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Streszczenie

Niniejsza praca poświęcona jest w całości środkom wyrazu obliczeń –
a więc programom i językom programowania.

Omawiamy techniki metaprogramowania: interpretację i kompilację,
oraz mniej znaną metodę abstrakcyjnej interpretacji. Prezentację prze-
prowadzamy w ramach wypracowanego przez nas aparatu pojęciowego,
opartego o terminologię teorii mnogości i algebry uniwersalnej.

Staramy się uwydatnić warstwową naturę (meta)obliczeń, mającą swój
wyraz w spostrzeżeniu, że interpreter (a więc emulator pewnego modelu
obliczeniowego M2 w pewnym modelu obliczeniowym M1) jest progra-
mem, generującym (w M1) proces obliczeniowy emulujący inny proces
obliczeniowy, generowany (wM2) przez inny program.

Praca składa się z trzech rozdziałów:

1. “O obliczaniu i obliczeniach” – w którym proponujemy prosty mo-
del obliczeniowy S. Model formalizujemy jako maszynę abstrakcyj-
ną DRC�SE�, wykazujemy jego pełność, wskazujemy ograniczenia
i szkicujemy możliwe uogólnienia DRC�A�. Wreszcie w kontekście
uogólnionych maszyn DRC definiujemy kluczowe w pracy pojęcia
procesu obliczeniowego, procedury i programu, oraz dwie funkcje se-
mantyczne: “górną” przyporządkowującą programowi jego funkcję
wejścia-wyjścia, oraz “dolną”, przyporządkowującą programowi ro-
dzinę procesów przez niego generowanych.

2. “O programowaniu i programach” – w którym wprowadzamy pojęcie
języka programowania i omawiamy sposoby implementacji języków
poprzez interpretację i kompilację. Dalsza część rozdziału, podzie-
lona na sześć podrozdziałów, poświęcona jest dwóm przykładowym
językom – drcz1 będącego naszym wariantem LISPa Johna McCar-
thy’ego ([13]), oraz FCL�SE� – prostego imperatywnego języka za-
proponowanego w [10], szczegółowo omówionego w [9] i błyskotli-
wie użytego w [7]. Kontemplujemy naturę interpretacji i kompilacji
na przykładach przejść między modelami obliczeniowymiDRC�SE�,
FCL�SE� i drcz0. Za pomocą prostych środków dowodzimy popraw-
ności jednego z kompilatorów.

3. “O generowaniu i generatorach” – w którym demonstrujemy i pró-
bujemy wyjaśnić abstrakcyjną interpretację – metodę transformacji
programów opartą o semantykę (dolną), na której oparte są techniki
agresywnej propagacji stałych (partial evaluation) oraz nadkompila-
cji (supercompilation). Odtwarzamy wyniki [7] i prezentujemy kilka
własnych. Na zakończenie szkicujemy plan dalszych badań.

Praca opatrzona jest pełną implementacją omówionych narzędzi załą-
czoną na płycie CD. Implementacja ma formę emulatora maszynyDRC�SE�
(zaimplementowanego w języku C dla systemów unixowych), skompilowa-
nego kompilatora, oraz zestawu programów udokumentowanych w załącz-
nikach.
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Abstract

This thesis investigates means of describing computations – programs
and programming languages. We study the techniques of implement-
ing languages by interpretation, compilation and abstract interpretation
(driving), using simple mathematical framework. We discuss three lan-
guages: of DRC�SE� abstract machine, drcz0 LISP variant, and simple
imperative flowchart language FCL�SE�. We implement each one of them
in the others, and present driving-based program generation technique of
online partial evaluation for FCL�SE� as presented in [7]. We finish with
our humble result – a non-trivial compilation with first Futamura projec-
tion (from subset of DRC�SE� to FCL�SE�).
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Preface

The art of constructing software systems seems to be majorly the art of de-
scribing their behaviour. This thesis is entirely devoted to means of expressing
computations – single-threaded, (mostly) non-interactive input-output transfor-
mations, that constitute the building blocks of every software’s behaviour.

Various methods of interpretation, compilation (translation), abstract interpre-
tation (driving), and equivalence proofs are well known, and the variants which
we propose do not pretend to originality. What we believe to be novel is the
uniform conceptual framework in which we present them. We try to emphasize
the “laminar nature” of computations – that metacomputations can go many
levels above the straightforward interpretation, and that such liberation can be
useful in practice. The framework relies on what we dubbed “mathematical
methods” – using concepts from sets theory and universal algebra, arguing with
proofs, and tendency towards simplicity and elegance.

Our major contribution - the S model, formalized as DRC�SE� machine, was
strongly influenced by Landin’s SECD machine (as described in [11]) – we have
invented it while trying to modify original SECD design to serve as virtual ma-
chine for drcz0, our experimental variant of McCarthy’s LISP ([13]). The main
difference is explicit management of environment, which makes implementing
languages with various control mechanisms easier. The S model is as (a poste-
riori) attempt at explaining DRC�SE�’s architecture.

The core of thesis consists of three chapters:

1. On computing and computations, in which we analyze computations and their
procedures, introduce the basic computational model S and it’s formalization
– abstract machine DRC�SE�, in context of which we define the fundamental
notions of this thesis.

2. On programming and programs, in which we discuss means of expressing
computations – programming languages, and their associated computational
models. We discuss interpreters and compilers, implement two example lan-
guages, prove correctness of particular compiler, and provide example appli-
cation in studies of sentential calculus.

3. On generating and generators, in which we try to explain the phenomena of
abstract interpretation, the core of semantic-based program transformation
techniques of partial evaluation and supercompilation. Results of [7] are re-
produced, and some of our own provided. We conclude with challenges and
further work.

Full implementation is supplied on attached CD. It centers around DRC�SE�
machine emulator, written in C language and reviewed in appendix A. All other
tools are written in languages described in thesis, and can be executed on the
emulator (cf. appendices B and C). Major motivation for writing these imple-
mentations was to try “mathematical methods” in practice.

The reader shall judge how promising these results are.
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1 On computing and computations

The purpose of this chapter is to introduce conceptual apparatus for further
investigations.

In section 1.1 we try to capture computations in their natural environment of
integer arithmetics, in order to introduce the notion of procedure – “knowledge
on how to perform computations”. Section 1.2 presents our simple stack-based
computation model S, which provides unambiguous notation for descriptions
of procedures. We prove its expressive power and limitations in section 1.3,
and extend its domain from integers to variant of McCarthy’s S-expressions in
section 1.4. In section 1.5 a formalization of S is proposed, in form of abstract
DRC�SE� machine, in context of which section 1.6 defines key notions of this
work – of computational process, procedure and program.

1.1 Computations and procedures.

Assume we are able to calculate sums and products of any two numbers, and
are willing to find [number being] the sum of squares of numbers 2 and 3. In
other words we are willing to compute the sum of squares of numbers 2 and 3,
or to compute value of “sum of squares of two numbers” function at arguments
2 and 3.

In order to do that, we could first take 2, multiply by itself obtaining 4, then
take 3, multiply by itself obtaining 9, and finally add these results obtaining 13.

Notice the actions taken did not depend on the choice of numbers 2 and 3. We
could use the same sequence of actions to compute sum of any two numbers:

Example 1. To compute sum of squares of [any] two numbers:

1. take the first number, multiply by itself,

2. take the second number, multiply by itself,

3. add the results.

We have described (one possible) universal method of computing “sum of
squares of two numbers” function at any two arguments given - universal in
the sense that anyone capable of adding, multiplying, and remembering num-
bers can perform it, obtaining correct result.

Which leads to the following:

Remark. There exist effectively computable arithmetical functions, i.e. ones
for which some universal method of computing their values at any arguments
given exists.

We will call such universal methods procedures.
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Examples of similar functions can be provided instantly, like “the sum of squares
of three numbers”, “the sum of cubes of...”, etc. - for each of them it’s easy to
propose a procedure of sequential additions and multiplications.

Such procedures seem quite simple, as they involve fixed number of actions.
This does not have to be the case, as will be shown in the following two examples.

Example 2. To compute absolute value of number given:

1. take the number,

2. if it is negative, multiply by -1,
otherwise leave it intact.

This procedure involves choices - under such-and-such conditions do this, other-
wise do that. The number of instructions - and consequently number of actions
to perform - depends here on the sign of argument1.

Example 3. To compute the factorial of given number:

1. take the number,

2. if it equals 0, take [constant] 1,
otherwise compute the factorial of this numbers predecessor,
and multiply it by this number.

This procedure involves i.a. “embedded computation” - in the course of per-
forming it, at some moment one needs to follow some other (known) procedure,
i.e. “apply it” to some of partial results, and to use its result afterwards. Such
“embeddability” of procedures enables capturing repetitions, and enables ab-
stracting similar computations. As an example of the latter consider alternative
description of the “sum of squares...” procedure:

Example 4. To compute sum of squares of two numbers:

1. take the first number and compute its square,

2. take the second number and compute its square,

3. add the results;

To compute square of given number:

1. take the number and multiply by itself.

In case of more complicated “sub-procedures” this could significantly simplify
describing procedures. These issues are discussed in more details in chapter 2.

1If we could also compute the square root of number given, we could avoid that, but this
is not the point. Some other (equally unsatisfactory) possibility we have discussed in section
III of [20].
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In summary it was shown that procedures may consist of:

1. performing “atomic” tasks, like additions, comparisons, etc.,

2. conditional choices,

3. following some (possibly other) known procedure.

1.2 Modeling procedures.

A possible way of describing procedures (of computing arithmetical functions)
will now be proposed, with unambiguous rules of interpretation. These rules
assume some particular setting at which the computer (a person performing
computation) operates. In the following sections we will refer to these rules and
setting as the S model.

Assume2 that the computer has unlimited amount of sheets of paper and pen-
cils, a desk with arbitrary large amount of drawers, labeled with some identifiers
(e.g. positive integers), and two pigeon-holes labeled “R” and “C”. The com-
puter lives as long as necessary to perform the computation, is extremely patient
and does not make mistakes.

First the computer is handed a pile of sheets: one with instructions describing
the procedure of computation to be performed, which she places in pigeon-hole
“C”, and the rest – if any – with arguments, one number per sheet, which she
places in pigeon-hole “R”.

The act of performing computation consists of steps. At each step the computer
reads the first unstroken instruction from topmost sheet from “C”, strikes it out,
and follows it. If there are no unstroken instructions, the computer throws the
sheet out (and continues with next step, if there are any sheets left in “C”).
Instructions always have one of the following forms:

a. Write number n on new sheet and place on top of “R”.

b. Write instructions i1, ..., ik (k ≥ 0) on new sheet and place on top of “R”.

c. Take two topmost sheets from “R”, calculate sum/product/difference/...3 of num-
bers they carry, and replace them with new sheet carrying the result of calculation.

d. Take topmost sheet from “R” and place it in a drawer with label l.

e. Look at topmost sheet in drawer labeled l, rewrite its content on new sheet and
place it on top of “R”.

f. Throw out first sheet from drawer labeled l.

g. Take topmost sheet from “R”, read its content and throw it out. If the content was
not number 0, then write instructions i1, ..., ik (k ≥ 0) on new sheet and place on
top of “C”, otherwise write instructions j1, ..., jm (m ≥ 0) on new sheet and place
on top of “C”.

h. Take topmost sheet from “R” and place it on top of “C”.

2For justification of such physically impossible conditions cf. [2] ch.3 or [17].
3The set of basic operations is mostly matter of arbitrary choice - the only requisite is that

the computer knows how to calculate their values at any valid arguments.
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Computation stops if there are no more instructions in “C”, or if some instruc-
tion is impossible to perform (e.g. topmost sheet in “R” contains instructions,
while the computer is instructed to perform multiplication). In the first case we
say the computation succeeded, and the content of topmost sheet in “R” is its
result. In the second case we say the computation failed. Notice that not every
computation has to stop after a finite number of steps (cf. end of section 1.5).

To instruct the computer to calculate sum of squares of numbers 2 and 3 with
the procedure from example 1, the first sheet could contain the following:

1. Take topmost sheet from “R” and place it in a drawer with label 1.

2. Take topmost sheet from “R” and place it in a drawer with label 2.

3. Look at topmost sheet in drawer labeled 1,
rewrite its content on new sheet and place it on top of “R”.

4. Look at topmost sheet in drawer labeled 1,
rewrite its content on new sheet and place it on top of “R”.

5. Take two topmost sheets from “R”,
calculate product of numbers they carry,
and replace them with new sheet carrying the result of calculation.

6. Look at topmost sheet in drawer labeled 2,
rewrite its content on new sheet and place it on top of “R”.

7. Look at topmost sheet in drawer labeled 2,
rewrite its content on new sheet and place it on top of “R”.

8. Take two topmost sheets from “R”,
calculate product of numbers they carry,
and replace them with new sheet carrying the result of calculation.

9. Take two topmost sheets from “R”,
calculate sum of numbers they carry,
and replace them with new sheet carrying the result of calculation.

The second sheets would have to contain number 2, and the third number 3.
Then all three sheets, in the order given, must be handed to the computer.

Throughout this section we will describe “histories of calculations” in form of tables

where each row represents the next state of desk. Drawer with label l is denoted with Dl.

The following sheets’ contents, in left-to-right order (i.e. leftmost number is the content

of topmost sheet), are separated with commas. Only the numbers of instructions are

written. The result is indicated with boldface.

The first computation runs as follows:

“C” “R” D1 D2

1 2 3 4 5 6 7 8 9 2,3 – –
2 3 4 5 6 7 8 9 3 2 –
3 4 5 6 7 8 9 – 2 3
4 5 6 7 8 9 2 2 3
5 6 7 8 9 2,2 2 3
6 7 8 9 4 2 3
7 8 9 3,4 2 3
8 9 3,3,4 2 3
9 9,4 2 3
– 13 2 3

9



There could also be two more instructions added at the end, to empty drawers
D1 and D2, but in case of simple calculations this is not necessary.

Before moving on with more complicated examples, we introduce a shorthand
notation for instructions:

a. CONST n,

b. PROC n,

c. ADD/MUL/SUB/...4,

d. NAME l,

e. LOOKUP l,

f. FORGET l,

g. SELECT �i1, . . . , ik� OR �j1, . . . , jm�,

h. APPLY.

Now, the same sequence of instructions (for computing sum of squares...) can
be written5 as:

1. NAME 1,
2. NAME 2,
3. LOOKUP 1,
4. LOOKUP 1,
5. MUL,
6. LOOKUP 2,
7. LOOKUP 2,
8. MUL,
9. ADD.

Such shorthand descriptions will be refereed to as S-descriptions.

We will now provide S-descriptions of the remaining two examples from pre-
vious section.

To compute absolute value of given number x as in example 2, we could hand
the computer two sheets: second one with number x, and first one with the
following instructions:

1. NAME 1,
2. LOOKUP 1,
3. CONST 0,
4. GT,
5. SELECT �
a. LOOKUP 1,
b. CONST -1,
c. MUL

� OR �
d. LOOKUP 1

�.

4Some more operations are introduced in the following, described as they appear.
5Instruction numbers are not part of this notation, we only add them for convenience.
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Here, “GT” stands for operation encoding the “greater than” relation - it takes
two numbers, compares them, and produces 1 if the first is greater than the
second, and 0 otherwise6.

In case of non-commutative operations we decided to use the order of operands
at which they appear in “R” pile - which implies the need for placing them in
the reverse order7.

If the second sheet contained number −3, the computation would run:

“C” “R” D1

1 2 3 4 5 -3 –
2 3 4 5 – -3
3 4 5 -3 -3
4 5 0, -3 -3
5 1 -3
a b c – -3
b c -3 -3
c -1, -3 -3
– 3 -3

The last example, describing procedure for computing factorial of given natural
number (as in example 3), seems especially interesting as it includes embedded
computations, and more careful management of drawer’s contents.

1. PROC �
a. NAME 2,
b. LOOKUP 2,
c. CONST 0,
d. EQ,
e. SELECT �
e1. CONST 1

� OR �
e2. CONST 1,
e3. LOOKUP 2,
e4. SUB,
e5. LOOKUP 1,
e6. APPLY,
e7. LOOKUP 2,
e8. MUL

�,
f. FORGET 2.

�,
2. NAME 1,
3. LOOKUP 1,
4. APPLY.

6This will be our standard way of encoding relations as operations - by picking two elements
from universe of algebra we are computing in, for representing values of truth and false.

7E.g. the sequence “CONST 2, CONST 3, SUB” instructs the computer to calculate the
expression “3 − 2”.
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Here, “EQ” stands for operation encoding the number identity relation (takes
two numbers, compares them and produces 1 if they equal, and 0 otherwise).

Consider history of computation with the second sheet containing 2:

“C” “R” D1 D2

1 2 3 4 2 – –
2 3 4 a b c d e f, 2 – –
3 4 2 a ... f –
4 a b c d e f, 2 a ... f –
a b c d e f 2 a ... f –
b c d e f – a ... f 2
c d e f 2 a ... f 2
d e f 0, 2 a ... f 2
e f 0 a ... f 2
e2 e3 e4 e5 e6 e7 e8, f – a ... f 2
e3 e4 e5 e6 e7 e8, f 1 a ... f 2
e4 e5 e6 e7 e8, f 2, 1 a ... f 2
e5 e6 e7 e8, f 1 a ... f 2
e6 e7 e8, f a b c d e f, 1 a ... f 2
a b c d e f, e7 e8, f 1 a ... f 2
b c d e f, e7 e8, f – a ... f 1, 2
c d e f, e7 e8, f 1 a ... f 1, 2
d e f, e7 e8, f 0, 1 a ... f 1, 2
e f, e7 e8, f 0 a ... f 1, 2
e2 e3 e4 e5 e6 e7 e8, f, e7 e8, f – a ... f 1, 2
e3 e4 e5 e6 e7 e8, f, e7 e8, f 1 a ... f 1, 2
e4 e5 e6 e7 e8, f, e7 e8, f 1, 1 a ... f 1, 2
e5 e6 e7 e8, f, e7 e8, f 0 a ... f 1, 2
e6 e7 e8, f, e7 e8, f a b c d e f, 0 a ... f 1, 2
a b c d e f, e7 e8, f, e7 e8, f 0 a ... f 1, 2
b c d e f, e7 e8, f, e7 e8, f – a ... f 0, 1, 2
c d e f, e7 e8, f, e7 e8, f 0 a ... f 0, 1, 2
d e f, e7 e8, f, e7 e8, f 0, 0 a ... f 0, 1, 2
e f, e7 e8, f, e7 e8, f 1 a ... f 0, 1, 2
e1, f, e7 e8, f, e7 e8, f – a ... f 0, 1, 2
f, e7 e8, f, e7 e8, f 1 a ... f 0, 1, 2
e7 e8, f, e7 e8, f 1 a ... f 1, 2
e8, f, e7 e8, f 1, 1 a ... f 1, 2
f, e7 e8, f 1 a ... f 1, 2
e7 e8, f 1 a ... f 2
e8, f 2, 1 a ... f 2
f 2 a ... f 2
– 2 a ... f –

12



We see that each time the computer performs instruction (e6), she starts a
sub-computation of factorial of current argument’s predecessor. At every such
embedded computations, she performs (a), i.e. places the new argument in
D2. After reverting from the sub-computation, she performs (e7) i.e. rewrites
number from topmost D2 sheet. She needs that number to be the argument of
the computation she had reverted to, not of the one she had just left. Therefore,
before leaving each sub-computation, she must “clean up” D2, i.e. throw out
topmost sheet from it (f).

In general, each sub-computation builds its own context (on tops of some of
the drawers), which has to be forgotten before reverting to computation which
started it.

These issues should become obvious when we present drcz0 → DRC�SE� compiler in

section 2.3.

1.3 The strength and limitations of S.

So far the very existence of procedures was established, and we proposed unam-
biguous ways of describing some of them with sequences of instructions. It seems
natural to ask, whether all procedures could be described this way? However,
such questions cannot be answered without specifying the notion of “all proce-
dures”, which gives rise to another problem - if some rigorous, formal definition
of procedure is proposed, how can one be sure its extension contains all objects
there were to capture? The story of the problem is described in details in [19]
and [1]. If one does not want to assume Church’s thesis, a plausible solution
would be to resort to weaker formulation of the question: could we describe
this way all procedures for computing (partial) recursive functions (over e.g.
non-negative integers)?

And this question can be answered, affirmatively.

Following [2] and [8] we use Kleene’s definition of (partial) recursive arithmeti-
cal8 functions (often called µ-recursive functions):

Definition 1. We call an n-ary (partial) function f : Nn → N µ-recursive if
we can express it as a:

1. constant function f(x1, . . . , xn) = k for some k ∈ N, or

2. successor function f(x) = x + 1, or

3. projection f(x1, . . . , xn) = xi for some 1 ≤ i ≤ n, or

4. composition f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) for some
m-ary µ-recursive function h and some m n-ary µ−recursive functions
g1, . . . , gm, or

8It seems that this definition could be generalised to wider class of structures, however we
shall not be interested in generalising classical recursion theory this time.
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5. function definable by primitive recursion, i.e. f(x0, x1, . . . , xn) such that:

• n ≥ 0, and

• f(0, x1, . . . , xn) = g(x1, . . . , xn), and

• f(x0 + 1, x1, . . . , xn) = h(x0, f(x0, x1, . . . , xn), x1, . . . , xn)

for some n-ary µ-recursive function g and (n+2)-ary µ-recursive function
h, or

6. function defined by minimisation operator f(x1, . . . , xn) = µ(h)(x1, . . . , xn)
for some µ-recursive (n + 1)-ary function h,
where µ(h)(x1, . . . , xn) = k iff h(k, x1, ..., xn) = 0 and for all m < k
h(k, x1, ..., xn) is defined and h(k, x1, ..., xn) �= 0.

We will now sketch the proof of the following:

Theorem 1. For any µ-recursive function f we can provide S-description for
procedure of computing value of f at any arguments from Dom(f), consist-
ing only of instructions of the following forms: CONST n, ADD, SUB, EQ,
NAME/FORGET/LOOKUP n, APPLY, and SELECT �. . .� OR �. . .�.

Proof. By induction on cases:

1) Assume f can be expressed as f(x1, . . . , xn) = k.

Then the S-description for computing values of f takes the form:

NAME 1,
. . . ,
NAME n,
CONST k,
FORGET 1,
. . . ,
FORGET n.

2) Assume f can be expressed as f(x) = x + 1.

Then the S-description for f takes the form:

CONST 1,
ADD,

3) Assume f can be expressed as f(x1, . . . , xn) = xi.

Then the S-description for f takes the form:

NAME 1,
. . . ,
NAME n,
LOOKUP i,
FORGET 1,
. . . ,
FORGET n.

14



4) Assume f can be expressed as f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . xn)),
and that symbols πh, πg1

, . . . , πgm
stand for S-descriptions of procedures to

calculate functions h, g1, . . . , gm resp. (which exist by induction hypothesis).

Then the S-description for f takes the form:

NAME 1,
. . . ,
NAME n,
PROC �πh�
NAME n + 1,
PROC �πg1�
NAME n + 2,
. . . ,
PROC �πgm�,
NAME n + m + 1,
LOOKUP 1,
. . . ,
LOOKUP n,
LOOKUP n + m + 1,
APPLY,
. . .,
LOOKUP 1,
. . . ,
LOOKUP n,
LOOKUP n + 2,
APPLY,
LOOKUP n + 1,
APPLY,
FORGET 1,
. . . ,
FORGET n,
FORGET n + 1,
FORGET n + 2,
. . . ,
FORGET n + m + 1.

5) Assume f satisfies:

f(x0, . . . , xn) =

�
g(x1, . . . , xn) , x0 = 0
h(x0 − 1, f(x0 − 1, x1, . . . , xn), x1, . . . , xn) , x0 > 0

and that symbols πg and πh stand for S-descriptions of procedures to calcu-
late functions g and h resp. (which, again, exist by the induction hypothesis).
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Then the S-description for f takes the form:

PROC �πg�,
NAME n + 2,
PROC �πh�,
NAME n + 3,
PROC �

NAME 1,
. . . ,
NAME n + 1,
LOOKUP 1,
CONST 0,
EQ,
SELECT �

LOOKUP n + 1,
. . .,
LOOKUP 2,
LOOKUP n + 2,
APPLY,
� OR �
LOOKUP n + 1,
. . .,
LOOKUP 2,
LOOKUP n + 1,
. . .,
LOOKUP 2,
CONST 1,
LOOKUP 1,
SUB,
LOOKUP n + 4,
APPLY,
LOOKUP n + 3,
APPLY
� ,

FORGET 1,
. . . ,
FORGET n + 1,
� ,

NAME n + 4,
LOOKUP n + 4,
APPLY,
FORGET n + 2,
FORGET n + 3,
FORGET n + 4.

6) Assume f can be expressed as f(x1, . . . , xn) = µ(h)(x1, . . . , xn), and that
symbol πh stands for S-description of procedures to calculate function h
(exists by induction hypothesis).
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Then the S-description for f takes the form:

PROC �πh�,
NAME n + 2,
PROC �

NAME 1,
. . . ,
NAME n + 1,
LOOKUP n + 1,
. . . ,
LOOKUP 1,
LOOKUP n + 2,
APPLY,
CONST 0,
EQ,
SELECT �

LOOKUP 1,
� OR �
LOOKUP n + 1,
. . .,
LOOKUP 2,
CONST 1,
LOOKUP 1,
ADD,
LOOKUP n + 3,
APPLY
�,

FORGET 1,
. . . ,
FORGET n + 1
�, NAME n + 3,

CONST 0,
LOOKUP n + 3,
APPLY,
FORGET n + 2,
FORGET n + 3.

Notice that not every S-description captures a procedure of computing any
function. A trivial example would be the following “infinite loop procedure”:

1. PROC �
a. LOOKUP 1,
b. APPLY

�,
2. NAME 1,
3. LOOKUP 1,
4. APPLY.

This construct we will use in proof of the following theorem, which we include
in this section mostly to shows that not every arithmetical function has S-
description of computing it.
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It is a consequence of well-known fact that the halting problem is not decidable – we

have “translated” (from Turing machines to S model) proof of Turing-uncomputability

of halting function from [2] (thm. 4.2).

We need to assume that we can encode sequences of integers and sequences of
instructions as a single integer – this can be easily done with some variant of
gödelization, which we do not discuss here9, as in section 1.4 we provide other
solution.

For now however it would be convenient to assume that such encoding (and
decoding as well) is possible. For this single section10 we will denote encoding
of sequence of instructions d as �d�, and of sequence of numbers �x1, . . . , xn�
(n ≥ 0) as ��x1, . . . , xn��.

Each computation in S is determined11 by the S-description and its arguments.
We say that the computation [described with] d halts on arguments x1, . . . , xn

if the computer after receiving sheets with d, x1, ..., xn performs a computation
that succeeds, i.e. stops after finite number of steps.

Definition 2. The halting function for S is a (most often partial12) function
h : Z × Z → Z such that for all S-descriptions d and any numbers x1, . . . , xn,
n ≥ 0:

h(�d�, ��x1, . . . , xn��) =

�
1 , if d halts on x1, . . . , xn

0 , ¬

Theorem 2. Let h be the halting function for S. Then there does not exist
S-description of computing values of h at any argument from Dom(h).

Proof. Reductio ad absurdum.

Assume that such S-description exists, call it dH. Consider then the following
S-description d0 – notice it does not take any input, includes dH as it sub-
procedure (3), and (which might seem hairy at first, but is not) its own Gödel
number as constant (6):

1. PROC �
a. LOOKUP 1,
b. APPLY

�,
2. NAME 1,
3. PROC dH,
4. NAME 2,
5. CONST ����
6. CONST �d0�,
7. LOOKUP 2,
8. APPLY,

(verte)
9Interested reader will find it – often under the name of arithmetization, or Gödel numbers

– in e.g. [8] ch. III p.3, or [2] ch.15.
10From sec.1.4 onwards the square quotes are reserved for other, yet similar, purpose.
11cf. section 1.5.
12Halting function could be partial, as the encoding function does not have to be surjective.

It only must be defined on all “meaningful” arguments.
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9. SELECT �
c. LOOKUP 1,
d. APPLY

� OR �
e. CONST 997

�.

In short it instructs to do the following: introduce “halting procedure” and
“infinite loop procedure”, name their S-descriptions with 2 and 1 resp. (1-4),
then use this “halting procedure” to decide whether d0 stops (on empty tuple of
arguments) or not (5-8). Next it comes to decide what to do (9) – if the result
of “halting procedure” application to d0 and �� was 0, then d0 stops, with result
99713, and otherwise it falls into infinite loop.

The contradiction follows easily: if dH exists, then d0 is valid S-description
of procedure of computing some function with no arguments (a constant) – it
halts (with result 997) iff the result of dH applied to it is 0, which happens iff
d0 does not halt.

1.4 S-expressions.

We could stick with computations over integers and use e.g. gödelization to
encode other entities of interest (sequences of numbers, functions, formulas,
etc.) – however such an uniform treatment seems quite costly, as representing
even moderately complicated objects would require using inconveniently large
numbers. Therefore we take another route, moving from integers to symbolic
expressions (S-expressions) – objects able of encoding almost every finite struc-
ture in concise and easily representable form, proposed by McCarthy in his
deservedly famous [13].

We present our generalization of McCarthy’s S-expressions as an algebra (al-
gebraic system). The construction might seem overly general, however it is
intended to exhibit the fact that S-expressions can be arbitrarily extended with
many sorts of atomic objects, which is the case in many LISP variants.

Let A = �A, o
(a1)
1 , ..., o

(an)
n � be an algebra14 with n operations, of arities a1, . . . , an.

To encode truth-values one either picks two elements of A (if A was field, one
could use, as before, its 1 and 0 for encoding truth and false resp.), or extends
A’s universe with two new elements a� and a⊥, different from all others, over
which no operation of A is defined (in either case we will refer to this algebra
as A, and use names a� and a⊥ in context of truth-values).

13We decided it would be natural for d0 to end with some result, rather than ending with
empty “R”. This one happens to be the police emergency phone number in Poland.

14For general relational systems it suffices to convert them to algebras, by encoding relations
as operations, as was already discussed.
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Definition 3. The class of S-expressions over the set A is the smallest
class containing A and closed under taking ordered pairs15 , i.e.

SE(A) =
�
{X : A ⊆ X ∧ ∀x,y∈X�x, y� ∈ X}

Atoms of SE(A) are elements of A (including forementioned a⊥ and a�).

To endow SE(A) with algebraic structure SE(A) simply treat each operation
from A as operation on SE(A) defined on tuples of atoms, and undefined (⊥)
otherwise, and add five new operations:

cons(x, y) = �x, y�

car(z) =

�
x , z = �x, y�
⊥ , z ∈ A

cdr(z) =

�
y , z = �x, y�
⊥ , z ∈ A

atom(x) =

�
a� , x ∈ A
a⊥ , ¬

eq(x, y) =

�
a� , x, y ∈ A ∧ x = y
a⊥ , ¬

Identifiers cons, car and cdr are sort of LISP tradition, their set-theoretic names
would be pair, predecessor and successor respectively. Notice that atom and
eq encode predicates of “being an atom”, and of atoms identity, respectively.

Definition 4. For an arbitrary algebra A = �A, o
(a1)
1 , ..., o

(an)
n �, an algebra of

S-expressions over A is the system

SE(A) = �SE(A), oa1
1 , . . . oan

n , cons, car, cdr, atom, eq�.

Now an algebra SE of S-expressions over numbers and identifiers can be de-
fined:

Definition 5. Let S = �S,+,−,×,<, num�, such that S is disjoint union of
set of integers Z and enumerable set of pairwise distinct identifiers {ξn}n∈N.
+,−,× are binary operations of addition, multiplication and subtraction, unde-
fined on identifiers, < encodes binary relation “greater than” on pairs of num-
bers, num encodes unary relation of being number, and the first two identifiers
ξ1 and ξ0 represent values of truth and false. Then SE = SE(S).

Similarly to [13], we use simplified textual representations for elements of SE,
written here typewritten and enclosed in square quotes �. . .�. In case of meta-
expressions16 we use Greek letters as placeholders, standing for either arbi-
trary, or defined elsewhere S-expression). Since the representation schema is

15In “typeless” set theories like ZF(C) one has to guarantee distinction between elements of
A and their pairs, e.g. by representing the former as ordered pairs whose predecessor is some
set not in A.

16Not to be confused with McCarthy’s M-expressions, which we do not mention – meta-
expressions are just a kind of regular expressions.
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not unique, to express the fact that e ∈ SE is represented with ε we write
“e ∼ ε” rather than “e = ε”.

We use Arabic numerals (with sign) for representing numbers, and literals (i.e.
sequences of alphanumeric and special characters +, −, ∗, /, =, <, >, :, .,
,, ;, ˆ, @, #, !, such that the first character is not a digit) for identifiers;
two distinguished literals nil and T represent ξ0 and ξ1 respectively. A string
�(ε1.ε2)� represents an ordered pair of expressions represented with ε1 and ε2
(i.e. the result of cons(ε1, ε2)).

It is common practice to encode sequences (ordered lists) with nested pairs,
e.g. the S-expression �1, �2, �3, ξ0��� stands for triple �1, 2, 3�17. For convenient
representations of such constructions, McCarthy introduced the following con-
vention:

a) �()� stands for (the same SE as) �nil�,

b) �(ε)� stands for �(ε.nil)�,

c) �(ε1 ε2 . . . εn)� stands for �(ε1.(ε2.(. . . .(εn.nil) . . .)))�, and

d) �(ε1 ε2 . . . εn . ε0)� stands for �(ε1.(ε2.(. . . .(εn.ε0) . . .)))�.

In the rest of this thesis we prefer McCarthy’s notation18.

In addition to McCarthy’s conventions we sometimes use the concatenation
operator19 :: as a shorthand for otherwise complicated expressions – the two
representations: �(ε1 . . . εn) :: (ε�1 . . . ε

�
m)� and �(ε1 . . . εn ε�1 . . . ε

�
m)� stand for the

same S-expression.

To describe procedures of computing over SE, it suffices to have instruction for
each of SE’s operations (+, −, ×, <, num, atom, eq, car, cdr, cons):

c’. ADD / SUB / MUL / GT / NUM / ATOM / EQ / CAR / CDR / CONS,

and to modify computer’s interpretation of “SELECT” instruction:

g’. Take topmost sheet from “R”, read its content and throw it out. If the
content was not �()�, write instructions i1, ..., ik (k ≥ 0) on new sheet and
place on top of “C”, otherwise write instructions j1, ..., jm (m ≥ 0) on new
sheet and place on top of “C”.

In the rest of thesis we will refer to this extended model as S also.

As an example consider a procedure to compute length of given [SE encoding
of] list l – if l is empty (i.e. encoded as �()�), its length is 0, otherwise it is the
length of l’s tail (i.e. cdr) plus one.

17It seems worth mentioning that when ordered lists are encoded as nested pairs, the op-
erations car and cdr gain obvious interpretation of head and tail (or first and rest) list
operators, commonly used in various programming languages.

18As does our parser in system we have implemented - cf. c-src/parser.c on attached CD
and in [21].

19We will provide its DRC�SE� implementation in section 1.5.
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PROC �
NAME 1,
LOOKUP 1,
CONST �()�,
EQ,
SELECT �

CONST �0�
� OR �
LOOKUP 1,
CDR,
LOOKUP 2,
APPLY,
CONST �1�,
ADD
�,

FORGET 1
�,
NAME 2,
LOOKUP 2,
APPLY.

Of course the described procedure computes only partial function; to make it
total, one could replace instructions of comparing content of topmost sheet from
D1 against �()� with test for it being an atom.

1.5 Mechanization of S.

As elements of SE domain can encode sequences (and nested sequences as well),
they obviously can serve as representations of S-descriptions, i.e. sequences of
instructions. We propose the following:

a. �(CONST ε)�,

b. �(PROC π)�,

c. �(ADD)� / ... / �(CONS)�,

d. �(NAME η)�,

e. �(LOOKUP η)�,

f. �(FORGET η)�,

g. �(SELECT π1 π2)�,

h. �(APPLY)�,

where ε ∈ SE, η ∈ SE such that num(η) = �T�, and π, π1, π2 ∈ SE (already)
encode some S-descriptions.

Moreover, as each instruction has fixed “arity” (i.e. is encoded as list of fixed
length) we can concatenate them, instead of using list of lists.
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Example 5. The following description of procedure:

NAME 1,
LOOKUP 1,
LOOKUP 1,
MUL,
FORGET 1.

would be encoded as:

�(NAME 1 LOOKUP 1 LOOKUP 1 MUL FORGET 1)�.

Example 6. The following description of procedure:

ATOM,
SELECT �

CONST �(An atom)�
� OR �
CONST �(A cons pair)�
�.

would be encoded as:

�(ATOM SELECT (CONST (An atom)) (CONST (A cons pair)))�.

Some more examples will be given at the end of this section.

Every computation captured in model S can be identified with sequence of
states – contents of all sheets (allowing for their order) in both pigeon-holes and
all drawers. This holds because each state uniquely determines its successor,
as the action the computer is going to perform is determined by the topmost
sheet from “C”, and its outcome by contents of sheets in “R” and drawers.
In other words, each step of computation (i.e. each computer’s action) is state
transformation, determined by the preceding state only – a function from states
to states. We will call it the step function, and in context of S model – the
S-step function.

It seems that all aspects of computations which we were interested in when
introducing S can be stated in terms of states and their transformations.

We will now take a closer look at the structure of states of S, in particular the
possibility of encoding them.

Each pigeon-hole and drawer contains a pile of zero or more sheets, ordered
into FIFO queue (a stack). Stacks can be canonically implemented with lists,
and lists can easily be encoded with S-expressions, as was shown in section 1.4.
Therefore stacks can be implemented in SE algebra, e.g. as follows:

Operation Implementation

push - add element x on top of stack S stack before: S,
stack after: cons(x, S).

pop - remove element from top of stack S stack before: S,
stack after: cdr(S).

top - look up element from top of stack S element looked up: car(S).

empty? - check if stack S is empty result: eq(S, �()�).

23



Each state we can identify with a sequence of stacks �D1, . . . , Dn,R,C� where
n ∈ N, as there is always only a finite number of drawers used. Such sequence
can be represented as a list of lists, which in turn can be encoded as a single
element of SE algebra.

As a consequence, the S-step function can be also encoded as a partial function
⇒S: SE → SE. Of course ⇒S is effectively computable – we have indicated a
method of computing its values in the first list of instructions in section 1.2. It
requires some work to provide a S-description of procedure of computing ⇒S’s
values – we will generate such S-description in section 2.3, and now only define
⇒S as a production-rule system.

We are ready to define DRC�SE� machine – a dynamic system, encoding model
S, and capable of being implemented as a computer program for existing hard-
ware (which we did), or as a mechanical device.

For readability we write ⇒S in infix notation20, and assume its signature is
SE3 → SE3 rather than SE → SE, so that ⇒S’s first argument encodes drawers
list (D1, . . . , Dn), and the two others encode R and C respectively. Converting
from SE3 = SE × SE × SE to SE and back could get done with the following
two functions:

SE ← SE3 : c(ε1, ε2, ε3) = cons(ε1, cons(ε2, cons(ε3, �()�))),

SE3 ← SE : d(ε) = �car(ε), car(cdr(ε)), car(cdr(cdr(ε)))�.

We also introduce the following shorthands for drawers:

a) δ stands for the sequence δ1, . . . , δn,

b) δ ⊕ [η �→ ε] stands for δ1, . . . , �(ε)� :: δη, . . . , δn (push ε onto δη),

c) δ � [η] stands for δ1, . . . , cdr(δη), . . . , δn (pop from δη),

d) δ[η] stands for car(δη) (top of δη).

Finally, let

ListSE =
�
{X : �()� ∈ X ∧ ∀y∈SE∀x∈Xcons(y, x) ∈ X},

and ProgDRC�SE� be the class of all S-expressions encoding S-descriptions.

20I.e. α ⇒S β stands for ⇒S (α) = β.
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Definition 6. The system �Σ,⇒S� is DRC�SE� machine, with Σ being its
space of all possible states if:

Σ = {��δ1, . . . , δn�, ρ, κ� : n ∈ N ∧ δ1, . . . , δn, ρ ∈ ListSE ∧ κ ∈ ProgDRC�SE�},

and ⇒S: SE3 → SE3 satisfies the following production rules:

1. �δ, ρ, �(CONST ε1)� :: κ� ⇒S �δ, �(ε1)� :: ρ, κ�,
2. �δ, ρ, �(PROC π1)� :: κ� ⇒S �δ, �(π1)� :: ρ, κ�,
3. �δ, �(ε)� :: ρ, �(NAME η)� :: κ� ⇒S �δ ⊕ [η �→ ε], ρ, κ�,
4. �δ, ρ, �(FORGET η)� :: κ� ⇒S �δ � [η], ρ, κ�,
5. �δ, ρ, �(LOOKUP η)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ δ[η],
6. �δ, �(())� :: ρ, �(SELECT π1 π2)� :: κ� ⇒S �δ, ρ, π2 :: κ�,
7. �δ, �(ε)� :: ρ, �(SELECT π1 π2)� :: κ� ⇒S �δ, ρ, π1 :: κ�, where ε � �()�,
8. �δ, �(π)� :: ρ, �(APPLY)� :: κ� ⇒S �δ, ρ, π :: κ�,
9. �δ, �(ε1 ε2)� :: ρ, �(CONS)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ cons(ε1, ε2),
10. �δ, �(ε1)� :: ρ, �(CAR)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ car(ε1),
11. �δ, �(ε1)� :: ρ, �(CDR)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ cdr(ε1),
12. �δ, �(ε1)� :: ρ, �(ATOM)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ atom(ε1),
13. �δ, �(ε1)� :: ρ, �(NUM)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ num(ε1),
14. �δ, �(ε1 ε2)� :: ρ, �(EQ)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ eq(ε1, ε2),
15. �δ, �(ε1 ε2)� :: ρ, �(ADD)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ ε1 + ε2,
16. �δ, �(ε1 ε2)� :: ρ, �(SUB)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ ε1 − ε2,
17. �δ, �(ε1 ε2)� :: ρ, �(MUL)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ ε1 × ε2,
18. �δ, �(ε1 ε2)� :: ρ, �(GT)� :: κ� ⇒S �δ, �(ε)� :: ρ, κ�, where ε ∼ gt(ε1, ε2),

for any η ∈ {ε ∈ SE : num(ε) = �T�}, δ, ρ ∈ ListSE, κ, π1, π2 ∈ ProgDRC�SE�, and

ε, ε1, ε2 ∈ SE.

We will now present small example of computation performed on DRC�SE�
machine; in general these do not differ from S’s computations.

Consider the S-description from example 5. To use it for computing the square
of 5 one simply computes the trajectory of ��δ1�, ρ, κ� ∈ Σ such that δ1 ∼ �()�
(initially drawer D1 is empty), ρ ∼ �(5)� (“R” pigeon-hole holds single sheet
with �5�) and κ ∼ �(NAME 1 LOOKUP 1 LOOKUP 1 MUL FORGET 1)� (“C” holds sin-
gle sheet with S-description encoding) :

���()��, �(5)�, �(NAME 1 LOOKUP 1 LOOKUP 1 MUL FORGET 1)��
⇓S (rule 3.)

���(5)��, �()�, �(LOOKUP 1 LOOKUP 1 MUL FORGET 1)��
⇓S (rule 5.)

���(5)��, �(5)�, �(LOOKUP 1 MUL FORGET 1)��
⇓S (rule 5.)

���(5)��, �(55)�, �(MUL FORGET 1)��
⇓S (rule 17.)

���(5)��, �(25)�, �(FORGET 1)��
⇓S (rule 4.)

���()��, �(25)�, �()��.

The computation ended with result �25�.
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Of course DRC�SE� machine can be generalized to family of DRC machines
operating over almost any algebra A, provided elements of A’s universe can
encode descriptions of procedures. The rules for such machine’s step function
would be, mutatis mutandis, rules 1-8 of definition 6, with rules 9-18 replaced
with their A analogues.

Definition 7. Let Σ = D ×R× C, where:

a) D = Z+ → A∗ denotes family of (partial) functions from drawer’s identifiers
to sequences of their contents,

b) R = A∗ sequences of intermediate results ( i.e. “R” pigeon-hole’s content),
and

c) C � A consist of elements of A encoding descriptions of procedures only.

Then Σ is a space of all possible states for DRC�A� machine.

The attached CD contains our implementation of DRC�SE� machine written
in C language, with simple memory management, and extended with basic in-
put/output mechanisms (for files and terminal access). We review it shortly in
appendix A. The most recent version can be found at [21].

Appendix B describes how to use our simple DRC�SE� emulator working on
DRC�SE� machine (its implementation is presented in section 2.3). The em-
ulator displays whole trajectories – reader interested in experimenting with it
might find the following examples21 illuminating:

Example 7. A procedure for computing length of given list described in section 1.4:

(PROC (NAME l

LOOKUP l

CONST ()

EQ

SELECT (CONST 0)

(LOOKUP l

CDR

LOOKUP length

APPLY

CONST 1

ADD)

FORGET l)

NAME length

LOOKUP length

APPLY)

E.g. when given list �(a b (1 2 3) c)� yields �4�.

21As the emulator is capable of using any atoms as labels for drawers, in these examples we
use literals, which seem more readable. We also allowed ourselves to omit the square quotes.
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Example 8. A procedure for concatenating two given lists:

(PROC (NAME a

NAME b

LOOKUP a

CONST ()

EQ

SELECT (LOOKUP b)

(LOOKUP b

LOOKUP a

CDR

LOOKUP append

APPLY

LOOKUP a

CAR

CONS)

FORGET b

FORGET a)

NAME append

LOOKUP append

APPLY)

E.g. when given lists �(a b c)� and �(d e)� yield �(a b c d e)�.

And the last one being especially interesting:

Example 9. A procedure which takes [encoding of] some [unary] procedure p and a
list l yields a list of results of applying p to each element of l:

(PROC (NAME p

NAME l

LOOKUP l

CONST ()

EQ

SELECT (CONST ())

(LOOKUP l

CDR

LOOKUP p

LOOKUP map

APPLY

LOOKUP l

CAR

LOOKUP p

APPLY

CONS)

FORGET l

FORGET p)

NAME map

LOOKUP map

APPLY)

E.g. when given �(NAME x LOOKUP x LOOKUP x MUL FORGET x)� and �(1 2 3 4)� yields
�(1 4 9 16)�.
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1.6 Processes, procedures, and programs.

Notice that for any DRC�A� machine22, its space of all possible states can be
interpreted as a directed graph GΣ, with elements of Σ being vertices, and such
that it contains an edge �σ1, σ2� iff σ1 ⇒S σ2.

Definition 8. For given computational model M, the computation space of
M is a structure

CM = �GΣM
, encM(π, α), rvalM(σ),ΠM

C (σ)�

where encM : ProgM×A∗ → ΣM is the encoding function for program π and
inputs α, which maps π and α into state encoding machine prepared to perform
π on α, rvalM : ΣM → A is the result value function, decoding the result
of computation from terminal states of ΣM, and ΠM

C : ΣM → ProgM is the
commands-projection function, mapping states from Σ into [fragments of ]
programs they encode23.

E.g. form any DRC�SE�A�� machine we have

encDRC�SE�A��(π, α) = ���, α, π�,

rvalDRC�SE�A��(�δ, ρ, κ�) = car(ρ),

Π
DRC�SE�A��
C (�δ, ρ, κ�) = κ.

Definition 9. We say that state σ1 ∈ Σ is terminal iff there is no σ2 ∈ Σ
such that GΣ contains an edge �σ1, σ2� – i.e. when some computation succeeds,
its last state is terminal.

E.g. for DRC�SE� machine σ is terminal iff Π
DRC�SE�
C (σ) ∼ �()�.

Every non-terminal (and not jammed24) state has exactly one edge coming out
of it, but can have arbitrary number of edges coming in.

Definition 10. For any model M, and program π ∈ ProgM of n inputs, and
fixed class ε∗ of n-tuples of elements of AM (representing set of possible inputs),
let

�π|ε∗� = {σ ∈ ΣM : ∃α∈ε∗encM(π, α) ⇒∗
M σ}

where ⇒∗
M is the reflexive, transitive closure of ⇒M

25.

We say that π generates �π|ε∗� ⊆ ΣM [of CM] on class of arguments ε∗.

Notice that σ ∈ �π|ε∗� iff there is a computation of π at some α ∈ ε∗ which
contains (i.e. “passes trough”) σ. In other words, σ represents “a possible
situation (in the course of computing π at some tuple of inputs from ε∗)”.

22We suspect this is possible for any deterministic, single-threaded computational model;
the cases for drcz0 and FCL∗�SE� will be shown in the next chapter.

23This can be more complicated on some computational models – however, it captures the
demand that the information on the computation’s “future behaviours” must be accessible.

24The machine “gets jammed” if performing some operation was not possible, e.g. when
DRC�SE� is asked to perform multiplication of two non-numeric SEs, or to look up empty
drawer.

25Notice that �Σ,⇒∗
M� is partial order (poset).
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Definition 11. For any computation space CM:

1. A path in GΣM
we call a (computational) M-process. Infinite and cyclic

paths we call infinite M-processes. A process generated with π ∈
ProgM (of n inputs) at inputs α = �a1, . . . , an� is a path �π|�a1, . . . , an��.

2. A digraph PΣ whose vertices are non-empty subsets of Σ, we call an M-
procedure26 if it satisfies the following conditions:

a. If PΣ contains an edge �v1, v2� then for any σ1 ∈ v1 there is an edge
�σ1, σ2� in GΣ for some σ2 ∈ v2,
i.e. each edge represents some possible transitions.

b. For every vertice v1 in PΣ if σ1 ∈ v1 and GΣ contain an edge �σ1, σ2� then
there exists exactly one edge �v1, v2� in PΣ such that v2 � σ2,
i.e. each possible transition is represented with some (unique) edge.

In case of DRC�A� machines we prefer27 to require also :

c. For every vertice v in PΣ it is the case that ΠC(σ1) = ΠC(σ2) for any σ1, σ2 ∈ v,

i.e. each vertice represents states which are “ready to perform the same opera-

tions/choices”.

3. AnM−program is some object of AM encoding description of M−procedure.

In case of DRC�A� machines it is an element of A encoding some S-description28.

We say that program π implements n-ary function f if π describes some
procedure of computing f’s values ( i.e. π takes n inputs α1, . . . , αn and
returns value f(α1, . . . , αn)).

The set of all M-programs we denote with ProgM.

An abstract machine M can be seen as “a device which interprets its pro-
grams as descriptions of procedures”. To precise this intuition we define the
two “semantic functions”:

Definition 12. Let M be any abstract machine operating over algebra A,
ProgM the set of all its possible programs, and ProcM the set of all its possible
processes. Then M determines:

1. A (total) mapping prcM : ProgM → (A∗ → ProcM), assigning to any
program p the (partial) function from p’s arguments (inputs) α1, . . . , αn to
process starting at state encoding p and α1, . . . , αn, and

2. a (partial) mapping �.�M : ProgM → (A2 → A) assigning to program p its
input-output function, i.e. f : An → A such that p encodes description of
procedure for computing [values of ] f29.

26We propose definition (2) to express procedures as generalized processes, which will be
useful in explaining phenomena occurring during abstract interpretation, including the three
Futamura projections in chapter 3.

27In more general cases we believe this requirement could be stated by first defining certain
congruence relation [.] on Σ, and then by requiring that for any v ∈ PΣ and any σ ∈ v [σ] ⊂ v.

28E.g. any SE which can appear on κ stack.
29Provided p encodes such description – cf. “infinite loop procedure” from section 1.3.
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We call prcM the lower semantics for M, �.�M the upper semantics for
M, and their values at given p ∈ ProgM the upper andlower semantics of
p resp.

E.g. in the case of DRC�SE� machine, if π ∈ ProgDRC�SE� encodes S-description

of procedure of computing [values of] function f : SEn → SE then �π�DRC�SE� = f,

while prcDRC�SE�(π)(ε1, . . . , εn) = �σ1, . . . , σk�, where σ1 = �γ, �(ε1 . . . εn)�, π�, σk =

�γ�, �(ε)�, �()��, σi ⇒S σi+1 for i = 1, . . . , k − 1, and f(ε1 . . . εn) = ε.
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2 On programming and programs

The previous chapter prepared the ground level for our investigations – a simple
model of computations. We will now move one step up the abstraction ladder
and introduce programming languages – technique of defining computational
models, most often in the context of other computational models. Programming
languages provide means of using a given computational model to emulate some
other, more desired model – e.g. to hide some tedious details, so that the
programmer is concerned less (if at all) with her ground computational model
(e.g. hardware) and more with the problem she aims to solve.

2.1 Programming languages.

Given ground computational model M, a programming language L can be de-
fined by either a set of notations which can be unambiguously translated into
M-programs, or some computational model ML, which can be emulated in M
(with some M-program). In the former case we speak of compilation, in the
latter of interpretation.

Definition 13. Let M1, M2 and M3 be any computational models operating
over algebra A30. Then:

A translation from M1 to M2 is any function T : ProgM1 → ProgM2 such
that whenever �p1�M1 is defined T(p1) = p2 iff �p1�M1 = �p2�M2.

A compiler from M1 to M2 (in M3) is any C ∈ ProgM3
implementing

translation from M1 to M2, i.e. �C�M3
: ProgM1

→ ProgM2
.

An interpreter of M1 (in M2) is any I ∈ ProgM2 implementing �.�M1, i.e.
�I�M2 : ProgM1 × A

∗
(1) → A(1).

An interpreter of M1 in M1 we call a metacircular M1 interpreter.

Definitions trough interpreter and compiler are equivalent – having a compiler
from M1 to M2, an interpreter can be obtained from composing the compiler
with metacircular M2 interpreter (i.e. I1(p, α) = I2(C1→2(p), α)), while hav-
ing M1 interpreter in M2 one can generate M1 to M2 compiler with second
Futamura projection (as will be demonstrated in chapter 3).

An M1 interpreter I ∈ ProgM2 determines the space of all possible states of
M1 – simply

ΣM1
= f(�I|A∗� ⊆ ΣM2

),

where f : �I|A∗� → ΣM1
is some monomorphism31.

Notice that �I|A∗� will almost always be proper subset of ΣM2, even in the metacircu-

lar case M1 = M2 – only then it will be contractible to ΣM2 as a digraph (equivalently:

monotonicaly embedded in ΣM2 as partial order).

30Or, as Kuba Kolecki pointed out, over three algebras A1, A2, A3, such that A1 is em-
bedded in A2 and A2 in A3.

31I.e. monomorphism (monotonic function) of spaces of possible states as partial orders
�Σ,⇒∗�. N.b. this paragraph is the most important statement of this thesis.
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Two languages will be presented: drcz0 – our variation on McCarthy’s LISP
([13]), and FCL�SE� – simple imperative language used in [10], [9] and [7]
to demonstrate the principles of program transformation method called par-
tial evaluation. We present implementations of these languages on DRC�SE�
machine (as both compilers and interpreters), examine possibilities of reason-
ing about programs by proving that the drcz0 to DRC�SE� compiler is correct
(i.e. preserves upper semantics), and present some applications in symbolic
computations.

2.2 Describing procedures with drcz0 and drcz1.

Although S-descriptions (and, equivalently, their representations – DRC�SE�
programs) enable to describe procedures in simple and unambiguous manner,
after some writing they get inconvenient, or at least over-detailed – e.g. in the
case of procedure of computing factorial from example 3 it seems enough (with
respect to unambiguity) to describe it with recursive (multicase) equation:

fact(n) =

�
1 , n = 0
n × fact(n − 1) , ¬

We would like to introduce unambiguous notations for recursive equation, and
rules for evaluating them at given arguments – a programming language. We
decide it to capture functions over SE domain, some possible generalizations
are obvious.

In order to construct such language, we have to investigate the (applicative)
structure of recursive equations. Consider the general form of definition by
recursive equation: ϕ(ξ1, . . . , ξn) = ε. Its LHS (definiens) is defined function’s
identifier ϕ, followed by list of identifiers ξ1, . . . , ξn (n ≥ 0) for variables it binds,
while RHS (definiendum) is some expression. Expressions in recursive equations
can take one of the following forms:

a. conditional expressions, i.e.






ε1 if ε�1,
ε2 if ε�2,
. . .
εm if ε�m.

where m > 0 and εi, ε
�
i for i = 1, . . . ,m are any expressions.

Since the order of “cases” (i.e. expressions ε�i, i = 1, . . . ,m encoding conditions)
does not matter, we can rewrite such definitions (while keeping their semantics) by
using triadic conditional expression “if α then βt else βf” :

ϕ(ξ1, . . . , ξn) = if ε�1 then ε1,
else if ε�2 then ε2,

...
. . . else if ε�m then εm,

else ⊥.

Therefore we can narrow our considerations to triadic conditional expressions.
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E.g. the following Ackermann function definition:

A(m, n) =






n + 1 , m = 0,
A(m − 1, 1) , n = 0,
A(m − 1,A(m, n − 1)) , ¬

would be rewritten to:

A(m, n) = if m = 0 then n + 1,
else if n = 0 then A(m − 1, 1),

else A(m − 1,A(m, n − 1)).

b. application forms , i.e. ϕi(ε1, . . . , εni
)

where ϕi is some previously defined function of arity ni, and ε1, . . . , εni
are

any expressions.

Notice that primitive operations can be applied too, e.g. we consider expression

“x + 1” as special case of application (“+(x, 1)”).

c. constants, e.g. 1.

d. variable identifiers, i.e. ξi, i ≤ n, e.g. x.

It only makes sense to use the variables bound by the defined function, whose

number we denoted with n.

E.g. the RHS of recursive equation of factorial function has form of triadic conditional

expression, consisting of (1) premise-expression “n = 0”, (2) conclusion-expression “1”

and (3) alternative-expression “n×fact(n−1)”; the last one being application form of

multiplication operator to two expressions: variable identifier n and application form

of function fact to expression being application form of subtraction to two arguments,

variable identifier n and constant 1.

To find value of n-ary function f defined with recursive equation

f(ξ1, . . . , ξn) = ε

at given arguments α1, . . . , αn one first creates environment – mapping from
variable identifiers to [constant] expressions σ : Id → SE, and then evaluates ε
in σ, i.e. computes value of ε in accord to the following rules:

a. if ε is a conditional expression “if α then β� else β⊥” then its value is:

1.1 the value of β� expression (in σ), if value of α (in σ) was not �()�,

2.2 the value of β⊥ expression (in σ), otherwise.

b. if ε is an application form “ϕ(ε1, . . . , εn)”, then its value is:

b.1 if ϕ is primitive operator identifier, then application of its corresponding oper-
ator to values of ε1, . . . , εn (in σ),

b.2 if ϕ is defined function identifier, with definition “ϕ(ξ1, . . . , ξn) = εϕ” then the
value of εϕ is σ� such that σ�[ξi] = ε�i for i = 1, . . . , n, where ε�i is the value of
εi (in σ).

c. if ε is a constant, its value is itself (in any σ),

d. if ε is a variable identifier ξi, its value is σ[ξi].
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E.g. consider a possible subexpression ε�: “ x × x + y × y”, in environment
such that σ[x] ∼ �2� and σ[y] ∼ �3�: this expression is an application form
of + operator, with arguments α1 = x × x and α2 = y × y. Expression α1 is
application form of × operator, with arguments α1,1 = x and α1,2 = x. Since
α1,1 and α1,2 are the same variable identifier, we look up its value in environment
σ, receiving �2�; thus we get ×(�2�, �2�), which is �4�; similarly for α2, where
we obtain �9�. Therefore the outermost application form is +(�4�, �9�), which
is �13� (the value of ε� in σ).

We will now show an encoding of (applicative) expressions of recursive equations
as S-expressions; let ε be the expression to encode:

a. conditional expression “if α then β� else β⊥” we encode as �(IF εα εβ�
εβ⊥

)�,
where εα, εβtop, and εβbot encode expressions α, β�, and β⊥ resp.,

b. application form “ϕ(α1, . . . , αn)”, we encode as �(ϕ εα1
. . . εαn

)�, where εαi

encode expression αi for i = 1, . . . , n.

To shorten notations we use single-character identifiers for operations of SE:

operation identifier

car �.�
cdr �,�
cons �;�
num �#�
atom �@�
eq �=�
+ �+�
× �∗�
> �>�

c. numeric constant we encode as itself, while symbolic and compound ones as
quoted expressions, i.e. �(QUOTE ε)�32,

d. variable identifiers as (arbitrary) symbols.

Moreover, to capture the whole definition we also need means of expressing:

1) “a functional object” – binding its arguments’ values to its fixed set of names,

2) “assignment” – naming some functional object with given variable identifier.

Following McCarthy ([13]) we use lambda notation for (1) and label operator for
(2)33:

e1. functional object binding n variables we encode as �(ˆ (ξ1 . . . ξn) ε)�, where
ξi is a symbol for i = 1, . . . , n and ε is encoding given objects body,

e2. assignment operation, binding expression ε with variable’s identifier ξj, we
encode as �(! ξj ε)�.

32We will write these often as shorthand ��ε�.
33This is like paradoxical combinator Y but has uglier, non-compositional (context-

dependent) semantics.
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E.g. the factorial function would be encoded as

(! fact (^ (n)

(IF (= n 0)

1

(* n (fact (- n 1)))) ))

We can now formalize the evaluation function of finding value of expression ε in
environment σ:

Definition 14. drcz0 evaluation function is Eval : (SE × Env) → (SE × Env) such
that:

Eval(ε, σ) =






�ε, σ� , num(ε) ∼ �T� ∨ ε ∼ �()�

�σ[ε], σ� , atom(ε) ∼ �T� ∧ num(ε) � �T�

�ε1, σ� , ε ∼ �(QUOTE ε)�

�cons(val(Eval(ε1, σ)), val(Eval(ε2, σ))), σ� , ε ∼ �(; ε1 ε2)�
�car(val(Eval(ε1, σ))), σ� , ε ∼ �(. ε1)�
�cdr(val(Eval(ε1, σ))), σ� , ε ∼ �(, ε1)�
�atom(val(Eval(ε1, σ))), σ� , ε ∼ �(@ ε1)�
�num(val(Eval(ε1, σ))), σ� , ε ∼ �(# ε1)�
�eq(val(Eval(ε1, σ)), val(Eval(ε2, σ))), σ� , ε ∼ �(= ε1 ε2)�
�val(Eval(ε1, σ)) + val(Eval(ε2, σ)), σ� , ε ∼ �(+ ε1 ε2)�
�val(Eval(ε1, σ)) × val(Eval(ε2, σ)), σ� , ε ∼ �(∗ ε1 ε2)�
�gt(val(Eval(ε1, σ)), val(Eval(ε2, σ))), σ� , ε ∼ �(> ε1 ε2)�

Eval(β�, σ) , ε ∼ �(IF α β� β⊥)� ∧ val(Eval(α, σ)) � �()�
Eval(β⊥, σ) , ε ∼ �(IF α β� β⊥)� ∧ val(Eval(α, σ)) ∼ �()�

Eval(β, σ ⊕ [α1 �→ ε�1, . . . , αn �→ ε�n]) ,
ε ∼ �(ε0 ε1 . . . εn)� ∧
ε�i = Eval(εi, σ) i = 0, . . . , n ∧
ε�0 ∼ �(ˆ (α1 . . . αn) β)�

Where SE ← (SE × Env) : val(ε, σ) = ε.

We assume that what ! operator does is to update some “global environment”, seen
from the inside of any functional object34.

We will provide now some examples of procedures which we described for DRC�SE�
machine in examples 7,8 and 9 respectively:

Example 10. A procedure for computing length of given list l:

(! len (^ (l)

(IF (= l ())

0

(+ 1 (len (, l))))))

E.g. �(len (QUOTE (a b (2 3) c)))� evaluates (in any σ mapping �len� to above defini-
tion) to �4�.

34I.e. Eval(�(! α β)�, σ) pushes �α �→ val(Eval(β, σ))� binding to the “top σ” – cf.
drcz1-src/drcz1-interpreter.drcz1.
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Example 11. A procedure for concatenating two given lists a and b:

(! apd (^ (a b)

(IF (= a ())

b

(; (. a) (apd (, a) b)))))

E.g. �(apd (QUOTE (a b c)) (QUOTE (d e)))� evaluates to �(a b c d e)�.

Example 12. A procedure which takes [encoding of] some [unary] procedure p and a
list l yields a list of results of applying p to each element of l:

(! map (^ (p l)

(IF (= l ())

()

(; (p (. l)) (map p (, l))))))

E.g. �(map fact (QUOTE (1 2 3 4)))� evaluates (in σ containing definitions of map and
fact) to �(1 2 6 24)�.

E.g. �(map (ˆ (x) (∗ x x)) (QUOTE (1 2 3 4)))� evaluates (in σ containing definition of
map) to �(1 2 9 16)�.

Notice the unconventional way of using functional object (�ˆ�) in the last example.
We gain such freedom because the evaluation function for expressions is capable of
evaluating each type of expressions (a.-d.) in any context. Similarly we can (and do)
use conditional expression in position of procedure’s operand, or even in the place of
the operator, e.g.

(^ (a b c)

((if (= c 0)

(^ (x y) (+ x y))

(^ (x y) (* x y)))

a b))

We call this new notation (capturing recursive equations and more) a drcz0
programming language.

All the above examples can be experimented with on our DRC�SE� machine
emulator – the program drcz1-src/drcz1-interpreter.drcz1 on attached
CD contains source code of REPL (i.e. “Read-Eval-Print-Loop”) interpreter for
drcz1, which repeatedly reads S-expression’s representation from input stream,
evaluates it (in its global environment) and outputs representation of its value.
It can be compiled to DRC�SE� machine code, and executed in users terminal.

The details of DRC�SE� emulator’s usage are described in appendix C.

The freedom of composing expressions enables us i.a. building nested defini-
tions, of type “f(x, y) = sq(x)+ sq(y) where sq(z) = z ×z”. I.e. we can encode
this construct as the following drcz0 expression:

(! f (^ (x y)

( (^ (x y sq) (+ (sq x) (sq y))) x y (^ (z) (* z z)) )))
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We will now introduce a few macros, or syntactic sugar – shorthand nota-
tions for certain compositions of primitive operations: nested definitions �LET�,
McCarthy’s conditionals �?� (cond in [13]), �LIST� constructions, and logical
connectives of �not�, �or�, �and�, �any�, and �all�.

1. expression of the form �(LET ((α1 ε1) . . . (αn εn)) β)�
abbreviates [expr. of the form] �((ˆ (α1 . . . αn) β) ε1 . . . εn)�,

E.g. �(LET ((a 2) (b 3)) (+ a b))� evaluates to �5�.

2. expression of the form �(? (ε�1 ε1) . . . (ε
�
n εn))�

abbreviates �(IF ε�1 ε1 (IF . . . (IF ε�n εn ()) . . .))�,

E.g.

( (^ (x) (? ((= x ()) (QUOTE nil))

((@ x) (QUOTE atom))

(T (QUOTE cons))))

5 )

evaluates to �atom�.

3. expression of the form �(not ε)�
abbreviates �(IF ε () T)�,

4. expression of the form �(or ε1 ε2)�
abbreviates �(IF ε1 T ε2)�,

5. expression of the form �(and ε1 ε2)�
abbreviates �(IF ε1 ε2 ())�,

E.g. �(IF (and (@ x) (not (# x))) (QUOTE (symbol)) (QUOTE (not symbol)))�

in environment σ with sigma[�x�] ∼ �atom� evaluates to �(symbol)�.

6. expression of the form �(any ε1 . . . εn)�
abbreviates �(IF ε1 T (IF . . . (IF εn T ()) . . .))�,

7. expression of the form �(all ε1 . . . εn)�
abbreviates �(IF ε1 (IF . . . (IF εn T ()) . . .)())�,

8. expression of the form �(list ε1 . . . εn)�
abbreviates �(; ε1 (. . . (; εn ()) . . .))�.

E.g. �(list 1 2 (+ 3 4))� evaluates to �(1 2 7)�.

We call this notation drcz1 – a sugared version of drcz0. A simple com-
piler from drcz1 to drcz0 is implemented in file drcz1-src/desugar.drcz1,
while (REPL) interpreter extended with these constructions can be found in
drcz1-src/drcz1-interpreter.drcz1 on the attached CD.

37



As an example of drcz1 program consider the following35 definition of procedure
of finding values of Eval function at any S-expression ε and environment σ:

(! eval (^ (exp env)

(? ((any (= exp ()) (= exp ’T) (# exp))

{=>} (opair exp env))

((@ exp) {=>} (opair (lookup exp env) env))

((= (. exp) ’quote) {=>} (opair (second exp) env))

((= (. exp) ’;) {=>} (opair (; (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’.) {=>} (opair (. (val (eval (second exp) env )))

env))

((= (. exp) ’,) {=>} (opair (, (val (eval (second exp) env )))

env))

((= (. exp) ’@) {=>} (opair (@ (val (eval (second exp) env )))

env))

((= (. exp) ’#) {=>} (opair (# (val (eval (second exp) env))

env )))

((= (. exp) ’=) {=>} (opair (= (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’+) {=>} (opair (+ (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’-) {=>} (opair (- (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’*) {=>} (opair (* (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’>) {=>} (opair (> (val (eval (second exp) env))

(val (eval (third exp) env )))

env))

((= (. exp) ’^) {=>} (opair exp env))

((= (. exp) ’if)

{=>} (opair (if (val (eval (second exp) env))

(val (eval (third exp) env))

(val (eval (fourth exp) env )))

env))

(T {=>} (let (( evexp {<-} (evlis exp env))

(env { <~} env))

{in} (let (( body {<-} (third (. evexp )))

(argnames {<-} (second (. evexp )))

( argvals {<-} (, evexp ))

(evn { <~} env))

{in} (opair (val (eval body

(extend argnames argvals env)))

env )))))))

(! evlis (^ (l env)

(if l

(; (val (eval (. l) env))

(evlis (, l) env))

{else} ())))

(! lookup (^ (name env)

(? ((= env ()) {=>} ())

((= (. (. env)) name) {=>} (, (. env)))

(T {=>} (lookup name (, env ))))))

35The fragments delimited with {. . .} are comments, i.e. they are not part of encoded
expression, and the parser will ignore them.
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(! extend (^ (names vals env) (append (pair names vals) env )))

(! opair (^ (a b) (; a b)))

(! val (^ (op) (. op)))

(! first (^ (l) (. l)))

(! second (^ (l) (. (, l))))

(! third (^ (l) (. (, (, l)))))

(! fourth (^ (l) (. (, (, (, l))))))

(! append (^ (a b)

(if a

(; (. a) (append (, a) b))

{else} b)))

(! pair (^ (a b)

(if a

(; (; (. a) (. b))

(pair (, a) (, b)))

{else} ())))

E.g.

�(eval (QUOTE (+ 2 3)) ())� evaluates to �(5)� (i.e. �(5.())�),

�(eval (QUOTE (∗ (+23) 5)) ())� evaluates to �(25)� (i.e.�(25.())�), and

�(eval (QUOTE ((ˆ (x) (+ x x)) (∗ 2 3)))())� to �(12)�.

2.3 drcz0/1 implementations and example programs.

We will now provide two implementations of drcz0 (and therefore drcz1 as well)
for DRC�SE� machine. Our first approach would be to translate drcz0 expres-
sions into sequences of DRC�SE� machine instructions.

Let cmp : SE → SE such that Dom(cmp) are drcz0 programs, and Img(cmp) are
DRC�SE� machine programs. Then:

a. for a conditional expression ε ∼ �(IF α β� β⊥)� its compilation image cmp(ε) is
cmp(α) :: �(SELECT εβ� εβ⊥)�, where εβ� = cmp(β�) and εβ⊥ = cmp(β⊥).

b. for an application ε ∼ �(ε0 ε1 . . . εn)� its compilation cmp(ε) is
cmp(εn) :: . . . :: cmp(ε1) :: cmp(ε0) if ε0 is primitive operator’s identifier, and
cmp(εn) :: . . . :: cmp(ε1) :: cmp(ε0) :: �(APPLY)� otherwise.

c. for constant ε its compilation cmp(ε) is �(CONST ε)�.

d. for primitive operator’s identifier ε its compilation cmp(ε) is �(ε�)�
where ε� is appropriate machine code (e.g. �ADD� for �+�).

e. for variable ε its compilation cmp(ε) is �(LOOKUP ε)�.

f. for functional object ε ∼ �(ˆ (ξ1 . . . ξn)β)� its compilation cmp(ε) is
(NAME ξ1 . . . NAME ξn) :: cmp(β) :: (FORGET ξ1 . . . ξn).

These rules can be easily formalized with recursive equation:
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Definition 15. The translation cmp : SE → SE from drcz0 to DRC�SE�
defines as follows:

Comp(ε) =






�(CONST ε)� , ε ∼ �T� ∨ ε ∼ �()� ∨ num(ε) ∼ �T�

�(CONS)� , ε ∼ �;�
�(CAR)� , ε ∼ �.�
�(CDR)� , ε ∼ �,�
�(ATOM)� , ε ∼ �@�
�(NUM)� , ε ∼ �#�
�(EQ)� , ε ∼ �=�
�(ADD)� , ε ∼ �+�
�(MUL)� , ε ∼ �∗�
�(GT)� , ε ∼ �>�

�(LOOKUP ε)� , atom(ε) ∼ �T� ∧ num(ε) � �T� ∧ ε � �;� ∧ . . . ∧ ε � �>�

Comp(α) :: �(SELECT β�
� β�

⊥)� where
β�
� = Comp(β�) and β�

⊥ = Comp(β⊥) ,
ε ∼ �(IF α β� β⊥)�

Comp(εn) :: . . . :: Comp(ε0) , ε ∼ �(ε0 ε1 . . . εn)�

�(PROC π)� where
π ∼ �(NAME α1 . . . NAME αn)� :: Comp(β) :: �(FORGET α1 . . . FORGET αn)� ,

ε ∼ �(ˆ (α1 . . . αn) β)�

Comp(β) :: �(NAME α)� , ε ∼ �(! α β)�

which rewrites straightforward into drcz1:

(! compile (^ (prg)

(if prg

(append (comp (. prg))

(compile (, prg)))

{else} ())))

(! comp -primop (^ (e)

(? ((= e ’;) {=>} ’(CONS))

((= e ’.) {=>} ’(CAR))

((= e ’,) {=>} ’(CDR))

((= e ’#) {=>} ’(NUM))

((= e ’@) {=>} ’(ATOM))

((= e ’=) {=>} ’(EQ))

((= e ’+) {=>} ’(ADD))

((= e ’-) {=>} ’(SUB))

((= e ’*) {=>} ’(MUL))

((= e ’>) {=>} ’(GT)))))

(! comp -app (^ (op app)

(complis (reverse app)

(if (is-primop? op) () ’(APPLY )))))

(! complis (^ (exprs postfix)

(if exprs

(append (comp (. exprs ))

(complis (, exprs) postfix ))

{else} postfix )))
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(! comp (^ (expr)

(? ((= expr ())

{=>} ’(CONST ()))

((# expr)

{=>} (list ’CONST expr))

((@ expr)

{=>} (if (is-primop? expr)

(comp -primop expr)

{else} (list ’LOOKUP expr )))

((= (. expr) ’quote)

{=>} (list ’const (second expr )))

((= (. expr) ’!)

{=>} (append (comp (third expr)) (list ’NAME (second expr ))))

((= (. expr) ’if)

{=>} (append (comp (second expr))

(list ’SELECT

(comp (third expr))

(comp (fourth expr )))))

((= (. expr) ’^)

{=>} (list ’PROC

(append (name -block (second expr))

(append (comp (third expr))

(forget -block (reverse (second expr )))))))

(t {=>} (comp -app (. expr) expr))

)))

(! name -block (^ (varlist)

(if varlist

(; ’NAME

(; (. varlist)

(name -block (, varlist ))))

{else} ())))

(! forget -block (^ (varlist)

(if varlist

(; ’FORGET

(; (. varlist)

(forget -block (, varlist ))))

{else} ())))

(! is -primop? (^ (sym)

(member? sym ’(; . , # @ = + - * >))))

(! reverse (^ (l) (_rev l ())))

(! _rev (^ (p r) (if p (_rev (, p) (; (. p) r)) {else} r)))

(! member? (^ (e l)

(? ((= l ()) ())

((= (. l) e) T)

(T (member? e (, l))))))
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E.g. �(compile �( (! f (ˆ (n) (IF (= n 0) 1 (∗ n (f (− n 1)))))) (f (+ 2 3)) ))� evalu-
ates to

�(PROC (NAME n

CONST 0

LOOKUP n

EQ

SELECT (CONST 1)
(CONST 1

LOOKUP n

SUB

LOOKUP f

APPLY

LOOKUP n

MUL)
FORGET n)

NAME f

CONST 3

CONST 2

ADD

LOOKUP f

APPLY)�

With the use of cmp one can easily compile eval in drcz0 into DRC�SE� pro-
gram, thus obtaining drcz0 interpreter for DRC�SE�. We have done it with
drcz1 REPL interpreter (drcz1-src/drcz1-interpreter.drcz1), thus obtain-
ing environment in which the rest of programs presented in this work were
derived and tested before being compiled.

We will now demonstrate that the compiler just defined implements drcz0 lan-
guage properly, i.e. that it preserves semantics of programs, or in other words
is a compiler in sense of definition 13.

Theorem 3. Let ε ∈ SE, and σ be an environment. Then:

(1) for ε � �(ˆ (α1 . . . αn) β)� if Eval(ε, σ) = �ε�, sigma�� then
�σ, ρ, Comp(ε)� ⇒∗

S �σ�, �(ε�)� :: ρ, �()��, and

(2) for ε ∼ �(ˆ (α1 . . . αn) β)�, Comp(ε) = ε��,
such that for any ε1, . . . , εn ∈ SE if Eval(�(ε ε1 . . . εn)�, σ) = �ε�, σ��,
then �σ, ρ, Comp(εn) :: . . . :: Comp(ε1) :: ε�� :: �(APPLY)�� ⇒∗

DRC�SE�

⇒∗
DRC�SE� �σ

�, �(ε�)� :: ρ, �()��.

Proof. Part (1) by induction on ε’s structure:

1) For ε ∼ �()� or ε ∼ �T� or num(ε) ∼ �T�:

1. Eval(ε, σ) = �ε, σ�, (from def.14)

2. Comp(ε) = �(CONST ε)�, (from def.15)

3. �σ, ρ, �(CONST ε)�� ⇒S �σ, �ε� :: ρ, �()��, (from def.6)

4. �σ, ρ, Comp(ε)� ⇒∗
S �σ, �ε� :: ρ, �()��. (from (2), (3) and ⇒∗

S def.)
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2) For ε being symbol not representing primitive operator:

1. Eval(ε, σ) = �ε�, σ�, where ε� = σ(ε), (from def.14)

2. Comp(ε) = �(LOOKUP ε)�, (from def.15)

3. �σ, ρ, �(LOOKUP ε)�� ⇒S �σ, �ε�� :: ρ, �()��, where ε� = σ(ε), (from def.6)

4. �σ, ρ, Comp(ε)� ⇒∗
S �σ, �ε�� :: ρ, �()��. (from (2), (3) and ⇒∗

S def.)

3) For ε ∼ �(QUOTE ε�)�:

1. Eval(ε, σ) = �ε�, σ�, (from def.14)

2. Comp(ε) = �(CONST ε�)�, (from def.15)

3. �σ, ρ, �(CONST ε�)�� ⇒S �σ, �ε�� :: ρ, �()��, (from def.6)

4. �σ, ρ, Comp(ε)� ⇒∗
S �σ, �ε�� :: ρ, �()��. (from (2), (3) and ⇒∗

S def.)

4) For ε ∼ �(. ε1)�:

1. let ε� = car(val(Eval(ε1, σ))),

2. Eval(ε, σ) = �ε�, σ�,
(from def.14 and (1))

3. Comp(ε) = Comp(ε1) :: Comp(�.�) = Comp(ε1) :: �(CAR)�
(from def.15)

4. Eval(ε1, σ) = �ε�1, σ
�� implies �σ, ρ, Comp(ε1)� ⇒

∗
S �σ, �ε�1� :: ρ, �()��.

(induction hypothesis)

5. �σ, ρ, Comp(ε1) :: �(CAR)�� ⇒S �σ�, �ε�1� :: ρ, �(CAR)��,
(from (4) and “stack compositionality”)

6. �σ�, �(ε�1)� :: ρ, �(CAR)�� ⇒S �σ, �ε�� :: ρ, �()��.
(from (1) and def.6)

7. �σ, ρ, Comp(ε1) :: �(CAR)�� ⇒∗
S �σ�, �ε�� :: ρ, �()��.

(from (5), (6), and ⇒∗
S def.)

8. �σ, ρ, Comp(ε)� ⇒∗
S �σ�, �ε�� :: ρ, �()��.

(from (3) and (7))

5) For ε ∼ �(IF α β� β⊥)�:

1. let α� = val(Eval(α, σ)),

2. Eval(ε, σ) =

�
Eval(β�, σ) , α� � �()�
Eval(β⊥, σ) , ¬

.

(from (1) and def.14)

3. Comp(ε) = Comp(α) :: �(SELECT β�
� β�

⊥)�
where β�

� = Comp(β�) and β�
⊥ = Comp(β⊥),

(from def.15)

4. Eval(α, σ) = �α�, σ�� implies �σ, ρ, Comp(α)� ⇒∗
S �σ�, �(α�)� :: ρ, �()��,

(induction hypothesis and (1))

5. �σ, ρ, Comp(α) :: �(SELECT β�
� β�

⊥)�� ⇒∗
S �σ�, �(α�)� :: ρ, �(SELECT β�

� β�
⊥)��,

(from (4) and compositionality)
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6. �σ�, �(α�)� :: ρ, �(SELECT β�
� β�

⊥)�� ⇒S

�
�σ�, ρ, β�

�� , α� � �()�
�σ�, ρ, β�

⊥� , ¬
,

(from def.6)

7. Eval(βi σ
�) =< εi, σ

��
i > implies �σ�, ρ, Comp(βi)� ⇒

∗
S �σ��

i , �εi� :: ρ, �()��,
for i ∈ {�,⊥}, (induction hypothesis)

8. �σ, ρ, Comp(ε)� =

= �σ, ρ, Comp(α) :: �(SELECT β�
� β�

⊥)�� ⇒∗
S

�
�σ��

�, �(ε�)� :: ρ, �()�� , α� � �()�
�σ��

⊥, �(ε⊥)� :: ρ, �()�� , ¬
.

(from (6) and (7))

Part (2).

Let n ≥ 0, ε ∼ �(ˆ (α1 . . . αn) β)�, and ε1, . . . , εn ∈ SE.

1. Let ε�i = val(Eval(εi, σ)), and ε��i = Comp(εi) for i = 1, . . . , n,

2. Eval(�(ε ε1 . . . εn)�) = Eval(β, σ ⊕ [α1 �→ ε�1, . . . αn �→ ε�n]), (from (0) and

def.14)

3. Eval(εi, sigma) = �ε�i, sigma� implies �σ, ρ, ε��i � ⇒
∗
S �σ, �ε�i� :: ρ, �()��, (from

(0) and induction hypothesis)

4. �σ, ρ, ε��n :: . . . :: ε��1 :: ε��� ⇒∗
S �σ, �ε�1 . . . ε

�
n� :: ρ, ε���, (from (3) and composition-

ality)

5. ε�� = Comp(ε) =
= �(NAME α1 . . . NAME αn)� :: Comp(β) :: �(FORGET α1 . . . FORGET αn)�, (from
def.15)

6. �σ, �(ε�1 . . . ε
�
n)� :: ρ, �(NAME α1 . . . NAME αn)� :: Comp(β) :: �(FORGET α1 . . . FORGET αn)�� ⇒

∗
S

�σ ⊕ [α1 �→ ε�1, . . . αn �→ ε�n], ρ, Comp(β) :: �(FORGET α1 . . . FORGET αn)��,
(from def.6 and compositionality)

7. Eval(β, σ�) = �β�, sigma�� implies �σ�, ρ, Comp(β)� ⇒∗
S �σ�, �(β�) :: ρ, �()���,

(induction hypothesis)

8. �σ�, ρ, Comp(β) :: �(FORGET α1 . . . FORGET αn)�� ⇒
∗
S �σ�, �(β�)� :: ρ, �(FORGET α1 . . . FORGET αn)��,

(from (7) and compositionality)

9. �σ ⊕ [α1 �→ ε�1, . . . αn �→ ε�n], �(β
�)� :: ρ, �(FORGET α1 . . . FORGET αn)�� ⇒

∗
S

�σ�(β�)� :: ρ, �()��, (from def. 6 and compositionality)

10. �σ, ρ, ε��n :: . . . :: ε��1 :: ε��� ⇒∗
S �σ�(β�)� :: ρ, �()��. (from (4), (6), (9) and

compositionality)
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We will now provide two drcz1 example programs.

Example 13. A DRC�SE� machine emulator ( i.e. interpreter) in drcz1 – a
straightforward representation of production rules of definition 6:

(! step (^ (d r c)

(if (= c ())

(. r)

(let ((op {<-} (. (disp c)))

( c {<-} (, c))

(d {<~} d)

(r {<~} r))

{in} (? ((= op ’CONST)

{=>} (step d (; (. c) r) (, c)))

((= op ’PROC)

{=>} (step d (; (. c) r) (, c)))

((= op ’NAME)

{=>} (step (name (. c) (. r) d) (, r) (, c)))

((= op ’FORGET)

{=>} (step (forget (. c) d) r (, c)))

((= op ’LOOKUP)

{=>} (step d (; (lookup (. c) d) r) (, c)))

((= op ’SELECT)

{=>} (if (= (. r) ())

(step d (, r) (apd (. (, c)) (, (, c))))

(step d (, r) (apd (. c) (, (, c))))))

((= op ’APPLY)

{=>} (step d (, r) (apd (. r) c)))

((= op ’CONS)

{=>} (step d (; (; (. r) (. (, r))) (, (, r))) c))

((= op ’CAR)

{=>} (step d (; (. (. r)) (, r)) c))

((= op ’CDR)

{=>} (step d (; (, (. r)) (, r)) c))

((= op ’NUM)

{=>} (step d (; (# (. r)) (, r)) c))

((= op ’ATOM)

{=>} (step d (; (@ (. r)) (, r)) c))

((= op ’EQ)

{=>} (step d (; (= (. r) (. (, r))) (, (, r))) c))

((= op ’ADD)

{=>} (step d (; (+ (. r) (. (, r))) (, (, r))) c))

((= op ’MUL)

{=>} (step d (; (* (. r) (. (, r))) (, (, r))) c))

((= op ’SUB)

{=>} (step d (; (- (. r) (. (, r))) (, (, r))) c))

((= op ’GT)

{=>} (step d (; (> (. r) (. (, r))) (, (, r))) c)))))))

(! apd (^ (a b) (if a (; (. a) (apd (, a) b)) b)))

(! name (^ (sym val env) (; (; sym val) env)))

(! forget (^ (sym env)

(? ((= env ()) {=>} ())

((= (. (. env)) sym) {=>} (, env))

(T {=>} (; (. env) (forget sym (, env )))))))

(! lookup (^ (sym env)

(? ((= env ()) {=>} ())

((= (. (. env)) sym) {=>} (, (. env)))

(T {=>} (lookup sym (, env ))))))
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(! run (^ (prog inputs) (step () inputs prog )))

�apd� is a short version of list concatenation function, while �name�, �forget�,
and �lookup� implement operations on drawers36. Notice that “desugaring”
this program to drcz0, and compiling to DRC�SE� yields [meta-circular] DRC�SE�
interpreter for DRC�SE�.

E.g. �(run �(NAME x LOOKUP x LOOKUP x MUL FORGET x) �(5))� evaluates to �25�.

Example 14. A program for finding the greatest consistent subset of given set
of sentences37, It presents our preferred style of programming in drcz1 – to first
define types (as algebras) and then describe program as set of complex relations
on that types:

Given a set of sentences of Classical Sentential Calculus, in order to find its
biggest (wrt. inclusion) consistent subsets one has to consider the following
questions:

1) what the sentences of CSC are?

2) when is the set of sentences of CSC consistent?

3) when is the set of sentences biggest wrt. inclusion?

To answer (1) we revert to classical definition of sentential calculus’ grammar
(e.g. def.1 in [15]):

Definition 16. The set of sentences of Classical Sentential Calculus is the
smallest set containing sentential variables and closed under operations of cre-
ating negation and alternative.

S =
�
{X : (∀ξi,i∈N ξi ∈ X) ∧ (∀ξi,ξj∈X ((−ξi) ∈ X ∧ (ξi + ξj) ∈ X))}.

We capture these definitions with the following38:

(! SENTENCE:mk -variable (^ (v) (list v)))

(! SENTENCE:mk -negation (^ (s) (list ’N s)))

(! SENTENCE:mk -alternative (^ (s1 s2) (list ’A s1 s2)))

{ the remaining connectives can get defined in terms of negation and alternative: }

(! SENTENCE:mk -conjunction (^ (s1 s2)

(SENTENCE:mk -negation

(SENTENCE:mk -alternative

(SENTENCE:mk -negation s1)

(SENTENCE:mk -negation s2)))))

(! SENTENCE:mk -implication (^ (s1 s2)

(SENTENCE:mk -alternative

(SENTENCE:mk -negation s1)

s2)))

36Or rather on their “magical” A-list representation.
37Big thanks to Pawe�l Paw�lowski, B.Sc. for asking to write such program for him.
38Notice the naming schema <type>:<operation>.
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(! SENTENCE:mk -equality (^ (s1 s2)

(SENTENCE:mk -conjunction

(SENTENCE:mk -implication s1 s2)

(SENTENCE:mk -implication s2 s1))))

(! SENTENCE:varname (^ (s) (first s)))

(! SENTENCE:arg1 (^ (s) (second s)))

(! SENTENCE:arg2 (^ (s) (third s)))

(! SENTENCE:variable? (^ (s) (= (length s) 1)))

(! SENTENCE:negation? (^ (s) (and (= (length s) 2) (= (first s) ’N))))

(! SENTENCE:alternative? (^ (s) (and (= (length s) 3) (= (first s) ’A))))

(! SENTENCE:vars (^ (s) (uniq (list -all -vars s))))

To answer (2) it is enough to notice that set of CSC sentences {ϕ1, . . . , ϕn}
is consistent iff its big conjunction ϕ1& . . . &ϕn is not an antitautology (i.e.
a sentence false under any possible arrangement of truth-values for ϕi, i =
1, . . . , n).

(! SENTENCE:eval

(^ (s bind)

(? (( SENTENCE:variable? s)

{=>} (lookup (SENTENCE:varname s) bind))

(( SENTENCE:negation? s)

{=>} (not (SENTENCE:eval (SENTENCE:arg1 s) bind )))

(( SENTENCE:alternative? s)

{=>} (or (SENTENCE:eval (SENTENCE:arg1 s) bind)

(SENTENCE:eval (SENTENCE:arg2 s) bind ))))))

(! lookup (^ (v bind) (AL:assoc v bind (^ (x y) (= x y)))))

{ matrix method of checking for anti -tautology: }

(! gen -all -TF-arrangements

(^ (l)

(if (= l 1)

’((()) (T))

{else} (let (( children {<-} (gen -all -TF -arrangements (- l 1))))

{in} (append (map (^ (b) (; T b)) children)

(map (^ (b) (; () b)) children ))))))

(! gen -all -bindings (^ (vars)

(mapg (^ (bp arg) (pair arg bp))

vars

(gen -all -TF -arrangements (length vars )))))

(! SENTENCE:antitautology?

(^ (s)

(antitautology -test s (gen -all -bindings (SENTENCE:vars s)))))

(! antitautology -test

(^ (s bindings)

(? ((empty? bindings) {=>} T)

(( SENTENCE:eval s (first bindings )) {=>} ())

(T {=>} (antitautology -test s (rest bindings ))))))

(! truth -table (^ (s)

(mapg (^ (b s) (list b (SENTENCE:eval s b)))

s

(gen -all -bindings (SENTENCE:vars s)))))
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(! big -conjunction

(^ (ss)

(if (empty? (rest ss))

(first ss)

{else} (SENTENCE:mk-negation

(SENTENCE:mk -alternative

(SENTENCE:mk -negation (first ss))

(SENTENCE:mk -negation (big -conjunction (rest ss ))))))))

(! consistent? (^ (ss)

(not (SENTENCE:antitautology? (big -conjunction ss )))))

Finally, to answer (3) one can think of the problem as follows: first find list of
all consistent subsets of given set (excluding some obvious ones by not checking
inside already consistent subsets), and then filter this list (�trim − subsets�)
by dropping every set included in any of the others (�subset − of − any?�).

(! gcs (^ (ss)

(let ((ss {<-} (gather -gcss (list ss) () ())))

{in} (trim -subsets ss ss))))

(! gather -gcss (^ (pend checked res)

(? ((empty? pend)

{=>} res)

(( memberg? (first pend) checked SET:equal?)

{=>} (gather -gcss (rest pend)

checked

res))

(( consistent? (first pend))

{=>} (gather -gcss (rest pend)

(push (first pend) checked)

(push (first pend) res )))

(T

{=>} (gather -gcss (append (incl -predecessors (first pend))

(rest pend))

(push (first pend) checked)

res )))))

(! trim -subsets (^ (pend ss)

(if pend

(let (( s {<-} (first pend))

(pend {<-} (rest pend))

(ss {<~} ss))

{in} (if (subset -of -any? s (SET:drop s ss))

(trim -subsets pend ss)

{else} (push s (trim -subsets pend ss))))

{else} ())))

(! incl -predecessors

(^ (set)

(mapg (^ (el set) (SET:diff set (SET:mk-singleton el))) set set )))

(! subset -of -any? (^ (s ss)

(? ((SET:empty? ss) {=>} ())

((SET:subset? s (first ss)) {=>} T)

(T {=>} (subset -of-any? s (rest ss ))))))

{-- main --}

(map (^ (x) (map SENTENCE:write x)) (gcs (map SENTENCE:parse (read ))))
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Where �(read)� stands for standard (keyboard) input operator (cf. appendix A).
The code refers also to �SENTENCE : parse� and �SENTENCE : write�, as we have also
programmed a simple parser from Polish notation, not included on this listing.

In the above code the operation mapg is generalization of map, consuming one ad-
ditional argument, for making certain variables visible (a similar solution could be
seen in our let expressions, where each time we wanted to pass some argument we
had to rewrite it explicitly). We could avoid writing these if we picked some strategy
for binding free variables. These issues do not concern us now, and are discussed in
details in [18], while a possible technique for compiling closures to DRC�SE� machine
would be Reynold’s defunctionalization ([14]) – ingenious tool used both in compilers
and equivalence proofs for functional programming languages (cf. also [3]).

E.g. Given �((p) (q) (N p) (N q) (A p q))� yields

�( ((p) (q) (A p q)) ((p) (N q) (A p q)) ((q) (N p) (A p q)) ((N p) (N q)) )�.

Despite its small size (somewhere around 50 definitions, including the parser),
the program works quite well39 ; it could be optimized with e.g. more effective
definition of sets inclusion – however we are only concerned with expressive
power at the moment. Notice how easily the program emerged from the problem
stated.

Full implementation can be found in drcz1-src/gcss.drcz1 file on attached CD.

2.4 Describing procedures with FCL�SE� and FCL∗�SE�.

FCL�SE� is extremely simple, imperative language of assignments and jumps.
It is closely related to Register Machines – family of computational models which
emerged around 1960s as replacement for Turing Machines40.

FCL�SE� differs from DRC�SE� in three significant points:

1) it’s environment is “flat”, i.e. each drawer holds exactly one sheet,

2) it stores partial results by naming them in environment, not by holding them
on stack,

3) it captures subcomputations as blocks and jumps, not procedural constants
and applications.

These features make FCL�SE� both easy to implement (on any existing hard-
ware/software) and nice object of study, as will be seen in chapter 3.

FCL�SE� programs are S-expressions encoding blocks of commands. To grasp
the idea, consider the following:

39Subsets of set consisting of 8 sentences were found below 200sec. on 1GHz PC.
40Reader interested in deriving RMs from TMs might wish to see abacus machine of [2],

ch.5.
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Example 15. An FCL�SE� program of two inputs m and n, describing proce-
dure of computing mn.

((m n)

init

(init (let r 1)

(goto test))

(test (if (= n 0) end loop))

(loop (let r (* r m))

(let n (- n 1))

(goto test))

(end (return r)))

E.g. when given input values �2� and �3� yields �8�.

A much more interesting example of FCL�SE� program will be presented in
section 2.5.

In general, programs in FCL�SE� have form �(ξ α0)� :: β, where ξ is a list of
input names, α0 starting block name, and β is A-list with block labels as keys
and blocks as values. Blocks are lists of instructions, each one being either:

a. an assignment – instruction of assigning given expression’s value to selected
variable, e.g. �(let a (+ b c))�

b. a jump directive – instruction of changing current block to one with given
label, e.g. �(goto test2)�

c. a conditional jump directive – instruction of changing current block: if
condition expression evaluates to �T� then changing to first given label, else
to second, e.g. �(if (= a 0) zero nonzero)�

d. return statement – evaluate given expression and return its value as pro-
gram’s result. e.g. �(return (+ a b))�

To run a program π with inputs ε1, . . . , εn initialize store with input names
and values, pick its initial block label and run it:

Run(π, �ε1, . . . , εn�) = RunBlock




startLabel(π),

initStore(inputNames(π), �ε1, . . . , εn�),
π





To run given block, find it’s definition and “step” it:

RunBlock(pp, σ, π) = Step(findBlock(pp, π), σ, π).
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To “step” a sequence of instructions:

Step(β, σ, π) =






Step(βr, σ ⊕ [α �→ ε�], π) , β ∼ �((let α ε) . βr)�
RunBlock(λ, σ, π) , β ∼ �((goto λ))�
RunBlock(λ1, σ, π) , β ∼ �((if ε λ1 λ2))� ∧ ε� � �()�
RunBlock(λ2, σ, π) , β ∼ �((if ε λ1 λ2))� ∧ ε� ∼ �()�
ε� , β ∼ �((return ε))�

where ε� stands for evalExpr(ε, σ), evaluation function for SE polynomials; we
don’t describe it here as it is just a restriction of drcz0’s Eval function. For
more detailed discussion on the language refer [9].

Glück in his [7] extends FCL�SE� with recursive call: in RHS of let assign-
ment41 instead of expression there can be call of the form �(call α)�, where α
is label of some block. It executes this block in copy of it’s current environment
σ (with another FCL interpreter), and takes the result as its own value. We
refer to this extended version as FCL∗�SE�. An example program – computing
the Ackermann function (from [7] also):

((m n)

ack

(ack (if (= m 0) done next))

(done (return (+ n 1)))

(next (if (= n 0) ack0 ack1))

(ack0 (let n 1)

(goto ack2))

(ack1 (let n (- n 1))

(let n (call ack))

(goto ack2))

(ack2 (let m (- m 1))

(let n (call ack))

(return n)) )

2.5 FCL(∗)�SE� implementations and examples.

To implement FCL�SE� interpreter in drcz1 it is enough to implement functions
Run, RunBlock and Step from previous section:

(! run (^ (program inputvals)

(run -block (PROGRAM:start -pp program)

(STORE:new (PROGRAM:input -names program) inputvals)

(PROGRAM:block -map program ))))

(! run -block (^ (pp store block -map)

(step (BLOCK -MAP:find pp block -map) store block -map)))

(! eval -expr (^ (expr store)

(? ((= expr ()) {=>} ())

((# expr) {=>} expr)

((@ expr) {=>} (STORE:lookup expr store))

((= (first expr) ’quote) {=>} (second expr))

(T {=>} (apply -op (first expr)

(evlis -expr (rest expr) store ))))))

41In our implementation in return also.
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(! evlis -expr (^ (expr -list store)

(if (empty? expr -list)

()

{else} (; (eval -expr (first expr -list) store)

(evlis -expr (rest expr -list) store )))))

(! step { CODE -BLOCK x STORE x BLOCK -MAP -> SE }

(^ (code -block store block -map)

(let (( cmd {<-} (CODE -BLOCK:first -cmd code -block))

( cb -rest {<-} (CODE -BLOCK:rest -cmds code -block))

( store {<~} store)

(block -map {<~} block -map))

{in} (? ((CMD:let? cmd)

{=>} (step cb-rest

(STORE:update (CMD:let -variable cmd)

(let ((expr {<-} (CMD:let -expression cmd))

( store {<~} store)

(block -map {<~} block -map))

{in} (eval -expr expr store ))

store)

block -map))

((CMD:goto? cmd)

{=>} (run -block (CMD:goto -pp cmd) store block -map))

((CMD:if? cmd)

{=>} (if (eval -expr (CMD:if -condition cmd) store)

(run -block (CMD:if -then -pp cmd) store block -map)

{else} (run -block (CMD:if -else -pp cmd) store block -map )))

((CMD:return? cmd)

{=>} (let ((expr {<-} (CMD:return -expression cmd))

( store {<~} store)

(block -map {<~} block -map))

{in} (eval -expr expr store ))))

(T

{=>} (list ’ERR ’step: ’unknown ’command cmd ))))))

To enable FCL∗�SE� calls we only have to modify step:

((CMD:let? cmd)

{=>} (step cb-rest

(STORE:update (CMD:let -variable cmd)

(let ((expr {<-} (CMD:let -expression cmd))

( store {<~} store)

(block -map {<~} block -map))

{in} (if (call? expr)

(run -block (call -pp expr) store block -map)

{else} (eval -expr expr store )))

store)

block -map))

Full source for the interpreter can be found on attached CD in drcz1-src/FCL/

fcl-rec-interpreter.drcz1 file (cf. also appendix B). Following Glück ([7])
we have embedded in this interpreter some more sophisticated SE operators
(i.a. append, drop, list) These can be found in apply-op definition.
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Now we would like to find an effective translation from FCL�SE� to drcz0,
i.e. a compiler. In order to construct one we have to examine semantics of
FCL�SE�.

First, blocks – sequences of zero or more assignments followed by return state-
ment or (un)conditional jump – can be identified with Env → SE functions they
realize (where Env = SEId, Id = {ε ∈ SE : atom(ε) ∼ �T� ∧ num(ε) ∼ �()�}).
Each block as function definition ends with either result expression (of return
statement), or tail call(s) to other function(s) (block(s)).

To express a single block of n > 0 instructions in drcz0, we can split it into
n “small transformations” and encode each one with the following rules (we
assume there are k > 0 variable identifiers used in program π ∈ ProgFCL�SE�):

a. An assignment �(let ξi β)� where ξi is some variable identifier (i ≤ k) and β is
[valid] expression (i.e. some polynomial of k variables ξ1, . . . , ξk over SE), followed
by a list of one or more instructions (transformations of form (a)-(d)) τ , encode as

�(ˆ (ξ1 . . . ξk) (τ � ξ1 . . . ξi−1 β ξi+1 . . . ξk))�,

where τ � is encoding of τ .

b. An unconditional jump �(goto α)� where α is some block label identifier encode as

�(ˆ (ξ1 . . . ξk) (α ξ1 . . . ξk))�.

c. A conditional jump �(if ε α� α⊥)� where ε is some expression, α�, α⊥ are some
block labels identifiers, encode as

�(ˆ (ξ1 . . . ξk) (if ε� (α� ξ1 . . . ξk) (α⊥ ξ1 . . . ξk)))�,

where ε� is the encoding of expression ε.

d. A return statement �(return ε)� where ε is some expression, encode as

�(ˆ (ξ1 . . . ξk) ε�)�,

where ε� is the encoding of expression ε.

To name the whole encoded block β with its label α, simply represent it as
�(! α β)�.

Finally, to encode the argument identifiers (ξ1, . . . , ξl≤k) and initial block label
α0 encode the whole program π as

�β∗ :: (α0 ξ�1 . . . ξ
�
k)�,

where β∗ is list of m > 0 block definitions �(! αm βm)�, and ξ�i =

�
�(read)� , if i ≤ l
�()� , ¬

for i = 1, . . . , k.

(! compile (^ (prog)

(let ((vars {<-} (PROGRAM:input -names prog))

(allvars {<-} (disp (PROGRAM:all -vars prog )))

(main {<-} (PROGRAM:start -pp prog))

(defs {<-} (PROGRAM:block -map prog )))

{in} (append (comp -defs defs allvars)

(comp -target main vars allvars )))))
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(! comp -defs (^ (defs vars)

(if defs

(let ((name {<-} (. (first defs )))

( val {<-} (, (first defs )))

(defs {<-} (rest defs))

(vars {<~} vars))

{in} (; (list ’! name (comp -block val vars))

(comp -defs defs vars )))

{else} ())))

(! comp -target (^ (label inputs vars) (list (; label (mk-vars inputs vars )))))

(! mk -vars (^ (inputs vars)

(? ((= vars ())

{=>} ())

(( member? (. vars) inputs)

{=>} (; (list ’read) (mk-vars inputs (, vars ))))

(T

{=>} (; T (mk -vars inputs (, vars )))))))

(! comp -block (^ (b vars)

(let (( op {<-} (. (. b)))

(args {<-} (, (. b)))

( b {<-} (, b))

(vars {<~} vars))

{in} (? ((= op ’let)

{=>} (list ’^

vars

(; (comp -block b vars)

(mk -asgn (. args)

(. (, args))

vars ))))

((= op ’return)

{=>} (mk-rtn (. args) vars))

((= op ’goto)

{=>} (mk-jmp (. args) vars))

((= op ’if)

{=>} (mk-if (. args)

(. (, args))

(. (, (, args )))

vars))

(T {=>} ’err )))))

(! mk -asgn (^ (var expr vars)

(? ((= vars ())

{=>} ())

((= (. vars) var)

{=>} (; expr (, vars )))

(T

{=>} (; (. vars) (mk-asgn var expr (, vars )))))))

(! mk -rtn (^ (expr vars)

(list ’^ vars expr )))

(! mk -jmp (^ (label vars)

(list ’^ vars (; label vars ))))

(! mk -if (^ (perm concl alt vars)

(list ’^ vars (list ’if perm (; concl vars) (; alt vars )))))
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E.g. An FCL�SE� program

((n m)

init

(init (let r 1)

(goto test))

(test (if (= m 0) end {else} loop))

(loop (let r (* r n))

(let m (- m 1))

(goto test))

( end (return r)))

compiles to

(

(! init (^ (n m r) ((^ (n m r) (test n m r)) n m 1)))

(! test (^ (n m r) (if (= m 0) (end n m r) (loop n m r))))

(! loop (^ (n m r) ((^ (n m r)

((^ (n m r) (test n m r)) n

(- m 1)

r)) n

m

(* r n))))

(! end (^ (n m r) r))

(init (read) (read) ())

)

Similarly we have implemented an FCL�SE� to DRC�SE� compiler; the idea
behind it is exactly the same – with the only significant detail is encoding
assignments �(! α β)� as β� :: �(FORGET α NAMEα)� (for keeping the environment
“flat”).

(! compile

(^ (prog)

(let ((used -vars {<-} (list -all -vars prog))

(input -vars {<-} (PROGRAM:input -names prog))

(start -pp {<-} (PROGRAM:start -pp prog))

(block -map {<-} (PROGRAM:block -map prog )))

{in} (append (initialize -variables used -vars input -vars)

(append (compile -blockmap block -map)

(mk -start -block start -pp ))))))

(! initialize -variables

(^ (vars input)

(if vars

(append (if (member? (first vars) input)

(list ’READ ’NAME (first vars))

{else} (list ’CONST () ’NAME (first vars )))

(initialize -variables (rest vars) input))

{else} ())))

(! mk -start -block (^ (pp) (list ’LOOKUP pp ’TRAPPLY )))
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(! compile -blockmap (^ (bm)

(if (empty? bm)

()

{else} (append (compile -block (first bm))

(compile -blockmap (rest bm ))))))

(! compile -block { : CONS(LABEL ,CODE) -> DRC <SE>CODE }

(^ (block)

(let ((label {<-} (. block ))

(code {<-} (, block )))

{in} (list ’PROC (compile -code code) ’NAME label ))))

(! compile -code

(^ (code)

(if code

(let (( cmd {<-} (first code))

(rest -cmds {<-} (rest code )))

{in} (append (? ((CMD:let? cmd)

{=>} (compile -assignment (CMD:let -variable cmd)

(CMD:let -expression cmd )))

((CMD:goto? cmd)

{=>} (compile -jump (CMD:goto -pp cmd)))

((CMD:if? cmd)

{=>} (compile -conditional (CMD:if -condition cmd)

(CMD:if -then -pp cmd)

(CMD:if -else -pp cmd)))

((CMD:return? cmd)

{=>} (compile -return (CMD:return -expression cmd )))

(T

{=>} (list ’err! ’unknown ’command cmd)))

(compile -code rest -cmds )))

{else} ())))

(! compile -assignment (^ (var expr)

(append (compile -expression expr)

(list ’FORGET var ’NAME var ))))

(! compile -jump (^ (pp) (list ’LOOKUP pp ’TRAPPLY )))

(! compile -conditional (^ (cnd then -pp else -pp)

(append (compile -expression cnd)

(list ’SELECT (list ’LOOKUP then -pp)

(list ’LOOKUP else -pp)

’TRAPPLY ))))

(! compile -return (^ (expr) (compile -expression expr ))) {a halt?!}

(! compile -expression

(^ (expr)

(? ((or (= expr ()) (# expr)) {=>} (list ’CONST expr))

((@ expr) {=>} (if (is-primop? expr)

(comp -primop expr)

{else} (list ’LOOKUP expr )))

(T {=>} (compile -list (reverse expr ))))))

(! compile -list

(^ (exprs)

(if exprs

(append (compile -expression (first exprs))

(compile -list (rest exprs )))

{else} ())))
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Full source can be found in drcz1-src/FCL/fcl2drc.drcz1 file.

E.g. the same FCL�SE� program

((n m)

init

(init (let r 1)

(goto test))

(test (if (= m 0) end {else} loop))

(loop (let r (* r n))

(let m (- m 1))

(goto test))

( end (return r)))

compiles to

(READ

NAME n

CONST ()

NAME r

READ

NAME m

PROC (CONST 1

FORGET r

NAME r

LOOKUP test

TRAPPLY)

NAME init

PROC (CONST 0

LOOKUP m

EQ

SELECT (LOOKUP end)

(LOOKUP loop)

TRAPPLY)

NAME test

PROC (LOOKUP n

LOOKUP r

MUL

FORGET r

NAME r

CONST 1

LOOKUP m

SUB

FORGET m

NAME m

LOOKUP test

TRAPPLY)

NAME test

PROC (LOOKUP r)

NAME end

LOOKUP init

TRAPPLY)
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We will now provide two example FCL programs.

Example 16. DRC�SE� machine emulator in FCL�SE� – inputs two lists:
program and initial encoding of R stack.

((prog inputs)

init

(init (let D ())

(let R inputs)

(let C prog)

(goto step))

(step (if (= C ()) end step2 ))

(end (return (. R)))

(step2 (let cmd (. C))

(let C (, C))

(goto check -const ))

(check -const (if (= cmd ’CONST) do -const check -proc))

(check -proc (if (= cmd ’PROC) do -const {sic!} check -lookup ))

(check -lookup (if (= cmd ’LOOKUP) do-lookup check -name))

(check -name (if (= cmd ’NAME) do -name check -forget ))

(check -forget (if (= cmd ’FORGET) do-forget check -select ))

(check -select (if (= cmd ’SELECT) do-select check -apply))

(check -apply (if (= cmd ’APPLY) do -apply check -cons))

(check -cons (if (= cmd ’CONS) do-cons check -car))

(check -car (if (= cmd ’CAR) do-car check -cdr))

(check -cdr (if (= cmd ’CDR) do-cdr check -eq))

(check -eq (if (= cmd ’EQ) do -eq check -num))

(check -num (if (= cmd ’NUM) do-num check -atom))

(check -atom (if (= cmd ’ATOM) do-atom check -add))

(check -add (if (= cmd ’ADD) do-add check -sub))

(check -sub (if (= cmd ’SUB) do-sub check -mul))

(check -mul (if (= cmd ’MUL) do-mul check -gt))

(check -gt (if (= cmd ’GT) do -gt err))

(err (return (list ’ERROR ’UNKNOWN ’COMMAND cmd)))

(do -const (let exp (. C))

(let C (, C))

(let R (; exp R))

(goto step))

(do -lookup (let var (. C))

(let C (, C))

(let R (; (. (AL:lookup var D)) R))

(goto step))

(do -name (let var (. C))

(let val (. R))

(let C (, C))

(let R (, R))

(let D (AL:update var (; val (AL:lookup var D)) D))

(goto step))

(do -forget (let var (. C))

(let C (, C))

(let D (AL:update var (, (AL:lookup var D)) D))

(goto step))
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(do -select (let perm (. R))

(let R (, R))

(let concl (. C))

(let alt (. (, C)))

(let C (, (, C)))

(if perm do-concl do-alt))

(do -concl (let C (append concl C))

(goto step))

(do -alt (let C (append alt C))

(goto step))

(do -apply (let proc (. R))

(let R (, R))

(let C (append proc C))

(goto step))

(do -cons (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (; arg1 arg2))

(let R (; res R))

(goto step))

(do -car (let arg1 (. R))

(let R (, R))

(let res (. arg))

(let R (; res R))

(goto step))

(do -cdr (let arg1 (. R))

(let R (, R))

(let res (, arg))

(let R (; res R))

(goto step))

(do -eq (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (= arg1 arg2))

(let R (; res R))

(goto step))

(do -add (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (+ arg1 arg2))

(let R (; res R))

(goto step))

(do -sub (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (- arg1 arg2))

(let R (; res R))

(goto step))

(do -mul (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (* arg1 arg2))
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(let R (; res R))

(goto step))

(do -gt (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (> arg1 arg2))

(let R (; res R))

(goto step))

)

E.g. when given arguments �(PROC (NAME x LOOKUP x LOOKUP x MUL FORGET x) APPLY)�

and �(5)� yields �25�.

Example 17. A bath interpreter for drcz0 in FCL∗�SE� – given program,
list of variable identifiers, and inputs produces output (result). A program is
represented as a list, whose head (car) is the target call (“main”) �(ϕ ξ1 . . . ξn)�,
n ≥ 0, and whose tail (cdr) is list of definitions of the form �(! α β)�, where
α is some variable identifier (symbol) and β is any S-expression (most often a
lambda form).

(( program init -vars init -vals)

start

(start (let env (AL:new init -vars init -vals))

(let expr (. program ))

(let defs (, program ))

(let env (call process -defs defs env))

(let res (call eval expr env))

(let r-expr (. res))

(let r-env (, res))

(return r-expr))

{- interpreting a sequence of definitions: -}

(process -defs (if (= defs ()) defs -finished process -def))

(process -def (let expr (. defs))

(let defs (, defs))

(let res (call eval expr env))

(let env (, res))

(goto process -defs))

(defs -finished (return env))

{- evaluator -}

(eval (goto check -nil))

(check -nil (if (= expr ()) do-nil check -num))

(check -num (if (# expr) do-num check -sym))

(check -sym (if (@ expr) do-sym check -quote ))

(check -quote (if (= (. expr) ’quote) do -quote check -lambda ))

(check -lambda (if (= (. expr) ’^) do -lambda check -eq))

(check -eq (if (= (. expr) ’=) do -eq check -cons))

(check -cons (if (= (. expr) ’;) do-cons check -car))

(check -car (if (= (. expr) ’.) do-car check -cdr))

(check -cdr (if (= (. expr) ’,) do-cdr check -atom))

{...}
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(check -atom (if (= (. expr) ’@) do-atom check -if))

(check -if (if (= (. expr) ’if) do-if check -label))

(check -label (if (= (. expr) ’!) do -label check -application ))

(check -application (goto do-application ))

(err (return (list ’error ’evaluating expr ’in env )))

(do -nil (return (; () env)))

(do -num (return (; expr env )))

(do -sym (return (; (AL:lookup expr env) env )))

(do -quote (return (; (. (, expr)) env)))

(do -lambda (return (; expr env )))

(do -eq (let a1 (. (, expr )))

(let a2 (. (, (, expr ))))

(let expr a1)

(let res (call eval expr env))

(let a1 (. res))

(let expr a2)

(let res (call eval expr env))

(let a2 (. res))

(return (; (= a1 a2) env)))

(do -cons (let a1 (. (, expr )))

(let a2 (. (, (, expr ))))

(let expr a1)

(let res (call eval expr env))

(let a1 (. res))

(let expr a2)

(let res (call eval expr env))

(let a2 (. res))

(return (; (; a1 a2) env)))

(do -car (let a1 (. (, expr )))

(let expr a1)

(let res (call eval expr env))

(let a1 (. res))

(return (; (. a1) env)))

(do -cdr (let a1 (. (, expr )))

(let expr a1)

(let res (call eval expr env))

(let a1 (. res))

(return (; (, a1) env)))

(do -atom (let a1 (. (, expr )))

(let expr a1)

(let res (call eval expr env))

(let a1 (. res))

(return (; (@ a1) env)))

(do -if (let perm (. (, expr )))

(let concl (. (, (, expr ))))

(let alt (. (, (, (, expr )))))

(let expr perm)

(let res (call eval expr env))

(let perm (. res))

(if perm do-concl do-alt))
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(do -concl (let expr concl)

(let res (call eval expr env))

(return res))

(do -alt (let expr alt)

(let res (call eval expr env))

(return res))

(do -label (let var (. (, expr )))

(let val (. (, (, expr ))))

(let expr val)

(let res (call eval expr env))

(let val (. res))

(let env (AL:update {?!} var val env))

(return (; val env )))

(do -application (let rator (. expr))

(let rands (, expr))

(let expr rator)

(let res (call eval expr env))

(let rator (. res))

(let exprs rands)

(let argvals (call evlis exprs env))

(let argnames (. (, rator )))

(let body (. (, (, rator ))))

(let expr body)

(let env (append (AL:new argnames argvals) env))

(let res (call eval expr env))

(return res))

(evlis (let evexprs ())

(goto evlis -loop))

(evlis -loop (if (= exprs ()) end -evlis evlis -step))

(evlis -step (let expr (. exprs ))

(let exprs (, exprs ))

(let res (call eval expr env))

(let evexprs (append evexprs (list (. res ))))

(goto evlis -loop))

(end -evlis (return evexprs ))

)

E.g. the following program

(

(apd (rev a) (rev b))

(! apd (^ (x y) (if x (; (. x) (apd (, x) y)) y)))

(! rev (^ (x) (if (@ x) x (apd (rev (, x)) (; (. x) ())))))

)

with variable names list �(a b)� and inputs list �((q w e) (1; 2 3))� yield �(e w q 3 2 1)�.

Some more FCL�SE� programs will appear in chapter 3.
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2.6 Overview.

So far we have presented three programming languages: of DRC�SE� machine,
drcz0/1 and FCL(∗)�SE�. Each of them enables describing procedures, i.e. pro-
vides mechanisms of capturing: (1) performing “atomic” tasks, (2) conditional
choices, and (3) following some (sub)procedure, as was listed in section 1.1.

We have contrasted these mechanisms in the following table:

DRC�SE� drcz0 FCL�SE�
constants, constants, constants,

primitive operators, primitive operators, primitive operators,
lookups variables and variables

(and return statements)

name, functional objects, assignments
forget and their applications

apply application unconditional jump

select conditional expression conditional jump

All three languages can be considered as computation spaces – the one for
DRC�SE� was already described in section 1.6. Computation space of FCL�SE�
is quite similar:

ΣFCL = {�β, σ, π� :

∃λ,τ findBlock(λ, π) = τ :: β

∧ σ ∈ Env = SEId

∧ π ∈ ProgFCL





,

⇒FCL= Step,

encFCL(π, α) =

� lookup(startLabel(π), π),
initStore(inputNames(π), α),

π

�

,

ΠFCL(�β, σ, π�) = β.

The computation space for drcz0 might seem a bit odd, and to describe it one
would probably have to use some variant of Turchin’s activation brackets (cf.
[16]).

However all computation spaces for drcz0/1 and FCL(∗) can be derived easily
from ΣDRC�SE�, with the use of our interpreters intFCL(∗)/drcz0/1

:

Σl = fl(�πint�l�|P rogl × SE
∗� � ΣDRC�SE�)

for l ∈ {FCL�SE�, FCL∗�SE�, drcz0, drcz1} and some monomorphisms fl to
contract, i.e. monotonically embed these spaces in ΣDRC�SE�. One would often
want fl to be non-trivial, because a single step ⇒l can be emulated with a
[longer] sequence of ⇒S steps.
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3 On generating and generators

The interpreters of chapter 2 enabled emulating different computational mod-
els (languages) on DRC�SE� machine. However, they always introduce some
overhead, called in [10], [7] the interpretive overhead42. It is caused i.a. by
the need to analyze the structure of program being interpreted at runtime43.
This problem was mostly solved by writing compilers “by hand”. In this chap-
ter we will show method capable of automatic interpretive overhead reduction,
and automatic compilation (and compiler generation). The method is called
online partial evaluation and is described in detail in many papers (e.g. [9], [7],
[6], or [5]). The variants we present are drcz1 implementation of online partial
evaluator from [9], and FCL∗�SE� implementation being mutatis mutandis the
program from [7]. As they are very well documented in the mentioned papers,
we will only sketch their implementations, referring interested reader to source
codes on attached CD44.

3.1 Abstract interpretation for FCL�SE�.

Consider an FCL�SE� program π
((a b)

init

(init (let res 1)

(goto test))

(test (if (= b 0) stop loop))

(loop (let res (* a res))

(let b (- b 1))

(goto test))

(stop (return res)) )

It describes a procedure spanning the subspace �π|Num2�, such that for any
�ε1, ε2� ∈ Num2 the computation prcFCL(π)(ε1, ε2) = �π|(ε1, ε2)� is [embedded]
in �π|Num2�.

The following diagram is simplified representation45 of �π|Num2�:

init|�?, ?�

test|�?, ?, ?�
∨

b�=0
>

<
loop|�?, ?, ?�

end|�?, 0, ?�

b=0
∨

42Cf. drcz1-src/FCL/futamura/jones-suboptimality.drcz1.
43Reader interested in checking is advised to run some interpreter in other interpreter, with

some simple (single-expression) program as input.
44drcz1_src/FCL/onmix.drcz1 and drcz1_src/FCL/FCL_src/onmix.fcl files respectively.
45All these diagrams are mutatis mutandis ones from [9].
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The next diagram represents �π|(�3�, �2�)� process – we have derived it by
following the procedure’s diagram while keeping account of the environment
(i.e. variable bindings), and by selecting the test branch with satisfied condition
in label. This procedure is exactly what the FCL�SE� interpreter does.

init|�3, 2�

test|�3, 2, 1�
∨

> loop|�3, 2, 1�

test|�3, 1, 3� >
<

loop|�3, 1, 3�

test|�3, 0, 9�
<

end|�3, 0, 9�
∨

Consider now the subspace �π|Num × {�2�}�. It can be described with some
procedure π[.,2], whose upper semantics is projection of π wrt. its first argument,
i.e. function f(n) = n2.

It can be represented with the following diagram – we have derived it following
the procedure’s diagram while keeping account of the partial [knowledge of the]
environment, and by selecting these of each test branches whose condition is
either satisfied or of unknown value. Notice we have kept each unique label-
environment pair as different block. This procedure, called driving is what i.a.
supercompilers ([16],[5]) and partial evaluators ([10], [9], [7], [5]) do.

init|�?, 2�

test|�?, 2, 1�
∨

> loop|�?, 2, 1�

test|�?, 1, ?� >
<

loop|�?, 1, ?�

test|�?, 0, ?�
<

end|�?, 0, ?�
∨
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Its counterpart, subspace �π|{�3�×Num}�, seems more complicated – it turns
out its description derived by the driving strategy we have picked is not finite.

init|�3, ?�

test|�3, ?, 1�
∨

> loop|�3, ?, 1�

end|�3, 0, 1�
∨

test|�3, ?, 3�
∨

> loop|�3, ?, 3�

end|�3, ?, 3�
∨

test|�3, ?, 9�
∨

> ...

...
∨

Therefore a program implementing [this strategy of] driving would not stop (as
is the case with our onmix). Some interesting techniques were developed for
ensuring termination of driving-based programs ([16]) under some additional
circumstances46.

Most often the driving-based programs are code-transformations, i.e. code-
generating program (as is the case with onmix). In other words, the main
purpose of driving-based programs is to transform other programs. Various
strategies of driving can devise interesting procedures out of a given procedure
and some (sub)set of it’s possible inputs; these include significant code opti-
mizations (cf. [10]).

3.2 FCL∗�SE� online partial evaluator.

We will now show a simple driving-based program in drcz1, implementing online
partial evaluation algorithm described in [9]. The fragments for FCL∗�SE� calls
are implemented as in [7].

The algorithm is simple: it assumes having two lists – pend with states to
examine and code with resulting block-map. It starts with pend containing
only one state – initial block with (partial) initial environment, and stops when
pend is empty. At each step a state from pend is taken under consideration
(and removed from pend). If it has not been seen before, one takes it’s label,
looks-up it’s corresponding block and then drives this block, in accord with the
following rules:

46Mostly that the processes generated by the driven program would actually halt on all
inputs considered.
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a. For an assignment �(let α ε)�:

If the value ε� of expression ε can be established in current (partial) environ-
ment σ, then update it with α �→ ε�.

Otherwise, let ε� = reduce(ε, σ) where reduce is simple partial evaluator
for expressions. Then add to the generated block an instruction of form
�(let α ε)�.

Then proceed with next instruction.

b. For a jump directive �(goto α)� proceed47. with driving block lookup(α, π).

c. for a conditional jump directive �(if ε β� β⊥)�:

If the value ε� of expression ε can be established in current (partial) environ-
ment σ, then if ε� ∼ �()� proceed as with (goto β⊥), otherwise proceed as
with (goto β�).

If the value of ε can not be established, add to the generated block an in-
struction of the form �(if ε� �β�, σ� �β⊥, σ�)�, where ε� = reduce(ε, σ).

Then add the generated block b to code under �λ, σ� label (where λ is the
label of block from driving of which b has resulted.

d. for return statement �(return ε)� add to the generated block an instruction
of the form �(return ε�)�, where ε� = reduce(ε, σ). Then add the generated
block b to code under �λ, σ� label (where λ is the label of block from driving
of which b has resulted.

(! specialize

(^ (program div init -vals live -vars -map)

(PROGRAM:new (diff (PROGRAM:input -names program) div)

(LABEL:new2 (PROGRAM:start -pp program)

(AL:new div init -vals)

live -vars -map)

(drive (list (LABEL:new2 (PROGRAM:start -pp program)

(AL:new div init -vals)

live -vars -map))

()

(PROGRAM:block -map program)

live -vars -map ))))

(! successors

(^ (cb)

(if cb

(? ((and (CMD:let? (first cb))

(call? (CMD:let -expression (first cb))))

{=>} (push (call -pp (CMD:let -expression (first cb)))

(successors (rest cb))))

((CMD:if? (first cb))

{=>} (list (CMD:if-then -pp (first cb)) (CMD:if -else -pp (first cb))))

((CMD:goto? (first cb))

{=>} (list (CMD:goto -pp (first cb))))

(T {=>} (successors (rest cb))))

{else} ())))

47This is part of “compress transitions on-the-fly” strategy. We have experimented with
variant of onmix with no call unfolding on-the-fly, with post-processing compressing, however
working with bigger programs seemed to be impossible because of the memory usage.
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(! drive

(^ (pend res program live -vars -map)

(if (empty? pend)

res

{else} (let (( pp {<-} (LABEL:pp (first pend )))

( vs {<-} (LABEL:vs (first pend)) {!})

(pend {<-} (rest pend))

( res {<~} res)

( program { <~} program)

(live -vars -map {<~} live -vars -map))

{in} (if (AL:has -key? (LABEL:new pp vs)

res

LABEL:eq?) { already driven? }

(drive pend res program live -vars -map)

{else} (let ((new -block

{<-} (drive -block (AL:assoc pp

program

PP:eq?)

vs

program

live -vars -map))

( label {<-} (LABEL:new pp vs))

( vs {<~} vs)

( pend { <~} pend)

( res { <~} res)

( program { <~} program)

(live -vars -map { <~} live -vars -map))

{in} (drive (append (successors new -block)

pend)

(AL:add label new -block res)

program

live -vars -map )))))))

(! drive -block

(^ (code vs program live -vars -map)

(let (( op {<-} (first (first code )))

(args {<-} (rest (first code )))

(code {<-} (rest code))

( vs {<~} vs)

( program { <~} program)

(live -vars -map { <~} live -vars -map))

{in} (? ((= op ’goto)

{=>} (drive -block (AL:assoc (first args) program PP:eq?)

(normalize vs (AL:assoc (first args)

live -vars -map

PP:eq?))

program

live -vars -map))

((= op ’return)

{=>} (list (CMD:mk-return (reduce (first args) vs))))

((= op ’if)

{=>} (drive -if (first args)

(second args)

(third args)

vs program live -vars -map))

((= op ’let)

{=>} (drive -let (first args)

(second args)

vs code program live -vars -map ))))))
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(! drive -if

(^ (permise pp1 pp2 vs program live -vars -map)

(if (static? permise (AL:keys vs))

(if (eval -expr permise vs) { jedziemy z c.tr.otf! }

(drive -block (AL:assoc pp1 program PP:eq?)

(normalize vs (AL:assoc pp1 live -vars -map PP:eq?))

program

live -vars -map)

{else} (drive -block (AL:assoc pp2 program PP:eq?)

(normalize vs (AL:assoc pp2 live -vars -map PP:eq?))

program

live -vars -map))

{else} (list (CMD:mk -if (reduce permise vs)

(LABEL:new2 pp1 vs live -vars -map)

(LABEL:new2 pp2 vs live -vars -map ))))))

(! drive -let

(^ (var expr vs code program live -vars -map)

(if (static? expr (AL:keys vs))

(if (call? expr)

(drive -block code

(STORE:update var

(run -block (call -pp expr)

vs

program)

vs)

program

live -vars -map)

{else} (drive -block code (STORE:update var

(eval -expr expr vs)

vs)

program

live -vars -map))

{else} (if (call? expr)

(push (CMD:mk-let var

(list ’call (LABEL:new2 (call -pp expr)

vs

live -vars -map )))

(drive -block code

(STORE:drop var vs)

program

live -vars -map))

{else} (push (CMD:mk-let var (reduce expr vs))

(drive -block code

(STORE:drop var vs)

program

live -vars -map ))))))

The onmix implementation in FCL∗�SE� is mutatis mutandis the one from
[7]. The only difference is that we require to add, along with the program p to
be driven, p’s “live variables map” – A-list from block labels to lists of variable
identifiers which are significant to that block (i.e. which are used in that block
before/instead being overwritten). Cf. appendix C.
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3.3 Why abstract interpretation matters.

The exciting thing about driving is that it can get self-applied – i.e. one can
drive the driving of some other program. Consider the Ackermann function
implementation in FCL∗�SE� from section 2.4:

((m n)

ack

(ack (if (= m 0) done next))

(done (return (+ n 1)))

(next (if (= n 0) ack0 ack1))

(ack0 (let n 1)

(goto ack2))

(ack1 (let n (- n 1))

(let n (call ack))

(goto ack2))

(ack2 (let m (- m 1))

(let n (call ack))

(return n)) )

We could specialize it e.g. with respect to some given value of m, or even better:
use the onmix in drcz1 to specialize onmix in FCL∗�SE� with respect to known
program of Ackermann function, and known division48 �(m)�.

((init -vals)

21

(21 (let vs (al:new (quote (m)) init -vals))

(let vs (al:filter -by -keys (quote (m)) vs))

(let code (call 20))

(return (; (quote (n)) (; (; (quote ack) vs) code ))))

(20 (if (al:has -key? (; (quote ack) vs) (quote ())) 19 18))

(19 (return (quote ())))

(18 (let new -label (; (quote ack) vs))

(if (fcl:evalexpr (quote (= m 0)) vs) 17 16))

(17 (let new -block (append (quote ())

(list (list (quote return)

(fcl:reduce (quote (+ n 1)) vs)))))

(let code (al:update new -label new -block (quote ())))

(return code))

(16 (let vs1 (al:filter -by-keys (quote (m)) vs))

(let vs2 (al:filter -by-keys (quote (m)) vs))

(let new -block (append (quote ()) (list (list (quote if)

(fcl:reduce (quote (= n 0)) vs)

(; (quote ack0) vs1)

(; (quote ack1) vs2 )))))

(let code (al:update new -label new -block (quote ())))

(let vs vs1)

(let code (call 15))

(let vs vs2)

(let code (call 7))

(return code))

48Division in terminology of [10], [9] and [7] is a list of identifiers of variables which will be
known at specialization (i.e. driving) time.

70



(15 (if (al:has -key? (; (quote ack0) vs) code) 14 13))

(14 (return code))

(13 (let new -label (; (quote ack0) vs))

(let vs (al:update (quote n) (fcl:evalexpr (quote 1) vs) vs))

(let vs (al:update (quote m) (fcl:evalexpr (quote (- m 1)) vs) vs))

(let value (call 12))

(let vs (al:update (quote n) value vs))

(let new -block (append (quote ())

(list (list (quote return) (fcl:reduce (quote n) vs )))))

(let code (al:update new -label new -block code))

(return code))

(12 (if (fcl:evalexpr (quote (= m 0)) vs) 11 10))

(11 (return (fcl:evalexpr (quote (+ n 1)) vs)))

(10 (if (fcl:evalexpr (quote (= n 0)) vs) 9 8))

(9 (let vs (al:update (quote n) (fcl:evalexpr (quote 1) vs) vs))

(let vs (al:update (quote m) (fcl:evalexpr (quote (- m 1)) vs) vs))

(let value (call 12))

(let vs (al:update (quote n) value vs))

(return (fcl:evalexpr (quote n) vs)))

(8 (let vs (al:update (quote n) (fcl:evalexpr (quote (- n 1)) vs) vs))

(let value (call 12))

(let vs (al:update (quote n) value vs))

(let vs (al:update (quote m) (fcl:evalexpr (quote (- m 1)) vs) vs))

(let value (call 12))

(let vs (al:update (quote n) value vs))

(return (fcl:evalexpr (quote n) vs)))

(7 (if (al:has -key? (; (quote ack1) vs) code) 14 6))

(6 (let new -label (; (quote ack1) vs))

(let new -block (append (quote ())

(list (list (quote let)

(quote n)

(fcl:reduce (quote (- n 1)) vs)))))

(let vs (al:drop (quote n) vs))

(let vs1 vs)

(let vs (al:filter -by -keys (quote (m)) vs))

(let new -block (append new -block

(list (list (quote let)

(quote n)

(; (quote call)

(; (; (quote ack) vs)

(quote (n))))))))

(let code (call 5))

(let vs (al:drop (quote n) vs1))

(let vs (al:update (quote m) (fcl:evalexpr (quote (- m 1)) vs) vs))

(let vs1 vs)

(let vs (al:filter -by -keys (quote (m m)) vs))

(let new -block (append new -block

(list (list (quote let)

(quote n)

(; (quote call)

(; (; (quote ack) vs)

(quote (n))))))))

(let code (call 1))
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(let vs (al:drop (quote n) vs1))

(let new -block (append new -block

(list (list (quote return)

(fcl:reduce (quote n) vs)))))

(let code (al:update new -label new -block code))

(return code))

(5 (if (al:has -key? (; (quote ack) vs) code) 14 4))

(4 (let new -label (; (quote ack) vs))

(if (fcl:evalexpr (quote (= m 0)) vs) 3 2))

(3 (let new -block (append (quote ())

(list (list (quote return)

(fcl:reduce (quote (+ n 1)) vs)))))

(let code (al:update new -label new -block code))

(return code))

(2 (let vs1 (al:filter -by -keys (quote (m)) vs))

(let vs2 (al:filter -by-keys (quote (m)) vs))

(let new -block (append (quote ())

(list (list (quote if)

(fcl:reduce (quote (= n 0)) vs)

(; (quote ack0) vs1)

(; (quote ack1) vs2 )))))

(let code (al:update new -label new -block code))

(let vs vs1)

(let code (call 15))

(let vs vs2)

(let code (call 7))

(return code))

(1 (if (al:has -key? (; (quote ack) vs) code) 14 0))

(0 (let new -label (; (quote ack) vs))

(if (fcl:evalexpr (quote (= m 0)) vs) 3 2))

)

This new program given some particular value for m generates the Ackermann
function projection wrt m.

E.g. When given input �((2))� yields:

( (n)

(ack (m . 2))

((ack (m . 2)) (if (= n (quote 0)) (ack0 (m . 2)) (ack1 (m . 2))))

((ack0 (m . 2)) (return (quote 3)))

((ack (m . 1)) (if (= n (quote 0)) (ack0 (m . 1)) (ack1 (m . 1))))

((ack0 (m . 1)) (return (quote 2)))

((ack (m . 0)) (return (+ n (quote 1))))

((ack1 (m . 1)) (let n (- n (quote 1)))

(let n (call (ack (m . 1)) n))

(let n (call (ack (m . 0)) n))

(return n))

((ack1 (m . 2)) (let n (- n (quote 1)))

(let n (call (ack (m . 2)) n))

(let n (call (ack (m . 1)) n))

(return n)) )
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This was an example of generating extension – a kind of meta-program, which
takes some particular form only after some additional parameters are given.

The special case of generating extension is when the meta-program captures
interpreter. Consider an interpreter i ∈ ProgFCL�SE� for language L – it takes
two inputs: an L-program prog and its arguments args, and returns the value
which prog would return in L’s computational model on inputs args. If we
ask onmix in drcz1 to specialize onmix in FCL wrt. i and division �(prog)�,
we would get a generating extension of i, i.e. a program which given some L-
program π yields a projection of i capable of interpreting (executing) program
π only. In other words we would get a (L to FCL�SE�) compiler.

This phenomena is known as the second Futamura projection.The two
remaining projections state:

a. first Futamura projection:
An L interpreter specialized wrt. to L-program π is compiled version of π.

b. third Futamura projection:
onmix specialized wrt. to onmix and division �(prog)� is a compilers gen-
erator, i.e. a program which given an interpreter yields a compiler for it.

These are described in detail in i.a. [10] and the original [4].

An example – result reproduced from [7] – of generating compiler for Post-
machine language is in drcz1-src/FCL/futamura/post-2-fcl-I-projection.drcz1

file on attached CD.

Even a moderately aggressive technique of (online) partial evaluation can give
significant benefits, of which as the most promising we consider:

1. automated “pushing” configuration (i.e. constants) into code,

2. possibility to build scalable libraries, which accommodate in accord to
their particular use,

3. freedom in constructing elaborate data objects, as all the interpretive over-
head should be removed by partial evaluator.
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3.4 Specialization examples.

We will now consider a simple example to demonstrate the removal of interpre-
tational overhead. Consider a simple language F of arithmetic expressions – it
uses reverse polish notation to encode expressions of n ≥ 0 variables.

operator stack transformation
+ A,B,C, . . . → A + B,C, . . .
∗ A,B,C, . . . → A ×B,C, . . .
D A,B, . . . → A,A,B, . . .
R A,B,C, . . . → B,A,C, . . .

( (prog args)

start

(start (if (= prog ()) end checks ))

(checks (let op (. prog))

(let prog (, prog))

(goto check -sum))

(check -sum (if (= op ’+) do -sum check -mul))

(check -mul (if (= op ’*) do -mul check -dup))

(check -dup (if (= op ’D) do -dup check -rot))

(check -rot (if (= op ’R) do -rot err))

(err (return (list ’error ’unknonw ’operator op)))

(do -sum (let args (; (+ (. args) (. (, args ))) (, (, args ))))

(goto start))

(do -mul (let args (; (* (. args) (. (, args ))) (, (, args ))))

(goto start))

(do -dup (let args (; (. args) (; (. args) (, args ))))

(goto start))

(do -rot (let args (; (. (, args)) (; (. args) (, (, args )))))

(goto start))

(end (return args )))

E.g. given program �(D ∗ R D ∗ +)� and arguments �(2 3)� yields �13�.

The following listing presents the compilation of �(D ∗ R D ∗ +)� into FCL�SE�
by the first Futamura projection:

((args)

0

(0 (let args (; (. args) (; (. args) (, args ))))

(let args (; (* (. args) (. (, args ))) (, (, args ))))

(let args (; (. (, args)) (; (. args) (, (, args )))))

(let args (; (. args) (; (. args) (, args ))))

(let args (; (* (. args) (. (, args ))) (, (, args ))))

(let args (; (+ (. args) (. (, args ))) (, (, args ))))

(return args )))
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Notice how the whole process of interpreting �(D ∗ R D ∗ +)� vanished, leaving
only a few residual assignments.

The next program is F to FCL�SE� compiler generated with second Futamura
projection.

((init -vals)

23

(23 (let vs (al:new (quote (prog)) init -vals))

(let vs (al:filter -by -keys (quote (prog)) vs))

(let code (call 22))

(return (; (quote (args)) (; (; (quote start) vs) code ))))

(22 (if (al:has -key? (; (quote start) vs) (quote ())) 21 20))

(21 (return (quote ())))

(20 (let new -label (; (quote start) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 19 18))

(19 (let new -block (append (quote ())

(list (list (quote return)

(fcl:reduce (quote args) vs)))))

(let code (al:update new -label new -block (quote ())))

(return code))

(18 (let vs (al:update (quote op) (fcl:evalexpr (quote (. prog)) vs) vs))

(let vs (al:update (quote prog) (fcl:evalexpr (quote (, prog)) vs) vs))

(if (fcl:evalexpr (quote (= op (quote +))) vs) 17 6))

(17 (let new -block (append (quote ())

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (+ (. args) (. (, args )))

(, (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(16 (let new -block (append new -block

(list (list (quote return)

(fcl:reduce (quote args) vs)))))

(let code (al:update new -label new -block (quote ())))

(return code))

(15 (let vs (al:update (quote op) (fcl:evalexpr (quote (. prog)) vs) vs))

(let vs (al:update (quote prog) (fcl:evalexpr (quote (, prog)) vs) vs))

(if (fcl:evalexpr (quote (= op (quote +))) vs) 14 13))

(14 (let new -block (append new -block

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (+ (. args) (. (, args )))

(, (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))
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(13 (if (fcl:evalexpr (quote (= op (quote *))) vs) 12 11))

(12 (let new -block (append new -block

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (* (. args) (. (, args )))

(, (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(11 (if (fcl:evalexpr (quote (= op (quote d))) vs) 10 9))

(10 (let new -block (append new -block

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (. args) (; (. args) (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(9 (if (fcl:evalexpr (quote (= op (quote r))) vs) 8 7))

(8 (let new -block (append new -block

(list (list (quote let)

(quote args)

(fcl:reduce (quote (; (. (, args))

(; (. args)

(, (, args )))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(7 (let new -block (append new -block

(list (list (quote return)

(fcl:reduce (quote (list (quote error)

(quote unknown)

(quote operator)

op))

vs )))))

(let code (al:update new -label new -block (quote ())))

(return code))

(6 (if (fcl:evalexpr (quote (= op (quote *))) vs) 5 4))

(5 (let new -block (append (quote ())

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (* (. args) (. (, args )))

(, (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(4 (if (fcl:evalexpr (quote (= op (quote d))) vs) 3 2))
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(3 (let new -block (append (quote ())

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (. args) (; (. args) (, args ))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(2 (if (fcl:evalexpr (quote (= op (quote r))) vs) 1 0))

(1 (let new -block (append (quote ())

(list (list (quote let)

(quote args)

(fcl:reduce

(quote (; (. (, args))

(; (. args)

(, (, args )))))

vs )))))

(let vs (al:drop (quote args) vs))

(if (fcl:evalexpr (quote (= prog ())) vs) 16 15))

(0 (let new -block (append (quote ())

(list (list (quote return)

(fcl:reduce (quote (list (quote error)

(quote unknonw)

(quote operator)

op))

vs )))))

(let code (al:update new -label new -block (quote ())))

(return code))

)

Some more examples can be found on the attached CD in drcz1-src/FCL

directory.
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3.5 On compiling DRC�SE� machine code to FCL∗�SE�.

By the first Futamura projection, given an DRC�SE� interpreter in FCL∗�SE�
it is possible to compile DRC�SE� programs into FCL∗�SE�. We have pre-
sented such interpreter in example 16 (section 2.4). However it is not very
useful in compiling DRC�SE� programs – the resulting procedures contain the
whole interpreter as its part. Therefore we have devised a modified version,
which turned out to enable compiling subset of DRC�SE� (restricted to first-
class [sub]procedure calls). E.g.

(PROC (NAME a

NAME b

LOOKUP a

CONST ()

EQ

SELECT (LOOKUP b)

(LOOKUP b

LOOKUP a

CDR

PLOOKUP apd

APPLY

LOOKUP a

CAR

CONS)

FORGET a

FORGET b)

PNAME apd

PLOOKUP apd

APPLY)

compiles to

((inputs)

4

(4 (let d (gen (quote ())))

(let r inputs)

(let drc (call 3))

(return (. (. (, drc)))))

(3 (let drc (call 2))

(let d (. drc))

(let r (. (, drc)))

(let pr (. (, (, drc))))

(let pd (. (, (, (, drc)))))

(return (list d r (quote ()) pr pd)))

(2 (let val (. r))

(let r (, r))

(let d (al:update (quote a) (; val (al:lookup (quote a) d)) d))

(let val (. r))

(let r (, r))

(let d (al:update (quote b) (; val (al:lookup (quote b) d)) d))

(let r (; (. (al:lookup (quote a) d)) r))

(let r (; (quote ()) r))

(let arg1 (. r))
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(let arg2 (. (, r)))

(let r (, (, r)))

(let res (= arg1 arg2))

(let r (; res r))

(let perm (. r))

(let r (, r))

(if perm 1 0))

(1 (let r (; (. (al:lookup (quote b) d)) r))

(let d (al:update (quote a) (, (al:lookup (quote a) d)) d))

(let d (al:update (quote b) (, (al:lookup (quote b) d)) d))

(return (list d

r

(quote ())

(quote ())

(quote ((apd (name a

name b

lookup a

const ()

eq

select (lookup b)

(lookup b

lookup a

cdr

plookup apd

apply

lookup a

car

cons)

forget a

forget b)))))))

(0 (let r (; (. (al:lookup (quote b) d)) r))

(let r (; (. (al:lookup (quote a) d)) r))

(let arg1 (. r))

(let r (, r))

(let res (, arg1))

(let r (; res r))

(let drc (call 2))

(let d (. drc))

(let r (. (, drc)))

(let pr (. (, (, drc))))

(let pd (. (, (, (, drc)))))

(let r (; (. (al:lookup (quote a) d)) r))

(let arg1 (. r))

(let r (, r))

(let res (. arg1))

(let r (; res r))

(let arg1 (. r))

(let arg2 (. (, r)))

(let r (, (, r)))

(let res (; arg1 arg2))

(let r (; res r))

(let d (al:update (quote a) (, (al:lookup (quote a) d)) d))
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(let d (al:update (quote b) (, (al:lookup (quote b) d)) d))

(return (list d r (quote ()) pr pd)))

)

E.g. when given �(((q w) (1 2 3)))� as arguments yields �(q w 1 2 3)�.

In order to achieve such compilation, we had to modify the following:

a) “functionalize the C stack” κ – i.e. on �APPLY�, instead of appending new
code κ� onto κ, it calls another instance of itself with κ� instead of κ.

b) introduced separate δ and ρ registers [not stacks!] for procedures.

The following listing contains this modified DRC�SE� emulator in FCL∗�SE�.

(( program inputs)

init

(init (let D (gen ()))

(let R inputs)

(let C program)

(let PR ())

(let PD ())

(let DRC (call step D R C PR PD))

(return (. (. (, DRC ))))) { i.e. (. R) }

(step (if (= C ()) end step2 ))

(end (return (list D R C PR PD))) { w sumie zawsze C==()... }

(step2 (let cmd (. C))

(let C (, C))

(goto check -const ))

(check -const (if (= cmd ’CONST) do -const check -proc))

(check -proc (if (= cmd ’PROC) do -proc check -lookup ))

(check -lookup (if (= cmd ’LOOKUP) do -lookup check -plookup ))

(check -plookup (if (= cmd ’PLOOKUP) do -plookup check -name))

(check -name (if (= cmd ’NAME) do -name check -pname ))

(check -pname (if (= cmd ’PNAME) do -pname check -forget ))

(check -forget (if (= cmd ’FORGET) do -forget check -pforget ))

(check -pforget (if (= cmd ’PFORGET) do -pforget check -select ))

(check -select (if (= cmd ’SELECT) do -select check -apply ))

(check -apply (if (= cmd ’APPLY) do -apply check -cons))

(check -cons (if (= cmd ’CONS) do-cons check -car))

(check -car (if (= cmd ’CAR) do-car check -cdr))

(check -cdr (if (= cmd ’CDR) do-cdr check -eq))

(check -eq (if (= cmd ’EQ) do -eq check -num))

(check -num (if (= cmd ’NUM) do-num check -atom))

(check -atom (if (= cmd ’ATOM) do-atom check -add))

(check -add (if (= cmd ’ADD) do-add check -sub))

(check -sub (if (= cmd ’SUB) do-sub check -mul))

(check -mul (if (= cmd ’MUL) do-mul check -div))

(check -div (if (= cmd ’DIV) do-div check -mod))

(check -mod (if (= cmd ’MOD) do-mod check -gt))

(check -gt (if (= cmd ’GT) do -gt check -lt))

(check -lt (if (= cmd ’LT) do -lt err))

(err (return (list ’ERROR ’UNKNOWN ’COMMAND cmd)))
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(do -const (let exp (. C))

(let C (, C))

(let R (; exp R))

(goto step))

(do -proc (let proc (. C))

(let C (, C))

(let PR (; proc PR)) {!}

(goto step))

(do -lookup (let var (. C))

(let C (, C))

(let R (; (. (AL:lookup var D)) R))

(goto step))

(do -name (let var (. C))

(let val (. R))

(let C (, C))

(let R (, R))

(let D (AL:update var (; val (AL:lookup var D)) D))

(goto step))

(do -forget (let var (. C))

(let C (, C))

(let D (AL:update var (, (AL:lookup var D)) D))

(goto step))

(do -plookup (let var (. C))

(let C (, C))

(let PR (; (. (AL:lookup var PD)) PR))

(goto step))

(do -pname (let var (. C))

(let proc (. PR))

(let C (, C))

(let PR (, PR)) {!}

(let PD (AL:update var (; proc (AL:lookup var PD)) PD))

(goto step))

(do -pforget (let var (. C))

(let C (, C))

(let PD (; (AL:update var (, (AL:lookup var PD)) PD) ()))

(goto step))

(do -select (let perm (. R))

(let R (, R))

(let concl (. C))

(let alt (. (, C)))

(let C (, (, C)))

(if perm do-concl do-alt))

(do -concl (let C (append concl C))

(goto step))

(do -alt (let C (append alt C))

(goto step))

(do -apply (let proc (. PR))

(let PR (, PR))

(let oC C)

(let C proc)

(let DRC (call step D R C PR PD))
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(let D (. DRC))

(let R (. (, DRC)))

(let PR (. (, (, DRC ))))

(let PD (. (, (, (, DRC )))))

(let C oC)

(goto step))

(do -cons (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (; arg1 arg2))

(let R (; res R))

(goto step))

(do -car (let arg1 (. R))

(let R (, R))

(let res (. arg1))

(let R (; res R))

(goto step))

(do -cdr (let arg1 (. R))

(let R (, R))

(let res (, arg1))

(let R (; res R))

(goto step))

(do -eq (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (= arg1 arg2))

(let R (; res R))

(goto step))

(do -num (let arg1 (. R))

(let R (, R))

(let res (# arg1))

(let R (; res R))

(goto step))

(do -atom (let arg1 (. R))

(let R (, R))

(let res (@ arg1))

(let R (; res R))

(goto step))

(do -add (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (+ arg1 arg2))

(let R (; res R))

(goto step))

(do -sub (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (- arg1 arg2))

(let R (; res R))

(goto step))

(do -mul (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))
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(let res (* arg1 arg2))

(let R (; res R))

(goto step))

(do -div (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (/ arg1 arg2))

(let R (; res R))

(goto step))

(do -mod (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (% arg1 arg2))

(let R (; res R))

(goto step))

(do -gt (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (> arg1 arg2))

(let R (; res R))

(goto step))

(do -lt (let arg1 (. R))

(let arg2 (. (, R)))

(let R (, (, R)))

(let res (< arg1 arg2))

(let R (; res R))

(goto step))

)
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3.6 Conclusions and future work.

We hope to have shown some fundamentals of expressing computations from
abstract and uniform point of view. Our central goal was reached if the reader
got convinced that with the use of mathematical methods we can better un-
derstand both what we currently do, and what could be done with mechanical
computing devices.

Of course the drczlang project will continue. We plan i.a. to:

a) experiment with specialization projections (as in [6]),

b) try out techniques of propagating more informations while driving (e.g. as
in [5]),

c) try out techniques of ensuring termination of driving (e.g. homeomorphic
embeddings, or as Turchin called them whistles ([16]), and author’s idea of
role-annotations for variables),

d) devise supercompiler for DRC�SE� machine (i.e. “DRC�SE� meta-machine”
– this is already work in progress),

e) try to develop algebraic theory of program interpretation, by first endowing
the class of all possible interpreters (in DRC�SE� machine language) with
lattice structure – we suspect this could be done, and should clarify the
relations between various computation spaces (e.g. how they emulate [embed
in] each other).

Any results will be reported at our [20].
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Appendix A – on DRC�SE� machine implemen-
tation

Data structures

We have picked an obvious representation of S-expressions with [integer] nu-
merals and [string] identifiers:

typedef enum {NUM,SYM,CONS} SEtype;

typedef struct SE SE;

struct SE {

SEtype type;

union {

int num;

char *str;

SE *cons[2];

};

};

#define NIL ((void *)0)

#define type(E) (E)->type

#define numval(E) (E)->num

#define symval(E) (E)->str

#define car(E) (E)->cons[0]

#define cdr(E) (E)->cons[1]

Main loop

The whole DRC�SE� emulator works in loop, whose each iteration:

1) checks whether .C contains any more commands (halts if it doesn’t),

2) switches on first command, performing it on .D, .R and .C ’registers’,

3) goes back to (1).

We have implemented (1)-(3) loop by one big switch with goto to its top at the
end of each case.

Memory management

Since asking the system for millions of small (m)allocs and frees leads quickly
to memory defragmentation and poor performance, we decided to allocate one
big heap (mempool) once, divide it into sizeof(SE) chunks, and store pointers to
them on stack (memstack). Cf. https://github.com/drcz/drczlang/blob/

master/c-src/mempool.c.
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Garbage collector

Each main loops case – implementation of particular opcode – “cleans up” after
itself in that it removes unneeded partial results from .R and conses from .C (cf.
voidcode_next_*() procedures in DRCZ.c). The environment look-up copies
referenced expressions, so that they can get removed along other partial results.

On tail recursion optimization

When SELECT or APPLY don’t have succeeding commands [but sometimes
a bunch of FORGETs], saving empty remaining list on .C seems redundant,
therefore we can omit it; for this purpose we use two alternative operators
SRELECT and TRAPPLY:

6’) < D, (t)::R, (srelect B1 B2) > => < D, R, B1 >,

7’) < D, (())::R, (srelect B1 B2) > => < D, R, B2 >,

8’) < D, (P)::R, (trapply) > => < D, R, P >,

tr-eliminate.drcz1 program transforms DRC source into equivalent one using
SRELECT and TRAPPLY whenever possible. The translation consists of track-
ing tail recursive calls/conditionals, and then moving whole FORGET-block
before the actual call (right-before TRAPPLY or to the end of SRELECTs
branches).

Assembler

To avoid string comparison overhead we translate the DRC�SE� code to its
“numeric” representation: we translate operators mnemonics for opcodes, and
variable names to addresses (their number on occurrence list). We also annotate
code with number of variables used in program, so that the machine knows how
many stacks should .D contain.

Short manual

-= INSTALLATION =-

cd c-src/

make clean

make all

make install

Everything you need goes to the-thing/.

To use emacs mode for drcz1 just add the following to your .emacs file:
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---------------------------------------------------------------------------------

(setq scheme-program-name "<path to your drczlang install>/the-thing/drcz1")

(add-to-list ’auto-mode-alist ’("\\.drcz1\\’" . drcz-generic-mode))

(add-to-list ’auto-mode-alist ’("\\.drcz0\\’" . drcz-generic-mode))

(global-set-key [(f6)] ’run-scheme) ; for example...

(global-set-key [(f3)] ’drcz-generic-mode) ; ...

(setq show-paren-delay 0

show-paren-style ’parenthesis)

(show-paren-mode 1)

(require ’generic-x)

(define-generic-mode ’drcz-generic-mode

’(( "{" . "}"))

’()

’(("[()]" . font-lock-type-face))

’()

nil

"drczX mode")

---------------------------------------------------------------------------------

-= USAGE EXAMPLES =-

cd the-thing/

Make sure to chmod +x the following files: comp-d0, comp-d1, desugar, compile,

trelim, drcz1, inliner1, compile-inline, comp-d1-inline.

To run drcz1 interpreter:

./drcz1

or

./DRCZ d1.bc

To run drcz1 with bigger ,,heap’’ use -p <size> option, e.g.:

./DRCZ -p 3000000 d1.bc

The size is in CONS cells, not bytes. To check the size of CONS cell on your

system try:

./DRCZ -c

Please do remember that memory pool uses stack for storing CONS-cell addresses,

which again takes <size>*sizeof(SE *) bytes, and that currently we still use

malloc/free for strings.

To compile drcz1 program:

./compile <source filename>

To compile with naive inliner:

./compile-and-inline <source filename>

The former might take quite a lot of memory (does code duplication and does not

preform dead code removal yet).

If all goes well they both produce file named <source filename>.bc; to run it:

./DRCZ [-p <size>] <source filename>.bc
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Appendix B – manual for some of DRC�SE� pro-
grams

To run the DRC-machine emulator with program <p> and initial R stack <r>, one needs to

first compile it:

$ cd cd/drcz1-src/

$ compile DRCZmachine.drcz1

and then simply run the emulator on [real] DRC machine (type in <p> [hit enter], then

type in <r> [enter]):

$ DRCZ DRCZmachine.drcz1.bc

Initializing mempool (1048576 cells)...

Loading code from DRCZmachine.drcz1.bc...

Allocating 31 env-slot(s) for environments...

Running the machine.

code:

>(NAME x NAME y LOOKUP x LOOKUP x MUL LOOKUP y LOOKUP y MUL ADD)

stack:

>(2 3)

(((x . 2)) (3) ((name y lookup x lookup x mul lookup y lookup y mul add)))

(((y . 3) (x . 2)) () ((lookup x lookup x mul lookup y lookup y mul add)))

(((y . 3) (x . 2)) (2) ((lookup x mul lookup y lookup y mul add)))

(((y . 3) (x . 2)) (2 2) ((mul lookup y lookup y mul add)))

(((y . 3) (x . 2)) (4) ((lookup y lookup y mul add)))

(((y . 3) (x . 2)) (3 4) ((lookup y mul add)))

(((y . 3) (x . 2)) (3 3 4) ((mul add)))

(((y . 3) (x . 2)) (9 4) ((add)))

(((y . 3) (x . 2)) (13) (()))

Result: 13

Auf wiedersehen!

--------------------------------------------------------------------------------------

To use the FCL* interpreter, compile it and run:

$ cd drcz1-src/FCL/

$ compile fcl-rec-interpreter.drcz1

$ DRCZ fcl-rec-interpreter.drcz1.bc

Initializing mempool (1048576 cells)...

Loading code from fcl-rec-interpreter.drcz1.bc...

Allocating 150 env-slot(s) for environments...

Running the machine.

program:

>( (a b) init (init (return (+ (* a a) (* b b)))) )

input:

>( 2 3 )

Result: 13

Auf wiedersehen!
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Appendix C – manual for FCL∗�SE� specializer

To get started you need to compile the following tools (you should add

the-thing/ directory to your PATH before doing this):

$ cd drcz1-src/

$ compile fcl-rec-interpreter.drcz1

$ compile live-var-analysis.drcz1

$ compile fcl-onmix.drcz1

$ compile obierak.drcz1

We first show how to do things manually. When not debugging or examining

the information propagation, one could automate this process by using

-s[ilent] flag of DRCZ machine and pipes.

Consider the following small fcl* program that calculates power function:

((a b)

init

(init (let res 1)

(goto test))

(test (if (= b 0) stop loop))

(loop (let res (* a res))

(let b (- b 1))

(goto test))

(stop (return res)) )

One can run it with fcl-rec-interpreter.drcz1:

$ DRCZ fcl-rec-interpreter.drcz1.bc

Initializing mempool (1048576 cells)...

Loading code from fcl-rec-interpreter.drcz1.bc...

Allocating 150 env-slot(s) for environments...

Running the machine.

program:

>((a b)

init

(init (let res 1)

(goto test))

(test (if (= b 0) stop loop))

(loop (let res (* a res))

(let b (- b 1))

(goto test))

(stop (return res)) )

input:

>(2 3)

Result: 8

Auf wiedersehen!
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Suppose we would like to specialize it wrt b=3. We need to compute its

live-variables map [actually we could incorporate live variables

analysis into specializer, but they remain separate for ,,historical’’

reasons]:

$ DRCZ live-var-analysis.drcz1.bc

Initializing mempool (1048576 cells)...

Loading code from live-var-analysis.drcz1.bc...

Allocating 152 env-slot(s) for environments...

Running the machine.

>((a b)

init

(init (let res 1)

(goto test))

(test (if (= b 0) stop loop))

(loop (let res (* a res))

(let b (- b 1))

(goto test))

(stop (return res)) )

Result: ((init a b) (test a res b) (loop a res b) (stop res))

----------------------------------------------------------------------

Now we run onmix and supply it with code, division [known variables’

names], init-vals [resp.] and live-map:

$ DRCZ -p 9000111 fcl-onmix.drcz1.bc

Initializing mempool (9000111 cells)...

Loading code from fcl-onmix.drcz1.bc...

Allocating 170 env-slot(s) for environments...

Running the machine.

program:

>((a b)

init

(init (let res 1)

(goto test))

(test (if (= b 0) stop loop))

(loop (let res (* a res))

(let b (- b 1))

(goto test))

(stop (return res)) )

division:

>(b)

init-vals:

>(3)

livemap:

>((init a b) (test a res b) (loop a res b) (stop res))

Result: ((a) (init (b . 3)) ((init (b . 3)) (let res (* a (quote 1)))

(let res (* a res))

(let res (* a res))

(return res)))

----------------------------------------------------------------------
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The output program uses Cons[program-point-label, store] as labels, we

need to replace them with atomic ones (in our case, numerals):

$ DRCZ obierak.drcz1.bc

Initializing mempool (1048576 cells)...

Loading code from obierak.drcz1.bc...

Allocating 140 env-slot(s) for environments...

Running the machine.

>((a) (init (b . 3)) ((init (b . 3)) (let res (* a (quote 1)))

(let res (* a res))

(let res (* a res))

(return res)))

Result: ((a) 0 (0 (let res (* a (quote 1)))

(let res (* a res))

(let res (* a res))

(return res)))

----------------------------------------------------------------------

As one can see, it doesn’t perform any ,algebraic’ simplifications.

Nevertheless its outputs can surprise. There remain some termination

issues, eg when one tries to specialize the power program wrt static a

(and dynamic b) - these we plan to solve using homeomorphic embedding

criterion (,,the Russian whistle’’).

We can use onmix for producing [generating!] generating extensions.

For example, consider the Ackermann function implementation in ack.fcl

file. Suppose we would like to get a generating extension for Ackermann

projections wrt fixed first [m] argument. All we need is to compute

live-maps for ack.fcl and onmix.fcl

(the former one takes a while):

$ cat ack.fcl | DRCZ -s live-var-analysis.drcz1.bc > ack-live.tmp

$ cat onmix.fcl | DRCZ -s live-var-analysis.drcz1.bc > onmix-live.tmp

Now we only need to supply [drcz1’s] onmix with [fcl*’s] onmix source,

proper division (with only init-vals dynamic) and the initial values:

ack source, (m) division and ack livemap:

$ echo "(program division live-map) " > div.tmp

$ echo "(m) " > div2.tmp

$ cat onmix.fcl div.tmp lpar ack.fcl div2.tmp ack-live.tmp \

rpar onmix-live.tmp | DRCZ -sp 9111222 fcl-onmix.drcz1.bc

The resulting program, after peeling off with obierak.drcz1, can get

executed via fcl-rec-interpreter.drcz1; notice that init-vals has

list type, therefore arguments list for the extension has list of

list type, eg. ((3)).

Some more meta-programming experiments you can find in futamura/

directory.

Have fun, good luck!
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