
Main Loop Logic Block: main

(* In this example, the bar code data will vary in length. Therefore, the method for receving characters is as follows:
1. Watch the RX Count Register (%R100).
2. When %R100 is nonzero but unchanged for 250mS, assume the transmission from the bar code reader is complete.
3. When the receive is complete, copy the data into another bank of registers (%R201-%R210), clear the receive buffer (%R101-110) and reset the Receive block.
4. The received characters stored in %R201-210 are displayed on Screen #1 on the OCS. *)

(*
Characters are received from a bar code reader. When not reset, the Receive Block is enabled, allowing characters to be placed in the Receive buffer starting at register %R101 [Rx_Buf]. The buffer length is 254 characters (one less than the maximum allowed), or 127 words. Note that the [RX Count] parameter is %R100, located one word register before
the buffer. So the length of the characters received is contiguous with the characters received. *)

(*
When not reset, check to see that characters have been received, but RX_Cnt is not changing; this is assumed to be an indication that transmission by the bar code reader is complete. To do this, compare RX_Cnt with RX_Cnt_Prv, which is the value of RX_Cnt from the previous scan. Also check RX_Cnt to see that it is greater than zero, indicating
characters have been received. Also, since Rx_Cnt is greater than zero it cannot be -1, which would indicate that the port is not open.

If those conditions are all true, trigger the timer; if the timer completes, assign a 1 to the ***TIMED*** receive complete bit, indicating the bar code read into the buffer so far is a complete barcode. *)

(*
When not reset, if the current received count of characters is different than the value from the previous scan,, then copy the former to the the latter, for comparison in the previous rung on the next scan. *)

(* When the ***TIMED*** receive is complete, copy the count of the received characters and the receive buffer characters to Display and Compare register buffers, then clear the received buffer count to 0 along with the receive buffer (128 words = 1 word + 254 characters). Then assign a 1 to RX_Reset bit to make the next ***ONE*** scan a reset scan, which
removes power from the Receive Block; the scan after that, the RECV instruction will start a new read. *)

(*

Calculate the left shift necessary to move the last three characters in the Compare buffer to the start of the Compare buffer, so the first two of those last three will be in the low- and high-byte of %R501, and the last byte will be in the low-byte of %R502 [Cmp_CR]. Then do the shift, compare 'BC' to those first two bytes, mask out the high-byte of Cmp_CR
and compare Cmp_CR to ASCII code 13 (carriage return), and finally assign 1 to Valid_code if all compares were true *)

(* Use Start/Stop pattern for successful bar code bit
- Start: valid code oneshot bit from previous rung
- Stop: part reaches position 2 *)

(* Use Start/Stop pattern for failed bar code bit
- Start: oneshot when ***TIMED*** receive completes
- Stop: code succeeded from previous rung *)

1

%S007

ALW_ON OPEN

PORT
Baud
Parity
Data Bits
Stop Bits
Handshake
Protocol
Mode

MJ1/Com Option
9600
None

8
1

None
Generic
RS-232

 () Force Screen: 1

2

%T00003

RX_Reset RECV

PORT

Bytes

Data

RX Count

MJ1/Com Option

254

%R00101

%R00100

Rx_Buf

Rx_Cnt

3

%T00003

RX_Reset EQ_INT

IN1

IN2

%R00100

%R00012

Rx_Cnt

Rx_Cnt_Prv

GT_INT

IN1

IN2

%R00100

0

Rx_Cnt
 TON %R00001
 0.01s

PT25

%T00002

Timed_Rx_Cmplt

4

%T00003

RX_Reset NE_INT

IN1

IN2

%R00100

%R00012

Rx_Cnt

Rx_Cnt_Prv

MOV
word

IN
Q

%R00100
%R00012

Rx_Cnt

Rx_Cnt_Prv

5

%T00002

Timed_Rx_Cmplt BMV
word

IN
Q

N

%R00100
%R00300

128

Rx_Cnt

RX_Disp_cnt

BMV
word

IN
Q

N

%R00100
%R00500

128

Rx_Cnt

Cmp_Cnt

Fill
word

IN
Q

N

0
%R00100

128

Rx_Cnt %T00003

RX_Reset

6

%T00002

Timed_Rx_Cmplt SUB
int

IN1
Q

IN2

%R00500
%R00499

3

Cmp_Cnt

Cmp_Shift

GT_INT

IN1

IN2

%R00499

-1

Cmp_Shift

MULTI SHIFT
BYTE

SRC

LEN

N

DIR (left)

IN OUT

%R00501

128

%R00499

%S007

%R00498 %R00497

Cmp_Buf

Cmp_Shift

ALW_ON

Null_char Cmp_temporary

CMP
STR

IN1

IN2

N

'BC'

%R00501

2

Cmp_Buf

AND
word

IN1
Q

IN2

%R00502
%R00502

255

Cmp_CR

Cmp_CR

EQ_INT

IN1

IN2

%R00502

13

Cmp_CR
%T00004

Valid_code_oneshot

7

%T00004

Valid_code_oneshot

%I0002

PART_POS2

%T00005

Code_succeed

%Q0011

GRN_LIGHT

%T00005

Code_succeed

%T00006

Retract_cylinder

8

%T00002

Timed_Rx_Cmplt

%T00005

Code_succeed

%T00007

Code_fail

drbitboy_barcode_time.cspSat Sep 25 2021 12:45:34 AM Page: 2

Main Loop Logic Block: main

(*

Unless the cylinder should be retracted, actiivate the cylinder-exend soloenoid until the extended cylinder prox is reached *)

(*

When the cylinder should be retracted, activate the cylinder-retract solenoid until the retracted cylinder prox is reached *)

%Q0012

RED_LIGHT

%T00007

Code_fail

9

%T00006

Retract_cylinder

%I0005

Cylinder_fully_extend

%Q0002

SOL_EXT

10

%T00006

Retract_cylinder

%I0006

Cylinder_fully_retract

%Q0001

SOL_RET

drbitboy_barcode_time.cspSat Sep 25 2021 12:45:34 AM Page: 3

