{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Engy-4350: Nuclear Reactor Engineering Spring 2019 UMass Lowell; Prof. V. F. de Almeida **03Feb2019**\n",
"\n",
"# 02e. Nuclear Data and Data Processing: Gamma Capture Cross Sections \n",
"$ \n",
" \\newcommand{\\Amtrx}{\\boldsymbol{\\mathsf{A}}}\n",
" \\newcommand{\\Bmtrx}{\\boldsymbol{\\mathsf{B}}}\n",
" \\newcommand{\\Mmtrx}{\\boldsymbol{\\mathsf{M}}}\n",
" \\newcommand{\\Imtrx}{\\boldsymbol{\\mathsf{I}}}\n",
" \\newcommand{\\Pmtrx}{\\boldsymbol{\\mathsf{P}}}\n",
" \\newcommand{\\Lmtrx}{\\boldsymbol{\\mathsf{L}}}\n",
" \\newcommand{\\Umtrx}{\\boldsymbol{\\mathsf{U}}}\n",
" \\newcommand{\\Smtrx}{\\boldsymbol{\\mathsf{S}}}\n",
" \\newcommand{\\xvec}{\\boldsymbol{\\mathsf{x}}}\n",
" \\newcommand{\\uvar}{\\boldsymbol{u}}\n",
" \\newcommand{\\fvar}{\\boldsymbol{f}}\n",
" \\newcommand{\\avec}{\\boldsymbol{\\mathsf{a}}}\n",
" \\newcommand{\\bvec}{\\boldsymbol{\\mathsf{b}}}\n",
" \\newcommand{\\cvec}{\\boldsymbol{\\mathsf{c}}}\n",
" \\newcommand{\\rvec}{\\boldsymbol{\\mathsf{r}}}\n",
" \\newcommand{\\mvec}{\\boldsymbol{\\mathsf{m}}}\n",
" \\newcommand{\\gvec}{\\boldsymbol{\\mathsf{g}}}\n",
" \\newcommand{\\zerovec}{\\boldsymbol{\\mathsf{0}}}\n",
" \\newcommand{\\norm}[1]{\\bigl\\lVert{#1}\\bigr\\rVert}\n",
" \\newcommand{\\transpose}[1]{{#1}^\\top}\n",
" \\DeclareMathOperator{\\rank}{rank}\n",
" \\newcommand{\\Power}{\\mathcal{P}}\n",
"$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"## Table of Contents\n",
"* [Objectives](#obj)\n",
"* [Introduction](#intro)\n",
"* [Atom sizes](#atom)\n",
"* [Nuclei relative sizes](#nuclei)\n",
"* [Radiative capture $(n,\\gamma)$ cross section example](#xs1)\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Objectives\n",
"+ Demonstrate how to obtain traceable nuclear data and have them available through the notebook for analysis and problem solving.\n",
"+ Develop an intuitive sense of spatial scale of the underlying atomic world.\n",
"+ Develop an intuitive sense for the various (interaction) reactive cross sections in nuclear data in relation to the geometric cross section of the nuclei."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"Refer to Notebook 02."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Atom sizes (van der Walls radius)\n",
"Collect the **van der Walls radius** of all atoms of interest. Use data directly from a periodic table package: [Mendeleev](https://pypi.org/project/mendeleev/) python package."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"code_folding": [
2,
9,
14
]
},
"outputs": [],
"source": [
"'''Function to build a list of atomic properties'''\n",
"\n",
"def get_atoms(z_max=117):\n",
" '''\n",
" Build a list of atomic properties for all atoms of interest up to `z_max`.\n",
" Use the `mendeleev` package.\n",
"\n",
" Parameters\n",
" ----------\n",
" z_max: int, optional\n",
" Maximum Z number; default = 117.\n",
" \n",
" Returns\n",
" -------\n",
" atoms: list(namedtuple)\n",
" List of namedtuples with names: name, Z, symbol, vdw_radius.\n",
"\n",
" Examples\n",
" --------\n",
" '''\n",
" \n",
" # Use the Mendeleev python package (periodic table of elements)\n",
" from mendeleev import element\n",
"\n",
" from collections import namedtuple\n",
" Atom = namedtuple('Atom', ['name','Z','symbol','vdw_radius'])\n",
"\n",
" atoms = list()\n",
" z_max = 96 # up to Curium\n",
"\n",
" for i in range(z_max):\n",
" el = element(i+1)\n",
" #print('%20s vdw radius [pm] = %3.1f'%(e.name,round(e.vdw_radius,1)))\n",
" atm = Atom( name=el.name, Z=el.atomic_number, symbol=el.symbol, vdw_radius=el.vdw_radius )\n",
" atoms.append( atm )\n",
" #van_der_waals_radii\n",
" \n",
" return atoms"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"'''Get a list of atoms Z <= 96 (Cm)'''\n",
"\n",
"atoms = get_atoms(96)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCsAAAGNCAYAAAA4tvsFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xt8FPW9//HXJyTkRrjLJUBC5eIlAloVrHhOrVpvrQSr9WjV6sHqrxd7vFXbc7S2BkVtq62ntfYoabFWhWqrRagX0Kq1It5KQVAQUEAuQZCEhHBJwvf3x0ziZrPZnU12s7vk/Xw89pFkZvaTz+7OfGf2M9/5jjnnEBERERERERFJF1mpTkBEREREREREJJSKFSIiIiIiIiKSVlSsEBEREREREZG0omKFiIiIiIiIiKQVFStEREREREREJK2oWCEiIiIiIiIiaUXFCpEUM7MLzey5VOeRSczsf8xsZqrzSDYzqzOzg1Odh0g8zOzHZvaHBMY70cw+SlQ8SS0ze9HMvpHqPCIxs0vN7JVU55Eoid4WQ+IeYmb/NLNaM/uvRMeXttJ5u0lnydoGpOuoWJFmzOxDMzslbFqHd55+vN3+l54dZjbfzEYkJlsws6+Z2Zt+/M1m9rSZndDBWJea2TIzqzezLWZ2n5n1DfC8D82syswKQ6Z9w8xe7EAOH5rZPjMbGDZ9iZk5MxsZb8yQGCeY2atmVmNmn5jZP8zsWOfcw865UxMZswNxXvTXj9yO5OHHSOS6UBfy2B+yDteZ2YXOuRnOubh22onIL2x7an4Ux/fq2sRrd911zvVyzq2NEePCsHyaH87Mbu5gXueb2WIz22VmW/3fv21m1oFYCVlHQ+K1aiP9XHeY2ec7GC9R21CnP4dEtz9h6+sWM5tlZr3iiRElXpWZ/a6T8RLZZiTqc4za9sQZq5f/nn0tZFqRma03s3M7kFtC9+eJev9jtWNxxEloWxESNyHtWcj7X2tm1X6u3zSzDh9LW+R9yq/ijPGwmf02bNrnzWw7MLQTeUU7Fr0BeNE5V+Sc+98Ysf7bzP4aNu39dqadHyNWh44To8SL2KZZHIWBAO9VQnLqSKxExkvk/iTBsRLWZkeI7cxsdNi0wMWPRH6WiWqvM5GKFd3DWc65Xng7rSrgl4kIambXAr8AZgCDgRLg10B5B2JdB9wJXA/0AY4DSoEFZtYzQIhs4Kp4/287PgAuCMltHJDfmYBm1huYh/fe9weGAbcAe1Md07wvQP8GOGBKlOV6RJmXsHUBWr6k9/LX2/X467D/eDjeePHkZ2bZMcKF5tLLObcp3nzCdGrd9YtdvcLes6vxtvUH4o3nb4v3AD8FhuC9X98EJgNBtsXQWAlf78PiXwLcC3zJOfdS2LxYn2Nc+cWKF8/nYJ729r+Jbn+a2/8jgaOA/+5ErNB4nwWOBW7qSJAE7z8Stp4lsu1xztUBVwD3mNlB/uSfAG865x6PNzdfQvbniW6z6WQ7lqy2IpHtme8s51wR3vHJHcD3gcrO5EjbfcqV4QvEaH/+CzjTzL7oL5uH1+ZcB2zuZG7tKQWWB1z2ZWBy8zGEmQ0BcoDPhk0b7S8bUQKOE9uTkDYtwRKdU6LiJXJ/kpBYiT5eTIJOv/dJaK8zi3NOjzR6AB8Cp4RNuxR4xf+9GPgT8DHeQe1/xRMPOBNY5f+eC/wMb+OuAn4D5AfMsw9QB3w1Aa+5tx/rvLDpvYCtwLQAr/EHwCdAX3/aN/Cq/gCHAgv8+SvD/0+EWDcBb4RM+xlwI96X+ZHAAOApYCfwBnBr8+cTJe4xQHU78y6N9fx4Y8YZ52bgH8DdwLyQ6bOA+4C/ArvC18ug6wIwEVgEVOMdOP0K6NnJbeLHwB8Ssa76sR4H/uB/pt+IJxd/+nHAq/5r/BdwYhyvLdq664DRcX6eRwG1zTkALwLT/c+4FngOGBjlvdoFnBMlfuB2I9Y6CkwD3gV2AM8CpUHXB7wvgduAY/zpI/336zI/t5c7sw352+U/gJ/7n8+tCfgcbvNj7o70uRKs/ekD/B5vH7DOXz4ryPqK90V5fkg+3wh7vbHasfB4P8X7gvkZ4CX/9S7A28bb3T6JvU3m47U/O4AVeF9OPurE5/iK/z7uwNtvnhHH9hne9vQAfgis9de/h/G33ShxZgGPAicC24Gh8W5L7bz/ofvzLwH/xGvDNgA/7sT7n4XXLq3x8/0j0D9GXtHasS8C7wE1/rrxEmHtbIDPsHlbrPbf++P96RvwjhMuaed1xmrPBgBz/fftdby2MuJ20M76MBHYj1fwrwKyQ+adAyyJdx2L8Jpjtj/AV/11uxC4HXjan/5jvP3bHLzt821gQgfX/UvxtqUXgCZgj78ejY0RqydQDxzt/30e8Dt/PQidtjpKjJjHif5n8ab/WVYBd8f7OvHatPlhr+9XHX2v/N8/i7dt1gKP+Z9Fu59nOznNw2uzb/fX0xrgL0TZLgPEK8Zb9z8BVgOXxxkndH8yC+/EwXz/dS4GRnUwVuC2LOBn8WO8Nuz3fm7L8Y8bAsRrcwxGfMef7b334dPbjUmwY9jH8I5ha4FlwFi84s9W/z08Neh7mI4P9azIIP6ZuKfwvgwNA04Grjaz0wI+vwD4D+A1f9KdeCv0kXgV7WF4X1yD+ByQBzwRNP8ojvdj/Tl0ovPOSj2Nd6ATy5t4Dfn3Qiea1y11AfAIMAjvjOWvzawsSqzXgN5mdphf9f8PvEag2b14B0BDgEv8RyyrgCYze9DMzjCzfgGe01Uxv453wP0wcJqZDQ6Z9zW8L1hFeAcpkcRaF5qAa4CB/rInA9/uYK4dEWRdLcc7oOuL9z4EZmbD8HbQt+KdEfwe8KeQM6mxRFx3O8LvDvs43oHQiyGzvgb8J9420DPK//oc3heov0T5N/G0G+2uo2Y2Ffgf4CvAQcDf8b7QBfEtvC8VJzvn3gyb93ngMCBIuxhrG5qE98VoEN52EEiUz+FivCJLEV6hIZJY7c8v8Q5eDsZ7rV/H+2xj5TQcOAPvoLTTzLv84Ey8g8pHgLfwtvHpxG4TY22TPwJG+Y/TAsQL8jmu9PP7CVBpFv8lTb7rgVOBE4DhQAPeF8porsErVDwOfM8513y2u8P74Aj7811460JfvIP9b/nbWCSx3v//AqbirV/FeEWee2Ok1N4+eCDeCZab8N7/NXi9GsIF+QyX4hUXHgFm452lHA1cBPwqQvfqIO3ZvXhfSofifeGdFvVVhnHOvQ58BByBV9gJPV65CHgonnhhArc/zrnH8LbBR/HamP8XMrsc78tMf7z37kkzy+loUs65k/Da6yudd/Z6VYzl9+F9ef13f9K/+89/JWxau70qCHaceA9wj3OuN17b8cc4XlZom/Y2rV9fm54uccTsibedzcJ7/x8Fzu5ATv/0J30dbx0tBhqBqJfgxIj3KN66WwycC8wws5MDxom0P7kArzdUP396oH1mhFjxtGVBTcFrM/riFWjiutQqESJ8lkEFOYY9C6+t6efHfxav6DwMqAD+L95800qqqyV6tH7gVdvq8M4eND/q8Rr1ScD6sOX/G/hdwHiNwCZgHGB4DcKokGU/B3wQMM8LgS0Jes0XtRcLr5vlggDv2Sl4Bws1eF98voF34PQfwN/Dlv8/4EcxYt2EV8E+Ha/YkY1XYR2Fd3B6SMhzYvas8Jc7DG+H9ZH/WczF6851aZDnxxMzjuef4L+egf7f7wHX+L/PAn6f6HUBr2v8E3FuE53pWRE1Pz9WzLPwIbmEbp9P4nUDfihsuWeJcKYvnnXXnx+4Z4W/Tf/Ff1jI9BeBm0L+/jbwTDsx2myLfNpjZDfel5e42o0o6/3TwGUhy2XhtXWlAd6znf7rzAqZPtJ/vw4Oum7FyO9SwtrbBHwOFQHXh2jtz17g8JDn/L/m9SXK+lrrP/95Pj3z/SId61nRvP6vw+uGWuq/b4Uhyz1C9J4VsbbJtcDpIX9fQZSeFQE+x9UhyxX478WQoNtn2LQPgMkhf3/GX28tRqyF/nJ9QtaTeLel0Pe/ZX/ezrK/AH7ewff/XbxCYPPfQ/H2E9lR8mpvH/x14LWw7eMjIvRgi/EZvh+y3Dj/MxwcMm07cGRYvCDtWQNwaMj8Ge1tB5HWB3/6a3i9n74PPOxP6+9/3kPj2KaaH5fTgfbHf6/qgKtCpv047P3Pwuvh+G8dyKueT3sLvBjpM4wS78f4+328E25j8Nq30GmXRHl+zONEvGLHLbTTczDA62xu0/LjeX3R3iu8IsxGWu8LXiF2z4r2crojZLnDgX1Ajw68xhF4J5KKQpa7HZgVIE6k/cksYGbIsmcC73UkVoRl223Lgmyj/rq3MOx92x0wXiJ6VkT6LFvlGS0mwY5hF4T8fZb/P3v4fxf5ryNqD8B0fqhnRXqa6pzr2/zg07PQpUCxeQM7VZtZNd6ZycHtRgqJh3eG4Uq8rncj8A7a3gqJ9QzeQUYQ24GBQa4LD2BblFhD/fkxOefewete9YOQyaXApLD37EK8XhHRPIR3NvpSvK5jzQ7C++KwIWRa6O/R8nvXOXepc2443kFdMV4j3GEJiHkJ8Jxzrvk9foTWZzGDvLao64KZjTWzeeYNorQT72BwYKRlkyTIuhroM/SFbp9T8daxr4atYycQx8Bm7ay78fo+3jpwifP3UCG2hPxej9d1NpI275Vz7ni//diO19bE1W5EWUdL8a7lb47zCd4XmWEBXus38c5Iz4xwhjyezzLWNhRXLF+0zyFovPban4F4PWNCe2WsI/p7NtV519ifiHdJXGe3veb1v9Q592289XyHc25XWE7RxNomi2n9XsWKF+tz3BKyXL3/a0cGmDO8fedfQ9bbf+J9ARwQ5XkX4RXTFuL1pgBvm+nIPrjN/tzMhpjZJDP7m5l9bGY1eNtIe591rPe/FHgiJK938b7YRD3WaKcda/VZ+ttExO0gxmdYFbLobn/58Gnhn2ms9mwobffnMde1CIbhtV9/AM7ye3ich3eiJMiYEa2O+ZxzzWPcxNuWVeEdL4WPJRH6/u/n07PpceVF53pEvgyc4PeYOcg59z5e4eh4f9oRRO9ZEeQ48TK8/cJ7ZvaGmX05YG6t2jTn3O6gLypCjPD3qhjYGLYvCPK5tpdT+LqaQ7A2PbzdLgY+cc7VhsWLtf+Ntj8JepwRNVacbVlQ4bnlBfz+0oT3HofKwStyBtXZ9SvIMWx4W7jNOdcU8jd0YJ+XLlSsyCwb8M66hO7UipxzZwZ5snOuyTn3Z7yN7zi8FbgsJFYf5w0CE8QivK6Tne2a1RxrL1538Bb+JRxn4FVcg/oR3lmJ5gZ3A/BS2HvWyzn3rWhBnHPr8M6gnUnrbocf453xGR4yLe7R2J1z7+FVoo+I97mJimlm+XgHVJ/3Cwlb8LorTzCzCc1hA4SKtS7ch9djY4zzumf+D96X0q4SZF0N8jrbswGvZ0XoOlbonLsjzjjh625gZnYi3pm9c51z1fE+P0TzttjeoE3b6ES7EbaObgD+X9j7lu+cezVAqK14lxP9G96Zilb/JkguAfKLO1aAzyFQvCjtzza8g6TSkGkleGfuYsV8Ce+1/cyftAvvy3KzWAXc9mwG+lnInSD8nKKJtU1upnW7GiteK8loX/24Du+9Pilsvc0LKfi2YmaD8C4TuRyvF8x5ZvbvdH5bCt2fn4BXaJ4LjHDO9cEb/6K9djbW+78Bb1yP8NcYcz2jbTvW6rMMKfhElaDPMFZ71rw/7/C6Zt7dSobh9TjY6P/Ps/Eu+erMJSDQuf1SqND3Pwvv+KWzA0PHaxHe5WtX4I3FgXNup5/HFcAm59wHMZ4f9TjROfe+c+4CvMtm7gQeD2uX4pGo934zMCysqN6ZO/KFr6sNBDyhF2YT0N/MisLiBdnGI+1POixCrHjasmRbj1doDvUZOlbUDBXP/jeR37cykooVmeV1YKeZfd/M8s2sh5kdYQFv7WWecrxrmpbjjRb9c/9gCjMbZgHHv3DO1eBdW3uvmU01swIzy/GvNf1JPC/Kj3UL8EszO92PMxLvGsuPiGOH75xbjTd4UfN9v+cBY83sYj9ujpkda2aHBQh3Gd5BaegZwya8Lw8/9l/zoXjdXKMys0PN7Dr/2rzma9cu4NPrjeOWgJhT8V7P4XjXTB+J1w337wR4Tc0CrAtFeN326/z3K2qhKNESua62o/ls2mn+NplnZic2fy5x5Bm+7gZiZkPxrsW82jkX77WQ4TlU422Lvzazc827hVuWmR2JN3DbfuJoN2Kso78B/tv88WPMrI+ZfTWOXDcBJwGnm1msMQMiSuR2mcjPwdde+/NH4DbzboFZClxL6zEtovkF8EX/81wCfMXfHkb7/y9ufmHlTeAWM+tp3q3UzorxnFjb5B/x1o1+/mfz3WjxktG+RvEb4A7/f2Bmg8ws2uv9FfCkc+5v/ln2G/C2oRw6sQ8O25+/i9fOfuKc22NmE/F65kQU4P3/Dd46Vur/r4P8/xVThHZsPlBmZl8x78zgfxHhwDwZn2GA9ix8f344wcagwsx6m3fmfjZe9+1l/qzf433G40jMmF6JcHTI+3813pf+ZGwb7fLPJr+J1179PWTWK/60aL0qAh0nmtlFZnaQ33ukuVjcFDFgbFV44wJ11iI/hyvNLNvfjiZ2It5FZna4eWPWVACPh5xBD8w5twGvZ8vt/jHLeLx9QDxjdoXuTzorNFbgtqwLzAFuMrPhfttxCt7+raN3c2q2BDjfX4+PwRszJKIuOIZNeypWZBC/QToL70vlB3jV1Jl41eponjKzOrwvjLfhdU9ejtddeTXwmnnd8xcCh8SRz914O5mb8M5QbMDrlvpkHC+rOdZP8M64/8zPc7Ef72TnXLy3LqvAOxDB7+J2KnA+XiV5C17FPTdATmtc28H7wHuNffxYD+ENUhQrx1q8MUcWm9kuvAOFd/BuLdZRnY15Cd54J+udc1uaH3gH1xfidY8NJMa68D28nU0t3sH5nKBxEyWR62qE2Bvwztz9T0js6+lY+9qy7sbhcrzu2fdY6/uN15nZb+JNwN8Wr8U74N6Kd9D2f3jtxavE1260u446557A2xZn+3HewTtDFk+uG/AKFufiXW8br0Rul4n+HNprf76Ld1ZmLd6B/iPAbwPG/Bjvy9QP8c7278P7fB8kzoFlw3wN7338BO/M+u+jLx5zm7wF78zVB3h3r4lVsE5G+9qen+Ct8y+YWS3eNvHZSAuaNyjcCXjtAQDOuZl4X65upmP74Pb2598GKvycbibG4IIx3v978M5sPufHew3v/Q0qdB+8De9OFXfgdWceg39mPUxSPsMA7dmVeN2jt+Cd3f1djJBP+e/JBrxeVHfTeoDbJ/AvowkrNMaKGdpeJLrI8Re88bt24PX4+IpzLp5u7InyEl6vh9DBuv/uT4tarIBAx4mnA8v97eMe4Hzn3J4O5noPcK6Z7TCzuAaxDMt5H15vkMvwCigX4Z1E6+gteR/CW0+34A26GNfJjTAX4PUa2IS33v7IObcg6JPD9iedEhYrrrYsySrw2olX8LafnwAXOu+St874Id4YVDvw9nePRFs4mcewmcBcm0tqRSQeZnYn3mBtgc7IiIiIyIHJzNbgXeK2MNW5SPoxs8XAb5xzsQpjIoJ6VojEze+uOt7vhjsRr2KeLt09RUREJAXM7By88Q5eSHUukh7M7PPmDYKbbWaXAOPxBtMVkQAScScHke6mCO/Sj2K8bqV3Ef0+7iIiInIAM7MX8caAutgfN0EEvEu7/oh3udEavAGYg9wlRkTQZSAiIiIiIiIikmZ0GYiIiIiIiIiIpBUVK0REREREREQkrahYkUFi3Ms9pfG6Q6xEx1Os1MbrDrESHU+xUhuvO8RKdDzFSm287hAr0fEUK7XxukOsRMdTrNTGS3Ru6UbFisyS6JUxkfG6Q6xEx1Os1MbrDrESHU+xUhuvO8RKdDzFSm287hAr0fEUK7XxukOsRMdTrNTGO6CLFQfcAJtZWVkuPz8/1WnEzTmHmUVdpqmpiR49eiQkVtB4iYwVNF66xgoaL11jBY2XrrGCxtN7Fn+8dI0VNF66xgoaT+9Z/PHSNVbQeOkaK2g8vWfxx0vXWEHjpWusoPH0nsUfL11jBY2XrrGCxkv0e5Zu6uvrnXMudscJ59wB9SgoKHCZ6IMPPjjgYyU6nmKlNl53iJXoeIqV2njdIVai4ylWauN1h1iJjqdYqY3XHWIlOp5ipTZed4iVjoBdLsB3e10GIiIiIiIiIiJpRcUKEREREREREUkrKlaIiIiIiIiISFpRsUJERERERERE0oqKFSIiIiIiIiKSVlSsEBEREREREZG0omKFiIiIiIiIJNyuXbu46qqrqK+vT3UqkoG6tFhhZnlm9rqZ/cvMlpvZLf70WWb2gZkt8R9H+tPNzP7XzFab2VIz+2xX5isiIiIiIiIds2jRIubOncuiRYtSnYpkoK7uWbEXOMk5NwE4EjjdzI7z513vnDvSfyzxp50BjPEfVwD3dXG+IiIiIiIi0gELFy5s9VMkHl1arHCeOv/PHP/hojylHPi9/7zXgL5mNjTZeYqIiIiIiEjnzJ8/H4B58+alOBPJRF0+ZoWZ9TCzJcBWYIFzbrE/6zb/Uo+fm1muP20YsCHk6R/508JjXmFmb5rZm42NjUnNX0RERERERForLy/HzFo9Vq1aBcCqVavazCsvL09xxpLuurxY4Zxrcs4dCQwHJprZEcB/A4cCxwL9ge/7i1ukEBFi3u+cO8Y5d0x2dnaSMhcREREREZFIZsyYQUlJCXl5eS3T9u3b1+onQF5eHqWlpcyYMaPLc5TMkrK7gTjnqoEXgdOdc5v9Sz32Ar8DJvqLfQSMCHnacGBTlyYqIiIiIiIiUZWVlbFixQqmTJlCQUFBxGUKCgooLy9n+fLllJWVdXGGkmm6+m4gB5lZX//3fOAU4L3mcSjMzICpwDv+U+YCX/fvCnIcUOOc29yVOYuIiIh0Nd3uT0QyUWFhIXPmzKGiooL8/PxW8/Lz86moqGD27NkUFhamKEPJJF3ds2Io8DczWwq8gTdmxTzgYTNbBiwDBgK3+sv/FVgLrAYeAL7dxfmKiIiIdDnd7k9EMtmaNWtoampqNa2pqYm1a9emKCPJRF19N5ClzrmjnHPjnXNHOOcq/OknOefG+dMuar5jiH9pyHecc6P8+W92Zb4iIiIiqaDb/YlIptq8eTMzZ84EYMiQIQAUFRUB8MADD7Bly5aU5SaZJWVjVoiIiIhIZLrdn4hkqunTp9PQ0MDZZ5/N6tWrGT16NF/4wheYOnUqDQ0NTJ8+PdUpSoZQsUJEREQkhXS7PxE5kNTX11NZWcns2bOpr6+noKCATZs2MWfOHCorK9m1a1eqU5QMoft8ioiIiKTQjBkzWLJkCVu3bmXPnj1A+7f7Gzx4sG73JyJpbdasWS2/f/Ob32Tp0qUcdNBBAEybNo1p06alKDPJNOpZISIiIpJCut2fiByoampqAPj444/ZvXt3irORTKNihYiIiEiK6XZ/InIgqq6ubvl9w4YNKcxEMpGKFSIiIiJpIvR2f9nZ2ZiZbvcnIhmrpqam5Y4g69atS3E2kmlUrBARERFJA823+3POAfDVr36VESNGALrdn4hkpurqag477DA+85nPtBqDRyQIFStERERE0kDz7f5OPvlkAB599FGeeeYZ3e5PRDKSc46amhoOPfRQ1q5dy5e+9KVUpyQZRsUKERERkTTQfLu/G2+8EYCjjjqK/v3763Z/IpKR9uzZQ0NDA0VFRalORTKUbl0qIiIikgaab/c3f/58AG6++WYGDx4M6HZ/IpJ5mgfX7N27N9dddx2ffPIJv/vd71KclWQS9awQERERSSNHHXUUs2fPpnfv3mzfvj3V6YiIdEjzbUuLioooKCjQ3YwkbupZISIiIpJGiouLOe+888jNzeWaa67hzjvvTHVKIiJx69evH7feeitlZWUtY/GIxEPFChEREZE0snLlSjZu3MigQYPYtGlTqtMREemQwYMHc+ONN/Lhhx+mOhXJULoMRERERCSN/Pa3v+XMM89kyJAhKlaISMaqqalh/fr1NDU18corrzB48GAWL16c6rQkg6hYISIiIpJGvvOd7/D888+rZ4WIZLQ5c+ZQWlrKxx9/TJ8+fdi6dSvr1q1LdVqSQXQZiIiIiEgaKSkpoaSkhMGDB/PKK6+kOh0RkQ75/Oc/z8yZM+nXrx9Dhw4FYP369SnOSjKJihUiIiIiaWTevHn07NmTwYMHU1tbS21tLUVFRalOS0QkLocccgiHHHIIH374Ib1796ZPnz7qWSFxUbFCREREJI3cdtttFBUVccYZZwCwefNmFStEJOO899577N69m379+gFerzH1rJB4aMwKERERkTRSXV1N3759GTx4MIDGrRCRjHTrrbdy7rnntvxdWlqqnhUSFxUrRERERNJITU0Nffr0aSlWbNy4McUZiYjEr7kta6aeFRIvFStERERE0khzz4ri4mLuuOMOjjzyyFSnJCISt+a2rFlpaSk7duygtrY2hVlJJlGxQkRERCRN7Nu3j927d9OnTx/y8/P5/ve/T1lZWarTEhGJW6SeFaA7gkhwKlaIiIiIpImamhqAlrORGzduZNWqValMSUSkQ8J7VhxxxBFceOGF5OTkpDArySS6G4iIiIhImggvVlx88cXs3buXf/zjH6lMS0QkbuE9K4444gj+8Ic/pDAjyTQqVoiIiIikierqaoCWA/ybb74ZM0tlSiIicdu/fz+1tbWtihUAzjkaGhro2bNnijKTTKJihYiIiEiaCO9ZceKJJ6YwGxGRjtm5cyfOuVaXgQBMmDCB8ePHq4eFBKIxK0RERETSxMSJE3n99ddb7gCyZcsW5s6dS319fYozExEJrrnwGt6z4rLLLuOss85KRUqSgdSzQkRERCRNFBUVceyxxwKwfft2/v73v3PeeeexdOlSxo0bl+LsRESC6d+/P4888giTJk1qNf2qq65KUUaSidSzQkRERCRNvPnmm1RWVtLY2AhAcXEx4N0VREQkUxQVFXHBBRdw8MEHt5q+b98+1q5dS1NTU4oyk0yiYoWIiIhImpg7dy6XX345WVl2J3jPAAAgAElEQVTeIdqwYcMA2LRpUyrTEhGJy5YtW3jppZfaXML24IMPMmrUKBVgJRAVK0RERETSxA9+8APWrVvXUqwYOnQooJ4VIpJZFixYwIknntim0FpSUgLA+vXrU5GWZBgVK0RERETSREFBASNGjGj5Ozc3l4EDB6pnhYhklNNOO43nn3+e4cOHt5peWloKwLp161KRlmQYDbApIiIikiZmzZpFY2Mj3/jGN1qmFRcXq1ghIhll0KBBnHTSSW2mNxdj1bNCglDPChEREZE0MWvWLB566KFW04qLi3UZiIhklNdee40//elPbaYXFhYyYMAA9ayQQFSsEBEREUkT1dXV9O3bt9W0YcOGqWeFiGSUyspKvvvd70acV1paqp4VEoiKFSIiIiJpoqamhj59+rSaVlxcTFVVVcvtTEVE0l2ktqxZSUmJihUSiIoVIiIiImkiUs+Kr3/967zwwgspykhEJH6R2rJmJSUlrFu3DudcF2clmUYDbIqIiIikgf3797Nz5842ZyNHjx7N6NGjU5SViEj8ampq6NevX8R5paWl1NXVUV1d3e4yIqCeFSIiIiJpoa6ujv3797c5G1lXV8fs2bNZvXp1ijITEYlPTU1Nuz0rTjnlFH71q1/Ro0ePLs5KMo16VoiIiIikgZqaGoCIxYoLLriAe++9Vz0sRCQjVFdXtztmxfjx4xk/fnwXZySZSMUKERERkTRQXV0N0OYAf9CgQSxfvpzS0tJUpCUiErdoA2w651i+fDlFRUVq1yQqXQYiIiIikgba61mRlZXF4YcfTmFhYSrSEhGJy969e9mzZ0+7l4EAHHPMMdx7771dmJVkIvWsEBEREUkDn/vc5/j4448pKipqM++xxx6jtraWadOmpSAzEZHgmguv7fWsMDMee+wxxo4d25VpSQZSsUJEREQkDfTo0YOBAwdGnPfII4+wevVqFStEJO317duX1157jREjRrS7zFlnndWFGUmm0mUgIiIiImng5Zdf5sYbb2T37t1t5hUXF7Np06YUZCUiEp+ePXsyadIkiouL211m5cqVPPbYY12YlWQiFStERERE0sAbb7zBnXfeSVZW28Oz4uJiPvnkk4iFDBGRdLJu3Tp+97vfsX379naXmT17Nueddx579+7twswk06hYISIiIpIGrrvuOhoaGsjNzW0zb9iwYQBs3ry5q9MSEYnLG2+8wbRp06L2Bmu+C8hHH33UVWlJBlKxQkREDni7du3iqquuor6+PtWpiERlZhGnN3en1qUgIpLuvvzlL/PBBx9wyCGHtLtMSUkJAOvXr++qtCQDqVghIiIHvEWLFjF37lwWLVqU6lRE2nX33Xfzwx/+MOK85mLFxo0buzIlEZG45eXlMXLkSHr27NnuMs3FinXr1nVVWpKBVKwQEZED3sKFC1v9FElHzz77LAsWLIg4r/kyEPWsEJF099xzz3HnnXdGXab5TiHqWSHRqFghIiIHvPnz5wMwb968FGci0r7q6mr69u0bcV7fvn3Jy8tTsUJE0t68efO44447oi6Tm5vLkCFDVKyQqFSsEBGRA0p5eTlm1uqxatUqAFatWtVmXnl5eYozFvHU1NTQp0+fiPPMTLcvFZGMEK0tC1VSUqLLQCSq7FQnICIikkgzZsxgyZIlbN26lT179gCwb9++Vj/Bu6Z28ODBzJgxIyV5ioSL1rMC4B//+Af9+vXrwoxEROIXqy1rVlpayr/+9a8uyEgyVZf2rDCzPDN73cz+ZWbLzewWf/pnzGyxmb1vZnPMrKc/Pdf/e7U/f2RX5isiIpmnrKyMFStWMGXKFAoKCiIuU1BQQHl5OcuXL6esrKyLMxSJLNbZyCFDhkS8ramISDqJp2fF+vXrcc51QVaSibr6MpC9wEnOuQnAkcDpZnYccCfwc+fcGGAHcJm//GXADufcaODn/nIiIiJRFRYWMmfOHCoqKsjPz281Lz8/n4qKCmbPnk1hYWGKMhRpbe/evezZsyfq2cgXXniB6667Tgf2IpLWampqAvWs+Pa3v82rr76qNk3a1aXFCuep8//M8R8OOAl43J/+IDDV/73c/xt//snW3g3IRUREwqxZs4ampiYAcnJyMDOamppYu3ZtijMTaa2mpgYg6gH+P//5T2bOnEldXV27y4iIpFp1dXWgnhUHH3wwRx11FFlZGkZRIuvyNcPMepjZEmArsABYA1Q75xr9RT4Chvm/DwM2APjza4ABEWJeYWZvmtmbjY2N4bNFRKQb2rx5MzNnzmw5YzNhwgSKi4sBeOCBB9iyZUsq0xNppbq6GiDqAf4111xDTU0NRUVFXZWWiEjcgl4GUltbywMPPMDy5cu7ICvJRF1erHDONTnnjgSGAxOBwyIt5v+M1IuiTT8h59z9zrljnHPHZGdrzFAREYHp06fT0NDA5MmTAXjzzTeZMWMGU6dOpaGhgenTp6c4Q5FP1dfXU1RUFLVnhc4+iki6c84FvgykoaGBK664gueee64LMpNMlLJv9s65ajN7ETgO6Gtm2X7vieFA8325PgJGAB+ZWTbQB/gkFfmKiEhmqa+vp7KykoKCAl588UV++ctf8tWvfpWvf/3rnHbaabz88supTlGkxZFHHsnOnTujLvPJJ59w5ZVXcumll3Lqqad2UWYiIsHV1dWxf//+QD0r+vXrx4cffsiwYcNiLivdU1ffDeQgM+vr/54PnAK8C/wNONdf7BLgL/7vc/2/8ee/4DQCi4iIBDBr1iymTZvGtm3bADjuuONaBtucNm0as2bNSmF2IvHLzc3l0Ucf5e233051KiIiERUWFlJVVcUVV1wRc1kzo7S0FPWMl/Z0dX/CocDfzGwp8AawwDk3D/g+cK2ZrcYbk6LSX74SGOBPvxb4QRfnKyIiGe7MM89k9uzZvP3229x7772pTkckomeffZYLLriAHTt2tLtMYWEhffr0YePGjV2YmYhIcFlZWQwaNIjevXsHWv6xxx7j9ttvT3JWkqm6+m4gS51zRznnxjvnjnDOVfjT1zrnJjrnRjvnvuqc2+tP3+P/Pdqfr+HbRUQkLgcffDD/8R//wfPPP69xKiRtbd26lbfeeivmGcZhw4axadOmqMuIiKTKmjVr+OEPf8i6desCLb9w4ULuvvvuJGclmUojNYmIyAFt8eLFvPbaa4wcOZKqqqqY4wKIpMLFF1/MqlWrYt7po7i4WMUKEUlbq1ev5rbbbqOqqirQ8iUlJWzbto36+vokZyaZSMUKERE5oN18881cffXVjBw5EvDO+ohkquLiYl0GIiJp67TTTqOxsZFjjjkm0PKlpaUAbNiwIZlpSYZSsUJERA5o9957L/fff3/LAdH777+f4oxE2rr55pv52te+FnO5YcOGsXnzZvbv398FWYmIxC8rKyvwrZZLSkoAWL9+fTJTkgylYoWIiBzQRo8ezfjx41t6VqhYIeloyZIlrFixIuZyxcXFNDY2ttzlRkQknTz55JNcfvnlNDU1BVq++URC0DEupHtRsUJERA5o9913H//85z8pKChg6NChrF69OtUpibRRXV1N3759Yy5XXFwMoEtBRCQtLVq0iIceeogePXoEWr64uJisrCz1rJCIVKwQEZED1p49e/j2t7/NM888A8CYMWPUs0LSUk1NTaBixfDhwxkyZAi1tbVdkJWISHxqamro06dP4OVzcnIoLi5WsUIiin5/LBERkQy2fft2AAYMGAB4l4TMnz8/lSmJRFRdXR3oAH/ixIls3ry5CzISEYlf0LYsVGlpqS4DkYjUs0JERA5Yzdf1Dxw4EPB6Vnz88cfU1dWlMi2RNoL2rBARSWcdactKSkoC3+pUuhcVK0RE5IAV3rPiyiuvpL6+nl69eqUyLZFW9u/fz86dOwMf4F922WXcfvvtSc5KRCR+8V4GAlBZWcny5cuTlJFkMhUrRETkgBXes6JXr17k5uamMiWRNmpra3HOBT7Ar6urY/fu3UnOSkQkfh25DCQ/P5/6+nouvPBC6uvrk5SZZCIVK0RE5IDVXKxo7lmxf/9+rr76av74xz+mMi2RVqqrqwEC96yYM2cOFRUVyUxJRKRDOnIZyPvvv89XvvIVHnnkERYtWpSkzCQTqVghIiIHrPDLQLKysnj66adZtmxZKtMSaaWxsZHx48e33JZURCRTdaRnxb59+3j11VcBWLhwYTLSkgylYoWIiBywtm3bRu/evcnJyWmZtnLlSqZPn57CrERaGzVqFP/61784/fTTAy3/29/+llGjRrFv374kZyYiElxjYyNZWVlx96woKytj5MiRAMybNy8JmUmmUrFCREQOWNu2bWsZr0LkQLF//37Wrl3Lli1bUp2KiEiL7Oxsamtruemmm6IuV15ejpm1eqxatQqAVatWtZlXXl7eFelLGlKxQkREDlg/+9nPmDt3bqtp8+fP54QTTmDnzp0pykqktaeeeopJkyaxadOmQMs3Xy4SdHkRka5kZlHnz5gxg5KSEvLy8lqmNfcUC+0xlpeXR2lpKTNmzEhOopL2VKwQEZED1tChQykrK2s1bffu3fzjH/9g9erVKcpKpLWcnBz69etHfn5+oOVVrBCRdLR69Wouuugili5dGnW5srIyVqxYwZQpUygoKIi4TEFBAeXl5SxfvrzNfly6DxUrRETkgPWb3/yGl156qdW0MWPGAKhYIWnj9NNP55lnnqFfv36Blm8uVmzcuDGZaYmIxGXHjh0sWrSIurq6mMsWFha23NkovFCbn59PRUUFs2fPprCwMFnpSgZQsUJERA5YN9xwA08++WSraaNHjwa8W6WJZKKBAweSk5OjnhUiklaOPfZY1qxZw/HHHx/4OWvWrKGpqanl0hEzo6mpibVr1yYrTckgKlaIiMgBa9OmTdxyyy2tphUWFjJ06FD1rJC0cfXVVzNx4sTAy2dlZTF06FAVK0Qko23evJmZM2cCMHz4cICW254+8MADGkRY2i9WmNnLHXyM6coXICJdb9euXVx11VXU19enOhWRqHr16kXv3r3bTB8zZox6Vkja2LhxI7W1tXE9p7i4WMUKEUkrjz76KCeffDK7du0KtPz06dNpaGjg7LPP5t1332Xs2LFMnjyZqVOn0tDQoNuMS9SeFScAhUBTwMd+YDJQlMR8RSQNLFq0iLlz57Jo0aJUpyLSrvXr13Pdddfx3nvvtZk3evRo9ayQtFFdXU3fvn3jek5xcbHGrBCRtLJy5UpeeOEFcnNzAy1fX19PZWVly9gUkyZN4q233mL27NlUVlYGLnrIgSs7xvxvOedeDxLIzLKBfTEXFJGMt3DhwpafJ598coqzEYlszZo13H333Zx11lkceuihreaNGTOGqqoqdu7cGbHnhUhXqqmpoX///nE9Z/LkyRp4TkTSSk1NDb169SI7O9ZXTM+sWbNa/T1p0iQeeughNmzYwLRp05g2bVoSspRMEq1nRSWwNY5YTf5zPu5URiKS9ubPnw/AvHnzUpyJSPu2bdsGwIABA9rMa74jyJo1a7o0J5FIOtKz4tprr+X3v/99kjISEYlfR9qyUJMmTQJg8eLFiUpJMly7xQrn3OXOuQ+DBnKey51zGxKSmYikhfLycsys1WPVqlUArFq1qs288vLyFGcs4tm+fTvg3Tkh3KGHHsqxxx7L3r17uzotkTZqampaBpUTEclUnW3Lxo8fz+mnn05RkUYVEI/uBiIiUc2YMYOSkhLy8vJapu3bt6/VT4C8vDxKS0uZMWNGl+coEkm0nhVlZWW8/vrrHHfccV2dlkgbHTkb+frrrzNkyBBeeumlJGUlIhKfmpqaTvWs6NmzJ08//TSnn356ArOSTBbsgiLAzPoDXwJGAHlhs51z7keJTExE0kNZWRkrVqxg2rRpzJs3L+IdQAoKCjjrrLOorKzUNdSSNrZv305RURE9e/ZMdSoi7dqzZw/79u2L+wB/yJAhTJkyJe6xLkREkqW6upohQ4Z0Ok5dXR35+fn06NEjAVlJJgvUs8LMTgXWAQ8CtwI3RXiIyAGqsLCQOXPmUFFRQX5+fqt5+fn5VFRUtIzkLJIutm3bFrFXRbNvfetbnHXWWV2YkUhb1dXVAHF3nS4pKeH+++9n3LhxyUhLRCRuibikbf78+fTp04dly5YlKCvJZEEvA7kb+CcwAch1zmWFPVT2EukG1qxZQ1NTEwA5OTmYGU1NTaxduzbFmYm0tX379ojjVTQbO3Ys48eP78KMRCKbOnUqhxxySNzP279/v27tJyJpo7MDbAJMmDCBG2+8kX79+iUoK8lkQS8DGQlc45xTiUukm9q8eTMzZ85s+btfv37k5OTw8ccf88ADD/DDH/4wIV3/RBIlVs+Ka665pguzEYlsyJAhPPHEEx167uGHH87u3bt59913KSgoSHBmIiLxKS0tZeTIkZ2KMXz4cCoqKhKTkGS8oD0r/gkUJzMREUlv06dPp6GhgcmTJwOwdetWfvGLXzB16lQaGhqYPn16ijMUae2TTz6J2rMCoLGxsdVAsSKZJDc3l/Xr17No0aJUpyIiwltvvcUNN9zQ6Ti1tbVq1wQIXqy4FrjBzD6XzGREJH3V19dTWVnJFVdcAcBTTz3Fueeey5w5c6isrFRXZEk7K1eu5P777293/nvvvUdBQQFPPvlkF2Yl0tqf//xnBg0axPvvvx/3cxsbGwFYuHBhotMSEUmZX/ziF0yePJmdO3emOhVJsaDFireA54FXzGynma0Pe6xLYo4ikgZmzZrFtGnT2Lp1KwDDhg1rmTdt2jRmzZqVosxEIuvRo0fUrvEjRoygoaGB1atXd2FWIq0NHz6cc845p0PXZze3x/PmzUt0WiIicVmzZg3HH398Qm6nPHHiRJxzvPnmmwnITDJZ0GLFz4ArgSXAU3iFi9DHC0nJTkTSTlVVFT169OBvf/sbl1xySarTEYlox44dfPOb32Tx4sXtLlNYWMjQoUM7dEZbJFEmTpzIfffdF/OSpfLycsys1WPHjh0ArFq1qs288vLyrkhfRASApqYmCgsLycnJ6XSsiRMnAkTdh0v3ELRYcSkw3Tl3tHPuQufcf4Y/kpijiKSRqqoqBg0axMaNG/n9739PXV1dqlMSaWP79u088cQTfPTRR1GXGzNmjHpWSErt2bOn5S5L0cyYMYOSkhLy8vJapjU/L3Tclby8PEpLS5kxY0bikxURacfYsWNZsGABxx9/fKdj9evXj7Fjx6pYIYGLFQ54OZmJiEhmuOmmm/jzn//ccpu95cuXpzgjkbZGjx5NVVUV55xzTtTlxowZo54VklLf+973GDRoUMzlysrKWLFiBVOmTGn38qaCggLKy8tZvnw5ZWVliU5VRKTLTJo0icWLF+OcS3UqkkJBixWPAWckMxERyQyf+cxnOO6441qKFcuW6Y7GkrmaixoaxEtSpaamhj59+gRatrCwkDlz5lBRUUF+fn6refn5+VRUVDB79mwKCwuTkaqISLsefPBBDj744JaxdDpr0qRJbNmyhQ0bNiQknmSmoMWKp4GvmNkDZnaOmZ0U/khmkiKSPh588EHeeOMNRowYQWFhoYoVkpaeeuopzj77bKqrq6MuN2bMGMAbGEwkFaqrq+nbt29cz1mzZg1NTU2YGdnZ2YB3ScjatWuTkaKISExbtmzhgw8+SFixdNKkSYDGrejughYrngBGApfh9bJY6D8WhPwUkQOcc45vfvObPPbYY2RlZVFWVqZihaSlZcuW8eSTT7a6vj+S5mKFLgWRVImnZwXA5s2bmTlzJgAlJSXceeed9O/fH4AHHniALVu2JCVPEZFoampqYt6FKx7jx48nNzdXxYpuLmix4gvtPE4K+Ski3cAHH3zADTfcAMC4ceNYtmyZrieUtLNt2zYKCwtjFitGjRoFqFghqRNvz4rp06fT0NDA2WefzfLly7n22mtZv349U6dOpaGhgenTpycxWxGRyJrbMjNLSLyePXty1FFH8frrrycknmSm7CALOec6f8NcEcl4ZsaQIUMAqKurY9y4cVRWVlJVVdUyXSQdbN++nQEDBsRcrrCwkBtvvLGlu6lIV4u3Z0V9fT2VlZVMmzatZVpdXR2nnHIKp556Kn//+9+TkaaISFTxtmVB3HvvvXFfJicHlkDFimZm1hs4AhgGbATecc5pVDKRbmL16tX84Q9/4LLLLgPgiCOOALwu9ypWSDrZtm0bAwcODLTsrbfemuRsRNoXb8+KWbNmtZn20ksvccUVV7Bo0aKW9llEpCslo1jx2c9+NqHxJPMEvQwEM7sZ2AD8HZgDvAJsMLObkpSbiKSZpUuXcsstt7B9+3bAuwxkzJgx7N69O8WZibS2ffv2wMWKffv26TIQSYn9+/dTW1vb6TOHZ555Ju+88456CIlIynRksOBYGhoa+PWvf83f/va3hMaVzBGoWGFmtwA/xitSfBEYB5wC/BG4xcx+nKT8RCSNVFVVATB48GAABg0axKpVq5gyZUoq0xJpY9u2bYEuAwH4+c9/ztixY3X7UulyO3fuxDnX6bORvXr1oqysLGHXiouIxCsZPSuys7P50Y9+xJ/+9KeExpXMEfQykMuBu5xz14dMWw68YGY1wBV4xQwROYA13zv7oIMO4qOPPkpxNiLti6dnxZe//GWKi4vp0aNHkrMSaS0rK4trr72WY489ttOx1qxZwy233MKNN97IIYcckoDsRESCS0bPCjNjxYoVgffncuAJehlIH+DZduY9488XkQNcVVUVAwYMIDv70zrn/fffz9ixY2lqakphZiKfamxspLq6OnDPirKyMi6++OKE3RteJKjevXtz1113ccIJJ3Q6Vm5uLg899BBPPPFEAjITEYnPv/3bv3H00UcnPO5BBx2kXmPdWNBixWKgvbL/sf58ETnAVVVVtVwC0mzo0KFMmjSJurq6FGUl0lptbS2lpaUUFxcHfs7rr7/OO++8k8SsRNrat28fdXV1Cbn98/Dhwzn66KP5y1/+koDMRETi88gjj3DllVcmPO6GDRu46KKLeO211xIeW9Jf0GLFfwHTzOx6MxtpZvn+zxuAacCVZpbV/EheuiKSSlu3bm1TrDjrrLN46KGHEn6dokhH9evXjw8//JDLL7888HPOPvts7rrrriRmJdLW008/TVFREW+//XZC4pWXl7N48WK2bNmSkHgiIqnWq1cvHn74YQ2y2U0FLSwsBUYBdwBrgDr/5+3+9GVAg//Yl/g0RSQdVFVVMWjQoDbTnXPU19enICORxBg9erTuCCJd7rDDDuMnP/kJI0eOTEi88vJynHM89dRTCYknIhLE+vXrGTJkSFIGwuzXrx9jx45l8WJ15O+Ogg6wWQF0vo+iiGS0SJeBAEycOJHS0lIef/zxFGQl0tqLL77I7bffzv33309paWmg54wZM4Z58+YlOTOR1saOHcv1118fe8GAxo0bx8iRI/nLX/4SV88iEZHOyMnJoby8nOHDhycl/qRJk1iwYAHOOY1f0c0EKlY4536c5DxEJM3t2bOHnTt3RixWjBgxQtf7S9rYu3cvNTU15OTkBH7O6NGjqaqqYufOnfTu3TuJ2Yl8avPmzdTX1zNq1KiExDMzysvL+c1vfkNdXR29evVKSFwRkWiGDh3K//3f/yUt/qRJk3jooYfYsGEDJSUlSfs/kn40voSIBJKbm8vOnTv57ne/22beuHHjeP/999m9e3cKMhNp7bTTTuO1116La4DNMWPGALB69epkpSXSxs9+9jMmTJiQ0JhTp05l7969PPfccwmNKyLSnsbGRvbv35+0+JMmTQLQpSDdULvFCjO72cwCH+mZ52YzG5KY1EQknZgZRUVFFBUVtZk3btw49u/fz7vvvpuCzEQ6b/To0YCKFdK1ampqEj448QknnED//v11VxAR6TKPPPII2dnZrFmzJinxx48fT25urooV3VC0nhU/AobFGetHQPBTWSKSMZYsWcL1118fcZT5I444AoBly5Z1dVoibXzve9/jjDPOiOs5zcWK2267TYPFSpeprq6mb9++CY2ZnZ3NVVddxWc/+9mExhURaU91dTXOuaTdGa5nz54cddRRKlZ0Q9HGrDDgZjP7OGAsjXYicgB77733+NWvfsV3vvOdNvNGjx5Nbm6uihWSFlauXBn3rRsLCwvp378/S5cuZdGiRZx88slJyk7kU8noWQFw8803JzymiEh7ampqAJJ6G/tJkyZx//3309jYmLT/IeknWs+K9cARwBcCPk70n7O3vYBmNsLM/mZm75rZcjO7yp/+YzPbaGZL/MeZIc/5bzNbbWYrzey0zrxYEem4888/n/r6+oh3V8jOzubwww9XsULSwvbt2xk4cGDczyssLARg4cKFiU5JJKJk9KxoVl9fz/Lly5MSW0QkVE1NDQUFBXENbB2vf//3f+fYY49l/fr1XHXVVeoF2U20W6xwzo10zn2mA49oe8ZG4Drn3GHAccB3zOxwf97PnXNH+o+/AvjzzgfKgNOBX5tZj4S8chGJm5m1e8uocePGqVghaWHbtm0MGDAg7uf17NkTQLcwlS6TrJ4VABdccAFTpkzBOd15XkSSq7q6Oqm9KgC+8pWv8NJLL7F27Vrmzp3LokWLkvr/JD106d1AnHObnXNv+7/XAu8SfVyMcmC2c26vc+4DYDUwMfmZiki4O++8k+9///vtzh83bhybN29m+/btXZiVSFvbtm2L2bOivLy8pfjW/NiwYQMAq1atajOvvLy8K1KXbiaZPStuuOEG7r///qTEFhEJlczCa7gFCxYA6gXZXaTs1qVmNhI4CmgeKeVKM1tqZr81s37+tGHAhpCnfUSE4oaZXWFmb5rZm7qOSSQ5nn32WV555ZV253/xi1/k9ttvb7fnhUhXaGxspLq6OmbPihkzZlBSUkJeXl7LtH379rX6CZCXl0dpaSkzZsxITsLSbTnnqKmpSVqxYvLkyZx88slqk0Uk6ZLZlkryr5MAACAASURBVIW65ppr+N///V8gei/IXbt2ceGFFx7wl4p0h9eZkmKFmfUC/gRc7ZzbCdwHjAKOBDYDdzUvGuHpbfozOufud84d45w7Jjs72pihItJRW7duZfDgwe3OnzBhAj/4wQ/o379/F2Yl0tqOHTtwzsXsWVFWVsaKFSuYMmUKBQUFEZcpKCigvLyc5cuXU1ZWlox0pRvbs2cP+/btS+rZyH/961/cc889SYsvIgLJuwwkvBfkL37xCxoaGoDovSAXLVrEI488krGXiuzatSvQuByZ/jqD6PJihZnl4BUqHnbO/RnAOVflnGtyzu0HHuDTSz0+AkaEPH04sKkr8xURT1VVFYMGDYq6zJYtW3j33Xe7KCORtpovQwoyZkVhYSFz5syhoqKC/Pz8VvPy8/OpqKhg9uzZLQNviiSSmfHLX/6SL37xi0n7H3/961+5+uqrWb16tQakE5GkSVbPiki9IJuamoDovSCbLxGJdalI0KJAIgXpDbFo0aJA43IEfZ2ZrEuLFeb1RawE3nXO3R0yfWjIYmcD7/i/zwXON7NcM/sMMAZ4vavyFRFPY2Mj27dvj9qzArw7hlx22WVdlJVIW9u2bQOI624ga9asoampCTOjoKAAM6OpqYm1a9cmK00R8vLyuPLKKzn66KOT9j+azzL+8pe/1IB0IpI0559/PmeccUbC4wbpBZmTk8PkyZNZsmRJSy/I+fPnA7EHzA5aFEikIL0hghYhgr7OTNbVPSsmAxcDJ4XdpvQnZrbMzJbi3Qb1GgD/ziJ/BFYAzwDfcc41dXHOIt3etm3bcM7FLFbccsst/PSnP+2irETays3N5Qtf+ALDhw8PtPzmzZuZOXMmACUlJTz88MP079+fffv28cADD7Bly5ZkpivdWG1tLUuXLk3qGb3DDjuM0aNH89RTTwHBzjIe6Nc/i0ji3XLLLVxyySVJiR2tF6SZ0dDQwPPPP0+/fv1aLgdZuXIlEHvA7FT0TAjyPyMVISINDL5q1SrgwB4YPFCxwsyON7Mvh/w9wMwe9QsMPwt6O1Hn3CvOOXPOjQ+9Talz7mLn3Dh/+hTn3OaQ59zmnBvlnDvEOfd0/C9RRDqrqqoKIOZlIJ///OeZPHlyV6QkEtGxxx7LCy+8wOGHHx57YWD69Ok0NDRw9tlns3z5cqZOncrjjz8OQENDA9OnT09mutKNvfrqq0yYMIElS5Yk7X80H7B+8MEHQLCzjAf69c8ikljOOXbv3p302ySH9oLMy8vDzMjJyeHss89m4MCB9Ojx6dfR5nEtYg2YHaRnQqKLuOH/M2gRYu7cuQCtBk3uDgODB+1ZcQcQ2k/xp8CZwCrgW8D/JDgvEUkjzcWKWD0rdu/ezZNPPtlS0RZJd/X19VRWVrYam+LEE0/khBNOoH///tTW1qY4QzlQTZgwgccff5xDDz00oXHDD3zvuuuulnmJOMuYimu8RSR9bd26lYKCAu67776k/Y/wXpD33HMPI0Z4wxrOmzePxYsXc84557R7qQh4PS/XrVvHEUccEVfPhM4UcYMUIpqLEKEiFSGysryv7c65du/ydCAODB60WHEY8Ca0DJB5LnCNc+4c4Ebga8lJT0TSQdBiRfMZ6j/96U9dkZZIGxUVFYwfPz7w8rNmzWLatGltpl9//fV88sknfOlLX0pkeiIthgwZwjnnnJPwOyhFGpCuWSLOMga9xluXlIh0D3l5edx+++187nOfS9r/CO8Feeqpp7JixQqmTp1KQ0MDd911V9QBs8855xxmz55NSUkJOTk5LfOC9EzozGCdQW+THktBQQFnnHEG7777Lo2Njfz0pz/tNgODBy1W9AJ2+r9PBAqB5j3Z20BJgvMSkTTS2NjIgAEDYl4G0rt3b0pLS1m2bFkXZSbS2qhRoxJyKdKXv/xlxo4dy09/+tOkd22V7mnlypUsWLCA/fv3JzRu0Nvy9u/fv81ZxiDXeQc9cNclJSLdQ58+ffjBD37AUUcdlbT/EakXZPNYFpWVlezatQtof8DswYMHc/rpp7NixQpOPfVUevbsGfH/ZGdnc8wxx/Dqq68mZLDO0PY4Nze33f959NFH8+c//5nrr7++3SLEvHnzOPTQQ+nRo0e3Ghg8aLFiIzDB//0M4B3n3Fb/736AyuYiB7D//M//ZNu2bYFuSzVu3DgVKyRlLrzwwoR0Rc3KyuK6667jrbfe4uWXX05AZiKtPfjgg5x55pntduftjGgD0uXm5lJRUcGzzz5LXl4e2dnZLfOCXOcd9MA9nW8dKCKJU1tby9q1a1vaj2RorxckwLRp05g1a1bEAbObLxVpHjC7sLCQefPmMWPGjDZtY1ZWFo2NjbzyyisMGzYs7kEsI7V5jY2N7N69mzlz5nD11Ve3XMrRLD8/nzvuuIP/z96dh0dRZQ8f/97OniAIARSDQWQnLIKigOIIAkJkH1REUVzGBVl0Rv2JI4pRUBFnEEZ8URxUZFGUJSIMgssoAiLgBNnCDiZAIGACBAlJ933/SDqmk16qO9Xp7uR8nqcfYnf1rZs2qVSdOvecTZs2MXjwYM6ePVuuLkfZIISR77MqMRqsWABMVkp9CvwV+KjUax2BPWZPTAgRmtq2bUt6erpX6W1CmMXef90MI0aMoF69ekydOtW0MYWwy83NpVatWn4JVtg5K0intWb//v20adOG7OxshgwZ4nad9/nz5x0yMIyeuAdz60AhhHlWrVpFkyZN2LVrV0Dn4axgdumlIqULZjs7NoaHh3PbbbdxySWXOARxjRaxLHvM01pz/fXX8+CDDwJw+vRpwsPDXWZDuKvLUToI4c33WRUYDVZMBF4DoigqtvmPUq+1BxaZOy0hRDB5+umnGT9+vKFt27RpQ2FhYcD/aInqKSkpybT2aTExMYwePZrly5ezc+dOU8YUwi4nJ8dQtpqvjJz4usvAsK/zrlmzpsfq8/a7hampqabcjSxL6l8IEbxycnIA/Ho8M8LoUhF3x8alS5eybt06r4O4pY956enpKKWwWCxs3LiRZcuWccstt3jMhvBUl8MehDD6fVYVhoIVWmtrcQvR/lrrFK21tdRrg7TW//TfFIUQgZaTk0Nubq6hbdu2bQsgS0FEQGRnZ5taWGrUqFHExsayevVq08YUAv7IrPAXoye+4H6d95EjR7jtttvKBTPsYmNj6d27NzVr1nR43te7kc4YrX8hS0qEqHz280N/Hs+MMLJUBCperPOee+5h2LBhDtkX8MexrvRyGPsxr3bt2h6zIYwGIYx+n1WF0cwKIUQ19s477zBz5kxD27Zo0YLw8HC2bdvm51kJ4chqtfLbb79Rt25d08asW7cuBw8eZOzYsaaNKQT4P7PC17uMZe/4nTlzho8//piXXnrJ6Yn7iy++yMqVK/nggw9o2rQpYWFhLud04cIFn1oHelPU09OSEsnSEMJcOTk5WCwWatSoEeipGFLRYp01atRgwYIF5OTk0L9/f5fFOku3EY2Ojva4z+oWhDDKULBCKXVAKbXf3cPfExVChIbIyEhatmwpmRWi0uXk5GCz2YiPjzd13Hr16gFw9uxZU8cV1Zu/Myt8vcvoav2zszXeVquVAwcOADBo0CD27NnDa6+9Vi6oERkZyS233MKwYcMMtfHzZ1FP6VIihLlyc3OpWbNmueKRwcrMYp2pqalOi3WWbSMqgQjfGf2p+q+TxzagZvEY3/pjckKIwPvtt99o2bIlixYZL00jHUFEIJw8eRLA1MwKu3/+859ceeWVErAQpvF3ZoVRRu4yGi38Bs7vRkJRW+F58+Z5bKsK/i3qKV1KhDCXvwOvgVDRYp1VtY1oIBitWTFSa31fmccAoClwDHB/xBdChKxjx46Rnp5OYWGh4fe8+uqr/PTTT36clRDlZWdnA5ieWQHQtWtX7r//fgoLC+UiRpgiNzc3KIIVRu74Ga1/YfRupLv14AMHDuSiiy7yW1FP6VIihLmCJfBqJjOKdVbFNqKBUKF8Ha11DvA68Lw50xFCBJvjx48DUL9+fcPvSUxMJC4uTtYFi0rlz8yK6667jldffZWLL75YLmJEhRUWFnLmzJmQuRtp9MTdjLuRCQkJHD161G1Rz5iYGGw2G7Vr1/a4pMTOHtQws0sJSA0MIapiZoVZxTqrWhvRQDBjcdF5oKEJ4wghglBWVhYAl1xyieH35OfnM3r0aFkXLCqVPzMroKhn+ooVK/j3v/8NeL6IEcIVpRQrVqxg2LBhgZ6KIUZP3M26G+mpqOeECRP47LPP+O677xgwYIBDwMIZT1kavnYpAWM1MCQbS1RlVTGzwqjq1kY0EHwOViilwpVSVwETge2mzUgIEVR8CVZERkYyf/58QC7oROWxByv8kVkBYLPZGDduHEuXLgU8X8QI4UpYWBh9+/alRYsWgZ6Kqcy+G+mqGn9GRgZDhgyhTZs2fPzxx7z88ssui3qOGDGCunXrOgQsSouNjSU2NtanLiVgvKinZGOJquqJJ57gvvvuC/Q0AkIKZ/qf0W4gNqWUtfQDyAc2U1S34gl/TlIIEThZWVlYLBbq1Klj+D1KKZo2bQrIBZ2oPG3atOHBBx80tX3awIEDSy5QwsPD2bt3L7///jvg+SJGCFdOnjzJsmXLOHHiRKCnEhC+FPV0Vv/CztmSEigq6vnhhx9y/PhxXn/9dZcV+0eNGlWuk4GZGRiypERUZffeey+DBg0K9DREFWU0syLFyeNZ4C7gCq31Ov9MTwgRaMePH6devXqEhYW53Kb0BZ39sXfvXkAu6ETl6du3L++++67LO6i+mDx5crlWi3aeLmKEcOWXX35h0KBBbNu2LdBTCQhfinq6qn9htMCdqyyN/fv389JLL3H69GmGDBnidklJ7dq1fcrAMHNJiRDBRGvN9u3bycnJCfRURBVltBvIRK31i2Uer2mtF2qtc/09SSH8SdaSupeVleVxCYizCzqjd6WEMMvvv/+O1trUMZOSkjy2WoyNjWXgwIFs376dpKQkU/cvqqZrrrmGzZs3c8011wR6KkHL16KezpaUGO1S8tlnnzldUhIdHc3dd9/N6tWrSUxM9FgDw84fRT3lnEUEkzNnztCmTZuS3y8hzGZGgU0hQpqsJXUvKyvLYycQuaATwaB379706tXL9HHdtVqMiIggJSXF4YJKCE9q1KhBx44dueiiiwI9laBlZlHPinYpsdls1KxZs+RvXc+ePQNW1NPoOYssKRGVISoqio8//ph+/foFeiqiinIZrFBK/Vsp1bjU1+4e71XelIUwl9G1pNVVUlISXbp08biduws6+7pguaAT/vTggw+6vLgxQ9mLGICCggK+++47v+1TVE2bNm1i1qxZFBQUBHoqIc9IUMOsLiX2DIwvv/zSZVHP3r17c9ddd7kt6mk/hviypMToOYssKRGVISoqittvv52WLVsGeiqiinKXWdEdqFn8dY/i/3b3ECIkGV1LWl299957pKSkGN6+9AVdVFQUUHQ3af/+/f6aohBAUZGv4cOH+2VsZxcxDRs2RClFamqqBCyEV7744gseeeQRU+urCNfM7lICzmtgADRt2pSPPvrIbVHPdu3a8eKLL5KYmFjydxKMZWAYPWeRGzGiMmRnZ/PVV1+RmytVAYR/uAxWaK0ba63Tir++ovi/XT2urLwpC+E7Z4Ugja4lFZ6VvaBbsGABkZGRWK3WctXbhTCT1prdu3dz9uxZv4zv7CJm165dJCcnA/DOO+/4Zb+iasrNzaVGjRqEh4cHeiqiFF8zMFx1KnG2pMRqtXL99dczduxYduzYQf/+/d0uKTl//rxDBobRcxajQQ2pgSEq4scff6Rnz56kp6cHeiqiipKaFaJakUKQ3jlw4ACJiYl8/vnnhrYve0E3ePBg5s6dC1DurpQQZsrJyaFFixa8++67fhnf1UXM8uXLee+99wgPD0dr7XAckTXjwpWcnBwuvvjiQE9DlOFrBoazGhhGl5QsWrTI6ZKSqKgo/vSnP5ULZDg7Z7G3XbUX9PQmqGGkBoYcy7xXXT4zexcQOZ4Jf3FXsyLRm0dlTloIX0khSO+EhYVx880306BBA0PbO7ugGzp0KO3atePSSy/1211vIbKzswGoW7euX8b3dBEzZ84c7rvvPu6++25sNhsga8aFa7m5udSqVSvQ0xA+8qWop7dLSrTWJCUlkZ2dzdChQ12es4SHh2Oz2bBYLD4V9TSyXMTosUyyNP5QXY7/9uUfcjwT/uIus+IgcMCLhxAhQQpBGpeYmMicOXMMt9dzdkFnsVh49tlnOXbsGP379/fHNIXg5MmTAMTHxwdk/0op2rRpQ/v27UsuGGTNuHBFMitCmz+LepZdUnLmzBkWLVrk8pzlvvvu48UXX2TYsGHEx8e7rIPi6kaMkeUi3hT1lO5qRarL8d+eWSHBCuEv7oIV95d6PApkAjuBF4FRQAqwq/j5R/w7TSHMZ7+TYWdfSyqFIP9QWFiI1rrC4wwdOpTmzZv7LUVfCH9nVhjx5JNP8ve//x2lFOfOnZPivcIlyayo+sxcUgKu619ERETw/PPPM2/ePE6cOOG0qGdYWBgpKSn8/vvv1KhRw+u6XVLU03vV5fifm5tLVFSUx1a+QvjKXYHN97XWH2itPwBaA1uAtlrrFK31LK31i0Ab4Ofi14UIGfY7GaUvxC+55BIAKQRZyiuvvEJsbGyF2+uFhYWxdOlSli5datLMhHBkz6wIVLCibPHeuLi4koJjUrxXlCWZFcLOSAaGkfoXds6WlISFhbF//34mTZpEXFycQ2FXZ8tF7Ow1MMwu6lnVVOfi7fYbBbL0R/iL0QKbdwKzdJlbrMX//f8A//SKE8JP7HcyunXrBkCDBg1Yvny507Wk1VlWVhbR0dFERERUeKxWrVoRExNjWraGEKXZT5gCtQzEWfFee5BPiveKsnJzcyVYIQBjGRhG6194WlJSt25dsrKyGDJkiMsaGM6YXdSzqqnOxdv37dtHfn6+LP0RfmM0WFEDqOfitfqALO4XIcV+J2P+/PnMmzePzz//nKuvvrrcWtLqLisrqyTjxAw7d+6kRYsWfPPNN6aNKQQUZVaEh4dTs2bNgOzf1+K9UpDOUXWooK+1JicnR5aBCMOM1r8wsqTEU92ucePG8eGHH9KuXTuXrXWjoqLo3bs39evX97qoZ1X8Ha/OxdsPHz4MyNIf4T9GgxXfApOVUp1KP6mUuhaYVPy6ECHDfifjkksuYfjw4dSpU4fTp08DjmtJq7vjx4+bGqxo3LgxrVu3JjIy0rQxhYCizAp3xeUqg7uLAKUU9957b7nivVKQzlF1qaD/yy+/MHr06EBPQ4QIo/UvjAY1wHUNjIKCAkaMGEFaWhqvvvqq05aqzz77LCtXrmTOnDleF/Wsqr/j9s/56aefJiwszOG1qly83b4Eqbot/RGVx2iwYjSQD2xQSh1USv2olDoIrAfOF78uRMj5+eef2bBhA/feey/JycmBnk7QMTuzIjo6ms8//5wbbrjBtDGFgKLMikAW1yzNVRvCt99+m0cffbQkMArGC9JVxbuRzphZoC9YPzOlFC1btuSyyy4L9FREFWM0qGG0BoarY1lWVhYAycnJLot6Alx33XXMnDnT4QK9qhfh/PHHH0s+M7uqUrzdWW2OwsJCoPot/RGVx1CwQmt9AGhJUdePr4CTxf8+DLTSWh/01wSF8KdXXnmFe++9l9tvv52HHnoo0NMJOmYHK+yys7P54IMPTB9XVF/33nsvTz/9dKCn4XLNeGRkJBaLhVmzZtGtWzdsNhtgvCCd0buRob6sxMwCfcF6B/fAgQNcffXVbN++PdBTEdWUkRoYnupfuCrqac/SsFgsfPPNN/Tt29dh30Z/x40ey4IpKHn06FHWrFlDZGQkiYmJdO7cuSTLoioUb5faTCIQjGZWoLUu0Fq/q7V+QGudXPzvbK11xdoECBFAr7zyCh999BH9+vXjnnvuCfR0gkp+fj45OTnUr1/f9LHfeecdRo4cyc8//xzyF1ciOAwYMCAofofdrRm32Wxordm6dSthYWFeFaQzejcylJaV+LuCfrDewf3888/ZsmULqampgZ6KqKaMLBcx2lLVVZZGeHg4Sik2btzo0++40WNZsAQlX3zxRUaOHOnwmT3wwANYrVa6d+9eJYq3V+faHCJwDAcrhKiKmjRpQqdOnSgoKGDHjh3k5OQEekpB48SJEwB+yax47LHHqFWrFpMnTw6piysRvH755ZeS9qWB5O4iICUlhbi4OJ8qxhu9GxmsF+jO+LuCfrC2UczMzATg1KlTAZ6JqK6MLBfxtahn6SwNrTU1atTw6Xfc6LEsEMe8sjdZ5syZw8SJEzl48KDDZ9anTx8Abr755ipTvL3037OyBVircm0OETiGgxVKqVuUUkuUUjuUUvvLPPb5c5JC+IPNZuOtt95i+/bt7N27l6SkJFatWhXoaQUN+5pUfwQratWqxejRo/nss8/4+OOPgdC4uBLBSWtNx44deeONNwI9FbcXARMmTCArK8vtXSkoWt986NAh2rRpU3LHMT09HfB8NzJYL9CdMfMunb+zNMy0YsUKAP7zn/8EbA5CeGJWUc8BAwa4/R0PDw/n6quvZu3atQ6/40aPZYE45pW+yfL111/z0EMP0atXL7Zt2+bwmTVs2JC2bduycuXKKle8fd++fVgsFod6JlWlNocILoaCFUqpZGAFEEtR7YpdwGHgcsAGfOevCQrhL9nZ2YwePZqvv/6aK664AoC9e/cGdlJBpFatWowaNYqWLVv6ZfzHH3+cmJgYPv30UyA0Lq5EcLLZbHzyyScMGzYs0FPxyF3HkIiICDp37kynTp3K3bFyti7YXsAtNTXVqwv0YFrjHRcXxwcffEDjxo3LvebNXTp/Z2n4ylkQxWjgSYhQ4CmoMW/ePJfHPIul6DLkhx9+4PLLLzccbPQ2KGl2/Qv7zZWFCxcyZMgQmjdvzqJFi4iIiCi3bd++fVm7di1nzpxxO2Yo8aaeiRAVZTSzYgLwFmBvl/Cc1vomIAkIA1aaPzUh/MueipuQkEBMTAwJCQns2bMnwLMKHk2bNuWtt96iRYsWpo1Z+sS9Xr16nDt3rmTpjZy4C1+FhYUxePBg2rVrF+ipGOasIJ1Sio4dO/LDDz+Qk5PDbbfd5rTCPhRlHERGRvq0rCRY1ngD5OTkcMstt7B9+3aHdn/e3qUL1rXUUpBOiCLOOouEh4fzwAMP8OGHH1KrVi2HDhrOjmXh4eGEhYU5tD83eswzs/6FPZvjgw8+ICoqii+++IJatWo53TY5OZmCggK++uort2OGkhdeeIGCggI6dOjgtp6JEGYwGqxoCXxOURaFBsIBtNa7gYkUBTOECCmlgxVQdHEuwYo/nDt3ruSk2izOTtztPJ24B9Pd4OoomD//7OxsVq1aFTI1Z4y0DYyLi+OTTz7hpZdeKhewsGcc5ObmsmvXLrcX6FFRUfTr18/hAj0Y1ngDHDlyhBtvvJF169YRFhZGWFgYCQkJvP322z7dpQvGtdTBGkQRojK5uxP/73//m169epGZmcltt93m8vckLCyMTp06ceTIEZKTkx2Cm6VFRkbSt29fn455zrZzt8SsoKCA48eP07hxY5c3Wbp27UqdOnVK3lMV7NixAyg6p3NXz0QIMxgNVtiAQq21Bk4AiaVeOwI0MXtiQvhb2WBFs2bNKm0ZSDBf+NlNmDCBOnXqmDpmRU7cg+lucHUUzJ//xo0b6dOnD7t27Qr0VAwx0jbQztndSHvGQVRUFA0bNnSZYq2UIj8/n6+++orx48eTlpYGmNs60OixzNmdzSeeeIIDBw7Qp08frFYrgwcPJj09nUceeaRCd+n27t1LYWEhQFCspS4dRImKinJ4TQrSierASGcRd0vkYmJieO2111i3bh3169dnyZIlvPbaa06PeRcuXGDlypU8/PDDJed5Fal/4W6JWWmusqMiIiLIzMwMitbaZtBac+7cOZKSkujevXu516tabQ4ReEaDFenAFcVfbwIeV0o1UErVA/4GHDR/akL4V2ZmJhaLhUsvvRQoyqw4fvw4p0+f9vu+g/nCzy45OdkvqXzuTkiio6NJSUlh5syZDmmeEFpdDqqiYP78s7OzAahbt26AZ2KM0Sr73qwLdrasJCIigksuuYTffvuNGTNmcNVVV5neOtDosczZz8/MmTP57rvviI+Pd/g81q1bx6OPPspHH33k9V260p9ZfHx8yWdms9mYNWtWQNdS79u3ryRbLSYmJuBBFCEqi9FjHjg/ljn7PXEWyI2IiOCyyy7j/PnzzJs3j4YNG3qsE+MsY2LXrl0lz7Vp04bDhw8TERHhc3aUs2zSUPXDDz/w888/M2bMGIdlO0L4i9FgxTygVfHXL1BUqyIDOAb0AJ43f2pC+FdmZiaXXnppSbpws2bNACplKUgwX/jZ3XzzzTz++ON+G9/ZCYnNZmP//v089thjXHPNNVit1pLtQ6nLQVUUzJ+/vWVpfHx8gGdijNEq+0buRoL7ZSUnT54kISHBb60DjR7L7D8/CxcuZPDgweTn5xMfH0+HDh3KfR7Hjh1jzZo1HDx40Ou7dC+99FJJVsXPP//MoEGD2L59O3Xr1sVqtZKSkmJ4LDMdPXqUd999F5vNRs2aNZk/f74UpBPVhtFjnpElcs62Kx3IPX78eLljnrM6Mc7YX7cfQ6Do2FijRg2effZZl1kfnrKjzp8/T/fu3Zk2bZrb/YeCGTNmcPHFF3P33XcHeiqimjAUrNBav6W1frr4681AW+Bh4AngKq31p/6bohD+kZmZWbIEBIoyK6ByOoIE84WfXXp6OqdOnfLL2J5OSNLT09m6dSvh4eFB34awKgqlNpBQlFkRFhbmssBZqDJ6N9LdspLCwkKSk5M9Lr1KSkri66+/9rp1oLNt3P38ZGRksHTpUoeiomV/fgYMGEBGRkZJANkb586dhLiEsQAAIABJREFUo379+vTs2bPkmFKjRg22b9/OrFmzArb0rnQQZf369VKQTggnjC6RcxfINXLMi4qK4pprrmHKlClcffXV5TI57ewZE8eOHeOZZ54xnPVRVnR0NJdccgk1a9as2AcUYBkZGXz22Wc8+OCDsmxNVBqPwQqlVKRSapxSqo39Oa11htZ6ttZ6utZ6h3+nKIR/lA1WNGlSVHrF7MyKULvws7vxxht55pln/DK2pxOSFi1a+NSG0Gh7MuFesLaBdOXkyZPUqVOnpA1eVWH0bqSnoMaFCxfcrgV/5JFH2Lx5M02aNPG6daCzbVJTUwEc/n+4umPp7OcnPDwci8WC1pqiUlnGzZ49m2effZaxY8c6PF+nTh0eeughpk+fzmeffebVmGY4c+YMcXFxDBo0iNatWwNSkE6IsowGaCt6zJs0aRI//fQTTz31FJs2bWLy5MkeMyaMZn24snDhQpfHc7P4+xzo7bffxmazMWrUKL+ML4QzHs/stNYXgFcBcyvtCRFgZYMVcXFxfPjhhwwZMsTU/YTahR+A1WolOzubSy65xC/jezrRiIqK8qkQp9H2ZKFQ4DSQQq2DQXZ2dsjUq/AHo0ENV8U6z58/T2pqarm7fs6OU2W528Zms7l8n6efnx9++IHLL7+cX375xeUYzoSHhzNu3Dj69+/v9PVJkyZx22238f333wPGT+4resy4+eabycvLY8yYMeVek4J0QhQxeizz5Zjnbf2Lstt5UxjZlfz8/JIaS/5g9BzIF+fPn+edd95hwIABNG7c2PTxhXDF6G2oncCV/pyIEJVt06ZN5TIHRowYUXLXyyyhduEHRXeqbTab34IVRk403BXihKIuLn/9618dUhGNrp8PhQKngVb684+IiHB4Ldg6GJw8eTJk6lUEiqdinfaWgEOHDi3XscIuJiaGP//5z7Rs2dLlfiwWC40bN2bChAnMmzeP0aNHlysuZ+Tnp0mTJhw5coRly5Z59X0uWbLE7fK1CRMmcOWVVzJixAhOnz5t+OS+oseMLl268MILLzitni+EMJ8Z9S9Kb+dNkVBnbDYbjRs35u9//7v532wxf9ZDW716NdnZ2eWy1oTwN6PBiueBCUqptv6cjBCV6corr6Rhw4YOzx0+fNjrk2MjPLXkCqYLP4CsrCwA6tevH+CZOL/jERYWxuHDh7nuuusYOHAgW7duBYzXAjH6B12WlRR9/sHUBtKZ6p5ZYYTR1oGLFi1i0qRJTjv1TJw4kU8//ZS1a9fyzDPPOD2WTZkyhf3795OSksLw4cOxWq3YbDav13hfeumlXHfddV4dj/fv38+QIUPcZinUqFGDuXPn8uuvvzJ27FjDx4KKXgS0aNGCiRMnSvV8ISqJGfUvSm9nNJvDFYvFQpcuXVi5cqXXy9uM8mc9tP79+5OWliYBV1HpjAYr/g+oAfyslNqrlPpeKfVdqcd//ThHIUy3Z88eXn/99ZKLcrsFCxYwaNAgv7UvNZJqGAzsn4u/MiuMcnXHIywsrCTtPDU1lfbt23tVC8ToH3Qjd12r8pIS++evtaZWrVo888wzJRkMwdTB4OTJkxKs8KCirQNtNhuHDh0Cirqu5ObmejyWVXSN98CBA9m8eTMZGRmGvsfGjRuzceNG7rrrLrfbdenSheeee44PPviA+fPnA56PBRW5CHjzzTfZsGGD1+8TQvjOrPoXZtaT6du3L7/++ivbt2+v8FiVWQ/NHlxp166dBFxF5bMXsHL3AL4FvnH3MDJOZTxiY2N1KDpw4ECVH8vs8Soy1oIFCzSgd+7c6TDWr7/+qrds2aILCgpMn9eRI0d0RESEBvRFF12kZ82apS+77DIdGRmpIyIi9NGjRw2PZfbcypo3b57D51ORsYxwNdajjz6qAX3HHXfos2fPaq21Pnv2rL799ts1oGvUqKGjo6M14PJhsVjKPRcZGenwb+nHgAEDSvb/f//3fxrQzzzzjMu5r169WgN6zZo1Pn+fvqjMzx/Qa9eu1YMGDdLNmjUr+fxHjRrl13kZHW/16tX6559/NmUso4J1rIqOZz9ORUZG6kaNGulZs2bpxMREh+NU2W2WLFlSbhuty//+HjhwwOH319nPT2k7duzQgH7rrbdM+R4HDBjg8jjh7FjgyzGj7NzOnj2r69atq5988kmv5+vr9xlqY5k9nowV2PGqw1i+jvfrr79qQE+ZMqXCY23btk0nJiZ6PAeKjo7WjRo10tu2bfN6H/Z5jRgxQo8bN87r9zsbyyzB+rMRrGMFIyBPG7i2N9q69CatdXd3DyPjCBEshg0bxunTp8u1xmvYsCEdOnQgPDzc9H3aUw0Bpk6dynPPPceNN94YlK3rgmUZiKc7HgMGDHBbCyQsLKykyF/puwFGC5wauZvqzzWigXbu3DnatWtHo0aN6Nq1KzNmzCAtLS2oOhjk5eUxZ84cmjdvHuipVAlGUqeNpk1X9I5ly5YtadasmaGlIJmZmTz88MNuW087K3ZsV/pYEBERgcVicajd4WtR5Li4OA4cOMCzzz7r8XsQQlRtDRs2pG3btqxcudKr9znL4CxdD83ZMQ0qVg/Nvgw2Ly+POnXqcPHFF3v1fiHMUrX6vAnhhYsuuoiwsDCH57TW/Pvf/+brr782fX/nzp1jwIABKKUYPHgw3bt35/vvv2fhwoVBc+Fnl5WVRUREBLVr1w7oPDytEZ03b57bWiD2VoWjR4+mQYMGLtMXY2NjqVOnDocOHaJNmzZepVT6c41ooE2fPp1du3YxZMgQlFI0bNiw5HMOlg4Ga9asYf78+SX/H0TFGAkwGA1CVHSNt/337JtvviE3N9fttkuXLuWdd95xaI1altFix40bNy45ya9IUeTCwkK01tSoUSPgx1IhRHDo27cva9eu5cyZM4bf46rAb3h4OC1btiQ/P7/ce6KjoytUD82+DHbDhg1MmzaNiRMnej2GEGaQYIWolqZPn84//vGPcs8rpXj++ef58MMPTd/n+++/z5EjR+jcuTP16tWjR48eZGZmsmfPnqC58LPLysqifv36IbM20VV7MqUUY8aMYcaMGWRmZvL666+XC2pERkaSkpLCl19+SXR0NBbLH4dFd20ZU1NT/bpG1AwVraexZs0aLly44NDO97333uOBBx4wa4oVtnjxYgA+/vjjAM+kajASYKhoEMIbAwcOpKCggP/85z9ut1u8eDGtWrVy26kEjBU7Xr9+Pdu2bXO5XVRUlKGLgLlz59K6deugqe0ihAi8vn37UlBQwFdffWX4Pc4yODds2EDHjh1JSUmhadOmREZGopQqyQiraD00+77mzJnjt4KgQhghwQpRLS1YsIAVK1Y4fa1p06bs2bPH9H0ePXqUTZs20a9fPwB69OgBwDfffGP6virq7rvvZtKkSYGehiHeFPFzVuAUiroIJCUlkZ2dzdChQ13eTXXGaHp4IDqLVLTd4uDBg9myZQtdunQpeS4jI4M5c+Zw4sQJs6ZZIZs2bQJgx44dAZ6J8IcuXbpQr149t0tBsrOz+e9//8uf//xnw+O6CnDu37+fOnXq0KhRo3Lb2YMW+fn5/Pjjj27H11ozffp0wsPDA16oWAgRPK6//nouuugir5aClM7gzMvL44knnqBr166cOXOGuXPncvDgQaDoHGj69OkkJiailKpQIWz7PufNm8e6det8GkMIM0iwQlRLmZmZJCQkOH2tWbNmbtc9+8oeHLEHK5o2bUpCQoJflpxU1M0338y9994b6GkYYrQ9mZFe6p7uuk6dOpXs7Gz69OnjsJ697HbO0sONdBYxW0XraSil6NChg8NyqX79+qG19nrNrRmcVT+3/67u27cv6DJbRMWFhYXx1ltv8fjjj7vcJjU1FavV6pAB5I7RAGfZ7ebPn1/yd2PRokV8++23Lvfxww8/8L///Y8xY8aETIaaEML/IiIi6NWrl8sWpu66fKSnp1OjRg2mTZuG1ppff/2VCRMmOD0H6tevHwUFBYwcOdLjnNztUynFDTfcIH9bRcBIsEJUOzabjaNHj7oMVjRt2pTjx4+b3r70iy++4PLLL6dt27ZA0R+AHj168M0335QUgQwWmzZtCpnUZaPr540WBQT3d13j4+NZuXIlkyZNKhfQUErx1FNPsXDhQoflJBCYQpwVqafx5Zdf8uCDD3Ly5EmH5zt06ECDBg0CUqPDWYFEXwsfitBx2223ce2117p8ffHixVxxxRVcddVVhsYzGuB0dsxIT08nOTkZKErnTk9PdxjbnkH1j3/8g9q1a3tsoyqEqH5efPFFl+cC7v7O2Yu0wx9/59q3b+/0HGj+/Pk0btyYr776qiTw4Iq7fZYOqMjfVhEIlRqsUEpdrpT6Rim1Uym1XSk1rvj5Okqp1UqpPcX/1i5+Ximlpiul9iqltiqlOlbmfEXVdPz4cQoLC91mVgCmZlfk5+fz5Zdf0q9fP4e7bD169ODEiROm9Nw2i9aa66+/3mlNj2BkdP280aCG0buuzpaUREREkJ2djdaa3r17M2jQIH755RfA/4U4ze65vn//fr766itq1qzp8LzFYuHWW29l1apVTmt5+JPRAom+Vj8Xweu7777j008/Lff86dOnWb16dUkRWCOMHgtcbffFF1/w8ssvo7XmjjvucAg22zOoli1bxoMPPuhTYTshRNXWpk0bmjdv7vSY5e3fuaVLlzo9B4qKiuLbb7+lVq1aDB061O0SVPnbKoKaq56mQBawCBgDtDfSB9XTA2gAdCz++iJgN9AamAI8U/z8M8BrxV8nAysBBXQGfvS0j9jYWBM6v1a+YO3LWxX7Im/atEkDesmSJU7HSktL04BeuHChafNatWqVBvQXX3zh8PzBgwc1oKdNm2Z4rIowMp7VatUrV6702JM7GP5f+mOsRx99VAP6jjvu0GfPntUHDhzQZ8+e1bfffrsG9KhRo/SRI0d0RESEjoyM1I0aNdJLlizRiYmJOjIyUkdEROhevXqV63UeERGhAR0ZGVnutQEDBmittT579qwePny4zsvL8/r7rEjPdVefmdVqdfr80qVLNaC/+uorj/OqKFfjTZ06tdz3GhMTo6dOner1WGbOK9BjmT1esIw1cOBA3aJFi3JjzZ8/XwP6hx9+qPR5bd26tdxx8v/+7/9Kfh7N+OyC5fP351hmjydjBXa86jCWGeOtWLFCT5o0ye1Yzz33XLm/4d7+nVu1apVWSukRI0Zom82mtXZ9rrFjxw7dqFEjr/dpRLB9/tVtrGAE5GkD8QN3mRXfATcAbwJblFKnlFKpSqknlVLXKqXC3LzXKa31Ua31luKvzwA7gQRgIPBB8WYfAIOKvx4IfFj8PW0ALlZKNfB2v0KUlpmZCeAys6JJkyaAuZkV3bp144svvqB79+4Ozzdq1IgmTZoEVZFNi8VCnz59qm3k3MhdV09LSuLj48ulVNrTN90tVzBaENNZsU77nZFrrrnGbYtWI3dG7G3Qyi5lsbv55puJiooKaLvWffv2lXymZZfqiKpnxowZbN68udzzixcv5tJLL6Vz586VPqe2bduSlJSE1ppp06Zx5MgRPv/8c6CoNfYVV1xR6XMSQoSG//73v8ycOZOcnJxyf8918dKLkydPEhYW5pDB6e3fud69ezNx4kTmzp3LO++8A5Q/19BaM2nSJK666iqOHTtGeHi402WwQgSCy2CF1vo2rXUDoCXwCLAcaEdRFsR64Del1Cql1N+VUt283bFS6gqgA/AjcInW+mjxfo8C9Ys3SwB+LfW2jOLnyo71kFJqk1Jqk7se60KA52BFXFwcl112makdQWJiYkhOTi5X4wCKisPNmzfPtH1V1NGjR1m6dCk5OTmBnkpAGFlW4imgERUV5TGlMiIigltvvdUhcGC0roWrYp2vvfYaa9eupX79+uUKgNrbMhrpuT5u3Diuu+46l+3KatSoQffu3QMWrLAv1bFarcTGxrJgwQKXHWBE1XD55Zc7/blt3749Y8aMcRlY8yf70iuLxcITTzxBQkJCydKr8+fPS8FXIYRLEyZM4PDhw2zatMnh73lGRgY9evRg5cqVzJ49m7CwMJdFwY167rnn6NOnD2PHjmXTpk3lzjWUUmzfvp1bbrkFq9WKxWLx2F1NiMri8a+71nq31vpdrfU9WusrgEbAvcDC4q9TAK9uCyulagCfAY9rrd1VMXR2e7Dc2bPW+h2t9TVa62vCw8O9mYqohjIzMwkLC3PbTs7MjiB79uzhhRdecHmQb926dVCta/7hhx8YPHgwhw8fDvRUgpaRgIa7ziIWi4WIiAjmzZtHXFwc6enp5OfnG65rUfpEQ2tdkq3Rv39/Jk6cyMCBA9Fao5Qq6eRh9M6I1Wpl6dKlXHHFFW5rAPTr1489e/Z4LNzlD/bMFoBVq1a5LZYqqo65c+cyYsQIh+eee+45nn322YDMx1lROvsNE2eF8KQonRDCLi4uDovF4vD3/Ouvv6Zjx45s2rSJGTNmGC4K7onFYuGjjz7i0ksvZejQoaSmpgIwe/bskppp77//Pg0bNqSwsNBj8WEhKpMvtyI0YOOPtUwKOG/0zUqpCIoCFfO01ouLn86yL+8o/vd48fMZwOWl3t4QOOLDnIUocfr0aS677DKHdoxlLViwgNWrV5uyvw0bNjBp0iSsVqvT1202Gy+88AILFiwwZX8Vdfx40a+fu2COMM5ZZ5Hw8HDq1q1b8t8tW7YkOjracEHM0kGNwYMHM2bMGAA6derEQw89xJw5c4A/eq4rpbDZbIbujKxbt46srCyPbSD79etnqCWaP5w9e5aLL76Y7t27c8MNNwDOCySKquXYsWN89NFHHDp0CIBt27ZVepHX0qQonRCiIt59911mzJgBwJw5c+jVqxd169Zl48aN1K9f31AhYE/sGWB169bl8OHDHDp0qKSLUXZ2Nm3atEEpRVRUFG+//TZXXXVVhfcphJk8BiuUUk2VUvcrpd5XSu0HDlFUx6I+MJuiwpcXG9mZKrpN9x6wU2tdutVAKkXZGhT/u6zU8/cUdwXpDOTal4sI4avp06dz4MABt9s0aNDA6ZINX4wYMYLs7GyXy04sFgtLlizxWKegsmRlZaGUIj4+PtBTCXnuOoscOXKEhIQEj2047VJTU512+Vi2bBnvvPNOyWtdu3Z1uBszatQoMjMzGTJkiKE7I4sXLyYqKqqkPaMrjRo1Ys6cOTRv3tz4B2KSW265hZycHJ588slyr5XuACOqFnvAbtGiRYwZM4brr7++JFAXKO4yqLxZeiWEqPrKdu166KGHSmpVZGVlYbPZ2LlzJ61bt+aDDz5g2bJlTsfx5u+cswyw0h2M7OwZYB999FGF9ymEmVwGK5RSC5VSmUA6MKF421eANlrrelrrwVrrN7TWG7XWRgtFXA+MAHoopf5X/EgGXgV6KaX2AL2K/xtgBbAf2Au8C4zy4XsUPnJWxK+qcJdVAXDgwAH+9re/mbYU5OKL3cfzNm/ezPTp003ZV0VlZWVRt25dZElVxZUtxFk6pbKwsJDk5GS3d2UtFovDCYads6CGu57rDRo04OOPP+b55593e2dEa83ixYvp3bs3F110kcfvT2vNtm3bOHv2rMdtzaK1ZurUqbRu3Zo+ffpU2n5F4DVv3pyWLVsyf/58li9fzlNPPcXDDz8c6GkBzjOopCidEKI0Z4EDZ8xcOiYZYCLUucusuB2oCUwDbgNGFteu2OnrzrTWa7XWSmvdTmt9VfFjhdb6pNb6Zq11s+J/TxVvr7XWj2mtm2it22qtN/m6b+E9V0X8Qt3w4cP59NNP3W5z5swZ3n777QoX2fzkk0/o2bMnJ06ccLtdREREhfZjpuPHj8sSEJN4KsR54cIFt3dlp0yZwu+//86pU6dITk4uVzTTzkjP9fnz55OSksIDDzzgcr6bN2/m8OHDHpeA2P3444+0bduWFStWGNreDFprxo8fz2uvvRaQoooisAYOHMj//vc/oCig3rFjxwDPyH0GlRSlE0LYBSpwIBlgIpS5O9MbRlEb0V4UdezIUUp9qZSaoJS6SSnlPiwoQp7RzgShJD8/n61bt3L0qPvVRG3atOHs2bP07du3QvtbunQpv/zyi8clFYWFhfTu3ZspU6ZUaH9myMrKon79+p43FB4ZKcQJjndlnbUnq127Nl988QWTJk3y+URj8ODBvPXWW1x77bUut1m8eDFhYWH079/f0PfXqVMnZs+ezU033WRoe7u8vDzuuusun7K2LBYLt99+O/369fP6vSL02YvHQtHPazBwl0ElRemEEKUFMnDg6VxDiGDkrnXpJ1rr0VrrdkBdipZvbAX6A6spCl6sU0q9ppSSs8YqyGhnglASFRXFtm3bPK5ztlgsFb5rW1hYyMqVK7n11ls9jhUeHs7Jkycr9Q61K1lZWZJZUYnK3pV1156sIqnmMTExjBo1ymV2htaazz77jO7duxuuVxIWFsYDDzzgdXCrbI93o7Zt28akSZM4fdpdEylRlZRd4921a9eS1/bv3x8U7UE9ZVBJUTohRFmVvXTMm3MNIYKJoasxrfVvWutlWusntdbXUlRQcyBFXTueBJb6cY6iEpQ9ISxbxC8YTggr29SpUxk9erTP71+3bh05OTmG7wB3796d9evX8/vvv/u8TzNIsKJylb0r66o9mVmp5suXL+fGG28kPz/f4fkdO3awe/duw0tA7M6cOcOsWbNK2p8Z4WvW1qpVq3j11VdL2kOKqs/dGu/SPweBbA9qNINKCCEgMEvHjJ5rCBFsDN86Lu7I0VEp9Tgwt/gxgKLWpSf9ND9RSZydELor4heq/eKXLVtGt27dDP0hSE9PZ9GiRT7va/ny5URERNCrVy9D2/fo0YMLFy6wbt06n/dZUSdOnODs2bPUrl07YHOobozelTUr1TwqKorvv/+ef/3rXw7PN23alBUrVjB06FCv5m+1WnnssceYP3++4ff4mrX1t7/9jX379lGnTh2v3idClxSHE0JUNYFYOiYZYCJUuesGEq6U6qqUekYptQL4DfgJ+AfQCVgDPAokaa3lNmyIqy4nhDt37mTt2rWGOh00bdqU48eP+5xyvnz5cm666SZD+wLo1q0bYWFhfP311z7tzwybN28GoEmTJgGbQ3Vj9K6sWScavXr14pZbbuHll1/m1KlTJV1/rFYrffv2pV69el7N/+KLL6Zbt24uAw9mZW3ZO45IPZXqR4rDCSGqkkAEDiQDTIQqd5kVp4HvgclAC2AJ8CDQVGt9udZ6uNZ6VkW6g4jgUh1OCDMzM6lVq5ah76FZs2YAPrUv3bdvHzt37vSqCOBFF13EtddeG9BgxbfffgsU1QYQwcXME40pU6aQm5vLpEmTSrr+/OUvf+HIkSM+za1fv35s3bqVw4cPl3vNjKyt06dPc8UVVwRNe18RGNIeVAhRFUjgQAjj3AUr5lJUVPPy4tah92mt52it5aygirOfEJZWVU4IMzMzSUhIMLRt06ZNAXxqX2pPc7/11lu9el+PHj346aefOHPmjNf7NMOSJUsASE1NDcj+ReVo164d9913H//6179K2vjOnz+/XB0Lo+xBOfvPfWlmZG299957nDx5ki5duvg0PxH6pD2oEEIIUf246wbysNZ6vtY6szInJAKr9AlhzZo1+fOf/wwUBSuqwgmhL8EKXzIrli9fTqtWrbxeTtGjRw+sVivff/+91/v0lrP0fHtAau/evdWyqGp1kpKSQlhYGAsXLgSgVatWNG7c2KexmjdvTtOmTVm6dCnjxo0r15I0Li6Ou+++m/DwcKfvHzlypNOsrby8PMaOHcs//vEPbrzxRjp16uTT/ETok/agQgghRPXjrmbFjd48KnPSwn9KnxAeOXKE119/nSZNmhAfH18lTgi9CVbExsaSkJDgVWaFff3/bbfdxjPPPOP1/Lp06UJkZGSlLAVxlp5vr65flYqqij+UDlA1bNiQ33//ndzcXKAoo8rXAJVSin79+vHNN9+Qmprq0JL01KlT3HnnnQwYMIDw8HAiIiIcerwrpUqCG1prh3HXr1/P559/TkZGBk8++aRJn4IIRVIcTgghhKh+3C0D+Rb4pvhR+mtXD1EF2E8IX331VSwWC0op3n77bb788suQPyG0Wq0cO3bMcLACirIrvAlW2Nf/X3nlldxzzz1ezzEmJobx48fTtWtXr9/rrepSVFX8wV0byIoGqPr160dBQQHg2JI0PDycjRs38uSTT3LmzBmUUg493iMiIpg3bx6ZmZnceuutfPTRRyXvXb16NQB16tTxekmVqFpkjbcQQghR/bgLVnQHehQ/BgOZwCrgPiC5+N8vi58f5N9pCqPsd/bLpmEbZT8hvP3220vWoffq1Yv27duH/AlhVlYWVqvVq2BFs2bNvFoGYr9IW7x4sdfzs5s4cSJDhgzx+f3eKF1UNSwszOG1qlJUVfzBnwGqbt26YbEU/UlZsmQJY8aM4cKFC9SsWZMdO3aQl5fntsf7888/z/nz5x2yKz755BOg6GfRPrYQQgghhKge3NWs+K/9QVGw4kutdbLW+kOt9arif/sCq4HKubISHtnv7JdOw/bF888/z1NPPeUw7sSJEys4u8DKzCwqv+JNsKJdu3Y0bNjQcOFBe4HBefPmeT/BUg4fPsyhQ4cqNIY31q5dW1JU1Z6eX1WKqgpHZnX9KVvzJCoqquS1ffv28a9//YuoqKiSzg2ff/652zT+1atX880333DPPfeUjHnw4EEATpw4ITVUhBBCCCGqGaO3qgYCH7t47ePi10UQsN/ZL52G7Yt+/frRp0+fkv9et24d06ZN4+TJkxUaN5BsNhudOnXyqojgmDFj2Lx5s8OFmJ2zApW7d+8GipbT+HpxVVBQQOvWrXn99dcNz7MiMjIyWLp0KYBDej5Ilf2qrKJtIJ0tKbHZbMAftU/gjyUl//nPf9ym8a9cudJvS1SEEEIIIUToMRqssAC/N/RDAAAgAElEQVRNXbzWDAhz8ZqoZPY7+8uXL/d5jO3bt/P99987tC995JFHOHbsGPHx8RWeY6Bcd911bNy4kbZt25oynrOLNftFlX3tPnh/cRUREcGHH37I/fffb2hJT15eHnfddZfPS3+GDx8OQNeuXUvS8qXKftVmRhtIs5eUSA0VIYQQQghRmtFgxRfAK0qp25RSYQBKqTCl1O3Ay4DvV8bCZ+7u7O/evdvnO/szZ87k1ltvRSlV8lxcXBzR0dForctV7K/KCgsL6dq1K2+++Wa51/x5cTVkyBBOnTplaEnP+vXrmT9/vk9Lf06cOMGGDRto2bIla9eulSr71YRZbSDNWlLir/GEEEIIIUToMhqsGAv8QtGSj9+VUlnA78DC4ufH+md6wh13d/Yrkja9efNmOnToUK6g3ZYtW2jVqhX/+9//TJh95Xv88cfp37+/V+8JDw8nISGBWrVqOX3dfnE1fvx4h+AOVOziqqCggOnTpwOel/RUZOnP3//+d7TWfPbZZ+XmD1Jlv6oyuw1kRZeU+Hs8IYQQQggRegwFK7TW2VrrbsAtwEvAZ8X/9tZa36i1Dt1CBiHMH3f2CwsLSUtL4+qrry73WqNGjdi3bx/z58+v8NwDITExkebNm3v9vkWLFjFy5Ei328ydOxettWkXVxaLxfCSHl+X/vz000/Mnj2bsWPH0rp1a5/mKUKTmW0gzVhS4s/xhBBCCCFEaPKqF5zWerXW+iWt9ajifytWxVFUmNlp0zt37uT8+fNOgxXx8fH06dOHBQsWlBTSCyV//etfeeONN3x6r7vv9//9v//H7t27CQsL8/niquySnvDw8JLXnC3pqejSH5vNxujRo6lfvz4vvPCCNx+FEA7MWlLir/GEEEIIIURoMhSsUEptUUo9rpS6xN8TEr4xK216y5YtAHTs2NHp68OHDyczM5Pvv/++wnOubL4GWN59911iY2M5ffp0udcyMjIYN24cUFRnwteLK3edFUov6bErvWTDl6U/+fn5dO7cmTfeeIOaNWt6nJ8Qrpi9pMTs8YQQQgghRGgymlmRBUwBflVKrVBKDVNKle8vJwLCnjZts9nQWnP33XdTr149wPu06c2bNxMXF+dyuYR9ycmCBQtMmXtlOX36NNHR0bz99ttevzc+Pp78/Hz27t3r8LzNZmPkyJFYrVYmT57MJ5984vPFlZElPREREbRq1Ypx48bRsWNHr5f+5OXllXQXiYmJ4c033+Suu+4y+jEI4ZSZS0r8MZ4QQgghhAhNRmtW9AUaAk8D9YH5QJZS6j2lVHc/zk8YYE+bttcdOHHiBGfOnGHAgAFep01v2bKFDh06EBbmvBttXFwcAwcOZNGiRU7v+AerzMxMCgoKXBbKdKdZs2YA7Nmzx+H5N998k6+++oqZM2cyfvx4p+/15uLK05KeV155hR07djBt2jQ2bdrkdLuIiAhiY2MZPXp0uaU/69evJzU1lb/+9a8hmRkjhBBCCCGEqD4M16zQWh/XWk/TWl8DJAFvATcDa5RSh/w1QeGZPW06KSmJxMREkpOT+f333xkzZoxXadNWq5Wff/7Z5RIQu+HDh3Pq1Cm+/PJLM6ZfKTIzMwFISEjw+r1NmjQBYPv27dx1112cO3eOPXv2MH78ePr3789f/vIXU+dqdElP6e1iY2NRSqG15vz583Tr1o3Ro0dz5syZku3t3UIWLlzIwoULTZ2zEEIIIYQQQpjJqwKbdlrrnUAK8HfgCEVZFyJA7GnTaWlptG/fns6dO2OxWFizZo1Xd/Z3797NuXPnnBbXLK13797UqVMnpJaCVCRYERsbS0JCAhs2bGD+/PmsX7+eJk2aMHXqVGbPnu205aevjHZCKLvdvHnzuPzyy7FYLOTn5/OXv/yFmTNnkpSUxMqVK4E/uoYkJCTwyiuvmDZnIYQQQgghhDCb18EKpVQPpdQciupYfAhkAGPMnpjwzvnz50lPT6d9+/bUrFmTa6+9tuROulEtWrRg165d9O/f3+12kZGRDB06lKVLl4ZMsbuKBCsAmjZtyo4dOwBYsWIFFoulpJuGmYx2Qii73aBBgxy2W716NVprfv31V5KTk1FKkZ6eDsDevXupVauWoa4hQgghhBBCCBEIRruBtFFKvaqUOgysBv4EvAm01Fp30VrP9OckhWfbt2/HarXSvn17AHr27MnGjRvJzc01PIbFYqFFixbUrl3b47Zjx45l8eLFREVF+TznypSZmUnt2rXL1XgwqlmzZiVZDW+++SY//fSTmdMrYbQTgqft2rVrV667SEFBAeBd1xAhhBBCCCGECASjmRVbgYeB/wA3aa2v1Fo/r7Xe4+F9opKkpaUBOAQrrFYr3377reExpkyZwrJlywxtm5SUxC233EJ4eDh5eXkltRyCVWZmpldZFQMHDnTIPJg9ezZWqxUArTXXXnutXzITjHZC8LTdsmXLPHYXcdU1RAghhBBCCCECzWiw4g7gUq31Q1praSMQhNLS0oiLiyspBtm5c2diY2MNLwXRWjNz5kxWr15teJ+//vor48ePZ9WqVSW1HIJVRkaGV8GKyZMnl8tMsLPZbCVfB3NmgqfuIikpKQ6ZGUIIIYQQQggRLIy2Ll2ktc7392SE79LS0mjbti0WS9H/0qioKP70pz8ZDlYopThw4ABTpkwxvM/s7Gxef/31kkKb3tbIqEzeZlYkJSVVmcwEo91FhBBCCCGEECJY+NQNRASf5557jgkTJjg817NnT/bu3cuJEycMjWFvgWnUVVddRVZWFrt27QJg+fLlxidcibTWDBs2jN69e3v1vqqQmWC0u4gQQgghhBBCBBMJVlQRPXv2JDk52eG5Bx54gJMnT1KvXj2P7582bRqPPPKIx+1K13KwWCzUrVuX3bt3A0WtT0vXcQiWLhNKKf75z39yxx13+PT+0pkJsbGxIZWZYLS7iBBCCCGEEEIEEwlWVAH79u1jzZo1Dl0eAGrVqkXNmjUNjZGamsrPP//scTtntRzs+w3WLhMXLlwgP9+3VUxlMxPmzZsXUpkJRruLCCGEEEIIIUQwkWBFFbBgwQJ69erl9IJ86dKlDBo0CK21y/drrdmyZQtXX321x32FYi2H5cuXEx0dzdatW71+b9nMhEGDBoVUZoLR7iJCCCGEEEIIEUwkWFEFjBo1iu+//56LLrqo3Gs5OTlkZGRw8uRJl+/ft28fubm5hoIVEHq1HFq0aEFKSgqNGjXy+r2SmSCEEEIIIYQQlS880BMQFVenTh1uuOEGp6+NHDmSkSNHun3/li1bAOjYsaNX+y1dy0Ephc1mC8paDklJST5neLjLPLj//vtdZi0IIYQQQgghhPCdZFaEuLy8PF5++WXS09Pdbme1Wl2+tnnzZiIjI726oC9by+HFF18s2U+w1XI4cOAAWVlZgZ6GEEIIIYQQQgiDJFgR4rZu3cqECRNK2oc6M2PGDBISEigoKHD6+ubNm2nbti2RkZGG91u2lsNzzz3HTTfdRHh4eNDVcnjggQcYMmRIoKchhBBCCCGEEMIgCVaEuLS0NADat2/vcpuEhASysrLYuHFjude8Ka5ZmrNaDpMnTyY/P58///nPQVXLISMjg4SEhEBPQwghhBBCCCGEQVKzIsSlpaVRq1Ytt8Uju3fvjlKKNWvWcP311zu8dvDgQX777TevgxXOajl06dKFW2+9la+//poDBw54NZ6/aK3JzMykX79+gZ6KEEIIIYQQQgiDJLMixKWlpdGuXTuUUi63qV27Ntdccw2rV68u99rp06e5/vrr6dSpkynzSUlJQSnlU5tQf8jNzeXcuXOSWSGEEEIIIYQQIUSCFSHMZrOxdetWt0tA7Hr27MmGDRs4ffq0w/Pt27dn7dq1dOjQwZQ5dezYkYyMDLp162bKeBWVmZkJIMEKIYQQQgghhAghEqwIYfv37ycvL89wsMJqtfLdd985PG+z2UyfV0xMDDabjV9++cX0sb0lwQohhBBCCCGECD0SrAhhRopr2nXt2pXo6GjWrFlT8pzWmsTERL907hg/fjydO3fm+PHjpo/tDQlWCCGEEEIIIUTokQKbISwtLQ2LxUKbNm08bhsdHc2NN97oEKy4cOECw4YNMxTs8NaDDz7IVVddRXx8vOlje8MerLjssssCOg8hhBBCCCGEEMZJsCKE7d+/n+bNmxMTE2No+549e/L0009z9OhRGjRoQFRUFFOnTvXL3Jo1a0azZs38MrY3MjMziY+PJzo6OtBTEUIIIYQQQghhkAQrQtjcuXM5c+aM4e0HDRpEbGxsyYX7kSNHqFOnjl8v5N944w1OnTrFpEmTyMvLY9y4cSxYsIDY2Fi/7bO0O++8k+uuu65S9iWEEEIIIYQQwhxSsyKEKaWoWbOm4e2bNWvGY489Ru3atYGipRpdu3b11/QA2LNnD6+//jqHDh1i/fr1pKamsn79er/u0y4vL49Zs2Zx++23V8r+hBBCCCGEEEKYQ4IVIWrz5s0MHz6c/fv3e/W+48ePs3DhQs6ePcvXX39NUlKSn2ZY5LnnnsNisfDSSy+V1MsoXTfDn9avX8/8+fNZsWJFpexPCCGEEEIIIYQ5JFgRoo4ePcoPP/xAVFSUV+9btmwZd955J2+99Rb5+flcfPHFfpphkYYNG/LII4/w/vvvs2TJEgCWL1/u133arVq1CoBp06ZVyv6EEEIIIYQQQphDghUhql+/fhw6dMjrlpxDhgxhy5Yt/PjjjwDk5ub6Y3oMHDgQpRRKKd58802sVit79+4FYPfu3SWv2R8DBw4EipZu3HXXXZw7d67Cc1i5ciVAwNunCiGEEEIIIYTwjgQrqpn4+Hg6dOjA2rVrgaLlJP4wefJkEhMTHYp32mw2oKhlql10dDSNGjVi8uTJwB9LN7yta1E6OGJ/7NmzB4BDhw65DI4IIYQQQgghhAg+EqwIQYWFhbRu3Zo5c+YY2t7ZhfyJEycA2Lt3r18u5JOSktixYwcDBgxw2fkjNjaWgQMHsn379pLaGb7WtXAWHLEHRdwFR4QQQgghhBBCBB8JVoSgPXv2sHPnTsLCwgxt7+xC3s6fF/JxcXF8/PHHpKSkEBMT4/BaeHg4KSkpLFiwgDfeeINdu3YB8MUXXwDe17XwNTgihBBCCCGEECL4SLAiBKWlpQHQvn17Q9sH+kJ+3759WK1WlFJER0ejlMJisfCvf/0Li8XCCy+8QKtWrVBKsXv3bsB9XQtX7MGRO++8s9xrMTExpKSksHDhQuLi4kz9/oQQQgghhBBCmKtSgxVKqX8rpY4rpbaVem6iUipTKfW/4kdyqdfGK6X2KqXSlVK3VOZcg1laWhoRERG0atXK8HvcZTn480L+6NGjzJ49G4DExETefPNNLr/8cgAyMjJISEgwdenGhx9+yHvvvVcS4IiNjUUphdVq9brNqxBCCCGEEEKIwKjszIr3gT5Onv+n1vqq4scKAKVUa2AYkFT8nplKKWPrHqq4tLQ0WrVqRWRkpNfvLZ3lUBkX8i+99BIFBQUMHjyY7du307t3b3bs2MGgQYMoLCwkOTnZbcZHTEyM04yPvLw8xo0b59A1ZOrUqdx7770opYiIiCAxMZF58+aVBEfeffddjh075pfvUwghhBBCCCGEeSo1WKG1/g44ZXDzgcBCrXW+1voAsBe41m+TCyFpaWmGl4CUVjbLoTIu5M+dO8d7773nkLVhz/J47733uHDhgsuMDwCr1Uq3bt3KvbZ+/XpSU1NZv349NpuNJ598kqeeeoorr7wSrXVJcGTQoEElwZGCggJeeukl079HIYQQQgghhBDmCpaaFaOVUluLl4nULn4uAfi11DYZxc+Vo5R6SCm1SSm1qbCw0N9zDajs7GyOHDniU7CibJZDZVzIv//++9x///1OX7v//vt5//33AecZHxEREdSvX5/Ro0fzpz/9ifT09JL3lu4aMm7cON544w0ee+wxbrjhBrfBkby8PNO/RyGEEEIIIYQQ5gqGYMXbQBPgKuAo8Ebx88rJttrZAFrrd7TW12itrwkPD/fPLIOEt8U1S/OU5RCoC3lXGR9KKbKyspg2bRrbt2+nffv2vPLKK1itVoeuIcOGDWPy5MnMmDGDDz74wFBwRAghhBBCCCFE8Ap4sEJrnaW1tmqtbcC7/LHUIwO4vNSmDYEjlT2/YFORYIXRLIfK5injY9q0afz222/k5+fz7LPPEh4e7tA15IYbbuDZZ5/FYrEY6hoihBBCCCGEECK4BTxYoZRqUOo/BwP2TiGpwDClVJRSqjHQDNhY2fMLNomJidx5553Uq1cv0FMxjaeMj3bt2pGYmGhq1xAhhBBCCCGEEMGrUtdMKKUWADcBdZVSGcALwE1KqasoWuJxEHgYQGu9XSn1CbADKAQe01pbK3O+wWjo0KEMHTo00NMwlbuMjvvvv5/777+f/9/enYfLUZZ5H//9EPAkCAICypIEUQbHOIrL6DBCFJSoKJzg9sowLBORUURnGHHBdyaEE8wrrvAqjhqiAWXXsKMIBHBhGdlEExkgGSCQhLAlgQRICPf88dSJfTqnu6v71Omq5Hw/19VXcqq7776ruuqpqrueenrlypWaPHmyLr/88gG/ANJv9OjROvDAAzVz5szCf34VAAAAANBd3f41kEMiYseI2CwidomImRFxWET8TUS8PiIOiojFNa//SkS8KiL2iIhfdDPXKlq7du2IHSCyv6fFYL8aMmrUKPX19Q3omQEAAAAA2HCVfhsI8ps7d6623HJLXXrppWWnUpraXw3p6emRba1du1YLFiwoOzUAAAAAQEEoVmwgVq5cqSlTpujLX/5yR4NrbgzqfzXktNNO05gxaQzWGTNmaMmSJWWmBwAAAAAoCMWKDcRNN92kSy65RPvuu6/GjRtXdjqlqP/VkIkTJw741ZBp06aVnSIAAAAAoAAUKzYQ11xzjSTpsssuKzmT8rT61ZCROp4HAAAAAGxsKFZsIK644gpJ0llnnVVyJuWZNWuWJk+ePOhzkydPbvqrIgAAAACADQfFigrq7e2V7QGPe+65R5K0YsWK9Z7r7e0tOWMAAAAAAIpDsaKCpk+frrFjx6qnp2fdtNWrV0tKP1/ar6enR+PGjdP06dO7niMAAAAAAMOFYkUFjR8/XvPmzdNBBx2k0aNHD/qa0aNHq7e3V3PnztX48eO7nCEAAAAAAMOHYkVF9Q8c2dfXp1GjRg14btSoUerr6xsw0CQAAAAAABsLihUVN3/+/HW3fmy22WayrbVr12rBggUlZwYAAAAAwPCgWFFhixcv1hlnnKEXXnhBkjR16lSNGTNGkjRjxgwtWbKkzPQAAAAAABgWFCsqbNq0aVqzZo1e+cpXatSoUTr++OM1b948TZo0SWvWrNG0adPKThEAAAAAgMJRrKiwVatWaebMmdp88801YcIEbb755uvGspg5c6ZWrlxZdooAAAAAABRu07ITQGOzZs2SJE2cOFHLly8f8NzkyZM1efLkErICAAAAAGB4UazYAOyyyy7aZZddyk4DAAAAAICu4DaQivvBD36wrocFAAAAAAAjAcWKijv//PM1e/bsstMAAAAAAKBruA2k4q699lqtWrWq7DQAAAAAAOgaelZUnG1tscUWZacBAAAAAEDXUKyosOOPP17HHnts2WkAAAAAANBVFCsqKiJ0wQUXaOnSpWWnAgAAAABAV1GsqKj58+dr4cKF2m+//cpOBQAAAACArqJYUVFz5syRJIoVAAAAAIARh2JFRc2ZM0c777yzdt9997JTAQAAAACgqyhWVFBE6LrrrtO+++4r22WnAwAAAABAV1GsqKB58+Zp6dKl3AICAAAAABiRKFZUEONVAAAAAABGMooVFTRnzhzttttuGjduXNmpAAAAAADQdZuWnQDWN2HCBO29995lpwEAAAAAQCkoVlTQcccdV3YKAAAAAACUhttAKub+++/XU089VXYaAAAAAACUhmJFxXzqU5/S29/+9rLTAAAAAACgNNwGUjEnnHCCli1bVnYaAAAAAACUhmJFxUyYMKHsFAAAAAAAKBW3gVTI9ddfr+uuu67sNAAAAAAAKBU9Kyqkr69PTz75pO64446yUwEAAAAAoDT0rKiIZ599VjfeeKP222+/slMBAAAAAKBUFCsq4vbbb9dzzz1HsQIAAAAAMOJRrKiAlStX6qSTTtImm2yiffbZp+x0AAAAAAAoFcWKCrjpppt0zz33aI899tBWW21VdjoAAAAAAJSKYkUFXHnllZKkrbfeuuRMAAAAAAAoH8WKCpg9e7YkafHixSVnAgAAAABA+ShWdFlvb69sD3g89NBDkqRFixat91xvb2/JGQMAAAAA0F0UK7ps+vTpGjt2rHp6etZNW7t2rSRp9erV66b19PRo3Lhxmj59etdzBAAAAACgTBQrumz8+PGaN2+eDjroII0ePXrQ14wePVq9vb2aO3euxo8f3+UMAQAAAAAoF8WKEmyxxRY6//zz1dfXp1GjRg14btSoUerr69N5552nLbbYoqQMAQAAAAAoD8WKEs2fP19r166VbfX09Mi21q5dqwULFpSdGgAAAAAApaFYUZLFixfrjDPOkCSNHTtWp512msaMGSNJmjFjhpYsWVJmegAAAAAAlIZiRUmmTZumNWvW6OCDD9bcuXM1ceJEzZs3T5MmTdKaNWs0bdq0slMEAAAAAKAUFCtKsmrVKs2cOXPA2BT9Y1nMnDlTK1euLDlDAAAAAADKsWnZCYxUs2bNavjc5MmTNXny5O4lAwAAAABAhdCzAgAAAAAAVArFCgAAAAAAUCldLVbY/pHtpbb/VDNtW9tX2743+3ebbLpt/3/b99m+y/abupkrAAAAAAAoR7d7VsyS9N66aV+SdG1E7C7p2uxvSXqfpN2zx9GS/rNLOQIAAAAAgBJ1tVgREb+W9ETd5F5JZ2b/P1PSpJrpZ0Vys6Stbe/YnUwBAAAAAEBZqjBmxcsjYrEkZf/ukE3fWdLCmtc9lE1bj+2jbd9q+9bnn39+WJMFAAAAAADDqwrFikY8yLQY7IUR8cOIeEtEvGXTTfk1VgAAAAAANmRVKFY80n97R/bv0mz6Q5LG1LxuF0mLupwbAAAAAADosip0Q7hU0hGSvpr9e0nN9GNtnyfpbZKW998u0syqVavC9jPDleww2lRSUfewVDVW0fGIVW68kRCr6HjEKjfeSIhVdDxilRtvJMQqOh6xyo03EmIVHY9Y5cYbCbGqaFSuV0VE1x6SzpW0WNIapZ4TH5f0MqVfAbk3+3fb7LWWdLqk+ZL+KOkt3cy12w9Jt27ssaqc20iIVeXcqhqryrmNhFhVzq2qsaqc20iIVeXcqhqryrmNhFhVzq2qsaqc20iIVeXcqhprQ350tWdFRBzS4Kl3DfLakPTp4c0IAAAAAABUTRXGrAAAAAAAAFiHYkV1/HAExCo6HrHKjTcSYhUdj1jlxhsJsYqOR6xy442EWEXHI1a58UZCrKLjEavceCMh1gbL2T0xAAAAAAAAlUDPCgAAAAAAUCkUKwAAAAAAQKVQrNhI2d7H9n+XncdIZnuW7ZPLzmMwtqfa/mnZeQDdVPFtMmy/uuw86lV5mRXJ9pG2f1t2HqgW9pXopiLXN9vft/0fRcQCykSxoiS277f97rppHR0sDRYrIn4TEXsMIbdnbD9t+0nbV9geM4RYj9jeombaUbavLyC3/sdOZeRSF/v6bFm9eKixsni18/mI7R/bfkkHcf7B9q1ZnMW2f2F77yHm9e6avz+Wzfc72oixt+0bbS+3/YTt39n+2yHkdJXtvkGm99peYrvpTzRn87Ta9nZ10+/MTiB37TCvwpZ9UbGy7+sW2yttL83+f4xtd5JXFrOQdb+odqcuzpLsZLvtbWeQuGfb/lHdtHfYftz2jjnzKrItrG0DX6hrFw9tM1bhy2yY2sR3t35lyziFtj+DxO84zwK380KWVV28jvdHRe3PmsTsf3y3gziFbUc1eQ3p2K7onFrl10GM4VhmhbfZNbGLaDeK2s8N57IbsN+MiE9GxLQOYq43r+6gaN1gG811vJ4npw7jFHVsXdj+vOh95caIYgUaOTAiXiJpR0mPSPrOEGJtKulfCskqOTAiXlLzWFRiLnI6md1HUkg6qMDQ/d/BmyT9raR/bzOvf5N0qqTpkl4uaayk70nqLSI520dIOl3S+yPihpzv2UrS5Urr07aSdpZ0kqTnhpDKLEmH2eudcB8m6eyIeD5HjP+RdEhNnn8jaVSnCRW57IuKZftzkk6T9HVJr8hifVLS2yVt3m5eWcxdVey6n6vdsf2inHH2lPRGSScUkNtnJR1ge/8shx5JMyR9LiIW54xRWPtT2wZKelAD28WzOwhZ2DIbxjZxSIap/SnEcLfXBWi6P3LS7JhySPuzZjFrHse2G2AYtqMhq2JOXchvONrshtziIkbda3dVQe3ZMC+7IR+vD9c+vdHxep7vYRiPM4baFg15f17VfWXVUKzYSNl+p+2HhhonIp6V9DNJrx1CmK9LOt721kPNpwANc7F9mu2FtlfYvs32PjljHi7pZqWT5iOKSzWJiIcl/ULS6/K+x/ZLJfVJ+nREzI6IlRGxJiIui4jPDzUn20dL+qak90TEjW289a8kKSLOjYi1EfFMRPwqIu7K4n7C9p9tP2V7nu035Yh5sdKJx7rvy/Y2kj4g6aycef1E6Xvsd0Tte7OrCqdnVy2ecuqR8KrBArVa9rZfbPtU24uyx6mNKuo5Yg242tFou6+Jc0xE/Cwinorkjog4NCKes/1+23dk6/9C21NzLLdB133bB2Tf31O2H7Z9fI5Y69S3O9l8/qftK22vlLRvzjhLJF2ldADcbzvbV2e53WB7XM5Yj0v6jKQfZldTTpQ0PyJm5Z6x1m3hAbYX2H7M9tdbnPw1ZXtT2ydm8VbY/r3tV7R6X4Nltk2edb9Go/XiZbYvq+x5+JgAABG1SURBVMnnZLfZm9DZVWrb38iuRv2P7fflfHvT9ieF93ecel3cbftd7eTWqRzb+VudelysyK7mfauDz9jG9uW2H82W2+W2d2k3Tu3+yOmK4Fds/07SKkm7dfD+k516ujydrRsvc+rF1L+O7NrmfE51TTd627s69ZDLfXI6iB7b52fr/+2239BpINt/nc33Mttzbbd9gpLN44W2f5rl9Efbf2X7BKcecwttT2wj3no9PzyE29Jsvz1rJ5Zn+7hv513+9e1Ptr/8hu0Hs3X/+7bbvpCQzePvslyekDS1jbc3as+ut31U3WeUditZg/1mu7fwrTevTsd7h0r6Qv922mmONdvjx20/KGlOJzllsUbZ/qbtB7J17bftrBt1bdE/+S/Hngts/3OOEM3OJ8L2Z916f95o3mbZ/p5T77qns3X3FU7Hi09m+6c35p3XDR3FCjRle7Sk/6O0MXXqVknXS2rrhGWYNMvl90o7yG0lnSPpQqerp60cLuns7PEe2y8vJtXEqUvfAZLuaONte0nqkXRRkblkPiVpmqR3RcStbb73HklrbZ9p+31ORQVJku2PKB1AHC5pK6Uq8+OtAkbEM5Iu0MBiw0cl3R0Rf8iZ182StsoOJF+ktM7X3zd6iNJV2G0k3SfpKw1itVr2/1fS3ymta2+Q9FY1ruwX9T3uJenFki5p8pqVSstwa0nvl/Qp25NaxG207s+U9M8RsaVSkS3PAck6Ddqdf1Ba5ltKynVAmJ2MvU/p++p3qNL6u52kO7Pcc4mICyXdJulcSUdLynNAU6tVW3iwpLcoXfHplTS5zfi1TpA0SdJEpe/0aEnPtnpTg2WWd93v12i9OF1pPXuF0oFZp8Xdt0n6b6Xv8GuSZtq5bmVq2P7UxF2QxT1R0mzb23aYYztabeenSTotIraS9Cql9q5dm0j6saRxSr02npHUyW0T9fujw5TWrS0lPdDB+z+WxdhZad5uyvLcVtKflb6HsvVKulB/OTa42PZm7QbJ3nOZpF9J2kGp+Hm27U5u2T1Qqci+jdKyvErpO95ZqfD1gw5iFmWNpGP1l4sIB0o6quk7MoO0P6coFRn3lPRqpfmb0mFe/dv3DmrdhtUa1mO8ohR0vL7evEbED7O/v5b1jjhw6NnqHZL+WtJ7Oskpm/4NSW+W9PdK69oXJL2QN4G6tmip0gWurST9k6Rvu/XFsiL2583WrY8qHRtup9T77yZJt2d//0xS20XrDRXFinJdnFXXl9leptTlsyouznJaIWl/pQriUEyR9Bnb2w85s4HL7eKicomIn0bE4xHxfER8U+nkrulBhNP9xOMkXRARt0mar3RSVYT+7+C3km5Q6h6c18skPZbzFoh27a+0M/xju2+MiBWS9lbq8jZD0qO2L80a6KOUdoa/z6763xcRLQ9+M2dK+khNVf3wbFo7+ntX7C/pbkkP1z0/OyL+K1umZ2vgledarZb9oZL6ImJpRDyqdBJ4WIex8tquPo7T1cxlTvdvToiI6yPijxHxQnal+VylA4pBtVj310h6re2tIuLJiLg9Z57N2p1LIuJ3WX6tTrovtv2UpIVKByG1JzxXRMSvI+I5pcLRXm5vbIxPS9pP6Tt8sI339WvWFp4SEU9kcU9Vza1JHThK0pey7eiFrBfNsiavb7bM8q77DdeLrAj4IUknRsSqiJin9rfRfg9ExIyIWJvF2FHp1ommWrQ/UprvU7NeDecrFUTe32GO7Wi1na+R9Grb20XE0xHR9slItm/7ebbsn1I6Wcs91pAa749mRcTcbL+5poP3/zgi5kfEcqWrnPMj4ppsWVyodEtA05g1j0+0MT/tuC3rkbZG6QShR6ngnCsv/eXY7u8kvUTSVyNidUTMUbotqZPt/DcRcVXNcto+i7tG0nmSdh3sim83ZG3F77PeS/MlnaHW69p67U9WgPyEpOOydvEppfXmYx2mtigivpOtq8/kecMwH+MVpZDj9WGa10bH61OzHmRNv4cm+5NNlE7+/yUiHs7WtRuz/XqunFTTFkXEFVk7FJFua/6VanrrNtHx/jzH8r4oIm7LjncukvRsRJyV7ffOV/O2caNCsaJckyJi6/6HpGPKTqjGpCynFytVyG9wji7EjUTEn5R2yl8qKrfs0erKb+5cbH8u6wa2PGvIXqp0ktfMEZJ+FRGPZX+fo+JuBemfz3ERcUzenWvmcaXu7kPp+trIJ5WudJyR82rmABHx54g4MiJ2UbrqvpNSQz5GqbFuW0T8VtKjknpt76Z0H+I5bYb5idKO4kgNfvvIkpr/r1I66BxMq2W/kwZegXwgm9ZJrLzWixMRf59t449L2sT222xf59RNfLnS99xs/W+27n9I6YrFA063WuyVM89m7c7CnDH642wp6Z2SXqOB87EuTkQ8LekJNV7+64mIRyQ9JmluG/nUvr9ZW1g7j83Wi6ay7XJntbc9NVtmedd9qfF6sb3SPb6189jOd1prXT4RsSr7b65B0pq0P5L0cEREzcs7/g7a1Go7/7hSm3u3060RH2j3A2yPtv0Dpy7TKyT9WtLWbj3+S79G+6O832Gj9z9S85pnBvm72fc64BgqImbkzKVdtW3GC5IeUvP1otGx3U6SFmYx+j2gtK22q345PZadxPT/LeXcJopm+7VO3dcfyda1KWp9LDVY+7O9pNGSbqsp/Pwym96JTtqb4TzGK0pRx+vDMa+NjtfzfheNctpOqWjYyTHjem1R1tPuZqdBl5cpHb+0WmeHuj9vtbyH0jZuVChWoKmsWjlb0lqlK1JDcaJSlbyTHXPRBuTiND7FF5W6XW2TNfzLJTU8Gc+u4n9U0jucRrBeIuk4SW/wEO5pLchNSl2+2y7m5LBU0ruUqs5D6g0UEXcr3av3OqWGvdW98M2cpdQz4jClHcAjLV5fn8sDSgNtHiBp9hDyaLXsFylV0/uNzaZ1Emul0sFcv0YHKDcpdSNsNljfOZIulTQmIl4q6ftqsP63Wvezq2q9St1tL1ab3dYbtDvR5C2N4tygtH59o2byul4UTqOAb6vGy3+4NGoLa3t4NFsvmspOuB9WB9tTg2WWS7P1Qqnnw/OSasdJ6OhXpopS1/5I0s51BdiOv4M2Nd3OI+LeiDhEaXs6RdLPXDMKfU6fU+op+LZIt5NMyKZ3/EtA/ekN8f1Fy9smtqO2zdhEaR3uZL1YJGmMB967Plbr9+LrtgHLbCgXpjIzlLqrvypb1/qUcz2ra38eUzopG19zwvvSSIMjdqKtdTXHMd5wrGsdG8rxeo55LXo7bxmvxf5kR6U2cyjHjP2f82JJP1da516eHf9fqfxtY9v784qfP1QOxYqNx2a2e/ofSlewhsxJr9J9kX8eSqyIuE+p69Jni8it4Fy2VDqQflTSpranKN271swkpZ3Ca5W6Re+pdA/ebzRw/ISui9Sldoqk021Pyq6qbZZVj79WQPxFSl3h32v723nfZ/s1WQ+WXbK/xyh1jbtZqavo8bbfnK13r3bOwQ8zZ0l6t9JOo9Pu5R+XtF9ErOzw/XmW/bmS/t329k4/lzpF64+PkTfWnUqDMm6bHWD+a4M4y5RuN/me7Q/bfontTWzvKan/pGdLSU9ExLO236rm3T+brftH2j7U9ksjdUlekb02tyLbHaWr5vtn8yql5bW37c2Vxq64JSI6vcLfkSZt4eedBkIcozTK+PlD+JgzJE23vVu2PN/o/N3C65dZXq3axNmSpmbr8WvU5XayRfsjpWLAZ7Nt7CNZ7lcOd16ttnPb/2h7++yKfP+tPK22qfpjgm2UTvyWOY3DUYWxIIbDnZIm2B7rNHBpEb8q8WbbH3Tq+fKvSoXfTsYFuEXpBPcL2ff7TqXxHM4rIMd21K8bf5A03vae2d9Thxh/S0nLI+Jp2+OV9sntOFXpdobXKxU+vm17B0myvbPtPOMcFKFVe3anpA9m2+urlY4fSjPE/WareX1EOQbQLVirnH4k6Vu2d7L9Itt7ubOf/9xcqVfKo5KedxqwOfcAtR3uzyt7/lBFFCs2HlcqHYj0P6YOMd5ltp9WOtH4iqQjIqKjbs91+vSXk6Oy1eZyldL9svcoddd6Vq27qR2hdL/tgxGxpP+hNGjZoSqoYNSpiPiWpH9TGqDnUaX5OVbpSncR8RcqFSw+bPv/5XzbU0qDXN3i9KsON0v6k9LPP16otK6dk72u/1c+8uZzv6Qblb7TS/O+ry7G/Gh/0NDB4jRb9icrDcx0l9K4H7dn0zqJ9ROlA837le6xbHhyGxFfy+J8Qal3zCNKg7B9UWm5HSOpz+m+4Slq3hui2bp/hNIAVfc7dQH+pKR/bBKrVuHtTqRxQc6S9B/ZpHOUTtSeUBqcq+3fti/IYG3hJUoDeN4p6QqlgUo79dUsxhyl5fl9pQOylgZZZnm1ahOPVbq9bonSunuuuvuzoQ3bn+z5WyTtrnRF9yuSPhzpV2CGXYvt/L2S5mbbxmmSPhatx22pPybYWunnmB9Tmu9fDsNsdNtlTiPl9z8uioirldrBu5S2pcsL+JxLlAYufFKp594Ho/n4HIOKiNVKA0e/T+l7+J6kw7MePt1Uv24crtQeXSPpXuUcwLiJ4yQdla2vp6vNomtd+/NFpcE2b872J9eoxVhiBWrVnn1b0mqlfemZamOw5oIVsd9sNa8zlcah6nSsuE60yulLSsdQv1fan5+iDs5rI42F8lmlY54nlS7UtHsM2e7+vNLnD1XjiKr14AMAABs726dIekVEVO0ecAAAOmI7JO2e9brAENGzAgAADLvsNozXZ92V36rUbXo4fl4ZAABsBOhmAgAAumFLpVs/dlK6FembSl1lAQAA1sNtIAAAAAAAoFK4DQQAAAAAAFQKxQoAAAAAAFApFCsAAAAAAEClUKwAAABN2T7SdjR4LKt7za7lZjs0tve0PdX2tmXnAgDASMavgQAAgLw+IumhumnPl5HIMNpT0omSfirpiZJzAQBgxKJYAQAA8rozIu4rOwkAALDx4zYQAAAwbGx/wvYfbD9r+zHbM+tvschuHznZ9udsP2B7pe0rbO+QPS6wvdz2QttfHOQzXmn7bNuP2n7O9p22D657zdTsc3bPYj+dfdYU25tkrzlS0o+zt9xbc6vLrsOycAAAQEMUKwAAQF4vsr1p3aPhsYTtr0r6nqRrJB0k6fOS3ivpF7ZfVPfywyTtJ+kYSZ+RtI+ksyRdJOkuSR+SdKWkr9o+oOYzxki6RdIbJB2Xfc7tkn5u+6BB0rpI0hxJkyRdLOkkSUdkz10h6eTs/x+RtFf2WNxiuQAAgIJxGwgAAMjr7kGmXSHpA/UTs94In5d0UkT01Uy/R9JvJR2oVCzo95yk3oh4Pnvd65SKD/8RESdn066XdLBSIeHK7H1TJVnSOyLi8WzaVVkRo0/SpXWpfTMi+ntPXGN7P0mHSPpxRDxqe372HLe8AABQIooVAAAgr4O1/gCbyxq8dn+lHpxn26493rhF0gpJEzSwWHF1f6Ei018Yuap/QkQ8b/s+SWNqXvdepcLF8rrPuUrS121vFREraqZfUZfnnyS9scE8AACAklCsAAAAef2pjd4GO2T/Nnr9y+r+frLu79VNpvfUfc7h2aPR59QWK+p/4eO5ungAAKACKFYAAIDh0H9LxkStX3Cofb6Iz/mNpFMaPL+ooM8BAABdRLECAAAMh6slvSBpbERcPYyf80ulQTDnRsQzBcR7Lvt3VAGxAABAhyhWAACAvPa0vd0g02+tnxAR822fIum7tveQdIOkZ5XGm9hf0hkRcV0BOU2R9F+Sfm37u5Lul7SNpNdJ2i0iJrcZb17276dtnylpjaS7ImJ1k/cAAICCUawAAAB5Xdhg+vaDTYyIL9v+s6RPZ4+QtFDStZLuLSKhiHjQ9luUfhVkepbL40oDZ57ZQbw/2J4q6WhJn1AaJPSVSkUQAADQJY6IsnMAAAAAAABYZ5OyEwAAAAAAAKhFsQIAAAAAAFQKxQoAAAAAAFApFCsAAAAAAEClUKwAAAAAAACVQrECAAAAAABUCsUKAAAAAABQKRQrAAAAAABApfwvgXIbVFfc6P4AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Plot the van der Walls radii for all elements of interest'''\n",
"\n",
"from matplotlib import pyplot as plt # import the pyplot function of the matplotlib package\n",
"(fig, ax) = plt.subplots(figsize=(18,6))\n",
"\n",
"ax.plot(range(len(atoms)), [atm.vdw_radius for atm in atoms], \n",
" '-.',color='black', marker='*',markersize=12)\n",
"\n",
"plt.xticks(range(0,len(atoms),2),[atm.symbol for atm in atoms][::2],rotation=0,fontsize=12)\n",
"ax.set_ylabel('vdW radius [pm]',fontsize=16)\n",
"ax.set_xlabel('Element',fontsize=16)\n",
"ax.xaxis.grid(True,linestyle='-',which='major',color='lightgrey',alpha=0.9)\n",
"\n",
"# create a twin y axis to reconfigure the top x axis\n",
"ay1 = ax.twiny()\n",
"ay1.set_xlim(ax.get_xlim())\n",
"#ay1.xaxis.tick_top()\n",
"ay1.set_xticks([])\n",
"ay1.set_xticks(range(1,len(atoms),2),[atm.symbol for atm in atoms][1::2])\n",
"ay1.set_xticklabels([atm.symbol for atm in atoms][1::2],minor=True,fontsize=12)\n",
"#ax1.spines[\"top\"].set_position((\"axes\", 2))\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Nuclei relative sizes\n",
"Let's compute the sizes of nuclei relative to the atom they are in.\n",
"Using the [IAEA search engine](https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html), \n",
"+ expand the `More fields` of the `NUCLIDE Ground State` section, \n",
"+ set the `Z range` to 1, 96\n",
"+ check the nuclear radius `R` button\n",
"+ click on the `Search` button\n",
"+ wait for the results window to appear (list of 3001 nuclides)\n",
"+ check the `You requested:` line to be ` 1 ≤ Z ≤96 ≤ R ≤ `\n",
"+ click on the `CSV` download button to save a table file\n",
"+ rename the file to `nuclides-z1-to-z96.csv`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''View the raw data'''\n",
"\n",
"!cat data/nuclides-z1-to-z96.csv"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"code_folding": [
1
]
},
"outputs": [],
"source": [
"'''Function to read the CSV data'''\n",
"\n",
"def read_csv(file_name):\n",
" '''\n",
" Read csv data into a `pandas` data frame (table).\n",
" \n",
" Parameters\n",
" ----------\n",
" file_name: str, required\n",
" File name and its path relative to this notebook.\n",
" \n",
" Returns\n",
" -------\n",
" df: pandas.df\n",
" `Pandas` data frame (table).\n",
"\n",
" Examples\n",
" --------\n",
" '''\n",
" import pandas as pd\n",
"\n",
" # read the data into a data frame (or table)\n",
" df = pd.read_csv(file_name)\n",
"\n",
" #print(df) # uncomment for a screen output of the data\n",
"\n",
" # plot the data directly from Pandas (quick check)\n",
" ax = df.plot(x='Z', y='radius',legend=False,\n",
" title='Nuclides Radii', fontsize=14, figsize=(18,6))\n",
" ax.set_ylabel('$r$ [fm]',fontsize=16)\n",
" ax.set_xlabel('Z',fontsize=16)\n",
" plt.xticks(fontsize=16)\n",
" plt.yticks(fontsize=16)\n",
" ax.grid()\n",
" \n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAGNCAYAAAA8Qys4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXmV9P/73JwsJIWGHsG+CbAVEIi51CWrrgrvY2rrWKtVqbe3Pft2rtXWptWoXrdLar3WpWLWi1l0xYhUUUBGQRZBgWMIOIStZ7t8fM/EbA5lMZibPeWae1+u6cs3kOfdzP2+87mOS95xzn2qtBQAAAKBr07oOAAAAAJAoKQAAAIA+oaQAAAAA+oKSAgAAAOgLSgoAAACgLygpAAAAgL6gpAAAxqSqFlfVY4e/f31V/dtoxvarLf33VNVBVbW8qqZ3mxAApr4ZXQcAALafqlqcZMckh7XWVgy/9uIkz22tLZyoz2mtvX2i5hqt4f+2+UnWJ1me5KtJXtFaWz7euTf972mt/TLJ3PHOCQBsnSspAGDqm5HkT7sOsZ08ubU2N8kDkpyY5HUd5wEAxkFJAQBT398leXVV7br5gao6pKpaVc3Y5LVFw1dbbPz9S6rqsqq6u6p+VlUPvI953lJVH9/k98+rqmur6raqesNmY6dV1Wur6urh4/9VVbsPH5tdVR8ffv3Oqjq/quZv7T+wtbY0ydcyVFZs/JxTq+rHVbWsqpZU1Vs2yzFSxl/999zX/0YAwPahpACAqe+CJIuSvHpb31hVz0ryliTPT7JzkqckuW0r7zkmyb8keV6S/ZLskeSATYa8MsnTkjxq+PgdSd4/fOwFSXZJcuDw+16aZNUoch6Q5AlJrtrk5RXDuXdNcmqSl1XV00aZEQDogJICAAbDXyb5k6raaxvf9+Ik72qtnd+GXNVau3Yr7zktyf+01s5pra1J8qYkGzY5/kdJ3tBau274+FuSnDZ8pcLaDBUGh7fW1rfWLmytLRvhs86qqruTLElyc5I3bzzQWlvUWru4tbahtfbTJJ/MUDEymowAQAeUFAAwAFprlyT5nySv3ca3Hpjk6m18z34ZKg02fvaK/PrVFwcn+dzw7Rx3JrksQ5tfzk/ysQzdtnFmVd1QVe+qqpkjfNbTWmvzkixMclSSPTceqKoHV9W3q+qWqrorQ1dlbDy+tYwAQAeUFAAwON6c5CVJ9t/ktRXDX+ds8to+m3y/JMn9tvFzbsxQuZEkqao5Gbo6YtM5n9Ba23WTX7Nba9e31ta21v6qtXZMkocleVKGbtkYUWvtO0k+kuTdm7z8n0m+kOTA1touST6YpEaZEQDogJICAAZEa+2qJJ/K0J4QG1+7Jcn1SZ5bVdOr6kX59VLi3zK06eZJNeTwqjp4Kx/1mSRPqqqHV9UOSd6aX/87xweTvG3jPFW1V1U9dfj7U6rquKqanmRZhm7/WD/K/8T3Jfmtqtq4eea8JLe31lZX1clJfn8bMgIAHfCHMQAMlrcm2Wmz116S5C8ydLvDsUm+v/FAa+3TSd6WoasS7k5yVpLdR/qA1tqlSV4+/J4bM7Qx5nWbDPmHDF3h8PXh/STOS/Lg4WP7ZKhAWJah20C+k+TjGYXhwuWjGdpfIkn+OMlbhz/jL5P81zZkBAA6UK21rjMAAAAAuJICAAAA6A9KCgAAAKAvKCkAAACAvqCkAAAAAPqCkgIAAADoCzO6DjBWe+65ZzvkkEO6jvErK1asyE47bf5ENxgM1j+DzPpn0DkHGGTWP4NspPV/4YUX3tpa22ss807akuKQQw7JBRdc0HWMX1m0aFEWLlzYdQzohPXPILP+GXTOAQaZ9c8gG2n9V9W1Y53X7R4AAABAX+i8pKiqJ1bVOVW1vKqWVdUFVfXornMBAAAAvdVpSVFVf5Tk80kuTPL0JM9K8ukkc7rMBQAAAPReZ3tSVNUhSd6X5C9aa+/b5NDXOgkEAAAAdKrLKylelGRDkg92mAEAAADoE12WFA9PcnmSZ1fV1VW1rqquqqqXd5gJAAAA6EiXjyDdb/jX3yV5fZKrM7QnxT9X1YzW2j90mA0AAADosWqtdfPBVVcmOSLJM1tr/73J619JcmKSfdtm4arq9CSnJ8n8+fNPOvPMM3uYeGTLly/P3Llzu44BnbD+GWTWP4POOcAgs/4ZZCOt/1NOOeXC1tqCsczbZUlxbpKHJNm5tXb3Jq+/Ksl7kuzfWrthS+9fsGBBu+CCC7Z/0FFatGhRFi5c2HUM6IT1zyCz/hl0zgEGmfXPIBtp/VfVmEuKLvekuHQLr9fw1w29CgIAAAB0r8uS4nPDXx+32euPS3Jda21pj/MAAAAAHepy48wvJ/l2kg9V1Z5JfpHktCS/neQPOswFAAAAdKCzkqK11qrqaUnekeSvkuyWoUeSPqe19p9d5QIAAAC60eXtHmmtLWutvby1Nr+1tkNr7XgFBQAAAJPRWT++Pke/6atZcvvKrqNMWp2WFAAAADBVrNvQsmrt+gmZ665Va/PRcxfnF7csn5D5JgslBQAAAAPrv85fkjeedXHXMe7ltuVr8pefvzQXX39X11F6SkkBAADAwPrJdXfmq5fcNCFzPfL+e+ZTpz8ke82bNe65Zk6flgN33zE7zpw+Ackmjy6f7gEAAABTxt7zZmfvebMnZK4Dd5+T7/6fR0/IXJOJkgIAAICB9ccL75fnPvjgrmMwTEkBAADApLLk9pWZMb2y7y47jnuuA3abk+w2AaGYEPakAAAAYLtau35Dzjjn6vxkyZ0TMt9LPnpB3vz5SydkLvqLkgIAAIAx++yF1+X9375qxDHr1re8/cuX57xf3NajVExWSgoAAADGbNGVt+SzF17X08/cZceZmTd7Zk8/k96wJwUAAACTyqf+6KFdR2A7cSUFAAAA93LpDXflRR85P1fedHfXURggSgoAAADu5c6Va3P25TfnzpVru47CAFFSAAAAAH3BnhQAAACM2V8+6Zjcs37DiGNmzZiWr7/qkdlz7qwepWKyUlIAAABwLw+73x65+u1PzLQaedxe87ZePEybVrn//HkTlIypzO0eAAAA3EtVZfq0StXILcUNd67KNbeuGHHM6rXr88x/+X7O+vH1ExmRKUhJAQAAwL38ZMmdOfUfv5tLrr9rxHHv+Mrl+cOPnD/imNaSC6+9I0uXrZ7IiExBSgoAAIAp4pwrb8lbv/izrN/Qxj3XijXrcukNy7LynvUTkAxGR0kBAADQ525dviaPfNe38/mfjHy7xEVL7sy/f++atDb+kmK09p43KwfsPmfEMbNnTsuFb3xsXvDQQ3oTiknLxpkAAAAdeudXLs/yNWvzN087botj1qzbkF/evjLX3bGqZ7l22XFmHnrYHpk3e+R/Nr7pScdsda6qyh6e7MEoKCkAAAA6dPnSZbljxT0jjtl4ZcTWbuPYeceZOWgrVzWM1m/sv0s+efpDJmQuGC0lBQAAwHaweu36LF+zLrvuODMzpo/vTvsdht+/x9wdRhz3gocdkhc87JBxfRZ0yZ4UAAAA2+ij5y7OZbeNvKHkoituzoK/+WZ+fvPy3oSCKUBJAQAAsI3e/bUr8qOb14045hs/uzlJcuVNd/ciEkwJSgoAAIBhNy1bncuXLpuQuX7rmL2TJPefP2/cc+01b1Yue+vj8zsLDhz3XNDPlBQAAMCUt3zNunz1kqW58a6Rn47x4f+9Jk9///e3Ot+y1evyv9ePfCXFRKqq7LjD9Mwc594W0O+scAAAYMpbetfqvPTjF+b8xXeMOO6Mc36RVWtH3mtio1W96yhgYCgpAABgitqwoWXd+g2/enzlZPOln96Yh//t2Vu9+gGYOpQUAAAwRX3k+4tz+Bu+kmWT9Ef+K+5Zl+vuWJX1G0YuWQ557Zdy9Ju+OiGf+TsLDpiQeZLkgQfvlo/8wYNy4O5zJmxOmOqUFAAAwIT51mU35d+++4sJmeuofeblpY+6X+bNmrnVsaO9RWNr3nXaCVn8zlNHNfbI3Ub+59Te82Zn4ZF7Z+6sGRMRDQaCswUAAAbc1y5dmnmzZuRhh+857rm+edlN+dZlN+fFjzhs3HMdf8CuOf6AXbc67g9+85Ctbii5844z8nsnH5SDJ+iqhsXvPDWLFi2akLle+4Sjsm795LwlByaakgIAAAbce75+ZQ7dc6cJKSlOPnT37Lzj1q98mEhvfvKxWx2z97zZecczjutBmm131D47dx0B+oaSAgAAJpmV96zLb73nnLz8lMPz+w8+qOs4v+bpJ07cng7A4LEnBQAATDKtJdffuSrL16ztOgrAhFJSAAAAAH3B7R4AANADi29dkf/+0XX53ZMPyv677th1nF/zvIcenF3n9HYfCYD7oqQAAIAeWHLHyvzj2Vflkfffa8SS4pa712Tt+g3Zr4dFxnMfcnDPPgtgJG73AACAHthlx5l5yGG7Z+7skX9O+JYvXprnffgHPUoF0F+UFAAAsAX/8M2f55DXfikbNrRxz3X8AbvmzNMf6nGTACNwuwcAAIzTNbeuyJwdpmf+zrO7jvJrnvOQg/LMkw7IvFn+2g9MDq6kAACAcXrOv56Xd3/tiq5j3MusGdOzy44zM21adR0FYFSUFAAATCnX3bEyv7xtZdcxABgDJQUAAJPCeb+4Lc8+49wsuX3kAuINn7skf3Lmj3uUCoCJpKQAAGBSuH3FPTnvF7dn5T3ru44CwHaipAAAoHPX37kqd668p+sYAHTMNr8AAHTu8e87J6eddEDe/ORjxz3Xix9xaO5Zt2ECUgHQa52VFFW1MMm37+PQXa21XXscBwCAKeIRR+zVdYRxWXL7ylx9y4quYwB0oh+upHhlkvM3+f26roIAAEDXDtx9TlasGfmvxDOnT8tbnnxMFhyye49SAfRGP5QUl7XWzus6BAAAg+OedRtyyQ135cDd5mSvebO6jvNrDtp9TjZsaCOO2WHGtLzwNw/tUSKA3rFxJgAAA+f2FffkGR/4fr552U0jjpuzw/TsObe3JcZrHn9U/uW5J/X0MwH6RT9cSfGJqtozyZ1Jvpbkta21X3acCQAA8pJHHpaXPPKwrY57/3MemJ13nNmDRABTW5clxV1J/j7Jd5IsS3JiktcnObeqTmyt3dxhNgAAGLUTD9qt6wgAU0K1NvL9br1UVQ9M8sMk72ytvfE+jp+e5PQkmT9//klnnnlmjxNu2fLlyzN37tyuY0AnrH8GmfXPoFq3oeWuNS25Z2X22GX858DLvrkiD99/Rp5z9JZvrTjrqnty1lVr838eNDvH7DF9i+P+64p7snp9y/OP2fJcd6zekFctWpUXHrtDFh7oCgjGxp8BDLKR1v8pp5xyYWttwVjm7YfbPX6ltfajqroyyYO2cPyMJGckyYIFC9rChQt7mG5kixYtSj/lgV6y/hlk1j+D6qqb785j33NOXnbC7DzzqQvHPd+qr34ply2bOeL59JkbfpTkxhxw+NFZeMJ+Wxz3lVt/mrZ6bRYu3PK+DkvvWp0s+laOPPLILDz5oHEkZ5D5M4BBtr3Wfz9unFlJ+ufyDgCADv3916/Is884t+sYPXHdHatGPP6MB+6fJDl5K4/d/NvTjrfxJMAk1VclRVUtSHL/JD/oOgsAwPb0i1uW548/cWEuuf6uEcfdvGxNFt+6skepunPUPvPyjmccN+KYRx81P4vfeWr22WV2j1IB0Gud3e5RVZ9Ick2SH2XoyR4nJnldkuuT/FNXuQAAxutj5y7O7jvNyqnH77vFMXeuWpsvX7w0v7PgwN4Fm0BLhq96+Nlt6ydkvq/+2SMnZB4AJrcu96S4JMnvJfmTJHOSLE3y30ne3Fq7tcNcAADj8tFzr80R8+eOWFJMdvsOX82w147VcZKx2XXOzPzb8xfkqH3ndR0FgE10VlK01t6R5B1dfT4AAGN31D4758I3PjYXXzA598uYPXN6HnvM/K5jALCZvtqTAgCAsfnPH/wyP73uzp5+5h5zt/yITwAYi756BCkAAGPz+s9dnCRZ/M5TO04CAGOnpAAAmAIedMhueeVjjug6BgCMi5ICAGAK+PRLH9Z1BAAYNyUFAMAE+/nNy/Pzm5ePOOaedRuSJKvXbhhx3F7zZuWgPeZMWDYA6GdKCgCADlx6w7IkyQ+uuS2P/419tjju1Y87sleRAKBznu4BADDBjth7bp543JaLhyR52gP2S5K88GGH9CARAEwOrqQAAJhgX3rlI1I18pg95s7yJA4A2IwrKQCAgbfynnV56vu/l8//5PoJmW+HGdMyc7q/ZgHAtvKnJwAwKf34l3fkWR/8fq5Yeve451q/oeWiJXfmlrvXTEAyAGCslBQAwKS0bPW6nL/4jixfs27cc02fVnnEEXtm/113nIBkAMBY2ZMCAOg7b/nCpTlyn3n5vZMP6snnzdlhRj72hw/uyWcBAFvmSgoAoO987dKl+fEv7+g6BgDQY0oKAAAAoC8oKQCAnvmv85fktH/5ftcxAIA+paQAAHrm+jtX5YJr3cYBANw3JQUAAADQF5QUAAAAQF9QUgBAH7h79dp8/dKlWXrX6q6jAAB0RkkBAGO0bPXa3LRiQ9at3zDuuW68a3VO/9iFubAP92v48S/vyAWLbx9xTGvtV7965aDd5+QVpxyefXaZ3bPPBAC2LyUFAIzRl396Y17z3VW5ZfmarqNsV+/5xpV525cvG3HM0mWrc+jrvpxPnb+kR6mSQ/fcKa9+3JHZf9cde/aZAMD2paQAAAAA+sKMrgMAQL9preWh7zg7L37EoXnxIw7rOs6YnHPlLdl3l9k5Yv68cc/1iCP2zOq1I9/SMr0qB+y2Y+bMmpi/Wpz7usdMyDwAwOSipABgoFx247LcvuKe/Obhe444bumy1Vm+Zl2PUiW77Dgzz3nwQTlo9zkTMt8ff+JH+d0HHZg3PemYcc91+iPvt9Uxe+88O//7mkeP+7MAgMGmpABgoPzf712T7/781r77Sf38nWfnbU8/rusY293vP/igPObovbuOAQD0KXtSADAl3HDnqrz3G1fm2ttWdB2FEczfeXaOP2DXrmMAAH1KSQHAlHDjXavyD9/6ea69bWXXUcZk/YaWu1evzdoJeJwpAMBkpaQAgD5w9S3Lc9xbvp6vX3rThMz35BP2zfEH7DIhcwEA9Io9KQBgCnrHM47vOgIAwDZzJQUAAADQF5QUAAAAQF9QUgDQ935+0935ZR9uiDl39ozsPacyvWrEcavXrs+adetHHDOtkrmzZmT6tJHnAgCYyuxJAUDfe9knfpQj58/L+5/zwK6j/JonHb9f5t5+ZfbeefaI4559xnnZeceZ+eiLTt7imA0tWb5mXdZvaBMdEwBg0nAlBQCM0acvWJI/+saKLL1r9YTMt5ULMgAApjxXUgDAGF118/KsWZ+suGfdiON+suTOrc51//nzcs07Tp2oaAAAk5KSAoCBsmLN+ty5cu1Wxz3lhP1y5Px5I475wTW3J0nuWjXyfH/48EOzy44zRx8SAGBAud0DgIHypYtvzKq1I29i2VryhYtuyNu/ctmI4/7yycckSU44YNcRx73pScfklY85YtuCAgAMICUFAFPC7SuGrma45e41455r494QM6eP/MfkAw/aLR95/E6eyAEAMEHc7gHAlHDNrcuTJJcvXTbuuaoq//MnD8+he+407rkAABg9JQUAA+Vrf/bILL5txVbH/cb+u/QgDQAAm3K7BwB976qbl+dLF9844pjHH7tvkuTpJx4w4rgj95mXxx27z4RlAwBg4riSAoC+d9ieO+XEg3YbccxBe8zJ4nd6hCcAwGSmpABgwq1bvyEXX39X9t91x+y98+xxz3f2qxeOPxQAAH3P7R4ATLiVa9fn6R/4fr5w0Q1dRwEAYBJxJQUAE272jOn5h2c/IMfuZ/NJAABGT0kBwITbYca0PPUB+3cdAwCASaZvbveoqq9WVauqv+k6C8AgunX5mnzzZzflrpVru44CAMCA6ouSoqp+L8kJXecAGGQXX39XXvzRC/KLW5d3HQUAgAHVeUlRVbsmeW+SP+86CwAAANCdzkuKJO9Kcmlr7ZNdBwEYZAsO3i1f+dNH5Kh9du46CgAAA6rTjTOr6uFJnh+3egB0bt7smTl635ldxwAAYIB1diVFVc1M8qEk726tXdFVDgAAAKA/VGutmw+uemOSFyU5trW2avi1luRtrbU3buE9pyc5PUnmz59/0plnntmruFu1fPnyzJ07t+sY0Anrn0Fm/TPonAMMMuufQTbS+j/llFMubK0tGMu8ndzuUVUHJXlDkhcnmVVVszY5PGt4M827W2vrN31fa+2MJGckyYIFC9rChQt7lHjrFi1alH7KA71k/Xfng9+5Oh/+32ty/hse23WUgWX9M+icAwwy659Btr3Wf1e3exyWZHaSjye5Y5NfSfLq4e+P6yYawOSxcs263Lp8TdcxAABgQnS1ceZPkpxyH69/O0PFxYeTXNXTRACT0AkH7prnPeTgrmMAAMCE6KSkaK3dmWTR5q9XVZJc21q71zEA7u0xR8/PY46e33UMAACYEJ093QMAAABgU13d7nGfWmvVdQYAAACgG66kAAAAAPqCkgKgxz7/k+vz2Quv6zoGAAD0HSUFQI99+oLr8p8//GXXMQAAoO8oKQAAAIC+0FcbZwIMgpMO3i1r12/oOgYAAPQdJQXAKLz+cxfnoYftkSefsN+453rVb91/AhIBAMDU43YPgFE468fX56fX3dl1DAAAmNKUFAAAAEBf2OrtHlU1li3oW5JTW2uXjOG9AD2zfM26rFm7PnvMndV1FAAAGHij2ZPigCRfTnLLKOecluS5SXYYayiAXvmNN38tSbL4naeOOO6Hb3hsZkyrXkQCAICBNdqNM9/aWvvhaAZW1Ywkzxt7JIDxu3nZ6vzrd3+RZzzwgBy9787jnm/uLPsMAwDA9jaaPSnelGTJaCdsra0bfs/1Yw0FMF63r7wn//rda7L41hVdRwEAAEZpqz8abK29bVsnHct7ALpQlbTWdQoAACAZ/e0eAFPSBW94bK67Y1XXMQAAgIyxpKiqA5McmGT25sdaa2ePNxQwmNomlzRUjW+Tyj12mpVXPvrw3G/vuSOPmzvLkz0AAKBPbFNJUVWHJflEkpM3vjT8tQ1/35JMn7B0wED55A+X5PWfuzg/eP1jMn/ne3Wg22SvebPy57995AQlAwAAemFbr6T4tyQHJfmzJJcnuWfCEwEAAAADaVtLigcleWFr7bPbIwwwNW3Y0PLW//lZFh65VxYeuXfXcQAAgD41mkeQbuq6uHoCGIOPfH9xLlpy14hjZs2Ylt132iHj3I4CAACYpLb1Soq3J3lNVZ3dWluxPQIBg+uZJx2QZ550QNcxAACAjmxTSdFa+1hVHZVkcVWdl+SOew9pL5iwdEDf+86Vt+R/rr4nCxd2nQQAAJjstvXpHi9M8rok65M8MPe+9aNt/h5ganvBv/8wSfLurYx72gP2y5H7zNv+gQAAgElrW2/3+Kskn0vyh621O7dDHmAKmjat8r5nn9h1DAAAoM9t68aZeyT5gIICAAAAmGjbWlL8b5Kjt0cQoHcuX7os19428t6337vq1hzy2i/l65cuHXHcvrvMnshoAADAANvWkuJPk7ykqp5TVXtU1bTNf22PkMDE+uNP/Ch/97UrRhxz5U13J0muWHr3iOPe/vTj8vxjdpiwbAAAwODa1j0pLhv++tEtHG9jmBPoQ7+x/y5JkhMP2m3EcacctXdq6cxeRAIAAKa4bS0U3hpP8ICBcPDuc/LXTz02h+21U9dRAACAAbFNJUVr7S3bKQfQZ/beeXae99BDuo4BAAAMkK3uIVFVt1fVA4e///eqOnT7xwIAAAAGzWg2utwpyazh71+YZK/tlgboiV/csiLnXn1b1zEAAAB+zWhu97g2Q0/02FhUnFhVW3zmYGvtnAlJBmxXt624p+sIAAAAv2Y0JcU7k3woyQsytGnmB7YwroaPT5+YaMD28sVXPDy7zvFEDgAAoL9staRorf17VX0lyf2TfDvJK/P/HkUKTELHHbBL1xEAAADuZVRP92it3Zjkxqr6jyRfaq1ds31jAQAAAINmWx9B+gfbKwgAAAAw2EbzCNKzq+qo0U5YVdOG33PE+KIBAAAAg2Q0jyBdmGTeNsxZY3gPAAAAMOBGe7vHWVW1ZhvmbWMJAwAAAAyu0ZQU/zHGuW8d4/sAAACAATSaR5DaLBMAAADY7kazJwVMektuX5n7vf7L+cyF13UdBQAAgC1QUjAw1m9oac12KQAAAP1KSQHbyaIrbs6Rb/xKLlpyZ9dRAAAAJoVRlxRVNaOqTq2q3bZnIJgqFl1xS9as25CfXqekAAAAGI1RlxSttXVJPpfkQdsvDkwdr3j04UmSZy04sOMkAAAAk8O23u5xVZK5E/HBVfW4qjq7qpZW1Zqquq6q/quqjpmI+aFre86dlcXvPDWzZ07vOgoAAMCksK0lxT8meWVV1QR89u5JLkzyiiS/neR1SY5Ncl5VHTwB88M2u/qW5fnWZTd1HQMAAGAgbWtJcXKSw5N8s6pOHM8Ht9Y+2Vr7i9baZ1pr32mtfSzJM5LMS3LaeOZmsJxz5S1ZdMXNEzLXWT++Pi/56AUTMhcAAADbZsY2jj8pyV5J9ktyQVXdkOT8DF0R8aMkP2qtjefH0LcNf107jjkYMB865+qsWbshC4/ce9xzfWDR1dngKaUAAACd2KYrKVprJ2RoT4qTkrwkyVlJ9k7ymiRfSnLDtgaoqulVtUNVHZHkQ0mWJjlzW+eBifC8h7jTCAAAoCvbeiVFWmtrk/x4+FeSZHiPivsnecAYMvwgQ6VHMrQx56NbaxNz7T5so7c85di85SnHdh0DAABgIFVr3V7bXlVHJ9k5yWFJXp1kfpKHt9YW38fY05OcniTz588/6cwz++eCi+XLl2fu3Al58Anb6F3nr8ra9ckbHrLjFsfcsnJD/uKcVfnD39ghjzhgZg/TDQbrn0Fm/TPonAMMMuufQTbS+j/llFMubK0tGMu823wlxURrrV02/O0PquorSRYneW2Sl97H2DOSnJEkCxYsaAsXLuxRyq1btGhR+inPIPnXq84b2pNi4cO2OGYQTco6AAASJElEQVTJ7SuTc76do446KgsXHNjDdIPB+meQWf8MOucAg8z6Z5Btr/XfeUmxqdbanVV1VYaeIAITZq95s/KZlz40B++xU9dRAAAA2IK+Kimqan6So5J8oussTB7fu+q2rY6ZPXN6Fhyyew/SAAAAMFadlRRV9bkMPbb0p0mWZWjjzVclWZfk77vKBQAAAHSjyyspzkvyO0n+vyQ7JFmSZFGSd9zXppkAAADA1NZZSdFa+9skf9vV5zN1fPgFC7J2fbdPqQEAAGD8+mpPChiLxxw9v+sIAAAATIBpXQcAAAAASJQUAAAAQJ9QUgAAAAB9QUkBAAAA9AUlBZ147zeuzLevuLnrGAAAAPQRJQWdOOOcX+Tcq2/rOgYAAAB9REkBAAAA9AUlBQAAANAXlBR0YtXa9blp2equYwAAANBHlBR05vM/uaHrCAAAAPSRGV0HYDAdtudOednC+3UdAwAAgD6ipKATZ796YdcRAAAA6DNu9wAAAAD6gpICAAAA6AtKCibUmT/8Zf78Uz/pOgYAAACTkJJiElq/oeUlH70g//PT/ns6xuVL7863Lr+56xgAAABMQkqKSai1lm/87KZcc8uKrqMAAADAhFFSAAAAAH3BI0iZUCccuEvWbdjQdQwAAAAmIVdSTGEXLL49b/3iz3L36rU9+8ynn3hA/uZpx/Xs8wAAAJg6lBRT2OVL786/f++arFq7ftxz3XjXqrzxrItz6Q13TUAyAAAAuDclBaNyx4q1+fh5v8yS21d1HQUAAIApSkkxhd20bHWS5J51498j4ro7ViZJfrzkjnHPBQAAAPdFSTGFffOym5Mkd60a/54Us2ZOH/ccAAAAMBJP9yDX3rYi06py4O5ztjjmUfffK3/91GPz+w8+uIfJAAAAGCSupCB/8skf5y8/f8lWxz3voYdk+rTqQSIAAAAGkZICAAAA6Atu9yC/fcz87DTLUgAAAKBb/mVKXvHoI7qOAAAAAG73mMo2bh8xrewjAQAAQP9TUkxh7zrt+MzfeVaO2mde11EAAABgq9zuMYUdu98u+cHrH9t1DAAAABgVV1IAAAAAfUFJAQAAAPQFJQUAAADQF5QUAAAAQF9QUgAAAAB9wdM9JqHp0yrnve4x2WnW9K6jAAAAwIRRUkxCVZV9dpnddQwAAACYUG73AAAAAPqCkgIAAADoC0qKHvrED65Na63rGAAAANCXlBQ98ukLluQNn7skHz332q6jAAAAQF9SUvTIzXevSZLctGx1x0kAAACgPykpAAAAgL7QWUlRVadV1Wer6tqqWlVVV1TVO6pqXleZAAAAgO50eSXFq5OsT/L6JI9P8i9JXpbkG1XlCg8AAAAYMDM6/Ownt9Zu2eT336mq25P8R5KFSc7uJBUAAADQic6uWNisoNjo/OGv+/cyCwAAANC9frut4lHDXy/rNAUAAADQc31TUlTV/knemuSbrbULus4DAAAA9Fa11rrOkKqam2RRkv2SnNxau24L405PcnqSzJ8//6QzzzyzZxm3Zvny5Zk7d+4Wj3/x6nvy2Z+vzZMOm5nT7r9DD5PB9re19Q9TmfXPoHMOMMisfwbZSOv/lFNOubC1tmAs83a5cWaSpKpmJ/lCksOSPGpLBUWStNbOSHJGkixYsKAtXLiwJxlHY9GiRRkpz6XtquTnV+Sggw7KwoVHbXHc6/774vzo2jvytVc9cjukhO1ja+sfpjLrn0HnHGCQWf8Msu21/jstKapqZpLPJjk5yWNbaxd3macfrFm3PivuWdd1DAAAAOi5zkqKqpqW5BNJHpPk1NbaeV1lAQAAALrX5ZUU70/yrCRvS7Kiqh6yybHrRrrtAwAAAJh6uny6xxOGv74hybmb/XpxV6EAAACAbnR2JUVr7ZCuPhsAAADoP11eSQEAAADwK0oKAAAAoC8oKQAAAIC+oKQAAAAA+oKSAgAAAOgLSgoAAACgLygpAAAAgL6gpOiRubNmJEnmzZ7ZcRIAAADoT0qKHjl6352TJMcfsEvHSQAAAKA/KSkAAACAvqCkAAAAAPqCkgIAAADoCzO6DsCvO2bfnTNzmu4IAACAwaOk6DMvfsRhXUcAAACATviRPQAAANAXlBQAAABAX1BSAAAAAH1BSQEAAAD0BSUFAAAA0BeUFAAAAEBfUFIAAAAAfUFJAQAAAPQFJQUAAADQF5QUAAAAQF9QUgAAAAB9QUkBAAAA9AUlBQAAANAXlBQAAABAX1BSAAAAAH1BSQEAAAD0BSUFAAAA0BeUFAAAAEBfUFIAAAAAfUFJAQAAAPQFJQUAAADQF5QUAAAAQF9QUgAAAAB9QUkBAAAA9AUlBQAAANAXlBQAAABAX1BSAAAAAH1BSQEAAAD0BSUFAAAA0BeUFAAAAEBfUFIAAAAAfUFJAQAAAPSFzkqKqjqgqv6pqs6tqpVV1arqkK7yAAAAAN3q8kqKw5P8TpI7kny3wxwAAABAH+iypDintTa/tfbEJJ/uMAcAAADQBzorKVprG7r6bAAAAKD/2DgTAAAA6AtKCgAAAKAvzOg6wLaoqtOTnJ4k8+fPz6JFi7oNtInly5ePmOeK29cnSS666KKsvW56j1JBb2xt/cNUZv0z6JwDDDLrn0G2vdb/pCopWmtnJDkjSRYsWNAWLlzYbaBNLFq0KCPlmXPN7ckPz80JJ5yQ3zx8z94Fgx7Y2vqHqcz6Z9A5Bxhk1j+DbHutf7d7AAAAAH1BSQEAAAD0hU5v96iq04a/PWn46xOq6pYkt7TWvtNRLAAAAKADXe9J8enNfv+B4a/fSbKwt1EAAACALnVaUrTWqsvPBwAAAPqHPSl6ZOcdZ+QRR+yZXXac2XUUAAAA6Etd3+4xMI7aZ+d87A8f3HUMAAAA6FuupAAAAAD6gpICAAAA6AtKCgAAAKAvKCkAAACAvqCkAAAAAPqCkgIAAADoC0oKAAAAoC8oKQAAAIC+oKQAAAAA+oKSAgAAAOgLSgoAAACgLygpAAAAgL6gpAAAAAD6QrXWus4wJlV1S5Jru86xiT2T3Np1COiI9c8gs/4ZdM4BBpn1zyAbaf0f3FrbayyTTtqSot9U1QWttQVd54AuWP8MMuufQeccYJBZ/wyy7bX+3e4BAAAA9AUlBQAAANAXlBQT54yuA0CHrH8GmfXPoHMOMMisfwbZdln/9qQAAAAA+oIrKQAAAIC+oKQYh6o6sKo+U1V3VdWyqvrvqjqo61wwkarqtKr6bFVdW1WrquqKqnpHVc3bbNxuVfVvVXVrVa2oqm9W1XFd5Ybtpaq+WlWtqv5ms9edA0xZVfXEqjqnqpYP/53ngqp69CbHrX+mpKr6zar6elXdPLz2f1RVL9pszOyq+ruqunH470rnVtUju8oMY1FVB1TVPw2v35XDf9c55D7GjWq9V9W0qnpdVS2uqtVVdVFVPXM0WZQUY1RVc5KcneSoJC9I8rwkRyT5dlXt1GU2mGCvTrI+yeuTPD7JvyR5WZJvVNW0JKmqSvKF4eN/kuSZSWZm6Hw4oIvQsD1U1e8lOeE+XncOMGVV1R8l+XySC5M8Pcmzknw6yZzh49Y/U1JVHZ/kmxlazy/J0No+P8mHq+plmwz98PDxv0zypCQ3JvlaVT2gt4lhXA5P8jtJ7kjy3RHGjXa9/3WStyT55yRPSHJekk9X1RO3FsSeFGNUVX+a5D1JjmytXTX82qFJfp7k/7TW3tNlPpgoVbVXa+2WzV57fpL/SPKY1trZVfXUJGcleXRr7dvDY3ZJck2Sj7fWXtnr3DDRqmrXJJcneVWS/0zyttbaG4ePOQeYkoZ/inZZkte11t63hTHWP1NSVb09Qz+s2b21tnyT189L0lprD62qE5L8JMmLWmv/d/j4jCSXJrmitfaUDqLDNquqaa21DcPfvzjJvyY5tLW2eJMxo1rvVbV3kiVJ3tlae/Mm7/9Wkr1aa8ePlMWVFGP3lCTnbSwokqS1dk2S7yV5amepYIJtXlAMO3/46/7DX5+S5IaNfzkdft9dSb4Y5wNTx7uSXNpa++R9HHMOMFW9KMmGJB8cYYz1z1S1Q5K1SVZt9vqd+X//jnrK8JhPbTzYWluX5Mwkj6uqWT3ICeO2saDYitGu98dl6Pz5+Gbv/3iS44Z/uL9FSoqxOzbJJffx+qVJjulxFui1Rw1/vWz460jnw0FVNbcnqWA7qaqHJ3l+kj/ewhDnAFPVwzN0BdGzq+rqqlpXVVdV1cs3GWP9M1V9ZPjrP1bVflW1a1W9JMljkrx3+NixSa5pra3c7L2XZugfaYf3JCn0xmjX+7FJ1iS56j7GJVv597KSYux2z9D9Opu7PcluPc4CPVNV+yd5a5JvttYuGH55pPMhcU4wiVXVzCQfSvLu1toVWxjmHGCq2i9De279XZJ3JvntJN9I8s/Dt74m1j9TVGvtkiQLM3RF0PUZWufvT/LS1tqZw8O2tv53384xoZdGu953T3Jnu/feEqM6L2aMOR5Jcl8belTPU0CPDP807PNJ1iX5g00PxfnA1PWaJDsmedsIY5wDTFXTksxL8sLW2n8Pv3b28F4Vr6uqf4z1zxRVVUck+WyGfvr70gzd9vHUJB+sqtWttU/E+mewjHa9j+u8UFKM3R257wZot9x3uwSTWlXNztDu7YcleVRr7bpNDt+eLZ8PiXOCSaqGHiv9hiQvTjJrs3uLZw1vpnl3nANMXbdl6EqKb2z2+tcz9DSPfWP9M3W9PUP33z+ptbZ2+LVvVdUeSf6hqj6ZofV/0H28d+P6v/0+jsFkNdr1fnuS3aqqNruaYlTnhds9xu7SDN1rs7ljkvysx1lguxq+3P2zSU5O8sTW2sWbDRnpfPjlpjtiwyRzWJLZGdro6Y5NfiVDO77fkeS4OAeYui7dwusbfxq2IdY/U9dxSS7apKDY6IdJ9kiyd4bW/6FVNWezMcckuSf3vicfJrPRrvdLk8xKcr/7GJds5d/LSoqx+0KSh1TVYRtfGL708TeHj8GUUFXTknwiQ5tEPbW1dt59DPtCkv2r6lGbvG/nJE+O84HJ7SdJTrmPX8lQcXFKhv5Adg4wVX1u+OvjNnv9cUmua60tjfXP1LU0yQOqaofNXn9wktUZ+mnwF5LMTPKsjQeHH8n4u0m+3lpb06Os0AujXe9fzVBp8ZzN3v/cJJcMPxVzi9zuMXb/muQVST5fVW/M0D03f52h58F+qMtgMMHen6H/I3pbkhVV9ZBNjl03fNvHF5Kcm+TjVfUXGfrp8usy9JO2d/U4L0yY1tqdSRZt/npVJcm1rbVFw793DjBVfTnJt5N8qKr2TPKLJKdlaAPNjXsTWf9MVf+c5NNJvlhVH8jQnhRPSfJ7Sd7bWrsnyU+q6lNJ3jd85ek1SV6W5NDc+x9o0Neq6rThb08a/vqEqrolyS2tte+01ka13ltrN1fVezO0d9HdSX6UoSLj0RnFo6nr3htuMlrD9yq/N8lvZegP4m8l+bPW2uIuc8FEqqrFSQ7ewuG/aq29ZXjc7kneneRpGbo8/twkf95au6gHMaGnqqoleVtr7Y2bvOYcYEoaviriHRkqJ3bL0CNJ39la+89Nxlj/TElV9YQMbaB8bIbW9tVJzkjyodba+uExGzdX/v0kuya5KMlrNhbZMFkM//3mvnyntbZweMyo1ntVTc9QYf2SJPskuSLJW1trn9lqDiUFAAAA0A/sSQEAAAD0BSUFAAAA0BeUFAAAAEBfUFIAAAAAfUFJAQAAAPQFJQUAAADQF5QUAEDPVVUbxa9Dus4JAPTWjK4DAAAD6aFbeP2gJJ9IclGSG3oXBwDoB9Va6zoDAECqaock301y/yQPbK1d03EkAKDHXEkBAPSL9yQ5OcnTFRQAMJjsSQEAdK6qnp3k5Un+vrV2Vtd5AIBuuN0DAOhUVR2d5IdJfprkUa21dR1HAgA6oqQAADpTVTslOT/JXklObK1d13EkAKBD9qQAALp0RpKjkjxBQQEA2JMCAOhEVb08ye8neVtr7Wtd5wEAuud2DwCg56rqQUn+d/jXb7fW1nccCQDoA0oKAKCnqmq3JD9Osk+S301y0xaG/qy1tqxnwQCAzikpAICeqqqFSb49iqGntNYWbd80AEA/UVIAAAAAfcHGmQAAAEBfUFIAAAAAfUFJAQAAAPQFJQUAAADQF5QUAAAAQF9QUgAAAAB9QUkBAAAA9AUlBQAAANAXlBQAAABAX/j/AeQe7Dp8IUr9AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Import the data as a Pandas table'''\n",
"\n",
"df = read_csv('data/nuclides-z1-to-z96.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**NB:** for all nuclides of interest the sizes vary by a maximum factor of 6 when the Z number vary from 1 to 96.\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's collect the important size data for all nuclides."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"code_folding": [
2,
7,
12
]
},
"outputs": [],
"source": [
"'''Function for creating a nuclide container'''\n",
"\n",
"def get_nuclides( df ):\n",
" '''\n",
" Create a list of named tuple nuclides\n",
" Parameters\n",
" ----------\n",
" df: pandas data frame, required\n",
" Table of data for nuclides.\n",
" \n",
" Returns\n",
" -------\n",
" nuclides: list(namedtuple)\n",
" List of namedtuples. Names: name, Z, A, radius, unc.\n",
"\n",
" Examples\n",
" --------\n",
" '''\n",
" \n",
" nuclides = list()\n",
"\n",
" # design a container data structure\n",
" from collections import namedtuple\n",
" Nuclide = namedtuple('Nuclide', ['name','Z','A','radius','unc'])\n",
"\n",
" # fill in the list of containers\n",
" radius_misses = 0 # counter of nuclides without radius data\n",
" a_max = 0 # maximum A number with radius data present\n",
" z_max = 0 # maximum Z number with radius data present\n",
"\n",
" import pandas as pd\n",
" \n",
" for row in df.itertuples():\n",
" # note row[0] is the index\n",
" if pd.isnull(row[4]):\n",
" radius_misses += 1\n",
" continue\n",
" z = int(row[1])\n",
" n = int(row[2])\n",
" a = z+n\n",
" a_max = max(a,a_max)\n",
" z_max = max(z,z_max)\n",
" symbol = row[3]\n",
" nuc = Nuclide( name=row[3]+'-'+str(z+n), Z=z, A=a, radius=row[4], unc=int(row[5]) )\n",
" \n",
" nuclides.append(nuc)\n",
"\n",
" print('Number of nuclides with radius data = ',len(nuclides))\n",
" print('Number of nuclides without radius data = ',radius_misses)\n",
" print('')\n",
" print('Max Z number with radius data = ',z_max)\n",
" print('Max A number with radius data = ',a_max)\n",
" \n",
" return (nuclides, z_max, a_max)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of nuclides with radius data = 908\n",
"Number of nuclides without radius data = 2146\n",
"\n",
"Max Z number with radius data = 96\n",
"Max A number with radius data = 248\n"
]
}
],
"source": [
"'''Create a list of nuclides'''\n",
"\n",
"(nuclides, z_max, a_max) = get_nuclides( df )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's calculate and plot the geometric cross sectional area of the nuclei."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCgAAAGjCAYAAADuJyRAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X18ZGV5+P/PNSGLCQ+B7Aq26CYoSKVuHxSt1qqLS1tdpSJVWw2rLMVYqF+XauvXNsqDmhZtqUutbE39CShpsVoEV5ZiWV20PlXQtisoX1A2Kz6AZCGwu3E3m9y/P85MdjI7k0ySmUwePm9e89rMuc+ccyUzGXKuue7rjpQSkiRJkiRJjZRrdACSJEmSJEkmKCRJkiRJUsOZoJAkSZIkSQ1ngkKSJEmSJDWcCQpJkiRJktRwJigkSZIkSVLDmaCQJEmSJEkNZ4JCkiRJkiQ1nAkKSdKCFhGdEZEi4prJtlV5rB0RsaPGIUqSJKkKJigkqUEic15EfD0iHo+IvRHx7Yh4a0Q0VXjMkyPiYxHx44jYl7+g3hgRx05ynpdHxOcj4oGIGI6IH0TEpyLi+dOMN+VvAxHxhAr77Mjvc9h0jq3qRcSrI+JDEfHliHgs//O+bh7E1VP0Gpnqtjsi5uRvkJn8nhU99oUR8W8R8ZP879tP8r9La2sQ17x8HktFxJH5944UETc2KIblEXF+RHwmIu7Lv48NRcR/RsQfVftaioh1Ra/B8yvsU5P3S0nSzPgHpCQ1zrXAOuAh4JPAHuAM4ErgRRHxmpRSKuwcEU8DvgocB9wEfA94LrABeGlEvCClNFh8goh4P/AOYBC4EXgYOAl4JfD7EfGGlNJ0L4pWAhcBl0/zcXPpR8AzgKFGB1IH7wJ+FdgNPAD8UmPDGXc3cNkk48cCbyH7cOSmlNLYnEQ1zd+zgoh4F/Best+ZzwE/AVYAvw6sBrbMMq75+jyWuhQ4AUjAsxoUw2uATWTPwReBncDxwNnAR4GXVXoeCyLiKcCHyH7eR1bYpx7vl5KkaYhJ3sslSXUSEWcBnwHuB56bUno4v70Z+FfgLGB9SumaosfcCvwO8NaU0oeKtv8d8KfAR1JKf1y0/UlkF+o/A34lpfRQ0djpwBeA+1NKT60y5gQ8QnahchjwtELcRfvsADqA5pTSgap+GLMUEZ1kP8drU0rnzvJYOwBSSp2zDKtu8s/dA8B9wIvJLtj6U0rn1Pg8OeA0YC3w85TSjBNSEbEc+A+yi/sbgT9IKe2vd1wz+T3Lj78mP34bcHZK6fGS8eaU0shM4i86xrx/HiPiVOC/ga3AL5AlVJ5Y+ntf77gi4iXAEcDNxYmt/HvcfwFPAV6dUvq3Co8PstfficANwJ8Bb0opfbTkWDV7v5QkzYxTPCSpMc7O/3tF8R/7+Yued+fv/p/C9oh4KllyYgfw4ZJjXUL2qfC6iDiiaHsH2fv8N4r/2M6f54vA48ATpxn3XrJPlY/On3dKEbE6X1J9aYXxin0fIuK5EfHJiPhRSYn9a6c4Z8UeFPmS/7dExF0R8fP8sf8hItomOd5vRMSnI+KnEbE/In4YER+JiF+ssP/vRcTWoqkBP46I2yPiwpL9fiEifmmyc5dKKX0xpXTvZJ8Wz1RErIiIrvxUgweBb5A9z0+fxTGfSHbx/evAp4HXTDc5MYu4pvV7lj9XDng/2Wv99aXJiaLHFz9msT6P/wAE8Dbgf/Pbfn2u40opfSGltLm06ial9FPgH/N3V09yiLcCLwHWk71XllOP90tJ0jQ5xUOSGuNJ+X9/UGassO1ZEXFMSulRsj+uAT5f5o/0xyPiK2QJjOeRfdoJcC+wH3huRKwovkCLiBcBR5F9mj1dHyYr1X9zRHwopfT/ZnCMKUXEm8jKukeBz5J9P8eRfep6Idkn3DOxkeyC5SdAHzBCVsL9G8Aysp9ZcRzrgX8C9uXj+CFwMnA+cGZEPC+ltLNo/27gI8BPgc1kZeLHAb9CdoF0VdHh/xp4Y377NTP8fmas6FPsl+VvzyG7SEvAt8h+/reQXUjO5PhPIns9ngr8C7AupTQ6h3FN9/cM4DfJPmn/NPBIRLwceCbwc+C/UkpfK3OsRfc8RsTrgdOBv08pfTcitueHnkVWjdCQuMooJIvKVmxFxDPIpqNdmVL6Ur4ao5x6vV9KkqbBBIUkNUbhj98Ty4wVlxD/EvB14JT8/UrJgHvJEhRPJ5+gSCntioj/C/wdcHdkDe4GgacBv0d2kfHm6QaeUhqJiHcCnyL7w//sKR4ybfnS8quAx4AXppTuKhl/8gyP+5tkyYnvk5X878pv7yH7lP8XgIGi/Z9OlmzYAbw4pfSjorGXkP0MrwReVXSaN5Nd6Pxq6SexEbFiJnHXWkS8mmx6w++S9VUAeBT4N7LeCreklB6c5TlOICuLfzrwcbKpFJP2nahDXNP9PYPsIhqyT/i/BawqifFLZNMJfjaNOOqiXs9jRBwF/A3Z+8Wl+c2FCoop+1DMxesrf57DgDfk7/57hfFPkPWs+MvJjlWv90tJ0vSYoJCkxvgc8DrgbRFxfdGF8mFMbDRYWJ2jUDpeqeljYfsxxRtTShvz0yc+BrypaOg+4JrSC+hqpZQ+HRFfA14VEb+VUvrPmRxnEheQ/T/qvaXJifz5H5jhcdfn/+0t/Mzzx/t5RPwFWZKiNI5mYENxciL/mC9ExGfJqiiOKpkKcICDn+wWP+bhkvvnAufO8HuZjb8lK2kHuIesMeDN1VQ3VCMiVpIlJ54G/H9Ad5VNMWsd13R/zyCrdgH4Y7LeFWeQfcLfAVxBdtH9KYqmFCzC5/Ey4BeBt6SUHslvK1RQVDPFo66vryKXk1W3bEkp3Vpm/GKyeH8rpTQ81cHq9X4pSaqePSgkqTGuJyttfhrZp3V9EbGRrCHdWrKKCMimN1Qj8v9OmM8eEe8gK1W/Jn+uI4Bnk5W390fEB2bxPbw9/+8V+SZ0tfS8/L+31Pi4hU9/by8z9mUOLRMvLC344oi4tPRGdjHbxMQ59P1AK3BXRHwwIs7K92GYT/o4+In4KWSNA2+PbKnQZ83m+YyIE8l+vk8j6w/wpmms2FHruGbye1ZYejTIKiW2ppR25xNlryJrbPnimB/LTtb8eYyIXybry3EXB/s7kFL6MVlFwUkRcfRcx1UmzreSvQd9j2yVltLx55JVTVxRYVpOuWPW8/1SklSNlJI3b968eWvAjaxC4O1kF0vDZNMZ/p3sD+KvkSUbfi2/79/k77+9wrH+IT9+QdG21fltN5TZv5XsQmsUeGqV8SbggZJtn8pv/4P8/R35+4eViePSCsfdAewo2XZv/jFHVRFXZ37faybblt9+X377ERWO9dPiWIrimOr24pLjvIFsysBofnyMrDrjtBq/hgo/2+tm+PgTyHpp3JB//RW+n5+SXaT9AdA+jeOdRFZOn8h6F8z0+6pZXNP5Pcvv/xf5bfdWON5H8+MbFuPzCGzLP/a3y4x9MT/2oka8voqO+yf549wFPKnCc34P2dK3h5eMXZp/7PkVnoOavF968+bNm7eZ3aygkKQGSSkdSCldkVL6tZRSS0rp6JTSS8n+qP41soupwvSGe/L/Vup2f3L+3+IeFa/I/1s6bYGU0l6y5flyzKIrP/BOsqkMfx0RyyrsU/j0vNK0wnIrHxQaFp4wi9jKKUyFOb50ICKagOUV9m9LKcUktwkVGSmlj6eUnpc/3svJpjm8CLg1Io5jnkgp/Sil9NGU0tlksb6ELBn2MFnTx+uBhyLir6c6VkScQlY58RSyT63fOh/imubvGRz8XXu09Fh5hSkPLdP+xuqkVj+viDiHbMlTgM9HthLO+I2D01qm7ENRy7hKYryILCH7HeD0lK3kUepIsvfKZwA/L/keCqsP/VN+28b8/bl4v5QkTcEeFJI0/6wDngBcmw4uZ1j4o/l3IiKXikrm8w3tXkB2ofX1ouMcnv+30vSCwvZpLflYLKX0/Yi4CthAyXKNRQoXdE8pHYiIk8j6ZpT21vg6B7v/f2+m8ZXxLbKLqxdz6MoOL+TQ/y9+neyT9hcCN0/3ZClbGWILsCW/osF5+WP923SPVW/519oX87d3RMRTyKZBvIyS3ial8tMCtpIlfi5PKf3FfIhrCuV+zwC+RDbV5+SIWJYOXRL1mfl/d8zi3HUz059XftrG35AlHD9ByXSxvE5gDTO4SK/F85hvYnk5WTXMb6eSni5F9pElBct5Fln8/0mWjCpM/6j7+6UkqQqNLuHw5s2bt6V6A44us+05wC7gcUpKiYFbyS4a/k/J9r/Lb//Hku2v5WA59QklYy8jq2wYBpZXGe8hUzzy29vJkhC7yD4ZLZ3i0UyWgHgUOK5oewvZxXvi0Ckep5JdKO0CTi1zzicXfd1J9VM8XpDffh9FpeVkF6pfK42FbHWH/WSVKU8vE8cyslVGire9tPj7L9q+OX/8lxVtuya/7dwZvoZWM4upATV6Hf8K8FA+jvc0Ko5J4pvW71l+/Lr89/O+ku2/nf+9eRQ4ZpE9jxvzMbx/kn1Oy++zvQHxvTt/7juYwbSQouNcSvkpHjV9v/TmzZs3bzO7WUEhSY3zHxExTFaq/Djwy2SfKO4Dzk4plX7CfyHwVeDvI2IN8F3gN4DTyS6ge0r2/zRwG9kqBN+NiM+Q/fH9DLJy5gDemVIanM03kbLl+f4KKNtALmXLkl5JdoHx7Xwch5Fd7P04fyt9zN0RcSFZk75vR8RNZP0glpNdJD2e/76nG+tXIuJDZNUe34mIT5MlQl5JlmT5Scn+34uI88i6+t8VEf9O9rNuBlaSVUP8jCyRUXA9WVn5f5J9yh75/Z4D3En2nBQUplqWNuesKCLOIlvCEeBJ+X+fHxHX5L9+OKX0Z1McYyvTmz7z2ZTSO8oc5wSyT8TbyVa8GMs3D63k+ymlT9Q7rhLT/T0DeBvZ71ZPRLyIrLy/g6xJ5ihZ48/iKSAL/XlcRdbX4YfAeyZ5/HfIvv9nRERLqrAyRq2fx4h4Yz6uUbJmtm8t02dzR0rpmmmcs9ScvF9KkqbQ6AyJN2/evC3VG/DnZBesj5JdLN1PdkHeOcljngJcTXYhvR8YAK6kwieKZBfSF5FNVXiM7ALqIbLlF39nmvGWraDIjx2ej7/QBO+wkvEg61fx/XzcO8kSGq2UaZJZ9Ljnk02HeCj/uB+TNTh8ddE+nVRZQVEUy1vIEjz78sf8MFkvjLKxAKvIPiUfyD9mF9nF2keAl5Ts+8fAZ8imkOzN7/ttsqUWjyrZ99v55+XYaTwPlxb9nMvdyv4sS46xY4pjlN7KfrJP1uRwOseZtHFmreKa7e9Z/nHtZNVJ9+dfe4PATcDzyuy70J/HL+XHX1XFOb+b3/c35up5rOJnlYBt0/y5n19mrGbvl968efPmbWa3SCkhSZLmVkQcQ3bRe0WaugpA85TPoyRJteMqHpIkNcYLyaaX/F2jA9Gs+DxKklQjVlBIkiRJkqSGs4JCkiRJkiQ1nAkKSZIkSZLUcCYoJEmSJElSw5mgkCRJkiRJDWeCQpIkSZIkNZwJCkmSJEmS1HAmKCRJkiRJUsOZoJAkSZIkSQ1ngkKSJEmSJDWcCQpJkiRJktRwJigkSZIkSVLDmaCQJEmSJEkNZ4JCkiRJkiQ1nAkKSZIkSZLUcCYoJEmSJElSw5mgkCRJkiRJDWeCQpIkSZIkNZwJCkmSJEmS1HAmKCRJkiRJUsOZoJAkSZIkSQ1ngkKSJEmSJDWcCQpJkiRJktRwJigkSZIkSVLDHdboAGphxYoVqbOzs9FhTGnPnj0cccQRjQ5Dqhtf41rsfI1rsfM1rsXM17cWu/n6Gr/zzjsfTik9sZp9F0WCorOzkzvuuKPRYUxp27ZtrF69utFhSHXja1yLna9xLXa+xrWY+frWYjdfX+MRMVDtvk7xkCRJkiRJDWeCQpIkSZIkNZwJCkmSJEmS1HAmKCRJkiRJUsOZoJAkSZIkSQ1ngkKSJEmSJDWcCQpJkiRJktRwJigkSZIkSVLDmaCQJEmSJEkNZ4JCkiRJkqQa69/eT+fGTnKX5ejc2En/9v5GhzTvmaCQJEmSJKmG+rf30725m4GhARKJgaEBzrvpPFZ8YIUJi0mYoJAkSZIkaQYqVUn0bO1h78jeCfvuH93P4PDgeMKie3O3SYoSJigkSZIkSZqmyaokBoYGpnz83pG99GztmYNIFw4TFJIkSZIkVaG4YuKNn3ljxSqJau0c2jnt8y7m6SGHNToASZIkSZLmi/7t/fRs7WHn0E5Wtq1k7clr2XLvFgaGBgiCRAJgNI3O+lwr21aWPWfvml66VnWNj3Vv7h5PhhSmhwDj+ywWJigkSZIkSSJLBqy/cT0jYyNAlgzYdMem8fFCcmK6lrcs57F9j40fF6A518zu/buJy2JC4qM0AVGun0VheshiS1A4xUOSJEmStGRMNl1iwy0bJiQRaqGjrYOH3/Ew5z/rfJqiCWA8IVGYDlKa+CjuT1FpGki100MWEisoJEmSJEmLSrXTNEqrFabTP6Iazblmetf00r+9n2v/59rxaSGJxIGxA5M+tpCAWNm2smzTzcL0kMXECgpJkiRJ0oJWXBWx4gMrOO+m8yasrrHpjk3jF/mTVSvUWkQA5ZcdnUohAdG7ppfW5tYJY63NrfSu6a1NkPOICQpJkiRJ0oJVutzn4PAg+0f3T+sYhWqF5S3Lp9w3yJIOHW0dXHDaBXS0dRDE+PSNYvtH949XckxHcQKia1UXfWf2jZ+no62DvjP7Fl3/CXCKhyRJkiRpAZtJdUKpQrXClS+7kvNuOm9CgqMpmjjmCcewa3jXIStsFMtdVv7z/8I0k3LTNIoVpp50tHUcco6uVV2LMiFRygSFJEmSJGnBmm2zyNJqBaDikp+TmaxXRO+a3glLhULWn+Low4+eMvGxlFRMUETEU2d4zB+mlGrb9lSSJEmSpCKFRpgzWfqzHtUK5ZIQheTHbBIfS8lkFRT3wYwWeX0O8K2ZhSNJkiRJ0qErcRRf0Pdv7z9kKkax0uqEwioe9UwOTJWEWCrTNGZjqikevcD3qzxWE/BPswtHkiRJkrTUFRpfFqoRSpcD3XDLhorJiXJVEXPFJMTsTJWg+FxK6b+qOVBENAEfnX1IkiRJkqSloLRKolDpUK6XQ2E50K5VXQwOD1Y85o6LdtQxYtXTZAmKFwJ3VXuglNJoRLwQ+N6so5IkSZIkLTrFCYn2lnYe+fkjjKUxIKuS2HTHpkkfP9VKGFrYKiYoUkpfme7BZvIYSZIkSdLi17+9n3NvPJcDYwcAJq2CqKQpmgBY3rK87OOXtyyfXZBqqGktMxoRRwPPBE4AfgR8J6X0WD0CkyRJkiQtbBfefCF9d/YxmkZrcrzCca582ZWsv3E9I2MHF5BszjVz5cuurMl51BhVJygi4mLg7cCRQJCt8LE7Iv4mpfS+OsUnSZIkSVpAap2UKNbR1gFMvWKGFqaqEhQRcRnwbrImmNcDDwLHA68DLouIw1JKl9YrSEmSJEnS/FDa2PKk9pPYtmNbXRISxVqbW+ld0zt+3xUzFp9qKyjeBFyRUvrzom13AV+IiCGgG7i0xrFJkiRJkuaBMz5+Blvv33rI9oGhgTlpXNnIpUM1d6pNULQBt1YY+3fggtqEI0mSJElqtEoJiXoIgkSiKZpY3bma+3bd57SNJaraBMU3gOcAt5UZe05+XJIkSZK0ADUqIdH97G6uevlVc3JezX8VExQRkSu6+1bgMxFxAPgUB3tQvBY4D3hlPYOUJEmSJM1Oae+ItSevZcu9W+ZkigZgQkJTmqyC4gDZSh0FAVyev1Gy/X+nOJYkSZIkqUH6t/dPWJZzYGiATXdsqtv5rJLQTEyWVHgPExMUsxYRHwNeATyUUnpmmfEArgTWAnuBc1NK36plDJIkSZK0WJVWSRR6OGy4ZcN4cqIecpFjLI2ZkNCsVExQ1GnZ0GuAfwA+XmH8ZcDJ+dtvAJvy/0qSJEmSJtG/vZ/uzd3sHdkLZFUS3Zu7ARgcHqzpuQ5vOpz9o/ttZKmamtNpGSmlL0VE5yS7vBL4eEopAV+PiGMi4hdSSj+ZkwAlSZIkaYHq2doznpwo2Duyl56tPbM+9poT13DbG8qtmSDVTmS5gDIDERcDH00p/biqA2XTM94N9KWUfjrJfp3A5ypM8fgccHlK6T/z97cC/zeldEeZfbuBboDjjz/+2ddff301YTbU7t27OfLIIxsdhlQ3vsa12Pka12Lna1yL2WJ5fd/24G189P6P8tC+hzju8OM4/8TzOeP4MwB4ye0vIZWZpR8ERx12FI8deKzq8zyr7Vlc8WtX1Cxu1d98fY2ffvrpd6aUTqtm38kqKC4BbgGqSlAAufxjPgdUTFBMIcpsK5tBSSn1AX0Ap512Wlq9evUMTzl3tm3bxkKIU5opX+Na7HyNa7HzNa7FbCG9vov7SLQ2tzJ8YJixNEYQNOWaODB2AIAH9z3IB7//QZ5x6jPoWtXFyv9eWXZFjsI0jPNuOo/9o/vHtzdFE8c84Rh2De9yqsYisJBe45VMlqAI4OKI+FmVxyqXXJiuB4CnFN1/MtUnSCRJkiRpXqi0pOfOoZ20t7QDjCcGjmg+grsfvnv8sYUVMAD2jOwZ355I48mJgsIUjq5VXfSu6Z3QgwKgtbl1QuKhXANNab6YLEGxEzhkGsYUdgL7Zh4OnwXeEhHXkzXHHLL/hCRJkqSFpFyzyuIlPYsbVpareCg3TWMyO4d2AkyZhOha1WVCQvPaZKt4dNb6ZBHxL8BqYEVEPEA2JaQ5f75/BLaQLTF6H9kyo+trHYMkSZIk1UKlqRhzbWXbyvGvTUJoIZvrVTxeN8V4Av5kjsKRJEmSpIqmmqbx+P7Hx3s6FE/FmEvLmpbRu6a3IeeWai3X6AAkSZIkqVH6t/fTubGT3GU5Ojd20r+9f3x79+ZuBoYGSKTxaRqF+4PDgxMaTjZKpVUZpYVoTisoJEmSJGm+KNcrontzN5D1cShuNjlfjYyNjDfJlBY6KygkSZIkLUnlkhCFVTHKNa+crwpNMqWFzgSFJEmSpDlRaTrFVGOzeWxh7CW3v+SQsUpJiIGhAZqiqVbfdt0VN8mUFjKneEiSJEmqu8mmUwAVx7pWdc34sVMdtymaGE2jh8Raaft81NrcapNMLRrTTlBExHHAE0q3p5SsK5IkSZJU1mTTKQpflxvrWtU148dOddxKSYjRNDovkxQdbR0TVhJZ2baS3jW99p/QolFVgiIicsD7gDcDx1TYbeHUQEmSJEmaU5X6JEzWP6EwNpvHTjbW0dZRcZrHfEpONOeaufqsq01EaNGrtgfFRcCfAFcAAfwVWcLifuD7wJvqEp0kSZKkRaFSn4SVbSsnHZvNY6c67tqT104ac6M055pZ3rKcIOho6zA5oSWj2ike64H3ABvJEhOfSSl9KyLeB3wesCuLJEmSpIp61/RO6AcBE/snTDY2m8eed9N57B/dPz52WO4wdu/fTe6yHBFRh+90+nLkOLblWHYN73Lahpa0ahMUTwXuSCmNRsQBoAUgpTQSERuBDwGX1idESZIkSQtd4YK7Z2tPxf4JlcameuxXdn6Fvjv7xntHPP/Jz6+4VOiBsQMMDg8CkFKq6/dcjY62DhMSUl61CYohDjbG/DFwCvCVomO01zguSZIkSTXUv72/4gX+ZGO11LWqq+JxS8cKy4MWYjqp/SQeeOwBEomBoQHOueEczrnhnEOOM5pG2Xr/1prHPltWSUhTqzZB8W3gVODW/O2yiBgGDgC9wLfqE54kSZKkakyVgChdbnPdDes454ZzWN6ynKF9QxwYOzA+du6N57Lhlg01v5gujbF4RYrW5laGDwwzlsYIsqkXiTQeU6VmlvOVCQlp+qpNUGwkm+YBcAnwLKA/f38AeEuN45IkSZJUpXIJiO7N3QAVl+ksXPwXpjsUK54GUXqscucuJB3aW7LC6sJF+UntJ7FtxzZG02jZpMOmOzaNH2fPyJ5DYlsIgiCRyEWOlsNa2Duy14SENENVJShSSv9R9PVPI+K5wNOAVuC7KaWROsUnSZIkaQrlEhB7R/bSs7WHrlVds64+2Duyl3NuOIeerT2TJh2Kkx2lVQ8LKelQrJCAaIomTll+CvcM3jPe66L72d1c9fKrGh2itGhUW0ExQcq6ydxX41gkSZIkzcDOoZ1ltw8MDZC7LFez8yyWpEOpQhKi+GsTENLcqzpBEREnAG8HXgQsB85MKX0nIi4CvpZS+kadYpQkSZKWpNKeDaXVC0csO4I9+/cQERVXpFgsSYRasApCmt+qSlBExC8DXwZGga8Bvw4syw93AM8FXl+PACVJkqSlorSfw+P7H2f/6H6gfPXC7v27s6/nwXKZ80lLUwvDo8Pj99ecuIZ3rXwXq1evblxQkqZUbQXFFcB3gd8Ffg7sLxr7KvD+GsclSZIkLUqVVrIYGBqYMNWgXPNKHXR40+HsH91fdUPKbdu2zU1gkmas2gTFbwGvSyntjoimkrEHgSfVNixJkiRp4aq0skW5qojilSycjnHQqStOZc/InrLLpkpanKpNUIxNMrYCGJ5kXJIkSVpUKlVBlJuaUVwJYVUE5CLHWBojFzmCYDSNjo+1NrfSd2afiQhpiao2QfFfwHpgc5mx1wJfqVlEkiRJ0jwzVW+I4ioIkxCZjraOCYmbclUQpYkeqySkpa3aBMV7gdsi4vPAPwMJOCMiNgCvIlvZQ5IkSVqw7A0xM825Zo4+/Gh2De+adpKha1WXCQlJ46pKUKSUbo+Is4CNwMfymy8HdgBnucSoJEmSFprpVEXYG+KgHDmObTl2RgkJSZpMtRUUpJRuBm6OiJOA44DBlNI9dYtMkiRJqpP+7f10b+5m78heYGlWRRSqQpa3LJ+QnAFY1rSMo5YdNd7YEzAhIanupkxQRMQy4OvAO1NKn08p3QfcV/fIJEmSpBorVE0MDA00OpQ5N1nlg70gJM0HUyYoUkr7I+JE4MAcxCNJkiTVzGTTOBaTpmhidedq7tt1X9mVRaZKOtgLQtJ8UO0Uj/8Afgf4Qh1jkSRJkmZlsoTEQpzGUdqAcjpJB0laaKpNUHwIuC4iDgNuBH5MdItqAAAgAElEQVQCEzsFpZR+UOPYJEmSpCkVT9tYqKttFOIOgiOWHcGe/XtMQEhacqpNUNye//dtwJ9W2Kdp9uFIkiRJ1SttdjnfV9toiiZOWX4K9wzew2gapSma6H52N1e9/KpGhyZJDVdtgmJ9XaOQJEmSqlQ8jSMXOUbTaKNDOsSpK05lz8gep2JI0jRUlaBIKV1b70AkSZKkckr7SgztG+LAWNa/fT4mJwB2DO2g78w+kxKSNA252Tw4Io6IiDdGxNZaBSRJkiQVFKZwDAwNkEgMDg+OJyfms70je+nZ2tPoMCRpQal2iscEEbEGeCPwKuAIYGctg5IkSdLSVtz4cqHaOeSfyJI0HVUnKCLiFLKkxDnACfnNtwJXAp+vfWiSJElaivq393PeTeeNLw+6UK1sW9noECRpQZk0QRERxwKvA94APAcI4BvA3wPvBy5PKX2p3kFKkiRpcSnuK7GybSVrT17Llnu3sHNoJxHBWBprdIiz0trcSu+a3kaHIUkLSsUERUR8Gng5sAx4ALgcuDal9P8iog34wNyEKEmSpIWutNHloz9/dLzB5cDQAJvu2DS+b0rze6lQgOZcM0cffjS7hncdkmBx1Q5JmpnJKijOBhKwBXhTSumncxOSJEmSFoPiPhJBkMgSD4PDgw2OrDrFSYj2lnaA8YSECQhJqr3JEhQXA+vIqih2RsTngY8DN81FYJIkSVpYSqskHt//+HgfiUJyYr4pJE462jqsgpCkBquYoEgpvQ94X0T8JllzzNcAa4Eh4Gay6or5+X8aSZIkzanCcqB7R/YC86dKoimaSCTG0hhN0cTqztXct+s+kxCSNA9NuYpHSumrwFcj4q3AWWTJij8ga5h5bUR8jKw3xQ/rGqkkSZLmlQtvvpC+O/vGe0nMNx1tHSYgJGkBqXqZ0ZTSPuCTwCcj4niy6R/rgPcAlwDNdYlQkiRJ80ZxX4n5oimaOOYJx9gfQpIWuKoTFMVSSg8Cfwv8bUQ8i2wZUkmSJC0yk62+0SilK2iYkJCkxWFGCYpiKaVvAd+qQSySJEmaR/q397P+xvWMjI0A86OvhNM2JGnxmnWCQpIkSYtHccUENG71DadtSNLSY4JCkiRpiSvuK1FYdnOumZCQJJmgkCRJWmIm6ysxV8mJHDmObTl2PCGx9uS1bLl3C7uGd83J+SVJ809urk8YES+NiHsi4r6IeGeZ8ZUR8cWI+HZE/G9ErJ3rGCVJkhaa/u39dG7sJHdZjs6NnfRv7y87tuIDKzjvpvMYGBogkRgcHpzzppdN0cSbT3szD7/jYcYuGaN3TS/X/s+14zENDA3Qvbl7wvcgSVr85rSCIiKagA8Dvw08AHwzIj6bUrq7aLd3Af+aUtoUEacCW4DOuYxTkiRpIenf3k/35m72juwFGL/ALygem8tGl5Wmi4ymUa79n2t5wcoX0LWqi56tPePxFewd2UvP1h6neUjSElIxQRERF0/jOCml9N4q9nsucF9K6Qf5c1wPvBIoTlAk4Oj8123Aj6cRhyRJ0pIz2QV+4etGOCx3GEcffnTZpEhxAqLQkLNUpe2SpMUpUio/zzAixqZxnJRSapryZBGvBl6aUjo/f38d8BsppbcU7fMLwOeBY4EjgDNSSneWOVY30A1w/PHHP/v666+fRriNsXv3bo488shGhyHVja9xLXa+xjVfveT2l5StVAgCaNxKHADHH348D+17qGJ8X3jxF/jDr/8hD+57sOxjr3/e/P8bTwuD7+Fa7Obra/z000+/M6V0WjX7VqygSCnVoz9FlDtVyf3XAdeklK6IiOcDn4iIZ6aUJiRMUkp9QB/AaaedllavXl2HcGtr27ZtLIQ4pZnyNa7Fzte45quV/72SgaGBQ7e3rQQoOzZXHtr3ECvbKse3evVqrlh+xYRpKACtza1c8fIrWL1q9RxGq8XM93AtdovhNT7XTTIfAJ5SdP/JHDqF44+AfwVIKX0NeAKwYk6ikyRJWoB61/TS2tx6yPaBoYGGJieA8SVDS+NrbW6ld00vAF2ruug7s4+Otg6CoKOtg74z++w/IUlLzFwvM/pN4OSIOBH4EfCHwOtL9tkJrAGuiYhnkCUofjanUUqSJFWpeMnO4uUyK93vXdNbkwvv0vMec/gxDes1UUkhCVH4fovjLf05dK3qMiEhSUtc1QmKfM+HC4BTgMNLx6vpQZFSOhARbwFuBZqAj6WU7oqI9wB3pJQ+C7wd+KeI+FOy6R/npkqNMiRJkhqo3OoZm+7YND5e7v76G9ez4ZYN7BreRXtLOwC7hneVvWgvTUIUxvu393PujedyYOzA+HHroSmaOGX5KdwzeM+US5F2tHVMmowxASFJmkpVCYqIeAPwIeBa4FeBjwHNwO+RVTdUvUh1SmkL2dKhxdsuLvr6buAF1R5PkiSpUcqtnjGVkbGR8VUtile3GBgaYN0N63jDZ97AWBojCJpyTROSEOfccA7n3HBO7b6BIkcuO5Ld+3dPWBp0NI1y98N3T/HIrNnljot21CUuSdLSUW0PiouAvyaroAC4KqX0RuCpwDAwdwtqS5IkzRO1XgYzkRjL9wVPpPHkRL2duuJUlrcsHz/vdBWacUqSNBvVJihOBr4EjOVvywBSSo8AvcCGukQnSZI0jy2WC/O7H757xtNEiptdSpI0G9UmKIaBXL4XxE/JKicKdgO/WOvAJEmS6ql/ez+dGzvJXZajc2Mn/durnrE6rtLqGYtdUzS52oYkqeaqbZK5HTgJuA34MvCXEXE/cAC4FPheXaKTJEmqg3LNLbs3dwOMN6GsdmWO1uZWcpEbn5qx2LU2t5qUkCTVRbUJij4OVk28myxR8Z/5+48DZ9U4LkmSpLop19xy78heerb2AExrZY49I3vmIOLGmGplDkmSaqmqBEVK6ZNFX98XEb8MPB9oBb6aUnq4TvFJkiTVXKXmljuHds5oZY7FxioJSVIjVNuDYoKU0p6U0m0ppc+anJAkSQtNpeaWK9tW1nxljvmoOdfM8pbl430kLjjtAjraOuwrIUlqqGqneAAQEU8CVgJPKB1LKX2pVkFJkiTVU++a3gnTOODgahQ9W3tmvKJFIwVBRJTthdGca+bow49m1/CuSadpbNu2jdWrV89BtJIkHaqqBEVEnABcB7yo3DCQgKYaxiVJklQ3hYvz4kaYxRftpcmL+erIZUeyZ/+eQ+IvbfJp3whJ0kJQbQXFJuCZwDvIVvTYV7eIJEmS5kDXqq6yF+2lyYv2lnYeGX6EMebPKh1N0UT3s7u56uVXlR2v9L1JkjSfVZugeCHw1pTSJ+oZjCRJUqnJqgGmsxxoe0s7wPg0h2r2BXj05482NDkRBIk0ZVJCkqSFrtoExTDwUD0DkSRJi0etEgftLe08vv9x9o/uB7IlPtffuJ4Nt2xgcHhw/OK9MDbZcqCDw4MVxybbdzSN1vinUx0TEpKkpabaBMU/AeuAW+sYiyRJWsAKSYmBoYGaJQ6KxwpGxkbGtxfOsVg0RRPXvupap2dIkpakahMUPwLWRcQXgC3ArtIdUkofq2VgkiRpfiuukmhvaWdo3xAHxg4Aiy9xMBc62jpsZilJWtKqTVD8Y/7fTmB1mfEEmKCQJGkRK01IFE+9KFfpoMrsKyFJ0qGqTVCcWNcoJEnSvNa/vX/C0psmJKbHhIQkSVOrKkGRUhqodyCSJGn+6tnaM56cUPVMSEiSVL1qKygAiIhnAi8G2oFB4Esppe/UIzBJkjR/7Bza2egQFozmXDNXn3W1vSQkSZqmqhIUEXEYcA3wOiCKhlJE/DNwbkoNWoNLkiTVXXtL+5Kf1pGLHCklIoKxNFZ2HxtdSpI0c7kq97sEeC1wMVk/ipb8vxcDf5D/V5IkLXD92/vp3NhJ7rIcnRs76d/eP+n+ucgREz67WLxSSoxdMsbHX/VxmnPNE8aac81cd/Z17Lhoh8kJSZJmqNopHucA700p9RZtGwB6I6IJWE+WxJAkSQtUaSPMgaEBujd3A7Br+JAVxoGDF+2dGzsZGCrfsqopmhidw0LLpmhiLI3NaKnTyWJd2bYSYDwBUVjRZGXbSqsmJEmqgWorKH4R+FqFsa/mxyVJ0gJWrhHm3pG99GztGb84L1XYvvbktWXHLzjtArqf3V3bQKdQSDDkoto/cw7qfnY31519Ha3NrRO2tza30rvm4Oc0Xau62HHRDsYuGbNqQpKkGqn2/9w/Bl5QYew38+OSJGkBq9QIc+fQzooJiML2LfduKTu+6Y5N9N3ZV5sApyGRKvaJmMyWe7fQtaqLvjP76GjrIAg62jroO7PPJIQkSXVW7RSPfqAnIsbyX/8EeBLwh0AP8P76hCdJkuZKpUaY7S3tFRMQhe2TrfIxl9M7ZqvwfXSt6jIhIUnSHKs2QXEp8FTgsvzXBQH8S367JElapCarroBsqkelHhQLSaWpLJIkqf6qSlCklA4Ar4+IXuBFQDuwC7g9pXR3HeOTJElzpFIjzF3DuyomIBKJuGxxrOJR2mdCkiTNrWorKABIKd0F3FWnWCRJUgNNloRYqNURzblmjj78aHYN76K9pR04mHBZe/Jatty7xZU4JEmaJyomKCJiJfCTlNJI/utJpZQqTz6VJEnz0oU3X0jfnX2MplEi/99MluecDzraOkw6SJK0gE1WQXE/8Hzgv4AdMOVfK001ikmSJNXJGR8/g633by07tlATE825Zq4+62oTEZIkLXCTJSjOA75f9PXC/KtFkqQlpjQJcczhx/DovkcbGNH05MhxbMuxFadiWCUhSdLiVDFBkVK6tujra+YkGkmSVJXiqRlTmS/JiVzkGEtjNEUTqztXc9+u+9g5tPOQ3hAmHCRJWpqqapIZEV8ALkwpfa/M2NOBf0wpvaTWwUmSpMx0EhKNUEg+lNPR1mHSQZIkTanaVTxWA0dXGDsKeHFNopEkSQCccMUJ/Hj3jxsdxqRy5Pj42R8fTzz0b++nZ2uPUy8kSdKMTGeZ0Uo9KJ4G7K5BLJIkLSmlF/RHNB/B3Q/f3eiwJihd1aNwv1xVRNeqLhMSkiRpxiZbZnQ9sD5/NwF9EfF4yW4twDOB8u3AJUla5KZTNTDZChoDQwP1DLOiU1ecyp6RPRXjtypCkiTNlckqKMaAwkTXKLlfMAhsAt5f+9AkSZrf+rf30725m70je4EsybD+xvVsuGUDu4Z30drcyvCB4Yq9GeZK6Soea05cw21vuK2qx1oVIUmS5spUq3hcCxARXyRrkvnduQpMkqT5qLiiIBe5Q5pWjoyNMDg8CMCekT2NCHFaCQhJkqT5oqoeFCml0+sdiCRJ81UhKTEwNDChJ0OjV9QoxNIUTXQ/u5urXn5VQ+ORJEmajWqXGf0gsCKltK7M2CeAB1NKf1br4CRJarTSaRypYs/o+mppamH/2H5G06gJCUmStChVu4rH7wGXVhi7NT9mgkKStChMNY1jrjhVQ5IkLSXVJihOAH5YYeyB/LgkSQteacXEXCYnTEhIkqSlrNoExSPAScC2MmMnAaXLj0qStGA0omLCaRqSJEkTVZuguA3oiYjNKaUHCxsj4njgL4H/qEdwkiTVW//2fs676Tz2j+4H6lsxceqKU7nrT+6q2/ElSZIWsmoTFO8GvgncGxGf4+C0jlcA+4B31Sc8SZLqo3hljnqxSkKSJKl61S4zuiMingO8B/htYDnwMPAZ4JKUUv3+upMkqcZK+0zUkn0kJEmSZqbaCgpSSjuAN9QvFEmS6ufCmy+k786+mk/haG1upe/MPrpWddX0uJIkSUtNbjo7R0QuIp4ZES+OiCNmcsKIeGlE3BMR90XEOyvs89qIuDsi7oqIf57JeSRJKrjw5gvZdMemmicnOto6TE5IkiTVSNUVFBHxJ8AlwAogAc8BvhURNwJfSCn9fRXHaAI+TDZN5AHgmxHx2ZTS3UX7nAz8BfCClNIjEXHcdL4hSZJg4sociVSTYwbByraV9K7pNSkhSZJUY1UlKCLiTcCVwMeAzwP/WjT8ZeD3gSkTFMBzgftSSj/IH/d64JXA3UX7vAn4cErpEYCU0kPVxChJUnHjyyBqlpgAWN6ynE8/99OsXr26ZseUJEnSQdVO8XgbcEVKqZusMWax7wGnVHmcE4AfFt0vrAZS7OnA0yPiKxHx9Yh4aZXHliQtYYXlQgurctQyObGsaRlXvuzKmh1PkiRJh6p2iseJwK0VxvYAx1R5nCizrfQvyMOAk4HVwJOBL0fEM1NKj044UEQ30A1w/PHHs23btipDaJzdu3cviDilmfI1rlq47cHb+Oj9H+WhfQ9x3OHHcf6J53PG8WdMuS/UNikB2ZSOQgwnDJ7ga1yLnq9xLWa+vrXYLYbXeLUJioeBzgpjpwA/qvI4DwBPKbr/ZODHZfb5ekppBLg/Iu4hS1h8s3inlFIf0Adw2mmnpYVQcrtt2zZLg7Wo+RrXbPVv7+eDX/3g+PKfD+57kL/63l/R+71eOto6OKn9JLbt2MZoGiUXOVJKNU9KFHS0dbDjoh0Ttvka12Lna1yLma9vLXaL4TVe7RSPzcDFEfHUom0pIlYAfwrcWOVxvgmcHBEnRsQy4A+Bz5bscyNwOkD++E8HflDl8SVJC1jP1p7x5ERBIQExMDTA1vu3jq/EMZbG6pacaG1upXdNb12OLUmSpPKqTVC8C9gHfAe4jWxaxt8D3wVGgfdUc5CU0gHgLWTTRb4L/GtK6a6IeE9E/F5+t1uBwYi4G/gi8OcppcEq45QkzUP92/vp3NhJ7rIcKz6wghUfWEHushydGzvp394/vt/OoZ0NjDLj0qGSJEmNUdUUj5TSYEScBlwE/C7w/fxj/wH4YErpsWpPmFLaAmwp2XZx0deJrCnn26o9piRp/urf3k/35u7xyojB4YM554GhAdbfuJ4Nt2xg1/AuIoLsfwNzozBNxKVDJUmSGq/aHhSklB4H3pu/SZLmqcJSmzuHdtLe0g7AruFdrGxbydqT17Ll3i3sHNp5yP3SfWt1wV5u2kaxkbGR8aTFXCYnmnPNXH3W1SYlJEmS5omqExTFIuJU4FTgJymlr9Q2JEnSTE1VrbDpjk0V709W2TBVcqM0oVGcJKlXn4iZWN6yvOYJGEmSJNVGxQRFRLweeFlKaV3J9j7gj8iWDE0R8VXgpSmlPXWNVJJUVnEyIBe58SaSs1Vc2TBVcmNgaIB1N6zjnBvOYXnLcob2DXFg7EBN4qiFjrYOExKSJEnz3GQVFOuAnxVviIjXAOcDW8maZD6DrEHmO4F31ylGSVIFpRUTtUpOzEShUqK4EqMRrJKQJElamCZLUDwT+MuSba8HdgO/n2+MuTkijgFehQkKSZoT9aqYWKhMSEiSJC0OkyUoVgADJdtOB7aVrNpxO7Ch1oFJkg4qJCUGhgYIYrxaYSkmJ0xISJIkLU6TJSh2Ae2FOxGxCjga+EbJfsMwjzqgSdIiUzqNYz41nZxL9pGQJEla3HKTjP0vWR+KgteSJSL+vWS/U4Cf1DguSVpS+rf307mxk9xlOTo3dtK/vX98bKplOhej5S3LCYKOtg6uO/s60iWJHRftMDkhSZK0iE1WQXE58IWI+CbwEPC7wJdTSneW7PcHQOk2SVKVSiskBoYG6N7cDUDXqi52Du1sZHhzYlluGSNjI07bkCRJWsIqVlCklG4Hfh/YC6wErgVeU7xPRDwZOA74tzrGKEmLWrkKib0je+nZ2gPAyraVjQhrzqw5cQ373r2PsUvGrJKQJElawiaroCCldCNw4yTjDwC/UuugJGkpqVQhUdjeu6Z3QoUFMN4oc3nLch4ZfoQxxuYk1tnIRY6xNEZTNNH97G6uevlVjQ5JkiRJ88hkPSgkSXOgUoVEYXvXqi76zuyjo61jvC/DJ87+BOmSxJHLjpzT5ERTNI3HcMFpF4zHtLxl+YS+EcVjhT4SoxePki5JHLj4gMkJSZIkHWLSCgpJUv2Vq5BobW6ld03v+P2uVV3jUx8KS46uu2HdnK/oMZbGGLtk/ldrSJIkaeExQSFJDVZIPPRs7WHn0M6yjSILSYmBoYHx6R0z1RRNjKUxcpFjNI1W3Kfc2GLvhyFJkqTGMUEhSfNAcYUEHFx2dOfQTtpb2nn054+OJwxmk5xobW6l78w+ulZ1HbJ6SPE4MGVVhyRJklRLJigkaR4oVEgUEhKP73+c/aP7ARgcHpz28QpVEu0t7QDsGt51SGVGNZUbk41JkiRJtTTjBEVEtAMnAt9JKe2rXUiStDgVJyGKL/hLKxlmkpAoVW2viNLKjWrHJEmSpFqrKkEREe8Cjkgp/UX+/ouAzwFHAD+KiDUppXvrF6YkLWylSYiBoQG6N3cDWZVC8VSKWrBXhCRJkhaaapcZPQf4QdH9DwD/A5wFPAi8t8ZxSdKiUi4JsXdkL2/8zBsZGBqY8XGXtyynOdc8YZu9IiRJkrQQVZugOAG4FyAingg8B3h3SmkzcDnwwvqEJ0kLV6HRZe6yXMUkRKVVNKayrGkZ1519HQ+/42GuPutqOto6CIKOto7xJpiSJEnSQlJtD4pRYFn+6xcBPwe+kr//M6C9xnFJ0oJWboWM6WjONXP04UePN7dce/Jatty7pWzDSntFSJIkaTGoNkFxF3BORHwVOA+4PaU0kh97CvBQPYKTpIWkuAlmLnIzro7oaOtwxQxJkiQtOdUmKN4D3AR0ASPA7xaNrQW+VeO4JGleKl2Jo1DZMDA0QBAkEjDzqRsdbR3suGhHDSOWJEmSFoaqelCklG4FngG8FvjllNLtRcNfAt5fh9gkqSGKe0d0buykf3v/+Pbuzd0MDA2QSAwMDbDpjk3j/SUKyYmZsrmlJEmSlrJqKyhIKd0P3F9m+0dqGpEkNdBcLwfaFE2MpbFD+kpIkiRJS01VCYqIeCXQnlK6On+/A7geeCZwK3BuSml33aKUpDlSaTnQc244Z0bHKyQg2lvaeWzfY4yMjYyPtTa3uuKGJEmSlFftMqPvAp5YdP/vgCcDfWSrelxa27AkqTF2Du2s2bFam1u59lXXMnbJmMuBSpIkSVOodorH04D/BYiIFrLGmG9IKX0qIr4L/AXwZ/UJUZLqq1arbwDjjTLLrcThcqCSJElSZdUmKJ4ADOe//s384z6fv38P8Is1jkuS5kRpz4lqkxNBTFjFo7Cqh30kJEmSpJmpNkGxA/gt4HbglcCdKaWh/NhxwFCFx0nSvDPbigmXApUkSZJqr9oExUeAv42IVwG/BlxQNPZ84O5aByZJ9TDTiokClwKVJEmS6qOqBEVK6cqIeBh4HvD3KaWPFw0fBVxdj+AkaaaKqySKp2IMDA3M+Jjl+kpIkiRJqo1qKyhIKfUD/WW2v7mmEUnSLJVWSQwMDbDpjk2zOqbTOiRJkqT6qjpBARARrwBeDLQDg8C2lNKWegQmSdMx274STdHEWBqjvaWdx/Y9xsjYyPiY0zokSZKk+qsqQRERRwGfA14IHCBLTiwH3h4RXwZekVLaXbcoJanEhTdfSN+dfYymUXKRI4jxpMRM+kr0ndk3PnWjdHqI0zokSZKk+qu2guKvgGcB64DrU0qjEdEE/CGwKT/+1vqEKEmZQuKgtI/EWBqb8THL9ZXoWtVlQkKSJEmaY9UmKH4feFe+DwUAKaVRoD8iVgDvwASFpBorrmRob2nn8f2Ps390f02OXVo1IUmSJKmxclXut5zKS4nenR+XpJopNLocGBogkRgcHpx2cqIpmgiCjrYOLjjtAjraOsbvm5yQJEmS5pdqKyjuB14B/EeZsbX5cUlL1ISeDf99cEnP6fZwmG2jy2JWSEiSJEkLS7UJio8AV0TEkWRLjf4EeBJZD4rzgbfVJzxJ891US3oODA3QvbkboGyyoLjZZbGZJCeOaD6CvSN7bWwpSZIkLUBVJShSSh+MiCcCfwqcm98cwD7g8pTSlfUJT9J817O1Zzw5Ucnekb30bO05JGFw4c0XTkhmzFRTNNH97G6uevlVsz6WJEmSpMaotoKClNJfRsTfAM8D2oFdwNdTSo/UKzhJ89/OoZ1V7TcwNEDnxs4J0z8SaUbnDMIqCUmSJGmRmTJBERHLgE8CH0wpfQm4pe5RSVow2lvaGRwerGrf0ukfM9HR1sGOi3bM6hiSJEmS5p8pV/FIKe0HzqhmX0mqp9bmVnrX9DY6DEmSJEl1UG3S4StkUzskLWD92/vp3NhJ7rIcnRs76d/eP+tj7hreVYPIDuXSoJIkSdLSUm0PircDN0bEbuBGslU8JkweTymN1Tg2STVUbrWNdTes45wbzqGjreOQpUGL77e3tANZMqK098PKtpUMDA0ccr6maJrRShxN0cS1r7rWRIQkSZK0xFRbQbEdeBpwJTAA7AdGim776xKdpJopt9pGoUlloTfEwNAAiXTI/cHhQQaHB8fHujd3j1df9K7ppbW59ZDzTSc5kYvceJWEyQlJkiRpaaq2guI9MMN2+yUi4qVkiY4m4KMppcsr7Pdq4FPAc1JKd9Ti3NJi17+9n56tPeNVEMWVDtWutlGNvSN7eeNn3si6G9axsm0lz3/y89m2Y9uMKiaac81cfdbVJiUkSZKkJa6qBEVK6dJanCwimoAPA78NPAB8MyI+m1K6u2S/o4C3At+oxXmlpaDcFI71N65nwy0b2DW8i1zkZpRAqKRwrIGhgbJTPMopN5XEpUIlSZIkwRQJiohYBTySUnqgwviTgWNTSturPN9zgftSSj/IP/564JXA3SX7vRf4APBnVR5XWvLKTeEYGRsZXwK0lsmJmXB5UEmSJEmTqZigiIizgE+Srd5RNkEBrOD/b+/uw+Quy0OPf+9dEswSXUmo0YNkQ5X2aE21NkftsUfDiS+IUrRKD3YDAV/SqvRIayvarYYg26JWDbbCZaRq1G2pL1ihpr4QjdYiKlVsiqhQzUYEQRJYiYkkZO/+MbPLZHZm89vdedmd/X6uK9fMPM8zv9YGHagAACAASURBVN+dyXPNlb33ee4HvhYRL8rMrQXudzzwo4rXtwFPrbrvbwAnZOY/R0TdBEVErAfWAyxbtozt27cXuH177d27d07EqbmpkVs4Gu3orqNZ+6i1zn/NeX6Pq9M5x9XJnN/qdJ0wxydbQXEu8A+Z+a16AzLzxogYAl4JFElQRK3LjHdGdAHvAs450oUyczOwGWDVqlW5evXqArdvr+3btzMX4tTctPzG2qdpTFcQLFm0hD379xx2ikfRrSJd0UVmuo1DHcXvcXU657g6mfNbna4T5vhkp3g8FbimwDX+mdIqiyJuA06oeP1o4PaK1w8FngBsj4id5eteHRGrCl5fmneGdgyxYtOKhiYnoHTCxz2/uAeAxQsXc+nzLmV0wyhbXrSl5qkd1Y59yLGMbhhl5/k7TU5IkiRJOqLJVlAsAe4scI27ymOL+AZwUkScCPwYOBP4/bHOzByhtG0EgIjYDvypp3hID6o8qWPJoiXcd+A+Dhxqzkm/ozkKlAphnnXVWay9ai19vX2se+K68UKXWeeAnz379zQlJkmSJEmdabIExT3AIwtc45HAvUVulpkPRMR5wGcpHTP6/sy8KSIuAm7IzKuLXEeaTyZLSIwVwGyFsUTE8MgwW769hc2nbaZ/ZX/d1RvLe5e3LDZJkiRJc99kWzy+DpxR4Bq/Vx5bSGZuzcxfyczHZOZgue3NtZITmbna1ROaz4Z2DPGyT72M4ZFhkmT3/t1NWy0xFfsO7mNg2wAAg2sGJ2z56FnQw+CawXaEJkmSJGmOmixBcRlwRkScX29ARPwx8GLgPY0OTJrPxupKrL1q7axISNQydmpI/8p+Np+2mb7ePoKgr7dvfHWFJEmSJBVVd4tHZv5LRLwLeGdEnEupYObYOu4+4DRKBS03ZeZnmh6pNE+MrZqYrYmJMZVbOPpX9tO/sr8jKgdLkiRJao/JalCQma+LiG8BbwT+vKr7ZuDszBxqVnBSp6qsK7G8dzmPXfJYtu/cXuj4ztnALRySJEmSGm3SBAVAZn4E+EhEPIoHjwj9UWbe0dTIpDmuMgnRs6CH/Q/sZzRHCYLurm4eGH0AKBWdbPQRoc0QBEnS19vH4JpBt3BIkiRJaqgjJijGlBMSJiWksupVEKeedOr40ZvVp238/ODPx9+X5Hhyoh26oms8UXLMwmP4+YGfs2TREu7Zfw+jjD44ji6OXXQse/bvYXnvcpMSkiRJkpqqcIJC0oOGdgyx/pr17Du4Dyitgrj8hsvH+1t5/Ge1ypUOlUmTIyUZqhMuJiQkSZIktZIJCmkaBrYNjCcnWm1B1wIedvTDxlc2TCUJMZmxQpeSJEmS1A4mKKRpGDtis5kWL1w8vv0CcKuFJEmSpI5mgkKahuW9yxte2HKsNkR3dLP+N9dz2fMva+j1JUmSJGk2M0EhTcPgmkFe9qmXjRfBbIQTHnYCO8/f2bDrSZIkSdJc0lVkUERcEBF/U6fv3RHxZ40NS5r9MvOw1110sXTR0tIxotFd8z19vX0EUbOvFdtGJEmSJGm2KpSgAM4F/qNO343lfmneGNg2wMHRg4e1jTLK4oWLGd0wymiO1nzfWCHLWuq1S5IkSdJ8UDRBsRy4pU7fD4C+xoQjzQ31VjuMtU+WhBhcM0jPgp7D2nsW9DC4ZrCxQUqSJEnSHFI0QbEPOL5O36OB+xsTjjS7De0YYsWmFSRZs38sMTFZEqJ/ZT+bT9s8vt2jr7ePzadt9mQOSZIkSfNa0SKZ/wr8WUR8PDPHkxERcTTwunK/1NGGdgxNWhizchXEWLJhYNvA+LaOyuNB+1f2m5CQJEmSpApFExQXAtcB34+IjwA/prSiYi2wFDinGcFJs8lr/+W1dZMTfb19hyUgwCSEJEmSJE1FoQRFZn47Ik4G/hq4gNLWkFHgK8CLM/PbzQtRap+hHUPjqyDqbesAPB5UkiRJkmao6AoKMvPrwDMiYhFwLHBPZu5vWmRSi1QmIZYsWgLAnv17WLJoCSP3j/DA6ANtjlCSJEmSOl/hBMWYclLCxIQ6wtCOIdZfs559B/cBsHv/7vG+yueTWbpoaVNikyRJkqT5pG6CIiLeDFyRmbeXn08mM/MtjQ1Nar6BbQPjyYnpWNC1gEufd2kDI5IkSZKk+WmyFRQXAp8Bbi8/n0wCJijUNpXbNKpPzJhs7GR1JSYTxBHvI0mSJEkqrm6CIjO7aj2XpmIqiYOZ3KNym8bwyDDrr1kPMOFe1WOnY+mipdz9+runH7AkSZIkaYIj1qCIiIXAq4BtmfmfzQ9JnWIqiYOZqLVNY9/Bfay9ai0D2wY49aRT2XrLVnaN7KIrujiUh6Z9L7d0SJIkSVJzHHFlRGYeAC4BljQ/HHWSeomDgW0DQCmBsWLTCro2drFi0wpe/elXT/p6aMdQzfvsGtlVN4bhkWEuv+FyhkeGSXJayYnu6CYI+nr7+MALP+CWDkmSJElqgqKneNwM/DLw5SbGog5TL3Gwa2RXzdUVl99w+fiYWq/Puuos1l61lr7evoauiphMz4IeNp+22aSEJEmSJDVZ0doSbwbeFBErmxmMOsvy3uU127uii7VXrZ1yHYixgpaNWBVRRF9vn8kJSZIkSWqRoisoLgAWA9+KiJ3AHXDY8QeZmc9scGya4wbXDNYsSNmshEIjvWrVq7js+Ze1OwxJkiRJmjeKJigOAd9pZiDqPGMrD8ZO8WjmVoxG23rL1naHIEmSJEnzSqEERWaubnIc6lD9K/vHExVdG+fOabWTFd6UJEmSJDVeoZ8YI+LsiFhap29JRJzd2LDUierVpGiHrugiCLqju2b/bIpVkiRJkuaDor/S/gDwmDp9J5b7pUkNrhmkZ0FPu8MAIDMZ3TDKlhdtmRBTz4IeBtcMtikySZIkSZqfiiYoYpK+Y4AHGhCLOlz/yn42n7aZvt6+umO6o5sg6Ovt41WrXjU+NiadglM3tkKiMqax+3pyhyRJkiS1Xt0aFBHxJODJFU2nRcQTqoYtAs4EbmlCbOpAYzUpujZ2jR8bWmk0RxndMDqhfWjHUMOKbVavkKiskyFJkiRJao/JimSeDmwoP09goM643cDLGxmUOt/y3uUMjwzXbK+lMokwtGOo5vGltfT19nHqSaey9Zat7BrZxfLe5QyuGTQhIUmSJEmzzGQJik3ABylt7/gB8LvAt6rG3A/cmZkTfxUuTWJwzeCEJEPR2g/Vx5cuWbSE+w7cx4FDBw67lls1JEmSJGnuqJugyMwRYAQgIk4E7sjMA/XGS0VUbtVYsmgJi45axJ79e6a8sqF6W0bldV0lIUmSJElzz2QrKMZl5nCU/A7wDGApcGG5/ZnALZl5ezMD1dxXvTVj9/7d9Czo4cO/++EZJxOsIyFJkiRJc1uhUzwi4ljgOuCfgFcAZ1NKUgC8EnhDU6JTRxnYNjChbsS+g/sY2FavvIkkSZIkab4oeszo24ETgKcDx3H4saPXAmsaHJfmqKEdQ6zYtIKujV2s2LSCoR1D4327RnbVfE+9dkmSJEnS/FE0QXE6MJCZX4UJZ0PuopS80Dw3toVjeGSYJBkeGebcfzqX4952HF0bu+iK2tOt3skdkiRJkqT5o1ANCmAx8OM6fQ/h8BUVmqdqbeE4OHqQ3ft3A3AoD014T9GTOyRJkiRJna3oCorvAc+p0/dMYEdjwtFMTLa9ohWKbtXojm6CoK+3z6NAJUmSJElA8RUU7wHeExEjwN+X2x4eEecC5wHrmxGciqs+IWN4ZJj115T+WVqVAFjeu5zhkeEjjhvNUUY3jLYgIkmSJEnSXFFoBUVmvg94J7ARuLXc/HlgM7ApM1v7q3oBh6+YWPfJdW05IaMyhr0H9rKwe+ER32PNCUmSJElStaIrKMjMN0TE5ZS2evwSsBv4fGb+oFnBqb7qFRO16jtAc0/IqI5h9/7dLOhawNJFS9mzfw9LFi3hvgP3ceDQgfH3WHNCkiRJklRL4QQFQGYOA+9rUiyagloFKWtpxmqFoR1DDGwbqLmd4+DoQRYvXMzdr7/7sLG7RnaxvHc5g2sGrTkhSZIkSZpgSgmKiDiB0pGiD6nuy8wvFLzGKcClQDdwRWZeUtX/J8ArgAeAnwIvKydGVKHIyohmrFaoXjVRS2Vs/Sv7TUhIkiRJko6oUA2KiPjliPgqsBP4V+Da8p/PVzwWuU43pYKbzwMeD7w0Ih5fNexbwKrM/HXg48Dbilx7vqm3MqLeCRmNOuGjyMoNa0xIkiRJkqaq6AqKK4DlwPnAd4EDkw+v6ynArWN1KyLiSuB04DtjAzLzixXjrwfWTvNeHW1wzeCElQw9C3pqHttZ5ISPolsxjnRKhzUmJEmSJEnTEZl55EER9wHnZOYnZnSziJcAp2TmK8qvzwKempnn1Rn/t8BPMvPiGn3rKR9vumzZst+88sorZxJaS+zdu5fFixc37HrX3nktV/zwCu66/y4ecfQjeMWJr+BZy541YdyZ15/JnfffOaF92dHLuPJpV3LtnddyyXcv4RATC20uO3oZT1vyNK7fcz133X8XSf35suzoZXVj0PzQ6DkuzTbOcXU657g6mfNbnW62zvGTTz753zNzVZGxRRMUNwOvz8xrZhJYRJwBPLcqQfGUzPyjGmPXAucBz8zM+ye77qpVq/KGG26YSWgtsX37dlavXt2069dbBdG1satuYiEIIoLRHJ3x/XPDkeeSOluz57jUbs5xdTrnuDqZ81udbrbO8YgonKAousXjL4ELIuILmfnz6YfGbZSKbI55NHB79aCIeBYwQIHkhEom28axvHd53a0ZSVIkSXUkfb19M76GJEmSJGn+KpSgyMwPR8T/BHZGxPXAPROH5LoCl/oGcFJEnAj8GDgT+P3KARHxG8B7KW0FuatIfKpdvHLfwX0MbBuoWa+ikaw7IUmSJEmaqUIJiog4B3gjcAh4MhOLZBb6FXxmPhAR5wGfpXTM6Psz86aIuAi4ITOvBt4OLAY+FhEAuzLzd4pcfz6rd+zorpFd48Uux7Z/TFZHoqju6GY0RyctqClJkiRJUlFFt3hsBD4JvDwz753JDTNzK7C1qu3NFc+tsDgN9bZxdEUXXRu7DkskHPe249i9f/e071XvtBBJkiRJkqarq+C4pcBlM01OqHkG1wzSs6BnQvuhPESS4zUphnYMTem6fb19vGrVq+jr7SMI+nr7TE5IkiRJkhqu6AqKrwCPA7Y1MRbNQPU2jq7o4lAefmzoWE2KPfv3HPF6rpKQJEmSJLVS0RUUrwVeGRH9EbE0Irqq/zQzSBXTv7KfnefvZHTDaN1jQ8eOIK2lO7pdJSFJkiRJaouiKyhuLj9+qE5/TuFaaoF6NSmSZO+BvSzsXsiBQw/WOnXFhCRJkiSpnYomFS6i4Ekdmh0mO1p09/7dLOhawNJFS9mzf48ncUiSJEmS2q5QgiIzL2xyHGqwypoUtVZSHBw9yOKFi7n79Xe3OjRJkiRJkiaYcu2IiFgcESdExDHNCEiNM1aTIoia/btGdrU4IkmSJEmSaiucoIiI50bEDcC9wE5gJCK+HhHPblZw88HQjiFWbFpB18YuVmxaMeVjQIuoVxSzXrskSZIkSa1WKEEREc8FPg0sBt4CvBq4GHgosNUkxfQM7Rhi/TXrGR4ZJkmGR4ZZf836hicpBtcM0rOg57C2ngU9DK4ZbOh9JEmSJEmarqIrKC4EPgc8PjM3ZuZ7y3Upfg34PLCxOeF1toFtAxOKWO47uI+BbQMNvU//yn42n7aZvt4+jxGVJEmSJM1KRU/xeCJwRmaOVjZm5mhEXAZ8tOGRzQP1akAUrQ0xtGOIgW0D7BrZdcSTOPpX9puQkCRJkiTNWkVXUNwPPKxO30PL/ZqimdSGaNX2EEmSJEmSWqFogmI78JaIOLGyMSKWU9r+8cXGhjU/zKQ2RKu2h0iSJEmS1ApFExQXAL3A9yLiyxHxjxHxJeAW4OHlfk1RrdoQ6564joFtA0c81WOm20MkSZIkSZpNCiUoMvP7wK8D7waOBp4MPAS4FHhSZt7StAg7XP/Kfnaev5PRDaMMrhlky7e3FNq2UWR7SCuOMJUkSZIkqRGKrqAgM+/IzD/NzKdm5knlx9dn5h3NDHA+mcq2jSNtD7FGhSRJkiRpLimcoACIiOMi4gURsS4ilpTbHhIRU7qOapvKto0jHR1qjQpJkiRJ0lxS6JjRiAjgbcAfAQuBBP4XsAf4FPAV4C1NinHeWN67nOGR4ZrttUx2dKg1KiRJkiRJc0nRlQ9vBM4DLgKeCkRF3zXACxoc17w0k1M9qs3kCFNJkiRJklqtaILiFcBFmfmXwDer+m4FHtPQqOapI23bmIpGJjskSZIkSWq2ogmK44Hr6/QdAI5pTDhqlEYmOyRJkiRJarZCNSiAHwNPAL5Yo++JwA8bFtE8Nnbyxlhxy7GTN4BpJRYmq1EhSZIkSdJsUnQFxceAN0fE0yvaMiJ+BXgdcGXDI5uH6p28se6T6+ja2MWKTSs8JlSSJEmS1JGKJiguBL4LfBm4pdz2MWBH+fUlDY9sHqp3wsahPESS4ysqTFJIkiRJkjpNoQRFZu4HVgPnANcB1wLfANYDz87MA02Kb14pcsLGvoP7GNg20IJoJEmSJElqnaIrKMjMQ5n54cxcm5nPycyXZuaWzHygmQHOJ7VO3qil3koLSZIkSZLmqsIJijER0VX1J5oR2HxUffJGd3TXHFdkpYUkSZIkSXNJ3QRFRDwyIj4dEWdXtHUDB6v+3BsRy5oe6TzRv7KfnefvZHTDKFtetGXCioqeBT0MrhlsU3SSJEmSJDXHZCsoXg08mVIxzEoBXAFcBLwFuB34w6ZEN89Vr6jo6+1j82mbPTpUkiRJktRxjpqk7xTgfeUCmZUSeG9mfhMgIn4KnA1sbE6I81v/yn4TEpIkSZKkjjfZCopfpXRiR7XqmhPfL4+VJEmSJEmalslWUDwE2FvZkJmHIuJRwN0Vzb8oj5UkSZIkSZqWyVZQ3AX8cnVjZt6ZmYcqmk4EftrowCRJkiRJ0vwxWYLiK8BZBa5xNvBvjQlHkiRJkiTNR5MlKN4N/N+I+OuImLAVJCKOioh3AquBS5sUnyRJkiRJmgfq1qDIzK9GxOuBtwFrI+LzwK5y93Lg2cBxwBsz86tNj1SSJEmSJHWsyYpkkpnviIhvAhcAL+bBYpi/AL4MvC0zv9DcECVJkiRJUqebNEEBkJlfBL4YEd3AUkrHjN5dVShTkiRJkiRp2o6YoBhTTkjc1cRYJEmSJEnSPDVZkUxJkiRJkqSWMEHRBkM7hlixaQVdG7tYsWkFQzuG2h2SJEmSJEltVXiLhxpjaMcQ669Zz76D+wAYHhlm/TXrAehf2d/O0CRJkiRJahtXULTYwLaB8eTEmH0H9zGwbaBNEUmSJEmS1H4mKFps18iuKbVLkiRJkjQfmKBoseW9y6fULkmSJEnSfGCCosUG1wzSs6DnsLaeBT0MrhlsU0SSJEmSJLVfyxMUEXFKRHwvIm6NiDfU6D86Iv6x3P+1iFjR6hibqX9lP5tP20xfbx9B0Nfbx+bTNlsgU5IkSZI0r7X0FI+I6AbeAzwbuA34RkRcnZnfqRj2cuCezHxsRJwJvBX4f62Ms9n6V/abkJAkSZIkqUKrV1A8Bbg1M3+QmQeAK4HTq8acDmwpP/84sCYiooUxSpIkSZKkFmt1guJ44EcVr28rt9Uck5kPACPA0pZEJ0mSJEmS2qKlWzyAWishchpjiIj1wHqAZcuWsX379hkH12x79+6dE3FK0+UcV6dzjqvTOcfVyZzf6nSdMMdbnaC4DTih4vWjgdvrjLktIo4CeoE91RfKzM3AZoBVq1bl6tWrmxFvQ23fvp25EKc0Xc5xdTrnuDqdc1ydzPmtTtcJc7zVWzy+AZwUESdGxELgTODqqjFXA+vKz18CfCEzJ6ygkCRJkiRJnaOlKygy84GIOA/4LNANvD8zb4qIi4AbMvNq4O+AD0fErZRWTpzZyhglSZIkSVLrtXqLB5m5Fdha1fbmiue/AM5odVySJEmSJKl9Wr3FQ5IkSZIkaQITFJIkSZIkqe1MUEiSJEmSpLaLTjggIyJ+Cgy3O44CjgPubncQUhM5x9XpnOPqdM5xdTLntzrdbJ3jfZn5S0UGdkSCYq6IiBsyc1W745CaxTmuTuccV6dzjquTOb/V6TphjrvFQ5IkSZIktZ0JCkmSJEmS1HYmKFprc7sDkJrMOa5O5xxXp3OOq5M5v9Xp5vwctwaFJEmSJElqO1dQSJIkSZKktjNBIUmSJEmS2s4ERYtExCkR8b2IuDUi3tDueKSZioidEbEjIm6MiBvKbUsi4vMRcUv58dh2xykVFRHvj4i7IuI/K9pqzukoeXf5O/0/IuLJ7YtcKqbOHL8wIn5c/i6/MSJOreh7Y3mOfy8intueqKXiIuKEiPhiRNwcETdFxGvL7X6Xa86bZH531Pe4CYoWiIhu4D3A84DHAy+NiMe3NyqpIU7OzCdVnLf8BmBbZp4EbCu/luaKDwKnVLXVm9PPA04q/1kPXN6iGKWZ+CAT5zjAu8rf5U/KzK0A5f+nnAn8Wvk9l5X/PyPNZg8Ar8vMxwFPA15Tnst+l6sT1Jvf0EHf4yYoWuMpwK2Z+YPMPABcCZze5pikZjgd2FJ+vgV4YRtjkaYkM78M7KlqrjenTwc+lCXXAw+PiEe1JlJpeurM8XpOB67MzPsz84fArZT+PyPNWpl5R2Z+s/z8PuBm4Hj8LlcHmGR+1zMnv8dNULTG8cCPKl7fxuSTSZoLEvhcRPx7RKwvty3LzDug9CUKPKJt0UmNUW9O+72uTnJeeXn7+yu25jnHNadFxArgN4Cv4Xe5OkzV/IYO+h43QdEaUaPN81011z09M59MaXnkayLiGe0OSGohv9fVKS4HHgM8CbgDeEe53TmuOSsiFgOfAM7PzJ9NNrRGm/Ncs1qN+d1R3+MmKFrjNuCEitePBm5vUyxSQ2Tm7eXHu4BPUloydufY0sjy413ti1BqiHpz2u91dYTMvDMzD2XmKPA+Hlz+6xzXnBQRCyj98DaUmVeVm/0uV0eoNb877XvcBEVrfAM4KSJOjIiFlIqVXN3mmKRpi4hjIuKhY8+B5wD/SWlerysPWwd8qj0RSg1Tb05fDZxdrgD/NGBkbPmwNJdU7bd/EaXvcijN8TMj4uiIOJFSEcGvtzo+aSoiIoC/A27OzHdWdPldrjmv3vzutO/xo9odwHyQmQ9ExHnAZ4Fu4P2ZeVObw5JmYhnwydL3JEcBf5+Zn4mIbwAfjYiXA7uAM9oYozQlEfEPwGrguIi4DdgAXELtOb0VOJVSwal9wLktD1iaojpzfHVEPInSst+dwB8AZOZNEfFR4DuUKse/JjMPtSNuaQqeDpwF7IiIG8ttf47f5eoM9eb3SzvpezwyZ/02FEmSJEmS1OHc4iFJkiRJktrOBIUkSZIkSWo7ExSSJEmSJKntTFBIkiRJkqS2M0EhSZIkSZLazgSFJEktFhHnRERGxL0RcWxV31HlvgubfO8VFW07I+KDBd77wYjY2YSYfrsc050RUfgI9HLcGREX1ei7OCLaclRZOaaL23FvSZLmMhMUkiS1Ty9wQbuDAF4EvKWN919XfnwE8LxpvP+PI+KXGhiPJElqAxMUkiS1z+eAP4qIR7YziMz8Vmb+VzvuHRGLgDOA7cA+HkxWFPUlYAHwhsZGNntFycJ2xyFJUqOZoJAkqX3GtgEMTDYoIi6stV2h1paLiDgmIi6JiP+KiPsj4icR8YmIWDbJ9Sds8YiINRHxzYj4Rflaf1DnvT0R8daI+GFEHCg/DkRE0f9jvJDSSpLLgE8CL6je9nIEtwGXA6+OiOMnG1hr60xErCi3n1PR9sGIuC0iVkXEdRGxPyK+FxHPL/f/Sfkz+1lEfKrO6o0ofw63ld//5Yh4Uo1BvxsR10fEvvKWn49FxPKqMTsj4iMR8bKI+C5wAHh+wc9HkqQ5wwSFJEntcwfwt8D6iOib6cXKv1X/PPD/gQ8CLwDOA/YAhX/oj4jHAVuB/cCZwJ8D5wNrqsYdBXwWeAVwKaXtGVcAbwLeXvB264B7gauBDwFHl+85FX8JPFC+b6M8rBzPFZS2wNwFfCIi3gGcDLyG0mdyMvCeGu8/GziV0ud/DrAM2BYRS8YGRMQfAp8AvgO8BPgD4AnAlyLioVXXOxn4E2AjcArwH434S0qSNJsULkQlSZKa4q2UfjDdALxshtdaC/wWcHpmXl3R/vEpXucvgPuA52TmzwEi4jrgv4DbK8a9FPht4JmZ+eVy27aIANgQEW/NzLvq3SQi/gfwLODvMvP+iLgW+DGlpMXlRYPNzJ9GxCbggoh4e4O2qzwU+MOxv1dE3A58m1LS5/GZeajc/gRK23S6x9rKFnH45/c14Bbgj4E3RcRiSv/2H8jM8X/38rjvAy8HNlVc71jgNzPzJw34u0mSNCu5gkKSpDbKzD3AO4CzI+JXZ3i55wA/qUpOTMdvAVvHfrgGyMwfAf9WNe4UYBi4rnz6yFHlVRWfo1QX4mlHuM9aoJvSSgUycxT4CPDUaXwWf00pqbJxiu+r5+cVSReA75Yfr61KRHyX0i98HlX1/urPbydwPaXPlvLjw4Chqs/utvI1n1F1vetNTkiSOp0JCkmS2u9dlLZhTDguc4qWUlqBMFOPAu6s0V7d9gigDzhY9efrFfFM5mxgF3BTRDw8Ih4OfKqir7DMHAHeBrw0In5tKu+t496q6x8oP72natxY+0Oq2ut9fmN1Mh5RfryWiZ/fSiZ+dncUilqSpDnMLR6SJLVZZu6NiL+itJKiVu2GX0CpxkTFD8ow8YfYuynVMJipOyjVTKhW3bYb+CHwe3Wus7PeDSJiFTCWSKj+oR/grIh4U3lVRVF/Q6kuxMXATTX67weqT784UhJluup9fmMJpN3lx3OoTDt9awAAAkZJREFUHet9Va8nFEmVJKnTmKCQJGl2uIxSEcSLa/QNlx+fAHwToLza4H9z+A+ynwPOjIjTMvOaGcTyVeDUiDimoobCCcDTObwGxWeAFwN7M/O7Ey8zqXWUfuh+CaXVI5WeS+nY0NXAF4peMDP3RcTFlAqP9tQYMszEBE6zTsOo/vxWUNryckm5/zpK/3aPzcwtTYpBkqQ5xQSFJEmzQLlI5EXA5hrd/wKMAO+LiA2UTrp4PbC3atxHgFcC/1BekfE1SsUenwtsmkIS4WLgDOBzEfF2SqsONjJx28IQcC6lwpjvoFREciHwGOB3gBdm5r7qi0fEAkondXwpM6+q0X8jpZUQ65hCgqLsfcCfUqrHUe1K4C8iYoBSPYj/Q6nQZzPs58HP72hKn9/PKG3nITN/FhF/BrynfEzp2L/x8cAzge2Z+fdNik2SpFnJGhSSJM0eH6B00sNhMvNeSqdHjAIfBf6K0naGL1aNO0jpB/PLgfWUjgq9DDiOiasU6srMmykdkdkD/COl3/pvArbVuN9zKSUFxu43RCmxcB0P1meo9oJyTO+vc/97gauAF5dPuyisvAXmwjrdf0VpdcV5wD8BjwPOmsr1p+BDwKfL99sC/BRYUy6KOhbreyklcn4V+DClJMVGSr9AurFJcUmSNGtFplsaJUmSJElSe7mCQpIkSZIktZ0JCkmSJEmS1HYmKCRJkiRJUtuZoJAkSZIkSW1ngkKSJEmSJLWdCQpJkiRJktR2JigkSZIkSVLbmaCQJEmSJElt99/Au6ozi2hqPAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Plot the van der Walls radii for all elements of interest'''\n",
"import math\n",
"\n",
"from matplotlib import pyplot as plt # import the pyplot function of the matplotlib package\n",
"fig, ax = plt.subplots(figsize=(18,6))\n",
"\n",
"# plot the cross sectional area of the nuclei; 1 barn = 100 fm^2\n",
"ax.plot([nc.A for nc in nuclides], [math.pi*nc.radius**2/100 for nc in nuclides], \n",
" ' ',color='green', marker='.',markersize=12)\n",
"\n",
"ax.set_ylabel('Geometric Cross Sectional Area [b]',fontsize=16)\n",
"ax.set_xlabel('Nuclide A Number',fontsize=16)\n",
"\n",
"fig.suptitle(r'%i Nuclides; $1 \\leq Z \\leq %i$; $1 \\leq A \\leq %i$ '%(len(nuclides),z_max,a_max),fontsize=20)\n",
"ax.grid()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**NB:** for all nuclides of interest the geometric cross sectional area vary to a **maximum of ~1.1 b** when the number of nucleons vary from 1 to 248.\n",
"\n",
"Also, the area does not vary significantly for a given value of A as a function of isotopes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If an atom is the size of a classroom, say 10 m in diameter, what would the corresponding values of the nuclei be?"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAGjCAYAAAAM+z85AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X2YJHdZ7//PPZNdyBBi2FkSImRmeX4QH0gChgMmm0R5WH+/I3JQ0cmy7IqBrGhQVOSsOQZ0EH8ckYgkxwhZYnY9QSPIgxGUJBsSTiJXCHIUMBJgd0UiYSYJ7GYTspm5f398q+yamnrsru6u7nm/rquvme7qrv5OdXVP1133977N3QUAAAAAANBWE8MeAAAAAAAAQBGCFwAAAAAAoNUIXgAAAAAAgFYjeAEAAAAAAFqN4AUAAAAAAGg1ghcAAAAAAKDVCF4AAAAAAIBWI3gBAAAAAABajeAFAGBsmdkmM3Mze3/RbRXXtd/M9jc8RAAAAFRA8AIAWsiCHWZ2q5kdMrMjZvY5M/tlM5vMecwTzOwKM/uGmX03Oth+l5k9puB5ftzM/s7Mvm5mD5jZV83sL83s+TXH69HlgJk9Muc++6P7HFNn3ajOzF5hZu82s5vM7DvR9t7TgnHtSuwjZZfDZjaQ7yfdvM8Sj/0RM/srM7srer/dFb2XtjQwrla+jmlmdlz02eFm9tdDGsO0mb3GzD5kZndGn2PfNrObzeznq+5LZrY1sQ++Juc+jXxeAgC6wxdIAGinKyVtlXS3pA9Iul/Sj0q6RNKZZvZT7u7xnc3syZL+j6QTJX1Y0r9Iep6kCyW9xMxe4O6LyScws9+X9BuSFiX9taQFSU+R9BOS/puZvcrd6x4wzUh6g6S313zcIP27pGdK+vawB9IHvyXpByUdlvR1Sc8Y7nD+0xclvaVg+WMkvV7hpMqH3X15IKOq+T6LmdlvSfodhffMxyTdJWmjpOdI2izp2h7H1dbXMe1iSY+X5JJOHdIYfkrSZQqvwQ2SDko6SdLLJb1X0kvzXseYmZ0i6d0K2/u4nPv04/MSAFCDFXyWAwCGwMxeJulDkr4m6XnuvhDdvk7SX0h6maTt7v7+xGM+IelFkn7Z3d+duP2dkn5F0p+4++sStz9O4SD+W5J+wN3vTiw7W9L1kr7m7k+qOGaXdK/CQcwxkp4cjztxn/2SZiWtc/eHK22MHpnZJoXteKW7v7rHde2XJHff1OOw+iZ67b4u6U5JZykczO119/Mafp4JSadL2iLpQXfvOlhlZtOS/l7hwP+vJf2Muz/U73F18z6Llv9UtPyTkl7u7odSy9e5+9Fuxp9YR+tfRzN7lqR/lHSdpJMVgi2PTb/v+z0uMztH0qMk/U0y6BV9xn1G0imSXuHuf5XzeFPY/54o6YOSfk3SL7j7e1PrauzzEgDQHaaNAED7vDz6+QfJA4HogOii6Oovxbeb2ZMUAhf7Jb0nta7fVjibvNXMHpW4fVbhf8A/JL+IR89zg6RDkh5bc9xHFM5GHx89bykz2xylaV+cszy3zoSZPc/MPmBm/55K2//pkufMrXkRTSN4vZl9wcwejNb9x2b2PQXr+2Ezu8bM/sPMHjKzfzOzPzGz7825/381s+sS0w2+YWY3mtnO1P1ONrNnFD13mrvf4O5fLjrL3C0z22hmc9H0hW9K+geF1/lpPazzsQoH5s+RdI2kn6obuOhhXLXeZ9FzTUj6fYV9/efSgYvE45OPGdfX8Y8lmaRflfR/o9ueM+hxufv17v7RdLaOu/+HpP8VXd1csIpflnSOpO0Kn5VZ+vF5CQCoiWkjANA+j4t+fjVjWXzbqWZ2grvfp/DFW5L+LuML/CEz+7RCcOMMhbOkkvRlSQ9Jep6ZbUwevJnZmZIerXAWvK73KKT/v9bM3u3u/9rFOkqZ2S8opIovSfqIwt9zosLZ2p0KZ8a78S6Fg5m7JF0u6ahCWvgPS1qvsM2S49gu6U8lfTcax79Jeqqk10j6f83sDHc/mLj/+ZL+RNJ/SPqoQur5iZJ+QOHg6dLE6n9P0rbo9vd3+fd0LXH2+6XR5bkKB3Au6XaF7f+3CgeZ3az/cQr747Mk/W9JW919aYDjqvs+k6T/onCG/hpJ95rZj0t6tqQHJX3G3W/JWNfYvY5m9nOSzpb0R+7+JTP7p2jRqQpZDEMZV4Y4kJSZ6WVmz1SY4naJu38qyuLI0q/PSwBADQQvAKB94i/GT8xYlkxLfoakWyU9PbqeFyj4skLw4mmKghfufo+ZvUnSOyV90UKxvUVJT5b0XxUOQF5bd+DuftTMflPSXyocFLy85CG1Renql0r6jqQfcfcvpJY/ocv1/heFwMVXFKYR3BPdvkshO+BkSQcS93+aQiBiv6Sz3P3fE8vOUdiGl0j6ycTTvFbhIOgH02dwzWxjN+Numpm9QmHKxIsV6jhI0n2S/kqhlsPfuvs3e3yOxyuk2j9N0p8pTM8orHPRh3HVfZ9J4QBbCpkBt0v6/tQYP6UwReFbNcbRF/16Hc3s0ZLeofB5cXF0c5x5UVr3YhD7V/Q8x0h6VXT14znLr1KokfHfi9bVr89LAEA9BC8AoH0+JulnJf2qmV2dOIg+RiuLHsZdROJ09LwClPHtJyRvdPd3RVMyrpD0C4lFd0p6f/rguip3v8bMbpH0k2b2Qne/uZv1FLhA4f/X76QDF9Hzf73L9W6Pfs7H2zxa34Nm9maFAEZ6HOskXZgMXESPud7MPqKQffHo1PSCh9U5I5x8zELq+qslvbrLv6UX/1MhTV6S7lAoUvg3VbIiqjCzGYXAxZMlvU/S+RULdDY9rrrvMylkyUjS6xRqZfyoQmbArKQ/UDgg/0slpimM4ev4FknfK+n17n5vdFuceVFl2khf96+EtytkxVzr7p/IWP4/FMb7Qnd/oGxl/fq8BABUR80LAGifqxXSpZ+scJbvcjN7l0JxvC0KmRRSmDJRhUU/V8yfN7PfUEh/f3/0XI+SdJpCyvxeM/v/evgb3hj9/IOoIF6Tzoh+/m3D643PGt+YsewmrU49j9sjnmVmF6cvCge6k1o5Z3+vpClJXzCzPzSzl0V1H9rkcnXOpD9doYjhjRbanZ7ay+tpZk9U2L5PVqhH8As1Oos0Pa5u3mdx+1RTyLC4zt0PR0G0n1QosnmWtaN1ZuOvo5l9n0IdkC+oU09C7v4NhUyEp5jZ8YMeV8Y4f1nhM+hfFLrJpJc/TyHb4g9ypvpkrbOfn5cAgCrcnQsXLly4tOyikFnwRoUDqQcUpkh8XOHL8i0KgYgfiu77juj6G3PW9cfR8gsSt22Obvtgxv2nFA7CliQ9qeJ4XdLXU7f9ZXT7z0TX90fXj8kYx8U5690vaX/qti9Hj3l0hXFtiu77/qLbotvvjG5/VM66/iM5lsQ4yi5npdbzKoVpCEvR8mWFrI7TG96H4m27p8vHP16hdscHo/0v/nv+Q+EA7mckbaixvqcopOi7Qq2Ebv+uxsZV530W3f/N0W1fzlnfe6PlF47j6yhpX/TYH8tYdkO07Mxh7F+J9f5itJ4vSHpczmt+h0L73kekll0cPfY1Oa9BI5+XXLhw4cKluwuZFwDQQu7+sLv/gbv/kLsf6+7Hu/tLFL5w/5DCgVY8ZeKO6GdeVf6nRj+TNTH+n+hneiqE3P2IQovBCfXQPUDSbypMj/g9M1ufc5/4rHveNMasDg1x8cTH9zC2LPH0mpPSC8xsUtJ0zv2/x92t4LIik8Pd/8zdz4jW9+MKUyfOlPQJMztRLeHu/+7u73X3lyuM9RyFQNmCQgHKqyXdbWa/V7YuM3u6QsbFKQpnu3+5DeOq+T6TOu+1+9LrisTTKI6t/Yf1SVPby8zOU2jbKkl/Z6Fjz39e1JkqU1r3oslxpcb4BoVg7T9LOttDx5G04xQ+K58p6cHU3xB3SfrT6LZ3RdcH8XkJAChBzQsAGC1bJT1S0pXeackYf6F+kZlNeCINPyqu9wKFg7BbE+t5RPQzb8pCfHuttpVJ7v4VM7tU0oVKtZxMiA/2TkkvMLOnKNTpSNfyuFWdLgX/0u34MtyucOB1llZ3oPgRrf6feavCGfofkfQ3dZ/MQweLayVdG3Ve2BGt66/qrqvfon3thujyG2Z2isLUipcqVUslLZpqcJ1CUOjt7v7mNoyrRNb7TJI+pTB96Klmtt5Xt3V9dvRzfw/P3Tfdbq9oKsg7FIKRVyk1BS2ySdK56uIAvonXMSqo+XaFLJof81QNmYTvKgQMs5yqMP6bFQJV8ZSSvn9eAgAqGHbqBxcuXLhwWX2RdHzGbc+VdI+kQ0qlJ0v6hMIBxS+lbn9ndPv/St3+0+qkaD8+teylChkRD0iarjjeVdNGots3KAQo7lE4o5qeNrJOIThxn6QTE7cfq3Bg71o9beRZCgdR90h6VsZzPiHx+yZVnzbyguj2O5VIV1c4iL0lPRaFLhQPKWS0PC1jHOsVuqEkb3tJ8u9P3P7RaP0vTdz2/ui2V3e5D21WD9MNGtqPf0DS3dE43jqscRSMr9b7LFq+J/p7fjd1+49F75v7JJ0wZq/ju6Ix/H7BfU6P7vNPQxjfRdFz36Yuppok1nOxsqeNNPp5yYULFy5curuQeQEA7fT3ZvaAQvrzIUnfp3Am8ruSXu7u6cyAnZL+j6Q/MrNzJX1J0g9LOlvh4HpX6v7XSPqkQreEL5nZhxS+mD9TIUXaJP2muy/28kd4aDH4NkmZxew8tFa9ROHg43PROI5ROBD8RnRJP+aLZrZToWDg58zswwr1J6YVDqAORX933bF+2szerZAl8s9mdo1CkOQnFAIwd6Xu/y9mtkOh+8AXzOzjCtt6naQZhSyKbykEOWJXK6Sq36xwdt6i+z1X0mcVXpNYPLUzXSg0l5m9TKENpSQ9Lvr5fDN7f/T7grv/Wsk6rlO9KTkfcfffyFjP4xXOpG9Q6MyxHBUyzfMVd7+q3+NKqfs+k6RfVXhv7TKzMxWmDMwqFOxcUihCmpxWMuqv4/cr1JH4N0lvLXj8Pyv8/c80s2M9p4NH06+jmW2LxrWkUFj3lzNqfu539/fXeM60gXxeAgBKDDt6woULFy5cVl8k/brCwex9CgdSX1M4WN9U8JhTJO1WOMh+SNIBSZco50ykwkH2GxSmP3xH4eDqboUWki+qOd7MzIto2SOi8ccF+Y5JLTeF+hhficZ9UCHYMaWMgp2Jxz1fYYrF3dHjvqFQbPEViftsUsXMi8RYXq8Q/PlutM73KNTeyByLpO9XOLt+IHrMPQoHcn8i6ZzUfV8n6UMK01KORPf9nEK7yEen7vu56HV5TI3X4eLEds66ZG7L1Dr2l6wjfcnMCFAouFhnPYVFPJsaV6/vs+hxGxSymr4W7XuLkj4s6YyM+4766/ipaPlPVnjOL0X3/eFBvY4VtpVL2ldzu78mY1ljn5dcuHDhwqW7i7m7AABAe5jZCQoHxH/g5dkDaCleRwAAmkO3EQAA2udHFKasvHPYA0FPeB0BAGgImRcAAAAAAKDVyLwAAAAAAACtRvACAAAAAAC0GsELAAAAAADQagQvAAAAAABAqxG8AAAAAAAArUbwAgAAAAAAtBrBCwAAAAAA0GoELwAAAAAAQKsRvAAAAAAAAK1G8AIAAAAAALQawQsAAAAAANBqBC8AAAAAAECrEbwAAAAAAACtRvACAAAAAAC0GsELAAAAAADQagQvAAAAAABAqxG8AAAAAAAArUbwAgAAAAAAtBrBCwAAAAAA0GoELwAAAAAAQKsRvAAAAAAAAK1G8AIAAAAAALQawQsAAAAAANBqxwx7AP22ceNG37Rp07CHUer+++/Xox71qGEPA+gb9nGMO/ZxjDv2cYw79nGMszbv35/97GcX3P2xZfcb++DFpk2bdNtttw17GKX27dunzZs3D3sYQN+wj2PcsY9j3LGPY9yxj2OctXn/NrMDVe7HtBEAAAAAANBqBC8AAAAAAECrEbwAAAAAAACtRvACAAAAAAC0GsELAAAAAADQagQvAAAAAABAqxG8AAAAAAAArUbwAgAAAAAAtBrBCwAAAAAA0GqlwQszO9jF5YCZPXsQfwAAAAAAoDd790qbNkkTE+Hn3r3DHhGw0jEV7vMESddK+lbFdU5IOk/S+m4HBQAAAAAYjL17pfPPl44cCdcPHAjXJWlubnjjApKqBC8k6a3u/pkqdzSzYyRt7X5IAAAAAICm7d0r7dolHTwozcxI8/MhOLFrVydwETtyJNxO8AJtUSV4cZGkf6u6Qnd/2MwukvTvXY8KAAAAANCYouyKgwezH5N3OzAMpTUv3H3e3e+qs9LoMd/sflgAAAAAgKYUZVfMzGQ/Ju92YBhqdRsxs61m9mwzm8xY9ojmhgUAAAAAaEpRdsX8vDQ1tfL2qalwO9AWVWtexK6U5JK+a2ZfkPS56PKPkk43s59x9xc2PEYAAAAAQA9mZsJUkazb47oWWfUwgLaolXkhaYOkH5X0W5LukPQCSe+WdLOkd0n6vkZHBwAAAABjLtmmdOPGcGm6ZWlZdsXcnLR/v7S8HH4SuEDb1ApeuPt97n6Du7/T3c9z9++TdLKkt0l6QNLP9mOQAAAAADBKigISO3euXLZjR8iKcJcWF8PFvVNUs4kAxtycdPnl0uysZBZ+Xn45QQqMjrqZF6u4+7fc/SKFKSUELwAAAACMvWRwom5A4rLLVi576KH854mLajaB7AqMsp6DFwl/J+llDa4PAAAAwBqRDgY0NV2i6vOec85Zq543b0xx29E4AFE3IFEXLUuB+t1GfsvMtpjZyRmLT5R0fzPDAgAAALBWZAUDktMlygIbRcvLlnWe11Y8b9GYstqO9hMtS4H63UZ+Q9JxktzM7pZ0u0K3kSVJr5H0pmaHBwAAAGDcZQUDktMlzj+/szwOIkhh2kMcZMhaXvbYsufNWrZtm7S01P3fWhctS4GgbvDieyQ9TdKpkk6Lfu6UdEK0/J1mdp6kz0q6zd0/2NRAAQAAAIynvGkRBw8WBxi6DUDEj8173qyWorF+Bi7MpA0bwu/33EPLUiCpVvDC3V2hReodkv53fLuZPVkhkBEHNX5BIQtjsrGRAgAAABhLMzPZAYOZmeLARvJnWlEA4sCBMI3ELEwJ6ZeJiVAcs4rZ2VBEE0C2Rgp2uvtX3P0v3f3N7v4id3+spCc2sW4AAAAA421+PkyPSFq/Xjp8OD+4MDHRuXTDvXpgoVvuIShRhqkhQLnSt7qZXW9mz6i6QjObMLPrJT2ip5EBAAAAGCvJ4pkbN4bLxESYxvH850uTUd72xESYnrG4mL+upaUQHBhk/Ym64mkf6cDMunXS9HTI/JidlS6/nKkhQJkqccrNkh5dY53WxWMAAAAAjLjqnT1CYGJxsdPJ47rrOoGI5eV2ByWqiLMp5uZCcGJ2thOs2L1bWlgIf+f+/QQugCqqJln9tZl9tcpF0pcl9XHmGAAAAIC2KWt3Ouj2ov2QzJiYnl6ZPXHBBSsDFMlsirm5EKTod7CirKUsMMqqFOy8sst1L3T5OAAAAAAjpqwrSF5hzWFbt046/njpnntcGzaYpE6njy1bpGuvDWNvS+ePvXvDNk2Pqahl7LDHDDShNHjh7tsHMRAAAAAAo6usK0heR5F+iLuIzM6uDkDkBST27btRmzdvHswAC6SDE8nxbtggHTokPfRQuG8yQFEWPAJGXa1WqQAAAACQpajdqRSCBMnMgDKdjIhw0C7lZ0S0MUOijjhgceDAyvatBw5Il13WuV9WAdM4QFEWPAJGHcELAAAAAD3LCk4kW4DGwYT4QLssIDFqAYi0ZAZF0d+azqbIaw1bJN5mRcEjYNQRvAAAAADQs3RwIisAMTc32gGJpDrTO5IZE1WyKeqKt3VR8AgYdQQvAAAAADRiFIMTnSDEWZWnp3QzvaNfki1ZpeLgETDKCF4AAAAAGFvVMySsMEMifb2b6R1NSNYCSQcoRjF4BFQ1UfWOZrbezD5kZmf2c0AAAAAAkLR3r7RpkzQxEX7u3Jl/fePGcIl/37EjBB7cOwGI+PriYmdqR5tY6Niq2VnpggvCT7Pwc/duaWFBWl6W9u8nWIG1o3Lwwt0fkvSjdR4DAAAAYO0qCjokgwxFAQkzaevW/ABEVkBicbHdwYm0deuk6elOgOKqq8L49++XLr00/MwLVqS38d69Ax8+MBB1p418WtIZkvY1PxQAAAAAo6RO0cqiuhBtnaLRizqtXuvUpkh3MUlv4/PPD7+TkYFxUzeL4o2Sft7MXm9mTzCzSTObSF76MUgAAAAAg1F1ikZZRsSoZD30our0joWFlVM9irIpijIp9u4NwYmibXzkSAhuAOOmbubFP0U/L4kuad7FOgEAAAAMUF7GRFkXjXHIiEjrZEi4NmwI0YiybiN1MyaKMlTKtn8yk2LXrpWtUPMcPNjlxgBarG6g4a0KAQoAAAAAIyg+ex8fBI9jQCIp3Z0jLwCxb9+N2rx5c9fP06+AUJxJMTdXPSgxM9P1nwG0Vq3ghbtf3KdxAAAAABiAqmfv2yYOAMzOFmdEpOtL1KknkVZW0yN+nrL6Hr0GhOKgxcxMWHeRqanwNwPjhikeAAAAwBoyyCkFRVkPZUUseylq2YSyDJVkwdHk7/0QZ1LMz68ck7R6Gw96OwGDUjt4YWbPkXSRpDMlnSDpee5+u5m9TdKn3P3jDY8RAAAAQEOqnL2voygjYpQPpNuSoZLMpIi3ZTIbZJS3MVBHre4gZvZCSbdIeoakP089flnS65obGgAAAICmzc+HA+IiRV000tevuioEL8q6aIyaYRa9TG7/yy9fuR3n5sZnGwN11M28eLukT0h6maRJSa9PLLtd0qsaGhcAAACAPsg6ez9OGRNNGWSGCtsfKFc3eHGqpJe7u5tZuuzMgqTHNjMsAAAAAP0yN8fBcZms+hJFqnY1AdCdusGLByXlJZmdLOnbvQ0HAAAAAIavLEOlya4mAMrVDV7cLOkNZvbhxG1xBsbPS7q+kVEBAAAAwJCRoQK0R93gxUWSPi3p85KuUQhcbDOzd0o6TdJzmx0eAAAAAABY62p1G3H3zyu0SP2mpF2STJ2inWe5+x3NDg8AAAAA0GZ790qbNkkTE+Hn3r3DHhHGUd3MC7n77ZLONbNHStog6T53b0EHZAAAAABA0/buLa79ceiQ9NBD4b4HDoRCpxJTbtCsWpkXZvZVM/tBSXL3B939G3HgwsyebWZf7ccgAQAAAACDE2dTmElbt4aghHv4edllneuLi53ARezIkRDsAJpUK3ghaZOkR+Qse6Sk2Z5GAwAAAAAYuOTUj40bpR07QoBCCkGKug4ebHR4QP1pI+p0F0k7XdJ9PYwFAAAAADBge/eGqR5HomIAi4u9r3Nmpvd1AEmlmRdm9itmdtDMDioELj4aX09cviXpPZI+3u8BAwAAAEBSUcFIikmW27WrE7howtSUND/f3PoAqVrmxVclXRf9vk3SbZK+lbrPdyV9UdJ7mxsaAAAAgLWirCikJN1zT72CkdLKjIIDB6Tt26ULL+ysa36ewpK9TvFYt046/ni2KfqrNHjh7h+W9GFJMjNJequ7f63P4wIAAAAwIMnAwdSU9MAD0vKyNDkpPf3p0h13SEtLq69PTEjHHhuCA+mgQtn1ZEAiKwBx2WWd8SWnMRQtix05Ip13Xhjv0tLKZUePdh6TDHQ8/vG9bcOmFAVxsq43ESiYmenUt8hjFmpfzM72ZwxAmVo1L9x9e78GAgAAAKB7vWQu3Hdf5yD//vs761xakr74xfzry8ud+6eDCmXXk0GHJmosZEkHLrLEnTHe//5mnzv5ehRt/+T1Awc6QQKp2jZtoi3p/PzKDBWJbAq0T91uIzKz55jZB81swcweNrNTo9vfZmYvaX6IAAAAANLyukPktbNcXMxfVuUgf5zlTZuoU0tj587816No+yevS/U7ezTRlnRuTrr88pBVYRZ+7t4tLSyEANX+/QQuMHy1Mi/M7IWSPqlQB+PPJb0+sXhZ0utE0U4AAACgr/rRHWIty+qMkd7GZbU0yqay9FMTbUnn5ghQoN3qtkp9u6RPSHqZpEmtDF7cLulVDY0LAAAAQI6mu0OsZXmdMbK2cTLLoU3bn7akWAvqThs5VdJl7u4KbVOTFiQ9ts7KzOwUM7vBzL5kZl8wswuj2y82s383s3+MLlsSj3mzmd1pZneY2Ytrjh8AAAAYeU2caV+r1q2Tpqc70yMuvzw74yBvGx882K7tT1tSrBV1gxcPSprKWXaypG/XXN/Dkt7o7s+UdIakXzSzZ0XL/tDdfyi6XCtJ0bJXSvo+SS+RdKmZTdZ8TgAAAGCkrfUz7ekAxAUXdOo1TE/nL6tTyyFvG8/M9H/7hyaP2eNPX88LvgDjpu60kZslvcHMPpy4Lc7A+HlJ19dZmbvfJemu6PdDZvYlSUVNin5C0tXu/l1JXzOzOyU9T9ItdZ4XAAAAGGVVukMUtSW9995w8F7F5KR0wgndPbZXk5PhudLdOgbR+SJrGyezHNLL0pKvR9VuI7QeBfLVDV5cJOnTkj4v6RqFwMU2M3unpNMkPbfbgZjZJknPkfQPkl4g6fVm9ipJtylkZ9yrENi4NfGwr6s42AEAAACMnfjANtkatc4Bb15b1bjjRZ777ms+cBFnGWR12VheHlygJK3KNs5rTUsAAmieec1ePFFr1HdIOlOhaOeypJsk/aq7f66rQZgdJ+lGSfPu/kEzO0mhhoZL+h1JJ7v7DjN7j6Rb3H1P9Lj3SbrW3f8qtb7zJZ0vSSeddNJpV199dTfDGqjDhw/ruOOOG/YwgL5hH8e4Yx/HuGMfXxte+coz9M1vPnKgz3nSSQ9KUubznnTSg7r66ltX3d4P7OMYZ23ev88+++zPuvvpZferHbz4zweaPVLSBkn3uXvXtXbNbJ2kj0n6hLu/M2P5Jkkfc/dnm9mbJcndfy9a9glJF7t77rSR008/3W+77bZuhzcw+/bt0+bNm4c9DKBv2Mcx7tjHMe7Yx9eGiYnsDIh+mZoKNRuk7Ckag6znwD6Ocdbm/dvMKgUv6hbsjFd+ikLnkWdIOsPMzokvNddjkt4n6UvJwIWZnZy4209K+ufo949IeqX2UvM1AAAgAElEQVSZPcLMnijpqZI+083fAAAAACDYu1fatKn5wEVRYc1kscm5ufD7OBWijLfpxET4uXfvsEcEjLZaNS/M7EmS9ioUyZSkaIaaPPrdFaaSVPUCSVsl/ZOZ/WN023+X9LNm9kPR+vZLeq0kufsXzOwvJH1RoVPJL7r7Up2/AQAAAFgL0nUtkjUYkss2bJAOHZIeeqiZ542LbNat+xAHMdosvd2k/AKpyW164EDILJHa/zcCbVW3YOd7Jc1IeoOkf5HU00ecu9+sTgAk6dqCx8xLopMxAAAAkGPv3pXTMJIHz9LKZYuLzT3voKd6NKETkDirVkAiud0OHJAuu6xzPWubHjkSnmeUtg3QJnWDF8+V9Op0gUwAAAAA7bFr1+o2nkeOSOedFzIjlvqQuzw7O7wOG1UzIooDElY7IFHXwYO9rwNYq+oGL76uHrMtAAAAAPRX0UFyvwIX+/f3to689q11p2gUBSD6EZCoY2ZmsM8HjJO6BTvfJulNZvaofgwGAAAAQO8GeZBsFoICmzZJO3euLFJZdH3jxnCJf9+xI6zHvRNkiK8vLoZL3rKm6nX009RUyExB+xUVW+1XIVYKvJarlXnh7leZ2TMk7TezWyXdu/ouvq2x0QEAACQUnZnNuj6sFHZg2ObnV7ce7Ze4Q0lZlkNR1sOgMyAGYd066fjjO9kifB61R1mWT16xVSm/lkzWa1s1m2jDBuk735GOHq223rWqbreRV0t6s6QlhVap6RjnALtCAwCAUVQ3ABFfP3AgnOGtc6DElz+sVfE+v2tXeC+gGcmARFltDYIV7VHUXadOsdX49/SybdukrVtXByTuu68zTatu8I4Cr6vVnTbyFkkfkvRYd3+8uz8xdXlSH8YIAABGTDr9NU4VNwtf8PJSw4uuS53ARVXJL5zAqMt7X+Vdl0IdigsuGNKAR8S6ddL0tGTmmp6Ofw91PC64IPyMr+/eLS0shFawCwud3/fvly69NPyMr3PQ2Q5x551epxkdPJhfS2ZpafX0psXF3uvLUOB1pboFO6clXeru9/VjMAAAYHTkVfcvO6tVNwDRK778YZTkZSZ1k3m0fbt04YXVp2SUdSFJPn/b1MmIyMuQ2LfvRm3evHmofweal9V5pxszM9Lhw4Od4kSB15XqZl7cLOmZ/RgIAABol6KzvOnieumzTW0qnhcfyABtkXxvVS1aKdUPHBw9Wu9Aa2kpZBdkmZ0NGQV5y5vQyYBYnfXQZEYEGRJrSxMB7GEUW00/5zCKiLZN3cyLCyX9hZndK+njWl2wU+6+3MTAAABA/3V7lncci+sBvcjLRMoq0pecB9+mopWTk9mFPpMHUVnL48+K2dnqNWyythM1ItAPMzP1677kFVvdurU/Y5TC+889BNUmJ6XnPz98psS1NJoqIjrK6gYvvhT9/LOc5d7FOgEAQJ/Urag+zOkdVeUdKOWN9557Bjs+jKc676VkEGKUAn9LSysLfWYVnixbDrRNVsAtHZyoWmy1m0BIklm4LC+HLIljjw3jSn+GLC1J113XeVw3RUTHsdhn3UDDW0VHEQAAWi0+yGpz9kS3Z2qLvlRu2pT9pZI5w+jWKLyXupFX2yKeEjI3V3zQU7YcaJMmA25lgZCyrKtkgGJ5OXymXHVVGFs3nyNFU2LGsd5TreCFu1/cp3EAAICK6pwBHlb2RLdntXpRlu4OlClqp9jWTKQ6pqakyy8Pv/NewbhL/69s4v9OL4GQTZtWByjiDIluAw1xcH6tBO6Z4gEAwAho4xngorNNw0gjJ50ddRUFK0YtmyJL3rz9GO8VjLKi4ETcHrUfdSC6zTzKC1DE4687HSUZcFwrwciughdm9oOSni7pkell7p5XDwMAAORoazZF0fSONh7skM6OtKotfUctWFFlylXRe5T3CkZRUSA/GZzIao867DoQeQGK+L2aDkCkEYysGbwwsxMk/Y2kM+Kbop/Jr1EELwAAqKAN2RTDmN4BDEr67GubOnv0YnY2tPgExk0vgfxkcKIoy2FYiqY2ZmUOEoxcrW7mxdskTUs6U9JNkn5S0rcl7ZD0fEmvbHR0AACMqfRBVT+zKUYtewKoo+hgZ2IiuzBlt5Lvpac8Rdq3L6w/2UFgEMaxEB+QNdWjbiA/fm8UZTkMS5VOPvw/LlY3ePFiSW+RdGt0/evu/llJ+8zsMkkXSnpVg+MDAGAsZaW0NqUstRQYF2UHO70GLiYnQ7Ai3dbw8GHppps663cf7HSucSzEBzTxfzF+b7S1gDMBit5M1Lz/yZK+6u5Lkh6U9OjEsg9K+vGmBgYAwDjr9cypRRM3Z2elCy4IP83Cz927pYWFcMC1fz9flAZt795QVX5iIvzcu3fYIxpfTQcBzcLrJnV+xtkUy8vS/feHIMXiYid1fdDacAAG9EOv/xeT7425udBZJ/m/8fLL+X846upmXvyHpBOi3w8oTBXZF11/SkNjAgBg7NWtLE42xWjoZ4V7rNb09IlkBsWgpoCU4b2PtaKbjhvJqVzp9wZZDuOnbubFzQoBC0m6StJvm9mfmNl7JL1D0ieaHBwAAONqfj6cJUoim6I9yrIn8pYXVbhH80Z1+sTkpDQ9Hd7f09Od33nvYy3L+r+Ytm7dyvfLVVeF4AXvjbWhbubFWyR9b/T7OxSKd/6MpClJH5H0S80NDQCA8VVWuAu9SxdyTG/fvOVl2RNFy9tY4X6cVWkv2EYTE9Ill/B+B5J67biB8Vcr88Ldv+LuN0W/H3X3N7r7E9x9g7v/nLuPcNMpAAAGa24unC3ijGp16YyHnTuzMyDiAMOBA+GsXBxgqLK8LHuiaHleJsCoZgi0VbwfbN26uk5FnMHUZkePko0DZEn/X7z0Uv5PoqPutBEAAIBGlQUk4utm4WA1GXC47LLmAxBl2RNFy7PSnimw2LvkPrJxo7RjR+d1v//+lUU1B9n1oxdk4wBAPQQvAABAz7qtEZGVAZEOSMTXpfID0yYCEGXZE0XL21rhftQ6oBQFK4bZ6aNJZOMAQD2lwQszWzKz50W/L0fX8y4P93/IAABgGOoEIMqmaMTp/tu2NV+voNcARFn2RNnyYUwHKgpOlL0+bRH/DekMm3EJViSRjQMA9VUp2PlWSV9P/D4iyXgAAKApRUUqi6ZgzM1lL48zKJaWmh9rHIBIF3JMByDylpcVU21LsdV4esyBA512gdLqAqNlr8+wJAumbtggHTrUCVKMytSPKmZnKToIAE0oDV64+1sSv1/c19EAAIBW6keNiH5oKgAxN1d8cFm2vB/qHOwngxNt6YBSNP7FESv5Pjkpbd4s3XknXREAYFBqtUo1s0dKOl3SyQoZGHdJ+qy7P9iHsQEABqisrSTWtrIaEXFNiqTkFI2s5d2KswzKzmi3MQBRR68H+/FrVvb69MuoBismJsKUn8lJ6elPl+64I2QITU6GjJZLLx32CAFgbapUsNPMHmFml0i6R9KNkj4g6S8kfUrSopn9TzNb379hAgD6qcqc+FEr+IdmNV0jIm1yMgQlJieLl8/OSlddFfbTcWyj12Tdh/g1G0YHlPRnyijVrTjllDDmhx+WvvCF8DO+TuACAIanSsFOk/QxSa+X9HFJr5X0EkkvjX7/e0m/Iumv+zdMAEA/lbWVHJWCf+ifogPgsg4byeVSuE96PVdeGQIQV16Z/Tzx8lEPUBS1hU121ZB6q/uQLiA66A4oWZ8po4IWpgDQTlUyL14h6WxJr3D3l7v7e93979z9E9HvL5P0U5JeZGYv7+toAQB9UTYnviy4gfFXJUBRlAERL3cPmRNVAh1tajXahLK2sL1mJ8RBoaxt1q8OKHnBmCanCQ0aLUwBoJ2q1Lz4WUl/4e4fyruDu3/QzP5S0pykDzY1OADAYJTNiW9LwT8MV1M1Ika9FkVdya4gTVq3Tjr+eOmee4ZTpyarA81llw3u+fuBFqYA0F5VMi+eI+lvKtzvY5JO7W04AIBedFuXomxOfFG9A2BUFb1fiqZ3ZF3Pe2x6Kkgv1q2Tpqc7GSm7d0sLC8ObTjPKU0OksA0vuGA8s3wAYBxVybx4rKQq59YOSjqxt+EAALqVdRb0/PPD72VfxsvaRs7Pr1y3xBlKtEO6S06y+8iGDeE+cWZCelmy+8WBA6FA5nnnhQBBelkyoyDrevxek1a+V3rtqpHsrDKsDkCdbXzWis+GNk4NyeoQkm5pSiclABhNVTIvpiR9t8L9HpL0yN6GAwDoVq91KYrmxI9zHQIMX1nGUN7yKjUkFher15eIC2R2U3sifq/1mo2Qzq5IdlYZVuCis41tRbHevM4w/fC939t5vomMb6/r1kl79mR3CPnkJ8erIw0ArFWVWqVKeryZPanoIukJ/RwoAKBYv+tS9KvgH8ZDkwGIZCebouVtm7Zw8GC991vWtIVhTwVJywuKnndeyGwYlPvuCx1n3EMr07SjRykgDADjrsq0EUm6psJ9TFIPTb0AAL0oK7oJ9EvZlKWi5UUZQ3NzxcvbVjA2fq+VTaeYmmp35lJyKk4v7VqbdOSItG1bmNqTN6a27Q8AgGZVybzYLmlHhUt8PwDAEJQV3cxSp2Bh1WUYvn69PnnrLZuy1E0AIr69aHmbAnPxey3rfZieCjKMwEXV93OywGhbAhexpaXiMbVpfwAANK8088LdrxzEQAAAvckqurllS7i+dWu1goV5RQerLmvrmeS1pJfCrd2ut9cARFHGUNHyrEKydcStRhcXO4Ux08uyin1mXU8XgcwrfjsMRa+d1GyB0WGhgDAAjL+qNS8AACMgWZdifj7MES8qZpguSlhUdLDKMgxG0Vn0fr0+Resta6VbtLwsY6hoeVYh2WQNienplRkP6foSr3mNdNxx4frUVKcQ5OSkdOaZYVnsBS9YWfPl0kuLC9y2qT5M3ffzKKGAMACsHQQvAGBMdXtQUlR0sGwZmlOnwOX27SHdf2Iiv95Cr69P0evedAAieSDar043hw9L73tfZzvef38INkhhesJ11+UXER013byfR8H0dHsCRACA/iN4AQBjqtuDkpmZ4jPlZWfZ0buiAMV5560OSh092mkJmqfX16fode81AFEnU+HwYenCC7PrM/TaKrXIKGcXdfN+TpqcjLNSWlYEAwCwphC8AIAWaqLgYjcHq0VFB6ssQz3J1/m448JBollxgKIbTbw+Za97WQAiPaVp167O/r1z58r9PXk9HaBIBiTqBiB6NapZCnXfz8kCo9PT4XUIWSk2qCFXcs89wx4BAGCQCF4AwBCUVf5Pn3UvSlnPW1fWQUlaXheEojPl/UrjH6ZBdU9Jd3XYti172kJTmnx9yl739DbMC0iYhQKyedkSvWZI9NOoZheVvZ+3bQuBMyn8fM1rpIWFsD8ed1wInPWTWef502ZnwyXLqL4eAIAuuftYX0477TQfBTfccMOwhwD0Fft4x5497lNT7uHQLFympsLt7u6zsyuXxZfZ2frr2rMnPM4s/LzggpXX4/utNcntMj3tvn59/jasKmsfTz/PxET2a9uPS9b+0qu8/UkKtw3qbxvGpZt9YhRkfYasXx/210G8pvF+WvRZVvY5BzSF7yoYZ23evyXd5l5+bF8788LMnmNmHzSzBTN72MxOjW5/m5m9pPHoCgCMmbJuEHUKYpatK53KX9QhYdzFmQHpM/9FXVeafp6mMyukkDmzfv3K23qZJpLODokLgRbVl5DCbaMmPT2iqDPJqGUXVc2EyZqi9NBD5TVUmpCedrSWsr0AAPXVCl6Y2Qsl3SLpGZL+PPX4ZUmva25oADCeyoITdQpi0vkjX/ogPD7wlqodlHWzDZNTfqo+T5n4wDorQLFnT0jvv+KK6gd2RQe1baovUVV66lOdVqm7d3emRywsdH5vOtCXFxDKCio0MWUpa+pZ3tScQZmclM49t3g/Laqb0rb2swCAwTum5v3fLukTkl4maVLS6xPLbpf0qobGBQBja2Ym+6AhDk7Mz4cDj+TZ0Lwz6WXrWkv27g3ZEgcPShs2SIcOdQ62uyl02c027LY9bZ4LLggH0dLKv29mptNmVOqcnY7FB8vxtpBCccP0dokPYmPdFgTtt3XrpOOP7/wNUvg9vR3aKA4kxPtFchunt3/cVebCC7P/1i1bpGuv7ewDyevJ+05MhHavbTE7GwIOAAD0ou60kVMlXRbNS0mfT1qQ9NhGRgUAY6xK14aqKdJrvfNHnakgdXS7DZvKeJmcXBm4kIrPPOdlmYxC9kRWRkSdDIk2By6k+gGtZNvbolavRW1h2xS4WEufRwCA/qqbefGgpLza9SdL+nZvwwGA8RcfbOWdRY/vU+WgrMq6xklRdkUvUzSSZ/Z72YZ5mTB1mEkPP7wyeyI9pp07Q0BraanTqeHhh8OytmVPmOVnAqyFM/JrbQpXU+8lAADS6gYvbpb0BjP7cOK2+Oviz0u6vpFRAcCYqxqcGPS62qbpqSBJZiHgMTvb2wFWZ4xnacMG6ZhjOoGELJOTIWsg74DePWRPpKd3nH9++P3Tn1451cC9+PmGKQ5OpKdOSGvnjHwTAa22mp1dPZWFYAUAoF/qThu5SGHqyOej313SNjO7QdIZkt7S7PAAAHWkizGmi/+VFWtMFhJsonBgXWXTH3qZ8pAu7HjVVWG9dace5I/RtLhYHkhYXg6XK69cXYQzltcBZdu2lYGLNut2KtS4yZraNQ7M6GAEABisWsELd/+8pDMlfVPSLkmmTtHOs9z9jmaHBwCoKqvDwPbt1VpdZs2vTz62n4GOftWtSAcrknUT6hxkNR1QmZgIlwsvrF+bYNi1DOp09qjTSWKcJQM3o2RiojMlKctaLAoMABiuutNG5O63SzrXzB4paYOk+9y9wdrqAIA64mkLWanpcfE/qf40i+Rji7pSpDskFHVByFrWVN0KqbmpILGiThHdigMQbalNka5RUPTaMSWgO/HUrk2b2jWFZGIiBJOyuIdla3nKDwCgXepOG/lP7v6gu3+DwAUA9FfRVJBktsUwJTsklGV0pJe1bSpIchs33fp0WMzCz7JOHulpAKPW2aPt2jaF5JRT8jNC4syKlVN+fE1N+QEAtEtp5oWZ1SnC6e5+bg/jAQAkpM96Jgs3zs2Nz8F1Vf3oZFC0jUe1UwQdH3qXLBabtQ3TxWSl7OyV9PWpqU7Gw+Sk9PSnS3fcETJy0tfNpEc9Srr//rCepzxF2rcvLJuYCIG6XrKVDh6UXve67DoqW7Z0fo8zR/btu1GbN2/u/gkBAOhBlWkjE+p0FJGkp0t6nKT9CrUvTpK0SdJdkqh5AQANygpOHDkSbp+bG92D66oGcRBetI2rdIqYnIxT7F0TE5abht+05BQZOj40qyxoWDSdKD3FKn39/vs7vy8tSV/8Yv5193B/d+nwYemmmzrTjprYz2Zmwn6TJe92AACGpXTaiLtvdvez3f1sSZdIOirpDHd/krs/392fJOn50e2X9He4ALC25AUn4tuLiuZNT6/uZlG14GLWYwclOcWh2yKbdRRt46w0/+Q2nJ5O1g1oNnBR9Fqlp8jQ8aFZRQGtvOX9EmdW9DrFKsuWLeWfMQAwqso6sGH01K158TuSLnL3zyRvdPd/kHSxpN9taFwAAOUHJ+Lbsw6up6akPXvCQf8VV3RX3yDrsf0KdDRVt6JbRds4q8Vnchsed1yo99GUosANAYrBKTugH5cD+2uvLf+MAYC2qloTLK65df75BDBGXd3gxVMlfStn2d2SntLbcAAASXnBibjSf9bBdbKYXi/tKdOPbSLQUaVg5KAPysu2cZFeD2InJ4cbuEG2sgP6UTiwn5jo7Ft58rKL6CYCoC3SAYq4bXu6vXo6OFGWQYfRVDd48TVJr81Z9lqFOhgAgIaUBSfi+wz7jHzVQEcbMwjm5qRt20IgQQo/n//88AUn68vRjh3Sxo3hi9REFz27jjuu81peeSXdPNqo7IC+TV1Djjsu+/Y4M2h5ubijSJXPGABoUl5AYmIi/H+N/8du3Bj+5yb/B8cdy6TVBYuTwQmmxI2nKgU7k94iaa+Z/bOka9Qp2PkKSc+QxL86AGhYXOkf/bF3bwgixIUQl5ak667rLE9/OXrooU6BxvgxdUxPS4cOdTdWDEb8fsvrNpJenu42kuwKMjkpbd4s3Xlnp9vIAw90uo0kl6UfW8X0dKeoZ1r8JX1+fmWBUWl1BhefMQCalNeRacOG8D8wruGTLmqcLICc/L2qZE2wrILbo5A5h3y1zhm5+9WSXizp25LeLOk90c/7JL3Y3T/Q+AgBAGhA8kxP8szOtm2DbTfLWZ/RUJbRlFyezC6an5duuWVlMOyWW8Lt8bSguLBrclnWY6uIgx5Z4tvJrgDQtLLsiWTGxOJiuMS/N118OKmsJhhT4kZb3cwLufsnJX3SzCYkbZS04O5d1Vc3s1Mk/ZlC69VlSZe7+yVmtkHSBxRasO6X9NPufq+ZmUJHky2Sjkh6tbvf3s1zAwDWjqLWlt1kT/SCsz7jrWyeddaybdvC9KSJifr7Y5wVUpRZIZFdAaA36UyKqtkTg5TOKJPyM+gwmrqYrRu4+7K7391t4CLysKQ3uvszJZ0h6RfN7FmSflPSde7+VEnXRdcl6aUKRUOfKul8SZetXiUADAYtuAav220+yNaWRTjrM56S+2VWmrIUbs9btrQUzkgWBS6mp0NnnqR4fyKzAkA/pTt39Dt7oo5kl6421gRDs0qDF2a2ZGbPi35fjq7nXR6u8+TuflecOeHuhyR9SdLjJf2EpCuju10p6WXR7z8h6c88uFXSCWZ2cp3nBIAm0IJr8LK2+fbtKwt7xb+nU1jzDhqrir8cZR1AVn0sB5TjKb1f9sPsbJiWsnt3fzoLAUCRYZ4ASLdTT3cso0vX2mJe8p/WzH5b0p+6+zfM7GJJhQ9w97d0NRCzTZI+JenZkg66+wmJZfe6+2PM7GOS3u7uN0e3XyfpTe5+W2pd5ytkZuikk0467eqrr+5mSAN1+PBhHZdXMhwYA6O6j3/ykyfqve99ku6++xE68cTv6jWv+ap+9Efv1itfeYa++c1Hrrr/SSc9qKuvvrWx50FH3jbP55IK+kSmTEwsy9104onf1RlnLOjWWzdmvh7vetdT9NGPfq+Wly0KTLjcO+cCJieX9ahHPaxDh9bxWq4B9ffLeh7xiCX92q/d0Yp9aFQ/x4Gq2rqPp78jpP9HJa8/+tFHJanR/0HnnHOW3Kv/Py2T/j/Z7/EjaOv+LUlnn332Z9399NI7uvvQL5KOk/RZSS+Prt+XWn5v9PNvJL0wcft1kk4rWvdpp53mo+CGG24Y9hAGbs8e99lZd7Pwc8+easswmkZxH9+zx31qyj3E9MNlaircbrby9vhiVry+rP266HnQkbfNm7gUbe/k6zY97b5+/crHrlsXbjdb5vNqDSraL7vdZycn2/n/bxQ/x4E6BrmPp78TXHDByv814f9K9v+dpv6/VTU7W/95O/8bV/49bftcW0va/Bku6TavEDeoXbCzaWa2TtJfSdrr7h+Mbv6mmZ3s7ndF00LicNvXJZ2SePgTJH1jcKNFU9LF8+KU+1jeMtLBMEhFhffyWnBNTITLzIy0ZYt07bX5xa3i/broedjnO/K2eV1mq1tbpot4xYXJDhwI9/co5zCrCNnRo9Jxx0nXXHOjNm/e3PsAMVLy9svZ2ZDGvGlTvf12aorpRcC4y/oe3GS70KQmvk9kFQVet046/vjO/9Hkdx6KY6Jfui7Y2YSoe8j7JH3J3d+ZWPQRSdui37dJ+nDi9ldZcIakb7v7XQMbMBpTdLBWVqkdGJS8lpZx4T3LyKCMC+/FX0SKilvF+3Xe89BSc6UtW3pfx+zs6taW6XmyyRoGUrU6BrxWa1dZO76s5Unp+dwELoDxN+gaEr3+j8oqCrx798r/o5deSt0d9F+Vgp1lRTq7Ltgp6QWStko6x8z+MbpskfR2ST9mZl+W9GPRdUm6VtJXJd0p6U8l7az5fGiJooO1ogNGujqg35JdAyZKPiGTB7WTk909X3yGIgstNVe69treHl/U6SP5um/bVv9LJa/V2lXW6SO9fHp6ZbAifQDAF35g/A064N3E/yiKAqMNqkwbeatKinR2y0PhzbzqL+dm3N8l/WI/xtJWyZ7K45SClZdmOzMjHT6cnyIXn9FmGgn6IZ3GWdS2MGl6OqRNdiN+X6fTMWmpuVo3X/YmJ8MXrTilddcuaevWlZ+n3b7uMV4rzM0V/z8qWw5gbWlqGmQV/I/COCnNvHD3i939LVUvgxj0WjHOrRjL0mzLMI0EvUieZU+21DzvvOwz7pOT2VNEYouL3Z3ViPf5sjO3vUj/raP8+VF3G09NSVdeGYIX8/Ph96zP07rpu3XS/Mdp+wMAmlE2nSytrF1o8no6u4upaBgrVap6jvJllLuN5FX2nZ0d9Oj6I6/Kcp1KxmuhavG4dF5pS4XjrM4eVfYz9+L7VFlvsvJ2k6/lWuliUue1m5wMnymxos/TKh0h4vsUvW7xPh6/HlndJkZ5+wNt+RwH+qWN3UZG+bsf2qXNn+Gq2G2kVsFOM3uTmb07Z9kfmdmvNxJRgaTxL+KXnDuXPCtah/c5I2VQZ03znmecs2+GpZsiWfEZ/+np7OXT09nZE+kzI93Obc/LFJmYkDZulHbsqJ5RMMpZS1nb+Nxzs+uNLC2Fz5T4vVL0eZqX0RFn3MzOSlddFbbv/v1hWdbrcc45Z614PaTVxT5HefsDAJqTriGRLHhZVFQaWMvqdhvZLun/5iz7x2g5GrKWivj1WnX5yJGQ8t9kgGFQgYOi5xm3g89BygsI1Q3+JaczXXKJtH79yuXr14fbpeIvImVfPuoEsMati0nyb9+4MVyyAjWbNkmf/nTncYcPSzfdlF+jIvleKfo8zZvGFk85Sb52xa+HZb4eaW3b/gAAAKOgbvBiRtKXc5Z9VdJsb8NBUq91IUZJ0X4JG/0AACAASURBVJf59BnsIk0GGAYVOCh6nlE5+GybooBQneBfVteAK65Yeeb/iit6PyNSN4BVxah0MUn/7YuL4ZIVqKkSuEmL3ytFn6d1ao400d6uTdsfAABgVNQNXhyR9PicZU+Q9N3ehoOkfhbxa5u8L/Ozs6vPYM+WhMjKAgxFZ3mTQY9BBQ66SWfn4KdYUUCoSpGsqSlpz57sbIl+tArrJoBVpiijoE0B0H73uo/fK1XaWVZ5XXt9/7dt+wMAAIyKusGLmyT9upk9InljdP2N0XI0aK30VK5zkFXl4DPvAKPsLG8ya2NQgYNu0tk5+CmW9/ofOBAOlrdtK65NMeggYTcBrCKD6GLSlH5mEaXfK018nnbzesQZY23c/gAAAKOibvDiYklPlfSvZjZvZjvNbF7Sv0a3/4+Gx4c1os5BVvK+eSYmsrMpys7yJrM2BhU4aCqdHR1FB5gHDoRaBvPz3dWm6Ie6Aay0otadbQ+ANh0M7HegoJvXI1nss23bHwAAYFTUCl64++clnS3pgKQ3Sfrj6OfXJG2OlgNdqXOQFd93z57sA4mlpU42xfbtnakhVbqZxGeCBxU4aCqdHR1lB5htK3paN4DVVBeTNqjb6z6tX4GCvOllxZk7PvKvBwAAQFsdU/cB7v4ZSWea2bGSHiPpXnd/oPGRARXEBwVxbYCJidWdB44eDVNDqkqeCZ6bG8yBx6CeZ61I7hd5Aas2FT1N78dxxkUygDWu+0f6b9+wIVy/556wHbZska69trNd0teT26kp8fSyOEsr+fkRZ+5kBTL37btRmzdvbnYwAAAAkNRF8CIWBSwIWmDokgd2E3UnQqVQT2J8xPvFpk3ZAYy2FT0d5wBFmWH87XEnl6ygSFYQNCnO3FmrrxcAAMAw1ApemNn1JXdxdz+3h/EAPZmZqTY1RAop3+mzvP04i4vhmp9feRZdIki1VsUBiwMHwvvfPdwet2CNFQUuYm3K3AEAAFgL6p6nnpBkqctGSS+Q9LToOjA0VefPz86G+egLC8xNH1dxzYKtW6Vjj80vaInxla5bsWNHJ7gZBy661bbMHaAXyfdKutA1AABtUbdg52Z3Pzt1+QFJz5J0r6S39WWUQEXp4obT09L69Svvw1n38ZfVEveBB0IxR4JU4ysvWBHvAw891Mzz8BmCUZQXoEh/XqbbhgMA0BY9VggI3P0rkt4u6R1NrA/oRbI7x8KCdMUVtBpdC5JfzLdtW90St20dRtCsrIBVr8GKyclOEJTMHbRdOjixc2d+MC8ZoMhqIc7nJQCgjRoJXkS+pTB1BGiVUWs12q/03bL1jlracNFZ9ryaBdQpaIeyg6y4LWmd/TTrAKwXU1OhqwjTy9Bm8fvBLEyRSwYnLrusOJgXByjyPhf5vAQAtE0jwQsz2yDpVyV9pYn1YW0atYPnXvQrfbfOerdv7xwkFp2VK1rvsHR7lp06BcOXtS+mD7IWF+vvp90caFlUpWl2VrrgAjK00H5N13GJu+1k4fMSANA2dbuNfE1S+t/jekknRb//tyYGhbUnPqCJz5zGByXS+B1AFP2tRem7Zdsha73bt0sXXhgOBtOOHu3cnrU8mTbcttemm7Ps1Cloh7qvXdX9tEqnoXXrpOOPp7sQ2i3ZxjfZEWvDBunQoU6gNuv9UFf8PqAjEwBgFNTNvLgx4/JRSRdJeoa7f6TZ4WGtGLc5t0WZCkV/a5X03fSZt/isdFadh+SBXzcOHuz9tYnHe845Z9XO2sjbjlXPssc1CziT3h79SEU/eDC709C6dStrVezezfQPtE9Zodk4E6nJorNSJ0CRLnTN5yUAoK1qZV64+6v7NA6sceM057Ysi6Tob807ezwxES5FZ97y6jz0Ymamt9dm5bawFdkgZWe/s7bj1q3SeeeFbVGWIj01xRfwNqqSIdHNOuPXOQ4CklmBKvKyHGZmpC1bpGuv7exPRdfrPLbf2RR5ijKP5uZ4rwAA2q/Jgp1A18Zpzm1ZpkLR37plS/aypaX+nHkrEp+V6+W1ydoWcTZIWU2PrMfGAYvl5eznm5jgzGHbZWVI9CKZ3j5qxXnXmryssXTR1rLrdR5bdN+iLId0LZay63Ue289siqI6LmQeAQBGnXnJ6Usz+x91Vujub+1pRA07/fTT/bbbbhv2MErt27dPmzdvHvYwhiZ9ll0a3TPneVkBZuFL4969Ifvg6NGVj3nMY/p71i1penrl2T4p/6xcL69NlQyJ2OzsyrOT3RSfi7cx2i15trvOWWmpnXUrOn+Pa2bGWjGmtsn6HEHvBv1+WOvfVTD+2Mcxztq8f5vZZ9399LL7VZk2cnGF+yQPM1oVvMBoGKeU77y0+GSmQnx2LLa83FzgYnIyrC/rwC8ZdEgfQOZt715emzpTBOKzk70YxUydtahOinrV/bSfyoItnfeZtaKgbRs13cp2rWpj8A4AgEGpMm1kXcnluZL+TpJJurM/w8Q4KGu3OS4p3/Pz4Qtm0sSEdPhwp7Bmv6Z+TE1JV14ZtuHCgnTFFflF2Ops725fm/l5af363v6mqqiOP56G/blQpbVr+v08ysWG+2UU6xcNS7LQ7PQ0RWcBAIiVBi/cfSnrIulJkvZI+gdJz5J0fvQTWCXrAGD79pVzket0oaj73EVBk6af57zzVk4JkTqZFe69F9Ys+mKbnsox7AM/qbvpH1WkO0mM4hQjtF+3GQMcrK9EVlS+oq44CwsEKwAAiNUu2Glmp5jZeyV9QdI5kn5N0lPd/b1RUANYpZfCjb3ICpr0+3maVFZ0re1fbHftWh3IkcLUll5wBhKD0m0QgoP1lZou1NqUomBw+rO36Hqdx5JNAQBAdyq3SjWzEyXtUsiweFChtsUfuvv9fRobxkiVA4A41brJL25FnT/q1H3o5nl6MarFStPyXvfl5fDlvW6dj3Xrwhf9Ud8uGB3dtHZlCtNq6do5w2hLmnVfakYAADA6SoMXZvY9kt4k6ZcU6lpcIun33f3ePo8NY6TqAUDTqdZ56ztwIJz1MutMa+il0F43444La47zF+qi4qV1tpnZeG0XtE9eUc74s6Jo+lOniCLdRorUKdQKAACQVmXayNcUghc3S3qxpMslPcbMnpR16edgMbqqpgw3nWpdtr70AUm3hfbqjjtZWHP/funSS4dfm6Ifsl739etD8dI6LVTHbbtg+JK1cDZulHbsyC7KKYXb4g5BRVO5rr/+RvZTAACAPqkybeSE6OeLJb2owv17nM2OcZSVMpzVxrPpVOv5+ZBNUWdKRzdZFFnPE5+tnZ0d38yKMitfd9eGDabvfKf6dBHS79GkOLsinU1RZX+M38v79/d1iAAAAMhRJXixve+jQN81VduhF+mU4UGMKR00qXK2v5vsj/TzrKUARZn4dd+370a9+tWbcw8U13KQB/2R/IxJB0y76YJDBxEAAIDhKQ1euPuVgxgI+ifuhBFnBfRS26FJg5r/nHyeTZuKa2/0cqaf+dzl8g7+zDijjd4VBSvqFofNQgcRAACA4andKhWjp6jjxlqTVYMhOZd9HDp8dCtZA2DTpubbyUr5B38cFKKq9H66c2f4aSZt3dqpW7G4uHJaWq+YwgQAADBcBC/WgLyz3WsxBXpuLgQoksX2rroqHOys5UJ7cXZOsmDh+ed3Ahh5B4x1Ax1ZwSMOCger6LXcuDFc8l7nOvftR/Araz9NF9bs1rp1oX1v/LmQLsq5lgObAAAAbWDey7e9EXD66af7bbfdNuxhlNq3b582b97cl3XnTZWg+BxiefvI5KS0tFSnVWR+rYp4H29D/ZW1Kj2FrJ+S+8SGDeG2eP9I1zYpqnWS3F8mJsL+2JRkUd0m9sN+fo4DbcA+jnHHPo5x1ub928w+6+6nl92PzIs1gLPdKJOXhRMfKJbFOI8eDWn68dnwrVvDgWHyjPw555ylTZvC/cexLewoyJpC1i/JfWJxceX+EWdL5F2P9590C9NeAxfp7AqyrgAAAEYHwYs1IGuqBCnQSGq65kQc7Fh5YGqrpqNgsEZlqliyhWkvdSvSwYrdu6WFBQJnAAAAo4jgxRoxNzecs92DKAKJ3mVl5/TLWi0W2wZroTBqsgAvwQoAAIDxUdoq1cyur7E+d/dzexgPxkhbW7Ritfj16FdtgbRRyQAYN/Pzg6t50U+TkyEgUVYvAwAAAOOjSubFhCRLXJ4habOkTZKOjX5ulvT0aDkgaTRbtK7lTJFkds6VVxa3lE12Ypieltavr/dcayEDoI2yppClX8uijhtV79vNPlHV1FTYP+NsiksvpYYKAADAWlCaeeHum+Pfzexlki6RdIa7fyZx+w9L+kC0DJA0ei1axz1TJN3lo+iMdToTo+yMdrzuAwfKO5NQLHa45uYGsz8n97eq3Uay9p8qnWwAAAAw/urWvPgdSRclAxeS5O7/IOliSb/b0LgwopKZCxM5e1dbz7qPYqZIVXFgpqjDw/btobtDnHXy6U9XX3+cteEeOjhkn613isWuIclMnoWFlbUn0tkS8fWs/Ye6FQAArB3pLOi4a91azIrGaqWZFylPlfStnGV3S3pKb8PBMKTPyHd7ZjOduZBVM6HNZ91HLVOkjiotMuPWllInuBGrk4WSd2Z/374bW9tbGu0xqMwQAAAwHHnZwOkMzF6+j2I81c28+Jqk1+Yse62k/T2NBgOXdUa+21aWeQfIk5Oj0aI1LyOkrZkidTQRgDlyRDrvPKLeAAAAWKkoY2Ljxk5278aN0o4d2dnAUvHUY2l8sqLRnbqZF2+RtNfM/lnSNZK+KekkSa9QKOTZ0sNS5CmaKlE3yJB3gLy8HC5tl9WJoc2ZInXMzHT+KfSKqDcAAMDaUlQ7bcMG6dAh6aGHwn3TGRNxZm/6926NQ1Y0ulMr88Ldr5b0YknflvRmSe+Jft4n6cXu/oHGR4i+anKqxKhnLmR1Ymhzpkgd8/Oru4f0gqg3AADA2lBWO21xsRO4GIRRObZA8+pOG5G7f9LdX6DQJvVxko519xe6+3WNjw5912TAIesAedQyF5JFBsepOGCVFpl1W1sS9QYAABh/VWqnDcqoHVugWbWDFzF3X3b3u919BCYEIE+VgEN6DltevYNxzlwYB+nATLLjw8KCdMUV2cGNPES9AQAA+q+sA0e/O3IM+oSVWfiZPtnGsQVqBy/M7Dlm9kEzWzCzh83s1Oj2t5nZS5ofImJVgwh1lAUc6hb0HNfMhbUgL7ixZ8/oZ9QAAAAMU50ARNUCl3nXuy2+n6fpE1br1oWs36xs4NnZ0DbdPbu9OscWa1ut4IWZvVDSLQrFOf889fhlSa9rbmhIarIrSFpRwKGooCfWBjJqAAAAuldWMyKrhsTiYvf1JJr+rl6ldlpRQGJ6euWy3btD1m9WNjABChSp223k7ZI+IellkiYlvT6x7HZJr2poXEhpsitIHU0W9MTompvjHwkAAEA3hlEzosnv6vF3wLxuIzMzIcDBd0X0W93gxamSXu7ubmbpLrwLkh7bzLCQNqwgQl6LTeodAAAAAOWGcdKv6e/qnMhCG9StefGgpLykoZMVWqiiD4bVhnQcOogAAAAAwzLok358V8e4qhu8uFnSG8xsMnFbnIHx85Kub2RUWGVYQQTqHQAAAADdq1IzokhZgUs6cmCtqDtt5CJJn5b0eUnXKAQutpnZOyWdJum5zQ4Psay5ZoOaW0aaGAAAANCdKjUjktc3bAj3v+ce6kkASbWCF+7+eTM7U9I7JO2SZApFO2+SdJa739H8EBEjiAAAAACMHr7HA72rm3khd79d0rlm9khJGyTd5+4Drp8LAP9/e/cfJlddH3r8/UkItBEpECRSazYo6NXic62mFW9rTZSKgr1oW69wAwSoNwpqtcVWbOpDoFCxarG9Ck8j8jsFvVUrtVyKQaNVQERL/VHwAprQIBATQBKjEJLP/eOc6c5OZnbn7J7ZmZ19v55nnpnzPWfO+ezsN5Odz3y/n68kSZKk2aJSzYuIuDQi3gWQmT/LzB82EhcR8ayIuLQXQWp6rV0LixfDnDnF/dq1/Y5IkiRJkjSbVR15cQqQEfGrwMmZ+XjTvqcBK4DTaopNfbB2LaxcOboW9caNxTY41E2SJEmS1B9VVxuBotbFUcD6iHhazfGoz1atGk1cNOzYUbRruPVqxE3jvK94xcsdySNJkiRpUiaTvPgCcCRFvYvbIuL59YakfrrvvmrtmjnGS040Rtxs3AiZoyNupppoGHveqO28kiRJkmaXySQvyMy7gZcA3wdujoija41KfbNoUbV2zQztkhOnngoHHVQkM1asaD/iZsWKYv9BB40eW2X0hCN5JEmSJNVhUskLgMx8FHgV8AngH4GVVc9RFgDdHBHfaWpbHRH3R8Qd5e2Ypn3viYh7IuJ7Jkx64/zzYf78sW3z5xftGnytoyvOOKO4P/HEPZMIO3fC1q1FMmPXrvbn27Wr2L916+ixrYmP5uu0JjccySNJkiSpDpWXSm2WmbuAN0fEXcAHJnGKy4GPAFe2tF+YmR9sbiinpxwP/DLwi8C6iHhOGYNq0ijKuWpV8QFz0aIicWGxzsG0du3o7+rAA2HbNnjiiWLfxo1w8cW9uW4j8dHuOs1FXhctKrZbOZJHkiRJUhVVR14sA/69tTEzLwReRsWVRjLzy8DDXR5+HHBtZj6emT8A7gF+rcr11J3ly2HDBti9u7ifzYmLiepE9HNJ2dapIFu3jiYu+q0xNcSRPJIkSZLqUCl5kZlfysztHfbdkplX1BMWb4uIb5XTSg4o254B/EfTMZvKNqkn2tWJOOkkiCimTJx2Wv0FLqtoV09iqubOLX6+uXOnfq777isSX2vWwMgIRCQjI8X2bE6ISZIkSaouMrO/AUQsBj6XmUeU2wuBLUACfw4ckpmnRcRHgVsy8+ryuI8D12fmp9qccyVlDY6FCxe++Nprr52OH2VKtm/fzr777lvb+datO5hLLnkWmzfvw8EHP86b3vR9jjpqc23nnw2OP/5IHnro5yo9Z+HCn3Httbf2KKKxXvGKl5MZk3hmst9+O9mxYy+efHI0f7nPPrt417u+x1FHbWbduoP54Aefy+OPTz6L0fpa1N3HpUFjH9ews49r2NnHNcwGuX8vW7bsG5m5ZKLjJkxeRMQu4KWZeVtE7KZIKnSSmVmpjkZr8qLTvoh4T3mB95X7/hlYnZm3jHf+JUuW5O23314lpL5Yv349S5cureVcjREDzd/Kz58/Pd94N9dgmOn1MubMKUZVVBFRTLeZDosXt68nMZ7mfjDR76q1ngbAww/vWVtjous01NnHpUFkH9ews49r2NnHNcwGuX9HRFfJi26mjZxLMUWj8Xi8259PKtomEXFI0+brgcZKJNcBx0fEPhFxKHA4cNtUrzeM+rU8ZbtpFtM9laJOkykqOZ2FKNvVk5g3DxYsKJIoIyNw+umNKRvsMWVjotomzfu3bClujceXXjr2vONdR5qJmmvaTHapYEmSJNVnwlESmXlO0+PVdV48Iq4BlgIHRcQm4GxgaUS8kGKExwbgzeW1vxsRn6QoGPok8FZXGmmv18tTdvrGfrykyUz8IHv++XuOYBnPdBei7OfKMMuXz8zfqdSN1tFrjZV1YOxqOv4bkCRJmj5TWio1In6BYgTEg5m5aaLjW2XmCW2aPz7O8ecDrlMwgV4uT9n6R32jiOWJJ3Z+Tl1Jk+nWnBzYuLEYVdA8jWTePNhvv2IqRb+myJhEkOo3UTHcmZyUlSRJmqkmnDYSEUdHxAVt2lcBm4GvARsj4u8iYkrJENWjl8tTtvujfqK6ENM5laJujakTmXDVVWOnRlx22ehUitm+pKw0TLpJuM7UpKwkSdJM1U3Ni7cAz2luiIjfoqhvcRfwTuBvgTcC76g7QFU3dnnKemsQVP2DfbqnUvTSRDUiJM0czTUtFi+GM84Y3Z7Txf+MMzkpq9lhvD5u7RZJ0kzUzUiJX2HPQpynAj8Djs7MBwEiAuB/Ah+qM0BNTq+mE3SaktIqYuavNiJpuDTq9bROA9u4ES6+ePS4XRNUUxqmpKxmtm5XhWrt49ZukSTNRN2MvDgYuLel7beArzQSF6V/omWEhvqn9RuXur5haTclpdXIiKMTJPVf64ohp502mnztZhnkuXOLJMeCBWNX8XE1HU2X8UZPNPfpzKKw7Nato4/HW84apmcVMkmS6tTNyIttwFMaGxFxOLAAuLXluMeAufWFpslqV1Szrm9YJipi6TeSkqZTt988N68Y0q3du4ub1EutK3gdcwxcf/3EI4Qm06dbWbtFkjSTdDPy4i7guKbt4yiWMb2x5bhDgYdqikttdDuaYrwlS+swXhFLv5GU1EudRlNM5pvniVjXQnVp7bcHHdS+DzcSFFVGCE2FfVySNJN0k7y4EHhTRPx9RHwUOAf4NvDVluNeD/xbzfGp1BhN0fwHzsqV7RMYnb5J6cU3LBaxHNWrqTpSnWZaEb+JkhVTTVB04iiyqetVX5vovbZToqBdDK3TMLo9tspze51kmyz7uCRpxsnMCW/AHwAbKaaQ3AQc3rL/l4BHgZXdnG86by9+8YtzJvjiF7847v6RkcziT52xt5GRqR2relx9deb8+WNf7/nzi3YVJurj6o2rry7+7UdkLliQuffe7d8fGreI0feL008ffW7r9oIFxa2xr66+XjXeqdzG+1kn8/PM9j7eq77WvN38vMZt3rzRvtjrPjOTbs2vi31c6o59XMNskPs3cHt2+DzffIvi2OG1ZMmSvP322/sdxoTWr1/P0qVLO+6fM6f98NGIPedkt9a8gOIbFqd09M7ixe1XYRkZKUakaOI+rvq1ey/olXnzYL/9inoTzfP2W2tRtO4bb45/r2OsezWk2dzHp7OvaVRzn279d9aL1b5mcx/X7GAf1zAb5P4dEd/IzCUTHddNwU4NgE5LlLabr9pcVLPx4cAlS3trOqfqSN1qV/+mV3buHC0gOF5hwXZLNjZv15m46HWyQqOms6/NNo2E3sjInok/+7QkaTbppuZFWxExNyJ2RcSL6gxI7bVbonS8+aoT1aKwPsPUNb+Gczr8S7IYmvppNiTP5s0bXca0dUnTyy6DLVusyTMdZkNf65XmPjwyAqefPrYQ9lVXFcmLDRvgoousMyVJmr0mnbwoRS1RaELLlxfTPupY2aNK8c/G8SY6xi8cuGvXnsdbDE39NozJs9YPes0Jii1bTFb0yzD2tTpVSbKZoJAkqb2pJi+Gu2DGgKlrZY8qS6lWTXQMq9bXoVOF+LlzXTZWg6PdiK1O3/JC0TZoxktW+MFucEx3X2s8f8EC2HvvztdtTRS0jmpo3q5ybNXnmmSTJGnqplrzYgD/1NVEqtRnGC/RMZv+4Op2Pvfu3XsWUJX6pWr9m7Vrxx7bqbBmaxHOAw+EbdvqW/KxeY6/c/pnhl72tXbbzeduPZd9RpKk4TTp5EVm7oqIZcD3aoxHPdL8x92cOe2nObQb9mshykK3P69DpzVoli/v/oNclWNbjfdhtNvVRvzwObNNV1/r5bkkSdLgmlTyIiKeCTwTmAu8JJrGf2bmF+oJTXVpXcKuSn2GKqucDKPGB7JuVkCwxoVmMz9ASpIkqZcq1byIiGdFxC3ABuBfgM833daV9xownaY8dFOfoeoqJ9OlV0VEOxXlbKd1Prc1LiRJkiSpN6qOvLgEWAS8E7gLqGmGs3qp05SHbuozVJ3HPB1aR5I0iojC1OJqPe/WrZ2PdS6+JEmSJE2fqsmLXwVOycxP9SIY9cZUp34M2nDwTkVETzyx2Fdl/nw3tUBaRRQV4iVJkiRJ06PqUqmbcLTFjDOoUz+qaJ7O0WkaBxT7Lr547NKup55aTAFpTDE544ziPgJOOmn02G4SFzB76n1IkiRJ0qComrz4C+DdEfGUXgSj3li+vKjH0Lzm/Eyqz9CYztFIMlS1c2cxBaSRzGgkN6D6+WZa0keSJEmShkGlaSOZeVVE/BdgQ0TcCjyy5yG5orboVJtBm/pRRaeCo9Nh3jzYb7/RJR6tcyFJkiRJ06/qaiOnAO8B9gdeBLyszU0zQK9W6+iFTgVHe6V5FZbLLoMtW4rCphs2mLiQJEmSpH6oOm3kHOAzwNMy8xmZeWjL7Vk9iFE1a52G0VitY1ATGJ1qTIyMwNVX71nPYyrmz4crrjBZIUmSJEmDpGryYgFwUWY+2otgND06rdaxalV/4pnIeAVH29XzOP300e0FC2Dvvcc/f0RxP9NqgUiSJEnSbFE1efEV4Hm9CETTp9M0jEb7oE0pmajg6PLlxSiJxmiJiy4a3d6yBS69tHNyY2QErrqqGIHiSAtJkiRJGkyVCnYC7wA+GRGPADewZ8FOMnN3HYGpdxYtar/c6KJFo1NKGiMzGlNKoL8f7KdScHQmFyvtpbVri9E2991X/O6POQauv7799oEHFs+xcKkkSZKkfqg68uJO4AXAlcBmYGfL7Ylao1NPjDcNo9OUkhUrBmckhjprHTVzxhmj2wcdVNwaj087bWzdk8YSsu22t24du9zsqaeOnss+IUmSJKnXqo68OBfIXgSi6dP4xrz5W/fGN+knndT+Obt2FfeDMhJjNmseMdE8IuLAA2HbNniiTCE2EhANW7e2fzwZO3eOnsM+IUmSJKnXKiUvMnN1j+LQNOs0laLTlJJmjeKeflCdfq3TeupMSEyFfUKSJElSL1WdNqIh1DzVYPv2iVfngM5FP9Vb7ab1DAr7hCRJkqReqZy8iIhDIuKDEfH1iLg3Im6LiL+MiKf3IkD1VuOb/ObaBpnFEqMRMHdu++ctWjS9caowyAkC+4QkSZKkXqmUvIiI5wB3AH8AbAduA35CsQrJHRFxeO0RqqfafZO/cyfsu2+x1OgVV3Qu7qnpV2eCYN680SRVuyVkm7cXLBg9dsGCPUfn2CckSZIk9VLVgp3vBx4DXpKZGxqNETEC3Fju/53aolPP+x8HzwAAE95JREFUdfomv9E+XnFPTb/zzx9b86LVvHmw336jS5r2arnT1mVW7ROSJEmSeqlq8mIZ8JbmxAVAZm6MiNXARTXFpWnSqUBn8zf8nYp7avq1JpPqTEhUjcM+IUmSJGm6VK15sTewrcO+beV+TZPmQpuLFxfbVZ1/vtNCZprly2HDhmJaz5YtxW337qLNhIIkSZKkYVQ1eXEH8PaIGPO8iAjgjHK/pkFroc2NG4vtqgmM5cthzZqxtQ7WrPFDsCRJkiRpcFSdNnIu8Dngzoj4BPAA8HTgDcDhwLH1hqdO2hXa3LGjaK+aeHAKgCRJkiRpkFVKXmTmDRHxWuA8YBUQQALfAF6bmTfWH6LamajQpiRJkiRJw6LqyAsy8wbghoiYDxwAPJKZHdY+UK90U2hTkiRJkqRhULXmxX/KzB2Zeb+Ji/6w0KYkSZIkabaonLyIiEMi4oMR8fWIuDcibouIv4yIp/ciQLVnoU1JkiRJ0mxRadpIRDwH+BeK6SJfBe6hKNj5DuDkiHhZZt5de5Rqy0KbkiRJkqTZoGrNi/cDjwEvycwNjcaIGAFuLPf/Tm3RSZIkSZKkWa/qtJFlwHubExcAmbkRWF3ulyRJkiRJqk3V5MXewLYO+7aV+yVJkiRJkmpTNXlxB/D2iBjzvIgI4IxyvyRJkiRJUm2q1rw4F/gccGdEfAJ4gKJg5xuAw4Fj6w1PkiRJkiTNdpWSF5l5Q0QcC5wPrAICSOAbwGsz88b6Q5QkSZIkSbNZ18mLiNgb+ARwYWYuiYj5FEumPpKZO3oVoCRJkiRJmt26rnmRmU8ARzWek5k7MvN+ExeSJEmSJKmXqhbs/CpwZC8CkSRJkiRJaqdqwc4zgX+IiO3AP1AU7MzmAzJzd02xSZIkSZIkVR558W3g2cBfAxuBJ4CdTbcnao1OkiRJkiTNepNZKjUnPEqSJEmSJKkmVZdKXd2jOCRJkiRJktqqOm1EkiRJkiRpWlUaeRERc4A5mflkU9vRwBHAFzLzX2uOT5IkSZIkzXJVa15cAzwOnAwQEW8BLir37YyIYzNzXY3xSZIkSZKkWa7qtJEjgeubtv8YuAT4BeDTwKqa4pIkSZIkSQKqJy8OBu4HiIjDgEOBj2TmNuAy4AX1hidJkiRJkma7qsmLx4AF5eOlwJbM/Fa5vQv4uZrikiRJkiRJAqrXvLgZOCsingTeydgpJIcBm+oKTJIkSZIkCaqPvPgT4EDgOopRFqub9r0RuKXKySLi0ojYHBHfaWo7MCI+HxF3l/cHlO0REX8TEfdExLci4kUVY5ckSZIkSTNQpeRFZt6dmc8BnpaZh2Xmhqbd76BIblRxOfDqlrazgJsy83DgpnIb4DXA4eVtJXBxxWtJkiRJkqQZqFLyIiLmRMRembm1qe3oiDgT2Cszf1TlfJn5ZeDhlubjgCvKx1cAr2tqvzILtwL7R8QhVa4nSZIkSZJmnsjM7g+O+ATweGaeXG6/Bbio3L0TODYz11UKIGIx8LnMPKLcfjQz92/a/0hmHhARnwMuyMyvlO03Ae/OzNvbnHMlxegMFi5c+OJrr722Skh9sX37dvbdd99+hyH1jH1cw84+rmFnH9ews49rmA1y/162bNk3MnPJRMdVLdh5JPDupu0/Bi4BzgTWAKuASsmLCqJNW9vMS2auKeNhyZIluXTp0h6FVJ/169czE+KUJss+rmFnH9ews49r2NnHNcyGoX9XLdh5MHA/QEQcBhwKfCQztwGXAS+oIaaHGtNByvvNZfsm4JlNx/0S8MMaridJkiRJkgZY1eTFY8CC8vFSYEtmfqvc3kWxAslUXQesKB+vAD7b1H5yuerIkcCPM/OBGq4nSZIkSZIGWNVpIzcDZ0XEk8A7geub9h1GMTqiaxFxDUUS5KCI2AScDVwAfDIifh+4D3hDefj1wDHAPcAO4NSKsUuSJEmSpBmoavLiT4B/ohgF8X1gddO+NwK3VDlZZp7QYdcr2xybwFurnF+SJEmSJM18lZIXmXk38JyIWNC8XGrpHcCDtUUmSZIkSZJE9ZEXALRJXJCZ3556OJIkSZIkSWNNKnkREf8VeC5tCnRm5pVTDUqSJEmSJKmhUvIiIvanqHnxUiCBKHdl02EmLyRJkiRJUm2qLpX6FxRLpb6MInHxeuAVwFqKAp6/Vmt0kiRJkiRp1quavDiaIoFxa7m9KTPXZ+bJwDqKop2SJEmSJEm1qZq8OAT4fmbuAn4GPLVp36eBY+sKTJIkSZIkCaonLx4E9i8fb6SofdFwWC0RSZIkSZIkNam62shXKBIWnwOuAs6OiMXAk8AK4Lo6g5MkSZIkSaqavDgH+MXy8Qcoine+EZhPkbh4e32hSZIkSZIkVUxeZOa9wL3l453AmeVNkiRJkiSpJ6rWvJAkSZIkSZpWE468iIjdQHZ5vszMqlNRJEmSJEmSOuom0XAu3ScvJEmSJEmSajVh8iIzV09DHJIkSZIkSW1NWPMiCr8dEUeMc8wLIuK36w1NkiRJkiSpu4KdJwHXAD8Z55htwDURcUItUUmSJEmSJJW6SV6cCFyWmT/odEBmbgA+DqyoKS5JkiRJkiSgu+TFi4AbuzhuHbBkauFIkiRJkiSN1U3y4qnAI10c90h5rCRJkiRJUm26SV5sAUa6OG5ReaymYO1aWLwY5swp7teu7XdEkiRJkiT1VzfJi6/QXS2LU8pjNUlr18LKlbBxI2QW9ytXmsCQJEmSJM1u3SQvPgy8MiIujIi9W3dGxLyI+GvgFcCFdQc4m6xaBTt2jG3bsaNolyRJkiRpttprogMy85aIOBP4ELA8Im4ENpa7R4DfAhYAZ2bmrT2LdBa4775q7ZIkSZIkzQYTJi8AMvPDEfFN4Czg9cDPl7t+CqwHLsjMf+lJhLPIokXFVJF27ZIkSZIkzVbdTBsBIDO/nJnHUKwo8vTytl9mHmvioh7nnw/z549tmz+/aJckSZIkabbqOnnRkJm7M3NzedvVi6Bmq+XLYc0aGBmBiOJ+zZqiXZIkSZKk2aqraSOaPsuXm6yQJEmSJKlZ5ZEXkiRJkiRJ08nkhSRJkiRJGmgmLyRJkiRJ0kAzeSFJkiRJkgaayQtJkiRJkjTQTF5IkiRJkqSBZvJCkiRJkiQNNJMXkiRJkiRpoJm8kCRJkiRJA83khSRJkiRJGmiRmf2Ooaci4kfAxn7H0YWDgC39DkLqIfu4hp19XMPOPq5hZx/XMBvk/j2SmU+b6KChT17MFBFxe2Yu6XccUq/YxzXs7OMadvZxDTv7uIbZMPRvp41IkiRJkqSBZvJCkiRJkiQNNJMXg2NNvwOQesw+rmFnH9ews49r2NnHNcxmfP+25oUkSZIkSRpojryQJEmSJEkDzeSFJEmSJEkaaCYvBkBEvDoivhcR90TEWf2OR5qqiNgQEd+OiDsi4vay7cCI+HxE3F3eH9DvOKUqIuLSiNgcEd9pamvbr6PwN+X7+rci4kX9i1yaWIf+vToi7i/fy++IiGOa9r2n7N/fi4ij+xO11L2IeGZEfDEi7oyI70bEO8p238c1FMbp40PzXm7yos8iYi7wUeA1wPOBEyLi+f2NSqrFssx8YdN60mcBN2Xm4cBN5bY0k1wOvLqlrVO/fg1weHlbCVw8TTFKk3U5e/ZvgAvL9/IXZub1AOXfKccDv1w+56Ly7xlpkD0JnJmZzwOOBN5a9mXfxzUsOvVxGJL3cpMX/fdrwD2Z+f3MfAK4FjiuzzFJvXAccEX5+ArgdX2MRaosM78MPNzS3KlfHwdcmYVbgf0j4pDpiVSqrkP/7uQ44NrMfDwzfwDcQ/H3jDSwMvOBzPxm+XgbcCfwDHwf15AYp493MuPey01e9N8zgP9o2t7E+J1MmgkSuDEivhERK8u2hZn5ABRvrsDBfYtOqk+nfu17u4bF28oh85c2Tfezf2tGi4jFwK8AX8P3cQ2hlj4OQ/JebvKi/6JNm+vXaqb79cx8EcWQy7dGxG/2OyBpmvnermFwMfBs4IXAA8CHynb7t2asiNgX+BTwzsx8bLxD27TZzzXw2vTxoXkvN3nRf5uAZzZt/xLwwz7FItUiM39Y3m8GPkMxBO2hxnDL8n5z/yKUatOpX/verhkvMx/KzF2ZuRv4GKPDie3fmpEiYh7Fh7q1mfnpstn3cQ2Ndn18mN7LTV7039eBwyPi0IjYm6JoynV9jkmatIh4SkQ8tfEYeBXwHYp+vaI8bAXw2f5EKNWqU7++Dji5rFZ/JPDjxrBkaaZomd//eor3cij69/ERsU9EHEpR0PC26Y5PqiIiAvg4cGdm/lXTLt/HNRQ69fFhei/fq98BzHaZ+WREvA34Z2AucGlmfrfPYUlTsRD4TPH+yV7A32XmDRHxdeCTEfH7wH3AG/oYo1RZRFwDLAUOiohNwNnABbTv19cDx1AUv9oBnDrtAUsVdOjfSyPihRTDiDcAbwbIzO9GxCeBf6eobv/WzNzVj7ilCn4dOAn4dkTcUbb9Kb6Pa3h06uMnDMt7eWQO9LQWSZIkSZI0yzltRJIkSZIkDTSTF5IkSZIkaaCZvJAkSZIkSQPN5IUkSZIkSRpoJi8kSZIkSdJAM3khSdIAiYhTIiIj4tGIOKBl317lvtU9vvbiprYNEXF5F8+9PCI29CCm3yhjeigiul7ivYw7I+LcNvvOi4i+LLdWxnReP64tSdJMZvJCkqTB9AvAu/sdBPB64M/7eP0V5f3BwGsm8fw/jIin1RiPJEnqA5MXkiQNphuBt0fE0/sZRGb+a2be249rR8TPA28A1gM7GE1kdOtLwDzgrHojG1xR2LvfcUiSVDeTF5IkDabG1IJV4x0UEavbTYFoN40jIp4SERdExL0R8XhEPBgRn4qIheOcf49pIxHxyoj4ZkT8rDzXmzs8d35EvD8ifhART5T3qyKi278/XkcxAuUi4DPAa1un0kxgE3AxcEZEPGO8A9tNx4mIxWX7KU1tl0fEpohYEhE3R8RPI+J7EXFsuf+PytfssYj4bIdRH1G+DpvK5385Il7Y5qDfiYhbI2JHOY3o/0TEopZjNkTE1RFxWkTcBTwBHNvl6yNJ0oxh8kKSpMH0APARYGVEjEz1ZOW38Z8H/gC4HHgt8DbgYaDrhEBEPA+4HvgpcDzwp8A7gVe2HLcX8M/Am4C/ppjycQnwXuADXV5uBfAocB1wJbBPec0q/gJ4srxuXfYr47mEYlrNZuBTEfEhYBnwVorXZBnw0TbPPxk4huL1PwVYCNwUEQc2DoiItwCfAv4d+D3gzcARwJci4qkt51sG/BFwDvBq4Ft1/JCSJA2SrgtfSZKkafd+ig+tZwOnTfFcJwIvBY7LzOua2v++4nn+DNgGvCozfwIQETcD9wI/bDruBOA3gJdn5pfLtpsiAuDsiHh/Zm7udJGI+EXgKODjmfl4RKwD7qdIaFzcbbCZ+aOI+DDw7oj4QE1TYJ4KvKXxc0XED4F/o0gIPT8zd5XtR1BM/ZnbaCv9PGNfv68BdwN/CLw3Ival+N1flpn/+Xsvj/t/wO8DH2463wHAizPzwRp+NkmSBpIjLyRJGlCZ+TDwIeDkiHjuFE/3KuDBlsTFZLwUuL7xwRsgM/8D+GrLca8GNgI3l6uk7FWOxriRog7FkRNc50RgLsUIBzJzN3A18JJJvBYfpEi4nFPxeZ38pCkhA3BXeb+uJUlxF8UXRYe0PL/19dsA3Erx2lLe7wesbXntNpXn/M2W891q4kKSNOxMXkiSNNgupJjasceSnxUtoBi5MFWHAA+1aW9tOxgYAXa23G5rimc8JwP3Ad+NiP0jYn/gs037upaZPwb+EjghIn65ynM7eLTl/E+UDx9pOa7R/nMt7Z1ev0ZdjoPL+3Xs+fq9gD1fuwe6ilqSpBnMaSOSJA2wzNweEe+jGIHRrlbEz6CoadH0IRr2/IC7haJmwlQ9QFGjoVVr21bgB8D/6HCeDZ0uEBFLgEaSoTUhAHBSRLy3HI3Rrf9NUYfiPOC7bfY/DrSu0jFRgmWyOr1+jeTS1vL+FNrHuq1le4+CrZIkDRuTF5IkDb6LKAoyntdm38by/gjgmwDlKIX/xtgPuTcCx0fEb2fmP04hlluAYyLiKU01G54J/Dpja17cAPwusD0z79rzNONaQfGB/PcoRp00O5pi6dOlwBe6PWFm7oiI8yiKoM5vc8hG9kzu9GrVjtbXbzHFNJoLyv03U/zuDsvMK3oUgyRJM4rJC0mSBlxZsPJcYE2b3f8X+DHwsYg4m2JFjj8BtrccdzXwv4BrypEcX6MoPHk08OEKCYbzgDcAN0bEByhGK5zDnlMh1gKnUhTp/BBFQcu9gWcD/x14XWbuaD15RMyjWFHkS5n56Tb776AYQbGCCsmL0seAd1HU/2h1LfBnEbGKov7EyyiKjvbCTxl9/faheP0eo5giRGY+FhF/DHy0XGq18Tt+BvByYH1m/l2PYpMkaSBZ80KSpJnhMooVKcbIzEcpVrnYDXwSeB/FFIkvthy3k+JD+8XASorlTi8CDmLP0Q0dZeadFMt8zgc+QTFa4MPATW2udzRFwqBxvbUUSYebGa0H0eq1ZUyXdrj+o8Cngd8tV+XoWjmtZnWH3e+jGJXxNuAfgOcBJ1U5fwVXAv9UXu8K4EfAK8sCrY1Y/5YiyfNc4CqKBMY5FF883dGjuCRJGliR6TRJSZIkSZI0uBx5IUmSJEmSBprJC0mSJEmSNNBMXkiSJEmSpIFm8kKSJEmSJA00kxeSJEmSJGmgmbyQJEmSJEkDzeSFJEmSJEkaaCYvJEmSJEnSQPv/4H5cngw515MAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Plot the classroom size nuclei diameter'''\n",
"import math\n",
"\n",
"from matplotlib import pyplot as plt # import the pyplot function of the matplotlib package\n",
"fig, ax = plt.subplots(figsize=(18,6))\n",
"\n",
"# plot the classroom-sized atom nuclide diameter for a classroom of 10-m diameter\n",
"ax.plot([nc.A for nc in nuclides], [2*nc.radius*1e-15 * 5.0/atoms[nc.Z-1].vdw_radius*1e+12 * 1e+6 for nc in nuclides], \n",
" ' ',color='blue', marker='.',markersize=12)\n",
"\n",
"ax.set_ylabel(' Classroom-Sized Nuclide Diameter [$\\mu~m$]',fontsize=16)\n",
"ax.set_xlabel('Nuclide A Number',fontsize=16)\n",
"\n",
"fig.suptitle(r'%i Nuclides; $1 \\leq Z \\leq %i$; $1 \\leq A \\leq %i$ '%(len(nuclides),z_max,a_max),fontsize=20)\n",
"ax.grid()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**NB:** for all nuclides of interest the classroom sizes vary between 100 and 300 micrometers.\n",
""
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAGjCAYAAAAM+z85AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcHHWd//HXJzMJJAEEAijXTARUxJOoCIIQSFyvdUFXd3WHhBBDCCNrVDx/EUV0UFdFsi4TiMoRaS8UAdEVDRAUBDwQdQEVwUy45AgESYYwmeTz++NbzVT39FHVXT3dM/1+Ph796OlPV3372zXV1V2f+h7m7oiIiIiIiIiItKpJza6AiIiIiIiIiEglSl6IiIiIiIiISEtT8kJEREREREREWpqSFyIiIiIiIiLS0pS8EBEREREREZGWpuSFiIiIiIiIiLQ0JS9ERETagJnNNDM3s4sqxRKWtdbM1mZcRREREZGylLwQEZGWZsFCM7vZzJ40s0Ez+52ZvdfMOsqss4+ZXWBmD5jZ09HJ9jlmtkuF13mzmf3UzO4zs6fM7B4zu9TMDktZX49uA2a2fZll1kbLdKYpW0Yzs7eb2VfM7Bdm9o9ou17S5Doti+0H1W4bzWxMfo/V8lmKrftaM/u+mT0YfaYejD4vbxqLuouIiOhHk4iItLqLgXnAw8B3gE3AXGA5cKSZvcPdPb+wme0P/BLYA7gC+BNwCLAUeIOZHe7u6+MvYGafBz4MrAcuBx4FDgCOBf7VzOa7e9oT4i7gfcDnUq43lu4HXgg80eyK1OHjwMuAjcB9wIHNrQ4AdwCfqvD8LsCphItIV7j7tjGpVcrPUp6ZfRz4NOFzcRXwILAbcDAwG/jxWFReRETam5X4jhIREWkJZnYc8APgb8Ah7v5oFJ8MfBc4DjjR3S+KrXM18E/Ae939K7H42cD7gfPdfUks/hzCSfwjwEvd/eHYc0cD1wJ/c/f9EtbZgccBJ1wk2D9f79gya4FuYLK7DyfaGHUys5mE7Xixuy+os6y1AO4+s85q1S36H90H/BU4CrgOyLn78Rm+xiTglcCbgM3uXnNCysxmAD8jnPhfDvy7uw81ul61fJai598RPb8aeJu7P1n0/GR331JL/UVERNJQtxEREWllb4vuvxRPAEQnS6dHD/8zHzez/QiJi7XAuUVlfZJwpXmemU2PxbsJ34e3xBMX0etcBzwJ7J6y3oOEK9U7Ra9blZnNjroRnFHm+bLjTJjZIWb2HTO7v6hJ/79Vec2yY15EXQxONbPbzWxzVPb/mNmzKpT3ajP7npn93cyGzOxeMzvfzPYqs/y/mNk1sa4ID5jZ9WbWW6nece5+nbvfVarFQD3MbDcz64m6oDwE3EL4Xz6/jjJ3JyRXDga+B7wjbeKijnql+ixFrzUJ+Dxhf/6P4sRFbH0REZGGU7cRERFpZc+J7u8p8Vw+NsvMdnb3DcAxUeynxU3x3f1JM7uRkNw4FLgmeuouYAg4xMx2i5/YmdmRwI6EK+RpnUvoGnCymX3F3f9SQxlVmdlJwApgK3Al4f3sQbgi30u4al6Lc4D3EroIrAS2ELrRvBqYQthm8XqcCHwVeDqqx73A84BFwFvM7FB3XxdbfjFwPvB34IeELgl7AC8FTgT6a6x3TWKtGN4Y3V5FSGo5cCthG/8vIVlQS/nPIexzBwHfAua5+9YxrFfazxLAa4DnEhItj5vZm4EXA5uBX7n7TdXqLyIikhUlL0REpJXlEwnPLfFcvBvHgcDNwAuix+USBXcRkhfPJ0peuPtjZvYR4GzgDjO7nDD2xf7AvxCa+J+ctuLuvsXMPgpcShj34m1VVknNzA4inOT/A3itu99e9Pw+NZb7GkLi4m5CF4PHovgyQsuBPYGB2PLPJyQi1gJHufv9seeOIWzD5cBbYy9zMiEB8rLiFi9mtlst9a6Fmb2d0GXi9YRxHAA2AN8njOXwv+7+UJ2vsTeh+9HzgVWE7hkVx7loQL3SfpYgJEogtPC4FXhJUR1/Drzd3R9JUQ8REZGaqNuIiIi0squi+w+Y2a75oIVZOuIDIuZnEcl3aSg3AGU+vnM86O7nEJILncBJwEeBdxBaD1xUfHKdlLt/D7gJeKuZHVFLGVWcQqjzp4sTF9Hr31djuSdG9335xEVU3mbgY2XqMRlYGk9cROtcS2iJ8RYz27FovWFCi47iej9aHGugLwI9hATBnwmtS3Zz939z94sySFx0AdcTEhdfJ0HiokH1SvtZgtASBmAJMJUwuOeOhNYXVwNHEpJzIiIiDafkhYiItLJvE5rE709oFbHSzM4BbiMMUnhXtFzV5vcRi+4Lxkcwsw8TmsZfFL3WdOAVhOb0OTP7rzrew2nR/ZfMzCoumd6h0f3/ZlzurOj++hLP/YKQdIjLTyd7lJmdUXwjnAR3UDguQw6YBtxuZl82s+OiMSHG2krgD9HfLwAuA663MN3prHr+Z2b2XMI23B84DzgpxcwiWderls9SfvpUI7SwuMbdN0aJsrcSBko9ylJOJywiIlILJS9ERKRlRSd6/wJ8kDA2wjxgIeGk6QhC9w4IUz/CSMuKcoNK7lS0HGY2mzAo4ZXu/gF3v8fdB939VsIJ2v3AadFgoLW8h5sIiZFDgIoDaNYg34Lk/opLpZfffqOu7kfjNKwvCs+I7j9EGDyy+Paa6PkdYuWcDZwArCN0UfkB8JCZXWdmr8zmbVTn7me5+8uAfQitbq4kjLvxGeC3wINmdpGZ/Xu8xUI1ZnYAIXExE/iKu5+SZlDRrOtVw2cJwqw5APe4+++LynuK0PoCwr4tIiLSUEpeiIhIS3P3YXf/kru/3N2nuvtO7v4G4A7g5cBTQL7LxJ+j+3IzLzwvuo+PifHP0f11JV57EPgV4fvy4DrexkcJ3SM+a2ZTyiyTvyJfbjyqUgmZ/MCKe9dRt1LyyZ1nFz9hZh2MJCuKl3+Wu1uFW0FLDndf5e6HRuW9mdCt4kjgajPbgzHk7ve7+9fc/W1RfY4BvkAYK+IEQsuFh83ss9XKMrMXEBIX+xJm93hvK9Qr5WcJRj5PG4rLiuSTG1NTvzEREZGUlLwQEZHxah6wPfDd2HSN+QTEP0WzNDwjGm/hcMIJ2s2xp7aL7st1WcjHU01pGefudxMG1nwuRdNRxuRPBPctfiK6ir9zcZyR9/HGWutWxq3R/VElnnstoxMsN8eeS83dN7j7j939JELXnV1rLSsL7r4lmoL1w+7+YqCLMO7DVZT+PzzDzF5ESFzsBXzO3T/YCvWqotRnCeDnhC5CzyuTdHtxdL+2jtcWERFJRMkLERFpaWa2U4nYqwgzeGwEzszHoyTBTwlN9d9TtNqnCGNZrHL3TbH4L6L7xdGsEPHXeSMh4bEZ+GVdbyTUcwOwjFj3iZg/EWYNOTbe6sDMpgL/XabMFYSTy9OjmUcK1DrbCCGBALCsaHDH7YFSV/j/h9Cy5MvRzCPF9ZhiZq8tir0hGiyyWP69D9ZS8UZw93vd/Xx3P87dTym3nJm9lJBAezZhENVSg5uOeb1i9Uv8WYrKfxT4DqHVzyeK1nsdYSaUJ4Cf1PwmREREErIU3S9FRETGnJndQmgt8X/Ak8CLCAMMPg28zd2vLlp+f0KiYQ/gCuBO4NXA0YTuIq9x9/Wx5ScR+u7Pjcr/AWFMgBcSupQY8D53X56wvg7c7+6jEgdm9iEgPvjnZHcfjj1/JnA68EBUj07gddHj/YAt7j6zqMyTCINBDkfv9y5C94JXAk+6+9HRcjOBvwEXu/uCcrFYuf9NaCXyIGHMji2EGS8eJ3RTGYrXxcyOBy4gbK+fELb1ZELrgNcCj7j7gbHlNxCSQjcQrtxbtNyrCGM6HFbUCqAkMzuOMKUowHMIJ9T3MJKUerRS6wczu4Z03W6udPcPlyhnb8IAm7sStumqKuXc7e7faHS9ispM9VmK1tkDuBE4gLBNfwV0E8aDceA/3F0zjoiISMMpeSEiIi0tOuF/J2GWhKmEE/mrCU3y15ZZZ1/CVeQ3EE7kHwQuBz4Vn/oztvxkQkuNdwIHEWbBeIxwovbf7v7TFPWtlLzYjtDCYmYUKk5eGPARwgCN+xKSKN8GziCMS0Bx8iJa7zDCQIyvJXQfeJRwIv21aLrWWpIXRtgm7yEkTtYTEir/D/h9qbqY2UsIs6scTUgkbCL8v24EvhNNm5pfdgkh0fCyaNnNwADwLWCFuz9Z/D5LiWYz+WSFRQZKbbPY+msJJ+NJ5dz9+BLl/Dvhf5XUVyqNhZFVvYrKTP1ZitbbFfg4IWGxNyHxcQPwWXe/udx6IiIiWVLyQkRERERERERamsa8EBEREREREZGWpuSFiIiIiIiIiLQ0JS9EREREREREpKUpeSEiIiIiIiIiLU3JCxERERERERFpaUpeiIiIiIiIiEhLU/JCRERERERERFqakhciIiIiIiIi0tKUvBARERERERGRlqbkRZsws9ea2Z+bXY92ZmYXmdlnml2PUszsDDO7pNn1EBlLLf6ZdDM7oNn1KNbK2yxLZrbAzG5odj2ktei7UsZSlvubmZ1nZqdnUZZIMyl50SLMbK2ZzS2K1fTjqVRZ7v4Ld39BHXV7ysw2mtnjZvYjM9u3jrIeMrPpsdgiM1uTQd3yt72aUZeistdE22q7esuKyou/z4fM7EIz26GGcv7DzH4TlfOgmf2vmR1RZ73mxh6/M3rfR6Uo4wgz+6WZPWFmj5nZjWb2qjrqdLWZnVkifqyZ/d3MOqusv9bMhsxst6L4bdEJ5cwa65XZts+qrOj/dYuZbTKzh6O/e83MaqlXVGYm+35Wx52icv4enXyn/uyUKDdnZhcUxY4ys/VmtmfCemV5LIwfA7cVHRd7UpaV+TZr0DFxbvUlq5aT6fGnRPk11zPDz3km26qovJq/j7L6PqtQZv72PzWUk9nnKFavun7bZV2navWroYxGbLPMj9mxsrM4bmT1PdfIbVfwvenuS9z90zWUOeq9Wg1J7DKf0US/15PUqcZysvptndn3edbflRORkheS1FvcfQdgT+Ah4Ct1lNUJLM2kVsFb3H2H2O2BJtYFCye3rwUc+JcMi87/D2YBrwI+nrJeHwDOAc4Cng10Af3AsVlUzsxOAM4F3uzu1ydcZyfgKsL+tCuwN/Ap4Ok6qnIRMM9s1An4PCDn7sMJyvgb8K5YPV8CTK21Qllu+6zKMrPTgOXAF4DnRGUtAQ4HpqStV1TmTLLd9xMdd8ysI2E5LwcOBj6WQd3eC7zJzF4X1WF74KvAae7+YMIyMjv+xI+BwDoKj4u5GorMbJs18JhYlwYdfzLR6ON1Bip+H1lQ6TdmXd9nlcqM3U5NW0ADPkd1a8U6jUH9GnHMLsuqXNQoWnYmGR3PGrzt6v693qjv9HK/15P8Hxr4O6PeY1Hd3+et+l3ZapS8aBNmNtvM7qu3HHffDHwPOKiOYr4AfNDMdq63PhkoWxczW25m95rZP8zst2b22oRlzgduJpxEn5BdVQN3vx/4X+DFSdcxs2cBZwLvcffL3H2Tu29x9x+6+4fqrZOZLQa+BLze3X+ZYtXnA7j7t9x9q7s/5e4/dfc/ROWeZGZ3mtmTZnaHmc1KUOblhBORZ/5fZrYL8M/AqoT1+gbh/5h3Qnzd6KrDudFVjScttFjYv1RB1ba9mW1nZueY2QPR7ZxyGfcEZRVcDSn3uY+V0+vu33P3Jz34nbv3uPvTZvZmM/tdtP/fa2ZnJNhuJfd9M3tT9P970szuN7MPJijrGcXHneh9rjCzH5vZJuDohOX8Hbia8IM4bzcz+1lUt+vNrDthWeuB/wRWRldbPgnc7e4XJX5j1Y+FbzKze8zsUTP7QpWTwYrMrNPMPhmV9w8z+7WZPafaemW22S5J9v2YcvvFDDP7Yaw+n7GUrQ0tuoptZl+Mrlb9zczemHD1isefULx9xUKrjD+Z2Zw0datVgs/5IRZaZPwjutp3dg2vsYuZXWVmj0Tb7Soz2ydtOfHvIwtXDPvM7EZgENivhvU/Y6ElzMZo35hhoZVTfh+ZmfJ9nmGxZvdmNtNCC7rEJ6slbG9m34n2/1vN7GW1FmRmL4ze9wYzu93MUp+wRO/xUjO7JKrTH83s+Wb2MQst6u41s39KUd6oliFWRzc2Mzs8Ok48EX3HfTnp9i8+/kTfl180s3XRvn+emaW+sBC9xxujujwGnJFi9XLHszVmtqjoNZrW9azM92baLn+j3quF33s9wIfzn9Na6xj7PL7bzNYB19ZSp6isqWb2JTMbiPa1G9LsG0XHohNt5LfnPWZ2coIiKp1PuJm916p/n5d7bxeZWb+F1ncbo333ORZ+Lz4efT8dnPS9jndKXkgqZjYN+HfCh6tWvwHWAKlOYBqkUl1+TfjC3BX4JnCphaur1cwHctHt9Wb27GyqGlhoAvgm4HcpVjsM2B74QZZ1iZwCfBqY4+6/SbnuX4CtZnaxmb3RQpIBADN7B+EHxXxgJ0IWen21At39KeC7FCYf/g34k7v/PmG9bgZ2in5YdhD2+eJ+p+8iXKXdBfgr0FemrGrbfhlwKGFfexlwCOUz/1n9Hw8DtgOuqLDMJsI23Bl4M3CKmR1Xpdxy+/7XgZPdfUdC0i3JD5RnlDnu/Adhm+8IJPqBGJ2cvZHw/8rrIey/uwG3RXVPxN0vBX4LfAtYDCT5gRNX7Vj4VuCVhCtCxwILU5Yf9zHgOOCfCP/TxcDmaiuV2WZJ9/28cvvFuYT97DmEH2q1JntfDfyZ8D/8L+DrZom6PpU9/sTKvScq95PAZWa2a411TKPa53w5sNzddwL2Jxzv0poEXAh0E1p1PAXU0s2i+PtoHmHf2hEYqGH9d0Zl7E14bzdF9dwVuJPwf2i2Y4FLGfltcLmZTU5bSLTOD4GfAnsQkqE5M6uli+9bCEn3XQjb8mrC/3hvQiLs/BrKzMoW4FRGLiq8BVhUcY1IiePP5wlJx5cDBxDe3ydqrFf+870H1Y9hcQ39jZeVjH6vj3qv7r4yevxfUeuJt9RfW44CXgi8vpY6RfEvAq8AXkPY1z4MbEtagaJj0cOEC147AScCX7bqF8+y+D6vtG/9G+G34W6E1oE3AbdGj78HpE5ij1dKXrSWy6Ps+wYz20BoItoqLo/q9A/gdYQMYz0+Afynme1ed80Kt9vlWdXF3S9x9/XuPuzuXyKc7FX8UWGhP3I38F13/y1wN+EkKwv5/8ENwPWE5sRJzQAeTdhlIq3XEb4c/5h2RXf/B3AEoYncV4FHzOzK6IC9iPDl+OuoVcBf3b3qj+HIxcA7Yln3+VEsjXzri9cBfwLuL3r+Mnf/VbRNcxRemY6rtu17gDPd/WF3f4RwUjivxrKS2q24HAtXOzdY6P95pLuvcfc/uvu26Er0twg/MEqqsu9vAQ4ys53c/XF3vzVhPSsdd65w9xuj+lU7Cb/czJ4E7iX8KImfAP3I3X/u7k8TEkmHWbqxNd4DHEP4H65LsV5epWPh5939sajcc4h1ZarBIuCj0edoW9TKZkOF5Stts6T7ftn9IkoK/ivwSXcfdPc7SP8ZzRtw96+6+9aojD0JXS0qqnL8gfC+z4laPXyHkCB5c411TKPa53wLcICZ7ebuG9099clJ9N32/WjbP0k4eUs8VhHlv48ucvfbo+/NLTWsf6G73+3uTxCugt7t7qujbXEpoQtBxTJjt5NSvJ80fhu1WNtCOGHYnpCATlQvRn7bHQrsAHzO3Yfc/VpCN6ZaPue/cPerY9tp96jcLcC3gZmlrgiPhehY8euoddPdwNeovq+NOv5ECcmTgPdHx8UnCfvNO2us2gPu/pVoX30qyQoN/o2XlUx+rzfovZb7vX5G1MKs4v+hwvfJJEIyYKm73x/ta7+MvtcT1YnYscjdfxQdh9xDN+ifEmvNW0HN3+cJtvcP3P230e+dHwCb3X1V9L33HSofGycUJS9ay3HuvnP+BvQ2u0Ixx0V12o6QQb/eEjQ5Lsfd/4/wJf3RrOoW3apdGU5cFzM7LWo29kR0YHsW4aSvkhOAn7r7o9Hjb5Jd15H8++x2996kX7aR9YTm8fU0lS1nCeFKyNcSXu0s4O53uvsCd9+HcFV+L8KBfV/CwTs1d78BeAQ41sz2I/Rj/GbKYr5B+OJYQOnuJn+P/T1I+BFaSrVtvxeFVygHolgtZSU1qhx3f030GV8PTDKzV5vZdRaalT9B+D9X2v8r7fv/SriiMWCha8ZhCetZ6bhzb8Iy8uXsCMwGDqTwfTxTjrtvBB6j/PYfxd0fAh4Fbk9Rn/j6lY6F8fdYab+oKPpc7k26z1OlbZZ034fy+8XuhD7C8feY5n8a90x93H0w+jPRoGsVjj8A97u7xxav+X+QUrXP+bsJx9w/WehK8c9pX8DMppnZ+RaaWP8D+Dmws1UfPyav3PdR0v9hufUfii3zVInHlf6vBb+h3P2rCeuSVvyYsQ24j8r7RbnfdnsB90Zl5A0QPqtpFW+nR6OTmvxjSPiZyJqZHWShuftD0b72Car/lip1/NkdmAb8NpYI+kkUr0Utx5tG/sbLSla/1xvxXsv9Xk/6vyhXp90IScRafjOOOhZFLfFutjCI8wbC75dq+2y93+fVtnc9x8YJRckLSSXKZl4GbCVcsarHJwlZ9Fq+qLNWUBcL41t8hNBMa5foi+AJoOzJeXSV/9+AoyyMkP134P3Ay6yOPrEZuYnQRDx1cieBh4E5hKx0Xa2F3P1PhL5+LyYc6Kv1pa9kFaHlxDzCF8JDVZYvrssAYeDONwGX1VGPatv+AUK2Pa8ritVS1ibCj7u8cj9YbiI0O6w0+N83gSuBfd39WcB5lNn/q+370VW3YwnNcy8nZTP3Mscdr7BKuXKuJ+xfX4yFn2llYWGU8V0pv/0bpdyxMN4CpNJ+UVF0An4/NXyeymyzRCrtF4SWEcNAfJyFmmaxykrR8Qdg76KEbM3/g5Qqfs7d/S53fxfh8/R54HsWG+U+odMILQlf7aH7yZFRvOaZhvLVq3P9rCU9JqYRP2ZMIuzDtewXDwD7WmHf9y5Gt/IbawXbrJ4LVZGvEpq37x/ta2eScD8rOv48SjhJe1HsBPhZHgZbrEWqfTXBb7xG7Gs1q+f3eoL3mvXnvGp5Vb5P9iQcM+v5zZh/ne2A7xP2uWdHv/9/TPJjY+rv8xY/f2g5Sl5MXJPNbPv8jXCFq24WHEvoV3lnPWW5+18JTZ3em0XdMq7LjoQf1o8AnWb2CULft0qOI3xJHERoRv1yQh++X1A4/sKY89AE9xPAuWZ2XHTVbXKUXf6vDMp/gNB0/g1m9uWk65nZgVELl32ix/sSmtLdTGha+kEze0W03x1gCQdTjKwC5hK+RGptjv5u4Bh331Tj+km2/beAj5vZ7hamZ/0Eo8fXSFrWbYRBHneNfnC+r0w5GwjdU/rN7O1mtoOZTTKzlwP5k6AdgcfcfbOZHULl5qKV9v0FZtZjZs/y0IT5H9GyiWV53CFcVX9d9F4hbK8jzGwKYeyLW9y91hYANalwLPyQhYEV9yWMYv6dOl7ma8BZZrZftD0PtuTNyIu3WVLVjomXAWdE+/GBjPFxssrxB0Jy4L3RZ+wdUd1/3Oh6Vfucm9nxZrZ7dMU+3/Wn2meq+DfBLoQTwQ0WxvFohbEkGuE24Egz67IwEGoWs1a8wszeZqFlzPsIieBaxhW4hXDC++Ho/zubMB7EtzOoYxrF+8bvgReZ2cujx2fUWf6OwBPuvtHMXkT4Tk7jHEL3h5cSEiFfNrM9AMxsbzNLMk5CFqodz24D3hZ9Xg8g/H5omjq/N6u914dIMCBvxqrV6QLgbDPby8w6zOwwq2260SmEViuPAMMWBoBOPOBtjd/nLXv+0IqUvJi4fkz4YZK/nVFneT80s42EE48+4AR3r6mZdJEzGTlZarZ4Xa4m9Lf9C6F512aqN2s7gdBfd527/z1/IwyC1kNGCaRaufvZwAcIA/48Qng/pxKuhGdR/r2EBMbbzeyzCVd7kjBo1i0WZo24Gfg/wnSTlxL2tW9Gy+VnEUlan7XALwn/0yuTrldUxt2efhDSUuVU2vafIQz09AfCuCG3RrFayvoG4YfnWkIfzbInu+7+X1E5Hya0nnmIMKjbRwjbrRc400K/409QubVEpX3/BMKAV2stNBleAhxfoay4zI87HsYVWQWcHoW+SThxe4ww2FdPPeXXodSx8ArCgKC3AT8iDHxaq89FZVxL2J7nEX6gVVVimyVV7Zh4KqE73t8J++63GNtpSssef6LnbwGeR7ji2we83cMsMw1X5XP+BuD26LOxHHinVx/3pfg3wc6E6Z8fJbzvnzTgbYy1H1oYiT9/+4G7/4xwHPwD4bN0VQavcwVhIMTHCS373uaVx/coyd2HCANRv5Hwf+gH5kctgMZS8b4xn3A8Wg3cRcIBkSt4P7Ao2l/PJWUStuj48xHC4J03R98nq6kyFlmGqh3PvgwMEb5LLybF4M8Zy+J7s9p7/TphHKtax5qrRbU6fZTwG+rXhO/zz1PDea6HsVTeS/jN8zjhwk3a35Bpv89b+vyh1Zh7q7XwExERkXZjZp8HnuPurdaHXEREpCZm5sDzolYZUie1vBAREZExF3XbeGnUvPkQQjPrRkznLCIiIhOAmqGIiIhIM+xI6CqyF6Hr0pcITWtFRERERlG3ERERERERERFpaeo2IiIiIiIiIiItTckLEREREREREWlpSl60KDN7y0QvK+vyVFZzy2uHsrIuT2U1t7x2KCvr8lRWc8trh7KyLk9lNbe8digr6/JUVnPLa4eyxjMlL1pXljtoq5aVdXkqq7nltUNZWZensppbXjuUlXV5Kqu55bVDWVmXp7KaW147lJV1eSqrueW1Q1nj1oQfsHPSpEk+derUZlfjGdu2bWPSpOo5o61bt9LR0ZHJa7ZqWVmXp7KaW16Sssb7/p91eSqrueU1o6wknwFts4lTVtbljfeyxvt3QDuUlXV57VBW0vK0/zemrKzLa4eymqHa/j84OOjuXvUDMuGnSp06dSqbNm1qdjWesWbNGmbPnt3saog0hfZ/aXf6DEg70/4v7Uz7v7Szavu/mT2VpBx1GxERERERERGRlqbkhYiIiIiIiIi4t7lhAAAgAElEQVS0NCUvRERERERERKSlKXkhIiIiIiIiIi1NyQsRERERERERaWlKXoiIiIiIiIhIS1PyQkRERERERERampIXIiIiIiIiItLSlLwQERERERERkZZWNXlhZutquA2Y2YvH4g2IiIiIiIhIOrkczJwJkyaF+1yu2TUSqawzwTL7AD8GHklY5iTgeGBKrZUSERERERGRxsjlYPFiGBwMjwcGwmOAnp7m1UukkiTJC4Az3f1XSRY0s05gXu1VEhERERERkUZZtmwkcZE3OBjiSl5Iq0oy5sXpwL1JC3T34Wid+2utlIiIiIiIiDTGwEC6uEgrqNrywt370hZayzoiIiIiIiLSeB0dsHVr6bhIq0o124iZzTOzF5vZqN3azLbLrloiIiIiIiLSCKUSF5XiIq0g6ZgXeRcDDjxtZrcDv4tutwGvNLN/d/cjMq6jiIiIiIiIZKS7u3QXke7usa+LSFJpkxe7AgdHt1nA4cBCwKLn/5Fd1URERERERCRrfX2wYAEMD4/EOjtDXKRVpeo24u4b3P06dz/b3Y939xcBewJnAU8B72pEJUVERERERCQbN95YmLiA8PjGG5tTH5EkUiUvSnH3R9z9dEKXEiUvREREREREWtiKFeniIq2g7uRFzE+B4zIsT0REREREZMLL5WDmTJg0Kdzncs2ukUjrSTXmhZl9HLgV+J27P1j09B7ApqwqJiIiIiIiMtHlcrBwIQwNhccDA+ExQE9P8+ol0mrSDtj5YWAHwM3sYaJEBrAVWAR8JNvqiYiIiIiITFxLl44kLvKGhkJcyQuREWmTF88Cnk+YaeQV0X0vsHP0/NlmdjzwW+A37n5ZVhUVERERERGZaNavTxcXaVepkhfu7sCfo9u38nEz25+QyMgnNU4itMLoyKymIiIiIiIiItKW0ra8KMnd7wbuBi7Nx8ysK4uyRURERERERKS9VZ1txMyuNbMDkxZoZpPM7Fpgu7pqJiIiIiIiIpmbMyddXKQVJJkqdTawY4oyrYZ1REREREREZAysXj06UTFnToiLtKqk3UYuN7OnU5TrtVRGRERERERERsvlYNkyWLcOurqgr6++2UiUqJDxJkny4uIay360xvVEREREREQkksvBwoUjU6oODITHoOlUpX1UTV64+4ljUREREREREREZbenSkcRF3tBQiCt5Ie0iyZgXIiIiIiIi0gBTplSPr19feplycZGJSMkLERERERGRJrnggnRxkXal5IWIiIiIiEiT9PTAJZdAdzeYhftLLlF3EJFiSWcbERERERERkQbo6VGyQqQatbwQERERERERkZaWOHlhZlPM7AdmdmQjKyQiIiIiIiIiEpc4eeHuQ8DcNOuIiIiIiIjI2MnlYOZMmDQp3Odyza6RSDbSJiJuBA5tREVERERERESkdrkcLFwIAwPgHu4XLlQCQyaGtMmL04B3m9mpZraPmXWY2aT4rRGVFBERERERkcqWLoWhocLY0FCIi4x3aZMNfwT2B5YDA8AQsCV2Gyq/qoiIiIiIiDTK+vXp4iLjSdqpUs8EvBEVEREREREREREpJVXywt3PaFA9RERERERERERK0hgVIiIiIiIiItLSUicvzOxgM7vMzB41s2EzmxXFzzKzN2RfRRERERERERFpZ6mSF2Z2BHATcCDwzaL1twFLsquaiIiIiIiInHJKurjIRJS25cXngKuBFwEfKHruVmBWFpUSERERERGRoL8/JCo6OsLjjo7wuL+/ufUSGUtpkxezgBXu7oyedeRRYPdMaiUiIiIiIiLP6O+H4WFwD/elEhdz5pRet1xcZDxJm7zYDEwr89yewBP1VUdERERERERqsXr16ETFnDkhLjLepZoqFbgBeJ+ZXRGL5VtgvBu4NpNaiYiIiIiISGpKVMhElTZ5cTpwI/B74HuExMUJZnY28ArgVdlWT0RERERERETaXapuI+7+e+BI4CFgGWDAqdHTR7n7n7OtnoiIiIiIiLSyXA5mzoRJk8J9LtfsGslElLblBe5+KzDHzLYHdgU2uPtg5jUTERERERGRlpbLwYIFYRBRgIGB8Bigp6dZtZKJKFXLCzO7x8xeBuDum939gXziwsxebGb3NKKSIiIiIiIi0nqWLBlJXOQND4e4SJbSzjYyE9iuzHPbA9111UZERERERETGjY0b08VFapU2eQEjs4sUeyWwoY66iIiIiIiIiIiMUjV5YWbvN7N1ZraOkLj4Yf5x7PYIcC7wk0ZXWEREREREpFF6e6GzE8zCfW9vs2skIpCs5cU9wDXRzYDfxB7nb98H3g+c1JhqioiIiIiINFZvL6xYAVu3hsdbt4bHpRIYmmFDZGxVnW3E3a8ArgAwM4Az3f1vDa6XiIiIiIhIZnI5WLYM1q2Dri7o6xs9G8aKFaXXXbEC+vsLyzr++JHHAwMjj9ttho0ZM2D9+tJxkSylGvPC3U9U4kJERERERMaTXA7mzQtJBvdwP29e7a0l5s1LF5/Inv3sdHGRWqUesNPMDjazy8zsUTMbNrNZUfwsM3tD9lUUERERERGp3YIFIWkR5x7itSguq1p8IrvjjnRxkVqlSl6Y2RHATcCBwDeL1t8GaDZfERERERFpKcPD6eIi0nrStrz4HHA18CLgA0XP3QrMyqJSIiIiIiIiIiJ5aZMXs4AV7u6EaVPjHgV2T1OYme1rZteZ2Z1mdruZLY3iZ5jZ/WZ2W3R7U2ydj5nZX83sz2b2+pT1FxERERGRCWbu3DC1af42d26zayQiWas620iRzcC0Ms/tCTyRsrxh4DR3v9XMdgR+a2Y/i577srt/Mb6wmR0EvJPQ8mMvYLWZPd/dt6Z8XRERERERmQDmzoVrrimMXXNNiK9ena6sjo6RaVKL4yLSXGlbXtwAvM/M4h/ffAuMdwPXpinM3R9091ujv58E7gT2rrDKscC33f3paNaTvwKHpHlNERERERGZOIoTF6Xie+1Vepni+MUXl16uOD5nTunlysUnMm0LGStpkxenE7qO/D7624ETzOw64FDgU7VWxMxmAgcDt0ShU83sD2Z2gZntEsX2Bu6NrXYflZMdIiIiIiIyTvX2Qmdn6ArS2Rke1+L++0cnKvbaK8Tjenrgkkuguzu8Znd3eNzTU7jc6tWjT87nzEnf0mMi0LaQsWKecj6faGrULwBHAh2EWUZ+AXzA3X9XUyXMdgCuB/rc/TIzezZhDA0HPg3s6e4Lzexc4CZ3vyRa7+vAj939+0XlLQYWA3R2dr7iZz/7Ga1i48aN7LDDDs2uhkhTaP+XdqfPgLQz7f+S1jnnHMAVV+wNWCzqHHvs/bzvfX99JnL00UcVLTOy7HXXXd/gWiaj/V/aWbX9/+ijjx509+nVykmdvHhmRbPtgV2BDe4+WFMhoZzJwFXA1e5+donnZwJXufuLzexjAO7+2ei5q4Ez3P2mcuVPnz7dN23aVGv1MrdmzRpmz57d7GqINIX2f2l3+gxIO9P+L2l1dpYffyI+xamVyltEajzVyZz2f2ln1fZ/M0uUvEjbbSRf+L6E7iMHAoea2TH5W8pyDPg6cGc8cWFme8YWeyvwf9HfVwLvNLPtzOy5wPOAX9XyHkREREREpDmSzA5SKnFRKj5lSunlysXHUi4HM2fCMcccxcyZ4bGI1CbVbCNmth+QY2SQzHye06O/ndCVJKnDgXnAH83stij2/4B3mdnLo/LWAicDuPvtZvZd4A7CTCXv0UwjIiIiIiLjR9LZQZLO/HHBBXD88aOXu+CC+utaj1wO5s+HbdsAjIGB8BhGj6EhItWlnSr1a0AX8D7gT8BQPS/u7jdQuoPajyus0wf01fO6IiIiIiLSHElmBwFYvBhWrBi93OLFhY/ziYBly2DdOujqgr6+5icIFi3KJy5GbNsW4s2um8h4lDZ58SpgQfEAmSIiIiIiIlnq7w/3K1eGFhgdHSFxkY/H9fS0XkJg8+Z0cRGpLG3y4j7qbG0hIiIiIiKSRH9/6WSFiLSftAN2ngV8xMyqjgQqIiIiIiIiMhH09oYZcMzCfW9vfeXlB3OdNAkN5ppQquSFu38DuB5Ya2Y/NLNVRbeLG1NNERERkUJJZisQkdZzyinp4iLN1tsbxl/JDyC7dWt4XGsCI5eDBQtgYCBM5zswEB4XJzCU4CiUKnlhZguAjwE7E6ZKfW2Jm4iIiEhDVZqtQESaq9oJV39/SFTkZw3p6AiP1T1EWtV556WLV7NkCQwPF8aGh0M8L5eDhQsLExwLF7Z3AiNtt5FPAT8Adnf3vd39uUW3/RpQRxEREZECSWcrEJFksmrJlMuFQTXjJ1yLF5dOYAwPh2WGh5W4kNbmni5ezcaN1eNLl8JQ0WiTQ0Mh3q7SJi9mAP3uvqERlRERERGZCNTUV8aTpC2ZkvT5X7YMBgcLY4ODIS4iya1fny7eDtImL24AXtiIioiIiIhMBEmvPIu0iiQtmZL2+V+3rnRZ5eIiUr+sBxNtVWmTF0uBk8ysx8xmmNmk4lsjKikiIiIyXujKs0xEK1Yki3d1lV6uXHwim15mfsZycWldzfhfzpiRLJ71YKKtLG2y4U7gJcAq4GFgS9FtqPyqIiIiIhOfrjxLO+vrg2nTCmPTpoV4uzn//NB1LG7SpBCX8SXr/2WSZMjy5TB5cuHzkyeHeFzWg4m2ss6Uy58J1DgsiYiIiMjE19UVuoqUiotMdD094X7ZspCw6+oKiYt8vJ0Ubgunq8vadluMd1nv1+efD/Pnw7ZtI7HiZEjS18x6MNFWlip54e5nNKgeIiIiIhNCX18Y4yLedaRdrzxLe+rp0Ql6Xn5brFlzPbNnz252ddpOLpddwiHL/TppYkKfpUIao0JEREQkQz09sHIldHeHwdO6u8Nj/QCVZtDMN9KucjlYuLBw8OSFC1vnM9DTA2vXhtYXa9fqOyKJtN1GADCzlwEvALYvfs7dV9VbKREREZHxTFfLpBXkcoVN0wcGwmPQ/ikT39KlMFQ0IuPQUIhPpP1/+nTYtKl0fKJJlbwws52BHwGH5kPRfbxHjZIXIiIiIiJNtmhRYZ96CI8XLUp/8tZOJ0gyMaxfny4+XiUZP2OiSNtt5CxgBnAkIXHxVuAYIAfcAxySae1ERERERKQmmzeni1eimTNEWlNPD6xaVdhVcdWqidW6JC9t8uL1hATGzdHj+9x9jbvPB1YDS7OsnIiIiIiINF87nSCJjDftMn5G2uTFnsA97r4V2AzsGHvuMuDNWVVMREREpNVo8ENpZ+1ygiQirSlt8uLvwM7R3wPAYbHnDsikRiIiIiJVlOtn38j+97lcmAI1PnL94sVKYIiItCKzdHFpfWmTFzcwkrD4BvBJMzvfzM4FvgBcnWXlREREREppRv/7ZctgcLAwNjgY4iJZStLCp7cXOjvDiVhnZ3hcq46OdHGR8WDJknRxaX1pkxefAn4S/f0F4FxCV5F3AVcC/5ld1URERERKa0b/+4GBdHGRWuRysHBhYQufhQsLExi9vbBiBWzdGh5v3Roe15rAWLw4XVxkPOjvh1NOGUnCdXSEx/39za2X1C5V8sLd73b3X0R/b3H309x9H3ff1d3/w90n2MQzIiIi0qrU/14moqVLYWioMDY0FOJ5K1aUXrdcvBqd5MlE1d8Pw8MhETg8rH16vOtsdgVERERERCRYX+ZSYLl4Vvr7dWInIq0tbbcREREREcmAZi4RERFJrmrywsy2mtkh0d/bosflbsONr7KIiIhItrIc/DCJJOMaiIiIyIgk3UbOBO6L/e2Nq46IiIjI2MoPfpiXH/wQGteMvtK4Bhq7Q0REZLSqLS/c/VPu/kD09xnR47K3xldZREREJDsrV6aLZ6FZ4xpI44z19KYiIu0m1ZgXZra9mR1hZu8ws7eb2eFmtn2jKiciIgIaG0AaKz/dZNK4SLFcDubNK+wGNG9eY6c3FRFpN4mSF2a2nZktBx4Drge+A3wX+Dmw3sy+aGZTGldNERFpV7kcnHhi4UnBiScqgSHZyU8PWS0+fXrp5crFpX0sWBCOT3HuIZ533nml1y2Om5VerlxcRKRdJBmw04CrgFOBnwAnA28A3hj9/TPg/cDljaumiIi0q6VLYcuWwtiWLSEukoXFi5PFzz8/tP6JmzQpxKW9DZcZsj4eL05ulIsnXU5EpN0kGbDz7cDRwNvd/Qclnv+amb0N+K6Zvc3dL8u0hiIi0tY0NoA0Wn5QzpUrQ1P+jo6QuCgerDM/kOayZbBuHXR1QV+fBtiUbHV0lO6yVK6FkIhIu0iSvHgX8N0yiQsA3P0yM7sU6AGUvBAREZFxpb8/2cwiPT1KVkhjZTkGy/TpsGlT6biIyHiTZMyLg4EfJVjuKmBWfdUREZGJIMsBNmfMSBcXERnPko7BksT2ZYbVLxcXEWllSZIXuwPrEiy3DtijvuqIiMh4l8uFJvfxATYXL649gbF8OUwpGhJ6ypQQFxGpVavOYpRly4vHHksXFxFpZUmSF9OApxMsNwQojysi0uaWLYPBwcLY4GCI16KnBy64ALq7w2j73d3hsZrui0itcjlYuLAwybpwYWskMIoHhS0VT9oiraur9HLl4iIirSzRVKnA3ma2X6UbsE8jKyoiIuPDujJt9crFk+jpgbVrYdu2cK/EhYjUY+lSGBoqjA0NtcYsRtu2VY8vXw6TJxc+P3ny6BZpfX0wbVphbNq0EBcRGW+SJi++B9xV5XZpIyooIiLji670iUiz9fZCZ2dordXZGR7HjfdZjHp64MILC1ukXXjh6MRuT0+YRSe+3MqVSgCLyPiUZLaRExteCxERmTD6+sIYF/GuI+Wu9M2dC9dcM/J4zhxYvbrxdZTs5XKaQlRaQ28vrFgx8njr1pHHSWaUabYZM0onUYq7hCSd+UYz5IjIRFE1eeHuF49FRUREZGLI/0iudiJbnLiA8HjuXCUwxpv8IK35hFV+kFbQSZOMvXjiojg+HpIXy5fDiSfCli0jsVJdQkRE2k3SbiMiIiKJJRmjojhxUS0urSvrQVqzNnduaDKfv82d2+wayXhSrQtK1pJ2CRERaTdKXoiIiEhdBgaSx8d6espKLXxk/MkqkdDRkSye74KSn6Y03wWlltft7k4e1yDFIiKjKXkhIiIidUkytSM0Z3rKVm3hk+ZEVoIsEwk775wsft55pZcrjpuVXi4e18wfIiL1UfJCRESAsb8iLhNHkqkdobWnpxxrOpFN7/zz08UrSTrbiHvp5YrjS5aUXi4e18wfIiL1UfJCRESackX8lFPSxatR8qVxstq24316yizpRDa9pEmyOXNKLxePJ+02klR/fzh25dfv6AiPiwcIVXcQEZHaKXkhIiJNuSJ++OGjuxVMmhTiaTUj+dIu8jOJxLft4sXatlnQiWxj3HZb9Xi+60mxcvEk+vtheDh8ToaHx8fMJiIi40nq5IWZHWxml5nZo2Y2bGazovhZZvaG7KsoIiKN1owr4suWjb5ium1bbTNUqDtC4zRrJhG1pJFaJTmeJW15kXULDRERqV2q5IWZHQHcBBwIfLNo/W1AmR5/IiIihdatSxevRN0RapMkQZDl/ylNvebPL2ztMX++EhiSnaQtLxrRQkNERGqTtuXF54CrgRcBHyh67lZgVhaVEhGRsTVjRrp4Frq60sUlW0m7gzTj/7RoUelWOYsWNe41RUREpLWlTV7MAla4uwPF4y8/CuyeSa1ERGRMLV8OkycXxiZPDvFG0WwLzZW0O0iS/1PW035u3pwuLq0t38LnmGOOUhcgERGpWdrkxWZgWpnn9gSeqK86IiLSDD09cOGFhTMfXHhhYwcQ1GwLtenthc7OsM06O8PjWgwMJIsn+T8lTUQ1o4WPNFdhCx9rmQFfNZaFiMj4kzZ5cQPwPjOLH9rzLTDeDVybSa1ERGTMNWPmA822kE5vL6xYMdLffuvW8LiWBEaak7dq/6ekiahmtPCR5mrWgK/VLF6cLi4iIs2XNnlxOqHryO+jvx04wcyuAw4FPpVt9URERCTv/PPTxSvJeiDCJImoZrTwkeZK2sJnrPX3wymnjCTrOjrC4+LpTc1Kr18uLiIijZMqeeHuvweOBB4ClgEGnBo9fZS7/znb6omIiEhe8SCW1eKtSK1t2kszumfsvHOyeH8/DA+HAWuHh0cnLgCWlJlHr1xcREQaJ23LC9z9VnefA+wI7APs5O5Hu/vvMq+diIhIm0gybamkp3E2mqsZU40+/vjoRMXOO4d4WklbaIiISOOlTl7kuftmd3/A3QerLy0iIiLlJJ22VNLTOBu1ySqZlmW3i6lTk8cffzx8lvK3WhIXeUlaaIiISON1VlvAzNIMwulRqwwRERFJqNKghupWUZ/89lu2DNatg66uMAuKtmt5+WRafp/MJ9Mg/XZzTxevZHAwzGLz1FMjsalTR392RERkYqqavCC0zoh/xbwAeA6wljD2xbOBmcCDgMa8EBERSakZgxqalT6BnIgDEfb0KFmRRisn05SoEBFpX1W7jbj77GhMi6OB5cAW4FB338/dD3P3/YDDorgaYYqIiKSUdFDD6dNLL1cuXkmWV8RlYmnVGUJEpD1oDCgpJ+2YF58GTnf3X8WD7n4LcAbwmYzqJSIikth4n84w6aCG229ferly8Uq6u9PFpX0kTabpBENEspbLwcKFhWNALVyo44sEaZMXzwMeKfPcw8AB9VVHREQkvW98I118rOVP8o455qiSJ3lJEwmPPVZ6uXLxSvr6wvgBcdOmhXizaYaQ5kqSTNMgsyLSCEuXwtBQYWxoKMRF0iYv/gacXOa5kwnjYIiIiIypnh645JJwsm8W7i+5pPn986H4KpKVvIrU1wdTphSuN2XK6ETCrruWfo1y8Up6emDlysJttnJla2wzzRDSXJPK/DqMxyuNiyEiUqv169PFpb0kGbAz7lNAzsz+D/geIwN2vh04EGiBnzwiItKOWnVQxkpXkeL1LR5rotTYExs3ln6NcvFqWnWbaYaQ5tq2rXp83brSyxTHL7kEjj9+9HKXXFJb3UREpH2lannh7t8GXg88AXwMODe63wC83t2/k3kNRURExrEkV5GWLYMtWwqf37Jl9FXsp58uXVa5+HjW0wNr14YT5rVrlbhoNV1dyeKFraK8pVpFiYjI+JK22wjuvtrdDwemEqZMneruR7j7NWnLMrN9zew6M7vTzG43s6VRfFcz+5mZ3RXd7xLFzcz+28z+amZ/MLNZaV9TRESk1SS9ii1Sr6wG2UwzZko+EXXttdcrESUiIjVLnbzIc/dt7v6wu5dpXJjIMHCau78QOBR4j5kdBHwUuMbdnwdcEz0GeCNh0NDnAYuBFXW8tojIuKfR/ieGpFexReqRy8H8+YWDbM6fX9txo5XHTBERkYmpavLCzLaa2SHR39uix+Vuw2le3N0fdPdbo7+fBO4E9gaOBS6OFrsYOC76+1hglQc3Azub2Z5pXlNEZKLQaP/jQ5KZM5IO2ClSj0WLRo9nsW1biNdCXXtERGQsJRmw80zgvtjfJYYQq5+ZzQQOBm4Bnu3uD0JIcJjZHtFiewP3xla7L4o9WFTWYkLLDDo7O1mzZk0jqlyTjRs3tlR9RMaS9v9snXbaoQwObl8QGxyE007bzN5731wQX716D772tf14+OHt2GOPp1m06B7mzn14LKvbtpYs2YOzzjoQ95HrBWbbWLLkT6xZE/4Hd965B1u3Hkj8msLWrdu4886RZYKjACvxKs6aNdc3pP4ycWzeXHr/2by5cP+ZNesl3HrrrkXLOrNmPcaaNX+s+fX1HSDtTPt/Uvqem4iy2v/NSw1nPsbMbAfgeqDP3S8zsw3uvnPs+cfdfRcz+xHwWXe/IYpfA3zY3X9bruzp06f7pk2bGv0WEluzZg2zZ89udjUmlFyu+oj0SZaRxtP+ny0r9d0eiR/a81N1xme8mDIFLrhAn4OxkMvBCSfA1q0jsY4OuPjike0/c2ZoOVOsuztc0c5L+j8XKSXN/jN3LlwTG81szhxYvbq+19d3gLQz7f/J6HtuYqq2/5vZoLtPr1ZOzWNeZMXMJgPfB3LuflkUfijfHSS6z192ug/YN7b6PsADY1VXaT1Jms2rab1MVB0dyeKVpuqUxlu6tDBxAeFxfPuXSlxUios02urV4Tszf6s3cSEiIlKvpiYvzMyArwN3uvvZsaeuBE6I/j4BuCIWnx/NOnIo8ES+e4m0p2XLQjP5uMHBwukFkywj0mqSDMRZfEJcLp5kqk5pnCTbv9yVpuL4pDLf2uXiInFz5qSLi4iItJIkA3ZWG6Sz5gE7gcOBecAxZnZbdHsT8DngdWZ2F/C66DHAj4F7gL8CXwV6U76eTDBJphfUFIQy3uS7ecRbCy1cODqB0d1dev1ycWld5ZrCFsdPPrn0cuXiInGrV49OVGTRHURERGQsJB2wsyE9jKKxK8r1bBp1HcDDAB3vaURdWoXGZkinq6t0s+r49ILTpkGpYU+K56cXaRWVunnEjwd9faELVLxl0bRpmqFiIuvvD/crV4YWNh0dYR/Ix0WqUaJCRETGq6rJC3c/YwzqIYyMzZA/EcmPzQBKYJST5OTtqadKr1suLtJsSbt55I8LY53wVJJ1RFbbwqx064tS3Un6+5WsEBGRiWnOnMLBguNxEfWSbSEamyG9np5wBbK7O/zI7+4Oj+MnD8Vz2leLt4Mk4ynI+NDTE2aj2LYt3I9F4iJJl5Z2kOW2WLIkXVxERGQiUvc2qSRV8sLMPmJmXynz3H+b2YeyqVZ70tgMtRnrk7fxTief7SfLsTE0c8mILLdFfz+ccsrITDEdHeGxWliIiEi70WxHUk7alhcnAn8o89xt0fNSo/g4DUniIrXQyWf76esbPcZLrWNjaOaSEVlvi/5+GB4OP9SGh5W4EBEREYlLm7zoAu4q89w9gMa4r0OWJxgi5ejks/VlPR1mku5VIiIiIiKtLMlsI3GDwMiK6dgAACAASURBVN5lntsHeLq+6rS3Zg2+JyKtZerU0jPkTJ1ae5k9PTqWiIiIiMj4lfY63i+AD5nZdvFg9Pi06Hmpg8ZvkEabMSNdXLJXbcDU4oF7q8WlOUrNBFIpLiIiIiK1S5u8OAN4HvAXM+szs14z6wP+EsU/kXH9RCRjy5fD5MmFscmTQ1waLz8lcnzA1MWLCxMYrTz+zfTp6eITmWYIERERERk7qZIX7v574GhgAPgI8D/R/d+A2dHzItLCenrgwgsLxz+48EK18hkrSaZEbuXxb84/f/TYG5MmhXi76e+Hgw4qjB100OiBNouXqRYXERERkdFSD//m7r9y9yOBHQnjXOzo7rPd/TeZ105EGkLdk5onyZTIrTzAZk8PrFpVWLdVq1qjbmOttxfuuKMwdscdIR53++3xRIUD4fHttze8iiIiIiITRo1j14O7P+XuD7j7U1lWSERkIkvaJaSVE0ytXLextHJl8vjtt4duQtdddz3uSlyIiIiIpJVqthEzu7bKIu7uc+qoj4jIhNbXF8a4iHcdaZUuIZLO1q3p4iIiIiJSu7QtLyYBVnTbDTgceH70WKSlaHYNGSvVZhGB1u4SIiLjV5Ljj4iIyHiWquWFu88uFTez/YHLgbMyqJNIppYvh4ULYWhoJDZlimbXkGzlZxHJt6jIzyICoxMTPT1KVohIdnK5wu+5gYHwGHSsERGRiaPmMS/i3P1u4HPAF7IoTyRLPT1wwQWFV7ovuEA/6CRbSWYRERFphKVLCxP0EB4vXdqc+oiIiDRCJsmLyCOEriMiLaddBhjMstlwby90doaET2fn6BkUpNDAQLq4iEhW1q9PFxcRERmPMklemNmuwAeAu7MoTwTUfzetfLPhgYEwq0G+2XAt2623F1asGBl4cOvW8FgJjPImlTmalouLiIiIiEhyqX5Wm9nfzOyeott9wEPAHODjDamltJ38+AHxE/HFi5XAqCTLZsMrVqSLS2jVkyYuIiIiIiLJpb0meH2J2w+B04ED3f3KbKsn7UrjB6SnZsONpW40IiIiIiLNk3a2kQUNqodIgXXr0sVFGinfjSYv340GoL8/3E+fDps2jV53+vTG109EREREZKJTb2xpSV1d6eISWgSkiUty551XPb799qWXKReX8a+zTPq/XFxEREREalc1eWFmn0hzG4tKy8TX1wfTphXGpk0LcSnNPV1cgiQDwybZto89VnqZcnFpbUn2i4suKr1uubiIiIiI1C7J9aEzEiwT/2l/Zm1VERmRn8p02bLQVaSrKyQuJuoUp1no7i49LWd399jXZbzIDwybH18lPzAspN/XurpKb3+1Fhp/cjlYsACGh8PjgYHwGAr3Cx2nRERERMZOkm4jk6vcXgX8FDDgr42ppohUo9Yq6WU5MKy2/8SxZMlI4iJveDjEi/X0wNq1YVaZtWuVuBARERFplKrJC3ffWuoG7AdcAtwCHAQsju5F6pbLwYknFk6VeuKJrTNVapIm5WP9ej09sHJlaGlhFu5XrtTJVCWlWkpUilei7T9xbNyYLi4iIiIijZd6WDEz2xf4JDAfeBz4INDv7kMZ103a2NKlsGVLYWzLlhBv9slgll0Nsn69np7mb5/xxKz0eBbFg5wmXU7bX0RERESkMRLPNmJme5jZcuAvwL8SxrbYz93PUeJCsrZ+fbr4WMqyq0Ervl47STrIaanuApXiMr5p5h4ZbzRgs4iItIMks408y8zOAu4G3g0sJyQtPuPumxpdQZFWk2VXgyTWrUsXz0JHR7r4RNffD6ecMvL+OzrC4/7+5tZLGkPJKhmP3EffREREJpIkLS/+BnwEuAF4PbAS2MXM9it1a2RlpX3MmJEuPpYmlfnUlIvXq9xsFY2cxSLfLSVp/P+3d+9xctXl4cc/D9mkukEbQFEQN5FysVx+VbyB1ZqACgJK7a9W6VrAyy9grMWWqtitLwMlFrwUaTXIFrkoK8JPraWUUm4iKjfrXQF/iCYxCAYFhBAlJHl+f5yzMjuZzc7ZndmZ3fm8X695zZ7nnDnz7OTsbObZ7/f5dqNm+oRU+bdcubJo2phZ3Fu4kCRJkqZPMx+3FlCsJHIocANw5wQ3acrOOgvmzRsbmzeviHfali3V4lPViVUsZvpIg9E+IbUNX5cu3bqAcfzxjR8/Xly94ZxzqsUlSZLUfs007HxT27NQR42MFP0T1qwp/pq/YkXnmw6OPn+35dUJnXotVq6cOcWKetvqE1L7uo1+f8PDsHlzUaRZunTmft9qjekuUEqSJGliExYvMvPC6UhEnTHdK2dU0a0rN+y0U+PGoe2c0tKtr0W3qtInZCYXaSRJkqRe0aZZ+popXMmiurPOgrlzx8bmzu2OKS29YqJ+Fp3oEyJJkiSpfSxe9LhOrGQx0w0Owvnnw8KFxdKJCxcW246MmB4jI3DMMWP7WRxzzNgCRif6hEiSJElqH4sXPc6/UE/O4CCsWlXMgV+1ysLFdDr++K17D2zZMrbJ5uBg0ceitsA0POy/kyRJkjRTWbzocf6FWjPNI480F7fAJEmSJM0eFi96nH+hliRJkiR1O4sX6shfqCdquChJkiRJ0qgJl0qNiOsqnC8z85Ap5KMe0M3Ls0qSJEmSuk8zIy+2A6Lm9mxgMbAIeGJ5vxjYu9wvbVOvLM/q6JL2iHHeZcaLS1V5jUmSJHWfCYsXmbk4M5dk5hLgLOAx4MDM3D0zD8rM3YGDyvhZ7U1Xs0EvLM86OrqkdjnPpUstYExk2TLo6ys+JPb1Fdv1Tjih8WPHi0tVffrT1eKSJElqv6o9L/4BeF9m3lobzMxbgOXAaS3KS7NYLyzP2iujS1pp2TI4+2zYvLnY3ry52K4vYKxcCW97G8yZU2zPmVNsr1w5vflq9hochIsuGtvI+KKLnNYmSdJUNPNHKmlbqhYv9gTuG2ffOmCPqaWjTpju6Q2HH14tPhP1wuiSVjv77ObjK1fCpk3FqJZNmyxcqPVcaleSpNZp9o9U0rZULV78BDh+nH3HA6umlI2mXSemN1xxRbX4TNQLo0skSZKkZnziE9XiUiNVixenAK+OiO9HxPKIeFt5/33gCIqpI5pBOjG9oRdGJaxYAf39Y2P9/UVckiRJ6iWZ1eJSI5WKF5n5WeBQ4FfAe4GPl/cPAodm5iUtz1Bt1YlCQi+MShgchOHhsXPmh4cdei5JkiRJk1F15AWZeU1m/iHFMqlPB56YmS/JzGtbnp3arhOFhF4ZleCceUmSJElqjcrFi1GZuSUz12XmllYmpOm1YgXMnTs2NnduewsJjkpQIwsXVotLkiRJ6h2VixcR8dyI+EJE/CIiNkXEAWX8AxFxWOtT7C3TvfIHFAWEbW23g6MSVK9XRuRIkiRJqq5S8SIiXgLcBDwb+Ezd47cAJ7Qutd7TiZU/hoZg48axsY0b29uwU2rEETmSJEmSxlN15MXpwH8D+wJ/U7fvm8ABrUiqV7nyh3qdI3IkSZIkNVK1eHEAcHZmJlC/sM0vgKe2JKse5cofkiRJkiRtrWrx4jdA/zj7dqFYQlWT5MofkiRJkiRtrWrx4qvAOyNiTk1sdATGW4DrWpJVj+pEIcE+A5IkSZLaaZ99qsWlRvoqHv8+4GvAd4DPURQujo2IfwKeB7ygten1ltGCwdBQMVVkYKAoXLS7kDA4aLFCkiRJUnv84Aew775w222Px/bZp4hLzapUvMjM70TEHwEfAoaAAP4S+Arwssz8YetT7C0WEiRJkiTNNhYqNFVVR16Qmd8EDomIJwA7Ag9m5oYJHiZJkiRJkjQplXpeRMR5EfG3AJn5m8z82WjhIiJ2j4jz2pGk2mtkBBYtgu22K+5HRjqdkSRJkiRJj6s68uI4ICPiBcAxmflozb6nAscCb25RbpoGIyOwdClsKMfOrF5dbIPTVyRJkiRJ3aHqaiNQ9Lp4OXB9RDy1xflomg0NPV64GLVhQxGXWmXZMujrgyVLXkZfX7EtSZIkSc2aTPHiOuBAin4Xt0aEC9zMYGvWVItLVS1bBmefDZs3AwSbNxfbFjAkSZIkNWsyxQsy807gRcCPgRsj4tCWZqVpMzBQLS5Vdc451eKSJEmSVG9SxQuAzHwQeCVwCfAfwNKq5ygbgK6LiO/XxJZHxN0R8e3ydnjNvvdGxI8i4ocWTFpjxQro7x8b6+8v4lIrbNlSLS5JkiRJ9SZdvADIzM2ZeTzwHopmnVVdABzWIH5mZj6nvF0BUE5PeQOwb/mYlRExZ3KZa9TgIAwPw8KFEFHcDw/brFOSJEmS1D2qFi+WALfVBzPzTOClVFxpJDNvAO5v8vCjgM9m5qOZ+RPgR8ALqzyfGhschFWrir+Er1pl4WK6jTazjMBmlpIkSZLUQKXiRWZ+OTPXj7Pvpsy8sDVp8ZcR8d1yWskOZewZwE9rjllbxqQZa2wzS2xmKUmSJEkNRGZ2NoGIRcDlmblfuf004BdAAv8A7JKZb46IjwM3ZeZF5XGfBK7IzM83OOdSyh4cfX19z7v66qun41tpyvr169l+++2ndI5rrtmZc8/dnXXrfoedd36Ut771x7z85etalKGm08EHv4zM2CoekVx33Zc7kFHrLVnyMmDr7xGSL31pdnyPUrNa8TtAmqm8/tXLvP7Vyya6/pcsWbIhM+dPdJ4JixcRsRk4KDNvjYgtFEWF8WRm9k30pHXnX0RN8WK8fRHx3vIJ/rHc99/A8sy8aVvnnz9/fj7yyCNVUmqr66+/nsWLF0/68SMjsHQpbNjweKy/v3v6VIyMwNBQsdTqwEDR+LMb8upW0egzfanDdcWW6et7fGRJrTlzYNOm6c9H6qSp/g6QZjKvf/Uyr3/1somu/4hoqnjRTKHhVIopGqNft/UjVUTskpn3lJuvBUZXIrkM+ExE/BOwK7AncGs7c+lGQ0NjCxdQbA8Ndb5IUF9YWb262IbO56bOufBCeOMbG8elTli2rCj4bt5cFNGWLoWVKzudlSRJkrZlwuJFZp5S8/XyVj55RFwMLAaeEhFrgfcDiyPiORRFklXA8eVz/yAiLqVoGLoJeHtmNvh77uy2Zk21+HTq5sJKt5o/HxoNDJo/Yd1x5hj9ty9G5CQDA+GIHHXMaJ+ZUaN9ZsAChiRJUjeb0lKpEfG7EfH8iNhtMo/PzKMzc5fMnJuZu2XmJzPzLzJz/8z8X5n5mppRGGTmisz8vczcOzP/ayq5z1QDA9Xi02n16mpxwTnnFH/5rTVnThGfTUZXtLnuui+7oo06ani4WlySJEndYcLiRUQcGhGnN4gPAeuAW4DVEfGZiKjU70LVrVhR9Lio1d9fxDttu3GupvHiKj7EX3ghLFxY9L9YuLDY9sO91B6N+q9sKy5JkqTu0MzHyhOAvWoDEfEKipVA7gDeCZwDvB44sdUJaqzBweIvhLUfdrulWeeWLdXiKoyOStiyBUclSG1WP9JporjUDZYtK5ofRxT3LqctSepFzYyUeC5FoaLWm4DfAIdm5r0AUSyb8OfAR1qZoLY2OOgHXEmajL33httuaxyXupF9WiRJKjQz8mJn4K662CuAr44WLkr/Sd0IDXXWyAgsWlRM21i0qNhup512qhaXpOl2xx3V4lKnfeIT1eKSJM1WzRQvHgZ+u/ZBROwJ7ATcXHfcQ4ADb7vE6LKlq1dD5uPLlrazgHHWWTBv3tjYvHlFXJK6gdPbNNPkOAvUjxeXJGm2aqZ4cQdwVM32URTLmF5Vd9yzgJ+3KC9tQzMjKra1bGm7DA7CeeeN7cdx3nlOcZEkSZIkTU0zxYszgbdGxOci4uPAKcD3gK/VHfda4Dstzk91mh1RsWZN48ePF2+Vmd58crqn2kiSJEmSJjZh8SIzv0ixosgLgGMopou8LvPxAYsRsRuwBLiiTXmq1OyIioGBxo8fL67OTLWRJEmSJE2smZEXZOY/Z+bCzHxSZh6SmXfW7V+bmQsyc7g9aWpUsyMqVqyA/v6xsf7+Iq7GOjHVRpIkSZI0saaKF+oezY6oGByE4eGx/SeGh2feNI7p1KmpNpIkSZKkbZt08SIi5kTE5og4oJUJadtWrIC5c8fG5s5tPKJipvefmG5OtZEkSZKk7jTVkRfRkixUScS2t0fZfLKaww+vFpckSZIkTY+pFi9cZXyaDQ3Bxo1jYxs3bt2XweaT1V16abW4JEnttmBBtbgkSbOVIy9mmGb7Mth8srpf/rJaXNLMs+uu1eJSpz3wwNaFigULirgkSb1k0sWLzNxMsTzqD1uXjibSbF8Gm09K0tbuvnvrQsWuuxZxqVs98EAxinL0ZuFCktSLJlW8iIhnRsSLgTnAiyLi4NFba9NTvWaXQN1xx8aPHy8u2GmnanFJM9Pdd4/9IGjhQpIkqfv1VTk4InYHRoAXNtpN0QNjTgvy0jhGVwwZGipGUQwMFIULVxKZuj/7Mzj77MZxSZIkSVLnVCpeAOcCA8A7gTuAjds+XO0wODhxseL++6vFBZ/+9PjxlSunNxdJkiRJ0uOqFi9eAByXmZ9vRzJqnYGBYoWRRnE1tn59tbgkSZIkaXpU7XmxFkdbzAjN9saQJEmSJKnbVS1efAB4T0TMb0cyap3BQRgehoULIaK4Hx62N4YkSZIkaeapNG0kMz8dEc8GVkXEzUD9Yl2Zmce2LDtNSTO9MSRJkiRJ6naVRl5ExHHAe4EFwAHASxvc1CVGRmDRIthuu+J+ZKTTGUmSJEmSVF3Vhp2nAP8GvCUzH2xDPmqRkRFYuhQ2bCi2V68utsHRGJIkSZKkmaVqz4udgJUWLrrf0NDjhYtRGzYUcTV2yCHV4pIkSZKk6VG1ePFV4PfbkYhaa82aavGJ9MIUlGuu2bpQccghRVySJEmS1DlVp42cCFwaEQ8AV7J1w04yc0srEtPUDAwUU0UaxavqpSkoFiqq23dfuO22x7f32Qd+8IPO5SNJkiRp9qk68uJ2YH/gU8A64LG628aWZqdJW7EC+vvHxvr7i3hVTkHReOoLF1Bs77tvZ/KRJEmSNDtVHXlxKpDtSEStNToiYmiomCoyMFAULiYzUqLRCI5txdU76gsXE8UlSZIkaTIqFS8yc3mb8lAbDA62ZlrHnDmweXPjuCRJkiRJ7VZ12ohmkFY12WxUuNhWXJIkSZKkVqpcvIiIXSLiwxHx9Yi4KyJujYgPRsTT25GgJme0yebq1ZD5eJPNyRQwFi6sFpckSZIkqZUqFS8iYi/g28BfAeuBW4FHKFYh+XZE7NnyDDUprWyy2crmn5IkSZIkVVV15MUZwEPAXpm5JDOPzswlwF7Ar8r96gJr1lSLb8vgIAwPFyMtIor74eHZt0yqqnvb26rFJUmSJGkyqq42sgQ4ITNX1QYzc3VELAdWtigvTdHAQOPVQAYGJne+VjX/1OyysvyJHx4ueqDMmVNMT1rpO4EkSZKkFqo68mIe8PA4+x4u96vNmmnE6VQPTZeVK2HTpqK3yqZNFi4kSZIktV7V4sW3gXdExJjHRUQAy8r9aqNmG3E61UOSJEmSNFtUnTZyKnA5cHtEXALcAzwdeB2wJ3BEa9NTvW014qwvTDjVQ5IkSZI0G1QqXmTmlRFxJHAaMAQEkMA3gCMz86rWp6harWzEKUmSJEnSTFB15AWZeSVwZUT0AzsAD2TmhgkephZpdSNOSZIkSZK6XdWeF7+VmRsy824LF9PLRpySJEmSpF5TuXgREbtExIcj4usRcVdE3BoRH4yIp7cjQY1lI05JkiRJUq+pNG0kIvYCvkIxXeRrwI8oGnaeCBwTES/NzDtbnqXGsBGnJEmSJKmXVO15cQbwEPCizFw1GoyIhcBV5f4/aVl2kiRJkiSp51WdNrIEeF9t4QIgM1cDy8v9kiRJkiRJLVO1eDEPeHicfQ+X+yVJkiRJklqmavHi28A7ImLM4yIigGXlfkmSJEmSpJap2vPiVOBy4PaIuAS4h6Jh5+uAPYEjWpueJEmSJEnqdZWKF5l5ZUQcAawAhoAAEvgGcGRmXtX6FCVJkiRJUi9rungREfOAS4AzM/P5EdFPsWTqA5m5oV0JSpIkSZKk3tZ0z4vM3Ai8fPQxmbkhM++2cCFJkiRJktqpasPOrwEHtiMRSZIkSZKkRqo27DwJ+GJErAe+SNGwM2sPyMwtLcpNkiRJkiSp8siL7wG/B5wFrAY2Ao/V3Da2NDtJkiRJktTzJrNUak54lCRJkiRJUotUXSp1eZvykCRJkiRJaqjqtBFJkiRJkqRpVWnkRURsB2yXmZtqYocC+wHXZea3WpyfJEmSJEnqcVV7XlwMPAocAxARJwAry32PRcQRmXlNC/OTJEmSJEk9ruq0kQOBK2q23wWcC/wu8AVgqEV5SZIkSZIkAdWLFzsDdwNExB7As4CPZebDwPnA/q1NT5IkSZIk9bqqxYuHgJ3KrxcDv8jM75bbm4EntCgvSZIkSZIkoHrPixuBkyNiE/BOxk4h2QNY26rEJEmSJEmSoPrIi3cDOwKXUYyyWF6z7/XATVVOFhHnRcS6iPh+TWzHiLg6Iu4s73co4xER/xwRP4qI70bEARVzlyRJkiRJM1Cl4kVm3pmZewFPzcw9MnNVze4TKYobVVwAHFYXOxm4NjP3BK4ttwFeBexZ3pYCZ1d8LkmSJEmSNANVKl5ExHYR0ZeZv6yJHRoRJwF9mXlflfNl5g3A/XXho4ALy68vBP64Jv6pLNwMLIiIXao8nyRJkiRJmnkiM5s/OOIS4NHMPKbcPgFYWe5+DDgiM6+plEDEIuDyzNyv3H4wMxfU7H8gM3eIiMuB0zPzq2X8WuA9mfk/Dc65lGJ0Bn19fc+7+uqrq6TUVuvXr2f77bfvdBpSR3j9q9f5M6Be5vWvXub1r1420fW/ZMmSDZk5f6LzVG3YeSDwnprtdwHnAicBw8AQUKl4UUE0iDWsvGTmcJkP8+fPz8WLF7cppequv/56uikfaTp5/avX+TOgXub1r17m9a9e1qrrv2rDzp2BuwEiYg/gWcDHMvNh4Hxg/ylnBD8fnQ5S3q8r42uBZ9YctxvwsxY8nyRJkiRJ6mJVixcPATuVXy8GfpGZ3y23N1OsQDJVlwHHll8fC/x7TfyYctWRA4FfZeY9LXg+SZIkSZLUxapOG7kRODkiNgHvBK6o2bcHxeiIpkXExRRFkKdExFrg/cDpwKUR8RZgDfC68vArgMOBHwEbgDdVzF2SJEmSJM1AVYsX7wb+k2IUxI+B5TX7Xg/cVOVkmXn0OLsOaXBsAm+vcn5JkiRJkjTzVSpeZOadwF4RsVPtcqmlE4F7W5aZJEmSJEkS1UdeANCgcEFmfm/q6UiSJEmSJI01qeJFRPwBsDcNGnRm5qemmpQkSZIkSdKoSsWLiFhA0fPiICCBKHdlzWEWLyRJkiRJUstUXSr1AxRLpb6UonDxWuBgYISigecLW5qdJEmSJEnqeVWLF4dSFDBuLrfXZub1mXkMcA1F005JkiRJkqSWqVq82AX4cWZuBn4DPKlm3xeAI1qVmCRJkiRJElQvXtwLLCi/Xk3R+2LUHi3JSJIkSZIkqUbV1Ua+SlGwuBz4NPD+iFgEbAKOBS5rZXKSJEmSJElVixenALuWX3+Ionnn64F+isLFO1qXmiRJkiRJUsXiRWbeBdxVfv0YcFJ5kyRJkiRJaouqPS8kSZIkSZKm1YQjLyJiC5BNni8zs+pUFEmSJEmSpHE1U2g4leaLF5IkSZIkSS01YfEiM5dPQx6SJEmSJEkNTdjzIgqvjoj9tnHM/hHx6tamJkmSJEmS1FzDzr8ALgYe2cYxDwMXR8TRLclKkiRJkiSp1Ezx4o3A+Zn5k/EOyMxVwCeBY1uUlyRJkiRJEtBc8eIA4KomjrsGeP7U0pEkSZIkSRqrmeLFk4AHmjjugfJYSZIkSZKklmmmePELYGETxw2Ux2oKRkZg0SLYbrvifmSk0xlJkiRJktRZzRQvvkpzvSyOK4/VJI2MwNKlsHo1ZBb3S5dawJAkSZIk9bZmihcfBQ6JiDMjYl79zoiYGxFnAQcDZ7Y6wV4yNAQbNoyNbdhQxCVJkiRJ6lV9Ex2QmTdFxEnAR4DBiLgKWF3uXgi8AtgJOCkzb25bpj1gzZpqcUmSJEmSesGExQuAzPxoRHwTOBl4LfDEctevgeuB0zPzK23JsIcMDBRTRRrFJUmSJEnqVc1MGwEgM2/IzMMpVhR5enl7cmYeYeGiNVasgP7+sbH+/iIuSZIkSVKvarp4MSozt2TmuvK2uR1J9arBQRgehoULIaK4Hx4u4pIkSZIk9aqmpo1o+gwOWqyQJEmSJKlW5ZEXkiRJkiRJ08nihSRJkiRJ6moWLyRJkiRJUlezeCFJkiRJkrqaxQtJkiRJktTVLF5IkiRJkqSuZvFCkiRJkiR1NYsXkiRJkiSpq1m8kCRJkiRJXc3ihSRJkiRJ6mqRmZ3Ooa0iYgvw607nUaMP2NTpJKQO8fpXr/NnQL3M61+9zOtfvWyi6/+JmTnhwIpZX7zoNhHxP5n5/E7nIXWC1796nT8D6mVe/+plXv/qZa26/p02IkmSJEmSuprFC0mSJEmS1NUsXky/4U4nIHWQ1796nT8D6mVe/+plXv/qZS25/u15IUmSJEmSupojLyRJkiRJUlezeCFJkiRJkrqaxYtpFBGHRcQPI+JHEXFyp/OR2ikinhkRX4qI2yPiBxFxYhnfMSKujog7y/sdOp2r1C4RMScivhURl5fbz4qIW8rr/5KImNfpHKV2iIgFEfG5iLij/D1wkO//6iUR8dfl/3++HxEXR8QT/B2g2SoizouIdRHx/ZpYw/f8KPxz+Zn4uxFxQLPPY/FimkTEHODjwKuAfYCjI2KfzmYltdUm4KTM/H3gQODt5TV/MnBtZu4JXFtuS7PVicDtNdtnAGeW1/8DwFs6kpXUfmcBV2bms4E/oPg58P1fPSEingH8FfD8zNwPmAO8AX8HaPa6ADis5xdrCAAACVRJREFULjbee/6rgD3L21Lg7GafxOLF9Hkh8KPM/HFmbgQ+CxzV4ZyktsnMezLzm+XXD1P8x/UZFNf9heVhFwJ/3JkMpfaKiN2AI4Bzy+0ADgY+Vx7i9a9ZKSKeDPwR8EmAzNyYmQ/i+796Sx/wxIjoA/qBe/B3gGapzLwBuL8uPN57/lHAp7JwM7AgInZp5nksXkyfZwA/rdleW8akWS8iFgHPBW4BnpaZ90BR4AB27lxmUlt9FHg3sKXc3gl4MDM3ldv+HtBstTtwH3B+OW3q3IiYj+//6hGZeTfwYWANRdHiV8A38HeAest47/mT/lxs8WL6RIOY69Rq1ouI7YHPA+/MzIc6nY80HSLiSGBdZn6jNtzgUH8PaDbqAw4Azs7M5wKP4BQR9ZBybv9RwLOAXYH5FEPl6/k7QL1o0v8fsngxfdYCz6zZ3g34WYdykaZFRMylKFyMZOYXyvDPR4eGlffrOpWf1EZ/CLwmIlZRTBM8mGIkxoJyCDH4e0Cz11pgbWbeUm5/jqKY4fu/esXLgZ9k5n2Z+RjwBeDF+DtAvWW89/xJfy62eDF9vg7sWXYZnkfRtOeyDucktU05v/+TwO2Z+U81uy4Dji2/Phb49+nOTWq3zHxvZu6WmYso3u+vy8xB4EvAn5aHef1rVsrMe4GfRsTeZegQ4DZ8/1fvWAMcGBH95f+HRn8G/B2gXjLee/5lwDHlqiMHAr8anV4ykch0tNJ0iYjDKf7yNgc4LzNXdDglqW0i4iXAV4Dv8fic/7+j6HtxKTBA8cv9dZlZ3+BHmjUiYjHwt5l5ZETsTjESY0fgW8AbM/PRTuYntUNEPIeiWe084MfAmyj+aOb7v3pCRJwCvJ5i9bVvAW+lmNfv7wDNOhFxMbAYeArwc+D9wBdp8J5fFvQ+RrE6yQbgTZn5P009j8ULSZIkSZLUzZw2IkmSJEmSuprFC0mSJEmS1NUsXkiSJEmSpK5m8UKSJEmSJHU1ixeSJEmSJKmrWbyQJKmLRMRxEZER8WBE7FC3r6/ct7zNz72oJrYqIi5o4rEXRMSqFuVxQZnHtm7LJzjHqvK4UxvsOy0iOrLcWpnTaZ14bkmSZrK+TicgSZIa+l3gPcDJHc7jtcBD0/yc/wB8Ypx9Hwf2B65s8lx/HRH/kpn3tSQzSZLUEY68kCSpO10FvCMint7JJDLzW5l51zQ/512ZeXP9DTgQOAB4T7k9kS8Dc+l8AWjaRGFep/OQJKnVLF5IktSdRqcWDG3roIhY3mgKRKNpHBExPyJOj4i7IuLRiLg3Ij4fEU/bxvm3mjYSEYdExDcj4jfluY4f57H9EXFGRPwkIjaW90MRUfn/HxFxEPBB4N8y88wmH7YWOBtYFhHPmOD8W01FiYhFZfy4mtgFEbE2Ip4fETdGxK8j4ocRcUS5/2/K1+yhiPj3iHhq46eLofI8v46IGyLiOQ0O+pOIuDkiNpTTiP5vRAzUHbMqIi6KiDdHxB3ARuCIJl8fSZJmDIsXkiR1p3uAjwFLI2LhVE9W/jX+auCvgAuAI4G/BO4Hdhj/kVud5/eBK4BfA28A/g54J3BI3XF9wH8DbwXOAl4FnAu8D/hQxdyfAlwK/BR4U5XHAh8ANpXP2ypPBj5F8f28FlgHfD4iPgIsAd5O8ZosoZjmUu8Y4HCK1/844GnAtRGx4+gBEXEC8HngNuBPgeOB/YAvR8ST6s63BPgb4BTgMOC7rfgmJUnqJva8kCSpe51B8aH1/cCbp3iuNwIHAUdl5mU18c9VPM/fAw8Dr8zMRwAi4kbgLuBnNccdDbwEeFlm3lDGro0IgPdHxBmZuW6iJytHaXwGeCrw4sz8VZVkM/O+iPgo8J6I+FCLpsA8CThh9PuKiJ8B36EoCO2TmZvL+H4UU3/mjMZKT2Ts63cLcCfw18D7ImJ7in/78zPzt//u5XH/D3gL8NGa8+0APC8z723B9yZJUldy5IUkSV0qM+8HPgIcExF7T/F0rwTurStcTMZBwBWjH7wBMvOnwNfqjjsMWA3cWK6S0leOxriKog/FgU0+33LgFcCJmfnNSeb8YYqCyymTfHy9R2oKMgB3lPfX1BUp7qD4Q9EudY+vf/1WATdTvLaU908GRupeu7XlOf+o7nw3W7iQJM12Fi8kSepuZ1JM7dhqyc+KdgLunno67AL8vEG8PrYzsBB4rO52a00+2xQRh1H0/PhMZp4z2YTL0RofBI6OiH0ne54aD9adf2P55QN1x43Gn1AXH+/1G+3LsXN5fw1bv377s/Vrd09TWUuSNIM5bUSSpC6Wmesj4h8pRmA06hXxGyh6WtR8iIatP+D+gqJnwlTdQ9GjoV597JfAT4A/G+c8q7b1JGVjyosopkk0bAha0b9Q9KE4DfhBg/2PAvWrdExYYJmk8V6/0eLSL8v742ic68N121s1bJUkabaxeCFJUvdbSdGQ8bQG+1aX9/sB3wSIiAXAixn7Ifcq4A0R8erM/I8p5HITcHhEzK/p2fBM4A8Z2/PiSuB/A+sz846tTzO+srnopRS9If40M9dPIV8AMnNDRJxG0QS1v8Ehq9m6uNOuVTvqX79FFNNoTi/330jxb7dHZl7YphwkSZpRLF5IktTlMvPRiDgVGG6w+7+AXwH/GhHvB34HeDdQ/4H/IuD/ABeXIzluoWg8eSjw0QoFhtOA1wFXRcSHKEYrnMLWUyFGKFYGubZcheM75bG/B7wG+OPM3DDOc3wYeBHFaIknRUSj/hj3TaL55r8Cf0vR/6PeZ4G/j4ghiv4TL6VoOtoOv+bx1+93KF6/hyimCJGZD0XEu4CPl0utjv4bPwN4GXB9Zn6mTblJktSVLF5IkjQznA+8C9izNpiZD0bEkRQffC+laOp4KvByYHHNcY9FxCspVi5ZWt7/kqLR5v3NJpGZt0fE4RRTWC6hmOpwBkWTyfrnOxQ4uXy+ZwGPUKxK8p883g+ikdeU9+8ob41cSDGtommZuTEillMsFVvvH4EFFMuXnkyxHOxfUBR5Wu1TFK/Fx4CnAF8H3lA2aB3N9ZyI+CnFv/mfUzQ5vRu4Afh2G3KSJKmrRabTJCVJkiRJUvdytRFJkiRJktTVLF5IkiRJkqSuZvFCkiRJkiR1NYsXkiRJkiSpq1m8kCRJkiRJXc3ihSRJkiRJ6moWLyRJkiRJUlezeCFJkiRJkrra/wey4AAWN6lfxAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Plot the classroom size nuclei diameter'''\n",
"import math\n",
"\n",
"from matplotlib import pyplot as plt # import the pyplot function of the matplotlib package\n",
"fig, ax = plt.subplots(figsize=(18,6))\n",
"\n",
"ax.plot([nc.Z for nc in nuclides], [2*nc.radius*1e-15 * 5.0/atoms[nc.Z-1].vdw_radius*1e+12 * 1e+6 for nc in nuclides], \n",
" ' ',color='blue', marker='.',markersize=12)\n",
"\n",
"#plt.xticks(range(0,len([nc.Z for nc in nuclides]),2),[nc.Z for nc in nuclides][::2],rotation=0,fontsize=12)\n",
"ax.set_ylabel(' Classroom-Sized Nuclide Diameter [$\\mu~m$]',fontsize=16)\n",
"ax.set_xlabel('Nuclide Z Number',fontsize=16)\n",
"\n",
"# create a twin y axis to reconfigure the top x axis\n",
"ay1 = ax.twiny()\n",
"ay1.set_xlim(ax.get_xlim())\n",
"#ay1.xaxis.tick_top()\n",
"ay1.set_xticks([])\n",
"ay1.set_xticks(range(1,len(atoms),2),[atm.symbol for atm in atoms][::2])\n",
"ay1.set_xticklabels([atm.symbol for atm in atoms][::2],minor=True,fontsize=12)\n",
"#ax1.spines[\"top\"].set_position((\"axes\", 2))\n",
"\n",
"fig.suptitle(r'%i Nuclides $1 \\leq Z \\leq 96$'%(len(nuclides)),fontsize=20)\n",
"ax.grid()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**NB:** for all nuclides of interest the classroom sizes vary between 100 and 300 micrometers.\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Radiative capture $(n,\\gamma)$ cross section example\n",
"This is a significant capture reaction emitting a prompt *capture* gamma ray (photon)\n",
"\n",
"\\begin{equation*}\n",
"^1_0\\text{n} \\ + \\ ^{235}_{92}\\text{U} \\longrightarrow \\ ^{236}_{92}\\text{U}^* \\overset{\\approx 10^{-14}\\,\\text{s}}{\\longrightarrow} \\ ^{236}_{92}\\text{U} \\ + \\ \\gamma ,\n",
"\\end{equation*}\n",
"\n",
"Note: \n",
"+ a) over much of the neutron energy range in a nuclear reactor, this is the only possible parasitic reaction that influences neutron balance; neutrons of any energy can be captured with gamma emission.\n",
"+ b) often this reaction is the dominat source of radiation heating and bulk shielding in the reactor vessel.\n",
"+ c) the product nuclide is often unstable, decaying via beta emission and delayed gamma rays; the latter continues for years after reactor shutdown.\n",
"\n",
"The *microscopic cross section* of this neutron interaction with the nuclide $^{235}_{92}\\text{U}$ represents the probability of interaction measured in units of area; typical units are: cm$^2\\times 10^{-24}$ or barn. Therefore it makes sense to compare against the geometric cross sectional area of the nuclide.\n",
"\n",
"Acquiring cross section data and saving it to a file:\n",
"\n",
" + Using the [cross section data site](https://www.nndc.bnl.gov/sigma/index.jsp) click on U in the periodic table and choose $^{235}_{92}$U from the isotope list. \n",
" + Select the neutron capture reaction cross section $^{235}_{92}$U(n,$\\gamma$) and plot the data. \n",
" + Choose `view evaluated data` and click on the `Text` link to view the data in a two-column arrangement (energy versus cross section). \n",
" + Using the browser, save data to a text file (`u-235-sigma-c.dat`). Relocate the file in a directory `data/` relative to this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''View the raw data'''\n",
"!cat data/u-235-sigma-g.dat"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Importing and processing tabular data is readily done using the Pandas Python Package:\n",
" + [Pandas documentation](https://pandas.pydata.org/)."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAFUCAYAAADrvlXnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xmc3VV9//HXucvsW2bNnkkm+8KaBBIgCQgSqBFLK4oWtbVSW61abRVbW/m5VOtaKYggpSJa0LoCiUQgGQhJIBBCQvbMTMi+zUwy+3KX8/vjLvO9d+6duTOZZLb38/HwYeZ7v8uZyU3C+37O+RxjrUVERERERERkpHMN9gBERERERERELgYFYBERERERERkVFIBFRERERERkVFAAFhERERERkVFBAVhERERERERGBQVgERERERERGRUUgEVERERERGRU8Az2AERERGRoMsYsAb4HdALHgQ9Za33GmDLgt4APCAAfBNKB14Bd4cvfa609c/FHLSIikpyx1g72GERERGQIMsaMB85aa9uMMV8Htllrf2WMcQPWWhs0xnwEmAj8DPiOtfbPB3HIIiIiPdIUaBERkRHEGDPLGLPNGNNkjPnU+dzLWnvcWtsW/tIPBMPHA9baYPh4Ll1V32uMMRuMMf9ujDH9GPs3jDGfOZ8xJ7nvFmPMvIG+r4iIDD8KwCIiMuwZYz5gjHndGNNsjDlhjPmDMebaAbjv28aYGwdijBfR54FKa22utfa+gbihMWYqcAvwjOPYZcaYV4FPAm8AJ4DpwDKgFLjdca41xkyPu+e9xpifOb4uAT4EPDQQY47zHeArF+C+IiIyzCgAi4jIsGaM+Szwn8C/A2XAZOCHwG2DPK7B6rMxha6KbJ8kGrMxJg94DLjLWtsZOW6tfdNaexXwr8AXrbUd1toWG1pb9Rvg0j4+/iPAGkfFeSA9BVxvjBl3Ae4tIiLDiAKwiIgMW8aYfEKVvU9Ya38TDmA+a+3T1tp/Cp9zjzGmOjwleLcx5k8d179tjPli+PhZY8z/GGMywq89TihMPx2uLH8+fDymmmmM+Ykx5muO+33BGLMDaDHGeIwx440xvzbGnDHGHOxpWrIxxmuM+Xr4Pr7ws6wxZnuKP491wPXA/eExzzTGzDHGVBpjzhljdhlj3h13TbcxO17zAE8A91pr9zmOpztu0QC0hoNyxHVAVSpjdrgFeDFuXP9ojNlhjGkwxvwi8nuT4PvOMMa0GGO+GHf8FWPMB6y17cBW4J19HJOIiIwwCsAiIjKcLQEyCHUkTqaaUCDLB/4f8LO4SuAHgZuBCmAm8CUAa+1dwGFglbU2x1r7rRTHdCfwJ0ABoTWzTwPbgQnAO4DPGGNuTnLt18LnXBe+/oXw9/anSc6PYa29AdgAfNJamwMcDD//j4SmJf898HNjzKxkY7bW+uOOXwX8WzhEvy98/ApjzEvGmPXAZ4BvA8uNMVuNMRvC3+v/pjJmhwXAvrhjdwArganAJYSqxIm+73bgPcCHI8eMMe8F0ggFeIA99L0qLSIiI4y2QRIRkeGsCKiNC20xrLX/5/jyF+Eq4WLg9+Fj91trjwCEOx3/F+EQ3E/3Oe53FVBirY2sP60xxvwYeD+w1nmRMSYX+BRwieP6XwPvs9bW9HMsVwM5wDfDTavWGWOeIRRs7000Zidr7ePA4wmObya01tfp6fD/+qsAaIo7dp+19jiAMeZp4LIert8ITA1XrQ3wdUIzAyLbXTQBmgItIjLKKQCLiMhwVgcUG2M8yUKwMeZDwGeB8vChHKDYcYoz+B0Cxp/nmJz3mwKMN8accxxzE6rSxlsG1FhrDziOjQFOnsdYxgNHHB2bIfQ9Tog7r1v4HWABwBt3zEtoH+GIs4Q6Sjs5v/dWevi9sda2GmPqCFWL3wkcstY+5zglFziX8GIRERk1NAVaRESGs81AZPprN8aYKcCPCXUqLrLWFgA7CVUIIyY5fj0ZOO742tJdK5Dl+Hps3OvOa44AB621BY7/5Vprb01w3xJCITAydkNo6vMz4a+XGWP+6Hj9qRSaOh0HJhljnP/eTwaO9TDmKGOM2xjzc2PMemPMo5H1wcaYJcaYzcaYF40xTxhj4sNtvMN0fQARMZVQGI/YQWgK+vmoAq4gVMH/QtxrcwhNRRcRkVFMAVhERIYta20D8G/AA8aY9xhjssKNpG4xxnwLyCYU7s4AGGP+Epgfd5tPGGMmGmMKgX8GfuF47RQwLe78N4EPhMPhSmB5D0PcAjSGm0xlhq+Zb4xZlODcnYTW1l5mjMkEvhEe+y/C3+tLhJtNhdcQ77DWnujlR/Qq0AJ8PvxzWQGsAp7s5bqIPyVUlb4e2EvX1kaHgBustcuBGnrvuP0L4Evhn7PLhLaWWgX8ynHOGnr+WcYINx/7SdzhKkLrkddba99wnJsOXAk8h4iIjGoKwCIiMqxZa79HaIrzlwgF3SOEKr6/s9buBr5LqFJ8ilCjpY1xt/hfQk2iasL/+5rjtW8QCm7njDH/GD72aULh7RyhBlq/62FsgfC5lxFqSFULPEKoIVf8ua8TWre6JjyOscCt1lrnNOH9wAzgc0CvTbnC2xa9m1CH5VpC20N9yFq7t7drwyoIBX4I7fV7Xfi+xx3bFfkJNfvqyVeATcDLhKrc3wI+aK3d6Tjnp8Ct4fCfikl0/72sIrQVVvwa7ncT2hv5OCIiMqqZrt4QIiIio4sx5m3gr621zw/2WFJhjPkYoW7N6621P7gIz1sFrLTWfsIY801gorX2LxyvTyVU3b3WuUfweTzv34HT1tr/7OW8NELTmS9xfkAQ3mLqOmvte+POfxX4aFzgFhGRUUhNsERERIaPKkJb+dxxkZ73DLAivL/wLkJVdADC+/4+Btw1EOEXwFr7zyme10loTW+8eXRVrJ3nX3WeQxMRkRFCU6BFRESGjyDw84EKnL2xIZ8L7y9cR3jrqHAzrCeAe6218Xv3DqYFwFuDPQgRERm6NAVaRERkmDDG/B2hfY9/eZGeN5ZQw6wA8IK19t/Dx+8Cvk+ocRfAg9baXyS+i4iIyNChACwiIiIiIiKjgqZAi4iIiIiIyKgwKppgFRcX2/Ly8sEehqSgpaWF7OzswR6GDBF6P4iT3g/ipPeDOOn9IE56P4xOW7durbXWlvR23qgIwOXl5bz++uuDPQxJQWVlJStWrBjsYcgQofeDOOn9IE56P4iT3g/ipPfD6GSMOZTKecNyCrQxJtsYs9UY867BHouIiIiIiIgMD0MiABtjHjXGnDbG7Iw7vtIYs88YU2WMucfx0heAi9IBU0REREREREaGIRGAgZ8AK50HjDFu4AHgFmAucKcxZq4x5kZgN3DqYg9SREREREREhq8hsw2SMaYceMZaOz/89RLgXmvtzeGvvxg+NQfIJhSK24A/tdYGE9zvbuBugLKysiuffPLJC/0tyABobm4mJydnsIchQ4TeD+Kk94M46f0gTno/iJPeD6PT9ddfv9Vau7C384ZyE6wJwBHH10eBq6y1nwQwxnwEqE0UfgGstQ8DDwMsXLjQaiH88KCmBeKk94M46f0gTno/iJPeD+Kk94P0ZCgHYJPgWLRcba39Sa83MGYVsGr69OkDOCwREREREREZjobKGuBEjgKTHF9PBI4P0lhERERERERkmBvKAfg1YIYxZqoxJg14P/BUX25grX3aWnt3fn7+BRmgiIiIiIiIDB9DIgAbY54ANgOzjDFHjTEftdb6gU8Ca4E9wC+ttbv6eN9VxpiHGxoaBn7QIiIiIiIiMqwMiTXA1to7kxxfA6w5j/s+DTy9cOHCj/X3HhfDtsNnqSjNIS/DO9hDERERERERGbGGRAC+UIZDEyxfIMhfPPIqbb4ACyYWsGRaEUsrilhYPoastBH92yMiIiIiInJRjeiENRwqwC5jeOTDi9hcXcvmmjoe2VDDj16sxus2XD5pDFdXhALx5ZMLSPe4B3u4IiIiIiIiw9aIDsDDgdtlWFJRxJKKIgBaOvy8fugsm6vr2Fxdy/3rDnDfCwdI97hYWD6GpRXFLKko4pIJ+XjcQ2IJt4iIiIiIyLAwogPwcJgCHS873cPymSUsn1kCQEObjy0H69lcXcem6lq+vXZf6Lw0N4unFkYD8dxxebhcibZOFhERERERERjhAXg4TIHuTX6ml5vmlnHT3DIA6po7ePVgPZuqa9lUXcf6fXui5109rSsQzyjNwRgFYhERERERkYgRHYBHoqKcdG5dMI5bF4wD4FRje7Q6vKm6jrW7TgFQnJMemlodbqo1pShLgVhEREREREa1ER2Ah+MU6L4qy8vgPZdP4D2XTwDgSH1rTCB+evtxAMbnZ7AkXB1eWlHE+ILMwRy2iIiIiIjIRTeiA/BImALdV5MKs5hUmMUdiyZhraWmtoVN4YZa6/ed5tdvHAWgvCgr3HyrmCXTiijJTR/kkYuIiIiIiFxYIzoAj3bGGCpKcqgoyeGuq6cQDFr2nWoKB+I6ntl+gie2HAFgRmkOS8OB+OpphRRkpQ3y6EVERERERAaWAvAo4nIZ5ozLY864PD567VT8gSC7jjeyuaaOTdV1/PL1ozy2+RDGwNxxeeFAXMSi8kJyM7yDPXwREREREZHzogA8inncLi6dVMClkwr4+PIKOv1Bdhw9x6bwGuLHNh3ixxsO4nYZLpmYHwrE04q5csoYMtPcgz18ERERERGRPhnRAXg0NMEaSGkeFwvLC1lYXsin3jGDdl+ANw6djQbiH71YwwPrq0lzu7h8ckG4oVYxl00qIM3jGuzhi4iIiIiI9GhEB+DR2ARrIGV43SydXszS6cXALJo7/Lz2dn20y/QPXjjAfz5/gEyvm4XlY6KBeP74PDxuBWIRERERERlaRnQAloGVk+7h+lmlXD+rFICGVh+vHAw11NpcXce3nt0H7CM33cPiqYXRQDx7bC4ul/YgFhERERGRwaUALP2Wn+Xl5nljuXneWADONHXwSk0dm2tCgfiFvacBGJPl5eppRdGmWhUlORijQCwiIiIiIheXArAMmJLcdFZdOp5Vl44H4ERDW3i6dCgQ/2Hnyeh5SyuKok21JhVmKhCLiIiIiMgFpwAsF8y4/Exuv2Iit18xEWsth+tbo4F4Y1Udv3/zOAATCjKj1WHag4M8ahERERERGalGdABWF+ihwxjDlKJsphRl8/7Fk7HWUn2mOdRhuqqO5/ac4v+2HgXg/p2VXB2uEF89rYjinPRBHr2IiIiIiIwEIzoAqwv00GWMYXppLtNLc/nQknKCQcuek408vnYLZ0w2T715nP999TAAs8fmRtcQXzWtiPxM7yCPXkREREREhqMRHYBl+HC5DPPG57NyqpcVKxbhDwR561gDm6rreKWmjidfO8xPNr2Ny8C88fnRKdOLygvJTtfbWEREREREeqfkIEOSx+3i8sljuHzyGD5x/XQ6/AHePHyOzTWhNcSPbjzIQy/V4HEZLp1UEG6oVcQVU8aQ4XUP9vBFRERERGQIUgCWYSHd4+aqaaEp0J+5Edo6A2w9dJZN1bVsqq7jgfVV/Ne6KtI8Lq6cPCa8B3ERl0wsIM3jGuzhi4iIiIjIEKAALMNSZpqba2cUc+2MYgCa2n289nY9m6pCFeLvP7+f7z0HWWluFpUXRgPxvPH5uF3acklEREREZDQadgHYGDMH+DRQDLxgrX1wkIckQ0BuhpcbZpdxw+wyAM62dPLqwVAY3lRdxzf/sDd8noerpobC8NLpRcwszcWlQCwiIiIiMioMiQBsjHkUeBdw2lo733F8JfADwA08Yq39prV2D/BxY4wL+PGgDFiGvDHZaaycP46V88cBcLqxnc01dWyurmNzTR3P7zkFQGF2GkumFUUrxFOLszFGgVhEREREZCQaEgEY+AlwP/DTyAFjjBt4ALgJOAq8Zox5ylq72xjzbuCe8DUivSrNy+C2yyZw22UTADh6tjUahjdX17H6rRMAlOWls7SimCXhplqTCrMGc9giIiIiIjKAhkQAtta+ZIwpjzu8GKiy1tYAGGOeBG4DdltrnwKeMsasBv73Yo5VRoaJY7J478Is3rtwEtZa3q4LBeJN1bW8tP8Mv912DIBJhZksnRYOxBVFlOVlDPLIRURERESkv4y1drDHAEA4AD8TmQJtjPlzYKW19q/DX98FXAX8CrgdSAd2WGsfSHK/u4G7AcrKyq588sknL/S3IAOgubmZnJycQR2DtZZjzZY99QH21AXYWx+g1R96bVy2YU6RmzmFbmYXuslN03TpC2kovB9k6ND7QZz0fhAnvR/ESe+H0en666/faq1d2Nt5Q6ICnESiZGGttZVAZW8XW2sfNsacAFbl5uZeuWLFioEdnVwQlZWVDLXfq0DQsudEY3TLpVcP1rPucAcAc8blsWRaaP3w4mmF5GV4B3m0I8tQfD/I4NH7QZz0fhAnvR/ESe8H6clQDsBHgUmOrycCx/tyA2vt08DTCxcu/NhADkxGF7fLMH9CPvMn5HP3sgp8gSA7jjawubqWzTV1/PzVQzy68SAuAwsm5LOkopilFUUsLB9DVtpQ/iMmIiIiIjK6DOX/On8NmGGMmQocA94PfKAvNzDGrAJWTZ8+/QIMT0Yrr9vFlVPGcOWUMXzyhhm0+wJsO3wuGogf2VDDj16sxus2XDapgCUVxSyZVsTlkwvI8LoHe/giIiIiIqPWkAjAxpgngBVAsTHmKPBla+1/G2M+CawltA3So9baXX25ryrAcjFkeN3RJlkALR1+Xj90NtRlurqW+9cd4L4XDpDucbGwfAxLK4q5eloRl0zMx+t2DfLoRURERERGjyERgK21dyY5vgZY09/7qgIsgyE73cPymSUsn1kCQEObj9cO1rMp3GX622v3hc5Lc7N4amF4D+Ji5ozLw+1SUy0RERERkQtlSATgC0UVYBkK8jO93Di3jBvnlgFQ19zBqwfro0211u87Ez3v6mmFoaZa04uZUZqDMQrEIiIiIiIDZUQHYFWAZSgqyknn1gXjuHXBOABONbZH9yDeVF3H2l2nACjOSePqaaHq8NKKIqYUZSkQi0hCZ1s6yUxzq8+AiIhIL0Z0AFYFWIaDsrwM3nP5BN5z+QQAjtS3RgPx5po6ntlxAoBx+RnR6dJLKoqYUJA5mMMWkSHk8q8+x6UT8/n9J68d7KGIiIgMaSM6AIsMR5MKs5hUmMUdiyZhraWmtoVN1XW8Ul1H5b4z/OaNYwBMKcpiaUVRtMt0SW76II9cRC62196u50RDOwDbjzYM8mhERESGvhEdgDUFWoY7YwwVJTlUlORw19VTCAYt+041sam6js3VdTyz/QRPbDkCwIzSHJZWFHHN9GKurigiL8M7yKMXkZ50+AO4jcFzHt3g3/ujzQM4IhERkZFvRAdgTYGWkcblMswZl8eccXl89Nqp+ANBdh1vZHNNHRuravnl60d5bPMhXAYWTCzg2ulFXFNRzBVTxmhtoMgQM+tLz3LdjGIe/+hVgz0UERGRUWNEB2CRkc7jdnHppAIunVTAx5dX0OEPsO3wOTZV1bKxuo4fvVjDA+urSfe4WFReyNLpRVw7vZh54/O15ZLIELDhQO2gPPdkQzur7n+ZJ+++moqSnEEZg4iIyGAY0QFYU6BltEn3uLl6WhFXTyvis0BTu48tB+vZWBWqEH/r2X18i33kZXhYUhEKw0unFzOtOFsdpkVGkTVvneBMUwePbz7Eve+eN9jDERERuWhGdADWFGgZ7XIzvLxjThnvmBPag/h0U2jLpY1VtWys6tpyaWxeBtdML+aa6aE1xGV5GYM5bBG5wPR5l4iIjFYjOgCLSKzS3Axuu2wCt102AWsth+pa2Vhdy6aqOtbtPcWv3zgKwPTSHK4JN9S6aloR+ZlqqCUyUu050UiHP8hlkwoGeygiIiIXnAKwyChljKG8OJvy4mw+eFWow/TuE41sqq7l5aq6bg21ls0o5roZJVw+uQDveXStFRGw1g7y87t+fcsPNgDw9jf/ZJBGIyIicvGM6ACsNcAiqXO5DPMn5DN/Qj53Lws11Hrz8Dk2VtXyclUtD6yv4r/WVZGTHlo/vGxmCctmFDOlKHuwhy4y7PiDgxyAw/+vqdAiIjLajOgArDXAIv2X7nFz1bQirppWxGffOYuGNh+bq2t5cX8tL+0/w3O7Q+uHpxRlcV24Ory0oohc7T8s0it/YHADsIiIyGg1ogOwiAyc/EwvK+ePY+X8cVhrebuulZf2n2HDgTP85o1j/OyVw7hdhismF7BsRgnXzSxhwQRttySSiC8YTOm8RzbUUJyTznsun3CBRyQiIjI6KACLSJ8ZY5hanM3U4mw+vLScTn+QNw6fDQfiWr773H6++9x+CrK8XDO9mOUzSrhuZjHj8jMHe+giQ0KqFeCvrd4DMOABONka5KNnW2nrDDCjLLfH65/afpxPPbGNx/5qMctnlgzo2ERERC4kBWAROW9pHld0/+HPr4S65g5erqplw4HQdOnVO04Aoe7S188q4YbZZSwsH6NmWjJq+QOpVYAvNEPsDI1r/2M90HtDrAcrqwH48KNb1DxLRESGFQVgERlwRTnpMdst7T/VzEv7z/DSgTM8tukQP95wkNwMD8tmlvCO2aWsmFVKYXbaYA9b5KLxDXITrPPlXNlw4FRTrxXjgVC57zRzx+VRqn3KRUTkPIzoAKwu0CKDzxjDrLG5zBqby8eWTaOlw8/LVbWs23OadftOs3rHCYyByycVcMPsUm6YXcaccbkYtaeVEWyoVID7y/nH8/0Pv8LWf73pgj/zI//zGhMKMtl4zw0X/FkiIjJyjegArC7QIkNPdrqHm+eN5eZ5YwkGLbuON/LC3lOs33ua7/xxP9/5437G5Wdw/exSSn1+ruoMkJnmHuxhi/TZ09uPk53u5obZZd1e8w1yF+jIEuD+fs7kclzY6b94Yf7YubaL9iwRERmZRnQAFpGhzeUyLJiYz4KJ+Xzmxpmcbmqncu8Z1u09ze+3HaOlM8CDO/7I0ooibphdyvWzS5k4Jmuwhy2Skr9/YhuQeD2tP4Uu0BejStzfeRbOGRrBcJo+XNeKy4X+jIqIyJCmACwiQ0ZpbgZ3LJrEHYsm0eEP8OPfVVKXPpZ1e0+z/ve74Pe7mD02l5vnjWXl/LHMHqup0jI8pdIFuuMCVlYtoef354/PA+ur2H7kXPTryJ/BZd8ONdDKTffw/26bx+1XTDz/gYYl61otIiLSV2rBKiJDUrrHzfxiN19eNY/Kf1zBC59bzr/cOoe8DC/3rTvALT/YwIrvVPKNNXvYeugswWHeVEhGF18K1d12X2BAntXpD1J9pjnm2PnkyW+v3RfzdXyGburwc+9TuxJe2+4L8Lc/28rRs619eqZzvO97aHOfrhUREXFSBVhEhjxjDBUlOVSU5PCxZdM409TB83tO8ezOkzy68SAPvVRDaW56tDK8eGqhtliSIc3v+MDGWptwJkP7AFWAv/zUTp7YcoStX7qRopz00DPDr7kGYgZFglskC9jP7znFH3aexBj44QevTPkRQccNXz1Y39cRioiIRCkAi8iwU5Kbzp2LJ3Pn4sk0tvtYv/c0z+48ya+2HuXxVw5RkOXlxjllrJw3lmtnFJPhVRMtGVqcFWB/0OJ1d0+RPkcADgQtblf/wuqrNaHAeK7NFw3A0UA5APk3UYgOJEnAnvD3kMoUcCfN7xARkYEyLAOwMeY9wJ8ApcAD1to/DvKQRGSQ5GV4o3sOt3UGeOnAGdbuPMnaXaFAnJ3mZsXsUlbOG8v1s0vJSR+Wf+3JCBNwVID9Actjm2pYWF7IZZMKuo47GmV1+oP97obuThA6AwPYhTpRETlZro5Uuv19XLKQrKJcfs9qPnvTTD71jhl9up+IiIxeQ+a/BI0xjwLvAk5ba+c7jq8EfgC4gUestd+01v4O+J0xZgzwHUABWETITHNHt1jq9Ad5paaOZ3ed5I+7TrF6xwnSPC6WzSjmlvnjuHFuGfmZ3sEesoxSzjDqCwb52uo9QGzH6E6/dfy6/wE4whlUIwHUDEAJuD93WLf3NG192OLM9lAD/t5z+xWARUQkZUMmAAM/Ae4Hfho5YIxxAw8ANwFHgdeMMU9Za3eHT/lS+HURkRhpHhfLZpawbGYJX71tPm8cPssf3jrJsztP8Pye03jdhmumF3Pr/HHcNLeMMdlpgz1kGUWcU6CTVWNjKsDnsSVSortHKtDBAeiunGj9svOu1lr2nmxizri8mHOa2n2pB+ABKFg/tultvvzULvZ+dWXCZRGPbXqbipIcrp1RfP4PExGRIWvIBGBr7UvGmPK4w4uBKmttDYAx5kngNmPMHuCbwB+stW9c1IGKyLDjdhkWlReyqLyQf33XHLYfbeAPb51g9Vsn+Pyvd+D+rWFpRRG3zB/HO+eVURxeJylyoTinAPuS7AnsDMnnE4AjnDE1skY3ENeMy/nrVLcY621p8m/eOMbn/m87j3xoYczxyKPrmjuw0OOfu4EIwPevrwKgoc2XMAB/2dG5+uZ5ZTx018Ju54iIyPA3ZAJwEhOAI46vjwJXAX8P3AjkG2OmW2t/FH+hMeZu4G6AsrIyKisrL/xo5bw1Nzfr90qiLuT7YUkWXL3YcKgxg9dPBXjtWB0bDtTyL799i9mFLhaN9XBFmZuCdHWTHiqG698Pica847g/+usXN2xKeO7e+q5tkF7euJmy7N7fi4me1dIS2nJoy5bXOJYbusfBtzsBOHyk65/Y9Y5r1zxfSba3e7LtSFCt7uz0dXtuIBCIHnt+X+hZa1/ZzljH97Bx0yaKMl185NkWAH6yMjvp99Xhj31uZWUlzc3NRGJ9Ku8LX2doHJs2bWJMRs8/y7W7Tg3L99poNlz/fpALQ+8H6clQD8CJPle21tr7gPt6utBa+7Ax5gSwKjc398oVK1ZciPHJAKusrES/VxJxsd4PH6FrmmakMvzT3S08vgcWlRdy6/yxrJw/jrH5GRd8LJLccPr7IRi08OwaAK5btrxbB+e6rUdhx3YALrliEbz0EkDM9+c+cAa2bAHg8oWLmFmW2/1Bz66O+TLRzydrayW0tLBw0SJmjQ3d46Wm3fD2QcaPnwCHDkXHydo/APCJF1pj1iOrNq6ZAAAgAElEQVRHlN+zutux9PS00HMdY3G73dGxvNq+Fw5WUz51GhUlObBtKwBLly5hXH5m9Lqefm+bO/zw/NqY7zP0H7ctvV4bkbbxeejoYOnSpZTlJfiz3MPP0lpLS2dATfSGsOH094NceHo/SE+GemnjKDDJ8fVE4HiqF1trn7bW3p2fnz/gAxORkcUYw5xxeXz2nbN44XMr+OM/LOPT75hBQ6uPe5/ezdXfeIE/e3ATj2yo4di5tsEergxxzmnNvgTTl53re9t8gW6vQ2yjrM7z2BM4chfnet/Ir53bFQX62Jk5IvEn1d2P7Th6LqX7Halv5ddbj8bdr29jCwRt6EOIFMfWm1+8doT5X15L9Znmvl8sIiJDylD/KPM1YIYxZipwDHg/8IFULzbGrAJWTZ8+/QINT0RGqpllucwsy+UzN86k6nQzz+48wZq3TvK11Xv42uo9XDqpgFvnj+WW+eOYXJQ12MOVIcYZXhNt+eNzvN7WmTgAdw7UGuDwo5wBOBLAnbftb0OsRPsAJ+ravHbXKdp8XQ9M9rj3PLCRupZO/uzKiY779c2Ce9dSlJPGhs/fED2W4pLmhJ7fcxqAqtPNoSq2iIgMW0OmAmyMeQLYDMwyxhw1xnzUWusHPgmsBfYAv7TW7urpPk6qAIvIQJhemsMnb5jBmk9fR+U/ruALK2djreUbf9jLsm+v513/tYEH1ldxsLZlsIcqQ0RMAE5UAXYca0+hAuw7jwpwhLPXVrQLtCOc/+aNY/26b6Jg2e4LdqviAuw72dg1niQJuK4ltFbXWsvu4408/sohbIrf/uodJ/jMk9to7QxwpD52pkZP+X77ke7V6cp9p1N7qIiIDCtDpgJsrb0zyfE1wJr+3FMVYBEZaOXF2fztigr+dkUFR+pbeXbnSdbsPMG31+7j22v3MXtsLrcuGMetC8YyvTTBmk0ZEfyBIA9WVvOhpeUJ95OOnQLdSwU4SQDurQt0oim+waDFFbfeONEU6Ei4dk6B3n+qKeE4epOoAgzwhV/viKniQuw062v/Y33CdcYRQQu33rcBgFWXjOv2eqJp0Z/439iNIapONzO9tOeK7as1dbzv4Ve6Hf/22n2smFUac+z8d00WEZHBNmQqwBeCKsAiciFNKsziY8um8du/u4ZN99zAv75rLjnpHr733H5u/N5L3PS9F/nec/vZd7Kpz2sY5cJ6fPPbfGPNnn5f/0pNPd99bj9f/v3OhK/HToHuHl6dATnZFGhnAE60jjhRBTXQw/vMeX7kPGeIHog9gZ0STf3uyzrjYMy2TN1fdx46XNea8B6f+Pkb0Qq7M6e3dPipa+6gqd3HV57ZnfDa3p4pIiLD05CpAF8IqgCLyMUyviCTj147lY9eO5WTDe2s3XWSNW+d4L/WHeC+Fw4wrSSbW+ePY+X8scwbn5fyHqtyYfzr70Orab5465x+XR9Z43qqsSPh687A6k9UAXZs69OatALccxOsRFkyELQ4t7h9+UBtdGq+8/xIEA30EjJT0dtb+XB94nDam5gA3Mu559o6mUz3tfj7TjXx909s48dxexDf+L0XOdHQznuvnMiu443drnM+c+exBp7fc6ovQxcRkSFsRAdga+3TwNMLFy782GCPRURGj7H5GXx4aTkfXlrO6aZ2/rjrFH/YeYIfVlZx//oqJhRkcuOcUm6aO5arphXidY/oyThDWrsvQIYzMaYoUt1MVJl1vh7/665jjjXASSrAznM+/rM32PzFG0LbBoUlqthGjvkCQV7Yc5qP/2xr9DVru4/JObT+Vjd7CsAHTjWxeseJfj3D+e2lUp1O1p19U1Vt7H2xnGhoB+BMc+IPMCA0zf19D23m1YP1PZ7jD9p+vYdERGRwjOgALCIy2EpzM/iLq6fwF1dPoa65gxf2nOaPu0/x5GtHeGzzIXIzPFw/q5Sb5paxYlYJuRnd15NebInWkY5UTe3+foWXSGhNFv78MRXg7iHZuaY32Rrg+KrvfS9U8Y3bF0S/ThQKI8H2R5XVfPe5/TGvOacfBxM0wervNH3Tw8rY/mwZZkwo/AaCPVenncfeOHSWe59OPJW5pTPAsztPJqzWV+47k3Qch+pbOXC6522PPvDIq2w5WN/jWmYRERlaRnQA1hRoERlKinLSuWPRJO5YNInWTj8bDtTy3O5TrNt7mqe2H8frNlw1tYgVs0pYPrOE6aU5F22q9J4TjTy26W1e3H+GU43tVJTkcMv8sfz9O2aMuAq1M+glW3/bm9ZIAE4S/pzTlxM2wXJMgU66D3Bc5Ti+6VWiKdCRc46HK5zJzo/cu7eQeb48rtj3TirPMIQqxc5TE22r5Dyyv5eg6qyEf/J/t/U+iPgHJLGlh+pwX22qruVMUwe3XTYBgDVvneDSSQVMKMjs5UoREemLER2ANQVaRIaqrDQPN88by83zxhIIWrYeOstzu09Sue9MdK/h8fkZLA+H4aXTi8kb4OpwIGh5fs8p/mfjQV6pqSfD6+KmuWMZX5DB7uON3Leuildq6rn/g5dTmpsxoM8eTKlUX3uTbN1uhHP6cqImWP5UmmDFVYDjq/KJGkpFjiX6zMIZ/BOtAU42zfi6b60jN93Lmk9fl/D1ROG0a8zJxxCv3RfgYz99PRrUbQ/rk32BIA+82ZH09Z5sPXQ29ZMT+PMHN+EPWn73iWvO6z7xPvDjVwGiAfjvfv4GJbnpvPYvNw7oc0RERrsRHYBFRIYDt8uweGohi6cW8i9/Epo2+tL+M7y47wzPbD/BE1uO4DIwe2weC8vHcOWUMSwqL2R8PypD1lq2H23gme3HWf3WCU40tDOhIJN7bpnN+xdNoiArLXru7988xhd+vYPbf7iJNZ++bsAD+GBp7+wKlq2d/n7doy1yXZICfa8V4BT2AfbFBVxP/PZGfe4C3fXrSAV438murY+SXRraT7fvU5kBas6kvjf2qwfr2XCga71uTAU4bmz7Tjax7bTz5zbw5etkwf718wzQfXGmKfkaZRER6Z8RHYA1BVpEhqMJBZncuXgydy6ejC8QZNvhc2ysqmXrobP8autRfrr5EABj8zKYXprD1OLs0P9KsplSmEVuhpfMNDduYzjd1M7JhnZONraz+0Qja946wZH6Nrxuw/KZJfzbu+Zy09wyPAlKhrddNoEJBZnc8dBm/n31Hr75Z5dc7B/FBdHq6wq9/a0At4VDdLIJ6s51v4kqtZ3OLtApbIMEoQ9KnJJ1gQ6Nq/vInBXeyFRpZ4fmPuxQFKOn6uuXfhe7TVRPj4hfdu68b09V5gult3XHTt/74z4++85ZCV9r7fTz9dV7+OKtc8hJH9H/2SUiMiyM6L+JNQVaRIY7r9sVrQ5DKFjtPdnEa2/Xs/3IOQ7WtvC7bcdo6ui9kulxGa6ZXsynbpjBO+eNJT+z94ruwvJCPrZsGg+9WMMtC8axfGbJeX9Pg8055bjfa4DDITqlLtAJzvEHg3hcBn/QJl8DHAiS4XXR7gtdH18B7mkKdCLBmC7Q3cfU3yZYrgFapx4f2p3jaenl/Z3g2zlvfflp3LeuKmkA/p+Nb/PzVw9TmJ3G58Ln+ANBghbSPCNrfb2IyHAwogOwiMhI43G7mD8hn/kT8qPHrLXUtXRysLaFw3WttHb6afMF8AUspbnpjM3PYFx+BuPyM8nuRwXqH26cyQt7TnPPr3ew9h+WDYmp0O2+AOkeV7+ahDkrrv2vAAfC1ydOXs5gHD+VGUIdnjPT3DS1+2OmQAeCNlrp9QUsae6uAOx29z4FuqcgGEywBjjZ632R4e1DiOvhEfG/lc7h/HB9dcxr/R1rXyT6+TrHeK61s0/3cY759gc3seNoQ9Lu0f39MEJERHqnACwiMswZYyjOSac4J51F5YUDfv8Mr5vvvPdSbv/hRr7+zB7+488Hdyr0/lNN3Hb/Rj5yTTlfWDm7z9c7A2ey6ce9iQTgZOt3/YGeK8CtnQHyMrw0tftjxuALBHG7QtsydQaCMRXC+EyUaL1vT2uAD9Z2TXdOHICTXhoajz9xuu7L1l09PSL+owznuc1xFeDHw8sALrZ7n9oV/fVlX3ku5rWNVbV8ffUejje08ea/vbPH++w42hDzdVVcF2vlXxGRC2dEz70xxqwyxjzc0NDQ+8kiIpLUZZMK+JvlFfzi9SNU7js9qGN59OWDtPkCPFhZ3a8pzM6qb7IA25tIF+hkz3dOMU7UBKu1009eeAq68x7OqdOhKnfXHsXxAbSnNcCJfPWZ3TS2+5Ke11vmmvmlPyQ83tMz+6RbBbjrvp1xHyKcaY5tDnWx1gifSLC9VMQHH3mV3ScaOdfq6/EeztkB5fes5nfbjvX7fSgiIn03ogOwtfZpa+3d+fn5vZ8sIiI9+syNM5hRmsO//HZnv7snD4RXaupICzft2na47x15nRXX860AJ5tC7Qy9idbbtnYGyM8MTcJq9zsqwP7Y7tCZaV0BOH69cfy+wOBogpVkZvjpxg7u+u9X2ePo/hy9X1zZMdVpuH2Zrht/7v5T3ccRPTdmbLGvbT9yLuVnDjUffOTVmK8frKzuVvFVAVhE5MIZ0QFYREQGTrrHzdf/dAHHzrVx/7qqQRlDQ6uPt+ta+ctry3GZ0NY5feWstvW7CVb4A4CkDayCPXeBjkyBBmh3ToEOOgNwMGZ9rS8QZMvBeh7ZUAMkXgfbWzX2lZo6NhyoTTidOT6cpppre5p23e0ZcV8fP9e1vVL3JljJx3Y2rsqaqOv1ULUlwXt21f0vx3zd04cKHf4ATe09V5lFRCQ5BWAREUnZ4qmF3H7FBH68oabbusWL4a1joSUt104vprwom70nG/t8j5gA3N8mWOHGVJ3+YMLQ2ds+wK2d/mgX7lbHGJxrh9t9ATI8bn77d0ujz7rjoc18bfUeIHHYTdaVOqKnjs3xhepUG031pQNzt0qn4+tuTbAccbm3YP/bN4+lPogUDdTM7t5+jH2dvn37Dzex4N4/nseIRERGNwVgERHpky/eMocMr5svP7Xzoner3X40NPX1kgkFzCjL4cCpvofwdkfn5v5O5W5zXNfh7x6ie22C1REgJ8ODMbFVaGeAbQtPgb588hgqSrJjgrS1Nma9cPS+4Xsli7mBHtJqfOBNtbLbl47M8WHPGXrjx1zX3NVlubcAnKxB12B6Ysth9pzo+oDmVGMH5fesTunanr7bXcdD93xp/5mU//ztOt7AEceezyIio5kCsIiI9ElJbjr/dPMsNlbVsfqtExf12W8dbWBKURb5WV5mluXydl1LnxsIRc4fk+WlrbN/wam1l72EY5pgBeOnFltaOv1kpbnxuAwd/sQNs9p9wWgTrDSPO6YRVIc/mLDa21ugT1SNjojPmKnm2qC1KQex+Gc4t7E61xY7rfeWH2yIecZwcqS+lS/+5q2Y72HrodTXqzu/3UdfPphwpsOHHt3CE1uOpHS/P7nvZa771vqUny8iMpKN6ACsLtAiIhfGB6+awrzxeXz1md3dtqi5kHYcPcclEwsAmFmWS9BCzZmWPt0jMu15THYabb7Uxt7pD/LpJ7exMzwFu60zEG3ElWgata+HCnCHP0jQQlaaB48r9p9hZ3DucDTBSnObmMDrD9qEYballzXN8d2UY8VVgFOcAxwI2pTDcnxQdlZ9/+bxrT0+YzhJ1Cn9YG3i9+n+uFkMz+8+FVMp/8ozu1n5nxuoPtPc7UOPf/7tW8z/8toBGLGIyOgxogOwukCLiFwYbpfhq++Zz6nGDr717N6L8syGDsvxhnYunRj6O31mWS7QcyfhRNp9QdLcLnLSPSk3wdp1vIHfv3mcz/7yTSAUeguz08L3SzQF2hFW44JqpHqcnebG446d+Ovzx68BDv0z7XW7Yqb5+vzBhFOrG9p6bo7U0/cbHzKD1nIghZ9t0Kbetbh7Bbh/1w11kWnKAN99bn+frv3rn77O77cd73Z8y8F6ZvxL962oLuYHUCIiI8GIDsAiInLhXDF5DH91zVR+uvkQL+0/c8Gfd7AhFN4WTAgF4KnF2Xhcph8BOEC610WG153yNkiHw+sngzZUxWzzBRgTDsCJplHHV2udItOUs9I8eN2x/ww7u0C3+QJkeEMVYK/bFXNPXzCYsJr7Yi97NPc0XTx+nDuPNXLT91/q8X4QCsqpTlGOD9mpdm8ebhXg852xfbKx+37De0/0veGbiIh0pwAsIiL99vmVs5hRmsM//Wo7Z1s6e7/gPBxsCOIyMD8cgNM8LsqLs7tNIe1Nuy9AptdNVpo75fXDje2h0OoPBGn3BbEWCrNDXZz7OgU6Erqz0kNrgJ38cWuAo1OgPS46Y+5po+eOz8/gi7fMBrq2BzJJSqs9Bf746bXHHFsU9SQQTD0Ax0u9Ajy8AvD5jjfR5QPxGUBrp5+aMxe/e7uIyFCiACwiIv2W4XXz/fddxtkWH5/5xZsXtFJ3sDHI9NIcstM90WOzynI5cLrvFeAMr5vMPlSAI/uuWroquIXZ6UCyAByMhtv4JlgtHZEKsLt7BTgcQq21tPtjp0D7/LHTqiPnPvgXV/I3yyu4fHIBmeGKcTI9bfsUP1U70RTrRKztf8WzPsUPTYZdBfi8r+9+h//bmrzhVfk9q3nvjzZxuim2cnyutTNmWvxf/s9r3PDdF89zdCIiw5sCsIiInJf5E/K5993zeHH/GX7wfN/WO6YqGLRUnQ1wxeQxMcdnlOVwuL415bW8EKqsZnhdZKa5U94HuLHNH742EA3NRT2sAe70B0nzuPC6TbcgGRlrVpqn+xrg8Lkd/lCVOd0bqQCbmCnPnYFgtMocCdGZ3q6KdrKuzD39nOKDem97CkecTwX475/YltJ5Lf3crmqwnG/BOtH1zu27Ennt7bMs/voLXHLvWqy1/P7NY1z2lee49P917Rn86sH6pNcfqW+9KEsZREQGmwKwiIictzsXT+KOhRO5b10Vv3nj6IDff//pJlr9sKi8MOb4zLJcrIXqPkzrbAtPgc70ulMOzo3hCnBDmy8axkpyQxXghAE4ECTd48LjcnVbW9sSDcBuchzVbOiqwjobZUH3NcD+YNc2SN5wiM70dgX6ZHv49lwBjg1YPW2Z5BRaA5zSqf12pD616dhDxa/P88/A+fw4G9v9PL/nNJ9+8s2k55Tfs5pvPbs35vf8+u9U8qFHt7DtcOrbNYmIDEfDMgAbY6YZY/7bGPOrwR6LiIiE1px+9T3zWVpRxOd/tYP1vTRj6qst4cpVogAMsPdk6tOgQ02wQmuAU68A+8LXBqPTdotzIk2wut+jwxeqAHviti+C2CZYuRmhABxZChw5NzLlOjcjtM44LcEU6MiWSZEKcIajApyseNtjE6z4KdDB1CrAfWmCJSk6z5/n2dbep5b/sLKaByuro03kIh/U/OkPN7H7eCMvqhosIiPUkAnAxphHjTGnjTE7446vNMbsM8ZUGWPuAbDW1lhrPzo4IxURkUTSPW4euutKZo3N5W9/tpVXauoG7N7r9p6mNMswqTAz5vjU4mwyve7o/rypcK4BbvMFkk4Xdoo0wQI4fi60zrI4J/ka4M5AOAC7TLf1q62OCnAk4EYqwZFpyE3h50UCsjeuCZbPMQU6Mo06FIBDoTWQJLw6A3B8Ay5f3DUpzoAOdcZO8VxJTbIKfqoefflgSud997n9vDNBp+9b79vAhx/dcl5jEBEZqoZMAAZ+Aqx0HjDGuIEHgFuAucCdxpi5F39oIiKSitwMLz/5y8VMKMjkw49uYd3eU+d9z9ZOP5uq67isxN2tu7HbZZg7Po9dx/sSgINkeFxkpnmwtve1ldBVkQU4djY0HbeopwDsD+017HG7uk0lbnaE27xwAI4E4ciU1MYEFeBOf9dzfI4mWGnRCrArhQpw1ws5Gd2nX2d4XXxhZaijdCpV3dsuG39ea4AlsQfWV5/X9X2ZESEiMtp4ej/l4rDWvmSMKY87vBiostbWABhjngRuA3b3dj9jzN3A3QBlZWVUVlYO5HDlAmlubtbvlUTp/TB8fWaB5buvw8cee52/nJ/GtRO8/b7XKyf8dPqDzM4NJHw/jLEdbDjqZ9369bhS2FfnTEMrxe42jtrQWsfnK18iN63n607WtZLpgTY/bN1bA8CBt94AYO+BGiqJXfN5/FQ7vnZLwGc5euw4lZVd1fAdBzoxwGubX6axLjRV1RXoAGDn7j0UNlax9VQoJO/f9SYdR9ycPN5Bu6+rCv36G9s43hwKs1te2UxOmqH2VAfN7X4qKys5fqL7PrIA9Y2OYBSIbSzV3NoGQUv9sdD3V1Vd0+PPBKD17Gk6fX42bNzY67kydCX7e/aXa9ZRmjWUaiXJ6d8LcdL7QXoyZAJwEhMAZ9//o8BVxpgi4OvA5caYL1prvxF/obX2YeBhgIULF9oVK1ZchOHK+aqsrES/VxKh98PwtmKZj795fCuPvFVHIG88/3zrnG7b/qTihw9tZnKhm8smkPD9UJt7lOf/bzuT5y1kemlur/fzrV/LjPKJzB2Xx8/37ODyRVcxcUxWj9f4Nz5PeUk6e040YjMLgFpuWnEtmZvXUTZ+IitWxE5OerRmCzbdBy2dFJeOYcWKy6KvrW/YSd7x49xw/fW86dvHc4eqKB9byJGmWqZNn8mKq6dQu/UobNvO9dcsYXJRFlva9/L84Roi7ZHmLbgE78km2LOH5cuuJTfDy+sdoXstX76cXx3fBidOdPs+3N4MIFTBzs3O4FxHV3Mpl8dLGkHmzZ0Lb73JpMlToKqqx5/L5EmTcJ04zJIlS2Hd8z2eK0PXR55tSXj8jbZivnnrJRd5NP2jfy/ESe8H6clQ/1gv0Ufy1lpbZ639uLW2IlH4jV5szCpjzMMNDalPjRMRkYGRm+Hlsb9azF9dM5X/2fg273toM1WnU+/WDLDzWANbDtbzwasmJ63uLpiQD8BbKawDDgYtzZ1+8jK9ZIY7LPfUGCqisc3H5PD642PnQqExO92TdCulDl8gaROsxnY/eZmhz58j06gjU7v9cU2wItOUM73umG7SPn8w+tzI3r+ZaW6CFt44fDbpz9n5vcZ/GNHpD+J2GSI/5o4UFgG7XSa0BlhToEekJ19LvvewiMhwNdQD8FFgkuPricDxVC+21j5trb07Pz9/wAcmIiK987pd/Nuqudx35+VUn2nh1vs28GBldbctdxKx1vKVp3dTmJ3G+xdNTnpeRUk2GV4Xbx1t7PWeTR1+rIW8DE80OLb2shVShz9Ahz/IpHCV+Eh9K+keF163iwyPK+Ea4sg2SF6Xq1t35cY2X3Tt7/TSHCA0HujqxBvfBCs/K3YKuT8YpLUzEF1nDJDuCf3/nz24OekaUGcATosLwP6gxe0yuMPNsTr9vf8eGRNq2HSht0ESEREZKEM9AL8GzDDGTDXGpAHvB55K9WJVgEVEhoZ3Xzqe5z67jBtmlfIfz+7lnf/5Er/eejRpELbW8rXVe9jydj2fv3lWtwDo5HG7mDMuj50pNMKKVFbzMrxkhSvAve0F3BDeAmnimFAF2Bew0T2AM5JUgDv9oQDsdplu+wA3tncF4CXTivjKbfO4993zQtdFmmC1+cjwuqJV2vzM2O/fF7C0dfqjVWyANE/v/6S3O0Jt/Pm+QBCXMdFKeyoB2G0MVtsgiYjIMDJkArAx5glgMzDLGHPUGPNRa60f+CSwFtgD/NJauyvVe6oCLCIydJTmZvCju67kobuuJM3t4nP/t50bvvsi31m7j03VtbT7AnT6g+w81sCnnnyT/375IB9ZWs77Fk3q9d4LJuSz+3gjwV5KkY1tXZXVjHB4bO1lCvS51lAALspJJze8XVFkC6RMr5v2BAG63Rcg3ePG63F1nwLd1jUF2uUyfGhJOWOyQnsKR6rF9S2dFGWnR6+pKMmJuYc/GJoCneUIwL0FeSBmS6bp4Xt+fHkFEArVbldXAN5U3fs2Vi5j1AVaRESGlSHTBMtae2eS42uANf25pzFmFbBq+vTp5zM0EREZQDfPG8s755bxwp7TPLyhhgdfrOb+9VW4TChQ+YOWdI+LT79jBp9+x4xuWx8lMn9CPj/dfIiDdS3dwqJTk2N7oUh4TBRgnc62hDo1j8lKIz/LS1OHP1oBjuwlHK+lI0B2upvsNDetnbHdlp0V4IjI2ttIRby2pZPi3K4APH9C7Ae5Pr+ltTMQUwFONI6InHQPzR2x4/jg1VO4ZcE45ozL5UcvhrbdCVWAQ68frE3cGMnJFV4DnGTbYRERkSFnyATgC8Fa+zTw9MKFCz822GMREZEuxhhunFvGjXPLaGr38WpNPTuOniNgLbPG5nHV1ELK8jJSvt8lE0MB8c3D53oMwOfC05nzM70prwE+G64AF2R5GZefwdGzbZRGAnCau1uwBGjp8JOT7iUn3cfh+taY1xrafORldp/SneZ20RGedlzb1MG4/Njv/8Y5pTy/5zQAvmCQts5A9HsAeN+iSfxu2zEumVjAU9tj22XkZXQPwPmZXq6cMobTTV1bJjkrwKmIhOVALxXgf7p5Fm8eOcdzu89/X2gREZHzMaIDsCrAIiJDX26GNxqG+2tmaS4FWV5eqanjz66cmPS8U42hsFeW31Vd7alyCtDQFqoAF2R5KQ2H8kjzqgyvmzNNHTHnRzpN52R4yMnwRBtaATR3+GntDEQryE55mV4awxXqupYO5k/Ii33dUTX2B0IVYOcU6HH5mVT+0/UAXDG5gHuf3g3AtOJsfvzhhdz8/Zdi1iNH1hWne7ru4XE0wUqFOxyWv756T4/nLZ9ZwqG63ivKIiIiF9qQWQN8IWgNsIjI6OByGa6aWsim6roet+Q52dCOx2Uozk4nKy30GXD8FOV4dY4p0J+9aSY3zyvj9stDIbsg0xtdIxzR6gtgLeSku8nL8MZUXk82hAL42ATV7fzwvay11DV3RrdIiohsiQShhlWtvgCZaYk/x/7INVOjv/63VXOpKMmJCbZ3Lp5McU5o3XGGtyrj71wAACAASURBVOs/BVyObZBSEWmk9fyeniu7LtO3YC0iInKhjOgArC7QIiKjx/WzSjl2ro1dx5Nvh3SysZ3S3HRcLkN2mps0t4v6Fl/S8wGOn2sjP9NLdrqHipIcHrprYbQrdVFOOnUtHTGhuyUceENToENTjyOvnw5XoEvzuleA8zO9NLT5qG3uxB+00WnWEdnpzgBsaW73kZPujr9NN5HtjiIdpacUZfGN2xdE11anuV3R0Os2fZsCnZ5C52no+9RqERGRC2VEB2BVgEVERo93zhuL22VY/daJpOecamynLLy21hhDcU5atynM8Y7UtzGpMDPha0XZafgCliZHlTcy5Tk73U1OhodA0Eb3Cj7Z2HMFuKHNx+H60FThKUVZMa9/eEk5180oBkLNss61+igId4/uiTccUiMV2PhKrDGGjPA0aFcfp0CnexMH8FlluTFfu0z354qIiAyGER2ARURk9CjMTmPZjGJ+tfVot62HIg7XtzKhoCvMluSmc6a55wB89GwrEwuyEr5WFJ5GXNfcGT0WmfKcm+EhJ1y1beoIVZmPn2sDYGx+8gB8qC7UNGtyYXbM62PzM/jpXy0GQlOgz7X5GNPD/sgR3mgFOBRAnWt+IyLToL3uvk2BTlYBXvsPy2K+NnGV5c/dNDP1hzjcMLu0X9eJiIhEKACLiMiIcdeSKZxp6mBNgipwa6efI/VtMdXJktz0pBXgDn+A003tHD3bxsQxSSrA4XW6dY4Q3dzeNQW6IBxQz4anWVedbmZCQWZ0/bHTmKw06po7OVTXijEkrDobY/C4DPWtnQSCNrp/cE8i06QjFVhn46yIjHAlN8Pjjk6ZTkWiMJ3IpMLMmADcU6Oynswam9v7SSIiIj0Y0QFYa4BFREaX5TNLmVWWy/ef29+tChxZG+wMUaV5GRw/15awcdbf/uwNFn/9BTr8QeaMy+v2OnRNZT7R0LWVUF1LKAwXZqcxLj8UYiOV3z0nmqIdpONNGJNJmy/AKzV1jM/PTBouvW4XtU2hinN+gu2U4uWGu0d7XKF/8nsKwOleV8zewhGJulYvm1mS0hrgOxZOJN3jjqks93c9sCZRi4jI+RrRAVhrgEVERhe3y/CFW2bxdl0rD71YHfPapqo6jIHFUwujx6YVZ9PQ5qO+pTPm3DNNHazbG9pztzA7jXfMSTz1dnxBKABHAm7kWoCSnPTodOtj59o4Ut/KvlNNLCofk/Bel4b3Mn71YD0zy5LvZexxG443hJ5XnNM9mMbLDXeP9oSnQGcmWLcbCbLpHjfZjur0+PwM3C6DN2797oeWTOHhu66MdoHuiQnHVucd+rscuLc9m0VERHozogOwiIiMPtfPKuXdl47ne8/tZ8OBMwBYa3l6x3Eun1QQ0ziqIlyNrT4Tu0ftG4fPAvDzv76K5/5hWdJmU7kZXvIyPBxzBuDmDtLcLvIyPZTkpuNxGd462sAnn9hGmsfF7Vcknv57+eQx0SZXdyyclPT7y07zRKvZ8Y2ynL54y2yml+ZEp1t7UpgCne51xbz+4uevZ89XVuJ2dyXWG+eU8q/vmkuG151yF2iAheVdHzy4+pmAf7Lp7X5dJyIiEpF4A0EREZFhyhjDN/9sAftONvGxn77OZ26cSW1TB1Wnm/nP910Wc+70kkgAbo6pDL9x+Cxet+HKKWOi4TCZ8QWZHDvbFYBrmzopyknDGIPbwJxxefzi9SOke1w88IErGF+QeD2x22V4/KNX0ekP9lhZHZOdxsnGdtwuw8QxyQPw3yyv4G+WV0S/jkyBTrR3cKQJVrondgp0pIFW5FqAT71jRvS4swv0ovIxvOfyCd32RY7Mdl45f2z0mLZEEhGRwdJrADbGFPZ2DhC01p4bgPEMKGPMKmDV9OnTB3soIiJyEWWleXj8rxfzxV+/xTf/sBeA9145kdsuGx9z3viCTNI9Lg6cao45vu3QOeaNz+81/AJMHJPJUUcAPtnYFrOH7/9v787Do6zu/o9/vpnsCyEhGxDWhC0QFoksCjSoLBZR1Nati/ooWq3V1m761Na6tdqnj21dulBrXX4+oHVHUbBVxAUV2XfZBAKEXfZAlvP7I5MwQFYyk5lM3q/r4jJzz32f+QaOyXzmnPuc60d20+9nrdbvvzFAQ7u3q7e9+qYVp3lXnu6eltCgKchVqqZAJ9QwAlx1n3BslEeJMZG6cEAHXTyo4/FrfUZsfcOr7wiwJ8L0raFdTmm7pqzLjkgAgGBpyAjwVu+fun5deSR19ktFfuScmy5pekFBweRg1wIAaF4ZSbF64uoCLd+6X5EeU6/MJNlJacwTYRqQ3VbzvtxTfay0vEJLtnylq4acGuZqkp0Sr0/W75FzTmamdTsOaXjO8aB70cCOumhgxzpaaJyqFamvHNK4X7uR3lHblIRTp3NXbafUNi5KZqZHrhxU47XSifv5+gbgqFpXjz5+fofkWOXW8O/QUCNy0/Th2l2ndS0AAFLDAvBK59yguk4ws4V+qgcAAL8xM/XrWPdCiCN6pOkP//5C2/YdUfvkOM3fuFclpRW1LlZ1spz0BB08Wqbi/SVKio1S8f6SWld69ofbzu2p3IwkXX1W10ZdV7XSdWoNAbgqvNa2rVJkLaHXdwQ6spZhXd+s+/Gd50qSDpSU1nhufRqy6jUAAHVpyNyp4X46BwCAkDNxQAc5Jz33ySZJ0ptLtikmMkKjeqY36Poe3n2FVxUf0LodlVOpc9IDF4CzkmN13YhuJ4zENkSFNwBXjfb6qrovuaYtkKTj06elE+/79d2qyRNx4luK7wyrfQT9dEeAfesAAOB01BuAnXMl/jgHAIBQ1C0tQRMHdNCUOev19znr9cLnmzUhv70SYhq2TmR+x2RFRpg+27CnenXmurYxCpYzOleOaGcln7oI17Vnd9Wd5/fWNwtqXqG6thHgmCjfKdAnhtOv57eXJBV0OXUk/XTvAR7Vo2EfSsC/Fm3+SkV7Dwe7DADwiwavnmFmsWZ2u5m9bGYvmdmPzCw2kMUBANAcfnlBH3VuF68HZqxUx5Q4/XR8rwZfmxATqQGd2urdlTv0zopidUiOVbe0hABWe3p+Pr63pnxncPV+w77ioyN149dyThjRrY3vtOeTF8HyNTynnd7/aWGN2z7FR0fqH1cXnHLcd+Gtk/3124M1pm9mvfXBv2589nNNevwjXf63T7T3pP2yAaAlasw+wM9I6ivpUUmPSeoj6dlAFOUvZjbRzKbs27cv2KUAAEJYRlKs3r5tpKbfMkIzfzhK7WsYJa3L5QWdtHr7Ab23eqcuP7PzaU/xDaSEmEiN7ZvV5NrifKZAR3siqoNvTYtgdWlX+wcB5/Y5NczWVNl5fTIqnzPJE4J/r+HugzW79F9nd9POA0f1w+cX6avDhGAALVtj9gHu5Zwb4PP4PTNb7O+C/IlVoAEADRXpiVB+DaOjDXHp4Gxt3HNIOw8c1eRR3fxcWej4/TcHnBB0zUxtYiO193Bpo+9JbqiqPYgrKlzAXgO1e/fHhcpKjlX39ATd9eoyDbz3HaUnxejMrim6ZXQP7T18THe+vFRXDe2sa87qqtgoj26btlC9s9ropsIcOefknBTBvx2AENGYALzQzIY55z6RJDMbKumjwJQFAEDL4Ykw/XRc72CXETDe9bPUOTX+lOeS46K093Cp4mtZQKupqkJvWQ0B+IUbh+uyv80NyOuiUlZy5d1u3xraWbkZiVpS9JVWFx/UOyuKNWNpsRJjIlXhnB58a5WenbtRd03oo9cWbdVr2qpvDM7WQ2+v0vtf7NS8X5wX5O8EACrVG4DNbKkkJylK0nfNbJP3cRdJKwJbHgAACLaq+35r2ur3y92ViyPtPXx6WxvVp2rksMI5pkAHkZlpWPd2Gta9co/rfUfy9Pc56/Xa4i364+WDdLS0XP/9ylLd9NyC6mvOfODf1V+v3XFAuRlJzV43AJysISPAFwS8CgAAELLum9RP//xogwZkt631nDXbDwTktav2L5ZOnEbbLtZOeC7QoiMjdKysotleL9Qlx0XpJ+N66Sfjji8Y98rNZ+sHUxfq8417VFJ64t/V1U/O068m5mlc36xT2lpdfEAlpeUa0OnE/lVR4U6ZOl1WXqE3l27TmLxMxUc3ZiIjAFRqyDZIG+v60xxFAgCA4MlJT9T9k/IVWcMQcNXo8E2FOQF57ckjuys+2qOzctJOOH5Vn+iAvF5tfjA6t1lfryVKSYjW/7t+qFbcM15PXlOgG0d1lyRdc1ZXJcVG6gdTF2rBpr3V5+8vKdVzn27UuD/O0UWPf6SZy4s1d91ubd5zWDOWblP+r2dq0+7j2y+VVzhd9/Tnum3aIj354YZm//4AhIeGTIFe4Jw7o6nnAACA8DP3jnO0bV+J+nU8vQXETvbQpfnqmZmki//8sSRpQKe2WnHv+FPOG5ThUXON/57bO6OZXik8RESYzumdqRG56RrSLVXn9M7Q3sOlmvT4R7r+6c/VOytJfdq30b8+36z9JWXV1/3o+UU6fKxc8dEeHT5WLkn658cbdNeEPB0tK9fUzzbr/S92SpJ+P+sL7T50TL+ckMcCWwAapSFzR/qY2ZI6njdJ/vmt1wBmliDpz5KOSZrtnHuuuV4bAACcqF1ijNolxvinMZMuP7Nzg06NMFNizKlvYy49I1sd2sbq0XfX+qcmSX/59mD9ZfY6v7XXWkRHRlRvd5WaEK0nrzlTP35hkbbvL9HH63Yrv2Oydh08qm37SvT4VWfolqkLVNAlRUV7j+hIablS46P1z4++1Ptf7FRkhOmL7QclSVcO6aSpn23WPz/6Um1io/SjMT2D+W0CaGEaEoAbsqxleVOKMLMnVXmv8Q7nXD+f4+Ml/UmSR9ITzrkHJV0i6UXn3HQze14SARgAgFaoX8dkDe6SovkbK6fV3lyYo5+Nr3zbcnIA/ubgbP1rftFpvU50ZIRcs403B9+CX47RGfe94/d2czMS9dotI+Sc04JNX6lvhzbafeiYPlm3WxP6t1evrFHKTomXmbTtqxKt23lQ1z39udbvPKRoT4S6tovXt4d1UbvEaE39bLMk6U//WaMzu6aqwjmt3XFQMZERSo6PUpvYqOrXreleYgCtV70BuJnu831K0mOSnqk6YGYeSY9LGiOpSNI8M3tdUrakpd7TmhS8AQBAyzaub2Z1AK4Kvydbds84xUV5dO9F/TTp8Y+0+jQW7PLHeltm/mknkO6b1E+pCdFa9Ksx1fd3+5uZaXCXFElSx7ZxunRwtiSdsEp017QEdU1L0Kr7Kqe/Hy2tUHJ8ZajdX1Kqs3La6Wfje+v25xfpzleWqG3EMS2d+b4kKb9jsl666SxFR0aoeF+JJj3+kb4/OkffGd41IN8PgJbFmnMFxbqYWVdJb1SNAJvZcEm/ds6N8z6+03tqkaS9zrk3zGyac+6KWtq7QdINkpSZmTl42rRpAf4O4A8HDx5UYmJisMtAiKA/wBf9Ifws2Vmmh+cfrX58dodITe5fOZ160/5yxUWa0uNPDGHXvH1IgzM9urZHmRITEzVjwzG9sLpyC6anxieccF4V3+N3f3xEG/c3bjXnp8Yn6JU1x/TauqZt9fSHwjj9aPaR6scek8r99DZsSJZHnxU3fVzgoZFxykwITPANhFV7yvXQZyWKjHAqrTDlJEdo3b4KtYk2fbNnlNZ+VaH3i8oU65Guz4/RB1vKNCDdo3M6R9XfOFosfl+0TqNHj57vnCuo77zTWj/ezHo551afzrWN0FHSZp/HRZKGSnpE0mNmNkHS9Nouds5NkTRFkgoKClxhYWHgKoXfzJ49W/xboQr9Ab7oD+GnUNKyI59r1ortkqTMrEwVFg6s85q1IysUYaY5c95XYWGhDqVu0wurF+g3F+ercOjx+4f7LP5AK7ftr3wdn34Tt2iOtP/EEeD5d52nwff/W7UpLCzUgmOrpXWnf19xdGSELho7Wj+aPaP6WESEqbyWBJydEqeivUdqfK4mv/v2SBX+fvZp1ydJXz44oUnXB0OhpAmFh7Vy4acae+5oSdLv3l6lKXPW65mVpSqrcBrXN1Nz1+3WY4sqP2zZeChCP7nsbMVFeRTliZBzTquKD+jDNbs0tHuq+nu3+yqvcNq057C6pSXU8uoIVfy+QF1OdwO1K82sRNLvnXNl9Z59emq6WcM55w5JurZBDZhNlDQxN5etCwAACEUPXJyvhZu/0s4DR+s/WTplK6av52dp6uRhGtY99YTjb902Ul3vePOU6ytqmPnWLjFGXz44ocbzj1/XoPLqZI24DdXjc8/qqvvGq/cv36713JT4qDrbfvCSfN3x8tLaT5D0v98c0PDiQkyn1Hit8xz/C/jZ+N669uxuuvCxD5XfMVl/vHyQyp3T4s1fafehY7p16kINvu8dxUdH6gfn5GrDrkN67tNN1dffXJijn4ztpYffWa2/zF6nN28dqT7t2wTjWwMQAKc1x8U592tVjr7+xcxGmzXmR3qDFUnq5PM4W9LWALwOAAAIkvSkGP28lnt3G8LMNDynnRr6VuR0t2uqbRGs2T8pbHAbJ9dYWsPo7/2TKtcC9c3psVEePXzZAKX5rLY9vHu7Br9u1UrMvvJOCnTn5Z16TkuWnhSjD342WlO+W6C4aI8SYyJ1dm6aJvZvr+8M66JLz8jWgE5tdf+bK/Xcp5t03Yhu+tMVlbMP/jx7nf747y80Zc56VTjpiQ82aPrirXpzyTaFyq2DAE7f6U6BvkeVU5Ql6RxJV8p7v60fzZPUw8y6Sdoi6QpJVzWmAefcdEnTCwoKJvu5NgAA0AL95uJ8XT28q779j091oKTmSWw1LVZ18uOMpBjtOHBUXRs4PbbAu+hTbaI8ptJyp45t4ySdOlJ9yRnZ6p3VRhc8+oE+/Pk5emXhFs1dv9tbb93h/+TwPutHo9SxbZz63j1TkvTMfw1Rclz43RN78mwBqfLv6r5J1RuO6MM1u1S8v0SXntFRZqZeWUn6/nML9Mi7a5UYE6mxfdP10oIivbSgcgXxgi4pGtItVbFRHs1Yuk3d0xP003G99cqCIkVEmG47t0eDP4wBEBwNDsBmdrdz7h7vw/ecc7P9VYSZTVXlbRxpZlYk6W7n3D/M7BZJM1W5DdKTzrnljWyXKdAAAIS4qrBnNd795F+xUR4N6NS2znOuHt5VT3385QnHfKdAj8hN0xNXF1SH4k6pcdq8p+77dad8t/Z1WTqnxisywrR+16Hqqcw1DTTmdWij9b+tvE/XN2PVNyp58tM9M5NOeDyqZ3qd14ezET3STnjcO6uNHrlykP4ye53G98tSfsdkvblkm/q0b6NxfTP1zortmjJnvcoqnAZ2aquZy7drxtLi6uu37D2iey/qp8PHyqr3x953uFRHy8qV0Sa2Wb83ADVrzAjw3WYWLylV0gIzW+yc2+uPIpxzV9ZyfIakGTU918B2GQEGACDEVXjTZQ0Ddk3ywc9Ga8tXtQRTbyicfsuIU5761QV5+sWEPurxi7d8Tj8xRcZGeaq//teNZ+lnLy3RnC921lpLYkzNb7kW/WqMYiI9+vojH0iSIho4enhyqD35w4MvH5ygob/5t7bvP1rr1kvj+mbqwgEda36yFevbIVmPXXVG9eNZPxqlzqnxio3y6Ifn9VRJabkOlJQpPSlG763eoQUb92rigA56Y8k2PfKfNZq5vFj7S8qUFBOpy87spBc+36wDJWX6w+UDdEH/Doryd0cH0CiNCcBOUokqR2TPkPSxmV3pnFsUkMoAAECrUDW66rvwkz90So1Xp9T4Os/pknbq8xERpgiZZtw6UpFViyv5hMiTM2pWcqwiG1j7refkalCXFF37z3mKjDC1jY+WJF16Rkf9ftYXSk+qHDWscE5JMZHqmBJXb5u1TbmtCsUVzmnhL8do0H3vnPD8375T724h0Kkj5rFRnuoPQEb3ytDoXhmSpNvHJKmgS4oefXeN5m/cqwNHy/SPDzdUX/ej5xfr0XfXqlNKvIbntNPQbqnK75is5z/frPhoj4Z1b6eMpFi//38A4ESNCcCrnHN3e79+0cyekvRXVd4DHJKYAg0AQOirngLdjPdOdkmL17It++Xxec23bhup3QePVT/O63B8oaj6lj568NJ8DXngPycc69ouXl/uPnzCsdvH9tKeQ5WvkRR7/G3Y90fnavKo7tXPOSctvWdcg76X2qZAm092T0mI1h8vH6gNuw7VeC78Y1TPdI3qma51Ow9qy94jSoqNVGpCtA4eLdPyrfv1yH/W6P0vdup972yBM7umaN6XxydUJsZEKjslToO7pOiqoZ11tKxC/Tsmq6zC6WhZRVjeqw00t8YE4F1mNtg5N1+SnHNfmFlI3zTCFGgAAEJfVQBuzoGvp68dooWbvlKCz9Tkura6qe8+24ykWM384SiN++McdU6N1ws3DldWcmydWzH5Bn4zU0yk54RR28ao6bODId1S9dqirYr3jlZOGsR05+aSk56onPTEE4717ZCsif07aFXxfs1asV1/mb1O63Ye0u8u7a+8Dm009bNNeu7TTVpVfECrig9Ub83UOytJq4or965+5r+G6KycdjUu8AWgYRoTgG+VNM3M5ktaKqm/pA11XxJcjAADABD6KqeQLteVQzo322u2S4xp1NY/votg1TZFteo+4bgoj7KSKxc8euK7BcpoE3Pied62amrGTp1xXS8zU3ZKnCaP7Ka/f3D8rdlDl/bXTYU5SkmIbkRrCKS4aI8GdU7RoM4puuLMTmqXGFN9f/gDF+fruhHddLSsQp9t2KO7X69c+3XznuOzCL775GeSpJjICD10af/qDzVmLi/WsO7tGCEGGqDBAdg5t9jMBko6T1I/Se9JmhqowvyBEWAAAEJfp9R4ffnghGCXUSffAdmHLu1f4zkVFZX/9R2NrSlkHx9NPjUB17UKdF3MTL+YkHdCAI6N8qh3Vu2j2giuLu1O3UKru3fUuE/7Nvru8C4yM1VUOFU4p39+9KUemLFSknS0rEI/fH6Rfvj8IhX2Stfs1ZVTqv99+9eUm5F4SrsAjmvUPsDOuaOS3vT+AQAAaBWqRnfvmtBHmbVsZ9M1LV5xUR79ZGyvetqqVOMIsDcU1zflujZn5bTTx+t2n9a1CC1VU+SrFmWbPKq7emQm6vl5m/XWsuNbL1WFX0k67+H3Nax7qsb1zdKYvExlp9S9CBzQGjUqALc0TIEGAAD+UJVH61qoKz46UivvG19vW8fveT61rYjTmALt6/8mDzvNK9ESFPbKUGGvDJWUluuZuV+qR0aS5q7frQv6t1d0ZITeXLJNM5cX657pK3TP9BXq17GNzumVobNz0zSoc4qiI7l3GAjrAMwUaAAA4A/Ojwt1VS28NaaG6dFVAbuxi2ChdYmN8uiGUTmSpNG9M6qP985qox+P7aUNuw5p1vJizVqxXY+9t1aPvLu2equls3PTNLJHmnpkJDbryutAqAjrAAwAAOAPtd+123htYqP02S/OVWr8qYtTVbXfmPybEs/CRzhRt7QE3fi1HN34tRztO1Kquet266O1u/Th2l16d9UOSVJGUoxG9EjT6F4ZGtUjXcn0I7QSBGAAAIB6DO/eTs/M3aj87LZ+aS8jqeb7iJNiI9UmNlJ3T8xrUDsp8VF69rqhfqkJ4Sk5Lkrj+2VpfL8sSVLR3sP6aO0ufbCmMgy/vGCLIkwa3CXFO8U6XXnt2zA6jLBFAAYAAKjH+fnttfCXYwK+pVCkJ0JLfj2u3vOqsskVQzqrQ9u4gNaE8JKdEq/Lz+ysy8/srPIKp0Wbv9Ls1Tv03uod+p+Zq/U/M1crs02MCntmaHTvdJ2dm6akWEaHET7COgCzCBYAAPCXUNpP9+rhXfXlrkO6qTAn2KWgBfNEmAZ3SdHgLin68dhe2rG/RLO/2Kn3V+/UjKXb9PznmxUZYTqza6pG907XxAEd1D6ZD1zQsoV1AGYRLAAAEI4SYiL1u28MCHYZCDMZbWJ1WUEnXVbQSaXlFVqwca/eW71Ts1fv0G9mrNJv31qlEblp+sbgbI3rm6XYKE+wSwYaLawDMAAAAIDGi/JEaGj3dhravZ3uOL+3Nu4+pJcWbNFL84t027RFSoqJ1AUD2uviQdka3CVFHn8skQ40AwIwAAAAgDp1aZeg28f01A/P7aFPNuzWi/OL9OrCrZr62Wa1S4jWuX0yNCYvSyN7pDEyjJBGAAYAAADQIBERprNy0nRWTpruvahM763aoXdWbNdbS4v1wudFio2K0Kge6RqTl6lz+2QqNYTunQckAjAAAACA05AYE6mJAzpo4oAOOlZWoU837NY7K7brnRXbNWvFdkWYVNA1VWPzMjUmL1Nd2iUEu2QgvAMwq0ADAAAAgRcdGaGRPdI1ske67rmwr5Zt2a93VhRr1ortuv/Nlbr/zZXqlZmksX0rw3B+x2T2GkZQhHUAZhVoAAAAoHmZmfKzk5Wfnazbx/bS5j2HNWvFdr2zoliPv7dWj767VlltYjW2b6YuGthBZ3ROIQyj2YR1AAYAAAAQXJ1S43XdiG66bkQ37T10TO967xt+4fPNembuRnVOjddFAzvoooEdlZuRGOxyEeYIwAAAAACaRUpCtC4dnK1LB2fr4NEyzVxWrFcXbakeGc7vmKxJgzpqYv/2ymgTG+xyEYYIwAAAAACaXWJMZHUY3rG/RK8v3qpXF23RfW+s0P1vrtDgzika3y9L5+e3V8e2ccEuF2GCAAwAAAAgqDLaxOr6kd11/cjuWrvjgN5cUqy3lm2rXkBrQHayxvdrr/P7ZalrGqtJ4/QRgAEAAACEjNyMJN12XpJuO6+HNuw6pLeWbdPby4r10Nur9NDbq9SnfRuNycvUsO6pGtQpRXHRnmCXjBakRQZgM+su6ReSkp1z3wh2PQAAAAD8r1tagm4uzNXNhbnavOewZi4v1lvLivXou2v0yH+kKI9pWPd2mjigg8b1zVJyXFSwMO2XOwAAFxFJREFUS0aIa/YAbGZPSrpA0g7nXD+f4+Ml/UmSR9ITzrkHa2vDObde0nVm9mKg6wUAAAAQfJ1S46unSe87UqoFG/dq7vrdemvZNv3sxSX6xStL9bWe6eoeVaaCo2VKjGmRY30IsGD0iqckPSbpmaoDZuaR9LikMZKKJM0zs9dVGYZ/e9L1/+Wc29E8pQIAAAAINclxURrdO0Oje2fozvN7a0nRPr2xZKveWLJN/953VE+veEfn9M7QBf076JzeGUyTRjVzzjX/i5p1lfRG1QiwmQ2X9Gvn3Djv4zslyTl3cvg9uZ0Xa5sCbWY3SLpBkjIzMwdPmzbNb/UjcA4ePKjERPZ/QyX6A3zRH+CL/gBf9AdUqXBOS7cd0pKvojSvuFz7jznFeKRBGR4NyYpUfrpHUREW7DIRAKNHj57vnCuo77xQmRfQUdJmn8dFkobWdrKZtZP0gKRBZnZnTUHZOTfFzLZJmpiUlDS4sLDQzyUjEGbPni3+rVCF/gBf9Af4oj/AF/0BviJmz9ZtVxWqvMLp0/W7NX3JNr29bJs+2XZUSbGRGpuXpYkD2uvs3DRFeSKCXS6aWagE4Jo+hql1aNo5t1vS9+pr1Dk3XdL0goKCyU2oDQAAAEAL44kwnZWbprNy03TvRX310dpdemPJNs1cXqyXFhQpJT5K4/u118T+7TW0ezt5GBluFUIlABdJ6uTzOFvS1qY2amYTJU3Mzc1talMAAAAAWqgoT4QKe2WosFeGHri4n+Z8sUvTF2/Va4u2aOpnm5SWGKMJ+Vm6dHC2+me3DXa5CKBQCcDzJPUws26Stki6QtJVTW2UEWAAAAAAvmIiPRqTl6kxeZk6cqxc763eoemLt2ravM165pONunFUjn48tifTo8NUMLZBmiqpUFKamRVJuts59w8zu0XSTFWu/Pykc265H16LEWAAAAAANYqL9ujr+e319fz2OlBSqt/MWKm/vr9Oc9fv1qNXDFLndvHBLhF+1uwfazjnrnTOtXfORTnnsp1z//Aen+Gc6+mcy3HOPeCn15runLshOTnZH80BAAAACFNJsVH67SX99fhVZ2j9zoOa8MgHen1xk+/KRIgJ63F9M5toZlP27dsX7FIAAAAAtAAT+rfXjFtHqkdmom6dulA//ddiHT5WFuyy4CdhHYAZAQYAAADQWJ1S4/XCjcN1y+hcvbigSJf8+WNt+epIsMuCH4R1AAYAAACA0xHpidBPxvXSU9cO0Za9R3TRYx9p4aa9wS4LTRTWAZgp0AAAAACa4ms90/XyzWcpLjpCV0z5RLNX7wh2SWiCsA7ATIEGAAAA0FQ9MpP06s1nKyc9UTc8O19zvtgZ7JJwmsI6AAMAAACAP7RLjNFz1w9VbnqiJj/zuT5YQwhuicI6ADMFGgAAAIC/pCRE67nrh6p7eqKuf/pzfbhmV7BLQiOFdQBmCjQAAAAAf6oKwd3SEnTd0/P00VpCcEsS1gEYAAAAAPwtNSFa/zd5WHUInr9xT7BLQgMRgAEAAACgkVK9I8FZbWJ147PztZV9gluEsA7A3AMMAAAAIFDaJcboiasLVFJaoRue/VxHjpUHuyTUI6wDMPcAAwAAAAik3IwkPXLlQC3ful8/fXGxnHPBLgl1COsADAAAAACBdk7vTP1sXG+9sWSb/jx7XbDLQR0IwAAAAADQRN/7WnddNLCDfj9rtT5dvzvY5aAWBGAAAAAAaCIz04OX9FeH5Djd9eoylZZXBLsk1IAADAAAAAB+EBft0T0X9tWaHQf15Icbgl0OahDWAZhVoAEAAAA0p/PyMnVen0z98d9r2BopBIV1AGYVaAAAAADN7e6JeXJyunf6imCXgpOEdQAGAAAAgObWKTVet57bQ28vL9Z7q3YEuxz4IAADAAAAgJ9dP6K7ctITdPfry1VSWh7scuBFAAYAAAAAP4uOjNB9k/pp057D+vN7a4NdDrwIwAAAAAAQAGflpGnSwA766/vrtX7nwWCXAxGAAQAAACBg/ntCH8VERehXry2Xcy7Y5bR6LTIAm9kkM/u7mb1mZmODXQ8AAAAA1CQjKVY/HddLH67dpTeXbgt2Oa1eswdgM3vSzHaY2bKTjo83s9VmttbM7qirDefcq865yZKukXR5AMsFAAAAgCb51tAu6texje6dvkIHSkqDXU6rFowR4Kckjfc9YGYeSY9LOl9SnqQrzSzPzPLN7I2T/mT4XHqX9zoAAAAACEmeCNP9k/K18+BR/fHfa4JdTqsW2dwv6JybY2ZdTzo8RNJa59x6STKzaZIucs79VtIFJ7dhZibpQUlvOecWBLZiAAAAAGiagZ3a6qohnfXUx1/q0jOyldehTbBLapUsGDdiewPwG865ft7H35A03jl3vffxdyQNdc7dUsv1t0q6WtI8SYucc3+t4ZwbJN0gSZmZmYOnTZsWgO8E/nbw4EElJiYGuwyECPoDfNEf4Iv+AF/0B/gK5f5wqNTpjg8OKzM+Qv89NFYRZsEuKWyMHj16vnOuoL7zmn0EuBY1/cvXmsydc49IeqSuBp1zU8xsm6SJSUlJgwsLC5tWIZrF7Nmzxb8VqtAf4Iv+AF/0B/iiP8BXqPeHktQi/fhfi7UzMUeXn9k52OW0OqGyCnSRpE4+j7MlbW1qo8656c65G5KTk5vaFAAAAAA02SVndNSQrqn67VurtOfQsWCX0+qESgCeJ6mHmXUzs2hJV0h6vamNmtlEM5uyb9++JhcIAAAAAE1lZrpvUj8dLCnT795eFexyWp1gbIM0VdJcSb3MrMjMrnPOlUm6RdJMSSslveCcW97U12IEGAAAAECo6ZWVpOtGdNO0eZs1f+PeYJfTqjR7AHbOXemca++ci3LOZTvn/uE9PsM519M5l+Oce8Afr8UIMAAAAIBQdOu5PdQhOVZ3vbpMZeUVwS6n1QiVKdABwQgwAAAAgFCUEBOpX03sq5Xb9uvpuRuDXU6rEdYBmBFgAAAAAKFqXN9Mje6VrodnrVbxvpJgl9MqhHUAZgQYAAAAQKgyM91zYT+VVTjd+8ZyOVfrTrDwk7AOwAAAAAAQyjq3i9dt5/XQjKXFemXhlmCXE/bCOgAzBRoAAABAqLtxVI6GdEvVr15brk27Dwe7nLAW1gGYKdAAAAAAQp0nwvSHywfKTPrh8wtVyqrQARPWARgAAAAAWoKObeP0m4vztWDTV7r/jRXBLidshXUAZgo0AAAAgJZi4oAOmjyym56eu1HPfcrWSIEQ1gGYKdAAAAAAWpI7zu+jwl7puvu15fp43a5glxN2wjoAAwAAAEBL4okwPXLlIHVNS9ANz8zXos1fBbuksEIABgAAAIAQ0iY2Ss9eN0SpCdH67j8+1fKt3NLpL2EdgLkHGAAAAEBL1D45Tv83eaiSYqN01d8/1YdrmA7tD2EdgLkHGAAAAEBLlZ0Sr2k3DFNmmxh998lP9cQH6+WcC3ZZLVpYB2AAAAAAaMk6pcbr5ZvP1pi8TN3/5krd9P8WaMeBkmCX1WIRgAEAAAAghCXGROov3xqsO87vrXdX79Do/5mt259fpPdW79Cxsopgl9eiRAa7AAAAAABA3SIiTN/7Wo7G5mXqb++v11vLtunlhVtkJqXERys9MUZpSd7/JsaoW3qCLh7UUfHRRD5f/G0AAAAAQAvRPT1RD32jv+6d1FdzvtilZVv2adfBo9p54Kh2Hjyq+Zv2asf+ozpaVqH/nfWFbhjVXdeP6KZID5N/pTAPwGY2UdLE3NzcYJcCAAAAAH4TE+nRmLxMjcnLPOU555wWbNqrR99dqwffWqX3Vu3Qo1cNUkZSbBAqDS1h/TEAq0ADAAAAaG3MTIO7pOqpa4fo4csGaHHRV5rwyIf6dP3uYJcWdGEdgAEAAACgNbvkjGy9+v2zlRQTqaue+FR/fX9dq95KiQAMAAAAAGGsd1YbvXbL2RrfN0sPvrVKNz47v9WuHk0ABgAAAIAwlxQbpceuGqS7JvTRrBXb9df31wW7pKAgAAMAAABAK2Bmun5kd00c0EGPvrtGm/ccDnZJzY4ADAAAAACtyM/H91JpudOrC7cEu5Rm1yIDsJn1MbO/mtmLZnZTsOsBAAAAgJYiOyVeQ7qm6tVFW1rdgljNHoDN7Ekz22Fmy046Pt7MVpvZWjO7o642nHMrnXPfk3SZpIJA1gsAAAAA4eaiQR20buchLd+6P9ilNKtgjAA/JWm87wEz80h6XNL5kvIkXWlmeWaWb2ZvnPQnw3vNhZI+lPSf5i0fAAAAAFq2r/drryiP6bVFrWsatAVjyNvMukp6wznXz/t4uKRfO+fGeR/fKUnOud82oK03nXMTajh+g6QbJCkzM3PwtGnT/FY/AufgwYNKTEwMdhkIEfQH+KI/wBf9Ab7oD/BFf2i4P84v0Zf7K/RwYZwizIJdTpOMHj16vnOu3tnBkc1RTAN0lLTZ53GRpKG1nWxmhZIukRQjaUZN5zjnpkiaIkkFBQWusLDQT6UikGbPni3+rVCF/gBf9Af4oj/AF/0BvugPDXcgZat+MHWhYjvl66zctGCX0yxCJQDX9HFDrUPTzrnZkmbX26jZREkTc3NzT7swAAAAAAhH5/XJVEK0R68v3tpqAnCorAJdJKmTz+NsSVub2qhzbrpz7obk5OSmNgUAAAAAYSUu2qNz+mTqnRXbVV7ROlaDDpUAPE9SDzPrZmbRkq6Q9HpTGzWziWY2Zd++fU0uEAAAAADCzfi+Wdp96Jjmfbkn2KU0i2BsgzRV0lxJvcysyMyuc86VSbpF0kxJKyW94Jxb3tTXYgQYAAAAAGpX2Ctd0ZERentZcbBLaRbNfg+wc+7KWo7PUC0LWp0u7gEGAAAAgNolxERqVI90zVxerLsn5sla+GrQ9QmVKdABwQgwAAAAANTt/H5Z2ravRIuLwv/W0bAOwNwDDAAAAAB1Oy8vU7FREXp+3ub6T27hwjoAMwIMAAAAAHVLjovShQM66NWFW7S/pDTY5QRUWAdgAAAAAED9vjOsq46Uluvl+UXBLiWgwjoAMwUaAAAAAOqXn52sAZ3a6um5G1VaXhHscgImrAMwU6ABAAAAoGG+X5ijDbsOadpnm4JdSsCEdQAGAAAAADTMmLxMDeueqoff+UI79pcEu5yACOsAzBRoAAAAAGgYM9P9k/rpSGm5fvyvxaqocMEuye/COgAzBRoAAAAAGi43I0l3TcjTB2t26S/vrwt2OX4XGewCAAAAAACh41tDO+vTDXv0PzNXq01spL4zvGuwS/IbAjAAAAAAoJqZ6eHLBujIsXL98rXlion06LIzOwW7LL8I6ynQ3AMMAAAAAI0X5YnQY1cN0sgeafr5y0v02YY9wS7JL8I6AHMPMAAAAACcntgoj6Z8p0B3nt9bg7ukBLscv2AKNAAAAACgRnHRHt0wKifYZfhNWI8AAwAAAABQhQAMAAAAAGgVCMAAAAAAgFYhrAMwq0ADAAAAAKqEdQBmFWgAAAAAQJWwDsAAAAAAAFQhAAMAAAAAWgUCMAAAAACgVSAAAwAAAABaBQIwAAAAAKBVMOdcsGsIODPbKWljsOtAg6RJ2hXsIhAy6A/wRX+AL/oDfNEf4Iv+0Dp1cc6l13dSqwjAaDnM7HPnXEGw60BooD/AF/0BvugP8EV/gC/6A+rCFGgAAAAAQKtAAAYAAAAAtAoEYISaKcEuACGF/gBf9Af4oj/AF/0BvugPqBX3AAMAAAAAWgVGgAEAAAAArQIBGAAAAADQKhCAAQAAAACtAgEYAAAAANAqEIDRYphZgpnNN7MLgl0Lgs/MJpnZ383sNTMbG+x60Ly8Pw+e9vaBbwW7HgQXPw9wMt4zoIqZRZjZA2b2qJldHex6EHwEYAScmT1pZjvMbNlJx8eb2WozW2tmdzSgqZ9LeiEwVaI5+aNPOOdedc5NlnSNpMsDWC6aSSP7xSWSXvT2gQubvVgEXGP6Az8Pwt9p/N7gPUMYa2R/uEhSR0mlkoqau1aEHgIwmsNTksb7HjAzj6THJZ0vKU/SlWaWZ2b5ZvbGSX8yzOw8SSskbW/u4hEQT6mJfcLn0ru816Hle0oN7BeSsiVt9p5W3ow1ovk8pYb3hyr8PAhfT6nhvzd4zxD+nlLDfz70kjTXOXe7pJuauU6EoMhgF4Dw55ybY2ZdTzo8RNJa59x6STKzaZIucs79VtIp05XMbLSkBFX+QDtiZjOccxUBLRwB46c+YZIelPSWc25BYCtGc2hMv1Dlp/jZkhaJD3PDUmP6g5mtFD8Pwlojfz4kivcMYa2R/WGzpGPec/jAFARgBE1HHR+9kSrfzA6t7WTn3C8kycyukbSLX2RhqVF9QtIPJJ0nKdnMcp1zfw1kcQia2vrFI5IeM7MJkqYHozAERW39gZ8HrVON/cE5d4vEe4ZWqLafD3+S9KiZjZQ0JxiFIbQQgBEsVsMxV99Fzrmn/F8KQkSj+oRz7hFVhiCEtxr7hXPukKRrm7sYBF1t/YGfB61Tnb83eM/Q6tT28+GwpOuauxiELqaNIViKJHXyeZwtaWuQakFooE+gJvQL+KI/wBf9Ab7oD2gQAjCCZZ6kHmbWzcyiJV0h6fUg14Tgok+gJvQL+KI/wBf9Ab7oD2gQAjACzsymSporqZeZFZnZdc65Mkm3SJopaaWkF5xzy4NZJ5oPfQI1oV/AF/0BvugP8EV/QFOYc/XedgkAAAAAQIvHCDAAAAAAoFUgAAMAAAAAWgUCMAAAAACgVSAAAwAAAABaBQIwAAAAAKBVIAADAAAAAFoFAjAAAK2UmZWb2SIz61DHOb82s9+edGygma30fv2emR00s4JA1wsAQFMRgAEAaIHMLNIPzRxxzg10zm2t45ypki4/6dgVkv5PkpxzoyV97odaAAAIOAIwAAABZmbfNrPPvKOtfzMzj/f4QTN7wMwWm9knZpbpPZ5uZi+Z2Tzvn7O9x39tZlPMbJakZ8ws3sxeMLMlZva8mX1qZgVmdp2Z/cHn9Seb2cMNqHOsmc01swVm9i8zS3TOrZb0lZkN9Tn1MknT/Pl3BABAcyAAAwAQQGbWR5UjqGc75wZKKpf0Le/TCZI+cc4NkDRH0mTv8T9J+oNz7kxJl0p6wqfJwZIucs5dJelmSXudc/0l3ed9TqoMpxeaWZT38bWS/llPnWmS7pJ0nnPuDFWO6t7ufXqqKkd9ZWbDJO12zq1p1F8EAAAhwB/TpwAAQO3OVWUwnWdmkhQnaYf3uWOS3vB+PV/SGO/X50nK854vSW3MLMn79evOuSPer0eoMizLObfMzJZ4vz5kZu9KusB7r26Uc25pPXUOk5Qn6SPv60ZLmut9bpqkj83sx6oMwlMb/u0DABA6CMAAAASWSXraOXdnDc+VOuec9+tyHf+9HCFpuE/QrWyoMpgeOqnt2jwh6b8lrVI9o78+bb3jnLvy5Cecc5vN7EtJX1PliPTwBrQHAEDIYQo0AACB9R9J3zCzDEkys1Qz61LPNbMk3VL1wMwG1nLeh6q8H1dmlicpv+oJ59ynkjpJukoNG7H9RNLZZpbrbS/ezHr6PD9V0h8krXPOFTWgPQAAQg4BGACAAHLOrVDlvbWzvFOU35HUvp7LbpVU4F3caoWk79Vy3p8lpXvb/bmkJZL2+Tz/gqSPnHN7G1DnTknXSJrqbe8TSb19TvmXpL5i8SsAQAtmx2deAQCAlsS7mnSUc67EzHJUOdrc0zl3zPv8G6pcTOs/tVx/0DmX6Ic6Zkv6iXOO7ZAAACGNEWAAAFqueEkfmtliSa9Iusk5d8zM2prZF6rc57fG8Ou137s1U4fTLcDM3pPUXVLp6bYBAEBzYQQYAAAAANAqMAIMAAAAAGgVCMAAAAAAgFaBAAwAAAAAaBUIwAAAAACAVoEADAAAAABoFf4/hMur0bPXmyUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Visualize the data'''\n",
"\n",
"# Pandas: python package for tabular data analysis\n",
"import pandas as pd\n",
"\n",
"# read the data into a data frame (or table)\n",
"df = pd.read_csv('data/u-235-sigma-g.dat', \n",
" names=['energy [eV]','sigma_g [b]'], \n",
" skiprows=3)\n",
"\n",
"#print(df) # uncomment for a screen output of the data\n",
"\n",
"# plot the data directly from Pandas\n",
"ax = df.plot(loglog=True, x='energy [eV]', y='sigma_g [b]',legend=False,\n",
" title='Capture $\\sigma_\\gamma$ for $^{235}_{92}$U(n,$\\gamma$)', figsize=(16,5))\n",
"ax.set(ylabel='$\\sigma_\\gamma$ [b]')\n",
"ax.grid()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To obtain a *sense* of how significant this reaction is, calculate the cross sectional area of the nucleus and compare with the radiative cross section in the plot."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"U-235 r [fm] = 5.8337 41\n"
]
}
],
"source": [
"for nc in nuclides:\n",
" if nc.name == 'U-235':\n",
" r_u235 = nc.radius\n",
" r_u235_unc = nc.unc\n",
"print('U-235 r [fm] = ',r_u235,r_u235_unc)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nucleus geometric cross section area [b] = 1.06915\n"
]
}
],
"source": [
"import math\n",
"area = math.pi * r_u235**2\n",
"print('nucleus geometric cross section area [b] = %5.5f'%(area/100)) # 1 barn = 100 fm^2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the radiative capture cross section data (plot): $\\sigma_\\gamma = 101.153$ b at $E=2.4\\, 10^{-2}$ eV. Therefore the radiative cross section is"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"94.6"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"round(101.153/1.06915,1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"times greater than the nucleus geometric cross section. Note that $\\sigma_\\gamma\\approx 1$ at $E\\approx 10$ keV and this reaction is significant for a large extent of neutron energies."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": false,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}