Cfh7im3uR1LTUeAVkmY1Hci6BPiLtL/8hZJOA95HsQ06TvqAvgRcKumNaV6vkPTWCi+hoxo68CngT4ErJR0h6XmSXi1pmaRdUptR4BBJB0maIand/8oAHwUOS9M7NE3jHa3HMLbh88BzgX/NjP8Jxablaan2syj2oDUbBfaX9NJUf9v/+SXNBD4LfCAibgDeAry7+dhY2/r1ZbrqH7ATxa7VW4CHKLbF1wIfA3ZvanckcBvFl/ZoGt7YjfoE7e3K3YliwX2AYtfrT4Gzy760Zr4ol7WZqIZRxu9M2EzadZkePzNN98SmYbOBL6f35TGK3aKfJO2qpFg4r6PYW9S6K3duy/zK6n45cEOa9m+A/wZGJvpC3u54iv/kv0yv9SvAWS2f3U5Nr691V+4puelTbBKuSvU2v88Xpc91j06WwcZuSDNrUdvNKrNBczjMMhwOswyHwyxjh0EXUEZS23sJRkZG2p7uhg0buqpnGGoYJnV4vyJiwoOdtQxHJxYtWtR228WLF0/ZGobJsLxf3qwyy6gUDknHSbpH0jpJ55aM30nSlWn89yUdUGV+ZpOp63BImkZxKsPxFD++WSDp4JZmZwIPRcQLKM68/HC38zObbFXWHPMozsG/NyKeoDjT8qSWNicBl6f7XwaOkdT1WZ9mk6lKOGbxx98RQPErulm5NlH8xvdhMr//lrRQ0mpJE56vbzYZquytKlsDtO6CbadNMTBiGcVPMzvalWvWL1XWHGPAvk2P9+GPv44b10bSDhSnWj9YYZ5mk6ZKOG4BZqffPkwHTgVWtrRZCZyR7p9C8ZtqrxVsKHS9WRURWyWdTfFzx2nA8oi4U9KFwOqIWEnxa7B/l7SOYo1xai+KNpsMlY6QR8Q1FN3INA87r+n+48CbqsxjGPiod2fvQR3atsNHyM0yHA6zDIfDLMPhMMtwOMwyHA6zDIfDLMPhMMtwOMwyHA6zjKHvYKEOBnmKQ13063X1471dunRpW+285jDLcDjMMhwOswyHwyzD4TDLcDjMMhwOs4wqPR7uK+k7ku6SdKek95S0mS/pYUm3pr/zyqZlVkdVDgJuBd4XEWvSVUx/KGlVRPy4pd33IuLECvMxG4iu1xwRsSEi1qT7jwJ3Mb7HQ7Oh1ZPTR1Lv6YcB3y8Z/eeSbqPo8O2ciLgzM42FwMJe1LO9GbbTV4al95HK4ZD0bOAq4L0R8UjL6DXA/hGxWdIJwFcprqE9jrsDtbqpen2OHSmCcUVEfKV1fEQ8EhGb0/1rgB0lzagyT7PJUmVvlSh6NLwrIj6WabN345IDkual+f2623maTaYqm1VHAW8Fbpd0axr2AWA/gIj4DEX/uGdJ2go8BpzqvnJtWFTpK/dGyi8x0NxmCbCk23mYDZKPkJtlOBxmGQ6HWYbDYZbhcJhlqI57Vjs5Qj5sp05MVXV4bzupISImvOS31xxmGQ6HWYbDYZbhcJhlOBxmGQ6HWYbDYZbhcJhlOBxmGbW8PsfIyAiLFi0adBlWA4M88u41h1mGw2GWUTkckkYl3Z66+1xdMl6SPiFpnaQfSXpp1XmaTYZefec4OiJ+lRl3PEVfVbOBI4BPp1uzWpuMzaqTgM9H4WZgV0kjkzBfs0p6EY4ArpP0w9SlZ6tZwP1Nj8co6VNX0kJJqyWt3rJlSw/KMqumF5tVR0XEekl7Aqsk3R0RNzSNL/tRybgfMzV3Bzpz5sz6/QLLtjuV1xwRsT7dbgKuBua1NBkD9m16vA9Fp9JmtVa1r9yd07U5kLQzcCxwR0uzlcDpaa/VkcDDEbGhynzNJkPVzaq9gKtTd7g7AF+IiG9Jeic81SXoNcAJwDpgC/D2ivM0mxSVwhER9wKHlgz/TNP9AN7VyXQ3bNjQ9mkDw/bD/n60rcN70IlhqddHyM0yHA6zDIfDLMPhMMtwOMwyHA6zDIfDLMPhMMtwOMwyHA6zDPc+0gPDcjpEP03F98BrDrMMh8Msw+Ewy3A4zDIcDrMMh8Msw+Ewy+g6HJIOSl2ANv4ekfTeljbzJT3c1Oa86iWbTY6uDwJGxD3AHABJ04AHKLrmafW9iDix2/mYDUqvNquOAX4aEff1aHpmA6eic5CKE5GWA2siYknL8PnAVRQdu60HzomIOzPTWAg0uhM9vN1596vnj0508h6mbowGpg7vVx1ExIQfRC8uQTAdeB3wnyWj1wD7R8ShwCeBr+amExHLImJuRMytWpNZL/Ris+p4irXGxtYREfFIRGxO968BdpQ0owfzNOu7XoRjAbCibISkvZW2IyTNS/P7dQ/madZ3lU5Zl/QnwGuARU3DmrsCPQU4S9JW4DHg1OjFlxyzSVC1O9AtwB4tw5q7Al0CLGl9ntkw8BFyswyHwyzD4TDLcDjMMhwOs4xa9j7SiTqc4nDBBRcMuoShMiynsHjNYZbhcJhlOBxmGQ6HWYbDYZbhcJhlOBxmGQ6HWYbDYZbhcJhlDP3pI1NZu6dO9Ot0jDq0HSSvOcwy2gqHpOWSNkm6o2nY7pJWSVqbbnfLPPeM1GatpDN6VbhZv7W75rgMOK5l2LnA9RExG7g+PX4aSbsD5wNHAPOA83MhMqubtsIRETcAD7YMPgm4PN2/HHh9yVNfC6yKiAcj4iFgFeNDZlZLVb5z7BURGwDS7Z4lbWYB9zc9HkvDzGqv33uryvojLe23qqWvXLOBq7Lm2ChpBCDdbippMwbs2/R4H4oOpcdxX7lWN1XCsRJo7H06A/haSZtrgWMl7Za+iB+bhpnVXru7clcANwEHSRqTdCZwMfAaSWspugS9OLWdK+lSgIh4ELgIuCX9XZiGmdVeW985ImJBZtQxJW1XA+9oerwcWN5VdWYD5NNHMupwikM/apiKp3n0i08fMctwOMwyHA6zDIfDLMPhMMtwOMwyHA6zDIfDLMPhMMtwOMwyVMfLgkvqS1HDdjrEsNU7TCKi7LdGT+M1h1mGw2GW4XCYZTgcZhkOh1mGw2GW4XCYZUwYjkw/uR+VdLekH0m6WtKumeeOSrpd0q2SVveycLN+a2fNcRnju/BcBRwSES8BfgK8fxvPPzoi5rg/Khs2E4ajrJ/ciLguIramhzdTdNZmNqW0dfqIpAOAb0TEISXjvg5cGRH/UTLuZ8BDFF2ALo2IZduYR3N3oIe3U3w/DVMvHcNUa6c19Kvedk4fqdQ1j6QPAluBKzJNjoqI9ZL2BFZJujuticZJwVmWplu/E75su9P13qp0IZoTgdMis/qJiPXpdhNwNcU1OsyGQlfhkHQc8A/A6yJiS6bNzpJ2adyn6Cf3jrK2ZnXUzq7csn5ylwC7UGwq3SrpM6ntTEnXpKfuBdwo6TbgB8A3I+JbfXkVZn0w4XeOTD+5n8u0XQ+ckO7fCxxaqTqzAfIRcrMMh8Msw+Ewy3A4zDIcDrMMX7wmow6nWVhn2v3Mli5d2lY7rznMMhwOswyHwyzD4TDLcDjMMhwOswyHwyzD4TDLcDjMMnyEvMbaPeJbh6P5U7EGrznMMhwOs4xuuwNdLOmB9PvxWyWdkHnucZLukbRO0rm9LNys37rtDhTg46mbzzkRcU3rSEnTgE8BxwMHAwskHVylWLPJ1FV3oG2aB6yLiHsj4gngi8BJXUzHbCCqfOc4O/WyvlzSbiXjZwH3Nz0eS8NKSVooabV7Y7e66DYcnwaeD8wBNgCXlLQp64s0281nRCyLiLnujd3qoqtwRMTGiHgyIv4AfJbybj7HgH2bHu8DrO9mfmaD0G13oCNND99AeTeftwCzJR0oaTpwKrCym/mZDcKER8hTd6DzgRmSxoDzgfmS5lBsJo0Ci1LbmcClEXFCRGyVdDZwLTANWB4Rd/blVZj1QVvX55hs/boEQb9OcajDqRPDZFiuz+Ej5GYZDodZhsNhluFwmGU4HGYZDodZhsNhluFwmGU4HGYZDodZRi17HxkZGWHRokVtta3DqQhT1fb+3nrNYZbhcJhlOBxmGQ6HWYbDYZbhcJhlOBxmGe38hnw5cCKwKSIOScOuBA5KTXYFfhMRc0qeOwo8CjwJbHW3OzZM2jkIeBmwBPh8Y0BEvLlxX9IlwMPbeP7REfGrbgs0G5QJwxERN0g6oGycJAF/Bbyqt2WZDV7V00deAWyMiLWZ8QFcl3oTWRoRy3ITkrQQWNh4POjTEbb3Uyf6qV/vba8/h6rhWACs2Mb4oyJivaQ9gVWS7k4dU4+TgrMM+tc1j1knut5bJWkH4GTgylybiFifbjcBV1PebahZLVXZlftq4O6IGCsbKWlnSbs07gPHUt5tqFkttXNlpxXATcBBksYknZlGnUrLJpWkmZIaF7LZC7hR0m3AD4BvRsS3ele6WX+1s7dqQWb420qGrQdOSPfvBQ6tWJ/ZwPgIuVmGw2GW4XCYZTgcZhkOh1nGdnXxmk5ea3HaWO8N+rSUQc+/LnzxGrMKHA6zDIfDLMPhMMtwOMwyHA6zDIfDLMPhMMtwOMwyHA6zjLqePvJL4L6WwTOAqdj/1VR9XVDf17Z/RDx3oka1DEcZSaunYo+JU/V1wfC/Nm9WmWU4HGYZwxSObG+JQ26qvi4Y8tc2NN85zCbbMK05zCaVw2GWMRThkHScpHskrZN07qDr6RVJo5Jul3SrpNWDrqcKScslbZJ0R9Ow3SWtkrQ23e42yBo7VftwSJoGfAo4HjgYWCDp4MFW1VNHR8ScYT4ekFwGHNcy7Fzg+oiYDVyfHg+N2oeDomf2dRFxb0Q8AXwROGnANVmLdGmJB1sGnwRcnu5fDrx+UouqaBjCMQu4v+nxWBo2FTQu7vPDdPGeqWaviNgAkG73HHA9Hal68ZrJUNaFylTZ/9z2xX1s8g3DmmMM2Lfp8T7A+gHV0lPbwcV9NkoaAUi3mwZcT0eGIRy3ALMlHShpOsV1QVYOuKbKtpOL+6wEzkj3zwC+NsBaOlb7zaqI2CrpbOBaYBqwPCLuHHBZvbAXcHXqWXEH4AvDfHGfdJGj+cAMSWPA+cDFwJfSBY9+DrxpcBV2zqePmGUMw2aV2UA4HGYZDodZhsNhluFwmGU4HGYZDodZxv8DLKu4d/T93FsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "'''1.2 Species and stoichiometric data'''\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "1.3) Compute the rank of the stoichiometric matrix using your own algorithm.\n", "" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rank(S) = 12\n" ] } ], "source": [ "'''1.3 Compute rank'''\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "1.4) Given the following productions rate vector [mol/(s cc)],\n", " \n", "$\\gvec = \\begin{pmatrix}\n", " -2.772 \\\\\n", " 1.35 \\\\\n", " 0.692 \\\\\n", " -2.37 \\\\\n", " -2.266 \\\\\n", " -2.476 \\\\\n", " 0.124 \\\\\n", " -1.486 \\\\\n", " -0.553 \\\\\n", " 1.538 \\\\\n", " -1.407 \\\\\n", " -2.66 \\\\\n", " -0.831 \\\\\n", " -0.682\n", " \\end{pmatrix}\n", "$\n", " \n", " for the species: \n", "\n", " SiH, SiH2, Si3, SiH4, Si2H3, Si2, SiH3, Si2H5, H2, H, Si2H4, Si, Si2H2, Si2H6,\n", " \n", "compute a reaction rates vector and make a plot. Use your own algorithms and explain your work, that is, what is the meaning of your computed reaction rate vector? What problem are you solving to obtain the reaction rate vector from the given production rate vector? Do the production rate equations have a solution?\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "species ['Si2H5', 'SiH4', 'Si2', 'Si2H2', 'SiH2', 'Si3', 'SiH', 'Si2H4', 'Si', 'Si2H3', 'SiH3', 'H2', 'H', 'Si2H6']\n", "species production rates g_vec = [-1.486 -2.37 -2.476 -0.831 1.35 0.692 -2.772 -1.407 -2.66 -2.266\n", " 0.124 -0.553 1.538 -0.682]\n", "reaction rates r_vec= [ 0.083 -0.449 0.589 -0.406 -0.51 -0.342 0.775 0.35 0.662 0.579\n", " 0.386 1.236 -1.853 -0.335 0.183 0.692 -0.968 -0.12 -1.556 -0.306]\n", " ||r|| = 3.435e+00\n" ] } ], "source": [ "'''1.4 Compute a reaction rates vector'''\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAAJXCAYAAACkHiwnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYLFV5P/DvC4jiEjdwAxFcfi5JXPCKEpfgjiuuUTFxJRjUqImJYjSAWzQaE41bBGNQI3FHQFEUFYyiIsZdRBFv9AoKiksUFYHz+6NqpJnbM7fn3q47Pc3n8zzz9HRVdfV7qpfp/s45p6q1FgAAAAAYyjarXQAAAAAA800ABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABcClVNWJVdWmsJ9Dq6pV1d5TKAsu86pq7/41dehq18KlVdVbquqcqrrSateypapqfVWtX+06JlFVz6yq31bVzVa7FgA2TQAFMEf6L6etqi6uqhsts93HR7Z93FYs8TJjJIBrVfXkJbZ5XL/+RVu7vqH0X15bVe024fb3rKqjquqsqrqgqn5SVd+sqndV1dOqqibczxEjx3vh5/yq+npVvaKqdtqSdm0NVbVbX/cRq13LpEZCsdGf3/aP53ur6i5Tup+ZPTZVtS7JnyZ5aWvtlxPe5sQxx+0XVfXFqjqkqq48bNXDq6o9q+olVfXBqvpB38YNy2x/zarav38/OKOqflVVP6uqT1bVE6tq3PeW1yU5J8k/DdYQAKZmu9UuAICpuzDd+/sTk/zd4pVVdZMkfzyy3WKPSXLFKdTxmiRvT/LdKexrrTu0qv6ztfbz1S5kllTV3yV5cbrn4oeSnJ7kckl2T/ccfVi6L5gXrmC3Ryf5Yv/7tZPcN8lfJ3loVd22tfbj6VS/Kk5JcvMkP1rtQsb43yRH9L9fMcltkzw4yYOq6hGttXetVmFbwT8k+XmS12/Gbd+cZH2SSnK9JA9KcmiSB1bVXq21C6ZU42rYL8nTk/w2yWnpXo/LeXi6Y3h2ko+n+9tx7SQPSfLGJPepqoe31n7XQ7e19quqelWSf6yqP2qtnTz9ZgAwLQIogPnzw3Qf4B9fVQe31hZ/ed8/3Zed96f7snMprbWpBEattR9lNr8ob21nJLlxkmcnee4q1zIzquoGSV6Q7ov7nVprX1m0fpsk90xy0Qp3/b7W2hEj+7lCks8kuVWSpyZ5/haUvapaa+cn+cZq17GE9a21Q0cXVNVBSV6S5GVJ5jKAqqr/l+QeSd7YWvvVZuziiNbaiSP7OyjJl5PskeRR6QKqteqIdPV/rbV2wQRDu7+Z5IFJPtBau3hhYR9Un5LkoenCqPcsut1/pgsBn5xEAAUwwwzBA5hPhye5TpL7jy6sqssleWy6D+lfG3fDcXNAjc49U1W3rqoPVNVP+yFOJ1XVH43Zz9g5oPplJ1bVtavqTVX1w6r6ZVWdXFV37re5UlW9vKr+t6p+U1Vfq6qHT3of/bqxQ3ZGhmrtXlVP7Ydo/bofOvZ3C0O+qurhVXVKX9s5VfWaPsxYqVcnOSvJX1XVLpPeqKquW1Wv7eu6oKrO7Yc03XbMtgtD+R5XVfv0x/dno4/jNI/7lNw+ybZJPr44fEqS1trFrbXjR3s7bI7W2q+TvK2/ertx21TVLv3je2bf7h9X1TFVtdH2VXW9qjq4qj7VDyu6oLrhZkdW1c2XqqO64UjvqKrv9/dxdlV9uKr+pF9/aJLv9Js/ti49NOtx/TZLzgFVVTepbh6i74/U9Jbqejwu3vZ3r5uqelj/PD+/qs6rqrdX1c7LHtTJ/Xt/uVtV7biohomP4yTHZmTbe1fVcVX1o/44f7t/Tl9tzHG4ZVX9V/8a+03/Gvufqnplde+Vk3hCukD/HRNuv6y+h977+qvjnn8Pqqr/rG6Y6i+rG7b3+eqGq270ub4ueb/braqeVFVfqe797odVdVhVXXXS2qpqv/44nVZdgLyptnyxtfaFSXtxtdY+1lo7djR86pf/IMm/9Vf3HnO7s5L8d5KHVdXvTXJfAKwOPaAA5tN/JfnndL2d3jey/IHphjQclK5XzkqtS/KsJJ9ONyRi13T/lf5oVd26tXb6hPu5WpJPJfm/vtZrJHlkkuOraq8kb+iXvT/dkKxHJXlHVX2vtfaZzah7nH9K92Xm2CQfTndsXpxk+6o6L8lL0x27/07XE+cp6QKTA1d4P+cn+ft0X8ZfnC4AXFZV7Z7kk+mG5Hws3TG6frohKverqoe21t4/5qYPS7JPkg+m+8K226L1s3DcFywMhbthVW3bWltpT6eVWJhH6rcbrajaI93jf40kxyd5b5Id0/UO/GRVPbi1dtzITe6S7vXz8XQ9MX6R5Cbpjv0Dq+qOrbUvLbqPP083tOiiJMck+VaSa6V7PT05yTuTnJju8Xl6ki/l0q/bL2YZfVB2QpKr9Pv/epKbJXl0kn2r6u6ttVPH3PTJ6Z73xyQ5KV0o+Igkt+pfz79Z7n5XaHFPzJUcxxMzwbGpqoPT9XA7L91z+Jwkt0zyN0nuW92Qtp/3294yyWeTtHTt/06S30v3vvjkJM/LmOfLGPdI97hO8/Wx5PM13fvSxelq/36Sqya5W5JXpQus/myJfb4syb1zyfvdXZP8ebr23m2TBVU9q7/vk5M8sLV23oRtmZaFY7HUcNxPpXs/v0u6xx6AWdRa8+PHjx8/c/KT7svUhv73N6b7sL7LyPoPJflZujlaXtRv/7hF+zix+/NwqWV799uO2/5J/fLXLVp+aL987zE1tnQByTYjy/+sX35eui9JVxhZd+d+3VGT3Ee/brd+3RGLlh/RL1+fZOeR5VdLN2Twl0nOTXLzkXWXT/el/jdJrjXhY7FQ2/7pehx/Kd0X1VuPbPO4fpsXLbrt8f3y5y5a/kf9Y/rjJFces5+Lk+yzzHNjKsd9E+1e399mt01sd6WRbT+RrifJ7yfZdjOf+wuP6+Ln5w7phjS1JM9ctG67dEMkf53kjxetu166L/hnJ7n8yPJrJbnKmPu/VboQ5YOLlt8i3Zfn85L8/pjbjb4+xz5nx7wODx1ZVunm12lJHr1o+0f0y7+x6DFfeG7+PMkfLrrNkf26P5nwuC/UdOKYdc/r131lzLqVHsdNHZu79utPTnK1ResWXh//MrLsFf2yfcfs6+qjx2sTz+ELx7VvgtuemPHvjzul6zHZkjx0zO1uNGbZNumGurUkt1/idfHdJLsueu5/ol+356LbrE83pHJh36/ut3tPRt4fNqPNv/v7tMLbbZfkK/3t773ENvv261+2ufX58ePHj5/hfwzBA5hfh6frsfOE5Hdz7twzydtaN5fM5vhUG5lfp/emdF/C9lzBfs5P8rft0kMtjuz3c/UkT2/d0KkkSWvtv9N9Kbr1ZtS8lBe21r4/ch8/TdcT4opJXt9aO21k3W/SDbHZPt0k0CvSt/NZ6b7MLXu2puqG6d0r3RfGly3az8m5pOfSQ8bc/OjW2oeW2f0sHPeFff8yXe+bL6YLuv49yVeT/F91wzqfXFWX34xdP6gfYnZoVb0u3cTmf5juy/biSaLvl+RGSV7dWjtpUX1npTv+10ly95Hl57TW/m9Me76UrrfaXRcN3zow3RfoF7bWNhr22lpb8qxgE/qjdL2dPt1ae9voitbaO9L1pLtpkjuNue2/to2HPx7eX67k9Zx0w+wWjvvLqupjSV6YLuR60uKNN+M4bsrT+ss/71/Lo/s8It3z7NFjbrfRvE2ttZ8seo0sZed077Fnr6DOxR7XH7PnV9Xh6cLE66brFXfUmNq+PWbZxel6QCVdL6dxXtBG5vdr3dyA/9FfHftYVzfk+N3p5k57TZKHj74/bEUvTfIHSY5rrR2/xDY/6C933TolAbA5DMEDmFOttc9W1VeSPKGqXpRLeuIcvvwtl7XRMJ7W2m+r6ofpAoxJfXPxl8/W2kX9fq7UWjtzzG2+n26I0LSMG5J0Vn/5+SXuP0kmnsdpVGvt+Kr6cJJ7VdV926WHdY26TX/53621cUNwPpbulO+3SfKWRetO2UQZs3DcR+/7y0luU91p7O+a7sxpd0g3jOYuSQ6oqru21n6ygt3u2/+M+kiS+405nnv1lzcYN69SuiFhSRc6/u7xqqr7JfmLdEPodszGn6d2zCWhxB36yw9OWP9K7dFffmyJ9R9LFz7dJl0IN2rca+B7/eVKXs9JcoMkhyxa9pMkd2utjR1CuMLjuCl7petp9vAaP2/Z9kl2qqprtm6epXekG9L3vqp6d7ohjJ8aF/As45r95Uqen4uNG5J7RGvt8eM2rqprJvnbdGd3vGG6Xlijlpq/a6WP9Q5JPpruuD67tfayMdsMrqqeluSZ6XrxLTW8MOl6GCbdcwaAGSWAAphvhyf513TzAj0+yedba1/Ygv39dInlF6brCTCpny2zn+XWTfPv1rj7uXCCdSvplbHY36TrifGyqlrqP/kLkwIv9cV7YflGkyrnkl4AS5mF476R1s1P9LsvyFW1Z7ohRbdKF2o8YwW7e3xr7Yiq2jbdF/QXphuK9vp0IeyohQBhUxOtX3mktqel623yk3TB1nfT9Sxr6eaNulW6IZsLFh6n72cYW/J8Gfd6Xnier+T1nCQntdb2TpKquka6ueFek+TYqrpd6yaS/p3NOI6bcs10z9PFIdhiV07y49baKdVNvv/cdPNO/Vlf1+lJnt9a+68J7nOh99TmnJxgwV1bayf2vb1unuRf0vWK+nZr7UWjG/YTqX8uye7pwua3pAteLswlc2QtdcxW+lhfOV24+fN0Q4K3uqp6SrrnyNeT3L0tP+/UDv3l5pyJEICtRAAFMN/emuQf000uvXO6097Pk4VhMuP+no37wr2qWmtfqao3pwsDn5DxkwwvBEHXWWI311203aXuYssqnA19OPDUdL1SNjlB8hL7uCjJt6pqv3TzBz2xqo5prR0zstnCMdx30fKxqmq7dJNc/yDJHq21sxet32vMzRa++O+crhfHtG3J82UQfVBweFVtny6Eel1Ghoxu5nHclJ+lm7fpGiuo89NJ7t8P9bxtuqD+L5McWVXnttZO2MQuzukvr7nsVpPV8tskX66qB6QLXJ5fVR9Y9A+D/dOFT89vrR06evv+mD19S+sYcW6SJ6YblvzxqrpXGz+R/SCq6hnpwrivpgufztnETRYeg01tB8AqMgcUwBzr50J5d7phY79MN3/QPFkY+nL9MevWbc1CVuB56Xp6vCAbD59JkoUvnHfqv6gvdtf+8n8GqG2WLAwVrGW32oR+fpyFL+Yv63tGLVg4c9mdJ9zdjumCzZPHhCYLPUYWW7iP+0yw/4UzAa6k99HC82XvJdYvLF+N58u/JflakgdX1R1Hlm/OcdzUsflMkqtX1e+vtMjW2m9aaye31g7OJXNJLR7GOc7Z6YKam670Ppep5fwkz073GX3xsLeFM5e+Z8xN/3haNYzU8tF0odx2SU7YzGBwxarq2enCpy+m6yE2Sah0s/5y2TNGArC6BFAA8+95SR6c7uxBG036u8YtzHn0+NGwpqqun+Tg1Slpef3k1q9I12Nlo6Fl/aTUH0nXa+dS66vq9kn2Sxe8bTRB8VpSVXtW1eOqaocx6y6X7kt4svG8RSvWWvtsulOz3zTJY0ZWHZ3k20meUlX3XaLOvarqiv3Vc9KFh7ftg5LRel+V8fPPvD7dUKe/r6pbjNn/6JxiP0nXi20lEyl/Kt1E63eqqoct2vfD0s2l9c10k5FvVX0vtIUhcf8wsmpzjuOmjs2/9JeHV9X1Fq+sqitV1R1Grt+5qq66eLsk1+4vN3mihtbawhkcd6yqG29q+xV4Z7ozN96jqu46snx9f7n36MZVdZskz5ni/f9OfyKCe6Y79h+uqqkHXaOq6u/TTTr++XQ9n3404U0XHtuPD1IYAFNhCB7AnOvPfPTdTW64BvUTrX8i3ZfsU/ozb107yQPSzVsyrmfULHhZkgNySY+Gxf4iXbDw8qq6V7r5ka6fbq6ii9PNczTrYeI/VdUvllh3cJLrpTsL12uq6pPphh39Ot2QsX3SBXRnZHrDRg9Od9a7Q6rqba21C/oJ9B+S7rnygao6OV0PivPTHe/bpZtH6rpJzm+tXVxV/5rkoCRfqaqj001ufdd0Zyb8eC7poZYkaa19vaqenK430Bf623wr3ZChdel6et213/YXVfXZJHeuqrelC44uSnJMP2H7Rlprraoemy60fEe//2+kC9se1O//MROe1W0I7013TO9SVfdurR2/mcdx2WPTWvtoVR2U5CXphl4el+Q76eYyukG6HkKfTPfcSrqJre9VVScmOTPJL5L8frqeaj9JctiE7XtPuvmu7p3u+brF+sf0kHQh84vTnekw6eZ8+tskr+yDqW+lmyj//umO8yOmcf9j6vlsVd0t3XPsuKp6UGvtI5u6XVXdLN1jPOrqVXXEyPW/WQiZ+ufxC9I9rv+d5GlVG3WAXL/4TKxVtU26M1We3lr76sQNA2CrE0ABsNbtm+Tl/eVfpvtS9qwkH07yJ6tY15L6L9OHpAslxq0/sz8z3PPSne1q73STAX8oyYtba5/bWrVugYcus+6V6c6wtV+Se6Wbf2ddumFZP08XoLwqyWunFbS11r5QVUelm4voSUle3S//clXdKslfp/si//h0Id/Z6Ya3HZJktBfG36cbdrV/v5+fpfti/rx08xqNu+/Dq+qr6Sah3ztdMPSjdL1c3rho8z9L15tnnySPSjcEcUO/7VJt+2xV3a6v4R7pAtgfpRty+8LW2unLHpwB9WHKwenmEnpRLpnQesXHMZs4Nq21f6yqT6UbRnendO8JP0s3AfxhSY4c2dfr0gVNt09yx3SfiTf0y1/RWvvfCZv4niQ/TNez7rUT3maTWmvvq6rPJ9mrqh7QWju2tXZWP3H6S9O1797pXitPTjdf2iABVF/PF6pq7/5+jq2qh7bWPrCJm10nG5/l74qLlh2aS15fu/eX22bpEw+clOSIRcvukW6Otb/aRD0ArLLqeg8DAAArVVXPSTfEcI8tPMsom6Gq3pOuh9uNWmtbbbJ9AFZOAAUAAJupqq6Qbh6uL7fWHrDa9VyWVNWt002w/7TW2mtWux4AlmcScgAA2EyttV+nGx54alWNO7Mlw7luuuGcY4czAzBb9IACAAAAYFB6QAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwKAEUAAAAAIMSQAEAAAAwqO1Wu4CtZccdd2y77bbbapcxky644IJsv/32q13GVGjL7Jqn9mjLbNKW2TVP7dGW2TRPbUnmqz3aMpvmqS3JfLVHW2bTPLVlCJ///Od/1FrbaVPbXWYCqN122y2nnnrqapcxk9avX595Cee0ZXbNU3u0ZTZpy+yap/Zoy2yap7Yk89UebZlN89SWZL7aoy2zaZ7aMoSq+t9JtjMEDwAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBbbfaBQAAcBlzZE13f7u/Pjn5wOnuc7823f0BwGWcHlAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgZi6Aqqo3VdU5VfXVJdZXVf1rVZ1RVV+uqj22do0AAAAATG7mAqgkRyTZZ5n190lyk/7ngCSv3wo1AQAAALCZZi6Aaq19Isl5y2yyb5K3tM5nklytqq67daoDAAAAYKVmLoCawM5JvjdyfUO/DAAAAIAZtBYDqBqzrI3dsOqAqjq1qk4999xzBy4LAAAAgHHWYgC1Icn1R67vkuSscRu21g5rra1rra3baaedtkpxAAAAAFzaWgygjknymP5seHdI8rPW2tmrXRQAAAAA42232gUsVlX/lWTvJDtW1YYkhyS5XJK01v4tyXFJ7pvkjCTnJ3n86lQKAAAAwCRmLoBqrT1qE+tbkqdspXIAAAAA2EJrcQgeAAAAAGuIAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQQmgAAAAABiUAAoAAACAQW232gUAcBl1ZE13f7u/Pjn5wOnuc7823f0BAMBllB5QAAAAAAxKAAUAAADAoARQAAAAAAxKAAUAAADAoARQAAAAAAxKAAUAAADAoARQAAAAAAxqu9UuAAAAgGUcWdPd3+6vT04+cLr73K9Nd3/A3NEDCgAAAIBBCaAAAAAAGJQheADAJaY9zCOZ/lAPwzwAANYcPaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBbbfaBcDcmPapy6d92vLEqcsBAABYFQIoAGA+TfsfA8n0/zngHwMAwGWEIXgAAAAADEoABQAAAMCgBFAAAAAADGrmAqiq2qeqTq+qM6rqoDHrH1dV51bVF/uf/VejTgAAAAAmM1OTkFfVtklem+SeSTYk+VxVHdNa+/qiTd/RWnvqVi8QAAAAgBWbtR5QeyY5o7V2ZmvtgiRvT7LvKtcEAAAAwBaYtQBq5yTfG7m+oV+22EOr6stV9e6quv7WKQ0AAACAzTFrAVSNWdYWXT82yW6ttVsmOSHJm5fcWdUBVXVqVZ167rnnTrFMAAAAACY1awHUhiSjPZp2SXLW6AattR+31n7TXz08yW2X2llr7bDW2rrW2rqddtpp6sUCAAAAsGmzFkB9LslNqmr3qto+ySOTHDO6QVVdd+TqA5OcthXrAwAAAGCFZuoseK21C6vqqUmOT7Jtkje11r5WVS9Icmpr7ZgkT6uqBya5MMl5SR63agUDAAAAsEkzFUAlSWvtuCTHLVp28Mjvz0nynK1dFwAAAACbZ9aG4AEAAAAwZwRQAAAAAAxKAAUAAADAoARQAAAAAAxKAAUAAADAoARQAAAAAAxqu9UuAACACRxZ093f7q9PTj5wuvvcr013fwDA3NADCgAAAIBBCaAAAAAAGJQheACwpQyNAgCAZekBBQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADEoABQAAAMCgBFAAAAAADGq7lWxcVTsmuUOSayY5trV2XlVdIckFrbWLhygQAAAAgLVtoh5Q1Xl5kg1JjknypiS79auPTvLcQaoDAAAAYM2bdAjec5I8NckLktw+SY2sOzbJ/adcFwAAAABzYtIhePsneUFr7SVVte2idWckudF0ywIAAABgXkzaA2rnJJ9ZYt0FSa40nXIAAAAAmDeT9oD6fpI/SPLxMetuleQ7U6sIAABgSx1Zm95mJXZ/fXLygdPd535tuvsDmGGT9oB6V5KDq+qOI8taVf2/JM9M8vapVwYAAADAXJg0gDo0yTeSfCLJt/pl70rylf76S6deGQAAAABzYaIheK21X1XV3kn2S3LvdBOP/zjJC5O8rbV24WAVAgAAALCmTToHVFprFyV5a/8DAAAAABOZaAheVV1UVXsuse62VXXRdMsCAAAAYF5MOgfUcqeQ2DaJ0zcAAAAAMNayQ/CqaptcEj5t018ftUOS+yT50QC1AQAAADAHlgygquqQJAf3V1uSTy2zn9dNsygAAAAA5sdyPaBO7C8rXRD170k2LNrmN0m+nuT9U68MAAAAgLmwZADVWjspyUlJUlUtyeGttbO2VmEs4cjlpuPaTLu/Pjn5wOntbz9TggEAAACXWHYOqAWttecPXQgAAAAA82miACpJqupaSR6V5KZJrrBodWutPXGahQEAAAAwHyYKoKrqpkk+k2TbJFdKd9a7a/TXf5LkZ0MVCAAAAMDats2E2708ySlJrp1uUvL7JNkhyf5Jzk/y4GkVVFX7VNXpVXVGVR00Zv3lq+od/frPVtVu07pvAAAAAKZv0gDqdklel+6sd0myTWvtwtbam5K8Oskrp1FMVW2b5LXpAq5bJHlUVd1i0WZPTPKT1tqNk/xLkn+cxn0DAAAAMIxJA6grJzmvtXZxuuF2O46sOzVdQDUNeyY5o7V2ZmvtgiRvT7Lvom32TfLm/vd3J7l7VQ1wajgAAAAApmHSAGp9kuv0v5+e5OEj6+6f5KdTqmfnJN8bub6hXzZ2m9bahekCsWtO6f4BAAAAmLJJz4L3kST3TPKuJP+c5O1VdackFya5WZIXT6mecT2Z2mZs021YdUCSA5Jk11133bLKZsV+Y5u6ZdavT/YaYL+TOHLKndd2f31y8oHT3eekx3zaj808PS7J9B+bSY/3PLUlmf3XzEraMk+vGW1Z3mq1Z57aknieLcffzOVdVv9mztPzbJ7aMk/Ps3lqSzL7nzOT1XtsVrMtc2TSAOo5SS6fJK21d1bVr5I8IskVk7wqyeFTqmdDkuuPXN8lyVlLbLOhqrZLctUk543bWWvtsCSHJcm6desue48uAAAAwAzYZADVTwx+s4wEQa21Y5McO0A9n0tyk6raPcn3kzwyyX6LtjkmyWOTfDrJw5J8rLUmXAIAAACYUZPMAdXSTTR+m4FrWZjT6alJjk9yWpJ3tta+VlUvqKoH9pv9e5JrVtUZSf46yUFD1wUAAADA5ttkD6jW2sVV9b0kV9oK9aS1dlyS4xYtO3jk91/n0pOgAwAAADDDJj0L3huSPKOqth+yGAAAAADmz6STkF8lyY1jjoYVAAAgAElEQVSSnFlVH0pydi595rnWWjtk2sUBAAAAsPZNGkD93cjvTxizviURQAEAAACwkYkCqNbapEP1AAAAAOBSBEsAAAAADEoABQAAAMCgJp0DCgAAAFiwX9v0Niu1fn2y1wD7hRmgBxQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADCoiQKoqtq+qg6pqm9U1flVddGinwuHLhQAAACAtWnSs+C9PMlTknwwyXuT/GawigAAAACYK5MGUA9Lckhr7cVDFgMAAADA/Jl0DqgrJ/n0kIUAAAAAMJ8mDaCOTXKXIQsBAAAAYD5NOgTv1UneUlUXJzkuyXmLN2itnTnNwgAAAACYD5MGUAvD7w5NcsgS22y7xdUAAAAAMHcmDaCekKQNWQgAAAAA82miAKq1dsTAdQAAAAAwpybtAZUkqapKcosk10jy4ySntdb0jAIAAABgSZOeBS9VtX+Ss5N8OcmJSb6S5KyqeuIwpQEAAAAwDybqAVVVj05yWJKPJvnPJD9Icp0kj05yWFWd31r7r8GqBAAAAGDNmnQI3rOSvK219meLlr+5qt6a5NlJBFAAAAAAbGTSAOqm6UKocf4zyfumUw4AAADAFthvylNVr1+f7GX66y016RxQ/5dklyXW7dKvBwAAAICNTBpAfTDJP1TVnUcXVtVeSV7UrwcAAACAjaxkDqg7JDmxqr6f7mx410nX++mMLD08D4Bp0p0YgKFM+29M4u8MAL8zUQDVWvtBVd06yROS3DnJNZKsT3JSkiNaa+cPViEAAAAAa9qkPaDSh0yv6X8AAAAAYCKTzgEFAAAAAJtlyR5QVXVmkge31r5UVd9Jstzg7dZau9HUqwMAAABgzVtuCN5JSX4+8rvZAwEAAABYsSUDqNba40d+f9xWqQYAAACAuTPRJORVdXCSN7bWzhqz7rpJ/ry19oJpFwesEqdhBgAAYIomnYT8kCS7LLHuev16AAAAANjIpAFULbPu6kl+M4VaAAAAAJhDy50Fb+8kdxtZ9KSquv+izXZIcr8kX5t+aQAAAADMg+XmgPrjJM/rf29JHj9mmwuSfD3J06ZcF5cV055ryDxDAAAAMHOWHILXWnt+a22b1to26Ybg7bVwfeTnCq21PVprn97SQqrqGlX1kar6Vn959SW2u6iqvtj/HLOl9wsAAADAsCaaA6oPmz47cC0HJfloa+0mST7aXx/nV621W/c/Dxy4JgAAAAC20EQBVFU9vqoOXWLdoVX12CnUsm+SN/e/vznJg6awTwAAAABW2aRnwXt6kh8vse6cJM+YQi3Xbq2dnST95bWW2O4KVXVqVX2mqoRUAAAAADNuuUnIR904S5/p7rQkN5pkJ1V1QpLrjFn13AnrSJJdW2tnVdUNk3ysqr7SWvv2Evd3QJIDkmTXXXddwV0AAAAAMC2TBlAXJtlxiXU7TXpnrbV7LLWuqn5YVddtrZ1dVddN17Nq3D7O6i/PrKoTk9wmydgAqrV2WJLDkmTdunVOjQaXRdM+02LibIsAAAArNOkQvFOS/MUS6/4iyeemUMsxSRbmknpskqMXb1BVV6+qy/e/75jkjkm+PoX7BgAAAGAgk/aAenGSE6rqs0nemOT7SXZOsn+SPZLccwq1vDTJO6vqiUm+m+ThSVJV65L8RWtt/yQ3T/KGqro4XXj20taaAAoAAABghk0UQLXWTqqqhyV5ZZI3jKxan+ShrbUTt7SQ1tqPk9x9zPJT0wVdaa2dnOQPt/S+AAAAANh6Ju0Bldba0UmOrqqbJrlmkh+11r45WGUAAAAAzIWJA6gFrbXThygEAAAAgPm0ogCqqm6V5KZJrrB4XWvtLdMqCgAAAID5MVEAVVVXS/KBJHdYWNRfjp6HXAAFAAAAwEa2mXC7f0g379Nd0oVPD05ytyRvS3Jmkj0HqQ4AAACANW/SAOre6UKoz/TXN7TWTmytPSbJCUmePkRxAAAAAKx9kwZQ101yZmvtoiS/TnKVkXXvTXK/aRcGAAAAwHyYNID6QZKr9b//b5K9RtbdeKoVAQAAADBXJj0L3ifThU7vT/LWJIdU1W5JLkzy2CTHDFEcAAAAAGvfpAHU85Ncr//95ekmJH9EkiumC5/+cvqlAQAAADAPJgqgWmvfTvLt/vffJnlm/wMAAAAAy5p0DqjfqaorV9UNqupyQxQEAAAAwHyZOICqqvtX1f8k+VmSM5P8Yb/8jVW130D1AQAAALDGTRRAVdWDkhyd5EdJnp2kRlZ/J91E5AAAAACwkUl7QB2S5D9aa/dK8spF676a5A+mWhUAAAAAc2PSAOrmSd7R/94WrftJurPiAQAAAMBGJg2gfp5kxyXW7Zbk3KlUAwAAAMDcmTSA+kiS51TV1UaWtaq6fJKnJvng1CsDAAAAYC5sN+F2z01ySpLTkxyXbhjeQUlumeSqSR40SHUAAAAArHkT9YBqra1PskeS9ye5Z5KLktwlyWeS3L61dtZQBQIAAACwtk3aAyqttQ1JnjhgLQAAAADMoUnngFpSVV2+qp4+jWIAAAAAmD8TBVBVtWNV1aJlO1TVM5OsT/LPA9QGAAAAwBxYMoDqeza9qqp+keSHSX5cVQf26/40yZlJXp7ku0n22RrFAgAAALD2LDcH1MFJ/jLJCUn+J8nuSV5VVbdI8pQk30xyQGvt2MGrBAAAAGDNWi6AekSS17XWnrqwoKqekOSNST6S5AGttQsGrg8AAACANW65OaCun+SoRcve21/+s/AJAAAAgEksF0BdLsn/LVq2cP3cYcoBAAAAYN4sNwQvSXauqhuOXN92ZPlPRzdsrZ051coAAAAAmAubCqDevcTy941Ztu2YZQAAAABcxi0XQD1+q1UBAAAAwNxaMoBqrb15axYCAAAAwHxabhJyAAAAANhiAigAAAAABiWAAgAAAGBQAigAAAAABiWAAgAAAGBQAigAAAAABiWAAgAAAGBQMxNAVdXDq+prVXVxVa1bZrt9qur0qjqjqg7amjUCAAAAsHLbrXYBI76a5CFJ3rDUBlW1bZLXJrlnkg1JPldVx7TWvr51SgQAAGCz7demv8/165O9BtgvMFUzE0C11k5LkqpabrM9k5zRWjuz3/btSfZNIoACAAAAmFEzMwRvQjsn+d7I9Q39MgAAAABm1FbtAVVVJyS5zphVz22tHT3JLsYsW7KvZVUdkOSAJNl1110nqhEAAACA6dqqAVRr7R5buIsNSa4/cn2XJGctc3+HJTksSdatW2dQMAAAAMAqWGtD8D6X5CZVtXtVbZ/kkUmOWeWaAAAAAFjGzARQVfXgqtqQZK8kH6iq4/vl16uq45KktXZhkqcmOT7JaUne2Vr72mrVDAAAAMCmzdJZ8I5KctSY5Wclue/I9eOSHLcVSwMAAABgC8xMDygAAAAA5pMACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGJQACgAAAIBBCaAAAAAAGNTMBFBV9fCq+lpVXVxV65bZbn1VfaWqvlhVp27NGgEAAABYue1Wu4ARX03ykCRvmGDbu7bWfjRwPQAAAABMwcwEUK2105Kkqla7FAAAAACmaGaG4K1AS/Lhqvp8VR2w2sUAAAAAsLyt2gOqqk5Icp0xq57bWjt6wt3csbV2VlVdK8lHquobrbVPLHF/ByQ5IEl23XXXzaoZAAAAgC2zVQOo1to9prCPs/rLc6rqqCR7JhkbQLXWDktyWJKsW7eubel9AwAAALBya2oIXlVdqaqusvB7knulm7wcAAAAgBk1MwFUVT24qjYk2SvJB6rq+H759arquH6zayf5ZFV9KckpST7QWvvQ6lQMAAAAwCRm6Sx4RyU5aszys5Lct//9zCS32sqlAQAAALAFZiaAAgAAAFbJflOeNnn9+mQvUzFziZkZggcAAADAfBJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAgxJAAQAAADAoARQAAAAAg9putQsAAIA1a782/X2uX5/sNcB+AWAV6QEFAAAAwKAEUAAAAAAMSgAFAAAAwKAEUAAAAAAMSgAFAAAAwKAEUAAAAAAMSgAFAAAAwKAEUAAAAAAMSgAFAAAAwKAEUAAAAAAMamYCqKp6eVV9o6q+XFVHVdXVlthun6o6varOqKqDtnadAAAAAKzMzARQST6S5A9aa7dM8s0kz1m8QVVtm+S1Se6T5BZJHlVVt9iqVQIAAACwIjMTQLXWPtxau7C/+pkku4zZbM8kZ7TWzmytXZDk7Un23Vo1AgAAALByMxNALfKEJB8cs3znJN8bub6hXwYAAADAjNpua95ZVZ2Q5DpjVj23tXZ0v81zk1yY5G3jdjFmWVvm/g5IckB/9RdVdfrKKr7M2DHJj1a7iCnRltk1T+3RltmkLbNrntqjLbNpntqSzFd7tGU2zVNbkvlqj7bMpnlqyxBuMMlGWzWAaq3dY7n1VfXYJPdPcvfW2rhgaUOS649c3yXJWcvc32FJDtuMUi9TqurU1tq61a5jGrRlds1Te7RlNmnL7Jqn9mjLbJqntiTz1R5tmU3z1JZkvtqjLbNpntqymmZmCF5V7ZPk2Uke2Fo7f4nNPpfkJlW1e1Vtn+SRSY7ZWjUCAAAAsHIzE0AleU2SqyT5SFV9sar+LUmq6npVdVyS9JOUPzXJ8UlOS/LO1trXVqtgAAAAADZtqw7BW05r7cZLLD8ryX1Hrh+X5LitVddlxDwNU9SW2TVP7dGW2aQts2ue2qMts2me2pLMV3u0ZTbNU1uS+WqPtsymeWrLqqnxUy0BAAAAwHTM0hA8AAAAAOaQAAoAAACAQQmgAIAlVZXPCgBwGVVVtdo1MD98qITNsPBGXFU3r6r9qmpmJvQH2FILoVNVbdtau3i167ksWfxBv6q28eF/dnlsLrEWjsVaD9RHPn9uU1VjT+A0a9bC84JLW/Q8+702B5NGr7Xn4chjsKbqnsSafhNm7Rl9EVXV1avqqlV1pdWsaXOMvBE/I8nzkryiqu60iiUNYuRL6J5V9bdVdbXVronxqupyVbVbVd24qnZY7XrYtP7xenJV3b2qduqXzcQHjZHQ6aiqusmqFjMFVbXLatewKSOPfVXVtavqQVV1i9baxfPw4X8pVbVrVf1pVe2xlsKBhcertdaq6veq6qZVdYPVrms19cdi5h7Dqtq2v3xikkdX1bUWrZ+J990JLRzff0nyqqrafTWLmcTC+1f/WfLZVfWkefi7smCNPX8mNfo8+6vVLGQaqmqHkefhWnm8fvc3ZrULmbaZ+yPBfBt58T87yQeTnJ3kjVV13VUtbPO9JMm7kqxL8sKqeu5a+Y/UJEa+hL4pyY2TbL+wbg29ga/IyH8c9qiq51XVW6vq7qtd1zgjAeHNk7wuyTeSHJnk0LUY7G7KWnpsljLymD0jyXuSvCjJh5O8OpmNDxojX9ZemORmrbVvrXJJKzZynO9QVW9I8uWq+mpV3WeVS1vOwnvq36T7+/i6JKdU1Uuqart5es8deXz2T/KOJG9I8pkkT1nNujZHVT0lyYeSnJDkzVX1qH753Dxe4yx6P35WVb2pqvaYxR6TrbWLqmrnJIenO436q6vqzlV11X6TK65edZOrqurbcrMkf57kn1pr36mqHarqHlX1x1V1u9Wuc9TI35MD0r2nPS1doPG01axrS4y8f92wqp6c5F+r6pCquv4qlzYVI8+z30/yl+k+qyysu2Z/OdMZwsj7065VdUiS06vqqKq6wSx8ztqUqnpIkrdU1Zeqas2+VpZSa+AxYE5U1TattYv7P0J/k+Q/kpyW5J+TfDfJPkkumMUPL+P0b9ALgdpuSd6W5IZJPpfk/Une2Vr76aoVuIUW2ldVByZ5VpIb9Y/fvkkOTHJOkh8k+Y/W2mmrWeu0jLR5jyRvTfLLJL9Kcuckf9tae8XC83hVC12kqj6X5PR0z7sbpfsS9/zW2htWtbApWquPzaiRNuyS5KtJnprkvUl2S/KxdF8m/mkVSxyt8WpJfpjkYa21Y6vqNknuk+RuSU5JclKSk1prv17Fcjepqk5L8vl0x/e2SR6T5MGttRNWtbBFRo77nunCjKckWZ/kD9L1tP3T1toXVrHEqRlp61WTfCfJ3yd5c5KnJ/nDJIckuUm6QO6TrbWfrFqxSxj5PHPndK/hQ9O9J9093eeAB7TWzlvFEgc10v47JXltv/jnSe6Y5MDW2htm6f24/zL6e+n+mfa9dH83bpau9lem+/z26tbae1etyBWoqjcluWJr7ZFV9UdJnpvknuk+S5+b5PgkL2+t/XIVyxx9re+Q5Kwkz/z/7J11uB3V1cZ/KwaEJCQQIEACNLi7FHco7kWKF3eHFtfixYIGgrU4FGtxd23x4C4fEhIsSNb3x7smd9/DSXKT3Nw9c3Lf55nnnpk9yfPu2b4UGARsCuyMFDDzAD2BC93901xcxxbRp54CfkZz1QjgMXc/MCuxVoSZPQk87+67mNnswJbA5kBHpHy/xN0Hl2ms18LM7kVt8wBa/18H1o/5q2eZzmnJvLo+cArwAvAR2g+c5+57lflbjw3aBVDtaFPEhP0BcIi7XxnPFkbS9T+4+2vJux3d/dc8TFsGM+vi7j/F70/RRnRaYEZ0wLwFuLkK0vZRwcwGAh+6+5Fmdjw6hL4D/ATMAAxBG86PMtJsVZjZc8gq5SR3/9rM9kcL1+LuPjwvOyHZ2G0BHA/M7+7DouxItMFeNRGSNsaiVYG2GRNiTPVw903MrJO7/2JmJwLLx+XxrC/wlbt/34bcig3Q1cC07r6imfUHrgU6o3ltCeBXYH93v62tuLUUSR2OAtYFFo37jsiy6GV337dYY4o2yEo6YGb3AP919/3jvgdwK/Ciu++R9JfSr4+jQjJ3XQRM7+5rxfP50Nj+DOgDfAucn1soOzqY2ePAve5+WNz3Be4HjnL3qxpl3h0VzOw14GpkwTkECRSWdfdShiQwsz2Bud19VzPbDwk7fwYmAZZ39+eyEmwhzOwEYIS7H2ZmTwFPAucA3YHNkEJ3X3e/OyPNdKyfAczr7qvG8x7oLPAm2kt2RsKzXdz982yEW4BkfTkTKTXWdvchZrYdsq5b3d3vq+rYT9psLbT2TOfun5nZXUjw9DgSth+I2m+NsgnbkzbaEjgZWMDdvzCzRYEjkDB0CeQ1cEnucVILM3sXOBUYEPXYGvgL2ucOzUqulVBq87l2NCQ2QRPWvTByonsOueKtU7xkZosAB1iJTDxDeIY1Dzj+Szw7C3jT3XcDtkUWGv2Ak4Dfty3TVsdXwLyhrd4KONzdN3L3zYFjgYWQ5rrSSNp3DWBS4KxE8/4PoDfN+2h3M1uk+HdtjUSouQbSRH1nZp3j2e3A4shtssBJsaGoHKrWNqODmfVGh+v/ACSCj6uBqYEpQsDQFWnl52hLfrHZ6QusAvwUc/HZwPPIqmNLpLF+DhgY9SkVog6TAysCZ8a9hcDmMmD1eK8Q4OxlZrNkojsSZjYH0A0JMIr1cSjwT2DpuC8Ek3eaWa+MdMcZcbjpg+anc5KiA5DwaSd374PGxN9M7kalg8nVqTOabwul2Yeo/TaBkX1xJjO7yswmzce29ZDMxxsi4c1Z7v5ljKcLgP6WuEabYn2WJTbWIGAuM5vF3U9Ha0dXYHLgVDPbxMy65STYQgwDVjZZoI1A1k6vu/sz7n4A8CGwS1aGNMVHQ2vboGRPfypSZG6ErOZOAdYC5spCdCwQY3oaYE3guMKCxt0vBW4m1hegUP6VyiVyTEj2lpsja7rtQtjWD9jW3Q9z9xORBeGswJ/yMB01EsHfrsiy/Iu4nwUp0X8ErkT7q6OsRPFtzWxTtA7+M6nHNUj4t27y3oxm9ocy7nNbgtIc7tsx0WA4iiNUDJhCmPNvYMPkveuAycqkPUgm5ctNsZ56x0I0M7AdMoHG3Ye5+1nAbshk8rEshFsP/0ZWXcujGB2vFAWhNRgA9LWKZwJM2ndW4Atk4VFoUj4BHgZWSP7JFcAWOa3bzKw72sR97gpU/DOAuz8DvEFshOIwsC8yF68cqtg2o8E3SIM4AprFiXkZ1WuluD8RWYfkcLv6Dh0IfkQCvvmRIOf9OGQPBy5GdSlrrLHuwJfAVNAsOPKDwJQmt5UiBtHf3P2tbEyb8AVSznwDzfr9jegAN3vcnw509xK6po0FvgcGooNyEVdkTmA3dy/mqUHIBWGKev9BCfADEswOi/s0ZuJ8iXD2bGBKL7m7akuRjKX+yD0EGCmAexftEVZK/snNwA5tSrIOgt8w4C3gmHh8GrLqXBAJE69BSo6y42okrN4a7aNrA3pfA3QridDzZxR76+nYM0+G+O7n7u/GPv9OtI5PM5r/p0yYBfXzodBsHb8DWNzMOsc42QP1/yriINRumyAh09nu/gGMjOs1DFneTZmN4Whgstz+L833vacjK8393f00JKCaA3lzZEd81x5oLekczzrHnuthJKQt8C9guZLuc8cMd2+/2q82vVBQWwgX0Pi9DIp3MSmKi/J5bp6j4N4BaW6+RRvjpdGCc1nyTse0blW/gF7oUDQMTYo7A52T8iNRLJjsXFupvlOhQ1Dt852AZ+L38vEtZsjAz2rupwP61pYh67RB8ft/wMm5v22jt82Y2gzoljzrkPzuFH8vj2tmtGlfLAPHjsmz+ZEg7CRgmpr3F0Ix/GbP/X1r65Dc9wB6FmVJHR8F9kMbvE+BnTNy7lDz/fvUlBd942mk6JgPWd6Wpn+PZx8r6j8Z8Lua9+dEFtPz5eZer4/FfuD3dd7pBQyO8fP7aK/eublPgG/xO2C7Os8PAR6K32vGXNYrRzvFuO9Sp1/dgYRkw4G1krK5cn/XltYFKW0/jvVuUMwNkyKlwIPIMi0X52Jcd0qedRrN+zMjF7zfjKcyXUlb9Is1pFtNfRcAvo6x0RW5pW6Zm/c49LPJkueLon3AynX+zf1ImJOd/yjqNG2yB5gG+HOMEUNntf7AM8BKJeDaOfn+q9Qp/xNyxQfF4hqWrqVVu9pjQLVjgiLxJZ4L+Upf600xk0bGsAgT3afQhD4IaUauzER7jAirp5MIM3vkA35HzTuV8/9O/KZnQovn4KSNTkDagm+R1vAtZL5+CrC9u9+SifZ4IemjkyIt9cdJWdpHZ0UWYAshi4SHPOK05IApK8ad7v563DeLY2Nmm6CAn9cBf3X3UmqpRoeqtk09hGbrEmT9dJU3xesaOU+Y2VbIUsCBb9x9/Qw8D0Bz8cNe7IbM+rv72zXvXYM2qevW+W+yIlyDXnL3wXE/MmFE3J+GhATvoODebermWItw59gDBeH9sKasGAMDkfXwPCjQ7R4ZqLYKoo89iQKMj3ITaopDNrm7rzOqd3LAlLV3eXe/Ou4NHQQKl/yOSABwG3JjudPdD8rFtzURloMzAtfUjKl0Pp4fuRjPi77Dje5+ZCa+RyIh0zXAu8mcdg6yUr/G3TePNhsxuv6YG0ldrgPeib3aXChJwXbAeyiu0pToELuoh1V0LpjZZWicX5Q865zyivEzCAnVV2l7luMGa4rHV7u+DEYeEYsjQcJC2UiOA5J+dgPwVrI/mdTDijPabHPkATF17n5WIFkv50Vj5Lua581iJ5ridv3V3bNmLzezdZGg78jRzKszIEXUKsjt++/ufmYOvq2C3BKw9mviuFBcgFeAM4Gla8q6xN8rkSbn/tx8x6JeS6PMCt8jy6i+uTm1Ur2eQ1Yzm9FkXdMRWA64HrnovBvvHZ6bbyvV+VS0SV0DHXqK54YsJbqgzfRTwBeZuU6HTIvfR64EqVa0sJiYHmniRgCb5/6+E0vbjKYOCyDh02PI9WiNOu/8LtprGApS3tYcV0DuX3ehuG5z1nlnBpTx6/MyzncxRw1Bbpgbk1heJGNjhZizRwBLloDz6sHlNRRD8DfWIsDa8c4nufm2Yh/bC5itzjvToYCrn5S0j+0SbfEISv4wsn/RZAmxb7zzYW6+rVz361DSkWKNmSIpK+bjbkjA+ATwcSaeFtclyJX4HhRvaIYoXzjm4Tlyf9NxrMvGJNaSyKrrlFgrt0VZi3PzngO51j2Dklgsn9Yp/k6DYr+9B/TPzbkFddo21o61k2fNvB5QUpgHkUv9Ark5t0I/+421LVJGF0Hjs3Ov4TYPCmlwBLBQTVlqeT4HOsf8uQScjwE2jN+LpfNStMkk8fsuFFrg5dycx7vOuQm0XxPHhcxrj0auD/cj7cCsNe/sFRu20plAj6FuBuyINsvvxMazS25e41mn2VEGv+/QwX9VFHOkKJ8eWZt0Tyf0Kl/R/16IzdKxKNtE7TsXRx/dIDPXjsi141gkKHwR2KTmnUmBm4Dbcn/bialtxlCPqYCDgbuRsOzEdIOKrA6vRxq5XBznQ0GvB6NDwxZIw1mU90cHt91zf8/R1GELJBx4ETgDCT1St+Hfodgd1+bmmnDqCZyPDjJyxwgAACAASURBVC03owDqkyblvdChprT9ezz62OZ1+tg5KBh5dr6jaKs10AFtBHAuzV1WDAmcP0bZfbNzngDfoBMSpp+ENPcda8pvjm/zG0F7Bq4LIIusb6JfLVPUITe38azLuUjgnrp2l6pOaO+/b/SHl1BGsv5JeV/gMCqiJEPCgetR5r77SNyGaXKh2iz6/jm5+Y5HPWvHzPI0uRt2BFYGDsrNcxTce6H94KtIALorMHPNO4tG/f6Vm28Nr65IeH8riu/Wq6b8LEqiOBvfq90Frx0THKl5ariuXYU2mE8jE/VrPbJImNnCXpE0uLWILArHAhsA/byig6vG5HNhJHH/BpnjXg285kla+Frz4yojgsbuBmyPYo/cAtzh7m9G+Wwo5sVf8rFsQgQhnx+NI0MCmsPd/fEonw34zhPXtaqiam2TIszVOyTjamUkhHoZHVLvBK7O2U7B0bzJ3H4zFIB8MIoBdzNyyyttIOU6rhAHIcXHc2hDd5u7vxRlswEfpXNZLtS4YW6JrLd+jr+nI1foX8xs1qK/VxGN0McKmDKOOnACsuD4ATja3U9OylfwkqX3Hh/U7A06IuHu2igQ+dXI1bCYjxdBWTOPykSXCJRuCec3kMDjG3RAvRp43UviPjQ6jKYuX6O63Ai84hHiIjfqzMVLozXvHST8vx4438NFqkowJUxYDDgcKQLPBA5I2qYfcCgKJVL6uSxFC/rZtcCrnrixlRVmtigKQ7Es8lS5GbjXI3lHzFEfuxLZZENtuJYIxfBHZAn8LFIk3+Xuv5oydK7n7lflYdt6aBdAtaNNYGZdvCn206dosZwWxRJ4Cfmz3tAIggwz6+FKnV05JDGg0vb6HGl6V0Gmn+cgodSbjdBeUDeGx+tIwzsCHV5vQq6hn+Vj2YTY/Hd095/MbBuU1eM4YB1kmXY7Sg/8ftUFhFVrm9GhiH1hZjegA+slKCjmbGhjfjeyLvK2brMkRsIk7j7czC5AgVbvDI7fI0HnPYWAs6woYlWY2SHAVsj1cQXk4nYj6i/vZKTYLCYFau9CKPMYsnR6DB1sugN/By6uQh8fHcaij93t7k/k5Doq1DmgPY/616cohuWXwD7ufms+lq2LZF/QH1nWvu/u30ZZf+RytBxyubsaxfz5pDbeSgbenQBCeLshyka4EIqzdxCKY3klcIW7f5mLZ0tQ1bokY30Acnk6FSlpFwb+DymgL63CPqVO/KALkPu0IavIQ919QJQ1i3NVFbSgn72NFCNXuvsX2YiOBjX7442By5A11CToLHMz8IQrs1w2JPPqksgV9ZlCCWlmXZHCdSO0130AuLWs6+I4YVxNp9qv9mtUF02CzTT7RREX4Sy0OQFtrPdCE8JgYKnc3CfGq2ivmmeFv/GFSGMAyqxyPtJevQDMlJt7a34DmuLD7ICEAV2AdYGHULylK6gTE6eN+BXjZ9qa552R6+dWcV8EJP0vsq4plTl+I7ZNC/jPEn87xt+VkTaxf9KG2yKz69Mycy1cCBaJcT5X0e+QJc5XwKm5v2kL6zB91GHpuF8WWc19SgkyQka/7lnzbBvgQyLjYLxzMNqAHp2b88Tcx1DGu+41z3aO+ag7yuK3JDrsjAD2yM25lepd7Oe6Iiu1U4jYQzSPp7IGCrEwGFm1tXk8n2SdXLBO2VvAwcl9byQs+442ztDX6HVBgqbUfXh+FNdwwbifErkX3YUEZtm/91jUrYhZO1PUaUUUsuIUFHvwU2CJ3DwncD/7vgz9LOFVm/02zbL6AUo0ArJKexFZFR1IxvAhybzaB3geuTL3qfPe7Ojc/DTycPhN+ImqXtkJtF+Ne8Um5K9E+mHkCz6MJBBhPJ8d2Dc334n9QtYY6yX380Z7LVnz3gLIdDo75/Goa7HobghMVVP2ERFkNXl2YCwAXTNynglZyGxLCP9QPIXHCYFhPOuC/PVLnc64kdpmNHUpYkEcTZNQ4UXgmPidCumno0Yg0UYcN0VWG2kq8ieBM+N3uplbgppYCmW4or/fSSIUR5Zx19V5d2ciBkxmzrsj98tdkmcfAbvF7/RwPw3Jga5qV4P0sX1jT7Nq8uxTagLYosP1mumcXOUrmY8HoZgpi9WUT0PzJBh7o/h2WZQfSFH2ObKsXzFpu5dRcPTCorZ4f/rc37iR6gKsFWveYUScV2S9cV7an+L37MB0uTmPpi6FkGAB4E8ke4xYb65I7idHSo47i7aqylXFflanDtPz273hCUjYlLbbjCiu7Q4l6Vu3BZ+Za8oXQqFcivtVgXNzf+dW/Qa5CbRfjXkhbeGpwLfIWmZp4A7gsuSdZpkjynolG7Di72Q0SODtpI69o32Gxt8p4u+AKLdo04apdyys7yCt4X7x7Fh0MCq0XOmim1XAEZu1p5AJ9PlIEDWMEDTFeGqI9okNUWXaZjT16ITccj5D7l9XIQuBNKB/1nEFzI0yW/2I3NMOjm8/ZfJOqedq5F73Zqw3hyIrs/+jeSaZ0lgDxvdcE8XUeDk2oTcCj9b2iUYY01XvY7H+HYY00A+iuCL/AB5Kyjvm5Dih6h1/54u9wbxJ2TQx1p6MsZcKUrONNWSptX70t++R1eO3NFlCdiraq6z9rep1QeEAvkOH/7ORYH2GpLxSYwW5Nr6KXKHnRdZ+n1NHUE6NlWQVrqr2s5o6bIkEn88Ci6M95BAiCUKsqaXod8m8uiTwRdqPkBfDJfF8BNrrV34PUPc75CbQfjX2hayeromBNAJYs847pRtctZzSDSaKy7Fybo4ToM4zoMB3j6L4NCNonuGjcIMqXXuNY30t+ucRSJDzFspAtURaT0omeEMZo/4XG4WXkStLmuGrFItsK9Szcm2TcF8k3agBU6OMRd8jAeKSZWonJIxdPcb+iPibWmeVctNZU4dpkPXFZ1GH/9TyL0M9aJ4BajrkdndjbDjvrZlzS9NHWqHejdDH5gAGILffH9CBdJqkvEMV6jEO9T4BHU6LPdB0wEXIAuwapKz6AlglN9eE80wxtu5HAf2PrSkvjUC6EeqCLDYmT+570bT3fw/FCOuRm+c41m1a4EhkaX0PUm6cnZSXRrgxnvUsfT8bDffOKLPdddHnvkFJaka2UfwtTTshD6GbCetmpGS+EVmiFQlUfgS2yc11gtQ/N4H2a+K4kAXUA+gAdirQNzenFvL+O4nPLRLQDKWOr24Vr9rNMtJ0zIniCL2IXER2HtX7VbxQivb0kNcFmVifR1MQ3NmT8lIIOGhu8dMRaeHfQwe5vVLOjXJFPRdAh77Stk0N51VRHJvfbNZQLIy7gV9QsPFZc/NNv2VstLcB3kUHyl1y8xoN33mR+2kaa6SYv46LjdvjlCgeB4p7cv8o6rI/sq55HTiG5DDXKFfV+tho6rFCHHSeQ9YRm1BSK8xWqu+ehHVe3F+FUtBvGvcLoFiEO+fgV8M1FWp2RtZbfwHej/Vyi9wcG60uyG32W0LABEyWlC0Y42Q4UsIsQIXcU2muSFoIxUV9ByV62ZHmAuhK7o+r0s9aWJceKD7oHcBPyHK+lP0NKZNfR26BnWNOvQ1YKcpnQPGhDs3NdYLUPzeB9mviuZDFyY6xUXkH+Rh3yc1rNHxnRWb2DyINYE/gDWDP3Nxaoy2S3z3QoW3m5FlXlGb2TBS74ymS2BdVvZBA42GUHhqaWw71QqbVjyPtzylAt9yc69Uh+T0TcDkKtHgbEq6VTijTCnXuUYW2SfgWAcZ3irmjNpbVRsikfwSwXSaOMwMbo8PlrMnzDlH2N2TC/jY1ceDKcCFh3t7xe26SWCIxfy2VbEKvTQ8KGTn/Hpg7fu9JEqgaCc+Wi+/+TKyRlba0rXofC669UQyrhYl4lknZDkix9ihwadG2jXYhd9GfYzzdhqy/VqMpWUkXFPvmgAzcCsuG/iiu2tnAUTSPB1fMB0USledJhCRluapcF2Ch+Lsushaaheb7q23Q3v87YKfcfMeiXkUfT2NXrQncigRrA9F6XtqzTCP1s4RfeobpSmLUgPb5fZBF9Cdof7xNbs516rAAUvJ/jKyePkH7msLS1FCg/kNyc50g9c9NoP2a+C4kyDkbZfsptcYA+B3SWl+KDgQf0jygXWnMOceyXoVLyu4o3fcHaCO9Rc17PZHbxJ3Am7l5t1Ldp4i/M6JsZLsmZYbcpXaORWEIJfTpD57phmg55I53cC5ObVTvqcreNkX7xN/9kLXTS+gQm2qGJ0Um1m0WLD7ZeC6HMgh+jdwKnqcmCykSiCyKLLbWaiuO41ifG5Ew7y81G9OeyDrlc2qCRWfm3RVlS3sbadJXSMp6oQD8V1DBTKON0MeSOmxHk0v6z0Qg5Zp3eyOLu+cogZBzAn6TNZGL6EB+m0hmGeTyksWyPdbDp2Mv83i02Sl13psy5uG9c3/PRqkLv7WiPzTm4ieD33Q15QOADXN/5zHVB+iHEpwMRjGRVqx5rzPaPz8Y7yycm3sj97NRtFHnWPOfjboMIEnkEnWcDXmyjKCEya7QnvYkYA9qLOKBdZDwb4rcPCfEVTRiO9rR5jCzHu4+NDePlsDMiuwWryKz1Avc/T95WY0bzKyDu4+IOt2IDsHfosC9/ZF10Fc1/6Y/8Ku7v9fmhCcAzKwDEjQdjTKVvQvs4+4PRHlHpMGb3d1vy0RzjCjaMrk3b/BJ3cwMWSfOUca2MbPJ3f275H4G4HhgK6TNOhJ4Jm23toaZvQH8E1nPTYE2QJ+4+1a1fai2PmVD9IcZkPXfwWjDdqC7Xx/lHZDlyuf5WI6cUyZx9+/jfkZgJaQ9nwspAI5393eivJe7f52J7nijqn2s4GZmvZDF8zHIgm4O4F/AEe5+VvQrinFsZtO7+8e5eLcVzKyTu/+S3M+MXPKecvd925hLsZc5E8XdW9vdh5jZdshVanV3vy/lHPMFZVsnq1wXM+sO/JDwmg5xXgtlIz0L+K+7D8nHcuxgZvcgS5qnkTfAQiig9RM1bTATsK67n52PbctR5X5WIKnDBch741nkzr0ecJG7X1zz/qTI2uh5d/+pzQmPArX795qyRVB73Ojux7ctszZCbglY+9V+lfmiKfD2Fcj8fBnkUvNwPCulb3EL6/Y4cFxy3xdtuLeI+4Zx5aJJoz0PzVNGd0abi8KC4gZgxtx8x6F+RT8ttUVho15J/9oauB5Yrs47SyFt4w/IrH3mNuZYKJy2QRZZqSXn8jH2Z0yelS4GUfKdF0Da5x5pWYzvgcjq7D5g/hJx3g44HVi0pnxB4JCYj19ErhCd25pnex/7TR3OJYLYJm14GgpCPDLoMHL1qIz7TSt/qxWR9dq9GTlME/1qjZrn1wEn1bTpkul92a4q1SUZE2uigPQrUJMNMvrHayiRyGkx15Xy29fUaUukaJ4qKbsDOK3m/ap6QFSmn9XhXvCaAymbFknKTkMxlXpSkfNLve+KLJ+eB/6Zm9+EvDrQjna0oy5CE/qLmS2FXCL2cfdHUFykc4C73H14VpLjCDNbDAlfbo/7ju7+Icp+sSlIs2tmM5nZP8xssnxsxw/RjiPMbA6U9nyAmU0O4O4/u/vTyDplI2RZ86qZnVlofcqGQvOewkNT5bF6taPtkPSvqZErzv+QS2v6Tgd3f8zdl0Jx8LYnxllbwd09+s48yD0CEzqgzU5HlJ2vwP1mtl9bchwTvElbeBY6+CySlrn7y+6+AwoEPwJ4wcx2aXumQtI35kWCpfeRK/dIuPsLKKbZgchCbhdUt8qhQfqYm9mUyP3+hnhW9LurUeyqbu7+q5l1Ai5AcTsmRnyJDq17Z+QwC/AKOoySrNt3AIubWedo0z1oas+yrpOVqEsyr3VE7k3fAZ+78KuZdQgLmvvdfU5kmbovClpf1m+fjvMtkLvtl2bWJZ5dA2xqZpMk/+SPMbdXDZXoZ/WQ8NgOrZcvRD8E7b96oFh8hWXq1mFNVEqM4rveDRyA9gQNi065CbSjcZCYRRZ/JwOGe0ZXk/FBMjGsg8w6B8fzz4BryiqgGBOC9/foQDAsHhdtdAlwlZn1dvcvUKyuzu7+Q9szbR0k7XgRSp99ttdx93D3m8zsAWBX5O9figUXmo2t7u4+bMz/oh0ZcB4y1z8u2fxMiTYSk4dL0kB3v9LMbnb3bzNwdGS9OYOHK1g8G2pmjyOXiWvNbH10qF45A8e6SMbAkUjDuYW7f5SUL4j2NF+5+/1m9hywAdqkZkHN3HMbct3+IebgKVE8s6HAPe7+iJm9Dvzb3e/Jw7hVUNk+luAHtFZ0gWYHtP8hK4/VkKXjUcBi7v5MBo7Z4e7/Q98kJ95GcXgKHob623PI4rCvmX2GDqe7Z2HYclSlLgWvs4DPUOzJ4QBm1hUl3+hrZm+6+/nuPiDcpUp/5jSzPije2wgAb3LZugu54y4BPGRmy6H9ct8cPMcTVelndRGC/w+REr0wFOjg7l+b2bPI8u4xM5sKGITiQD6bjXAdhNL/13pl7v4jirfX2MhletV+NcZFjZkjiQkushSqdBafqMdUNHfbKoUp6jjWZbKknRarU94LBVScH2Vs+oWazD9Vuoq2QgvQRzRPmTsdWmyfQy54q8XzjiSp3XNfBRdgdqQZqWx7jKp9kvsONLkTrkZkkyv7hczB30NxIoo+tw6K6/MDsoh6H9g+E79FiIDWaNNWzANpIPv10KG7IzJj/2vu71qnHj2AT4E1k2ezomxqI1Cq77uAOUvAtegHK0Xf6JM8Wxd4AikAfkTuEPPm5jyx9zGUcGPq5H6ka3Py+x/IkrZPtN1KuXlPbBcwGXBscl+4TtWuJ4Nj7T8FxX/Jzr1R6gJMC7xF4m6O3Gxvirn4PZQs5ADCpbi2TmW6aO4uPBuKMdmMc6wte8Xv55AyMzv3Ru5nNdzStWQOwsW+po2ORAodUJiUBzJzLtZ8izEzd23ZxHq1u+C1Y7zgTZr+v5vZ4i78amZ/RCaSL+dlOP5w9y89CVznMXNUDWa2MvCmmU0a7fR0PE/ngaEoY9SaKE7N6S5LqEoiaavNgUs9AhGb2XzIX3wrZIq8DHCSmfVx919dGohsMLN1zewwGKkNAR163qlye9SiaB8zWybuR7i0WXMjoeAko/v3JUJn5I4y3N093D0PR8KS/u7eD23GtwjtXVvjIprcukZ4WDQm87ehceDIzWhyL2fgy0XRoed5ADPrjBIJrIZc17ZCh6A2DYZcD8nc0we1PdE3lgEOQgLJpVAQ1e7ILbPKqHQfM7OeqC9NE/cdvSnYtiW/70UZsgYAj7r7fW1Oto1QYivv5YH5AMysm4/ayv46lF1qP2DbtqE21qhqXXqgDJc/wkhr3+OQcHk+FKfvVWSF+iuUfu98aVg14e5vuPvrMQd4skd+FljGzDYDZnH3PbOxHXtUtZ+luMbMdgRw99ddFpi1/eoBYFYzWxu5Uu7U5iwD4arqpiDopyOrs/vM7N9x1ijzeJjgaBdAtWO8YWazok3bKWZ2QmzkjkPazU/zsmtHgsHA1u7+o5mtY2arw8hYTxaT5a/I5/sEFIDxoJyEWwOxif4aabUKnAlMDmzl7n9CFgn9kZVRGWDAwWb2hpktYspYOBvKptZQCGHT0SHEXioenwpc7+6vZqQ2NvgCZVU8ycw2RLHVPgZOcPdP4p2rkWZ48gz8lnH382Ij9KCZbRDCG2DkBu495HK0EeUVhnyGLG3WifsLUAa54939Qne/FglCell54ta9hrL0bWRmq6GMYW8CR7n7i0hIeQ/QLYllUUVUvY99h7InvmxmswPX166R8d6DKMbYWihYccMiURCskZtLDe6iKYbewFgnF0v4Fmebl4BlUTyf/2bg2RJUtS5fIeH6wbE/uRsJl09wxeIbgixQfiWEumWFKSPpR+7+UNxvAOBNLlLFvPwf5N51JSVQcowlqtrPUtxJuNSb2ZpmNkWddx4GhgC3AAM8QqdkQrFmDEDCvwuAPVFW2L1ykSoNcpletV+NdaGAnVsDl6Igqx/S3KS1ktkiGu2iyex2IDoMX0u4TSTvLAB8AvwhN99WrPcOyM3lanTYew/4fZQZCiz7ErBObq4J58mRRv5HdDg6ISmrZJasUdSzd7TPBci95UpkTTRFlHegAqbK6ED6aMx9t1OT4QsJdi/OyK+IO3RX9KmbgAVr3tkRWT1m/56jqEMnZLn4GnJr/AZYLh0PKEHEDbm5Jt+8B0qn/AGKvXE30L3mvYeBQ3Pzbe9jIzluioKoP4qCLM+TlE2BknWckptna7Zb8rsIoVC4TW2BhOk9c/Osw7tjjP/bkaDjcmDapHx6dPgrjUt9I9UFuRe/Guv1gynfKL8Q+Fduni2sS+FiuwnaH15CTTZbFO9pOPBcbr7jUc/K9bM6dZgLnV8eR8qATkmZIcHn+2TMhFfMqcF1CLBAUrYXCgnSNyfH3Fd2Au1XY11Icv49MlW9iZo0n2W5aBLETBcLzs6Ez/fEcAHdkBXBs7GgHg9MEmWdaIDYXTX17Q0cC/wbmRjPV1O+DfBubp41nIqDwCmxgP0KnJWb1wSs72zAbsgN9AVk/t09N6+x4G/INWdKEuFTjKf1gG9J4su0AZ9ijuuTbtDi2fIoYPoPyNqsbzyflIjdU9YLKTt2QgqPJer0oW+AZXPzrMO7sGJMFTOdkEDmSyogZK1Tp4bpY3EYSNtmfhRb7GHgIeQ2OVUufm30DQ5G1sJpjLX3gD1LwK040E1ZZ9x3B/6IQj58B/w1eb90yppGqQtSDk0FzAT0SuuHwhp8RyK8LdtV77sCM8Y3vwvF6TsZmDUpX5qKnBUaoZ+Nal1EmVZvRPvif9A8ttJCwOK5uQeXo4CbUTiJkXG3kDJqneS9HYF1c/Nt02+Tm0D71RgXTdqDK1Aqz2WQG9fD8WyS3BwTrsUk2zX4FRPwhyhzT3aOrVjXYsL7A8poN0dN+bTAPsi15QNg29ycJ/D3+M3BBx003gV2zM0v4VQIn3oSBwIUL+ZppPkpjaVWK9Q1TVxwCLKgPBFlmboI2Cg3x5bUoeY+DZa5N/AUyhTUpnxik3kbEmL+RpiH4iZ9Fv1/fyqsjQOWjI3e9bm51PDqWHOfbkK3QpmIts3NcxzqVfk+lrTFAsjiYXdqNP+xdl4cY/hWYJe0/o12ASchpdSNyBLiGcp1IL0YCQbWrm1L5Ab91+hvQ4DVc/OdWOpSw39nZCV4Rm4uLeBqyJV21XSuBhZDcXsei7rsBUyZm+841rHy/QwJaFavs56uic5ww4AjqLHCK0Hf2jzm0cKitNjrXobcHIk2GAGsn5tzW17tMaDaMd6I2EG/RPyWDYF93P0RFGfnHOAujxStJUHhl3s+Ejyti8zqP0bB63Yws23MbKVcBFsD0S4jIibHqSj2RrO4KO7+mbv/HR3ebgIuMbP92p7thEXi314EzLT4uy6yjHrG3S/KRK8eigCRFwMPufsd7v6Yuy+GAkS+k49a68OVuKAnypizK9pIXIY2SIvk5NYSeOwikvsi8PJsyKT9Bnc/qQ0pFXPcufH3Tncf1uwFs07ufj6yyrkNxbRoVo8yol5gZDObBVnPORJ4lAZek2rZm4K/roIOPte5+6C25tUKqHwfS9rifMTrIa9JQOHu/0ZKmnORW/SC8bw09WgNFGukux+MhIqTIUHCB8hSLxsKbma2MUo4sB+Kx1OUd0VtM9QV2H7FKC/TvhNorLrUg5lNh+JpPoGsBkuJZE94FAoBMFXsQ4px8DQSmJ+IrAD/DJyfKYnIWKMR+lkRE9HMNkX8V6x9J/bG86Dsd/sAL5tZ7zYlOgrEGnEPcLK7/2xmHZL9wKMo0zjIzfsBd785B89csAZbQ9uREWZ2IrIw2afmuZVts2Zmc6IJYEWPTApmdjtK6d0B+Ul/CvzZ3V/JRnQ8EJPdCDMbiEyk13f3b5PyLdAh4n13fzgCxi6MUq/+VP9/bRzE4rYD2lzf4u4fZqbUDJFV5jlkAfRsbj4TGmZ2JjKdXr6YL8ysH/C9u3+Zldx4INrxu7YSwieZVxZFGbuWcveXo2xy4E8odsePwJXufneU9XD3oW3BsbUR33gh4G13r4xwNg5r37j797m5jA0aoY8l6+PuSPC9uLv/X5T1QEHSlwDud/cL4/nvgG+L9xoNIdzt4u7DzewyFBuxN9LQHxHCxJz83kBu6GfH/RSon52BQj/cjWIlfmZmXcq8j2mkuqQIwccUKCNsKee1ZP6aDVn4bY0U5T9E+YzInf5pd//JzKZCYRredPdbshEfBzRCPzOzT5CieFDRp8xsGuSO3wu4NwQ8fZAF12X52LYMpkzctyBl6yBgNnd/OyuptkZuE6z2q3Eu5AveJbkvrYk6cCAKxN0t7mdFVifbxH1PFMRuYG6u41nPmZEgbbHk2e9RHKQRyH/6ZWDJ3FwzfqPSuBfU4VYad5UJXM+OyBJx5rgv7dxRlQslhBiY3E+HrFK/RZvuD1Fsm765uU5sV6P076r3MaSAeRLYPnm2ALI8/QXFSBwB/LPM60Qrfo/CPWRZ5I4zTdzvEN/hkIzcVgKeJwmTgJJ0vIaSqVweHP+a+ztOTHWp8gX8C7gkuZ8MZeh8D1kCfUASD61qV5X7WbFGAoeiYONpWIO1gVeC++coMUmP3JzHoY6PRx1Ozc0lx9XugteOVoO7f+mJ9NxjhJUUd6B4IYWGZnWUsvOy0I4MQemyvSomt6NAPxTs7mMYqXE/BgnYlkGCt97A3vVcWxoZRX3d/efcXOrBzDp6k4tIQ8Pdf3X3W9z93bgv89xRFXwFdE7uT0SpgPdy90VRIO/fx7PSIHGP7WBmM5rZbGF50jBooP5dyT6WoBcKkt4reXYScpvdAMWBOQJYAVl1NDS8yT1kAHCBu38ezwe6ewd00MuFL1G7zA5gZruhBDID3X1Td98ahRFYyMy65KPZIjRMXRJXtkrBzKZF4/7W5PGeyO3uWWBjlBl5YLxbRVS2n7m7h5fC74CHvSmswWbItfMtND/fiGL3WoAvgAAAIABJREFUzZ2L69giOWvdj8JpHJiRTjZU+WDdjnaMM1zuAi8nj65G8aDSw0E/YJi7/9LG9FoTn6Eg27uGK95lSLN7pLs/BmBmg5AgqivxDSYGlOkQWM9N1WtixzQCyuiOOy5I3Hc6uuJGTA384ImLawnwNhr3n6OxvQmKOXRHlD+DNtpT5aFXH0n/OBEFGJ0deMjM/uruT+Vj1nKk/dzMuqG+0XDjmYr2sQLu/pWZfQqsGnXYHB14dnH3+wHM7HFgU2AG4ItsZNsAhQse2g+dmzzvHIqanHuht1Eg+JOjzf6A4sJckbwzGJjfS+hGVINK1qVmXpvWFUO0kkoyl8vZD8BKZnYPsvrbD8WtPcnl0tULzQc90F66aqhkPysQe6uhwMZm9jeUbfVsxP8cd3/bzD5DmQlnRHHHSo9kjzMAuLwR9sTjgkpKrtvRjrFFolXf2MwOMrP+abkrxszw5P2lkCnu39qUaOvjDWRyuwE6DEwNbOfuDyfvzIACEVZe+JS0c8dUM2dmK5fFkq2epdnEsgBVuZ6hjQOaBS8uMAht7sqES1FmstWREHozd7852WjOhTbXd2Xi9xtYU+DU3dD8ezKyPpkEGGRmU9aOn7Jp4JP4Il3MbCvk5lEZ7exYonJ9rA5ORcqm45Bl8CaF8CmwAIC7/zcDtzaFC8Pd/fiwAi+e/1yUZ+Q2DLXVU8D/AXu6+1nu/jWAmXVHgsIbcnFsKapal0T4tBFwu5ntm5nSOCPWkYdR/KeHkCXNZcDZiVX8e8hNt0yKpRajqv2sBhcAnyB37vuBB4GjQ/hUrP2TI2uvSsHdP3T313LzyIX2IOTtGC0STf/kwLzAlMDj7j6katYMMVn9E6WzfxAdDO5196+ivDg4bIa0BA+6e+VNI0MDvyRyl/jM3T9KypYD7gTmdfe3MlEcbyRtNznwkzdlnBhhZsehLExblMkKwcwWR1k9hgD3ufsbSVmHqmoWUyRtsDAwoydZPqo2f4CyegEPABe6++XxbCck5J272NiVBTEeOgE/ehIEPVxxb0UBlks1x8U8/TbwF3f/Rzzrg777Tu7+UPLuJF6uDKsjYWbnAysDswCrufs9mSlNEFSxj9WDmc0KfJIqYsxsXuA+YDd3vz4buTZE2eflemPezPqiDIuruvv8eZiNPapSlxrLp4OAHZE1ymHufmZWcuMJM1sPJd952t1vS553Rlnh3nH3P+fi1xqoSj+rhxAULoEyK34P3J4ICDGzM4Cl3X3xTBRbhLLPqzlQCouAdpQTMWBGmNlkKFjdIijI6EdmtrG7P5eX4dghDvR/NLNNgL1Q2s6lzOxfwGOJ1vYHJGQr/aZ5TIg2/BalAm1mfWNmG6IF6NwqC5+gmWZ2T2B9MzvZ3W8MgcHewJZlED4lLls7ofgo0wHDkHB3z+K9GHeVF0Il/G9AlhJpWRUX427oQHqAKYvkYShGzAHu/nXZNhk1h+lCGLg06mvDSzrHrY3iIjwJI8fMp2b2OrAe0lZjZssAW5nZbiUZ28X3nR9lUFsf2BU4j2q6b7QIFe1jI2Fmndz9F3d/s+b5VqgvPtjIwqfaOatM81ctguvw5LeHm9TBKB7MDlkJjgWqUpeE2/TALijezvbA6UCpFC5jg2Kucvd/IWV0WtfpgD8i9++1cvIcX1Sln40KMR89QY17nZn1RFbSf0QJbEqDGoHtNMDXXtJYszlRKtP1dpQOhbDiPGTiuCMKaPc8cLaVxKWppbBwoXH369x9WZQBbnvgBGD/ODgQC9J+2Yi2Imo3k8mkOD86zL1AgwTAC+HaYyit7F5mNgD4N9KY3GIKapwt0HosSr+GQPckFGOjH3AUMI/JTXAvMzvCzPpUXfhUjDczOxCYxN0HxH0fM9vJzDYxBZieJJ6XPgi+yy3lOGBbNA/eixQ590R5aZMWJP1pNhRcdY+MdEaHr5FQ9oe4L/rFv4D1iv6ClCKf5BY+hcVWITTuh6xsZ0AumQ4McfcXM1JsM1Soj42E14nxGNYPS6IMS3u1OakJgNr5tRhHZRY41WIUgrKpUVavQ9z96SzExgFVqUsisLgGCSy2QcKAbmj9q8TaXQtvCmptybM0Ns9GwP7u/mMGeq2GqvSzMaFOH9sIKXn+7u7PZKA0SiTnrE1QxvHN8zIqJ9pd8NoxWpjZ7MAjwB/c/dl4tiQ6DGwEPJoMtt7uXtognTGBdXK5Z82BFtE/oUC3q6O0nncD17n7p/mYTnjEoWl25JJXWS1WPZjcdWYBDkAa7EvRQtvM1TIDr0L7dAZyeVw1nvcA3kdZPX5CWaU+AHb2yEJUNSR17QJ8A2zk7neY2S5I49YP6I6EDUe5+8UZ6Y4TzGwuFGD5OeSOcJ6758wS1SLE4bqTu/8wxpczwcz6ufsHNZrEWVAMiCXQ2nOYu/fJyTOFmW2PNpqO4gh9Y2aHojhIu3m5AtRPUFShj7UEZja5N0hsxJiPJ0ExX7ZDbq6PAlcCv1RJEFWLslmejg/KVhcz+wNas2dF54BPzGxVlIlsd3cfnJXgBECce6Z290dzc5lQKFs/G1sUBgPAK/WUCLlhZochYW0/YI8q7nEnNNotoNoxJqyONP1vFw/c/QngRWCJ5HCwBzLNLQ0SC4xpYKRUutCWDwSucffb3X13ZNHQETgUmKzt2bYtwvT4tUYSPhUaEnf/NDYOs6H4Vj2Aa81szyjPsujGAaAH0j4NsqYAiqcC76JD9dLIVW1NdHCtJJJvfDQwAvjAzGYC/oosV5ZFAqirgfPNbJ0sRMcBSbudhFIYrwscC2xhZi+EhVtp4e4/l1UwkIzhD+JvOlY/jOsPqF/t0+YER4E4kJ0API4CcX8TRXMhRd9EI3yCcvexliCxaqu88ClQWA+cDeyG4g72RWNo/oofRCt9kE5RtrqYYqDdjvYnm7n7J1E0O4rp2IjCJ3P3we3Cp3LD3f8XVymET9aUQKWfmR2DFOAHICva0hpm5EQpXQXaUSo8hw7F30NTvAQUEHZ94DQz6w2cFfelQeKa8ayZvYK0NW+a2cbIQmbjYiJ290eAtcxsKXd/JxvpCYRGWHDGhBDwdHL3X8xsOyRI3AGYFgUD3sbM3nL3O0b7H01Y/AxchFyHivhqswH7ufu7AGZ2J8rOMk02lq2AECYMRWl+T0bZsB5EMccKV50DQsM6Wx6WY49ot7WBVYC5XKncr0TCh35VPnjnxqjmKFO8juFm9hRwMQpsfXXbsquP6OcjUDal+z1iPZiCcy8F/CXuO3oJYlW1Y8zwirs/p4i1f4SZLYjipazg7s9H2W0oFmapYqiMDRppX1O2urj7S2a2dp090yoowUDDzWtla4MJgarV0UocDzU5Q45IXFW/RtbQg1EG34dH939MrGi3gGrHaBFagK1i898hkTY/AMwRFh1noECdt+TiOSqEC9B+yArmZTM7HlmYHO6Jm501xYd6LAvRVkTqK21m3aLdKrXgjCuS/jkAOMXdP3P3/wGXALvkED4lmpFO7v6Duz9IWBTG/Yrufl/yT3oiDeOHbc21NRGL8onAVqguPwE3+29jLzyPhIRVwkzAse7+HkjYHVrTe3MRqhn3k5vZErm4tDaSzed9yIp1l4x0miH6+b3ufpc3DzQ6A3Kl/S7eq/whrRH6WE0dprCSxmxrLSRr/+5o/n0+9kUApwFLm9mMxftmtna4F2dH0VZm1tPM1jOzeXJzGldUrS6JFeAdyTMzs67AjyirckPMa42EqvWzMSEEnKUUPqUws3WRZ82kwPbu/m9gfmTEMXlObmVFuwCqHc2QTF4bm9lBZta/2FTXTAIvAR+hDGNbULJMCqaMHbj7T+5+HQq4fSCwCTo8Fq4eHhLshllEiw2nma2GrAVWy8uobRFtfzCyNALA3b/xTIEKk3Ez0Mx2jGe/wMhYKSMR4+9oYLC7P96mRFsBibBtJjObN4RuL7n7jsCfgf8V78bY6wOsSgTxrgrc/Vzgb7l51KCYu5cHBgFnmDLFNAxCyTGPu7+Rm0uK0Qgx5gdebUsuExiV72PJ+rgGUqSdaU1utQ0JM+uOrFFfi/1OkfH3EZRxcr54rw/wD2DKLERrEGvEzMCZiFcpBGPjgirVpbCaq30eY2c4ChfwYfFuG9MbZyT7k6lMiVAqneGuHqrUz+rBmkKn9DSzjdD83CMzrVEivve8wM0ojuum7l5kvZ0DmMbd389GsMRo6EW3HWOPGEwdkKBmT+AYU7aqkRuSsKgZAryODssnufvb9f/HbHjQzHYublzBnAcgQdTpwDlm9qSZLdmI1kFmtg9agDYFemWm06Zw94+Bc8okVDQFve8D7Gxm18YBDldA/OJQNw2wP7ACsFMuruODZNN6E9r8bGxmfaPsKU9iRpjZnMga8RV3v7vNyY4nyjJvJIfnDma2DHAVEnx0oIHi2RXjxEsSd6QQOpky3exY55VfgIPd/e2qCzgaoY+lbWBmm6P9wEzIRaLRraCGoXiIjxRKt3j+M3ITWT5ePRN4xjPGv6mxUJsD+A+KV/UdStBRGVSxLmFx4ma2jJn9w8w6JXuUwt1uHZSIqDTr4OiQ9PcRZtYNxUI7H9jWmrKqVhZV7GejQrJvPxVlil4KzdGlRHz7d4A13f1Ad38zKW7mqpqDX5lR6U1ROyYMXAGq/4hc12ZCMQION7MVzKxLcsi8FUl8/5qJal3EhLCZu18Q9+ea2Qzu/ou7vwochg75nwOPmNmtVV+EEs1OHzM7ADgRTeAfIX/kiQplM9l199eBndHBrQtwrpmdHBaGxQauCzLfPaSEAt2xxWYocOlA4FQzWy21lAgz/vWABYHtszBsIcqu4U36+oEoFt95qJ/95E1BYyuPMh10Qgnzi8mVaRCyLsHMFjezqQFiDA+K36Waj8YWjdDH4vDZxcyORNaLR6EslkMSi6CGQbInmAcgXEQfDusWT+a1h4FVQymyMcrclA2JhdoOqK+9DGwJdAWeibJSz8kFqliXRADwd2B4WGvPlwifcPc7vSnRQumRtMPiwC0oEcz9wOfuPjwnt9ZAFftZLZL5akEzuwwJnm5Bipzvc3IbHcIF/zt3/0/63MymQPuCL+O90ijEy4J2AVQ7fgNriod0nbsvi2JubI+y/Oxvkf7S3a8CFinTwQBGTgjPApjZ3GhT9YqZHREHhx/DvelPKB3xZ1VfhGJzPSnKMLYaqttjaAF6JCe3CYWyL6gFEu3bu+5+BrL66Q+sBVxlZvub0n1/6O7Hufs/c/IdX8RGdbC7r4uy3a2CrA0ONbOFzGwSd/8eabc28pIH/S/b/Fagxp3gOBQX6QJ3Px5YArg3ykuveavR4FYhLk/B9+/Ac+5+lSmOzuXAVMVLXpIMPeOKButj3ZFV5upICXUFmocLDXVD7YcTa4/bzOxBi3hdIXzqSFMf/g+KUXIrshz+IAffpK9NYWZbISuVu1F4h98D/wU+LQRoOTi2FFWtS2LVuR2Ky7h3FD1FfSvPUqNmXVkfeT8MRUH3pwdeiLJKjv2q9rMUNdZpcyGl5RTASii5x2vu/l0F2+gXZClYOVfVtkLVGrQdbYMRFrFpwpxzRhTn6Xk0sR1rZnuZ2bTuPjQjz2ZIzIRHBnxz91eQlcXxwF7A2yaXCUKDcxWyTKkkkgVoZRRoe0ZgV3e/AVgMaTe75mPYekjq2jeEHIXWp9QTe8KzsLLbEmVMOwB4EWXLuD42faWvz+gQAt5fwzIEd38ObSKeQsLefwB/NrP+wHdlcaeCZv1rgRBWX2TKmFn7XinaJzZs/VGGwY2BP7v7BabMisMJy8cqaN6SMVL6uDyFJYCZzY4C7B8SRecid9LX8rFrXTRKHzOzpYALkNvgNu5+BTAnshAuFG6VtlIbBToha+ihwA1mdoGZTe1KmjAi5rL/A74FvnL3vUf3n01IJN//UqTwPMbdT3WFe+iN+tvIdb/MqGJdQkhRCMyPB05096Emi8GXCWvOqiCx9JvEzDZDbXEnCm/QGxiC6lXZsV/FflaLZO3fBLgBxRfeHQW574P2yqVrI2uKVbVi7BU7JWXm7t8BGwC3QXkVmTlRyg1eO9oWyUCaBkYOlGJDORC4xt1vd/fdgW3RpuYQSiTYSBabTujwckghRAsXgdOQNca9wD/N7F4zW8zlbljqzfPoEJvI2dEk9w2yKHkrin8HTO2Kf1VpRPuOMAX7uw7FUpoFyj2xm9kcJss0XJkk50eH1v1dWTIOQSbTHZHGp9T1qYdUIJNsEgph8IXAi+6+BeqPDyL3l5uQsLQUSPrXtCiN7vLAoshCbaHiHShP+wSfs9B33c2bx9FamQj4XhaBWT1YBePyJOvFeSir2KOhAFgauag1DBqkj02D1v8fgD95UwD7nsC8KEtRQ8Ldh7j7hcBfkMvhH4EnzeygKHd3/xZ9n6yKODPraGYrAv2Ao909TfKwOvCRuw8pc18rUNG6FAqYUxG/AWbWG4XiOMLdf8zKbiyRrNNnAPsCZ7n7sbEfngQF2v8hF7/WQEX72W9gZicAxwB3ufs27v4RUlzODPw8un+bC8k+4GwkvP/FzBY2s25F33P327x5Ztx2JCjlBq8dbYtkID1rZq8Au7v7m6H9nwUFErbYrDwCrGVmS3m5XGc6IKHZycis/qF04EcdXwV2MPkXnwjcZ2a9vcLudyE87IC0Oje4XJsKrA7cXrxXcUFbsZn4I3L96A6sZGZXA/e5+1dmtoiH62UZYMqwcitwhJld7QpOeBZwpbu/ENZCXwGXm9kTwLCcfMcViQbrEuBf7v6vELbNi6y7Vo33vgN2MbPzkJXee9lIjxoXILP87d39ezO7DljAzP4M/GJm7yAXpOwb1xC4bwd8H9+2wB9Q/K3/Fe9loNcihNCvC3Ao0uAejgS0pYzLY8rq+IuZrQMsAGwdRWch96W3Rv2vq4dG6GMoEO+JwK01PNdBQbmHxFxcKg17ayD2ByPc/UWTO15HZBX9ZzPbFDjO3W92hVPICpdV4WPACmlfM7OpkLDgymzkxhJVq0ti1dkPudoVlr8DgAfc/fZ87MYdZjYr2ivuR8RCCqyOLIOez0KslVC1flYPYSjwKXKLTvvZvEgZdXO8Vxo3wmQfsCcyxDgiiu4EdkNK8naMAe0CqHYAEIeA/eJ6ObQgWwCHu/unhQS9WKjc/bGMdJshJqbCJWInYA3g0aR8ZWTN8C1wu7s/ZGbrIuugygqfYKRg7bW4RiIsOb5ALgald5EYC/wLuRZejFwqT0YWbb2BP5jZzHGozb5Yufvtodk5FNggNgqzIRe84vBdjKfSuKKNC+L79wGuMLNHkODpZOAKd38i5o/Cgui/KJZMKZBYTy6EhJsrAIW2txtKsvB2PFsRHbxvbnumzRG8/69OUUcU+LL02W9McXkuRfE4DkMb5iOB46K8VIIBb3JROQc43d0/MrO9kEb91HzMJgwaoY/FweyW9FlY3nUEhphZ50bRUidzWSdX0pVfQwj1K7JyuhAdllZGmY7PjUPUWmWwcIn9WO2e7GfkTvRzvFOKQ+iYULG6FHPs+cA97n63mS2JBDVL5aM1fghF+k6pwij2In2Bu01JlUqn6BgbVKyf/QYx955Vp2ge4AkUn+6LstTBmicgOQI4MBSup6GkXDflZVgdtAugJnKY2fTu/nFMwteZ2YMog9UeSPo80u2kEPRkpFsXycR0GHBjWGlhZj2QL/HhwE9oIlvYzHZ19y+J7AQNip9RMPLzoVzag/HEC/F3Undfzsz2APZB7ly3ArOjoIXZ6hqCjMGuzBiHxcJ0PuqLHwCzmNkwdx9axvE0LnD3L8xsR2AZJBj8FB3KR7pJhrDtlxIKFYq+siDwT5SUYISZLYo24Ku5+z0AIUTcjowCqOJwCfRAbrfF82KMzwP0cvfPcnFsCUxxefZAcXnWcvc3TEFISx2Xx8zWRvHLTohN6F+AA7xE8RDHF43Qx4p5JoTjXxbjPOpQuK4/5+4/N8r6WOzTgAPN7AHgBXf/wcy2RPu5DQqBnJm9gDKRds4pfEraqQMwt7u/VPNKV3TAvq/t2Y0dqlqX6DdFvNf14/EA4CJ3fzkfs3FDIojtUCN8KtpnetTvKyl8qmo/S9GCObc3MIeXz1K+cGc8E3jd3QclloPrecUTj7Ql2mNAteNBMxvp++/yjx6ANianA+eY2ZNmtmSZN2hxEPgJeD95fDhyFfibu/dE1l3bAYu0PcPWhTVlK1nCzI6032Yh+gnY293vgHJrQMYGMbkfD2wU9+cATyJh4mLA+Wa2vWUKYGzKNPQwcYA2s8nc/Wt3/yOwcPC8GzjRFOx6klH/b+VHYRkJ4PLbvwElKjgUBfh8tJhfQvhkZRMqJHX4N3CtK4AnwAzAYe5+TzK+rgaGm4IwZ0GywbnfzFZPnhdj/CRgwzYnNhawisblib7yGOFWigTLH6JkFg2Dqvex5IA2FdrH9CnKkjoMQpnwGmZ9DKwIHI1i7W1jCiL/N+Aod/+s2Du4+/vufjbK5JgTxfx7OrI2rY0p9hmwfqwvZUdl6+LuryNub5nZFkgAcGJmWuOEZDyva2ZTJs+LvcdQZEVf6vh1o0Fl+1mCwqtmVzObaeTDpr3WG0jIU5o2suYJSLYEDo6i84A73P3+fOwqCHdvvybSC00AiyT35wIzJPeTolSet6KUkrcCk+TmPZr6nIwsTDYF9kSxH3YEukb575AFzTq5ubZinV9CcRwA5kjbB1mgWG6OrVjXDsjloxvwNLA2srD5GVlRzIMOh/tk5rlQ/F0XuRPNgrRtRfk2wCfRP3fK/V3HsY6W/O6BMkrNnDzrigSCZyKh21PAqrl5j6Y+k9WrX+34QebV52bk2TH+HgAMjjHREdhhdLzLdiFr1HXrfN8TgFvid4fcPBNeXYH+tW2BXEkXzM2vleta+T5W9B3gRuD++D09sFyZ+tUErP/vkHDtA+DNuPol5Va0c2aeRV+bNdbD5eL+JBTXJvu3bNS6JON43nR/Es82A9bNzXEc69Up/u6MhBiTxv1UyTuT1K75Vbmq1s/GUIf5kaXWgnHftea9zm3Jayz43wtcHr9XRhn7ZsnNq2pXdgLtVzkuYG4kNf8G+bV2SMqmQIFhL87Ncwx1mBVlsPoIaaV3rylfDPgYmDE31/GsZ7HA7ori0UwW968Aa+bm14r1LDZI89RuFqLu/0CCqKvLcBiq5YCsgEYgC61NgelqygcAG+bmPZ5tszsS+n0APABsUfNeT+TGdifwZm7eo6jLzsC1wEq1dUzqacBawPfpRraNeRaH6smRUG+zuD8PeKQMY2B86xeb6MvLsvFMvvkWhCCjpjz7IX4C1beyfSw53CwJfA3ME/fPopiWv5mrG+Wq7Y/IGuo/yCX6HHRYmjw3zzq870bJOQrOX1Ej8K3KVYW6JOvafMhrYNrcnFqzXvH7A2DP+F3EtzUaRABdhX7Wgjo8AlwYv9eJvXLp5qcazguhM+YMcf8SykCYnVvVruwE2q8Mjd60+Exe83w64CAUvPpdYJOkrEMVNttI87cA0LfmeXd0QL4oN8fxrF9xQOgIfE6TVvrk2GCX4uDWivWdB7lyHUFYFsXzKVFWk/eA2YtvUgK+3QkBYdxPhywHRyD3tOWBnrl5jmcdiz64LPB/KI7Ptkjj/igwZZ1/0x+YKTf3OrwMxY57IuaH44C50vL4uwdyCzu4BN/9UpT5ESR0HwosnftbjmUdetccForvfBMlFBIg6+BLyjDHtFH7VLaPJXV5Fjgzfm+CrE6nz81rAtQzHUdTAN3qvLMzSlTy35jvFisB70KRthYSdvaL+/8BJ+TmNzHUBbkRPQj0qdefqnbRJHw+FXg6fhfBuCvv+VDVfjaKOmyKjB6mjvvXUciD7BxbUIeZ4+/ewDtAj9ycqnhlJ9B+tXGDN230OyEf6ENo7h7UEZgLGIjc7u4tw2ZlHOtabKbnRnEOXga65OY1nnUqFthzgMfi9/TIcm3l3PwmQH17RT99FVnR7EqYugJLA6uUgGPRz9YELkJZ1Jq5OCAN1WvAMBT7ZsEqb/SiTo8T7p9x3xeZvG+RfpcqXEirdTo6tN6NBE7TJOULA3tl5JearA8DFo37u4FBub9fC+tQjJOpkJXTdHXeWY/ElTP3lXAeAAysU/673Bxbsa6N0MeKw812yAq6R9y/R2bX7Dao+yFIkD4UCUsnqSnvhmJB/QiclJtvwmswcGT83g1lHK2kkqYqdUnmtR1jzat1fZoB6J6b51jWqZi/+sUYWDXurwVuys2vletaiX5Wh3cqLH8XZZADOBDt8Utr/UQd5QWwNRV1VS3DlZ1A+9XGDd40SZ+OMiRsPZp3l0MWDcNqNzNVulCWogspcQyasWy7WaNNlo37W1Dw5OwcJ2DdF0UZyj5EqdrXTzdNZBLm0CTQ7Ribgr+jrCRFeQeaW0TthqyhKqGtGk29F0MWaL8v6h9/LwRuTt6bCblKljLeAr91WXkq+tjT0d82pkRWhchk/aL4vRayVq2ESzEVjsuDTO63Se6njsPbK4SLV6NcVe1jNYebD4Hd4vfRyPKnsnuY0dS5GFP7IgXbMSh+z3sxzjrFlSpD5q13mGpj3oWgcH+axxn7PB1nVbiqXJfYO16U3HdFyQW+qMK8XFOXYi92G3B9/F4SKWcrP0dXuZ8ldSj2iUcBL8bvbsh9cOPc/OrwLfrUsvGde+Xm1EhXJ9ox0SAyUBUR/HcC1kACpqJ8ZXTQ/xa43d0fMrN1kYnk8CykWwfno0NkaVNGtxBFBo9zkUbnYTNbEU2Oi+ejNeEQGTE6uvszZnYDClw8J8qEt7yZ3Qw87vnS6RrgwFnInPjgYqyYWVc0zvqa2Zvufr67DzCzC6C6c29kJPkeeB4JQqGpb14CXGVmvd39C+BsNPZ++O3/lB8xH3ZyZehbBgWMXxFYApmI740y6Zzi7i/m4Jhk9NoMCZ83iKIzgDPc/f1R/+tyIMkesyT6vstxVtQuAAAgAElEQVRE0a1IYPlQC9IyZ4GZLYQ0zK8nj/8OzAwM8AqmKa9FI/SxAmZ2LvB5zLW9gX2QVWaV9zB1EW02KVKy7eLuNwCY2fcoAcQMnqQxN7NJ3P2l3FmlYr7tBpwCbB71OBeNsStychtbVLUukSHSkQVUgVPR/upyd38oC7FxQLK+rIKETktE0bkodm3l5+iq9rMCscb8mszJW0fROcAz7n59Pnb1kexH5kIJrEZmcC7rfqVSyC0Ba7/a/kLuD5cn9z1QwOTvgSHIX3ogFXdXa8QLLa4jiHg6aFI8PjevVqxfbSDvVHP7AUrZTvTXF9Hm6UAyauqAaYG3iGwk8Wx5FM9mBNJGf4yySnWuV8+qXDQFvDfquOYil8nByI3n98iNt3du3gm/wmJgQRIXu3j2XxLXFGTKfxyy9OrXVhxHw/0yKmSyPoo6VCYuD03azzljDPdBmUaviD6+ZG6OE6DOle5jyILjZhrY/aZOnXdAoRKmqHn+PLB9cr8ksF1uvsGlIxL2nxf3syMriKVyc5tY6oKUYIORInp6JHz6CgWqr+Q+JdaX0+P3tijAepakIROgbpXsZ3XqcSVwZ/yeH7lLLpyb16i+efzdD3iYxJshnjdE8P5cVwfaMVHBzLoAP6GJucDhwB+Av7l7TzTYtgMWaXuG7RgVzKyzuz8BzOvu75nZQSjA4smZqbUa3N3NbHoz2zXufwUwsxOQCeyN8fxE5B7yJvCVu48YxX/ZFuiBsi39CGBmUyLBRUeUZWYBdJDbAPgVmmlWKoOwkHzTzCZ14el4nq4jQ1E7rYksD093WUKVAi6tYSdkefN0WHxgZjuidjzRzDqEtu4Ddz8M2MjdP8jBN/227r6Nu59iZpOhOfsId/8uB6+xQXxvzGw7JKw9PIpORQK/j3NxayFWI8zvkYCmO4r78ERWVq2ERuhjCX5CsdruNrP5kav24WP4N5VFWDIN5f/ZO+8wvaqqi/9WChBaKAIiHRTpCPgBApEmSBVpiohI771KVZp0EDCIdLGBCEjviBDpCNKkN0GaghTpyfr+2OfOnLxMyiSTOfe+M+t53mfmlkn2ee+5p+y99tpRVn6ydG6ydPkvBIuzwhVE6mhx2B5p+xnbO6ZTRwMjbN9R0q4JQdPakrHfliTGsieAi4lCIZvYvtn2J9CsdYqk6Yi18H7p1GnAEbb/U86qnkPT+tlYcCZRFAHgl0Qlv78VtGeMqPYfRIW+e2x/CiBpakkbAs9JWmaM/0A/xop+B1QfgyNV6U3gh5K+I2lXQpfm18SGACKH+iHCudEYSJqttA2TEtmi4LF0aiRwkO23y1k1SbAKMFzS/ZKWljQV0UcPsv1+chAMtP2i7e/aPqewvW8S7Ij9JQ0jRHtN6Dw9avu/xPs1Epi5nJkTjScJzbgPJa0r6ZvQ4dRRleJLVPv7KRF53G9s/2AJpEXEcoSo/W8l3QAcS5TS/a/tUalNA9P9L4zln5skyJwCC6VUifz8p8COti/ubbu6i9QnPk2HRxDvxDuSDiPYtr8oZ93YkZzhIt7ZwUR/uRfYxfbjpdOYJhbt0MeqNkj6hqSZbH/qznTBgYSuyCPlLJx0kDRrCgRcDGxh+430vlXp6LcSLAkkHQh8aLtosErSzJL2Sr8PzC59h86UnEagqW3JnEpzE+/I9UQq/a62byhl14RC0lCAtM76gyNV7RvANUQ1z0ajqf0sh6TJq99t32b7eUnzEBkCR5SzbNyQ9AXgI4JRWuEEYGfgNNt3FzGsDdDvgOqbOBO4g9B32B/Yz/ZZtt9P1z9HLLr/Xsi+8UK2+FxI0gkEe2FIYbN6DFn7VpP0Usr/7oDtE23/qox1kxQXEZpWzxFVff5FVPy7rrrBkUs+cAx/36tIEbbNiWqLfyI01DZuYUgsB7xl+9UCJvYIEgvoz+nw28C1kv4gaa60EaoWtrcQeljblrBzTJC0lKS5INpiezuikuJIYDpgmbQoIt0zsut/adIjY/RdQix0Os7b/sT2b8tYNmEYgy7Pga65Lk/q0/MSqQJn297V9kvZtcaiHfpYxmj8GZGekl97gGA6th0k7UKIEQNg++n0a76mvwOwpFUIVsiuvWfh6MictRsSgZqB7mQ3V7+/U8q+7qCN2vJJ+lwJrG/75cL2TCiOk/Q1GG1MvgfYPgt+NA7t0M+yIMeJkrbIr9l+DljZ9iu9blj38C6Rev+8pNklnUwI9R9JaO/1YwLR74Dqg0iLlR8RaTLL2h5eXZM0DSFyd7VrKjxaDcxp8Tk3oWm1NTAPUVGhLZBtEBYhKtx0bNaq76AuTpiJhaQhko6AYHrZvo9IA/02IZT/DUlHKERUR6X7ijkIusCthLDyksC3nQTvEzFoBeD7tMFklfXJ3YH1iE3fk5KOyqJcjxJaXdeWsHEsOIsY8zoicslJuBawafp5t6TdFWmURSFpVuApQl+skUgsoimJst77p9OnA7fYvrqcZd3CDoQD+Rj4TMppo9EOfYx4Nh8SrC1gtDVCo52EY8H7hL4VkjaQtBqMlrI+me3XibH4JqJQx+WljM2ewxDgNiL1q6MwTrqnZBr9eKON2nI/KUXV9gdNHNcUabZrEO9DB2y/Y/u/TWxThXboZ2mPNiVRKGlwfk0hc1CqeNA4kTkAv0rY/iIx5s4NfNf2LTXbgzQOjX05+zFxsP2c7b/bfilnEhF0yJnIIqJ1QzUwS9qUYMs8SGhzfGD7jZK29SSyyXNKgqrasZhOG7sp2mgAXJHQS0KRcoftd4GrgW0IQdxtCA2iH5YyckxIrIH/2H7B9lvZpe2Id+pMN7ASSzY2rCnpNElfBrD9nu0rCafN/nQ+my1SGszN5aweI1aw/QtF1aibJa2fHJq2fSHBYDuDSB+8P09LKoT3gIWJMtIdkDRjztRqABqry5Mize/YvqtaLNd90d9NNLaPZRuEDwl9rg6tuTQ/zlGNV+0G2+faviexCX8MHCLpIEkLpuvVxq7SVtmxq3+nt5AFyhaBjnSp6jkNkLRvnqZTZ7RLWxwSBvc6ZT40dFybHHiJFudGhYa2CWiffkaQAt4k2HYdqPuzyRyA8xBFd24C3gB2t/3nMf5hP8Yb/Q6ofuQDwbcJZ8cedfRM56wfSTsQG/ubbG9DDNIjquvlrOw5ZM9lHeAhdwrgDVHkuL+qKBHeDriBTsHUcyU9LWlph/Div4hyuisS6SLnSdqzlKHji8QumJdII6ydFtK4kCJtVZnvEwiR29FSXG2/ZvtnRIWly4hnt1fvWztuOPTDRIxx7wO/By6S9JXU1v/ZPpQQjT/NhcRLs431MGKBfVN2bQ1CY+zkukZ31Ua6PG3k4B8NTe9jLfg28Krt56sTktYlgherSepyc9pUpPXPZACOAg9bE0UuNgaOkbStpJnT9Z8AS+ffTQk4UuanJFLrO9IiEzv4XGItN3sh87qFdmpLU5GNSwsA8ybGfHVtekmHStqhye9+0/tZNsdMRawPb86uDZX0I0nHN8CJJsLBeSVRkKaWmUFNRBMWF/3oPZxB0HFvLG1IV0ie/+mBQ4GDiRzcnyhECD8gVfZrp02DpDmJ1Lu80sVhwEHAhQ6di8YjMYg+Ts7D4URlljsl/UbSLGkT+yRwAPC1dE/d8RqRtnOEk4B8w1AtIIYDrwB7236w46K0qaTvSxrmyOffm3g2P+99U7tG5gz5vKRBie30pu3VgW8SqWF3AsdLmh0iRdn2SaVsziJvsxFaFkMAFBX7jiOEsLeuawTRfVSXp0loeh+DjvXAZMBQ4K4q8CTpEIIxe5/tnzd07P0Msk33+kQRmfkAbN9ne3tiXTSQYDsdrSgyM1m+OS+MzxFz4lsAkhYFfkukTi5ru0lpoLVtS/Ye1NY5MbHIxqUVCN1NoCMl72SCkX17G7z7te1n40I2x3wTuJvEslVo2Z5C6KY+6ZrrQBLyGusDBzsE7vv9Jj2E/i+yHx1IG7PXStsxDpwNrA38yPZ5aYIZCSxDckBlnvd2wEfAF4DXJM0k6XBC3Pk0CoqK9gQyRtsMSqVME+PpNmATQpdnCeBZSQcnlsoHtu+uI0OvFcmp9pY7xf0bBXdqrK0NHGD7PQBJX5N0MfAbQn/tDEnLOrS7avNsMgbXNMS4cXT6HQDbf7H9f8CewA+AEZL2UmcZ8yLIGJxfAgbafkvSzsCpRDt+ZPs/NR/naq3Lk393kqZNn+K6X72Fduhj6tQQmZ9wkE8m6QAiJfhnhE5dW2h2ZWPZkkRQY2YiHaQDtq8gxHHPB74IHEVK3ymJrA9NRjAhbpK0JaEFN4KotvjgmP6+TmhCW7IA7F2S/ipp8ZL2TApk7/Qgkv6TIt32snR+M9uPNvXdb0I/Gxey717EHu0DSfMSAag5iVS2s0rZN76w/Yztv9r+IB3XNijTNDTy5exH30Sio/4C2MD2b7JL3yS863dCPTY4E4tsAlqcSBl6nNjsL0NMrpc2PbqTPafjgFMkrZNdexe4GFiJ0OTZFXhLSWy1jmjqYmccmAN4lqhEWKUVHk5UjVuB2Oh8Dti9hpvVnMEFcH3qV503BCvqDGIjfhWwFy1aBb2NbAPxNeB2SacC3wOOsn2qk8ZYHce5rA/UWpen+u4k7QhcATxJpJwtVNSwXkKT+1iF5JCZhZgj7wYuJFIKd0jz47vVfQXN7BFkz+Ecor/+3PY70JHOsr6kNW1/bPtU4IfAz2z/bQz/ZK8hs31VIlVwV8I5dinBsvukhnNHl2hYW7YgxuH7JZ2e3pW2QPZOrwXcIGl9Yp5/FNgyBTEb++43rJ91iey7X5vYmy1M51rs265ppk0/eg+DShvQj96HpNncwJKriUlyUxeXpiUG6WmIVLzGI5uAvkyUAb0VeB3Yyw3RTxkbUvR6lKSNgNUJxtM92fUpiXSCd2wfJekyIsWgFk63FJGuNrGzOLSQGrnYGQdeI0rQ7yjpHELs/1Pgx7bvAJB0PuGImhL4XyE7R0PGGPgqUa1vOScReIXI/WbAKsCHkn6TFkO7SDqwDptuhYaLgN0IEe9vEWNcx7tT0LzxwZh0eY4CzpT0bCkHejb2fJtIZT6L0APbGzhN0lrAx3k/aMh33i20QR+DSCH8hNjYjALWrtY2+RjdZFTtkPQtIt3wMNtVOsvKwE+A/wOmkDQC2CS9d3VLUx9EzCUzADvbvgwa+5xq3xbbN0m6B1ieSFNbS1FCfriTnmiToUi3e5PQBt2TGL//mN6Vpoxf40Lt+9nYoCjkMg0R4LuJIBCcZ/sdRYGPonIprd9jYgaPasJ32w5ox4h9P1qgrMqdpBOIVJQh4/iz2kCdOe2tZTyrCMBCwGyOssPthiGEkPW9wLfawfkEo0VHjgaOt32HI796aIpmPUZEtY9LDp7HgM1t31rI5NGQOZ82BK5WA0TRJxBPEZpj6wP3ERUyt7R9e3bPbISjsBbOJxjNgbszsSitnE+zEoy6Ewl9olWJClKV/tM7BcztCh8SG+obge+k995Q76huWvzXWpenZew5zvZhtn9JFHuYB1iwdQFa5+98ItDIPtaCUUQ62h3AerZfrtYF7bKJyNqxEDEvAiBpGFFN8iPCyb45sCTBCqkjTAjDb1ltpKGxz6m2bVEnBqT57F4iTe0uQrj6AUWhgaZjMLAgsCERmD292gM0aPwaF2rbz8YTnxIEgeUIx+chtp+Femj1pvXKDJLWlfQFhwRIU77bxqOfAdXGqLy77tRyuYDYdD1ClMZsBFsoG6jOljTc9j3pfDVQXAhcBM2JDHQDNxLpIbfY/rCNIjtIWoUoA35pdnov4LsEG+pDgnr8OpEaUlxbqIX5tB+hx/V5YiPUdkgT9C+AB4ho42s5e1LS14kFYHGtkTHgTcJpVuFoQn9gN9vnJrbL5cCiRDnnWiBFCLcHXnCDymSn8eljSfMD1xO6PHsQujybE+NZcYaNpCpt+7p0PMj2k5JeJLTnHkzn5yfsPrwO409Poql9LIftB9MzesNJo67N5v8czwA7AfNI+gg4j9CDOcn2Q4ltcB81rYxl+3RJ51d9rclrtbq1Jf//s/XJYILZeAaxftxE0sIE6/NKSX8lGIO1CRx1E88RwaTrbI8obcykQN362QTgU+APwO2EI7T43J9sGOioMrgHkXo+GzBQ0vYOLb1+9AL6HVBtjGwi2pQQ5HyQWLAsZPuNsf1tXZA2Bp9K2g5YmViAIenr7szzvr9iRzVscB4nHFWjHsiOG7VBGAf+Qwiszw+8LGknopT0ObaPh450qSUU1XyKbgCzVIgvADsQ7JqtgJNIVUraDanN75FSXzPWIZI2IKjvw13faizPEumDrxMpghsD3weuSdfvA+4HZixj3phh+x+lbeguPLouz+FEcGAwSZcnv6+QiTneJNgjkJg/RCrejpIOcVTnuQC4v/TYM6nQhD42rk2XowJnX8BfgVeBvwH/BF4G9s3Wcu8QjOnaMcGrTaezghxNXavVsS3ZWv9oYITtq1MgYBjwDULIGocw9+ZEJbXVG+x8wvabRDVsoJHOmbGijv2su0j96+iWc6WdT0rOp4WI9OW9Cef+HsACku4i1i932P5fu/WrOkH932v7IdsoDyQYGvsCF9o+SNJNwG22D69DDu7Y0MI2eYXQPjhD0hHAV4F16mx/P8YORUWy3xEMoleBNQkG1K+dRHDTgmox22sXMzSDpOkJEdj3CI2Ne4GHgCWd0j/6wmSl0F/Ym9j07FbXNiu0xPYnqkO9DRxr+8rs+opEhG5R92IKb8sY7dKLsp6EolLXlYSDuba6PJK+ZvvOlnOLEIy4rxDFLX4FDHUDNVPaoY9JmsL2h6XtqBMU2mXvAfc4SxlWVDE82PasxYzrtKU27/mEog5Mje5A0qLAuQTr5G7gBIJdfr3tQ1rb0w7PqJ3Q5Ocxpr1knd8hSdcDz9reMR1vRuyVB9PJmv++7RsKmdj26NeAakOkRef0hGjzwcCRwE8kDSXS7l5M99XdeVNpV50MvJicTzMTnupTG2B/t6D2rKI2RjiqFJ1ApNu9AezqrAJTclB9B7iknJWdkLQmIVg8DbCV7asIgciHgKmgeRGqicAjRGTr0Dq3OUUPjyMq9q3a4nyaldCCuqA3nU8Jk0ta2KE5MErSoJxd1nDUTpen+v8lzS3pe8mWO9O5nAn+PJG2sgrRbw5povMpodF9TFGg4uAuzjemDT2Jan1g+0+2b3JnFbxBySm1CxEUKI60Bm30c0rvzMC6tyPrFw8D2xEFa5Yk0p0XIpzoHe2p/q7O83aOun//E4s8e6OpbU2MooGte5gaO5+WJPQez8pOb00EzfYhsjJuBE5NWRj9mAToUxvePoazifKXP7J9nkP0dSSwDMkBVefBTp05unMB2wAHpEunAzfYvracdT0LSTNJmqqug/WkhO2/EAKSW9n+RXVeIQr9E+B/ts8tZV+FxIy4mtigbmL7lXRpfmBO20+Wsq0EEjX88cpZWGfY/p/tt21/pM6CDMsDJwMf2d63gFnbAg9LOju9+5+mBWjj0+JtP0i8F/vYfiGdq0WKCrAlcKykcxUVEnGkeA+QNNiRbnorcBnwge2TyljcI2h6H1uAEE5G0nKJ4dGxUavz+mVSYCzrg3UJMfIrbf+uF03KC9zMIGlNSbtJ2lLSlKXf+e4ia8vqks6SNF1y3lotBXBqhhMlfQ1CssH2AcAxRADgmXR908SwaVzQtmn9aFzI+tnckrYFzpB0YGJ7Or+n7pC0nqT7Jc2bBzpK2zUeeJ4gZvwXOhxSswLb274mrWuvJpim05Uyst3Rn4LXhlCknSwHPGn7xez8hsTEtJjtWguQZ+kD1xIVtr4raQXgKmBZ248XNnGCkTnXvgX8kBCGf57Q0rmxyVTc7iJva/bMpyf0Y/6PYEXdW9TIBElr2b6m5dxlwDO29xkTDbkd0G59UtIWhFjv1Q6dtd7+/79ABAj2AeYA9rP983RNwIA696Wm9gdJCwLfAlYnKvVdBZxh+9Xsnu8RGinL2b6riKE9gKb3sQqSpiacgq8TKUVXVIzFpvbDnoak+YDXE6u4xP9/BbGOGQL8m3hGR5awZWIh6RGCOfQf4JS8HZLmsP3PYsa1QFFc6GiCkf2BpKWdivQoGOQbE9U95yBYy7+1fVMhc8eJbA04DTFGbw08SrCUH26n913SX4ApCCfIHMCPbV/cck9tU9gAJK1GZDEsSLCJdq3sVdLvLWlfKyRN784Mi3zvMR0wv+17sj64KhGkXMX2vwua3bbod0D1IUjakiinvo17P+VkvFENuooKVecDS9t+XtKDRD77/mUtnHBkg9v8wG2ESO//iCpiowh2zUdd/U3vW1sG6btZDXjU9q2FzelyEZA2cEOAc4CHbf+0iHGTAC0T89TA+3VeBE0IUkR7UElHvKQpiOjaT4jUiWeA3SsnpyJdYlTd3n01XJcnvbtfAo4Hvk5szH4HnFUtmCV90/b15azsGTS4jw0gyA/VOFQVD5gT+DvBULvObSoO3wRk67QDgc0Ix+5bBGP9YGLjdm/LfFLrDTWApL2BYQSDaE+CBbE5IeY9gKi8NrIu7ZA01PbbktYGTiEkC85xYmUn5+RGRLXap21vWs7asSNbH19ArIlfJirUjgRWs/1sUQMnEl28M8OAT4CfETqorwDLA9fYvqCcpeOHNJfOTjg59yWkKA60fU52vRaBjsRyupTQ+xynoz45CB+xvfMkN66Pot8B1UbImDWDHSl31flqUD+eWBQsVdDM8YaiTOz9tneTtDVBM1/SUf2i0ZB0HaFrtV06XoooW7697UuasFCblKiL021sdqTN2weEQ/eCutjcU5C0OlHl73zb15W2p13QuumXdDPwLiHovhlwCzEO1K6yoEKX5yu2D24534i+n8+Nkp4jggAjCdHxF4i+fnlBE3sETe1j2QZtGCEEe4/tl9K1wUT10e8CA4lnd7ntO4oZ3MuoG8tW0hDCIXiw7T9k568iqrEdk60/P58zDesKSQsDvyCq3A4FtgA2Iaqo7pazCEuNedl3mjv3liQYQ4sRTo0rgXNtv52ufx14xfZTJWweF7J3fzWiGunytp9I1+4CbrR9SFEjewAKTaFHgT1s/ymdO4Toby8AjwE/IJyJ+1HDAAF81pks6QRSlXIio2NHh8RGLdYHCg3kVW1fqkhZHUr0qZEt980MbE/MNXPVjcXVTmhEnmk/xg/Zi3S2pKWz89WLfyHxYtVa/ynDMEJwHILeeUSbOJ8WBWYj2F3VQH4/URp+Q+gQjJxW0qHKhCP7AuowWSU7BqZF3gqSfqdMxDfbCKxLVM1qK60CSXsQC6DvANMXNqetkPpNpQOxHhHh3QXYlWCoDgaeSozVuqExujz5uyppsnS6YjgdArxr+4fAgcAv0/XTJa3T68b2MJrYx9K4P0qh/zecSMHuYDjZ/sT2aQQTagSwMjA8X+u0O+rkfEpYEngWqJyE1Z7iNmDVzFGyEXB33dcyyd5HgeeA79keQWipPU2kgP5UoR83pOR8n/3fqybHE7b/RrzjxxPPY1PgV+m7x/ZtdXU+wWgaZ7sQDK4nJE2ezv0O2EzSEHVqKK2s0IhtGr4K3A9UzrXBBNPuCGBl21sSqV8rQn3XlWmsngw6ZF+2IhygqwD/AG6SdLOkWerQBocO6KXpcAtiv3WOpAVabv0Kwerard/5NIlhu//TBh8inQSCZv8iMFU6/nrLfYNL2zoG+ys23udbzg8gUgiOrtrY9A+wBPBrgs2Vn1+JiCZOm47PIhhgxW3uyx/gPuC89PtiwMDSNk2CNg5IPz9PaMZ8QCwm/gmsUdq+brRD2e9TAcvUxSZiQ3AysHh27WnggPxeQg9iF2Dm0raPpU1Tp/fiGiLlZubsmkrZNQZbTyHYs/Nk/eItYP2W+xYlotLFbZ6ANja+j2VtuI7Q4Jo9uzaAKKDypezcMODE0nZPwu+jGpMnJ1JcrgQ+V9qulmc1L6HXOHOLzUsBbwNzp+MXCA2y4raPpU0Ds98XB25Nvy+b5sM10zvzH2DTGvSLHYCbCAZ2x/n0+wzEXuBy4AHgPGCy0t/xeLRt1tTP92w5Pxfh6Fw8HS9AVE6ep7TNE9DGaYGFgSnS8erAb1r63zqEE3fO0vZmNlXv/ByEoyy/9msibbA6/hyhP/Y88N3Sto+hPWsTbLO3iYrx1Rg2BTBrafv6wqc/Ba8N0ELDfQU4zPYZko4gvO3ruH6Rsy4h6SngdNsnl7alp5FFA6cBVnJWEj5dn4OI7H4TMDE4LmL7H71v7aRB9h1MR0R4nnZEHGsFJQHFxBA4HFjY9juSPiQ2qWcUNrHHodCLuSId/pLofyMIGvJ7xQzrBjIa/4rEZmE2YC3b/y1s12DgJGBVYiH9O8LhsTbhkDZ0RoFb6e11gBqmy5ONNT8nUgPuI1IadgCmtr1Ouq9WaU0Tiib3sexZDSM0bJZ0Z+rdosCPgLWItIkLgO3q0s8mNSSdSOgrzUekvz5U2KTRoKgW999W5rKkxwlmxwLEnFl7toqigpeAQcANRBDwIEJUfd/EyJm31JqsZf30FKG19Qd3CitPC0znVHxI0pcJR9QTts8sYfP4IB+LFOLPH9ke0bK3+SvBjDpX0g1EheT1C5o9wdBnZVIms/1x9nx/AnzD9grlrOwaks4hmI9/JKqtz0Cwold2sPCq+wYQTp1iabfZenA5YA1ChP+J7PpkwG7Ee/Q6cBhwcV+ZW4qjtAes/zPxH5LnnIh83p1+n5nQfFiztH3daMdswF+Ab7Wcr9hdjWaeEJ71hbt6dun3AcBDxMb5RuDXpW2eRN/D3MCvCPH1jUrb04V9OYvmX8BO6fcfE9TpKUrb2INtraKpqxIb1seB+dK5zYE/USOWxHi0YxCwApGC8ASxMCoazcr7CyFkexnwIBFVP7FlDKjdGJd9t8OADRidmTKYSOsaAdwJHEtUjytud0sbZgeuJQo9jCKqj06WXaYzsxoAACAASURBVK/EUovb2hf7WGbbQQRrY8p0vBDhFH8gzYsHAB8CW5S2dRJ+B9V67svpfXqDEPh9jpowPoD1gL8BX8zODWq5ZzjB7PiAGq9DU1vuJxxL+fmN01jxHDBLaTuTTRVp4Hzgquz8AEK8egTwZvq5aGl7u9Guk4nq1vm5at6p3odTgT8QqbcfE0GE4rZ3o43VOzNfdm6y9OzyNeciBEP3G6VtHkM7vko4Zh9Iz+NZwjFYXR+Yt6cOHyL49PvWPpZdnxk4I73vB5W2t698+jWgGg51Co/PRaRCHJAunQ7cYPvactZ1G58CMxKDQA5BLfUPuottgYeThsBUEG2qtIUcEaALiA3DssTzbDxyXZgUkbuO2BD+j9jA1g2VxsAJwMu2T5f0OWAv4FA3uAJYKxzRofmJcvRvAxu6U5h4HmAm17hiZgV3Mjn2JRaqvyDSeD62/Uopu5L+xsGVboWjBPYGRFrYPYSz7ESFQGztxrim6/JIGpDmyJdsr0lUvXsY+DlwhKQFE9vRrgkbqLtoeh9rwTOE02lmRQXOMwnm1u4O8efziaqFsxWzcBKhmifTmmBGIkizCJGi81/gDdvPFTQxx/vERvMxScMT06DSV6vm9AeIlNBra74OfZ8IXDxetQXA9sXAkURVr9egvHaqbae+8SXi3ajwA+AoojLvUUSK9GWSZup9K7sHSXMTqf9/T8dLQcfaRKT1P7FuXIpgSB7phrCyM1TvzD+yd+bjNO8MhNBVJCqW3pDG8drB9n22tyUCskOIlPYpJa2bmFwjUz8t+q5kWmHHpFM72r4ru762pE0lrWj7dds7EOub0wuY2zdR2gPW/5m4D50RkWuBi9LvKxALlgVK29fNNqxJ5NcPzq4tSuS5X0qNI7fj2c4vEE6oJ4jJaJcuvoMViA3elqXtnQTt35qo9HcJseB4j6TpQU0iJnRG2+YgHDKrpeM/EBWXitvY0+0lUiR+QGIdZNfuIEWD6vru0RklnZHYLLxAVPcCuBr4cUn7CWr3Oun35YElsmuzJJvvJRiPPyXSHYt/r5mNbaHLQ0tUlmBtvQM8SWieTVfaxr7ax1rasjChYfkfgo35YhqfqvdcwM3UXE9oIr+DDdOa58/AbOncqQRLpBY6mHTqiO1IMCBeA7ZuuWcegkFbC/ZQN9uyXXZ9QJ3mP8JZdhNwfDpekNDaORmYMZ3bjtB+m6u0vePZpqHp59rJ7qPJmELp2hxEcPqZ0vZOYBvH+s6kOWrl9OymL23vWNqRa41VlUlryYAm0gP/SVS/q859hUgdHEXswx4B1i5ta1/8FDeg/zMRD69zUbYWkb86dzp+EDi2tH0T0J69iY3+1Ol4JUKI7xoa4kwbjzZOQThfKrrnU4RGTXV9KG2SXpD1z6GEg+N90maPqMT0V2AaauJ8SrZWG+6rgUvS78sSzqiFS9lV4HuYhUh92aK0LeNh67zAOcSGtXIYDiGc1ruVti/Zk4t2b0eWFkjoKZxHOEPmLWVjFzZX78KwNL/kzqdFCYfUW2kcO59miNwOyn4fDJxLpHRNVdq2Hmhb4/rYWNpxCBGwmLPl2oZEcK3xz2sMbd84rQmGkzbl6fzlwAml7Uu2DGg5PiHN7e8TuoErZtdmKG3vRLTlCUKrs7pWp3XKSUSa+RVpbfI7krMyXf9aehbzlbJxPNqg/Gf6fcnU928HbiH0eabJrm8DrFLa9h7uZ63vzOSl7e1um4iMhmMJxu0DwNKl7Ut2/R9wNzB/Oh5CiNzfTmhCLUmwbtsuuNyET78IeRsgifPdb3s3SVsTi7clbb9Z2LTxQpZGeCwxUKyvKIV9NlFd4Qzbz9RJNLW7UJQfHuX0wkm6mdDoegfYjJhsd7D9dDkrJw0kXQpMD1xv+5h0blvge8AGLiwQ3YqUJvhH4Nup3/0NuMX2PoVN6zVImoHQv9rA9jWtArN1QaJ5XwlMSdDyb0nnhwCvAuvZvrWE/eMh2n0FkZ7yYbq+hO0HetPG8YGkg4ClibLk70taCDiGiOaeQziRf0yMX+cXM7QbSGl3VcrQdHUbg8YX7dLHKoxtjpe0LBG4+Y3tE3rXst6BpB2JTekfbf8vnZuRcIZsaPsvdVgHZaLJUxKOkJ0JraR9CcH024Hvu2D68/hiPNpyG1H17rWCZn4Gkg4gUjTvsX1Ky7ULgSG21ytiXDcg6RvAm04C1mlOXxfYiGB3vQxcYPvSclZOPMbzndnUBUW7u4sqRdKdAvLLEePU3mUtC0iaE3gUOA04jpA4mRU42Pb16Z4DiNT8TZ3E/PvRO+h3QLUBspz1UZJGAdvaPqewWd2GpPuJ6ltTAN8F7mynTX/maFuPEPFbknBCrUToCw2joc+uKySn29eJgX9f27dm1/4IfGD7B3V0bkiaLzmfNiU220vY/k9pu3oK6qzytwwRCTrSmTZM0l/5vu1fFjNyPJF0Lt6vNmzp3AaEU2Tl3nbEZ5VXhgEzERuEqqJXRVn/LkG5v50Qk72tN23sDiRtAhwBrAb8m0jH+w+RanebpKp09mW2jypnafeQz5ulbeku2q2P5ehqPkhz5mHAQ7Y3L2NZGUhankid3Nf2PQX+/6oy1xyE6Pifs2u/JtK+1krHnyPSiI4H9rd9UW/bOza0Q1s0esW40ZyRigrL6xIpm4vbfrmQmWNFNn7tQDiaLrR9dkvbZkjX1qbTob697Y+KGT6eaId+1h3UwSk+JkjaiaiiOi3BFlwbeDQL2pxGMG1r76xtN/Q7oBqGbGD7fO4pT4vpaYH9gUOq6G5ToBC5/SMhOLoAwY65LUXcazu4jQnZc9qUoIGeb7sSWXyaqBpxdHUvQWFdjyipW3vR5/GFomzxoBbnwIzAxUQk+9zSDqjsWS1ClCvOy+NuQjg3rihl36SEpEeAP9k+ODG/nq8WeOnZfVw352COMfWdxATZkWDt9FrkOutLsxOpUFcDJ7e+04qiEbsAKxKpYNuX2FyODyQtTGgMTkVU5JqSEEZ+0p1CsTcRDMfjylk6dpQeZ3oK7djHxoXkVFsGeLpJDIHuYgzOt+WItdEive1Mb7GjMeXXx4WmtyWNuXTRV84F5idKyZ/S1d+WRjZ+TUekmx5MrHvfStenJTT5XkzHXyZSip+wfeaY/t06oun9rLuo4xwraSghGTAA+JezLBNJixFap6s0dW5sMvodUA2FpKeA022fXNqWnkBiMdxPaFSc5Bqn/Ywv0qL5JKLE/bNEnv6ihAd+CcLZ1hGBb6KjbUKQFhgjCBHNXxe2pVoMLUps5P6vNx0WJZCxn3YkHNYL2v5A0mPAPravKWziOJG1Yajtt7Pz1fP8CZF+t0Qv21X9/xVLaP+MmTKAcEa/afupdG4YkepZC8r6mJAYcXsSaZk3VpuDdG1DIhVvttzRXArZM6ii7B3pdu2Adu1jfRXZWLYO8HrrRkhRvXBN2weUXCNI+iqwPVGG/an088+2t07XR5MZqDPaqS05JK0OTGv7j6VtGROy8et84HO210nnBxDaVccSlTAfIyqXPVzM2IlEO/az7Pk1fX+2DpEG+brtH5a2py9iQGkD+tF9SJqN2Ag803J+UPo5sIRdEwPbbxBpA5s1YQM8LkiawlGifFdCSPETYD9gD6IaEbZHpQ3SwOq4mME9CHWWPx2QWEWtmBL4iNC9KopsAl2MyMfvKB1bRRnbCWkD82nqc4cBRyTn03HAB6S+WXdkDoU/S/pmdr56nscSpeh7DdnCbBgR9cwdA4sSenbXAU9IOl+hCXF73R0Dqc+8Z/sI2+e0OJ+WJTQHjyzpfMrnvMr5ROf65qeKlMzGo137WI52HHfHhGw8nprQ65o9nZ+1Ws85UicPTr8XWyO4s/z6YdS4/Pr4oJ3aksP2DXV2PkHH+Dwj8CUgZzT9ADiKeB5HEcUILkvB6UainfpZNR4Bc0uaqeHOp7mJjJNXCJZwPwqg3wHVTHxKlB1vXYxUtNyRn/mLBsD2NTkFtakDnKSNgIPVqTFyE7EZPoWoErECcGKKbDb2eY0F1WR6EnAQfGZT8RoRkS+uT1A9I8IpNjUhCg90LJRmU+gqtAuq53AKkc5yjqQvEFG6/ZylH9YVlbNB0j7EM7tR0kBFAYZqk/4BUZq615CNV18nShK/mexZiFhQL0Q4aw4CNgE27U37JhTuTLMbDQpdnjMIXZ6iotDVGCrpOIV+26i0sV8F2InQD2k82rWPZeNwY+f9icSpwM22L1WkHF0JfA46xrParBFs/4lYz/yYKERwIHCEIlWwUc+vndrSMLxNBLyGAUhakHDSPACsbvtE4PR075RFLOxBNK2fZWSGqatzWdDvSqJCaZPxGrE/2d/2u6WN6avod0A1CNkmYElCyf/67NqiwLWSLm0iA6rNsABwV9q4La+oPGTb5wHfIVgmywOHSPqpQqujLaBOofUvAtsCv0iXjpG0EqSSTTVwPsFoEeV1gb/Zfh9A0pSJNfF3YIl8g9RUtDybHxLpdxBOhOtt31zOuvFDYgyMlDQVcABwaHqGPwe2zGnhBRd1zxCOgJnTAu5MIt12d9s/B84HHgFmK2RftzGG7/IaInq4Xy+b0yUkzUJUhbpe0pHp9LHAKbafGfNfNhJt1cfcmYZ+qCJ1ve2RxuNRCh2SjYnxDKJi07NVMK7EOFatNSVNI2lDSddIOl7S4smmT2yfQTg5byNElIdLWrq3bR0X2qkt7YLkzHgI+J6kKwhdpDuAE9xZ7OVh4GNgUNf/Sr3QTv0sBW8GA89IOkGh14WievVUjM5caxxsf2D7H47Mm34UQr8GVAMhaW9CkHMr2++ljf3hwHvAXrYfL2nf2KA20+MYG9LG4FbgdeBPwJVOZYklLQnsSjii1rD9bCk7JwUk3Qi8ZnszSSsDlwBfrWM7Ex38XKJc+Rnp3OmEI/FB23uVtK+nUDlnJF1PPJvN07O5FFjaSTOmzlCnrs95wFy2V0kOtb8ROil/LWxi24h2NxGKykmrEhHaxYjNy6zJaSlgQJ3YJBOKpvaxbAyaAliYKJH9SXo+ewI/IbTE3itpZ29C0gjgH7a3lbQ28CtgSWeprgVsqp7TBYRT92VCv3IksJrtZ6uARrp/eaL8eu3mynZpi6TBtj+RNC8wte2HSts0sZB0APFM7nGLaLqkC4Ehbkh1snbpZznSeHQSwTQ/gAjo7OfC2q3dRR6Y7Ed90O+AahAyBsOxwPy211cIqZ1NaD+c4SgdXxsx68zmpZ2Ja+YDcTshMWVcDXaKalzfp7OM7BWEo+PDdH0J2w+UsrcnoU4x1bWBC4Cv2P6npIeIMuAHFjaxSyS68WOEVtdDwF7AVkRU+ra06GuLCUyh2XMHMI/tFyQ9CFxt+6DCpo0T2ViyGPBXopLMfcnZ+bLtLcpa2Ak1SLR7fNC0/q9glT5MpHo8CRxs+86yVvUsmtzHFOXXjwVOJNYvbxMafDvbvrikbb2BbK7cmGBvLmr7dUlPAr+yfVRB2yon/2rA74HlbT+Rrt1F9LVD0nGtx4WmtiWb6+Ym9mnPZdeeAq5wg3TdWpHvUVr3KwrJg3WJtNTFXRO2/NjQ1H42NuR2StqcGKc/pCaBvq6QOQHbsgBJu6HfAdVASLof+CUwBfBd4E7b+5S1asxIk+izwNPAAbYvya5NZvvjQqb1GLIBbxgwExHRqcRhBxMC698FBgK3Ew6Z24oZPAmRFtG/tX2YpJ2AfYiI7n8LmzYasslqaeByYDngN0R++Bm2byhqYA8ji6AuZPsxSfsRTreFnVWSqzvqyBjIMbYAQHIAngH8xoV1k8aFOgUyxhfZxv5nRDW4nYAtCMHR+4DvuwE6Z+NCO/QxSesSelUfE7qWA4EVm9bnJgaSXgJ+ZvsESfsSzL2l6uA0lHQ58Ljt/SVNbvsjSbsRTs+FgI/Smmdl4AXXkN1coaltUaSnvQZc5qgMvQlwDLCMG16tN7E0P5NiKulcYH7g4lZWVN3R1H42JiiKKX2YgrRvAX8B1iICzIfY/mdRA/ksmSGRAKriDscRciiXlrOwH2NC43VN+hokzU5UVNuSVMUKODRdq+vzHEoIAv8NOFPSLeqsjradIoWmsUiOjFHp2QwnNj4dTjVH7vdpBBNqBLAScIpqmPs9oVCnaGEVlTtCoUX2E+CwujmfYLSFz9zE5ud64F1g13ZzPkH0w/TzsXRqJHBQE5xP6qysuAnwRULEE+Bk4OS6OJ+gGaLd4wM3TJcnjcOfSpqf2MjvY/vvRAWxHYmgQOOdT9DsPqbO4hxX2l6aYDOukC6vpPYq+jBGSNoS+HdyPk1NaKkdXBPn06zE/qDSofooXbqc0BqbP/XBBYA/pHO1RMPbcjwRaN5b0iFE8ZCTK+dTV2NAU+CELi5dSDhlm+Z8anI/GxOqNlwJXGJ7HeDL6fOMpKHFLEtwHylA0o7oZ0A1DIqSpPcTaQUnpahIrSmdafPyF2KD/yCJEUM4pBa3PW26r5F0yYxJcx3wH0YvjT2AcEi96aSxk1hS324yhborpEX0O8D3bF8kaTihw1LrqLak9Yk0iAuJDcAHhU3qEbTQws8DFnDDtVUk/Qp4xPbxiTGwFaEtVnzTNi6kcXAZovrgq+O6v7eQjV9tocujECCf3/Z3Ws7Xep7sCdS1j3WFjJF5PcHyeBdYA7gZGJ6ch22LxFR7J7FRLyA07VYsbFOeGrUqwdgYkb87kv4KnGP7XEk3AP+zvX5Bs7tEm7XlG4Tw8/QEa/Am4Il2H8+agHbqZ11B0urAxQQz8+ns/EJZMLMoFAVIziOYcxfaPljSvcANboC8RF9FvwOqgZC0FlGx69V0XPuFdaLbb2B7y8QUWo/QfxhJiNoNL2rgBCLbvA0jhLaXzJxPiwI/IiirQwna6nZug5TDViS209wE62DHxEK4C1jH9h1FjRsHJM0JzAI8avt9NTD1aGxIToQ1iGfxSTpX9dvaa7F19TwkDSE2rVu7D2jG9AbUJro8aSyarF0cye0IdWrcbEgwtr5o+21JSwBnEZu1X4z9X2keJE0LTJk7BxPj6zjgdNsPFzMubDkZuMj2Xdm5KpBRPbNTgc8TFW6vB2aoo3O6HdqiJFGRGOZvEsyZLxFVMP8MXOPOqnH9KIB26GdjQ9pvzmH7l+m4lkQB9ZECJO2EuqZs9WMssH1NvoCpu/Mp4W5gUUmrJQfNF4kqEb8EDpf0lKQpi1o4Aci++68DdxKLBCQtBBxF5H0fAhxElF/dtICZkxy2R9p+xvaO6dTRwIi6O58AbL9o+17b76fjtnA+qTMld0pgFBnlu2K81HlCzuxfSFGpMD//KbBjXR0jTUyNcFSA3AxYh9joXA08QTjWG4M0FrW986mJfaxCNu78CDgmOZ8G2H7A9lfbzfmUjWXfBvbIr9l+l9DGLO18mpvYJP89HS8Fo6V7Vv3tOmApYlw4so4b6TZqS5UyfBlRLGQbQn7jQ2AX+vdwRdFG/WyMSPvNX2bHtXM+Adh+M60Htyeq9n0E3CDpaw7Udq3bV9E/ePVjkkLSoLSwfB34E7CVpPmAnQkB5IOBHwBHVA6AhuIZwtk0c0pFO5PY8O9u++fA+cAjwGzFLJwEkDSzpL3S7wOzS98BNi9jVT9gNEfaOoQmzKcQ7KFE6X81MQ5qicz+S4jxouO8Q1ftt2Us6xrZJrMpQYEOqCG6PJJmbjlurBNmQtDkPpYje26HAKdBx6ZtUDmrJh2ysew7wGRdXC+ukWj7eWAH2x8oijtcJOloha6Ks43nw8A8wFu2Dy9l79jQLm1JgaIlCBmHw9O5Z23vBGxq+42iBnYTSlqCkuZVVLNtNNqln7UDsrljT+L7Xoeoav1bSX9QA3Qs+xr6HVA1RVMXYuoUC96oompmi68TCVrkNcBVBH34/eRhv6CQyT2Fh4HJCX2u+4A5gf0J0XEIYcK36YxoNRrZBmJDYP88lSv7/Z1iBtLpEEspn30SKb3wIyBnoh1GMPIutP1AEcPGEwphz6cIB2+t4YaJdufIbK/s/grwO2IBdxZwoqTFC5mX4+x845I2aOorjqgm97EclfPM9nXOUtLrGl2fWKQuOoCoJPWZQJukz/W+VR3/t6qf7ixI8QqRKrQCcJak3SontKPy1XbAtiXsHRvaqS0ZBhJOjn9A57rGdq3nxGz9NbekeaCzEArxPH5YyraJRZv2s8YGdNJz6BMFSNoJ/RpQNYE6c4WXtn1P6/mStnUXisoI/wCmIwaC09P5QYTY89ZEGdm/pYGjLTphYj7tCfwLuNFZZS6F1sU5hJhv7QWTxxeJ/fQ1YFvb/63j81SUun4B2MltLmzbCoU44+0EG+0ZYNf02Rq4su6TclrAPURUJrwqOz8jMK3t5wrY1Fai3RVUY12etDCeg9iIHShpKmADMg0UtZF2W7v2sb6MtP75N1Gk49p0blpgXUIn8qDEqChl3zeIYil/S8dKtm0ELEhIJlzgBpQ0b6e2NB2SriD0Gi9zFE3aBDiG2AO8Vta6iUN/P6sX1IcLkDQR/QyomiAtLOcG7pL0ZNoE5CUmP0PbrjHeI0SPTwOOkfSYpOUSG2oHYF6iGl6j0whypM3Pe7aPsH1Oi/NpWSLV4Mh2cT6pM91uEehMIUibpgGS9pU0eTEDR8cWhGbC/ZJOT06ZtkYWyVqc0IB6nBDBXwbYzPaldXY+ZfYPI5iFN2XX1gBuBE5WlpLUW8jGrC2AW4jy6bMkp8gBwDZNdAy4xro8KZ3hRdsHplPbEhp7R0paKznPKnZQ49c17djH2uG5TCRWIqoXP5mdOw7YF3iwhPNJnYz1HYj3fsnqfHrnriA0q84i9GwOkXR+jeb2DrRTW9oMxwNTAHtLOgQ4BTi5cj41jXXTDv0sa8MSko6SdKGkH0v6UmnbJhI/pgtmXbvsM9sN/QyoGkGR4nAZcA+wGiFst5vtRyTtAlznrAxm3ZHYC3MQKWlTADcQTJl/puu1rKYwoejKyy5pPSLl6SHbbaWJpBCNvwc4zimFUtIKwDaE4PrCdaGJp0jz8oQO2SvAyUSp77bpf11B0q7ATkQa3uvAXrYfKWvV+EPStsDawJa230rR0wMJwf8DXbgCkKK65yHAx4Qw+kBgxSYycTLWzRrALU6pUaXH6ZwNZPvDdG5Kglq/QbrtNuAS2/eVsnNSoWl9LHteA4AZgaFNWrf0NLLvYxgwnHBETQ0cCSwN7GH7uoJ2TUekOR8M/MH2W+n6tMB0VTBN0peJNKInbJ/Z2/aODU1tS+uaUQ3MeBhfJLbQmcD0xHh2E/H9N2YT2tR+liNrw+cJdvzTBBllNuBa2/sWNbAffQZ9PSJVNzxGaAX9A9gKGAzcLel24KfVIk4114eSNDBNpO8CcxFaQLsAMwDPSzoG2k/vYQwT6TVE2/frZXN6A58jqNXV5Lso8Ftik7RsaeeTOjHA9jvAvYT+xl3AEcADabPdzhhCMA7vBb7VFOdTxrD7EjAwOZ92Bk4FzgZ+ZPs/paKnaohod3dQjV+ukS5PtlgeCmwu6ZuSJndoB55IFLC4D/gmwYbaXdK8peztSTSxj2XPaxaC+fAwcIGkX6igzlFNsCaRnj8tUf13bmC9yvlUkAnyM+Bu279M4+wAScsTa5cHJY2QtKjtJ2zvXZeN9BjQqLZUY66kmdJx2zmf1Jm9cSuxZrwE2JhYE2+mrMJtg9CofjYGnE5o1q5n+5sEe2hnSUtD/Zhp6uMFSNoR/Q6oGsGREnM0MLfty4HvEYP0/wED0wasdo6bjM45A3SUwa4m0pOBUxw6UBsD+wBbS3orRbHbGo5qXSNsv1ralp5CNvBPBiwL3CRpS2JCGwHsaPvBwrZVaTsmhO8hdG1usb0JoVv1MHClpFsVqS3tiBuB7wJ72/5QDUmDycaPrwG3SzqVGA+Psn1qFXEsFT11c0S72wUnEboasv1R9Z47KkLtDuxNOMJ3Tb83Hg3vY+cDXyS0Xq4GlgO+VdKgUkgOucHALAR77RbgRWA7209kjsZeHcuSXTMSTv58g/wDIr11SPo5NXBZ5SSpI5rWlmzNvJKks4GrJN0gaeWSdk0iVKn+lwFX294G2JKQRdiFBu1Dm9bPukJqw4LAosDPbH+cAgeXEMHZDbL7BkvaYGz/Xi+iTxcgaUfUmknTR3E38GNJq9m+UdIXCSG7y4HDJe0BLG77M5VUSsFRPnlq4ExJfwb+ZPtlSbsTOdCnp/tekDScSJeYtU5t6Am00qnbFVkbVyXYersSOe/HA7+w/Ump7yKLKB4NjLB9dZpghwHfIBxm2H5U0uYEY2t1t4k2VyscVe4eyI5rmbbTFVLES8BuRPrRt4j+VgvB6cTy/ESh17cknxXtXo5Io64d1ID05+oZS1qVWBSvRqYdKGlh4MvA9bb/DPxZkbL5eDGjexhN6mMZ+2kVYClgKXem208F7Cjp97Y/KGpoOcwMrEwE5DqcpIXHsbeBDwitvSvSxvQwwllwZGKZvksEQuseMGxEW9J7MioFbC8gHJK3AbMD+0h6sAqwtAPSmLAEEUhfOZ17FthJ0ny23yhqYPfRiH42DswKPELo9eb4LbCxOlNBjyRYt8VE1JODaQ7gEdsPqc0LkPQl9DugagJFWt0o269L+hOwlaRngZ2B9YE/EznTn6up42Y+YlD7IbCEpBsJSufmacE8CBjpSO24v6CdPYp84OsLzqcWDAIWI1Ird7Z9GZR3xElahHA2rSRpNeAE4ETgNNuPV88sbcCvlnRNKVv7MVZ8CIwiWFzDHVp4FVug+GLDYxHtBr5a0LTPQC1VVivnk2qsOZI948OISO190FEBcWPC4T05YEnb2r7A9lllrJ00aFIfy8b8jYErgH9ljs5zibXMQqT5X9JBwP0uoH/U20hOxFMJAea7oB6bJkfp8oeA7yn0alYkGGsnuFNf72EiAFDr/UID23IqIT6/BXQUq7kW2JBge9Q+SNANDCQqmFYBpIGOTIlaaIR2Bw3sZx3ITQJoiQAAIABJREFU1ub/IFIiH2255SHgcGAaRYr3PsDXe9XIFiR7XyS0PyEKkOwFLCfpSiIAVRXrKj6m9mP80S9CXghZdHcjgjH0aXZtCBEZWYwYIDasq3ND0sy2X0+/DwK2JwSo5yI2j5vaviO7v7YbnomBpEOBo13jymI9DUk7EayEn9n+S2l7ckhakkjZWQGYiYigfMWdOmqN74etjr52nHxTdPGFOjrdM8ZHrUS7xwRFldVnCdHRAxLlvro2mTPdp7og2XwhMbZens6dSLzXdwJXAnsC8wBLtxuTsYF9bAhR9GAK20e1XLuJELk9UdJCRAR+Cdu1YHD1ZUg6gKhoe4/tU1quXQgMsb1eEeO6iSa0RdJcwFXAnrbzCq/HA/PZ3iAxPwYCW9k+s3Rgrx+jown9rCtIms6panU67lg3pvH7aWAHgkwwue11y1jaX4Ck3dHvgCoIhbDqP4DpgH0cOkmVI+fnwNbAMrb/VtfJR9IVwKHONH8kzU5UflgX+DfB3LrEDa6Ekw+EwMKEY/CTxCrYE/gJMJsbVhp7YiFpyso5UMc+KumbwHcItsDzwEXA7+tm54RCUdp3UeCZdqLt96PnoQZWWU2MtxEEA/gYYk7cFzjC9hnpnm2JNM1vNzGi3m6QtADBdn4qnxNSkGZR2xtLuhl41fb3ixrbx9Gy+RwtgJEYEOsSTJ3Fbb9cyMzxQpPakgIrBwPn2r45W18uRxTZWMH2m5J+SozRU5e0tx+daFI/a4VCR/ho4CDbp2Xn8zadBKwOzE9IpRSpNJy9E0MJHdMXgFttf5SuzwvsTqRCvk6wB690pHf2owFojPhbm+I9YA3gNOAYSY9JWs72p7Z3IKpXdWheFLTzM1BgTiIv90FJU0naIjGiXrJ9KBEJfZUYPI6VtJ06q1s1Ctn3vwWRs78fMIsiH/kAYJu+5HxSZypUBzOlTn00s+96YnN6EjCSYEucqygJ3EhU75CkbYAbgD8QIqbLdHVfXZEivFXVzP65aNKjUVVW0wJ0FKF/eABh90+JCpbnZ7f+l9AKe6W3bezHaILKG0kabPvx5Hwa1DInPAAsksatYUSQqh8FkVj4yt61HKcQa7gj6raR7goNa8uLhN7OrdWJNB8+CwwFFlIIWO9BODRqi2oez45rve6YWDSsn7XiUeDXwG6S7qrWwalN1RrsfiJVev9SzqcW9LkCJH0F/QyoGiB5zecgyklPQWwqt3WngGct6fY5FOLoexG50NcQVPtKZ6QquXptckw1GpLWBQ4hcrw/JWjSK7Zb+lOOOrKbxgctkZ25CGfoRsDTtjctatwEIIsKfRm4g4hm/YfQVzmT2JgvYPuh/P5S9o4NiU04n+1H03GlE1c7e5swBo8P0ti1ge0tE1N1PUIfbSSwn+3hRQ0cAxS6bisC99q+Jzs/FPgrcJHtI0rZ15Nojao3ARqdzb1v1Y/SZmFAYgpPQ6TdzUH0tROKGdxDaGF4TU+IE490G6TiS1odmNb2H0vbMrGoU1skfcn2U9lxayr9HYTTfUFgdtuNCJZJmsnNExTvUdSpn40JkmYBliDWjKsSfe0ntp9I1+ckWHf7FLQxL0DyR1IBkmxPmRcg+V86ty3wuO3bS9ndj+6h3wFVEFWkIC3O1gTOIwTgtiCqyBxv+0flLOwa2SZ4XHm5l9uuBDenIkTWG1sBpwu67bGEx/1OQnD9XtvvlrJvUqPOzoyxoYsF3teAf+eLwKZB0vWENtJ26XhnokrcrITm1f8I7bja6qtI2pWIGJ4L7J4tJIo7e9Qi2t16vqRtEwNFZcFrCA2oGyWdTPSbywnNhzepWZXVVmTzz8LApsC6thcb19/VDVk7BgAzAkNdsxTI8UVayywMfJ9YB7wEbG37zuw6xBpnPtvLFzF0EkHSXsTaZ1HgdNsHtFxv5NzZj56FpC2I+e5k4Cjbb3Zxz3bAscDUwFy2/9WrRo4nMifBSsBmRN9/m9Dr+3NR4/rxGbSuXSRdR6wV3yWKSP2GYG7VZu6XNAK40fZh6fgzBUgIssYF5azsx4Si3wHVi8gG7BlaJx5JjwO/sn10YmpsQKj+DyK0hWoxKGSL5vHNy72OYD490S6LsJRm8ElyArxGDOBrADcT1bpqu+kfF/I+CiwDfIlo30V16YMTiiYyC7qCpK8SwszrEymwVmiqTEEsbv9OTNCfAmuWduaMCZK+AKxNVFqpWBE/T9c6mBMF7Zubhol2jwnqrLI6StLBhLPgYIK1UlVZXYmoslr7xZykwcAlxCbtUNsjCpvULWTz6CwEO/j7RF/7O3CI7X8XNXAC0QWb+xpg+yodJY1d79l+vJyVPYNsrvwe4TAYDryTfn6VGDcmAz50H0rP78eYIWlqwllzADCEePd/49GLEC1LsJsPtX1kEUPHgWz8moGQCbkFeAOYHZgW2Mz9mpS1Q7Z3GUYEnVYgUvHXJ9jQswM/tF28MrT6eAGSPgHb/Z9e/BAL5j8S9MfZ0rndgSeICGh132QEC2qd0ja32F85Lc8hUgXXyM9n960M/J5YhA0vbXcPtn9g+rkhMeEOTcdLEIvuHUvb2EPtvILIF3+WEC0+uLRNE9AGlbZhErVrfkJnYM50/LXUFxfM7tk7PbcZ6vw9EJvUzwNnEFUznwLWyq4PLGU/sHjq/xcSaY63AIuka7sAXyz9/Y3F9gHp50bAoJZrQ4CL05xzaZ37xzjaODOwUGk7JtD2ah69ltgI7AEcRDigtipt3wS0Z2A2N65JaI3tlMagkcAxpW2chG3/J6EBWR2fT6RDv5TWBD8DZixtZ/+nHh9Cr24oof06inA2rZJdHwJsUdrOcbUh/fwNcEV2fllCj2ebdDyot23r/3zmGX2DYArPlF37O+HYqY6nJtLczgHmLW17smlAejeOAqZJc+TLwA7ZPdsCDxOs2uI293+6+YxLG9DXPmlT89e0MDubYBG9SXI0EYynWm4Isk3NqmmS+Wo+wRBR9Q2AqbJz2wLDSts+Cb6Le4G98++l6Z/s+R5ICBZ/kUgN2Z9gQf1fuq7Wv6nLp2729HDbqgXFYGCG7PwswOotz3DN1Edn6E0bu9GWgS396GbgT8AFaVF+U+lFRfqe7yDSa9cDbidSG28H3snuq+UiO21y/gW8D+yU20s4/D4Blsz7Vv+nV55L9R6vQrCE58iu/TS9t0NK2zmONlTjzGfGF+BxgjEIMBcRpX6DEIufqrds7KXvYcs0RkyXnXuZiM5/h3Aq/hfYs7StLXYPTj/nBRYrbU9faAudDtrq/f8twTy9JM15F1GTzf94tmcuYvP/jZbzxwOXVm1N8812edub+GlKP2uxWWkt9Qohd7AgIdb9DOHUGdCyDpumtM15PyH2HqMIZ/77wA7AFNl9GxO6glOWtrn/MwHPubQBfeUDzJz9PohgQN1OVMN4Hliu5f6BpW0eS1tGAD/OjmdMA8O7hDD3R8Dmpe2cRG2vBsY1gMnyZ1rath5q3xDgSeA7LeevAn7U8h18vrS9Y2nHodWCoV0+BFto4ey4g3XQxb23UHPmYbYgX4/YiM9OOE3WA/6SFh5bFrZxXeC89Pvsadz+kHBE7Vz6OxzX9wssRqQHvUM4lZfLrs9BGzts6/4BfkEEoQZW8wfh9H8bWCq77yAS07hOHxrO5u6B9g8k0qn2JTnW0jroJWD67L6LgLNL2pl+zg3M03LtKeDE0t9lX2kLnU6MZdJ7vhDhJFiHCEqPImPT1flDODN+C6yajqt14XJprpkhHf+USLstbnM32tboftZFe3YlslEeIPZpB3XV3jp+gEXSHLN0y/mhhPPpkNI29n8m7NNf+rr3cLakrwDY/tRRJeZ7BF37LeAwSftL+mK6p5ZCtykvdxCR913hQCISeA7BvLgR2D8Jj7cVnEY+29c504BxTXV2JgBLEmlHL0FniW1CVH7VLPd/I6KEe5GSu0kjCElTSFoq/RyYzu1JpKBNXsK2SYhtgYclnSNpKtsjHULZg7PvY/rU/kUI5kEtkNm3qaSTJS2ejXEnAifbfsn220T652bAbkRVzZK4G1hU0mq2XyIcBC8DvwQOl/RUKsBQO6T+8RBwJJEaMTcwQtJ1kuaw/U+Hhs2goob2QUgaQmwInkvP6VMAhwj5vYQeF5IWAo4gIth1w3xE0YMfEuuX7xJswb1tvy1pUJovPrZ9v+2rilrbg0gFWEba/g2h3Vnpj/wdWNv2W0mnDDrZBkWQjbOnAgdKWgtA0iYEy/O4UrZ1F01qSzbnrSXpDEX1u6o64nDgHNuPOXAVsDrhzPxrIZO7ixcJB9St1YnU5mcJ58BCkmYiUqfWLWHghKJJ/WxsqNbvtk8jnJ43EwG0lSRtqah4V9v9JoDtR2wPt31P9k4tTOinjXKbVL/ti+h3QE1iKDAnIRb8oKSpJG0haea04TqU0Ep4lUjHO1bSdqU29uOBF4kozdKSppG0B7AJwRLYw/bNhKbFKELbpR8NQDWwExude4jNUY6bgaUJ2jWE02B4qYmrcgQSFSNvISajWZLT8wAiithuwq+XANsTIoxvSNoFoFrUpjFjVWKhsadrJJKdnJaDCb2qbwJHJWfU0QS1+jhJA5Kwr23/k6gm9XoJe9PmeUD6//8EbCVpPiIStxsh4P0DalY1JoekgYrKN+8S7+07hHbVDMDzko6BtnKeNwaOarBXA3+A0cZfCGf/sun304Dfu0aFLRSVFEk2rfj/7d15uB1Vlf7x70rCPMRmcgAEEdtuIiAoYbBpQMTxF9FAmkFBlHlQBhkkYmQUaAa1WwYVMKK20k2EMISEyBxlFAMKxAZRxlaEICAiInl/f6x9SHFIyEDurapz3s/z3Cfcqrph1T2Vc6rWXntt4LvkktinkNfYzLL/7+XffVPvZRZKGXw5qvOaVd+jJN3Yea2UzX6XJQcaL60l2Jc7hayi/XxEfImckvNVSX+AV1yDTdf4c6nco2xCfiafXe799yNnDRxbGeBD0p8knSbpnhrCXSAlmfaspEllECw02+/JxYneQ75OP1N7V8Vr/HU2Dyt1/kPSE5IOJXtCPU+uuH5sRIyOXDyi8Sr3kSeS95L71RySvRYDUVblr7l/kaMBD5Ll96N4eQ+lMeTo57F1xzmX2PtqXi49Mq1uIc77ddXXu7J9BlnhdjDwQN1xVuIaRSbNppGjcTfQo1OLmHfT7pWoTNNrylfX+8P7gIvIKsrnyGTm0Mr+QS8HpweadrNwfXmebPv7dFu+uq6xxSrbu6+3UeTqhHuQU9ob1TeJrFB8Z9e21cgHml9QKqBpcJP+13j+RzG7Z+dmwLpzeZ3XKO9tv6g75q743kdWqTxJJqT/qanvab1yLsCHyUTtLeUz75yu/Y2dAjWHc9mt3HucNqfPmnLMXuU1eQF4U90xL4Jzbst11nnv2QD4KrlK9y3AFnM4dnvg9nJMa3qPldhbuwCJv2Z/dRIKNgAq05WWlPTXsm1pYF+yWTfkaOdESTeV/cuQZYXP1RL0fIqId5Cjn7dKuqWyfThZQnyBWlYaWaoFXoyIkV3nNFQNLlFdFCJiW3L6xL8pp4EQEcP08uWBzyBLq7cDRku6opZgZ8czRNKsyvcnk1PvbiTP5VZl9UfrlSqCWSpv2BFxFTmX/2lyutrV5Oog3ZVrtSsVA+8kl5WeVbYFeSO7G5lUu5FsXHp9TWF23rvuAV4HHCrpzLJ9GPANYHdgY0m3d97b64p1bkrFxXiyue3Fkh6JiAPJkcKRyimORMTiwLrAG9VDU6OarusaO0w5Fb/z72FI+fxZjhzAWR04XNKptQVcUWJcnXyfGVvuVcYAk1SqgCKiMyo9AvgtMIWcatRzn5/l39q1ZP+6H5OrgXV+D0uSSd4dyT52t9cVZ0dELC7pb+X9bCZZffc2corgNeTr+ESdMc6vNp5LRLyOcu9EPkDfQSaibqo1sAVUrvtPkpXmS5HV59/vulfchGzOP07S8bUEugi08ToDiIg7yMHJ68nFoj4GjJJ03Rzu67eTNKGmUK2POQE1QCrJp+Hk1LoHgGslPV/2r0U27NycvIGZDFwh6ddNfbiZm8q5jiCX+xwlab2641oYkT2u7ienoB1ZfWPufBjVFNqAiohtgFPJxpLfBj5bSRYsppxOsAe5vPTFkkbP/W8bXJX4ppCjOc+QTeKvIqcJNmb6ymtRSZBuS75GG5LnuiVwCPlesoek8+qL8pUi4ihguqTLIuI9wF8k/aLsez3ZIPMD5GpRtwLflPRADXEOJR+cP0EOEjxM/j5/VvavDjxSTXo2TUSsD5xJ9qm4k6xGOYtcFOKyciP9Yps+X3rJXK6x3SXdWNkP8B1yFcj31BLofCjT7w8hpxJOIu9f/l72jSEfTK9QthnoCWXKlCoDAWPI1/LNZELhImByeWgdQlaj/rK2gCsq92mXkk2hdyr3oYcyu0n8H+uNcv60+VzKVO6dyVUwh5KfeadKamKftzkqyejlyf6C+wM3AUdJurrsXwrYQdL42oJcBNp0nXUGZCNiLJn4fle5Lx4KXAn8XNLhlfvIJTrPo2Z1cAJqgFTeuM4lRw1PlzS5O7kUEVuR5aobAVMk7V9TyK9JmZc7gVwZZ5ykaTWHtFDKA9xFZNnqNuRN5eck/Sqy587kJlaZvFblhmI1cjWWw4BlgLGSzq0c8xayrHdvlTnwdat8mG5HTktbW9kAdwMySXOupLPqjXLBVd4/dibfG8Z3EmkRcR95Xid2jiVfu22B/1ZNfZPmpati4GLg0s5Nd0RsSCai3kOu+HV/jXEuR75n30ZWZ10J7KnsS/WKysAmiOwp2Km+GEb2CtuRnAY0C9i5k0grx/R8VWeTzeEam0S+rz5S9r+bfOCZUV+Us1Xej3qumnt+VB7uNgdWBm5RLkrQuffZhxxoHEr+Hi6R1Lhm0uVz8QpgK1V6DUXEWyX9pr7IFlzbzyUiNiPfo7cBdpF0W80hzVPlfqvzfvAD4E1kddDHyanqR9b5+b2otek6K5WXU8iFEc6rvE6fAo6QtE7l2H2BK5t2DtY/nIAaAJWbla3JZYq3ISsAOqODI8imnVNUVk+JiD2BGZJuqCvu1yqyOelKku6uO5aFVW4mryPfxKeTIx0bknOl15e0fDmucQ+hCyteOZXtVGY39/sdsK+k68q+FSTNHPwoX11E3Ar8SNJp3efTVuVaPJ1sLH4/8F/ktKmPkHP8OysydirVGnfe81ExcAlZJdF5qN2gUx1VQ6xDyWBfjIgPkVUox5LTBN8FnCLpC3XENi8RcQmZ+J9e2bYaObgxCngc+AkwoRcT6G3Rxmus8hDT89Xcc1I5/9XIROHlZCPix7qOW4PsD7MFWYG4typT+ZugJDZXk3Rx+b61ieheOJfyGb9RdXCg6WJ2xfnG5ODMpuS04o8A48gpX3tJOqfGMBeZNl1nEfEmciD2Wkmnl21DyMGOm4GPSbopInYBzgOWaNo9o/UPJ6AGUERMA6ZKOqZ8vyLZM+EUcol4kSPr59cXpXWLiFFkj6NPl5vObcmGiy+SPTnOqDXAARCz57ovTU4L2Z/s4XEY8FGysfcnmlYmXnk4+CBwtcoUybYnCLsqDd5Hvh5vIRPXZ5LX4Ytlf+NuiBawYuAG4DINcv+nSoyvSKpGxAxyFPHE8mA5GhgLDANWVUNWvivVb+7L01ALeY0tRl5jz9YQ8iv0WzV3t8r5TwaeICsJOu9lQ8jznSnp3rJtc/JB7/O1BW22CFSu/Q+T94GnVa7z24DrJR1SOf51ZK/ESWrBan69oqsCeiUASY9X36Mj4kbgh+TKqg+Rgx1frytmMyegBkhkL6EfASdKmli2nUYuoX4juSzvweRD5cim3GzaS5Vck8hS4qkR8VXyw3ci8Cmy3Hj9pjyELqjKTcXq5JS1ayr7vgesKOnD5fuVgK3IpOkRki6oJeg+Ei1p2j03baoYiB5r2h192Jen6dp8jfVrNXdH5b1sc7LFwIaV5NO6wBfIFc6GA+eTlR892SfS+ldEHEtW0s4EvgcsTQ5ObgA87SqaepUK6C+p0u90DjMbvkr27bobOEDSWwY/UrPZnIAaIGVkbBp503kSOSpwGHCcpLPLMXsCnyNHyzwPt2aRvVNmlRvuo8iKgaPI8uKPk6/lluQ0w9ZXrZUR7Q3JB4tzgBXIZpJbqbJqT7mWV5H0+1oC7TPRkqbdc9OmioFocdPuyu+5L/vytEWbr7GOfq/mjogvAiOBnST9JSLWIe/rVgfOBZYjV17dRzU1Xp5DRVrjKmPnVy+dS68oVVA7kAvVrAv8QNIelf2te43afp3NpQJ6NJXV+TqzAUol/Y/JPr1bVweezergBNQAqDwYHAGcCDxKPtwfQjYT7jwsjCFvWka2tZqmzSqju9uTI9PVpUmXIkc01wPuArZr8gPCwoic2743OWf/3vLnNZJ2L/uHkg+rjTjvtk+rW1DRkqbdVW2pGIiWN+2u/J77si9PG7T9GutwNTdExI7AcWQF2OPkv6cnyClJ10fEG8nfw0WSTqgvUoiIldWQlbleq146l15QpthtRyY5ViH7OJ7TGeBoq165zroqoC8lK1M7rRreSj7LTJG0bX1RmiUnoAZYRLyDnGJya3V6SXlw+ClwgaTj6oqv35XX4R7gdcChks4s24cB3yAr1zaWdHuvPrhFxEeBPckR3qvJZtdTNLufUi3nHbNXXBnZ9W+nkQ9qi0K0qGn3q2l6xUC0vGl3JQHVl3152qDt11iHq7lfmmp4Bbk67B/JKUjvB/63DGIF+VpOkfTvgxxbZyBtS+CTZHXKU2TCsFVVDr10Lr2sJDN2Bt5L9nG8FThVDesROje9cJ0tQAX0hZJ+XvavCzyoMu3brE5OQA2iyhvGCPLNe5Sk9eqOq5+VKp8R5EP+vmQD7j06I9ORfZIeUQ/OcY/KHPHIxtC7kx/GnaWkJ6rm1VnK6Pv9wH1kT64JlX2L11E9MxCiBU27F0RTKwbmUrLeqqbd0ed9eZquF66xDldzz1YqUg8mfwdTJT1Y2bcdmVgf1ObxlddnBXLV3qvJBNlqZL+XT0p6crDieS166Vz6RURsRlZ1bgPsIum2mkOap164zhayAvpylbYHZk3gBNQgKw+TE8h5uOMkTas5JAMiYjnyoeE2ssnzlWRPi4fK/p6d/tWViFqNnNq1FQ1YSjqyf8pFwC3kTc4dwOck/SoiDgAmN7l6YH5UbiYa37R7fjW5YqArztY27Y4+78vTFm2+xqr6uZo7uhr6du3bhFz6/PuSTh3kuDqfHd8Hlpf00UpMVwCHSTqnDfcvvXQu/aQ802xU92Dl/OqF68wV0NYLnICqQeQqaytJurvuWPpdqYBCOdXrQ8B3gGPJ1cbeRS5V+oX6IhwcJSEQlUTUZmTfq1qXki43N9eRFQLTgUPJxum3kysRLl+Oa+zNwrxUbiYa37R7QTStYmABStYb37Q73JenkXrpGns1/VjN3f1wV7ZtCxwD3Clp15riWgO4DDhY0k8q208B3ippdPl8Hwp8RtK35nQuTdBL52LN1ebrzBXQ1iuG1B1AP5L0mJNP9SgP9JTyWyS9WJn28FXg68o+UGPIZMfuEfFkeYjoWUqzOr8fST9rQoJD0gvk1I81y4P2TmTFwEbA0IjYvxzX9uTT5mRirZp8Wpdc8ngy8OuIGB857fCGJrw2r6bcJP1Z0nGSzu1KPm0CfAk4vobk03Bg14j4QEQsIekvkk4DdiGrHz8AHB0RB0XE20t8fx2MGBfQg2Qj65ERsVypstkR+I6kgyRdBUwsx7yhxjj7Rg9eY3NVznMx8r25M52wp83l4XMSWZV6+CCHU7U0ubpip29glO0XAf8UESuU2I8FToe5nksT9NK5WHO19jrT7ErMY4CvSbpNucrdihGxD7mS9Y+AmRGxa/mZbzv5ZE3jBJT1lZJkWRb4VkTsHxGrAkTEgUCQy2WjXNb+DOCD5Nz2nuxr0a1SARXzOnYQ3QysGxHblOTM2sAjwDeBYyPi3rYmCCs3Nf9KVq7MBIhs2n0CsA6ZrPkimWDYuYYwF5hmT7N7mVIxcDZZMTCo01WK04HtyWq/5zsxSrpf0oHA54EnyYfKz5V9jbjx7CiJjllkgulIchGFr5A9t8ZXDv0T+Z7WisawPaT119j8KIMDewAHqE9bCUh6QdI0Sb+vMYwHgR+QK6YCL31+30+uNrpORKwMHEQ2v2+yXjoXa65WX2elAnoYOSugYyzwabKy/EPAVOCIUmFr1jiegmd9J7Kv0JlkH507yTfqs4BdJV0WuQLei218KFgQlRH7RpQWdyuvw6ySzDiKbNh7FPnA/XFyVaYtyemsre5zEw1t2r2olaqJjYH7BuuhrZdL1qOP+/I0SS9fY5aa+DkZEW9TpbFwd4wR8TMyUf3PwGqS3ldDmPOll87FmqsXrrPwyqTWA5yAsr4REato9ipEw4C9yaqSNcipKjur0kgxIoaqYasSLQpR+iVFxFuAP0v6Y90xwcse4rYHLq5Oq4uIpYDzgfWAu8j+VD3z5hUtadrdZtHjTbsrCeW+6cvTNL1+jfWbeJXm43WLiN2A88jWASdImjmHY/YCTiYXvVlD0qODGuR86qVzsebqheus8jnf9yuTWrt5Cp71k3Mi4p2QPYMknUH2FBpPTok4JiKOiIi1yzGtTz6VRFunITTwsn5Jl5IjJ41QEi3Dgf8Ano6Ial+RF8iKoLXI3kFq2DTB10TSXeR0u6+RD6v/ImlG5eFnNNkU/4yaQlxgTXp9+qFkvR/78jRJP1xj/aYyJX1c+bfVJBeS/8a3B2ZExG6dz/uKO8kpRcc07UG6Sy+dizVX66+zzsCrpJPJAdkTgS0lnV1JPg0nk08XOPlkTeUKKOt55UF4dWAfSWPLzf8YYFKlIqrzwDYC+C256tq5PZKEWgx4mGxofbykP5Xy3LHAu+Y0ClSXyFUJRwCfIFeOehjYo1OZFhGrA480dVT6ruPkAAAW+ElEQVR6Yb3aSHvUuMz3gmpqxUA/layHV1mtRT9dY72mUlWwJPn5cxfwgnJ13IOBo8kVO/9cZ5zdyr3N8sDxwP5kA+KjJF1d9i8F7CBpfG1BzqdeOhdrrl69zlwBbW3jCijreUoPShpbNu1Jrm5xTESMKlPSbpS0Czma8GZy7nfrk0/wUrPYz5DNFO+KXBnjWGBck5JP8NKqhHeSNwebAGsC0yJickSsLumhUinVPWrVampu0+4F0sSKgXJj1jdNu+VVVgddv11jvaYynXs34GpyVbvXl8GqI8lBkMYkn8pADQCSniKn4FxHXlc/iYgLImItSc81/UG6l87FmqvXrzNXQFvbuALKelp1ZLNSnro0WV0zuhx2PTBR0k1l/zJk8+vnagl6Eas2WSzJp3PIZb8/JOmntQbXpXOTUEaePwR8h0yW7UZOQTtF0hfqi3BwRQ1Nu+dHiysG3LTbBpSvsXaLiFHkyqN/A/4ODAW2aFplZ0QsJumFiNgYuJJ86LwH+AgwDng3sJekc2oMc7700rlYc/XDdeYKaGsLJ6CsZ1UekocDOwAPANdKer7sXws4ENgceIxceewKSb+uJm16QScBVyqHniRHfj5MNvb+kqSHaoqr03h8he5qrIiYAXxX0okRsQaZMBxL9llZ1XPb6xcR+5ANO08jE5tPkVNY95f0P3XGNi8uWbeB5musPbqnD0fEycDngRvJfiq3Snqmptg619GHgY+Sq6PeW/bdBlwv6ZDK8a8jp4BOknRPHTHPTS+dizWXrzOzZnMCynpW5QPoXLIH1OmSJncnlyJiK2AvYCNylbH9awp5wFR+F1cAf5C0W0S8jUxAvQtYuZQl1xHbsuQ0lWvI1e8eiYgDyRLikZ24ImJxYF3gjZIuqyPWgdTWpGdbKgbmpFSYTSBXvBknaVrNIVmP8TXWLpUqiSnAH4BngA8CVwFnSLqjxtiOJafSzyR7Oi5N9hnbAHi6De+5Hb10LtZcvs7MmskJKOtJlcqarcmVL7YBpqusAFdGpN9OJpyeLdv2BGZIuqGuuAdSRLwf+B+y8fh9le3r1FmuGxHrA2cCi5ErkEwFzgJ2lXRZqdp6sY3JmXnpHnVvkyZXDCwIl6zbQPM11g4RMbRMI96O7L23tqSnImID4NvkwiRn1Rzjh8mK7n8mB2R+IGmPyv6hakn/yl46F2suX2dmzeMElPW0iJgGTJV0TPl+RXIFvFOAJQABe0o6v74oB0f5EF5d0jfL98M6Cbma4llFs1chHAbsDewIrAHMAnZWWf2uHNOzNwkRMQ44UdkwvlWaXDFgZragIuJW4EeSTmviIEGZLrQdOS19FeAO4JxOH8s26aVzsebydWbWLE5AWc+KiDWBH5EP9hPLttOAfyGrNC4FDgbeQk71eraeSPtTRFxCTkmZXtm2GjkdchTwOPATYEK1YquN2tq0e17aUDFgZjY/Ku/THwSulvS3sr3WwZq5iYi3kr3F3ktOfb4VOFVS61ZZ7KVzsebydWbWDE5AWc+KiCHANLK30Elkg8HDgOMknV2O2RP4HPAxSb+pK9Z+EhFB9uTaR9LYyFUHx5DNHzsVUZ1lZEeQTa2nkMmMVldAtblp96tpesWAmVmviojNyOrhbYBdJN1Wc0gLrZfOxZrL15lZvZyAsp5UGck8AjgReBRYATgEGC/pr+W4MWS/mpFtXlWtcr6tm6YWEQeRr8vlwCRyJcJOr64xwOFl27j6olx02ty0u1vbKgbMzHpRaXa/UXXaelv10rlYc/k6M6uPE1DW8yLiHcAWZFPkWyrbhwM/BS6QdFxd8S0q1eRTUxNR1alolSTg0sC+5Nx8gOuBiZ25+aVCapak52oJehHplabdZma9whWbZmZmg8sJKOsrlQTICHIe+ChJ69Ud18KqrPZ3DLA92VNpQmcfoKasHlf53Q8nVyR5ALhW0vNl/1rAgcDmwGPAZLLy6dedn60r9kXJTbvNzAZX5fNnCLAiMLztvQXNzMzaaEjdAZgNpnIDuhg5La/TZ6i1SvJpGNm0W8CXIuLiiNikjOouGRH/WG66m+J0MlkWkp4vPaGQdL+kA8mqoCeBA8j+XPRQ8mloST5tB2wIfFbS/uTvY0Ngs1oDfBXlOjMza5VK8un15Aq4vwTOj4izImKlmsMzMzPrK66Asr4UEasAK0m6u+5YFoWIGAd8BDifXGr2zcAFwLbA+ZL+vc5peZVKra2BC8nGj9MrvZ5GAG8HpnRWIywN4mdIuqGOmAdSG5p2V1a4G9k1dbWR0zvNzOakkoC6guy9dw2wDPBvwNclnVdrgGZmZn3ECSizHhARy5Grqh0MDAc+QFZ3rQWcLOmLNYb3koiYBkyVdEz5fkVyBbxTgCXIKq49JZ1fX5QDp21NuyNiTeB+4D7gyM70zrJv8U78ZmZNVHnPfS/wI+Bdkh4q+75CDob8a9t7DJqZmbVFk6blmNlCKD2FngH+CnxR0j3A18lV/34O/L+IuKMsO1tnnGsCw4Dplc1jgU8D5wIfAqYCR5TG4z2nM5VQ0uRq8qaJyadiOPA74HbgWxFxdWnqD7BXRKxdW2RmZvNQmb49BrgEeLQynfg84B+BdTrHR8QXywCBmZmZDQAnoMxaqNM3KSKGAp3pUF8Dti77jiT7KH0SOBl4sHxfpweBWcDIiFguIg4CdgS+I+kgSVcBE8sxb6gxTpvtbuD3wD3AZ4DFgJsj4gbgK50mvu4PZWZNFRFLkVWcv5X0YifhX96/bgW2LMetAxwH/F9NoZqZmfU8PzSYtVBnNTlJT8FLfXl+ERFXk9PwvgDsLele4N6IuErSH+qKt0yDmBURE8kG8J8iK7QOAcZXDv0TEPTAA0BTp9UtiNIw/URgtKRjIuLnZF+x04AXI2J/SWe0/TzNrHdJei4iLqcM1nStqno9sEn57/8EfuiVSM3MzAaOK6DMWigi9gceKn9SaQp9M3AqcAtwYWWFudqST+X/35l6djKwHpmE2lLS2ZL+ChARw4EvAxdI+kttwS6kUo1GRIyE2dPqOttb7GZg3YjYRtLDwNrAI8A3gWMj4t6IWLrWCM3MKjorv0bE9mWa+gxJ95aBgWrz018A74iIPYDNgb3qiNfMzKxfuAm5WQtFxJZkT4v3A08AX5I0tbLvD6UXVKNVGsSOAHYGRklar+64FlYvNe0u0+pmlcq1o4ARwFHkdLyPkytJbUmuJtmTTePNrL3KoMY9wOuAwySdUbYHMKSs8rkc8CtgdeBwSafWFrCZmVkfcALKrKUi4vXABsD+wNbApcDRncRTqbyZpYb/I4+IxYAJwLLAOEnTag5poUXE+sBFZAXaNsAdwOck/SoiDgAmd/omNU1EDCnJpu2Bi6vT6koPlfPJ6rW7gO2afl2ZWX8rn4EjgE8A+wIPA7tLurGyH+A7wFslvaeWQM3MzPqIE1BmLVP6Pb1Y+X4ysDLwDPBW4AfAMW1aVjoiViErae6uO5bXoiTTrgOmkKv9HQpsSK4it76k5ctxjewP1VUxcKikM8v2YcA3gN2BjSXd3tVHxcyskUqV0+rAbcCSwCSyR+IjZf+7gT9LmlFflGZmZv3BPaDMWqZMG1gMICI2B0YCuwAHAucCHwAeiIgP1BflgpH0WNuTT5BNu8n+VmtKmgjsBBwObAQMrfTsalzyqfgz8EGyGe9JEXF3RGwm6e+S9gHWIhNrOPlkZk0WEUPLgM0zwBrA08ABwCrAgxFxEoCk25x8MjMzGxyugDJruEqfpPeRN85TJf2x7LsDmCTpyPL9ssCmwI7ACZLuryvuflWquSaRPaCmRsRXgY8CE8nV/2aS1VCNbbQ+h4qBK4E9JT1U9jeygsvM+ldlGvEKkmZ27ZsBfFfSiRGxBjAaGAssBqwq6dkaQjYzM+s7w+oOwMxeXUk+BfAFsp/Ff0fE2cD7yL5JXykr/kjSn4GpEXFTGfW1QVJp2v1YRFwMfCYi7id7dHWadv+EnGrYyORTpyeKpGfKQ9rT5DTC3YDfRcQpkr7g5JOZNU1JPi0LfCsiriF72T0SEQcCAZxZjnsgIs4Argfe6OSTmZnZ4HEFlFmLRMRnyal2zwBrAydJOqGy/2X9oWzg9ELT7oWsGBhGVgw0MolmZv2rLARxJlnZdCcwFTgL2FXSZWWg4MUmvh+bmZn1A/eAMmuBUuGEpP8ENgauAv4KbBkRn46IN5f9Tj4NkpK4GQ78B/B0ROxX2f0C8ATZM+n4ShVbo3RVDOwfEasCzKliADiD7A+1i5NPZtYkZeozku4AtgC+C7wdOIWs5JxZ9v+9vB8PndvfZWZmZgPHFVBmLRARq0h6rGvb+sAJwPpkQuoSsj+Up94Nkrks872HpJ+V/asDj0iaVV+Ur84VA2bWdhFxCTBO0vTKttWAvYBRwOPkFOgJku6rJ0ozMzNzAsqsgSpTozYAdgV2Bh4ADpN0Xdex25NTo1YFNnXj8cHXxqbd1aRmSTLtTTavXwOYBezcSaSVYzy908wapVSWrg7sI2lsRCwDjCEX5+i8v20K7EcOFvwWmAKc6/czMzOzwecpeGYNVKmYGU/eXJ8AzAAujYgt4KWkAZIulLQhsJ+TT4PrVZb5XoFs2t1Z5rtRyafinIh4J7w0LeUMYCfymnsSOCYijoiItcsxflgzs0ZRelDS2LJpT+BY8v1rVEn+3yhpF+BE4M3Aan4/MzMzq4croMwaplL9NJasSHmXpBfKdK8rgZ9LOrxTkRIRS0h6vt6o+0MvNO12xYCZ9YKIiNLPaUlJfy3blianQ48uh10PTJR0U9m/DLla6XO1BG1mZtbnnIAya6CIWJJ86P+upPMqN9qfAo6QtE7l2H2BKyX9pq54+0lp2j0e6F7mez9gpKSnynGLA+uSy3xfVle88xIRBwGHAJcDk4ArOhVbETEGOLxsG1dflGZms1U+E4cDO5BT1K/tDMZExFrkirGbA48Bk8n3sV93frau2M3MzPqZE1BmDRQRbwLOJm+oTy/bhpCVKzcDH5N0U0TsApwHLNHkRte9pM1Nu10xYGa9oPJedi75uXi6pMndyaWI2IpsRL4RMEXS/jWFbGZmZjgBZdYoXY2hVwKQ9Hj1pjoibgR+CPwn8BBwiqSv1xVzv2h7025XDJhZL6hMhd4auBDYBpheqdwcAbydTDg9W7btCcyQdENdcZuZmZkTUGaNUpaS/pKkOyrbhlSrmyLiq8DywN3AAZLeMviR9p+2L/PtigEz6yURMQ2YKumY8v2KZD+7U4AlAJGrkZ5fX5RmZmZWNazuAMzsZY2hfyXpjjLtaTTZGPqJcsywMsJ7OfBjYFlg67pi7hddr830rqbdDwPjIuIKsgfUDsDIiGhU0+6uioHRlIoByFWkuioGrgGu6VQM1Ba0mdlcRMSa5D3s9MrmscC/AOcClwIHA0dExIROJZSZmZnVa0jdAZjZXJeSPgE4PiI+XKZz/b3s+y2wOHBpSRbYAOqFZb4rFXTHAF+TdJukv0fEihGxD3AT8CNgZkTsWn7m256uYmYN9SA59XlkRCxXFlPYEfiOpIMkXQVMLMe8ocY4zczMrMIVUGY1m1NjaOBbwFCyWmU9YPOIuFDSzyX9JiI2Im/AbQDN52uzWURMlHSTpP+JiEnkQ0+juGLAzHpBeV+eFRETyaT/p4AVyNU8x1cO/RMQwP8NepBmZmY2R+4BZVajhWwMfbmke+uKuV/0WtPusoriNOAa4CRgd+Aw4DhJZ5dj9gQ+R66y+Ju6YjUzmx8R8Q5gC+BWSbdUtg8HfgpcIOm4uuIzMzOzl3MCyqxGbgzdXL302lTO5QiyYuBRKhUDnequiBgDfBkYKekvtQVsZraAKu9zI4CdgVGS1qs7LjMzM5vNCSizmngp6ebq5dfGFQNm1qsiYjFgArlIxzhJ02oOyczMzCqcgDKrmZeSbq5ef21cMWBmvSYiVgFWknR33bGYmZnZy3kVPLMavUpj6E+TjaE/BEwlG0MvM9jx9bN+eG1K8mkxclrepsB+NYdkZvaaSHrMySczM7NmcgLKrF5eSrq5+uK1kfQCsAdwgKermJmZmZnZQBlWdwBm/cpLSTdXv702kh4jV/IzMzMzMzMbEO4BZdYAbgzdXH5tzMzMzMzMXjsnoMwaxo2hm8uvjZmZmZmZ2cLxFDyzhulqDL0sbgzdGH5tzMzMzMzMFo4roMwayktJN5dfGzMzMzMzswXjBJSZmZmZmZmZmQ2oIXUHYGZmZmZmZmZmvc0JKDMzMzMzMzMzG1BOQJmZmZmZmZmZ2YByAsrMzMzMzMzMzAaUE1BmZmZmRUTsFhGqfP0tIn4TEV+JiCVrju3oiHjvHLaPj4jf1RCSmZmZ2XxzAsrMzMzslcYAmwIfAaYARwKn1BoRfBl4RQIKOA74+CDHYmZmZrZAhtUdgJmZmVkDTZd0X/nvqRHxNmD3iDhQ0qw6A+sm6Td1x2BmZmY2L66AMjMzM5u324GlgJU6GyLiLRHxg4j4Y0Q8HxHTI+JllUgRsXZEfC8ifhsRz0XE/RFxVkT8Q/f/ICK2iIipEfFURDwbEXdExO5ln8phX6xMDzy67HvFFLyIeGNEnB8Rj5fY7oyIT3Yd05luuEk5j6cj4tGI+I+6pxuamZlZ73EFlJmZmdm8rQk8BTwBEBGrAzcDjwEHA38EdgAmRMTHJF1Sfu5NwMPAQcCTwFrAWGASOcWP8vdtC0wAfgrsDTwOjADWKIdsCtwIjAe+WbY9PKdAI2IZ4DrgH8r/6yHgk8D3ImJpSd/q+pHvAT8ERpf/z9El1i/P12/GzMzMbD44AWVmZmb2SkMjYhiwHNlfaTvgIEkvlv1HAwFsIemJsm1KSUwdC1wCIOl64PrOXxoRPwPuA26IiA0k/SIiAvg6MB3YqjLF7yedn5N0Ux7GI5JumkfsnwbeVv6ua8u2KyLi9cDxEXFu5TwA/ktSJ9n0k4jYGNgJJ6DMzMxsEfIUPDMzM7NXmgG8AMwEzgW+Kekblf0fJKuYnoqIYZ0vsmH5+hGxPEBELB4RYyNiRkQ8V/7OG8rf8fbKn2sA5yyi/lL/Siaqru3a/n1gZWCdru2Xd33/S+DNiyAOMzMzs5e4AsrMzMzslT5OTnFbGTgE2C8ibpZ0ftm/CrBr+ZqTFYGngROBz5JVUT8DngFWA34MLFk5FuYypW4hrAD83xy2/76yv2pm1/fPA0ssoljMzMzMACegzMzMzObkV51V8CLiauBO4JSImCDpWbIX1A3AyXP5+UfLnzsC50s6vrMjIpbtOvbx8ueqiyj2mcyurqp6Q/nziTnsMzMzMxtQnoJnZmZm9iokPQ8cRlY97Vc2TwbWA+6SdNscvp4vxy1NTrur+nTX9/8L/A7Yo/SDmpu/kSvxzct1wGoR8Z6u7TuTTdPvmY+/w8zMzGyRcgWUmZmZ2TxIuiQibgUOjYhvAOOAW4Dry/e/I1edewewlqTPlB+dDHwqIn5JNh8fDWzW9XcrIg4ip+VdHRFnk6vq/TOwSqVB+N3ARyJiMrlK3aOSHuWVxgMHAj+OiC+SU/s+AWwD7N3VgNzMzMxsULgCyszMzGz+HEVWQe0j6UHg3cAdwFeAqcBZwBbA1ZWf+Sy5It4JwAXkqno7df/FkiaSCSLIpueXAHuRia2OA4BngUuBW8v+VyhTBLcArgROAiYC6wO7SPrWgp2ymZmZ2aIRkuqOwczMzMzMzMzMepgroMzMzMzMzMzMbEA5AWVmZmZmZmZmZgPKCSgzMzMzMzMzMxtQTkCZmZmZmZmZmdmAcgLKzMzMzMzMzMwGlBNQZmZmZmZmZmY2oJyAMjMzMzMzMzOzAeUElJmZmZmZmZmZDSgnoMzMzMzMzMzMbED9f4AbIsUWMGsJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "'''1.4 Plot of reaction rates'''\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Meaning of the computed reaction rates vector:** " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "1.5) Find a production rate vector $\\gvec$ for which the problem \n", "\n", "\\begin{equation*}\n", "\\Smtrx^\\top\\,\\rvec = \\gvec\n", "\\end{equation*}\n", "\n", "has an infinite number of solutions, and compute a unique solution from this infinite set.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "reaction rates r_vec= [-0.122 -0.845 -0.535 0.848 -0.059 -0.158 -0.231 -0.267 0.701 0.823\n", " 0.013 0.282 -0.504 -0.186 0.313 -0.109 0.008 -0.158 0.725 0.31 ]\n", " ||r|| = 2.045e+00\n", "||g - ST r|| = 9.13539e-09\n" ] } ], "source": [ "'''1.5 Find production rates for unique reaction rates'''\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 2 }