{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setting up R in Jupyter Notebook\n",
"- [This is by far the easiest install that I have done of this kind](https://www.continuum.io/blog/developer/jupyter-and-conda-r)\n",
"- just open up your terminal and run the following commands; \n",
" - `conda install -c r r-essentials`\n",
" - `conda create -n my-r-env -c r r-essentials`"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\"Hello World!\""
],
"text/latex": [
"\"Hello World!\""
],
"text/markdown": [
"\"Hello World!\""
],
"text/plain": [
"[1] \"Hello World!\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Let's run a quick test\n",
"e<-'Hello World!'\n",
"e"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Attaching package: 'dplyr'\n",
"\n",
"The following objects are masked from 'package:stats':\n",
"\n",
" filter, lag\n",
"\n",
"The following objects are masked from 'package:base':\n",
"\n",
" intersect, setdiff, setequal, union\n",
"\n"
]
}
],
"source": [
"library(dplyr)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
" | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
\n",
"\n",
"\t| 1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
\n",
"\t| 2 | 4.9 | 3 | 1.4 | 0.2 | setosa |
\n",
"\t| 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
\n",
"\t| 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
\n",
"\t| 5 | 5 | 3.6 | 1.4 | 0.2 | setosa |
\n",
"\t| 6 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |
\n",
"\t| 7 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
\n",
"\t| 8 | 5 | 3.4 | 1.5 | 0.2 | setosa |
\n",
"\t| 9 | 4.4 | 2.9 | 1.4 | 0.2 | setosa |
\n",
"\t| 10 | 4.9 | 3.1 | 1.5 | 0.1 | setosa |
\n",
"\t| 11 | 5.4 | 3.7 | 1.5 | 0.2 | setosa |
\n",
"\t| 12 | 4.8 | 3.4 | 1.6 | 0.2 | setosa |
\n",
"\t| 13 | 4.8 | 3 | 1.4 | 0.1 | setosa |
\n",
"\t| 14 | 4.3 | 3 | 1.1 | 0.1 | setosa |
\n",
"\t| 15 | 5.8 | 4 | 1.2 | 0.2 | setosa |
\n",
"\t| 16 | 5.7 | 4.4 | 1.5 | 0.4 | setosa |
\n",
"\t| 17 | 5.4 | 3.9 | 1.3 | 0.4 | setosa |
\n",
"\t| 18 | 5.1 | 3.5 | 1.4 | 0.3 | setosa |
\n",
"\t| 19 | 5.7 | 3.8 | 1.7 | 0.3 | setosa |
\n",
"\t| 20 | 5.1 | 3.8 | 1.5 | 0.3 | setosa |
\n",
"\t| 21 | 5.4 | 3.4 | 1.7 | 0.2 | setosa |
\n",
"\t| 22 | 5.1 | 3.7 | 1.5 | 0.4 | setosa |
\n",
"\t| 23 | 4.6 | 3.6 | 1 | 0.2 | setosa |
\n",
"\t| 24 | 5.1 | 3.3 | 1.7 | 0.5 | setosa |
\n",
"\t| 25 | 4.8 | 3.4 | 1.9 | 0.2 | setosa |
\n",
"\t| 26 | 5 | 3 | 1.6 | 0.2 | setosa |
\n",
"\t| 27 | 5 | 3.4 | 1.6 | 0.4 | setosa |
\n",
"\t| 28 | 5.2 | 3.5 | 1.5 | 0.2 | setosa |
\n",
"\t| 29 | 5.2 | 3.4 | 1.4 | 0.2 | setosa |
\n",
"\t| 30 | 4.7 | 3.2 | 1.6 | 0.2 | setosa |
\n",
"\t| ... | ... | ... | ... | ... | ... |
\n",
"\t| 121 | 6.9 | 3.2 | 5.7 | 2.3 | virginica |
\n",
"\t| 122 | 5.6 | 2.8 | 4.9 | 2 | virginica |
\n",
"\t| 123 | 7.7 | 2.8 | 6.7 | 2 | virginica |
\n",
"\t| 124 | 6.3 | 2.7 | 4.9 | 1.8 | virginica |
\n",
"\t| 125 | 6.7 | 3.3 | 5.7 | 2.1 | virginica |
\n",
"\t| 126 | 7.2 | 3.2 | 6 | 1.8 | virginica |
\n",
"\t| 127 | 6.2 | 2.8 | 4.8 | 1.8 | virginica |
\n",
"\t| 128 | 6.1 | 3 | 4.9 | 1.8 | virginica |
\n",
"\t| 129 | 6.4 | 2.8 | 5.6 | 2.1 | virginica |
\n",
"\t| 130 | 7.2 | 3 | 5.8 | 1.6 | virginica |
\n",
"\t| 131 | 7.4 | 2.8 | 6.1 | 1.9 | virginica |
\n",
"\t| 132 | 7.9 | 3.8 | 6.4 | 2 | virginica |
\n",
"\t| 133 | 6.4 | 2.8 | 5.6 | 2.2 | virginica |
\n",
"\t| 134 | 6.3 | 2.8 | 5.1 | 1.5 | virginica |
\n",
"\t| 135 | 6.1 | 2.6 | 5.6 | 1.4 | virginica |
\n",
"\t| 136 | 7.7 | 3 | 6.1 | 2.3 | virginica |
\n",
"\t| 137 | 6.3 | 3.4 | 5.6 | 2.4 | virginica |
\n",
"\t| 138 | 6.4 | 3.1 | 5.5 | 1.8 | virginica |
\n",
"\t| 139 | 6 | 3 | 4.8 | 1.8 | virginica |
\n",
"\t| 140 | 6.9 | 3.1 | 5.4 | 2.1 | virginica |
\n",
"\t| 141 | 6.7 | 3.1 | 5.6 | 2.4 | virginica |
\n",
"\t| 142 | 6.9 | 3.1 | 5.1 | 2.3 | virginica |
\n",
"\t| 143 | 5.8 | 2.7 | 5.1 | 1.9 | virginica |
\n",
"\t| 144 | 6.8 | 3.2 | 5.9 | 2.3 | virginica |
\n",
"\t| 145 | 6.7 | 3.3 | 5.7 | 2.5 | virginica |
\n",
"\t| 146 | 6.7 | 3 | 5.2 | 2.3 | virginica |
\n",
"\t| 147 | 6.3 | 2.5 | 5 | 1.9 | virginica |
\n",
"\t| 148 | 6.5 | 3 | 5.2 | 2 | virginica |
\n",
"\t| 149 | 6.2 | 3.4 | 5.4 | 2.3 | virginica |
\n",
"\t| 150 | 5.9 | 3 | 5.1 | 1.8 | virginica |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lllll}\n",
" & Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species\\\\\n",
"\\hline\n",
"\t1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa\\\\\n",
"\t2 & 4.9 & 3 & 1.4 & 0.2 & setosa\\\\\n",
"\t3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa\\\\\n",
"\t4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa\\\\\n",
"\t5 & 5 & 3.6 & 1.4 & 0.2 & setosa\\\\\n",
"\t6 & 5.4 & 3.9 & 1.7 & 0.4 & setosa\\\\\n",
"\t7 & 4.6 & 3.4 & 1.4 & 0.3 & setosa\\\\\n",
"\t8 & 5 & 3.4 & 1.5 & 0.2 & setosa\\\\\n",
"\t9 & 4.4 & 2.9 & 1.4 & 0.2 & setosa\\\\\n",
"\t10 & 4.9 & 3.1 & 1.5 & 0.1 & setosa\\\\\n",
"\t11 & 5.4 & 3.7 & 1.5 & 0.2 & setosa\\\\\n",
"\t12 & 4.8 & 3.4 & 1.6 & 0.2 & setosa\\\\\n",
"\t13 & 4.8 & 3 & 1.4 & 0.1 & setosa\\\\\n",
"\t14 & 4.3 & 3 & 1.1 & 0.1 & setosa\\\\\n",
"\t15 & 5.8 & 4 & 1.2 & 0.2 & setosa\\\\\n",
"\t16 & 5.7 & 4.4 & 1.5 & 0.4 & setosa\\\\\n",
"\t17 & 5.4 & 3.9 & 1.3 & 0.4 & setosa\\\\\n",
"\t18 & 5.1 & 3.5 & 1.4 & 0.3 & setosa\\\\\n",
"\t19 & 5.7 & 3.8 & 1.7 & 0.3 & setosa\\\\\n",
"\t20 & 5.1 & 3.8 & 1.5 & 0.3 & setosa\\\\\n",
"\t21 & 5.4 & 3.4 & 1.7 & 0.2 & setosa\\\\\n",
"\t22 & 5.1 & 3.7 & 1.5 & 0.4 & setosa\\\\\n",
"\t23 & 4.6 & 3.6 & 1 & 0.2 & setosa\\\\\n",
"\t24 & 5.1 & 3.3 & 1.7 & 0.5 & setosa\\\\\n",
"\t25 & 4.8 & 3.4 & 1.9 & 0.2 & setosa\\\\\n",
"\t26 & 5 & 3 & 1.6 & 0.2 & setosa\\\\\n",
"\t27 & 5 & 3.4 & 1.6 & 0.4 & setosa\\\\\n",
"\t28 & 5.2 & 3.5 & 1.5 & 0.2 & setosa\\\\\n",
"\t29 & 5.2 & 3.4 & 1.4 & 0.2 & setosa\\\\\n",
"\t30 & 4.7 & 3.2 & 1.6 & 0.2 & setosa\\\\\n",
"\t... & ... & ... & ... & ... & ...\\\\\n",
"\t121 & 6.9 & 3.2 & 5.7 & 2.3 & virginica\\\\\n",
"\t122 & 5.6 & 2.8 & 4.9 & 2 & virginica\\\\\n",
"\t123 & 7.7 & 2.8 & 6.7 & 2 & virginica\\\\\n",
"\t124 & 6.3 & 2.7 & 4.9 & 1.8 & virginica\\\\\n",
"\t125 & 6.7 & 3.3 & 5.7 & 2.1 & virginica\\\\\n",
"\t126 & 7.2 & 3.2 & 6 & 1.8 & virginica\\\\\n",
"\t127 & 6.2 & 2.8 & 4.8 & 1.8 & virginica\\\\\n",
"\t128 & 6.1 & 3 & 4.9 & 1.8 & virginica\\\\\n",
"\t129 & 6.4 & 2.8 & 5.6 & 2.1 & virginica\\\\\n",
"\t130 & 7.2 & 3 & 5.8 & 1.6 & virginica\\\\\n",
"\t131 & 7.4 & 2.8 & 6.1 & 1.9 & virginica\\\\\n",
"\t132 & 7.9 & 3.8 & 6.4 & 2 & virginica\\\\\n",
"\t133 & 6.4 & 2.8 & 5.6 & 2.2 & virginica\\\\\n",
"\t134 & 6.3 & 2.8 & 5.1 & 1.5 & virginica\\\\\n",
"\t135 & 6.1 & 2.6 & 5.6 & 1.4 & virginica\\\\\n",
"\t136 & 7.7 & 3 & 6.1 & 2.3 & virginica\\\\\n",
"\t137 & 6.3 & 3.4 & 5.6 & 2.4 & virginica\\\\\n",
"\t138 & 6.4 & 3.1 & 5.5 & 1.8 & virginica\\\\\n",
"\t139 & 6 & 3 & 4.8 & 1.8 & virginica\\\\\n",
"\t140 & 6.9 & 3.1 & 5.4 & 2.1 & virginica\\\\\n",
"\t141 & 6.7 & 3.1 & 5.6 & 2.4 & virginica\\\\\n",
"\t142 & 6.9 & 3.1 & 5.1 & 2.3 & virginica\\\\\n",
"\t143 & 5.8 & 2.7 & 5.1 & 1.9 & virginica\\\\\n",
"\t144 & 6.8 & 3.2 & 5.9 & 2.3 & virginica\\\\\n",
"\t145 & 6.7 & 3.3 & 5.7 & 2.5 & virginica\\\\\n",
"\t146 & 6.7 & 3 & 5.2 & 2.3 & virginica\\\\\n",
"\t147 & 6.3 & 2.5 & 5 & 1.9 & virginica\\\\\n",
"\t148 & 6.5 & 3 & 5.2 & 2 & virginica\\\\\n",
"\t149 & 6.2 & 3.4 & 5.4 & 2.3 & virginica\\\\\n",
"\t150 & 5.9 & 3 & 5.1 & 1.8 & virginica\\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
" Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n",
"1 5.1 3.5 1.4 0.2 setosa\n",
"2 4.9 3 1.4 0.2 setosa\n",
"3 4.7 3.2 1.3 0.2 setosa\n",
"4 4.6 3.1 1.5 0.2 setosa\n",
"5 5 3.6 1.4 0.2 setosa\n",
"6 5.4 3.9 1.7 0.4 setosa\n",
"7 4.6 3.4 1.4 0.3 setosa\n",
"8 5 3.4 1.5 0.2 setosa\n",
"9 4.4 2.9 1.4 0.2 setosa\n",
"10 4.9 3.1 1.5 0.1 setosa\n",
"11 5.4 3.7 1.5 0.2 setosa\n",
"12 4.8 3.4 1.6 0.2 setosa\n",
"13 4.8 3 1.4 0.1 setosa\n",
"14 4.3 3 1.1 0.1 setosa\n",
"15 5.8 4 1.2 0.2 setosa\n",
"16 5.7 4.4 1.5 0.4 setosa\n",
"17 5.4 3.9 1.3 0.4 setosa\n",
"18 5.1 3.5 1.4 0.3 setosa\n",
"19 5.7 3.8 1.7 0.3 setosa\n",
"20 5.1 3.8 1.5 0.3 setosa\n",
"21 5.4 3.4 1.7 0.2 setosa\n",
"22 5.1 3.7 1.5 0.4 setosa\n",
"23 4.6 3.6 1 0.2 setosa\n",
"24 5.1 3.3 1.7 0.5 setosa\n",
"25 4.8 3.4 1.9 0.2 setosa\n",
"26 5 3 1.6 0.2 setosa\n",
"27 5 3.4 1.6 0.4 setosa\n",
"28 5.2 3.5 1.5 0.2 setosa\n",
"29 5.2 3.4 1.4 0.2 setosa\n",
"30 4.7 3.2 1.6 0.2 setosa\n",
"... ... ... ... ... ...\n",
"121 6.9 3.2 5.7 2.3 virginica\n",
"122 5.6 2.8 4.9 2 virginica\n",
"123 7.7 2.8 6.7 2 virginica\n",
"124 6.3 2.7 4.9 1.8 virginica\n",
"125 6.7 3.3 5.7 2.1 virginica\n",
"126 7.2 3.2 6 1.8 virginica\n",
"127 6.2 2.8 4.8 1.8 virginica\n",
"128 6.1 3 4.9 1.8 virginica\n",
"129 6.4 2.8 5.6 2.1 virginica\n",
"130 7.2 3 5.8 1.6 virginica\n",
"131 7.4 2.8 6.1 1.9 virginica\n",
"132 7.9 3.8 6.4 2 virginica\n",
"133 6.4 2.8 5.6 2.2 virginica\n",
"134 6.3 2.8 5.1 1.5 virginica\n",
"135 6.1 2.6 5.6 1.4 virginica\n",
"136 7.7 3 6.1 2.3 virginica\n",
"137 6.3 3.4 5.6 2.4 virginica\n",
"138 6.4 3.1 5.5 1.8 virginica\n",
"139 6 3 4.8 1.8 virginica\n",
"140 6.9 3.1 5.4 2.1 virginica\n",
"141 6.7 3.1 5.6 2.4 virginica\n",
"142 6.9 3.1 5.1 2.3 virginica\n",
"143 5.8 2.7 5.1 1.9 virginica\n",
"144 6.8 3.2 5.9 2.3 virginica\n",
"145 6.7 3.3 5.7 2.5 virginica\n",
"146 6.7 3 5.2 2.3 virginica\n",
"147 6.3 2.5 5 1.9 virginica\n",
"148 6.5 3 5.2 2 virginica\n",
"149 6.2 3.4 5.4 2.3 virginica\n",
"150 5.9 3 5.1 1.8 virginica"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"iris"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" | Species | Sepal.Width.Avg |
\n",
"\n",
"\t| 1 | versicolor | 2.77 |
\n",
"\t| 2 | virginica | 2.974 |
\n",
"\t| 3 | setosa | 3.428 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" & Species & Sepal.Width.Avg\\\\\n",
"\\hline\n",
"\t1 & versicolor & 2.77 \\\\\n",
"\t2 & virginica & 2.974 \\\\\n",
"\t3 & setosa & 3.428 \\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
" Species Sepal.Width.Avg\n",
"1 versicolor 2.770\n",
"2 virginica 2.974\n",
"3 setosa 3.428"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"iris %>%\n",
"group_by(Species) %>%\n",
"summarise(Sepal.Width.Avg = mean(Sepal.Width)) %>%\n",
"arrange(Sepal.Width.Avg)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAQlBMVEUAAAAAujgzMzNNTU1h\nnP9oaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enr6+vw8PDy8vL4dm3///+/\nbmhWAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2djVriyrZF4wZR2/7xeOX9X/US\nRIVQUFVkZFGBMb7v9BYxw9XlnAcMobpbi8houmsPIHILWCQRAIskAmCRRAAskgiARRIBsEgi\nABZJBGBkkf43glEHT+9zvIZ0hz4m+iwWKUjneJyPiT5LaZEW3x/0fH8aWxuAOUWhOd2sxqNL\nQFBYpJ/uLA4+j60NwJyi0JxuVuOhDYAoK9JibZEa893zeGwFGIqKtPjpz2GPLNLVfPc8HtwB\nhOoiff+K9F/PVGOJzIuSIi3Wg0ckTzZc33fP4/E1GE9BkQbdWVukFnz3PB7cAYSSIi0OT3lb\npBZ89zweX4Px1L6O5FO7Rnz3PB7cAYRLirT34IStDcCcotCcblbjwR1AqCrStkUHz/KwtQGY\nUxSa081qPL4G4/FauyCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd\n43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+\ni0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSO\nx/mY6LNYpMt0HxtIXzWzXr2RPib6LBbpEt3HDsp3ATNevdE+JvosFukC3cfHBU2aU1Kb01mk\n0rUBsEgN+SxSHdjaAIRF4ePjkibNKanN6SxS6doAWKSGfBapDmxtACxSQz6LVAe2NgAWqSGf\nRaoDWxsATzY05LNIdWBrA2CRGvJZpDqwtQHwBdmGfBapDmxtALxEqCGfRaoDWxuAOUWhOd2s\nxmOiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNY\npCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53ic\nj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KR\ngnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+\nJvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK\n0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY\n6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LOMLJKI9PiIFKRzPM7H\nRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhB\nOsfjfEz0WSxSkM7xOB8TfRaLlOZjA+mbV1Kb01mk0rUBAH0fOzjjvJLanM4ila4NAOf7+Jig\nSXNKanM6i1S6NgAWqSGfRaoDWxsAzPfxMUWT5pTU5nQWqXRtACxSQz6LVAe2NgAWqSGfRaoD\nWxsAi9SQzyLVga0NgCcbGvJZpDqwtQGwSA35LFId2NoA+IJsQz6LVAe2NgBeItSQzyLVga0N\nwJyi0JxuVuMx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6\nx+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9\nFosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekc\nj/Mx0We5myJVv+X1npPanM4ila4NwDnfBZsw3HNSm9NZpNK1ATjju2RboHtOanM6i1S6NgAW\nqSGfRaoDWxuA076Ltk6956Q2p7NIpWsDYJEa8lmkOrC1AbBIDfksUh3Y2gBYpIZ8FqkObG0A\nPNnQkM8i1YGtDYBFashnkerA1gbAF2Qb8lmkOrC1AfASoYZ8FqkObG0A5hSF5nSzGo+JPotF\nCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5\nmOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYp\nSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudj\nos9ikRhd/p3sc0pqczqLVLo2AFeMQsneKnNKanO62ynS4vuDDT+fxtYG4HpRKNrta05JbU53\nM0X6Ls/i+48t2NoAWKSGfBYpyWJtkU5TtiPynJLanO5GirRYW6QzWKTJdbdcpP96JppqXuwX\n6dqzyJUoKdJi7SPSOXxEmlx3E49IB92xSAk82TC17jaK9MnuxvcfW7C1AbBIDfks0gl8RDqH\nL8hOrLNIpWsD4CVCDfks0gm+C+SVDW347nk8vgbj8Vq7IJ3jcT4m+iwWKUjneJyPiT6LRQrS\nOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjo\ns1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjn\neJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikT47f4drUeJPrZjUeE30Wi9ST2nOhofECdLMa\nj4k+i0X634ldgNoZL0I3q/GY6LNYpP9ZpAl8FqkObG0ALvald0ptZrwQ3azGY6LPYpEs0hQ+\ni1QHtjYAFqkhn0WqA1sbAIvUkM8i1YGtDYAnGxryWaQ6sLUBsEgN+SxSHdjaAPiCbEM+i1QH\ntjYAXiLUkM8i1YGtDcCcotCcblbjMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/F\nIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfj\nfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaL\nFKRzPM7HRJ/FIgXpHI/zMdFnudkiHb/ldZRuSL1+TkmdWrfcUHe/RTrNlFFIbcIwQjfkEr1F\n+mK5o+Z+i3TZWo/0JbcFulw35CK9RdqxXJ5vUvJ+i3TRWo/1WaRr+yxSHROt9UhfeuvUi3VD\nLtNbpE+Wy/NNSt9vkS5Z67E+i3R1n0WqY5q1HuuzSFf3WaQ6plnrsT6LdHWfRapjmrUe7fNk\nw7V9nmyoY6K1HuuzSNf2WaQ6Jlrr0b7xPfIF2cl053vkC7LkWo/3jayRlwhNqTtXo/T9Fuk0\ns47C1X33PB4TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRz\nPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfZaRRRKRHh+RgnSOx/mY6LNYpCCd\n43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+\ni0UK0jke52Oiz3KzRcq8F3x49/GX33NSm9NZpNK1Adj3ZXYnGd6d+vJ7TmpzOotUujYAe77M\nflnDu5Nffs9JbU5nkUrXBsAiNeSzSHVgawPw4/v4ONuk4d3pL7/npDans0ilawNgkRryWaQ6\nsLUBsEgN+SxSHdjaAFikhnwWqQ5sbQA82dCQzyLVga0NgEVqyGeR6sDWBsAXZBvyWaQ6sLUB\n8BKhhnwWqQ5sbQDmFIXmdLMaj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI\n53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oi\nz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd\n43E+JvosFilI53icj4k+SzNFyryj9Yj8W1xHcs9JPWK5AdTVY5HK1iazx8IRJZsujMQifbPc\nAekuwSIVrU1m158jirYBGolF+mK5rG+SRaoDWhuLdG2dRRpJE0X6+KhrwvDra4+vHK9JX9x4\ny+UFTbJIdTBrY5GurrNII7FI+fGa9FmktrBI+fGa9FmktmiiSJ5suLrOkw0jsUgF47Xos0ht\n0UaRfEH22jpfkB1JI0XyEqEr67xEaCTNFGk8s07qtXWzGo+JPotFCtI5Hudjos9ikYJ0jsf5\nmOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYp\nSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudj\nos9ikYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9yM0XKvfW88q3o+DvX\nZ5XU5nQWqXRtRpLbDKVyc5QJ9lKZVVKb091IkRYb9j/+vtFKkXLbc1Vu1zXF7l6zSmpzutso\n0uL7j73/foKtzTgsUms+i5Sg+SJ9fBxGP3e7Uscwp6Q2p7uNIm1ZHPznC2xtRmGRmvNZpFN8\nFen7V6T/eiaZqZr95JfcrtSJZCkr0s/5hYOneT4iVTCn/8tvTnd7j0iDj7G1Gccw+LnblTqE\nOSW1OZ1FKl2bcVik1nwWKcH+07kmn9r5gmxzPouUYFikvQcnbG1GM8x97nalbjxzSmpzutso\n0veVDYv14VUOLRVpXlFoTjer8SZpwkhu5Fq7CXyO15DOIpWuDcCcotCcblbjMdFnsUhBOsfj\nfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaL\nFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/z\nMdFnsUhBOsfjfEz0WSxSkM7xOB8TfZZmipR7S2rt/ZXvkD2+m43Cw4Zz9y83nLt9hEVqi0aK\nlNskofb+yj0bUneTUXjYcer+5Y5TtxNYpLZoo0i5bXtq76/cRSh5NxiFh4fzTVouD5szvJ3C\nIrWFRTp1t0VqSGeRitbm4+N80mvvz90u0nNReHg436Tl8rA5w9tJLFJbWCSLNIXPItXBrI1F\nskg1Pib6LBbJIk3hs0h1QGtzvieebEhgkdrCIp262yI1pLNIhWtzvie+IHuMRWqLRorkJUJL\nLxEq9jHRZ2mmSOOZUxSa081qPCb6LBYpSOd4nO9EGN9fnxbd6jWf+ZGhT0vHHY6tDcCcotCc\nblbjpbP4b9FtWbznMm+RIn2O15CupEiP3fOmQm+r7mVcpi/DIgXpHI/znYjyZ5bf+/9u/vfU\nrd62t5+7bcM2HXvqFi9fX/jz6V+L7jH/fDCHRQrSOR7nS2fxqfvzE+vu+etJ3vYJ3+Pmg/ft\nR0+7In1/+mX7fHB0kxJFetk91yzpGLY2AHOKQnO6WY2XzuLb5pHl5ffbZ6y71ft6+yTvV//H\nS1+Ul+55/Xf3cLX36a5723x6kXaWc9yWl66zSLzO8TjfiTC+/3rsH2X+9rHu/m2a1T/iPG5j\n3D8QPXa7sxB9sn8+veie/5wQ1nDclkX3q/xwbG0A5hSF5nSzGu90Hv+9PK+631+/L30+/Hw9\nKnw/Mhx++s/mCdjjW01nkhwXqerkILY2AHOKQnO6WY2XifSiqkib9j12i78VoU9/16PPvHS5\n8/B7YGsDMKcoNKeb1XgnorwL7mdP3vqndquv53A9iad2X7yOf2kpIXhalT/QYWsDMKcoNKeb\n1XjpLL50q83jyvvL54m51fp91f+S8tKfVfjdV6r/6N/XQ9PPpxfd382n6ZMN3T4WqWHfPY93\nIoyPuysb3rZF6j9af5303p57+Drj3Sf759OfJ9cqzguksUhBOsfjfKfS+Lppz+LlfZvjt1X3\nvH1m9fbcbR+qNr8Lbe5+ftv9svTz6ZdFtxjdI1+QjdI5HucriPUUl9Od/47jDsfWBmBOUWhO\nN6vxCmLdQJG+ZliU/P6FrQ3AnKLQnG5W4xXE+tpFWsz2d6TKd8TmuW5SR75DNnt4pa+aey/S\n616PSq7jw9ZmJJV7NJRwzSKN3LOh4PAq3wVcuUjx3MaVDZW7BhVxxSKN3EWo5PAa3yVYpDqw\ntRmHRao9vMZ3CfdepHm+jvTxcdic4e0rj1frG7nTatHhI8a7hq6kSP93htE9yWKRph+v1meR\nMr50FpsqUs/2Wru31VPJ4djajMIiVR8+Yrxr6OZYpKevi2hLmoStzSgsUvXhI8a7hm6ORdrf\nQyILtjbj8GRD7eE1vkuwSOtV9/nUbkaPSBap+vAa3yVYpN3V5p9Xo2fB1mYkw96M75EvyI7C\nIvVvjXrsusdfRe+TxdZmNMPajKyRlwiN47pF6n/41y9SDdjaAMwpCs3pZjVeOosHNRpUaVzK\nS7BIQTrH43zpLA57tN+kcSkv4egF2fUMX5CdxOd4DemmKBJ7gbhFCtI5HudLZ/GoR3tNKoj+\nSHxqF6RzPM6XzmK2SF8PDl/b3P38efzfagZHPT7//ldzOLY2AHOKQnO6WY2XzmKuSN3uj/3/\npj532YNL6qLVp19/SveIxNYGYE5RaE43q/HSWSwq0vpMkU50oozBQe9/fq0+X459fi15aMLW\nBmBOUWhON6vx0lnMnmzYPWn73sJ4vfcItLef8WXP7VIH/Xt9XniywfEa0kFn7brv8qwHRfre\nLvxEJ7KcOujfc/z+ESIjKHpBtjtZJPZ3pC0+Ik2gczzOl87iXm+SlwiVnmxAntq9/X5Z1Zxw\nwNYGYE5RaE43q/GyRTriM+uHp7hPnf7GztrVnALH1gZgTlFoTjer8dJZzBZpUo6KVHbV9xfY\n2gDMKQrN6WY1XjqLjRXJR6RpdI7H+dJZbKpIm9+RPv+VmdWvP3N6Y98EPsdrSDe7Im359/rk\nWTvHa0k3zyL1/HuySE377nm8dBbbK9IkryMdv/V7ffb+2reKj35r+ZBxUXjYAPqGbx2vfSt5\n7vjjcc8fn+Xei/R9rV3hGYfSdUhtRrI+c3/t5iXAZidDxkThYQfkG25mUru5Se741Ljnji/g\n3ou0ezH2L3z198/lT+m1Gd6f/Ppa/0hGROHhIRHNy33D7bVqt9vKHZ8c98zxJVyhSNcl5v1I\nFskijWNuj0i1lK3Cx0cq6euT96e/vtY/ksuj8PCQiubFvuXyMMnD22OPT497+vgiLNLPPdzJ\nBos0xmeRhr50Fi2SRTqLRRr60llstUhFlK2CRRrjs0hDXzqLd1AkTzaM8g1zXJvr3PGebACw\nSKewSKeOL+HeizTVP32ZyrkvyJYyzHFtrnPHn+/RDF+Q7f8yt1kkLxHyEqFR1BTp6/8XbvCp\nXX5tAOZ02WVzulmNl87isEf7TbqgBpXNsEhBOsfjfOksjilSgvFFenET/Ql0jsf50lk86tFe\nk+pKcaoZdV/+Ms3vSJm1AZhTFJrTzWq8dBYzReq+8v61idC6279xvMnQevCltUVadP9W3dv7\nqvtrkRr23fN4o4r0vYXdYF+7xBZ3B19aXaTNUb+6P+v3bmWRGvbd83gXFelrQ8jkPzwx2IA1\n1a1LivSne0WvtStYG4A5RaE53azGO1ukkycbvoq0t4f+z8b6ExTpqfv91j2u/1qkpn33PN5l\nRdo9rTsozFeVpihS36Dt282fLVLDvnse73yRTr4gmy7SQWvIIq3/PK7Xz133UnC0Rbqa757H\nyxTp5CVC3f4fwxvnTjZcVqQasLUBmFMUmtPNarx0Fv/vDPth3zu9XXz6O49FCtI5HudLZzFf\npClJFOm937V49avocGxtAOYUheZ0sxovncXWivS2+DxBuHDv75Z99zxeOoutFWnVrTYVelt5\n1q5p3z2Pl85ia0XavX707utITfvuebx0Flsr0lP3uc2qlwg17bvn8dJZbK1I6+fVv/6p3Sr2\nd6TcO1zz76CdUxRqOX6H6nld7h2ttb5qLNLhu81zT++otcntuVCyp8OcolBHas+Ec7rcHgu1\nvgu4QpGuSxtFyu0CVLTL0JyiUEVyF58zutyuP7W+S/ARqQ5obSzSOSySRSpbm4+P800a3p/+\n+jlFoYblMpX807r011/uuwiLtOG1/2cvV0X/vAuzNhbpHBZp6EtnsbUivW//WfPNr0pxbzW3\nSOewSENfOoutFem5e+lflP0d+DqSRTqHRRr60llsrUhd9/O/LNDanO+RJxvqTg6c75EnGybB\nIhWMd2WfRZplkXZP7V5CL1o93yNfkD3uhS/IDtnrTf+Xu3qR3q/zNopzNUrdf/z1c4pCLce1\n8BKhIQc1GlRpXElKSD1/+/XYdY8v7yWHY2sDMKcoNKeb1XjpLA57tN+kM4nvTt9VQxMvyDLM\nKQrN6WY1XjqLhUWaCIsUpHM8zpfO4lGP9po0LuUlDIv0/tJ/5veieyr5FckiXc13z+Ols5gp\n0teWqtvttXb7539vu3VyL6GLi7ToD/+7PdlQ8ksStjYAc4pCc7pZjTe6SD+tWe/fTuxud2mR\nXrvVpj+Pq/5fdynZIRJbG4A5RaE53azGu6hI6+O2JNpz0IcRRVp1/cYn/UtI793CIjXsu+fx\nzhbp5MmGyiJVPrcbfO322N/bByM3P2nad8/jXVakn72/S4pUusPqiSIt+tsv3T+L5Hgt6ZAX\nZGuKNPZ3pO0WQo+P6/6Eg7sItey75/EyRTp5idDRmYQuXaTu595Li/S6+fXoT/dr8yvSqv/H\nxixSs757Hi9bpCMSRTo4/b3fnu/T32MekbYX2vUnvrvuseRwbG0A5hSF5nSzGu/SImXjP4Kh\n6d/j50uxZf88kkW6mu+ex0tnsbJI1b8FncdLhIJ0jsf50lmsfUSqvXbhPBYpSOd4nC+dxUue\n2nFYpCCd43G+dBYtEsScotCcblbjpbNokSDmFIXmdLMaL53FGy0S/dbwnC/3VvUM/b+DffiZ\n9dn7j7/+kOF7uXO3KxkePhyn/tsd/nVHjwvrSop0XSYqEr1ZSc6X2zwlw8OOU+MN7099/T7D\n3UVytysZHj4c55Jvt//XBcaFdTdSpMWG1Mcni0Rvn5Xz5bbzyvDwkGjG+vT9ya/f4+eyybLb\nlQwPH45z0bfb++sS48K62yjS4vuPw4/XFints0gWKUV1kT4+DpM9vJ1Ym7PkfGl/MQ8PqWas\nT96f/voflsvDrORuVzI8fDjOZd/u56+LjAvrbqNIWyySRbJIp7m8SP/1pL92P9ip27XkfCP9\n+0ksuT/39ftRKbldyfDw4Thjv93E447UtUpZkX5OMPiI5CNSCT4incKTDT/3n++RJxt4nUVK\n3z5em/NYpHN6i9QA05z+9gXZw6TkblcyPHw4ziXfzhdkxzFRkbxEaBCU3O1KhocPx6n/dl4i\nNI6qKxsWex9/UrcaZ9YGYE6XXTanm9V4kzRhJF79HaRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfj\nfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaL\nFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/z\nMdFnsUhBOsfjfEz0WSxSkM7xOB8TfZawIo19h2yeSaNQ+w7ZIbnjM29xrX0Dbz11q5d9i6tF\nqqN0Hcbu2VDChEWq3bNhSO74zKYLtVtKXELN6tXtpYJgkbaM3UWoiOmKVLuL0JDc8ZltgJLf\n7sx4F1GxeiXbAFmkOgqXwSJZpHFYpJ6Pj1STZlOkh4fDqA5v58gdP7y9XB5ENf3tTo839q+b\nYzDeWF0ZFqnHIlmkkVikHotkkUZikXoskkUaiUXa4smGs8cPb3uy4byPiT6LRSrQWaQDLFIC\nX5At0Q2DWhvc3PHD24Ogpr6dL8i2hZcIlemGOa3Nbe744e1BTo+/nZcItYUXrQbpHI/zMdFn\nsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7x\nOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/F\nIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfj\nfEz0WSxSmW743urMW8Ozvtzxg9u5b58j//WjVu/4b39el1+tIRapcG0AJizScLePzGYlWV/u\n+MHt3LfPUfL1I1Yv9bc/pytZrSEWqXBtAKYr0nD/qcz2WVlf7vjB7dy3z1H09ZevXvJvf0ZX\ntFpDLFLh2gBYpBNYpAAsUl63XB7+7B8eDqM5vD/nyx0/uJ379jnKvv7i1Uv/7U/rylbr7HhM\n9FksUl5nkc5hkbZYpLzOIp3DIm2xSHmdRTqHRdpikQp0w5/8MJhFyfBkw7mvz2GRCtcGwCKd\nwCIFYJFKdMOf/DCYJcnwBdlzX5/DIhWuDYCXCJ0m//VeIjQOixSkczzOx0SfxSIF6RyP8zHR\nZ7FIQTrH43xM9FksUpDO8TgfE30WixSkczzOx0SfxSIF6RyP8zHRZ7FIQTrH43xM9FksUpDO\n8TgfE32WkUUSkR4fkYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0\njsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9yN0WqfU/pQJc7PPeez9pvn3mH\nrEVqjTspUu0uBwNd7vDcLo5EwN8AAA7ESURBVAS13z6zZ8NwPAKLNI77KFLtvjsDXe7w3L44\ntd8+s4vQcDwEizQOi1Sgs0jX1lmk0rUBOO17eLigST+63OHL5fkm1X77gS+tt0htYZHyOot0\ndZ1FKl0bAIs0Bos0DouU11mkq+ssUunaAHiyYQwWaRwWqUBnka6ts0ilawPgC7JjsEjjuJMi\neYlQDos0jrsp0rV1jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5\nmOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYp\nSOd4nI+JPotFCtI5Hudjos9ikYJ0jsf5mOizWKQgneNxPib6LBYpSOd4nI+JPotFCtI5Hudj\nos9ikYJ0jsf5mOizWKQ0uXe0Du/PvwP2cLzcO2qzNL16OV39394iFa4NAOjL7bEwvL9kT4b9\n8XJ7PBTQ8OrldJf87S1S4doAcL7crj/D+4t2CdobL7frUAntrl5Od9Hf3iIVrg2ARRqDRRqH\nRTrm4eF8M4b3575+ON5yCTSp2dXL6S7721ukwrUBsEhjsEjjsEjHWKQpdRYpxcULPVwbAIs0\nBos0DouUINeL4f0lPfJkwxeebEhw4TIfrw2ARRqDRRqHRUqR68Xw/oIe+YLsN5f87S1S4doA\neIlQQz4vEaqjeoFPrQ3AnC67bE43q/GY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oi\nz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd\n43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+\ni0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+Jvossy3S8buVD335936fJfdW8pFvls6S9Z/X\nTT1etM4ila5NJan9M/Z9JbuRnCG3ucno7TsyFPjP6aYeL153I0VabNj/+PvGtYqU3NFpz1e0\nP9Zpctttjd9Q6jwl/jO6qce7gu42irT4/mPvv59ga1OHRbJIjTHLIi2Xqaz8+B4eRjVpePjw\ndvrb5yj/6xb5T+umHu8autso0pbFwX++wNamCotkkVqjukjfvyL91zPJTFn2o5K6fz/5F+iH\nhw9v5779WEb6px5PUpQW6eCZ3bVPNviI5CNSa9QWaXADW5s6kknxZEPF4TW+S7BIaRYnbmFr\nU4dFskiNUVakxeFHVy+SL8j6gmxjlL0ge/jh3k1sbao5DoqXCFUcXumrxiIlWHydqlusD69y\n8KLV6/nuebyJujCKmV5rF+BzvIZ0Fql0bQDmFIXmdLMaj4k+i0UK0jke52Oiz2KRgnSOx/mY\n6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI\n53icj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oi\nz2KRgnSOx/mY6LPMtkjH74BFf3Yj32CbYE5JbU5nkUrXppLUngzgz27klg9J5pTU5nQWqXRt\n6kjuEsT97EZuQpRmTkltTmeRStemDotkkRpjlkV6eEhFHfvZpfVjmVNSm9NZpNK1qcIiWaTW\nsEil+rHMKanN6SxS6dpUYZEsUmvMskiebLBIrWGRSvVjmVNSm9NZpNK1qSQVdF+QbchnkerA\n1qaa45x7iVBDPotUB7Y2AHOKQnO6WY3HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8T\nfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXp\nHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0\nWSxSkM7xOB8TfRaLFKRzPM7HRJ/FIgXpHI/zMdFnuVqRPjaMXd194PeGX/ut5tnvb5Ha4kpF\n+tgxfoU/gXcrufbmJwXf3yK1xXWK9PHBNgneP+va23GVfH+L1BYWaXrdJxYJ8zHRZ7lKkT4+\n2CY9PKDRh3U7yteq6PtbpLawSJPrdlgkzMdEn8UiTa7bYZEwHxN9Fos0uW6HRcJ8TPRZPNkw\nve4TTzZgPib6LBZpet0nFgnzMdFn8QXZAN0WX5DFfEz0WbxEKET3Py8RAn1M9Fm8aDVI53ic\nj4k+i0UK0jke52Oiz2KRgnSOx/mY6LNYpCCd43E+JvosFilI53icj4k+i0UK0jke52Oiz2KR\ngnSOx/mY6LNYpCCd43E+JvosI4skIj0+IgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaL\nFKRzPM7HRJ/FIgXpHI/zMdFnsUhBOsfjfEz0WSxSkM7xOB8TfRaLFKRzPM7HRJ/FIsXolhvO\n3V/9jty7Wj2LVLw2AA1HYbnj1P0X7BFxR6t35GOiz2KRAnTL5fkmXbJr0f2s3rGPiT6LRQrQ\nWSTWx0SfxSJNr1suzzfpop1d72b1Ej4m+iwWaXqdRYJ9TPRZLNL0OosE+5jos1ik6XUWCfYx\n0WexSAE6TzawPib6LBYpQGeRWB8TfRaLFKHzBVnUx0SfxSLF6LxECPQx0WexSEE6x+N8TPRZ\nLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8\nzsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0Wex\nSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4\nHxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8Ui\nBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8\nTPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosU\npHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx\n0WexSEE6x+N8TPRZLFKQzvE4HxN9FosUpHM8zsdEn8UiBekcj/Mx0WexSEE6x+N8TPRZLFKQ\nzvE4HxN9FosUpHM8zsdEn+VmivSwARXec1Kb01mk0rUZycMOUHnPSW1OdyNFWmxIfdxMkR4e\n+Cbdc1Kb091GkRbffxx+vLZI1/Pd83h8DcZzE0V6eJigSfec1OZ0t1GkLRapLd89jwd3AOHy\nIv3XM8VI9ewX6dqzyH1SWqTF/n99RLq+757HgzuAcBNF8mRDcz6LlGZx8IFFur7vnseDO4BQ\nVqTF4UfNFckXZFvzWaQUi8GH7RXJS4Qa81mkBIvF7nKGxbrRKxum8DleQ7rbKNIZsLUBmFMU\nmtPNajwm+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyP\niT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGC\ndI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m\n+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrS\nOR7nY6LPYpGCdI7H+Zjos1ikIJ3jcT4m+iwWKUjneJyPiT6LRQrSOR7nY6LPYpGCdI7H+Zjo\ns4wsUks08u9wnsLxxtD4eBYpDscbQ+PjWaQ4HG8MjY9nkeJwvDE0Pp5FisPxxtD4eDdVJJHr\nYZFEACySCIBFEgGwSCIAN1OkRc+1hzhN+9O1Pt+1Z8hwO0W69gBnWXz/0S7tjjeH1bNIIcwg\nCg1PN4PVu5kiNb7MjY/X0/CIFimO1p/kr5seb912Ti1SHI2v9bZF7Y63bn241v9v6HaKtKXd\nxW685+u2h2t/9SxSEM1HoeXZ2l+99e0UqfG1bny8tmdrf/XWt1Wkhpe6+Si0PFv7q7e+nSK1\n/vto4+M1HtPWV299Q0USuSYWSQTAIokAWCQRAIskAmCRRAAskgiARRIBsEgiABYJ4f31adGt\nXvNf2HXDDzK8Liq+WK6GPyGCf4tuy+I995XVRdp+nUVqHn9CBI/d86ZCb6vuJfeVFulG8SdE\nsAv6+/a/78/dtlf9Z5+61Vt/z9+nzcPVyzpdpL0D3p4+v6wv5eOfzdf0j3PbL37Z3SFtYpEI\nnro/Pze2T/Me1338n3dP9/58PvN7SRdp74DF7sved88Vv4v0tLtDGsUiEbwtuseX39vHnvWv\nPu8v3Wsf/9X7evt077H7vflFavfY8slPkQYHvHaL/nOr9fvq+4DtHb+61t9KcM9YJIT3X4/9\no8rfdV+a/hPdUx//f5uObR9r1m9/fq1OFGn/gLfdPY/9R297RXpb+5tS0/izofj38rzqH3i6\nHV/B3/65Ovzcer8VqQMGH+2ZpE382ZD0T75SvXjuHl//vFmkG8afDUHXve/++/VM7fPW9vnZ\naleB97NP7X4+l3xqd3iINIc/G4KXbrX59ej9pf9F56U/d/D7sz7bMwa/+o/+7p876Plpxf4B\nX/e89DdXFmk++LNBeNxd2fD2feb637ZI/efWfS8Onr19fvD1qf0D1rt7v09/r7vPp4tfd0ij\n+LNheF31r7hun+C9PXfbB6j+qd2qe96eFN9+6kSR9g9Yf/3ZvyD7u//o1SLNAn820zE6+L5w\nNB8s0nSMKFL/S9XmCeEzOI1MikWajhFF2v1S9QZOI5NikaZjzFO718du9+uVzAKLJAJgkUQA\nLJIIgEUSAbBIIgAWSQTAIokAWCQRgP8HRTiKB6NlQDgAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"library(ggplot2)\n",
"ggplot(data=iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point(size=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.3.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}