

Laravel	Documentation	-	10.x

https://laravel.com/docs/

eBook	compiled	from	the	source

https://github.com/laravel/docs/

by	david@mundosaparte.com

Get	the	latest	version	at	https://github.com/driade/laravel-book

Date:	Tuesday,	09-Apr-24	16:34:08	CEST

Laravel	Documentation	-	10.x	/	Title 2

https://github.com/laravel/docs/
mailto:david@mundosaparte.com
https://github.com/driade/laravel-book

Contents

Prologue

Release	Notes
Upgrade	Guide
Contribution	Guide

Getting	Started

Installation
Configuration
Directory	Structure
Frontend
Starter	Kits
Deployment

Architecture	Concepts

Request	Lifecycle
Service	Container
Service	Providers
Facades

The	Basics

Routing
Middleware
CSRF	Protection
Controllers
Requests
Responses
Views
Blade	Templates
Asset	Bundling
URL	Generation
Session
Validation
Error	Handling
Logging

Digging	Deeper

Artisan	Console
Broadcasting
Cache
Collections
Contracts
Events
File	Storage
Helpers
HTTP	Client
Localization
Mail
Notifications
Package	Development
Processes
Queues
Rate	Limiting
Strings

Laravel	Documentation	-	10.x	/	Title 3

Task	Scheduling

Security

Authentication
Authorization
Email	Verification
Encryption
Hashing
Password	Reset

Database

Getting	Started
Query	Builder
Pagination
Migrations
Seeding
Redis

Eloquent	ORM

Getting	Started
Relationships
Collections
Mutators	/	Casts
API	Resources
Serialization
Factories

Testing

Getting	Started
HTTP	Tests
Console	Tests
Browser	Tests
Database
Mocking

Packages

Breeze
Cashier	(Stripe)
Cashier	(Paddle)
Dusk
Envoy
Fortify
Folio
Homestead
Horizon
Mix
Octane
Passport
Pennant
Pint
Precognition
Prompts
Pulse
Reverb
Sail
Sanctum
Scout

Laravel	Documentation	-	10.x	/	Title 4

Socialite
Telescope
Valet

Laravel	Documentation	-	10.x	/	Title 5

Prologue

Release	Notes
Versioning	Scheme
Support	Policy
Laravel	10

Versioning	Scheme

Laravel	and	its	other	first-party	packages	follow	Semantic	Versioning.	Major	framework	releases	are	released
every	year	(~Q1),	while	minor	and	patch	releases	may	be	released	as	often	as	every	week.	Minor	and	patch
releases	should	never	contain	breaking	changes.

When	referencing	the	Laravel	framework	or	its	components	from	your	application	or	package,	you	should
always	use	a	version	constraint	such	as	^10.0,	since	major	releases	of	Laravel	do	include	breaking	changes.
However,	we	strive	to	always	ensure	you	may	update	to	a	new	major	release	in	one	day	or	less.

Named	Arguments

Named	arguments	are	not	covered	by	Laravel's	backwards	compatibility	guidelines.	We	may	choose	to	rename
function	arguments	when	necessary	in	order	to	improve	the	Laravel	codebase.	Therefore,	using	named
arguments	when	calling	Laravel	methods	should	be	done	cautiously	and	with	the	understanding	that	the
parameter	names	may	change	in	the	future.

Support	Policy

For	all	Laravel	releases,	bug	fixes	are	provided	for	18	months	and	security	fixes	are	provided	for	2	years.	For
all	additional	libraries,	including	Lumen,	only	the	latest	major	release	receives	bug	fixes.	In	addition,	please
review	the	database	versions	supported	by	Laravel.

|	Version	|	PHP	(*)	|	Release	|	Bug	Fixes	Until	|	Security	Fixes	Until	|	|	---	|	---	|	---	|	---	|	---	|	|	8	|	7.3	-	8.1	|
September	8th,	2020	|	July	26th,	2022	|	January	24th,	2023	|	|	9	|	8.0	-	8.2	|	February	8th,	2022	|	August	8th,
2023	|	February	6th,	2024	|	|	10	|	8.1	-	8.3	|	February	14th,	2023	|	August	6th,	2024	|	February	4th,	2025	|	|	11	|
8.2	-	8.3	|	March	12th,	2024	|	August	5th,	2025	|	February	3rd,	2026	|
End	of	life
Security	fixes	only

(*)	Supported	PHP	versions

Laravel	10

As	you	may	know,	Laravel	transitioned	to	yearly	releases	with	the	release	of	Laravel	8.	Previously,	major
versions	were	released	every	6	months.	This	transition	is	intended	to	ease	the	maintenance	burden	on	the
community	and	challenge	our	development	team	to	ship	amazing,	powerful	new	features	without	introducing
breaking	changes.	Therefore,	we	have	shipped	a	variety	of	robust	features	to	Laravel	9	without	breaking
backwards	compatibility.

Therefore,	this	commitment	to	ship	great	new	features	during	the	current	release	will	likely	lead	to	future
"major"	releases	being	primarily	used	for	"maintenance"	tasks	such	as	upgrading	upstream	dependencies,
which	can	be	seen	in	these	release	notes.

Laravel	10	continues	the	improvements	made	in	Laravel	9.x	by	introducing	argument	and	return	types	to	all
application	skeleton	methods,	as	well	as	all	stub	files	used	to	generate	classes	throughout	the	framework.	In
addition,	a	new,	developer-friendly	abstraction	layer	has	been	introduced	for	starting	and	interacting	with
external	processes.	Further,	Laravel	Pennant	has	been	introduced	to	provide	a	wonderful	approach	to	managing
your	application's	"feature	flags".

Laravel	Documentation	-	10.x	/	Prologue 6

https://semver.org
https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments

PHP	8.1

Laravel	10.x	requires	a	minimum	PHP	version	of	8.1.

Types

Application	skeleton	and	stub	type-hints	were	contributed	by	Nuno	Maduro.

On	its	initial	release,	Laravel	utilized	all	of	the	type-hinting	features	available	in	PHP	at	the	time.	However,
many	new	features	have	been	added	to	PHP	in	the	subsequent	years,	including	additional	primitive	type-hints,
return	types,	and	union	types.

Laravel	10.x	thoroughly	updates	the	application	skeleton	and	all	stubs	utilized	by	the	framework	to	introduce
argument	and	return	types	to	all	method	signatures.	In	addition,	extraneous	"doc	block"	type-hint	information
has	been	deleted.

This	change	is	entirely	backwards	compatible	with	existing	applications.	Therefore,	existing	applications	that
do	not	have	these	type-hints	will	continue	to	function	normally.

Laravel	Pennant

Laravel	Pennant	was	developed	by	Tim	MacDonald.

A	new	first-party	package,	Laravel	Pennant,	has	been	released.	Laravel	Pennant	offers	a	light-weight,
streamlined	approach	to	managing	your	application's	feature	flags.	Out	of	the	box,	Pennant	includes	an	in-
memory	array	driver	and	a	database	driver	for	persistent	feature	storage.

Features	can	be	easily	defined	via	the	Feature::define	method:

use	Laravel\Pennant\Feature;

use	Illuminate\Support\Lottery;

Feature::define('new-onboarding-flow',	function	()	{

				return	Lottery::odds(1,	10);

});

Once	a	feature	has	been	defined,	you	may	easily	determine	if	the	current	user	has	access	to	the	given	feature:

if	(Feature::active('new-onboarding-flow'))	{

				//	...

}

Of	course,	for	convenience,	Blade	directives	are	also	available:

@feature('new-onboarding-flow')

				<div>

								<!--	...	-->

				</div>

@endfeature

Pennant	offers	a	variety	of	more	advanced	features	and	APIs.	For	more	information,	please	consult	the
comprehensive	Pennant	documentation.

Process	Interaction

The	process	abstraction	layer	was	contributed	by	Nuno	Maduro	and	Taylor	Otwell.

Laravel	10.x	introduces	a	beautiful	abstraction	layer	for	starting	and	interacting	with	external	processes	via	a
new	Process	facade:

use	Illuminate\Support\Facades\Process;

$result	=	Process::run('ls	-la');

return	$result->output();

Laravel	Documentation	-	10.x	/	Prologue 7

https://github.com/nunomaduro
https://github.com/timacdonald
https://github.com/nunomaduro
https://github.com/taylorotwell

Processes	may	even	be	started	in	pools,	allowing	for	the	convenient	execution	and	management	of	concurrent
processes:

use	Illuminate\Process\Pool;

use	Illuminate\Support\Facades\Process;

[$first,	$second,	$third]	=	Process::concurrently(function	(Pool	$pool)	{

				$pool->command('cat	first.txt');

				$pool->command('cat	second.txt');

				$pool->command('cat	third.txt');

});

return	$first->output();

In	addition,	processes	may	be	faked	for	convenient	testing:

Process::fake();

//	...

Process::assertRan('ls	-la');

For	more	information	on	interacting	with	processes,	please	consult	the	comprehensive	process	documentation.

Test	Profiling

Test	profiling	was	contributed	by	Nuno	Maduro.

The	Artisan	test	command	has	received	a	new	--profile	option	that	allows	you	to	easily	identify	the	slowest
tests	in	your	application:

php	artisan	test	--profile

For	convenience,	the	slowest	tests	will	be	displayed	directly	within	the	CLI	output:

Pest	Scaffolding

Laravel	Documentation	-	10.x	/	Prologue 8

https://github.com/nunomaduro

New	Laravel	projects	may	now	be	created	with	Pest	test	scaffolding	by	default.	To	opt-in	to	this	feature,
provide	the	--pest	flag	when	creating	a	new	application	via	the	Laravel	installer:

laravel	new	example-application	--pest

Generator	CLI	Prompts

Generator	CLI	prompts	were	contributed	by	Jess	Archer.

To	improve	the	framework's	developer	experience,	all	of	Laravel's	built-in	make	commands	no	longer	require
any	input.	If	the	commands	are	invoked	without	input,	you	will	be	prompted	for	the	required	arguments:

php	artisan	make:controller

Horizon	/	Telescope	Facelift

Horizon	and	Telescope	have	been	updated	with	a	fresh,	modern	look	including	improved	typography,	spacing,
and	design:

Laravel	Documentation	-	10.x	/	Prologue 9

https://github.com/jessarcher

Laravel	Documentation	-	10.x	/	Prologue 10

Prologue

Upgrade	Guide
Upgrading	to	10.0	from	9.x

High	Impact	Changes

Updating	Dependencies
Updating	Minimum	Stability

Medium	Impact	Changes

Database	Expressions
Model	"Dates"	Property
Monolog	3
Redis	Cache	Tags
Service	Mocking
The	Language	Directory

Low	Impact	Changes

Closure	Validation	Rule	Messages
Form	Request	after	Method
Public	Path	Binding
Query	Exception	Constructor
Rate	Limiter	Return	Values
The	Redirect::home	Method
The	Bus::dispatchNow	Method
The	registerPolicies	Method
ULID	Columns

Upgrading	to	10.0	from	9.x

Estimated	Upgrade	Time:	10	Minutes

[!NOTE]
We	attempt	to	document	every	possible	breaking	change.	Since	some	of	these	breaking	changes	are	in
obscure	parts	of	the	framework	only	a	portion	of	these	changes	may	actually	affect	your	application.	Want
to	save	time?	You	can	use	Laravel	Shift	to	help	automate	your	application	upgrades.

Updating	Dependencies

Likelihood	Of	Impact:	High

PHP	8.1.0	Required

Laravel	now	requires	PHP	8.1.0	or	greater.

Composer	2.2.0	Required

Laravel	now	requires	Composer	2.2.0	or	greater.

Composer	Dependencies

You	should	update	the	following	dependencies	in	your	application's	composer.json	file:

Laravel	Documentation	-	10.x	/	Upgrade	Guide 11

https://laravelshift.com/
https://getcomposer.org

laravel/framework	to	^10.0
laravel/sanctum	to	^3.2
doctrine/dbal	to	^3.0
spatie/laravel-ignition	to	^2.0
laravel/passport	to	^11.0	(Upgrade	Guide)
laravel/ui	to	^4.0

If	you	are	upgrading	to	Sanctum	3.x	from	the	2.x	release	series,	please	consult	the	Sanctum	upgrade	guide.

Furthermore,	if	you	wish	to	use	PHPUnit	10,	you	should	delete	the	processUncoveredFiles	attribute	from	the	
<coverage>	section	of	your	application's	phpunit.xml	configuration	file.	Then,	update	the	following
dependencies	in	your	application's	composer.json	file:

nunomaduro/collision	to	^7.0
phpunit/phpunit	to	^10.0

Finally,	examine	any	other	third-party	packages	consumed	by	your	application	and	verify	you	are	using	the
proper	version	for	Laravel	10	support.

Minimum	Stability

You	should	update	the	minimum-stability	setting	in	your	application's	composer.json	file	to	stable.	Or,	since	the
default	value	of	minimum-stability	is	stable,	you	may	delete	this	setting	from	your	application's	composer.json
file:

"minimum-stability":	"stable",

Application

Public	Path	Binding

Likelihood	Of	Impact:	Low

If	your	application	is	customizing	its	"public	path"	by	binding	path.public	into	the	container,	you	should
instead	update	your	code	to	invoke	the	usePublicPath	method	offered	by	the	Illuminate\Foundation\Application
object:

app()->usePublicPath(__DIR__.'/public');

Authorization

The	registerPolicies	Method

Likelihood	Of	Impact:	Low

The	registerPolicies	method	of	the	AuthServiceProvider	is	now	invoked	automatically	by	the	framework.
Therefore,	you	may	remove	the	call	to	this	method	from	the	boot	method	of	your	application's	
AuthServiceProvider.

Cache

Redis	Cache	Tags

Likelihood	Of	Impact:	Medium

Usage	of	Cache::tags()	is	only	recommended	for	applications	using	Memcached.	If	you	are	using	Redis	as	your
application's	cache	driver,	you	should	consider	moving	to	Memcached	or	using	an	alternative	solution.

Database

Laravel	Documentation	-	10.x	/	Upgrade	Guide 12

https://github.com/laravel/passport/blob/11.x/UPGRADE.md
https://github.com/laravel/sanctum/blob/3.x/UPGRADE.md
https://phpunit.de/announcements/phpunit-10.html

Database	Expressions

Likelihood	Of	Impact:	Medium

Database	"expressions"	(typically	generated	via	DB::raw)	have	been	rewritten	in	Laravel	10.x	to	offer	additional
functionality	in	the	future.	Notably,	the	grammar's	raw	string	value	must	now	be	retrieved	via	the	expression's	
getValue(Grammar	$grammar)	method.	Casting	an	expression	to	a	string	using	(string)	is	no	longer	supported.

Typically,	this	does	not	affect	end-user	applications;	however,	if	your	application	is	manually	casting
database	expressions	to	strings	using	(string)	or	invoking	the	__toString	method	on	the	expression	directly,
you	should	update	your	code	to	invoke	the	getValue	method	instead:

use	Illuminate\Support\Facades\DB;

$expression	=	DB::raw('select	1');

$string	=	$expression->getValue(DB::connection()->getQueryGrammar());

Query	Exception	Constructor

Likelihood	Of	Impact:	Very	Low

The	Illuminate\Database\QueryException	constructor	now	accepts	a	string	connection	name	as	its	first
argument.	If	your	application	is	manually	throwing	this	exception,	you	should	adjust	your	code	accordingly.

ULID	Columns

Likelihood	Of	Impact:	Low

When	migrations	invoke	the	ulid	method	without	any	arguments,	the	column	will	now	be	named	ulid.	In
previous	releases	of	Laravel,	invoking	this	method	without	any	arguments	created	a	column	erroneously	named
uuid:

$table->ulid();

To	explicitly	specify	a	column	name	when	invoking	the	ulid	method,	you	may	pass	the	column	name	to	the
method:

$table->ulid('ulid');

Eloquent

Model	"Dates"	Property

Likelihood	Of	Impact:	Medium

The	Eloquent	model's	deprecated	$dates	property	has	been	removed.	Your	application	should	now	use	the	
$casts	property:

protected	$casts	=	[

				'deployed_at'	=>	'datetime',

];

Localization

The	Language	Directory

Likelihood	Of	Impact:	None

Though	not	relevant	to	existing	applications,	the	Laravel	application	skeleton	no	longer	contains	the	lang
directory	by	default.	Instead,	when	writing	new	Laravel	applications,	it	may	be	published	using	the	
lang:publish	Artisan	command:

Laravel	Documentation	-	10.x	/	Upgrade	Guide 13

php	artisan	lang:publish

Logging

Monolog	3

Likelihood	Of	Impact:	Medium

Laravel's	Monolog	dependency	has	been	updated	to	Monolog	3.x.	If	you	are	directly	interacting	with	Monolog
within	your	application,	you	should	review	Monolog's	upgrade	guide.

If	you	are	using	third-party	logging	services	such	as	BugSnag	or	Rollbar,	you	may	need	to	upgrade	those	third-
party	packages	to	a	version	that	supports	Monolog	3.x	and	Laravel	10.x.

Queues

The	Bus::dispatchNow	Method

Likelihood	Of	Impact:	Low

The	deprecated	Bus::dispatchNow	and	dispatch_now	methods	have	been	removed.	Instead,	your	application
should	use	the	Bus::dispatchSync	and	dispatch_sync	methods,	respectively.

The	dispatch()	Helper	Return	Value

Likelihood	Of	Impact:	Low

Invoking	dispatch	with	a	class	that	does	not	implement	Illuminate\Contracts\Queue	would	previously	return	the
result	of	the	class's	handle	method.	However,	this	will	now	return	an	Illuminate\Foundation\Bus\PendingBatch
instance.	You	may	use	dispatch_sync()	to	replicate	the	previous	behavior.

Routing

Middleware	Aliases

Likelihood	Of	Impact:	Optional

In	new	Laravel	applications,	the	$routeMiddleware	property	of	the	App\Http\Kernel	class	has	been	renamed	to	
$middlewareAliases	to	better	reflect	its	purpose.	You	are	welcome	to	rename	this	property	in	your	existing
applications;	however,	it	is	not	required.

Rate	Limiter	Return	Values

Likelihood	Of	Impact:	Low

When	invoking	the	RateLimiter::attempt	method,	the	value	returned	by	the	provided	closure	will	now	be
returned	by	the	method.	If	nothing	or	null	is	returned,	the	attempt	method	will	return	true:

$value	=	RateLimiter::attempt('key',	10,	fn	()	=>	['example'],	1);

$value;	//	['example']

The	Redirect::home	Method

Likelihood	Of	Impact:	Very	Low

The	deprecated	Redirect::home	method	has	been	removed.	Instead,	your	application	should	redirect	to	an
explicitly	named	route:

return	Redirect::route('home');

Laravel	Documentation	-	10.x	/	Upgrade	Guide 14

https://github.com/Seldaek/monolog/blob/main/UPGRADE.md

Testing

Service	Mocking

Likelihood	Of	Impact:	Medium

The	deprecated	MocksApplicationServices	trait	has	been	removed	from	the	framework.	This	trait	provided
testing	methods	such	as	expectsEvents,	expectsJobs,	and	expectsNotifications.

If	your	application	uses	these	methods,	we	recommend	you	transition	to	Event::fake,	Bus::fake,	and	
Notification::fake,	respectively.	You	can	learn	more	about	mocking	via	fakes	in	the	corresponding
documentation	for	the	component	you	are	attempting	to	fake.

Validation

Closure	Validation	Rule	Messages

Likelihood	Of	Impact:	Very	Low

When	writing	closure	based	custom	validation	rules,	invoking	the	$fail	callback	more	than	once	will	now
append	the	messages	to	an	array	instead	of	overwriting	the	previous	message.	Typically,	this	will	not	affect
your	application.

In	addition,	the	$fail	callback	now	returns	an	object.	If	you	were	previously	type-hinting	the	return	type	of
your	validation	closure,	this	may	require	you	to	update	your	type-hint:

public	function	rules()

{

				'name'	=>	[

								function	($attribute,	$value,	$fail)	{

												$fail('validation.translation.key')->translate();

								},

],

}

Validation	Messages	and	Closure	Rules

Likelihood	Of	Impact:	Very	Low

Previously,	you	could	assign	a	failure	message	to	a	different	key	by	providing	an	array	to	the	$fail	callback
injected	into	Closure	based	validation	rules.	However,	you	should	now	provide	the	key	as	the	first	argument
and	the	failure	message	as	the	second	argument:

Validator::make([

				'foo'	=>	'string',

				'bar'	=>	[function	($attribute,	$value,	$fail)	{

								$fail('foo',	'Something	went	wrong!');

				}],

]);

Form	Request	After	Method

Likelihood	Of	Impact:	Very	Low

Within	form	requests,	the	after	method	is	now	reserved	by	Laravel.	If	your	form	requests	define	an	after
method,	the	method	should	be	renamed	or	modified	to	utilize	the	new	"after	validation"	feature	of	Laravel's
form	requests.

Miscellaneous

We	also	encourage	you	to	view	the	changes	in	the	laravel/laravel	GitHub	repository.	While	many	of	these
changes	are	not	required,	you	may	wish	to	keep	these	files	in	sync	with	your	application.	Some	of	these
changes	will	be	covered	in	this	upgrade	guide,	but	others,	such	as	changes	to	configuration	files	or	comments,

Laravel	Documentation	-	10.x	/	Upgrade	Guide 15

https://github.com/laravel/framework/pull/46757
https://github.com/laravel/laravel

will	not	be.

You	can	easily	view	the	changes	with	the	GitHub	comparison	tool	and	choose	which	updates	are	important	to
you.	However,	many	of	the	changes	shown	by	the	GitHub	comparison	tool	are	due	to	our	organization's
adoption	of	PHP	native	types.	These	changes	are	backwards	compatible	and	the	adoption	of	them	during	the
migration	to	Laravel	10	is	optional.

Laravel	Documentation	-	10.x	/	Upgrade	Guide 16

https://github.com/laravel/laravel/compare/9.x...10.x

Prologue

Contribution	Guide
Bug	Reports
Support	Questions
Core	Development	Discussion
Which	Branch?
Compiled	Assets
Security	Vulnerabilities
Coding	Style

PHPDoc
StyleCI

Code	of	Conduct

Bug	Reports

To	encourage	active	collaboration,	Laravel	strongly	encourages	pull	requests,	not	just	bug	reports.	Pull	requests
will	only	be	reviewed	when	marked	as	"ready	for	review"	(not	in	the	"draft"	state)	and	all	tests	for	new	features
are	passing.	Lingering,	non-active	pull	requests	left	in	the	"draft"	state	will	be	closed	after	a	few	days.

However,	if	you	file	a	bug	report,	your	issue	should	contain	a	title	and	a	clear	description	of	the	issue.	You
should	also	include	as	much	relevant	information	as	possible	and	a	code	sample	that	demonstrates	the	issue.
The	goal	of	a	bug	report	is	to	make	it	easy	for	yourself	-	and	others	-	to	replicate	the	bug	and	develop	a	fix.

Remember,	bug	reports	are	created	in	the	hope	that	others	with	the	same	problem	will	be	able	to	collaborate
with	you	on	solving	it.	Do	not	expect	that	the	bug	report	will	automatically	see	any	activity	or	that	others	will
jump	to	fix	it.	Creating	a	bug	report	serves	to	help	yourself	and	others	start	on	the	path	of	fixing	the	problem.	If
you	want	to	chip	in,	you	can	help	out	by	fixing	any	bugs	listed	in	our	issue	trackers.	You	must	be	authenticated
with	GitHub	to	view	all	of	Laravel's	issues.

If	you	notice	improper	DocBlock,	PHPStan,	or	IDE	warnings	while	using	Laravel,	do	not	create	a	GitHub
issue.	Instead,	please	submit	a	pull	request	to	fix	the	problem.

The	Laravel	source	code	is	managed	on	GitHub,	and	there	are	repositories	for	each	of	the	Laravel	projects:

Laravel	Application
Laravel	Art
Laravel	Documentation
Laravel	Dusk
Laravel	Cashier	Stripe
Laravel	Cashier	Paddle
Laravel	Echo
Laravel	Envoy
Laravel	Folio
Laravel	Framework
Laravel	Homestead
Laravel	Homestead	Build	Scripts
Laravel	Horizon
Laravel	Jetstream
Laravel	Passport
Laravel	Pennant
Laravel	Pint
Laravel	Prompts
Laravel	Sail
Laravel	Sanctum
Laravel	Scout
Laravel	Socialite
Laravel	Telescope
Laravel	Website

Laravel	Documentation	-	10.x	/	Contribution	Guide 17

https://github.com/issues?q=is%3Aopen+is%3Aissue+label%3Abug+user%3Alaravel
https://github.com/laravel/laravel
https://github.com/laravel/art
https://github.com/laravel/docs
https://github.com/laravel/dusk
https://github.com/laravel/cashier
https://github.com/laravel/cashier-paddle
https://github.com/laravel/echo
https://github.com/laravel/envoy
https://github.com/laravel/folio
https://github.com/laravel/framework
https://github.com/laravel/homestead
https://github.com/laravel/settler
https://github.com/laravel/horizon
https://github.com/laravel/jetstream
https://github.com/laravel/passport
https://github.com/laravel/pennant
https://github.com/laravel/pint
https://github.com/laravel/prompts
https://github.com/laravel/sail
https://github.com/laravel/sanctum
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/telescope
https://github.com/laravel/laravel.com-next

Support	Questions

Laravel's	GitHub	issue	trackers	are	not	intended	to	provide	Laravel	help	or	support.	Instead,	use	one	of	the
following	channels:

GitHub	Discussions
Laracasts	Forums
Laravel.io	Forums
StackOverflow
Discord
Larachat
IRC

Core	Development	Discussion

You	may	propose	new	features	or	improvements	of	existing	Laravel	behavior	in	the	Laravel	framework
repository's	GitHub	discussion	board.	If	you	propose	a	new	feature,	please	be	willing	to	implement	at	least
some	of	the	code	that	would	be	needed	to	complete	the	feature.

Informal	discussion	regarding	bugs,	new	features,	and	implementation	of	existing	features	takes	place	in	the	
#internals	channel	of	the	Laravel	Discord	server.	Taylor	Otwell,	the	maintainer	of	Laravel,	is	typically	present
in	the	channel	on	weekdays	from	8am-5pm	(UTC-06:00	or	America/Chicago),	and	sporadically	present	in	the
channel	at	other	times.

Which	Branch?

All	bug	fixes	should	be	sent	to	the	latest	version	that	supports	bug	fixes	(currently	10.x).	Bug	fixes	should
never	be	sent	to	the	master	branch	unless	they	fix	features	that	exist	only	in	the	upcoming	release.

Minor	features	that	are	fully	backward	compatible	with	the	current	release	may	be	sent	to	the	latest	stable
branch	(currently	10.x).

Major	new	features	or	features	with	breaking	changes	should	always	be	sent	to	the	master	branch,	which
contains	the	upcoming	release.

Compiled	Assets

If	you	are	submitting	a	change	that	will	affect	a	compiled	file,	such	as	most	of	the	files	in	resources/css	or	
resources/js	of	the	laravel/laravel	repository,	do	not	commit	the	compiled	files.	Due	to	their	large	size,	they
cannot	realistically	be	reviewed	by	a	maintainer.	This	could	be	exploited	as	a	way	to	inject	malicious	code	into
Laravel.	In	order	to	defensively	prevent	this,	all	compiled	files	will	be	generated	and	committed	by	Laravel
maintainers.

Security	Vulnerabilities

If	you	discover	a	security	vulnerability	within	Laravel,	please	send	an	email	to	Taylor	Otwell	at
taylor@laravel.com.	All	security	vulnerabilities	will	be	promptly	addressed.

Coding	Style

Laravel	follows	the	PSR-2	coding	standard	and	the	PSR-4	autoloading	standard.

PHPDoc

Below	is	an	example	of	a	valid	Laravel	documentation	block.	Note	that	the	@param	attribute	is	followed	by	two
spaces,	the	argument	type,	two	more	spaces,	and	finally	the	variable	name:

Laravel	Documentation	-	10.x	/	Contribution	Guide 18

https://github.com/laravel/framework/discussions
https://laracasts.com/discuss
https://laravel.io/forum
https://stackoverflow.com/questions/tagged/laravel
https://discord.gg/laravel
https://larachat.co
https://web.libera.chat/?nick=artisan&channels=#laravel
https://github.com/laravel/framework/discussions
https://discord.gg/laravel
mailto:taylor@laravel.com
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

/**

	*	Register	a	binding	with	the	container.

	*

	*	@param		string|array		$abstract

	*	@param		\Closure|string|null		$concrete

	*	@param		bool		$shared

	*	@return	void

	*

	*	@throws	\Exception

	*/

public	function	bind($abstract,	$concrete	=	null,	$shared	=	false)

{

				//	...

}

When	the	@param	or	@return	attributes	are	redundant	due	to	the	use	of	native	types,	they	can	be	removed:

/**

	*	Execute	the	job.

	*/

public	function	handle(AudioProcessor	$processor):	void

{

				//

}

However,	when	the	native	type	is	generic,	please	specify	the	generic	type	through	the	use	of	the	@param	or	
@return	attributes:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromStorage('/path/to/file'),

];

}

StyleCI

Don't	worry	if	your	code	styling	isn't	perfect!	StyleCI	will	automatically	merge	any	style	fixes	into	the	Laravel
repository	after	pull	requests	are	merged.	This	allows	us	to	focus	on	the	content	of	the	contribution	and	not	the
code	style.

Code	of	Conduct

The	Laravel	code	of	conduct	is	derived	from	the	Ruby	code	of	conduct.	Any	violations	of	the	code	of	conduct
may	be	reported	to	Taylor	Otwell	(taylor@laravel.com):

Participants	will	be	tolerant	of	opposing	views.
Participants	must	ensure	that	their	language	and	actions	are	free	of	personal	attacks	and	disparaging
personal	remarks.
When	interpreting	the	words	and	actions	of	others,	participants	should	always	assume	good	intentions.
Behavior	that	can	be	reasonably	considered	harassment	will	not	be	tolerated.

Laravel	Documentation	-	10.x	/	Contribution	Guide 19

https://styleci.io/

Getting	Started

Installation
Meet	Laravel

Why	Laravel?
Creating	a	Laravel	Project
Initial	Configuration

Environment	Based	Configuration
Databases	and	Migrations
Directory	Configuration

Docker	Installation	Using	Sail
Sail	on	macOS
Sail	on	Windows
Sail	on	Linux
Choosing	Your	Sail	Services

IDE	Support
Next	Steps

Laravel	the	Full	Stack	Framework
Laravel	the	API	Backend

Meet	Laravel

Laravel	is	a	web	application	framework	with	expressive,	elegant	syntax.	A	web	framework	provides	a	structure
and	starting	point	for	creating	your	application,	allowing	you	to	focus	on	creating	something	amazing	while	we
sweat	the	details.

Laravel	strives	to	provide	an	amazing	developer	experience	while	providing	powerful	features	such	as	thorough
dependency	injection,	an	expressive	database	abstraction	layer,	queues	and	scheduled	jobs,	unit	and	integration
testing,	and	more.

Whether	you	are	new	to	PHP	web	frameworks	or	have	years	of	experience,	Laravel	is	a	framework	that	can
grow	with	you.	We'll	help	you	take	your	first	steps	as	a	web	developer	or	give	you	a	boost	as	you	take	your
expertise	to	the	next	level.	We	can't	wait	to	see	what	you	build.

[!NOTE]
New	to	Laravel?	Check	out	the	Laravel	Bootcamp	for	a	hands-on	tour	of	the	framework	while	we	walk
you	through	building	your	first	Laravel	application.

Why	Laravel?

There	are	a	variety	of	tools	and	frameworks	available	to	you	when	building	a	web	application.	However,	we
believe	Laravel	is	the	best	choice	for	building	modern,	full-stack	web	applications.

A	Progressive	Framework

We	like	to	call	Laravel	a	"progressive"	framework.	By	that,	we	mean	that	Laravel	grows	with	you.	If	you're	just
taking	your	first	steps	into	web	development,	Laravel's	vast	library	of	documentation,	guides,	and	video
tutorials	will	help	you	learn	the	ropes	without	becoming	overwhelmed.

If	you're	a	senior	developer,	Laravel	gives	you	robust	tools	for	dependency	injection,	unit	testing,	queues,	real-
time	events,	and	more.	Laravel	is	fine-tuned	for	building	professional	web	applications	and	ready	to	handle
enterprise	work	loads.

A	Scalable	Framework

Laravel	is	incredibly	scalable.	Thanks	to	the	scaling-friendly	nature	of	PHP	and	Laravel's	built-in	support	for
fast,	distributed	cache	systems	like	Redis,	horizontal	scaling	with	Laravel	is	a	breeze.	In	fact,	Laravel
applications	have	been	easily	scaled	to	handle	hundreds	of	millions	of	requests	per	month.

Laravel	Documentation	-	10.x	/	Getting	Started 20

https://bootcamp.laravel.com
https://laracasts.com

Need	extreme	scaling?	Platforms	like	Laravel	Vapor	allow	you	to	run	your	Laravel	application	at	nearly
limitless	scale	on	AWS's	latest	serverless	technology.

A	Community	Framework

Laravel	combines	the	best	packages	in	the	PHP	ecosystem	to	offer	the	most	robust	and	developer	friendly
framework	available.	In	addition,	thousands	of	talented	developers	from	around	the	world	have	contributed	to
the	framework.	Who	knows,	maybe	you'll	even	become	a	Laravel	contributor.

Creating	a	Laravel	Project

Before	creating	your	first	Laravel	project,	make	sure	that	your	local	machine	has	PHP	and	Composer	installed.
If	you	are	developing	on	macOS,	PHP	and	Composer	can	be	installed	in	minutes	via	Laravel	Herd.	In	addition,
we	recommend	installing	Node	and	NPM.

After	you	have	installed	PHP	and	Composer,	you	may	create	a	new	Laravel	project	via	Composer's	create-
project	command:

composer	create-project	laravel/laravel:^10.0	example-app

Or,	you	may	create	new	Laravel	projects	by	globally	installing	the	Laravel	installer	via	Composer:

composer	global	require	laravel/installer

laravel	new	example-app

Once	the	project	has	been	created,	start	Laravel's	local	development	server	using	Laravel	Artisan's	serve
command:

cd	example-app

php	artisan	serve

Once	you	have	started	the	Artisan	development	server,	your	application	will	be	accessible	in	your	web	browser
at	http://localhost:8000.	Next,	you're	ready	to	start	taking	your	next	steps	into	the	Laravel	ecosystem.	Of	course,
you	may	also	want	to	configure	a	database.

[!NOTE]
If	you	would	like	a	head	start	when	developing	your	Laravel	application,	consider	using	one	of	our	starter
kits.	Laravel's	starter	kits	provide	backend	and	frontend	authentication	scaffolding	for	your	new	Laravel
application.

Initial	Configuration

All	of	the	configuration	files	for	the	Laravel	framework	are	stored	in	the	config	directory.	Each	option	is
documented,	so	feel	free	to	look	through	the	files	and	get	familiar	with	the	options	available	to	you.

Laravel	needs	almost	no	additional	configuration	out	of	the	box.	You	are	free	to	get	started	developing!
However,	you	may	wish	to	review	the	config/app.php	file	and	its	documentation.	It	contains	several	options
such	as	timezone	and	locale	that	you	may	wish	to	change	according	to	your	application.

Environment	Based	Configuration

Since	many	of	Laravel's	configuration	option	values	may	vary	depending	on	whether	your	application	is
running	on	your	local	machine	or	on	a	production	web	server,	many	important	configuration	values	are	defined
using	the	.env	file	that	exists	at	the	root	of	your	application.

Your	.env	file	should	not	be	committed	to	your	application's	source	control,	since	each	developer	/	server	using
your	application	could	require	a	different	environment	configuration.	Furthermore,	this	would	be	a	security	risk
in	the	event	an	intruder	gains	access	to	your	source	control	repository,	since	any	sensitive	credentials	would	get
exposed.

Laravel	Documentation	-	10.x	/	Getting	Started 21

https://vapor.laravel.com
https://github.com/laravel/framework
https://getcomposer.org
https://herd.laravel.com
https://nodejs.org
https://github.com/laravel/installer
http://localhost:8000

[!NOTE]
For	more	information	about	the	.env	file	and	environment	based	configuration,	check	out	the	full
configuration	documentation.

Databases	and	Migrations

Now	that	you	have	created	your	Laravel	application,	you	probably	want	to	store	some	data	in	a	database.	By
default,	your	application's	.env	configuration	file	specifies	that	Laravel	will	be	interacting	with	a	MySQL
database	and	will	access	the	database	at	127.0.0.1.

[!NOTE]
If	you	are	developing	on	macOS	and	need	to	install	MySQL,	Postgres,	or	Redis	locally,	consider	using
DBngin.

If	you	do	not	want	to	install	MySQL	or	Postgres	on	your	local	machine,	you	can	always	use	a	SQLite	database.
SQLite	is	a	small,	fast,	self-contained	database	engine.	To	get	started,	update	your	.env	configuration	file	to	use
Laravel's	sqlite	database	driver.	You	may	remove	the	other	database	configuration	options:

DB_CONNECTION=sqlite	#	[tl!	add]

DB_CONNECTION=mysql	#	[tl!	remove]

DB_HOST=127.0.0.1	#	[tl!	remove]

DB_PORT=3306	#	[tl!	remove]

DB_DATABASE=laravel	#	[tl!	remove]

DB_USERNAME=root	#	[tl!	remove]

DB_PASSWORD=	#	[tl!	remove]

Once	you	have	configured	your	SQLite	database,	you	may	run	your	application's	database	migrations,	which
will	create	your	application's	database	tables:

php	artisan	migrate

If	an	SQLite	database	does	not	exist	for	your	application,	Laravel	will	ask	you	if	you	would	like	the	database	to
be	created.	Typically,	the	SQLite	database	file	will	be	created	at	database/database.sqlite.

Directory	Configuration

Laravel	should	always	be	served	out	of	the	root	of	the	"web	directory"	configured	for	your	web	server.	You
should	not	attempt	to	serve	a	Laravel	application	out	of	a	subdirectory	of	the	"web	directory".	Attempting	to	do
so	could	expose	sensitive	files	present	within	your	application.

Docker	Installation	Using	Sail

We	want	it	to	be	as	easy	as	possible	to	get	started	with	Laravel	regardless	of	your	preferred	operating	system.
So,	there	are	a	variety	of	options	for	developing	and	running	a	Laravel	project	on	your	local	machine.	While
you	may	wish	to	explore	these	options	at	a	later	time,	Laravel	provides	Sail,	a	built-in	solution	for	running	your
Laravel	project	using	Docker.

Docker	is	a	tool	for	running	applications	and	services	in	small,	light-weight	"containers"	which	do	not	interfere
with	your	local	machine's	installed	software	or	configuration.	This	means	you	don't	have	to	worry	about
configuring	or	setting	up	complicated	development	tools	such	as	web	servers	and	databases	on	your	local
machine.	To	get	started,	you	only	need	to	install	Docker	Desktop.

Laravel	Sail	is	a	light-weight	command-line	interface	for	interacting	with	Laravel's	default	Docker
configuration.	Sail	provides	a	great	starting	point	for	building	a	Laravel	application	using	PHP,	MySQL,	and
Redis	without	requiring	prior	Docker	experience.

[!NOTE]
Already	a	Docker	expert?	Don't	worry!	Everything	about	Sail	can	be	customized	using	the	docker-
compose.yml	file	included	with	Laravel.

Sail	on	macOS

Laravel	Documentation	-	10.x	/	Getting	Started 22

https://dbngin.com/
https://www.sqlite.org/index.html
https://www.docker.com
https://www.docker.com/products/docker-desktop

If	you're	developing	on	a	Mac	and	Docker	Desktop	is	already	installed,	you	can	use	a	simple	terminal
command	to	create	a	new	Laravel	project.	For	example,	to	create	a	new	Laravel	application	in	a	directory
named	"example-app",	you	may	run	the	following	command	in	your	terminal:

curl	-s	"https://laravel.build/example-app"	|	bash

Of	course,	you	can	change	"example-app"	in	this	URL	to	anything	you	like	-	just	make	sure	the	application
name	only	contains	alpha-numeric	characters,	dashes,	and	underscores.	The	Laravel	application's	directory	will
be	created	within	the	directory	you	execute	the	command	from.

Sail	installation	may	take	several	minutes	while	Sail's	application	containers	are	built	on	your	local	machine.

After	the	project	has	been	created,	you	can	navigate	to	the	application	directory	and	start	Laravel	Sail.	Laravel
Sail	provides	a	simple	command-line	interface	for	interacting	with	Laravel's	default	Docker	configuration:

cd	example-app

./vendor/bin/sail	up

Once	the	application's	Docker	containers	have	been	started,	you	can	access	the	application	in	your	web	browser
at:	http://localhost.

[!NOTE]
To	continue	learning	more	about	Laravel	Sail,	review	its	complete	documentation.

Sail	on	Windows

Before	we	create	a	new	Laravel	application	on	your	Windows	machine,	make	sure	to	install	Docker	Desktop.
Next,	you	should	ensure	that	Windows	Subsystem	for	Linux	2	(WSL2)	is	installed	and	enabled.	WSL	allows
you	to	run	Linux	binary	executables	natively	on	Windows	10.	Information	on	how	to	install	and	enable	WSL2
can	be	found	within	Microsoft's	developer	environment	documentation.

[!NOTE]
After	installing	and	enabling	WSL2,	you	should	ensure	that	Docker	Desktop	is	configured	to	use	the
WSL2	backend.

Next,	you	are	ready	to	create	your	first	Laravel	project.	Launch	Windows	Terminal	and	begin	a	new	terminal
session	for	your	WSL2	Linux	operating	system.	Next,	you	can	use	a	simple	terminal	command	to	create	a	new
Laravel	project.	For	example,	to	create	a	new	Laravel	application	in	a	directory	named	"example-app",	you	may
run	the	following	command	in	your	terminal:

curl	-s	https://laravel.build/example-app	|	bash

Of	course,	you	can	change	"example-app"	in	this	URL	to	anything	you	like	-	just	make	sure	the	application
name	only	contains	alpha-numeric	characters,	dashes,	and	underscores.	The	Laravel	application's	directory	will
be	created	within	the	directory	you	execute	the	command	from.

Sail	installation	may	take	several	minutes	while	Sail's	application	containers	are	built	on	your	local	machine.

After	the	project	has	been	created,	you	can	navigate	to	the	application	directory	and	start	Laravel	Sail.	Laravel
Sail	provides	a	simple	command-line	interface	for	interacting	with	Laravel's	default	Docker	configuration:

cd	example-app

./vendor/bin/sail	up

Once	the	application's	Docker	containers	have	been	started,	you	can	access	the	application	in	your	web	browser
at:	http://localhost.

[!NOTE]
To	continue	learning	more	about	Laravel	Sail,	review	its	complete	documentation.

Developing	Within	WSL2

Laravel	Documentation	-	10.x	/	Getting	Started 23

https://www.docker.com/products/docker-desktop
http://localhost
https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.docker.com/docker-for-windows/wsl/
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?rtc=1&activetab=pivot:overviewtab
http://localhost

Of	course,	you	will	need	to	be	able	to	modify	the	Laravel	application	files	that	were	created	within	your	WSL2
installation.	To	accomplish	this,	we	recommend	using	Microsoft's	Visual	Studio	Code	editor	and	their	first-
party	extension	for	Remote	Development.

Once	these	tools	are	installed,	you	may	open	any	Laravel	project	by	executing	the	code	.	command	from	your
application's	root	directory	using	Windows	Terminal.

Sail	on	Linux

If	you're	developing	on	Linux	and	Docker	Compose	is	already	installed,	you	can	use	a	simple	terminal
command	to	create	a	new	Laravel	project.

First,	if	you	are	using	Docker	Desktop	for	Linux,	you	should	execute	the	following	command.	If	you	are	not
using	Docker	Desktop	for	Linux,	you	may	skip	this	step:

docker	context	use	default

Then,	to	create	a	new	Laravel	application	in	a	directory	named	"example-app",	you	may	run	the	following
command	in	your	terminal:

curl	-s	https://laravel.build/example-app	|	bash

Of	course,	you	can	change	"example-app"	in	this	URL	to	anything	you	like	-	just	make	sure	the	application
name	only	contains	alpha-numeric	characters,	dashes,	and	underscores.	The	Laravel	application's	directory	will
be	created	within	the	directory	you	execute	the	command	from.

Sail	installation	may	take	several	minutes	while	Sail's	application	containers	are	built	on	your	local	machine.

After	the	project	has	been	created,	you	can	navigate	to	the	application	directory	and	start	Laravel	Sail.	Laravel
Sail	provides	a	simple	command-line	interface	for	interacting	with	Laravel's	default	Docker	configuration:

cd	example-app

./vendor/bin/sail	up

Once	the	application's	Docker	containers	have	been	started,	you	can	access	the	application	in	your	web	browser
at:	http://localhost.

[!NOTE]
To	continue	learning	more	about	Laravel	Sail,	review	its	complete	documentation.

Choosing	Your	Sail	Services

When	creating	a	new	Laravel	application	via	Sail,	you	may	use	the	with	query	string	variable	to	choose	which
services	should	be	configured	in	your	new	application's	docker-compose.yml	file.	Available	services	include	
mysql,	pgsql,	mariadb,	redis,	memcached,	meilisearch,	typesense,	minio,	selenium,	and	mailpit:

curl	-s	"https://laravel.build/example-app?with=mysql,redis"	|	bash

If	you	do	not	specify	which	services	you	would	like	configured,	a	default	stack	of	mysql,	redis,	meilisearch,	
mailpit,	and	selenium	will	be	configured.

You	may	instruct	Sail	to	install	a	default	Devcontainer	by	adding	the	devcontainer	parameter	to	the	URL:

curl	-s	"https://laravel.build/example-app?with=mysql,redis&devcontainer"	|	bash

IDE	Support

You	are	free	to	use	any	code	editor	you	wish	when	developing	Laravel	applications;	however,	PhpStorm	offers
extensive	support	for	Laravel	and	its	ecosystem,	including	Laravel	Pint.

In	addition,	the	community	maintained	Laravel	Idea	PhpStorm	plugin	offers	a	variety	of	helpful	IDE
augmentations,	including	code	generation,	Eloquent	syntax	completion,	validation	rule	completion,	and	more.

Laravel	Documentation	-	10.x	/	Getting	Started 24

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://docs.docker.com/compose/install/
http://localhost
https://www.jetbrains.com/phpstorm/laravel/
https://www.jetbrains.com/help/phpstorm/using-laravel-pint.html
https://laravel-idea.com/

Next	Steps

Now	that	you	have	created	your	Laravel	project,	you	may	be	wondering	what	to	learn	next.	First,	we	strongly
recommend	becoming	familiar	with	how	Laravel	works	by	reading	the	following	documentation:

Request	Lifecycle
Configuration
Directory	Structure
Frontend
Service	Container
Facades

How	you	want	to	use	Laravel	will	also	dictate	the	next	steps	on	your	journey.	There	are	a	variety	of	ways	to	use
Laravel,	and	we'll	explore	two	primary	use	cases	for	the	framework	below.

[!NOTE]
New	to	Laravel?	Check	out	the	Laravel	Bootcamp	for	a	hands-on	tour	of	the	framework	while	we	walk
you	through	building	your	first	Laravel	application.

Laravel	the	Full	Stack	Framework

Laravel	may	serve	as	a	full	stack	framework.	By	"full	stack"	framework	we	mean	that	you	are	going	to	use
Laravel	to	route	requests	to	your	application	and	render	your	frontend	via	Blade	templates	or	a	single-page
application	hybrid	technology	like	Inertia.	This	is	the	most	common	way	to	use	the	Laravel	framework,	and,	in
our	opinion,	the	most	productive	way	to	use	Laravel.

If	this	is	how	you	plan	to	use	Laravel,	you	may	want	to	check	out	our	documentation	on	frontend	development,
routing,	views,	or	the	Eloquent	ORM.	In	addition,	you	might	be	interested	in	learning	about	community
packages	like	Livewire	and	Inertia.	These	packages	allow	you	to	use	Laravel	as	a	full-stack	framework	while
enjoying	many	of	the	UI	benefits	provided	by	single-page	JavaScript	applications.

If	you	are	using	Laravel	as	a	full	stack	framework,	we	also	strongly	encourage	you	to	learn	how	to	compile
your	application's	CSS	and	JavaScript	using	Vite.

[!NOTE]
If	you	want	to	get	a	head	start	building	your	application,	check	out	one	of	our	official	application	starter
kits.

Laravel	the	API	Backend

Laravel	may	also	serve	as	an	API	backend	to	a	JavaScript	single-page	application	or	mobile	application.	For
example,	you	might	use	Laravel	as	an	API	backend	for	your	Next.js	application.	In	this	context,	you	may	use
Laravel	to	provide	authentication	and	data	storage	/	retrieval	for	your	application,	while	also	taking	advantage
of	Laravel's	powerful	services	such	as	queues,	emails,	notifications,	and	more.

If	this	is	how	you	plan	to	use	Laravel,	you	may	want	to	check	out	our	documentation	on	routing,	Laravel
Sanctum,	and	the	Eloquent	ORM.

[!NOTE]
Need	a	head	start	scaffolding	your	Laravel	backend	and	Next.js	frontend?	Laravel	Breeze	offers	an	API
stack	as	well	as	a	Next.js	frontend	implementation	so	you	can	get	started	in	minutes.

Laravel	Documentation	-	10.x	/	Getting	Started 25

https://bootcamp.laravel.com
https://inertiajs.com
https://livewire.laravel.com
https://inertiajs.com
https://nextjs.org
https://github.com/laravel/breeze-next

Getting	Started

Configuration
Introduction
Environment	Configuration

Environment	Variable	Types
Retrieving	Environment	Configuration
Determining	the	Current	Environment
Encrypting	Environment	Files

Accessing	Configuration	Values
Configuration	Caching
Debug	Mode
Maintenance	Mode

Introduction

All	of	the	configuration	files	for	the	Laravel	framework	are	stored	in	the	config	directory.	Each	option	is
documented,	so	feel	free	to	look	through	the	files	and	get	familiar	with	the	options	available	to	you.

These	configuration	files	allow	you	to	configure	things	like	your	database	connection	information,	your	mail
server	information,	as	well	as	various	other	core	configuration	values	such	as	your	application	timezone	and
encryption	key.

Application	Overview

In	a	hurry?	You	can	get	a	quick	overview	of	your	application's	configuration,	drivers,	and	environment	via	the	
about	Artisan	command:

php	artisan	about

If	you're	only	interested	in	a	particular	section	of	the	application	overview	output,	you	may	filter	for	that
section	using	the	--only	option:

php	artisan	about	--only=environment

Or,	to	explore	a	specific	configuration	file's	values	in	detail,	you	may	use	the	config:show	Artisan	command:

php	artisan	config:show	database

Environment	Configuration

It	is	often	helpful	to	have	different	configuration	values	based	on	the	environment	where	the	application	is
running.	For	example,	you	may	wish	to	use	a	different	cache	driver	locally	than	you	do	on	your	production
server.

To	make	this	a	cinch,	Laravel	utilizes	the	DotEnv	PHP	library.	In	a	fresh	Laravel	installation,	the	root	directory
of	your	application	will	contain	a	.env.example	file	that	defines	many	common	environment	variables.	During
the	Laravel	installation	process,	this	file	will	automatically	be	copied	to	.env.

Laravel's	default	.env	file	contains	some	common	configuration	values	that	may	differ	based	on	whether	your
application	is	running	locally	or	on	a	production	web	server.	These	values	are	then	retrieved	from	various
Laravel	configuration	files	within	the	config	directory	using	Laravel's	env	function.

If	you	are	developing	with	a	team,	you	may	wish	to	continue	including	a	.env.example	file	with	your
application.	By	putting	placeholder	values	in	the	example	configuration	file,	other	developers	on	your	team	can
clearly	see	which	environment	variables	are	needed	to	run	your	application.

[!NOTE]
Any	variable	in	your	.env	file	can	be	overridden	by	external	environment	variables	such	as	server-level	or

Laravel	Documentation	-	10.x	/	Configuration 26

https://github.com/vlucas/phpdotenv

system-level	environment	variables.

Environment	File	Security

Your	.env	file	should	not	be	committed	to	your	application's	source	control,	since	each	developer	/	server	using
your	application	could	require	a	different	environment	configuration.	Furthermore,	this	would	be	a	security	risk
in	the	event	an	intruder	gains	access	to	your	source	control	repository,	since	any	sensitive	credentials	would	get
exposed.

However,	it	is	possible	to	encrypt	your	environment	file	using	Laravel's	built-in	environment	encryption.
Encrypted	environment	files	may	be	placed	in	source	control	safely.

Additional	Environment	Files

Before	loading	your	application's	environment	variables,	Laravel	determines	if	an	APP_ENV	environment	variable
has	been	externally	provided	or	if	the	--env	CLI	argument	has	been	specified.	If	so,	Laravel	will	attempt	to	load
an	.env.[APP_ENV]	file	if	it	exists.	If	it	does	not	exist,	the	default	.env	file	will	be	loaded.

Environment	Variable	Types

All	variables	in	your	.env	files	are	typically	parsed	as	strings,	so	some	reserved	values	have	been	created	to
allow	you	to	return	a	wider	range	of	types	from	the	env()	function:

.env	Value env()	Value

true (bool)	true
(true) (bool)	true
false (bool)	false
(false) (bool)	false
empty (string)	''
(empty) (string)	''
null (null)	null
(null) (null)	null

If	you	need	to	define	an	environment	variable	with	a	value	that	contains	spaces,	you	may	do	so	by	enclosing	the
value	in	double	quotes:

APP_NAME="My	Application"

Retrieving	Environment	Configuration

All	of	the	variables	listed	in	the	.env	file	will	be	loaded	into	the	$_ENV	PHP	super-global	when	your	application
receives	a	request.	However,	you	may	use	the	env	function	to	retrieve	values	from	these	variables	in	your
configuration	files.	In	fact,	if	you	review	the	Laravel	configuration	files,	you	will	notice	many	of	the	options
are	already	using	this	function:

'debug'	=>	env('APP_DEBUG',	false),

The	second	value	passed	to	the	env	function	is	the	"default	value".	This	value	will	be	returned	if	no
environment	variable	exists	for	the	given	key.

Determining	the	Current	Environment

The	current	application	environment	is	determined	via	the	APP_ENV	variable	from	your	.env	file.	You	may	access
this	value	via	the	environment	method	on	the	App	facade:

use	Illuminate\Support\Facades\App;

$environment	=	App::environment();

You	may	also	pass	arguments	to	the	environment	method	to	determine	if	the	environment	matches	a	given	value.

Laravel	Documentation	-	10.x	/	Configuration 27

The	method	will	return	true	if	the	environment	matches	any	of	the	given	values:

if	(App::environment('local'))	{

				//	The	environment	is	local

}

if	(App::environment(['local',	'staging']))	{

				//	The	environment	is	either	local	OR	staging...

}

[!NOTE]
The	current	application	environment	detection	can	be	overridden	by	defining	a	server-level	APP_ENV
environment	variable.

Encrypting	Environment	Files

Unencrypted	environment	files	should	never	be	stored	in	source	control.	However,	Laravel	allows	you	to
encrypt	your	environment	files	so	that	they	may	safely	be	added	to	source	control	with	the	rest	of	your
application.

Encryption

To	encrypt	an	environment	file,	you	may	use	the	env:encrypt	command:

php	artisan	env:encrypt

Running	the	env:encrypt	command	will	encrypt	your	.env	file	and	place	the	encrypted	contents	in	an	
.env.encrypted	file.	The	decryption	key	is	presented	in	the	output	of	the	command	and	should	be	stored	in	a
secure	password	manager.	If	you	would	like	to	provide	your	own	encryption	key	you	may	use	the	--key	option
when	invoking	the	command:

php	artisan	env:encrypt	--key=3UVsEgGVK36XN82KKeyLFMhvosbZN1aF

[!NOTE]
The	length	of	the	key	provided	should	match	the	key	length	required	by	the	encryption	cipher	being	used.
By	default,	Laravel	will	use	the	AES-256-CBC	cipher	which	requires	a	32	character	key.	You	are	free	to	use
any	cipher	supported	by	Laravel's	encrypter	by	passing	the	--cipher	option	when	invoking	the	command.

If	your	application	has	multiple	environment	files,	such	as	.env	and	.env.staging,	you	may	specify	the
environment	file	that	should	be	encrypted	by	providing	the	environment	name	via	the	--env	option:

php	artisan	env:encrypt	--env=staging

Decryption

To	decrypt	an	environment	file,	you	may	use	the	env:decrypt	command.	This	command	requires	a	decryption
key,	which	Laravel	will	retrieve	from	the	LARAVEL_ENV_ENCRYPTION_KEY	environment	variable:

php	artisan	env:decrypt

Or,	the	key	may	be	provided	directly	to	the	command	via	the	--key	option:

php	artisan	env:decrypt	--key=3UVsEgGVK36XN82KKeyLFMhvosbZN1aF

When	the	env:decrypt	command	is	invoked,	Laravel	will	decrypt	the	contents	of	the	.env.encrypted	file	and
place	the	decrypted	contents	in	the	.env	file.

The	--cipher	option	may	be	provided	to	the	env:decrypt	command	in	order	to	use	a	custom	encryption	cipher:

php	artisan	env:decrypt	--key=qUWuNRdfuImXcKxZ	--cipher=AES-128-CBC

If	your	application	has	multiple	environment	files,	such	as	.env	and	.env.staging,	you	may	specify	the
environment	file	that	should	be	decrypted	by	providing	the	environment	name	via	the	--env	option:

php	artisan	env:decrypt	--env=staging

Laravel	Documentation	-	10.x	/	Configuration 28

In	order	to	overwrite	an	existing	environment	file,	you	may	provide	the	--force	option	to	the	env:decrypt
command:

php	artisan	env:decrypt	--force

Accessing	Configuration	Values

You	may	easily	access	your	configuration	values	using	the	Config	facade	or	global	config	function	from
anywhere	in	your	application.	The	configuration	values	may	be	accessed	using	"dot"	syntax,	which	includes	the
name	of	the	file	and	option	you	wish	to	access.	A	default	value	may	also	be	specified	and	will	be	returned	if	the
configuration	option	does	not	exist:

use	Illuminate\Support\Facades\Config;

$value	=	Config::get('app.timezone');

$value	=	config('app.timezone');

//	Retrieve	a	default	value	if	the	configuration	value	does	not	exist...

$value	=	config('app.timezone',	'Asia/Seoul');

To	set	configuration	values	at	runtime,	you	may	invoke	the	Config	facade's	set	method	or	pass	an	array	to	the	
config	function:

Config::set('app.timezone',	'America/Chicago');

config(['app.timezone'	=>	'America/Chicago']);

Configuration	Caching

To	give	your	application	a	speed	boost,	you	should	cache	all	of	your	configuration	files	into	a	single	file	using
the	config:cache	Artisan	command.	This	will	combine	all	of	the	configuration	options	for	your	application	into
a	single	file	which	can	be	quickly	loaded	by	the	framework.

You	should	typically	run	the	php	artisan	config:cache	command	as	part	of	your	production	deployment
process.	The	command	should	not	be	run	during	local	development	as	configuration	options	will	frequently
need	to	be	changed	during	the	course	of	your	application's	development.

Once	the	configuration	has	been	cached,	your	application's	.env	file	will	not	be	loaded	by	the	framework	during
requests	or	Artisan	commands;	therefore,	the	env	function	will	only	return	external,	system	level	environment
variables.

For	this	reason,	you	should	ensure	you	are	only	calling	the	env	function	from	within	your	application's
configuration	(config)	files.	You	can	see	many	examples	of	this	by	examining	Laravel's	default	configuration
files.	Configuration	values	may	be	accessed	from	anywhere	in	your	application	using	the	config	function
described	above.

The	config:clear	command	may	be	used	to	purge	the	cached	configuration:

php	artisan	config:clear

[!WARNING]
If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that	you
are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded;	therefore,	the	env	function	will	only	return	external,	system	level
environment	variables.

Debug	Mode

The	debug	option	in	your	config/app.php	configuration	file	determines	how	much	information	about	an	error	is
actually	displayed	to	the	user.	By	default,	this	option	is	set	to	respect	the	value	of	the	APP_DEBUG	environment
variable,	which	is	stored	in	your	.env	file.

Laravel	Documentation	-	10.x	/	Configuration 29

[!WARNING]
For	local	development,	you	should	set	the	APP_DEBUG	environment	variable	to	true.	In	your	production
environment,	this	value	should	always	be	false.	If	the	variable	is	set	to	true	in	production,	you	risk
exposing	sensitive	configuration	values	to	your	application's	end	users.

Maintenance	Mode

When	your	application	is	in	maintenance	mode,	a	custom	view	will	be	displayed	for	all	requests	into	your
application.	This	makes	it	easy	to	"disable"	your	application	while	it	is	updating	or	when	you	are	performing
maintenance.	A	maintenance	mode	check	is	included	in	the	default	middleware	stack	for	your	application.	If	the
application	is	in	maintenance	mode,	a	Symfony\Component\HttpKernel\Exception\HttpException	instance	will	be
thrown	with	a	status	code	of	503.

To	enable	maintenance	mode,	execute	the	down	Artisan	command:

php	artisan	down

If	you	would	like	the	Refresh	HTTP	header	to	be	sent	with	all	maintenance	mode	responses,	you	may	provide
the	refresh	option	when	invoking	the	down	command.	The	Refresh	header	will	instruct	the	browser	to
automatically	refresh	the	page	after	the	specified	number	of	seconds:

php	artisan	down	--refresh=15

You	may	also	provide	a	retry	option	to	the	down	command,	which	will	be	set	as	the	Retry-After	HTTP	header's
value,	although	browsers	generally	ignore	this	header:

php	artisan	down	--retry=60

Bypassing	Maintenance	Mode

To	allow	maintenance	mode	to	be	bypassed	using	a	secret	token,	you	may	use	the	secret	option	to	specify	a
maintenance	mode	bypass	token:

php	artisan	down	--secret="1630542a-246b-4b66-afa1-dd72a4c43515"

After	placing	the	application	in	maintenance	mode,	you	may	navigate	to	the	application	URL	matching	this
token	and	Laravel	will	issue	a	maintenance	mode	bypass	cookie	to	your	browser:

https://example.com/1630542a-246b-4b66-afa1-dd72a4c43515

If	you	would	like	Laravel	to	generate	the	secret	token	for	you,	you	may	use	the	with-secret	option.	The	secret
will	be	displayed	to	you	once	the	application	is	in	maintenance	mode:

php	artisan	down	--with-secret

When	accessing	this	hidden	route,	you	will	then	be	redirected	to	the	/	route	of	the	application.	Once	the	cookie
has	been	issued	to	your	browser,	you	will	be	able	to	browse	the	application	normally	as	if	it	was	not	in
maintenance	mode.

[!NOTE]
Your	maintenance	mode	secret	should	typically	consist	of	alpha-numeric	characters	and,	optionally,
dashes.	You	should	avoid	using	characters	that	have	special	meaning	in	URLs	such	as	?	or	&.

Pre-Rendering	the	Maintenance	Mode	View

If	you	utilize	the	php	artisan	down	command	during	deployment,	your	users	may	still	occasionally	encounter
errors	if	they	access	the	application	while	your	Composer	dependencies	or	other	infrastructure	components	are
updating.	This	occurs	because	a	significant	part	of	the	Laravel	framework	must	boot	in	order	to	determine	your
application	is	in	maintenance	mode	and	render	the	maintenance	mode	view	using	the	templating	engine.

For	this	reason,	Laravel	allows	you	to	pre-render	a	maintenance	mode	view	that	will	be	returned	at	the	very
beginning	of	the	request	cycle.	This	view	is	rendered	before	any	of	your	application's	dependencies	have
loaded.	You	may	pre-render	a	template	of	your	choice	using	the	down	command's	render	option:

Laravel	Documentation	-	10.x	/	Configuration 30

php	artisan	down	--render="errors::503"

Redirecting	Maintenance	Mode	Requests

While	in	maintenance	mode,	Laravel	will	display	the	maintenance	mode	view	for	all	application	URLs	the	user
attempts	to	access.	If	you	wish,	you	may	instruct	Laravel	to	redirect	all	requests	to	a	specific	URL.	This	may	be
accomplished	using	the	redirect	option.	For	example,	you	may	wish	to	redirect	all	requests	to	the	/	URI:

php	artisan	down	--redirect=/

Disabling	Maintenance	Mode

To	disable	maintenance	mode,	use	the	up	command:

php	artisan	up

[!NOTE]
You	may	customize	the	default	maintenance	mode	template	by	defining	your	own	template	at	
resources/views/errors/503.blade.php.

Maintenance	Mode	and	Queues

While	your	application	is	in	maintenance	mode,	no	queued	jobs	will	be	handled.	The	jobs	will	continue	to	be
handled	as	normal	once	the	application	is	out	of	maintenance	mode.

Alternatives	to	Maintenance	Mode

Since	maintenance	mode	requires	your	application	to	have	several	seconds	of	downtime,	consider	alternatives
like	Laravel	Vapor	and	Envoyer	to	accomplish	zero-downtime	deployment	with	Laravel.

Laravel	Documentation	-	10.x	/	Configuration 31

https://vapor.laravel.com
https://envoyer.io

Getting	Started

Directory	Structure
Introduction
The	Root	Directory

The	app	Directory
The	bootstrap	Directory
The	config	Directory
The	database	Directory
The	public	Directory
The	resources	Directory
The	routes	Directory
The	storage	Directory
The	tests	Directory
The	vendor	Directory

The	App	Directory
The	Broadcasting	Directory
The	Console	Directory
The	Events	Directory
The	Exceptions	Directory
The	Http	Directory
The	Jobs	Directory
The	Listeners	Directory
The	Mail	Directory
The	Models	Directory
The	Notifications	Directory
The	Policies	Directory
The	Providers	Directory
The	Rules	Directory

Introduction

The	default	Laravel	application	structure	is	intended	to	provide	a	great	starting	point	for	both	large	and	small
applications.	But	you	are	free	to	organize	your	application	however	you	like.	Laravel	imposes	almost	no
restrictions	on	where	any	given	class	is	located	-	as	long	as	Composer	can	autoload	the	class.

[!NOTE]
New	to	Laravel?	Check	out	the	Laravel	Bootcamp	for	a	hands-on	tour	of	the	framework	while	we	walk
you	through	building	your	first	Laravel	application.

The	Root	Directory

The	App	Directory

The	app	directory	contains	the	core	code	of	your	application.	We'll	explore	this	directory	in	more	detail	soon;
however,	almost	all	of	the	classes	in	your	application	will	be	in	this	directory.

The	Bootstrap	Directory

The	bootstrap	directory	contains	the	app.php	file	which	bootstraps	the	framework.	This	directory	also	houses	a	
cache	directory	which	contains	framework	generated	files	for	performance	optimization	such	as	the	route	and
services	cache	files.	You	should	not	typically	need	to	modify	any	files	within	this	directory.

The	Config	Directory

The	config	directory,	as	the	name	implies,	contains	all	of	your	application's	configuration	files.	It's	a	great	idea
to	read	through	all	of	these	files	and	familiarize	yourself	with	all	of	the	options	available	to	you.

Laravel	Documentation	-	10.x	/	Directory	Structure 32

https://bootcamp.laravel.com

The	Database	Directory

The	database	directory	contains	your	database	migrations,	model	factories,	and	seeds.	If	you	wish,	you	may
also	use	this	directory	to	hold	an	SQLite	database.

The	Public	Directory

The	public	directory	contains	the	index.php	file,	which	is	the	entry	point	for	all	requests	entering	your
application	and	configures	autoloading.	This	directory	also	houses	your	assets	such	as	images,	JavaScript,	and
CSS.

The	Resources	Directory

The	resources	directory	contains	your	views	as	well	as	your	raw,	un-compiled	assets	such	as	CSS	or	JavaScript.

The	Routes	Directory

The	routes	directory	contains	all	of	the	route	definitions	for	your	application.	By	default,	several	route	files	are
included	with	Laravel:	web.php,	api.php,	console.php,	and	channels.php.

The	web.php	file	contains	routes	that	the	RouteServiceProvider	places	in	the	web	middleware	group,	which
provides	session	state,	CSRF	protection,	and	cookie	encryption.	If	your	application	does	not	offer	a	stateless,
RESTful	API	then	all	your	routes	will	most	likely	be	defined	in	the	web.php	file.

The	api.php	file	contains	routes	that	the	RouteServiceProvider	places	in	the	api	middleware	group.	These	routes
are	intended	to	be	stateless,	so	requests	entering	the	application	through	these	routes	are	intended	to	be
authenticated	via	tokens	and	will	not	have	access	to	session	state.

The	console.php	file	is	where	you	may	define	all	of	your	closure	based	console	commands.	Each	closure	is
bound	to	a	command	instance	allowing	a	simple	approach	to	interacting	with	each	command's	IO	methods.
Even	though	this	file	does	not	define	HTTP	routes,	it	defines	console	based	entry	points	(routes)	into	your
application.

The	channels.php	file	is	where	you	may	register	all	of	the	event	broadcasting	channels	that	your	application
supports.

The	Storage	Directory

The	storage	directory	contains	your	logs,	compiled	Blade	templates,	file	based	sessions,	file	caches,	and	other
files	generated	by	the	framework.	This	directory	is	segregated	into	app,	framework,	and	logs	directories.	The	app
directory	may	be	used	to	store	any	files	generated	by	your	application.	The	framework	directory	is	used	to	store
framework	generated	files	and	caches.	Finally,	the	logs	directory	contains	your	application's	log	files.

The	storage/app/public	directory	may	be	used	to	store	user-generated	files,	such	as	profile	avatars,	that	should
be	publicly	accessible.	You	should	create	a	symbolic	link	at	public/storage	which	points	to	this	directory.	You
may	create	the	link	using	the	php	artisan	storage:link	Artisan	command.

The	Tests	Directory

The	tests	directory	contains	your	automated	tests.	Example	PHPUnit	unit	tests	and	feature	tests	are	provided
out	of	the	box.	Each	test	class	should	be	suffixed	with	the	word	Test.	You	may	run	your	tests	using	the	phpunit
or	php	vendor/bin/phpunit	commands.	Or,	if	you	would	like	a	more	detailed	and	beautiful	representation	of
your	test	results,	you	may	run	your	tests	using	the	php	artisan	test	Artisan	command.

The	Vendor	Directory

The	vendor	directory	contains	your	Composer	dependencies.

The	App	Directory

Laravel	Documentation	-	10.x	/	Directory	Structure 33

https://phpunit.de/
https://getcomposer.org

The	majority	of	your	application	is	housed	in	the	app	directory.	By	default,	this	directory	is	namespaced	under	
App	and	is	autoloaded	by	Composer	using	the	PSR-4	autoloading	standard.

The	app	directory	contains	a	variety	of	additional	directories	such	as	Console,	Http,	and	Providers.	Think	of	the	
Console	and	Http	directories	as	providing	an	API	into	the	core	of	your	application.	The	HTTP	protocol	and	CLI
are	both	mechanisms	to	interact	with	your	application,	but	do	not	actually	contain	application	logic.	In	other
words,	they	are	two	ways	of	issuing	commands	to	your	application.	The	Console	directory	contains	all	of	your
Artisan	commands,	while	the	Http	directory	contains	your	controllers,	middleware,	and	requests.

A	variety	of	other	directories	will	be	generated	inside	the	app	directory	as	you	use	the	make	Artisan	commands
to	generate	classes.	So,	for	example,	the	app/Jobs	directory	will	not	exist	until	you	execute	the	make:job	Artisan
command	to	generate	a	job	class.

[!NOTE]
Many	of	the	classes	in	the	app	directory	can	be	generated	by	Artisan	via	commands.	To	review	the
available	commands,	run	the	php	artisan	list	make	command	in	your	terminal.

The	Broadcasting	Directory

The	Broadcasting	directory	contains	all	of	the	broadcast	channel	classes	for	your	application.	These	classes	are
generated	using	the	make:channel	command.	This	directory	does	not	exist	by	default,	but	will	be	created	for	you
when	you	create	your	first	channel.	To	learn	more	about	channels,	check	out	the	documentation	on	event
broadcasting.

The	Console	Directory

The	Console	directory	contains	all	of	the	custom	Artisan	commands	for	your	application.	These	commands	may
be	generated	using	the	make:command	command.	This	directory	also	houses	your	console	kernel,	which	is	where
your	custom	Artisan	commands	are	registered	and	your	scheduled	tasks	are	defined.

The	Events	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	by	the	event:generate	and	make:event
Artisan	commands.	The	Events	directory	houses	event	classes.	Events	may	be	used	to	alert	other	parts	of	your
application	that	a	given	action	has	occurred,	providing	a	great	deal	of	flexibility	and	decoupling.

The	Exceptions	Directory

The	Exceptions	directory	contains	your	application's	exception	handler	and	is	also	a	good	place	to	place	any
exceptions	thrown	by	your	application.	If	you	would	like	to	customize	how	your	exceptions	are	logged	or
rendered,	you	should	modify	the	Handler	class	in	this	directory.

The	Http	Directory

The	Http	directory	contains	your	controllers,	middleware,	and	form	requests.	Almost	all	of	the	logic	to	handle
requests	entering	your	application	will	be	placed	in	this	directory.

The	Jobs	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:job	Artisan
command.	The	Jobs	directory	houses	the	queueable	jobs	for	your	application.	Jobs	may	be	queued	by	your
application	or	run	synchronously	within	the	current	request	lifecycle.	Jobs	that	run	synchronously	during	the
current	request	are	sometimes	referred	to	as	"commands"	since	they	are	an	implementation	of	the	command
pattern.

The	Listeners	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	event:generate	or	
make:listener	Artisan	commands.	The	Listeners	directory	contains	the	classes	that	handle	your	events.	Event

Laravel	Documentation	-	10.x	/	Directory	Structure 34

https://www.php-fig.org/psr/psr-4/
https://en.wikipedia.org/wiki/Command_pattern

listeners	receive	an	event	instance	and	perform	logic	in	response	to	the	event	being	fired.	For	example,	a	
UserRegistered	event	might	be	handled	by	a	SendWelcomeEmail	listener.

The	Mail	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:mail	Artisan
command.	The	Mail	directory	contains	all	of	your	classes	that	represent	emails	sent	by	your	application.	Mail
objects	allow	you	to	encapsulate	all	of	the	logic	of	building	an	email	in	a	single,	simple	class	that	may	be	sent
using	the	Mail::send	method.

The	Models	Directory

The	Models	directory	contains	all	of	your	Eloquent	model	classes.	The	Eloquent	ORM	included	with	Laravel
provides	a	beautiful,	simple	ActiveRecord	implementation	for	working	with	your	database.	Each	database	table
has	a	corresponding	"Model"	which	is	used	to	interact	with	that	table.	Models	allow	you	to	query	for	data	in
your	tables,	as	well	as	insert	new	records	into	the	table.

The	Notifications	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:notification
Artisan	command.	The	Notifications	directory	contains	all	of	the	"transactional"	notifications	that	are	sent	by
your	application,	such	as	simple	notifications	about	events	that	happen	within	your	application.	Laravel's
notification	feature	abstracts	sending	notifications	over	a	variety	of	drivers	such	as	email,	Slack,	SMS,	or	stored
in	a	database.

The	Policies	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:policy	Artisan
command.	The	Policies	directory	contains	the	authorization	policy	classes	for	your	application.	Policies	are
used	to	determine	if	a	user	can	perform	a	given	action	against	a	resource.

The	Providers	Directory

The	Providers	directory	contains	all	of	the	service	providers	for	your	application.	Service	providers	bootstrap
your	application	by	binding	services	in	the	service	container,	registering	events,	or	performing	any	other	tasks
to	prepare	your	application	for	incoming	requests.

In	a	fresh	Laravel	application,	this	directory	will	already	contain	several	providers.	You	are	free	to	add	your
own	providers	to	this	directory	as	needed.

The	Rules	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:rule	Artisan
command.	The	Rules	directory	contains	the	custom	validation	rule	objects	for	your	application.	Rules	are	used
to	encapsulate	complicated	validation	logic	in	a	simple	object.	For	more	information,	check	out	the	validation
documentation.

Laravel	Documentation	-	10.x	/	Directory	Structure 35

Getting	Started

Frontend
Introduction
Using	PHP

PHP	and	Blade
Livewire
Starter	Kits

Using	Vue	/	React
Inertia
Starter	Kits

Bundling	Assets

Introduction

Laravel	is	a	backend	framework	that	provides	all	of	the	features	you	need	to	build	modern	web	applications,
such	as	routing,	validation,	caching,	queues,	file	storage,	and	more.	However,	we	believe	it's	important	to	offer
developers	a	beautiful	full-stack	experience,	including	powerful	approaches	for	building	your	application's
frontend.

There	are	two	primary	ways	to	tackle	frontend	development	when	building	an	application	with	Laravel,	and
which	approach	you	choose	is	determined	by	whether	you	would	like	to	build	your	frontend	by	leveraging	PHP
or	by	using	JavaScript	frameworks	such	as	Vue	and	React.	We'll	discuss	both	of	these	options	below	so	that	you
can	make	an	informed	decision	regarding	the	best	approach	to	frontend	development	for	your	application.

Using	PHP

PHP	and	Blade

In	the	past,	most	PHP	applications	rendered	HTML	to	the	browser	using	simple	HTML	templates	interspersed
with	PHP	echo	statements	which	render	data	that	was	retrieved	from	a	database	during	the	request:

<div>

				<?php	foreach	($users	as	$user):	?>

								Hello,	<?php	echo	$user->name;	?>	

				<?php	endforeach;	?>

</div>

In	Laravel,	this	approach	to	rendering	HTML	can	still	be	achieved	using	views	and	Blade.	Blade	is	an
extremely	light-weight	templating	language	that	provides	convenient,	short	syntax	for	displaying	data,	iterating
over	data,	and	more:

<div>

				@foreach	($users	as	$user)

								Hello,	{{	$user->name	}}	

				@endforeach

</div>

When	building	applications	in	this	fashion,	form	submissions	and	other	page	interactions	typically	receive	an
entirely	new	HTML	document	from	the	server	and	the	entire	page	is	re-rendered	by	the	browser.	Even	today,
many	applications	may	be	perfectly	suited	to	having	their	frontends	constructed	in	this	way	using	simple	Blade
templates.

Growing	Expectations

However,	as	user	expectations	regarding	web	applications	have	matured,	many	developers	have	found	the	need
to	build	more	dynamic	frontends	with	interactions	that	feel	more	polished.	In	light	of	this,	some	developers
choose	to	begin	building	their	application's	frontend	using	JavaScript	frameworks	such	as	Vue	and	React.

Others,	preferring	to	stick	with	the	backend	language	they	are	comfortable	with,	have	developed	solutions	that

Laravel	Documentation	-	10.x	/	Frontend 36

allow	the	construction	of	modern	web	application	UIs	while	still	primarily	utilizing	their	backend	language	of
choice.	For	example,	in	the	Rails	ecosystem,	this	has	spurred	the	creation	of	libraries	such	as	Turbo	Hotwire,
and	Stimulus.

Within	the	Laravel	ecosystem,	the	need	to	create	modern,	dynamic	frontends	by	primarily	using	PHP	has	led	to
the	creation	of	Laravel	Livewire	and	Alpine.js.

Livewire

Laravel	Livewire	is	a	framework	for	building	Laravel	powered	frontends	that	feel	dynamic,	modern,	and	alive
just	like	frontends	built	with	modern	JavaScript	frameworks	like	Vue	and	React.

When	using	Livewire,	you	will	create	Livewire	"components"	that	render	a	discrete	portion	of	your	UI	and
expose	methods	and	data	that	can	be	invoked	and	interacted	with	from	your	application's	frontend.	For
example,	a	simple	"Counter"	component	might	look	like	the	following:

<?php

namespace	App\Http\Livewire;

use	Livewire\Component;

class	Counter	extends	Component

{

				public	$count	=	0;

				public	function	increment()

				{

								$this->count++;

				}

				public	function	render()

				{

								return	view('livewire.counter');

				}

}

And,	the	corresponding	template	for	the	counter	would	be	written	like	so:

<div>

				<button	wire:click="increment">+</button>

				<h1>{{	$count	}}</h1>

</div>

As	you	can	see,	Livewire	enables	you	to	write	new	HTML	attributes	such	as	wire:click	that	connect	your
Laravel	application's	frontend	and	backend.	In	addition,	you	can	render	your	component's	current	state	using
simple	Blade	expressions.

For	many,	Livewire	has	revolutionized	frontend	development	with	Laravel,	allowing	them	to	stay	within	the
comfort	of	Laravel	while	constructing	modern,	dynamic	web	applications.	Typically,	developers	using	Livewire
will	also	utilize	Alpine.js	to	"sprinkle"	JavaScript	onto	their	frontend	only	where	it	is	needed,	such	as	in	order
to	render	a	dialog	window.

If	you're	new	to	Laravel,	we	recommend	getting	familiar	with	the	basic	usage	of	views	and	Blade.	Then,
consult	the	official	Laravel	Livewire	documentation	to	learn	how	to	take	your	application	to	the	next	level	with
interactive	Livewire	components.

Starter	Kits

If	you	would	like	to	build	your	frontend	using	PHP	and	Livewire,	you	can	leverage	our	Breeze	or	Jetstream
starter	kits	to	jump-start	your	application's	development.	Both	of	these	starter	kits	scaffold	your	application's
backend	and	frontend	authentication	flow	using	Blade	and	Tailwind	so	that	you	can	simply	start	building	your
next	big	idea.

Using	Vue	/	React

Laravel	Documentation	-	10.x	/	Frontend 37

https://rubyonrails.org/
https://turbo.hotwired.dev/
https://hotwired.dev/
https://stimulus.hotwired.dev/
https://livewire.laravel.com
https://alpinejs.dev/
https://livewire.laravel.com
https://alpinejs.dev/
https://livewire.laravel.com/docs
https://tailwindcss.com

Although	it's	possible	to	build	modern	frontends	using	Laravel	and	Livewire,	many	developers	still	prefer	to
leverage	the	power	of	a	JavaScript	framework	like	Vue	or	React.	This	allows	developers	to	take	advantage	of
the	rich	ecosystem	of	JavaScript	packages	and	tools	available	via	NPM.

However,	without	additional	tooling,	pairing	Laravel	with	Vue	or	React	would	leave	us	needing	to	solve	a
variety	of	complicated	problems	such	as	client-side	routing,	data	hydration,	and	authentication.	Client-side
routing	is	often	simplified	by	using	opinionated	Vue	/	React	frameworks	such	as	Nuxt	and	Next;	however,	data
hydration	and	authentication	remain	complicated	and	cumbersome	problems	to	solve	when	pairing	a	backend
framework	like	Laravel	with	these	frontend	frameworks.

In	addition,	developers	are	left	maintaining	two	separate	code	repositories,	often	needing	to	coordinate
maintenance,	releases,	and	deployments	across	both	repositories.	While	these	problems	are	not	insurmountable,
we	don't	believe	it's	a	productive	or	enjoyable	way	to	develop	applications.

Inertia

Thankfully,	Laravel	offers	the	best	of	both	worlds.	Inertia	bridges	the	gap	between	your	Laravel	application	and
your	modern	Vue	or	React	frontend,	allowing	you	to	build	full-fledged,	modern	frontends	using	Vue	or	React
while	leveraging	Laravel	routes	and	controllers	for	routing,	data	hydration,	and	authentication	—	all	within	a
single	code	repository.	With	this	approach,	you	can	enjoy	the	full	power	of	both	Laravel	and	Vue	/	React
without	crippling	the	capabilities	of	either	tool.

After	installing	Inertia	into	your	Laravel	application,	you	will	write	routes	and	controllers	like	normal.
However,	instead	of	returning	a	Blade	template	from	your	controller,	you	will	return	an	Inertia	page:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\User;

use	Inertia\Inertia;

use	Inertia\Response;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	a	given	user.

					*/

				public	function	show(string	$id):	Response

				{

								return	Inertia::render('Users/Profile',	[

												'user'	=>	User::findOrFail($id)

]);

				}

}

An	Inertia	page	corresponds	to	a	Vue	or	React	component,	typically	stored	within	the	resources/js/Pages
directory	of	your	application.	The	data	given	to	the	page	via	the	Inertia::render	method	will	be	used	to	hydrate
the	"props"	of	the	page	component:

<script	setup>

import	Layout	from	'@/Layouts/Authenticated.vue';

import	{	Head	}	from	'@inertiajs/vue3';

const	props	=	defineProps(['user']);

</script>

<template>

				<Head	title="User	Profile"	/>

				<Layout>

								<template	#header>

												<h2	class="font-semibold	text-xl	text-gray-800	leading-tight">

																Profile

												</h2>

								</template>

								<div	class="py-12">

												Hello,	{{	user.name	}}

								</div>

Laravel	Documentation	-	10.x	/	Frontend 38

https://nuxt.com/
https://nextjs.org/
https://inertiajs.com

				</Layout>

</template>

As	you	can	see,	Inertia	allows	you	to	leverage	the	full	power	of	Vue	or	React	when	building	your	frontend,
while	providing	a	light-weight	bridge	between	your	Laravel	powered	backend	and	your	JavaScript	powered
frontend.

Server-Side	Rendering

If	you're	concerned	about	diving	into	Inertia	because	your	application	requires	server-side	rendering,	don't
worry.	Inertia	offers	server-side	rendering	support.	And,	when	deploying	your	application	via	Laravel	Forge,	it's
a	breeze	to	ensure	that	Inertia's	server-side	rendering	process	is	always	running.

Starter	Kits

If	you	would	like	to	build	your	frontend	using	Inertia	and	Vue	/	React,	you	can	leverage	our	Breeze	or
Jetstream	starter	kits	to	jump-start	your	application's	development.	Both	of	these	starter	kits	scaffold	your
application's	backend	and	frontend	authentication	flow	using	Inertia,	Vue	/	React,	Tailwind,	and	Vite	so	that
you	can	start	building	your	next	big	idea.

Bundling	Assets

Regardless	of	whether	you	choose	to	develop	your	frontend	using	Blade	and	Livewire	or	Vue	/	React	and
Inertia,	you	will	likely	need	to	bundle	your	application's	CSS	into	production	ready	assets.	Of	course,	if	you
choose	to	build	your	application's	frontend	with	Vue	or	React,	you	will	also	need	to	bundle	your	components
into	browser	ready	JavaScript	assets.

By	default,	Laravel	utilizes	Vite	to	bundle	your	assets.	Vite	provides	lightning-fast	build	times	and	near
instantaneous	Hot	Module	Replacement	(HMR)	during	local	development.	In	all	new	Laravel	applications,
including	those	using	our	starter	kits,	you	will	find	a	vite.config.js	file	that	loads	our	light-weight	Laravel	Vite
plugin	that	makes	Vite	a	joy	to	use	with	Laravel	applications.

The	fastest	way	to	get	started	with	Laravel	and	Vite	is	by	beginning	your	application's	development	using
Laravel	Breeze,	our	simplest	starter	kit	that	jump-starts	your	application	by	providing	frontend	and	backend
authentication	scaffolding.

[!NOTE]
For	more	detailed	documentation	on	utilizing	Vite	with	Laravel,	please	see	our	dedicated	documentation
on	bundling	and	compiling	your	assets.

Laravel	Documentation	-	10.x	/	Frontend 39

https://inertiajs.com/server-side-rendering
https://forge.laravel.com
https://tailwindcss.com
https://vitejs.dev
https://vitejs.dev

Getting	Started

Starter	Kits
Introduction
Laravel	Breeze

Installation
Breeze	and	Blade
Breeze	and	Livewire
Breeze	and	React	/	Vue
Breeze	and	Next.js	/	API

Laravel	Jetstream

Introduction

To	give	you	a	head	start	building	your	new	Laravel	application,	we	are	happy	to	offer	authentication	and
application	starter	kits.	These	kits	automatically	scaffold	your	application	with	the	routes,	controllers,	and
views	you	need	to	register	and	authenticate	your	application's	users.

While	you	are	welcome	to	use	these	starter	kits,	they	are	not	required.	You	are	free	to	build	your	own
application	from	the	ground	up	by	simply	installing	a	fresh	copy	of	Laravel.	Either	way,	we	know	you	will
build	something	great!

Laravel	Breeze

Laravel	Breeze	is	a	minimal,	simple	implementation	of	all	of	Laravel's	authentication	features,	including	login,
registration,	password	reset,	email	verification,	and	password	confirmation.	In	addition,	Breeze	includes	a
simple	"profile"	page	where	the	user	may	update	their	name,	email	address,	and	password.

Laravel	Breeze's	default	view	layer	is	made	up	of	simple	Blade	templates	styled	with	Tailwind	CSS.
Additionally,	Breeze	provides	scaffolding	options	based	on	Livewire	or	Inertia,	with	the	choice	of	using	Vue	or
React	for	the	Inertia-based	scaffolding.

Laravel	Documentation	-	10.x	/	Starter	Kits 40

https://github.com/laravel/breeze
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com

Laravel	Bootcamp

If	you're	new	to	Laravel,	feel	free	to	jump	into	the	Laravel	Bootcamp.	The	Laravel	Bootcamp	will	walk	you
through	building	your	first	Laravel	application	using	Breeze.	It's	a	great	way	to	get	a	tour	of	everything	that
Laravel	and	Breeze	have	to	offer.

Installation

First,	you	should	create	a	new	Laravel	application,	configure	your	database,	and	run	your	database	migrations.
Once	you	have	created	a	new	Laravel	application,	you	may	install	Laravel	Breeze	using	Composer:

composer	require	laravel/breeze	--dev

After	Composer	has	installed	the	Laravel	Breeze	package,	you	may	run	the	breeze:install	Artisan	command.
This	command	publishes	the	authentication	views,	routes,	controllers,	and	other	resources	to	your	application.
Laravel	Breeze	publishes	all	of	its	code	to	your	application	so	that	you	have	full	control	and	visibility	over	its
features	and	implementation.

The	breeze:install	command	will	prompt	you	for	your	preferred	frontend	stack	and	testing	framework:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Breeze	and	Blade

Laravel	Documentation	-	10.x	/	Starter	Kits 41

https://bootcamp.laravel.com

The	default	Breeze	"stack"	is	the	Blade	stack,	which	utilizes	simple	Blade	templates	to	render	your	application's
frontend.	The	Blade	stack	may	be	installed	by	invoking	the	breeze:install	command	with	no	other	additional
arguments	and	selecting	the	Blade	frontend	stack.	After	Breeze's	scaffolding	is	installed,	you	should	also
compile	your	application's	frontend	assets:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Next,	you	may	navigate	to	your	application's	/login	or	/register	URLs	in	your	web	browser.	All	of	Breeze's
routes	are	defined	within	the	routes/auth.php	file.

[!NOTE]
To	learn	more	about	compiling	your	application's	CSS	and	JavaScript,	check	out	Laravel's	Vite
documentation.

Breeze	and	Livewire

Laravel	Breeze	also	offers	Livewire	scaffolding.	Livewire	is	a	powerful	way	of	building	dynamic,	reactive,
front-end	UIs	using	just	PHP.

Livewire	is	a	great	fit	for	teams	that	primarily	use	Blade	templates	and	are	looking	for	a	simpler	alternative	to
JavaScript-driven	SPA	frameworks	like	Vue	and	React.

To	use	the	Livewire	stack,	you	may	select	the	Livewire	frontend	stack	when	executing	the	breeze:install
Artisan	command.	After	Breeze's	scaffolding	is	installed,	you	should	run	your	database	migrations:

php	artisan	breeze:install

php	artisan	migrate

Breeze	and	React	/	Vue

Laravel	Breeze	also	offers	React	and	Vue	scaffolding	via	an	Inertia	frontend	implementation.	Inertia	allows	you
to	build	modern,	single-page	React	and	Vue	applications	using	classic	server-side	routing	and	controllers.

Inertia	lets	you	enjoy	the	frontend	power	of	React	and	Vue	combined	with	the	incredible	backend	productivity
of	Laravel	and	lightning-fast	Vite	compilation.	To	use	an	Inertia	stack,	you	may	select	the	Vue	or	React
frontend	stacks	when	executing	the	breeze:install	Artisan	command.

When	selecting	the	Vue	or	React	frontend	stack,	the	Breeze	installer	will	also	prompt	you	to	determine	if	you
would	like	Inertia	SSR	or	TypeScript	support.	After	Breeze's	scaffolding	is	installed,	you	should	also	compile
your	application's	frontend	assets:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Next,	you	may	navigate	to	your	application's	/login	or	/register	URLs	in	your	web	browser.	All	of	Breeze's
routes	are	defined	within	the	routes/auth.php	file.

Breeze	and	Next.js	/	API

Laravel	Breeze	can	also	scaffold	an	authentication	API	that	is	ready	to	authenticate	modern	JavaScript
applications	such	as	those	powered	by	Next,	Nuxt,	and	others.	To	get	started,	select	the	API	stack	as	your
desired	stack	when	executing	the	breeze:install	Artisan	command:

php	artisan	breeze:install

php	artisan	migrate

Laravel	Documentation	-	10.x	/	Starter	Kits 42

https://livewire.laravel.com
https://inertiajs.com
https://vitejs.dev
https://inertiajs.com/server-side-rendering
https://nextjs.org
https://nuxt.com

During	installation,	Breeze	will	add	a	FRONTEND_URL	environment	variable	to	your	application's	.env	file.	This
URL	should	be	the	URL	of	your	JavaScript	application.	This	will	typically	be	http://localhost:3000	during
local	development.	In	addition,	you	should	ensure	that	your	APP_URL	is	set	to	http://localhost:8000,	which	is
the	default	URL	used	by	the	serve	Artisan	command.

Next.js	Reference	Implementation

Finally,	you	are	ready	to	pair	this	backend	with	the	frontend	of	your	choice.	A	Next	reference	implementation
of	the	Breeze	frontend	is	available	on	GitHub.	This	frontend	is	maintained	by	Laravel	and	contains	the	same
user	interface	as	the	traditional	Blade	and	Inertia	stacks	provided	by	Breeze.

Laravel	Jetstream

While	Laravel	Breeze	provides	a	simple	and	minimal	starting	point	for	building	a	Laravel	application,
Jetstream	augments	that	functionality	with	more	robust	features	and	additional	frontend	technology	stacks.	For
those	brand	new	to	Laravel,	we	recommend	learning	the	ropes	with	Laravel	Breeze	before	graduating	to
Laravel	Jetstream.

Jetstream	provides	a	beautifully	designed	application	scaffolding	for	Laravel	and	includes	login,	registration,
email	verification,	two-factor	authentication,	session	management,	API	support	via	Laravel	Sanctum,	and
optional	team	management.	Jetstream	is	designed	using	Tailwind	CSS	and	offers	your	choice	of	Livewire	or
Inertia	driven	frontend	scaffolding.

Complete	documentation	for	installing	Laravel	Jetstream	can	be	found	within	the	official	Jetstream
documentation.

Laravel	Documentation	-	10.x	/	Starter	Kits 43

https://github.com/laravel/breeze-next
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com
https://jetstream.laravel.com

Getting	Started

Deployment
Introduction
Server	Requirements
Server	Configuration

Nginx
Optimization

Autoloader	Optimization
Caching	Configuration
Caching	Events
Caching	Routes
Caching	Views

Debug	Mode
Easy	Deployment	With	Forge	/	Vapor

Introduction

When	you're	ready	to	deploy	your	Laravel	application	to	production,	there	are	some	important	things	you	can
do	to	make	sure	your	application	is	running	as	efficiently	as	possible.	In	this	document,	we'll	cover	some	great
starting	points	for	making	sure	your	Laravel	application	is	deployed	properly.

Server	Requirements

The	Laravel	framework	has	a	few	system	requirements.	You	should	ensure	that	your	web	server	has	the
following	minimum	PHP	version	and	extensions:

PHP	>=	8.1
Ctype	PHP	Extension
cURL	PHP	Extension
DOM	PHP	Extension
Fileinfo	PHP	Extension
Filter	PHP	Extension
Hash	PHP	Extension
Mbstring	PHP	Extension
OpenSSL	PHP	Extension
PCRE	PHP	Extension
PDO	PHP	Extension
Session	PHP	Extension
Tokenizer	PHP	Extension
XML	PHP	Extension

Server	Configuration

Nginx

If	you	are	deploying	your	application	to	a	server	that	is	running	Nginx,	you	may	use	the	following
configuration	file	as	a	starting	point	for	configuring	your	web	server.	Most	likely,	this	file	will	need	to	be
customized	depending	on	your	server's	configuration.	If	you	would	like	assistance	in	managing	your	server,
consider	using	a	first-party	Laravel	server	management	and	deployment	service	such	as	Laravel	Forge.

Please	ensure,	like	the	configuration	below,	your	web	server	directs	all	requests	to	your	application's	
public/index.php	file.	You	should	never	attempt	to	move	the	index.php	file	to	your	project's	root,	as	serving	the
application	from	the	project	root	will	expose	many	sensitive	configuration	files	to	the	public	Internet:

server	{

				listen	80;

				listen	[::]:80;

Laravel	Documentation	-	10.x	/	Deployment 44

https://forge.laravel.com

				server_name	example.com;

				root	/srv/example.com/public;

				add_header	X-Frame-Options	"SAMEORIGIN";

				add_header	X-Content-Type-Options	"nosniff";

				index	index.php;

				charset	utf-8;

				location	/	{

								try_files	$uri	$uri/	/index.php?$query_string;

				}

				location	=	/favicon.ico	{	access_log	off;	log_not_found	off;	}

				location	=	/robots.txt		{	access_log	off;	log_not_found	off;	}

				error_page	404	/index.php;

				location	~	\.php$	{

								fastcgi_pass	unix:/var/run/php/php8.2-fpm.sock;

								fastcgi_param	SCRIPT_FILENAME	$realpath_root$fastcgi_script_name;

								include	fastcgi_params;

				}

				location	~	/\.(?!well-known).*	{

								deny	all;

				}

}

Optimization

Autoloader	Optimization

When	deploying	to	production,	make	sure	that	you	are	optimizing	Composer's	class	autoloader	map	so
Composer	can	quickly	find	the	proper	file	to	load	for	a	given	class:

composer	install	--optimize-autoloader	--no-dev

[!NOTE]
In	addition	to	optimizing	the	autoloader,	you	should	always	be	sure	to	include	a	composer.lock	file	in	your
project's	source	control	repository.	Your	project's	dependencies	can	be	installed	much	faster	when	a	
composer.lock	file	is	present.

Caching	Configuration

When	deploying	your	application	to	production,	you	should	make	sure	that	you	run	the	config:cache	Artisan
command	during	your	deployment	process:

php	artisan	config:cache

This	command	will	combine	all	of	Laravel's	configuration	files	into	a	single,	cached	file,	which	greatly	reduces
the	number	of	trips	the	framework	must	make	to	the	filesystem	when	loading	your	configuration	values.

[!WARNING]
If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that	you
are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded	and	all	calls	to	the	env	function	for	.env	variables	will	return	null.

Caching	Events

If	your	application	is	utilizing	event	discovery,	you	should	cache	your	application's	event	to	listener	mappings
during	your	deployment	process.	This	can	be	accomplished	by	invoking	the	event:cache	Artisan	command
during	deployment:

php	artisan	event:cache

Laravel	Documentation	-	10.x	/	Deployment 45

Caching	Routes

If	you	are	building	a	large	application	with	many	routes,	you	should	make	sure	that	you	are	running	the	
route:cache	Artisan	command	during	your	deployment	process:

php	artisan	route:cache

This	command	reduces	all	of	your	route	registrations	into	a	single	method	call	within	a	cached	file,	improving
the	performance	of	route	registration	when	registering	hundreds	of	routes.

Caching	Views

When	deploying	your	application	to	production,	you	should	make	sure	that	you	run	the	view:cache	Artisan
command	during	your	deployment	process:

php	artisan	view:cache

This	command	precompiles	all	your	Blade	views	so	they	are	not	compiled	on	demand,	improving	the
performance	of	each	request	that	returns	a	view.

Debug	Mode

The	debug	option	in	your	config/app.php	configuration	file	determines	how	much	information	about	an	error	is
actually	displayed	to	the	user.	By	default,	this	option	is	set	to	respect	the	value	of	the	APP_DEBUG	environment
variable,	which	is	stored	in	your	application's	.env	file.

[!WARNING]
In	your	production	environment,	this	value	should	always	be	false.	If	the	APP_DEBUG	variable	is	set	to	
true	in	production,	you	risk	exposing	sensitive	configuration	values	to	your	application's	end	users.

Easy	Deployment	With	Forge	/	Vapor

Laravel	Forge

If	you	aren't	quite	ready	to	manage	your	own	server	configuration	or	aren't	comfortable	configuring	all	of	the
various	services	needed	to	run	a	robust	Laravel	application,	Laravel	Forge	is	a	wonderful	alternative.

Laravel	Forge	can	create	servers	on	various	infrastructure	providers	such	as	DigitalOcean,	Linode,	AWS,	and
more.	In	addition,	Forge	installs	and	manages	all	of	the	tools	needed	to	build	robust	Laravel	applications,	such
as	Nginx,	MySQL,	Redis,	Memcached,	Beanstalk,	and	more.

[!NOTE]
Want	a	full	guide	to	deploying	with	Laravel	Forge?	Check	out	the	Laravel	Bootcamp	and	the	Forge	video
series	available	on	Laracasts.

Laravel	Vapor

If	you	would	like	a	totally	serverless,	auto-scaling	deployment	platform	tuned	for	Laravel,	check	out	Laravel
Vapor.	Laravel	Vapor	is	a	serverless	deployment	platform	for	Laravel,	powered	by	AWS.	Launch	your	Laravel
infrastructure	on	Vapor	and	fall	in	love	with	the	scalable	simplicity	of	serverless.	Laravel	Vapor	is	fine-tuned	by
Laravel's	creators	to	work	seamlessly	with	the	framework	so	you	can	keep	writing	your	Laravel	applications
exactly	like	you're	used	to.

Laravel	Documentation	-	10.x	/	Deployment 46

https://forge.laravel.com
https://bootcamp.laravel.com/deploying
https://laracasts.com/series/learn-laravel-forge-2022-edition
https://vapor.laravel.com

Architecture	Concepts

Request	Lifecycle
Introduction
Lifecycle	Overview

First	Steps
HTTP	/	Console	Kernels
Service	Providers
Routing
Finishing	Up

Focus	on	Service	Providers

Introduction

When	using	any	tool	in	the	"real	world",	you	feel	more	confident	if	you	understand	how	that	tool	works.
Application	development	is	no	different.	When	you	understand	how	your	development	tools	function,	you	feel
more	comfortable	and	confident	using	them.

The	goal	of	this	document	is	to	give	you	a	good,	high-level	overview	of	how	the	Laravel	framework	works.	By
getting	to	know	the	overall	framework	better,	everything	feels	less	"magical"	and	you	will	be	more	confident
building	your	applications.	If	you	don't	understand	all	of	the	terms	right	away,	don't	lose	heart!	Just	try	to	get	a
basic	grasp	of	what	is	going	on,	and	your	knowledge	will	grow	as	you	explore	other	sections	of	the
documentation.

Lifecycle	Overview

First	Steps

The	entry	point	for	all	requests	to	a	Laravel	application	is	the	public/index.php	file.	All	requests	are	directed	to
this	file	by	your	web	server	(Apache	/	Nginx)	configuration.	The	index.php	file	doesn't	contain	much	code.
Rather,	it	is	a	starting	point	for	loading	the	rest	of	the	framework.

The	index.php	file	loads	the	Composer	generated	autoloader	definition,	and	then	retrieves	an	instance	of	the
Laravel	application	from	bootstrap/app.php.	The	first	action	taken	by	Laravel	itself	is	to	create	an	instance	of
the	application	/	service	container.

HTTP	/	Console	Kernels

Next,	the	incoming	request	is	sent	to	either	the	HTTP	kernel	or	the	console	kernel,	depending	on	the	type	of
request	that	is	entering	the	application.	These	two	kernels	serve	as	the	central	location	that	all	requests	flow
through.	For	now,	let's	just	focus	on	the	HTTP	kernel,	which	is	located	in	app/Http/Kernel.php.

The	HTTP	kernel	extends	the	Illuminate\Foundation\Http\Kernel	class,	which	defines	an	array	of	
bootstrappers	that	will	be	run	before	the	request	is	executed.	These	bootstrappers	configure	error	handling,
configure	logging,	detect	the	application	environment,	and	perform	other	tasks	that	need	to	be	done	before	the
request	is	actually	handled.	Typically,	these	classes	handle	internal	Laravel	configuration	that	you	do	not	need
to	worry	about.

The	HTTP	kernel	also	defines	a	list	of	HTTP	middleware	that	all	requests	must	pass	through	before	being
handled	by	the	application.	These	middleware	handle	reading	and	writing	the	HTTP	session,	determining	if	the
application	is	in	maintenance	mode,	verifying	the	CSRF	token,	and	more.	We'll	talk	more	about	these	soon.

The	method	signature	for	the	HTTP	kernel's	handle	method	is	quite	simple:	it	receives	a	Request	and	returns	a	
Response.	Think	of	the	kernel	as	being	a	big	black	box	that	represents	your	entire	application.	Feed	it	HTTP
requests	and	it	will	return	HTTP	responses.

Service	Providers

Laravel	Documentation	-	10.x	/	Architecture	Concepts 47

One	of	the	most	important	kernel	bootstrapping	actions	is	loading	the	service	providers	for	your	application.
Service	providers	are	responsible	for	bootstrapping	all	of	the	framework's	various	components,	such	as	the
database,	queue,	validation,	and	routing	components.	All	of	the	service	providers	for	the	application	are
configured	in	the	config/app.php	configuration	file's	providers	array.

Laravel	will	iterate	through	this	list	of	providers	and	instantiate	each	of	them.	After	instantiating	the	providers,
the	register	method	will	be	called	on	all	of	the	providers.	Then,	once	all	of	the	providers	have	been	registered,
the	boot	method	will	be	called	on	each	provider.	This	is	so	service	providers	may	depend	on	every	container
binding	being	registered	and	available	by	the	time	their	boot	method	is	executed.

Essentially	every	major	feature	offered	by	Laravel	is	bootstrapped	and	configured	by	a	service	provider.	Since
they	bootstrap	and	configure	so	many	features	offered	by	the	framework,	service	providers	are	the	most
important	aspect	of	the	entire	Laravel	bootstrap	process.

Routing

One	of	the	most	important	service	providers	in	your	application	is	the	App\Providers\RouteServiceProvider.
This	service	provider	loads	the	route	files	contained	within	your	application's	routes	directory.	Go	ahead,	crack
open	the	RouteServiceProvider	code	and	take	a	look	at	how	it	works!

Once	the	application	has	been	bootstrapped	and	all	service	providers	have	been	registered,	the	Request	will	be
handed	off	to	the	router	for	dispatching.	The	router	will	dispatch	the	request	to	a	route	or	controller,	as	well	as
run	any	route	specific	middleware.

Middleware	provide	a	convenient	mechanism	for	filtering	or	examining	HTTP	requests	entering	your
application.	For	example,	Laravel	includes	a	middleware	that	verifies	if	the	user	of	your	application	is
authenticated.	If	the	user	is	not	authenticated,	the	middleware	will	redirect	the	user	to	the	login	screen.
However,	if	the	user	is	authenticated,	the	middleware	will	allow	the	request	to	proceed	further	into	the
application.	Some	middleware	are	assigned	to	all	routes	within	the	application,	like	those	defined	in	the	
$middleware	property	of	your	HTTP	kernel,	while	some	are	only	assigned	to	specific	routes	or	route	groups.	You
can	learn	more	about	middleware	by	reading	the	complete	middleware	documentation.

If	the	request	passes	through	all	of	the	matched	route's	assigned	middleware,	the	route	or	controller	method	will
be	executed	and	the	response	returned	by	the	route	or	controller	method	will	be	sent	back	through	the	route's
chain	of	middleware.

Finishing	Up

Once	the	route	or	controller	method	returns	a	response,	the	response	will	travel	back	outward	through	the
route's	middleware,	giving	the	application	a	chance	to	modify	or	examine	the	outgoing	response.

Finally,	once	the	response	travels	back	through	the	middleware,	the	HTTP	kernel's	handle	method	returns	the
response	object	and	the	index.php	file	calls	the	send	method	on	the	returned	response.	The	send	method	sends
the	response	content	to	the	user's	web	browser.	We've	finished	our	journey	through	the	entire	Laravel	request
lifecycle!

Focus	on	Service	Providers

Service	providers	are	truly	the	key	to	bootstrapping	a	Laravel	application.	The	application	instance	is	created,
the	service	providers	are	registered,	and	the	request	is	handed	to	the	bootstrapped	application.	It's	really	that
simple!

Having	a	firm	grasp	of	how	a	Laravel	application	is	built	and	bootstrapped	via	service	providers	is	very
valuable.	Your	application's	default	service	providers	are	stored	in	the	app/Providers	directory.

By	default,	the	AppServiceProvider	is	fairly	empty.	This	provider	is	a	great	place	to	add	your	application's	own
bootstrapping	and	service	container	bindings.	For	large	applications,	you	may	wish	to	create	several	service
providers,	each	with	more	granular	bootstrapping	for	specific	services	used	by	your	application.

Laravel	Documentation	-	10.x	/	Architecture	Concepts 48

Architecture	Concepts

Service	Container
Introduction

Zero	Configuration	Resolution
When	to	Utilize	the	Container

Binding
Binding	Basics
Binding	Interfaces	to	Implementations
Contextual	Binding
Binding	Primitives
Binding	Typed	Variadics
Tagging
Extending	Bindings

Resolving
The	Make	Method
Automatic	Injection

Method	Invocation	and	Injection
Container	Events
PSR-11

Introduction

The	Laravel	service	container	is	a	powerful	tool	for	managing	class	dependencies	and	performing	dependency
injection.	Dependency	injection	is	a	fancy	phrase	that	essentially	means	this:	class	dependencies	are	"injected"
into	the	class	via	the	constructor	or,	in	some	cases,	"setter"	methods.

Let's	look	at	a	simple	example:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Repositories\UserRepository;

use	App\Models\User;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Create	a	new	controller	instance.

					*/

				public	function	__construct(

								protected	UserRepository	$users,

)	{}

				/**

					*	Show	the	profile	for	the	given	user.

					*/

				public	function	show(string	$id):	View

				{

								$user	=	$this->users->find($id);

								return	view('user.profile',	['user'	=>	$user]);

				}

}

In	this	example,	the	UserController	needs	to	retrieve	users	from	a	data	source.	So,	we	will	inject	a	service	that
is	able	to	retrieve	users.	In	this	context,	our	UserRepository	most	likely	uses	Eloquent	to	retrieve	user
information	from	the	database.	However,	since	the	repository	is	injected,	we	are	able	to	easily	swap	it	out	with
another	implementation.	We	are	also	able	to	easily	"mock",	or	create	a	dummy	implementation	of	the	
UserRepository	when	testing	our	application.

A	deep	understanding	of	the	Laravel	service	container	is	essential	to	building	a	powerful,	large	application,	as

Laravel	Documentation	-	10.x	/	Service	Container 49

well	as	for	contributing	to	the	Laravel	core	itself.

Zero	Configuration	Resolution

If	a	class	has	no	dependencies	or	only	depends	on	other	concrete	classes	(not	interfaces),	the	container	does	not
need	to	be	instructed	on	how	to	resolve	that	class.	For	example,	you	may	place	the	following	code	in	your	
routes/web.php	file:

<?php

class	Service

{

				//	...

}

Route::get('/',	function	(Service	$service)	{

				die($service::class);

});

In	this	example,	hitting	your	application's	/	route	will	automatically	resolve	the	Service	class	and	inject	it	into
your	route's	handler.	This	is	game	changing.	It	means	you	can	develop	your	application	and	take	advantage	of
dependency	injection	without	worrying	about	bloated	configuration	files.

Thankfully,	many	of	the	classes	you	will	be	writing	when	building	a	Laravel	application	automatically	receive
their	dependencies	via	the	container,	including	controllers,	event	listeners,	middleware,	and	more.	Additionally,
you	may	type-hint	dependencies	in	the	handle	method	of	queued	jobs.	Once	you	taste	the	power	of	automatic
and	zero	configuration	dependency	injection	it	feels	impossible	to	develop	without	it.

When	to	Utilize	the	Container

Thanks	to	zero	configuration	resolution,	you	will	often	type-hint	dependencies	on	routes,	controllers,	event
listeners,	and	elsewhere	without	ever	manually	interacting	with	the	container.	For	example,	you	might	type-hint
the	Illuminate\Http\Request	object	on	your	route	definition	so	that	you	can	easily	access	the	current	request.
Even	though	we	never	have	to	interact	with	the	container	to	write	this	code,	it	is	managing	the	injection	of	these
dependencies	behind	the	scenes:

use	Illuminate\Http\Request;

Route::get('/',	function	(Request	$request)	{

				//	...

});

In	many	cases,	thanks	to	automatic	dependency	injection	and	facades,	you	can	build	Laravel	applications
without	ever	manually	binding	or	resolving	anything	from	the	container.	So,	when	would	you	ever	manually
interact	with	the	container?	Let's	examine	two	situations.

First,	if	you	write	a	class	that	implements	an	interface	and	you	wish	to	type-hint	that	interface	on	a	route	or
class	constructor,	you	must	tell	the	container	how	to	resolve	that	interface.	Secondly,	if	you	are	writing	a
Laravel	package	that	you	plan	to	share	with	other	Laravel	developers,	you	may	need	to	bind	your	package's
services	into	the	container.

Binding

Binding	Basics

Simple	Bindings

Almost	all	of	your	service	container	bindings	will	be	registered	within	service	providers,	so	most	of	these
examples	will	demonstrate	using	the	container	in	that	context.

Within	a	service	provider,	you	always	have	access	to	the	container	via	the	$this->app	property.	We	can	register
a	binding	using	the	bind	method,	passing	the	class	or	interface	name	that	we	wish	to	register	along	with	a
closure	that	returns	an	instance	of	the	class:

Laravel	Documentation	-	10.x	/	Service	Container 50

use	App\Services\Transistor;

use	App\Services\PodcastParser;

use	Illuminate\Contracts\Foundation\Application;

$this->app->bind(Transistor::class,	function	(Application	$app)	{

				return	new	Transistor($app->make(PodcastParser::class));

});

Note	that	we	receive	the	container	itself	as	an	argument	to	the	resolver.	We	can	then	use	the	container	to	resolve
sub-dependencies	of	the	object	we	are	building.

As	mentioned,	you	will	typically	be	interacting	with	the	container	within	service	providers;	however,	if	you
would	like	to	interact	with	the	container	outside	of	a	service	provider,	you	may	do	so	via	the	App	facade:

use	App\Services\Transistor;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Support\Facades\App;

App::bind(Transistor::class,	function	(Application	$app)	{

				//	...

});

You	may	use	the	bindIf	method	to	register	a	container	binding	only	if	a	binding	has	not	already	been	registered
for	the	given	type:

$this->app->bindIf(Transistor::class,	function	(Application	$app)	{

				return	new	Transistor($app->make(PodcastParser::class));

});

[!NOTE]
There	is	no	need	to	bind	classes	into	the	container	if	they	do	not	depend	on	any	interfaces.	The	container
does	not	need	to	be	instructed	on	how	to	build	these	objects,	since	it	can	automatically	resolve	these
objects	using	reflection.

Binding	A	Singleton

The	singleton	method	binds	a	class	or	interface	into	the	container	that	should	only	be	resolved	one	time.	Once
a	singleton	binding	is	resolved,	the	same	object	instance	will	be	returned	on	subsequent	calls	into	the	container:

use	App\Services\Transistor;

use	App\Services\PodcastParser;

use	Illuminate\Contracts\Foundation\Application;

$this->app->singleton(Transistor::class,	function	(Application	$app)	{

				return	new	Transistor($app->make(PodcastParser::class));

});

You	may	use	the	singletonIf	method	to	register	a	singleton	container	binding	only	if	a	binding	has	not	already
been	registered	for	the	given	type:

$this->app->singletonIf(Transistor::class,	function	(Application	$app)	{

				return	new	Transistor($app->make(PodcastParser::class));

});

Binding	Scoped	Singletons

The	scoped	method	binds	a	class	or	interface	into	the	container	that	should	only	be	resolved	one	time	within	a
given	Laravel	request	/	job	lifecycle.	While	this	method	is	similar	to	the	singleton	method,	instances	registered
using	the	scoped	method	will	be	flushed	whenever	the	Laravel	application	starts	a	new	"lifecycle",	such	as	when
a	Laravel	Octane	worker	processes	a	new	request	or	when	a	Laravel	queue	worker	processes	a	new	job:

use	App\Services\Transistor;

use	App\Services\PodcastParser;

use	Illuminate\Contracts\Foundation\Application;

$this->app->scoped(Transistor::class,	function	(Application	$app)	{

				return	new	Transistor($app->make(PodcastParser::class));

});

Binding	Instances

Laravel	Documentation	-	10.x	/	Service	Container 51

You	may	also	bind	an	existing	object	instance	into	the	container	using	the	instance	method.	The	given	instance
will	always	be	returned	on	subsequent	calls	into	the	container:

use	App\Services\Transistor;

use	App\Services\PodcastParser;

$service	=	new	Transistor(new	PodcastParser);

$this->app->instance(Transistor::class,	$service);

Binding	Interfaces	to	Implementations

A	very	powerful	feature	of	the	service	container	is	its	ability	to	bind	an	interface	to	a	given	implementation.	For
example,	let's	assume	we	have	an	EventPusher	interface	and	a	RedisEventPusher	implementation.	Once	we	have
coded	our	RedisEventPusher	implementation	of	this	interface,	we	can	register	it	with	the	service	container	like
so:

use	App\Contracts\EventPusher;

use	App\Services\RedisEventPusher;

$this->app->bind(EventPusher::class,	RedisEventPusher::class);

This	statement	tells	the	container	that	it	should	inject	the	RedisEventPusher	when	a	class	needs	an
implementation	of	EventPusher.	Now	we	can	type-hint	the	EventPusher	interface	in	the	constructor	of	a	class
that	is	resolved	by	the	container.	Remember,	controllers,	event	listeners,	middleware,	and	various	other	types	of
classes	within	Laravel	applications	are	always	resolved	using	the	container:

use	App\Contracts\EventPusher;

/**

	*	Create	a	new	class	instance.

	*/

public	function	__construct(

				protected	EventPusher	$pusher

)	{}

Contextual	Binding

Sometimes	you	may	have	two	classes	that	utilize	the	same	interface,	but	you	wish	to	inject	different
implementations	into	each	class.	For	example,	two	controllers	may	depend	on	different	implementations	of	the	
Illuminate\Contracts\Filesystem\Filesystem	contract.	Laravel	provides	a	simple,	fluent	interface	for	defining
this	behavior:

use	App\Http\Controllers\PhotoController;

use	App\Http\Controllers\UploadController;

use	App\Http\Controllers\VideoController;

use	Illuminate\Contracts\Filesystem\Filesystem;

use	Illuminate\Support\Facades\Storage;

$this->app->when(PhotoController::class)

										->needs(Filesystem::class)

										->give(function	()	{

														return	Storage::disk('local');

										});

$this->app->when([VideoController::class,	UploadController::class])

										->needs(Filesystem::class)

										->give(function	()	{

														return	Storage::disk('s3');

										});

Binding	Primitives

Sometimes	you	may	have	a	class	that	receives	some	injected	classes,	but	also	needs	an	injected	primitive	value
such	as	an	integer.	You	may	easily	use	contextual	binding	to	inject	any	value	your	class	may	need:

use	App\Http\Controllers\UserController;

$this->app->when(UserController::class)

										->needs('$variableName')

Laravel	Documentation	-	10.x	/	Service	Container 52

										->give($value);

Sometimes	a	class	may	depend	on	an	array	of	tagged	instances.	Using	the	giveTagged	method,	you	may	easily
inject	all	of	the	container	bindings	with	that	tag:

$this->app->when(ReportAggregator::class)

				->needs('$reports')

				->giveTagged('reports');

If	you	need	to	inject	a	value	from	one	of	your	application's	configuration	files,	you	may	use	the	giveConfig
method:

$this->app->when(ReportAggregator::class)

				->needs('$timezone')

				->giveConfig('app.timezone');

Binding	Typed	Variadics

Occasionally,	you	may	have	a	class	that	receives	an	array	of	typed	objects	using	a	variadic	constructor
argument:

<?php

use	App\Models\Filter;

use	App\Services\Logger;

class	Firewall

{

				/**

					*	The	filter	instances.

					*

					*	@var	array

					*/

				protected	$filters;

				/**

					*	Create	a	new	class	instance.

					*/

				public	function	__construct(

								protected	Logger	$logger,

								Filter	...$filters,

)	{

								$this->filters	=	$filters;

				}

}

Using	contextual	binding,	you	may	resolve	this	dependency	by	providing	the	give	method	with	a	closure	that
returns	an	array	of	resolved	Filter	instances:

$this->app->when(Firewall::class)

										->needs(Filter::class)

										->give(function	(Application	$app)	{

																return	[

																				$app->make(NullFilter::class),

																				$app->make(ProfanityFilter::class),

																				$app->make(TooLongFilter::class),

];

										});

For	convenience,	you	may	also	just	provide	an	array	of	class	names	to	be	resolved	by	the	container	whenever	
Firewall	needs	Filter	instances:

$this->app->when(Firewall::class)

										->needs(Filter::class)

										->give([

														NullFilter::class,

														ProfanityFilter::class,

														TooLongFilter::class,

]);

Variadic	Tag	Dependencies

Sometimes	a	class	may	have	a	variadic	dependency	that	is	type-hinted	as	a	given	class	(Report	...$reports).

Laravel	Documentation	-	10.x	/	Service	Container 53

Using	the	needs	and	giveTagged	methods,	you	may	easily	inject	all	of	the	container	bindings	with	that	tag	for	the
given	dependency:

$this->app->when(ReportAggregator::class)

				->needs(Report::class)

				->giveTagged('reports');

Tagging

Occasionally,	you	may	need	to	resolve	all	of	a	certain	"category"	of	binding.	For	example,	perhaps	you	are
building	a	report	analyzer	that	receives	an	array	of	many	different	Report	interface	implementations.	After
registering	the	Report	implementations,	you	can	assign	them	a	tag	using	the	tag	method:

$this->app->bind(CpuReport::class,	function	()	{

				//	...

});

$this->app->bind(MemoryReport::class,	function	()	{

				//	...

});

$this->app->tag([CpuReport::class,	MemoryReport::class],	'reports');

Once	the	services	have	been	tagged,	you	may	easily	resolve	them	all	via	the	container's	tagged	method:

$this->app->bind(ReportAnalyzer::class,	function	(Application	$app)	{

				return	new	ReportAnalyzer($app->tagged('reports'));

});

Extending	Bindings

The	extend	method	allows	the	modification	of	resolved	services.	For	example,	when	a	service	is	resolved,	you
may	run	additional	code	to	decorate	or	configure	the	service.	The	extend	method	accepts	two	arguments,	the
service	class	you're	extending	and	a	closure	that	should	return	the	modified	service.	The	closure	receives	the
service	being	resolved	and	the	container	instance:

$this->app->extend(Service::class,	function	(Service	$service,	Application	$app)	{

				return	new	DecoratedService($service);

});

Resolving

The	make	Method

You	may	use	the	make	method	to	resolve	a	class	instance	from	the	container.	The	make	method	accepts	the	name
of	the	class	or	interface	you	wish	to	resolve:

use	App\Services\Transistor;

$transistor	=	$this->app->make(Transistor::class);

If	some	of	your	class's	dependencies	are	not	resolvable	via	the	container,	you	may	inject	them	by	passing	them
as	an	associative	array	into	the	makeWith	method.	For	example,	we	may	manually	pass	the	$id	constructor
argument	required	by	the	Transistor	service:

use	App\Services\Transistor;

$transistor	=	$this->app->makeWith(Transistor::class,	['id'	=>	1]);

The	bound	method	may	be	used	to	determine	if	a	class	or	interface	has	been	explicitly	bound	in	the	container:

if	($this->app->bound(Transistor::class))	{

				//	...

}

If	you	are	outside	of	a	service	provider	in	a	location	of	your	code	that	does	not	have	access	to	the	$app	variable,
you	may	use	the	App	facade	or	the	app	helper	to	resolve	a	class	instance	from	the	container:

Laravel	Documentation	-	10.x	/	Service	Container 54

use	App\Services\Transistor;

use	Illuminate\Support\Facades\App;

$transistor	=	App::make(Transistor::class);

$transistor	=	app(Transistor::class);

If	you	would	like	to	have	the	Laravel	container	instance	itself	injected	into	a	class	that	is	being	resolved	by	the
container,	you	may	type-hint	the	Illuminate\Container\Container	class	on	your	class's	constructor:

use	Illuminate\Container\Container;

/**

	*	Create	a	new	class	instance.

	*/

public	function	__construct(

				protected	Container	$container

)	{}

Automatic	Injection

Alternatively,	and	importantly,	you	may	type-hint	the	dependency	in	the	constructor	of	a	class	that	is	resolved
by	the	container,	including	controllers,	event	listeners,	middleware,	and	more.	Additionally,	you	may	type-hint
dependencies	in	the	handle	method	of	queued	jobs.	In	practice,	this	is	how	most	of	your	objects	should	be
resolved	by	the	container.

For	example,	you	may	type-hint	a	repository	defined	by	your	application	in	a	controller's	constructor.	The
repository	will	automatically	be	resolved	and	injected	into	the	class:

<?php

namespace	App\Http\Controllers;

use	App\Repositories\UserRepository;

use	App\Models\User;

class	UserController	extends	Controller

{

				/**

					*	Create	a	new	controller	instance.

					*/

				public	function	__construct(

								protected	UserRepository	$users,

)	{}

				/**

					*	Show	the	user	with	the	given	ID.

					*/

				public	function	show(string	$id):	User

				{

								$user	=	$this->users->findOrFail($id);

								return	$user;

				}

}

Method	Invocation	and	Injection

Sometimes	you	may	wish	to	invoke	a	method	on	an	object	instance	while	allowing	the	container	to
automatically	inject	that	method's	dependencies.	For	example,	given	the	following	class:

<?php

namespace	App;

use	App\Repositories\UserRepository;

class	UserReport

{

				/**

					*	Generate	a	new	user	report.

					*/

				public	function	generate(UserRepository	$repository):	array

Laravel	Documentation	-	10.x	/	Service	Container 55

				{

								return	[

												//	...

];

				}

}

You	may	invoke	the	generate	method	via	the	container	like	so:

use	App\UserReport;

use	Illuminate\Support\Facades\App;

$report	=	App::call([new	UserReport,	'generate']);

The	call	method	accepts	any	PHP	callable.	The	container's	call	method	may	even	be	used	to	invoke	a	closure
while	automatically	injecting	its	dependencies:

use	App\Repositories\UserRepository;

use	Illuminate\Support\Facades\App;

$result	=	App::call(function	(UserRepository	$repository)	{

				//	...

});

Container	Events

The	service	container	fires	an	event	each	time	it	resolves	an	object.	You	may	listen	to	this	event	using	the	
resolving	method:

use	App\Services\Transistor;

use	Illuminate\Contracts\Foundation\Application;

$this->app->resolving(Transistor::class,	function	(Transistor	$transistor,	Application	$app)	{

				//	Called	when	container	resolves	objects	of	type	"Transistor"...

});

$this->app->resolving(function	(mixed	$object,	Application	$app)	{

				//	Called	when	container	resolves	object	of	any	type...

});

As	you	can	see,	the	object	being	resolved	will	be	passed	to	the	callback,	allowing	you	to	set	any	additional
properties	on	the	object	before	it	is	given	to	its	consumer.

PSR-11

Laravel's	service	container	implements	the	PSR-11	interface.	Therefore,	you	may	type-hint	the	PSR-11
container	interface	to	obtain	an	instance	of	the	Laravel	container:

use	App\Services\Transistor;

use	Psr\Container\ContainerInterface;

Route::get('/',	function	(ContainerInterface	$container)	{

				$service	=	$container->get(Transistor::class);

				//	...

});

An	exception	is	thrown	if	the	given	identifier	can't	be	resolved.	The	exception	will	be	an	instance	of	
Psr\Container\NotFoundExceptionInterface	if	the	identifier	was	never	bound.	If	the	identifier	was	bound	but
was	unable	to	be	resolved,	an	instance	of	Psr\Container\ContainerExceptionInterface	will	be	thrown.

Laravel	Documentation	-	10.x	/	Service	Container 56

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-11-container.md

Architecture	Concepts

Service	Providers
Introduction
Writing	Service	Providers

The	Register	Method
The	Boot	Method

Registering	Providers
Deferred	Providers

Introduction

Service	providers	are	the	central	place	of	all	Laravel	application	bootstrapping.	Your	own	application,	as	well
as	all	of	Laravel's	core	services,	are	bootstrapped	via	service	providers.

But,	what	do	we	mean	by	"bootstrapped"?	In	general,	we	mean	registering	things,	including	registering	service
container	bindings,	event	listeners,	middleware,	and	even	routes.	Service	providers	are	the	central	place	to
configure	your	application.

If	you	open	the	config/app.php	file	included	with	Laravel,	you	will	see	a	providers	array.	These	are	all	of	the
service	provider	classes	that	will	be	loaded	for	your	application.	By	default,	a	set	of	Laravel	core	service
providers	are	listed	in	this	array.	These	providers	bootstrap	the	core	Laravel	components,	such	as	the	mailer,
queue,	cache,	and	others.	Many	of	these	providers	are	"deferred"	providers,	meaning	they	will	not	be	loaded	on
every	request,	but	only	when	the	services	they	provide	are	actually	needed.

In	this	overview,	you	will	learn	how	to	write	your	own	service	providers	and	register	them	with	your	Laravel
application.

[!NOTE]
If	you	would	like	to	learn	more	about	how	Laravel	handles	requests	and	works	internally,	check	out	our
documentation	on	the	Laravel	request	lifecycle.

Writing	Service	Providers

All	service	providers	extend	the	Illuminate\Support\ServiceProvider	class.	Most	service	providers	contain	a	
register	and	a	boot	method.	Within	the	register	method,	you	should	only	bind	things	into	the	service
container.	You	should	never	attempt	to	register	any	event	listeners,	routes,	or	any	other	piece	of	functionality
within	the	register	method.

The	Artisan	CLI	can	generate	a	new	provider	via	the	make:provider	command:

php	artisan	make:provider	RiakServiceProvider

The	Register	Method

As	mentioned	previously,	within	the	register	method,	you	should	only	bind	things	into	the	service	container.
You	should	never	attempt	to	register	any	event	listeners,	routes,	or	any	other	piece	of	functionality	within	the	
register	method.	Otherwise,	you	may	accidentally	use	a	service	that	is	provided	by	a	service	provider	which
has	not	loaded	yet.

Let's	take	a	look	at	a	basic	service	provider.	Within	any	of	your	service	provider	methods,	you	always	have
access	to	the	$app	property	which	provides	access	to	the	service	container:

<?php

namespace	App\Providers;

use	App\Services\Riak\Connection;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Support\ServiceProvider;

Laravel	Documentation	-	10.x	/	Service	Providers 57

class	RiakServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								$this->app->singleton(Connection::class,	function	(Application	$app)	{

												return	new	Connection(config('riak'));

								});

				}

}

This	service	provider	only	defines	a	register	method,	and	uses	that	method	to	define	an	implementation	of	
App\Services\Riak\Connection	in	the	service	container.	If	you're	not	yet	familiar	with	Laravel's	service
container,	check	out	its	documentation.

The	bindings	and	singletons	Properties

If	your	service	provider	registers	many	simple	bindings,	you	may	wish	to	use	the	bindings	and	singletons
properties	instead	of	manually	registering	each	container	binding.	When	the	service	provider	is	loaded	by	the
framework,	it	will	automatically	check	for	these	properties	and	register	their	bindings:

<?php

namespace	App\Providers;

use	App\Contracts\DowntimeNotifier;

use	App\Contracts\ServerProvider;

use	App\Services\DigitalOceanServerProvider;

use	App\Services\PingdomDowntimeNotifier;

use	App\Services\ServerToolsProvider;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	All	of	the	container	bindings	that	should	be	registered.

					*

					*	@var	array

					*/

				public	$bindings	=	[

								ServerProvider::class	=>	DigitalOceanServerProvider::class,

];

				/**

					*	All	of	the	container	singletons	that	should	be	registered.

					*

					*	@var	array

					*/

				public	$singletons	=	[

								DowntimeNotifier::class	=>	PingdomDowntimeNotifier::class,

								ServerProvider::class	=>	ServerToolsProvider::class,

];

}

The	Boot	Method

So,	what	if	we	need	to	register	a	view	composer	within	our	service	provider?	This	should	be	done	within	the	
boot	method.	This	method	is	called	after	all	other	service	providers	have	been	registered,	meaning	you
have	access	to	all	other	services	that	have	been	registered	by	the	framework:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\View;

use	Illuminate\Support\ServiceProvider;

class	ComposerServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

Laravel	Documentation	-	10.x	/	Service	Providers 58

					*/

				public	function	boot():	void

				{

								View::composer('view',	function	()	{

												//	...

								});

				}

}

Boot	Method	Dependency	Injection

You	may	type-hint	dependencies	for	your	service	provider's	boot	method.	The	service	container	will
automatically	inject	any	dependencies	you	need:

use	Illuminate\Contracts\Routing\ResponseFactory;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot(ResponseFactory	$response):	void

{

				$response->macro('serialized',	function	(mixed	$value)	{

								//	...

				});

}

Registering	Providers

All	service	providers	are	registered	in	the	config/app.php	configuration	file.	This	file	contains	a	providers	array
where	you	can	list	the	class	names	of	your	service	providers.	By	default,	a	set	of	Laravel	core	service	providers
are	registered	in	this	array.	The	default	providers	bootstrap	the	core	Laravel	components,	such	as	the	mailer,
queue,	cache,	and	others.

To	register	your	provider,	add	it	to	the	array:

'providers'	=>	ServiceProvider::defaultProviders()->merge([

				//	Other	Service	Providers

				App\Providers\ComposerServiceProvider::class,

])->toArray(),

Deferred	Providers

If	your	provider	is	only	registering	bindings	in	the	service	container,	you	may	choose	to	defer	its	registration
until	one	of	the	registered	bindings	is	actually	needed.	Deferring	the	loading	of	such	a	provider	will	improve
the	performance	of	your	application,	since	it	is	not	loaded	from	the	filesystem	on	every	request.

Laravel	compiles	and	stores	a	list	of	all	of	the	services	supplied	by	deferred	service	providers,	along	with	the
name	of	its	service	provider	class.	Then,	only	when	you	attempt	to	resolve	one	of	these	services	does	Laravel
load	the	service	provider.

To	defer	the	loading	of	a	provider,	implement	the	\Illuminate\Contracts\Support\DeferrableProvider	interface
and	define	a	provides	method.	The	provides	method	should	return	the	service	container	bindings	registered	by
the	provider:

<?php

namespace	App\Providers;

use	App\Services\Riak\Connection;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Contracts\Support\DeferrableProvider;

use	Illuminate\Support\ServiceProvider;

class	RiakServiceProvider	extends	ServiceProvider	implements	DeferrableProvider

{

				/**

					*	Register	any	application	services.

					*/

Laravel	Documentation	-	10.x	/	Service	Providers 59

				public	function	register():	void

				{

								$this->app->singleton(Connection::class,	function	(Application	$app)	{

												return	new	Connection($app['config']['riak']);

								});

				}

				/**

					*	Get	the	services	provided	by	the	provider.

					*

					*	@return	array<int,	string>

					*/

				public	function	provides():	array

				{

								return	[Connection::class];

				}

}

Laravel	Documentation	-	10.x	/	Service	Providers 60

Architecture	Concepts

Facades
Introduction
When	to	Utilize	Facades

Facades	vs.	Dependency	Injection
Facades	vs.	Helper	Functions

How	Facades	Work
Real-Time	Facades
Facade	Class	Reference

Introduction

Throughout	the	Laravel	documentation,	you	will	see	examples	of	code	that	interacts	with	Laravel's	features	via
"facades".	Facades	provide	a	"static"	interface	to	classes	that	are	available	in	the	application's	service	container.
Laravel	ships	with	many	facades	which	provide	access	to	almost	all	of	Laravel's	features.

Laravel	facades	serve	as	"static	proxies"	to	underlying	classes	in	the	service	container,	providing	the	benefit	of
a	terse,	expressive	syntax	while	maintaining	more	testability	and	flexibility	than	traditional	static	methods.	It's
perfectly	fine	if	you	don't	totally	understand	how	facades	work	-	just	go	with	the	flow	and	continue	learning
about	Laravel.

All	of	Laravel's	facades	are	defined	in	the	Illuminate\Support\Facades	namespace.	So,	we	can	easily	access	a
facade	like	so:

use	Illuminate\Support\Facades\Cache;

use	Illuminate\Support\Facades\Route;

Route::get('/cache',	function	()	{

				return	Cache::get('key');

});

Throughout	the	Laravel	documentation,	many	of	the	examples	will	use	facades	to	demonstrate	various	features
of	the	framework.

Helper	Functions

To	complement	facades,	Laravel	offers	a	variety	of	global	"helper	functions"	that	make	it	even	easier	to	interact
with	common	Laravel	features.	Some	of	the	common	helper	functions	you	may	interact	with	are	view,	response,
url,	config,	and	more.	Each	helper	function	offered	by	Laravel	is	documented	with	their	corresponding	feature;
however,	a	complete	list	is	available	within	the	dedicated	helper	documentation.

For	example,	instead	of	using	the	Illuminate\Support\Facades\Response	facade	to	generate	a	JSON	response,
we	may	simply	use	the	response	function.	Because	helper	functions	are	globally	available,	you	do	not	need	to
import	any	classes	in	order	to	use	them:

use	Illuminate\Support\Facades\Response;

Route::get('/users',	function	()	{

				return	Response::json([

								//	...

]);

});

Route::get('/users',	function	()	{

				return	response()->json([

								//	...

]);

});

When	to	Utilize	Facades

Facades	have	many	benefits.	They	provide	a	terse,	memorable	syntax	that	allows	you	to	use	Laravel's	features

Laravel	Documentation	-	10.x	/	Facades 61

without	remembering	long	class	names	that	must	be	injected	or	configured	manually.	Furthermore,	because	of
their	unique	usage	of	PHP's	dynamic	methods,	they	are	easy	to	test.

However,	some	care	must	be	taken	when	using	facades.	The	primary	danger	of	facades	is	class	"scope	creep".
Since	facades	are	so	easy	to	use	and	do	not	require	injection,	it	can	be	easy	to	let	your	classes	continue	to	grow
and	use	many	facades	in	a	single	class.	Using	dependency	injection,	this	potential	is	mitigated	by	the	visual
feedback	a	large	constructor	gives	you	that	your	class	is	growing	too	large.	So,	when	using	facades,	pay	special
attention	to	the	size	of	your	class	so	that	its	scope	of	responsibility	stays	narrow.	If	your	class	is	getting	too
large,	consider	splitting	it	into	multiple	smaller	classes.

Facades	vs.	Dependency	Injection

One	of	the	primary	benefits	of	dependency	injection	is	the	ability	to	swap	implementations	of	the	injected	class.
This	is	useful	during	testing	since	you	can	inject	a	mock	or	stub	and	assert	that	various	methods	were	called	on
the	stub.

Typically,	it	would	not	be	possible	to	mock	or	stub	a	truly	static	class	method.	However,	since	facades	use
dynamic	methods	to	proxy	method	calls	to	objects	resolved	from	the	service	container,	we	actually	can	test
facades	just	as	we	would	test	an	injected	class	instance.	For	example,	given	the	following	route:

use	Illuminate\Support\Facades\Cache;

Route::get('/cache',	function	()	{

				return	Cache::get('key');

});

Using	Laravel's	facade	testing	methods,	we	can	write	the	following	test	to	verify	that	the	Cache::get	method
was	called	with	the	argument	we	expected:

use	Illuminate\Support\Facades\Cache;

/**

	*	A	basic	functional	test	example.

	*/

public	function	test_basic_example():	void

{

				Cache::shouldReceive('get')

									->with('key')

									->andReturn('value');

				$response	=	$this->get('/cache');

				$response->assertSee('value');

}

Facades	vs.	Helper	Functions

In	addition	to	facades,	Laravel	includes	a	variety	of	"helper"	functions	which	can	perform	common	tasks	like
generating	views,	firing	events,	dispatching	jobs,	or	sending	HTTP	responses.	Many	of	these	helper	functions
perform	the	same	function	as	a	corresponding	facade.	For	example,	this	facade	call	and	helper	call	are
equivalent:

return	Illuminate\Support\Facades\View::make('profile');

return	view('profile');

There	is	absolutely	no	practical	difference	between	facades	and	helper	functions.	When	using	helper	functions,
you	may	still	test	them	exactly	as	you	would	the	corresponding	facade.	For	example,	given	the	following	route:

Route::get('/cache',	function	()	{

				return	cache('key');

});

The	cache	helper	is	going	to	call	the	get	method	on	the	class	underlying	the	Cache	facade.	So,	even	though	we
are	using	the	helper	function,	we	can	write	the	following	test	to	verify	that	the	method	was	called	with	the
argument	we	expected:

use	Illuminate\Support\Facades\Cache;

Laravel	Documentation	-	10.x	/	Facades 62

/**

	*	A	basic	functional	test	example.

	*/

public	function	test_basic_example():	void

{

				Cache::shouldReceive('get')

									->with('key')

									->andReturn('value');

				$response	=	$this->get('/cache');

				$response->assertSee('value');

}

How	Facades	Work

In	a	Laravel	application,	a	facade	is	a	class	that	provides	access	to	an	object	from	the	container.	The	machinery
that	makes	this	work	is	in	the	Facade	class.	Laravel's	facades,	and	any	custom	facades	you	create,	will	extend
the	base	Illuminate\Support\Facades\Facade	class.

The	Facade	base	class	makes	use	of	the	__callStatic()	magic-method	to	defer	calls	from	your	facade	to	an
object	resolved	from	the	container.	In	the	example	below,	a	call	is	made	to	the	Laravel	cache	system.	By
glancing	at	this	code,	one	might	assume	that	the	static	get	method	is	being	called	on	the	Cache	class:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\Cache;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*/

				public	function	showProfile(string	$id):	View

				{

								$user	=	Cache::get('user:'.$id);

								return	view('profile',	['user'	=>	$user]);

				}

}

Notice	that	near	the	top	of	the	file	we	are	"importing"	the	Cache	facade.	This	facade	serves	as	a	proxy	for
accessing	the	underlying	implementation	of	the	Illuminate\Contracts\Cache\Factory	interface.	Any	calls	we
make	using	the	facade	will	be	passed	to	the	underlying	instance	of	Laravel's	cache	service.

If	we	look	at	that	Illuminate\Support\Facades\Cache	class,	you'll	see	that	there	is	no	static	method	get:

class	Cache	extends	Facade

{

				/**

					*	Get	the	registered	name	of	the	component.

					*/

				protected	static	function	getFacadeAccessor():	string

				{

								return	'cache';

				}

}

Instead,	the	Cache	facade	extends	the	base	Facade	class	and	defines	the	method	getFacadeAccessor().	This
method's	job	is	to	return	the	name	of	a	service	container	binding.	When	a	user	references	any	static	method	on
the	Cache	facade,	Laravel	resolves	the	cache	binding	from	the	service	container	and	runs	the	requested	method
(in	this	case,	get)	against	that	object.

Real-Time	Facades

Using	real-time	facades,	you	may	treat	any	class	in	your	application	as	if	it	was	a	facade.	To	illustrate	how	this

Laravel	Documentation	-	10.x	/	Facades 63

can	be	used,	let's	first	examine	some	code	that	does	not	use	real-time	facades.	For	example,	let's	assume	our	
Podcast	model	has	a	publish	method.	However,	in	order	to	publish	the	podcast,	we	need	to	inject	a	Publisher
instance:

<?php

namespace	App\Models;

use	App\Contracts\Publisher;

use	Illuminate\Database\Eloquent\Model;

class	Podcast	extends	Model

{

				/**

					*	Publish	the	podcast.

					*/

				public	function	publish(Publisher	$publisher):	void

				{

								$this->update(['publishing'	=>	now()]);

								$publisher->publish($this);

				}

}

Injecting	a	publisher	implementation	into	the	method	allows	us	to	easily	test	the	method	in	isolation	since	we
can	mock	the	injected	publisher.	However,	it	requires	us	to	always	pass	a	publisher	instance	each	time	we	call
the	publish	method.	Using	real-time	facades,	we	can	maintain	the	same	testability	while	not	being	required	to
explicitly	pass	a	Publisher	instance.	To	generate	a	real-time	facade,	prefix	the	namespace	of	the	imported	class
with	Facades:

<?php

namespace	App\Models;

use	App\Contracts\Publisher;	//	[tl!	remove]

use	Facades\App\Contracts\Publisher;	//	[tl!	add]

use	Illuminate\Database\Eloquent\Model;

class	Podcast	extends	Model

{

				/**

					*	Publish	the	podcast.

					*/

				public	function	publish(Publisher	$publisher):	void	//	[tl!	remove]

				public	function	publish():	void	//	[tl!	add]

				{

								$this->update(['publishing'	=>	now()]);

								$publisher->publish($this);	//	[tl!	remove]

								Publisher::publish($this);	//	[tl!	add]

				}

}

When	the	real-time	facade	is	used,	the	publisher	implementation	will	be	resolved	out	of	the	service	container
using	the	portion	of	the	interface	or	class	name	that	appears	after	the	Facades	prefix.	When	testing,	we	can	use
Laravel's	built-in	facade	testing	helpers	to	mock	this	method	call:

<?php

namespace	Tests\Feature;

use	App\Models\Podcast;

use	Facades\App\Contracts\Publisher;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Tests\TestCase;

class	PodcastTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	A	test	example.

					*/

				public	function	test_podcast_can_be_published():	void

				{

								$podcast	=	Podcast::factory()->create();

Laravel	Documentation	-	10.x	/	Facades 64

								Publisher::shouldReceive('publish')->once()->with($podcast);

								$podcast->publish();

				}

}

Facade	Class	Reference

Below	you	will	find	every	facade	and	its	underlying	class.	This	is	a	useful	tool	for	quickly	digging	into	the	API
documentation	for	a	given	facade	root.	The	service	container	binding	key	is	also	included	where	applicable.

Facade	|	Class	|	Service	Container	Binding	-------------	|	-------------	|	-------------	App	|
[Illuminate\Foundation\Application]
(https://laravel.com/api/{{version}}/Illuminate/Foundation/Application.html)	|	`app`	Artisan	|
[Illuminate\Contracts\Console\Kernel]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Console/Kernel.html)	|	`artisan`	Auth	|
[Illuminate\Auth\AuthManager](https://laravel.com/api/{{version}}/Illuminate/Auth/AuthManager.html)	|
`auth`	Auth	(Instance)	|	[Illuminate\Contracts\Auth\Guard]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Auth/Guard.html)	|	`auth.driver`	Blade	|
[Illuminate\View\Compilers\BladeCompiler]
(https://laravel.com/api/{{version}}/Illuminate/View/Compilers/BladeCompiler.html)	|	`blade.compiler`
Broadcast	|	[Illuminate\Contracts\Broadcasting\Factory]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Broadcasting/Factory.html)	|			Broadcast	(Instance)	|
[Illuminate\Contracts\Broadcasting\Broadcaster]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Broadcasting/Broadcaster.html)	|			Bus	|
[Illuminate\Contracts\Bus\Dispatcher]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Bus/Dispatcher.html)	|			Cache	|
[Illuminate\Cache\CacheManager](https://laravel.com/api/{{version}}/Illuminate/Cache/CacheManager.html)	|
`cache`	Cache	(Instance)	|	[Illuminate\Cache\Repository]
(https://laravel.com/api/{{version}}/Illuminate/Cache/Repository.html)	|	`cache.store`	Config	|
[Illuminate\Config\Repository](https://laravel.com/api/{{version}}/Illuminate/Config/Repository.html)	|
`config`	Cookie	|	[Illuminate\Cookie\CookieJar]
(https://laravel.com/api/{{version}}/Illuminate/Cookie/CookieJar.html)	|	`cookie`	Crypt	|
[Illuminate\Encryption\Encrypter](https://laravel.com/api/{{version}}/Illuminate/Encryption/Encrypter.html)	|
`encrypter`	Date	|	[Illuminate\Support\DateFactory]
(https://laravel.com/api/{{version}}/Illuminate/Support/DateFactory.html)	|	`date`	DB	|
[Illuminate\Database\DatabaseManager]
(https://laravel.com/api/{{version}}/Illuminate/Database/DatabaseManager.html)	|	`db`	DB	(Instance)	|
[Illuminate\Database\Connection](https://laravel.com/api/{{version}}/Illuminate/Database/Connection.html)	|
`db.connection`	Event	|	[Illuminate\Events\Dispatcher]
(https://laravel.com/api/{{version}}/Illuminate/Events/Dispatcher.html)	|	`events`	File	|
[Illuminate\Filesystem\Filesystem](https://laravel.com/api/{{version}}/Illuminate/Filesystem/Filesystem.html)
|	`files`	Gate	|	[Illuminate\Contracts\Auth\Access\Gate]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Auth/Access/Gate.html)	|			Hash	|
[Illuminate\Contracts\Hashing\Hasher]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Hashing/Hasher.html)	|	`hash`	Http	|
[Illuminate\Http\Client\Factory](https://laravel.com/api/{{version}}/Illuminate/Http/Client/Factory.html)	|		
Lang	|	[Illuminate\Translation\Translator]
(https://laravel.com/api/{{version}}/Illuminate/Translation/Translator.html)	|	`translator`	Log	|
[Illuminate\Log\LogManager](https://laravel.com/api/{{version}}/Illuminate/Log/LogManager.html)	|	`log`
Mail	|	[Illuminate\Mail\Mailer](https://laravel.com/api/{{version}}/Illuminate/Mail/Mailer.html)	|	`mailer`
Notification	|	[Illuminate\Notifications\ChannelManager]
(https://laravel.com/api/{{version}}/Illuminate/Notifications/ChannelManager.html)	|			Password	|
[Illuminate\Auth\Passwords\PasswordBrokerManager]
(https://laravel.com/api/{{version}}/Illuminate/Auth/Passwords/PasswordBrokerManager.html)	|
`auth.password`	Password	(Instance)	|	[Illuminate\Auth\Passwords\PasswordBroker]
(https://laravel.com/api/{{version}}/Illuminate/Auth/Passwords/PasswordBroker.html)	|	`auth.password.broker`
Pipeline	(Instance)	|	[Illuminate\Pipeline\Pipeline]
(https://laravel.com/api/{{version}}/Illuminate/Pipeline/Pipeline.html)	|			Process	|	[Illuminate\Process\Factory]
(https://laravel.com/api/{{version}}/Illuminate/Process/Factory.html)	|			Queue	|

Laravel	Documentation	-	10.x	/	Facades 65

[Illuminate\Queue\QueueManager](https://laravel.com/api/{{version}}/Illuminate/Queue/QueueManager.html)
|	`queue`	Queue	(Instance)	|	[Illuminate\Contracts\Queue\Queue]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Queue/Queue.html)	|	`queue.connection`	Queue
(Base	Class)	|	[Illuminate\Queue\Queue](https://laravel.com/api/{{version}}/Illuminate/Queue/Queue.html)	|		
RateLimiter	|	[Illuminate\Cache\RateLimiter]
(https://laravel.com/api/{{version}}/Illuminate/Cache/RateLimiter.html)	|			Redirect	|
[Illuminate\Routing\Redirector](https://laravel.com/api/{{version}}/Illuminate/Routing/Redirector.html)	|
`redirect`	Redis	|	[Illuminate\Redis\RedisManager]
(https://laravel.com/api/{{version}}/Illuminate/Redis/RedisManager.html)	|	`redis`	Redis	(Instance)	|
[Illuminate\Redis\Connections\Connection]
(https://laravel.com/api/{{version}}/Illuminate/Redis/Connections/Connection.html)	|	`redis.connection`
Request	|	[Illuminate\Http\Request](https://laravel.com/api/{{version}}/Illuminate/Http/Request.html)	|
`request`	Response	|	[Illuminate\Contracts\Routing\ResponseFactory]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Routing/ResponseFactory.html)	|			Response
(Instance)	|	[Illuminate\Http\Response](https://laravel.com/api/{{version}}/Illuminate/Http/Response.html)	|		
Route	|	[Illuminate\Routing\Router](https://laravel.com/api/{{version}}/Illuminate/Routing/Router.html)	|
`router`	Schema	|	[Illuminate\Database\Schema\Builder]
(https://laravel.com/api/{{version}}/Illuminate/Database/Schema/Builder.html)	|			Session	|
[Illuminate\Session\SessionManager]
(https://laravel.com/api/{{version}}/Illuminate/Session/SessionManager.html)	|	`session`	Session	(Instance)	|
[Illuminate\Session\Store](https://laravel.com/api/{{version}}/Illuminate/Session/Store.html)	|	`session.store`
Storage	|	[Illuminate\Filesystem\FilesystemManager]
(https://laravel.com/api/{{version}}/Illuminate/Filesystem/FilesystemManager.html)	|	`filesystem`	Storage
(Instance)	|	[Illuminate\Contracts\Filesystem\Filesystem]
(https://laravel.com/api/{{version}}/Illuminate/Contracts/Filesystem/Filesystem.html)	|	`filesystem.disk`	URL	|
[Illuminate\Routing\UrlGenerator](https://laravel.com/api/{{version}}/Illuminate/Routing/UrlGenerator.html)	|
`url`	Validator	|	[Illuminate\Validation\Factory]
(https://laravel.com/api/{{version}}/Illuminate/Validation/Factory.html)	|	`validator`	Validator	(Instance)	|
[Illuminate\Validation\Validator](https://laravel.com/api/{{version}}/Illuminate/Validation/Validator.html)	|		
View	|	[Illuminate\View\Factory](https://laravel.com/api/{{version}}/Illuminate/View/Factory.html)	|	`view`
View	(Instance)	|	[Illuminate\View\View](https://laravel.com/api/{{version}}/Illuminate/View/View.html)	|		
Vite	|	[Illuminate\Foundation\Vite](https://laravel.com/api/{{version}}/Illuminate/Foundation/Vite.html)	|		

Laravel	Documentation	-	10.x	/	Facades 66

The	Basics

Routing
Basic	Routing

Redirect	Routes
View	Routes
The	Route	List

Route	Parameters
Required	Parameters
Optional	Parameters
Regular	Expression	Constraints

Named	Routes
Route	Groups

Middleware
Controllers
Subdomain	Routing
Route	Prefixes
Route	Name	Prefixes

Route	Model	Binding
Implicit	Binding
Implicit	Enum	Binding
Explicit	Binding

Fallback	Routes
Rate	Limiting

Defining	Rate	Limiters
Attaching	Rate	Limiters	to	Routes

Form	Method	Spoofing
Accessing	the	Current	Route
Cross-Origin	Resource	Sharing	(CORS)
Route	Caching

Basic	Routing

The	most	basic	Laravel	routes	accept	a	URI	and	a	closure,	providing	a	very	simple	and	expressive	method	of
defining	routes	and	behavior	without	complicated	routing	configuration	files:

use	Illuminate\Support\Facades\Route;

Route::get('/greeting',	function	()	{

				return	'Hello	World';

});

The	Default	Route	Files

All	Laravel	routes	are	defined	in	your	route	files,	which	are	located	in	the	routes	directory.	These	files	are
automatically	loaded	by	your	application's	App\Providers\RouteServiceProvider.	The	routes/web.php	file	defines
routes	that	are	for	your	web	interface.	These	routes	are	assigned	the	web	middleware	group,	which	provides
features	like	session	state	and	CSRF	protection.	The	routes	in	routes/api.php	are	stateless	and	are	assigned	the	
api	middleware	group.

For	most	applications,	you	will	begin	by	defining	routes	in	your	routes/web.php	file.	The	routes	defined	in	
routes/web.php	may	be	accessed	by	entering	the	defined	route's	URL	in	your	browser.	For	example,	you	may
access	the	following	route	by	navigating	to	http://example.com/user	in	your	browser:

use	App\Http\Controllers\UserController;

Route::get('/user',	[UserController::class,	'index']);

Routes	defined	in	the	routes/api.php	file	are	nested	within	a	route	group	by	the	RouteServiceProvider.	Within
this	group,	the	/api	URI	prefix	is	automatically	applied	so	you	do	not	need	to	manually	apply	it	to	every	route

Laravel	Documentation	-	10.x	/	The	Basics 67

in	the	file.	You	may	modify	the	prefix	and	other	route	group	options	by	modifying	your	RouteServiceProvider
class.

Available	Router	Methods

The	router	allows	you	to	register	routes	that	respond	to	any	HTTP	verb:

Route::get($uri,	$callback);

Route::post($uri,	$callback);

Route::put($uri,	$callback);

Route::patch($uri,	$callback);

Route::delete($uri,	$callback);

Route::options($uri,	$callback);

Sometimes	you	may	need	to	register	a	route	that	responds	to	multiple	HTTP	verbs.	You	may	do	so	using	the	
match	method.	Or,	you	may	even	register	a	route	that	responds	to	all	HTTP	verbs	using	the	any	method:

Route::match(['get',	'post'],	'/',	function	()	{

				//	...

});

Route::any('/',	function	()	{

				//	...

});

[!NOTE]
When	defining	multiple	routes	that	share	the	same	URI,	routes	using	the	get,	post,	put,	patch,	delete,	and	
options	methods	should	be	defined	before	routes	using	the	any,	match,	and	redirect	methods.	This	ensures
the	incoming	request	is	matched	with	the	correct	route.

Dependency	Injection

You	may	type-hint	any	dependencies	required	by	your	route	in	your	route's	callback	signature.	The	declared
dependencies	will	automatically	be	resolved	and	injected	into	the	callback	by	the	Laravel	service	container.	For
example,	you	may	type-hint	the	Illuminate\Http\Request	class	to	have	the	current	HTTP	request	automatically
injected	into	your	route	callback:

use	Illuminate\Http\Request;

Route::get('/users',	function	(Request	$request)	{

				//	...

});

CSRF	Protection

Remember,	any	HTML	forms	pointing	to	POST,	PUT,	PATCH,	or	DELETE	routes	that	are	defined	in	the	web	routes	file
should	include	a	CSRF	token	field.	Otherwise,	the	request	will	be	rejected.	You	can	read	more	about	CSRF
protection	in	the	CSRF	documentation:

<form	method="POST"	action="/profile">

				@csrf

				...

</form>

Redirect	Routes

If	you	are	defining	a	route	that	redirects	to	another	URI,	you	may	use	the	Route::redirect	method.	This	method
provides	a	convenient	shortcut	so	that	you	do	not	have	to	define	a	full	route	or	controller	for	performing	a
simple	redirect:

Route::redirect('/here',	'/there');

By	default,	Route::redirect	returns	a	302	status	code.	You	may	customize	the	status	code	using	the	optional
third	parameter:

Route::redirect('/here',	'/there',	301);

Laravel	Documentation	-	10.x	/	The	Basics 68

Or,	you	may	use	the	Route::permanentRedirect	method	to	return	a	301	status	code:

Route::permanentRedirect('/here',	'/there');

[!WARNING]
When	using	route	parameters	in	redirect	routes,	the	following	parameters	are	reserved	by	Laravel	and
cannot	be	used:	destination	and	status.

View	Routes

If	your	route	only	needs	to	return	a	view,	you	may	use	the	Route::view	method.	Like	the	redirect	method,	this
method	provides	a	simple	shortcut	so	that	you	do	not	have	to	define	a	full	route	or	controller.	The	view	method
accepts	a	URI	as	its	first	argument	and	a	view	name	as	its	second	argument.	In	addition,	you	may	provide	an
array	of	data	to	pass	to	the	view	as	an	optional	third	argument:

Route::view('/welcome',	'welcome');

Route::view('/welcome',	'welcome',	['name'	=>	'Taylor']);

[!WARNING]
When	using	route	parameters	in	view	routes,	the	following	parameters	are	reserved	by	Laravel	and	cannot
be	used:	view,	data,	status,	and	headers.

The	Route	List

The	route:list	Artisan	command	can	easily	provide	an	overview	of	all	of	the	routes	that	are	defined	by	your
application:

php	artisan	route:list

By	default,	the	route	middleware	that	are	assigned	to	each	route	will	not	be	displayed	in	the	route:list	output;
however,	you	can	instruct	Laravel	to	display	the	route	middleware	and	middleware	group	names	by	adding	the	
-v	option	to	the	command:

php	artisan	route:list	-v

#	Expand	middleware	groups...

php	artisan	route:list	-vv

You	may	also	instruct	Laravel	to	only	show	routes	that	begin	with	a	given	URI:

php	artisan	route:list	--path=api

In	addition,	you	may	instruct	Laravel	to	hide	any	routes	that	are	defined	by	third-party	packages	by	providing
the	--except-vendor	option	when	executing	the	route:list	command:

php	artisan	route:list	--except-vendor

Likewise,	you	may	also	instruct	Laravel	to	only	show	routes	that	are	defined	by	third-party	packages	by
providing	the	--only-vendor	option	when	executing	the	route:list	command:

php	artisan	route:list	--only-vendor

Route	Parameters

Required	Parameters

Sometimes	you	will	need	to	capture	segments	of	the	URI	within	your	route.	For	example,	you	may	need	to
capture	a	user's	ID	from	the	URL.	You	may	do	so	by	defining	route	parameters:

Route::get('/user/{id}',	function	(string	$id)	{

				return	'User	'.$id;

});

You	may	define	as	many	route	parameters	as	required	by	your	route:

Laravel	Documentation	-	10.x	/	The	Basics 69

Route::get('/posts/{post}/comments/{comment}',	function	(string	$postId,	string	$commentId)	{

				//	...

});

Route	parameters	are	always	encased	within	{}	braces	and	should	consist	of	alphabetic	characters.	Underscores
(_)	are	also	acceptable	within	route	parameter	names.	Route	parameters	are	injected	into	route	callbacks	/
controllers	based	on	their	order	-	the	names	of	the	route	callback	/	controller	arguments	do	not	matter.

Parameters	and	Dependency	Injection

If	your	route	has	dependencies	that	you	would	like	the	Laravel	service	container	to	automatically	inject	into
your	route's	callback,	you	should	list	your	route	parameters	after	your	dependencies:

use	Illuminate\Http\Request;

Route::get('/user/{id}',	function	(Request	$request,	string	$id)	{

				return	'User	'.$id;

});

Optional	Parameters

Occasionally	you	may	need	to	specify	a	route	parameter	that	may	not	always	be	present	in	the	URI.	You	may
do	so	by	placing	a	?	mark	after	the	parameter	name.	Make	sure	to	give	the	route's	corresponding	variable	a
default	value:

Route::get('/user/{name?}',	function	(?string	$name	=	null)	{

				return	$name;

});

Route::get('/user/{name?}',	function	(?string	$name	=	'John')	{

				return	$name;

});

Regular	Expression	Constraints

You	may	constrain	the	format	of	your	route	parameters	using	the	where	method	on	a	route	instance.	The	where
method	accepts	the	name	of	the	parameter	and	a	regular	expression	defining	how	the	parameter	should	be
constrained:

Route::get('/user/{name}',	function	(string	$name)	{

				//	...

})->where('name',	'[A-Za-z]+');

Route::get('/user/{id}',	function	(string	$id)	{

				//	...

})->where('id',	'[0-9]+');

Route::get('/user/{id}/{name}',	function	(string	$id,	string	$name)	{

				//	...

})->where(['id'	=>	'[0-9]+',	'name'	=>	'[a-z]+']);

For	convenience,	some	commonly	used	regular	expression	patterns	have	helper	methods	that	allow	you	to
quickly	add	pattern	constraints	to	your	routes:

Route::get('/user/{id}/{name}',	function	(string	$id,	string	$name)	{

				//	...

})->whereNumber('id')->whereAlpha('name');

Route::get('/user/{name}',	function	(string	$name)	{

				//	...

})->whereAlphaNumeric('name');

Route::get('/user/{id}',	function	(string	$id)	{

				//	...

})->whereUuid('id');

Route::get('/user/{id}',	function	(string	$id)	{

				//

})->whereUlid('id');

Route::get('/category/{category}',	function	(string	$category)	{

Laravel	Documentation	-	10.x	/	The	Basics 70

				//	...

})->whereIn('category',	['movie',	'song',	'painting']);

If	the	incoming	request	does	not	match	the	route	pattern	constraints,	a	404	HTTP	response	will	be	returned.

Global	Constraints

If	you	would	like	a	route	parameter	to	always	be	constrained	by	a	given	regular	expression,	you	may	use	the	
pattern	method.	You	should	define	these	patterns	in	the	boot	method	of	your	
App\Providers\RouteServiceProvider	class:

/**

	*	Define	your	route	model	bindings,	pattern	filters,	etc.

	*/

public	function	boot():	void

{

				Route::pattern('id',	'[0-9]+');

}

Once	the	pattern	has	been	defined,	it	is	automatically	applied	to	all	routes	using	that	parameter	name:

Route::get('/user/{id}',	function	(string	$id)	{

				//	Only	executed	if	{id}	is	numeric...

});

Encoded	Forward	Slashes

The	Laravel	routing	component	allows	all	characters	except	/	to	be	present	within	route	parameter	values.	You
must	explicitly	allow	/	to	be	part	of	your	placeholder	using	a	where	condition	regular	expression:

Route::get('/search/{search}',	function	(string	$search)	{

				return	$search;

})->where('search',	'.*');

[!WARNING]
Encoded	forward	slashes	are	only	supported	within	the	last	route	segment.

Named	Routes

Named	routes	allow	the	convenient	generation	of	URLs	or	redirects	for	specific	routes.	You	may	specify	a
name	for	a	route	by	chaining	the	name	method	onto	the	route	definition:

Route::get('/user/profile',	function	()	{

				//	...

})->name('profile');

You	may	also	specify	route	names	for	controller	actions:

Route::get(

				'/user/profile',

				[UserProfileController::class,	'show']

)->name('profile');

[!WARNING]
Route	names	should	always	be	unique.

Generating	URLs	to	Named	Routes

Once	you	have	assigned	a	name	to	a	given	route,	you	may	use	the	route's	name	when	generating	URLs	or
redirects	via	Laravel's	route	and	redirect	helper	functions:

//	Generating	URLs...

$url	=	route('profile');

//	Generating	Redirects...

return	redirect()->route('profile');

return	to_route('profile');

Laravel	Documentation	-	10.x	/	The	Basics 71

If	the	named	route	defines	parameters,	you	may	pass	the	parameters	as	the	second	argument	to	the	route
function.	The	given	parameters	will	automatically	be	inserted	into	the	generated	URL	in	their	correct	positions:

Route::get('/user/{id}/profile',	function	(string	$id)	{

				//	...

})->name('profile');

$url	=	route('profile',	['id'	=>	1]);

If	you	pass	additional	parameters	in	the	array,	those	key	/	value	pairs	will	automatically	be	added	to	the
generated	URL's	query	string:

Route::get('/user/{id}/profile',	function	(string	$id)	{

				//	...

})->name('profile');

$url	=	route('profile',	['id'	=>	1,	'photos'	=>	'yes']);

//	/user/1/profile?photos=yes

[!NOTE]
Sometimes,	you	may	wish	to	specify	request-wide	default	values	for	URL	parameters,	such	as	the	current
locale.	To	accomplish	this,	you	may	use	the	URL::defaults	method.

Inspecting	the	Current	Route

If	you	would	like	to	determine	if	the	current	request	was	routed	to	a	given	named	route,	you	may	use	the	named
method	on	a	Route	instance.	For	example,	you	may	check	the	current	route	name	from	a	route	middleware:

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

/**

	*	Handle	an	incoming	request.

	*

	*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

	*/

public	function	handle(Request	$request,	Closure	$next):	Response

{

				if	($request->route()->named('profile'))	{

								//	...

				}

				return	$next($request);

}

Route	Groups

Route	groups	allow	you	to	share	route	attributes,	such	as	middleware,	across	a	large	number	of	routes	without
needing	to	define	those	attributes	on	each	individual	route.

Nested	groups	attempt	to	intelligently	"merge"	attributes	with	their	parent	group.	Middleware	and	where
conditions	are	merged	while	names	and	prefixes	are	appended.	Namespace	delimiters	and	slashes	in	URI
prefixes	are	automatically	added	where	appropriate.

Middleware

To	assign	middleware	to	all	routes	within	a	group,	you	may	use	the	middleware	method	before	defining	the
group.	Middleware	are	executed	in	the	order	they	are	listed	in	the	array:

Route::middleware(['first',	'second'])->group(function	()	{

				Route::get('/',	function	()	{

								//	Uses	first	&	second	middleware...

				});

				Route::get('/user/profile',	function	()	{

								//	Uses	first	&	second	middleware...

				});

});

Laravel	Documentation	-	10.x	/	The	Basics 72

Controllers

If	a	group	of	routes	all	utilize	the	same	controller,	you	may	use	the	controller	method	to	define	the	common
controller	for	all	of	the	routes	within	the	group.	Then,	when	defining	the	routes,	you	only	need	to	provide	the
controller	method	that	they	invoke:

use	App\Http\Controllers\OrderController;

Route::controller(OrderController::class)->group(function	()	{

				Route::get('/orders/{id}',	'show');

				Route::post('/orders',	'store');

});

Subdomain	Routing

Route	groups	may	also	be	used	to	handle	subdomain	routing.	Subdomains	may	be	assigned	route	parameters
just	like	route	URIs,	allowing	you	to	capture	a	portion	of	the	subdomain	for	usage	in	your	route	or	controller.
The	subdomain	may	be	specified	by	calling	the	domain	method	before	defining	the	group:

Route::domain('{account}.example.com')->group(function	()	{

				Route::get('user/{id}',	function	(string	$account,	string	$id)	{

								//	...

				});

});

[!WARNING]
In	order	to	ensure	your	subdomain	routes	are	reachable,	you	should	register	subdomain	routes	before
registering	root	domain	routes.	This	will	prevent	root	domain	routes	from	overwriting	subdomain	routes
which	have	the	same	URI	path.

Route	Prefixes

The	prefix	method	may	be	used	to	prefix	each	route	in	the	group	with	a	given	URI.	For	example,	you	may
want	to	prefix	all	route	URIs	within	the	group	with	admin:

Route::prefix('admin')->group(function	()	{

				Route::get('/users',	function	()	{

								//	Matches	The	"/admin/users"	URL

				});

});

Route	Name	Prefixes

The	name	method	may	be	used	to	prefix	each	route	name	in	the	group	with	a	given	string.	For	example,	you	may
want	to	prefix	the	names	of	all	of	the	routes	in	the	group	with	admin.	The	given	string	is	prefixed	to	the	route
name	exactly	as	it	is	specified,	so	we	will	be	sure	to	provide	the	trailing	.	character	in	the	prefix:

Route::name('admin.')->group(function	()	{

				Route::get('/users',	function	()	{

								//	Route	assigned	name	"admin.users"...

				})->name('users');

});

Route	Model	Binding

When	injecting	a	model	ID	to	a	route	or	controller	action,	you	will	often	query	the	database	to	retrieve	the
model	that	corresponds	to	that	ID.	Laravel	route	model	binding	provides	a	convenient	way	to	automatically
inject	the	model	instances	directly	into	your	routes.	For	example,	instead	of	injecting	a	user's	ID,	you	can	inject
the	entire	User	model	instance	that	matches	the	given	ID.

Implicit	Binding

Laravel	automatically	resolves	Eloquent	models	defined	in	routes	or	controller	actions	whose	type-hinted
variable	names	match	a	route	segment	name.	For	example:

Laravel	Documentation	-	10.x	/	The	Basics 73

use	App\Models\User;

Route::get('/users/{user}',	function	(User	$user)	{

				return	$user->email;

});

Since	the	$user	variable	is	type-hinted	as	the	App\Models\User	Eloquent	model	and	the	variable	name	matches
the	{user}	URI	segment,	Laravel	will	automatically	inject	the	model	instance	that	has	an	ID	matching	the
corresponding	value	from	the	request	URI.	If	a	matching	model	instance	is	not	found	in	the	database,	a	404
HTTP	response	will	automatically	be	generated.

Of	course,	implicit	binding	is	also	possible	when	using	controller	methods.	Again,	note	the	{user}	URI	segment
matches	the	$user	variable	in	the	controller	which	contains	an	App\Models\User	type-hint:

use	App\Http\Controllers\UserController;

use	App\Models\User;

//	Route	definition...

Route::get('/users/{user}',	[UserController::class,	'show']);

//	Controller	method	definition...

public	function	show(User	$user)

{

				return	view('user.profile',	['user'	=>	$user]);

}

Soft	Deleted	Models

Typically,	implicit	model	binding	will	not	retrieve	models	that	have	been	soft	deleted.	However,	you	may
instruct	the	implicit	binding	to	retrieve	these	models	by	chaining	the	withTrashed	method	onto	your	route's
definition:

use	App\Models\User;

Route::get('/users/{user}',	function	(User	$user)	{

				return	$user->email;

})->withTrashed();

Customizing	the	Key

Sometimes	you	may	wish	to	resolve	Eloquent	models	using	a	column	other	than	id.	To	do	so,	you	may	specify
the	column	in	the	route	parameter	definition:

use	App\Models\Post;

Route::get('/posts/{post:slug}',	function	(Post	$post)	{

				return	$post;

});

If	you	would	like	model	binding	to	always	use	a	database	column	other	than	id	when	retrieving	a	given	model
class,	you	may	override	the	getRouteKeyName	method	on	the	Eloquent	model:

/**

	*	Get	the	route	key	for	the	model.

	*/

public	function	getRouteKeyName():	string

{

				return	'slug';

}

Custom	Keys	and	Scoping

When	implicitly	binding	multiple	Eloquent	models	in	a	single	route	definition,	you	may	wish	to	scope	the
second	Eloquent	model	such	that	it	must	be	a	child	of	the	previous	Eloquent	model.	For	example,	consider	this
route	definition	that	retrieves	a	blog	post	by	slug	for	a	specific	user:

use	App\Models\Post;

use	App\Models\User;

Route::get('/users/{user}/posts/{post:slug}',	function	(User	$user,	Post	$post)	{

Laravel	Documentation	-	10.x	/	The	Basics 74

				return	$post;

});

When	using	a	custom	keyed	implicit	binding	as	a	nested	route	parameter,	Laravel	will	automatically	scope	the
query	to	retrieve	the	nested	model	by	its	parent	using	conventions	to	guess	the	relationship	name	on	the	parent.
In	this	case,	it	will	be	assumed	that	the	User	model	has	a	relationship	named	posts	(the	plural	form	of	the	route
parameter	name)	which	can	be	used	to	retrieve	the	Post	model.

If	you	wish,	you	may	instruct	Laravel	to	scope	"child"	bindings	even	when	a	custom	key	is	not	provided.	To	do
so,	you	may	invoke	the	scopeBindings	method	when	defining	your	route:

use	App\Models\Post;

use	App\Models\User;

Route::get('/users/{user}/posts/{post}',	function	(User	$user,	Post	$post)	{

				return	$post;

})->scopeBindings();

Or,	you	may	instruct	an	entire	group	of	route	definitions	to	use	scoped	bindings:

Route::scopeBindings()->group(function	()	{

				Route::get('/users/{user}/posts/{post}',	function	(User	$user,	Post	$post)	{

								return	$post;

				});

});

Similarly,	you	may	explicitly	instruct	Laravel	to	not	scope	bindings	by	invoking	the	withoutScopedBindings
method:

Route::get('/users/{user}/posts/{post:slug}',	function	(User	$user,	Post	$post)	{

				return	$post;

})->withoutScopedBindings();

Customizing	Missing	Model	Behavior

Typically,	a	404	HTTP	response	will	be	generated	if	an	implicitly	bound	model	is	not	found.	However,	you	may
customize	this	behavior	by	calling	the	missing	method	when	defining	your	route.	The	missing	method	accepts	a
closure	that	will	be	invoked	if	an	implicitly	bound	model	can	not	be	found:

use	App\Http\Controllers\LocationsController;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Redirect;

Route::get('/locations/{location:slug}',	[LocationsController::class,	'show'])

								->name('locations.view')

								->missing(function	(Request	$request)	{

												return	Redirect::route('locations.index');

								});

Implicit	Enum	Binding

PHP	8.1	introduced	support	for	Enums.	To	complement	this	feature,	Laravel	allows	you	to	type-hint	a	string-
backed	Enum	on	your	route	definition	and	Laravel	will	only	invoke	the	route	if	that	route	segment	corresponds
to	a	valid	Enum	value.	Otherwise,	a	404	HTTP	response	will	be	returned	automatically.	For	example,	given	the
following	Enum:

<?php

namespace	App\Enums;

enum	Category:	string

{

				case	Fruits	=	'fruits';

				case	People	=	'people';

}

You	may	define	a	route	that	will	only	be	invoked	if	the	{category}	route	segment	is	fruits	or	people.
Otherwise,	Laravel	will	return	a	404	HTTP	response:

use	App\Enums\Category;

Laravel	Documentation	-	10.x	/	The	Basics 75

https://www.php.net/manual/en/language.enumerations.backed.php
https://www.php.net/manual/en/language.enumerations.backed.php

use	Illuminate\Support\Facades\Route;

Route::get('/categories/{category}',	function	(Category	$category)	{

				return	$category->value;

});

Explicit	Binding

You	are	not	required	to	use	Laravel's	implicit,	convention	based	model	resolution	in	order	to	use	model	binding.
You	can	also	explicitly	define	how	route	parameters	correspond	to	models.	To	register	an	explicit	binding,	use
the	router's	model	method	to	specify	the	class	for	a	given	parameter.	You	should	define	your	explicit	model
bindings	at	the	beginning	of	the	boot	method	of	your	RouteServiceProvider	class:

use	App\Models\User;

use	Illuminate\Support\Facades\Route;

/**

	*	Define	your	route	model	bindings,	pattern	filters,	etc.

	*/

public	function	boot():	void

{

				Route::model('user',	User::class);

				//	...

}

Next,	define	a	route	that	contains	a	{user}	parameter:

use	App\Models\User;

Route::get('/users/{user}',	function	(User	$user)	{

				//	...

});

Since	we	have	bound	all	{user}	parameters	to	the	App\Models\User	model,	an	instance	of	that	class	will	be
injected	into	the	route.	So,	for	example,	a	request	to	users/1	will	inject	the	User	instance	from	the	database
which	has	an	ID	of	1.

If	a	matching	model	instance	is	not	found	in	the	database,	a	404	HTTP	response	will	be	automatically
generated.

Customizing	the	Resolution	Logic

If	you	wish	to	define	your	own	model	binding	resolution	logic,	you	may	use	the	Route::bind	method.	The
closure	you	pass	to	the	bind	method	will	receive	the	value	of	the	URI	segment	and	should	return	the	instance	of
the	class	that	should	be	injected	into	the	route.	Again,	this	customization	should	take	place	in	the	boot	method
of	your	application's	RouteServiceProvider:

use	App\Models\User;

use	Illuminate\Support\Facades\Route;

/**

	*	Define	your	route	model	bindings,	pattern	filters,	etc.

	*/

public	function	boot():	void

{

				Route::bind('user',	function	(string	$value)	{

								return	User::where('name',	$value)->firstOrFail();

				});

				//	...

}

Alternatively,	you	may	override	the	resolveRouteBinding	method	on	your	Eloquent	model.	This	method	will
receive	the	value	of	the	URI	segment	and	should	return	the	instance	of	the	class	that	should	be	injected	into	the
route:

/**

	*	Retrieve	the	model	for	a	bound	value.

	*

	*	@param		mixed		$value

Laravel	Documentation	-	10.x	/	The	Basics 76

	*	@param		string|null		$field

	*	@return	\Illuminate\Database\Eloquent\Model|null

	*/

public	function	resolveRouteBinding($value,	$field	=	null)

{

				return	$this->where('name',	$value)->firstOrFail();

}

If	a	route	is	utilizing	implicit	binding	scoping,	the	resolveChildRouteBinding	method	will	be	used	to	resolve	the
child	binding	of	the	parent	model:

/**

	*	Retrieve	the	child	model	for	a	bound	value.

	*

	*	@param		string		$childType

	*	@param		mixed		$value

	*	@param		string|null		$field

	*	@return	\Illuminate\Database\Eloquent\Model|null

	*/

public	function	resolveChildRouteBinding($childType,	$value,	$field)

{

				return	parent::resolveChildRouteBinding($childType,	$value,	$field);

}

Fallback	Routes

Using	the	Route::fallback	method,	you	may	define	a	route	that	will	be	executed	when	no	other	route	matches
the	incoming	request.	Typically,	unhandled	requests	will	automatically	render	a	"404"	page	via	your
application's	exception	handler.	However,	since	you	would	typically	define	the	fallback	route	within	your	
routes/web.php	file,	all	middleware	in	the	web	middleware	group	will	apply	to	the	route.	You	are	free	to	add
additional	middleware	to	this	route	as	needed:

Route::fallback(function	()	{

				//	...

});

[!WARNING]
The	fallback	route	should	always	be	the	last	route	registered	by	your	application.

Rate	Limiting

Defining	Rate	Limiters

Laravel	includes	powerful	and	customizable	rate	limiting	services	that	you	may	utilize	to	restrict	the	amount	of
traffic	for	a	given	route	or	group	of	routes.	To	get	started,	you	should	define	rate	limiter	configurations	that
meet	your	application's	needs.

Typically,	rate	limiters	are	defined	within	the	boot	method	of	your	application's	
App\Providers\RouteServiceProvider	class.	In	fact,	this	class	already	includes	a	rate	limiter	definition	that	is
applied	to	the	routes	in	your	application's	routes/api.php	file:

use	Illuminate\Cache\RateLimiting\Limit;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\RateLimiter;

/**

	*	Define	your	route	model	bindings,	pattern	filters,	and	other	route	configuration.

	*/

protected	function	boot():	void

{

				RateLimiter::for('api',	function	(Request	$request)	{

								return	Limit::perMinute(60)->by($request->user()?->id	?:	$request->ip());

				});

				//	...

}

Rate	limiters	are	defined	using	the	RateLimiter	facade's	for	method.	The	for	method	accepts	a	rate	limiter	name
and	a	closure	that	returns	the	limit	configuration	that	should	apply	to	routes	that	are	assigned	to	the	rate	limiter.

Laravel	Documentation	-	10.x	/	The	Basics 77

Limit	configuration	are	instances	of	the	Illuminate\Cache\RateLimiting\Limit	class.	This	class	contains	helpful
"builder"	methods	so	that	you	can	quickly	define	your	limit.	The	rate	limiter	name	may	be	any	string	you	wish:

use	Illuminate\Cache\RateLimiting\Limit;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\RateLimiter;

/**

	*	Define	your	route	model	bindings,	pattern	filters,	and	other	route	configuration.

	*/

protected	function	boot():	void

{

				RateLimiter::for('global',	function	(Request	$request)	{

								return	Limit::perMinute(1000);

				});

				//	...

}

If	the	incoming	request	exceeds	the	specified	rate	limit,	a	response	with	a	429	HTTP	status	code	will
automatically	be	returned	by	Laravel.	If	you	would	like	to	define	your	own	response	that	should	be	returned	by
a	rate	limit,	you	may	use	the	response	method:

RateLimiter::for('global',	function	(Request	$request)	{

				return	Limit::perMinute(1000)->response(function	(Request	$request,	array	$headers)	{

								return	response('Custom	response...',	429,	$headers);

				});

});

Since	rate	limiter	callbacks	receive	the	incoming	HTTP	request	instance,	you	may	build	the	appropriate	rate
limit	dynamically	based	on	the	incoming	request	or	authenticated	user:

RateLimiter::for('uploads',	function	(Request	$request)	{

				return	$request->user()->vipCustomer()

																?	Limit::none()

																:	Limit::perMinute(100);

});

Segmenting	Rate	Limits

Sometimes	you	may	wish	to	segment	rate	limits	by	some	arbitrary	value.	For	example,	you	may	wish	to	allow
users	to	access	a	given	route	100	times	per	minute	per	IP	address.	To	accomplish	this,	you	may	use	the	by
method	when	building	your	rate	limit:

RateLimiter::for('uploads',	function	(Request	$request)	{

				return	$request->user()->vipCustomer()

																?	Limit::none()

																:	Limit::perMinute(100)->by($request->ip());

});

To	illustrate	this	feature	using	another	example,	we	can	limit	access	to	the	route	to	100	times	per	minute	per
authenticated	user	ID	or	10	times	per	minute	per	IP	address	for	guests:

RateLimiter::for('uploads',	function	(Request	$request)	{

				return	$request->user()

																?	Limit::perMinute(100)->by($request->user()->id)

																:	Limit::perMinute(10)->by($request->ip());

});

Multiple	Rate	Limits

If	needed,	you	may	return	an	array	of	rate	limits	for	a	given	rate	limiter	configuration.	Each	rate	limit	will	be
evaluated	for	the	route	based	on	the	order	they	are	placed	within	the	array:

RateLimiter::for('login',	function	(Request	$request)	{

				return	[

								Limit::perMinute(500),

								Limit::perMinute(3)->by($request->input('email')),

];

});

Laravel	Documentation	-	10.x	/	The	Basics 78

Attaching	Rate	Limiters	to	Routes

Rate	limiters	may	be	attached	to	routes	or	route	groups	using	the	throttle	middleware.	The	throttle	middleware
accepts	the	name	of	the	rate	limiter	you	wish	to	assign	to	the	route:

Route::middleware(['throttle:uploads'])->group(function	()	{

				Route::post('/audio',	function	()	{

								//	...

				});

				Route::post('/video',	function	()	{

								//	...

				});

});

Throttling	With	Redis

Typically,	the	throttle	middleware	is	mapped	to	the	Illuminate\Routing\Middleware\ThrottleRequests	class.
This	mapping	is	defined	in	your	application's	HTTP	kernel	(App\Http\Kernel).	However,	if	you	are	using	Redis
as	your	application's	cache	driver,	you	may	wish	to	change	this	mapping	to	use	the	
Illuminate\Routing\Middleware\ThrottleRequestsWithRedis	class.	This	class	is	more	efficient	at	managing	rate
limiting	using	Redis:

'throttle'	=>	\Illuminate\Routing\Middleware\ThrottleRequestsWithRedis::class,

Form	Method	Spoofing

HTML	forms	do	not	support	PUT,	PATCH,	or	DELETE	actions.	So,	when	defining	PUT,	PATCH,	or	DELETE	routes	that
are	called	from	an	HTML	form,	you	will	need	to	add	a	hidden	_method	field	to	the	form.	The	value	sent	with	the
_method	field	will	be	used	as	the	HTTP	request	method:

<form	action="/example"	method="POST">

				<input	type="hidden"	name="_method"	value="PUT">

				<input	type="hidden"	name="_token"	value="{{	csrf_token()	}}">

</form>

For	convenience,	you	may	use	the	@method	Blade	directive	to	generate	the	_method	input	field:

<form	action="/example"	method="POST">

				@method('PUT')

				@csrf

</form>

Accessing	the	Current	Route

You	may	use	the	current,	currentRouteName,	and	currentRouteAction	methods	on	the	Route	facade	to	access
information	about	the	route	handling	the	incoming	request:

use	Illuminate\Support\Facades\Route;

$route	=	Route::current();	//	Illuminate\Routing\Route

$name	=	Route::currentRouteName();	//	string

$action	=	Route::currentRouteAction();	//	string

You	may	refer	to	the	API	documentation	for	both	the	underlying	class	of	the	Route	facade	and	Route	instance
to	review	all	of	the	methods	that	are	available	on	the	router	and	route	classes.

Cross-Origin	Resource	Sharing	(CORS)

Laravel	can	automatically	respond	to	CORS	OPTIONS	HTTP	requests	with	values	that	you	configure.	All	CORS
settings	may	be	configured	in	your	application's	config/cors.php	configuration	file.	The	OPTIONS	requests	will
automatically	be	handled	by	the	HandleCors	middleware	that	is	included	by	default	in	your	global	middleware
stack.	Your	global	middleware	stack	is	located	in	your	application's	HTTP	kernel	(App\Http\Kernel).

[!NOTE]

Laravel	Documentation	-	10.x	/	The	Basics 79

https://laravel.com/api/{{version}}/Illuminate/Routing/Router.html
https://laravel.com/api/{{version}}/Illuminate/Routing/Route.html

For	more	information	on	CORS	and	CORS	headers,	please	consult	the	MDN	web	documentation	on
CORS.

Route	Caching

When	deploying	your	application	to	production,	you	should	take	advantage	of	Laravel's	route	cache.	Using	the
route	cache	will	drastically	decrease	the	amount	of	time	it	takes	to	register	all	of	your	application's	routes.	To
generate	a	route	cache,	execute	the	route:cache	Artisan	command:

php	artisan	route:cache

After	running	this	command,	your	cached	routes	file	will	be	loaded	on	every	request.	Remember,	if	you	add
any	new	routes	you	will	need	to	generate	a	fresh	route	cache.	Because	of	this,	you	should	only	run	the	
route:cache	command	during	your	project's	deployment.

You	may	use	the	route:clear	command	to	clear	the	route	cache:

php	artisan	route:clear

Laravel	Documentation	-	10.x	/	The	Basics 80

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#The_HTTP_response_headers

The	Basics

Middleware
Introduction
Defining	Middleware
Registering	Middleware

Global	Middleware
Assigning	Middleware	to	Routes
Middleware	Groups
Sorting	Middleware

Middleware	Parameters
Terminable	Middleware

Introduction

Middleware	provide	a	convenient	mechanism	for	inspecting	and	filtering	HTTP	requests	entering	your
application.	For	example,	Laravel	includes	a	middleware	that	verifies	the	user	of	your	application	is
authenticated.	If	the	user	is	not	authenticated,	the	middleware	will	redirect	the	user	to	your	application's	login
screen.	However,	if	the	user	is	authenticated,	the	middleware	will	allow	the	request	to	proceed	further	into	the
application.

Additional	middleware	can	be	written	to	perform	a	variety	of	tasks	besides	authentication.	For	example,	a
logging	middleware	might	log	all	incoming	requests	to	your	application.	There	are	several	middleware	included
in	the	Laravel	framework,	including	middleware	for	authentication	and	CSRF	protection.	All	of	these
middleware	are	located	in	the	app/Http/Middleware	directory.

Defining	Middleware

To	create	a	new	middleware,	use	the	make:middleware	Artisan	command:

php	artisan	make:middleware	EnsureTokenIsValid

This	command	will	place	a	new	EnsureTokenIsValid	class	within	your	app/Http/Middleware	directory.	In	this
middleware,	we	will	only	allow	access	to	the	route	if	the	supplied	token	input	matches	a	specified	value.
Otherwise,	we	will	redirect	the	users	back	to	the	home	URI:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	EnsureTokenIsValid

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								if	($request->input('token')	!==	'my-secret-token')	{

												return	redirect('home');

								}

								return	$next($request);

				}

}

As	you	can	see,	if	the	given	token	does	not	match	our	secret	token,	the	middleware	will	return	an	HTTP	redirect
to	the	client;	otherwise,	the	request	will	be	passed	further	into	the	application.	To	pass	the	request	deeper	into
the	application	(allowing	the	middleware	to	"pass"),	you	should	call	the	$next	callback	with	the	$request.

Laravel	Documentation	-	10.x	/	Middleware 81

It's	best	to	envision	middleware	as	a	series	of	"layers"	HTTP	requests	must	pass	through	before	they	hit	your
application.	Each	layer	can	examine	the	request	and	even	reject	it	entirely.

[!NOTE]
All	middleware	are	resolved	via	the	service	container,	so	you	may	type-hint	any	dependencies	you	need
within	a	middleware's	constructor.

Middleware	and	Responses

Of	course,	a	middleware	can	perform	tasks	before	or	after	passing	the	request	deeper	into	the	application.	For
example,	the	following	middleware	would	perform	some	task	before	the	request	is	handled	by	the	application:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	BeforeMiddleware

{

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								//	Perform	action

								return	$next($request);

				}

}

However,	this	middleware	would	perform	its	task	after	the	request	is	handled	by	the	application:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	AfterMiddleware

{

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								$response	=	$next($request);

								//	Perform	action

								return	$response;

				}

}

Registering	Middleware

Global	Middleware

If	you	want	a	middleware	to	run	during	every	HTTP	request	to	your	application,	list	the	middleware	class	in	the
$middleware	property	of	your	app/Http/Kernel.php	class.

Assigning	Middleware	to	Routes

If	you	would	like	to	assign	middleware	to	specific	routes,	you	may	invoke	the	middleware	method	when
defining	the	route:

use	App\Http\Middleware\Authenticate;

Route::get('/profile',	function	()	{

				//	...

})->middleware(Authenticate::class);

Laravel	Documentation	-	10.x	/	Middleware 82

You	may	assign	multiple	middleware	to	the	route	by	passing	an	array	of	middleware	names	to	the	middleware
method:

Route::get('/',	function	()	{

				//	...

})->middleware([First::class,	Second::class]);

For	convenience,	you	may	assign	aliases	to	middleware	in	your	application's	app/Http/Kernel.php	file.	By
default,	the	$middlewareAliases	property	of	this	class	contains	entries	for	the	middleware	included	with	Laravel.
You	may	add	your	own	middleware	to	this	list	and	assign	it	an	alias	of	your	choosing:

//	Within	App\Http\Kernel	class...

protected	$middlewareAliases	=	[

				'auth'	=>	\App\Http\Middleware\Authenticate::class,

				'auth.basic'	=>	\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

				'bindings'	=>	\Illuminate\Routing\Middleware\SubstituteBindings::class,

				'cache.headers'	=>	\Illuminate\Http\Middleware\SetCacheHeaders::class,

				'can'	=>	\Illuminate\Auth\Middleware\Authorize::class,

				'guest'	=>	\App\Http\Middleware\RedirectIfAuthenticated::class,

				'signed'	=>	\Illuminate\Routing\Middleware\ValidateSignature::class,

				'throttle'	=>	\Illuminate\Routing\Middleware\ThrottleRequests::class,

				'verified'	=>	\Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,

];

Once	the	middleware	alias	has	been	defined	in	the	HTTP	kernel,	you	may	use	the	alias	when	assigning
middleware	to	routes:

Route::get('/profile',	function	()	{

				//	...

})->middleware('auth');

Excluding	Middleware

When	assigning	middleware	to	a	group	of	routes,	you	may	occasionally	need	to	prevent	the	middleware	from
being	applied	to	an	individual	route	within	the	group.	You	may	accomplish	this	using	the	withoutMiddleware
method:

use	App\Http\Middleware\EnsureTokenIsValid;

Route::middleware([EnsureTokenIsValid::class])->group(function	()	{

				Route::get('/',	function	()	{

								//	...

				});

				Route::get('/profile',	function	()	{

								//	...

				})->withoutMiddleware([EnsureTokenIsValid::class]);

});

You	may	also	exclude	a	given	set	of	middleware	from	an	entire	group	of	route	definitions:

use	App\Http\Middleware\EnsureTokenIsValid;

Route::withoutMiddleware([EnsureTokenIsValid::class])->group(function	()	{

				Route::get('/profile',	function	()	{

								//	...

				});

});

The	withoutMiddleware	method	can	only	remove	route	middleware	and	does	not	apply	to	global	middleware.

Middleware	Groups

Sometimes	you	may	want	to	group	several	middleware	under	a	single	key	to	make	them	easier	to	assign	to
routes.	You	may	accomplish	this	using	the	$middlewareGroups	property	of	your	HTTP	kernel.

Laravel	includes	predefined	web	and	api	middleware	groups	that	contain	common	middleware	you	may	want	to
apply	to	your	web	and	API	routes.	Remember,	these	middleware	groups	are	automatically	applied	by	your
application's	App\Providers\RouteServiceProvider	service	provider	to	routes	within	your	corresponding	web	and	

Laravel	Documentation	-	10.x	/	Middleware 83

api	route	files:

/**

	*	The	application's	route	middleware	groups.

	*

	*	@var	array

	*/

protected	$middlewareGroups	=	[

				'web'	=>	[

								\App\Http\Middleware\EncryptCookies::class,

								\Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

								\Illuminate\Session\Middleware\StartSession::class,

								\Illuminate\View\Middleware\ShareErrorsFromSession::class,

								\App\Http\Middleware\VerifyCsrfToken::class,

								\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

				'api'	=>	[

								\Illuminate\Routing\Middleware\ThrottleRequests::class.':api',

								\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

];

Middleware	groups	may	be	assigned	to	routes	and	controller	actions	using	the	same	syntax	as	individual
middleware.	Again,	middleware	groups	make	it	more	convenient	to	assign	many	middleware	to	a	route	at	once:

Route::get('/',	function	()	{

				//	...

})->middleware('web');

Route::middleware(['web'])->group(function	()	{

				//	...

});

[!NOTE]
Out	of	the	box,	the	web	and	api	middleware	groups	are	automatically	applied	to	your	application's
corresponding	routes/web.php	and	routes/api.php	files	by	the	App\Providers\RouteServiceProvider.

Sorting	Middleware

Rarely,	you	may	need	your	middleware	to	execute	in	a	specific	order	but	not	have	control	over	their	order	when
they	are	assigned	to	the	route.	In	this	case,	you	may	specify	your	middleware	priority	using	the	
$middlewarePriority	property	of	your	app/Http/Kernel.php	file.	This	property	may	not	exist	in	your	HTTP
kernel	by	default.	If	it	does	not	exist,	you	may	copy	its	default	definition	below:

/**

	*	The	priority-sorted	list	of	middleware.

	*

	*	This	forces	non-global	middleware	to	always	be	in	the	given	order.

	*

	*	@var	string[]

	*/

protected	$middlewarePriority	=	[

				\Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests::class,

				\Illuminate\Cookie\Middleware\EncryptCookies::class,

				\Illuminate\Session\Middleware\StartSession::class,

				\Illuminate\View\Middleware\ShareErrorsFromSession::class,

				\Illuminate\Contracts\Auth\Middleware\AuthenticatesRequests::class,

				\Illuminate\Routing\Middleware\ThrottleRequests::class,

				\Illuminate\Routing\Middleware\ThrottleRequestsWithRedis::class,

				\Illuminate\Contracts\Session\Middleware\AuthenticatesSessions::class,

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

				\Illuminate\Auth\Middleware\Authorize::class,

];

Middleware	Parameters

Middleware	can	also	receive	additional	parameters.	For	example,	if	your	application	needs	to	verify	that	the
authenticated	user	has	a	given	"role"	before	performing	a	given	action,	you	could	create	an	EnsureUserHasRole
middleware	that	receives	a	role	name	as	an	additional	argument.

Additional	middleware	parameters	will	be	passed	to	the	middleware	after	the	$next	argument:

Laravel	Documentation	-	10.x	/	Middleware 84

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	EnsureUserHasRole

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next,	string	$role):	Response

				{

								if	(!	$request->user()->hasRole($role))	{

												//	Redirect...

								}

								return	$next($request);

				}

}

Middleware	parameters	may	be	specified	when	defining	the	route	by	separating	the	middleware	name	and
parameters	with	a	::

Route::put('/post/{id}',	function	(string	$id)	{

				//	...

})->middleware('role:editor');

Multiple	parameters	may	be	delimited	by	commas:

Route::put('/post/{id}',	function	(string	$id)	{

				//	...

})->middleware('role:editor,publisher');

Terminable	Middleware

Sometimes	a	middleware	may	need	to	do	some	work	after	the	HTTP	response	has	been	sent	to	the	browser.	If
you	define	a	terminate	method	on	your	middleware	and	your	web	server	is	using	FastCGI,	the	terminate
method	will	automatically	be	called	after	the	response	is	sent	to	the	browser:

<?php

namespace	Illuminate\Session\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	TerminatingMiddleware

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								return	$next($request);

				}

				/**

					*	Handle	tasks	after	the	response	has	been	sent	to	the	browser.

					*/

				public	function	terminate(Request	$request,	Response	$response):	void

				{

								//	...

				}

}

The	terminate	method	should	receive	both	the	request	and	the	response.	Once	you	have	defined	a	terminable

Laravel	Documentation	-	10.x	/	Middleware 85

middleware,	you	should	add	it	to	the	list	of	routes	or	global	middleware	in	the	app/Http/Kernel.php	file.

When	calling	the	terminate	method	on	your	middleware,	Laravel	will	resolve	a	fresh	instance	of	the
middleware	from	the	service	container.	If	you	would	like	to	use	the	same	middleware	instance	when	the	handle
and	terminate	methods	are	called,	register	the	middleware	with	the	container	using	the	container's	singleton
method.	Typically	this	should	be	done	in	the	register	method	of	your	AppServiceProvider:

use	App\Http\Middleware\TerminatingMiddleware;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->app->singleton(TerminatingMiddleware::class);

}

Laravel	Documentation	-	10.x	/	Middleware 86

The	Basics

CSRF	Protection
Introduction
Preventing	CSRF	Requests

Excluding	URIs
X-CSRF-Token
X-XSRF-Token

Introduction

Cross-site	request	forgeries	are	a	type	of	malicious	exploit	whereby	unauthorized	commands	are	performed	on
behalf	of	an	authenticated	user.	Thankfully,	Laravel	makes	it	easy	to	protect	your	application	from	cross-site
request	forgery	(CSRF)	attacks.

An	Explanation	of	the	Vulnerability

In	case	you're	not	familiar	with	cross-site	request	forgeries,	let's	discuss	an	example	of	how	this	vulnerability
can	be	exploited.	Imagine	your	application	has	a	/user/email	route	that	accepts	a	POST	request	to	change	the
authenticated	user's	email	address.	Most	likely,	this	route	expects	an	email	input	field	to	contain	the	email
address	the	user	would	like	to	begin	using.

Without	CSRF	protection,	a	malicious	website	could	create	an	HTML	form	that	points	to	your	application's	
/user/email	route	and	submits	the	malicious	user's	own	email	address:

<form	action="https://your-application.com/user/email"	method="POST">

				<input	type="email"	value="malicious-email@example.com">

</form>

<script>

				document.forms[0].submit();

</script>

If	the	malicious	website	automatically	submits	the	form	when	the	page	is	loaded,	the	malicious	user	only	needs
to	lure	an	unsuspecting	user	of	your	application	to	visit	their	website	and	their	email	address	will	be	changed	in
your	application.

To	prevent	this	vulnerability,	we	need	to	inspect	every	incoming	POST,	PUT,	PATCH,	or	DELETE	request	for	a	secret
session	value	that	the	malicious	application	is	unable	to	access.

Preventing	CSRF	Requests

Laravel	automatically	generates	a	CSRF	"token"	for	each	active	user	session	managed	by	the	application.	This
token	is	used	to	verify	that	the	authenticated	user	is	the	person	actually	making	the	requests	to	the	application.
Since	this	token	is	stored	in	the	user's	session	and	changes	each	time	the	session	is	regenerated,	a	malicious
application	is	unable	to	access	it.

The	current	session's	CSRF	token	can	be	accessed	via	the	request's	session	or	via	the	csrf_token	helper
function:

use	Illuminate\Http\Request;

Route::get('/token',	function	(Request	$request)	{

				$token	=	$request->session()->token();

				$token	=	csrf_token();

				//	...

});

Anytime	you	define	a	"POST",	"PUT",	"PATCH",	or	"DELETE"	HTML	form	in	your	application,	you	should
include	a	hidden	CSRF	_token	field	in	the	form	so	that	the	CSRF	protection	middleware	can	validate	the

Laravel	Documentation	-	10.x	/	CSRF	Protection 87

https://en.wikipedia.org/wiki/Cross-site_request_forgery

request.	For	convenience,	you	may	use	the	@csrf	Blade	directive	to	generate	the	hidden	token	input	field:

<form	method="POST"	action="/profile">

				@csrf

				<!--	Equivalent	to...	-->

				<input	type="hidden"	name="_token"	value="{{	csrf_token()	}}"	/>

</form>

The	App\Http\Middleware\VerifyCsrfToken	middleware,	which	is	included	in	the	web	middleware	group	by
default,	will	automatically	verify	that	the	token	in	the	request	input	matches	the	token	stored	in	the	session.
When	these	two	tokens	match,	we	know	that	the	authenticated	user	is	the	one	initiating	the	request.

CSRF	Tokens	&	SPAs

If	you	are	building	a	SPA	that	is	utilizing	Laravel	as	an	API	backend,	you	should	consult	the	Laravel	Sanctum
documentation	for	information	on	authenticating	with	your	API	and	protecting	against	CSRF	vulnerabilities.

Excluding	URIs	From	CSRF	Protection

Sometimes	you	may	wish	to	exclude	a	set	of	URIs	from	CSRF	protection.	For	example,	if	you	are	using	Stripe
to	process	payments	and	are	utilizing	their	webhook	system,	you	will	need	to	exclude	your	Stripe	webhook
handler	route	from	CSRF	protection	since	Stripe	will	not	know	what	CSRF	token	to	send	to	your	routes.

Typically,	you	should	place	these	kinds	of	routes	outside	of	the	web	middleware	group	that	the	
App\Providers\RouteServiceProvider	applies	to	all	routes	in	the	routes/web.php	file.	However,	you	may	also
exclude	the	routes	by	adding	their	URIs	to	the	$except	property	of	the	VerifyCsrfToken	middleware:

<?php

namespace	App\Http\Middleware;

use	Illuminate\Foundation\Http\Middleware\VerifyCsrfToken	as	Middleware;

class	VerifyCsrfToken	extends	Middleware

{

				/**

					*	The	URIs	that	should	be	excluded	from	CSRF	verification.

					*

					*	@var	array

					*/

				protected	$except	=	[

								'stripe/*',

								'http://example.com/foo/bar',

								'http://example.com/foo/*',

];

}

[!NOTE]
For	convenience,	the	CSRF	middleware	is	automatically	disabled	for	all	routes	when	running	tests.

X-CSRF-TOKEN

In	addition	to	checking	for	the	CSRF	token	as	a	POST	parameter,	the	App\Http\Middleware\VerifyCsrfToken
middleware	will	also	check	for	the	X-CSRF-TOKEN	request	header.	You	could,	for	example,	store	the	token	in	an
HTML	meta	tag:

<meta	name="csrf-token"	content="{{	csrf_token()	}}">

Then,	you	can	instruct	a	library	like	jQuery	to	automatically	add	the	token	to	all	request	headers.	This	provides
simple,	convenient	CSRF	protection	for	your	AJAX	based	applications	using	legacy	JavaScript	technology:

$.ajaxSetup({

				headers:	{

								'X-CSRF-TOKEN':	$('meta[name="csrf-token"]').attr('content')

				}

});

Laravel	Documentation	-	10.x	/	CSRF	Protection 88

https://stripe.com

X-XSRF-TOKEN

Laravel	stores	the	current	CSRF	token	in	an	encrypted	XSRF-TOKEN	cookie	that	is	included	with	each	response
generated	by	the	framework.	You	can	use	the	cookie	value	to	set	the	X-XSRF-TOKEN	request	header.

This	cookie	is	primarily	sent	as	a	developer	convenience	since	some	JavaScript	frameworks	and	libraries,	like
Angular	and	Axios,	automatically	place	its	value	in	the	X-XSRF-TOKEN	header	on	same-origin	requests.

[!NOTE]
By	default,	the	resources/js/bootstrap.js	file	includes	the	Axios	HTTP	library	which	will	automatically
send	the	X-XSRF-TOKEN	header	for	you.

Laravel	Documentation	-	10.x	/	CSRF	Protection 89

The	Basics

Controllers
Introduction
Writing	Controllers

Basic	Controllers
Single	Action	Controllers

Controller	Middleware
Resource	Controllers

Partial	Resource	Routes
Nested	Resources
Naming	Resource	Routes
Naming	Resource	Route	Parameters
Scoping	Resource	Routes
Localizing	Resource	URIs
Supplementing	Resource	Controllers
Singleton	Resource	Controllers

Dependency	Injection	and	Controllers

Introduction

Instead	of	defining	all	of	your	request	handling	logic	as	closures	in	your	route	files,	you	may	wish	to	organize
this	behavior	using	"controller"	classes.	Controllers	can	group	related	request	handling	logic	into	a	single	class.
For	example,	a	UserController	class	might	handle	all	incoming	requests	related	to	users,	including	showing,
creating,	updating,	and	deleting	users.	By	default,	controllers	are	stored	in	the	app/Http/Controllers	directory.

Writing	Controllers

Basic	Controllers

To	quickly	generate	a	new	controller,	you	may	run	the	make:controller	Artisan	command.	By	default,	all	of	the
controllers	for	your	application	are	stored	in	the	app/Http/Controllers	directory:

php	artisan	make:controller	UserController

Let's	take	a	look	at	an	example	of	a	basic	controller.	A	controller	may	have	any	number	of	public	methods
which	will	respond	to	incoming	HTTP	requests:

<?php

namespace	App\Http\Controllers;

use	App\Models\User;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	a	given	user.

					*/

				public	function	show(string	$id):	View

				{

								return	view('user.profile',	[

												'user'	=>	User::findOrFail($id)

]);

				}

}

Once	you	have	written	a	controller	class	and	method,	you	may	define	a	route	to	the	controller	method	like	so:

use	App\Http\Controllers\UserController;

Route::get('/user/{id}',	[UserController::class,	'show']);

Laravel	Documentation	-	10.x	/	Controllers 90

When	an	incoming	request	matches	the	specified	route	URI,	the	show	method	on	the	
App\Http\Controllers\UserController	class	will	be	invoked	and	the	route	parameters	will	be	passed	to	the
method.

[!NOTE]
Controllers	are	not	required	to	extend	a	base	class.	However,	you	will	not	have	access	to	convenient
features	such	as	the	middleware	and	authorize	methods.

Single	Action	Controllers

If	a	controller	action	is	particularly	complex,	you	might	find	it	convenient	to	dedicate	an	entire	controller	class
to	that	single	action.	To	accomplish	this,	you	may	define	a	single	__invoke	method	within	the	controller:

<?php

namespace	App\Http\Controllers;

class	ProvisionServer	extends	Controller

{

				/**

					*	Provision	a	new	web	server.

					*/

				public	function	__invoke()

				{

								//	...

				}

}

When	registering	routes	for	single	action	controllers,	you	do	not	need	to	specify	a	controller	method.	Instead,
you	may	simply	pass	the	name	of	the	controller	to	the	router:

use	App\Http\Controllers\ProvisionServer;

Route::post('/server',	ProvisionServer::class);

You	may	generate	an	invokable	controller	by	using	the	--invokable	option	of	the	make:controller	Artisan
command:

php	artisan	make:controller	ProvisionServer	--invokable

[!NOTE]
Controller	stubs	may	be	customized	using	stub	publishing.

Controller	Middleware

Middleware	may	be	assigned	to	the	controller's	routes	in	your	route	files:

Route::get('profile',	[UserController::class,	'show'])->middleware('auth');

Or,	you	may	find	it	convenient	to	specify	middleware	within	your	controller's	constructor.	Using	the	middleware
method	within	your	controller's	constructor,	you	can	assign	middleware	to	the	controller's	actions:

class	UserController	extends	Controller

{

				/**

					*	Instantiate	a	new	controller	instance.

					*/

				public	function	__construct()

				{

								$this->middleware('auth');

								$this->middleware('log')->only('index');

								$this->middleware('subscribed')->except('store');

				}

}

Controllers	also	allow	you	to	register	middleware	using	a	closure.	This	provides	a	convenient	way	to	define	an
inline	middleware	for	a	single	controller	without	defining	an	entire	middleware	class:

use	Closure;

Laravel	Documentation	-	10.x	/	Controllers 91

use	Illuminate\Http\Request;

$this->middleware(function	(Request	$request,	Closure	$next)	{

				return	$next($request);

});

Resource	Controllers

If	you	think	of	each	Eloquent	model	in	your	application	as	a	"resource",	it	is	typical	to	perform	the	same	sets	of
actions	against	each	resource	in	your	application.	For	example,	imagine	your	application	contains	a	Photo
model	and	a	Movie	model.	It	is	likely	that	users	can	create,	read,	update,	or	delete	these	resources.

Because	of	this	common	use	case,	Laravel	resource	routing	assigns	the	typical	create,	read,	update,	and	delete
("CRUD")	routes	to	a	controller	with	a	single	line	of	code.	To	get	started,	we	can	use	the	make:controller
Artisan	command's	--resource	option	to	quickly	create	a	controller	to	handle	these	actions:

php	artisan	make:controller	PhotoController	--resource

This	command	will	generate	a	controller	at	app/Http/Controllers/PhotoController.php.	The	controller	will
contain	a	method	for	each	of	the	available	resource	operations.	Next,	you	may	register	a	resource	route	that
points	to	the	controller:

use	App\Http\Controllers\PhotoController;

Route::resource('photos',	PhotoController::class);

This	single	route	declaration	creates	multiple	routes	to	handle	a	variety	of	actions	on	the	resource.	The
generated	controller	will	already	have	methods	stubbed	for	each	of	these	actions.	Remember,	you	can	always
get	a	quick	overview	of	your	application's	routes	by	running	the	route:list	Artisan	command.

You	may	even	register	many	resource	controllers	at	once	by	passing	an	array	to	the	resources	method:

Route::resources([

				'photos'	=>	PhotoController::class,

				'posts'	=>	PostController::class,

]);

Actions	Handled	by	Resource	Controllers

Verb URI Action Route	Name

GET /photos index photos.index
GET /photos/create create photos.create
POST /photos store photos.store
GET /photos/{photo} show photos.show
GET /photos/{photo}/edit edit photos.edit
PUT/PATCH /photos/{photo} update photos.update
DELETE /photos/{photo} destroy photos.destroy

Customizing	Missing	Model	Behavior

Typically,	a	404	HTTP	response	will	be	generated	if	an	implicitly	bound	resource	model	is	not	found.	However,
you	may	customize	this	behavior	by	calling	the	missing	method	when	defining	your	resource	route.	The	missing
method	accepts	a	closure	that	will	be	invoked	if	an	implicitly	bound	model	can	not	be	found	for	any	of	the
resource's	routes:

use	App\Http\Controllers\PhotoController;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Redirect;

Route::resource('photos',	PhotoController::class)

								->missing(function	(Request	$request)	{

												return	Redirect::route('photos.index');

								});

Laravel	Documentation	-	10.x	/	Controllers 92

Soft	Deleted	Models

Typically,	implicit	model	binding	will	not	retrieve	models	that	have	been	soft	deleted,	and	will	instead	return	a
404	HTTP	response.	However,	you	can	instruct	the	framework	to	allow	soft	deleted	models	by	invoking	the	
withTrashed	method	when	defining	your	resource	route:

use	App\Http\Controllers\PhotoController;

Route::resource('photos',	PhotoController::class)->withTrashed();

Calling	withTrashed	with	no	arguments	will	allow	soft	deleted	models	for	the	show,	edit,	and	update	resource
routes.	You	may	specify	a	subset	of	these	routes	by	passing	an	array	to	the	withTrashed	method:

Route::resource('photos',	PhotoController::class)->withTrashed(['show']);

Specifying	the	Resource	Model

If	you	are	using	route	model	binding	and	would	like	the	resource	controller's	methods	to	type-hint	a	model
instance,	you	may	use	the	--model	option	when	generating	the	controller:

php	artisan	make:controller	PhotoController	--model=Photo	--resource

Generating	Form	Requests

You	may	provide	the	--requests	option	when	generating	a	resource	controller	to	instruct	Artisan	to	generate
form	request	classes	for	the	controller's	storage	and	update	methods:

php	artisan	make:controller	PhotoController	--model=Photo	--resource	--requests

Partial	Resource	Routes

When	declaring	a	resource	route,	you	may	specify	a	subset	of	actions	the	controller	should	handle	instead	of	the
full	set	of	default	actions:

use	App\Http\Controllers\PhotoController;

Route::resource('photos',	PhotoController::class)->only([

				'index',	'show'

]);

Route::resource('photos',	PhotoController::class)->except([

				'create',	'store',	'update',	'destroy'

]);

API	Resource	Routes

When	declaring	resource	routes	that	will	be	consumed	by	APIs,	you	will	commonly	want	to	exclude	routes	that
present	HTML	templates	such	as	create	and	edit.	For	convenience,	you	may	use	the	apiResource	method	to
automatically	exclude	these	two	routes:

use	App\Http\Controllers\PhotoController;

Route::apiResource('photos',	PhotoController::class);

You	may	register	many	API	resource	controllers	at	once	by	passing	an	array	to	the	apiResources	method:

use	App\Http\Controllers\PhotoController;

use	App\Http\Controllers\PostController;

Route::apiResources([

				'photos'	=>	PhotoController::class,

				'posts'	=>	PostController::class,

]);

To	quickly	generate	an	API	resource	controller	that	does	not	include	the	create	or	edit	methods,	use	the	--api
switch	when	executing	the	make:controller	command:

Laravel	Documentation	-	10.x	/	Controllers 93

php	artisan	make:controller	PhotoController	--api

Nested	Resources

Sometimes	you	may	need	to	define	routes	to	a	nested	resource.	For	example,	a	photo	resource	may	have
multiple	comments	that	may	be	attached	to	the	photo.	To	nest	the	resource	controllers,	you	may	use	"dot"
notation	in	your	route	declaration:

use	App\Http\Controllers\PhotoCommentController;

Route::resource('photos.comments',	PhotoCommentController::class);

This	route	will	register	a	nested	resource	that	may	be	accessed	with	URIs	like	the	following:

/photos/{photo}/comments/{comment}

Scoping	Nested	Resources

Laravel's	implicit	model	binding	feature	can	automatically	scope	nested	bindings	such	that	the	resolved	child
model	is	confirmed	to	belong	to	the	parent	model.	By	using	the	scoped	method	when	defining	your	nested
resource,	you	may	enable	automatic	scoping	as	well	as	instruct	Laravel	which	field	the	child	resource	should	be
retrieved	by.	For	more	information	on	how	to	accomplish	this,	please	see	the	documentation	on	scoping
resource	routes.

Shallow	Nesting

Often,	it	is	not	entirely	necessary	to	have	both	the	parent	and	the	child	IDs	within	a	URI	since	the	child	ID	is
already	a	unique	identifier.	When	using	unique	identifiers	such	as	auto-incrementing	primary	keys	to	identify
your	models	in	URI	segments,	you	may	choose	to	use	"shallow	nesting":

use	App\Http\Controllers\CommentController;

Route::resource('photos.comments',	CommentController::class)->shallow();

This	route	definition	will	define	the	following	routes:

Verb URI Action Route	Name

GET /photos/{photo}/comments index photos.comments.index
GET /photos/{photo}/comments/create create photos.comments.create
POST /photos/{photo}/comments store photos.comments.store
GET /comments/{comment} show comments.show
GET /comments/{comment}/edit edit comments.edit
PUT/PATCH /comments/{comment} update comments.update
DELETE /comments/{comment} destroy comments.destroy

Naming	Resource	Routes

By	default,	all	resource	controller	actions	have	a	route	name;	however,	you	can	override	these	names	by
passing	a	names	array	with	your	desired	route	names:

use	App\Http\Controllers\PhotoController;

Route::resource('photos',	PhotoController::class)->names([

				'create'	=>	'photos.build'

]);

Naming	Resource	Route	Parameters

By	default,	Route::resource	will	create	the	route	parameters	for	your	resource	routes	based	on	the
"singularized"	version	of	the	resource	name.	You	can	easily	override	this	on	a	per	resource	basis	using	the	
parameters	method.	The	array	passed	into	the	parameters	method	should	be	an	associative	array	of	resource
names	and	parameter	names:

Laravel	Documentation	-	10.x	/	Controllers 94

use	App\Http\Controllers\AdminUserController;

Route::resource('users',	AdminUserController::class)->parameters([

				'users'	=>	'admin_user'

]);

The	example	above	generates	the	following	URI	for	the	resource's	show	route:

/users/{admin_user}

Scoping	Resource	Routes

Laravel's	scoped	implicit	model	binding	feature	can	automatically	scope	nested	bindings	such	that	the	resolved
child	model	is	confirmed	to	belong	to	the	parent	model.	By	using	the	scoped	method	when	defining	your	nested
resource,	you	may	enable	automatic	scoping	as	well	as	instruct	Laravel	which	field	the	child	resource	should	be
retrieved	by:

use	App\Http\Controllers\PhotoCommentController;

Route::resource('photos.comments',	PhotoCommentController::class)->scoped([

				'comment'	=>	'slug',

]);

This	route	will	register	a	scoped	nested	resource	that	may	be	accessed	with	URIs	like	the	following:

/photos/{photo}/comments/{comment:slug}

When	using	a	custom	keyed	implicit	binding	as	a	nested	route	parameter,	Laravel	will	automatically	scope	the
query	to	retrieve	the	nested	model	by	its	parent	using	conventions	to	guess	the	relationship	name	on	the	parent.
In	this	case,	it	will	be	assumed	that	the	Photo	model	has	a	relationship	named	comments	(the	plural	of	the	route
parameter	name)	which	can	be	used	to	retrieve	the	Comment	model.

Localizing	Resource	URIs

By	default,	Route::resource	will	create	resource	URIs	using	English	verbs	and	plural	rules.	If	you	need	to
localize	the	create	and	edit	action	verbs,	you	may	use	the	Route::resourceVerbs	method.	This	may	be	done	at
the	beginning	of	the	boot	method	within	your	application's	App\Providers\RouteServiceProvider:

/**

	*	Define	your	route	model	bindings,	pattern	filters,	etc.

	*/

public	function	boot():	void

{

				Route::resourceVerbs([

								'create'	=>	'crear',

								'edit'	=>	'editar',

]);

				//	...

}

Laravel's	pluralizer	supports	several	different	languages	which	you	may	configure	based	on	your	needs.	Once
the	verbs	and	pluralization	language	have	been	customized,	a	resource	route	registration	such	as	
Route::resource('publicacion',	PublicacionController::class)	will	produce	the	following	URIs:

/publicacion/crear

/publicacion/{publicaciones}/editar

Supplementing	Resource	Controllers

If	you	need	to	add	additional	routes	to	a	resource	controller	beyond	the	default	set	of	resource	routes,	you
should	define	those	routes	before	your	call	to	the	Route::resource	method;	otherwise,	the	routes	defined	by	the	
resource	method	may	unintentionally	take	precedence	over	your	supplemental	routes:

use	App\Http\Controller\PhotoController;

Route::get('/photos/popular',	[PhotoController::class,	'popular']);

Laravel	Documentation	-	10.x	/	Controllers 95

Route::resource('photos',	PhotoController::class);

[!NOTE]
Remember	to	keep	your	controllers	focused.	If	you	find	yourself	routinely	needing	methods	outside	of	the
typical	set	of	resource	actions,	consider	splitting	your	controller	into	two,	smaller	controllers.

Singleton	Resource	Controllers

Sometimes,	your	application	will	have	resources	that	may	only	have	a	single	instance.	For	example,	a	user's
"profile"	can	be	edited	or	updated,	but	a	user	may	not	have	more	than	one	"profile".	Likewise,	an	image	may
have	a	single	"thumbnail".	These	resources	are	called	"singleton	resources",	meaning	one	and	only	one	instance
of	the	resource	may	exist.	In	these	scenarios,	you	may	register	a	"singleton"	resource	controller:

use	App\Http\Controllers\ProfileController;

use	Illuminate\Support\Facades\Route;

Route::singleton('profile',	ProfileController::class);

The	singleton	resource	definition	above	will	register	the	following	routes.	As	you	can	see,	"creation"	routes	are
not	registered	for	singleton	resources,	and	the	registered	routes	do	not	accept	an	identifier	since	only	one
instance	of	the	resource	may	exist:

Verb URI Action Route	Name

GET /profile show profile.show
GET /profile/edit edit profile.edit
PUT/PATCH /profile update profile.update

Singleton	resources	may	also	be	nested	within	a	standard	resource:

Route::singleton('photos.thumbnail',	ThumbnailController::class);

In	this	example,	the	photos	resource	would	receive	all	of	the	standard	resource	routes;	however,	the	thumbnail
resource	would	be	a	singleton	resource	with	the	following	routes:

Verb URI Action Route	Name

GET /photos/{photo}/thumbnail show photos.thumbnail.show
GET /photos/{photo}/thumbnail/edit edit photos.thumbnail.edit
PUT/PATCH /photos/{photo}/thumbnail update photos.thumbnail.update

Creatable	Singleton	Resources

Occasionally,	you	may	want	to	define	creation	and	storage	routes	for	a	singleton	resource.	To	accomplish	this,
you	may	invoke	the	creatable	method	when	registering	the	singleton	resource	route:

Route::singleton('photos.thumbnail',	ThumbnailController::class)->creatable();

In	this	example,	the	following	routes	will	be	registered.	As	you	can	see,	a	DELETE	route	will	also	be	registered
for	creatable	singleton	resources:

Verb URI Action Route	Name

GET /photos/{photo}/thumbnail/create create photos.thumbnail.create
POST /photos/{photo}/thumbnail store photos.thumbnail.store
GET /photos/{photo}/thumbnail show photos.thumbnail.show
GET /photos/{photo}/thumbnail/edit edit photos.thumbnail.edit
PUT/PATCH /photos/{photo}/thumbnail update photos.thumbnail.update
DELETE /photos/{photo}/thumbnail destroy photos.thumbnail.destroy

If	you	would	like	Laravel	to	register	the	DELETE	route	for	a	singleton	resource	but	not	register	the	creation	or
storage	routes,	you	may	utilize	the	destroyable	method:

Route::singleton(...)->destroyable();

Laravel	Documentation	-	10.x	/	Controllers 96

API	Singleton	Resources

The	apiSingleton	method	may	be	used	to	register	a	singleton	resource	that	will	be	manipulated	via	an	API,	thus
rendering	the	create	and	edit	routes	unnecessary:

Route::apiSingleton('profile',	ProfileController::class);

Of	course,	API	singleton	resources	may	also	be	creatable,	which	will	register	store	and	destroy	routes	for	the
resource:

Route::apiSingleton('photos.thumbnail',	ProfileController::class)->creatable();

Dependency	Injection	and	Controllers

Constructor	Injection

The	Laravel	service	container	is	used	to	resolve	all	Laravel	controllers.	As	a	result,	you	are	able	to	type-hint
any	dependencies	your	controller	may	need	in	its	constructor.	The	declared	dependencies	will	automatically	be
resolved	and	injected	into	the	controller	instance:

<?php

namespace	App\Http\Controllers;

use	App\Repositories\UserRepository;

class	UserController	extends	Controller

{

				/**

					*	Create	a	new	controller	instance.

					*/

				public	function	__construct(

								protected	UserRepository	$users,

)	{}

}

Method	Injection

In	addition	to	constructor	injection,	you	may	also	type-hint	dependencies	on	your	controller's	methods.	A
common	use-case	for	method	injection	is	injecting	the	Illuminate\Http\Request	instance	into	your	controller
methods:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Store	a	new	user.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$name	=	$request->name;

								//	Store	the	user...

								return	redirect('/users');

				}

}

If	your	controller	method	is	also	expecting	input	from	a	route	parameter,	list	your	route	arguments	after	your
other	dependencies.	For	example,	if	your	route	is	defined	like	so:

use	App\Http\Controllers\UserController;

Route::put('/user/{id}',	[UserController::class,	'update']);

Laravel	Documentation	-	10.x	/	Controllers 97

You	may	still	type-hint	the	Illuminate\Http\Request	and	access	your	id	parameter	by	defining	your	controller
method	as	follows:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Update	the	given	user.

					*/

				public	function	update(Request	$request,	string	$id):	RedirectResponse

				{

								//	Update	the	user...

								return	redirect('/users');

				}

}

Laravel	Documentation	-	10.x	/	Controllers 98

The	Basics

HTTP	Requests
Introduction
Interacting	With	The	Request

Accessing	the	Request
Request	Path,	Host,	and	Method
Request	Headers
Request	IP	Address
Content	Negotiation
PSR-7	Requests

Input
Retrieving	Input
Input	Presence
Merging	Additional	Input
Old	Input
Cookies
Input	Trimming	and	Normalization

Files
Retrieving	Uploaded	Files
Storing	Uploaded	Files

Configuring	Trusted	Proxies
Configuring	Trusted	Hosts

Introduction

Laravel's	Illuminate\Http\Request	class	provides	an	object-oriented	way	to	interact	with	the	current	HTTP
request	being	handled	by	your	application	as	well	as	retrieve	the	input,	cookies,	and	files	that	were	submitted
with	the	request.

Interacting	With	The	Request

Accessing	the	Request

To	obtain	an	instance	of	the	current	HTTP	request	via	dependency	injection,	you	should	type-hint	the	
Illuminate\Http\Request	class	on	your	route	closure	or	controller	method.	The	incoming	request	instance	will
automatically	be	injected	by	the	Laravel	service	container:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Store	a	new	user.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$name	=	$request->input('name');

								//	Store	the	user...

								return	redirect('/users');

				}

}

As	mentioned,	you	may	also	type-hint	the	Illuminate\Http\Request	class	on	a	route	closure.	The	service
container	will	automatically	inject	the	incoming	request	into	the	closure	when	it	is	executed:

Laravel	Documentation	-	10.x	/	Requests 99

use	Illuminate\Http\Request;

Route::get('/',	function	(Request	$request)	{

				//	...

});

Dependency	Injection	and	Route	Parameters

If	your	controller	method	is	also	expecting	input	from	a	route	parameter	you	should	list	your	route	parameters
after	your	other	dependencies.	For	example,	if	your	route	is	defined	like	so:

use	App\Http\Controllers\UserController;

Route::put('/user/{id}',	[UserController::class,	'update']);

You	may	still	type-hint	the	Illuminate\Http\Request	and	access	your	id	route	parameter	by	defining	your
controller	method	as	follows:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Update	the	specified	user.

					*/

				public	function	update(Request	$request,	string	$id):	RedirectResponse

				{

								//	Update	the	user...

								return	redirect('/users');

				}

}

Request	Path,	Host,	and	Method

The	Illuminate\Http\Request	instance	provides	a	variety	of	methods	for	examining	the	incoming	HTTP	request
and	extends	the	Symfony\Component\HttpFoundation\Request	class.	We	will	discuss	a	few	of	the	most	important
methods	below.

Retrieving	the	Request	Path

The	path	method	returns	the	request's	path	information.	So,	if	the	incoming	request	is	targeted	at	
http://example.com/foo/bar,	the	path	method	will	return	foo/bar:

$uri	=	$request->path();

Inspecting	the	Request	Path	/	Route

The	is	method	allows	you	to	verify	that	the	incoming	request	path	matches	a	given	pattern.	You	may	use	the	*
character	as	a	wildcard	when	utilizing	this	method:

if	($request->is('admin/*'))	{

				//	...

}

Using	the	routeIs	method,	you	may	determine	if	the	incoming	request	has	matched	a	named	route:

if	($request->routeIs('admin.*'))	{

				//	...

}

Retrieving	the	Request	URL

Laravel	Documentation	-	10.x	/	Requests 100

To	retrieve	the	full	URL	for	the	incoming	request	you	may	use	the	url	or	fullUrl	methods.	The	url	method	will
return	the	URL	without	the	query	string,	while	the	fullUrl	method	includes	the	query	string:

$url	=	$request->url();

$urlWithQueryString	=	$request->fullUrl();

If	you	would	like	to	append	query	string	data	to	the	current	URL,	you	may	call	the	fullUrlWithQuery	method.
This	method	merges	the	given	array	of	query	string	variables	with	the	current	query	string:

$request->fullUrlWithQuery(['type'	=>	'phone']);

If	you	would	like	to	get	the	current	URL	without	a	given	query	string	parameter,	you	may	utilize	the	
fullUrlWithoutQuery	method:

$request->fullUrlWithoutQuery(['type']);

Retrieving	the	Request	Host

You	may	retrieve	the	"host"	of	the	incoming	request	via	the	host,	httpHost,	and	schemeAndHttpHost	methods:

$request->host();

$request->httpHost();

$request->schemeAndHttpHost();

Retrieving	the	Request	Method

The	method	method	will	return	the	HTTP	verb	for	the	request.	You	may	use	the	isMethod	method	to	verify	that
the	HTTP	verb	matches	a	given	string:

$method	=	$request->method();

if	($request->isMethod('post'))	{

				//	...

}

Request	Headers

You	may	retrieve	a	request	header	from	the	Illuminate\Http\Request	instance	using	the	header	method.	If	the
header	is	not	present	on	the	request,	null	will	be	returned.	However,	the	header	method	accepts	an	optional
second	argument	that	will	be	returned	if	the	header	is	not	present	on	the	request:

$value	=	$request->header('X-Header-Name');

$value	=	$request->header('X-Header-Name',	'default');

The	hasHeader	method	may	be	used	to	determine	if	the	request	contains	a	given	header:

if	($request->hasHeader('X-Header-Name'))	{

				//	...

}

For	convenience,	the	bearerToken	method	may	be	used	to	retrieve	a	bearer	token	from	the	Authorization	header.
If	no	such	header	is	present,	an	empty	string	will	be	returned:

$token	=	$request->bearerToken();

Request	IP	Address

The	ip	method	may	be	used	to	retrieve	the	IP	address	of	the	client	that	made	the	request	to	your	application:

$ipAddress	=	$request->ip();

If	you	would	like	to	retrieve	an	array	of	IP	addresses,	including	all	of	the	client	IP	addesses	that	were	forwarded
by	proxies,	you	may	use	the	ips	method.	The	"original"	client	IP	address	will	be	at	the	end	of	the	array:

$ipAddresses	=	$request->ips();

Laravel	Documentation	-	10.x	/	Requests 101

In	general,	IP	addresses	should	be	considered	untrusted,	user-controlled	input	and	be	used	for	informational
purposes	only.

Content	Negotiation

Laravel	provides	several	methods	for	inspecting	the	incoming	request's	requested	content	types	via	the	Accept
header.	First,	the	getAcceptableContentTypes	method	will	return	an	array	containing	all	of	the	content	types
accepted	by	the	request:

$contentTypes	=	$request->getAcceptableContentTypes();

The	accepts	method	accepts	an	array	of	content	types	and	returns	true	if	any	of	the	content	types	are	accepted
by	the	request.	Otherwise,	false	will	be	returned:

if	($request->accepts(['text/html',	'application/json']))	{

				//	...

}

You	may	use	the	prefers	method	to	determine	which	content	type	out	of	a	given	array	of	content	types	is	most
preferred	by	the	request.	If	none	of	the	provided	content	types	are	accepted	by	the	request,	null	will	be
returned:

$preferred	=	$request->prefers(['text/html',	'application/json']);

Since	many	applications	only	serve	HTML	or	JSON,	you	may	use	the	expectsJson	method	to	quickly	determine
if	the	incoming	request	expects	a	JSON	response:

if	($request->expectsJson())	{

				//	...

}

PSR-7	Requests

The	PSR-7	standard	specifies	interfaces	for	HTTP	messages,	including	requests	and	responses.	If	you	would
like	to	obtain	an	instance	of	a	PSR-7	request	instead	of	a	Laravel	request,	you	will	first	need	to	install	a	few
libraries.	Laravel	uses	the	Symfony	HTTP	Message	Bridge	component	to	convert	typical	Laravel	requests	and
responses	into	PSR-7	compatible	implementations:

composer	require	symfony/psr-http-message-bridge

composer	require	nyholm/psr7

Once	you	have	installed	these	libraries,	you	may	obtain	a	PSR-7	request	by	type-hinting	the	request	interface
on	your	route	closure	or	controller	method:

use	Psr\Http\Message\ServerRequestInterface;

Route::get('/',	function	(ServerRequestInterface	$request)	{

				//	...

});

[!NOTE]
If	you	return	a	PSR-7	response	instance	from	a	route	or	controller,	it	will	automatically	be	converted	back
to	a	Laravel	response	instance	and	be	displayed	by	the	framework.

Input

Retrieving	Input

Retrieving	All	Input	Data

You	may	retrieve	all	of	the	incoming	request's	input	data	as	an	array	using	the	all	method.	This	method	may	be
used	regardless	of	whether	the	incoming	request	is	from	an	HTML	form	or	is	an	XHR	request:

$input	=	$request->all();

Laravel	Documentation	-	10.x	/	Requests 102

https://www.php-fig.org/psr/psr-7/

Using	the	collect	method,	you	may	retrieve	all	of	the	incoming	request's	input	data	as	a	collection:

$input	=	$request->collect();

The	collect	method	also	allows	you	to	retrieve	a	subset	of	the	incoming	request's	input	as	a	collection:

$request->collect('users')->each(function	(string	$user)	{

				//	...

});

Retrieving	an	Input	Value

Using	a	few	simple	methods,	you	may	access	all	of	the	user	input	from	your	Illuminate\Http\Request	instance
without	worrying	about	which	HTTP	verb	was	used	for	the	request.	Regardless	of	the	HTTP	verb,	the	input
method	may	be	used	to	retrieve	user	input:

$name	=	$request->input('name');

You	may	pass	a	default	value	as	the	second	argument	to	the	input	method.	This	value	will	be	returned	if	the
requested	input	value	is	not	present	on	the	request:

$name	=	$request->input('name',	'Sally');

When	working	with	forms	that	contain	array	inputs,	use	"dot"	notation	to	access	the	arrays:

$name	=	$request->input('products.0.name');

$names	=	$request->input('products.*.name');

You	may	call	the	input	method	without	any	arguments	in	order	to	retrieve	all	of	the	input	values	as	an
associative	array:

$input	=	$request->input();

Retrieving	Input	From	the	Query	String

While	the	input	method	retrieves	values	from	the	entire	request	payload	(including	the	query	string),	the	query
method	will	only	retrieve	values	from	the	query	string:

$name	=	$request->query('name');

If	the	requested	query	string	value	data	is	not	present,	the	second	argument	to	this	method	will	be	returned:

$name	=	$request->query('name',	'Helen');

You	may	call	the	query	method	without	any	arguments	in	order	to	retrieve	all	of	the	query	string	values	as	an
associative	array:

$query	=	$request->query();

Retrieving	JSON	Input	Values

When	sending	JSON	requests	to	your	application,	you	may	access	the	JSON	data	via	the	input	method	as	long
as	the	Content-Type	header	of	the	request	is	properly	set	to	application/json.	You	may	even	use	"dot"	syntax	to
retrieve	values	that	are	nested	within	JSON	arrays	/	objects:

$name	=	$request->input('user.name');

Retrieving	Stringable	Input	Values

Instead	of	retrieving	the	request's	input	data	as	a	primitive	string,	you	may	use	the	string	method	to	retrieve
the	request	data	as	an	instance	of	Illuminate\Support\Stringable:

$name	=	$request->string('name')->trim();

Laravel	Documentation	-	10.x	/	Requests 103

Retrieving	Boolean	Input	Values

When	dealing	with	HTML	elements	like	checkboxes,	your	application	may	receive	"truthy"	values	that	are
actually	strings.	For	example,	"true"	or	"on".	For	convenience,	you	may	use	the	boolean	method	to	retrieve
these	values	as	booleans.	The	boolean	method	returns	true	for	1,	"1",	true,	"true",	"on",	and	"yes".	All	other
values	will	return	false:

$archived	=	$request->boolean('archived');

Retrieving	Date	Input	Values

For	convenience,	input	values	containing	dates	/	times	may	be	retrieved	as	Carbon	instances	using	the	date
method.	If	the	request	does	not	contain	an	input	value	with	the	given	name,	null	will	be	returned:

$birthday	=	$request->date('birthday');

The	second	and	third	arguments	accepted	by	the	date	method	may	be	used	to	specify	the	date's	format	and
timezone,	respectively:

$elapsed	=	$request->date('elapsed',	'!H:i',	'Europe/Madrid');

If	the	input	value	is	present	but	has	an	invalid	format,	an	InvalidArgumentException	will	be	thrown;	therefore,	it
is	recommended	that	you	validate	the	input	before	invoking	the	date	method.

Retrieving	Enum	Input	Values

Input	values	that	correspond	to	PHP	enums	may	also	be	retrieved	from	the	request.	If	the	request	does	not
contain	an	input	value	with	the	given	name	or	the	enum	does	not	have	a	backing	value	that	matches	the	input
value,	null	will	be	returned.	The	enum	method	accepts	the	name	of	the	input	value	and	the	enum	class	as	its	first
and	second	arguments:

use	App\Enums\Status;

$status	=	$request->enum('status',	Status::class);

Retrieving	Input	via	Dynamic	Properties

You	may	also	access	user	input	using	dynamic	properties	on	the	Illuminate\Http\Request	instance.	For
example,	if	one	of	your	application's	forms	contains	a	name	field,	you	may	access	the	value	of	the	field	like	so:

$name	=	$request->name;

When	using	dynamic	properties,	Laravel	will	first	look	for	the	parameter's	value	in	the	request	payload.	If	it	is
not	present,	Laravel	will	search	for	the	field	in	the	matched	route's	parameters.

Retrieving	a	Portion	of	the	Input	Data

If	you	need	to	retrieve	a	subset	of	the	input	data,	you	may	use	the	only	and	except	methods.	Both	of	these
methods	accept	a	single	array	or	a	dynamic	list	of	arguments:

$input	=	$request->only(['username',	'password']);

$input	=	$request->only('username',	'password');

$input	=	$request->except(['credit_card']);

$input	=	$request->except('credit_card');

[!WARNING]
The	only	method	returns	all	of	the	key	/	value	pairs	that	you	request;	however,	it	will	not	return	key	/	value
pairs	that	are	not	present	on	the	request.

Input	Presence

Laravel	Documentation	-	10.x	/	Requests 104

https://www.php.net/manual/en/language.types.enumerations.php

You	may	use	the	has	method	to	determine	if	a	value	is	present	on	the	request.	The	has	method	returns	true	if	the
value	is	present	on	the	request:

if	($request->has('name'))	{

				//	...

}

When	given	an	array,	the	has	method	will	determine	if	all	of	the	specified	values	are	present:

if	($request->has(['name',	'email']))	{

				//	...

}

The	hasAny	method	returns	true	if	any	of	the	specified	values	are	present:

if	($request->hasAny(['name',	'email']))	{

				//	...

}

The	whenHas	method	will	execute	the	given	closure	if	a	value	is	present	on	the	request:

$request->whenHas('name',	function	(string	$input)	{

				//	...

});

A	second	closure	may	be	passed	to	the	whenHas	method	that	will	be	executed	if	the	specified	value	is	not	present
on	the	request:

$request->whenHas('name',	function	(string	$input)	{

				//	The	"name"	value	is	present...

},	function	()	{

				//	The	"name"	value	is	not	present...

});

If	you	would	like	to	determine	if	a	value	is	present	on	the	request	and	is	not	an	empty	string,	you	may	use	the	
filled	method:

if	($request->filled('name'))	{

				//	...

}

The	anyFilled	method	returns	true	if	any	of	the	specified	values	is	not	an	empty	string:

if	($request->anyFilled(['name',	'email']))	{

				//	...

}

The	whenFilled	method	will	execute	the	given	closure	if	a	value	is	present	on	the	request	and	is	not	an	empty
string:

$request->whenFilled('name',	function	(string	$input)	{

				//	...

});

A	second	closure	may	be	passed	to	the	whenFilled	method	that	will	be	executed	if	the	specified	value	is	not
"filled":

$request->whenFilled('name',	function	(string	$input)	{

				//	The	"name"	value	is	filled...

},	function	()	{

				//	The	"name"	value	is	not	filled...

});

To	determine	if	a	given	key	is	absent	from	the	request,	you	may	use	the	missing	and	whenMissing	methods:

if	($request->missing('name'))	{

				//	...

}

$request->whenMissing('name',	function	(array	$input)	{

				//	The	"name"	value	is	missing...

},	function	()	{

				//	The	"name"	value	is	present...

Laravel	Documentation	-	10.x	/	Requests 105

});

Merging	Additional	Input

Sometimes	you	may	need	to	manually	merge	additional	input	into	the	request's	existing	input	data.	To
accomplish	this,	you	may	use	the	merge	method.	If	a	given	input	key	already	exists	on	the	request,	it	will	be
overwritten	by	the	data	provided	to	the	merge	method:

$request->merge(['votes'	=>	0]);

The	mergeIfMissing	method	may	be	used	to	merge	input	into	the	request	if	the	corresponding	keys	do	not
already	exist	within	the	request's	input	data:

$request->mergeIfMissing(['votes'	=>	0]);

Old	Input

Laravel	allows	you	to	keep	input	from	one	request	during	the	next	request.	This	feature	is	particularly	useful	for
re-populating	forms	after	detecting	validation	errors.	However,	if	you	are	using	Laravel's	included	validation
features,	it	is	possible	that	you	will	not	need	to	manually	use	these	session	input	flashing	methods	directly,	as
some	of	Laravel's	built-in	validation	facilities	will	call	them	automatically.

Flashing	Input	to	the	Session

The	flash	method	on	the	Illuminate\Http\Request	class	will	flash	the	current	input	to	the	session	so	that	it	is
available	during	the	user's	next	request	to	the	application:

$request->flash();

You	may	also	use	the	flashOnly	and	flashExcept	methods	to	flash	a	subset	of	the	request	data	to	the	session.
These	methods	are	useful	for	keeping	sensitive	information	such	as	passwords	out	of	the	session:

$request->flashOnly(['username',	'email']);

$request->flashExcept('password');

Flashing	Input	Then	Redirecting

Since	you	often	will	want	to	flash	input	to	the	session	and	then	redirect	to	the	previous	page,	you	may	easily
chain	input	flashing	onto	a	redirect	using	the	withInput	method:

return	redirect('form')->withInput();

return	redirect()->route('user.create')->withInput();

return	redirect('form')->withInput(

				$request->except('password')

);

Retrieving	Old	Input

To	retrieve	flashed	input	from	the	previous	request,	invoke	the	old	method	on	an	instance	of	
Illuminate\Http\Request.	The	old	method	will	pull	the	previously	flashed	input	data	from	the	session:

$username	=	$request->old('username');

Laravel	also	provides	a	global	old	helper.	If	you	are	displaying	old	input	within	a	Blade	template,	it	is	more
convenient	to	use	the	old	helper	to	repopulate	the	form.	If	no	old	input	exists	for	the	given	field,	null	will	be
returned:

<input	type="text"	name="username"	value="{{	old('username')	}}">

Cookies

Laravel	Documentation	-	10.x	/	Requests 106

Retrieving	Cookies	From	Requests

All	cookies	created	by	the	Laravel	framework	are	encrypted	and	signed	with	an	authentication	code,	meaning
they	will	be	considered	invalid	if	they	have	been	changed	by	the	client.	To	retrieve	a	cookie	value	from	the
request,	use	the	cookie	method	on	an	Illuminate\Http\Request	instance:

$value	=	$request->cookie('name');

Input	Trimming	and	Normalization

By	default,	Laravel	includes	the	App\Http\Middleware\TrimStrings	and	
Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull	middleware	in	your	application's	global
middleware	stack.	These	middleware	are	listed	in	the	global	middleware	stack	by	the	App\Http\Kernel	class.
These	middleware	will	automatically	trim	all	incoming	string	fields	on	the	request,	as	well	as	convert	any
empty	string	fields	to	null.	This	allows	you	to	not	have	to	worry	about	these	normalization	concerns	in	your
routes	and	controllers.

Disabling	Input	Normalization

If	you	would	like	to	disable	this	behavior	for	all	requests,	you	may	remove	the	two	middleware	from	your
application's	middleware	stack	by	removing	them	from	the	$middleware	property	of	your	App\Http\Kernel	class.

If	you	would	like	to	disable	string	trimming	and	empty	string	conversion	for	a	subset	of	requests	to	your
application,	you	may	use	the	skipWhen	method	offered	by	both	middleware.	This	method	accepts	a	closure
which	should	return	true	or	false	to	indicate	if	input	normalization	should	be	skipped.	Typically,	the	skipWhen
method	should	be	invoked	in	the	boot	method	of	your	application's	AppServiceProvider.

use	App\Http\Middleware\TrimStrings;

use	Illuminate\Http\Request;

use	Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				TrimStrings::skipWhen(function	(Request	$request)	{

								return	$request->is('admin/*');

				});

				ConvertEmptyStringsToNull::skipWhen(function	(Request	$request)	{

								//	...

				});

}

Files

Retrieving	Uploaded	Files

You	may	retrieve	uploaded	files	from	an	Illuminate\Http\Request	instance	using	the	file	method	or	using
dynamic	properties.	The	file	method	returns	an	instance	of	the	Illuminate\Http\UploadedFile	class,	which
extends	the	PHP	SplFileInfo	class	and	provides	a	variety	of	methods	for	interacting	with	the	file:

$file	=	$request->file('photo');

$file	=	$request->photo;

You	may	determine	if	a	file	is	present	on	the	request	using	the	hasFile	method:

if	($request->hasFile('photo'))	{

				//	...

}

Validating	Successful	Uploads

Laravel	Documentation	-	10.x	/	Requests 107

In	addition	to	checking	if	the	file	is	present,	you	may	verify	that	there	were	no	problems	uploading	the	file	via
the	isValid	method:

if	($request->file('photo')->isValid())	{

				//	...

}

File	Paths	and	Extensions

The	UploadedFile	class	also	contains	methods	for	accessing	the	file's	fully-qualified	path	and	its	extension.	The	
extension	method	will	attempt	to	guess	the	file's	extension	based	on	its	contents.	This	extension	may	be
different	from	the	extension	that	was	supplied	by	the	client:

$path	=	$request->photo->path();

$extension	=	$request->photo->extension();

Other	File	Methods

There	are	a	variety	of	other	methods	available	on	UploadedFile	instances.	Check	out	the	API	documentation	for
the	class	for	more	information	regarding	these	methods.

Storing	Uploaded	Files

To	store	an	uploaded	file,	you	will	typically	use	one	of	your	configured	filesystems.	The	UploadedFile	class	has
a	store	method	that	will	move	an	uploaded	file	to	one	of	your	disks,	which	may	be	a	location	on	your	local
filesystem	or	a	cloud	storage	location	like	Amazon	S3.

The	store	method	accepts	the	path	where	the	file	should	be	stored	relative	to	the	filesystem's	configured	root
directory.	This	path	should	not	contain	a	filename,	since	a	unique	ID	will	automatically	be	generated	to	serve	as
the	filename.

The	store	method	also	accepts	an	optional	second	argument	for	the	name	of	the	disk	that	should	be	used	to
store	the	file.	The	method	will	return	the	path	of	the	file	relative	to	the	disk's	root:

$path	=	$request->photo->store('images');

$path	=	$request->photo->store('images',	's3');

If	you	do	not	want	a	filename	to	be	automatically	generated,	you	may	use	the	storeAs	method,	which	accepts
the	path,	filename,	and	disk	name	as	its	arguments:

$path	=	$request->photo->storeAs('images',	'filename.jpg');

$path	=	$request->photo->storeAs('images',	'filename.jpg',	's3');

[!NOTE]
For	more	information	about	file	storage	in	Laravel,	check	out	the	complete	file	storage	documentation.

Configuring	Trusted	Proxies

When	running	your	applications	behind	a	load	balancer	that	terminates	TLS	/	SSL	certificates,	you	may	notice
your	application	sometimes	does	not	generate	HTTPS	links	when	using	the	url	helper.	Typically	this	is	because
your	application	is	being	forwarded	traffic	from	your	load	balancer	on	port	80	and	does	not	know	it	should
generate	secure	links.

To	solve	this,	you	may	use	the	App\Http\Middleware\TrustProxies	middleware	that	is	included	in	your	Laravel
application,	which	allows	you	to	quickly	customize	the	load	balancers	or	proxies	that	should	be	trusted	by	your
application.	Your	trusted	proxies	should	be	listed	as	an	array	on	the	$proxies	property	of	this	middleware.	In
addition	to	configuring	the	trusted	proxies,	you	may	configure	the	proxy	$headers	that	should	be	trusted:

<?php

namespace	App\Http\Middleware;

Laravel	Documentation	-	10.x	/	Requests 108

https://github.com/symfony/symfony/blob/6.0/src/Symfony/Component/HttpFoundation/File/UploadedFile.php

use	Illuminate\Http\Middleware\TrustProxies	as	Middleware;

use	Illuminate\Http\Request;

class	TrustProxies	extends	Middleware

{

				/**

					*	The	trusted	proxies	for	this	application.

					*

					*	@var	string|array

					*/

				protected	$proxies	=	[

								'192.168.1.1',

								'192.168.1.2',

];

				/**

					*	The	headers	that	should	be	used	to	detect	proxies.

					*

					*	@var	int

					*/

				protected	$headers	=	Request::HEADER_X_FORWARDED_FOR	|	Request::HEADER_X_FORWARDED_HOST	|	

Request::HEADER_X_FORWARDED_PORT	|	Request::HEADER_X_FORWARDED_PROTO;

}

[!NOTE]
If	you	are	using	AWS	Elastic	Load	Balancing,	your	$headers	value	should	be	
Request::HEADER_X_FORWARDED_AWS_ELB.	For	more	information	on	the	constants	that	may	be	used	in	the	
$headers	property,	check	out	Symfony's	documentation	on	trusting	proxies.

Trusting	All	Proxies

If	you	are	using	Amazon	AWS	or	another	"cloud"	load	balancer	provider,	you	may	not	know	the	IP	addresses
of	your	actual	balancers.	In	this	case,	you	may	use	*	to	trust	all	proxies:

/**

	*	The	trusted	proxies	for	this	application.

	*

	*	@var	string|array

	*/

protected	$proxies	=	'*';

Configuring	Trusted	Hosts

By	default,	Laravel	will	respond	to	all	requests	it	receives	regardless	of	the	content	of	the	HTTP	request's	Host
header.	In	addition,	the	Host	header's	value	will	be	used	when	generating	absolute	URLs	to	your	application
during	a	web	request.

Typically,	you	should	configure	your	web	server,	such	as	Nginx	or	Apache,	to	only	send	requests	to	your
application	that	match	a	given	host	name.	However,	if	you	do	not	have	the	ability	to	customize	your	web	server
directly	and	need	to	instruct	Laravel	to	only	respond	to	certain	host	names,	you	may	do	so	by	enabling	the	
App\Http\Middleware\TrustHosts	middleware	for	your	application.

The	TrustHosts	middleware	is	already	included	in	the	$middleware	stack	of	your	application;	however,	you
should	uncomment	it	so	that	it	becomes	active.	Within	this	middleware's	hosts	method,	you	may	specify	the
host	names	that	your	application	should	respond	to.	Incoming	requests	with	other	Host	value	headers	will	be
rejected:

/**

	*	Get	the	host	patterns	that	should	be	trusted.

	*

	*	@return	array<int,	string>

	*/

public	function	hosts():	array

{

				return	[

								'laravel.test',

								$this->allSubdomainsOfApplicationUrl(),

];

}

Laravel	Documentation	-	10.x	/	Requests 109

https://symfony.com/doc/current/deployment/proxies.html

The	allSubdomainsOfApplicationUrl	helper	method	will	return	a	regular	expression	matching	all	subdomains	of
your	application's	app.url	configuration	value.	This	helper	method	provides	a	convenient	way	to	allow	all	of
your	application's	subdomains	when	building	an	application	that	utilizes	wildcard	subdomains.

Laravel	Documentation	-	10.x	/	Requests 110

The	Basics

HTTP	Responses
Creating	Responses

Attaching	Headers	to	Responses
Attaching	Cookies	to	Responses
Cookies	and	Encryption

Redirects
Redirecting	to	Named	Routes
Redirecting	to	Controller	Actions
Redirecting	to	External	Domains
Redirecting	With	Flashed	Session	Data

Other	Response	Types
View	Responses
JSON	Responses
File	Downloads
File	Responses

Response	Macros

Creating	Responses

Strings	and	Arrays

All	routes	and	controllers	should	return	a	response	to	be	sent	back	to	the	user's	browser.	Laravel	provides
several	different	ways	to	return	responses.	The	most	basic	response	is	returning	a	string	from	a	route	or
controller.	The	framework	will	automatically	convert	the	string	into	a	full	HTTP	response:

Route::get('/',	function	()	{

				return	'Hello	World';

});

In	addition	to	returning	strings	from	your	routes	and	controllers,	you	may	also	return	arrays.	The	framework
will	automatically	convert	the	array	into	a	JSON	response:

Route::get('/',	function	()	{

				return	[1,	2,	3];

});

[!NOTE]
Did	you	know	you	can	also	return	Eloquent	collections	from	your	routes	or	controllers?	They	will
automatically	be	converted	to	JSON.	Give	it	a	shot!

Response	Objects

Typically,	you	won't	just	be	returning	simple	strings	or	arrays	from	your	route	actions.	Instead,	you	will	be
returning	full	Illuminate\Http\Response	instances	or	views.

Returning	a	full	Response	instance	allows	you	to	customize	the	response's	HTTP	status	code	and	headers.	A	
Response	instance	inherits	from	the	Symfony\Component\HttpFoundation\Response	class,	which	provides	a	variety
of	methods	for	building	HTTP	responses:

Route::get('/home',	function	()	{

				return	response('Hello	World',	200)

																		->header('Content-Type',	'text/plain');

});

Eloquent	Models	and	Collections

You	may	also	return	Eloquent	ORM	models	and	collections	directly	from	your	routes	and	controllers.	When
you	do,	Laravel	will	automatically	convert	the	models	and	collections	to	JSON	responses	while	respecting	the
model's	hidden	attributes:

Laravel	Documentation	-	10.x	/	Responses 111

use	App\Models\User;

Route::get('/user/{user}',	function	(User	$user)	{

				return	$user;

});

Attaching	Headers	to	Responses

Keep	in	mind	that	most	response	methods	are	chainable,	allowing	for	the	fluent	construction	of	response
instances.	For	example,	you	may	use	the	header	method	to	add	a	series	of	headers	to	the	response	before
sending	it	back	to	the	user:

return	response($content)

												->header('Content-Type',	$type)

												->header('X-Header-One',	'Header	Value')

												->header('X-Header-Two',	'Header	Value');

Or,	you	may	use	the	withHeaders	method	to	specify	an	array	of	headers	to	be	added	to	the	response:

return	response($content)

												->withHeaders([

																'Content-Type'	=>	$type,

																'X-Header-One'	=>	'Header	Value',

																'X-Header-Two'	=>	'Header	Value',

]);

Cache	Control	Middleware

Laravel	includes	a	cache.headers	middleware,	which	may	be	used	to	quickly	set	the	Cache-Control	header	for	a
group	of	routes.	Directives	should	be	provided	using	the	"snake	case"	equivalent	of	the	corresponding	cache-
control	directive	and	should	be	separated	by	a	semicolon.	If	etag	is	specified	in	the	list	of	directives,	an	MD5
hash	of	the	response	content	will	automatically	be	set	as	the	ETag	identifier:

Route::middleware('cache.headers:public;max_age=2628000;etag')->group(function	()	{

				Route::get('/privacy',	function	()	{

								//	...

				});

				Route::get('/terms',	function	()	{

								//	...

				});

});

Attaching	Cookies	to	Responses

You	may	attach	a	cookie	to	an	outgoing	Illuminate\Http\Response	instance	using	the	cookie	method.	You
should	pass	the	name,	value,	and	the	number	of	minutes	the	cookie	should	be	considered	valid	to	this	method:

return	response('Hello	World')->cookie(

				'name',	'value',	$minutes

);

The	cookie	method	also	accepts	a	few	more	arguments	which	are	used	less	frequently.	Generally,	these
arguments	have	the	same	purpose	and	meaning	as	the	arguments	that	would	be	given	to	PHP's	native	setcookie
method:

return	response('Hello	World')->cookie(

				'name',	'value',	$minutes,	$path,	$domain,	$secure,	$httpOnly

);

If	you	would	like	to	ensure	that	a	cookie	is	sent	with	the	outgoing	response	but	you	do	not	yet	have	an	instance
of	that	response,	you	can	use	the	Cookie	facade	to	"queue"	cookies	for	attachment	to	the	response	when	it	is
sent.	The	queue	method	accepts	the	arguments	needed	to	create	a	cookie	instance.	These	cookies	will	be
attached	to	the	outgoing	response	before	it	is	sent	to	the	browser:

use	Illuminate\Support\Facades\Cookie;

Cookie::queue('name',	'value',	$minutes);

Laravel	Documentation	-	10.x	/	Responses 112

https://secure.php.net/manual/en/function.setcookie.php

Generating	Cookie	Instances

If	you	would	like	to	generate	a	Symfony\Component\HttpFoundation\Cookie	instance	that	can	be	attached	to	a
response	instance	at	a	later	time,	you	may	use	the	global	cookie	helper.	This	cookie	will	not	be	sent	back	to	the
client	unless	it	is	attached	to	a	response	instance:

$cookie	=	cookie('name',	'value',	$minutes);

return	response('Hello	World')->cookie($cookie);

Expiring	Cookies	Early

You	may	remove	a	cookie	by	expiring	it	via	the	withoutCookie	method	of	an	outgoing	response:

return	response('Hello	World')->withoutCookie('name');

If	you	do	not	yet	have	an	instance	of	the	outgoing	response,	you	may	use	the	Cookie	facade's	expire	method	to
expire	a	cookie:

Cookie::expire('name');

Cookies	and	Encryption

By	default,	all	cookies	generated	by	Laravel	are	encrypted	and	signed	so	that	they	can't	be	modified	or	read	by
the	client.	If	you	would	like	to	disable	encryption	for	a	subset	of	cookies	generated	by	your	application,	you
may	use	the	$except	property	of	the	App\Http\Middleware\EncryptCookies	middleware,	which	is	located	in	the	
app/Http/Middleware	directory:

/**

	*	The	names	of	the	cookies	that	should	not	be	encrypted.

	*

	*	@var	array

	*/

protected	$except	=	[

				'cookie_name',

];

Redirects

Redirect	responses	are	instances	of	the	Illuminate\Http\RedirectResponse	class,	and	contain	the	proper	headers
needed	to	redirect	the	user	to	another	URL.	There	are	several	ways	to	generate	a	RedirectResponse	instance.	The
simplest	method	is	to	use	the	global	redirect	helper:

Route::get('/dashboard',	function	()	{

				return	redirect('home/dashboard');

});

Sometimes	you	may	wish	to	redirect	the	user	to	their	previous	location,	such	as	when	a	submitted	form	is
invalid.	You	may	do	so	by	using	the	global	back	helper	function.	Since	this	feature	utilizes	the	session,	make
sure	the	route	calling	the	back	function	is	using	the	web	middleware	group:

Route::post('/user/profile',	function	()	{

				//	Validate	the	request...

				return	back()->withInput();

});

Redirecting	to	Named	Routes

When	you	call	the	redirect	helper	with	no	parameters,	an	instance	of	Illuminate\Routing\Redirector	is
returned,	allowing	you	to	call	any	method	on	the	Redirector	instance.	For	example,	to	generate	a	
RedirectResponse	to	a	named	route,	you	may	use	the	route	method:

return	redirect()->route('login');

If	your	route	has	parameters,	you	may	pass	them	as	the	second	argument	to	the	route	method:

Laravel	Documentation	-	10.x	/	Responses 113

//	For	a	route	with	the	following	URI:	/profile/{id}

return	redirect()->route('profile',	['id'	=>	1]);

Populating	Parameters	via	Eloquent	Models

If	you	are	redirecting	to	a	route	with	an	"ID"	parameter	that	is	being	populated	from	an	Eloquent	model,	you
may	pass	the	model	itself.	The	ID	will	be	extracted	automatically:

//	For	a	route	with	the	following	URI:	/profile/{id}

return	redirect()->route('profile',	[$user]);

If	you	would	like	to	customize	the	value	that	is	placed	in	the	route	parameter,	you	can	specify	the	column	in	the
route	parameter	definition	(/profile/{id:slug})	or	you	can	override	the	getRouteKey	method	on	your	Eloquent
model:

/**

	*	Get	the	value	of	the	model's	route	key.

	*/

public	function	getRouteKey():	mixed

{

				return	$this->slug;

}

Redirecting	to	Controller	Actions

You	may	also	generate	redirects	to	controller	actions.	To	do	so,	pass	the	controller	and	action	name	to	the	
action	method:

use	App\Http\Controllers\UserController;

return	redirect()->action([UserController::class,	'index']);

If	your	controller	route	requires	parameters,	you	may	pass	them	as	the	second	argument	to	the	action	method:

return	redirect()->action(

				[UserController::class,	'profile'],	['id'	=>	1]

);

Redirecting	to	External	Domains

Sometimes	you	may	need	to	redirect	to	a	domain	outside	of	your	application.	You	may	do	so	by	calling	the	away
method,	which	creates	a	RedirectResponse	without	any	additional	URL	encoding,	validation,	or	verification:

return	redirect()->away('https://www.google.com');

Redirecting	With	Flashed	Session	Data

Redirecting	to	a	new	URL	and	flashing	data	to	the	session	are	usually	done	at	the	same	time.	Typically,	this	is
done	after	successfully	performing	an	action	when	you	flash	a	success	message	to	the	session.	For	convenience,
you	may	create	a	RedirectResponse	instance	and	flash	data	to	the	session	in	a	single,	fluent	method	chain:

Route::post('/user/profile',	function	()	{

				//	...

				return	redirect('dashboard')->with('status',	'Profile	updated!');

});

After	the	user	is	redirected,	you	may	display	the	flashed	message	from	the	session.	For	example,	using	Blade
syntax:

@if	(session('status'))

				<div	class="alert	alert-success">

								{{	session('status')	}}

				</div>

@endif

Laravel	Documentation	-	10.x	/	Responses 114

Redirecting	With	Input

You	may	use	the	withInput	method	provided	by	the	RedirectResponse	instance	to	flash	the	current	request's
input	data	to	the	session	before	redirecting	the	user	to	a	new	location.	This	is	typically	done	if	the	user	has
encountered	a	validation	error.	Once	the	input	has	been	flashed	to	the	session,	you	may	easily	retrieve	it	during
the	next	request	to	repopulate	the	form:

return	back()->withInput();

Other	Response	Types

The	response	helper	may	be	used	to	generate	other	types	of	response	instances.	When	the	response	helper	is
called	without	arguments,	an	implementation	of	the	Illuminate\Contracts\Routing\ResponseFactory	contract	is
returned.	This	contract	provides	several	helpful	methods	for	generating	responses.

View	Responses

If	you	need	control	over	the	response's	status	and	headers	but	also	need	to	return	a	view	as	the	response's
content,	you	should	use	the	view	method:

return	response()

												->view('hello',	$data,	200)

												->header('Content-Type',	$type);

Of	course,	if	you	do	not	need	to	pass	a	custom	HTTP	status	code	or	custom	headers,	you	may	use	the	global	
view	helper	function.

JSON	Responses

The	json	method	will	automatically	set	the	Content-Type	header	to	application/json,	as	well	as	convert	the
given	array	to	JSON	using	the	json_encode	PHP	function:

return	response()->json([

				'name'	=>	'Abigail',

				'state'	=>	'CA',

]);

If	you	would	like	to	create	a	JSONP	response,	you	may	use	the	json	method	in	combination	with	the	
withCallback	method:

return	response()

												->json(['name'	=>	'Abigail',	'state'	=>	'CA'])

												->withCallback($request->input('callback'));

File	Downloads

The	download	method	may	be	used	to	generate	a	response	that	forces	the	user's	browser	to	download	the	file	at
the	given	path.	The	download	method	accepts	a	filename	as	the	second	argument	to	the	method,	which	will
determine	the	filename	that	is	seen	by	the	user	downloading	the	file.	Finally,	you	may	pass	an	array	of	HTTP
headers	as	the	third	argument	to	the	method:

return	response()->download($pathToFile);

return	response()->download($pathToFile,	$name,	$headers);

[!WARNING]
Symfony	HttpFoundation,	which	manages	file	downloads,	requires	the	file	being	downloaded	to	have	an
ASCII	filename.

Streamed	Downloads

Sometimes	you	may	wish	to	turn	the	string	response	of	a	given	operation	into	a	downloadable	response	without
having	to	write	the	contents	of	the	operation	to	disk.	You	may	use	the	streamDownload	method	in	this	scenario.

Laravel	Documentation	-	10.x	/	Responses 115

This	method	accepts	a	callback,	filename,	and	an	optional	array	of	headers	as	its	arguments:

use	App\Services\GitHub;

return	response()->streamDownload(function	()	{

				echo	GitHub::api('repo')

																->contents()

																->readme('laravel',	'laravel')['contents'];

},	'laravel-readme.md');

File	Responses

The	file	method	may	be	used	to	display	a	file,	such	as	an	image	or	PDF,	directly	in	the	user's	browser	instead
of	initiating	a	download.	This	method	accepts	the	absolute	path	to	the	file	as	its	first	argument	and	an	array	of
headers	as	its	second	argument:

return	response()->file($pathToFile);

return	response()->file($pathToFile,	$headers);

Response	Macros

If	you	would	like	to	define	a	custom	response	that	you	can	re-use	in	a	variety	of	your	routes	and	controllers,
you	may	use	the	macro	method	on	the	Response	facade.	Typically,	you	should	call	this	method	from	the	boot
method	of	one	of	your	application's	service	providers,	such	as	the	App\Providers\AppServiceProvider	service
provider:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Response;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Response::macro('caps',	function	(string	$value)	{

												return	Response::make(strtoupper($value));

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument	and	a	closure	as	its	second	argument.	The	macro's
closure	will	be	executed	when	calling	the	macro	name	from	a	ResponseFactory	implementation	or	the	response
helper:

return	response()->caps('foo');

Laravel	Documentation	-	10.x	/	Responses 116

The	Basics

Views
Introduction

Writing	Views	in	React	/	Vue
Creating	and	Rendering	Views

Nested	View	Directories
Creating	the	First	Available	View
Determining	if	a	View	Exists

Passing	Data	to	Views
Sharing	Data	With	All	Views

View	Composers
View	Creators

Optimizing	Views

Introduction

Of	course,	it's	not	practical	to	return	entire	HTML	documents	strings	directly	from	your	routes	and	controllers.
Thankfully,	views	provide	a	convenient	way	to	place	all	of	our	HTML	in	separate	files.

Views	separate	your	controller	/	application	logic	from	your	presentation	logic	and	are	stored	in	the	
resources/views	directory.	When	using	Laravel,	view	templates	are	usually	written	using	the	Blade	templating
language.	A	simple	view	might	look	something	like	this:

<!--	View	stored	in	resources/views/greeting.blade.php	-->

<html>

				<body>

								<h1>Hello,	{{	$name	}}</h1>

				</body>

</html>

Since	this	view	is	stored	at	resources/views/greeting.blade.php,	we	may	return	it	using	the	global	view	helper
like	so:

Route::get('/',	function	()	{

				return	view('greeting',	['name'	=>	'James']);

});

[!NOTE]
Looking	for	more	information	on	how	to	write	Blade	templates?	Check	out	the	full	Blade	documentation
to	get	started.

Writing	Views	in	React	/	Vue

Instead	of	writing	their	frontend	templates	in	PHP	via	Blade,	many	developers	have	begun	to	prefer	to	write
their	templates	using	React	or	Vue.	Laravel	makes	this	painless	thanks	to	Inertia,	a	library	that	makes	it	a	cinch
to	tie	your	React	/	Vue	frontend	to	your	Laravel	backend	without	the	typical	complexities	of	building	an	SPA.

Our	Breeze	and	Jetstream	starter	kits	give	you	a	great	starting	point	for	your	next	Laravel	application	powered
by	Inertia.	In	addition,	the	Laravel	Bootcamp	provides	a	full	demonstration	of	building	a	Laravel	application
powered	by	Inertia,	including	examples	in	Vue	and	React.

Creating	and	Rendering	Views

You	may	create	a	view	by	placing	a	file	with	the	.blade.php	extension	in	your	application's	resources/views
directory	or	by	using	the	make:view	Artisan	command:

php	artisan	make:view	greeting

The	.blade.php	extension	informs	the	framework	that	the	file	contains	a	Blade	template.	Blade	templates

Laravel	Documentation	-	10.x	/	Views 117

https://inertiajs.com/
https://bootcamp.laravel.com

contain	HTML	as	well	as	Blade	directives	that	allow	you	to	easily	echo	values,	create	"if"	statements,	iterate
over	data,	and	more.

Once	you	have	created	a	view,	you	may	return	it	from	one	of	your	application's	routes	or	controllers	using	the
global	view	helper:

Route::get('/',	function	()	{

				return	view('greeting',	['name'	=>	'James']);

});

Views	may	also	be	returned	using	the	View	facade:

use	Illuminate\Support\Facades\View;

return	View::make('greeting',	['name'	=>	'James']);

As	you	can	see,	the	first	argument	passed	to	the	view	helper	corresponds	to	the	name	of	the	view	file	in	the	
resources/views	directory.	The	second	argument	is	an	array	of	data	that	should	be	made	available	to	the	view.	In
this	case,	we	are	passing	the	name	variable,	which	is	displayed	in	the	view	using	Blade	syntax.

Nested	View	Directories

Views	may	also	be	nested	within	subdirectories	of	the	resources/views	directory.	"Dot"	notation	may	be	used	to
reference	nested	views.	For	example,	if	your	view	is	stored	at	resources/views/admin/profile.blade.php,	you
may	return	it	from	one	of	your	application's	routes	/	controllers	like	so:

return	view('admin.profile',	$data);

[!WARNING]
View	directory	names	should	not	contain	the	.	character.

Creating	the	First	Available	View

Using	the	View	facade's	first	method,	you	may	create	the	first	view	that	exists	in	a	given	array	of	views.	This
may	be	useful	if	your	application	or	package	allows	views	to	be	customized	or	overwritten:

use	Illuminate\Support\Facades\View;

return	View::first(['custom.admin',	'admin'],	$data);

Determining	if	a	View	Exists

If	you	need	to	determine	if	a	view	exists,	you	may	use	the	View	facade.	The	exists	method	will	return	true	if	the
view	exists:

use	Illuminate\Support\Facades\View;

if	(View::exists('admin.profile'))	{

				//	...

}

Passing	Data	to	Views

As	you	saw	in	the	previous	examples,	you	may	pass	an	array	of	data	to	views	to	make	that	data	available	to	the
view:

return	view('greetings',	['name'	=>	'Victoria']);

When	passing	information	in	this	manner,	the	data	should	be	an	array	with	key	/	value	pairs.	After	providing
data	to	a	view,	you	can	then	access	each	value	within	your	view	using	the	data's	keys,	such	as	<?php	echo	
$name;	?>.

As	an	alternative	to	passing	a	complete	array	of	data	to	the	view	helper	function,	you	may	use	the	with	method
to	add	individual	pieces	of	data	to	the	view.	The	with	method	returns	an	instance	of	the	view	object	so	that	you

Laravel	Documentation	-	10.x	/	Views 118

can	continue	chaining	methods	before	returning	the	view:

return	view('greeting')

												->with('name',	'Victoria')

												->with('occupation',	'Astronaut');

Sharing	Data	With	All	Views

Occasionally,	you	may	need	to	share	data	with	all	views	that	are	rendered	by	your	application.	You	may	do	so
using	the	View	facade's	share	method.	Typically,	you	should	place	calls	to	the	share	method	within	a	service
provider's	boot	method.	You	are	free	to	add	them	to	the	App\Providers\AppServiceProvider	class	or	generate	a
separate	service	provider	to	house	them:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\View;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								View::share('key',	'value');

				}

}

View	Composers

View	composers	are	callbacks	or	class	methods	that	are	called	when	a	view	is	rendered.	If	you	have	data	that
you	want	to	be	bound	to	a	view	each	time	that	view	is	rendered,	a	view	composer	can	help	you	organize	that
logic	into	a	single	location.	View	composers	may	prove	particularly	useful	if	the	same	view	is	returned	by
multiple	routes	or	controllers	within	your	application	and	always	needs	a	particular	piece	of	data.

Typically,	view	composers	will	be	registered	within	one	of	your	application's	service	providers.	In	this	example,
we'll	assume	that	we	have	created	a	new	App\Providers\ViewServiceProvider	to	house	this	logic.

We'll	use	the	View	facade's	composer	method	to	register	the	view	composer.	Laravel	does	not	include	a	default
directory	for	class	based	view	composers,	so	you	are	free	to	organize	them	however	you	wish.	For	example,
you	could	create	an	app/View/Composers	directory	to	house	all	of	your	application's	view	composers:

<?php

namespace	App\Providers;

use	App\View\Composers\ProfileComposer;

use	Illuminate\Support\Facades;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\View\View;

class	ViewServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

Laravel	Documentation	-	10.x	/	Views 119

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								//	Using	class	based	composers...

								Facades\View::composer('profile',	ProfileComposer::class);

								//	Using	closure	based	composers...

								Facades\View::composer('welcome',	function	(View	$view)	{

												//	...

								});

								Facades\View::composer('dashboard',	function	(View	$view)	{

												//	...

								});

				}

}

[!WARNING]
Remember,	if	you	create	a	new	service	provider	to	contain	your	view	composer	registrations,	you	will
need	to	add	the	service	provider	to	the	providers	array	in	the	config/app.php	configuration	file.

Now	that	we	have	registered	the	composer,	the	compose	method	of	the	App\View\Composers\ProfileComposer	class
will	be	executed	each	time	the	profile	view	is	being	rendered.	Let's	take	a	look	at	an	example	of	the	composer
class:

<?php

namespace	App\View\Composers;

use	App\Repositories\UserRepository;

use	Illuminate\View\View;

class	ProfileComposer

{

				/**

					*	Create	a	new	profile	composer.

					*/

				public	function	__construct(

								protected	UserRepository	$users,

)	{}

				/**

					*	Bind	data	to	the	view.

					*/

				public	function	compose(View	$view):	void

				{

								$view->with('count',	$this->users->count());

				}

}

As	you	can	see,	all	view	composers	are	resolved	via	the	service	container,	so	you	may	type-hint	any
dependencies	you	need	within	a	composer's	constructor.

Attaching	a	Composer	to	Multiple	Views

You	may	attach	a	view	composer	to	multiple	views	at	once	by	passing	an	array	of	views	as	the	first	argument	to
the	composer	method:

use	App\Views\Composers\MultiComposer;

use	Illuminate\Support\Facades\View;

View::composer(

				['profile',	'dashboard'],

				MultiComposer::class

);

The	composer	method	also	accepts	the	*	character	as	a	wildcard,	allowing	you	to	attach	a	composer	to	all	views:

use	Illuminate\Support\Facades;

use	Illuminate\View\View;

Facades\View::composer('*',	function	(View	$view)	{

				//	...

});

Laravel	Documentation	-	10.x	/	Views 120

View	Creators

View	"creators"	are	very	similar	to	view	composers;	however,	they	are	executed	immediately	after	the	view	is
instantiated	instead	of	waiting	until	the	view	is	about	to	render.	To	register	a	view	creator,	use	the	creator
method:

use	App\View\Creators\ProfileCreator;

use	Illuminate\Support\Facades\View;

View::creator('profile',	ProfileCreator::class);

Optimizing	Views

By	default,	Blade	template	views	are	compiled	on	demand.	When	a	request	is	executed	that	renders	a	view,
Laravel	will	determine	if	a	compiled	version	of	the	view	exists.	If	the	file	exists,	Laravel	will	then	determine	if
the	uncompiled	view	has	been	modified	more	recently	than	the	compiled	view.	If	the	compiled	view	either	does
not	exist,	or	the	uncompiled	view	has	been	modified,	Laravel	will	recompile	the	view.

Compiling	views	during	the	request	may	have	a	small	negative	impact	on	performance,	so	Laravel	provides	the	
view:cache	Artisan	command	to	precompile	all	of	the	views	utilized	by	your	application.	For	increased
performance,	you	may	wish	to	run	this	command	as	part	of	your	deployment	process:

php	artisan	view:cache

You	may	use	the	view:clear	command	to	clear	the	view	cache:

php	artisan	view:clear

Laravel	Documentation	-	10.x	/	Views 121

The	Basics

Blade	Templates
Introduction

Supercharging	Blade	With	Livewire
Displaying	Data

HTML	Entity	Encoding
Blade	and	JavaScript	Frameworks

Blade	Directives
If	Statements
Switch	Statements
Loops
The	Loop	Variable
Conditional	Classes
Additional	Attributes
Including	Subviews
The	@once	Directive
Raw	PHP
Comments

Components
Rendering	Components
Passing	Data	to	Components
Component	Attributes
Reserved	Keywords
Slots
Inline	Component	Views
Dynamic	Components
Manually	Registering	Components

Anonymous	Components
Anonymous	Index	Components
Data	Properties	/	Attributes
Accessing	Parent	Data
Anonymous	Components	Paths

Building	Layouts
Layouts	Using	Components
Layouts	Using	Template	Inheritance

Forms
CSRF	Field
Method	Field
Validation	Errors

Stacks
Service	Injection
Rendering	Inline	Blade	Templates
Rendering	Blade	Fragments
Extending	Blade

Custom	Echo	Handlers
Custom	If	Statements

Introduction

Blade	is	the	simple,	yet	powerful	templating	engine	that	is	included	with	Laravel.	Unlike	some	PHP	templating
engines,	Blade	does	not	restrict	you	from	using	plain	PHP	code	in	your	templates.	In	fact,	all	Blade	templates
are	compiled	into	plain	PHP	code	and	cached	until	they	are	modified,	meaning	Blade	adds	essentially	zero
overhead	to	your	application.	Blade	template	files	use	the	.blade.php	file	extension	and	are	typically	stored	in
the	resources/views	directory.

Blade	views	may	be	returned	from	routes	or	controllers	using	the	global	view	helper.	Of	course,	as	mentioned	in
the	documentation	on	views,	data	may	be	passed	to	the	Blade	view	using	the	view	helper's	second	argument:

Laravel	Documentation	-	10.x	/	Blade	Templates 122

Route::get('/',	function	()	{

				return	view('greeting',	['name'	=>	'Finn']);

});

Supercharging	Blade	With	Livewire

Want	to	take	your	Blade	templates	to	the	next	level	and	build	dynamic	interfaces	with	ease?	Check	out	Laravel
Livewire.	Livewire	allows	you	to	write	Blade	components	that	are	augmented	with	dynamic	functionality	that
would	typically	only	be	possible	via	frontend	frameworks	like	React	or	Vue,	providing	a	great	approach	to
building	modern,	reactive	frontends	without	the	complexities,	client-side	rendering,	or	build	steps	of	many
JavaScript	frameworks.

Displaying	Data

You	may	display	data	that	is	passed	to	your	Blade	views	by	wrapping	the	variable	in	curly	braces.	For	example,
given	the	following	route:

Route::get('/',	function	()	{

				return	view('welcome',	['name'	=>	'Samantha']);

});

You	may	display	the	contents	of	the	name	variable	like	so:

Hello,	{{	$name	}}.

[!NOTE]
Blade's	{{	}}	echo	statements	are	automatically	sent	through	PHP's	htmlspecialchars	function	to	prevent
XSS	attacks.

You	are	not	limited	to	displaying	the	contents	of	the	variables	passed	to	the	view.	You	may	also	echo	the	results
of	any	PHP	function.	In	fact,	you	can	put	any	PHP	code	you	wish	inside	of	a	Blade	echo	statement:

The	current	UNIX	timestamp	is	{{	time()	}}.

HTML	Entity	Encoding

By	default,	Blade	(and	the	Laravel	e	function)	will	double	encode	HTML	entities.	If	you	would	like	to	disable
double	encoding,	call	the	Blade::withoutDoubleEncoding	method	from	the	boot	method	of	your	
AppServiceProvider:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Blade;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Blade::withoutDoubleEncoding();

				}

}

Displaying	Unescaped	Data

By	default,	Blade	{{	}}	statements	are	automatically	sent	through	PHP's	htmlspecialchars	function	to	prevent
XSS	attacks.	If	you	do	not	want	your	data	to	be	escaped,	you	may	use	the	following	syntax:

Hello,	{!!	$name	!!}.

[!WARNING]
Be	very	careful	when	echoing	content	that	is	supplied	by	users	of	your	application.	You	should	typically

Laravel	Documentation	-	10.x	/	Blade	Templates 123

https://livewire.laravel.com

use	the	escaped,	double	curly	brace	syntax	to	prevent	XSS	attacks	when	displaying	user	supplied	data.

Blade	and	JavaScript	Frameworks

Since	many	JavaScript	frameworks	also	use	"curly"	braces	to	indicate	a	given	expression	should	be	displayed
in	the	browser,	you	may	use	the	@	symbol	to	inform	the	Blade	rendering	engine	an	expression	should	remain
untouched.	For	example:

<h1>Laravel</h1>

Hello,	@{{	name	}}.

In	this	example,	the	@	symbol	will	be	removed	by	Blade;	however,	{{	name	}}	expression	will	remain
untouched	by	the	Blade	engine,	allowing	it	to	be	rendered	by	your	JavaScript	framework.

The	@	symbol	may	also	be	used	to	escape	Blade	directives:

{{--	Blade	template	--}}

@@if()

<!--	HTML	output	-->

@if()

Rendering	JSON

Sometimes	you	may	pass	an	array	to	your	view	with	the	intention	of	rendering	it	as	JSON	in	order	to	initialize	a
JavaScript	variable.	For	example:

<script>

				var	app	=	<?php	echo	json_encode($array);	?>;

</script>

However,	instead	of	manually	calling	json_encode,	you	may	use	the	Illuminate\Support\Js::from	method
directive.	The	from	method	accepts	the	same	arguments	as	PHP's	json_encode	function;	however,	it	will	ensure
that	the	resulting	JSON	is	properly	escaped	for	inclusion	within	HTML	quotes.	The	from	method	will	return	a
string	JSON.parse	JavaScript	statement	that	will	convert	the	given	object	or	array	into	a	valid	JavaScript	object:

<script>

				var	app	=	{{	Illuminate\Support\Js::from($array)	}};

</script>

The	latest	versions	of	the	Laravel	application	skeleton	include	a	Js	facade,	which	provides	convenient	access	to
this	functionality	within	your	Blade	templates:

<script>

				var	app	=	{{	Js::from($array)	}};

</script>

[!WARNING]
You	should	only	use	the	Js::from	method	to	render	existing	variables	as	JSON.	The	Blade	templating	is
based	on	regular	expressions	and	attempts	to	pass	a	complex	expression	to	the	directive	may	cause
unexpected	failures.

The	@verbatim	Directive

If	you	are	displaying	JavaScript	variables	in	a	large	portion	of	your	template,	you	may	wrap	the	HTML	in	the	
@verbatim	directive	so	that	you	do	not	have	to	prefix	each	Blade	echo	statement	with	an	@	symbol:

@verbatim

				<div	class="container">

								Hello,	{{	name	}}.

				</div>

@endverbatim

Blade	Directives

Laravel	Documentation	-	10.x	/	Blade	Templates 124

In	addition	to	template	inheritance	and	displaying	data,	Blade	also	provides	convenient	shortcuts	for	common
PHP	control	structures,	such	as	conditional	statements	and	loops.	These	shortcuts	provide	a	very	clean,	terse
way	of	working	with	PHP	control	structures	while	also	remaining	familiar	to	their	PHP	counterparts.

If	Statements

You	may	construct	if	statements	using	the	@if,	@elseif,	@else,	and	@endif	directives.	These	directives	function
identically	to	their	PHP	counterparts:

@if	(count($records)	===	1)

				I	have	one	record!

@elseif	(count($records)	>	1)

				I	have	multiple	records!

@else

				I	don't	have	any	records!

@endif

For	convenience,	Blade	also	provides	an	@unless	directive:

@unless	(Auth::check())

				You	are	not	signed	in.

@endunless

In	addition	to	the	conditional	directives	already	discussed,	the	@isset	and	@empty	directives	may	be	used	as
convenient	shortcuts	for	their	respective	PHP	functions:

@isset($records)

				//	$records	is	defined	and	is	not	null...

@endisset

@empty($records)

				//	$records	is	"empty"...

@endempty

Authentication	Directives

The	@auth	and	@guest	directives	may	be	used	to	quickly	determine	if	the	current	user	is	authenticated	or	is	a
guest:

@auth

				//	The	user	is	authenticated...

@endauth

@guest

				//	The	user	is	not	authenticated...

@endguest

If	needed,	you	may	specify	the	authentication	guard	that	should	be	checked	when	using	the	@auth	and	@guest
directives:

@auth('admin')

				//	The	user	is	authenticated...

@endauth

@guest('admin')

				//	The	user	is	not	authenticated...

@endguest

Environment	Directives

You	may	check	if	the	application	is	running	in	the	production	environment	using	the	@production	directive:

@production

				//	Production	specific	content...

@endproduction

Or,	you	may	determine	if	the	application	is	running	in	a	specific	environment	using	the	@env	directive:

@env('staging')

				//	The	application	is	running	in	"staging"...

Laravel	Documentation	-	10.x	/	Blade	Templates 125

@endenv

@env(['staging',	'production'])

				//	The	application	is	running	in	"staging"	or	"production"...

@endenv

Section	Directives

You	may	determine	if	a	template	inheritance	section	has	content	using	the	@hasSection	directive:

@hasSection('navigation')

				<div	class="pull-right">

								@yield('navigation')

				</div>

				<div	class="clearfix"></div>

@endif

You	may	use	the	sectionMissing	directive	to	determine	if	a	section	does	not	have	content:

@sectionMissing('navigation')

				<div	class="pull-right">

								@include('default-navigation')

				</div>

@endif

Session	Directives

The	@session	directive	may	be	used	to	determine	if	a	session	value	exists.	If	the	session	value	exists,	the
template	contents	within	the	@session	and	@endsession	directives	will	be	evaluated.	Within	the	@session
directive's	contents,	you	may	echo	the	$value	variable	to	display	the	session	value:

@session('status')

				<div	class="p-4	bg-green-100">

								{{	$value	}}

				</div>

@endsession

Switch	Statements

Switch	statements	can	be	constructed	using	the	@switch,	@case,	@break,	@default	and	@endswitch	directives:

@switch($i)

				@case(1)

								First	case...

								@break

				@case(2)

								Second	case...

								@break

				@default

								Default	case...

@endswitch

Loops

In	addition	to	conditional	statements,	Blade	provides	simple	directives	for	working	with	PHP's	loop	structures.
Again,	each	of	these	directives	functions	identically	to	their	PHP	counterparts:

@for	($i	=	0;	$i	<	10;	$i++)

				The	current	value	is	{{	$i	}}

@endfor

@foreach	($users	as	$user)

				<p>This	is	user	{{	$user->id	}}</p>

@endforeach

@forelse	($users	as	$user)

				{{	$user->name	}}

@empty

Laravel	Documentation	-	10.x	/	Blade	Templates 126

				<p>No	users</p>

@endforelse

@while	(true)

				<p>I'm	looping	forever.</p>

@endwhile

[!NOTE]
While	iterating	through	a	foreach	loop,	you	may	use	the	loop	variable	to	gain	valuable	information	about
the	loop,	such	as	whether	you	are	in	the	first	or	last	iteration	through	the	loop.

When	using	loops	you	may	also	skip	the	current	iteration	or	end	the	loop	using	the	@continue	and	@break
directives:

@foreach	($users	as	$user)

				@if	($user->type	==	1)

								@continue

				@endif

				{{	$user->name	}}

				@if	($user->number	==	5)

								@break

				@endif

@endforeach

You	may	also	include	the	continuation	or	break	condition	within	the	directive	declaration:

@foreach	($users	as	$user)

				@continue($user->type	==	1)

				{{	$user->name	}}

				@break($user->number	==	5)

@endforeach

The	Loop	Variable

While	iterating	through	a	foreach	loop,	a	$loop	variable	will	be	available	inside	of	your	loop.	This	variable
provides	access	to	some	useful	bits	of	information	such	as	the	current	loop	index	and	whether	this	is	the	first	or
last	iteration	through	the	loop:

@foreach	($users	as	$user)

				@if	($loop->first)

								This	is	the	first	iteration.

				@endif

				@if	($loop->last)

								This	is	the	last	iteration.

				@endif

				<p>This	is	user	{{	$user->id	}}</p>

@endforeach

If	you	are	in	a	nested	loop,	you	may	access	the	parent	loop's	$loop	variable	via	the	parent	property:

@foreach	($users	as	$user)

				@foreach	($user->posts	as	$post)

								@if	($loop->parent->first)

												This	is	the	first	iteration	of	the	parent	loop.

								@endif

				@endforeach

@endforeach

The	$loop	variable	also	contains	a	variety	of	other	useful	properties:

Property Description
$loop->index The	index	of	the	current	loop	iteration	(starts	at	0).
$loop->iteration The	current	loop	iteration	(starts	at	1).
$loop->remaining The	iterations	remaining	in	the	loop.
$loop->count The	total	number	of	items	in	the	array	being	iterated.

Laravel	Documentation	-	10.x	/	Blade	Templates 127

$loop->first Whether	this	is	the	first	iteration	through	the	loop.
$loop->last Whether	this	is	the	last	iteration	through	the	loop.
$loop->even Whether	this	is	an	even	iteration	through	the	loop.
$loop->odd Whether	this	is	an	odd	iteration	through	the	loop.
$loop->depth The	nesting	level	of	the	current	loop.
$loop->parent When	in	a	nested	loop,	the	parent's	loop	variable.

Conditional	Classes	&	Styles

The	@class	directive	conditionally	compiles	a	CSS	class	string.	The	directive	accepts	an	array	of	classes	where
the	array	key	contains	the	class	or	classes	you	wish	to	add,	while	the	value	is	a	boolean	expression.	If	the	array
element	has	a	numeric	key,	it	will	always	be	included	in	the	rendered	class	list:

@php

				$isActive	=	false;

				$hasError	=	true;

@endphp

<span	@class([

				'p-4',

				'font-bold'	=>	$isActive,

				'text-gray-500'	=>	!	$isActive,

				'bg-red'	=>	$hasError,

])>

Likewise,	the	@style	directive	may	be	used	to	conditionally	add	inline	CSS	styles	to	an	HTML	element:

@php

				$isActive	=	true;

@endphp

<span	@style([

				'background-color:	red',

				'font-weight:	bold'	=>	$isActive,

])>

Additional	Attributes

For	convenience,	you	may	use	the	@checked	directive	to	easily	indicate	if	a	given	HTML	checkbox	input	is
"checked".	This	directive	will	echo	checked	if	the	provided	condition	evaluates	to	true:

<input	type="checkbox"

								name="active"

								value="active"

								@checked(old('active',	$user->active))	/>

Likewise,	the	@selected	directive	may	be	used	to	indicate	if	a	given	select	option	should	be	"selected":

<select	name="version">

				@foreach	($product->versions	as	$version)

								<option	value="{{	$version	}}"	@selected(old('version')	==	$version)>

												{{	$version	}}

								</option>

				@endforeach

</select>

Additionally,	the	@disabled	directive	may	be	used	to	indicate	if	a	given	element	should	be	"disabled":

<button	type="submit"	@disabled($errors->isNotEmpty())>Submit</button>

Moreover,	the	@readonly	directive	may	be	used	to	indicate	if	a	given	element	should	be	"readonly":

<input	type="email"

								name="email"

								value="email@laravel.com"

								@readonly($user->isNotAdmin())	/>

Laravel	Documentation	-	10.x	/	Blade	Templates 128

In	addition,	the	@required	directive	may	be	used	to	indicate	if	a	given	element	should	be	"required":

<input	type="text"

								name="title"

								value="title"

								@required($user->isAdmin())	/>

Including	Subviews

[!NOTE]
While	you're	free	to	use	the	@include	directive,	Blade	components	provide	similar	functionality	and	offer
several	benefits	over	the	@include	directive	such	as	data	and	attribute	binding.

Blade's	@include	directive	allows	you	to	include	a	Blade	view	from	within	another	view.	All	variables	that	are
available	to	the	parent	view	will	be	made	available	to	the	included	view:

<div>

				@include('shared.errors')

				<form>

								<!--	Form	Contents	-->

				</form>

</div>

Even	though	the	included	view	will	inherit	all	data	available	in	the	parent	view,	you	may	also	pass	an	array	of
additional	data	that	should	be	made	available	to	the	included	view:

@include('view.name',	['status'	=>	'complete'])

If	you	attempt	to	@include	a	view	which	does	not	exist,	Laravel	will	throw	an	error.	If	you	would	like	to	include
a	view	that	may	or	may	not	be	present,	you	should	use	the	@includeIf	directive:

@includeIf('view.name',	['status'	=>	'complete'])

If	you	would	like	to	@include	a	view	if	a	given	boolean	expression	evaluates	to	true	or	false,	you	may	use	the	
@includeWhen	and	@includeUnless	directives:

@includeWhen($boolean,	'view.name',	['status'	=>	'complete'])

@includeUnless($boolean,	'view.name',	['status'	=>	'complete'])

To	include	the	first	view	that	exists	from	a	given	array	of	views,	you	may	use	the	includeFirst	directive:

@includeFirst(['custom.admin',	'admin'],	['status'	=>	'complete'])

[!WARNING]
You	should	avoid	using	the	__DIR__	and	__FILE__	constants	in	your	Blade	views,	since	they	will	refer	to	the
location	of	the	cached,	compiled	view.

Rendering	Views	for	Collections

You	may	combine	loops	and	includes	into	one	line	with	Blade's	@each	directive:

@each('view.name',	$jobs,	'job')

The	@each	directive's	first	argument	is	the	view	to	render	for	each	element	in	the	array	or	collection.	The	second
argument	is	the	array	or	collection	you	wish	to	iterate	over,	while	the	third	argument	is	the	variable	name	that
will	be	assigned	to	the	current	iteration	within	the	view.	So,	for	example,	if	you	are	iterating	over	an	array	of	
jobs,	typically	you	will	want	to	access	each	job	as	a	job	variable	within	the	view.	The	array	key	for	the	current
iteration	will	be	available	as	the	key	variable	within	the	view.

You	may	also	pass	a	fourth	argument	to	the	@each	directive.	This	argument	determines	the	view	that	will	be
rendered	if	the	given	array	is	empty.

@each('view.name',	$jobs,	'job',	'view.empty')

[!WARNING]

Laravel	Documentation	-	10.x	/	Blade	Templates 129

Views	rendered	via	@each	do	not	inherit	the	variables	from	the	parent	view.	If	the	child	view	requires	these
variables,	you	should	use	the	@foreach	and	@include	directives	instead.

The	@once	Directive

The	@once	directive	allows	you	to	define	a	portion	of	the	template	that	will	only	be	evaluated	once	per	rendering
cycle.	This	may	be	useful	for	pushing	a	given	piece	of	JavaScript	into	the	page's	header	using	stacks.	For
example,	if	you	are	rendering	a	given	component	within	a	loop,	you	may	wish	to	only	push	the	JavaScript	to
the	header	the	first	time	the	component	is	rendered:

@once

				@push('scripts')

								<script>

												//	Your	custom	JavaScript...

								</script>

				@endpush

@endonce

Since	the	@once	directive	is	often	used	in	conjunction	with	the	@push	or	@prepend	directives,	the	@pushOnce	and	
@prependOnce	directives	are	available	for	your	convenience:

@pushOnce('scripts')

				<script>

								//	Your	custom	JavaScript...

				</script>

@endPushOnce

Raw	PHP

In	some	situations,	it's	useful	to	embed	PHP	code	into	your	views.	You	can	use	the	Blade	@php	directive	to
execute	a	block	of	plain	PHP	within	your	template:

@php

				$counter	=	1;

@endphp

Or,	if	you	only	need	to	use	PHP	to	import	a	class,	you	may	use	the	@use	directive:

@use('App\Models\Flight')

A	second	argument	may	be	provided	to	the	@use	directive	to	alias	the	imported	class:

@use('App\Models\Flight',	'FlightModel')

Comments

Blade	also	allows	you	to	define	comments	in	your	views.	However,	unlike	HTML	comments,	Blade	comments
are	not	included	in	the	HTML	returned	by	your	application:

{{--	This	comment	will	not	be	present	in	the	rendered	HTML	--}}

Components

Components	and	slots	provide	similar	benefits	to	sections,	layouts,	and	includes;	however,	some	may	find	the
mental	model	of	components	and	slots	easier	to	understand.	There	are	two	approaches	to	writing	components:
class	based	components	and	anonymous	components.

To	create	a	class	based	component,	you	may	use	the	make:component	Artisan	command.	To	illustrate	how	to	use
components,	we	will	create	a	simple	Alert	component.	The	make:component	command	will	place	the	component
in	the	app/View/Components	directory:

php	artisan	make:component	Alert

The	make:component	command	will	also	create	a	view	template	for	the	component.	The	view	will	be	placed	in
the	resources/views/components	directory.	When	writing	components	for	your	own	application,	components	are

Laravel	Documentation	-	10.x	/	Blade	Templates 130

automatically	discovered	within	the	app/View/Components	directory	and	resources/views/components	directory,
so	no	further	component	registration	is	typically	required.

You	may	also	create	components	within	subdirectories:

php	artisan	make:component	Forms/Input

The	command	above	will	create	an	Input	component	in	the	app/View/Components/Forms	directory	and	the	view
will	be	placed	in	the	resources/views/components/forms	directory.

If	you	would	like	to	create	an	anonymous	component	(a	component	with	only	a	Blade	template	and	no	class),
you	may	use	the	--view	flag	when	invoking	the	make:component	command:

php	artisan	make:component	forms.input	--view

The	command	above	will	create	a	Blade	file	at	resources/views/components/forms/input.blade.php	which	can
be	rendered	as	a	component	via	<x-forms.input	/>.

Manually	Registering	Package	Components

When	writing	components	for	your	own	application,	components	are	automatically	discovered	within	the	
app/View/Components	directory	and	resources/views/components	directory.

However,	if	you	are	building	a	package	that	utilizes	Blade	components,	you	will	need	to	manually	register	your
component	class	and	its	HTML	tag	alias.	You	should	typically	register	your	components	in	the	boot	method	of
your	package's	service	provider:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::component('package-alert',	Alert::class);

}

Once	your	component	has	been	registered,	it	may	be	rendered	using	its	tag	alias:

<x-package-alert/>

Alternatively,	you	may	use	the	componentNamespace	method	to	autoload	component	classes	by	convention.	For
example,	a	Nightshade	package	might	have	Calendar	and	ColorPicker	components	that	reside	within	the	
Package\Views\Components	namespace:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::componentNamespace('Nightshade\\Views\\Components',	'nightshade');

}

This	will	allow	the	usage	of	package	components	by	their	vendor	namespace	using	the	package-name::	syntax:

<x-nightshade::calendar	/>

<x-nightshade::color-picker	/>

Blade	will	automatically	detect	the	class	that's	linked	to	this	component	by	pascal-casing	the	component	name.
Subdirectories	are	also	supported	using	"dot"	notation.

Rendering	Components

To	display	a	component,	you	may	use	a	Blade	component	tag	within	one	of	your	Blade	templates.	Blade
component	tags	start	with	the	string	x-	followed	by	the	kebab	case	name	of	the	component	class:

Laravel	Documentation	-	10.x	/	Blade	Templates 131

<x-alert/>

<x-user-profile/>

If	the	component	class	is	nested	deeper	within	the	app/View/Components	directory,	you	may	use	the	.	character	to
indicate	directory	nesting.	For	example,	if	we	assume	a	component	is	located	at	
app/View/Components/Inputs/Button.php,	we	may	render	it	like	so:

<x-inputs.button/>

If	you	would	like	to	conditionally	render	your	component,	you	may	define	a	shouldRender	method	on	your
component	class.	If	the	shouldRender	method	returns	false	the	component	will	not	be	rendered:

use	Illuminate\Support\Str;

/**

	*	Whether	the	component	should	be	rendered

	*/

public	function	shouldRender():	bool

{

				return	Str::length($this->message)	>	0;

}

Passing	Data	to	Components

You	may	pass	data	to	Blade	components	using	HTML	attributes.	Hard-coded,	primitive	values	may	be	passed
to	the	component	using	simple	HTML	attribute	strings.	PHP	expressions	and	variables	should	be	passed	to	the
component	via	attributes	that	use	the	:	character	as	a	prefix:

<x-alert	type="error"	:message="$message"/>

You	should	define	all	of	the	component's	data	attributes	in	its	class	constructor.	All	public	properties	on	a
component	will	automatically	be	made	available	to	the	component's	view.	It	is	not	necessary	to	pass	the	data	to
the	view	from	the	component's	render	method:

<?php

namespace	App\View\Components;

use	Illuminate\View\Component;

use	Illuminate\View\View;

class	Alert	extends	Component

{

				/**

					*	Create	the	component	instance.

					*/

				public	function	__construct(

								public	string	$type,

								public	string	$message,

)	{}

				/**

					*	Get	the	view	/	contents	that	represent	the	component.

					*/

				public	function	render():	View

				{

								return	view('components.alert');

				}

}

When	your	component	is	rendered,	you	may	display	the	contents	of	your	component's	public	variables	by
echoing	the	variables	by	name:

<div	class="alert	alert-{{	$type	}}">

				{{	$message	}}

</div>

Casing

Component	constructor	arguments	should	be	specified	using	camelCase,	while	kebab-case	should	be	used	when

Laravel	Documentation	-	10.x	/	Blade	Templates 132

referencing	the	argument	names	in	your	HTML	attributes.	For	example,	given	the	following	component
constructor:

/**

	*	Create	the	component	instance.

	*/

public	function	__construct(

				public	string	$alertType,

)	{}

The	$alertType	argument	may	be	provided	to	the	component	like	so:

<x-alert	alert-type="danger"	/>

Short	Attribute	Syntax

When	passing	attributes	to	components,	you	may	also	use	a	"short	attribute"	syntax.	This	is	often	convenient
since	attribute	names	frequently	match	the	variable	names	they	correspond	to:

{{--	Short	attribute	syntax...	--}}

<x-profile	:$userId	:$name	/>

{{--	Is	equivalent	to...	--}}

<x-profile	:user-id="$userId"	:name="$name"	/>

Escaping	Attribute	Rendering

Since	some	JavaScript	frameworks	such	as	Alpine.js	also	use	colon-prefixed	attributes,	you	may	use	a	double
colon	(::)	prefix	to	inform	Blade	that	the	attribute	is	not	a	PHP	expression.	For	example,	given	the	following
component:

<x-button	::class="{	danger:	isDeleting	}">

				Submit

</x-button>

The	following	HTML	will	be	rendered	by	Blade:

<button	:class="{	danger:	isDeleting	}">

				Submit

</button>

Component	Methods

In	addition	to	public	variables	being	available	to	your	component	template,	any	public	methods	on	the
component	may	be	invoked.	For	example,	imagine	a	component	that	has	an	isSelected	method:

/**

	*	Determine	if	the	given	option	is	the	currently	selected	option.

	*/

public	function	isSelected(string	$option):	bool

{

				return	$option	===	$this->selected;

}

You	may	execute	this	method	from	your	component	template	by	invoking	the	variable	matching	the	name	of
the	method:

<option	{{	$isSelected($value)	?	'selected'	:	''	}}	value="{{	$value	}}">

				{{	$label	}}

</option>

Accessing	Attributes	and	Slots	Within	Component	Classes

Blade	components	also	allow	you	to	access	the	component	name,	attributes,	and	slot	inside	the	class's	render
method.	However,	in	order	to	access	this	data,	you	should	return	a	closure	from	your	component's	render
method.	The	closure	will	receive	a	$data	array	as	its	only	argument.	This	array	will	contain	several	elements
that	provide	information	about	the	component:

Laravel	Documentation	-	10.x	/	Blade	Templates 133

use	Closure;

/**

	*	Get	the	view	/	contents	that	represent	the	component.

	*/

public	function	render():	Closure

{

				return	function	(array	$data)	{

								//	$data['componentName'];

								//	$data['attributes'];

								//	$data['slot'];

								return	'<div>Components	content</div>';

				};

}

The	componentName	is	equal	to	the	name	used	in	the	HTML	tag	after	the	x-	prefix.	So	<x-alert	/>'s	
componentName	will	be	alert.	The	attributes	element	will	contain	all	of	the	attributes	that	were	present	on	the
HTML	tag.	The	slot	element	is	an	Illuminate\Support\HtmlString	instance	with	the	contents	of	the
component's	slot.

The	closure	should	return	a	string.	If	the	returned	string	corresponds	to	an	existing	view,	that	view	will	be
rendered;	otherwise,	the	returned	string	will	be	evaluated	as	an	inline	Blade	view.

Additional	Dependencies

If	your	component	requires	dependencies	from	Laravel's	service	container,	you	may	list	them	before	any	of	the
component's	data	attributes	and	they	will	automatically	be	injected	by	the	container:

use	App\Services\AlertCreator;

/**

	*	Create	the	component	instance.

	*/

public	function	__construct(

				public	AlertCreator	$creator,

				public	string	$type,

				public	string	$message,

)	{}

Hiding	Attributes	/	Methods

If	you	would	like	to	prevent	some	public	methods	or	properties	from	being	exposed	as	variables	to	your
component	template,	you	may	add	them	to	an	$except	array	property	on	your	component:

<?php

namespace	App\View\Components;

use	Illuminate\View\Component;

class	Alert	extends	Component

{

				/**

					*	The	properties	/	methods	that	should	not	be	exposed	to	the	component	template.

					*

					*	@var	array

					*/

				protected	$except	=	['type'];

				/**

					*	Create	the	component	instance.

					*/

				public	function	__construct(

								public	string	$type,

)	{}

}

Component	Attributes

We've	already	examined	how	to	pass	data	attributes	to	a	component;	however,	sometimes	you	may	need	to
specify	additional	HTML	attributes,	such	as	class,	that	are	not	part	of	the	data	required	for	a	component	to

Laravel	Documentation	-	10.x	/	Blade	Templates 134

function.	Typically,	you	want	to	pass	these	additional	attributes	down	to	the	root	element	of	the	component
template.	For	example,	imagine	we	want	to	render	an	alert	component	like	so:

<x-alert	type="error"	:message="$message"	class="mt-4"/>

All	of	the	attributes	that	are	not	part	of	the	component's	constructor	will	automatically	be	added	to	the
component's	"attribute	bag".	This	attribute	bag	is	automatically	made	available	to	the	component	via	the	
$attributes	variable.	All	of	the	attributes	may	be	rendered	within	the	component	by	echoing	this	variable:

<div	{{	$attributes	}}>

				<!--	Component	content	-->

</div>

[!WARNING]
Using	directives	such	as	@env	within	component	tags	is	not	supported	at	this	time.	For	example,	<x-alert	
:live="@env('production')"/>	will	not	be	compiled.

Default	/	Merged	Attributes

Sometimes	you	may	need	to	specify	default	values	for	attributes	or	merge	additional	values	into	some	of	the
component's	attributes.	To	accomplish	this,	you	may	use	the	attribute	bag's	merge	method.	This	method	is
particularly	useful	for	defining	a	set	of	default	CSS	classes	that	should	always	be	applied	to	a	component:

<div	{{	$attributes->merge(['class'	=>	'alert	alert-'.$type])	}}>

				{{	$message	}}

</div>

If	we	assume	this	component	is	utilized	like	so:

<x-alert	type="error"	:message="$message"	class="mb-4"/>

The	final,	rendered	HTML	of	the	component	will	appear	like	the	following:

<div	class="alert	alert-error	mb-4">

				<!--	Contents	of	the	$message	variable	-->

</div>

Conditionally	Merge	Classes

Sometimes	you	may	wish	to	merge	classes	if	a	given	condition	is	true.	You	can	accomplish	this	via	the	class
method,	which	accepts	an	array	of	classes	where	the	array	key	contains	the	class	or	classes	you	wish	to	add,
while	the	value	is	a	boolean	expression.	If	the	array	element	has	a	numeric	key,	it	will	always	be	included	in	the
rendered	class	list:

<div	{{	$attributes->class(['p-4',	'bg-red'	=>	$hasError])	}}>

				{{	$message	}}

</div>

If	you	need	to	merge	other	attributes	onto	your	component,	you	can	chain	the	merge	method	onto	the	class
method:

<button	{{	$attributes->class(['p-4'])->merge(['type'	=>	'button'])	}}>

				{{	$slot	}}

</button>

[!NOTE]
If	you	need	to	conditionally	compile	classes	on	other	HTML	elements	that	shouldn't	receive	merged
attributes,	you	can	use	the	@class	directive.

Non-Class	Attribute	Merging

When	merging	attributes	that	are	not	class	attributes,	the	values	provided	to	the	merge	method	will	be
considered	the	"default"	values	of	the	attribute.	However,	unlike	the	class	attribute,	these	attributes	will	not	be
merged	with	injected	attribute	values.	Instead,	they	will	be	overwritten.	For	example,	a	button	component's
implementation	may	look	like	the	following:

Laravel	Documentation	-	10.x	/	Blade	Templates 135

<button	{{	$attributes->merge(['type'	=>	'button'])	}}>

				{{	$slot	}}

</button>

To	render	the	button	component	with	a	custom	type,	it	may	be	specified	when	consuming	the	component.	If	no
type	is	specified,	the	button	type	will	be	used:

<x-button	type="submit">

				Submit

</x-button>

The	rendered	HTML	of	the	button	component	in	this	example	would	be:

<button	type="submit">

				Submit

</button>

If	you	would	like	an	attribute	other	than	class	to	have	its	default	value	and	injected	values	joined	together,	you
may	use	the	prepends	method.	In	this	example,	the	data-controller	attribute	will	always	begin	with	profile-
controller	and	any	additional	injected	data-controller	values	will	be	placed	after	this	default	value:

<div	{{	$attributes->merge(['data-controller'	=>	$attributes->prepends('profile-controller')])	}}>

				{{	$slot	}}

</div>

Retrieving	and	Filtering	Attributes

You	may	filter	attributes	using	the	filter	method.	This	method	accepts	a	closure	which	should	return	true	if
you	wish	to	retain	the	attribute	in	the	attribute	bag:

{{	$attributes->filter(fn	(string	$value,	string	$key)	=>	$key	==	'foo')	}}

For	convenience,	you	may	use	the	whereStartsWith	method	to	retrieve	all	attributes	whose	keys	begin	with	a
given	string:

{{	$attributes->whereStartsWith('wire:model')	}}

Conversely,	the	whereDoesntStartWith	method	may	be	used	to	exclude	all	attributes	whose	keys	begin	with	a
given	string:

{{	$attributes->whereDoesntStartWith('wire:model')	}}

Using	the	first	method,	you	may	render	the	first	attribute	in	a	given	attribute	bag:

{{	$attributes->whereStartsWith('wire:model')->first()	}}

If	you	would	like	to	check	if	an	attribute	is	present	on	the	component,	you	may	use	the	has	method.	This
method	accepts	the	attribute	name	as	its	only	argument	and	returns	a	boolean	indicating	whether	or	not	the
attribute	is	present:

@if	($attributes->has('class'))

				<div>Class	attribute	is	present</div>

@endif

If	an	array	is	passed	to	the	has	method,	the	method	will	determine	if	all	of	the	given	attributes	are	present	on	the
component:

@if	($attributes->has(['name',	'class']))

				<div>All	of	the	attributes	are	present</div>

@endif

The	hasAny	method	may	be	used	to	determine	if	any	of	the	given	attributes	are	present	on	the	component:

@if	($attributes->hasAny(['href',	':href',	'v-bind:href']))

				<div>One	of	the	attributes	is	present</div>

@endif

You	may	retrieve	a	specific	attribute's	value	using	the	get	method:

{{	$attributes->get('class')	}}

Laravel	Documentation	-	10.x	/	Blade	Templates 136

Reserved	Keywords

By	default,	some	keywords	are	reserved	for	Blade's	internal	use	in	order	to	render	components.	The	following
keywords	cannot	be	defined	as	public	properties	or	method	names	within	your	components:

data

render

resolveView

shouldRender

view

withAttributes

withName

Slots

You	will	often	need	to	pass	additional	content	to	your	component	via	"slots".	Component	slots	are	rendered	by
echoing	the	$slot	variable.	To	explore	this	concept,	let's	imagine	that	an	alert	component	has	the	following
markup:

<!--	/resources/views/components/alert.blade.php	-->

<div	class="alert	alert-danger">

				{{	$slot	}}

</div>

We	may	pass	content	to	the	slot	by	injecting	content	into	the	component:

<x-alert>

				Whoops!	Something	went	wrong!

</x-alert>

Sometimes	a	component	may	need	to	render	multiple	different	slots	in	different	locations	within	the
component.	Let's	modify	our	alert	component	to	allow	for	the	injection	of	a	"title"	slot:

<!--	/resources/views/components/alert.blade.php	-->

{{	$title	}}

<div	class="alert	alert-danger">

				{{	$slot	}}

</div>

You	may	define	the	content	of	the	named	slot	using	the	x-slot	tag.	Any	content	not	within	an	explicit	x-slot
tag	will	be	passed	to	the	component	in	the	$slot	variable:

<x-alert>

				<x-slot:title>

								Server	Error

				</x-slot>

				Whoops!	Something	went	wrong!

</x-alert>

You	may	invoke	a	slot's	isEmpty	method	to	determine	if	the	slot	contains	content:

{{	$title	}}

<div	class="alert	alert-danger">

				@if	($slot->isEmpty())

								This	is	default	content	if	the	slot	is	empty.

				@else

								{{	$slot	}}

				@endif

</div>

Additionally,	the	hasActualContent	method	may	be	used	to	determine	if	the	slot	contains	any	"actual"	content
that	is	not	an	HTML	comment:

@if	($slot->hasActualContent())

				The	scope	has	non-comment	content.

Laravel	Documentation	-	10.x	/	Blade	Templates 137

@endif

Scoped	Slots

If	you	have	used	a	JavaScript	framework	such	as	Vue,	you	may	be	familiar	with	"scoped	slots",	which	allow
you	to	access	data	or	methods	from	the	component	within	your	slot.	You	may	achieve	similar	behavior	in
Laravel	by	defining	public	methods	or	properties	on	your	component	and	accessing	the	component	within	your
slot	via	the	$component	variable.	In	this	example,	we	will	assume	that	the	x-alert	component	has	a	public	
formatAlert	method	defined	on	its	component	class:

<x-alert>

				<x-slot:title>

								{{	$component->formatAlert('Server	Error')	}}

				</x-slot>

				Whoops!	Something	went	wrong!

</x-alert>

Slot	Attributes

Like	Blade	components,	you	may	assign	additional	attributes	to	slots	such	as	CSS	class	names:

<x-card	class="shadow-sm">

				<x-slot:heading	class="font-bold">

								Heading

				</x-slot>

				Content

				<x-slot:footer	class="text-sm">

								Footer

				</x-slot>

</x-card>

To	interact	with	slot	attributes,	you	may	access	the	attributes	property	of	the	slot's	variable.	For	more
information	on	how	to	interact	with	attributes,	please	consult	the	documentation	on	component	attributes:

@props([

				'heading',

				'footer',

])

<div	{{	$attributes->class(['border'])	}}>

				<h1	{{	$heading->attributes->class(['text-lg'])	}}>

								{{	$heading	}}

				</h1>

				{{	$slot	}}

				<footer	{{	$footer->attributes->class(['text-gray-700'])	}}>

								{{	$footer	}}

				</footer>

</div>

Inline	Component	Views

For	very	small	components,	it	may	feel	cumbersome	to	manage	both	the	component	class	and	the	component's
view	template.	For	this	reason,	you	may	return	the	component's	markup	directly	from	the	render	method:

/**

	*	Get	the	view	/	contents	that	represent	the	component.

	*/

public	function	render():	string

{

				return	<<<'blade'

								<div	class="alert	alert-danger">

												{{	$slot	}}

								</div>

				blade;

}

Laravel	Documentation	-	10.x	/	Blade	Templates 138

Generating	Inline	View	Components

To	create	a	component	that	renders	an	inline	view,	you	may	use	the	inline	option	when	executing	the	
make:component	command:

php	artisan	make:component	Alert	--inline

Dynamic	Components

Sometimes	you	may	need	to	render	a	component	but	not	know	which	component	should	be	rendered	until
runtime.	In	this	situation,	you	may	use	Laravel's	built-in	dynamic-component	component	to	render	the	component
based	on	a	runtime	value	or	variable:

//	$componentName	=	"secondary-button";

<x-dynamic-component	:component="$componentName"	class="mt-4"	/>

Manually	Registering	Components

[!WARNING]
The	following	documentation	on	manually	registering	components	is	primarily	applicable	to	those	who	are
writing	Laravel	packages	that	include	view	components.	If	you	are	not	writing	a	package,	this	portion	of
the	component	documentation	may	not	be	relevant	to	you.

When	writing	components	for	your	own	application,	components	are	automatically	discovered	within	the	
app/View/Components	directory	and	resources/views/components	directory.

However,	if	you	are	building	a	package	that	utilizes	Blade	components	or	placing	components	in	non-
conventional	directories,	you	will	need	to	manually	register	your	component	class	and	its	HTML	tag	alias	so
that	Laravel	knows	where	to	find	the	component.	You	should	typically	register	your	components	in	the	boot
method	of	your	package's	service	provider:

use	Illuminate\Support\Facades\Blade;

use	VendorPackage\View\Components\AlertComponent;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::component('package-alert',	AlertComponent::class);

}

Once	your	component	has	been	registered,	it	may	be	rendered	using	its	tag	alias:

<x-package-alert/>

Autoloading	Package	Components

Alternatively,	you	may	use	the	componentNamespace	method	to	autoload	component	classes	by	convention.	For
example,	a	Nightshade	package	might	have	Calendar	and	ColorPicker	components	that	reside	within	the	
Package\Views\Components	namespace:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::componentNamespace('Nightshade\\Views\\Components',	'nightshade');

}

This	will	allow	the	usage	of	package	components	by	their	vendor	namespace	using	the	package-name::	syntax:

<x-nightshade::calendar	/>

<x-nightshade::color-picker	/>

Laravel	Documentation	-	10.x	/	Blade	Templates 139

Blade	will	automatically	detect	the	class	that's	linked	to	this	component	by	pascal-casing	the	component	name.
Subdirectories	are	also	supported	using	"dot"	notation.

Anonymous	Components

Similar	to	inline	components,	anonymous	components	provide	a	mechanism	for	managing	a	component	via	a
single	file.	However,	anonymous	components	utilize	a	single	view	file	and	have	no	associated	class.	To	define
an	anonymous	component,	you	only	need	to	place	a	Blade	template	within	your	resources/views/components
directory.	For	example,	assuming	you	have	defined	a	component	at	
resources/views/components/alert.blade.php,	you	may	simply	render	it	like	so:

<x-alert/>

You	may	use	the	.	character	to	indicate	if	a	component	is	nested	deeper	inside	the	components	directory.	For
example,	assuming	the	component	is	defined	at	resources/views/components/inputs/button.blade.php,	you	may
render	it	like	so:

<x-inputs.button/>

Anonymous	Index	Components

Sometimes,	when	a	component	is	made	up	of	many	Blade	templates,	you	may	wish	to	group	the	given
component's	templates	within	a	single	directory.	For	example,	imagine	an	"accordion"	component	with	the
following	directory	structure:

/resources/views/components/accordion.blade.php

/resources/views/components/accordion/item.blade.php

This	directory	structure	allows	you	to	render	the	accordion	component	and	its	item	like	so:

<x-accordion>

				<x-accordion.item>

								...

				</x-accordion.item>

</x-accordion>

However,	in	order	to	render	the	accordion	component	via	x-accordion,	we	were	forced	to	place	the	"index"
accordion	component	template	in	the	resources/views/components	directory	instead	of	nesting	it	within	the	
accordion	directory	with	the	other	accordion	related	templates.

Thankfully,	Blade	allows	you	to	place	an	index.blade.php	file	within	a	component's	template	directory.	When
an	index.blade.php	template	exists	for	the	component,	it	will	be	rendered	as	the	"root"	node	of	the	component.
So,	we	can	continue	to	use	the	same	Blade	syntax	given	in	the	example	above;	however,	we	will	adjust	our
directory	structure	like	so:

/resources/views/components/accordion/index.blade.php

/resources/views/components/accordion/item.blade.php

Data	Properties	/	Attributes

Since	anonymous	components	do	not	have	any	associated	class,	you	may	wonder	how	you	may	differentiate
which	data	should	be	passed	to	the	component	as	variables	and	which	attributes	should	be	placed	in	the
component's	attribute	bag.

You	may	specify	which	attributes	should	be	considered	data	variables	using	the	@props	directive	at	the	top	of
your	component's	Blade	template.	All	other	attributes	on	the	component	will	be	available	via	the	component's
attribute	bag.	If	you	wish	to	give	a	data	variable	a	default	value,	you	may	specify	the	variable's	name	as	the
array	key	and	the	default	value	as	the	array	value:

<!--	/resources/views/components/alert.blade.php	-->

@props(['type'	=>	'info',	'message'])

<div	{{	$attributes->merge(['class'	=>	'alert	alert-'.$type])	}}>

				{{	$message	}}

Laravel	Documentation	-	10.x	/	Blade	Templates 140

</div>

Given	the	component	definition	above,	we	may	render	the	component	like	so:

<x-alert	type="error"	:message="$message"	class="mb-4"/>

Accessing	Parent	Data

Sometimes	you	may	want	to	access	data	from	a	parent	component	inside	a	child	component.	In	these	cases,	you
may	use	the	@aware	directive.	For	example,	imagine	we	are	building	a	complex	menu	component	consisting	of	a
parent	<x-menu>	and	child	<x-menu.item>:

<x-menu	color="purple">

				<x-menu.item>...</x-menu.item>

				<x-menu.item>...</x-menu.item>

</x-menu>

The	<x-menu>	component	may	have	an	implementation	like	the	following:

<!--	/resources/views/components/menu/index.blade.php	-->

@props(['color'	=>	'gray'])

<ul	{{	$attributes->merge(['class'	=>	'bg-'.$color.'-200'])	}}>

				{{	$slot	}}

Because	the	color	prop	was	only	passed	into	the	parent	(<x-menu>),	it	won't	be	available	inside	<x-menu.item>.
However,	if	we	use	the	@aware	directive,	we	can	make	it	available	inside	<x-menu.item>	as	well:

<!--	/resources/views/components/menu/item.blade.php	-->

@aware(['color'	=>	'gray'])

<li	{{	$attributes->merge(['class'	=>	'text-'.$color.'-800'])	}}>

				{{	$slot	}}

[!WARNING]
The	@aware	directive	can	not	access	parent	data	that	is	not	explicitly	passed	to	the	parent	component	via
HTML	attributes.	Default	@props	values	that	are	not	explicitly	passed	to	the	parent	component	can	not	be
accessed	by	the	@aware	directive.

Anonymous	Component	Paths

As	previously	discussed,	anonymous	components	are	typically	defined	by	placing	a	Blade	template	within	your
resources/views/components	directory.	However,	you	may	occasionally	want	to	register	other	anonymous
component	paths	with	Laravel	in	addition	to	the	default	path.

The	anonymousComponentPath	method	accepts	the	"path"	to	the	anonymous	component	location	as	its	first
argument	and	an	optional	"namespace"	that	components	should	be	placed	under	as	its	second	argument.
Typically,	this	method	should	be	called	from	the	boot	method	of	one	of	your	application's	service	providers:

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Blade::anonymousComponentPath(__DIR__.'/../components');

}

When	component	paths	are	registered	without	a	specified	prefix	as	in	the	example	above,	they	may	be	rendered
in	your	Blade	components	without	a	corresponding	prefix	as	well.	For	example,	if	a	panel.blade.php
component	exists	in	the	path	registered	above,	it	may	be	rendered	like	so:

<x-panel	/>

Prefix	"namespaces"	may	be	provided	as	the	second	argument	to	the	anonymousComponentPath	method:

Laravel	Documentation	-	10.x	/	Blade	Templates 141

Blade::anonymousComponentPath(__DIR__.'/../components',	'dashboard');

When	a	prefix	is	provided,	components	within	that	"namespace"	may	be	rendered	by	prefixing	to	the
component's	namespace	to	the	component	name	when	the	component	is	rendered:

<x-dashboard::panel	/>

Building	Layouts

Layouts	Using	Components

Most	web	applications	maintain	the	same	general	layout	across	various	pages.	It	would	be	incredibly
cumbersome	and	hard	to	maintain	our	application	if	we	had	to	repeat	the	entire	layout	HTML	in	every	view	we
create.	Thankfully,	it's	convenient	to	define	this	layout	as	a	single	Blade	component	and	then	use	it	throughout
our	application.

Defining	the	Layout	Component

For	example,	imagine	we	are	building	a	"todo"	list	application.	We	might	define	a	layout	component	that	looks
like	the	following:

<!--	resources/views/components/layout.blade.php	-->

<html>

				<head>

								<title>{{	$title	??	'Todo	Manager'	}}</title>

				</head>

				<body>

								<h1>Todos</h1>

								<hr/>

								{{	$slot	}}

				</body>

</html>

Applying	the	Layout	Component

Once	the	layout	component	has	been	defined,	we	may	create	a	Blade	view	that	utilizes	the	component.	In	this
example,	we	will	define	a	simple	view	that	displays	our	task	list:

<!--	resources/views/tasks.blade.php	-->

<x-layout>

				@foreach	($tasks	as	$task)

								{{	$task	}}

				@endforeach

</x-layout>

Remember,	content	that	is	injected	into	a	component	will	be	supplied	to	the	default	$slot	variable	within	our	
layout	component.	As	you	may	have	noticed,	our	layout	also	respects	a	$title	slot	if	one	is	provided;
otherwise,	a	default	title	is	shown.	We	may	inject	a	custom	title	from	our	task	list	view	using	the	standard	slot
syntax	discussed	in	the	component	documentation:

<!--	resources/views/tasks.blade.php	-->

<x-layout>

				<x-slot:title>

								Custom	Title

				</x-slot>

				@foreach	($tasks	as	$task)

								{{	$task	}}

				@endforeach

</x-layout>

Now	that	we	have	defined	our	layout	and	task	list	views,	we	just	need	to	return	the	task	view	from	a	route:

use	App\Models\Task;

Route::get('/tasks',	function	()	{

Laravel	Documentation	-	10.x	/	Blade	Templates 142

				return	view('tasks',	['tasks'	=>	Task::all()]);

});

Layouts	Using	Template	Inheritance

Defining	a	Layout

Layouts	may	also	be	created	via	"template	inheritance".	This	was	the	primary	way	of	building	applications
prior	to	the	introduction	of	components.

To	get	started,	let's	take	a	look	at	a	simple	example.	First,	we	will	examine	a	page	layout.	Since	most	web
applications	maintain	the	same	general	layout	across	various	pages,	it's	convenient	to	define	this	layout	as	a
single	Blade	view:

<!--	resources/views/layouts/app.blade.php	-->

<html>

				<head>

								<title>App	Name	-	@yield('title')</title>

				</head>

				<body>

								@section('sidebar')

												This	is	the	master	sidebar.

								@show

								<div	class="container">

												@yield('content')

								</div>

				</body>

</html>

As	you	can	see,	this	file	contains	typical	HTML	mark-up.	However,	take	note	of	the	@section	and	@yield
directives.	The	@section	directive,	as	the	name	implies,	defines	a	section	of	content,	while	the	@yield	directive
is	used	to	display	the	contents	of	a	given	section.

Now	that	we	have	defined	a	layout	for	our	application,	let's	define	a	child	page	that	inherits	the	layout.

Extending	a	Layout

When	defining	a	child	view,	use	the	@extends	Blade	directive	to	specify	which	layout	the	child	view	should
"inherit".	Views	which	extend	a	Blade	layout	may	inject	content	into	the	layout's	sections	using	@section
directives.	Remember,	as	seen	in	the	example	above,	the	contents	of	these	sections	will	be	displayed	in	the
layout	using	@yield:

<!--	resources/views/child.blade.php	-->

@extends('layouts.app')

@section('title',	'Page	Title')

@section('sidebar')

				@@parent

				<p>This	is	appended	to	the	master	sidebar.</p>

@endsection

@section('content')

				<p>This	is	my	body	content.</p>

@endsection

In	this	example,	the	sidebar	section	is	utilizing	the	@@parent	directive	to	append	(rather	than	overwriting)
content	to	the	layout's	sidebar.	The	@@parent	directive	will	be	replaced	by	the	content	of	the	layout	when	the
view	is	rendered.

[!NOTE]
Contrary	to	the	previous	example,	this	sidebar	section	ends	with	@endsection	instead	of	@show.	The	
@endsection	directive	will	only	define	a	section	while	@show	will	define	and	immediately	yield	the	section.

The	@yield	directive	also	accepts	a	default	value	as	its	second	parameter.	This	value	will	be	rendered	if	the

Laravel	Documentation	-	10.x	/	Blade	Templates 143

section	being	yielded	is	undefined:

@yield('content',	'Default	content')

Forms

CSRF	Field

Anytime	you	define	an	HTML	form	in	your	application,	you	should	include	a	hidden	CSRF	token	field	in	the
form	so	that	the	CSRF	protection	middleware	can	validate	the	request.	You	may	use	the	@csrf	Blade	directive
to	generate	the	token	field:

<form	method="POST"	action="/profile">

				@csrf

				...

</form>

Method	Field

Since	HTML	forms	can't	make	PUT,	PATCH,	or	DELETE	requests,	you	will	need	to	add	a	hidden	_method	field	to
spoof	these	HTTP	verbs.	The	@method	Blade	directive	can	create	this	field	for	you:

<form	action="/foo/bar"	method="POST">

				@method('PUT')

				...

</form>

Validation	Errors

The	@error	directive	may	be	used	to	quickly	check	if	validation	error	messages	exist	for	a	given	attribute.
Within	an	@error	directive,	you	may	echo	the	$message	variable	to	display	the	error	message:

<!--	/resources/views/post/create.blade.php	-->

<label	for="title">Post	Title</label>

<input	id="title"

				type="text"

				class="@error('title')	is-invalid	@enderror">

@error('title')

				<div	class="alert	alert-danger">{{	$message	}}</div>

@enderror

Since	the	@error	directive	compiles	to	an	"if"	statement,	you	may	use	the	@else	directive	to	render	content	when
there	is	not	an	error	for	an	attribute:

<!--	/resources/views/auth.blade.php	-->

<label	for="email">Email	address</label>

<input	id="email"

				type="email"

				class="@error('email')	is-invalid	@else	is-valid	@enderror">

You	may	pass	the	name	of	a	specific	error	bag	as	the	second	parameter	to	the	@error	directive	to	retrieve
validation	error	messages	on	pages	containing	multiple	forms:

<!--	/resources/views/auth.blade.php	-->

<label	for="email">Email	address</label>

<input	id="email"

				type="email"

				class="@error('email',	'login')	is-invalid	@enderror">

@error('email',	'login')

				<div	class="alert	alert-danger">{{	$message	}}</div>

Laravel	Documentation	-	10.x	/	Blade	Templates 144

@enderror

Stacks

Blade	allows	you	to	push	to	named	stacks	which	can	be	rendered	somewhere	else	in	another	view	or	layout.
This	can	be	particularly	useful	for	specifying	any	JavaScript	libraries	required	by	your	child	views:

@push('scripts')

				<script	src="/example.js"></script>

@endpush

If	you	would	like	to	@push	content	if	a	given	boolean	expression	evaluates	to	true,	you	may	use	the	@pushIf
directive:

@pushIf($shouldPush,	'scripts')

				<script	src="/example.js"></script>

@endPushIf

You	may	push	to	a	stack	as	many	times	as	needed.	To	render	the	complete	stack	contents,	pass	the	name	of	the
stack	to	the	@stack	directive:

<head>

				<!--	Head	Contents	-->

				@stack('scripts')

</head>

If	you	would	like	to	prepend	content	onto	the	beginning	of	a	stack,	you	should	use	the	@prepend	directive:

@push('scripts')

				This	will	be	second...

@endpush

//	Later...

@prepend('scripts')

				This	will	be	first...

@endprepend

Service	Injection

The	@inject	directive	may	be	used	to	retrieve	a	service	from	the	Laravel	service	container.	The	first	argument
passed	to	@inject	is	the	name	of	the	variable	the	service	will	be	placed	into,	while	the	second	argument	is	the
class	or	interface	name	of	the	service	you	wish	to	resolve:

@inject('metrics',	'App\Services\MetricsService')

<div>

				Monthly	Revenue:	{{	$metrics->monthlyRevenue()	}}.

</div>

Rendering	Inline	Blade	Templates

Sometimes	you	may	need	to	transform	a	raw	Blade	template	string	into	valid	HTML.	You	may	accomplish	this
using	the	render	method	provided	by	the	Blade	facade.	The	render	method	accepts	the	Blade	template	string	and
an	optional	array	of	data	to	provide	to	the	template:

use	Illuminate\Support\Facades\Blade;

return	Blade::render('Hello,	{{	$name	}}',	['name'	=>	'Julian	Bashir']);

Laravel	renders	inline	Blade	templates	by	writing	them	to	the	storage/framework/views	directory.	If	you	would
like	Laravel	to	remove	these	temporary	files	after	rendering	the	Blade	template,	you	may	provide	the	
deleteCachedView	argument	to	the	method:

return	Blade::render(

				'Hello,	{{	$name	}}',

				['name'	=>	'Julian	Bashir'],

Laravel	Documentation	-	10.x	/	Blade	Templates 145

				deleteCachedView:	true

);

Rendering	Blade	Fragments

When	using	frontend	frameworks	such	as	Turbo	and	htmx,	you	may	occasionally	need	to	only	return	a	portion
of	a	Blade	template	within	your	HTTP	response.	Blade	"fragments"	allow	you	to	do	just	that.	To	get	started,
place	a	portion	of	your	Blade	template	within	@fragment	and	@endfragment	directives:

@fragment('user-list')

				

								@foreach	($users	as	$user)

												{{	$user->name	}}

								@endforeach

				

@endfragment

Then,	when	rendering	the	view	that	utilizes	this	template,	you	may	invoke	the	fragment	method	to	specify	that
only	the	specified	fragment	should	be	included	in	the	outgoing	HTTP	response:

return	view('dashboard',	['users'	=>	$users])->fragment('user-list');

The	fragmentIf	method	allows	you	to	conditionally	return	a	fragment	of	a	view	based	on	a	given	condition.
Otherwise,	the	entire	view	will	be	returned:

return	view('dashboard',	['users'	=>	$users])

				->fragmentIf($request->hasHeader('HX-Request'),	'user-list');

The	fragments	and	fragmentsIf	methods	allow	you	to	return	multiple	view	fragments	in	the	response.	The
fragments	will	be	concatenated	together:

view('dashboard',	['users'	=>	$users])

				->fragments(['user-list',	'comment-list']);

view('dashboard',	['users'	=>	$users])

				->fragmentsIf(

								$request->hasHeader('HX-Request'),

								['user-list',	'comment-list']

);

Extending	Blade

Blade	allows	you	to	define	your	own	custom	directives	using	the	directive	method.	When	the	Blade	compiler
encounters	the	custom	directive,	it	will	call	the	provided	callback	with	the	expression	that	the	directive
contains.

The	following	example	creates	a	@datetime($var)	directive	which	formats	a	given	$var,	which	should	be	an
instance	of	DateTime:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Blade;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

Laravel	Documentation	-	10.x	/	Blade	Templates 146

https://turbo.hotwired.dev/
https://htmx.org/

								Blade::directive('datetime',	function	(string	$expression)	{

												return	"<?php	echo	($expression)->format('m/d/Y	H:i');	?>";

								});

				}

}

As	you	can	see,	we	will	chain	the	format	method	onto	whatever	expression	is	passed	into	the	directive.	So,	in
this	example,	the	final	PHP	generated	by	this	directive	will	be:

<?php	echo	($var)->format('m/d/Y	H:i');	?>

[!WARNING]
After	updating	the	logic	of	a	Blade	directive,	you	will	need	to	delete	all	of	the	cached	Blade	views.	The
cached	Blade	views	may	be	removed	using	the	view:clear	Artisan	command.

Custom	Echo	Handlers

If	you	attempt	to	"echo"	an	object	using	Blade,	the	object's	__toString	method	will	be	invoked.	The	__toString
method	is	one	of	PHP's	built-in	"magic	methods".	However,	sometimes	you	may	not	have	control	over	the	
__toString	method	of	a	given	class,	such	as	when	the	class	that	you	are	interacting	with	belongs	to	a	third-party
library.

In	these	cases,	Blade	allows	you	to	register	a	custom	echo	handler	for	that	particular	type	of	object.	To
accomplish	this,	you	should	invoke	Blade's	stringable	method.	The	stringable	method	accepts	a	closure.	This
closure	should	type-hint	the	type	of	object	that	it	is	responsible	for	rendering.	Typically,	the	stringable	method
should	be	invoked	within	the	boot	method	of	your	application's	AppServiceProvider	class:

use	Illuminate\Support\Facades\Blade;

use	Money\Money;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Blade::stringable(function	(Money	$money)	{

								return	$money->formatTo('en_GB');

				});

}

Once	your	custom	echo	handler	has	been	defined,	you	may	simply	echo	the	object	in	your	Blade	template:

Cost:	{{	$money	}}

Custom	If	Statements

Programming	a	custom	directive	is	sometimes	more	complex	than	necessary	when	defining	simple,	custom
conditional	statements.	For	that	reason,	Blade	provides	a	Blade::if	method	which	allows	you	to	quickly	define
custom	conditional	directives	using	closures.	For	example,	let's	define	a	custom	conditional	that	checks	the
configured	default	"disk"	for	the	application.	We	may	do	this	in	the	boot	method	of	our	AppServiceProvider:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Blade::if('disk',	function	(string	$value)	{

								return	config('filesystems.default')	===	$value;

				});

}

Once	the	custom	conditional	has	been	defined,	you	can	use	it	within	your	templates:

@disk('local')

				<!--	The	application	is	using	the	local	disk...	-->

@elsedisk('s3')

				<!--	The	application	is	using	the	s3	disk...	-->

@else

Laravel	Documentation	-	10.x	/	Blade	Templates 147

https://www.php.net/manual/en/language.oop5.magic.php#object.tostring

				<!--	The	application	is	using	some	other	disk...	-->

@enddisk

@unlessdisk('local')

				<!--	The	application	is	not	using	the	local	disk...	-->

@enddisk

Laravel	Documentation	-	10.x	/	Blade	Templates 148

The	Basics

Asset	Bundling	(Vite)
Introduction
Installation	&	Setup

Installing	Node
Installing	Vite	and	the	Laravel	Plugin
Configuring	Vite
Loading	Your	Scripts	and	Styles

Running	Vite
Working	With	JavaScript

Aliases
Vue
React
Inertia
URL	Processing

Working	With	Stylesheets
Working	With	Blade	and	Routes

Processing	Static	Assets	With	Vite
Refreshing	on	Save
Aliases

Custom	Base	URLs
Environment	Variables
Disabling	Vite	in	Tests
Server-Side	Rendering	(SSR)
Script	and	Style	Tag	Attributes

Content	Security	Policy	(CSP)	Nonce
Subresource	Integrity	(SRI)
Arbitrary	Attributes

Advanced	Customization
Correcting	Dev	Server	URLs

Introduction

Vite	is	a	modern	frontend	build	tool	that	provides	an	extremely	fast	development	environment	and	bundles	your
code	for	production.	When	building	applications	with	Laravel,	you	will	typically	use	Vite	to	bundle	your
application's	CSS	and	JavaScript	files	into	production	ready	assets.

Laravel	integrates	seamlessly	with	Vite	by	providing	an	official	plugin	and	Blade	directive	to	load	your	assets
for	development	and	production.

[!NOTE]
Are	you	running	Laravel	Mix?	Vite	has	replaced	Laravel	Mix	in	new	Laravel	installations.	For	Mix
documentation,	please	visit	the	Laravel	Mix	website.	If	you	would	like	to	switch	to	Vite,	please	see	our
migration	guide.

Choosing	Between	Vite	and	Laravel	Mix

Before	transitioning	to	Vite,	new	Laravel	applications	utilized	Mix,	which	is	powered	by	webpack,	when
bundling	assets.	Vite	focuses	on	providing	a	faster	and	more	productive	experience	when	building	rich
JavaScript	applications.	If	you	are	developing	a	Single	Page	Application	(SPA),	including	those	developed	with
tools	like	Inertia,	Vite	will	be	the	perfect	fit.

Vite	also	works	well	with	traditional	server-side	rendered	applications	with	JavaScript	"sprinkles",	including
those	using	Livewire.	However,	it	lacks	some	features	that	Laravel	Mix	supports,	such	as	the	ability	to	copy
arbitrary	assets	into	the	build	that	are	not	referenced	directly	in	your	JavaScript	application.

Migrating	Back	to	Mix

Laravel	Documentation	-	10.x	/	Asset	Bundling 149

https://vitejs.dev
https://laravel-mix.com/
https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-laravel-mix-to-vite
https://laravel-mix.com/
https://webpack.js.org/
https://inertiajs.com
https://livewire.laravel.com

Have	you	started	a	new	Laravel	application	using	our	Vite	scaffolding	but	need	to	move	back	to	Laravel	Mix
and	webpack?	No	problem.	Please	consult	our	official	guide	on	migrating	from	Vite	to	Mix.

Installation	&	Setup

[!NOTE]
The	following	documentation	discusses	how	to	manually	install	and	configure	the	Laravel	Vite	plugin.
However,	Laravel's	starter	kits	already	include	all	of	this	scaffolding	and	are	the	fastest	way	to	get	started
with	Laravel	and	Vite.

Installing	Node

You	must	ensure	that	Node.js	(16+)	and	NPM	are	installed	before	running	Vite	and	the	Laravel	plugin:

node	-v

npm	-v

You	can	easily	install	the	latest	version	of	Node	and	NPM	using	simple	graphical	installers	from	the	official
Node	website.	Or,	if	you	are	using	Laravel	Sail,	you	may	invoke	Node	and	NPM	through	Sail:

./vendor/bin/sail	node	-v

./vendor/bin/sail	npm	-v

Installing	Vite	and	the	Laravel	Plugin

Within	a	fresh	installation	of	Laravel,	you	will	find	a	package.json	file	in	the	root	of	your	application's	directory
structure.	The	default	package.json	file	already	includes	everything	you	need	to	get	started	using	Vite	and	the
Laravel	plugin.	You	may	install	your	application's	frontend	dependencies	via	NPM:

npm	install

Configuring	Vite

Vite	is	configured	via	a	vite.config.js	file	in	the	root	of	your	project.	You	are	free	to	customize	this	file	based
on	your	needs,	and	you	may	also	install	any	other	plugins	your	application	requires,	such	as	@vitejs/plugin-vue
or	@vitejs/plugin-react.

The	Laravel	Vite	plugin	requires	you	to	specify	the	entry	points	for	your	application.	These	may	be	JavaScript
or	CSS	files,	and	include	preprocessed	languages	such	as	TypeScript,	JSX,	TSX,	and	Sass.

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel([

												'resources/css/app.css',

												'resources/js/app.js',

]),

],

});

If	you	are	building	an	SPA,	including	applications	built	using	Inertia,	Vite	works	best	without	CSS	entry	points:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel([

												'resources/css/app.css',	//	[tl!	remove]

												'resources/js/app.js',

]),

],

});

Instead,	you	should	import	your	CSS	via	JavaScript.	Typically,	this	would	be	done	in	your	application's	

Laravel	Documentation	-	10.x	/	Asset	Bundling 150

https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-vite-to-laravel-mix
https://nodejs.org/en/download/
https://laravel.compackages-sail.xhtml

resources/js/app.js	file:

import	'./bootstrap';

import	'../css/app.css';	//	[tl!	add]

The	Laravel	plugin	also	supports	multiple	entry	points	and	advanced	configuration	options	such	as	SSR	entry
points.

Working	With	a	Secure	Development	Server

If	your	local	development	web	server	is	serving	your	application	via	HTTPS,	you	may	run	into	issues
connecting	to	the	Vite	development	server.

If	you	are	using	Laravel	Herd	and	have	secured	the	site	or	you	are	using	Laravel	Valet	and	have	run	the	secure
command	against	your	application,	the	Laravel	Vite	plugin	will	automatically	detect	and	use	the	generated	TLS
certificate	for	you.

If	you	secured	the	site	using	a	host	that	does	not	match	the	application's	directory	name,	you	may	manually
specify	the	host	in	your	application's	vite.config.js	file:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

												detectTls:	'my-app.test',	//	[tl!	add]

								}),

],

});

When	using	another	web	server,	you	should	generate	a	trusted	certificate	and	manually	configure	Vite	to	use	the
generated	certificates:

//	...

import	fs	from	'fs';	//	[tl!	add]

const	host	=	'my-app.test';	//	[tl!	add]

export	default	defineConfig({

				//	...

				server:	{	//	[tl!	add]

								host,	//	[tl!	add]

								hmr:	{	host	},	//	[tl!	add]

								https:	{	//	[tl!	add]

												key:	fs.readFileSync(`/path/to/${host}.key`),	//	[tl!	add]

												cert:	fs.readFileSync(`/path/to/${host}.crt`),	//	[tl!	add]

								},	//	[tl!	add]

				},	//	[tl!	add]

});

If	you	are	unable	to	generate	a	trusted	certificate	for	your	system,	you	may	install	and	configure	the	
@vitejs/plugin-basic-ssl	plugin.	When	using	untrusted	certificates,	you	will	need	to	accept	the	certificate
warning	for	Vite's	development	server	in	your	browser	by	following	the	"Local"	link	in	your	console	when
running	the	npm	run	dev	command.

Running	the	Development	Server	in	Sail	on	WSL2

When	running	the	Vite	development	server	within	Laravel	Sail	on	Windows	Subsystem	for	Linux	2	(WSL2),
you	should	add	the	following	configuration	to	your	vite.config.js	file	to	ensure	the	browser	can	communicate
with	the	development	server:

//	...

export	default	defineConfig({

				//	...

				server:	{	//	[tl!	add:start]

								hmr:	{

												host:	'localhost',

Laravel	Documentation	-	10.x	/	Asset	Bundling 151

https://herd.laravel.com
https://github.com/vitejs/vite-plugin-basic-ssl

								},

				},	//	[tl!	add:end]

});

If	your	file	changes	are	not	being	reflected	in	the	browser	while	the	development	server	is	running,	you	may
also	need	to	configure	Vite's	server.watch.usePolling	option.

Loading	Your	Scripts	and	Styles

With	your	Vite	entry	points	configured,	you	may	now	reference	them	in	a	@vite()	Blade	directive	that	you	add
to	the	<head>	of	your	application's	root	template:

<!doctype	html>

<head>

				{{--	...	--}}

				@vite(['resources/css/app.css',	'resources/js/app.js'])

</head>

If	you're	importing	your	CSS	via	JavaScript,	you	only	need	to	include	the	JavaScript	entry	point:

<!doctype	html>

<head>

				{{--	...	--}}

				@vite('resources/js/app.js')

</head>

The	@vite	directive	will	automatically	detect	the	Vite	development	server	and	inject	the	Vite	client	to	enable
Hot	Module	Replacement.	In	build	mode,	the	directive	will	load	your	compiled	and	versioned	assets,	including
any	imported	CSS.

If	needed,	you	may	also	specify	the	build	path	of	your	compiled	assets	when	invoking	the	@vite	directive:

<!doctype	html>

<head>

				{{--	Given	build	path	is	relative	to	public	path.	--}}

				@vite('resources/js/app.js',	'vendor/courier/build')

</head>

Inline	Assets

Sometimes	it	may	be	necessary	to	include	the	raw	content	of	assets	rather	than	linking	to	the	versioned	URL	of
the	asset.	For	example,	you	may	need	to	include	asset	content	directly	into	your	page	when	passing	HTML
content	to	a	PDF	generator.	You	may	output	the	content	of	Vite	assets	using	the	content	method	provided	by	the
Vite	facade:

@php

use	Illuminate\Support\Facades\Vite;

@endphp

<!doctype	html>

<head>

				{{--	...	--}}

				<style>

								{!!	Vite::content('resources/css/app.css')	!!}

				</style>

				<script>

								{!!	Vite::content('resources/js/app.js')	!!}

				</script>

</head>

Running	Vite

There	are	two	ways	you	can	run	Vite.	You	may	run	the	development	server	via	the	dev	command,	which	is
useful	while	developing	locally.	The	development	server	will	automatically	detect	changes	to	your	files	and
instantly	reflect	them	in	any	open	browser	windows.

Laravel	Documentation	-	10.x	/	Asset	Bundling 152

https://vitejs.dev/config/server-options.html#server-watch

Or,	running	the	build	command	will	version	and	bundle	your	application's	assets	and	get	them	ready	for	you	to
deploy	to	production:

#	Run	the	Vite	development	server...

npm	run	dev

#	Build	and	version	the	assets	for	production...

npm	run	build

If	you	are	running	the	development	server	in	Sail	on	WSL2,	you	may	need	some	additional	configuration
options.

Working	With	JavaScript

Aliases

By	default,	The	Laravel	plugin	provides	a	common	alias	to	help	you	hit	the	ground	running	and	conveniently
import	your	application's	assets:

{

				'@'	=>	'/resources/js'

}

You	may	overwrite	the	'@'	alias	by	adding	your	own	to	the	vite.config.js	configuration	file:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel(['resources/ts/app.tsx']),

],

				resolve:	{

								alias:	{

												'@':	'/resources/ts',

								},

				},

});

Vue

If	you	would	like	to	build	your	frontend	using	the	Vue	framework,	then	you	will	also	need	to	install	the	
@vitejs/plugin-vue	plugin:

npm	install	--save-dev	@vitejs/plugin-vue

You	may	then	include	the	plugin	in	your	vite.config.js	configuration	file.	There	are	a	few	additional	options
you	will	need	when	using	the	Vue	plugin	with	Laravel:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

import	vue	from	'@vitejs/plugin-vue';

export	default	defineConfig({

				plugins:	[

								laravel(['resources/js/app.js']),

								vue({

												template:	{

																transformAssetUrls:	{

																				//	The	Vue	plugin	will	re-write	asset	URLs,	when	referenced

																				//	in	Single	File	Components,	to	point	to	the	Laravel	web

																				//	server.	Setting	this	to	`null`	allows	the	Laravel	plugin

																				//	to	instead	re-write	asset	URLs	to	point	to	the	Vite

																				//	server	instead.

																				base:	null,

																				//	The	Vue	plugin	will	parse	absolute	URLs	and	treat	them

																				//	as	absolute	paths	to	files	on	disk.	Setting	this	to

																				//	`false`	will	leave	absolute	URLs	un-touched	so	they	can

																				//	reference	assets	in	the	public	directory	as	expected.

																				includeAbsolute:	false,

Laravel	Documentation	-	10.x	/	Asset	Bundling 153

https://vuejs.org/

																},

												},

								}),

],

});

[!NOTE]
Laravel's	starter	kits	already	include	the	proper	Laravel,	Vue,	and	Vite	configuration.	Check	out	Laravel
Breeze	for	the	fastest	way	to	get	started	with	Laravel,	Vue,	and	Vite.

React

If	you	would	like	to	build	your	frontend	using	the	React	framework,	then	you	will	also	need	to	install	the	
@vitejs/plugin-react	plugin:

npm	install	--save-dev	@vitejs/plugin-react

You	may	then	include	the	plugin	in	your	vite.config.js	configuration	file:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

import	react	from	'@vitejs/plugin-react';

export	default	defineConfig({

				plugins:	[

								laravel(['resources/js/app.jsx']),

								react(),

],

});

You	will	need	to	ensure	that	any	files	containing	JSX	have	a	.jsx	or	.tsx	extension,	remembering	to	update
your	entry	point,	if	required,	as	shown	above.

You	will	also	need	to	include	the	additional	@viteReactRefresh	Blade	directive	alongside	your	existing	@vite
directive.

@viteReactRefresh

@vite('resources/js/app.jsx')

The	@viteReactRefresh	directive	must	be	called	before	the	@vite	directive.

[!NOTE]
Laravel's	starter	kits	already	include	the	proper	Laravel,	React,	and	Vite	configuration.	Check	out	Laravel
Breeze	for	the	fastest	way	to	get	started	with	Laravel,	React,	and	Vite.

Inertia

The	Laravel	Vite	plugin	provides	a	convenient	resolvePageComponent	function	to	help	you	resolve	your	Inertia
page	components.	Below	is	an	example	of	the	helper	in	use	with	Vue	3;	however,	you	may	also	utilize	the
function	in	other	frameworks	such	as	React:

import	{	createApp,	h	}	from	'vue';

import	{	createInertiaApp	}	from	'@inertiajs/vue3';

import	{	resolvePageComponent	}	from	'laravel-vite-plugin/inertia-helpers';

createInertiaApp({

		resolve:	(name)	=>	resolvePageComponent(`./Pages/${name}.vue`,	import.meta.glob('./Pages/**/*.vue')),

		setup({	el,	App,	props,	plugin	})	{

				return	createApp({	render:	()	=>	h(App,	props)	})

						.use(plugin)

						.mount(el)

		},

});

[!NOTE]
Laravel's	starter	kits	already	include	the	proper	Laravel,	Inertia,	and	Vite	configuration.	Check	out	Laravel
Breeze	for	the	fastest	way	to	get	started	with	Laravel,	Inertia,	and	Vite.

Laravel	Documentation	-	10.x	/	Asset	Bundling 154

https://reactjs.org/

URL	Processing

When	using	Vite	and	referencing	assets	in	your	application's	HTML,	CSS,	or	JS,	there	are	a	couple	of	caveats
to	consider.	First,	if	you	reference	assets	with	an	absolute	path,	Vite	will	not	include	the	asset	in	the	build;
therefore,	you	should	ensure	that	the	asset	is	available	in	your	public	directory.

When	referencing	relative	asset	paths,	you	should	remember	that	the	paths	are	relative	to	the	file	where	they	are
referenced.	Any	assets	referenced	via	a	relative	path	will	be	re-written,	versioned,	and	bundled	by	Vite.

Consider	the	following	project	structure:

public/

		taylor.png

resources/

		js/

				Pages/

						Welcome.vue

		images/

				abigail.png

The	following	example	demonstrates	how	Vite	will	treat	relative	and	absolute	URLs:

<!--	This	asset	is	not	handled	by	Vite	and	will	not	be	included	in	the	build	-->

<!--	This	asset	will	be	re-written,	versioned,	and	bundled	by	Vite	-->

Working	With	Stylesheets

You	can	learn	more	about	Vite's	CSS	support	within	the	Vite	documentation.	If	you	are	using	PostCSS	plugins
such	as	Tailwind,	you	may	create	a	postcss.config.js	file	in	the	root	of	your	project	and	Vite	will	automatically
apply	it:

export	default	{

				plugins:	{

								tailwindcss:	{},

								autoprefixer:	{},

				},

};

[!NOTE]
Laravel's	starter	kits	already	include	the	proper	Tailwind,	PostCSS,	and	Vite	configuration.	Or,	if	you
would	like	to	use	Tailwind	and	Laravel	without	using	one	of	our	starter	kits,	check	out	Tailwind's
installation	guide	for	Laravel.

Working	With	Blade	and	Routes

Processing	Static	Assets	With	Vite

When	referencing	assets	in	your	JavaScript	or	CSS,	Vite	automatically	processes	and	versions	them.	In
addition,	when	building	Blade	based	applications,	Vite	can	also	process	and	version	static	assets	that	you
reference	solely	in	Blade	templates.

However,	in	order	to	accomplish	this,	you	need	to	make	Vite	aware	of	your	assets	by	importing	the	static	assets
into	the	application's	entry	point.	For	example,	if	you	want	to	process	and	version	all	images	stored	in	
resources/images	and	all	fonts	stored	in	resources/fonts,	you	should	add	the	following	in	your	application's	
resources/js/app.js	entry	point:

import.meta.glob([

		'../images/**',

		'../fonts/**',

]);

These	assets	will	now	be	processed	by	Vite	when	running	npm	run	build.	You	can	then	reference	these	assets	in
Blade	templates	using	the	Vite::asset	method,	which	will	return	the	versioned	URL	for	a	given	asset:

Laravel	Documentation	-	10.x	/	Asset	Bundling 155

https://vitejs.dev/guide/features.html#css
https://tailwindcss.com
https://tailwindcss.com/docs/guides/laravel

Refreshing	on	Save

When	your	application	is	built	using	traditional	server-side	rendering	with	Blade,	Vite	can	improve	your
development	workflow	by	automatically	refreshing	the	browser	when	you	make	changes	to	view	files	in	your
application.	To	get	started,	you	can	simply	specify	the	refresh	option	as	true.

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

												refresh:	true,

								}),

],

});

When	the	refresh	option	is	true,	saving	files	in	the	following	directories	will	trigger	the	browser	to	perform	a
full	page	refresh	while	you	are	running	npm	run	dev:

app/View/Components/**

lang/**

resources/lang/**

resources/views/**

routes/**

Watching	the	routes/**	directory	is	useful	if	you	are	utilizing	Ziggy	to	generate	route	links	within	your
application's	frontend.

If	these	default	paths	do	not	suit	your	needs,	you	can	specify	your	own	list	of	paths	to	watch:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

												refresh:	['resources/views/**'],

								}),

],

});

Under	the	hood,	the	Laravel	Vite	plugin	uses	the	vite-plugin-full-reload	package,	which	offers	some
advanced	configuration	options	to	fine-tune	this	feature's	behavior.	If	you	need	this	level	of	customization,	you
may	provide	a	config	definition:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

												refresh:	[{

																paths:	['path/to/watch/**'],

																config:	{	delay:	300	}

												}],

								}),

],

});

Aliases

It	is	common	in	JavaScript	applications	to	create	aliases	to	regularly	referenced	directories.	But,	you	may	also
create	aliases	to	use	in	Blade	by	using	the	macro	method	on	the	Illuminate\Support\Facades\Vite	class.
Typically,	"macros"	should	be	defined	within	the	boot	method	of	a	service	provider:

Laravel	Documentation	-	10.x	/	Asset	Bundling 156

https://github.com/tighten/ziggy
https://github.com/ElMassimo/vite-plugin-full-reload

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Vite::macro('image',	fn	(string	$asset)	=>	$this->asset("resources/images/{$asset}"));

}

Once	a	macro	has	been	defined,	it	can	be	invoked	within	your	templates.	For	example,	we	can	use	the	image
macro	defined	above	to	reference	an	asset	located	at	resources/images/logo.png:

Custom	Base	URLs

If	your	Vite	compiled	assets	are	deployed	to	a	domain	separate	from	your	application,	such	as	via	a	CDN,	you
must	specify	the	ASSET_URL	environment	variable	within	your	application's	.env	file:

ASSET_URL=https://cdn.example.com

After	configuring	the	asset	URL,	all	re-written	URLs	to	your	assets	will	be	prefixed	with	the	configured	value:

https://cdn.example.com/build/assets/app.9dce8d17.js

Remember	that	absolute	URLs	are	not	re-written	by	Vite,	so	they	will	not	be	prefixed.

Environment	Variables

You	may	inject	environment	variables	into	your	JavaScript	by	prefixing	them	with	VITE_	in	your	application's	
.env	file:

VITE_SENTRY_DSN_PUBLIC=http://example.com

You	may	access	injected	environment	variables	via	the	import.meta.env	object:

import.meta.env.VITE_SENTRY_DSN_PUBLIC

Disabling	Vite	in	Tests

Laravel's	Vite	integration	will	attempt	to	resolve	your	assets	while	running	your	tests,	which	requires	you	to
either	run	the	Vite	development	server	or	build	your	assets.

If	you	would	prefer	to	mock	Vite	during	testing,	you	may	call	the	withoutVite	method,	which	is	available	for
any	tests	that	extend	Laravel's	TestCase	class:

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_without_vite_example():	void

				{

								$this->withoutVite();

								//	...

				}

}

If	you	would	like	to	disable	Vite	for	all	tests,	you	may	call	the	withoutVite	method	from	the	setUp	method	on
your	base	TestCase	class:

<?php

namespace	Tests;

use	Illuminate\Foundation\Testing\TestCase	as	BaseTestCase;

abstract	class	TestCase	extends	BaseTestCase

{

Laravel	Documentation	-	10.x	/	Asset	Bundling 157

				use	CreatesApplication;

				protected	function	setUp():	void//	[tl!	add:start]

				{

								parent::setUp();

								$this->withoutVite();

				}//	[tl!	add:end]

}

Server-Side	Rendering	(SSR)

The	Laravel	Vite	plugin	makes	it	painless	to	set	up	server-side	rendering	with	Vite.	To	get	started,	create	an
SSR	entry	point	at	resources/js/ssr.js	and	specify	the	entry	point	by	passing	a	configuration	option	to	the
Laravel	plugin:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												input:	'resources/js/app.js',

												ssr:	'resources/js/ssr.js',

								}),

],

});

To	ensure	you	don't	forget	to	rebuild	the	SSR	entry	point,	we	recommend	augmenting	the	"build"	script	in	your
application's	package.json	to	create	your	SSR	build:

"scripts":	{

					"dev":	"vite",

					"build":	"vite	build"	//	[tl!	remove]

					"build":	"vite	build	&&	vite	build	--ssr"	//	[tl!	add]

}

Then,	to	build	and	start	the	SSR	server,	you	may	run	the	following	commands:

npm	run	build

node	bootstrap/ssr/ssr.js

If	you	are	using	SSR	with	Inertia,	you	may	instead	use	the	inertia:start-ssr	Artisan	command	to	start	the	SSR
server:

php	artisan	inertia:start-ssr

[!NOTE]
Laravel's	starter	kits	already	include	the	proper	Laravel,	Inertia	SSR,	and	Vite	configuration.	Check	out
Laravel	Breeze	for	the	fastest	way	to	get	started	with	Laravel,	Inertia	SSR,	and	Vite.

Script	and	Style	Tag	Attributes

Content	Security	Policy	(CSP)	Nonce

If	you	wish	to	include	a	nonce	attribute	on	your	script	and	style	tags	as	part	of	your	Content	Security	Policy,	you
may	generate	or	specify	a	nonce	using	the	useCspNonce	method	within	a	custom	middleware:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Vite;

use	Symfony\Component\HttpFoundation\Response;

class	AddContentSecurityPolicyHeaders

{

				/**

Laravel	Documentation	-	10.x	/	Asset	Bundling 158

https://inertiajs.com/server-side-rendering
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/nonce
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								Vite::useCspNonce();

								return	$next($request)->withHeaders([

												'Content-Security-Policy'	=>	"script-src	'nonce-".Vite::cspNonce()."'",

]);

				}

}

After	invoking	the	useCspNonce	method,	Laravel	will	automatically	include	the	nonce	attributes	on	all	generated
script	and	style	tags.

If	you	need	to	specify	the	nonce	elsewhere,	including	the	Ziggy	@route	directive	included	with	Laravel's	starter
kits,	you	may	retrieve	it	using	the	cspNonce	method:

@routes(nonce:	Vite::cspNonce())

If	you	already	have	a	nonce	that	you	would	like	to	instruct	Laravel	to	use,	you	may	pass	the	nonce	to	the	
useCspNonce	method:

Vite::useCspNonce($nonce);

Subresource	Integrity	(SRI)

If	your	Vite	manifest	includes	integrity	hashes	for	your	assets,	Laravel	will	automatically	add	the	integrity
attribute	on	any	script	and	style	tags	it	generates	in	order	to	enforce	Subresource	Integrity.	By	default,	Vite	does
not	include	the	integrity	hash	in	its	manifest,	but	you	may	enable	it	by	installing	the	vite-plugin-manifest-sri
NPM	plugin:

npm	install	--save-dev	vite-plugin-manifest-sri

You	may	then	enable	this	plugin	in	your	vite.config.js	file:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

import	manifestSRI	from	'vite-plugin-manifest-sri';//	[tl!	add]

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

								}),

								manifestSRI(),//	[tl!	add]

],

});

If	required,	you	may	also	customize	the	manifest	key	where	the	integrity	hash	can	be	found:

use	Illuminate\Support\Facades\Vite;

Vite::useIntegrityKey('custom-integrity-key');

If	you	would	like	to	disable	this	auto-detection	completely,	you	may	pass	false	to	the	useIntegrityKey	method:

Vite::useIntegrityKey(false);

Arbitrary	Attributes

If	you	need	to	include	additional	attributes	on	your	script	and	style	tags,	such	as	the	data-turbo-track	attribute,
you	may	specify	them	via	the	useScriptTagAttributes	and	useStyleTagAttributes	methods.	Typically,	this
methods	should	be	invoked	from	a	service	provider:

use	Illuminate\Support\Facades\Vite;

Vite::useScriptTagAttributes([

Laravel	Documentation	-	10.x	/	Asset	Bundling 159

https://github.com/tighten/ziggy#using-routes-with-a-content-security-policy
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.npmjs.com/package/vite-plugin-manifest-sri
https://turbo.hotwired.dev/handbook/drive#reloading-when-assets-change

				'data-turbo-track'	=>	'reload',	//	Specify	a	value	for	the	attribute...

				'async'	=>	true,	//	Specify	an	attribute	without	a	value...

				'integrity'	=>	false,	//	Exclude	an	attribute	that	would	otherwise	be	included...

]);

Vite::useStyleTagAttributes([

				'data-turbo-track'	=>	'reload',

]);

If	you	need	to	conditionally	add	attributes,	you	may	pass	a	callback	that	will	receive	the	asset	source	path,	its
URL,	its	manifest	chunk,	and	the	entire	manifest:

use	Illuminate\Support\Facades\Vite;

Vite::useScriptTagAttributes(fn	(string	$src,	string	$url,	array|null	$chunk,	array|null	$manifest)	=>	[

				'data-turbo-track'	=>	$src	===	'resources/js/app.js'	?	'reload'	:	false,

]);

Vite::useStyleTagAttributes(fn	(string	$src,	string	$url,	array|null	$chunk,	array|null	$manifest)	=>	[

				'data-turbo-track'	=>	$chunk	&&	$chunk['isEntry']	?	'reload'	:	false,

]);

[!WARNING]
The	$chunk	and	$manifest	arguments	will	be	null	while	the	Vite	development	server	is	running.

Advanced	Customization

Out	of	the	box,	Laravel's	Vite	plugin	uses	sensible	conventions	that	should	work	for	the	majority	of
applications;	however,	sometimes	you	may	need	to	customize	Vite's	behavior.	To	enable	additional
customization	options,	we	offer	the	following	methods	and	options	which	can	be	used	in	place	of	the	@vite
Blade	directive:

<!doctype	html>

<head>

				{{--	...	--}}

				{{

								Vite::useHotFile(storage_path('vite.hot'))	//	Customize	the	"hot"	file...

												->useBuildDirectory('bundle')	//	Customize	the	build	directory...

												->useManifestFilename('assets.json')	//	Customize	the	manifest	filename...

												->withEntryPoints(['resources/js/app.js'])	//	Specify	the	entry	points...

												->createAssetPathsUsing(function	(string	$path,	?bool	$secure)	{	//	Customize	the	backend	

path	generation	for	built	assets...

																return	"https://cdn.example.com/{$path}";

												})

				}}

</head>

Within	the	vite.config.js	file,	you	should	then	specify	the	same	configuration:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

export	default	defineConfig({

				plugins:	[

								laravel({

												hotFile:	'storage/vite.hot',	//	Customize	the	"hot"	file...

												buildDirectory:	'bundle',	//	Customize	the	build	directory...

												input:	['resources/js/app.js'],	//	Specify	the	entry	points...

								}),

],

				build:	{

						manifest:	'assets.json',	//	Customize	the	manifest	filename...

				},

});

Correcting	Dev	Server	URLs

Some	plugins	within	the	Vite	ecosystem	assume	that	URLs	which	begin	with	a	forward-slash	will	always	point
to	the	Vite	dev	server.	However,	due	to	the	nature	of	the	Laravel	integration,	this	is	not	the	case.

For	example,	the	vite-imagetools	plugin	outputs	URLs	like	the	following	while	Vite	is	serving	your	assets:

Laravel	Documentation	-	10.x	/	Asset	Bundling 160

The	vite-imagetools	plugin	is	expecting	that	the	output	URL	will	be	intercepted	by	Vite	and	the	plugin	may
then	handle	all	URLs	that	start	with	/@imagetools.	If	you	are	using	plugins	that	are	expecting	this	behaviour,
you	will	need	to	manually	correct	the	URLs.	You	can	do	this	in	your	vite.config.js	file	by	using	the	
transformOnServe	option.

In	this	particular	example,	we	will	prepend	the	dev	server	URL	to	all	occurrences	of	/@imagetools	within	the
generated	code:

import	{	defineConfig	}	from	'vite';

import	laravel	from	'laravel-vite-plugin';

import	{	imagetools	}	from	'vite-imagetools';

export	default	defineConfig({

				plugins:	[

								laravel({

												//	...

												transformOnServe:	(code,	devServerUrl)	=>	code.replaceAll('/@imagetools',	

devServerUrl+'/@imagetools'),

								}),

								imagetools(),

],

});

Now,	while	Vite	is	serving	Assets,	it	will	output	URLs	that	point	to	the	Vite	dev	server:

-	<!--	[tl!	remove]	-->

+	<!--	[tl!	add]	-->

Laravel	Documentation	-	10.x	/	Asset	Bundling 161

The	Basics

URL	Generation
Introduction
The	Basics

Generating	URLs
Accessing	the	Current	URL

URLs	for	Named	Routes
Signed	URLs

URLs	for	Controller	Actions
Default	Values

Introduction

Laravel	provides	several	helpers	to	assist	you	in	generating	URLs	for	your	application.	These	helpers	are
primarily	helpful	when	building	links	in	your	templates	and	API	responses,	or	when	generating	redirect
responses	to	another	part	of	your	application.

The	Basics

Generating	URLs

The	url	helper	may	be	used	to	generate	arbitrary	URLs	for	your	application.	The	generated	URL	will
automatically	use	the	scheme	(HTTP	or	HTTPS)	and	host	from	the	current	request	being	handled	by	the
application:

$post	=	App\Models\Post::find(1);

echo	url("/posts/{$post->id}");

//	http://example.com/posts/1

Accessing	the	Current	URL

If	no	path	is	provided	to	the	url	helper,	an	Illuminate\Routing\UrlGenerator	instance	is	returned,	allowing	you
to	access	information	about	the	current	URL:

//	Get	the	current	URL	without	the	query	string...

echo	url()->current();

//	Get	the	current	URL	including	the	query	string...

echo	url()->full();

//	Get	the	full	URL	for	the	previous	request...

echo	url()->previous();

Each	of	these	methods	may	also	be	accessed	via	the	URL	facade:

use	Illuminate\Support\Facades\URL;

echo	URL::current();

URLs	for	Named	Routes

The	route	helper	may	be	used	to	generate	URLs	to	named	routes.	Named	routes	allow	you	to	generate	URLs
without	being	coupled	to	the	actual	URL	defined	on	the	route.	Therefore,	if	the	route's	URL	changes,	no
changes	need	to	be	made	to	your	calls	to	the	route	function.	For	example,	imagine	your	application	contains	a
route	defined	like	the	following:

Route::get('/post/{post}',	function	(Post	$post)	{

				//	...

})->name('post.show');

Laravel	Documentation	-	10.x	/	URL	Generation 162

To	generate	a	URL	to	this	route,	you	may	use	the	route	helper	like	so:

echo	route('post.show',	['post'	=>	1]);

//	http://example.com/post/1

Of	course,	the	route	helper	may	also	be	used	to	generate	URLs	for	routes	with	multiple	parameters:

Route::get('/post/{post}/comment/{comment}',	function	(Post	$post,	Comment	$comment)	{

				//	...

})->name('comment.show');

echo	route('comment.show',	['post'	=>	1,	'comment'	=>	3]);

//	http://example.com/post/1/comment/3

Any	additional	array	elements	that	do	not	correspond	to	the	route's	definition	parameters	will	be	added	to	the
URL's	query	string:

echo	route('post.show',	['post'	=>	1,	'search'	=>	'rocket']);

//	http://example.com/post/1?search=rocket

Eloquent	Models

You	will	often	be	generating	URLs	using	the	route	key	(typically	the	primary	key)	of	Eloquent	models.	For	this
reason,	you	may	pass	Eloquent	models	as	parameter	values.	The	route	helper	will	automatically	extract	the
model's	route	key:

echo	route('post.show',	['post'	=>	$post]);

Signed	URLs

Laravel	allows	you	to	easily	create	"signed"	URLs	to	named	routes.	These	URLs	have	a	"signature"	hash
appended	to	the	query	string	which	allows	Laravel	to	verify	that	the	URL	has	not	been	modified	since	it	was
created.	Signed	URLs	are	especially	useful	for	routes	that	are	publicly	accessible	yet	need	a	layer	of	protection
against	URL	manipulation.

For	example,	you	might	use	signed	URLs	to	implement	a	public	"unsubscribe"	link	that	is	emailed	to	your
customers.	To	create	a	signed	URL	to	a	named	route,	use	the	signedRoute	method	of	the	URL	facade:

use	Illuminate\Support\Facades\URL;

return	URL::signedRoute('unsubscribe',	['user'	=>	1]);

You	may	exclude	the	domain	from	the	signed	URL	hash	by	providing	the	absolute	argument	to	the	signedRoute
method:

return	URL::signedRoute('unsubscribe',	['user'	=>	1],	absolute:	false);

If	you	would	like	to	generate	a	temporary	signed	route	URL	that	expires	after	a	specified	amount	of	time,	you
may	use	the	temporarySignedRoute	method.	When	Laravel	validates	a	temporary	signed	route	URL,	it	will
ensure	that	the	expiration	timestamp	that	is	encoded	into	the	signed	URL	has	not	elapsed:

use	Illuminate\Support\Facades\URL;

return	URL::temporarySignedRoute(

				'unsubscribe',	now()->addMinutes(30),	['user'	=>	1]

);

Validating	Signed	Route	Requests

To	verify	that	an	incoming	request	has	a	valid	signature,	you	should	call	the	hasValidSignature	method	on	the
incoming	Illuminate\Http\Request	instance:

use	Illuminate\Http\Request;

Route::get('/unsubscribe/{user}',	function	(Request	$request)	{

Laravel	Documentation	-	10.x	/	URL	Generation 163

				if	(!	$request->hasValidSignature())	{

								abort(401);

				}

				//	...

})->name('unsubscribe');

Sometimes,	you	may	need	to	allow	your	application's	frontend	to	append	data	to	a	signed	URL,	such	as	when
performing	client-side	pagination.	Therefore,	you	can	specify	request	query	parameters	that	should	be	ignored
when	validating	a	signed	URL	using	the	hasValidSignatureWhileIgnoring	method.	Remember,	ignoring
parameters	allows	anyone	to	modify	those	parameters	on	the	request:

if	(!	$request->hasValidSignatureWhileIgnoring(['page',	'order']))	{

				abort(401);

}

Instead	of	validating	signed	URLs	using	the	incoming	request	instance,	you	may	assign	the	
Illuminate\Routing\Middleware\ValidateSignature	middleware	to	the	route.	If	it	is	not	already	present,	you	may
assign	this	middleware	an	alias	in	your	HTTP	kernel's	$middlewareAliases	array:

/**

	*	The	application's	middleware	aliases.

	*

	*	Aliases	may	be	used	to	conveniently	assign	middleware	to	routes	and	groups.

	*

	*	@var	array<string,	class-string|string>

	*/

protected	$middlewareAliases	=	[

				'signed'	=>	\Illuminate\Routing\Middleware\ValidateSignature::class,

];

Once	you	have	registered	the	middleware	in	your	kernel,	you	may	attach	it	to	a	route.	If	the	incoming	request
does	not	have	a	valid	signature,	the	middleware	will	automatically	return	a	403	HTTP	response:

Route::post('/unsubscribe/{user}',	function	(Request	$request)	{

				//	...

})->name('unsubscribe')->middleware('signed');

If	your	signed	URLs	do	not	include	the	domain	in	the	URL	hash,	you	should	provide	the	relative	argument	to
the	middleware:

Route::post('/unsubscribe/{user}',	function	(Request	$request)	{

				//	...

})->name('unsubscribe')->middleware('signed:relative');

Responding	to	Invalid	Signed	Routes

When	someone	visits	a	signed	URL	that	has	expired,	they	will	receive	a	generic	error	page	for	the	403	HTTP
status	code.	However,	you	can	customize	this	behavior	by	defining	a	custom	"renderable"	closure	for	the	
InvalidSignatureException	exception	in	your	exception	handler.	This	closure	should	return	an	HTTP	response:

use	Illuminate\Routing\Exceptions\InvalidSignatureException;

/**

	*	Register	the	exception	handling	callbacks	for	the	application.

	*/

public	function	register():	void

{

				$this->renderable(function	(InvalidSignatureException	$e)	{

								return	response()->view('error.link-expired',	[],	403);

				});

}

URLs	for	Controller	Actions

The	action	function	generates	a	URL	for	the	given	controller	action:

use	App\Http\Controllers\HomeController;

$url	=	action([HomeController::class,	'index']);

Laravel	Documentation	-	10.x	/	URL	Generation 164

If	the	controller	method	accepts	route	parameters,	you	may	pass	an	associative	array	of	route	parameters	as	the
second	argument	to	the	function:

$url	=	action([UserController::class,	'profile'],	['id'	=>	1]);

Default	Values

For	some	applications,	you	may	wish	to	specify	request-wide	default	values	for	certain	URL	parameters.	For
example,	imagine	many	of	your	routes	define	a	{locale}	parameter:

Route::get('/{locale}/posts',	function	()	{

				//	...

})->name('post.index');

It	is	cumbersome	to	always	pass	the	locale	every	time	you	call	the	route	helper.	So,	you	may	use	the	
URL::defaults	method	to	define	a	default	value	for	this	parameter	that	will	always	be	applied	during	the	current
request.	You	may	wish	to	call	this	method	from	a	route	middleware	so	that	you	have	access	to	the	current
request:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\URL;

use	Symfony\Component\HttpFoundation\Response;

class	SetDefaultLocaleForUrls

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								URL::defaults(['locale'	=>	$request->user()->locale]);

								return	$next($request);

				}

}

Once	the	default	value	for	the	locale	parameter	has	been	set,	you	are	no	longer	required	to	pass	its	value	when
generating	URLs	via	the	route	helper.

URL	Defaults	and	Middleware	Priority

Setting	URL	default	values	can	interfere	with	Laravel's	handling	of	implicit	model	bindings.	Therefore,	you
should	prioritize	your	middleware	that	set	URL	defaults	to	be	executed	before	Laravel's	own	
SubstituteBindings	middleware.	You	can	accomplish	this	by	making	sure	your	middleware	occurs	before	the	
SubstituteBindings	middleware	within	the	$middlewarePriority	property	of	your	application's	HTTP	kernel.

The	$middlewarePriority	property	is	defined	in	the	base	Illuminate\Foundation\Http\Kernel	class.	You	may
copy	its	definition	from	that	class	and	overwrite	it	in	your	application's	HTTP	kernel	in	order	to	modify	it:

/**

	*	The	priority-sorted	list	of	middleware.

	*

	*	This	forces	non-global	middleware	to	always	be	in	the	given	order.

	*

	*	@var	array

	*/

protected	$middlewarePriority	=	[

				//	...

					\App\Http\Middleware\SetDefaultLocaleForUrls::class,

					\Illuminate\Routing\Middleware\SubstituteBindings::class,

					//	...

];

Laravel	Documentation	-	10.x	/	URL	Generation 165

The	Basics

HTTP	Session
Introduction

Configuration
Driver	Prerequisites

Interacting	With	the	Session
Retrieving	Data
Storing	Data
Flash	Data
Deleting	Data
Regenerating	the	Session	ID

Session	Blocking
Adding	Custom	Session	Drivers

Implementing	the	Driver
Registering	the	Driver

Introduction

Since	HTTP	driven	applications	are	stateless,	sessions	provide	a	way	to	store	information	about	the	user	across
multiple	requests.	That	user	information	is	typically	placed	in	a	persistent	store	/	backend	that	can	be	accessed
from	subsequent	requests.

Laravel	ships	with	a	variety	of	session	backends	that	are	accessed	through	an	expressive,	unified	API.	Support
for	popular	backends	such	as	Memcached,	Redis,	and	databases	is	included.

Configuration

Your	application's	session	configuration	file	is	stored	at	config/session.php.	Be	sure	to	review	the	options
available	to	you	in	this	file.	By	default,	Laravel	is	configured	to	use	the	file	session	driver,	which	will	work
well	for	many	applications.	If	your	application	will	be	load	balanced	across	multiple	web	servers,	you	should
choose	a	centralized	store	that	all	servers	can	access,	such	as	Redis	or	a	database.

The	session	driver	configuration	option	defines	where	session	data	will	be	stored	for	each	request.	Laravel
ships	with	several	great	drivers	out	of	the	box:

file	-	sessions	are	stored	in	storage/framework/sessions.
cookie	-	sessions	are	stored	in	secure,	encrypted	cookies.
database	-	sessions	are	stored	in	a	relational	database.
memcached	/	redis	-	sessions	are	stored	in	one	of	these	fast,	cache	based	stores.
dynamodb	-	sessions	are	stored	in	AWS	DynamoDB.
array	-	sessions	are	stored	in	a	PHP	array	and	will	not	be	persisted.

[!NOTE]
The	array	driver	is	primarily	used	during	testing	and	prevents	the	data	stored	in	the	session	from	being
persisted.

Driver	Prerequisites

Database

When	using	the	database	session	driver,	you	will	need	to	create	a	table	to	contain	the	session	records.	An
example	Schema	declaration	for	the	table	may	be	found	below:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::create('sessions',	function	(Blueprint	$table)	{

				$table->string('id')->primary();

Laravel	Documentation	-	10.x	/	Session 166

https://memcached.org
https://redis.io

				$table->foreignId('user_id')->nullable()->index();

				$table->string('ip_address',	45)->nullable();

				$table->text('user_agent')->nullable();

				$table->text('payload');

				$table->integer('last_activity')->index();

});

You	may	use	the	session:table	Artisan	command	to	generate	this	migration.	To	learn	more	about	database
migrations,	you	may	consult	the	complete	migration	documentation:

php	artisan	session:table

php	artisan	migrate

Redis

Before	using	Redis	sessions	with	Laravel,	you	will	need	to	either	install	the	PhpRedis	PHP	extension	via	PECL
or	install	the	predis/predis	package	(~1.0)	via	Composer.	For	more	information	on	configuring	Redis,	consult
Laravel's	Redis	documentation.

[!NOTE]
In	the	session	configuration	file,	the	connection	option	may	be	used	to	specify	which	Redis	connection	is
used	by	the	session.

Interacting	With	the	Session

Retrieving	Data

There	are	two	primary	ways	of	working	with	session	data	in	Laravel:	the	global	session	helper	and	via	a	
Request	instance.	First,	let's	look	at	accessing	the	session	via	a	Request	instance,	which	can	be	type-hinted	on	a
route	closure	or	controller	method.	Remember,	controller	method	dependencies	are	automatically	injected	via
the	Laravel	service	container:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*/

				public	function	show(Request	$request,	string	$id):	View

				{

								$value	=	$request->session()->get('key');

								//	...

								$user	=	$this->users->find($id);

								return	view('user.profile',	['user'	=>	$user]);

				}

}

When	you	retrieve	an	item	from	the	session,	you	may	also	pass	a	default	value	as	the	second	argument	to	the	
get	method.	This	default	value	will	be	returned	if	the	specified	key	does	not	exist	in	the	session.	If	you	pass	a
closure	as	the	default	value	to	the	get	method	and	the	requested	key	does	not	exist,	the	closure	will	be	executed
and	its	result	returned:

$value	=	$request->session()->get('key',	'default');

$value	=	$request->session()->get('key',	function	()	{

				return	'default';

});

The	Global	Session	Helper

Laravel	Documentation	-	10.x	/	Session 167

You	may	also	use	the	global	session	PHP	function	to	retrieve	and	store	data	in	the	session.	When	the	session
helper	is	called	with	a	single,	string	argument,	it	will	return	the	value	of	that	session	key.	When	the	helper	is
called	with	an	array	of	key	/	value	pairs,	those	values	will	be	stored	in	the	session:

Route::get('/home',	function	()	{

				//	Retrieve	a	piece	of	data	from	the	session...

				$value	=	session('key');

				//	Specifying	a	default	value...

				$value	=	session('key',	'default');

				//	Store	a	piece	of	data	in	the	session...

				session(['key'	=>	'value']);

});

[!NOTE]
There	is	little	practical	difference	between	using	the	session	via	an	HTTP	request	instance	versus	using	the
global	session	helper.	Both	methods	are	testable	via	the	assertSessionHas	method	which	is	available	in	all
of	your	test	cases.

Retrieving	All	Session	Data

If	you	would	like	to	retrieve	all	the	data	in	the	session,	you	may	use	the	all	method:

$data	=	$request->session()->all();

Retrieving	a	Portion	of	the	Session	Data

The	only	and	except	methods	may	be	used	to	retrieve	a	subset	of	the	session	data:

$data	=	$request->session()->only(['username',	'email']);

$data	=	$request->session()->except(['username',	'email']);

Determining	if	an	Item	Exists	in	the	Session

To	determine	if	an	item	is	present	in	the	session,	you	may	use	the	has	method.	The	has	method	returns	true	if
the	item	is	present	and	is	not	null:

if	($request->session()->has('users'))	{

				//	...

}

To	determine	if	an	item	is	present	in	the	session,	even	if	its	value	is	null,	you	may	use	the	exists	method:

if	($request->session()->exists('users'))	{

				//	...

}

To	determine	if	an	item	is	not	present	in	the	session,	you	may	use	the	missing	method.	The	missing	method
returns	true	if	the	item	is	not	present:

if	($request->session()->missing('users'))	{

				//	...

}

Storing	Data

To	store	data	in	the	session,	you	will	typically	use	the	request	instance's	put	method	or	the	global	session
helper:

//	Via	a	request	instance...

$request->session()->put('key',	'value');

//	Via	the	global	"session"	helper...

session(['key'	=>	'value']);

Pushing	to	Array	Session	Values

Laravel	Documentation	-	10.x	/	Session 168

The	push	method	may	be	used	to	push	a	new	value	onto	a	session	value	that	is	an	array.	For	example,	if	the	
user.teams	key	contains	an	array	of	team	names,	you	may	push	a	new	value	onto	the	array	like	so:

$request->session()->push('user.teams',	'developers');

Retrieving	and	Deleting	an	Item

The	pull	method	will	retrieve	and	delete	an	item	from	the	session	in	a	single	statement:

$value	=	$request->session()->pull('key',	'default');

Incrementing	and	Decrementing	Session	Values

If	your	session	data	contains	an	integer	you	wish	to	increment	or	decrement,	you	may	use	the	increment	and	
decrement	methods:

$request->session()->increment('count');

$request->session()->increment('count',	$incrementBy	=	2);

$request->session()->decrement('count');

$request->session()->decrement('count',	$decrementBy	=	2);

Flash	Data

Sometimes	you	may	wish	to	store	items	in	the	session	for	the	next	request.	You	may	do	so	using	the	flash
method.	Data	stored	in	the	session	using	this	method	will	be	available	immediately	and	during	the	subsequent
HTTP	request.	After	the	subsequent	HTTP	request,	the	flashed	data	will	be	deleted.	Flash	data	is	primarily
useful	for	short-lived	status	messages:

$request->session()->flash('status',	'Task	was	successful!');

If	you	need	to	persist	your	flash	data	for	several	requests,	you	may	use	the	reflash	method,	which	will	keep	all
of	the	flash	data	for	an	additional	request.	If	you	only	need	to	keep	specific	flash	data,	you	may	use	the	keep
method:

$request->session()->reflash();

$request->session()->keep(['username',	'email']);

To	persist	your	flash	data	only	for	the	current	request,	you	may	use	the	now	method:

$request->session()->now('status',	'Task	was	successful!');

Deleting	Data

The	forget	method	will	remove	a	piece	of	data	from	the	session.	If	you	would	like	to	remove	all	data	from	the
session,	you	may	use	the	flush	method:

//	Forget	a	single	key...

$request->session()->forget('name');

//	Forget	multiple	keys...

$request->session()->forget(['name',	'status']);

$request->session()->flush();

Regenerating	the	Session	ID

Regenerating	the	session	ID	is	often	done	in	order	to	prevent	malicious	users	from	exploiting	a	session	fixation
attack	on	your	application.

Laravel	automatically	regenerates	the	session	ID	during	authentication	if	you	are	using	one	of	the	Laravel
application	starter	kits	or	Laravel	Fortify;	however,	if	you	need	to	manually	regenerate	the	session	ID,	you	may

Laravel	Documentation	-	10.x	/	Session 169

https://owasp.org/www-community/attacks/Session_fixation

use	the	regenerate	method:

$request->session()->regenerate();

If	you	need	to	regenerate	the	session	ID	and	remove	all	data	from	the	session	in	a	single	statement,	you	may	use
the	invalidate	method:

$request->session()->invalidate();

Session	Blocking

[!WARNING]
To	utilize	session	blocking,	your	application	must	be	using	a	cache	driver	that	supports	atomic	locks.
Currently,	those	cache	drivers	include	the	memcached,	dynamodb,	redis,	database,	file,	and	array	drivers.	In
addition,	you	may	not	use	the	cookie	session	driver.

By	default,	Laravel	allows	requests	using	the	same	session	to	execute	concurrently.	So,	for	example,	if	you	use
a	JavaScript	HTTP	library	to	make	two	HTTP	requests	to	your	application,	they	will	both	execute	at	the	same
time.	For	many	applications,	this	is	not	a	problem;	however,	session	data	loss	can	occur	in	a	small	subset	of
applications	that	make	concurrent	requests	to	two	different	application	endpoints	which	both	write	data	to	the
session.

To	mitigate	this,	Laravel	provides	functionality	that	allows	you	to	limit	concurrent	requests	for	a	given	session.
To	get	started,	you	may	simply	chain	the	block	method	onto	your	route	definition.	In	this	example,	an	incoming
request	to	the	/profile	endpoint	would	acquire	a	session	lock.	While	this	lock	is	being	held,	any	incoming
requests	to	the	/profile	or	/order	endpoints	which	share	the	same	session	ID	will	wait	for	the	first	request	to
finish	executing	before	continuing	their	execution:

Route::post('/profile',	function	()	{

				//	...

})->block($lockSeconds	=	10,	$waitSeconds	=	10)

Route::post('/order',	function	()	{

				//	...

})->block($lockSeconds	=	10,	$waitSeconds	=	10)

The	block	method	accepts	two	optional	arguments.	The	first	argument	accepted	by	the	block	method	is	the
maximum	number	of	seconds	the	session	lock	should	be	held	for	before	it	is	released.	Of	course,	if	the	request
finishes	executing	before	this	time	the	lock	will	be	released	earlier.

The	second	argument	accepted	by	the	block	method	is	the	number	of	seconds	a	request	should	wait	while
attempting	to	obtain	a	session	lock.	An	Illuminate\Contracts\Cache\LockTimeoutException	will	be	thrown	if	the
request	is	unable	to	obtain	a	session	lock	within	the	given	number	of	seconds.

If	neither	of	these	arguments	is	passed,	the	lock	will	be	obtained	for	a	maximum	of	10	seconds	and	requests
will	wait	a	maximum	of	10	seconds	while	attempting	to	obtain	a	lock:

Route::post('/profile',	function	()	{

				//	...

})->block()

Adding	Custom	Session	Drivers

Implementing	the	Driver

If	none	of	the	existing	session	drivers	fit	your	application's	needs,	Laravel	makes	it	possible	to	write	your	own
session	handler.	Your	custom	session	driver	should	implement	PHP's	built-in	SessionHandlerInterface.	This
interface	contains	just	a	few	simple	methods.	A	stubbed	MongoDB	implementation	looks	like	the	following:

<?php

namespace	App\Extensions;

class	MongoSessionHandler	implements	\SessionHandlerInterface

{

Laravel	Documentation	-	10.x	/	Session 170

				public	function	open($savePath,	$sessionName)	{}

				public	function	close()	{}

				public	function	read($sessionId)	{}

				public	function	write($sessionId,	$data)	{}

				public	function	destroy($sessionId)	{}

				public	function	gc($lifetime)	{}

}

[!NOTE]
Laravel	does	not	ship	with	a	directory	to	contain	your	extensions.	You	are	free	to	place	them	anywhere	you
like.	In	this	example,	we	have	created	an	Extensions	directory	to	house	the	MongoSessionHandler.

Since	the	purpose	of	these	methods	is	not	readily	understandable,	let's	quickly	cover	what	each	of	the	methods
do:

The	open	method	would	typically	be	used	in	file	based	session	store	systems.	Since	Laravel	ships	with	a	
file	session	driver,	you	will	rarely	need	to	put	anything	in	this	method.	You	can	simply	leave	this
method	empty.
The	close	method,	like	the	open	method,	can	also	usually	be	disregarded.	For	most	drivers,	it	is	not
needed.
The	read	method	should	return	the	string	version	of	the	session	data	associated	with	the	given	
$sessionId.	There	is	no	need	to	do	any	serialization	or	other	encoding	when	retrieving	or	storing	session
data	in	your	driver,	as	Laravel	will	perform	the	serialization	for	you.
The	write	method	should	write	the	given	$data	string	associated	with	the	$sessionId	to	some	persistent
storage	system,	such	as	MongoDB	or	another	storage	system	of	your	choice.	Again,	you	should	not
perform	any	serialization	-	Laravel	will	have	already	handled	that	for	you.
The	destroy	method	should	remove	the	data	associated	with	the	$sessionId	from	persistent	storage.
The	gc	method	should	destroy	all	session	data	that	is	older	than	the	given	$lifetime,	which	is	a	UNIX
timestamp.	For	self-expiring	systems	like	Memcached	and	Redis,	this	method	may	be	left	empty.

Registering	the	Driver

Once	your	driver	has	been	implemented,	you	are	ready	to	register	it	with	Laravel.	To	add	additional	drivers	to
Laravel's	session	backend,	you	may	use	the	extend	method	provided	by	the	Session	facade.	You	should	call	the	
extend	method	from	the	boot	method	of	a	service	provider.	You	may	do	this	from	the	existing	
App\Providers\AppServiceProvider	or	create	an	entirely	new	provider:

<?php

namespace	App\Providers;

use	App\Extensions\MongoSessionHandler;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Support\Facades\Session;

use	Illuminate\Support\ServiceProvider;

class	SessionServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Session::extend('mongo',	function	(Application	$app)	{

												//	Return	an	implementation	of	SessionHandlerInterface...

												return	new	MongoSessionHandler;

								});

				}

}

Once	the	session	driver	has	been	registered,	you	may	use	the	mongo	driver	in	your	config/session.php
configuration	file.

Laravel	Documentation	-	10.x	/	Session 171

The	Basics

Validation
Introduction
Validation	Quickstart

Defining	the	Routes
Creating	the	Controller
Writing	the	Validation	Logic
Displaying	the	Validation	Errors
Repopulating	Forms
A	Note	on	Optional	Fields
Validation	Error	Response	Format

Form	Request	Validation
Creating	Form	Requests
Authorizing	Form	Requests
Customizing	the	Error	Messages
Preparing	Input	for	Validation

Manually	Creating	Validators
Automatic	Redirection
Named	Error	Bags
Customizing	the	Error	Messages
Performing	Additional	Validation

Working	With	Validated	Input
Working	With	Error	Messages

Specifying	Custom	Messages	in	Language	Files
Specifying	Attributes	in	Language	Files
Specifying	Values	in	Language	Files

Available	Validation	Rules
Conditionally	Adding	Rules
Validating	Arrays

Validating	Nested	Array	Input
Error	Message	Indexes	and	Positions

Validating	Files
Validating	Passwords
Custom	Validation	Rules

Using	Rule	Objects
Using	Closures
Implicit	Rules

Introduction

Laravel	provides	several	different	approaches	to	validate	your	application's	incoming	data.	It	is	most	common
to	use	the	validate	method	available	on	all	incoming	HTTP	requests.	However,	we	will	discuss	other
approaches	to	validation	as	well.

Laravel	includes	a	wide	variety	of	convenient	validation	rules	that	you	may	apply	to	data,	even	providing	the
ability	to	validate	if	values	are	unique	in	a	given	database	table.	We'll	cover	each	of	these	validation	rules	in
detail	so	that	you	are	familiar	with	all	of	Laravel's	validation	features.

Validation	Quickstart

To	learn	about	Laravel's	powerful	validation	features,	let's	look	at	a	complete	example	of	validating	a	form	and
displaying	the	error	messages	back	to	the	user.	By	reading	this	high-level	overview,	you'll	be	able	to	gain	a
good	general	understanding	of	how	to	validate	incoming	request	data	using	Laravel:

Defining	the	Routes

Laravel	Documentation	-	10.x	/	Validation 172

First,	let's	assume	we	have	the	following	routes	defined	in	our	routes/web.php	file:

use	App\Http\Controllers\PostController;

Route::get('/post/create',	[PostController::class,	'create']);

Route::post('/post',	[PostController::class,	'store']);

The	GET	route	will	display	a	form	for	the	user	to	create	a	new	blog	post,	while	the	POST	route	will	store	the	new
blog	post	in	the	database.

Creating	the	Controller

Next,	let's	take	a	look	at	a	simple	controller	that	handles	incoming	requests	to	these	routes.	We'll	leave	the	store
method	empty	for	now:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\View\View;

class	PostController	extends	Controller

{

				/**

					*	Show	the	form	to	create	a	new	blog	post.

					*/

				public	function	create():	View

				{

								return	view('post.create');

				}

				/**

					*	Store	a	new	blog	post.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								//	Validate	and	store	the	blog	post...

								$post	=	/**	...	*/

								return	to_route('post.show',	['post'	=>	$post->id]);

				}

}

Writing	the	Validation	Logic

Now	we	are	ready	to	fill	in	our	store	method	with	the	logic	to	validate	the	new	blog	post.	To	do	this,	we	will
use	the	validate	method	provided	by	the	Illuminate\Http\Request	object.	If	the	validation	rules	pass,	your	code
will	keep	executing	normally;	however,	if	validation	fails,	an	Illuminate\Validation\ValidationException
exception	will	be	thrown	and	the	proper	error	response	will	automatically	be	sent	back	to	the	user.

If	validation	fails	during	a	traditional	HTTP	request,	a	redirect	response	to	the	previous	URL	will	be	generated.
If	the	incoming	request	is	an	XHR	request,	a	JSON	response	containing	the	validation	error	messages	will	be
returned.

To	get	a	better	understanding	of	the	validate	method,	let's	jump	back	into	the	store	method:

/**

	*	Store	a	new	blog	post.

	*/

public	function	store(Request	$request):	RedirectResponse

{

				$validated	=	$request->validate([

								'title'	=>	'required|unique:posts|max:255',

								'body'	=>	'required',

]);

				//	The	blog	post	is	valid...

				return	redirect('/posts');

Laravel	Documentation	-	10.x	/	Validation 173

}

As	you	can	see,	the	validation	rules	are	passed	into	the	validate	method.	Don't	worry	-	all	available	validation
rules	are	documented.	Again,	if	the	validation	fails,	the	proper	response	will	automatically	be	generated.	If	the
validation	passes,	our	controller	will	continue	executing	normally.

Alternatively,	validation	rules	may	be	specified	as	arrays	of	rules	instead	of	a	single	|	delimited	string:

$validatedData	=	$request->validate([

				'title'	=>	['required',	'unique:posts',	'max:255'],

				'body'	=>	['required'],

]);

In	addition,	you	may	use	the	validateWithBag	method	to	validate	a	request	and	store	any	error	messages	within
a	named	error	bag:

$validatedData	=	$request->validateWithBag('post',	[

				'title'	=>	['required',	'unique:posts',	'max:255'],

				'body'	=>	['required'],

]);

Stopping	on	First	Validation	Failure

Sometimes	you	may	wish	to	stop	running	validation	rules	on	an	attribute	after	the	first	validation	failure.	To	do
so,	assign	the	bail	rule	to	the	attribute:

$request->validate([

				'title'	=>	'bail|required|unique:posts|max:255',

				'body'	=>	'required',

]);

In	this	example,	if	the	unique	rule	on	the	title	attribute	fails,	the	max	rule	will	not	be	checked.	Rules	will	be
validated	in	the	order	they	are	assigned.

A	Note	on	Nested	Attributes

If	the	incoming	HTTP	request	contains	"nested"	field	data,	you	may	specify	these	fields	in	your	validation	rules
using	"dot"	syntax:

$request->validate([

				'title'	=>	'required|unique:posts|max:255',

				'author.name'	=>	'required',

				'author.description'	=>	'required',

]);

On	the	other	hand,	if	your	field	name	contains	a	literal	period,	you	can	explicitly	prevent	this	from	being
interpreted	as	"dot"	syntax	by	escaping	the	period	with	a	backslash:

$request->validate([

				'title'	=>	'required|unique:posts|max:255',

				'v1\.0'	=>	'required',

]);

Displaying	the	Validation	Errors

So,	what	if	the	incoming	request	fields	do	not	pass	the	given	validation	rules?	As	mentioned	previously,
Laravel	will	automatically	redirect	the	user	back	to	their	previous	location.	In	addition,	all	of	the	validation
errors	and	request	input	will	automatically	be	flashed	to	the	session.

An	$errors	variable	is	shared	with	all	of	your	application's	views	by	the	
Illuminate\View\Middleware\ShareErrorsFromSession	middleware,	which	is	provided	by	the	web	middleware
group.	When	this	middleware	is	applied	an	$errors	variable	will	always	be	available	in	your	views,	allowing
you	to	conveniently	assume	the	$errors	variable	is	always	defined	and	can	be	safely	used.	The	$errors	variable
will	be	an	instance	of	Illuminate\Support\MessageBag.	For	more	information	on	working	with	this	object,	check
out	its	documentation.

So,	in	our	example,	the	user	will	be	redirected	to	our	controller's	create	method	when	validation	fails,	allowing

Laravel	Documentation	-	10.x	/	Validation 174

us	to	display	the	error	messages	in	the	view:

<!--	/resources/views/post/create.blade.php	-->

<h1>Create	Post</h1>

@if	($errors->any())

				<div	class="alert	alert-danger">

								

												@foreach	($errors->all()	as	$error)

																{{	$error	}}

												@endforeach

								

				</div>

@endif

<!--	Create	Post	Form	-->

Customizing	the	Error	Messages

Laravel's	built-in	validation	rules	each	have	an	error	message	that	is	located	in	your	application's	
lang/en/validation.php	file.	If	your	application	does	not	have	a	lang	directory,	you	may	instruct	Laravel	to
create	it	using	the	lang:publish	Artisan	command.

Within	the	lang/en/validation.php	file,	you	will	find	a	translation	entry	for	each	validation	rule.	You	are	free	to
change	or	modify	these	messages	based	on	the	needs	of	your	application.

In	addition,	you	may	copy	this	file	to	another	language	directory	to	translate	the	messages	for	your	application's
language.	To	learn	more	about	Laravel	localization,	check	out	the	complete	localization	documentation.

[!WARNING]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

XHR	Requests	and	Validation

In	this	example,	we	used	a	traditional	form	to	send	data	to	the	application.	However,	many	applications	receive
XHR	requests	from	a	JavaScript	powered	frontend.	When	using	the	validate	method	during	an	XHR	request,
Laravel	will	not	generate	a	redirect	response.	Instead,	Laravel	generates	a	JSON	response	containing	all	of	the
validation	errors.	This	JSON	response	will	be	sent	with	a	422	HTTP	status	code.

The	@error	Directive

You	may	use	the	@error	Blade	directive	to	quickly	determine	if	validation	error	messages	exist	for	a	given
attribute.	Within	an	@error	directive,	you	may	echo	the	$message	variable	to	display	the	error	message:

<!--	/resources/views/post/create.blade.php	-->

<label	for="title">Post	Title</label>

<input	id="title"

				type="text"

				name="title"

				class="@error('title')	is-invalid	@enderror">

@error('title')

				<div	class="alert	alert-danger">{{	$message	}}</div>

@enderror

If	you	are	using	named	error	bags,	you	may	pass	the	name	of	the	error	bag	as	the	second	argument	to	the	@error
directive:

<input	...	class="@error('title',	'post')	is-invalid	@enderror">

Repopulating	Forms

When	Laravel	generates	a	redirect	response	due	to	a	validation	error,	the	framework	will	automatically	flash	all

Laravel	Documentation	-	10.x	/	Validation 175

of	the	request's	input	to	the	session.	This	is	done	so	that	you	may	conveniently	access	the	input	during	the	next
request	and	repopulate	the	form	that	the	user	attempted	to	submit.

To	retrieve	flashed	input	from	the	previous	request,	invoke	the	old	method	on	an	instance	of	
Illuminate\Http\Request.	The	old	method	will	pull	the	previously	flashed	input	data	from	the	session:

$title	=	$request->old('title');

Laravel	also	provides	a	global	old	helper.	If	you	are	displaying	old	input	within	a	Blade	template,	it	is	more
convenient	to	use	the	old	helper	to	repopulate	the	form.	If	no	old	input	exists	for	the	given	field,	null	will	be
returned:

<input	type="text"	name="title"	value="{{	old('title')	}}">

A	Note	on	Optional	Fields

By	default,	Laravel	includes	the	TrimStrings	and	ConvertEmptyStringsToNull	middleware	in	your	application's
global	middleware	stack.	These	middleware	are	listed	in	the	stack	by	the	App\Http\Kernel	class.	Because	of	this,
you	will	often	need	to	mark	your	"optional"	request	fields	as	nullable	if	you	do	not	want	the	validator	to
consider	null	values	as	invalid.	For	example:

$request->validate([

				'title'	=>	'required|unique:posts|max:255',

				'body'	=>	'required',

				'publish_at'	=>	'nullable|date',

]);

In	this	example,	we	are	specifying	that	the	publish_at	field	may	be	either	null	or	a	valid	date	representation.	If
the	nullable	modifier	is	not	added	to	the	rule	definition,	the	validator	would	consider	null	an	invalid	date.

Validation	Error	Response	Format

When	your	application	throws	a	Illuminate\Validation\ValidationException	exception	and	the	incoming	HTTP
request	is	expecting	a	JSON	response,	Laravel	will	automatically	format	the	error	messages	for	you	and	return
a	422	Unprocessable	Entity	HTTP	response.

Below,	you	can	review	an	example	of	the	JSON	response	format	for	validation	errors.	Note	that	nested	error
keys	are	flattened	into	"dot"	notation	format:

{

				"message":	"The	team	name	must	be	a	string.	(and	4	more	errors)",

				"errors":	{

								"team_name":	[

												"The	team	name	must	be	a	string.",

												"The	team	name	must	be	at	least	1	characters."

],

								"authorization.role":	[

												"The	selected	authorization.role	is	invalid."

],

								"users.0.email":	[

												"The	users.0.email	field	is	required."

],

								"users.2.email":	[

												"The	users.2.email	must	be	a	valid	email	address."

]

				}

}

Form	Request	Validation

Creating	Form	Requests

For	more	complex	validation	scenarios,	you	may	wish	to	create	a	"form	request".	Form	requests	are	custom
request	classes	that	encapsulate	their	own	validation	and	authorization	logic.	To	create	a	form	request	class,	you
may	use	the	make:request	Artisan	CLI	command:

Laravel	Documentation	-	10.x	/	Validation 176

php	artisan	make:request	StorePostRequest

The	generated	form	request	class	will	be	placed	in	the	app/Http/Requests	directory.	If	this	directory	does	not
exist,	it	will	be	created	when	you	run	the	make:request	command.	Each	form	request	generated	by	Laravel	has
two	methods:	authorize	and	rules.

As	you	might	have	guessed,	the	authorize	method	is	responsible	for	determining	if	the	currently	authenticated
user	can	perform	the	action	represented	by	the	request,	while	the	rules	method	returns	the	validation	rules	that
should	apply	to	the	request's	data:

/**

	*	Get	the	validation	rules	that	apply	to	the	request.

	*

	*	@return	array<string,	\Illuminate\Contracts\Validation\Rule|array|string>

	*/

public	function	rules():	array

{

				return	[

								'title'	=>	'required|unique:posts|max:255',

								'body'	=>	'required',

];

}

[!NOTE]
You	may	type-hint	any	dependencies	you	require	within	the	rules	method's	signature.	They	will
automatically	be	resolved	via	the	Laravel	service	container.

So,	how	are	the	validation	rules	evaluated?	All	you	need	to	do	is	type-hint	the	request	on	your	controller
method.	The	incoming	form	request	is	validated	before	the	controller	method	is	called,	meaning	you	do	not
need	to	clutter	your	controller	with	any	validation	logic:

/**

	*	Store	a	new	blog	post.

	*/

public	function	store(StorePostRequest	$request):	RedirectResponse

{

				//	The	incoming	request	is	valid...

				//	Retrieve	the	validated	input	data...

				$validated	=	$request->validated();

				//	Retrieve	a	portion	of	the	validated	input	data...

				$validated	=	$request->safe()->only(['name',	'email']);

				$validated	=	$request->safe()->except(['name',	'email']);

				//	Store	the	blog	post...

				return	redirect('/posts');

}

If	validation	fails,	a	redirect	response	will	be	generated	to	send	the	user	back	to	their	previous	location.	The
errors	will	also	be	flashed	to	the	session	so	they	are	available	for	display.	If	the	request	was	an	XHR	request,	an
HTTP	response	with	a	422	status	code	will	be	returned	to	the	user	including	a	JSON	representation	of	the
validation	errors.

[!NOTE]
Need	to	add	real-time	form	request	validation	to	your	Inertia	powered	Laravel	frontend?	Check	out
Laravel	Precognition.

Performing	Additional	Validation

Sometimes	you	need	to	perform	additional	validation	after	your	initial	validation	is	complete.	You	can
accomplish	this	using	the	form	request's	after	method.

The	after	method	should	return	an	array	of	callables	or	closures	which	will	be	invoked	after	validation	is
complete.	The	given	callables	will	receive	an	Illuminate\Validation\Validator	instance,	allowing	you	to	raise
additional	error	messages	if	necessary:

use	Illuminate\Validation\Validator;

Laravel	Documentation	-	10.x	/	Validation 177

/**

	*	Get	the	"after"	validation	callables	for	the	request.

	*/

public	function	after():	array

{

				return	[

								function	(Validator	$validator)	{

												if	($this->somethingElseIsInvalid())	{

																$validator->errors()->add(

																				'field',

																				'Something	is	wrong	with	this	field!'

);

												}

								}

];

}

As	noted,	the	array	returned	by	the	after	method	may	also	contain	invokable	classes.	The	__invoke	method	of
these	classes	will	receive	an	Illuminate\Validation\Validator	instance:

use	App\Validation\ValidateShippingTime;

use	App\Validation\ValidateUserStatus;

use	Illuminate\Validation\Validator;

/**

	*	Get	the	"after"	validation	callables	for	the	request.

	*/

public	function	after():	array

{

				return	[

								new	ValidateUserStatus,

								new	ValidateShippingTime,

								function	(Validator	$validator)	{

												//

								}

];

}

Stopping	on	the	First	Validation	Failure

By	adding	a	stopOnFirstFailure	property	to	your	request	class,	you	may	inform	the	validator	that	it	should	stop
validating	all	attributes	once	a	single	validation	failure	has	occurred:

/**

	*	Indicates	if	the	validator	should	stop	on	the	first	rule	failure.

	*

	*	@var	bool

	*/

protected	$stopOnFirstFailure	=	true;

Customizing	the	Redirect	Location

As	previously	discussed,	a	redirect	response	will	be	generated	to	send	the	user	back	to	their	previous	location
when	form	request	validation	fails.	However,	you	are	free	to	customize	this	behavior.	To	do	so,	define	a	
$redirect	property	on	your	form	request:

/**

	*	The	URI	that	users	should	be	redirected	to	if	validation	fails.

	*

	*	@var	string

	*/

protected	$redirect	=	'/dashboard';

Or,	if	you	would	like	to	redirect	users	to	a	named	route,	you	may	define	a	$redirectRoute	property	instead:

/**

	*	The	route	that	users	should	be	redirected	to	if	validation	fails.

	*

	*	@var	string

	*/

protected	$redirectRoute	=	'dashboard';

Authorizing	Form	Requests

Laravel	Documentation	-	10.x	/	Validation 178

The	form	request	class	also	contains	an	authorize	method.	Within	this	method,	you	may	determine	if	the
authenticated	user	actually	has	the	authority	to	update	a	given	resource.	For	example,	you	may	determine	if	a
user	actually	owns	a	blog	comment	they	are	attempting	to	update.	Most	likely,	you	will	interact	with	your
authorization	gates	and	policies	within	this	method:

use	App\Models\Comment;

/**

	*	Determine	if	the	user	is	authorized	to	make	this	request.

	*/

public	function	authorize():	bool

{

				$comment	=	Comment::find($this->route('comment'));

				return	$comment	&&	$this->user()->can('update',	$comment);

}

Since	all	form	requests	extend	the	base	Laravel	request	class,	we	may	use	the	user	method	to	access	the
currently	authenticated	user.	Also,	note	the	call	to	the	route	method	in	the	example	above.	This	method	grants
you	access	to	the	URI	parameters	defined	on	the	route	being	called,	such	as	the	{comment}	parameter	in	the
example	below:

Route::post('/comment/{comment}');

Therefore,	if	your	application	is	taking	advantage	of	route	model	binding,	your	code	may	be	made	even	more
succinct	by	accessing	the	resolved	model	as	a	property	of	the	request:

return	$this->user()->can('update',	$this->comment);

If	the	authorize	method	returns	false,	an	HTTP	response	with	a	403	status	code	will	automatically	be	returned
and	your	controller	method	will	not	execute.

If	you	plan	to	handle	authorization	logic	for	the	request	in	another	part	of	your	application,	you	may	remove	the
authorize	method	completely,	or	simply	return	true:

/**

	*	Determine	if	the	user	is	authorized	to	make	this	request.

	*/

public	function	authorize():	bool

{

				return	true;

}

[!NOTE]
You	may	type-hint	any	dependencies	you	need	within	the	authorize	method's	signature.	They	will
automatically	be	resolved	via	the	Laravel	service	container.

Customizing	the	Error	Messages

You	may	customize	the	error	messages	used	by	the	form	request	by	overriding	the	messages	method.	This
method	should	return	an	array	of	attribute	/	rule	pairs	and	their	corresponding	error	messages:

/**

	*	Get	the	error	messages	for	the	defined	validation	rules.

	*

	*	@return	array<string,	string>

	*/

public	function	messages():	array

{

				return	[

								'title.required'	=>	'A	title	is	required',

								'body.required'	=>	'A	message	is	required',

];

}

Customizing	the	Validation	Attributes

Many	of	Laravel's	built-in	validation	rule	error	messages	contain	an	:attribute	placeholder.	If	you	would	like
the	:attribute	placeholder	of	your	validation	message	to	be	replaced	with	a	custom	attribute	name,	you	may

Laravel	Documentation	-	10.x	/	Validation 179

specify	the	custom	names	by	overriding	the	attributes	method.	This	method	should	return	an	array	of	attribute
/	name	pairs:

/**

	*	Get	custom	attributes	for	validator	errors.

	*

	*	@return	array<string,	string>

	*/

public	function	attributes():	array

{

				return	[

								'email'	=>	'email	address',

];

}

Preparing	Input	for	Validation

If	you	need	to	prepare	or	sanitize	any	data	from	the	request	before	you	apply	your	validation	rules,	you	may	use
the	prepareForValidation	method:

use	Illuminate\Support\Str;

/**

	*	Prepare	the	data	for	validation.

	*/

protected	function	prepareForValidation():	void

{

				$this->merge([

								'slug'	=>	Str::slug($this->slug),

]);

}

Likewise,	if	you	need	to	normalize	any	request	data	after	validation	is	complete,	you	may	use	the	
passedValidation	method:

/**

	*	Handle	a	passed	validation	attempt.

	*/

protected	function	passedValidation():	void

{

				$this->replace(['name'	=>	'Taylor']);

}

Manually	Creating	Validators

If	you	do	not	want	to	use	the	validate	method	on	the	request,	you	may	create	a	validator	instance	manually
using	the	Validator	facade.	The	make	method	on	the	facade	generates	a	new	validator	instance:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Validator;

class	PostController	extends	Controller

{

				/**

					*	Store	a	new	blog	post.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$validator	=	Validator::make($request->all(),	[

												'title'	=>	'required|unique:posts|max:255',

												'body'	=>	'required',

]);

								if	($validator->fails())	{

												return	redirect('post/create')

																								->withErrors($validator)

																								->withInput();

								}

Laravel	Documentation	-	10.x	/	Validation 180

								//	Retrieve	the	validated	input...

								$validated	=	$validator->validated();

								//	Retrieve	a	portion	of	the	validated	input...

								$validated	=	$validator->safe()->only(['name',	'email']);

								$validated	=	$validator->safe()->except(['name',	'email']);

								//	Store	the	blog	post...

								return	redirect('/posts');

				}

}

The	first	argument	passed	to	the	make	method	is	the	data	under	validation.	The	second	argument	is	an	array	of
the	validation	rules	that	should	be	applied	to	the	data.

After	determining	whether	the	request	validation	failed,	you	may	use	the	withErrors	method	to	flash	the	error
messages	to	the	session.	When	using	this	method,	the	$errors	variable	will	automatically	be	shared	with	your
views	after	redirection,	allowing	you	to	easily	display	them	back	to	the	user.	The	withErrors	method	accepts	a
validator,	a	MessageBag,	or	a	PHP	array.

Stopping	on	First	Validation	Failure

The	stopOnFirstFailure	method	will	inform	the	validator	that	it	should	stop	validating	all	attributes	once	a
single	validation	failure	has	occurred:

if	($validator->stopOnFirstFailure()->fails())	{

				//	...

}

Automatic	Redirection

If	you	would	like	to	create	a	validator	instance	manually	but	still	take	advantage	of	the	automatic	redirection
offered	by	the	HTTP	request's	validate	method,	you	may	call	the	validate	method	on	an	existing	validator
instance.	If	validation	fails,	the	user	will	automatically	be	redirected	or,	in	the	case	of	an	XHR	request,	a	JSON
response	will	be	returned:

Validator::make($request->all(),	[

				'title'	=>	'required|unique:posts|max:255',

				'body'	=>	'required',

])->validate();

You	may	use	the	validateWithBag	method	to	store	the	error	messages	in	a	named	error	bag	if	validation	fails:

Validator::make($request->all(),	[

				'title'	=>	'required|unique:posts|max:255',

				'body'	=>	'required',

])->validateWithBag('post');

Named	Error	Bags

If	you	have	multiple	forms	on	a	single	page,	you	may	wish	to	name	the	MessageBag	containing	the	validation
errors,	allowing	you	to	retrieve	the	error	messages	for	a	specific	form.	To	achieve	this,	pass	a	name	as	the
second	argument	to	withErrors:

return	redirect('register')->withErrors($validator,	'login');

You	may	then	access	the	named	MessageBag	instance	from	the	$errors	variable:

{{	$errors->login->first('email')	}}

Customizing	the	Error	Messages

If	needed,	you	may	provide	custom	error	messages	that	a	validator	instance	should	use	instead	of	the	default
error	messages	provided	by	Laravel.	There	are	several	ways	to	specify	custom	messages.	First,	you	may	pass
the	custom	messages	as	the	third	argument	to	the	Validator::make	method:

Laravel	Documentation	-	10.x	/	Validation 181

$validator	=	Validator::make($input,	$rules,	$messages	=	[

				'required'	=>	'The	:attribute	field	is	required.',

]);

In	this	example,	the	:attribute	placeholder	will	be	replaced	by	the	actual	name	of	the	field	under	validation.
You	may	also	utilize	other	placeholders	in	validation	messages.	For	example:

$messages	=	[

				'same'	=>	'The	:attribute	and	:other	must	match.',

				'size'	=>	'The	:attribute	must	be	exactly	:size.',

				'between'	=>	'The	:attribute	value	:input	is	not	between	:min	-	:max.',

				'in'	=>	'The	:attribute	must	be	one	of	the	following	types:	:values',

];

Specifying	a	Custom	Message	for	a	Given	Attribute

Sometimes	you	may	wish	to	specify	a	custom	error	message	only	for	a	specific	attribute.	You	may	do	so	using
"dot"	notation.	Specify	the	attribute's	name	first,	followed	by	the	rule:

$messages	=	[

				'email.required'	=>	'We	need	to	know	your	email	address!',

];

Specifying	Custom	Attribute	Values

Many	of	Laravel's	built-in	error	messages	include	an	:attribute	placeholder	that	is	replaced	with	the	name	of
the	field	or	attribute	under	validation.	To	customize	the	values	used	to	replace	these	placeholders	for	specific
fields,	you	may	pass	an	array	of	custom	attributes	as	the	fourth	argument	to	the	Validator::make	method:

$validator	=	Validator::make($input,	$rules,	$messages,	[

				'email'	=>	'email	address',

]);

Performing	Additional	Validation

Sometimes	you	need	to	perform	additional	validation	after	your	initial	validation	is	complete.	You	can
accomplish	this	using	the	validator's	after	method.	The	after	method	accepts	a	closure	or	an	array	of	callables
which	will	be	invoked	after	validation	is	complete.	The	given	callables	will	receive	an	
Illuminate\Validation\Validator	instance,	allowing	you	to	raise	additional	error	messages	if	necessary:

use	Illuminate\Support\Facades\Validator;

$validator	=	Validator::make(/*	...	*/);

$validator->after(function	($validator)	{

				if	($this->somethingElseIsInvalid())	{

								$validator->errors()->add(

												'field',	'Something	is	wrong	with	this	field!'

);

				}

});

if	($validator->fails())	{

				//	...

}

As	noted,	the	after	method	also	accepts	an	array	of	callables,	which	is	particularly	convenient	if	your	"after
validation"	logic	is	encapsulated	in	invokable	classes,	which	will	receive	an	Illuminate\Validation\Validator
instance	via	their	__invoke	method:

use	App\Validation\ValidateShippingTime;

use	App\Validation\ValidateUserStatus;

$validator->after([

				new	ValidateUserStatus,

				new	ValidateShippingTime,

				function	($validator)	{

								//	...

				},

]);

Laravel	Documentation	-	10.x	/	Validation 182

Working	With	Validated	Input

After	validating	incoming	request	data	using	a	form	request	or	a	manually	created	validator	instance,	you	may
wish	to	retrieve	the	incoming	request	data	that	actually	underwent	validation.	This	can	be	accomplished	in
several	ways.	First,	you	may	call	the	validated	method	on	a	form	request	or	validator	instance.	This	method
returns	an	array	of	the	data	that	was	validated:

$validated	=	$request->validated();

$validated	=	$validator->validated();

Alternatively,	you	may	call	the	safe	method	on	a	form	request	or	validator	instance.	This	method	returns	an
instance	of	Illuminate\Support\ValidatedInput.	This	object	exposes	only,	except,	and	all	methods	to	retrieve	a
subset	of	the	validated	data	or	the	entire	array	of	validated	data:

$validated	=	$request->safe()->only(['name',	'email']);

$validated	=	$request->safe()->except(['name',	'email']);

$validated	=	$request->safe()->all();

In	addition,	the	Illuminate\Support\ValidatedInput	instance	may	be	iterated	over	and	accessed	like	an	array:

//	Validated	data	may	be	iterated...

foreach	($request->safe()	as	$key	=>	$value)	{

				//	...

}

//	Validated	data	may	be	accessed	as	an	array...

$validated	=	$request->safe();

$email	=	$validated['email'];

If	you	would	like	to	add	additional	fields	to	the	validated	data,	you	may	call	the	merge	method:

$validated	=	$request->safe()->merge(['name'	=>	'Taylor	Otwell']);

If	you	would	like	to	retrieve	the	validated	data	as	a	collection	instance,	you	may	call	the	collect	method:

$collection	=	$request->safe()->collect();

Working	With	Error	Messages

After	calling	the	errors	method	on	a	Validator	instance,	you	will	receive	an	Illuminate\Support\MessageBag
instance,	which	has	a	variety	of	convenient	methods	for	working	with	error	messages.	The	$errors	variable	that
is	automatically	made	available	to	all	views	is	also	an	instance	of	the	MessageBag	class.

Retrieving	the	First	Error	Message	for	a	Field

To	retrieve	the	first	error	message	for	a	given	field,	use	the	first	method:

$errors	=	$validator->errors();

echo	$errors->first('email');

Retrieving	All	Error	Messages	for	a	Field

If	you	need	to	retrieve	an	array	of	all	the	messages	for	a	given	field,	use	the	get	method:

foreach	($errors->get('email')	as	$message)	{

				//	...

}

If	you	are	validating	an	array	form	field,	you	may	retrieve	all	of	the	messages	for	each	of	the	array	elements
using	the	*	character:

foreach	($errors->get('attachments.*')	as	$message)	{

Laravel	Documentation	-	10.x	/	Validation 183

				//	...

}

Retrieving	All	Error	Messages	for	All	Fields

To	retrieve	an	array	of	all	messages	for	all	fields,	use	the	all	method:

foreach	($errors->all()	as	$message)	{

				//	...

}

Determining	if	Messages	Exist	for	a	Field

The	has	method	may	be	used	to	determine	if	any	error	messages	exist	for	a	given	field:

if	($errors->has('email'))	{

				//	...

}

Specifying	Custom	Messages	in	Language	Files

Laravel's	built-in	validation	rules	each	have	an	error	message	that	is	located	in	your	application's	
lang/en/validation.php	file.	If	your	application	does	not	have	a	lang	directory,	you	may	instruct	Laravel	to
create	it	using	the	lang:publish	Artisan	command.

Within	the	lang/en/validation.php	file,	you	will	find	a	translation	entry	for	each	validation	rule.	You	are	free	to
change	or	modify	these	messages	based	on	the	needs	of	your	application.

In	addition,	you	may	copy	this	file	to	another	language	directory	to	translate	the	messages	for	your	application's
language.	To	learn	more	about	Laravel	localization,	check	out	the	complete	localization	documentation.

[!WARNING]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

Custom	Messages	for	Specific	Attributes

You	may	customize	the	error	messages	used	for	specified	attribute	and	rule	combinations	within	your
application's	validation	language	files.	To	do	so,	add	your	message	customizations	to	the	custom	array	of	your
application's	lang/xx/validation.php	language	file:

'custom'	=>	[

				'email'	=>	[

								'required'	=>	'We	need	to	know	your	email	address!',

								'max'	=>	'Your	email	address	is	too	long!'

],

],

Specifying	Attributes	in	Language	Files

Many	of	Laravel's	built-in	error	messages	include	an	:attribute	placeholder	that	is	replaced	with	the	name	of
the	field	or	attribute	under	validation.	If	you	would	like	the	:attribute	portion	of	your	validation	message	to	be
replaced	with	a	custom	value,	you	may	specify	the	custom	attribute	name	in	the	attributes	array	of	your	
lang/xx/validation.php	language	file:

'attributes'	=>	[

				'email'	=>	'email	address',

],

[!WARNING]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

Specifying	Values	in	Language	Files

Laravel	Documentation	-	10.x	/	Validation 184

Some	of	Laravel's	built-in	validation	rule	error	messages	contain	a	:value	placeholder	that	is	replaced	with	the
current	value	of	the	request	attribute.	However,	you	may	occasionally	need	the	:value	portion	of	your
validation	message	to	be	replaced	with	a	custom	representation	of	the	value.	For	example,	consider	the
following	rule	that	specifies	that	a	credit	card	number	is	required	if	the	payment_type	has	a	value	of	cc:

Validator::make($request->all(),	[

				'credit_card_number'	=>	'required_if:payment_type,cc'

]);

If	this	validation	rule	fails,	it	will	produce	the	following	error	message:

The	credit	card	number	field	is	required	when	payment	type	is	cc.

Instead	of	displaying	cc	as	the	payment	type	value,	you	may	specify	a	more	user-friendly	value	representation
in	your	lang/xx/validation.php	language	file	by	defining	a	values	array:

'values'	=>	[

				'payment_type'	=>	[

								'cc'	=>	'credit	card'

],

],

[!WARNING]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

After	defining	this	value,	the	validation	rule	will	produce	the	following	error	message:

The	credit	card	number	field	is	required	when	payment	type	is	credit	card.

Available	Validation	Rules

Below	is	a	list	of	all	available	validation	rules	and	their	function:

Accepted
Accepted	If
Active	URL
After	(Date)
After	Or	Equal	(Date)
Alpha
Alpha	Dash
Alpha	Numeric
Array
Ascii
Bail
Before	(Date)
Before	Or	Equal	(Date)
Between
Boolean
Confirmed
Current	Password
Date
Date	Equals
Date	Format
Decimal
Declined
Declined	If
Different
Digits
Digits	Between
Dimensions	(Image	Files)
Distinct
Doesnt	Start	With
Doesnt	End	With

Exclude	If
Exclude	Unless
Exclude	With
Exclude	Without
Exists	(Database)
Extensions
File
Filled
Greater	Than
Greater	Than	Or	Equal
Hex	Color
Image	(File)
In
In	Array
Integer
IP	Address
JSON
Less	Than
Less	Than	Or	Equal
Lowercase
MAC	Address
Max
Max	Digits
MIME	Types
MIME	Type	By	File	Extension
Min
Min	Digits
Missing
Missing	If
Missing	Unless

Not	Regex
Nullable
Numeric
Present
Present	If
Present	Unless
Present	With
Present	With	All
Prohibited
Prohibited	If
Prohibited	Unless
Prohibits
Regular	Expression
Required
Required	If
Required	If	Accepted
Required	Unless
Required	With
Required	With	All
Required	Without
Required	Without	All
Required	Array	Keys
Same
Size
Sometimes
Starts	With
String
Timezone
Unique	(Database)
Uppercase

Laravel	Documentation	-	10.x	/	Validation 185

Email
Ends	With
Enum
Exclude

Missing	With
Missing	With	All
Multiple	Of
Not	In

URL
ULID
UUID

accepted

The	field	under	validation	must	be	"yes",	"on",	1,	"1",	true,	or	"true".	This	is	useful	for	validating	"Terms	of
Service"	acceptance	or	similar	fields.

accepted_if:anotherfield,value,...

The	field	under	validation	must	be	"yes",	"on",	1,	"1",	true,	or	"true"	if	another	field	under	validation	is	equal	to
a	specified	value.	This	is	useful	for	validating	"Terms	of	Service"	acceptance	or	similar	fields.

active_url

The	field	under	validation	must	have	a	valid	A	or	AAAA	record	according	to	the	dns_get_record	PHP	function.
The	hostname	of	the	provided	URL	is	extracted	using	the	parse_url	PHP	function	before	being	passed	to	
dns_get_record.

after:date

The	field	under	validation	must	be	a	value	after	a	given	date.	The	dates	will	be	passed	into	the	strtotime	PHP
function	in	order	to	be	converted	to	a	valid	DateTime	instance:

'start_date'	=>	'required|date|after:tomorrow'

Instead	of	passing	a	date	string	to	be	evaluated	by	strtotime,	you	may	specify	another	field	to	compare	against
the	date:

'finish_date'	=>	'required|date|after:start_date'

after_or_equal:date

The	field	under	validation	must	be	a	value	after	or	equal	to	the	given	date.	For	more	information,	see	the	after
rule.

alpha

The	field	under	validation	must	be	entirely	Unicode	alphabetic	characters	contained	in	\p{L}	and	\p{M}.

To	restrict	this	validation	rule	to	characters	in	the	ASCII	range	(a-z	and	A-Z),	you	may	provide	the	ascii	option
to	the	validation	rule:

'username'	=>	'alpha:ascii',

alpha_dash

The	field	under	validation	must	be	entirely	Unicode	alpha-numeric	characters	contained	in	\p{L},	\p{M},	\p{N},
as	well	as	ASCII	dashes	(-)	and	ASCII	underscores	(_).

To	restrict	this	validation	rule	to	characters	in	the	ASCII	range	(a-z	and	A-Z),	you	may	provide	the	ascii	option
to	the	validation	rule:

'username'	=>	'alpha_dash:ascii',

alpha_num

The	field	under	validation	must	be	entirely	Unicode	alpha-numeric	characters	contained	in	\p{L},	\p{M},	and	

Laravel	Documentation	-	10.x	/	Validation 186

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AN%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=

\p{N}.

To	restrict	this	validation	rule	to	characters	in	the	ASCII	range	(a-z	and	A-Z),	you	may	provide	the	ascii	option
to	the	validation	rule:

'username'	=>	'alpha_num:ascii',

array

The	field	under	validation	must	be	a	PHP	array.

When	additional	values	are	provided	to	the	array	rule,	each	key	in	the	input	array	must	be	present	within	the	list
of	values	provided	to	the	rule.	In	the	following	example,	the	admin	key	in	the	input	array	is	invalid	since	it	is	not
contained	in	the	list	of	values	provided	to	the	array	rule:

use	Illuminate\Support\Facades\Validator;

$input	=	[

				'user'	=>	[

								'name'	=>	'Taylor	Otwell',

								'username'	=>	'taylorotwell',

								'admin'	=>	true,

],

];

Validator::make($input,	[

				'user'	=>	'array:name,username',

]);

In	general,	you	should	always	specify	the	array	keys	that	are	allowed	to	be	present	within	your	array.

ascii

The	field	under	validation	must	be	entirely	7-bit	ASCII	characters.

bail

Stop	running	validation	rules	for	the	field	after	the	first	validation	failure.

While	the	bail	rule	will	only	stop	validating	a	specific	field	when	it	encounters	a	validation	failure,	the	
stopOnFirstFailure	method	will	inform	the	validator	that	it	should	stop	validating	all	attributes	once	a	single
validation	failure	has	occurred:

if	($validator->stopOnFirstFailure()->fails())	{

				//	...

}

before:date

The	field	under	validation	must	be	a	value	preceding	the	given	date.	The	dates	will	be	passed	into	the	PHP	
strtotime	function	in	order	to	be	converted	into	a	valid	DateTime	instance.	In	addition,	like	the	after	rule,	the
name	of	another	field	under	validation	may	be	supplied	as	the	value	of	date.

before_or_equal:date

The	field	under	validation	must	be	a	value	preceding	or	equal	to	the	given	date.	The	dates	will	be	passed	into
the	PHP	strtotime	function	in	order	to	be	converted	into	a	valid	DateTime	instance.	In	addition,	like	the	after
rule,	the	name	of	another	field	under	validation	may	be	supplied	as	the	value	of	date.

between:min,max

The	field	under	validation	must	have	a	size	between	the	given	min	and	max	(inclusive).	Strings,	numerics,
arrays,	and	files	are	evaluated	in	the	same	fashion	as	the	size	rule.

Laravel	Documentation	-	10.x	/	Validation 187

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AN%3A%5D&g=&i=

boolean

The	field	under	validation	must	be	able	to	be	cast	as	a	boolean.	Accepted	input	are	true,	false,	1,	0,	"1",	and	
"0".

confirmed

The	field	under	validation	must	have	a	matching	field	of	{field}_confirmation.	For	example,	if	the	field	under
validation	is	password,	a	matching	password_confirmation	field	must	be	present	in	the	input.

current_password

The	field	under	validation	must	match	the	authenticated	user's	password.	You	may	specify	an	authentication
guard	using	the	rule's	first	parameter:

'password'	=>	'current_password:api'

date

The	field	under	validation	must	be	a	valid,	non-relative	date	according	to	the	strtotime	PHP	function.

date_equals:date

The	field	under	validation	must	be	equal	to	the	given	date.	The	dates	will	be	passed	into	the	PHP	strtotime
function	in	order	to	be	converted	into	a	valid	DateTime	instance.

date_format:format,...

The	field	under	validation	must	match	one	of	the	given	formats.	You	should	use	either	date	or	date_format
when	validating	a	field,	not	both.	This	validation	rule	supports	all	formats	supported	by	PHP's	DateTime	class.

decimal:min,max

The	field	under	validation	must	be	numeric	and	must	contain	the	specified	number	of	decimal	places:

//	Must	have	exactly	two	decimal	places	(9.99)...

'price'	=>	'decimal:2'

//	Must	have	between	2	and	4	decimal	places...

'price'	=>	'decimal:2,4'

declined

The	field	under	validation	must	be	"no",	"off",	0,	"0",	false,	or	"false".

declined_if:anotherfield,value,...

The	field	under	validation	must	be	"no",	"off",	0,	"0",	false,	or	"false"	if	another	field	under	validation	is	equal
to	a	specified	value.

different:field

The	field	under	validation	must	have	a	different	value	than	field.

digits:value

The	integer	under	validation	must	have	an	exact	length	of	value.

digits_between:min,max

Laravel	Documentation	-	10.x	/	Validation 188

https://www.php.net/manual/en/class.datetime.php

The	integer	validation	must	have	a	length	between	the	given	min	and	max.

dimensions

The	file	under	validation	must	be	an	image	meeting	the	dimension	constraints	as	specified	by	the	rule's
parameters:

'avatar'	=>	'dimensions:min_width=100,min_height=200'

Available	constraints	are:	min_width,	max_width,	min_height,	max_height,	width,	height,	ratio.

A	ratio	constraint	should	be	represented	as	width	divided	by	height.	This	can	be	specified	either	by	a	fraction
like	3/2	or	a	float	like	1.5:

'avatar'	=>	'dimensions:ratio=3/2'

Since	this	rule	requires	several	arguments,	you	may	use	the	Rule::dimensions	method	to	fluently	construct	the
rule:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'avatar'	=>	[

								'required',

								Rule::dimensions()->maxWidth(1000)->maxHeight(500)->ratio(3	/	2),

],

]);

distinct

When	validating	arrays,	the	field	under	validation	must	not	have	any	duplicate	values:

'foo.*.id'	=>	'distinct'

Distinct	uses	loose	variable	comparisons	by	default.	To	use	strict	comparisons,	you	may	add	the	strict
parameter	to	your	validation	rule	definition:

'foo.*.id'	=>	'distinct:strict'

You	may	add	ignore_case	to	the	validation	rule's	arguments	to	make	the	rule	ignore	capitalization	differences:

'foo.*.id'	=>	'distinct:ignore_case'

doesnt_start_with:foo,bar,...

The	field	under	validation	must	not	start	with	one	of	the	given	values.

doesnt_end_with:foo,bar,...

The	field	under	validation	must	not	end	with	one	of	the	given	values.

email

The	field	under	validation	must	be	formatted	as	an	email	address.	This	validation	rule	utilizes	the	
egulias/email-validator	package	for	validating	the	email	address.	By	default,	the	RFCValidation	validator	is
applied,	but	you	can	apply	other	validation	styles	as	well:

'email'	=>	'email:rfc,dns'

The	example	above	will	apply	the	RFCValidation	and	DNSCheckValidation	validations.	Here's	a	full	list	of
validation	styles	you	can	apply:

rfc:	RFCValidation
strict:	NoRFCWarningsValidation

Laravel	Documentation	-	10.x	/	Validation 189

https://github.com/egulias/EmailValidator

dns:	DNSCheckValidation
spoof:	SpoofCheckValidation
filter:	FilterEmailValidation
filter_unicode:	FilterEmailValidation::unicode()

The	filter	validator,	which	uses	PHP's	filter_var	function,	ships	with	Laravel	and	was	Laravel's	default	email
validation	behavior	prior	to	Laravel	version	5.8.

[!WARNING]
The	dns	and	spoof	validators	require	the	PHP	intl	extension.

ends_with:foo,bar,...

The	field	under	validation	must	end	with	one	of	the	given	values.

enum

The	Enum	rule	is	a	class	based	rule	that	validates	whether	the	field	under	validation	contains	a	valid	enum	value.
The	Enum	rule	accepts	the	name	of	the	enum	as	its	only	constructor	argument.	When	validating	primitive	values,
a	backed	Enum	should	be	provided	to	the	Enum	rule:

use	App\Enums\ServerStatus;

use	Illuminate\Validation\Rule;

$request->validate([

				'status'	=>	[Rule::enum(ServerStatus::class)],

]);

The	Enum	rule's	only	and	except	methods	may	be	used	to	limit	which	enum	cases	should	be	considered	valid:

Rule::enum(ServerStatus::class)

				->only([ServerStatus::Pending,	ServerStatus::Active]);

Rule::enum(ServerStatus::class)

				->except([ServerStatus::Pending,	ServerStatus::Active]);

The	when	method	may	be	used	to	conditionally	modify	the	Enum	rule:

use	Illuminate\Support\Facades\Auth;

use	Illuminate\Validation\Rule;

Rule::enum(ServerStatus::class)

				->when(

								Auth::user()->isAdmin(),

								fn	($rule)	=>	$rule->only(...),

								fn	($rule)	=>	$rule->only(...),

);

exclude

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods.

exclude_if:anotherfield,value

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	if	the	anotherfield	field	is	equal	to	value.

If	complex	conditional	exclusion	logic	is	required,	you	may	utilize	the	Rule::excludeIf	method.	This	method
accepts	a	boolean	or	a	closure.	When	given	a	closure,	the	closure	should	return	true	or	false	to	indicate	if	the
field	under	validation	should	be	excluded:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($request->all(),	[

				'role_id'	=>	Rule::excludeIf($request->user()->is_admin),

Laravel	Documentation	-	10.x	/	Validation 190

]);

Validator::make($request->all(),	[

				'role_id'	=>	Rule::excludeIf(fn	()	=>	$request->user()->is_admin),

]);

exclude_unless:anotherfield,value

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	unless	anotherfield's	field	is	equal	to	value.	If	value	is	null	(exclude_unless:name,null),	the	field	under
validation	will	be	excluded	unless	the	comparison	field	is	null	or	the	comparison	field	is	missing	from	the
request	data.

exclude_with:anotherfield

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	if	the	anotherfield	field	is	present.

exclude_without:anotherfield

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	if	the	anotherfield	field	is	not	present.

exists:table,column

The	field	under	validation	must	exist	in	a	given	database	table.

Basic	Usage	of	Exists	Rule

'state'	=>	'exists:states'

If	the	column	option	is	not	specified,	the	field	name	will	be	used.	So,	in	this	case,	the	rule	will	validate	that	the	
states	database	table	contains	a	record	with	a	state	column	value	matching	the	request's	state	attribute	value.

Specifying	a	Custom	Column	Name

You	may	explicitly	specify	the	database	column	name	that	should	be	used	by	the	validation	rule	by	placing	it
after	the	database	table	name:

'state'	=>	'exists:states,abbreviation'

Occasionally,	you	may	need	to	specify	a	specific	database	connection	to	be	used	for	the	exists	query.	You	can
accomplish	this	by	prepending	the	connection	name	to	the	table	name:

'email'	=>	'exists:connection.staff,email'

Instead	of	specifying	the	table	name	directly,	you	may	specify	the	Eloquent	model	which	should	be	used	to
determine	the	table	name:

'user_id'	=>	'exists:App\Models\User,id'

If	you	would	like	to	customize	the	query	executed	by	the	validation	rule,	you	may	use	the	Rule	class	to	fluently
define	the	rule.	In	this	example,	we'll	also	specify	the	validation	rules	as	an	array	instead	of	using	the	|
character	to	delimit	them:

use	Illuminate\Database\Query\Builder;

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'email'	=>	[

								'required',

								Rule::exists('staff')->where(function	(Builder	$query)	{

												return	$query->where('account_id',	1);

								}),

Laravel	Documentation	-	10.x	/	Validation 191

],

]);

You	may	explicitly	specify	the	database	column	name	that	should	be	used	by	the	exists	rule	generated	by	the	
Rule::exists	method	by	providing	the	column	name	as	the	second	argument	to	the	exists	method:

'state'	=>	Rule::exists('states',	'abbreviation'),

extensions:foo,bar,...

The	file	under	validation	must	have	a	user-assigned	extension	corresponding	to	one	of	the	listed	extensions:

'photo'	=>	['required',	'extensions:jpg,png'],

[!WARNING]
You	should	never	rely	on	validating	a	file	by	its	user-assigned	extension	alone.	This	rule	should	typically
always	be	used	in	combination	with	the	mimes	or	mimetypes	rules.

file

The	field	under	validation	must	be	a	successfully	uploaded	file.

filled

The	field	under	validation	must	not	be	empty	when	it	is	present.

gt:field

The	field	under	validation	must	be	greater	than	the	given	field	or	value.	The	two	fields	must	be	of	the	same
type.	Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

gte:field

The	field	under	validation	must	be	greater	than	or	equal	to	the	given	field	or	value.	The	two	fields	must	be	of
the	same	type.	Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

hex_color

The	field	under	validation	must	contain	a	valid	color	value	in	hexadecimal	format.

image

The	file	under	validation	must	be	an	image	(jpg,	jpeg,	png,	bmp,	gif,	svg,	or	webp).

in:foo,bar,...

The	field	under	validation	must	be	included	in	the	given	list	of	values.	Since	this	rule	often	requires	you	to	
implode	an	array,	the	Rule::in	method	may	be	used	to	fluently	construct	the	rule:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'zones'	=>	[

								'required',

								Rule::in(['first-zone',	'second-zone']),

],

]);

When	the	in	rule	is	combined	with	the	array	rule,	each	value	in	the	input	array	must	be	present	within	the	list	of
values	provided	to	the	in	rule.	In	the	following	example,	the	LAS	airport	code	in	the	input	array	is	invalid	since	it
is	not	contained	in	the	list	of	airports	provided	to	the	in	rule:

Laravel	Documentation	-	10.x	/	Validation 192

https://developer.mozilla.org/en-US/docs/Web/CSS/hex-color

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

$input	=	[

				'airports'	=>	['NYC',	'LAS'],

];

Validator::make($input,	[

				'airports'	=>	[

								'required',

								'array',

],

				'airports.*'	=>	Rule::in(['NYC',	'LIT']),

]);

in_array:anotherfield.*

The	field	under	validation	must	exist	in	anotherfield's	values.

integer

The	field	under	validation	must	be	an	integer.

[!WARNING]
This	validation	rule	does	not	verify	that	the	input	is	of	the	"integer"	variable	type,	only	that	the	input	is	of	a
type	accepted	by	PHP's	FILTER_VALIDATE_INT	rule.	If	you	need	to	validate	the	input	as	being	a	number
please	use	this	rule	in	combination	with	the	numeric	validation	rule.

ip

The	field	under	validation	must	be	an	IP	address.

ipv4

The	field	under	validation	must	be	an	IPv4	address.

ipv6

The	field	under	validation	must	be	an	IPv6	address.

json

The	field	under	validation	must	be	a	valid	JSON	string.

lt:field

The	field	under	validation	must	be	less	than	the	given	field.	The	two	fields	must	be	of	the	same	type.	Strings,
numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

lte:field

The	field	under	validation	must	be	less	than	or	equal	to	the	given	field.	The	two	fields	must	be	of	the	same	type.
Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

lowercase

The	field	under	validation	must	be	lowercase.

mac_address

The	field	under	validation	must	be	a	MAC	address.

Laravel	Documentation	-	10.x	/	Validation 193

max:value

The	field	under	validation	must	be	less	than	or	equal	to	a	maximum	value.	Strings,	numerics,	arrays,	and	files
are	evaluated	in	the	same	fashion	as	the	size	rule.

max_digits:value

The	integer	under	validation	must	have	a	maximum	length	of	value.

mimetypes:text/plain,...

The	file	under	validation	must	match	one	of	the	given	MIME	types:

'video'	=>	'mimetypes:video/avi,video/mpeg,video/quicktime'

To	determine	the	MIME	type	of	the	uploaded	file,	the	file's	contents	will	be	read	and	the	framework	will
attempt	to	guess	the	MIME	type,	which	may	be	different	from	the	client's	provided	MIME	type.

mimes:foo,bar,...

The	file	under	validation	must	have	a	MIME	type	corresponding	to	one	of	the	listed	extensions:

'photo'	=>	'mimes:jpg,bmp,png'

Even	though	you	only	need	to	specify	the	extensions,	this	rule	actually	validates	the	MIME	type	of	the	file	by
reading	the	file's	contents	and	guessing	its	MIME	type.	A	full	listing	of	MIME	types	and	their	corresponding
extensions	may	be	found	at	the	following	location:

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

MIME	Types	and	Extensions

This	validation	rule	does	not	verify	agreement	between	the	MIME	type	and	the	extension	the	user	assigned	to
the	file.	For	example,	the	mimes:png	validation	rule	would	consider	a	file	containing	valid	PNG	content	to	be	a
valid	PNG	image,	even	if	the	file	is	named	photo.txt.	If	you	would	like	to	validate	the	user-assigned	extension
of	the	file,	you	may	use	the	extensions	rule.

min:value

The	field	under	validation	must	have	a	minimum	value.	Strings,	numerics,	arrays,	and	files	are	evaluated	in	the
same	fashion	as	the	size	rule.

min_digits:value

The	integer	under	validation	must	have	a	minimum	length	of	value.

multiple_of:value

The	field	under	validation	must	be	a	multiple	of	value.

missing

The	field	under	validation	must	not	be	present	in	the	input	data.

missing_if:anotherfield,value,...

The	field	under	validation	must	not	be	present	if	the	anotherfield	field	is	equal	to	any	value.

missing_unless:anotherfield,value

Laravel	Documentation	-	10.x	/	Validation 194

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

The	field	under	validation	must	not	be	present	unless	the	anotherfield	field	is	equal	to	any	value.

missing_with:foo,bar,...

The	field	under	validation	must	not	be	present	only	if	any	of	the	other	specified	fields	are	present.

missing_with_all:foo,bar,...

The	field	under	validation	must	not	be	present	only	if	all	of	the	other	specified	fields	are	present.

not_in:foo,bar,...

The	field	under	validation	must	not	be	included	in	the	given	list	of	values.	The	Rule::notIn	method	may	be
used	to	fluently	construct	the	rule:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'toppings'	=>	[

								'required',

								Rule::notIn(['sprinkles',	'cherries']),

],

]);

not_regex:pattern

The	field	under	validation	must	not	match	the	given	regular	expression.

Internally,	this	rule	uses	the	PHP	preg_match	function.	The	pattern	specified	should	obey	the	same	formatting
required	by	preg_match	and	thus	also	include	valid	delimiters.	For	example:	'email'	=>	'not_regex:/^.+$/i'.

[!WARNING]
When	using	the	regex	/	not_regex	patterns,	it	may	be	necessary	to	specify	your	validation	rules	using	an
array	instead	of	using	|	delimiters,	especially	if	the	regular	expression	contains	a	|	character.

nullable

The	field	under	validation	may	be	null.

numeric

The	field	under	validation	must	be	numeric.

present

The	field	under	validation	must	exist	in	the	input	data.

present_if:anotherfield,value,...

The	field	under	validation	must	be	present	if	the	anotherfield	field	is	equal	to	any	value.

present_unless:anotherfield,value

The	field	under	validation	must	be	present	unless	the	anotherfield	field	is	equal	to	any	value.

present_with:foo,bar,...

The	field	under	validation	must	be	present	only	if	any	of	the	other	specified	fields	are	present.

present_with_all:foo,bar,...

Laravel	Documentation	-	10.x	/	Validation 195

https://www.php.net/manual/en/function.is-numeric.php

The	field	under	validation	must	be	present	only	if	all	of	the	other	specified	fields	are	present.

prohibited

The	field	under	validation	must	be	missing	or	empty.	A	field	is	"empty"	if	it	meets	one	of	the	following	criteria:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	an	empty	path.

prohibited_if:anotherfield,value,...

The	field	under	validation	must	be	missing	or	empty	if	the	anotherfield	field	is	equal	to	any	value.	A	field	is
"empty"	if	it	meets	one	of	the	following	criteria:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	an	empty	path.

If	complex	conditional	prohibition	logic	is	required,	you	may	utilize	the	Rule::prohibitedIf	method.	This
method	accepts	a	boolean	or	a	closure.	When	given	a	closure,	the	closure	should	return	true	or	false	to	indicate
if	the	field	under	validation	should	be	prohibited:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($request->all(),	[

				'role_id'	=>	Rule::prohibitedIf($request->user()->is_admin),

]);

Validator::make($request->all(),	[

				'role_id'	=>	Rule::prohibitedIf(fn	()	=>	$request->user()->is_admin),

]);

prohibited_unless:anotherfield,value,...

The	field	under	validation	must	be	missing	or	empty	unless	the	anotherfield	field	is	equal	to	any	value.	A	field
is	"empty"	if	it	meets	one	of	the	following	criteria:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	an	empty	path.

prohibits:anotherfield,...

If	the	field	under	validation	is	not	missing	or	empty,	all	fields	in	anotherfield	must	be	missing	or	empty.	A	field
is	"empty"	if	it	meets	one	of	the	following	criteria:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	an	empty	path.

regex:pattern

The	field	under	validation	must	match	the	given	regular	expression.

Internally,	this	rule	uses	the	PHP	preg_match	function.	The	pattern	specified	should	obey	the	same	formatting
required	by	preg_match	and	thus	also	include	valid	delimiters.	For	example:	'email'	=>	'regex:/^.+@.+$/i'.

Laravel	Documentation	-	10.x	/	Validation 196

[!WARNING]
When	using	the	regex	/	not_regex	patterns,	it	may	be	necessary	to	specify	rules	in	an	array	instead	of	using	
|	delimiters,	especially	if	the	regular	expression	contains	a	|	character.

required

The	field	under	validation	must	be	present	in	the	input	data	and	not	empty.	A	field	is	"empty"	if	it	meets	one	of
the	following	criteria:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	no	path.

required_if:anotherfield,value,...

The	field	under	validation	must	be	present	and	not	empty	if	the	anotherfield	field	is	equal	to	any	value.

If	you	would	like	to	construct	a	more	complex	condition	for	the	required_if	rule,	you	may	use	the	
Rule::requiredIf	method.	This	method	accepts	a	boolean	or	a	closure.	When	passed	a	closure,	the	closure
should	return	true	or	false	to	indicate	if	the	field	under	validation	is	required:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($request->all(),	[

				'role_id'	=>	Rule::requiredIf($request->user()->is_admin),

]);

Validator::make($request->all(),	[

				'role_id'	=>	Rule::requiredIf(fn	()	=>	$request->user()->is_admin),

]);

required_if_accepted:anotherfield,...

The	field	under	validation	must	be	present	and	not	empty	if	the	anotherfield	field	is	equal	to	"yes",	"on",	1,	"1",	
true,	or	"true".

required_unless:anotherfield,value,...

The	field	under	validation	must	be	present	and	not	empty	unless	the	anotherfield	field	is	equal	to	any	value.
This	also	means	anotherfield	must	be	present	in	the	request	data	unless	value	is	null.	If	value	is	null
(required_unless:name,null),	the	field	under	validation	will	be	required	unless	the	comparison	field	is	null	or
the	comparison	field	is	missing	from	the	request	data.

required_with:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	if	any	of	the	other	specified	fields	are	present
and	not	empty.

required_with_all:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	if	all	of	the	other	specified	fields	are	present	and
not	empty.

required_without:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	when	any	of	the	other	specified	fields	are	empty
or	not	present.

required_without_all:foo,bar,...

Laravel	Documentation	-	10.x	/	Validation 197

The	field	under	validation	must	be	present	and	not	empty	only	when	all	of	the	other	specified	fields	are	empty
or	not	present.

required_array_keys:foo,bar,...

The	field	under	validation	must	be	an	array	and	must	contain	at	least	the	specified	keys.

same:field

The	given	field	must	match	the	field	under	validation.

size:value

The	field	under	validation	must	have	a	size	matching	the	given	value.	For	string	data,	value	corresponds	to	the
number	of	characters.	For	numeric	data,	value	corresponds	to	a	given	integer	value	(the	attribute	must	also	have
the	numeric	or	integer	rule).	For	an	array,	size	corresponds	to	the	count	of	the	array.	For	files,	size	corresponds
to	the	file	size	in	kilobytes.	Let's	look	at	some	examples:

//	Validate	that	a	string	is	exactly	12	characters	long...

'title'	=>	'size:12';

//	Validate	that	a	provided	integer	equals	10...

'seats'	=>	'integer|size:10';

//	Validate	that	an	array	has	exactly	5	elements...

'tags'	=>	'array|size:5';

//	Validate	that	an	uploaded	file	is	exactly	512	kilobytes...

'image'	=>	'file|size:512';

starts_with:foo,bar,...

The	field	under	validation	must	start	with	one	of	the	given	values.

string

The	field	under	validation	must	be	a	string.	If	you	would	like	to	allow	the	field	to	also	be	null,	you	should
assign	the	nullable	rule	to	the	field.

timezone

The	field	under	validation	must	be	a	valid	timezone	identifier	according	to	the	DateTimeZone::listIdentifiers
method.

The	arguments	accepted	by	the	DateTimeZone::listIdentifiers	method	may	also	be	provided	to	this	validation
rule:

'timezone'	=>	'required|timezone:all';

'timezone'	=>	'required|timezone:Africa';

'timezone'	=>	'required|timezone:per_country,US';

unique:table,column

The	field	under	validation	must	not	exist	within	the	given	database	table.

Specifying	a	Custom	Table	/	Column	Name:

Instead	of	specifying	the	table	name	directly,	you	may	specify	the	Eloquent	model	which	should	be	used	to
determine	the	table	name:

'email'	=>	'unique:App\Models\User,email_address'

Laravel	Documentation	-	10.x	/	Validation 198

https://www.php.net/manual/en/datetimezone.listidentifiers.php

The	column	option	may	be	used	to	specify	the	field's	corresponding	database	column.	If	the	column	option	is	not
specified,	the	name	of	the	field	under	validation	will	be	used.

'email'	=>	'unique:users,email_address'

Specifying	a	Custom	Database	Connection

Occasionally,	you	may	need	to	set	a	custom	connection	for	database	queries	made	by	the	Validator.	To
accomplish	this,	you	may	prepend	the	connection	name	to	the	table	name:

'email'	=>	'unique:connection.users,email_address'

Forcing	a	Unique	Rule	to	Ignore	a	Given	ID:

Sometimes,	you	may	wish	to	ignore	a	given	ID	during	unique	validation.	For	example,	consider	an	"update
profile"	screen	that	includes	the	user's	name,	email	address,	and	location.	You	will	probably	want	to	verify	that
the	email	address	is	unique.	However,	if	the	user	only	changes	the	name	field	and	not	the	email	field,	you	do
not	want	a	validation	error	to	be	thrown	because	the	user	is	already	the	owner	of	the	email	address	in	question.

To	instruct	the	validator	to	ignore	the	user's	ID,	we'll	use	the	Rule	class	to	fluently	define	the	rule.	In	this
example,	we'll	also	specify	the	validation	rules	as	an	array	instead	of	using	the	|	character	to	delimit	the	rules:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'email'	=>	[

								'required',

								Rule::unique('users')->ignore($user->id),

],

]);

[!WARNING]
You	should	never	pass	any	user	controlled	request	input	into	the	ignore	method.	Instead,	you	should	only
pass	a	system	generated	unique	ID	such	as	an	auto-incrementing	ID	or	UUID	from	an	Eloquent	model
instance.	Otherwise,	your	application	will	be	vulnerable	to	an	SQL	injection	attack.

Instead	of	passing	the	model	key's	value	to	the	ignore	method,	you	may	also	pass	the	entire	model	instance.
Laravel	will	automatically	extract	the	key	from	the	model:

Rule::unique('users')->ignore($user)

If	your	table	uses	a	primary	key	column	name	other	than	id,	you	may	specify	the	name	of	the	column	when
calling	the	ignore	method:

Rule::unique('users')->ignore($user->id,	'user_id')

By	default,	the	unique	rule	will	check	the	uniqueness	of	the	column	matching	the	name	of	the	attribute	being
validated.	However,	you	may	pass	a	different	column	name	as	the	second	argument	to	the	unique	method:

Rule::unique('users',	'email_address')->ignore($user->id)

Adding	Additional	Where	Clauses:

You	may	specify	additional	query	conditions	by	customizing	the	query	using	the	where	method.	For	example,
let's	add	a	query	condition	that	scopes	the	query	to	only	search	records	that	have	an	account_id	column	value	of
1:

'email'	=>	Rule::unique('users')->where(fn	(Builder	$query)	=>	$query->where('account_id',	1))

uppercase

The	field	under	validation	must	be	uppercase.

url

Laravel	Documentation	-	10.x	/	Validation 199

The	field	under	validation	must	be	a	valid	URL.

If	you	would	like	to	specify	the	URL	protocols	that	should	be	considered	valid,	you	may	pass	the	protocols	as
validation	rule	parameters:

'url'	=>	'url:http,https',

'game'	=>	'url:minecraft,steam',

ulid

The	field	under	validation	must	be	a	valid	Universally	Unique	Lexicographically	Sortable	Identifier	(ULID).

uuid

The	field	under	validation	must	be	a	valid	RFC	4122	(version	1,	3,	4,	or	5)	universally	unique	identifier
(UUID).

Conditionally	Adding	Rules

Skipping	Validation	When	Fields	Have	Certain	Values

You	may	occasionally	wish	to	not	validate	a	given	field	if	another	field	has	a	given	value.	You	may	accomplish
this	using	the	exclude_if	validation	rule.	In	this	example,	the	appointment_date	and	doctor_name	fields	will	not
be	validated	if	the	has_appointment	field	has	a	value	of	false:

use	Illuminate\Support\Facades\Validator;

$validator	=	Validator::make($data,	[

				'has_appointment'	=>	'required|boolean',

				'appointment_date'	=>	'exclude_if:has_appointment,false|required|date',

				'doctor_name'	=>	'exclude_if:has_appointment,false|required|string',

]);

Alternatively,	you	may	use	the	exclude_unless	rule	to	not	validate	a	given	field	unless	another	field	has	a	given
value:

$validator	=	Validator::make($data,	[

				'has_appointment'	=>	'required|boolean',

				'appointment_date'	=>	'exclude_unless:has_appointment,true|required|date',

				'doctor_name'	=>	'exclude_unless:has_appointment,true|required|string',

]);

Validating	When	Present

In	some	situations,	you	may	wish	to	run	validation	checks	against	a	field	only	if	that	field	is	present	in	the	data
being	validated.	To	quickly	accomplish	this,	add	the	sometimes	rule	to	your	rule	list:

$v	=	Validator::make($data,	[

				'email'	=>	'sometimes|required|email',

]);

In	the	example	above,	the	email	field	will	only	be	validated	if	it	is	present	in	the	$data	array.

[!NOTE]
If	you	are	attempting	to	validate	a	field	that	should	always	be	present	but	may	be	empty,	check	out	this
note	on	optional	fields.

Complex	Conditional	Validation

Sometimes	you	may	wish	to	add	validation	rules	based	on	more	complex	conditional	logic.	For	example,	you
may	wish	to	require	a	given	field	only	if	another	field	has	a	greater	value	than	100.	Or,	you	may	need	two	fields
to	have	a	given	value	only	when	another	field	is	present.	Adding	these	validation	rules	doesn't	have	to	be	a
pain.	First,	create	a	Validator	instance	with	your	static	rules	that	never	change:

Laravel	Documentation	-	10.x	/	Validation 200

https://github.com/ulid/spec

use	Illuminate\Support\Facades\Validator;

$validator	=	Validator::make($request->all(),	[

				'email'	=>	'required|email',

				'games'	=>	'required|numeric',

]);

Let's	assume	our	web	application	is	for	game	collectors.	If	a	game	collector	registers	with	our	application	and
they	own	more	than	100	games,	we	want	them	to	explain	why	they	own	so	many	games.	For	example,	perhaps
they	run	a	game	resale	shop,	or	maybe	they	just	enjoy	collecting	games.	To	conditionally	add	this	requirement,
we	can	use	the	sometimes	method	on	the	Validator	instance.

use	Illuminate\Support\Fluent;

$validator->sometimes('reason',	'required|max:500',	function	(Fluent	$input)	{

				return	$input->games	>=	100;

});

The	first	argument	passed	to	the	sometimes	method	is	the	name	of	the	field	we	are	conditionally	validating.	The
second	argument	is	a	list	of	the	rules	we	want	to	add.	If	the	closure	passed	as	the	third	argument	returns	true,
the	rules	will	be	added.	This	method	makes	it	a	breeze	to	build	complex	conditional	validations.	You	may	even
add	conditional	validations	for	several	fields	at	once:

$validator->sometimes(['reason',	'cost'],	'required',	function	(Fluent	$input)	{

				return	$input->games	>=	100;

});

[!NOTE]
The	$input	parameter	passed	to	your	closure	will	be	an	instance	of	Illuminate\Support\Fluent	and	may	be
used	to	access	your	input	and	files	under	validation.

Complex	Conditional	Array	Validation

Sometimes	you	may	want	to	validate	a	field	based	on	another	field	in	the	same	nested	array	whose	index	you
do	not	know.	In	these	situations,	you	may	allow	your	closure	to	receive	a	second	argument	which	will	be	the
current	individual	item	in	the	array	being	validated:

$input	=	[

				'channels'	=>	[

								[

												'type'	=>	'email',

												'address'	=>	'abigail@example.com',

],

								[

												'type'	=>	'url',

												'address'	=>	'https://example.com',

],

],

];

$validator->sometimes('channels.*.address',	'email',	function	(Fluent	$input,	Fluent	$item)	{

				return	$item->type	===	'email';

});

$validator->sometimes('channels.*.address',	'url',	function	(Fluent	$input,	Fluent	$item)	{

				return	$item->type	!==	'email';

});

Like	the	$input	parameter	passed	to	the	closure,	the	$item	parameter	is	an	instance	of	
Illuminate\Support\Fluent	when	the	attribute	data	is	an	array;	otherwise,	it	is	a	string.

Validating	Arrays

As	discussed	in	the	array	validation	rule	documentation,	the	array	rule	accepts	a	list	of	allowed	array	keys.	If
any	additional	keys	are	present	within	the	array,	validation	will	fail:

use	Illuminate\Support\Facades\Validator;

$input	=	[

				'user'	=>	[

Laravel	Documentation	-	10.x	/	Validation 201

								'name'	=>	'Taylor	Otwell',

								'username'	=>	'taylorotwell',

								'admin'	=>	true,

],

];

Validator::make($input,	[

				'user'	=>	'array:name,username',

]);

In	general,	you	should	always	specify	the	array	keys	that	are	allowed	to	be	present	within	your	array.
Otherwise,	the	validator's	validate	and	validated	methods	will	return	all	of	the	validated	data,	including	the
array	and	all	of	its	keys,	even	if	those	keys	were	not	validated	by	other	nested	array	validation	rules.

Validating	Nested	Array	Input

Validating	nested	array	based	form	input	fields	doesn't	have	to	be	a	pain.	You	may	use	"dot	notation"	to	validate
attributes	within	an	array.	For	example,	if	the	incoming	HTTP	request	contains	a	photos[profile]	field,	you
may	validate	it	like	so:

use	Illuminate\Support\Facades\Validator;

$validator	=	Validator::make($request->all(),	[

				'photos.profile'	=>	'required|image',

]);

You	may	also	validate	each	element	of	an	array.	For	example,	to	validate	that	each	email	in	a	given	array	input
field	is	unique,	you	may	do	the	following:

$validator	=	Validator::make($request->all(),	[

				'person.*.email'	=>	'email|unique:users',

				'person.*.first_name'	=>	'required_with:person.*.last_name',

]);

Likewise,	you	may	use	the	*	character	when	specifying	custom	validation	messages	in	your	language	files,
making	it	a	breeze	to	use	a	single	validation	message	for	array	based	fields:

'custom'	=>	[

				'person.*.email'	=>	[

								'unique'	=>	'Each	person	must	have	a	unique	email	address',

]

],

Accessing	Nested	Array	Data

Sometimes	you	may	need	to	access	the	value	for	a	given	nested	array	element	when	assigning	validation	rules
to	the	attribute.	You	may	accomplish	this	using	the	Rule::forEach	method.	The	forEach	method	accepts	a
closure	that	will	be	invoked	for	each	iteration	of	the	array	attribute	under	validation	and	will	receive	the
attribute's	value	and	explicit,	fully-expanded	attribute	name.	The	closure	should	return	an	array	of	rules	to
assign	to	the	array	element:

use	App\Rules\HasPermission;

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

$validator	=	Validator::make($request->all(),	[

				'companies.*.id'	=>	Rule::forEach(function	(string|null	$value,	string	$attribute)	{

								return	[

												Rule::exists(Company::class,	'id'),

												new	HasPermission('manage-company',	$value),

];

				}),

]);

Error	Message	Indexes	and	Positions

When	validating	arrays,	you	may	want	to	reference	the	index	or	position	of	a	particular	item	that	failed
validation	within	the	error	message	displayed	by	your	application.	To	accomplish	this,	you	may	include	the	
:index	(starts	from	0)	and	:position	(starts	from	1)	placeholders	within	your	custom	validation	message:

Laravel	Documentation	-	10.x	/	Validation 202

use	Illuminate\Support\Facades\Validator;

$input	=	[

				'photos'	=>	[

								[

												'name'	=>	'BeachVacation.jpg',

												'description'	=>	'A	photo	of	my	beach	vacation!',

],

								[

												'name'	=>	'GrandCanyon.jpg',

												'description'	=>	'',

],

],

];

Validator::validate($input,	[

				'photos.*.description'	=>	'required',

],	[

				'photos.*.description.required'	=>	'Please	describe	photo	#:position.',

]);

Given	the	example	above,	validation	will	fail	and	the	user	will	be	presented	with	the	following	error	of	"Please
describe	photo	#2."

If	necessary,	you	may	reference	more	deeply	nested	indexes	and	positions	via	second-index,	second-position,	
third-index,	third-position,	etc.

'photos.*.attributes.*.string'	=>	'Invalid	attribute	for	photo	#:second-position.',

Validating	Files

Laravel	provides	a	variety	of	validation	rules	that	may	be	used	to	validate	uploaded	files,	such	as	mimes,	image,	
min,	and	max.	While	you	are	free	to	specify	these	rules	individually	when	validating	files,	Laravel	also	offers	a
fluent	file	validation	rule	builder	that	you	may	find	convenient:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rules\File;

Validator::validate($input,	[

				'attachment'	=>	[

								'required',

								File::types(['mp3',	'wav'])

												->min(1024)

												->max(12	*	1024),

],

]);

If	your	application	accepts	images	uploaded	by	your	users,	you	may	use	the	File	rule's	image	constructor
method	to	indicate	that	the	uploaded	file	should	be	an	image.	In	addition,	the	dimensions	rule	may	be	used	to
limit	the	dimensions	of	the	image:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rule;

use	Illuminate\Validation\Rules\File;

Validator::validate($input,	[

				'photo'	=>	[

								'required',

								File::image()

												->min(1024)

												->max(12	*	1024)

												->dimensions(Rule::dimensions()->maxWidth(1000)->maxHeight(500)),

],

]);

[!NOTE]
More	information	regarding	validating	image	dimensions	may	be	found	in	the	dimension	rule
documentation.

File	Sizes

For	convenience,	minimum	and	maximum	file	sizes	may	be	specified	as	a	string	with	a	suffix	indicating	the	file

Laravel	Documentation	-	10.x	/	Validation 203

size	units.	The	kb,	mb,	gb,	and	tb	suffixes	are	supported:

File::image()

				->min('1kb')

				->max('10mb')

File	Types

Even	though	you	only	need	to	specify	the	extensions	when	invoking	the	types	method,	this	method	actually
validates	the	MIME	type	of	the	file	by	reading	the	file's	contents	and	guessing	its	MIME	type.	A	full	listing	of
MIME	types	and	their	corresponding	extensions	may	be	found	at	the	following	location:

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Validating	Passwords

To	ensure	that	passwords	have	an	adequate	level	of	complexity,	you	may	use	Laravel's	Password	rule	object:

use	Illuminate\Support\Facades\Validator;

use	Illuminate\Validation\Rules\Password;

$validator	=	Validator::make($request->all(),	[

				'password'	=>	['required',	'confirmed',	Password::min(8)],

]);

The	Password	rule	object	allows	you	to	easily	customize	the	password	complexity	requirements	for	your
application,	such	as	specifying	that	passwords	require	at	least	one	letter,	number,	symbol,	or	characters	with
mixed	casing:

//	Require	at	least	8	characters...

Password::min(8)

//	Require	at	least	one	letter...

Password::min(8)->letters()

//	Require	at	least	one	uppercase	and	one	lowercase	letter...

Password::min(8)->mixedCase()

//	Require	at	least	one	number...

Password::min(8)->numbers()

//	Require	at	least	one	symbol...

Password::min(8)->symbols()

In	addition,	you	may	ensure	that	a	password	has	not	been	compromised	in	a	public	password	data	breach	leak
using	the	uncompromised	method:

Password::min(8)->uncompromised()

Internally,	the	Password	rule	object	uses	the	k-Anonymity	model	to	determine	if	a	password	has	been	leaked	via
the	haveibeenpwned.com	service	without	sacrificing	the	user's	privacy	or	security.

By	default,	if	a	password	appears	at	least	once	in	a	data	leak,	it	will	be	considered	compromised.	You	can
customize	this	threshold	using	the	first	argument	of	the	uncompromised	method:

//	Ensure	the	password	appears	less	than	3	times	in	the	same	data	leak...

Password::min(8)->uncompromised(3);

Of	course,	you	may	chain	all	the	methods	in	the	examples	above:

Password::min(8)

				->letters()

				->mixedCase()

				->numbers()

				->symbols()

				->uncompromised()

Defining	Default	Password	Rules

Laravel	Documentation	-	10.x	/	Validation 204

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
https://en.wikipedia.org/wiki/K-anonymity
https://haveibeenpwned.com

You	may	find	it	convenient	to	specify	the	default	validation	rules	for	passwords	in	a	single	location	of	your
application.	You	can	easily	accomplish	this	using	the	Password::defaults	method,	which	accepts	a	closure.	The
closure	given	to	the	defaults	method	should	return	the	default	configuration	of	the	Password	rule.	Typically,
the	defaults	rule	should	be	called	within	the	boot	method	of	one	of	your	application's	service	providers:

use	Illuminate\Validation\Rules\Password;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Password::defaults(function	()	{

								$rule	=	Password::min(8);

								return	$this->app->isProduction()

																				?	$rule->mixedCase()->uncompromised()

																				:	$rule;

				});

}

Then,	when	you	would	like	to	apply	the	default	rules	to	a	particular	password	undergoing	validation,	you	may
invoke	the	defaults	method	with	no	arguments:

'password'	=>	['required',	Password::defaults()],

Occasionally,	you	may	want	to	attach	additional	validation	rules	to	your	default	password	validation	rules.	You
may	use	the	rules	method	to	accomplish	this:

use	App\Rules\ZxcvbnRule;

Password::defaults(function	()	{

				$rule	=	Password::min(8)->rules([new	ZxcvbnRule]);

				//	...

});

Custom	Validation	Rules

Using	Rule	Objects

Laravel	provides	a	variety	of	helpful	validation	rules;	however,	you	may	wish	to	specify	some	of	your	own.
One	method	of	registering	custom	validation	rules	is	using	rule	objects.	To	generate	a	new	rule	object,	you	may
use	the	make:rule	Artisan	command.	Let's	use	this	command	to	generate	a	rule	that	verifies	a	string	is
uppercase.	Laravel	will	place	the	new	rule	in	the	app/Rules	directory.	If	this	directory	does	not	exist,	Laravel
will	create	it	when	you	execute	the	Artisan	command	to	create	your	rule:

php	artisan	make:rule	Uppercase

Once	the	rule	has	been	created,	we	are	ready	to	define	its	behavior.	A	rule	object	contains	a	single	method:	
validate.	This	method	receives	the	attribute	name,	its	value,	and	a	callback	that	should	be	invoked	on	failure
with	the	validation	error	message:

<?php

namespace	App\Rules;

use	Closure;

use	Illuminate\Contracts\Validation\ValidationRule;

class	Uppercase	implements	ValidationRule

{

				/**

					*	Run	the	validation	rule.

					*/

				public	function	validate(string	$attribute,	mixed	$value,	Closure	$fail):	void

				{

								if	(strtoupper($value)	!==	$value)	{

												$fail('The	:attribute	must	be	uppercase.');

								}

				}

Laravel	Documentation	-	10.x	/	Validation 205

}

Once	the	rule	has	been	defined,	you	may	attach	it	to	a	validator	by	passing	an	instance	of	the	rule	object	with
your	other	validation	rules:

use	App\Rules\Uppercase;

$request->validate([

				'name'	=>	['required',	'string',	new	Uppercase],

]);

Translating	Validation	Messages

Instead	of	providing	a	literal	error	message	to	the	$fail	closure,	you	may	also	provide	a	translation	string	key
and	instruct	Laravel	to	translate	the	error	message:

if	(strtoupper($value)	!==	$value)	{

				$fail('validation.uppercase')->translate();

}

If	necessary,	you	may	provide	placeholder	replacements	and	the	preferred	language	as	the	first	and	second
arguments	to	the	translate	method:

$fail('validation.location')->translate([

				'value'	=>	$this->value,

],	'fr')

Accessing	Additional	Data

If	your	custom	validation	rule	class	needs	to	access	all	of	the	other	data	undergoing	validation,	your	rule	class
may	implement	the	Illuminate\Contracts\Validation\DataAwareRule	interface.	This	interface	requires	your	class
to	define	a	setData	method.	This	method	will	automatically	be	invoked	by	Laravel	(before	validation	proceeds)
with	all	of	the	data	under	validation:

<?php

namespace	App\Rules;

use	Illuminate\Contracts\Validation\DataAwareRule;

use	Illuminate\Contracts\Validation\ValidationRule;

class	Uppercase	implements	DataAwareRule,	ValidationRule

{

				/**

					*	All	of	the	data	under	validation.

					*

					*	@var	array<string,	mixed>

					*/

				protected	$data	=	[];

				//	...

				/**

					*	Set	the	data	under	validation.

					*

					*	@param		array<string,	mixed>		$data

					*/

				public	function	setData(array	$data):	static

				{

								$this->data	=	$data;

								return	$this;

				}

}

Or,	if	your	validation	rule	requires	access	to	the	validator	instance	performing	the	validation,	you	may
implement	the	ValidatorAwareRule	interface:

<?php

namespace	App\Rules;

use	Illuminate\Contracts\Validation\ValidationRule;

Laravel	Documentation	-	10.x	/	Validation 206

use	Illuminate\Contracts\Validation\ValidatorAwareRule;

use	Illuminate\Validation\Validator;

class	Uppercase	implements	ValidationRule,	ValidatorAwareRule

{

				/**

					*	The	validator	instance.

					*

					*	@var	\Illuminate\Validation\Validator

					*/

				protected	$validator;

				//	...

				/**

					*	Set	the	current	validator.

					*/

				public	function	setValidator(Validator	$validator):	static

				{

								$this->validator	=	$validator;

								return	$this;

				}

}

Using	Closures

If	you	only	need	the	functionality	of	a	custom	rule	once	throughout	your	application,	you	may	use	a	closure
instead	of	a	rule	object.	The	closure	receives	the	attribute's	name,	the	attribute's	value,	and	a	$fail	callback	that
should	be	called	if	validation	fails:

use	Illuminate\Support\Facades\Validator;

use	Closure;

$validator	=	Validator::make($request->all(),	[

				'title'	=>	[

								'required',

								'max:255',

								function	(string	$attribute,	mixed	$value,	Closure	$fail)	{

												if	($value	===	'foo')	{

																$fail("The	{$attribute}	is	invalid.");

												}

								},

],

]);

Implicit	Rules

By	default,	when	an	attribute	being	validated	is	not	present	or	contains	an	empty	string,	normal	validation	rules,
including	custom	rules,	are	not	run.	For	example,	the	unique	rule	will	not	be	run	against	an	empty	string:

use	Illuminate\Support\Facades\Validator;

$rules	=	['name'	=>	'unique:users,name'];

$input	=	['name'	=>	''];

Validator::make($input,	$rules)->passes();	//	true

For	a	custom	rule	to	run	even	when	an	attribute	is	empty,	the	rule	must	imply	that	the	attribute	is	required.	To
quickly	generate	a	new	implicit	rule	object,	you	may	use	the	make:rule	Artisan	command	with	the	--implicit
option:

php	artisan	make:rule	Uppercase	--implicit

[!WARNING]
An	"implicit"	rule	only	implies	that	the	attribute	is	required.	Whether	it	actually	invalidates	a	missing	or
empty	attribute	is	up	to	you.

Laravel	Documentation	-	10.x	/	Validation 207

The	Basics

Error	Handling
Introduction
Configuration
The	Exception	Handler

Reporting	Exceptions
Exception	Log	Levels
Ignoring	Exceptions	by	Type
Rendering	Exceptions
Reportable	and	Renderable	Exceptions

Throttling	Reported	Exceptions
HTTP	Exceptions

Custom	HTTP	Error	Pages

Introduction

When	you	start	a	new	Laravel	project,	error	and	exception	handling	is	already	configured	for	you.	The	
App\Exceptions\Handler	class	is	where	all	exceptions	thrown	by	your	application	are	logged	and	then	rendered
to	the	user.	We'll	dive	deeper	into	this	class	throughout	this	documentation.

Configuration

The	debug	option	in	your	config/app.php	configuration	file	determines	how	much	information	about	an	error	is
actually	displayed	to	the	user.	By	default,	this	option	is	set	to	respect	the	value	of	the	APP_DEBUG	environment
variable,	which	is	stored	in	your	.env	file.

During	local	development,	you	should	set	the	APP_DEBUG	environment	variable	to	true.	In	your	production
environment,	this	value	should	always	be	false.	If	the	value	is	set	to	true	in	production,	you	risk	exposing
sensitive	configuration	values	to	your	application's	end	users.

The	Exception	Handler

Reporting	Exceptions

All	exceptions	are	handled	by	the	App\Exceptions\Handler	class.	This	class	contains	a	register	method	where
you	may	register	custom	exception	reporting	and	rendering	callbacks.	We'll	examine	each	of	these	concepts	in
detail.	Exception	reporting	is	used	to	log	exceptions	or	send	them	to	an	external	service	like	Flare,	Bugsnag,	or
Sentry.	By	default,	exceptions	will	be	logged	based	on	your	logging	configuration.	However,	you	are	free	to	log
exceptions	however	you	wish.

If	you	need	to	report	different	types	of	exceptions	in	different	ways,	you	may	use	the	reportable	method	to
register	a	closure	that	should	be	executed	when	an	exception	of	a	given	type	needs	to	be	reported.	Laravel	will
determine	what	type	of	exception	the	closure	reports	by	examining	the	type-hint	of	the	closure:

use	App\Exceptions\InvalidOrderException;

/**

	*	Register	the	exception	handling	callbacks	for	the	application.

	*/

public	function	register():	void

{

				$this->reportable(function	(InvalidOrderException	$e)	{

								//	...

				});

}

When	you	register	a	custom	exception	reporting	callback	using	the	reportable	method,	Laravel	will	still	log	the
exception	using	the	default	logging	configuration	for	the	application.	If	you	wish	to	stop	the	propagation	of	the
exception	to	the	default	logging	stack,	you	may	use	the	stop	method	when	defining	your	reporting	callback	or

Laravel	Documentation	-	10.x	/	Error	Handling 208

https://flareapp.io
https://bugsnag.com
https://github.com/getsentry/sentry-laravel

return	false	from	the	callback:

$this->reportable(function	(InvalidOrderException	$e)	{

				//	...

})->stop();

$this->reportable(function	(InvalidOrderException	$e)	{

				return	false;

});

[!NOTE]
To	customize	the	exception	reporting	for	a	given	exception,	you	may	also	utilize	reportable	exceptions.

Global	Log	Context

If	available,	Laravel	automatically	adds	the	current	user's	ID	to	every	exception's	log	message	as	contextual
data.	You	may	define	your	own	global	contextual	data	by	defining	a	context	method	on	your	application's	
App\Exceptions\Handler	class.	This	information	will	be	included	in	every	exception's	log	message	written	by
your	application:

/**

	*	Get	the	default	context	variables	for	logging.

	*

	*	@return	array<string,	mixed>

	*/

protected	function	context():	array

{

				return	array_merge(parent::context(),	[

								'foo'	=>	'bar',

]);

}

Exception	Log	Context

While	adding	context	to	every	log	message	can	be	useful,	sometimes	a	particular	exception	may	have	unique
context	that	you	would	like	to	include	in	your	logs.	By	defining	a	context	method	on	one	of	your	application's
exceptions,	you	may	specify	any	data	relevant	to	that	exception	that	should	be	added	to	the	exception's	log
entry:

<?php

namespace	App\Exceptions;

use	Exception;

class	InvalidOrderException	extends	Exception

{

				//	...

				/**

					*	Get	the	exception's	context	information.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	context():	array

				{

								return	['order_id'	=>	$this->orderId];

				}

}

The	report	Helper

Sometimes	you	may	need	to	report	an	exception	but	continue	handling	the	current	request.	The	report	helper
function	allows	you	to	quickly	report	an	exception	via	the	exception	handler	without	rendering	an	error	page	to
the	user:

public	function	isValid(string	$value):	bool

{

				try	{

								//	Validate	the	value...

				}	catch	(Throwable	$e)	{

Laravel	Documentation	-	10.x	/	Error	Handling 209

								report($e);

								return	false;

				}

}

Deduplicating	Reported	Exceptions

If	you	are	using	the	report	function	throughout	your	application,	you	may	occasionally	report	the	same
exception	multiple	times,	creating	duplicate	entries	in	your	logs.

If	you	would	like	to	ensure	that	a	single	instance	of	an	exception	is	only	ever	reported	once,	you	may	set	the	
$withoutDuplicates	property	to	true	within	your	application's	App\Exceptions\Handler	class:

namespace	App\Exceptions;

use	Illuminate\Foundation\Exceptions\Handler	as	ExceptionHandler;

class	Handler	extends	ExceptionHandler

{

				/**

					*	Indicates	that	an	exception	instance	should	only	be	reported	once.

					*

					*	@var	bool

					*/

				protected	$withoutDuplicates	=	true;

				//	...

}

Now,	when	the	report	helper	is	called	with	the	same	instance	of	an	exception,	only	the	first	call	will	be
reported:

$original	=	new	RuntimeException('Whoops!');

report($original);	//	reported

try	{

				throw	$original;

}	catch	(Throwable	$caught)	{

				report($caught);	//	ignored

}

report($original);	//	ignored

report($caught);	//	ignored

Exception	Log	Levels

When	messages	are	written	to	your	application's	logs,	the	messages	are	written	at	a	specified	log	level,	which
indicates	the	severity	or	importance	of	the	message	being	logged.

As	noted	above,	even	when	you	register	a	custom	exception	reporting	callback	using	the	reportable	method,
Laravel	will	still	log	the	exception	using	the	default	logging	configuration	for	the	application;	however,	since
the	log	level	can	sometimes	influence	the	channels	on	which	a	message	is	logged,	you	may	wish	to	configure
the	log	level	that	certain	exceptions	are	logged	at.

To	accomplish	this,	you	may	define	a	$levels	property	on	your	application's	exception	handler.	This	property
should	contain	an	array	of	exception	types	and	their	associated	log	levels:

use	PDOException;

use	Psr\Log\LogLevel;

/**

	*	A	list	of	exception	types	with	their	corresponding	custom	log	levels.

	*

	*	@var	array<class-string<\Throwable>,	\Psr\Log\LogLevel::*>

	*/

protected	$levels	=	[

				PDOException::class	=>	LogLevel::CRITICAL,

];

Laravel	Documentation	-	10.x	/	Error	Handling 210

Ignoring	Exceptions	by	Type

When	building	your	application,	there	will	be	some	types	of	exceptions	you	never	want	to	report.	To	ignore
these	exceptions,	define	a	$dontReport	property	on	your	application's	exception	handler.	Any	classes	that	you
add	to	this	property	will	never	be	reported;	however,	they	may	still	have	custom	rendering	logic:

use	App\Exceptions\InvalidOrderException;

/**

	*	A	list	of	the	exception	types	that	are	not	reported.

	*

	*	@var	array<int,	class-string<\Throwable>>

	*/

protected	$dontReport	=	[

				InvalidOrderException::class,

];

Internally,	Laravel	already	ignores	some	types	of	errors	for	you,	such	as	exceptions	resulting	from	404	HTTP
errors	or	419	HTTP	responses	generated	by	invalid	CSRF	tokens.	If	you	would	like	to	instruct	Laravel	to	stop
ignoring	a	given	type	of	exception,	you	may	invoke	the	stopIgnoring	method	within	your	exception	handler's	
register	method:

use	Symfony\Component\HttpKernel\Exception\HttpException;

/**

	*	Register	the	exception	handling	callbacks	for	the	application.

	*/

public	function	register():	void

{

				$this->stopIgnoring(HttpException::class);

				//	...

}

Rendering	Exceptions

By	default,	the	Laravel	exception	handler	will	convert	exceptions	into	an	HTTP	response	for	you.	However,
you	are	free	to	register	a	custom	rendering	closure	for	exceptions	of	a	given	type.	You	may	accomplish	this	by
invoking	the	renderable	method	within	your	exception	handler.

The	closure	passed	to	the	renderable	method	should	return	an	instance	of	Illuminate\Http\Response,	which	may
be	generated	via	the	response	helper.	Laravel	will	determine	what	type	of	exception	the	closure	renders	by
examining	the	type-hint	of	the	closure:

use	App\Exceptions\InvalidOrderException;

use	Illuminate\Http\Request;

/**

	*	Register	the	exception	handling	callbacks	for	the	application.

	*/

public	function	register():	void

{

				$this->renderable(function	(InvalidOrderException	$e,	Request	$request)	{

								return	response()->view('errors.invalid-order',	[],	500);

				});

}

You	may	also	use	the	renderable	method	to	override	the	rendering	behavior	for	built-in	Laravel	or	Symfony
exceptions	such	as	NotFoundHttpException.	If	the	closure	given	to	the	renderable	method	does	not	return	a
value,	Laravel's	default	exception	rendering	will	be	utilized:

use	Illuminate\Http\Request;

use	Symfony\Component\HttpKernel\Exception\NotFoundHttpException;

/**

	*	Register	the	exception	handling	callbacks	for	the	application.

	*/

public	function	register():	void

{

				$this->renderable(function	(NotFoundHttpException	$e,	Request	$request)	{

								if	($request->is('api/*'))	{

												return	response()->json([

Laravel	Documentation	-	10.x	/	Error	Handling 211

																'message'	=>	'Record	not	found.'

],	404);

								}

				});

}

Reportable	and	Renderable	Exceptions

Instead	of	defining	custom	reporting	and	rendering	behavior	in	your	exception	handler's	register	method,	you
may	define	report	and	render	methods	directly	on	your	application's	exceptions.	When	these	methods	exist,
they	will	automatically	be	called	by	the	framework:

<?php

namespace	App\Exceptions;

use	Exception;

use	Illuminate\Http\Request;

use	Illuminate\Http\Response;

class	InvalidOrderException	extends	Exception

{

				/**

					*	Report	the	exception.

					*/

				public	function	report():	void

				{

								//	...

				}

				/**

					*	Render	the	exception	into	an	HTTP	response.

					*/

				public	function	render(Request	$request):	Response

				{

								return	response(/*	...	*/);

				}

}

If	your	exception	extends	an	exception	that	is	already	renderable,	such	as	a	built-in	Laravel	or	Symfony
exception,	you	may	return	false	from	the	exception's	render	method	to	render	the	exception's	default	HTTP
response:

/**

	*	Render	the	exception	into	an	HTTP	response.

	*/

public	function	render(Request	$request):	Response|bool

{

				if	(/**	Determine	if	the	exception	needs	custom	rendering	*/)	{

								return	response(/*	...	*/);

				}

				return	false;

}

If	your	exception	contains	custom	reporting	logic	that	is	only	necessary	when	certain	conditions	are	met,	you
may	need	to	instruct	Laravel	to	sometimes	report	the	exception	using	the	default	exception	handling
configuration.	To	accomplish	this,	you	may	return	false	from	the	exception's	report	method:

/**

	*	Report	the	exception.

	*/

public	function	report():	bool

{

				if	(/**	Determine	if	the	exception	needs	custom	reporting	*/)	{

								//	...

								return	true;

				}

				return	false;

}

Laravel	Documentation	-	10.x	/	Error	Handling 212

[!NOTE]
You	may	type-hint	any	required	dependencies	of	the	report	method	and	they	will	automatically	be	injected
into	the	method	by	Laravel's	service	container.

Throttling	Reported	Exceptions

If	your	application	reports	a	very	large	number	of	exceptions,	you	may	want	to	throttle	how	many	exceptions
are	actually	logged	or	sent	to	your	application's	external	error	tracking	service.

To	take	a	random	sample	rate	of	exceptions,	you	can	return	a	Lottery	instance	from	your	exception	handler's	
throttle	method.	If	your	App\Exceptions\Handler	class	does	not	contain	this	method,	you	may	simply	add	it	to
the	class:

use	Illuminate\Support\Lottery;

use	Throwable;

/**

	*	Throttle	incoming	exceptions.

	*/

protected	function	throttle(Throwable	$e):	mixed

{

				return	Lottery::odds(1,	1000);

}

It	is	also	possible	to	conditionally	sample	based	on	the	exception	type.	If	you	would	like	to	only	sample
instances	of	a	specific	exception	class,	you	may	return	a	Lottery	instance	only	for	that	class:

use	App\Exceptions\ApiMonitoringException;

use	Illuminate\Support\Lottery;

use	Throwable;

/**

	*	Throttle	incoming	exceptions.

	*/

protected	function	throttle(Throwable	$e):	mixed

{

				if	($e	instanceof	ApiMonitoringException)	{

								return	Lottery::odds(1,	1000);

				}

}

You	may	also	rate	limit	exceptions	logged	or	sent	to	an	external	error	tracking	service	by	returning	a	Limit
instance	instead	of	a	Lottery.	This	is	useful	if	you	want	to	protect	against	sudden	bursts	of	exceptions	flooding
your	logs,	for	example,	when	a	third-party	service	used	by	your	application	is	down:

use	Illuminate\Broadcasting\BroadcastException;

use	Illuminate\Cache\RateLimiting\Limit;

use	Throwable;

/**

	*	Throttle	incoming	exceptions.

	*/

protected	function	throttle(Throwable	$e):	mixed

{

				if	($e	instanceof	BroadcastException)	{

								return	Limit::perMinute(300);

				}

}

By	default,	limits	will	use	the	exception's	class	as	the	rate	limit	key.	You	can	customize	this	by	specifying	your
own	key	using	the	by	method	on	the	Limit:

use	Illuminate\Broadcasting\BroadcastException;

use	Illuminate\Cache\RateLimiting\Limit;

use	Throwable;

/**

	*	Throttle	incoming	exceptions.

	*/

protected	function	throttle(Throwable	$e):	mixed

{

				if	($e	instanceof	BroadcastException)	{

								return	Limit::perMinute(300)->by($e->getMessage());

Laravel	Documentation	-	10.x	/	Error	Handling 213

				}

}

Of	course,	you	may	return	a	mixture	of	Lottery	and	Limit	instances	for	different	exceptions:

use	App\Exceptions\ApiMonitoringException;

use	Illuminate\Broadcasting\BroadcastException;

use	Illuminate\Cache\RateLimiting\Limit;

use	Illuminate\Support\Lottery;

use	Throwable;

/**

	*	Throttle	incoming	exceptions.

	*/

protected	function	throttle(Throwable	$e):	mixed

{

				return	match	(true)	{

								$e	instanceof	BroadcastException	=>	Limit::perMinute(300),

								$e	instanceof	ApiMonitoringException	=>	Lottery::odds(1,	1000),

								default	=>	Limit::none(),

				};

}

HTTP	Exceptions

Some	exceptions	describe	HTTP	error	codes	from	the	server.	For	example,	this	may	be	a	"page	not	found"	error
(404),	an	"unauthorized	error"	(401),	or	even	a	developer	generated	500	error.	In	order	to	generate	such	a
response	from	anywhere	in	your	application,	you	may	use	the	abort	helper:

abort(404);

Custom	HTTP	Error	Pages

Laravel	makes	it	easy	to	display	custom	error	pages	for	various	HTTP	status	codes.	For	example,	to	customize
the	error	page	for	404	HTTP	status	codes,	create	a	resources/views/errors/404.blade.php	view	template.	This
view	will	be	rendered	for	all	404	errors	generated	by	your	application.	The	views	within	this	directory	should
be	named	to	match	the	HTTP	status	code	they	correspond	to.	The	
Symfony\Component\HttpKernel\Exception\HttpException	instance	raised	by	the	abort	function	will	be	passed	to
the	view	as	an	$exception	variable:

<h2>{{	$exception->getMessage()	}}</h2>

You	may	publish	Laravel's	default	error	page	templates	using	the	vendor:publish	Artisan	command.	Once	the
templates	have	been	published,	you	may	customize	them	to	your	liking:

php	artisan	vendor:publish	--tag=laravel-errors

Fallback	HTTP	Error	Pages

You	may	also	define	a	"fallback"	error	page	for	a	given	series	of	HTTP	status	codes.	This	page	will	be	rendered
if	there	is	not	a	corresponding	page	for	the	specific	HTTP	status	code	that	occurred.	To	accomplish	this,	define
a	4xx.blade.php	template	and	a	5xx.blade.php	template	in	your	application's	resources/views/errors	directory.

Laravel	Documentation	-	10.x	/	Error	Handling 214

The	Basics

Logging
Introduction
Configuration

Available	Channel	Drivers
Channel	Prerequisites
Logging	Deprecation	Warnings

Building	Log	Stacks
Writing	Log	Messages

Contextual	Information
Writing	to	Specific	Channels

Monolog	Channel	Customization
Customizing	Monolog	for	Channels
Creating	Monolog	Handler	Channels
Creating	Custom	Channels	via	Factories

Tailing	Log	Messages	Using	Pail
Installation
Usage
Filtering	Logs

Introduction

To	help	you	learn	more	about	what's	happening	within	your	application,	Laravel	provides	robust	logging
services	that	allow	you	to	log	messages	to	files,	the	system	error	log,	and	even	to	Slack	to	notify	your	entire
team.

Laravel	logging	is	based	on	"channels".	Each	channel	represents	a	specific	way	of	writing	log	information.	For
example,	the	single	channel	writes	log	files	to	a	single	log	file,	while	the	slack	channel	sends	log	messages	to
Slack.	Log	messages	may	be	written	to	multiple	channels	based	on	their	severity.

Under	the	hood,	Laravel	utilizes	the	Monolog	library,	which	provides	support	for	a	variety	of	powerful	log
handlers.	Laravel	makes	it	a	cinch	to	configure	these	handlers,	allowing	you	to	mix	and	match	them	to
customize	your	application's	log	handling.

Configuration

All	of	the	configuration	options	for	your	application's	logging	behavior	are	housed	in	the	config/logging.php
configuration	file.	This	file	allows	you	to	configure	your	application's	log	channels,	so	be	sure	to	review	each
of	the	available	channels	and	their	options.	We'll	review	a	few	common	options	below.

By	default,	Laravel	will	use	the	stack	channel	when	logging	messages.	The	stack	channel	is	used	to	aggregate
multiple	log	channels	into	a	single	channel.	For	more	information	on	building	stacks,	check	out	the
documentation	below.

Configuring	the	Channel	Name

By	default,	Monolog	is	instantiated	with	a	"channel	name"	that	matches	the	current	environment,	such	as	
production	or	local.	To	change	this	value,	add	a	name	option	to	your	channel's	configuration:

'stack'	=>	[

				'driver'	=>	'stack',

				'name'	=>	'channel-name',

				'channels'	=>	['single',	'slack'],

],

Available	Channel	Drivers

Each	log	channel	is	powered	by	a	"driver".	The	driver	determines	how	and	where	the	log	message	is	actually

Laravel	Documentation	-	10.x	/	Logging 215

https://github.com/Seldaek/monolog

recorded.	The	following	log	channel	drivers	are	available	in	every	Laravel	application.	An	entry	for	most	of
these	drivers	is	already	present	in	your	application's	config/logging.php	configuration	file,	so	be	sure	to	review
this	file	to	become	familiar	with	its	contents:

Name	|	Description	-------------	|	-------------	`custom`	|	A	driver	that	calls	a	specified	factory	to	create	a	channel
`daily`	|	A	`RotatingFileHandler`	based	Monolog	driver	which	rotates	daily	`errorlog`	|	An	`ErrorLogHandler`
based	Monolog	driver	`monolog`	|	A	Monolog	factory	driver	that	may	use	any	supported	Monolog	handler
`papertrail`	|	A	`SyslogUdpHandler`	based	Monolog	driver	`single`	|	A	single	file	or	path	based	logger	channel
(`StreamHandler`)	`slack`	|	A	`SlackWebhookHandler`	based	Monolog	driver	`stack`	|	A	wrapper	to	facilitate
creating	"multi-channel"	channels	`syslog`	|	A	`SyslogHandler`	based	Monolog	driver

[!NOTE]
Check	out	the	documentation	on	advanced	channel	customization	to	learn	more	about	the	monolog	and	
custom	drivers.

Channel	Prerequisites

Configuring	the	Single	and	Daily	Channels

The	single	and	daily	channels	have	three	optional	configuration	options:	bubble,	permission,	and	locking.

Name	|	Description	|	Default	-------------	|	-------------	|	-------------	`bubble`	|	Indicates	if	messages	should	bubble
up	to	other	channels	after	being	handled	|	`true`	`locking`	|	Attempt	to	lock	the	log	file	before	writing	to	it	|
`false`	`permission`	|	The	log	file's	permissions	|	`0644`

Additionally,	the	retention	policy	for	the	daily	channel	can	be	configured	via	the	days	option:

Name	|	Description	|	Default	-------------	|---|	-------------
`days`	|	The	number	of	days	that	daily	log	files	should	be	retained	|	`7`

Configuring	the	Papertrail	Channel

The	papertrail	channel	requires	the	host	and	port	configuration	options.	You	can	obtain	these	values	from
Papertrail.

Configuring	the	Slack	Channel

The	slack	channel	requires	a	url	configuration	option.	This	URL	should	match	a	URL	for	an	incoming
webhook	that	you	have	configured	for	your	Slack	team.

By	default,	Slack	will	only	receive	logs	at	the	critical	level	and	above;	however,	you	can	adjust	this	in	your	
config/logging.php	configuration	file	by	modifying	the	level	configuration	option	within	your	Slack	log
channel's	configuration	array.

Logging	Deprecation	Warnings

PHP,	Laravel,	and	other	libraries	often	notify	their	users	that	some	of	their	features	have	been	deprecated	and
will	be	removed	in	a	future	version.	If	you	would	like	to	log	these	deprecation	warnings,	you	may	specify	your
preferred	deprecations	log	channel	in	your	application's	config/logging.php	configuration	file:

'deprecations'	=>	env('LOG_DEPRECATIONS_CHANNEL',	'null'),

'channels'	=>	[

				...

]

Or,	you	may	define	a	log	channel	named	deprecations.	If	a	log	channel	with	this	name	exists,	it	will	always	be
used	to	log	deprecations:

'channels'	=>	[

				'deprecations'	=>	[

								'driver'	=>	'single',

Laravel	Documentation	-	10.x	/	Logging 216

https://help.papertrailapp.com/kb/configuration/configuring-centralized-logging-from-php-apps/#send-events-from-php-app
https://slack.com/apps/A0F7XDUAZ-incoming-webhooks

								'path'	=>	storage_path('logs/php-deprecation-warnings.log'),

],

],

Building	Log	Stacks

As	mentioned	previously,	the	stack	driver	allows	you	to	combine	multiple	channels	into	a	single	log	channel
for	convenience.	To	illustrate	how	to	use	log	stacks,	let's	take	a	look	at	an	example	configuration	that	you	might
see	in	a	production	application:

'channels'	=>	[

				'stack'	=>	[

								'driver'	=>	'stack',

								'channels'	=>	['syslog',	'slack'],

],

				'syslog'	=>	[

								'driver'	=>	'syslog',

								'level'	=>	'debug',

],

				'slack'	=>	[

								'driver'	=>	'slack',

								'url'	=>	env('LOG_SLACK_WEBHOOK_URL'),

								'username'	=>	'Laravel	Log',

								'emoji'	=>	':boom:',

								'level'	=>	'critical',

],

],

Let's	dissect	this	configuration.	First,	notice	our	stack	channel	aggregates	two	other	channels	via	its	channels
option:	syslog	and	slack.	So,	when	logging	messages,	both	of	these	channels	will	have	the	opportunity	to	log
the	message.	However,	as	we	will	see	below,	whether	these	channels	actually	log	the	message	may	be
determined	by	the	message's	severity	/	"level".

Log	Levels

Take	note	of	the	level	configuration	option	present	on	the	syslog	and	slack	channel	configurations	in	the
example	above.	This	option	determines	the	minimum	"level"	a	message	must	be	in	order	to	be	logged	by	the
channel.	Monolog,	which	powers	Laravel's	logging	services,	offers	all	of	the	log	levels	defined	in	the	RFC
5424	specification.	In	descending	order	of	severity,	these	log	levels	are:	emergency,	alert,	critical,	error,
warning,	notice,	info,	and	debug.

So,	imagine	we	log	a	message	using	the	debug	method:

Log::debug('An	informational	message.');

Given	our	configuration,	the	syslog	channel	will	write	the	message	to	the	system	log;	however,	since	the	error
message	is	not	critical	or	above,	it	will	not	be	sent	to	Slack.	However,	if	we	log	an	emergency	message,	it	will
be	sent	to	both	the	system	log	and	Slack	since	the	emergency	level	is	above	our	minimum	level	threshold	for
both	channels:

Log::emergency('The	system	is	down!');

Writing	Log	Messages

You	may	write	information	to	the	logs	using	the	Log	facade.	As	previously	mentioned,	the	logger	provides	the
eight	logging	levels	defined	in	the	RFC	5424	specification:	emergency,	alert,	critical,	error,	warning,	notice,
info	and	debug:

use	Illuminate\Support\Facades\Log;

Log::emergency($message);

Log::alert($message);

Log::critical($message);

Log::error($message);

Log::warning($message);

Log::notice($message);

Laravel	Documentation	-	10.x	/	Logging 217

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424

Log::info($message);

Log::debug($message);

You	may	call	any	of	these	methods	to	log	a	message	for	the	corresponding	level.	By	default,	the	message	will
be	written	to	the	default	log	channel	as	configured	by	your	logging	configuration	file:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\User;

use	Illuminate\Support\Facades\Log;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*/

				public	function	show(string	$id):	View

				{

								Log::info('Showing	the	user	profile	for	user:	{id}',	['id'	=>	$id]);

								return	view('user.profile',	[

												'user'	=>	User::findOrFail($id)

]);

				}

}

Contextual	Information

An	array	of	contextual	data	may	be	passed	to	the	log	methods.	This	contextual	data	will	be	formatted	and
displayed	with	the	log	message:

use	Illuminate\Support\Facades\Log;

Log::info('User	{id}	failed	to	login.',	['id'	=>	$user->id]);

Occasionally,	you	may	wish	to	specify	some	contextual	information	that	should	be	included	with	all	subsequent
log	entries	in	a	particular	channel.	For	example,	you	may	wish	to	log	a	request	ID	that	is	associated	with	each
incoming	request	to	your	application.	To	accomplish	this,	you	may	call	the	Log	facade's	withContext	method:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Log;

use	Illuminate\Support\Str;

use	Symfony\Component\HttpFoundation\Response;

class	AssignRequestId

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								$requestId	=	(string)	Str::uuid();

								Log::withContext([

												'request-id'	=>	$requestId

]);

								$response	=	$next($request);

								$response->headers->set('Request-Id',	$requestId);

								return	$response;

				}

}

Laravel	Documentation	-	10.x	/	Logging 218

If	you	would	like	to	share	contextual	information	across	all	logging	channels,	you	may	invoke	the	
Log::shareContext()	method.	This	method	will	provide	the	contextual	information	to	all	created	channels	and
any	channels	that	are	created	subsequently:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Log;

use	Illuminate\Support\Str;

use	Symfony\Component\HttpFoundation\Response;

class	AssignRequestId

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								$requestId	=	(string)	Str::uuid();

								Log::shareContext([

												'request-id'	=>	$requestId

]);

								//	...

				}

}

[!NOTE]	If	you	need	to	share	log	context	while	processing	queued	jobs,	you	may	utilize	job	middleware.

Writing	to	Specific	Channels

Sometimes	you	may	wish	to	log	a	message	to	a	channel	other	than	your	application's	default	channel.	You	may
use	the	channel	method	on	the	Log	facade	to	retrieve	and	log	to	any	channel	defined	in	your	configuration	file:

use	Illuminate\Support\Facades\Log;

Log::channel('slack')->info('Something	happened!');

If	you	would	like	to	create	an	on-demand	logging	stack	consisting	of	multiple	channels,	you	may	use	the	stack
method:

Log::stack(['single',	'slack'])->info('Something	happened!');

On-Demand	Channels

It	is	also	possible	to	create	an	on-demand	channel	by	providing	the	configuration	at	runtime	without	that
configuration	being	present	in	your	application's	logging	configuration	file.	To	accomplish	this,	you	may	pass	a
configuration	array	to	the	Log	facade's	build	method:

use	Illuminate\Support\Facades\Log;

Log::build([

		'driver'	=>	'single',

		'path'	=>	storage_path('logs/custom.log'),

])->info('Something	happened!');

You	may	also	wish	to	include	an	on-demand	channel	in	an	on-demand	logging	stack.	This	can	be	achieved	by
including	your	on-demand	channel	instance	in	the	array	passed	to	the	stack	method:

use	Illuminate\Support\Facades\Log;

$channel	=	Log::build([

		'driver'	=>	'single',

		'path'	=>	storage_path('logs/custom.log'),

]);

Laravel	Documentation	-	10.x	/	Logging 219

Log::stack(['slack',	$channel])->info('Something	happened!');

Monolog	Channel	Customization

Customizing	Monolog	for	Channels

Sometimes	you	may	need	complete	control	over	how	Monolog	is	configured	for	an	existing	channel.	For
example,	you	may	want	to	configure	a	custom	Monolog	FormatterInterface	implementation	for	Laravel's	built-
in	single	channel.

To	get	started,	define	a	tap	array	on	the	channel's	configuration.	The	tap	array	should	contain	a	list	of	classes
that	should	have	an	opportunity	to	customize	(or	"tap"	into)	the	Monolog	instance	after	it	is	created.	There	is	no
conventional	location	where	these	classes	should	be	placed,	so	you	are	free	to	create	a	directory	within	your
application	to	contain	these	classes:

'single'	=>	[

				'driver'	=>	'single',

				'tap'	=>	[App\Logging\CustomizeFormatter::class],

				'path'	=>	storage_path('logs/laravel.log'),

				'level'	=>	'debug',

],

Once	you	have	configured	the	tap	option	on	your	channel,	you're	ready	to	define	the	class	that	will	customize
your	Monolog	instance.	This	class	only	needs	a	single	method:	__invoke,	which	receives	an	
Illuminate\Log\Logger	instance.	The	Illuminate\Log\Logger	instance	proxies	all	method	calls	to	the	underlying
Monolog	instance:

<?php

namespace	App\Logging;

use	Illuminate\Log\Logger;

use	Monolog\Formatter\LineFormatter;

class	CustomizeFormatter

{

				/**

					*	Customize	the	given	logger	instance.

					*/

				public	function	__invoke(Logger	$logger):	void

				{

								foreach	($logger->getHandlers()	as	$handler)	{

												$handler->setFormatter(new	LineFormatter(

																'[%datetime%]	%channel%.%level_name%:	%message%	%context%	%extra%'

));

								}

				}

}

[!NOTE]
All	of	your	"tap"	classes	are	resolved	by	the	service	container,	so	any	constructor	dependencies	they
require	will	automatically	be	injected.

Creating	Monolog	Handler	Channels

Monolog	has	a	variety	of	available	handlers	and	Laravel	does	not	include	a	built-in	channel	for	each	one.	In
some	cases,	you	may	wish	to	create	a	custom	channel	that	is	merely	an	instance	of	a	specific	Monolog	handler
that	does	not	have	a	corresponding	Laravel	log	driver.	These	channels	can	be	easily	created	using	the	monolog
driver.

When	using	the	monolog	driver,	the	handler	configuration	option	is	used	to	specify	which	handler	will	be
instantiated.	Optionally,	any	constructor	parameters	the	handler	needs	may	be	specified	using	the	with
configuration	option:

'logentries'	=>	[

				'driver'		=>	'monolog',

				'handler'	=>	Monolog\Handler\SyslogUdpHandler::class,

				'with'	=>	[

Laravel	Documentation	-	10.x	/	Logging 220

https://github.com/Seldaek/monolog/tree/main/src/Monolog/Handler

								'host'	=>	'my.logentries.internal.datahubhost.company.com',

								'port'	=>	'10000',

],

],

Monolog	Formatters

When	using	the	monolog	driver,	the	Monolog	LineFormatter	will	be	used	as	the	default	formatter.	However,	you
may	customize	the	type	of	formatter	passed	to	the	handler	using	the	formatter	and	formatter_with	configuration
options:

'browser'	=>	[

				'driver'	=>	'monolog',

				'handler'	=>	Monolog\Handler\BrowserConsoleHandler::class,

				'formatter'	=>	Monolog\Formatter\HtmlFormatter::class,

				'formatter_with'	=>	[

								'dateFormat'	=>	'Y-m-d',

],

],

If	you	are	using	a	Monolog	handler	that	is	capable	of	providing	its	own	formatter,	you	may	set	the	value	of	the	
formatter	configuration	option	to	default:

'newrelic'	=>	[

				'driver'	=>	'monolog',

				'handler'	=>	Monolog\Handler\NewRelicHandler::class,

				'formatter'	=>	'default',

],

Monolog	Processors

Monolog	can	also	process	messages	before	logging	them.	You	can	create	your	own	processors	or	use	the
existing	processors	offered	by	Monolog.

If	you	would	like	to	customize	the	processors	for	a	monolog	driver,	add	a	processors	configuration	value	to	your
channel's	configuration:

	'memory'	=>	[

					'driver'	=>	'monolog',

					'handler'	=>	Monolog\Handler\StreamHandler::class,

					'with'	=>	[

									'stream'	=>	'php://stderr',

],

					'processors'	=>	[

									//	Simple	syntax...

									Monolog\Processor\MemoryUsageProcessor::class,

									//	With	options...

									[

												'processor'	=>	Monolog\Processor\PsrLogMessageProcessor::class,

												'with'	=>	['removeUsedContextFields'	=>	true],

],

],

],

Creating	Custom	Channels	via	Factories

If	you	would	like	to	define	an	entirely	custom	channel	in	which	you	have	full	control	over	Monolog's
instantiation	and	configuration,	you	may	specify	a	custom	driver	type	in	your	config/logging.php	configuration
file.	Your	configuration	should	include	a	via	option	that	contains	the	name	of	the	factory	class	which	will	be
invoked	to	create	the	Monolog	instance:

'channels'	=>	[

				'example-custom-channel'	=>	[

								'driver'	=>	'custom',

								'via'	=>	App\Logging\CreateCustomLogger::class,

],

],

Once	you	have	configured	the	custom	driver	channel,	you're	ready	to	define	the	class	that	will	create	your

Laravel	Documentation	-	10.x	/	Logging 221

https://github.com/Seldaek/monolog/tree/main/src/Monolog/Processor

Monolog	instance.	This	class	only	needs	a	single	__invoke	method	which	should	return	the	Monolog	logger
instance.	The	method	will	receive	the	channels	configuration	array	as	its	only	argument:

<?php

namespace	App\Logging;

use	Monolog\Logger;

class	CreateCustomLogger

{

				/**

					*	Create	a	custom	Monolog	instance.

					*/

				public	function	__invoke(array	$config):	Logger

				{

								return	new	Logger(/*	...	*/);

				}

}

Tailing	Log	Messages	Using	Pail

Often	you	may	need	to	tail	your	application's	logs	in	real	time.	For	example,	when	debugging	an	issue	or	when
monitoring	your	application's	logs	for	specific	types	of	errors.

Laravel	Pail	is	a	package	that	allows	you	to	easily	dive	into	your	Laravel	application's	log	files	directly	from
the	command	line.	Unlike	the	standard	tail	command,	Pail	is	designed	to	work	with	any	log	driver,	including
Sentry	or	Flare.	In	addition,	Pail	provides	a	set	of	useful	filters	to	help	you	quickly	find	what	you're	looking	for.

Laravel	Documentation	-	10.x	/	Logging 222

Installation

[!WARNING]
Laravel	Pail	requires	PHP	8.2+	and	the	PCNTL	extension.

To	get	started,	install	Pail	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/pail

Usage

To	start	tailing	logs,	run	the	pail	command:

php	artisan	pail

To	increase	the	verbosity	of	the	output	and	avoid	truncation	(…),	use	the	-v	option:

php	artisan	pail	-v

For	maximum	verbosity	and	to	display	exception	stack	traces,	use	the	-vv	option:

php	artisan	pail	-vv

To	stop	tailing	logs,	press	Ctrl+C	at	any	time.

Filtering	Logs

--filter

You	may	use	the	--filter	option	to	filter	logs	by	their	type,	file,	message,	and	stack	trace	content:

Laravel	Documentation	-	10.x	/	Logging 223

https://php.net/releases/
https://www.php.net/manual/en/book.pcntl.php

php	artisan	pail	--filter="QueryException"

--message

To	filter	logs	by	only	their	message,	you	may	use	the	--message	option:

php	artisan	pail	--message="User	created"

--level

The	--level	option	may	be	used	to	filter	logs	by	their	log	level:

php	artisan	pail	--level=error

--user

To	only	display	logs	that	were	written	while	a	given	user	was	authenticated,	you	may	provide	the	user's	ID	to
the	--user	option:

php	artisan	pail	--user=1

Laravel	Documentation	-	10.x	/	Logging 224

Digging	Deeper

Artisan	Console
Introduction

Tinker	(REPL)
Writing	Commands

Generating	Commands
Command	Structure
Closure	Commands
Isolatable	Commands

Defining	Input	Expectations
Arguments
Options
Input	Arrays
Input	Descriptions
Prompting	for	Missing	Input

Command	I/O
Retrieving	Input
Prompting	for	Input
Writing	Output

Registering	Commands
Programmatically	Executing	Commands

Calling	Commands	From	Other	Commands
Signal	Handling
Stub	Customization
Events

Introduction

Artisan	is	the	command	line	interface	included	with	Laravel.	Artisan	exists	at	the	root	of	your	application	as	the
artisan	script	and	provides	a	number	of	helpful	commands	that	can	assist	you	while	you	build	your	application.
To	view	a	list	of	all	available	Artisan	commands,	you	may	use	the	list	command:

php	artisan	list

Every	command	also	includes	a	"help"	screen	which	displays	and	describes	the	command's	available	arguments
and	options.	To	view	a	help	screen,	precede	the	name	of	the	command	with	help:

php	artisan	help	migrate

Laravel	Sail

If	you	are	using	Laravel	Sail	as	your	local	development	environment,	remember	to	use	the	sail	command	line
to	invoke	Artisan	commands.	Sail	will	execute	your	Artisan	commands	within	your	application's	Docker
containers:

./vendor/bin/sail	artisan	list

Tinker	(REPL)

Laravel	Tinker	is	a	powerful	REPL	for	the	Laravel	framework,	powered	by	the	PsySH	package.

Installation

All	Laravel	applications	include	Tinker	by	default.	However,	you	may	install	Tinker	using	Composer	if	you
have	previously	removed	it	from	your	application:

composer	require	laravel/tinker

Laravel	Documentation	-	10.x	/	Digging	Deeper 225

https://github.com/bobthecow/psysh

[!NOTE]
Looking	for	hot	reloading,	multiline	code	editing,	and	autocompletion	when	interacting	with	your	Laravel
application?	Check	out	Tinkerwell!

Usage

Tinker	allows	you	to	interact	with	your	entire	Laravel	application	on	the	command	line,	including	your
Eloquent	models,	jobs,	events,	and	more.	To	enter	the	Tinker	environment,	run	the	tinker	Artisan	command:

php	artisan	tinker

You	can	publish	Tinker's	configuration	file	using	the	vendor:publish	command:

php	artisan	vendor:publish	--provider="Laravel\Tinker\TinkerServiceProvider"

[!WARNING]
The	dispatch	helper	function	and	dispatch	method	on	the	Dispatchable	class	depends	on	garbage	collection
to	place	the	job	on	the	queue.	Therefore,	when	using	tinker,	you	should	use	Bus::dispatch	or	Queue::push
to	dispatch	jobs.

Command	Allow	List

Tinker	utilizes	an	"allow"	list	to	determine	which	Artisan	commands	are	allowed	to	be	run	within	its	shell.	By
default,	you	may	run	the	clear-compiled,	down,	env,	inspire,	migrate,	optimize,	and	up	commands.	If	you	would
like	to	allow	more	commands	you	may	add	them	to	the	commands	array	in	your	tinker.php	configuration	file:

'commands'	=>	[

				//	App\Console\Commands\ExampleCommand::class,

],

Classes	That	Should	Not	Be	Aliased

Typically,	Tinker	automatically	aliases	classes	as	you	interact	with	them	in	Tinker.	However,	you	may	wish	to
never	alias	some	classes.	You	may	accomplish	this	by	listing	the	classes	in	the	dont_alias	array	of	your	
tinker.php	configuration	file:

'dont_alias'	=>	[

				App\Models\User::class,

],

Writing	Commands

In	addition	to	the	commands	provided	with	Artisan,	you	may	build	your	own	custom	commands.	Commands
are	typically	stored	in	the	app/Console/Commands	directory;	however,	you	are	free	to	choose	your	own	storage
location	as	long	as	your	commands	can	be	loaded	by	Composer.

Generating	Commands

To	create	a	new	command,	you	may	use	the	make:command	Artisan	command.	This	command	will	create	a	new
command	class	in	the	app/Console/Commands	directory.	Don't	worry	if	this	directory	does	not	exist	in	your
application	-	it	will	be	created	the	first	time	you	run	the	make:command	Artisan	command:

php	artisan	make:command	SendEmails

Command	Structure

After	generating	your	command,	you	should	define	appropriate	values	for	the	signature	and	description
properties	of	the	class.	These	properties	will	be	used	when	displaying	your	command	on	the	list	screen.	The	
signature	property	also	allows	you	to	define	your	command's	input	expectations.	The	handle	method	will	be
called	when	your	command	is	executed.	You	may	place	your	command	logic	in	this	method.

Let's	take	a	look	at	an	example	command.	Note	that	we	are	able	to	request	any	dependencies	we	need	via	the

Laravel	Documentation	-	10.x	/	Digging	Deeper 226

https://tinkerwell.app

command's	handle	method.	The	Laravel	service	container	will	automatically	inject	all	dependencies	that	are
type-hinted	in	this	method's	signature:

<?php

namespace	App\Console\Commands;

use	App\Models\User;

use	App\Support\DripEmailer;

use	Illuminate\Console\Command;

class	SendEmails	extends	Command

{

				/**

					*	The	name	and	signature	of	the	console	command.

					*

					*	@var	string

					*/

				protected	$signature	=	'mail:send	{user}';

				/**

					*	The	console	command	description.

					*

					*	@var	string

					*/

				protected	$description	=	'Send	a	marketing	email	to	a	user';

				/**

					*	Execute	the	console	command.

					*/

				public	function	handle(DripEmailer	$drip):	void

				{

								$drip->send(User::find($this->argument('user')));

				}

}

[!NOTE]
For	greater	code	reuse,	it	is	good	practice	to	keep	your	console	commands	light	and	let	them	defer	to
application	services	to	accomplish	their	tasks.	In	the	example	above,	note	that	we	inject	a	service	class	to
do	the	"heavy	lifting"	of	sending	the	e-mails.

Closure	Commands

Closure	based	commands	provide	an	alternative	to	defining	console	commands	as	classes.	In	the	same	way	that
route	closures	are	an	alternative	to	controllers,	think	of	command	closures	as	an	alternative	to	command
classes.	Within	the	commands	method	of	your	app/Console/Kernel.php	file,	Laravel	loads	the	routes/console.php
file:

/**

	*	Register	the	closure	based	commands	for	the	application.

	*/

protected	function	commands():	void

{

				require	base_path('routes/console.php');

}

Even	though	this	file	does	not	define	HTTP	routes,	it	defines	console	based	entry	points	(routes)	into	your
application.	Within	this	file,	you	may	define	all	of	your	closure	based	console	commands	using	the	
Artisan::command	method.	The	command	method	accepts	two	arguments:	the	command	signature	and	a	closure
which	receives	the	command's	arguments	and	options:

Artisan::command('mail:send	{user}',	function	(string	$user)	{

				$this->info("Sending	email	to:	{$user}!");

});

The	closure	is	bound	to	the	underlying	command	instance,	so	you	have	full	access	to	all	of	the	helper	methods
you	would	typically	be	able	to	access	on	a	full	command	class.

Type-Hinting	Dependencies

In	addition	to	receiving	your	command's	arguments	and	options,	command	closures	may	also	type-hint

Laravel	Documentation	-	10.x	/	Digging	Deeper 227

additional	dependencies	that	you	would	like	resolved	out	of	the	service	container:

use	App\Models\User;

use	App\Support\DripEmailer;

Artisan::command('mail:send	{user}',	function	(DripEmailer	$drip,	string	$user)	{

				$drip->send(User::find($user));

});

Closure	Command	Descriptions

When	defining	a	closure	based	command,	you	may	use	the	purpose	method	to	add	a	description	to	the
command.	This	description	will	be	displayed	when	you	run	the	php	artisan	list	or	php	artisan	help
commands:

Artisan::command('mail:send	{user}',	function	(string	$user)	{

				//	...

})->purpose('Send	a	marketing	email	to	a	user');

Isolatable	Commands

[!WARNING]
To	utilize	this	feature,	your	application	must	be	using	the	memcached,	redis,	dynamodb,	database,	file,	or	
array	cache	driver	as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be
communicating	with	the	same	central	cache	server.

Sometimes	you	may	wish	to	ensure	that	only	one	instance	of	a	command	can	run	at	a	time.	To	accomplish	this,
you	may	implement	the	Illuminate\Contracts\Console\Isolatable	interface	on	your	command	class:

<?php

namespace	App\Console\Commands;

use	Illuminate\Console\Command;

use	Illuminate\Contracts\Console\Isolatable;

class	SendEmails	extends	Command	implements	Isolatable

{

				//	...

}

When	a	command	is	marked	as	Isolatable,	Laravel	will	automatically	add	an	--isolated	option	to	the
command.	When	the	command	is	invoked	with	that	option,	Laravel	will	ensure	that	no	other	instances	of	that
command	are	already	running.	Laravel	accomplishes	this	by	attempting	to	acquire	an	atomic	lock	using	your
application's	default	cache	driver.	If	other	instances	of	the	command	are	running,	the	command	will	not
execute;	however,	the	command	will	still	exit	with	a	successful	exit	status	code:

php	artisan	mail:send	1	--isolated

If	you	would	like	to	specify	the	exit	status	code	that	the	command	should	return	if	it	is	not	able	to	execute,	you
may	provide	the	desired	status	code	via	the	isolated	option:

php	artisan	mail:send	1	--isolated=12

Lock	ID

By	default,	Laravel	will	use	the	command's	name	to	generate	the	string	key	that	is	used	to	acquire	the	atomic
lock	in	your	application's	cache.	However,	you	may	customize	this	key	by	defining	an	isolatableId	method	on
your	Artisan	command	class,	allowing	you	to	integrate	the	command's	arguments	or	options	into	the	key:

/**

	*	Get	the	isolatable	ID	for	the	command.

	*/

public	function	isolatableId():	string

{

				return	$this->argument('user');

}

Laravel	Documentation	-	10.x	/	Digging	Deeper 228

Lock	Expiration	Time

By	default,	isolation	locks	expire	after	the	command	is	finished.	Or,	if	the	command	is	interrupted	and	unable
to	finish,	the	lock	will	expire	after	one	hour.	However,	you	may	adjust	the	lock	expiration	time	by	defining	a	
isolationLockExpiresAt	method	on	your	command:

use	DateTimeInterface;

use	DateInterval;

/**

	*	Determine	when	an	isolation	lock	expires	for	the	command.

	*/

public	function	isolationLockExpiresAt():	DateTimeInterface|DateInterval

{

				return	now()->addMinutes(5);

}

Defining	Input	Expectations

When	writing	console	commands,	it	is	common	to	gather	input	from	the	user	through	arguments	or	options.
Laravel	makes	it	very	convenient	to	define	the	input	you	expect	from	the	user	using	the	signature	property	on
your	commands.	The	signature	property	allows	you	to	define	the	name,	arguments,	and	options	for	the
command	in	a	single,	expressive,	route-like	syntax.

Arguments

All	user	supplied	arguments	and	options	are	wrapped	in	curly	braces.	In	the	following	example,	the	command
defines	one	required	argument:	user:

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'mail:send	{user}';

You	may	also	make	arguments	optional	or	define	default	values	for	arguments:

//	Optional	argument...

'mail:send	{user?}'

//	Optional	argument	with	default	value...

'mail:send	{user=foo}'

Options

Options,	like	arguments,	are	another	form	of	user	input.	Options	are	prefixed	by	two	hyphens	(--)	when	they
are	provided	via	the	command	line.	There	are	two	types	of	options:	those	that	receive	a	value	and	those	that
don't.	Options	that	don't	receive	a	value	serve	as	a	boolean	"switch".	Let's	take	a	look	at	an	example	of	this	type
of	option:

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'mail:send	{user}	{--queue}';

In	this	example,	the	--queue	switch	may	be	specified	when	calling	the	Artisan	command.	If	the	--queue	switch
is	passed,	the	value	of	the	option	will	be	true.	Otherwise,	the	value	will	be	false:

php	artisan	mail:send	1	--queue

Options	With	Values

Next,	let's	take	a	look	at	an	option	that	expects	a	value.	If	the	user	must	specify	a	value	for	an	option,	you
should	suffix	the	option	name	with	a	=	sign:

Laravel	Documentation	-	10.x	/	Digging	Deeper 229

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'mail:send	{user}	{--queue=}';

In	this	example,	the	user	may	pass	a	value	for	the	option	like	so.	If	the	option	is	not	specified	when	invoking
the	command,	its	value	will	be	null:

php	artisan	mail:send	1	--queue=default

You	may	assign	default	values	to	options	by	specifying	the	default	value	after	the	option	name.	If	no	option
value	is	passed	by	the	user,	the	default	value	will	be	used:

'mail:send	{user}	{--queue=default}'

Option	Shortcuts

To	assign	a	shortcut	when	defining	an	option,	you	may	specify	it	before	the	option	name	and	use	the	|	character
as	a	delimiter	to	separate	the	shortcut	from	the	full	option	name:

'mail:send	{user}	{--Q|queue}'

When	invoking	the	command	on	your	terminal,	option	shortcuts	should	be	prefixed	with	a	single	hyphen	and
no	=	character	should	be	included	when	specifying	a	value	for	the	option:

php	artisan	mail:send	1	-Qdefault

Input	Arrays

If	you	would	like	to	define	arguments	or	options	to	expect	multiple	input	values,	you	may	use	the	*	character.
First,	let's	take	a	look	at	an	example	that	specifies	such	an	argument:

'mail:send	{user*}'

When	calling	this	method,	the	user	arguments	may	be	passed	in	order	to	the	command	line.	For	example,	the
following	command	will	set	the	value	of	user	to	an	array	with	1	and	2	as	its	values:

php	artisan	mail:send	1	2

This	*	character	can	be	combined	with	an	optional	argument	definition	to	allow	zero	or	more	instances	of	an
argument:

'mail:send	{user?*}'

Option	Arrays

When	defining	an	option	that	expects	multiple	input	values,	each	option	value	passed	to	the	command	should
be	prefixed	with	the	option	name:

'mail:send	{--id=*}'

Such	a	command	may	be	invoked	by	passing	multiple	--id	arguments:

php	artisan	mail:send	--id=1	--id=2

Input	Descriptions

You	may	assign	descriptions	to	input	arguments	and	options	by	separating	the	argument	name	from	the
description	using	a	colon.	If	you	need	a	little	extra	room	to	define	your	command,	feel	free	to	spread	the
definition	across	multiple	lines:

/**

	*	The	name	and	signature	of	the	console	command.

	*

Laravel	Documentation	-	10.x	/	Digging	Deeper 230

	*	@var	string

	*/

protected	$signature	=	'mail:send

																								{user	:	The	ID	of	the	user}

																								{--queue	:	Whether	the	job	should	be	queued}';

Prompting	for	Missing	Input

If	your	command	contains	required	arguments,	the	user	will	receive	an	error	message	when	they	are	not
provided.	Alternatively,	you	may	configure	your	command	to	automatically	prompt	the	user	when	required
arguments	are	missing	by	implementing	the	PromptsForMissingInput	interface:

<?php

namespace	App\Console\Commands;

use	Illuminate\Console\Command;

use	Illuminate\Contracts\Console\PromptsForMissingInput;

class	SendEmails	extends	Command	implements	PromptsForMissingInput

{

				/**

					*	The	name	and	signature	of	the	console	command.

					*

					*	@var	string

					*/

				protected	$signature	=	'mail:send	{user}';

				//	...

}

If	Laravel	needs	to	gather	a	required	argument	from	the	user,	it	will	automatically	ask	the	user	for	the	argument
by	intelligently	phrasing	the	question	using	either	the	argument	name	or	description.	If	you	wish	to	customize
the	question	used	to	gather	the	required	argument,	you	may	implement	the	promptForMissingArgumentsUsing
method,	returning	an	array	of	questions	keyed	by	the	argument	names:

/**

	*	Prompt	for	missing	input	arguments	using	the	returned	questions.

	*

	*	@return	array

	*/

protected	function	promptForMissingArgumentsUsing()

{

				return	[

								'user'	=>	'Which	user	ID	should	receive	the	mail?',

];

}

You	may	also	provide	placeholder	text	by	using	a	tuple	containing	the	question	and	placeholder:

return	[

				'user'	=>	['Which	user	ID	should	receive	the	mail?',	'E.g.	123'],

];

If	you	would	like	complete	control	over	the	prompt,	you	may	provide	a	closure	that	should	prompt	the	user	and
return	their	answer:

use	App\Models\User;

use	function	Laravel\Prompts\search;

//	...

return	[

				'user'	=>	fn	()	=>	search(

								label:	'Search	for	a	user:',

								placeholder:	'E.g.	Taylor	Otwell',

								options:	fn	($value)	=>	strlen($value)	>	0

												?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

												:	[]

),

];

[!NOTE]
The	comprehensive	Laravel	Prompts	documentation	includes	additional	information	on	the	available

Laravel	Documentation	-	10.x	/	Digging	Deeper 231

prompts	and	their	usage.

If	you	wish	to	prompt	the	user	to	select	or	enter	options,	you	may	include	prompts	in	your	command's	handle
method.	However,	if	you	only	wish	to	prompt	the	user	when	they	have	also	been	automatically	prompted	for
missing	arguments,	then	you	may	implement	the	afterPromptingForMissingArguments	method:

use	Symfony\Component\Console\Input\InputInterface;

use	Symfony\Component\Console\Output\OutputInterface;

use	function	Laravel\Prompts\confirm;

//	...

/**

	*	Perform	actions	after	the	user	was	prompted	for	missing	arguments.

	*

	*	@param		\Symfony\Component\Console\Input\InputInterface		$input

	*	@param		\Symfony\Component\Console\Output\OutputInterface		$output

	*	@return	void

	*/

protected	function	afterPromptingForMissingArguments(InputInterface	$input,	OutputInterface	$output)

{

				$input->setOption('queue',	confirm(

								label:	'Would	you	like	to	queue	the	mail?',

								default:	$this->option('queue')

));

}

Command	I/O

Retrieving	Input

While	your	command	is	executing,	you	will	likely	need	to	access	the	values	for	the	arguments	and	options
accepted	by	your	command.	To	do	so,	you	may	use	the	argument	and	option	methods.	If	an	argument	or	option
does	not	exist,	null	will	be	returned:

/**

	*	Execute	the	console	command.

	*/

public	function	handle():	void

{

				$userId	=	$this->argument('user');

}

If	you	need	to	retrieve	all	of	the	arguments	as	an	array,	call	the	arguments	method:

$arguments	=	$this->arguments();

Options	may	be	retrieved	just	as	easily	as	arguments	using	the	option	method.	To	retrieve	all	of	the	options	as
an	array,	call	the	options	method:

//	Retrieve	a	specific	option...

$queueName	=	$this->option('queue');

//	Retrieve	all	options	as	an	array...

$options	=	$this->options();

Prompting	for	Input

[!NOTE]
Laravel	Prompts	is	a	PHP	package	for	adding	beautiful	and	user-friendly	forms	to	your	command-line
applications,	with	browser-like	features	including	placeholder	text	and	validation.

In	addition	to	displaying	output,	you	may	also	ask	the	user	to	provide	input	during	the	execution	of	your
command.	The	ask	method	will	prompt	the	user	with	the	given	question,	accept	their	input,	and	then	return	the
user's	input	back	to	your	command:

/**

	*	Execute	the	console	command.

	*/

public	function	handle():	void

Laravel	Documentation	-	10.x	/	Digging	Deeper 232

{

				$name	=	$this->ask('What	is	your	name?');

				//	...

}

The	ask	method	also	accepts	an	optional	second	argument	which	specifies	the	default	value	that	should	be
returned	if	no	user	input	is	provided:

$name	=	$this->ask('What	is	your	name?',	'Taylor');

The	secret	method	is	similar	to	ask,	but	the	user's	input	will	not	be	visible	to	them	as	they	type	in	the	console.
This	method	is	useful	when	asking	for	sensitive	information	such	as	passwords:

$password	=	$this->secret('What	is	the	password?');

Asking	for	Confirmation

If	you	need	to	ask	the	user	for	a	simple	"yes	or	no"	confirmation,	you	may	use	the	confirm	method.	By	default,
this	method	will	return	false.	However,	if	the	user	enters	y	or	yes	in	response	to	the	prompt,	the	method	will
return	true.

if	($this->confirm('Do	you	wish	to	continue?'))	{

				//	...

}

If	necessary,	you	may	specify	that	the	confirmation	prompt	should	return	true	by	default	by	passing	true	as	the
second	argument	to	the	confirm	method:

if	($this->confirm('Do	you	wish	to	continue?',	true))	{

				//	...

}

Auto-Completion

The	anticipate	method	can	be	used	to	provide	auto-completion	for	possible	choices.	The	user	can	still	provide
any	answer,	regardless	of	the	auto-completion	hints:

$name	=	$this->anticipate('What	is	your	name?',	['Taylor',	'Dayle']);

Alternatively,	you	may	pass	a	closure	as	the	second	argument	to	the	anticipate	method.	The	closure	will	be
called	each	time	the	user	types	an	input	character.	The	closure	should	accept	a	string	parameter	containing	the
user's	input	so	far,	and	return	an	array	of	options	for	auto-completion:

$name	=	$this->anticipate('What	is	your	address?',	function	(string	$input)	{

				//	Return	auto-completion	options...

});

Multiple	Choice	Questions

If	you	need	to	give	the	user	a	predefined	set	of	choices	when	asking	a	question,	you	may	use	the	choice	method.
You	may	set	the	array	index	of	the	default	value	to	be	returned	if	no	option	is	chosen	by	passing	the	index	as
the	third	argument	to	the	method:

$name	=	$this->choice(

				'What	is	your	name?',

				['Taylor',	'Dayle'],

				$defaultIndex

);

In	addition,	the	choice	method	accepts	optional	fourth	and	fifth	arguments	for	determining	the	maximum
number	of	attempts	to	select	a	valid	response	and	whether	multiple	selections	are	permitted:

$name	=	$this->choice(

				'What	is	your	name?',

				['Taylor',	'Dayle'],

				$defaultIndex,

				$maxAttempts	=	null,

Laravel	Documentation	-	10.x	/	Digging	Deeper 233

				$allowMultipleSelections	=	false

);

Writing	Output

To	send	output	to	the	console,	you	may	use	the	line,	info,	comment,	question,	warn,	and	error	methods.	Each	of
these	methods	will	use	appropriate	ANSI	colors	for	their	purpose.	For	example,	let's	display	some	general
information	to	the	user.	Typically,	the	info	method	will	display	in	the	console	as	green	colored	text:

/**

	*	Execute	the	console	command.

	*/

public	function	handle():	void

{

				//	...

				$this->info('The	command	was	successful!');

}

To	display	an	error	message,	use	the	error	method.	Error	message	text	is	typically	displayed	in	red:

$this->error('Something	went	wrong!');

You	may	use	the	line	method	to	display	plain,	uncolored	text:

$this->line('Display	this	on	the	screen');

You	may	use	the	newLine	method	to	display	a	blank	line:

//	Write	a	single	blank	line...

$this->newLine();

//	Write	three	blank	lines...

$this->newLine(3);

Tables

The	table	method	makes	it	easy	to	correctly	format	multiple	rows	/	columns	of	data.	All	you	need	to	do	is
provide	the	column	names	and	the	data	for	the	table	and	Laravel	will	automatically	calculate	the	appropriate
width	and	height	of	the	table	for	you:

use	App\Models\User;

$this->table(

				['Name',	'Email'],

				User::all(['name',	'email'])->toArray()

);

Progress	Bars

For	long	running	tasks,	it	can	be	helpful	to	show	a	progress	bar	that	informs	users	how	complete	the	task	is.
Using	the	withProgressBar	method,	Laravel	will	display	a	progress	bar	and	advance	its	progress	for	each
iteration	over	a	given	iterable	value:

use	App\Models\User;

$users	=	$this->withProgressBar(User::all(),	function	(User	$user)	{

				$this->performTask($user);

});

Sometimes,	you	may	need	more	manual	control	over	how	a	progress	bar	is	advanced.	First,	define	the	total
number	of	steps	the	process	will	iterate	through.	Then,	advance	the	progress	bar	after	processing	each	item:

$users	=	App\Models\User::all();

$bar	=	$this->output->createProgressBar(count($users));

$bar->start();

foreach	($users	as	$user)	{

Laravel	Documentation	-	10.x	/	Digging	Deeper 234

				$this->performTask($user);

				$bar->advance();

}

$bar->finish();

[!NOTE]
For	more	advanced	options,	check	out	the	Symfony	Progress	Bar	component	documentation.

Registering	Commands

All	of	your	console	commands	are	registered	within	your	application's	App\Console\Kernel	class,	which	is	your
application's	"console	kernel".	Within	the	commands	method	of	this	class,	you	will	see	a	call	to	the	kernel's	load
method.	The	load	method	will	scan	the	app/Console/Commands	directory	and	automatically	register	each
command	it	contains	with	Artisan.	You	are	even	free	to	make	additional	calls	to	the	load	method	to	scan	other
directories	for	Artisan	commands:

/**

	*	Register	the	commands	for	the	application.

	*/

protected	function	commands():	void

{

				$this->load(__DIR__.'/Commands');

				$this->load(__DIR__.'/../Domain/Orders/Commands');

				//	...

}

If	necessary,	you	may	manually	register	commands	by	adding	the	command's	class	name	to	a	$commands
property	within	your	App\Console\Kernel	class.	If	this	property	is	not	already	defined	on	your	kernel,	you	should
define	it	manually.	When	Artisan	boots,	all	the	commands	listed	in	this	property	will	be	resolved	by	the	service
container	and	registered	with	Artisan:

protected	$commands	=	[

				Commands\SendEmails::class

];

Programmatically	Executing	Commands

Sometimes	you	may	wish	to	execute	an	Artisan	command	outside	of	the	CLI.	For	example,	you	may	wish	to
execute	an	Artisan	command	from	a	route	or	controller.	You	may	use	the	call	method	on	the	Artisan	facade	to
accomplish	this.	The	call	method	accepts	either	the	command's	signature	name	or	class	name	as	its	first
argument,	and	an	array	of	command	parameters	as	the	second	argument.	The	exit	code	will	be	returned:

use	Illuminate\Support\Facades\Artisan;

Route::post('/user/{user}/mail',	function	(string	$user)	{

				$exitCode	=	Artisan::call('mail:send',	[

								'user'	=>	$user,	'--queue'	=>	'default'

]);

				//	...

});

Alternatively,	you	may	pass	the	entire	Artisan	command	to	the	call	method	as	a	string:

Artisan::call('mail:send	1	--queue=default');

Passing	Array	Values

If	your	command	defines	an	option	that	accepts	an	array,	you	may	pass	an	array	of	values	to	that	option:

use	Illuminate\Support\Facades\Artisan;

Route::post('/mail',	function	()	{

				$exitCode	=	Artisan::call('mail:send',	[

								'--id'	=>	[5,	13]

]);

Laravel	Documentation	-	10.x	/	Digging	Deeper 235

https://symfony.com/doc/current/components/console/helpers/progressbar.html

});

Passing	Boolean	Values

If	you	need	to	specify	the	value	of	an	option	that	does	not	accept	string	values,	such	as	the	--force	flag	on	the	
migrate:refresh	command,	you	should	pass	true	or	false	as	the	value	of	the	option:

$exitCode	=	Artisan::call('migrate:refresh',	[

				'--force'	=>	true,

]);

Queueing	Artisan	Commands

Using	the	queue	method	on	the	Artisan	facade,	you	may	even	queue	Artisan	commands	so	they	are	processed	in
the	background	by	your	queue	workers.	Before	using	this	method,	make	sure	you	have	configured	your	queue
and	are	running	a	queue	listener:

use	Illuminate\Support\Facades\Artisan;

Route::post('/user/{user}/mail',	function	(string	$user)	{

				Artisan::queue('mail:send',	[

								'user'	=>	$user,	'--queue'	=>	'default'

]);

				//	...

});

Using	the	onConnection	and	onQueue	methods,	you	may	specify	the	connection	or	queue	the	Artisan	command
should	be	dispatched	to:

Artisan::queue('mail:send',	[

				'user'	=>	1,	'--queue'	=>	'default'

])->onConnection('redis')->onQueue('commands');

Calling	Commands	From	Other	Commands

Sometimes	you	may	wish	to	call	other	commands	from	an	existing	Artisan	command.	You	may	do	so	using	the	
call	method.	This	call	method	accepts	the	command	name	and	an	array	of	command	arguments	/	options:

/**

	*	Execute	the	console	command.

	*/

public	function	handle():	void

{

				$this->call('mail:send',	[

								'user'	=>	1,	'--queue'	=>	'default'

]);

				//	...

}

If	you	would	like	to	call	another	console	command	and	suppress	all	of	its	output,	you	may	use	the	callSilently
method.	The	callSilently	method	has	the	same	signature	as	the	call	method:

$this->callSilently('mail:send',	[

				'user'	=>	1,	'--queue'	=>	'default'

]);

Signal	Handling

As	you	may	know,	operating	systems	allow	signals	to	be	sent	to	running	processes.	For	example,	the	SIGTERM
signal	is	how	operating	systems	ask	a	program	to	terminate.	If	you	wish	to	listen	for	signals	in	your	Artisan
console	commands	and	execute	code	when	they	occur,	you	may	use	the	trap	method:

/**

	*	Execute	the	console	command.

	*/

public	function	handle():	void

{

Laravel	Documentation	-	10.x	/	Digging	Deeper 236

				$this->trap(SIGTERM,	fn	()	=>	$this->shouldKeepRunning	=	false);

				while	($this->shouldKeepRunning)	{

								//	...

				}

}

To	listen	for	multiple	signals	at	once,	you	may	provide	an	array	of	signals	to	the	trap	method:

$this->trap([SIGTERM,	SIGQUIT],	function	(int	$signal)	{

				$this->shouldKeepRunning	=	false;

				dump($signal);	//	SIGTERM	/	SIGQUIT

});

Stub	Customization

The	Artisan	console's	make	commands	are	used	to	create	a	variety	of	classes,	such	as	controllers,	jobs,
migrations,	and	tests.	These	classes	are	generated	using	"stub"	files	that	are	populated	with	values	based	on
your	input.	However,	you	may	want	to	make	small	changes	to	files	generated	by	Artisan.	To	accomplish	this,
you	may	use	the	stub:publish	command	to	publish	the	most	common	stubs	to	your	application	so	that	you	can
customize	them:

php	artisan	stub:publish

The	published	stubs	will	be	located	within	a	stubs	directory	in	the	root	of	your	application.	Any	changes	you
make	to	these	stubs	will	be	reflected	when	you	generate	their	corresponding	classes	using	Artisan's	make
commands.

Events

Artisan	dispatches	three	events	when	running	commands:	Illuminate\Console\Events\ArtisanStarting,	
Illuminate\Console\Events\CommandStarting,	and	Illuminate\Console\Events\CommandFinished.	The	
ArtisanStarting	event	is	dispatched	immediately	when	Artisan	starts	running.	Next,	the	CommandStarting	event
is	dispatched	immediately	before	a	command	runs.	Finally,	the	CommandFinished	event	is	dispatched	once	a
command	finishes	executing.

Laravel	Documentation	-	10.x	/	Digging	Deeper 237

Digging	Deeper

Broadcasting
Introduction
Server	Side	Installation

Configuration
Reverb
Pusher	Channels
Ably
Open	Source	Alternatives

Client	Side	Installation
Reverb
Pusher	Channels
Ably

Concept	Overview
Using	an	Example	Application

Defining	Broadcast	Events
Broadcast	Name
Broadcast	Data
Broadcast	Queue
Broadcast	Conditions
Broadcasting	and	Database	Transactions

Authorizing	Channels
Defining	Authorization	Routes
Defining	Authorization	Callbacks
Defining	Channel	Classes

Broadcasting	Events
Only	to	Others
Customizing	the	Connection

Receiving	Broadcasts
Listening	for	Events
Leaving	a	Channel
Namespaces

Presence	Channels
Authorizing	Presence	Channels
Joining	Presence	Channels
Broadcasting	to	Presence	Channels

Model	Broadcasting
Model	Broadcasting	Conventions
Listening	for	Model	Broadcasts

Client	Events
Notifications

Introduction

In	many	modern	web	applications,	WebSockets	are	used	to	implement	realtime,	live-updating	user	interfaces.
When	some	data	is	updated	on	the	server,	a	message	is	typically	sent	over	a	WebSocket	connection	to	be
handled	by	the	client.	WebSockets	provide	a	more	efficient	alternative	to	continually	polling	your	application's
server	for	data	changes	that	should	be	reflected	in	your	UI.

For	example,	imagine	your	application	is	able	to	export	a	user's	data	to	a	CSV	file	and	email	it	to	them.
However,	creating	this	CSV	file	takes	several	minutes	so	you	choose	to	create	and	mail	the	CSV	within	a
queued	job.	When	the	CSV	has	been	created	and	mailed	to	the	user,	we	can	use	event	broadcasting	to	dispatch
an	App\Events\UserDataExported	event	that	is	received	by	our	application's	JavaScript.	Once	the	event	is
received,	we	can	display	a	message	to	the	user	that	their	CSV	has	been	emailed	to	them	without	them	ever
needing	to	refresh	the	page.

To	assist	you	in	building	these	types	of	features,	Laravel	makes	it	easy	to	"broadcast"	your	server-side	Laravel

Laravel	Documentation	-	10.x	/	Broadcasting 238

events	over	a	WebSocket	connection.	Broadcasting	your	Laravel	events	allows	you	to	share	the	same	event
names	and	data	between	your	server-side	Laravel	application	and	your	client-side	JavaScript	application.

The	core	concepts	behind	broadcasting	are	simple:	clients	connect	to	named	channels	on	the	frontend,	while
your	Laravel	application	broadcasts	events	to	these	channels	on	the	backend.	These	events	can	contain	any
additional	data	you	wish	to	make	available	to	the	frontend.

Supported	Drivers

By	default,	Laravel	includes	three	server-side	broadcasting	drivers	for	you	to	choose	from:	Laravel	Reverb,
Pusher	Channels,	and	Ably.

[!NOTE]
Before	diving	into	event	broadcasting,	make	sure	you	have	read	Laravel's	documentation	on	events	and
listeners.

Server	Side	Installation

To	get	started	using	Laravel's	event	broadcasting,	we	need	to	do	some	configuration	within	the	Laravel
application	as	well	as	install	a	few	packages.

Event	broadcasting	is	accomplished	by	a	server-side	broadcasting	driver	that	broadcasts	your	Laravel	events	so
that	Laravel	Echo	(a	JavaScript	library)	can	receive	them	within	the	browser	client.	Don't	worry	-	we'll	walk
through	each	part	of	the	installation	process	step-by-step.

Configuration

All	of	your	application's	event	broadcasting	configuration	is	stored	in	the	config/broadcasting.php
configuration	file.	Laravel	supports	several	broadcast	drivers	out	of	the	box:	Pusher	Channels,	Redis,	and	a	log
driver	for	local	development	and	debugging.	Additionally,	a	null	driver	is	included	which	allows	you	to	totally
disable	broadcasting	during	testing.	A	configuration	example	is	included	for	each	of	these	drivers	in	the	
config/broadcasting.php	configuration	file.

Broadcast	Service	Provider

Before	broadcasting	any	events,	you	will	first	need	to	register	the	App\Providers\BroadcastServiceProvider.	In
new	Laravel	applications,	you	only	need	to	uncomment	this	provider	in	the	providers	array	of	your	
config/app.php	configuration	file.	This	BroadcastServiceProvider	contains	the	code	necessary	to	register	the
broadcast	authorization	routes	and	callbacks.

Queue	Configuration

You	will	also	need	to	configure	and	run	a	queue	worker.	All	event	broadcasting	is	done	via	queued	jobs	so	that
the	response	time	of	your	application	is	not	seriously	affected	by	events	being	broadcast.

Reverb

You	may	install	Reverb	using	the	Composer	package	manager.	Since	Reverb	is	currently	in	beta,	you	will	need
to	explicitly	install	the	beta	release:

composer	require	laravel/reverb:@beta

Once	the	package	is	installed,	you	may	run	Reverb's	installation	command	to	publish	the	configuration,	update
your	applications's	broadcasting	configuration,	and	add	Reverb's	required	environment	variables:

php	artisan	reverb:install

You	can	find	detailed	Reverb	installation	and	usage	instructions	in	the	Reverb	documentation.

Laravel	Documentation	-	10.x	/	Broadcasting 239

https://reverb.laravel.com
https://pusher.com/channels
https://ably.com
https://pusher.com/channels

Pusher	Channels

If	you	plan	to	broadcast	your	events	using	Pusher	Channels,	you	should	install	the	Pusher	Channels	PHP	SDK
using	the	Composer	package	manager:

composer	require	pusher/pusher-php-server

Next,	you	should	configure	your	Pusher	Channels	credentials	in	the	config/broadcasting.php	configuration	file.
An	example	Pusher	Channels	configuration	is	already	included	in	this	file,	allowing	you	to	quickly	specify	your
key,	secret,	and	application	ID.	Typically,	these	values	should	be	set	via	the	PUSHER_APP_KEY,	PUSHER_APP_SECRET,
and	PUSHER_APP_ID	environment	variables:

PUSHER_APP_ID=your-pusher-app-id

PUSHER_APP_KEY=your-pusher-key

PUSHER_APP_SECRET=your-pusher-secret

PUSHER_APP_CLUSTER=mt1

The	config/broadcasting.php	file's	pusher	configuration	also	allows	you	to	specify	additional	options	that	are
supported	by	Channels,	such	as	the	cluster.

Next,	you	will	need	to	change	your	broadcast	driver	to	pusher	in	your	.env	file:

BROADCAST_DRIVER=pusher

Finally,	you	are	ready	to	install	and	configure	Laravel	Echo,	which	will	receive	the	broadcast	events	on	the
client-side.

Open	Source	Pusher	Alternatives

soketi	provides	a	Pusher	compatible	WebSocket	server	for	Laravel,	allowing	you	to	leverage	the	full	power	of
Laravel	broadcasting	without	a	commercial	WebSocket	provider.	For	more	information	on	installing	and	using
open	source	packages	for	broadcasting,	please	consult	our	documentation	on	open	source	alternatives.

Ably

[!NOTE]
The	documentation	below	discusses	how	to	use	Ably	in	"Pusher	compatibility"	mode.	However,	the	Ably
team	recommends	and	maintains	a	broadcaster	and	Echo	client	that	is	able	to	take	advantage	of	the	unique
capabilities	offered	by	Ably.	For	more	information	on	using	the	Ably	maintained	drivers,	please	consult
Ably's	Laravel	broadcaster	documentation.

If	you	plan	to	broadcast	your	events	using	Ably,	you	should	install	the	Ably	PHP	SDK	using	the	Composer
package	manager:

composer	require	ably/ably-php

Next,	you	should	configure	your	Ably	credentials	in	the	config/broadcasting.php	configuration	file.	An
example	Ably	configuration	is	already	included	in	this	file,	allowing	you	to	quickly	specify	your	key.	Typically,
this	value	should	be	set	via	the	ABLY_KEY	environment	variable:

ABLY_KEY=your-ably-key

Next,	you	will	need	to	change	your	broadcast	driver	to	ably	in	your	.env	file:

BROADCAST_DRIVER=ably

Finally,	you	are	ready	to	install	and	configure	Laravel	Echo,	which	will	receive	the	broadcast	events	on	the
client-side.

Open	Source	Alternatives

Node

Laravel	Documentation	-	10.x	/	Broadcasting 240

https://pusher.com/channels
https://docs.soketi.app/
https://github.com/ably/laravel-broadcaster
https://ably.com

Soketi	is	a	Node	based,	Pusher	compatible	WebSocket	server	for	Laravel.	Under	the	hood,	Soketi	utilizes
µWebSockets.js	for	extreme	scalability	and	speed.	This	package	allows	you	to	leverage	the	full	power	of
Laravel	broadcasting	without	a	commercial	WebSocket	provider.	For	more	information	on	installing	and	using
this	package,	please	consult	its	official	documentation.

Client	Side	Installation

Reverb

Laravel	Echo	is	a	JavaScript	library	that	makes	it	painless	to	subscribe	to	channels	and	listen	for	events
broadcast	by	your	server-side	broadcasting	driver.	You	may	install	Echo	via	the	NPM	package	manager.	In	this
example,	we	will	also	install	the	pusher-js	package	since	Reverb	utilizes	the	Pusher	protocol	for	WebSocket
subscriptions,	channels,	and	messages:

npm	install	--save-dev	laravel-echo	pusher-js

Once	Echo	is	installed,	you	are	ready	to	create	a	fresh	Echo	instance	in	your	application's	JavaScript.	A	great
place	to	do	this	is	at	the	bottom	of	the	resources/js/bootstrap.js	file	that	is	included	with	the	Laravel
framework.	By	default,	an	example	Echo	configuration	is	already	included	in	this	file	-	you	simply	need	to
uncomment	it	and	update	the	broadcaster	configuration	option	to	reverb:

import	Echo	from	'laravel-echo';

import	Pusher	from	'pusher-js';

window.Pusher	=	Pusher;

window.Echo	=	new	Echo({

				broadcaster:	'reverb',

				key:	import.meta.env.VITE_REVERB_APP_KEY,

				wsHost:	import.meta.env.VITE_REVERB_HOST,

				wsPort:	import.meta.env.VITE_REVERB_PORT,

				wssPort:	import.meta.env.VITE_REVERB_PORT,

				forceTLS:	(import.meta.env.VITE_REVERB_SCHEME	??	'https')	===	'https',

				enabledTransports:	['ws',	'wss'],

});

Next,	you	should	compile	your	application's	assets:

npm	run	build

[!WARNING]
The	Laravel	Echo	reverb	broadcaster	requires	laravel-echo	v1.16.0+.

Pusher	Channels

Laravel	Echo	is	a	JavaScript	library	that	makes	it	painless	to	subscribe	to	channels	and	listen	for	events
broadcast	by	your	server-side	broadcasting	driver.	You	may	install	Echo	via	the	NPM	package	manager.	In	this
example,	we	will	also	install	the	pusher-js	package	since	we	will	be	using	the	Pusher	Channels	broadcaster:

npm	install	--save-dev	laravel-echo	pusher-js

Once	Echo	is	installed,	you	are	ready	to	create	a	fresh	Echo	instance	in	your	application's	JavaScript.	A	great
place	to	do	this	is	at	the	bottom	of	the	resources/js/bootstrap.js	file	that	is	included	with	the	Laravel
framework.	By	default,	an	example	Echo	configuration	is	already	included	in	this	file	-	you	simply	need	to
uncomment	it:

import	Echo	from	'laravel-echo';

import	Pusher	from	'pusher-js';

window.Pusher	=	Pusher;

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	import.meta.env.VITE_PUSHER_APP_KEY,

				cluster:	import.meta.env.VITE_PUSHER_APP_CLUSTER,

				forceTLS:	true

});

Laravel	Documentation	-	10.x	/	Broadcasting 241

https://github.com/soketi/soketi
https://docs.soketi.app/
https://github.com/laravel/echo
https://github.com/laravel/echo

Once	you	have	uncommented	and	adjusted	the	Echo	configuration	according	to	your	needs,	you	may	compile
your	application's	assets:

npm	run	build

[!NOTE]
To	learn	more	about	compiling	your	application's	JavaScript	assets,	please	consult	the	documentation	on
Vite.

Using	an	Existing	Client	Instance

If	you	already	have	a	pre-configured	Pusher	Channels	client	instance	that	you	would	like	Echo	to	utilize,	you
may	pass	it	to	Echo	via	the	client	configuration	option:

import	Echo	from	'laravel-echo';

import	Pusher	from	'pusher-js';

const	options	=	{

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key'

}

window.Echo	=	new	Echo({

				...options,

				client:	new	Pusher(options.key,	options)

});

Ably

[!NOTE]
The	documentation	below	discusses	how	to	use	Ably	in	"Pusher	compatibility"	mode.	However,	the	Ably
team	recommends	and	maintains	a	broadcaster	and	Echo	client	that	is	able	to	take	advantage	of	the	unique
capabilities	offered	by	Ably.	For	more	information	on	using	the	Ably	maintained	drivers,	please	consult
Ably's	Laravel	broadcaster	documentation.

Laravel	Echo	is	a	JavaScript	library	that	makes	it	painless	to	subscribe	to	channels	and	listen	for	events
broadcast	by	your	server-side	broadcasting	driver.	You	may	install	Echo	via	the	NPM	package	manager.	In	this
example,	we	will	also	install	the	pusher-js	package.

You	may	wonder	why	we	would	install	the	pusher-js	JavaScript	library	even	though	we	are	using	Ably	to
broadcast	our	events.	Thankfully,	Ably	includes	a	Pusher	compatibility	mode	which	lets	us	use	the	Pusher
protocol	when	listening	for	events	in	our	client-side	application:

npm	install	--save-dev	laravel-echo	pusher-js

Before	continuing,	you	should	enable	Pusher	protocol	support	in	your	Ably	application	settings.	You	may
enable	this	feature	within	the	"Protocol	Adapter	Settings"	portion	of	your	Ably	application's	settings
dashboard.

Once	Echo	is	installed,	you	are	ready	to	create	a	fresh	Echo	instance	in	your	application's	JavaScript.	A	great
place	to	do	this	is	at	the	bottom	of	the	resources/js/bootstrap.js	file	that	is	included	with	the	Laravel
framework.	By	default,	an	example	Echo	configuration	is	already	included	in	this	file;	however,	the	default
configuration	in	the	bootstrap.js	file	is	intended	for	Pusher.	You	may	copy	the	configuration	below	to
transition	your	configuration	to	Ably:

import	Echo	from	'laravel-echo';

import	Pusher	from	'pusher-js';

window.Pusher	=	Pusher;

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	import.meta.env.VITE_ABLY_PUBLIC_KEY,

				wsHost:	'realtime-pusher.ably.io',

				wsPort:	443,

				disableStats:	true,

				encrypted:	true,

});

Laravel	Documentation	-	10.x	/	Broadcasting 242

https://github.com/ably/laravel-broadcaster
https://github.com/laravel/echo

Note	that	our	Ably	Echo	configuration	references	a	VITE_ABLY_PUBLIC_KEY	environment	variable.	This	variable's
value	should	be	your	Ably	public	key.	Your	public	key	is	the	portion	of	your	Ably	key	that	occurs	before	the	:
character.

Once	you	have	uncommented	and	adjusted	the	Echo	configuration	according	to	your	needs,	you	may	compile
your	application's	assets:

npm	run	dev

[!NOTE]
To	learn	more	about	compiling	your	application's	JavaScript	assets,	please	consult	the	documentation	on
Vite.

Concept	Overview

Laravel's	event	broadcasting	allows	you	to	broadcast	your	server-side	Laravel	events	to	your	client-side
JavaScript	application	using	a	driver-based	approach	to	WebSockets.	Currently,	Laravel	ships	with	Pusher
Channels	and	Ably	drivers.	The	events	may	be	easily	consumed	on	the	client-side	using	the	Laravel	Echo
JavaScript	package.

Events	are	broadcast	over	"channels",	which	may	be	specified	as	public	or	private.	Any	visitor	to	your
application	may	subscribe	to	a	public	channel	without	any	authentication	or	authorization;	however,	in	order	to
subscribe	to	a	private	channel,	a	user	must	be	authenticated	and	authorized	to	listen	on	that	channel.

[!NOTE]
If	you	would	like	to	explore	open	source	alternatives	to	Pusher,	check	out	the	open	source	alternatives.

Using	an	Example	Application

Before	diving	into	each	component	of	event	broadcasting,	let's	take	a	high	level	overview	using	an	e-commerce
store	as	an	example.

In	our	application,	let's	assume	we	have	a	page	that	allows	users	to	view	the	shipping	status	for	their	orders.
Let's	also	assume	that	an	OrderShipmentStatusUpdated	event	is	fired	when	a	shipping	status	update	is	processed
by	the	application:

use	App\Events\OrderShipmentStatusUpdated;

OrderShipmentStatusUpdated::dispatch($order);

The	ShouldBroadcast	Interface

When	a	user	is	viewing	one	of	their	orders,	we	don't	want	them	to	have	to	refresh	the	page	to	view	status
updates.	Instead,	we	want	to	broadcast	the	updates	to	the	application	as	they	are	created.	So,	we	need	to	mark
the	OrderShipmentStatusUpdated	event	with	the	ShouldBroadcast	interface.	This	will	instruct	Laravel	to	broadcast
the	event	when	it	is	fired:

<?php

namespace	App\Events;

use	App\Models\Order;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Queue\SerializesModels;

class	OrderShipmentStatusUpdated	implements	ShouldBroadcast

{

				/**

					*	The	order	instance.

					*

					*	@var	\App\Order

					*/

				public	$order;

Laravel	Documentation	-	10.x	/	Broadcasting 243

https://pusher.com/channels
https://ably.com

}

The	ShouldBroadcast	interface	requires	our	event	to	define	a	broadcastOn	method.	This	method	is	responsible	for
returning	the	channels	that	the	event	should	broadcast	on.	An	empty	stub	of	this	method	is	already	defined	on
generated	event	classes,	so	we	only	need	to	fill	in	its	details.	We	only	want	the	creator	of	the	order	to	be	able	to
view	status	updates,	so	we	will	broadcast	the	event	on	a	private	channel	that	is	tied	to	the	order:

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\PrivateChannel;

/**

	*	Get	the	channel	the	event	should	broadcast	on.

	*/

public	function	broadcastOn():	Channel

{

				return	new	PrivateChannel('orders.'.$this->order->id);

}

If	you	wish	the	event	to	broadcast	on	multiple	channels,	you	may	return	an	array	instead:

use	Illuminate\Broadcasting\PrivateChannel;

/**

	*	Get	the	channels	the	event	should	broadcast	on.

	*

	*	@return	array<int,	\Illuminate\Broadcasting\Channel>

	*/

public	function	broadcastOn():	array

{

				return	[

								new	PrivateChannel('orders.'.$this->order->id),

								//	...

];

}

Authorizing	Channels

Remember,	users	must	be	authorized	to	listen	on	private	channels.	We	may	define	our	channel	authorization
rules	in	our	application's	routes/channels.php	file.	In	this	example,	we	need	to	verify	that	any	user	attempting
to	listen	on	the	private	orders.1	channel	is	actually	the	creator	of	the	order:

use	App\Models\Order;

use	App\Models\User;

Broadcast::channel('orders.{orderId}',	function	(User	$user,	int	$orderId)	{

				return	$user->id	===	Order::findOrNew($orderId)->user_id;

});

The	channel	method	accepts	two	arguments:	the	name	of	the	channel	and	a	callback	which	returns	true	or	false
indicating	whether	the	user	is	authorized	to	listen	on	the	channel.

All	authorization	callbacks	receive	the	currently	authenticated	user	as	their	first	argument	and	any	additional
wildcard	parameters	as	their	subsequent	arguments.	In	this	example,	we	are	using	the	{orderId}	placeholder	to
indicate	that	the	"ID"	portion	of	the	channel	name	is	a	wildcard.

Listening	for	Event	Broadcasts

Next,	all	that	remains	is	to	listen	for	the	event	in	our	JavaScript	application.	We	can	do	this	using	Laravel	Echo.
First,	we'll	use	the	private	method	to	subscribe	to	the	private	channel.	Then,	we	may	use	the	listen	method	to
listen	for	the	OrderShipmentStatusUpdated	event.	By	default,	all	of	the	event's	public	properties	will	be	included
on	the	broadcast	event:

Echo.private(`orders.${orderId}`)

				.listen('OrderShipmentStatusUpdated',	(e)	=>	{

								console.log(e.order);

				});

Defining	Broadcast	Events

Laravel	Documentation	-	10.x	/	Broadcasting 244

To	inform	Laravel	that	a	given	event	should	be	broadcast,	you	must	implement	the	
Illuminate\Contracts\Broadcasting\ShouldBroadcast	interface	on	the	event	class.	This	interface	is	already
imported	into	all	event	classes	generated	by	the	framework	so	you	may	easily	add	it	to	any	of	your	events.

The	ShouldBroadcast	interface	requires	you	to	implement	a	single	method:	broadcastOn.	The	broadcastOn
method	should	return	a	channel	or	array	of	channels	that	the	event	should	broadcast	on.	The	channels	should	be
instances	of	Channel,	PrivateChannel,	or	PresenceChannel.	Instances	of	Channel	represent	public	channels	that
any	user	may	subscribe	to,	while	PrivateChannels	and	PresenceChannels	represent	private	channels	that	require
channel	authorization:

<?php

namespace	App\Events;

use	App\Models\User;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Queue\SerializesModels;

class	ServerCreated	implements	ShouldBroadcast

{

				use	SerializesModels;

				/**

					*	Create	a	new	event	instance.

					*/

				public	function	__construct(

								public	User	$user,

)	{}

				/**

					*	Get	the	channels	the	event	should	broadcast	on.

					*

					*	@return	array<int,	\Illuminate\Broadcasting\Channel>

					*/

				public	function	broadcastOn():	array

				{

								return	[

												new	PrivateChannel('user.'.$this->user->id),

];

				}

}

After	implementing	the	ShouldBroadcast	interface,	you	only	need	to	fire	the	event	as	you	normally	would.	Once
the	event	has	been	fired,	a	queued	job	will	automatically	broadcast	the	event	using	your	specified	broadcast
driver.

Broadcast	Name

By	default,	Laravel	will	broadcast	the	event	using	the	event's	class	name.	However,	you	may	customize	the
broadcast	name	by	defining	a	broadcastAs	method	on	the	event:

/**

	*	The	event's	broadcast	name.

	*/

public	function	broadcastAs():	string

{

				return	'server.created';

}

If	you	customize	the	broadcast	name	using	the	broadcastAs	method,	you	should	make	sure	to	register	your
listener	with	a	leading	.	character.	This	will	instruct	Echo	to	not	prepend	the	application's	namespace	to	the
event:

.listen('.server.created',	function	(e)	{

			

});

Broadcast	Data

Laravel	Documentation	-	10.x	/	Broadcasting 245

When	an	event	is	broadcast,	all	of	its	public	properties	are	automatically	serialized	and	broadcast	as	the	event's
payload,	allowing	you	to	access	any	of	its	public	data	from	your	JavaScript	application.	So,	for	example,	if	your
event	has	a	single	public	$user	property	that	contains	an	Eloquent	model,	the	event's	broadcast	payload	would
be:

{

				"user":	{

								"id":	1,

								"name":	"Patrick	Stewart"

								...

				}

}

However,	if	you	wish	to	have	more	fine-grained	control	over	your	broadcast	payload,	you	may	add	a	
broadcastWith	method	to	your	event.	This	method	should	return	the	array	of	data	that	you	wish	to	broadcast	as
the	event	payload:

/**

	*	Get	the	data	to	broadcast.

	*

	*	@return	array<string,	mixed>

	*/

public	function	broadcastWith():	array

{

				return	['id'	=>	$this->user->id];

}

Broadcast	Queue

By	default,	each	broadcast	event	is	placed	on	the	default	queue	for	the	default	queue	connection	specified	in
your	queue.php	configuration	file.	You	may	customize	the	queue	connection	and	name	used	by	the	broadcaster
by	defining	connection	and	queue	properties	on	your	event	class:

/**

	*	The	name	of	the	queue	connection	to	use	when	broadcasting	the	event.

	*

	*	@var	string

	*/

public	$connection	=	'redis';

/**

	*	The	name	of	the	queue	on	which	to	place	the	broadcasting	job.

	*

	*	@var	string

	*/

public	$queue	=	'default';

Alternatively,	you	may	customize	the	queue	name	by	defining	a	broadcastQueue	method	on	your	event:

/**

	*	The	name	of	the	queue	on	which	to	place	the	broadcasting	job.

	*/

public	function	broadcastQueue():	string

{

				return	'default';

}

If	you	would	like	to	broadcast	your	event	using	the	sync	queue	instead	of	the	default	queue	driver,	you	can
implement	the	ShouldBroadcastNow	interface	instead	of	ShouldBroadcast:

<?php

use	Illuminate\Contracts\Broadcasting\ShouldBroadcastNow;

class	OrderShipmentStatusUpdated	implements	ShouldBroadcastNow

{

				//	...

}

Broadcast	Conditions

Sometimes	you	want	to	broadcast	your	event	only	if	a	given	condition	is	true.	You	may	define	these	conditions

Laravel	Documentation	-	10.x	/	Broadcasting 246

by	adding	a	broadcastWhen	method	to	your	event	class:

/**

	*	Determine	if	this	event	should	broadcast.

	*/

public	function	broadcastWhen():	bool

{

				return	$this->order->value	>	100;

}

Broadcasting	and	Database	Transactions

When	broadcast	events	are	dispatched	within	database	transactions,	they	may	be	processed	by	the	queue	before
the	database	transaction	has	committed.	When	this	happens,	any	updates	you	have	made	to	models	or	database
records	during	the	database	transaction	may	not	yet	be	reflected	in	the	database.	In	addition,	any	models	or
database	records	created	within	the	transaction	may	not	exist	in	the	database.	If	your	event	depends	on	these
models,	unexpected	errors	can	occur	when	the	job	that	broadcasts	the	event	is	processed.

If	your	queue	connection's	after_commit	configuration	option	is	set	to	false,	you	may	still	indicate	that	a
particular	broadcast	event	should	be	dispatched	after	all	open	database	transactions	have	been	committed	by
implementing	the	ShouldDispatchAfterCommit	interface	on	the	event	class:

<?php

namespace	App\Events;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Contracts\Events\ShouldDispatchAfterCommit;

use	Illuminate\Queue\SerializesModels;

class	ServerCreated	implements	ShouldBroadcast,	ShouldDispatchAfterCommit

{

				use	SerializesModels;

}

[!NOTE]
To	learn	more	about	working	around	these	issues,	please	review	the	documentation	regarding	queued	jobs
and	database	transactions.

Authorizing	Channels

Private	channels	require	you	to	authorize	that	the	currently	authenticated	user	can	actually	listen	on	the	channel.
This	is	accomplished	by	making	an	HTTP	request	to	your	Laravel	application	with	the	channel	name	and
allowing	your	application	to	determine	if	the	user	can	listen	on	that	channel.	When	using	Laravel	Echo,	the
HTTP	request	to	authorize	subscriptions	to	private	channels	will	be	made	automatically;	however,	you	do	need
to	define	the	proper	routes	to	respond	to	these	requests.

Defining	Authorization	Routes

Thankfully,	Laravel	makes	it	easy	to	define	the	routes	to	respond	to	channel	authorization	requests.	In	the	
App\Providers\BroadcastServiceProvider	included	with	your	Laravel	application,	you	will	see	a	call	to	the	
Broadcast::routes	method.	This	method	will	register	the	/broadcasting/auth	route	to	handle	authorization
requests:

Broadcast::routes();

The	Broadcast::routes	method	will	automatically	place	its	routes	within	the	web	middleware	group;	however,
you	may	pass	an	array	of	route	attributes	to	the	method	if	you	would	like	to	customize	the	assigned	attributes:

Broadcast::routes($attributes);

Customizing	the	Authorization	Endpoint

By	default,	Echo	will	use	the	/broadcasting/auth	endpoint	to	authorize	channel	access.	However,	you	may
specify	your	own	authorization	endpoint	by	passing	the	authEndpoint	configuration	option	to	your	Echo

Laravel	Documentation	-	10.x	/	Broadcasting 247

instance:

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				//	...

				authEndpoint:	'/custom/endpoint/auth'

});

Customizing	the	Authorization	Request

You	can	customize	how	Laravel	Echo	performs	authorization	requests	by	providing	a	custom	authorizer	when
initializing	Echo:

window.Echo	=	new	Echo({

				//	...

				authorizer:	(channel,	options)	=>	{

								return	{

												authorize:	(socketId,	callback)	=>	{

																axios.post('/api/broadcasting/auth',	{

																				socket_id:	socketId,

																				channel_name:	channel.name

																})

																.then(response	=>	{

																				callback(null,	response.data);

																})

																.catch(error	=>	{

																				callback(error);

																});

												}

								};

				},

})

Defining	Authorization	Callbacks

Next,	we	need	to	define	the	logic	that	will	actually	determine	if	the	currently	authenticated	user	can	listen	to	a
given	channel.	This	is	done	in	the	routes/channels.php	file	that	is	included	with	your	application.	In	this	file,
you	may	use	the	Broadcast::channel	method	to	register	channel	authorization	callbacks:

use	App\Models\User;

Broadcast::channel('orders.{orderId}',	function	(User	$user,	int	$orderId)	{

				return	$user->id	===	Order::findOrNew($orderId)->user_id;

});

The	channel	method	accepts	two	arguments:	the	name	of	the	channel	and	a	callback	which	returns	true	or	false
indicating	whether	the	user	is	authorized	to	listen	on	the	channel.

All	authorization	callbacks	receive	the	currently	authenticated	user	as	their	first	argument	and	any	additional
wildcard	parameters	as	their	subsequent	arguments.	In	this	example,	we	are	using	the	{orderId}	placeholder	to
indicate	that	the	"ID"	portion	of	the	channel	name	is	a	wildcard.

You	may	view	a	list	of	your	application's	broadcast	authorization	callbacks	using	the	channel:list	Artisan
command:

php	artisan	channel:list

Authorization	Callback	Model	Binding

Just	like	HTTP	routes,	channel	routes	may	also	take	advantage	of	implicit	and	explicit	route	model	binding.	For
example,	instead	of	receiving	a	string	or	numeric	order	ID,	you	may	request	an	actual	Order	model	instance:

use	App\Models\Order;

use	App\Models\User;

Broadcast::channel('orders.{order}',	function	(User	$user,	Order	$order)	{

				return	$user->id	===	$order->user_id;

});

[!WARNING]

Laravel	Documentation	-	10.x	/	Broadcasting 248

Unlike	HTTP	route	model	binding,	channel	model	binding	does	not	support	automatic	implicit	model
binding	scoping.	However,	this	is	rarely	a	problem	because	most	channels	can	be	scoped	based	on	a	single
model's	unique,	primary	key.

Authorization	Callback	Authentication

Private	and	presence	broadcast	channels	authenticate	the	current	user	via	your	application's	default
authentication	guard.	If	the	user	is	not	authenticated,	channel	authorization	is	automatically	denied	and	the
authorization	callback	is	never	executed.	However,	you	may	assign	multiple,	custom	guards	that	should
authenticate	the	incoming	request	if	necessary:

Broadcast::channel('channel',	function	()	{

				//	...

},	['guards'	=>	['web',	'admin']]);

Defining	Channel	Classes

If	your	application	is	consuming	many	different	channels,	your	routes/channels.php	file	could	become	bulky.
So,	instead	of	using	closures	to	authorize	channels,	you	may	use	channel	classes.	To	generate	a	channel	class,
use	the	make:channel	Artisan	command.	This	command	will	place	a	new	channel	class	in	the	App/Broadcasting
directory.

php	artisan	make:channel	OrderChannel

Next,	register	your	channel	in	your	routes/channels.php	file:

use	App\Broadcasting\OrderChannel;

Broadcast::channel('orders.{order}',	OrderChannel::class);

Finally,	you	may	place	the	authorization	logic	for	your	channel	in	the	channel	class'	join	method.	This	join
method	will	house	the	same	logic	you	would	have	typically	placed	in	your	channel	authorization	closure.	You
may	also	take	advantage	of	channel	model	binding:

<?php

namespace	App\Broadcasting;

use	App\Models\Order;

use	App\Models\User;

class	OrderChannel

{

				/**

					*	Create	a	new	channel	instance.

					*/

				public	function	__construct()

				{

								//	...

				}

				/**

					*	Authenticate	the	user's	access	to	the	channel.

					*/

				public	function	join(User	$user,	Order	$order):	array|bool

				{

								return	$user->id	===	$order->user_id;

				}

}

[!NOTE]
Like	many	other	classes	in	Laravel,	channel	classes	will	automatically	be	resolved	by	the	service
container.	So,	you	may	type-hint	any	dependencies	required	by	your	channel	in	its	constructor.

Broadcasting	Events

Once	you	have	defined	an	event	and	marked	it	with	the	ShouldBroadcast	interface,	you	only	need	to	fire	the
event	using	the	event's	dispatch	method.	The	event	dispatcher	will	notice	that	the	event	is	marked	with	the	

Laravel	Documentation	-	10.x	/	Broadcasting 249

ShouldBroadcast	interface	and	will	queue	the	event	for	broadcasting:

use	App\Events\OrderShipmentStatusUpdated;

OrderShipmentStatusUpdated::dispatch($order);

Only	to	Others

When	building	an	application	that	utilizes	event	broadcasting,	you	may	occasionally	need	to	broadcast	an	event
to	all	subscribers	to	a	given	channel	except	for	the	current	user.	You	may	accomplish	this	using	the	broadcast
helper	and	the	toOthers	method:

use	App\Events\OrderShipmentStatusUpdated;

broadcast(new	OrderShipmentStatusUpdated($update))->toOthers();

To	better	understand	when	you	may	want	to	use	the	toOthers	method,	let's	imagine	a	task	list	application	where
a	user	may	create	a	new	task	by	entering	a	task	name.	To	create	a	task,	your	application	might	make	a	request	to
a	/task	URL	which	broadcasts	the	task's	creation	and	returns	a	JSON	representation	of	the	new	task.	When
your	JavaScript	application	receives	the	response	from	the	end-point,	it	might	directly	insert	the	new	task	into
its	task	list	like	so:

axios.post('/task',	task)

				.then((response)	=>	{

								this.tasks.push(response.data);

				});

However,	remember	that	we	also	broadcast	the	task's	creation.	If	your	JavaScript	application	is	also	listening
for	this	event	in	order	to	add	tasks	to	the	task	list,	you	will	have	duplicate	tasks	in	your	list:	one	from	the	end-
point	and	one	from	the	broadcast.	You	may	solve	this	by	using	the	toOthers	method	to	instruct	the	broadcaster
to	not	broadcast	the	event	to	the	current	user.

[!WARNING]
Your	event	must	use	the	Illuminate\Broadcasting\InteractsWithSockets	trait	in	order	to	call	the	toOthers
method.

Configuration

When	you	initialize	a	Laravel	Echo	instance,	a	socket	ID	is	assigned	to	the	connection.	If	you	are	using	a	global
Axios	instance	to	make	HTTP	requests	from	your	JavaScript	application,	the	socket	ID	will	automatically	be
attached	to	every	outgoing	request	as	an	X-Socket-ID	header.	Then,	when	you	call	the	toOthers	method,	Laravel
will	extract	the	socket	ID	from	the	header	and	instruct	the	broadcaster	to	not	broadcast	to	any	connections	with
that	socket	ID.

If	you	are	not	using	a	global	Axios	instance,	you	will	need	to	manually	configure	your	JavaScript	application	to
send	the	X-Socket-ID	header	with	all	outgoing	requests.	You	may	retrieve	the	socket	ID	using	the	Echo.socketId
method:

var	socketId	=	Echo.socketId();

Customizing	the	Connection

If	your	application	interacts	with	multiple	broadcast	connections	and	you	want	to	broadcast	an	event	using	a
broadcaster	other	than	your	default,	you	may	specify	which	connection	to	push	an	event	to	using	the	via
method:

use	App\Events\OrderShipmentStatusUpdated;

broadcast(new	OrderShipmentStatusUpdated($update))->via('pusher');

Alternatively,	you	may	specify	the	event's	broadcast	connection	by	calling	the	broadcastVia	method	within	the
event's	constructor.	However,	before	doing	so,	you	should	ensure	that	the	event	class	uses	the	
InteractsWithBroadcasting	trait:

<?php

Laravel	Documentation	-	10.x	/	Broadcasting 250

https://github.com/mzabriskie/axios

namespace	App\Events;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\InteractsWithBroadcasting;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Queue\SerializesModels;

class	OrderShipmentStatusUpdated	implements	ShouldBroadcast

{

				use	InteractsWithBroadcasting;

				/**

					*	Create	a	new	event	instance.

					*/

				public	function	__construct()

				{

								$this->broadcastVia('pusher');

				}

}

Receiving	Broadcasts

Listening	for	Events

Once	you	have	installed	and	instantiated	Laravel	Echo,	you	are	ready	to	start	listening	for	events	that	are
broadcast	from	your	Laravel	application.	First,	use	the	channel	method	to	retrieve	an	instance	of	a	channel,	then
call	the	listen	method	to	listen	for	a	specified	event:

Echo.channel(`orders.${this.order.id}`)

				.listen('OrderShipmentStatusUpdated',	(e)	=>	{

								console.log(e.order.name);

				});

If	you	would	like	to	listen	for	events	on	a	private	channel,	use	the	private	method	instead.	You	may	continue	to
chain	calls	to	the	listen	method	to	listen	for	multiple	events	on	a	single	channel:

Echo.private(`orders.${this.order.id}`)

				.listen(/*	...	*/)

				.listen(/*	...	*/)

				.listen(/*	...	*/);

Stop	Listening	for	Events

If	you	would	like	to	stop	listening	to	a	given	event	without	leaving	the	channel,	you	may	use	the	stopListening
method:

Echo.private(`orders.${this.order.id}`)

				.stopListening('OrderShipmentStatusUpdated')

Leaving	a	Channel

To	leave	a	channel,	you	may	call	the	leaveChannel	method	on	your	Echo	instance:

Echo.leaveChannel(`orders.${this.order.id}`);

If	you	would	like	to	leave	a	channel	and	also	its	associated	private	and	presence	channels,	you	may	call	the	
leave	method:

Echo.leave(`orders.${this.order.id}`);

Namespaces

You	may	have	noticed	in	the	examples	above	that	we	did	not	specify	the	full	App\Events	namespace	for	the
event	classes.	This	is	because	Echo	will	automatically	assume	the	events	are	located	in	the	App\Events

Laravel	Documentation	-	10.x	/	Broadcasting 251

namespace.	However,	you	may	configure	the	root	namespace	when	you	instantiate	Echo	by	passing	a	namespace
configuration	option:

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				//	...

				namespace:	'App.Other.Namespace'

});

Alternatively,	you	may	prefix	event	classes	with	a	.	when	subscribing	to	them	using	Echo.	This	will	allow	you
to	always	specify	the	fully-qualified	class	name:

Echo.channel('orders')

				.listen('.Namespace\\Event\\Class',	(e)	=>	{

								//	...

				});

Presence	Channels

Presence	channels	build	on	the	security	of	private	channels	while	exposing	the	additional	feature	of	awareness
of	who	is	subscribed	to	the	channel.	This	makes	it	easy	to	build	powerful,	collaborative	application	features
such	as	notifying	users	when	another	user	is	viewing	the	same	page	or	listing	the	inhabitants	of	a	chat	room.

Authorizing	Presence	Channels

All	presence	channels	are	also	private	channels;	therefore,	users	must	be	authorized	to	access	them.	However,
when	defining	authorization	callbacks	for	presence	channels,	you	will	not	return	true	if	the	user	is	authorized	to
join	the	channel.	Instead,	you	should	return	an	array	of	data	about	the	user.

The	data	returned	by	the	authorization	callback	will	be	made	available	to	the	presence	channel	event	listeners	in
your	JavaScript	application.	If	the	user	is	not	authorized	to	join	the	presence	channel,	you	should	return	false
or	null:

use	App\Models\User;

Broadcast::channel('chat.{roomId}',	function	(User	$user,	int	$roomId)	{

				if	($user->canJoinRoom($roomId))	{

								return	['id'	=>	$user->id,	'name'	=>	$user->name];

				}

});

Joining	Presence	Channels

To	join	a	presence	channel,	you	may	use	Echo's	join	method.	The	join	method	will	return	a	PresenceChannel
implementation	which,	along	with	exposing	the	listen	method,	allows	you	to	subscribe	to	the	here,	joining,
and	leaving	events.

Echo.join(`chat.${roomId}`)

				.here((users)	=>	{

								//	...

				})

				.joining((user)	=>	{

								console.log(user.name);

				})

				.leaving((user)	=>	{

								console.log(user.name);

				})

				.error((error)	=>	{

								console.error(error);

				});

The	here	callback	will	be	executed	immediately	once	the	channel	is	joined	successfully,	and	will	receive	an
array	containing	the	user	information	for	all	of	the	other	users	currently	subscribed	to	the	channel.	The	joining
method	will	be	executed	when	a	new	user	joins	a	channel,	while	the	leaving	method	will	be	executed	when	a
user	leaves	the	channel.	The	error	method	will	be	executed	when	the	authentication	endpoint	returns	an	HTTP
status	code	other	than	200	or	if	there	is	a	problem	parsing	the	returned	JSON.

Laravel	Documentation	-	10.x	/	Broadcasting 252

Broadcasting	to	Presence	Channels

Presence	channels	may	receive	events	just	like	public	or	private	channels.	Using	the	example	of	a	chatroom,	we
may	want	to	broadcast	NewMessage	events	to	the	room's	presence	channel.	To	do	so,	we'll	return	an	instance	of	
PresenceChannel	from	the	event's	broadcastOn	method:

/**

	*	Get	the	channels	the	event	should	broadcast	on.

	*

	*	@return	array<int,	\Illuminate\Broadcasting\Channel>

	*/

public	function	broadcastOn():	array

{

				return	[

								new	PresenceChannel('chat.'.$this->message->room_id),

];

}

As	with	other	events,	you	may	use	the	broadcast	helper	and	the	toOthers	method	to	exclude	the	current	user
from	receiving	the	broadcast:

broadcast(new	NewMessage($message));

broadcast(new	NewMessage($message))->toOthers();

As	typical	of	other	types	of	events,	you	may	listen	for	events	sent	to	presence	channels	using	Echo's	listen
method:

Echo.join(`chat.${roomId}`)

				.here(/*	...	*/)

				.joining(/*	...	*/)

				.leaving(/*	...	*/)

				.listen('NewMessage',	(e)	=>	{

								//	...

				});

Model	Broadcasting

[!WARNING]
Before	reading	the	following	documentation	about	model	broadcasting,	we	recommend	you	become
familiar	with	the	general	concepts	of	Laravel's	model	broadcasting	services	as	well	as	how	to	manually
create	and	listen	to	broadcast	events.

It	is	common	to	broadcast	events	when	your	application's	Eloquent	models	are	created,	updated,	or	deleted.	Of
course,	this	can	easily	be	accomplished	by	manually	defining	custom	events	for	Eloquent	model	state	changes
and	marking	those	events	with	the	ShouldBroadcast	interface.

However,	if	you	are	not	using	these	events	for	any	other	purposes	in	your	application,	it	can	be	cumbersome	to
create	event	classes	for	the	sole	purpose	of	broadcasting	them.	To	remedy	this,	Laravel	allows	you	to	indicate
that	an	Eloquent	model	should	automatically	broadcast	its	state	changes.

To	get	started,	your	Eloquent	model	should	use	the	Illuminate\Database\Eloquent\BroadcastsEvents	trait.	In
addition,	the	model	should	define	a	broadcastOn	method,	which	will	return	an	array	of	channels	that	the	model's
events	should	broadcast	on:

<?php

namespace	App\Models;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Database\Eloquent\BroadcastsEvents;

use	Illuminate\Database\Eloquent\Factories\HasFactory;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

class	Post	extends	Model

{

				use	BroadcastsEvents,	HasFactory;

Laravel	Documentation	-	10.x	/	Broadcasting 253

				/**

					*	Get	the	user	that	the	post	belongs	to.

					*/

				public	function	user():	BelongsTo

				{

								return	$this->belongsTo(User::class);

				}

				/**

					*	Get	the	channels	that	model	events	should	broadcast	on.

					*

					*	@return	array<int,	\Illuminate\Broadcasting\Channel|\Illuminate\Database\Eloquent\Model>

					*/

				public	function	broadcastOn(string	$event):	array

				{

								return	[$this,	$this->user];

				}

}

Once	your	model	includes	this	trait	and	defines	its	broadcast	channels,	it	will	begin	automatically	broadcasting
events	when	a	model	instance	is	created,	updated,	deleted,	trashed,	or	restored.

In	addition,	you	may	have	noticed	that	the	broadcastOn	method	receives	a	string	$event	argument.	This
argument	contains	the	type	of	event	that	has	occurred	on	the	model	and	will	have	a	value	of	created,	updated,	
deleted,	trashed,	or	restored.	By	inspecting	the	value	of	this	variable,	you	may	determine	which	channels	(if
any)	the	model	should	broadcast	to	for	a	particular	event:

/**

	*	Get	the	channels	that	model	events	should	broadcast	on.

	*

	*	@return	array<string,	array<int,	

\Illuminate\Broadcasting\Channel|\Illuminate\Database\Eloquent\Model>>

	*/

public	function	broadcastOn(string	$event):	array

{

				return	match	($event)	{

								'deleted'	=>	[],

								default	=>	[$this,	$this->user],

				};

}

Customizing	Model	Broadcasting	Event	Creation

Occasionally,	you	may	wish	to	customize	how	Laravel	creates	the	underlying	model	broadcasting	event.	You
may	accomplish	this	by	defining	a	newBroadcastableEvent	method	on	your	Eloquent	model.	This	method	should
return	an	Illuminate\Database\Eloquent\BroadcastableModelEventOccurred	instance:

use	Illuminate\Database\Eloquent\BroadcastableModelEventOccurred;

/**

	*	Create	a	new	broadcastable	model	event	for	the	model.

	*/

protected	function	newBroadcastableEvent(string	$event):	BroadcastableModelEventOccurred

{

				return	(new	BroadcastableModelEventOccurred(

								$this,	$event

))->dontBroadcastToCurrentUser();

}

Model	Broadcasting	Conventions

Channel	Conventions

As	you	may	have	noticed,	the	broadcastOn	method	in	the	model	example	above	did	not	return	Channel	instances.
Instead,	Eloquent	models	were	returned	directly.	If	an	Eloquent	model	instance	is	returned	by	your	model's	
broadcastOn	method	(or	is	contained	in	an	array	returned	by	the	method),	Laravel	will	automatically	instantiate
a	private	channel	instance	for	the	model	using	the	model's	class	name	and	primary	key	identifier	as	the	channel
name.

So,	an	App\Models\User	model	with	an	id	of	1	would	be	converted	into	an	
Illuminate\Broadcasting\PrivateChannel	instance	with	a	name	of	App.Models.User.1.	Of	course,	in	addition	to

Laravel	Documentation	-	10.x	/	Broadcasting 254

returning	Eloquent	model	instances	from	your	model's	broadcastOn	method,	you	may	return	complete	Channel
instances	in	order	to	have	full	control	over	the	model's	channel	names:

use	Illuminate\Broadcasting\PrivateChannel;

/**

	*	Get	the	channels	that	model	events	should	broadcast	on.

	*

	*	@return	array<int,	\Illuminate\Broadcasting\Channel>

	*/

public	function	broadcastOn(string	$event):	array

{

				return	[

								new	PrivateChannel('user.'.$this->id)

];

}

If	you	plan	to	explicitly	return	a	channel	instance	from	your	model's	broadcastOn	method,	you	may	pass	an
Eloquent	model	instance	to	the	channel's	constructor.	When	doing	so,	Laravel	will	use	the	model	channel
conventions	discussed	above	to	convert	the	Eloquent	model	into	a	channel	name	string:

return	[new	Channel($this->user)];

If	you	need	to	determine	the	channel	name	of	a	model,	you	may	call	the	broadcastChannel	method	on	any	model
instance.	For	example,	this	method	returns	the	string	App.Models.User.1	for	an	App\Models\User	model	with	an	
id	of	1:

$user->broadcastChannel()

Event	Conventions

Since	model	broadcast	events	are	not	associated	with	an	"actual"	event	within	your	application's	App\Events
directory,	they	are	assigned	a	name	and	a	payload	based	on	conventions.	Laravel's	convention	is	to	broadcast
the	event	using	the	class	name	of	the	model	(not	including	the	namespace)	and	the	name	of	the	model	event	that
triggered	the	broadcast.

So,	for	example,	an	update	to	the	App\Models\Post	model	would	broadcast	an	event	to	your	client-side
application	as	PostUpdated	with	the	following	payload:

{

				"model":	{

								"id":	1,

								"title":	"My	first	post"

								...

				},

				...

				"socket":	"someSocketId",

}

The	deletion	of	the	App\Models\User	model	would	broadcast	an	event	named	UserDeleted.

If	you	would	like,	you	may	define	a	custom	broadcast	name	and	payload	by	adding	a	broadcastAs	and	
broadcastWith	method	to	your	model.	These	methods	receive	the	name	of	the	model	event	/	operation	that	is
occurring,	allowing	you	to	customize	the	event's	name	and	payload	for	each	model	operation.	If	null	is	returned
from	the	broadcastAs	method,	Laravel	will	use	the	model	broadcasting	event	name	conventions	discussed	above
when	broadcasting	the	event:

/**

	*	The	model	event's	broadcast	name.

	*/

public	function	broadcastAs(string	$event):	string|null

{

				return	match	($event)	{

								'created'	=>	'post.created',

								default	=>	null,

				};

}

/**

	*	Get	the	data	to	broadcast	for	the	model.

	*

Laravel	Documentation	-	10.x	/	Broadcasting 255

	*	@return	array<string,	mixed>

	*/

public	function	broadcastWith(string	$event):	array

{

				return	match	($event)	{

								'created'	=>	['title'	=>	$this->title],

								default	=>	['model'	=>	$this],

				};

}

Listening	for	Model	Broadcasts

Once	you	have	added	the	BroadcastsEvents	trait	to	your	model	and	defined	your	model's	broadcastOn	method,
you	are	ready	to	start	listening	for	broadcasted	model	events	within	your	client-side	application.	Before	getting
started,	you	may	wish	to	consult	the	complete	documentation	on	listening	for	events.

First,	use	the	private	method	to	retrieve	an	instance	of	a	channel,	then	call	the	listen	method	to	listen	for	a
specified	event.	Typically,	the	channel	name	given	to	the	private	method	should	correspond	to	Laravel's	model
broadcasting	conventions.

Once	you	have	obtained	a	channel	instance,	you	may	use	the	listen	method	to	listen	for	a	particular	event.
Since	model	broadcast	events	are	not	associated	with	an	"actual"	event	within	your	application's	App\Events
directory,	the	event	name	must	be	prefixed	with	a	.	to	indicate	it	does	not	belong	to	a	particular	namespace.
Each	model	broadcast	event	has	a	model	property	which	contains	all	of	the	broadcastable	properties	of	the
model:

Echo.private(`App.Models.User.${this.user.id}`)

				.listen('.PostUpdated',	(e)	=>	{

								console.log(e.model);

				});

Client	Events

[!NOTE]
When	using	Pusher	Channels,	you	must	enable	the	"Client	Events"	option	in	the	"App	Settings"	section	of
your	application	dashboard	in	order	to	send	client	events.

Sometimes	you	may	wish	to	broadcast	an	event	to	other	connected	clients	without	hitting	your	Laravel
application	at	all.	This	can	be	particularly	useful	for	things	like	"typing"	notifications,	where	you	want	to	alert
users	of	your	application	that	another	user	is	typing	a	message	on	a	given	screen.

To	broadcast	client	events,	you	may	use	Echo's	whisper	method:

Echo.private(`chat.${roomId}`)

				.whisper('typing',	{

								name:	this.user.name

				});

To	listen	for	client	events,	you	may	use	the	listenForWhisper	method:

Echo.private(`chat.${roomId}`)

				.listenForWhisper('typing',	(e)	=>	{

								console.log(e.name);

				});

Notifications

By	pairing	event	broadcasting	with	notifications,	your	JavaScript	application	may	receive	new	notifications	as
they	occur	without	needing	to	refresh	the	page.	Before	getting	started,	be	sure	to	read	over	the	documentation
on	using	the	broadcast	notification	channel.

Once	you	have	configured	a	notification	to	use	the	broadcast	channel,	you	may	listen	for	the	broadcast	events
using	Echo's	notification	method.	Remember,	the	channel	name	should	match	the	class	name	of	the	entity
receiving	the	notifications:

Echo.private(`App.Models.User.${userId}`)

Laravel	Documentation	-	10.x	/	Broadcasting 256

https://pusher.com/channels
https://dashboard.pusher.com/

				.notification((notification)	=>	{

								console.log(notification.type);

				});

In	this	example,	all	notifications	sent	to	App\Models\User	instances	via	the	broadcast	channel	would	be	received
by	the	callback.	A	channel	authorization	callback	for	the	App.Models.User.{id}	channel	is	included	in	the
default	BroadcastServiceProvider	that	ships	with	the	Laravel	framework.

Laravel	Documentation	-	10.x	/	Broadcasting 257

Digging	Deeper

Cache
Introduction
Configuration

Driver	Prerequisites
Cache	Usage

Obtaining	a	Cache	Instance
Retrieving	Items	From	the	Cache
Storing	Items	in	the	Cache
Removing	Items	From	the	Cache
The	Cache	Helper

Atomic	Locks
Driver	Prerequisites
Managing	Locks
Managing	Locks	Across	Processes

Adding	Custom	Cache	Drivers
Writing	the	Driver
Registering	the	Driver

Events

Introduction

Some	of	the	data	retrieval	or	processing	tasks	performed	by	your	application	could	be	CPU	intensive	or	take
several	seconds	to	complete.	When	this	is	the	case,	it	is	common	to	cache	the	retrieved	data	for	a	time	so	it	can
be	retrieved	quickly	on	subsequent	requests	for	the	same	data.	The	cached	data	is	usually	stored	in	a	very	fast
data	store	such	as	Memcached	or	Redis.

Thankfully,	Laravel	provides	an	expressive,	unified	API	for	various	cache	backends,	allowing	you	to	take
advantage	of	their	blazing	fast	data	retrieval	and	speed	up	your	web	application.

Configuration

Your	application's	cache	configuration	file	is	located	at	config/cache.php.	In	this	file,	you	may	specify	which
cache	driver	you	would	like	to	be	used	by	default	throughout	your	application.	Laravel	supports	popular
caching	backends	like	Memcached,	Redis,	DynamoDB,	and	relational	databases	out	of	the	box.	In	addition,	a
file	based	cache	driver	is	available,	while	array	and	"null"	cache	drivers	provide	convenient	cache	backends	for
your	automated	tests.

The	cache	configuration	file	also	contains	various	other	options,	which	are	documented	within	the	file,	so	make
sure	to	read	over	these	options.	By	default,	Laravel	is	configured	to	use	the	file	cache	driver,	which	stores	the
serialized,	cached	objects	on	the	server's	filesystem.	For	larger	applications,	it	is	recommended	that	you	use	a
more	robust	driver	such	as	Memcached	or	Redis.	You	may	even	configure	multiple	cache	configurations	for	the
same	driver.

Driver	Prerequisites

Database

When	using	the	database	cache	driver,	you	will	need	to	set	up	a	table	to	contain	the	cache	items.	You'll	find	an
example	Schema	declaration	for	the	table	below:

Schema::create('cache',	function	(Blueprint	$table)	{

				$table->string('key')->unique();

				$table->text('value');

				$table->integer('expiration');

});

[!NOTE]

Laravel	Documentation	-	10.x	/	Cache 258

https://memcached.org
https://redis.io
https://memcached.org
https://redis.io
https://aws.amazon.com/dynamodb

You	may	also	use	the	php	artisan	cache:table	Artisan	command	to	generate	a	migration	with	the	proper
schema.

Memcached

Using	the	Memcached	driver	requires	the	Memcached	PECL	package	to	be	installed.	You	may	list	all	of	your
Memcached	servers	in	the	config/cache.php	configuration	file.	This	file	already	contains	a	memcached.servers
entry	to	get	you	started:

'memcached'	=>	[

				'servers'	=>	[

								[

												'host'	=>	env('MEMCACHED_HOST',	'127.0.0.1'),

												'port'	=>	env('MEMCACHED_PORT',	11211),

												'weight'	=>	100,

],

],

],

If	needed,	you	may	set	the	host	option	to	a	UNIX	socket	path.	If	you	do	this,	the	port	option	should	be	set	to	0:

'memcached'	=>	[

				[

								'host'	=>	'/var/run/memcached/memcached.sock',

								'port'	=>	0,

								'weight'	=>	100

],

],

Redis

Before	using	a	Redis	cache	with	Laravel,	you	will	need	to	either	install	the	PhpRedis	PHP	extension	via	PECL
or	install	the	predis/predis	package	(~1.0)	via	Composer.	Laravel	Sail	already	includes	this	extension.	In
addition,	official	Laravel	deployment	platforms	such	as	Laravel	Forge	and	Laravel	Vapor	have	the	PhpRedis
extension	installed	by	default.

For	more	information	on	configuring	Redis,	consult	its	Laravel	documentation	page.

DynamoDB

Before	using	the	DynamoDB	cache	driver,	you	must	create	a	DynamoDB	table	to	store	all	of	the	cached	data.
Typically,	this	table	should	be	named	cache.	However,	you	should	name	the	table	based	on	the	value	of	the	
stores.dynamodb.table	configuration	value	within	your	application's	cache	configuration	file.

This	table	should	also	have	a	string	partition	key	with	a	name	that	corresponds	to	the	value	of	the	
stores.dynamodb.attributes.key	configuration	item	within	your	application's	cache	configuration	file.	By
default,	the	partition	key	should	be	named	key.

Cache	Usage

Obtaining	a	Cache	Instance

To	obtain	a	cache	store	instance,	you	may	use	the	Cache	facade,	which	is	what	we	will	use	throughout	this
documentation.	The	Cache	facade	provides	convenient,	terse	access	to	the	underlying	implementations	of	the
Laravel	cache	contracts:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\Facades\Cache;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	users	of	the	application.

Laravel	Documentation	-	10.x	/	Cache 259

https://pecl.php.net/package/memcached
https://forge.laravel.com
https://vapor.laravel.com
https://aws.amazon.com/dynamodb

					*/

				public	function	index():	array

				{

								$value	=	Cache::get('key');

								return	[

												//	...

];

				}

}

Accessing	Multiple	Cache	Stores

Using	the	Cache	facade,	you	may	access	various	cache	stores	via	the	store	method.	The	key	passed	to	the	store
method	should	correspond	to	one	of	the	stores	listed	in	the	stores	configuration	array	in	your	cache
configuration	file:

$value	=	Cache::store('file')->get('foo');

Cache::store('redis')->put('bar',	'baz',	600);	//	10	Minutes

Retrieving	Items	From	the	Cache

The	Cache	facade's	get	method	is	used	to	retrieve	items	from	the	cache.	If	the	item	does	not	exist	in	the	cache,	
null	will	be	returned.	If	you	wish,	you	may	pass	a	second	argument	to	the	get	method	specifying	the	default
value	you	wish	to	be	returned	if	the	item	doesn't	exist:

$value	=	Cache::get('key');

$value	=	Cache::get('key',	'default');

You	may	even	pass	a	closure	as	the	default	value.	The	result	of	the	closure	will	be	returned	if	the	specified	item
does	not	exist	in	the	cache.	Passing	a	closure	allows	you	to	defer	the	retrieval	of	default	values	from	a	database
or	other	external	service:

$value	=	Cache::get('key',	function	()	{

				return	DB::table(/*	...	*/)->get();

});

Determining	Item	Existence

The	has	method	may	be	used	to	determine	if	an	item	exists	in	the	cache.	This	method	will	also	return	false	if
the	item	exists	but	its	value	is	null:

if	(Cache::has('key'))	{

				//	...

}

Incrementing	/	Decrementing	Values

The	increment	and	decrement	methods	may	be	used	to	adjust	the	value	of	integer	items	in	the	cache.	Both	of
these	methods	accept	an	optional	second	argument	indicating	the	amount	by	which	to	increment	or	decrement
the	item's	value:

//	Initialize	the	value	if	it	does	not	exist...

Cache::add('key',	0,	now()->addHours(4));

//	Increment	or	decrement	the	value...

Cache::increment('key');

Cache::increment('key',	$amount);

Cache::decrement('key');

Cache::decrement('key',	$amount);

Retrieve	and	Store

Sometimes	you	may	wish	to	retrieve	an	item	from	the	cache,	but	also	store	a	default	value	if	the	requested	item
doesn't	exist.	For	example,	you	may	wish	to	retrieve	all	users	from	the	cache	or,	if	they	don't	exist,	retrieve

Laravel	Documentation	-	10.x	/	Cache 260

them	from	the	database	and	add	them	to	the	cache.	You	may	do	this	using	the	Cache::remember	method:

$value	=	Cache::remember('users',	$seconds,	function	()	{

				return	DB::table('users')->get();

});

If	the	item	does	not	exist	in	the	cache,	the	closure	passed	to	the	remember	method	will	be	executed	and	its	result
will	be	placed	in	the	cache.

You	may	use	the	rememberForever	method	to	retrieve	an	item	from	the	cache	or	store	it	forever	if	it	does	not
exist:

$value	=	Cache::rememberForever('users',	function	()	{

				return	DB::table('users')->get();

});

Retrieve	and	Delete

If	you	need	to	retrieve	an	item	from	the	cache	and	then	delete	the	item,	you	may	use	the	pull	method.	Like	the	
get	method,	null	will	be	returned	if	the	item	does	not	exist	in	the	cache:

$value	=	Cache::pull('key');

Storing	Items	in	the	Cache

You	may	use	the	put	method	on	the	Cache	facade	to	store	items	in	the	cache:

Cache::put('key',	'value',	$seconds	=	10);

If	the	storage	time	is	not	passed	to	the	put	method,	the	item	will	be	stored	indefinitely:

Cache::put('key',	'value');

Instead	of	passing	the	number	of	seconds	as	an	integer,	you	may	also	pass	a	DateTime	instance	representing	the
desired	expiration	time	of	the	cached	item:

Cache::put('key',	'value',	now()->addMinutes(10));

Store	if	Not	Present

The	add	method	will	only	add	the	item	to	the	cache	if	it	does	not	already	exist	in	the	cache	store.	The	method
will	return	true	if	the	item	is	actually	added	to	the	cache.	Otherwise,	the	method	will	return	false.	The	add
method	is	an	atomic	operation:

Cache::add('key',	'value',	$seconds);

Storing	Items	Forever

The	forever	method	may	be	used	to	store	an	item	in	the	cache	permanently.	Since	these	items	will	not	expire,
they	must	be	manually	removed	from	the	cache	using	the	forget	method:

Cache::forever('key',	'value');

[!NOTE]
If	you	are	using	the	Memcached	driver,	items	that	are	stored	"forever"	may	be	removed	when	the	cache
reaches	its	size	limit.

Removing	Items	From	the	Cache

You	may	remove	items	from	the	cache	using	the	forget	method:

Cache::forget('key');

You	may	also	remove	items	by	providing	a	zero	or	negative	number	of	expiration	seconds:

Laravel	Documentation	-	10.x	/	Cache 261

Cache::put('key',	'value',	0);

Cache::put('key',	'value',	-5);

You	may	clear	the	entire	cache	using	the	flush	method:

Cache::flush();

[!WARNING]
Flushing	the	cache	does	not	respect	your	configured	cache	"prefix"	and	will	remove	all	entries	from	the
cache.	Consider	this	carefully	when	clearing	a	cache	which	is	shared	by	other	applications.

The	Cache	Helper

In	addition	to	using	the	Cache	facade,	you	may	also	use	the	global	cache	function	to	retrieve	and	store	data	via
the	cache.	When	the	cache	function	is	called	with	a	single,	string	argument,	it	will	return	the	value	of	the	given
key:

$value	=	cache('key');

If	you	provide	an	array	of	key	/	value	pairs	and	an	expiration	time	to	the	function,	it	will	store	values	in	the
cache	for	the	specified	duration:

cache(['key'	=>	'value'],	$seconds);

cache(['key'	=>	'value'],	now()->addMinutes(10));

When	the	cache	function	is	called	without	any	arguments,	it	returns	an	instance	of	the	
Illuminate\Contracts\Cache\Factory	implementation,	allowing	you	to	call	other	caching	methods:

cache()->remember('users',	$seconds,	function	()	{

				return	DB::table('users')->get();

});

[!NOTE]
When	testing	call	to	the	global	cache	function,	you	may	use	the	Cache::shouldReceive	method	just	as	if	you
were	testing	the	facade.

Atomic	Locks

[!WARNING]
To	utilize	this	feature,	your	application	must	be	using	the	memcached,	redis,	dynamodb,	database,	file,	or	
array	cache	driver	as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be
communicating	with	the	same	central	cache	server.

Driver	Prerequisites

Database

When	using	the	database	cache	driver,	you	will	need	to	setup	a	table	to	contain	your	application's	cache	locks.
You'll	find	an	example	Schema	declaration	for	the	table	below:

Schema::create('cache_locks',	function	(Blueprint	$table)	{

				$table->string('key')->primary();

				$table->string('owner');

				$table->integer('expiration');

});

[!NOTE]
If	you	used	the	cache:table	Artisan	command	to	create	the	database	driver's	cache	table,	the	migration
created	by	that	command	already	includes	a	definition	for	the	cache_locks	table.

Managing	Locks

Laravel	Documentation	-	10.x	/	Cache 262

Atomic	locks	allow	for	the	manipulation	of	distributed	locks	without	worrying	about	race	conditions.	For
example,	Laravel	Forge	uses	atomic	locks	to	ensure	that	only	one	remote	task	is	being	executed	on	a	server	at	a
time.	You	may	create	and	manage	locks	using	the	Cache::lock	method:

use	Illuminate\Support\Facades\Cache;

$lock	=	Cache::lock('foo',	10);

if	($lock->get())	{

				//	Lock	acquired	for	10	seconds...

				$lock->release();

}

The	get	method	also	accepts	a	closure.	After	the	closure	is	executed,	Laravel	will	automatically	release	the
lock:

Cache::lock('foo',	10)->get(function	()	{

				//	Lock	acquired	for	10	seconds	and	automatically	released...

});

If	the	lock	is	not	available	at	the	moment	you	request	it,	you	may	instruct	Laravel	to	wait	for	a	specified
number	of	seconds.	If	the	lock	can	not	be	acquired	within	the	specified	time	limit,	an	
Illuminate\Contracts\Cache\LockTimeoutException	will	be	thrown:

use	Illuminate\Contracts\Cache\LockTimeoutException;

$lock	=	Cache::lock('foo',	10);

try	{

				$lock->block(5);

				//	Lock	acquired	after	waiting	a	maximum	of	5	seconds...

}	catch	(LockTimeoutException	$e)	{

				//	Unable	to	acquire	lock...

}	finally	{

				$lock?->release();

}

The	example	above	may	be	simplified	by	passing	a	closure	to	the	block	method.	When	a	closure	is	passed	to
this	method,	Laravel	will	attempt	to	acquire	the	lock	for	the	specified	number	of	seconds	and	will	automatically
release	the	lock	once	the	closure	has	been	executed:

Cache::lock('foo',	10)->block(5,	function	()	{

				//	Lock	acquired	after	waiting	a	maximum	of	5	seconds...

});

Managing	Locks	Across	Processes

Sometimes,	you	may	wish	to	acquire	a	lock	in	one	process	and	release	it	in	another	process.	For	example,	you
may	acquire	a	lock	during	a	web	request	and	wish	to	release	the	lock	at	the	end	of	a	queued	job	that	is	triggered
by	that	request.	In	this	scenario,	you	should	pass	the	lock's	scoped	"owner	token"	to	the	queued	job	so	that	the
job	can	re-instantiate	the	lock	using	the	given	token.

In	the	example	below,	we	will	dispatch	a	queued	job	if	a	lock	is	successfully	acquired.	In	addition,	we	will	pass
the	lock's	owner	token	to	the	queued	job	via	the	lock's	owner	method:

$podcast	=	Podcast::find($id);

$lock	=	Cache::lock('processing',	120);

if	($lock->get())	{

				ProcessPodcast::dispatch($podcast,	$lock->owner());

}

Within	our	application's	ProcessPodcast	job,	we	can	restore	and	release	the	lock	using	the	owner	token:

Cache::restoreLock('processing',	$this->owner)->release();

If	you	would	like	to	release	a	lock	without	respecting	its	current	owner,	you	may	use	the	forceRelease	method:

Laravel	Documentation	-	10.x	/	Cache 263

https://forge.laravel.com

Cache::lock('processing')->forceRelease();

Adding	Custom	Cache	Drivers

Writing	the	Driver

To	create	our	custom	cache	driver,	we	first	need	to	implement	the	Illuminate\Contracts\Cache\Store	contract.
So,	a	MongoDB	cache	implementation	might	look	something	like	this:

<?php

namespace	App\Extensions;

use	Illuminate\Contracts\Cache\Store;

class	MongoStore	implements	Store

{

				public	function	get($key)	{}

				public	function	many(array	$keys)	{}

				public	function	put($key,	$value,	$seconds)	{}

				public	function	putMany(array	$values,	$seconds)	{}

				public	function	increment($key,	$value	=	1)	{}

				public	function	decrement($key,	$value	=	1)	{}

				public	function	forever($key,	$value)	{}

				public	function	forget($key)	{}

				public	function	flush()	{}

				public	function	getPrefix()	{}

}

We	just	need	to	implement	each	of	these	methods	using	a	MongoDB	connection.	For	an	example	of	how	to
implement	each	of	these	methods,	take	a	look	at	the	Illuminate\Cache\MemcachedStore	in	the	Laravel	framework
source	code.	Once	our	implementation	is	complete,	we	can	finish	our	custom	driver	registration	by	calling	the	
Cache	facade's	extend	method:

Cache::extend('mongo',	function	(Application	$app)	{

				return	Cache::repository(new	MongoStore);

});

[!NOTE]
If	you're	wondering	where	to	put	your	custom	cache	driver	code,	you	could	create	an	Extensions
namespace	within	your	app	directory.	However,	keep	in	mind	that	Laravel	does	not	have	a	rigid	application
structure	and	you	are	free	to	organize	your	application	according	to	your	preferences.

Registering	the	Driver

To	register	the	custom	cache	driver	with	Laravel,	we	will	use	the	extend	method	on	the	Cache	facade.	Since
other	service	providers	may	attempt	to	read	cached	values	within	their	boot	method,	we	will	register	our	custom
driver	within	a	booting	callback.	By	using	the	booting	callback,	we	can	ensure	that	the	custom	driver	is
registered	just	before	the	boot	method	is	called	on	our	application's	service	providers	but	after	the	register
method	is	called	on	all	of	the	service	providers.	We	will	register	our	booting	callback	within	the	register
method	of	our	application's	App\Providers\AppServiceProvider	class:

<?php

namespace	App\Providers;

use	App\Extensions\MongoStore;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Support\Facades\Cache;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								$this->app->booting(function	()	{

													Cache::extend('mongo',	function	(Application	$app)	{

Laravel	Documentation	-	10.x	/	Cache 264

https://github.com/laravel/framework

																	return	Cache::repository(new	MongoStore);

													});

									});

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								//	...

				}

}

The	first	argument	passed	to	the	extend	method	is	the	name	of	the	driver.	This	will	correspond	to	your	driver
option	in	the	config/cache.php	configuration	file.	The	second	argument	is	a	closure	that	should	return	an	
Illuminate\Cache\Repository	instance.	The	closure	will	be	passed	an	$app	instance,	which	is	an	instance	of	the
service	container.

Once	your	extension	is	registered,	update	your	config/cache.php	configuration	file's	driver	option	to	the	name
of	your	extension.

Events

To	execute	code	on	every	cache	operation,	you	may	listen	for	the	events	fired	by	the	cache.	Typically,	you
should	place	these	event	listeners	within	your	application's	App\Providers\EventServiceProvider	class:

use	App\Listeners\LogCacheHit;

use	App\Listeners\LogCacheMissed;

use	App\Listeners\LogKeyForgotten;

use	App\Listeners\LogKeyWritten;

use	Illuminate\Cache\Events\CacheHit;

use	Illuminate\Cache\Events\CacheMissed;

use	Illuminate\Cache\Events\KeyForgotten;

use	Illuminate\Cache\Events\KeyWritten;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				CacheHit::class	=>	[

								LogCacheHit::class,

],

				CacheMissed::class	=>	[

								LogCacheMissed::class,

],

				KeyForgotten::class	=>	[

								LogKeyForgotten::class,

],

				KeyWritten::class	=>	[

								LogKeyWritten::class,

],

];

Laravel	Documentation	-	10.x	/	Cache 265

Digging	Deeper

Collections
Introduction

Creating	Collections
Extending	Collections

Available	Methods
Higher	Order	Messages
Lazy	Collections

Introduction
Creating	Lazy	Collections
The	Enumerable	Contract
Lazy	Collection	Methods

Introduction

The	Illuminate\Support\Collection	class	provides	a	fluent,	convenient	wrapper	for	working	with	arrays	of	data.
For	example,	check	out	the	following	code.	We'll	use	the	collect	helper	to	create	a	new	collection	instance
from	the	array,	run	the	strtoupper	function	on	each	element,	and	then	remove	all	empty	elements:

$collection	=	collect(['taylor',	'abigail',	null])->map(function	(?string	$name)	{

				return	strtoupper($name);

})->reject(function	(string	$name)	{

				return	empty($name);

});

As	you	can	see,	the	Collection	class	allows	you	to	chain	its	methods	to	perform	fluent	mapping	and	reducing	of
the	underlying	array.	In	general,	collections	are	immutable,	meaning	every	Collection	method	returns	an
entirely	new	Collection	instance.

Creating	Collections

As	mentioned	above,	the	collect	helper	returns	a	new	Illuminate\Support\Collection	instance	for	the	given
array.	So,	creating	a	collection	is	as	simple	as:

$collection	=	collect([1,	2,	3]);

[!NOTE]
The	results	of	Eloquent	queries	are	always	returned	as	Collection	instances.

Extending	Collections

Collections	are	"macroable",	which	allows	you	to	add	additional	methods	to	the	Collection	class	at	run	time.
The	Illuminate\Support\Collection	class'	macro	method	accepts	a	closure	that	will	be	executed	when	your
macro	is	called.	The	macro	closure	may	access	the	collection's	other	methods	via	$this,	just	as	if	it	were	a	real
method	of	the	collection	class.	For	example,	the	following	code	adds	a	toUpper	method	to	the	Collection	class:

use	Illuminate\Support\Collection;

use	Illuminate\Support\Str;

Collection::macro('toUpper',	function	()	{

				return	$this->map(function	(string	$value)	{

								return	Str::upper($value);

				});

});

$collection	=	collect(['first',	'second']);

$upper	=	$collection->toUpper();

//	['FIRST',	'SECOND']

Typically,	you	should	declare	collection	macros	in	the	boot	method	of	a	service	provider.

Laravel	Documentation	-	10.x	/	Collections 266

Macro	Arguments

If	necessary,	you	may	define	macros	that	accept	additional	arguments:

use	Illuminate\Support\Collection;

use	Illuminate\Support\Facades\Lang;

Collection::macro('toLocale',	function	(string	$locale)	{

				return	$this->map(function	(string	$value)	use	($locale)	{

								return	Lang::get($value,	[],	$locale);

				});

});

$collection	=	collect(['first',	'second']);

$translated	=	$collection->toLocale('es');

Available	Methods

For	the	majority	of	the	remaining	collection	documentation,	we'll	discuss	each	method	available	on	the	
Collection	class.	Remember,	all	of	these	methods	may	be	chained	to	fluently	manipulate	the	underlying	array.
Furthermore,	almost	every	method	returns	a	new	Collection	instance,	allowing	you	to	preserve	the	original
copy	of	the	collection	when	necessary:

all
average
avg
chunk
chunkWhile
collapse
collect
combine
concat
contains
containsOneItem
containsStrict
count
countBy
crossJoin
dd
diff
diffAssoc
diffAssocUsing
diffKeys
doesntContain
dot
dump
duplicates
duplicatesStrict
each
eachSpread
ensure
every
except
filter
first
firstOrFail
firstWhere
flatMap
flatten
flip
forget
forPage
get

join
keyBy
keys
last
lazy
macro
make
map
mapInto
mapSpread
mapToGroups
mapWithKeys
max
median
merge
mergeRecursive
min
mode
nth
only
pad
partition
percentage
pipe
pipeInto
pipeThrough
pluck
pop
prepend
pull
push
put
random
range
reduce
reduceSpread
reject
replace
replaceRecursive
reverse

sole
some
sort
sortBy
sortByDesc
sortDesc
sortKeys
sortKeysDesc
sortKeysUsing
splice
split
splitIn
sum
take
takeUntil
takeWhile
tap
times
toArray
toJson
transform
undot
union
unique
uniqueStrict
unless
unlessEmpty
unlessNotEmpty
unwrap
value
values
when
whenEmpty
whenNotEmpty
where
whereStrict
whereBetween
whereIn
whereInStrict
whereInstanceOf

Laravel	Documentation	-	10.x	/	Collections 267

get
groupBy
has
hasAny
implode
intersect
intersectAssoc
intersectByKeys
isEmpty
isNotEmpty

reverse
search
select
shift
shuffle
skip
skipUntil
skipWhile
slice
sliding

whereInstanceOf
whereNotBetween
whereNotIn
whereNotInStrict
whereNotNull
whereNull
wrap
zip

Method	Listing
all()

The	all	method	returns	the	underlying	array	represented	by	the	collection:

collect([1,	2,	3])->all();

//	[1,	2,	3]

average()

Alias	for	the	avg	method.

avg()

The	avg	method	returns	the	average	value	of	a	given	key:

$average	=	collect([

				['foo'	=>	10],

				['foo'	=>	10],

				['foo'	=>	20],

				['foo'	=>	40]

])->avg('foo');

//	20

$average	=	collect([1,	1,	2,	4])->avg();

//	2

chunk()

The	chunk	method	breaks	the	collection	into	multiple,	smaller	collections	of	a	given	size:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7]);

$chunks	=	$collection->chunk(4);

$chunks->all();

//	[[1,	2,	3,	4],	[5,	6,	7]]

This	method	is	especially	useful	in	views	when	working	with	a	grid	system	such	as	Bootstrap.	For	example,
imagine	you	have	a	collection	of	Eloquent	models	you	want	to	display	in	a	grid:

@foreach	($products->chunk(3)	as	$chunk)

				<div	class="row">

								@foreach	($chunk	as	$product)

												<div	class="col-xs-4">{{	$product->name	}}</div>

								@endforeach

Laravel	Documentation	-	10.x	/	Collections 268

https://en.wikipedia.org/wiki/Average
https://getbootstrap.com/docs/4.1/layout/grid/

				</div>

@endforeach

chunkWhile()

The	chunkWhile	method	breaks	the	collection	into	multiple,	smaller	collections	based	on	the	evaluation	of	the
given	callback.	The	$chunk	variable	passed	to	the	closure	may	be	used	to	inspect	the	previous	element:

$collection	=	collect(str_split('AABBCCCD'));

$chunks	=	$collection->chunkWhile(function	(string	$value,	int	$key,	Collection	$chunk)	{

				return	$value	===	$chunk->last();

});

$chunks->all();

//	[['A',	'A'],	['B',	'B'],	['C',	'C',	'C'],	['D']]

collapse()

The	collapse	method	collapses	a	collection	of	arrays	into	a	single,	flat	collection:

$collection	=	collect([

				[1,	2,	3],

				[4,	5,	6],

				[7,	8,	9],

]);

$collapsed	=	$collection->collapse();

$collapsed->all();

//	[1,	2,	3,	4,	5,	6,	7,	8,	9]

collect()

The	collect	method	returns	a	new	Collection	instance	with	the	items	currently	in	the	collection:

$collectionA	=	collect([1,	2,	3]);

$collectionB	=	$collectionA->collect();

$collectionB->all();

//	[1,	2,	3]

The	collect	method	is	primarily	useful	for	converting	lazy	collections	into	standard	Collection	instances:

$lazyCollection	=	LazyCollection::make(function	()	{

				yield	1;

				yield	2;

				yield	3;

});

$collection	=	$lazyCollection->collect();

$collection::class;

//	'Illuminate\Support\Collection'

$collection->all();

//	[1,	2,	3]

[!NOTE]
The	collect	method	is	especially	useful	when	you	have	an	instance	of	Enumerable	and	need	a	non-lazy
collection	instance.	Since	collect()	is	part	of	the	Enumerable	contract,	you	can	safely	use	it	to	get	a	

Laravel	Documentation	-	10.x	/	Collections 269

Collection	instance.

combine()

The	combine	method	combines	the	values	of	the	collection,	as	keys,	with	the	values	of	another	array	or
collection:

$collection	=	collect(['name',	'age']);

$combined	=	$collection->combine(['George',	29]);

$combined->all();

//	['name'	=>	'George',	'age'	=>	29]

concat()

The	concat	method	appends	the	given	array	or	collection's	values	onto	the	end	of	another	collection:

$collection	=	collect(['John	Doe']);

$concatenated	=	$collection->concat(['Jane	Doe'])->concat(['name'	=>	'Johnny	Doe']);

$concatenated->all();

//	['John	Doe',	'Jane	Doe',	'Johnny	Doe']

The	concat	method	numerically	reindexes	keys	for	items	concatenated	onto	the	original	collection.	To	maintain
keys	in	associative	collections,	see	the	merge	method.

contains()

The	contains	method	determines	whether	the	collection	contains	a	given	item.	You	may	pass	a	closure	to	the	
contains	method	to	determine	if	an	element	exists	in	the	collection	matching	a	given	truth	test:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->contains(function	(int	$value,	int	$key)	{

				return	$value	>	5;

});

//	false

Alternatively,	you	may	pass	a	string	to	the	contains	method	to	determine	whether	the	collection	contains	a
given	item	value:

$collection	=	collect(['name'	=>	'Desk',	'price'	=>	100]);

$collection->contains('Desk');

//	true

$collection->contains('New	York');

//	false

You	may	also	pass	a	key	/	value	pair	to	the	contains	method,	which	will	determine	if	the	given	pair	exists	in	the
collection:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

]);

$collection->contains('product',	'Bookcase');

Laravel	Documentation	-	10.x	/	Collections 270

//	false

The	contains	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an	integer
value	will	be	considered	equal	to	an	integer	of	the	same	value.	Use	the	containsStrict	method	to	filter	using
"strict"	comparisons.

For	the	inverse	of	contains,	see	the	doesntContain	method.

containsOneItem()

The	containsOneItem	method	determines	whether	the	collection	contains	a	single	item:

collect([])->containsOneItem();

//	false

collect(['1'])->containsOneItem();

//	true

collect(['1',	'2'])->containsOneItem();

//	false

containsStrict()

This	method	has	the	same	signature	as	the	contains	method;	however,	all	values	are	compared	using	"strict"
comparisons.

[!NOTE]
This	method's	behavior	is	modified	when	using	Eloquent	Collections.

count()

The	count	method	returns	the	total	number	of	items	in	the	collection:

$collection	=	collect([1,	2,	3,	4]);

$collection->count();

//	4

countBy()

The	countBy	method	counts	the	occurrences	of	values	in	the	collection.	By	default,	the	method	counts	the
occurrences	of	every	element,	allowing	you	to	count	certain	"types"	of	elements	in	the	collection:

$collection	=	collect([1,	2,	2,	2,	3]);

$counted	=	$collection->countBy();

$counted->all();

//	[1	=>	1,	2	=>	3,	3	=>	1]

You	pass	a	closure	to	the	countBy	method	to	count	all	items	by	a	custom	value:

$collection	=	collect(['alice@gmail.com',	'bob@yahoo.com',	'carlos@gmail.com']);

$counted	=	$collection->countBy(function	(string	$email)	{

Laravel	Documentation	-	10.x	/	Collections 271

				return	substr(strrchr($email,	"@"),	1);

});

$counted->all();

//	['gmail.com'	=>	2,	'yahoo.com'	=>	1]

crossJoin()

The	crossJoin	method	cross	joins	the	collection's	values	among	the	given	arrays	or	collections,	returning	a
Cartesian	product	with	all	possible	permutations:

$collection	=	collect([1,	2]);

$matrix	=	$collection->crossJoin(['a',	'b']);

$matrix->all();

/*

				[

								[1,	'a'],

								[1,	'b'],

								[2,	'a'],

								[2,	'b'],

]

*/

$collection	=	collect([1,	2]);

$matrix	=	$collection->crossJoin(['a',	'b'],	['I',	'II']);

$matrix->all();

/*

				[

								[1,	'a',	'I'],

								[1,	'a',	'II'],

								[1,	'b',	'I'],

								[1,	'b',	'II'],

								[2,	'a',	'I'],

								[2,	'a',	'II'],

								[2,	'b',	'I'],

								[2,	'b',	'II'],

]

*/

dd()

The	dd	method	dumps	the	collection's	items	and	ends	execution	of	the	script:

$collection	=	collect(['John	Doe',	'Jane	Doe']);

$collection->dd();

/*

				Collection	{

								#items:	array:2	[

												0	=>	"John	Doe"

												1	=>	"Jane	Doe"

]

				}

*/

If	you	do	not	want	to	stop	executing	the	script,	use	the	dump	method	instead.

diff()

The	diff	method	compares	the	collection	against	another	collection	or	a	plain	PHP	array	based	on	its	values.

Laravel	Documentation	-	10.x	/	Collections 272

This	method	will	return	the	values	in	the	original	collection	that	are	not	present	in	the	given	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$diff	=	$collection->diff([2,	4,	6,	8]);

$diff->all();

//	[1,	3,	5]

[!NOTE]
This	method's	behavior	is	modified	when	using	Eloquent	Collections.

diffAssoc()

The	diffAssoc	method	compares	the	collection	against	another	collection	or	a	plain	PHP	array	based	on	its	keys
and	values.	This	method	will	return	the	key	/	value	pairs	in	the	original	collection	that	are	not	present	in	the
given	collection:

$collection	=	collect([

				'color'	=>	'orange',

				'type'	=>	'fruit',

				'remain'	=>	6,

]);

$diff	=	$collection->diffAssoc([

				'color'	=>	'yellow',

				'type'	=>	'fruit',

				'remain'	=>	3,

				'used'	=>	6,

]);

$diff->all();

//	['color'	=>	'orange',	'remain'	=>	6]

diffAssocUsing()

Unlike	diffAssoc,	diffAssocUsing	accepts	a	user	supplied	callback	function	for	the	indices	comparison:

$collection	=	collect([

				'color'	=>	'orange',

				'type'	=>	'fruit',

				'remain'	=>	6,

]);

$diff	=	$collection->diffAssocUsing([

				'Color'	=>	'yellow',

				'Type'	=>	'fruit',

				'Remain'	=>	3,

],	'strnatcasecmp');

$diff->all();

//	['color'	=>	'orange',	'remain'	=>	6]

The	callback	must	be	a	comparison	function	that	returns	an	integer	less	than,	equal	to,	or	greater	than	zero.	For
more	information,	refer	to	the	PHP	documentation	on	array_diff_uassoc,	which	is	the	PHP	function	that	the	
diffAssocUsing	method	utilizes	internally.

diffKeys()

The	diffKeys	method	compares	the	collection	against	another	collection	or	a	plain	PHP	array	based	on	its	keys.
This	method	will	return	the	key	/	value	pairs	in	the	original	collection	that	are	not	present	in	the	given
collection:

Laravel	Documentation	-	10.x	/	Collections 273

https://www.php.net/array_diff_uassoc#refsect1-function.array-diff-uassoc-parameters

$collection	=	collect([

				'one'	=>	10,

				'two'	=>	20,

				'three'	=>	30,

				'four'	=>	40,

				'five'	=>	50,

]);

$diff	=	$collection->diffKeys([

				'two'	=>	2,

				'four'	=>	4,

				'six'	=>	6,

				'eight'	=>	8,

]);

$diff->all();

//	['one'	=>	10,	'three'	=>	30,	'five'	=>	50]

doesntContain()

The	doesntContain	method	determines	whether	the	collection	does	not	contain	a	given	item.	You	may	pass	a
closure	to	the	doesntContain	method	to	determine	if	an	element	does	not	exist	in	the	collection	matching	a	given
truth	test:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->doesntContain(function	(int	$value,	int	$key)	{

				return	$value	<	5;

});

//	false

Alternatively,	you	may	pass	a	string	to	the	doesntContain	method	to	determine	whether	the	collection	does	not
contain	a	given	item	value:

$collection	=	collect(['name'	=>	'Desk',	'price'	=>	100]);

$collection->doesntContain('Table');

//	true

$collection->doesntContain('Desk');

//	false

You	may	also	pass	a	key	/	value	pair	to	the	doesntContain	method,	which	will	determine	if	the	given	pair	does
not	exist	in	the	collection:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

]);

$collection->doesntContain('product',	'Bookcase');

//	true

The	doesntContain	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an
integer	value	will	be	considered	equal	to	an	integer	of	the	same	value.

dot()

The	dot	method	flattens	a	multi-dimensional	collection	into	a	single	level	collection	that	uses	"dot"	notation	to
indicate	depth:

$collection	=	collect(['products'	=>	['desk'	=>	['price'	=>	100]]]);

$flattened	=	$collection->dot();

Laravel	Documentation	-	10.x	/	Collections 274

$flattened->all();

//	['products.desk.price'	=>	100]

dump()

The	dump	method	dumps	the	collection's	items:

$collection	=	collect(['John	Doe',	'Jane	Doe']);

$collection->dump();

/*

				Collection	{

								#items:	array:2	[

												0	=>	"John	Doe"

												1	=>	"Jane	Doe"

]

				}

*/

If	you	want	to	stop	executing	the	script	after	dumping	the	collection,	use	the	dd	method	instead.

duplicates()

The	duplicates	method	retrieves	and	returns	duplicate	values	from	the	collection:

$collection	=	collect(['a',	'b',	'a',	'c',	'b']);

$collection->duplicates();

//	[2	=>	'a',	4	=>	'b']

If	the	collection	contains	arrays	or	objects,	you	can	pass	the	key	of	the	attributes	that	you	wish	to	check	for
duplicate	values:

$employees	=	collect([

				['email'	=>	'abigail@example.com',	'position'	=>	'Developer'],

				['email'	=>	'james@example.com',	'position'	=>	'Designer'],

				['email'	=>	'victoria@example.com',	'position'	=>	'Developer'],

]);

$employees->duplicates('position');

//	[2	=>	'Developer']

duplicatesStrict()

This	method	has	the	same	signature	as	the	duplicates	method;	however,	all	values	are	compared	using	"strict"
comparisons.

each()

The	each	method	iterates	over	the	items	in	the	collection	and	passes	each	item	to	a	closure:

$collection	=	collect([1,	2,	3,	4]);

$collection->each(function	(int	$item,	int	$key)	{

				//	...

});

If	you	would	like	to	stop	iterating	through	the	items,	you	may	return	false	from	your	closure:

Laravel	Documentation	-	10.x	/	Collections 275

$collection->each(function	(int	$item,	int	$key)	{

				if	(/*	condition	*/)	{

								return	false;

				}

});

eachSpread()

The	eachSpread	method	iterates	over	the	collection's	items,	passing	each	nested	item	value	into	the	given
callback:

$collection	=	collect([['John	Doe',	35],	['Jane	Doe',	33]]);

$collection->eachSpread(function	(string	$name,	int	$age)	{

				//	...

});

You	may	stop	iterating	through	the	items	by	returning	false	from	the	callback:

$collection->eachSpread(function	(string	$name,	int	$age)	{

				return	false;

});

ensure()

The	ensure	method	may	be	used	to	verify	that	all	elements	of	a	collection	are	of	a	given	type	or	list	of	types.
Otherwise,	an	UnexpectedValueException	will	be	thrown:

return	$collection->ensure(User::class);

return	$collection->ensure([User::class,	Customer::class]);

Primitive	types	such	as	string,	int,	float,	bool,	and	array	may	also	be	specified:

return	$collection->ensure('int');

[!WARNING]
The	ensure	method	does	not	guarantee	that	elements	of	different	types	will	not	be	added	to	the	collection	at
a	later	time.

every()

The	every	method	may	be	used	to	verify	that	all	elements	of	a	collection	pass	a	given	truth	test:

collect([1,	2,	3,	4])->every(function	(int	$value,	int	$key)	{

				return	$value	>	2;

});

//	false

If	the	collection	is	empty,	the	every	method	will	return	true:

$collection	=	collect([]);

$collection->every(function	(int	$value,	int	$key)	{

				return	$value	>	2;

});

//	true

except()

Laravel	Documentation	-	10.x	/	Collections 276

The	except	method	returns	all	items	in	the	collection	except	for	those	with	the	specified	keys:

$collection	=	collect(['product_id'	=>	1,	'price'	=>	100,	'discount'	=>	false]);

$filtered	=	$collection->except(['price',	'discount']);

$filtered->all();

//	['product_id'	=>	1]

For	the	inverse	of	except,	see	the	only	method.

[!NOTE]
This	method's	behavior	is	modified	when	using	Eloquent	Collections.

filter()

The	filter	method	filters	the	collection	using	the	given	callback,	keeping	only	those	items	that	pass	a	given
truth	test:

$collection	=	collect([1,	2,	3,	4]);

$filtered	=	$collection->filter(function	(int	$value,	int	$key)	{

				return	$value	>	2;

});

$filtered->all();

//	[3,	4]

If	no	callback	is	supplied,	all	entries	of	the	collection	that	are	equivalent	to	false	will	be	removed:

$collection	=	collect([1,	2,	3,	null,	false,	'',	0,	[]]);

$collection->filter()->all();

//	[1,	2,	3]

For	the	inverse	of	filter,	see	the	reject	method.

first()

The	first	method	returns	the	first	element	in	the	collection	that	passes	a	given	truth	test:

collect([1,	2,	3,	4])->first(function	(int	$value,	int	$key)	{

				return	$value	>	2;

});

//	3

You	may	also	call	the	first	method	with	no	arguments	to	get	the	first	element	in	the	collection.	If	the	collection
is	empty,	null	is	returned:

collect([1,	2,	3,	4])->first();

//	1

firstOrFail()

The	firstOrFail	method	is	identical	to	the	first	method;	however,	if	no	result	is	found,	an	
Illuminate\Support\ItemNotFoundException	exception	will	be	thrown:

collect([1,	2,	3,	4])->firstOrFail(function	(int	$value,	int	$key)	{

				return	$value	>	5;

Laravel	Documentation	-	10.x	/	Collections 277

});

//	Throws	ItemNotFoundException...

You	may	also	call	the	firstOrFail	method	with	no	arguments	to	get	the	first	element	in	the	collection.	If	the
collection	is	empty,	an	Illuminate\Support\ItemNotFoundException	exception	will	be	thrown:

collect([])->firstOrFail();

//	Throws	ItemNotFoundException...

firstWhere()

The	firstWhere	method	returns	the	first	element	in	the	collection	with	the	given	key	/	value	pair:

$collection	=	collect([

				['name'	=>	'Regena',	'age'	=>	null],

				['name'	=>	'Linda',	'age'	=>	14],

				['name'	=>	'Diego',	'age'	=>	23],

				['name'	=>	'Linda',	'age'	=>	84],

]);

$collection->firstWhere('name',	'Linda');

//	['name'	=>	'Linda',	'age'	=>	14]

You	may	also	call	the	firstWhere	method	with	a	comparison	operator:

$collection->firstWhere('age',	'>=',	18);

//	['name'	=>	'Diego',	'age'	=>	23]

Like	the	where	method,	you	may	pass	one	argument	to	the	firstWhere	method.	In	this	scenario,	the	firstWhere
method	will	return	the	first	item	where	the	given	item	key's	value	is	"truthy":

$collection->firstWhere('age');

//	['name'	=>	'Linda',	'age'	=>	14]

flatMap()

The	flatMap	method	iterates	through	the	collection	and	passes	each	value	to	the	given	closure.	The	closure	is
free	to	modify	the	item	and	return	it,	thus	forming	a	new	collection	of	modified	items.	Then,	the	array	is
flattened	by	one	level:

$collection	=	collect([

				['name'	=>	'Sally'],

				['school'	=>	'Arkansas'],

				['age'	=>	28]

]);

$flattened	=	$collection->flatMap(function	(array	$values)	{

				return	array_map('strtoupper',	$values);

});

$flattened->all();

//	['name'	=>	'SALLY',	'school'	=>	'ARKANSAS',	'age'	=>	'28'];

flatten()

The	flatten	method	flattens	a	multi-dimensional	collection	into	a	single	dimension:

$collection	=	collect([

				'name'	=>	'taylor',

Laravel	Documentation	-	10.x	/	Collections 278

				'languages'	=>	[

								'php',	'javascript'

]

]);

$flattened	=	$collection->flatten();

$flattened->all();

//	['taylor',	'php',	'javascript'];

If	necessary,	you	may	pass	the	flatten	method	a	"depth"	argument:

$collection	=	collect([

				'Apple'	=>	[

								[

												'name'	=>	'iPhone	6S',

												'brand'	=>	'Apple'

],

],

				'Samsung'	=>	[

								[

												'name'	=>	'Galaxy	S7',

												'brand'	=>	'Samsung'

],

],

]);

$products	=	$collection->flatten(1);

$products->values()->all();

/*

				[

								['name'	=>	'iPhone	6S',	'brand'	=>	'Apple'],

								['name'	=>	'Galaxy	S7',	'brand'	=>	'Samsung'],

]

*/

In	this	example,	calling	flatten	without	providing	the	depth	would	have	also	flattened	the	nested	arrays,
resulting	in	['iPhone	6S',	'Apple',	'Galaxy	S7',	'Samsung'].	Providing	a	depth	allows	you	to	specify	the
number	of	levels	nested	arrays	will	be	flattened.

flip()

The	flip	method	swaps	the	collection's	keys	with	their	corresponding	values:

$collection	=	collect(['name'	=>	'taylor',	'framework'	=>	'laravel']);

$flipped	=	$collection->flip();

$flipped->all();

//	['taylor'	=>	'name',	'laravel'	=>	'framework']

forget()

The	forget	method	removes	an	item	from	the	collection	by	its	key:

$collection	=	collect(['name'	=>	'taylor',	'framework'	=>	'laravel']);

$collection->forget('name');

$collection->all();

//	['framework'	=>	'laravel']

[!WARNING]
Unlike	most	other	collection	methods,	forget	does	not	return	a	new	modified	collection;	it	modifies	the
collection	it	is	called	on.

Laravel	Documentation	-	10.x	/	Collections 279

forPage()

The	forPage	method	returns	a	new	collection	containing	the	items	that	would	be	present	on	a	given	page
number.	The	method	accepts	the	page	number	as	its	first	argument	and	the	number	of	items	to	show	per	page	as
its	second	argument:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7,	8,	9]);

$chunk	=	$collection->forPage(2,	3);

$chunk->all();

//	[4,	5,	6]

get()

The	get	method	returns	the	item	at	a	given	key.	If	the	key	does	not	exist,	null	is	returned:

$collection	=	collect(['name'	=>	'taylor',	'framework'	=>	'laravel']);

$value	=	$collection->get('name');

//	taylor

You	may	optionally	pass	a	default	value	as	the	second	argument:

$collection	=	collect(['name'	=>	'taylor',	'framework'	=>	'laravel']);

$value	=	$collection->get('age',	34);

//	34

You	may	even	pass	a	callback	as	the	method's	default	value.	The	result	of	the	callback	will	be	returned	if	the
specified	key	does	not	exist:

$collection->get('email',	function	()	{

				return	'taylor@example.com';

});

//	taylor@example.com

groupBy()

The	groupBy	method	groups	the	collection's	items	by	a	given	key:

$collection	=	collect([

				['account_id'	=>	'account-x10',	'product'	=>	'Chair'],

				['account_id'	=>	'account-x10',	'product'	=>	'Bookcase'],

				['account_id'	=>	'account-x11',	'product'	=>	'Desk'],

]);

$grouped	=	$collection->groupBy('account_id');

$grouped->all();

/*

				[

								'account-x10'	=>	[

												['account_id'	=>	'account-x10',	'product'	=>	'Chair'],

												['account_id'	=>	'account-x10',	'product'	=>	'Bookcase'],

],

								'account-x11'	=>	[

												['account_id'	=>	'account-x11',	'product'	=>	'Desk'],

],

]

*/

Instead	of	passing	a	string	key,	you	may	pass	a	callback.	The	callback	should	return	the	value	you	wish	to	key
the	group	by:

Laravel	Documentation	-	10.x	/	Collections 280

$grouped	=	$collection->groupBy(function	(array	$item,	int	$key)	{

				return	substr($item['account_id'],	-3);

});

$grouped->all();

/*

				[

								'x10'	=>	[

												['account_id'	=>	'account-x10',	'product'	=>	'Chair'],

												['account_id'	=>	'account-x10',	'product'	=>	'Bookcase'],

],

								'x11'	=>	[

												['account_id'	=>	'account-x11',	'product'	=>	'Desk'],

],

]

*/

Multiple	grouping	criteria	may	be	passed	as	an	array.	Each	array	element	will	be	applied	to	the	corresponding
level	within	a	multi-dimensional	array:

$data	=	new	Collection([

				10	=>	['user'	=>	1,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_3']],

				20	=>	['user'	=>	2,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_2']],

				30	=>	['user'	=>	3,	'skill'	=>	2,	'roles'	=>	['Role_1']],

				40	=>	['user'	=>	4,	'skill'	=>	2,	'roles'	=>	['Role_2']],

]);

$result	=	$data->groupBy(['skill',	function	(array	$item)	{

				return	$item['roles'];

}],	preserveKeys:	true);

/*

[

				1	=>	[

								'Role_1'	=>	[

												10	=>	['user'	=>	1,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_3']],

												20	=>	['user'	=>	2,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_2']],

],

								'Role_2'	=>	[

												20	=>	['user'	=>	2,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_2']],

],

								'Role_3'	=>	[

												10	=>	['user'	=>	1,	'skill'	=>	1,	'roles'	=>	['Role_1',	'Role_3']],

],

],

				2	=>	[

								'Role_1'	=>	[

												30	=>	['user'	=>	3,	'skill'	=>	2,	'roles'	=>	['Role_1']],

],

								'Role_2'	=>	[

												40	=>	['user'	=>	4,	'skill'	=>	2,	'roles'	=>	['Role_2']],

],

],

];

*/

has()

The	has	method	determines	if	a	given	key	exists	in	the	collection:

$collection	=	collect(['account_id'	=>	1,	'product'	=>	'Desk',	'amount'	=>	5]);

$collection->has('product');

//	true

$collection->has(['product',	'amount']);

//	true

$collection->has(['amount',	'price']);

//	false

Laravel	Documentation	-	10.x	/	Collections 281

hasAny()

The	hasAny	method	determines	whether	any	of	the	given	keys	exist	in	the	collection:

$collection	=	collect(['account_id'	=>	1,	'product'	=>	'Desk',	'amount'	=>	5]);

$collection->hasAny(['product',	'price']);

//	true

$collection->hasAny(['name',	'price']);

//	false

implode()

The	implode	method	joins	items	in	a	collection.	Its	arguments	depend	on	the	type	of	items	in	the	collection.	If
the	collection	contains	arrays	or	objects,	you	should	pass	the	key	of	the	attributes	you	wish	to	join,	and	the
"glue"	string	you	wish	to	place	between	the	values:

$collection	=	collect([

				['account_id'	=>	1,	'product'	=>	'Desk'],

				['account_id'	=>	2,	'product'	=>	'Chair'],

]);

$collection->implode('product',	',	');

//	Desk,	Chair

If	the	collection	contains	simple	strings	or	numeric	values,	you	should	pass	the	"glue"	as	the	only	argument	to
the	method:

collect([1,	2,	3,	4,	5])->implode('-');

//	'1-2-3-4-5'

You	may	pass	a	closure	to	the	implode	method	if	you	would	like	to	format	the	values	being	imploded:

$collection->implode(function	(array	$item,	int	$key)	{

				return	strtoupper($item['product']);

},	',	');

//	DESK,	CHAIR

intersect()

The	intersect	method	removes	any	values	from	the	original	collection	that	are	not	present	in	the	given	array	or
collection.	The	resulting	collection	will	preserve	the	original	collection's	keys:

$collection	=	collect(['Desk',	'Sofa',	'Chair']);

$intersect	=	$collection->intersect(['Desk',	'Chair',	'Bookcase']);

$intersect->all();

//	[0	=>	'Desk',	2	=>	'Chair']

[!NOTE]
This	method's	behavior	is	modified	when	using	Eloquent	Collections.

intersectAssoc()

The	intersectAssoc	method	compares	the	original	collection	against	another	collection	or	array,	returning	the
key	/	value	pairs	that	are	present	in	all	of	the	given	collections:

Laravel	Documentation	-	10.x	/	Collections 282

$collection	=	collect([

				'color'	=>	'red',

				'size'	=>	'M',

				'material'	=>	'cotton'

]);

$intersect	=	$collection->intersectAssoc([

				'color'	=>	'blue',

				'size'	=>	'M',

				'material'	=>	'polyester'

]);

$intersect->all();

//	['size'	=>	'M']

intersectByKeys()

The	intersectByKeys	method	removes	any	keys	and	their	corresponding	values	from	the	original	collection	that
are	not	present	in	the	given	array	or	collection:

$collection	=	collect([

				'serial'	=>	'UX301',	'type'	=>	'screen',	'year'	=>	2009,

]);

$intersect	=	$collection->intersectByKeys([

				'reference'	=>	'UX404',	'type'	=>	'tab',	'year'	=>	2011,

]);

$intersect->all();

//	['type'	=>	'screen',	'year'	=>	2009]

isEmpty()

The	isEmpty	method	returns	true	if	the	collection	is	empty;	otherwise,	false	is	returned:

collect([])->isEmpty();

//	true

isNotEmpty()

The	isNotEmpty	method	returns	true	if	the	collection	is	not	empty;	otherwise,	false	is	returned:

collect([])->isNotEmpty();

//	false

join()

The	join	method	joins	the	collection's	values	with	a	string.	Using	this	method's	second	argument,	you	may	also
specify	how	the	final	element	should	be	appended	to	the	string:

collect(['a',	'b',	'c'])->join(',	');	//	'a,	b,	c'

collect(['a',	'b',	'c'])->join(',	',	',	and	');	//	'a,	b,	and	c'

collect(['a',	'b'])->join(',	',	'	and	');	//	'a	and	b'

collect(['a'])->join(',	',	'	and	');	//	'a'

collect([])->join(',	',	'	and	');	//	''

keyBy()

Laravel	Documentation	-	10.x	/	Collections 283

The	keyBy	method	keys	the	collection	by	the	given	key.	If	multiple	items	have	the	same	key,	only	the	last	one
will	appear	in	the	new	collection:

$collection	=	collect([

				['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

				['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]);

$keyed	=	$collection->keyBy('product_id');

$keyed->all();

/*

				[

								'prod-100'	=>	['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

								'prod-200'	=>	['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]

*/

You	may	also	pass	a	callback	to	the	method.	The	callback	should	return	the	value	to	key	the	collection	by:

$keyed	=	$collection->keyBy(function	(array	$item,	int	$key)	{

				return	strtoupper($item['product_id']);

});

$keyed->all();

/*

				[

								'PROD-100'	=>	['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

								'PROD-200'	=>	['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]

*/

keys()

The	keys	method	returns	all	of	the	collection's	keys:

$collection	=	collect([

				'prod-100'	=>	['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

				'prod-200'	=>	['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]);

$keys	=	$collection->keys();

$keys->all();

//	['prod-100',	'prod-200']

last()

The	last	method	returns	the	last	element	in	the	collection	that	passes	a	given	truth	test:

collect([1,	2,	3,	4])->last(function	(int	$value,	int	$key)	{

				return	$value	<	3;

});

//	2

You	may	also	call	the	last	method	with	no	arguments	to	get	the	last	element	in	the	collection.	If	the	collection
is	empty,	null	is	returned:

collect([1,	2,	3,	4])->last();

//	4

lazy()

Laravel	Documentation	-	10.x	/	Collections 284

The	lazy	method	returns	a	new	LazyCollection	instance	from	the	underlying	array	of	items:

$lazyCollection	=	collect([1,	2,	3,	4])->lazy();

$lazyCollection::class;

//	Illuminate\Support\LazyCollection

$lazyCollection->all();

//	[1,	2,	3,	4]

This	is	especially	useful	when	you	need	to	perform	transformations	on	a	huge	Collection	that	contains	many
items:

$count	=	$hugeCollection

				->lazy()

				->where('country',	'FR')

				->where('balance',	'>',	'100')

				->count();

By	converting	the	collection	to	a	LazyCollection,	we	avoid	having	to	allocate	a	ton	of	additional	memory.
Though	the	original	collection	still	keeps	its	values	in	memory,	the	subsequent	filters	will	not.	Therefore,
virtually	no	additional	memory	will	be	allocated	when	filtering	the	collection's	results.

macro()

The	static	macro	method	allows	you	to	add	methods	to	the	Collection	class	at	run	time.	Refer	to	the
documentation	on	extending	collections	for	more	information.

make()

The	static	make	method	creates	a	new	collection	instance.	See	the	Creating	Collections	section.

map()

The	map	method	iterates	through	the	collection	and	passes	each	value	to	the	given	callback.	The	callback	is	free
to	modify	the	item	and	return	it,	thus	forming	a	new	collection	of	modified	items:

$collection	=	collect([1,	2,	3,	4,	5]);

$multiplied	=	$collection->map(function	(int	$item,	int	$key)	{

				return	$item	*	2;

});

$multiplied->all();

//	[2,	4,	6,	8,	10]

[!WARNING]
Like	most	other	collection	methods,	map	returns	a	new	collection	instance;	it	does	not	modify	the	collection
it	is	called	on.	If	you	want	to	transform	the	original	collection,	use	the	transform	method.

mapInto()

The	mapInto()	method	iterates	over	the	collection,	creating	a	new	instance	of	the	given	class	by	passing	the
value	into	the	constructor:

class	Currency

{

Laravel	Documentation	-	10.x	/	Collections 285

				/**

					*	Create	a	new	currency	instance.

					*/

				function	__construct(

								public	string	$code

)	{}

}

$collection	=	collect(['USD',	'EUR',	'GBP']);

$currencies	=	$collection->mapInto(Currency::class);

$currencies->all();

//	[Currency('USD'),	Currency('EUR'),	Currency('GBP')]

mapSpread()

The	mapSpread	method	iterates	over	the	collection's	items,	passing	each	nested	item	value	into	the	given	closure.
The	closure	is	free	to	modify	the	item	and	return	it,	thus	forming	a	new	collection	of	modified	items:

$collection	=	collect([0,	1,	2,	3,	4,	5,	6,	7,	8,	9]);

$chunks	=	$collection->chunk(2);

$sequence	=	$chunks->mapSpread(function	(int	$even,	int	$odd)	{

				return	$even	+	$odd;

});

$sequence->all();

//	[1,	5,	9,	13,	17]

mapToGroups()

The	mapToGroups	method	groups	the	collection's	items	by	the	given	closure.	The	closure	should	return	an
associative	array	containing	a	single	key	/	value	pair,	thus	forming	a	new	collection	of	grouped	values:

$collection	=	collect([

				[

								'name'	=>	'John	Doe',

								'department'	=>	'Sales',

],

				[

								'name'	=>	'Jane	Doe',

								'department'	=>	'Sales',

],

				[

								'name'	=>	'Johnny	Doe',

								'department'	=>	'Marketing',

]

]);

$grouped	=	$collection->mapToGroups(function	(array	$item,	int	$key)	{

				return	[$item['department']	=>	$item['name']];

});

$grouped->all();

/*

				[

								'Sales'	=>	['John	Doe',	'Jane	Doe'],

								'Marketing'	=>	['Johnny	Doe'],

]

*/

$grouped->get('Sales')->all();

//	['John	Doe',	'Jane	Doe']

Laravel	Documentation	-	10.x	/	Collections 286

mapWithKeys()

The	mapWithKeys	method	iterates	through	the	collection	and	passes	each	value	to	the	given	callback.	The
callback	should	return	an	associative	array	containing	a	single	key	/	value	pair:

$collection	=	collect([

				[

								'name'	=>	'John',

								'department'	=>	'Sales',

								'email'	=>	'john@example.com',

],

				[

								'name'	=>	'Jane',

								'department'	=>	'Marketing',

								'email'	=>	'jane@example.com',

]

]);

$keyed	=	$collection->mapWithKeys(function	(array	$item,	int	$key)	{

				return	[$item['email']	=>	$item['name']];

});

$keyed->all();

/*

				[

								'john@example.com'	=>	'John',

								'jane@example.com'	=>	'Jane',

]

*/

max()

The	max	method	returns	the	maximum	value	of	a	given	key:

$max	=	collect([

				['foo'	=>	10],

				['foo'	=>	20]

])->max('foo');

//	20

$max	=	collect([1,	2,	3,	4,	5])->max();

//	5

median()

The	median	method	returns	the	median	value	of	a	given	key:

$median	=	collect([

				['foo'	=>	10],

				['foo'	=>	10],

				['foo'	=>	20],

				['foo'	=>	40]

])->median('foo');

//	15

$median	=	collect([1,	1,	2,	4])->median();

//	1.5

merge()

The	merge	method	merges	the	given	array	or	collection	with	the	original	collection.	If	a	string	key	in	the	given
items	matches	a	string	key	in	the	original	collection,	the	given	item's	value	will	overwrite	the	value	in	the

Laravel	Documentation	-	10.x	/	Collections 287

https://en.wikipedia.org/wiki/Median

original	collection:

$collection	=	collect(['product_id'	=>	1,	'price'	=>	100]);

$merged	=	$collection->merge(['price'	=>	200,	'discount'	=>	false]);

$merged->all();

//	['product_id'	=>	1,	'price'	=>	200,	'discount'	=>	false]

If	the	given	item's	keys	are	numeric,	the	values	will	be	appended	to	the	end	of	the	collection:

$collection	=	collect(['Desk',	'Chair']);

$merged	=	$collection->merge(['Bookcase',	'Door']);

$merged->all();

//	['Desk',	'Chair',	'Bookcase',	'Door']

mergeRecursive()

The	mergeRecursive	method	merges	the	given	array	or	collection	recursively	with	the	original	collection.	If	a
string	key	in	the	given	items	matches	a	string	key	in	the	original	collection,	then	the	values	for	these	keys	are
merged	together	into	an	array,	and	this	is	done	recursively:

$collection	=	collect(['product_id'	=>	1,	'price'	=>	100]);

$merged	=	$collection->mergeRecursive([

				'product_id'	=>	2,

				'price'	=>	200,

				'discount'	=>	false

]);

$merged->all();

//	['product_id'	=>	[1,	2],	'price'	=>	[100,	200],	'discount'	=>	false]

min()

The	min	method	returns	the	minimum	value	of	a	given	key:

$min	=	collect([['foo'	=>	10],	['foo'	=>	20]])->min('foo');

//	10

$min	=	collect([1,	2,	3,	4,	5])->min();

//	1

mode()

The	mode	method	returns	the	mode	value	of	a	given	key:

$mode	=	collect([

				['foo'	=>	10],

				['foo'	=>	10],

				['foo'	=>	20],

				['foo'	=>	40]

])->mode('foo');

//	[10]

$mode	=	collect([1,	1,	2,	4])->mode();

//	[1]

Laravel	Documentation	-	10.x	/	Collections 288

https://en.wikipedia.org/wiki/Mode_(statistics)

$mode	=	collect([1,	1,	2,	2])->mode();

//	[1,	2]

nth()

The	nth	method	creates	a	new	collection	consisting	of	every	n-th	element:

$collection	=	collect(['a',	'b',	'c',	'd',	'e',	'f']);

$collection->nth(4);

//	['a',	'e']

You	may	optionally	pass	a	starting	offset	as	the	second	argument:

$collection->nth(4,	1);

//	['b',	'f']

only()

The	only	method	returns	the	items	in	the	collection	with	the	specified	keys:

$collection	=	collect([

				'product_id'	=>	1,

				'name'	=>	'Desk',

				'price'	=>	100,

				'discount'	=>	false

]);

$filtered	=	$collection->only(['product_id',	'name']);

$filtered->all();

//	['product_id'	=>	1,	'name'	=>	'Desk']

For	the	inverse	of	only,	see	the	except	method.

[!NOTE]
This	method's	behavior	is	modified	when	using	Eloquent	Collections.

pad()

The	pad	method	will	fill	the	array	with	the	given	value	until	the	array	reaches	the	specified	size.	This	method
behaves	like	the	array_pad	PHP	function.

To	pad	to	the	left,	you	should	specify	a	negative	size.	No	padding	will	take	place	if	the	absolute	value	of	the
given	size	is	less	than	or	equal	to	the	length	of	the	array:

$collection	=	collect(['A',	'B',	'C']);

$filtered	=	$collection->pad(5,	0);

$filtered->all();

//	['A',	'B',	'C',	0,	0]

$filtered	=	$collection->pad(-5,	0);

$filtered->all();

//	[0,	0,	'A',	'B',	'C']

Laravel	Documentation	-	10.x	/	Collections 289

https://secure.php.net/manual/en/function.array-pad.php

partition()

The	partition	method	may	be	combined	with	PHP	array	destructuring	to	separate	elements	that	pass	a	given
truth	test	from	those	that	do	not:

$collection	=	collect([1,	2,	3,	4,	5,	6]);

[$underThree,	$equalOrAboveThree]	=	$collection->partition(function	(int	$i)	{

				return	$i	<	3;

});

$underThree->all();

//	[1,	2]

$equalOrAboveThree->all();

//	[3,	4,	5,	6]

percentage()

The	percentage	method	may	be	used	to	quickly	determine	the	percentage	of	items	in	the	collection	that	pass	a
given	truth	test:

$collection	=	collect([1,	1,	2,	2,	2,	3]);

$percentage	=	$collection->percentage(fn	($value)	=>	$value	===	1);

//	33.33

By	default,	the	percentage	will	be	rounded	to	two	decimal	places.	However,	you	may	customize	this	behavior
by	providing	a	second	argument	to	the	method:

$percentage	=	$collection->percentage(fn	($value)	=>	$value	===	1,	precision:	3);

//	33.333

pipe()

The	pipe	method	passes	the	collection	to	the	given	closure	and	returns	the	result	of	the	executed	closure:

$collection	=	collect([1,	2,	3]);

$piped	=	$collection->pipe(function	(Collection	$collection)	{

				return	$collection->sum();

});

//	6

pipeInto()

The	pipeInto	method	creates	a	new	instance	of	the	given	class	and	passes	the	collection	into	the	constructor:

class	ResourceCollection

{

				/**

					*	Create	a	new	ResourceCollection	instance.

					*/

				public	function	__construct(

						public	Collection	$collection,

)	{}

}

$collection	=	collect([1,	2,	3]);

$resource	=	$collection->pipeInto(ResourceCollection::class);

Laravel	Documentation	-	10.x	/	Collections 290

$resource->collection->all();

//	[1,	2,	3]

pipeThrough()

The	pipeThrough	method	passes	the	collection	to	the	given	array	of	closures	and	returns	the	result	of	the
executed	closures:

use	Illuminate\Support\Collection;

$collection	=	collect([1,	2,	3]);

$result	=	$collection->pipeThrough([

				function	(Collection	$collection)	{

								return	$collection->merge([4,	5]);

				},

				function	(Collection	$collection)	{

								return	$collection->sum();

				},

]);

//	15

pluck()

The	pluck	method	retrieves	all	of	the	values	for	a	given	key:

$collection	=	collect([

				['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

				['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]);

$plucked	=	$collection->pluck('name');

$plucked->all();

//	['Desk',	'Chair']

You	may	also	specify	how	you	wish	the	resulting	collection	to	be	keyed:

$plucked	=	$collection->pluck('name',	'product_id');

$plucked->all();

//	['prod-100'	=>	'Desk',	'prod-200'	=>	'Chair']

The	pluck	method	also	supports	retrieving	nested	values	using	"dot"	notation:

$collection	=	collect([

				[

								'name'	=>	'Laracon',

								'speakers'	=>	[

												'first_day'	=>	['Rosa',	'Judith'],

],

],

				[

								'name'	=>	'VueConf',

								'speakers'	=>	[

												'first_day'	=>	['Abigail',	'Joey'],

],

],

]);

$plucked	=	$collection->pluck('speakers.first_day');

$plucked->all();

//	[['Rosa',	'Judith'],	['Abigail',	'Joey']]

Laravel	Documentation	-	10.x	/	Collections 291

If	duplicate	keys	exist,	the	last	matching	element	will	be	inserted	into	the	plucked	collection:

$collection	=	collect([

				['brand'	=>	'Tesla',		'color'	=>	'red'],

				['brand'	=>	'Pagani',	'color'	=>	'white'],

				['brand'	=>	'Tesla',		'color'	=>	'black'],

				['brand'	=>	'Pagani',	'color'	=>	'orange'],

]);

$plucked	=	$collection->pluck('color',	'brand');

$plucked->all();

//	['Tesla'	=>	'black',	'Pagani'	=>	'orange']

pop()

The	pop	method	removes	and	returns	the	last	item	from	the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->pop();

//	5

$collection->all();

//	[1,	2,	3,	4]

You	may	pass	an	integer	to	the	pop	method	to	remove	and	return	multiple	items	from	the	end	of	a	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->pop(3);

//	collect([5,	4,	3])

$collection->all();

//	[1,	2]

prepend()

The	prepend	method	adds	an	item	to	the	beginning	of	the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->prepend(0);

$collection->all();

//	[0,	1,	2,	3,	4,	5]

You	may	also	pass	a	second	argument	to	specify	the	key	of	the	prepended	item:

$collection	=	collect(['one'	=>	1,	'two'	=>	2]);

$collection->prepend(0,	'zero');

$collection->all();

//	['zero'	=>	0,	'one'	=>	1,	'two'	=>	2]

pull()

The	pull	method	removes	and	returns	an	item	from	the	collection	by	its	key:

Laravel	Documentation	-	10.x	/	Collections 292

$collection	=	collect(['product_id'	=>	'prod-100',	'name'	=>	'Desk']);

$collection->pull('name');

//	'Desk'

$collection->all();

//	['product_id'	=>	'prod-100']

push()

The	push	method	appends	an	item	to	the	end	of	the	collection:

$collection	=	collect([1,	2,	3,	4]);

$collection->push(5);

$collection->all();

//	[1,	2,	3,	4,	5]

put()

The	put	method	sets	the	given	key	and	value	in	the	collection:

$collection	=	collect(['product_id'	=>	1,	'name'	=>	'Desk']);

$collection->put('price',	100);

$collection->all();

//	['product_id'	=>	1,	'name'	=>	'Desk',	'price'	=>	100]

random()

The	random	method	returns	a	random	item	from	the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->random();

//	4	-	(retrieved	randomly)

You	may	pass	an	integer	to	random	to	specify	how	many	items	you	would	like	to	randomly	retrieve.	A	collection
of	items	is	always	returned	when	explicitly	passing	the	number	of	items	you	wish	to	receive:

$random	=	$collection->random(3);

$random->all();

//	[2,	4,	5]	-	(retrieved	randomly)

If	the	collection	instance	has	fewer	items	than	requested,	the	random	method	will	throw	an	
InvalidArgumentException.

The	random	method	also	accepts	a	closure,	which	will	receive	the	current	collection	instance:

use	Illuminate\Support\Collection;

$random	=	$collection->random(fn	(Collection	$items)	=>	min(10,	count($items)));

$random->all();

//	[1,	2,	3,	4,	5]	-	(retrieved	randomly)

Laravel	Documentation	-	10.x	/	Collections 293

range()

The	range	method	returns	a	collection	containing	integers	between	the	specified	range:

$collection	=	collect()->range(3,	6);

$collection->all();

//	[3,	4,	5,	6]

reduce()

The	reduce	method	reduces	the	collection	to	a	single	value,	passing	the	result	of	each	iteration	into	the
subsequent	iteration:

$collection	=	collect([1,	2,	3]);

$total	=	$collection->reduce(function	(?int	$carry,	int	$item)	{

				return	$carry	+	$item;

});

//	6

The	value	for	$carry	on	the	first	iteration	is	null;	however,	you	may	specify	its	initial	value	by	passing	a	second
argument	to	reduce:

$collection->reduce(function	(int	$carry,	int	$item)	{

				return	$carry	+	$item;

},	4);

//	10

The	reduce	method	also	passes	array	keys	in	associative	collections	to	the	given	callback:

$collection	=	collect([

				'usd'	=>	1400,

				'gbp'	=>	1200,

				'eur'	=>	1000,

]);

$ratio	=	[

				'usd'	=>	1,

				'gbp'	=>	1.37,

				'eur'	=>	1.22,

];

$collection->reduce(function	(int	$carry,	int	$value,	int	$key)	use	($ratio)	{

				return	$carry	+	($value	*	$ratio[$key]);

});

//	4264

reduceSpread()

The	reduceSpread	method	reduces	the	collection	to	an	array	of	values,	passing	the	results	of	each	iteration	into
the	subsequent	iteration.	This	method	is	similar	to	the	reduce	method;	however,	it	can	accept	multiple	initial
values:

[$creditsRemaining,	$batch]	=	Image::where('status',	'unprocessed')

				->get()

				->reduceSpread(function	(int	$creditsRemaining,	Collection	$batch,	Image	$image)	{

								if	($creditsRemaining	>=	$image->creditsRequired())	{

												$batch->push($image);

												$creditsRemaining	-=	$image->creditsRequired();

								}

								return	[$creditsRemaining,	$batch];

				},	$creditsAvailable,	collect());

Laravel	Documentation	-	10.x	/	Collections 294

reject()

The	reject	method	filters	the	collection	using	the	given	closure.	The	closure	should	return	true	if	the	item
should	be	removed	from	the	resulting	collection:

$collection	=	collect([1,	2,	3,	4]);

$filtered	=	$collection->reject(function	(int	$value,	int	$key)	{

				return	$value	>	2;

});

$filtered->all();

//	[1,	2]

For	the	inverse	of	the	reject	method,	see	the	filter	method.

replace()

The	replace	method	behaves	similarly	to	merge;	however,	in	addition	to	overwriting	matching	items	that	have
string	keys,	the	replace	method	will	also	overwrite	items	in	the	collection	that	have	matching	numeric	keys:

$collection	=	collect(['Taylor',	'Abigail',	'James']);

$replaced	=	$collection->replace([1	=>	'Victoria',	3	=>	'Finn']);

$replaced->all();

//	['Taylor',	'Victoria',	'James',	'Finn']

replaceRecursive()

This	method	works	like	replace,	but	it	will	recur	into	arrays	and	apply	the	same	replacement	process	to	the
inner	values:

$collection	=	collect([

				'Taylor',

				'Abigail',

				[

								'James',

								'Victoria',

								'Finn'

]

]);

$replaced	=	$collection->replaceRecursive([

				'Charlie',

				2	=>	[1	=>	'King']

]);

$replaced->all();

//	['Charlie',	'Abigail',	['James',	'King',	'Finn']]

reverse()

The	reverse	method	reverses	the	order	of	the	collection's	items,	preserving	the	original	keys:

$collection	=	collect(['a',	'b',	'c',	'd',	'e']);

$reversed	=	$collection->reverse();

$reversed->all();

/*

				[

Laravel	Documentation	-	10.x	/	Collections 295

								4	=>	'e',

								3	=>	'd',

								2	=>	'c',

								1	=>	'b',

								0	=>	'a',

]

*/

search()

The	search	method	searches	the	collection	for	the	given	value	and	returns	its	key	if	found.	If	the	item	is	not
found,	false	is	returned:

$collection	=	collect([2,	4,	6,	8]);

$collection->search(4);

//	1

The	search	is	done	using	a	"loose"	comparison,	meaning	a	string	with	an	integer	value	will	be	considered	equal
to	an	integer	of	the	same	value.	To	use	"strict"	comparison,	pass	true	as	the	second	argument	to	the	method:

collect([2,	4,	6,	8])->search('4',	$strict	=	true);

//	false

Alternatively,	you	may	provide	your	own	closure	to	search	for	the	first	item	that	passes	a	given	truth	test:

collect([2,	4,	6,	8])->search(function	(int	$item,	int	$key)	{

				return	$item	>	5;

});

//	2

select()

The	select	method	selects	the	given	keys	from	the	collection,	similar	to	an	SQL	SELECT	statement:

$users	=	collect([

				['name'	=>	'Taylor	Otwell',	'role'	=>	'Developer',	'status'	=>	'active'],

				['name'	=>	'Victoria	Faith',	'role'	=>	'Researcher',	'status'	=>	'active'],

]);

$users->select(['name',	'role']);

/*

				[

								['name'	=>	'Taylor	Otwell',	'role'	=>	'Developer'],

								['name'	=>	'Victoria	Faith',	'role'	=>	'Researcher'],

],

*/

shift()

The	shift	method	removes	and	returns	the	first	item	from	the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->shift();

//	1

$collection->all();

//	[2,	3,	4,	5]

Laravel	Documentation	-	10.x	/	Collections 296

You	may	pass	an	integer	to	the	shift	method	to	remove	and	return	multiple	items	from	the	beginning	of	a
collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->shift(3);

//	collect([1,	2,	3])

$collection->all();

//	[4,	5]

shuffle()

The	shuffle	method	randomly	shuffles	the	items	in	the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$shuffled	=	$collection->shuffle();

$shuffled->all();

//	[3,	2,	5,	1,	4]	-	(generated	randomly)

skip()

The	skip	method	returns	a	new	collection,	with	the	given	number	of	elements	removed	from	the	beginning	of
the	collection:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7,	8,	9,	10]);

$collection	=	$collection->skip(4);

$collection->all();

//	[5,	6,	7,	8,	9,	10]

skipUntil()

The	skipUntil	method	skips	over	items	from	the	collection	until	the	given	callback	returns	true	and	then	returns
the	remaining	items	in	the	collection	as	a	new	collection	instance:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->skipUntil(function	(int	$item)	{

				return	$item	>=	3;

});

$subset->all();

//	[3,	4]

You	may	also	pass	a	simple	value	to	the	skipUntil	method	to	skip	all	items	until	the	given	value	is	found:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->skipUntil(3);

$subset->all();

//	[3,	4]

[!WARNING]
If	the	given	value	is	not	found	or	the	callback	never	returns	true,	the	skipUntil	method	will	return	an

Laravel	Documentation	-	10.x	/	Collections 297

empty	collection.

skipWhile()

The	skipWhile	method	skips	over	items	from	the	collection	while	the	given	callback	returns	true	and	then
returns	the	remaining	items	in	the	collection	as	a	new	collection:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->skipWhile(function	(int	$item)	{

				return	$item	<=	3;

});

$subset->all();

//	[4]

[!WARNING]
If	the	callback	never	returns	false,	the	skipWhile	method	will	return	an	empty	collection.

slice()

The	slice	method	returns	a	slice	of	the	collection	starting	at	the	given	index:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7,	8,	9,	10]);

$slice	=	$collection->slice(4);

$slice->all();

//	[5,	6,	7,	8,	9,	10]

If	you	would	like	to	limit	the	size	of	the	returned	slice,	pass	the	desired	size	as	the	second	argument	to	the
method:

$slice	=	$collection->slice(4,	2);

$slice->all();

//	[5,	6]

The	returned	slice	will	preserve	keys	by	default.	If	you	do	not	wish	to	preserve	the	original	keys,	you	can	use
the	values	method	to	reindex	them.

sliding()

The	sliding	method	returns	a	new	collection	of	chunks	representing	a	"sliding	window"	view	of	the	items	in
the	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$chunks	=	$collection->sliding(2);

$chunks->toArray();

//	[[1,	2],	[2,	3],	[3,	4],	[4,	5]]

This	is	especially	useful	in	conjunction	with	the	eachSpread	method:

$transactions->sliding(2)->eachSpread(function	(Collection	$previous,	Collection	$current)	{

				$current->total	=	$previous->total	+	$current->amount;

});

You	may	optionally	pass	a	second	"step"	value,	which	determines	the	distance	between	the	first	item	of	every

Laravel	Documentation	-	10.x	/	Collections 298

chunk:

$collection	=	collect([1,	2,	3,	4,	5]);

$chunks	=	$collection->sliding(3,	step:	2);

$chunks->toArray();

//	[[1,	2,	3],	[3,	4,	5]]

sole()

The	sole	method	returns	the	first	element	in	the	collection	that	passes	a	given	truth	test,	but	only	if	the	truth	test
matches	exactly	one	element:

collect([1,	2,	3,	4])->sole(function	(int	$value,	int	$key)	{

				return	$value	===	2;

});

//	2

You	may	also	pass	a	key	/	value	pair	to	the	sole	method,	which	will	return	the	first	element	in	the	collection
that	matches	the	given	pair,	but	only	if	it	exactly	one	element	matches:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

]);

$collection->sole('product',	'Chair');

//	['product'	=>	'Chair',	'price'	=>	100]

Alternatively,	you	may	also	call	the	sole	method	with	no	argument	to	get	the	first	element	in	the	collection	if
there	is	only	one	element:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

]);

$collection->sole();

//	['product'	=>	'Desk',	'price'	=>	200]

If	there	are	no	elements	in	the	collection	that	should	be	returned	by	the	sole	method,	an	
\Illuminate\Collections\ItemNotFoundException	exception	will	be	thrown.	If	there	is	more	than	one	element
that	should	be	returned,	an	\Illuminate\Collections\MultipleItemsFoundException	will	be	thrown.

some()

Alias	for	the	contains	method.

sort()

The	sort	method	sorts	the	collection.	The	sorted	collection	keeps	the	original	array	keys,	so	in	the	following
example	we	will	use	the	values	method	to	reset	the	keys	to	consecutively	numbered	indexes:

$collection	=	collect([5,	3,	1,	2,	4]);

$sorted	=	$collection->sort();

$sorted->values()->all();

//	[1,	2,	3,	4,	5]

Laravel	Documentation	-	10.x	/	Collections 299

If	your	sorting	needs	are	more	advanced,	you	may	pass	a	callback	to	sort	with	your	own	algorithm.	Refer	to	the
PHP	documentation	on	uasort,	which	is	what	the	collection's	sort	method	calls	utilizes	internally.

[!NOTE]
If	you	need	to	sort	a	collection	of	nested	arrays	or	objects,	see	the	sortBy	and	sortByDesc	methods.

sortBy()

The	sortBy	method	sorts	the	collection	by	the	given	key.	The	sorted	collection	keeps	the	original	array	keys,	so
in	the	following	example	we	will	use	the	values	method	to	reset	the	keys	to	consecutively	numbered	indexes:

$collection	=	collect([

				['name'	=>	'Desk',	'price'	=>	200],

				['name'	=>	'Chair',	'price'	=>	100],

				['name'	=>	'Bookcase',	'price'	=>	150],

]);

$sorted	=	$collection->sortBy('price');

$sorted->values()->all();

/*

				[

								['name'	=>	'Chair',	'price'	=>	100],

								['name'	=>	'Bookcase',	'price'	=>	150],

								['name'	=>	'Desk',	'price'	=>	200],

]

*/

The	sortBy	method	accepts	sort	flags	as	its	second	argument:

$collection	=	collect([

				['title'	=>	'Item	1'],

				['title'	=>	'Item	12'],

				['title'	=>	'Item	3'],

]);

$sorted	=	$collection->sortBy('title',	SORT_NATURAL);

$sorted->values()->all();

/*

				[

								['title'	=>	'Item	1'],

								['title'	=>	'Item	3'],

								['title'	=>	'Item	12'],

]

*/

Alternatively,	you	may	pass	your	own	closure	to	determine	how	to	sort	the	collection's	values:

$collection	=	collect([

				['name'	=>	'Desk',	'colors'	=>	['Black',	'Mahogany']],

				['name'	=>	'Chair',	'colors'	=>	['Black']],

				['name'	=>	'Bookcase',	'colors'	=>	['Red',	'Beige',	'Brown']],

]);

$sorted	=	$collection->sortBy(function	(array	$product,	int	$key)	{

				return	count($product['colors']);

});

$sorted->values()->all();

/*

				[

								['name'	=>	'Chair',	'colors'	=>	['Black']],

								['name'	=>	'Desk',	'colors'	=>	['Black',	'Mahogany']],

								['name'	=>	'Bookcase',	'colors'	=>	['Red',	'Beige',	'Brown']],

]

*/

If	you	would	like	to	sort	your	collection	by	multiple	attributes,	you	may	pass	an	array	of	sort	operations	to	the	
sortBy	method.	Each	sort	operation	should	be	an	array	consisting	of	the	attribute	that	you	wish	to	sort	by	and

Laravel	Documentation	-	10.x	/	Collections 300

https://secure.php.net/manual/en/function.uasort.php#refsect1-function.uasort-parameters
https://www.php.net/manual/en/function.sort.php

the	direction	of	the	desired	sort:

$collection	=	collect([

				['name'	=>	'Taylor	Otwell',	'age'	=>	34],

				['name'	=>	'Abigail	Otwell',	'age'	=>	30],

				['name'	=>	'Taylor	Otwell',	'age'	=>	36],

				['name'	=>	'Abigail	Otwell',	'age'	=>	32],

]);

$sorted	=	$collection->sortBy([

				['name',	'asc'],

				['age',	'desc'],

]);

$sorted->values()->all();

/*

				[

								['name'	=>	'Abigail	Otwell',	'age'	=>	32],

								['name'	=>	'Abigail	Otwell',	'age'	=>	30],

								['name'	=>	'Taylor	Otwell',	'age'	=>	36],

								['name'	=>	'Taylor	Otwell',	'age'	=>	34],

]

*/

When	sorting	a	collection	by	multiple	attributes,	you	may	also	provide	closures	that	define	each	sort	operation:

$collection	=	collect([

				['name'	=>	'Taylor	Otwell',	'age'	=>	34],

				['name'	=>	'Abigail	Otwell',	'age'	=>	30],

				['name'	=>	'Taylor	Otwell',	'age'	=>	36],

				['name'	=>	'Abigail	Otwell',	'age'	=>	32],

]);

$sorted	=	$collection->sortBy([

				fn	(array	$a,	array	$b)	=>	$a['name']	<=>	$b['name'],

				fn	(array	$a,	array	$b)	=>	$b['age']	<=>	$a['age'],

]);

$sorted->values()->all();

/*

				[

								['name'	=>	'Abigail	Otwell',	'age'	=>	32],

								['name'	=>	'Abigail	Otwell',	'age'	=>	30],

								['name'	=>	'Taylor	Otwell',	'age'	=>	36],

								['name'	=>	'Taylor	Otwell',	'age'	=>	34],

]

*/

sortByDesc()

This	method	has	the	same	signature	as	the	sortBy	method,	but	will	sort	the	collection	in	the	opposite	order.

sortDesc()

This	method	will	sort	the	collection	in	the	opposite	order	as	the	sort	method:

$collection	=	collect([5,	3,	1,	2,	4]);

$sorted	=	$collection->sortDesc();

$sorted->values()->all();

//	[5,	4,	3,	2,	1]

Unlike	sort,	you	may	not	pass	a	closure	to	sortDesc.	Instead,	you	should	use	the	sort	method	and	invert	your
comparison.

Laravel	Documentation	-	10.x	/	Collections 301

sortKeys()

The	sortKeys	method	sorts	the	collection	by	the	keys	of	the	underlying	associative	array:

$collection	=	collect([

				'id'	=>	22345,

				'first'	=>	'John',

				'last'	=>	'Doe',

]);

$sorted	=	$collection->sortKeys();

$sorted->all();

/*

				[

								'first'	=>	'John',

								'id'	=>	22345,

								'last'	=>	'Doe',

]

*/

sortKeysDesc()

This	method	has	the	same	signature	as	the	sortKeys	method,	but	will	sort	the	collection	in	the	opposite	order.

sortKeysUsing()

The	sortKeysUsing	method	sorts	the	collection	by	the	keys	of	the	underlying	associative	array	using	a	callback:

$collection	=	collect([

				'ID'	=>	22345,

				'first'	=>	'John',

				'last'	=>	'Doe',

]);

$sorted	=	$collection->sortKeysUsing('strnatcasecmp');

$sorted->all();

/*

				[

								'first'	=>	'John',

								'ID'	=>	22345,

								'last'	=>	'Doe',

]

*/

The	callback	must	be	a	comparison	function	that	returns	an	integer	less	than,	equal	to,	or	greater	than	zero.	For
more	information,	refer	to	the	PHP	documentation	on	uksort,	which	is	the	PHP	function	that	sortKeysUsing
method	utilizes	internally.

splice()

The	splice	method	removes	and	returns	a	slice	of	items	starting	at	the	specified	index:

$collection	=	collect([1,	2,	3,	4,	5]);

$chunk	=	$collection->splice(2);

$chunk->all();

//	[3,	4,	5]

$collection->all();

//	[1,	2]

Laravel	Documentation	-	10.x	/	Collections 302

https://www.php.net/manual/en/function.uksort.php#refsect1-function.uksort-parameters

You	may	pass	a	second	argument	to	limit	the	size	of	the	resulting	collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$chunk	=	$collection->splice(2,	1);

$chunk->all();

//	[3]

$collection->all();

//	[1,	2,	4,	5]

In	addition,	you	may	pass	a	third	argument	containing	the	new	items	to	replace	the	items	removed	from	the
collection:

$collection	=	collect([1,	2,	3,	4,	5]);

$chunk	=	$collection->splice(2,	1,	[10,	11]);

$chunk->all();

//	[3]

$collection->all();

//	[1,	2,	10,	11,	4,	5]

split()

The	split	method	breaks	a	collection	into	the	given	number	of	groups:

$collection	=	collect([1,	2,	3,	4,	5]);

$groups	=	$collection->split(3);

$groups->all();

//	[[1,	2],	[3,	4],	[5]]

splitIn()

The	splitIn	method	breaks	a	collection	into	the	given	number	of	groups,	filling	non-terminal	groups
completely	before	allocating	the	remainder	to	the	final	group:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7,	8,	9,	10]);

$groups	=	$collection->splitIn(3);

$groups->all();

//	[[1,	2,	3,	4],	[5,	6,	7,	8],	[9,	10]]

sum()

The	sum	method	returns	the	sum	of	all	items	in	the	collection:

collect([1,	2,	3,	4,	5])->sum();

//	15

If	the	collection	contains	nested	arrays	or	objects,	you	should	pass	a	key	that	will	be	used	to	determine	which
values	to	sum:

$collection	=	collect([

Laravel	Documentation	-	10.x	/	Collections 303

				['name'	=>	'JavaScript:	The	Good	Parts',	'pages'	=>	176],

				['name'	=>	'JavaScript:	The	Definitive	Guide',	'pages'	=>	1096],

]);

$collection->sum('pages');

//	1272

In	addition,	you	may	pass	your	own	closure	to	determine	which	values	of	the	collection	to	sum:

$collection	=	collect([

				['name'	=>	'Chair',	'colors'	=>	['Black']],

				['name'	=>	'Desk',	'colors'	=>	['Black',	'Mahogany']],

				['name'	=>	'Bookcase',	'colors'	=>	['Red',	'Beige',	'Brown']],

]);

$collection->sum(function	(array	$product)	{

				return	count($product['colors']);

});

//	6

take()

The	take	method	returns	a	new	collection	with	the	specified	number	of	items:

$collection	=	collect([0,	1,	2,	3,	4,	5]);

$chunk	=	$collection->take(3);

$chunk->all();

//	[0,	1,	2]

You	may	also	pass	a	negative	integer	to	take	the	specified	number	of	items	from	the	end	of	the	collection:

$collection	=	collect([0,	1,	2,	3,	4,	5]);

$chunk	=	$collection->take(-2);

$chunk->all();

//	[4,	5]

takeUntil()

The	takeUntil	method	returns	items	in	the	collection	until	the	given	callback	returns	true:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->takeUntil(function	(int	$item)	{

				return	$item	>=	3;

});

$subset->all();

//	[1,	2]

You	may	also	pass	a	simple	value	to	the	takeUntil	method	to	get	the	items	until	the	given	value	is	found:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->takeUntil(3);

$subset->all();

//	[1,	2]

[!WARNING]
If	the	given	value	is	not	found	or	the	callback	never	returns	true,	the	takeUntil	method	will	return	all	items

Laravel	Documentation	-	10.x	/	Collections 304

in	the	collection.

takeWhile()

The	takeWhile	method	returns	items	in	the	collection	until	the	given	callback	returns	false:

$collection	=	collect([1,	2,	3,	4]);

$subset	=	$collection->takeWhile(function	(int	$item)	{

				return	$item	<	3;

});

$subset->all();

//	[1,	2]

[!WARNING]
If	the	callback	never	returns	false,	the	takeWhile	method	will	return	all	items	in	the	collection.

tap()

The	tap	method	passes	the	collection	to	the	given	callback,	allowing	you	to	"tap"	into	the	collection	at	a
specific	point	and	do	something	with	the	items	while	not	affecting	the	collection	itself.	The	collection	is	then
returned	by	the	tap	method:

collect([2,	4,	3,	1,	5])

				->sort()

				->tap(function	(Collection	$collection)	{

								Log::debug('Values	after	sorting',	$collection->values()->all());

				})

				->shift();

//	1

times()

The	static	times	method	creates	a	new	collection	by	invoking	the	given	closure	a	specified	number	of	times:

$collection	=	Collection::times(10,	function	(int	$number)	{

				return	$number	*	9;

});

$collection->all();

//	[9,	18,	27,	36,	45,	54,	63,	72,	81,	90]

toArray()

The	toArray	method	converts	the	collection	into	a	plain	PHP	array.	If	the	collection's	values	are	Eloquent
models,	the	models	will	also	be	converted	to	arrays:

$collection	=	collect(['name'	=>	'Desk',	'price'	=>	200]);

$collection->toArray();

/*

				[

								['name'	=>	'Desk',	'price'	=>	200],

]

*/

[!WARNING]

Laravel	Documentation	-	10.x	/	Collections 305

toArray	also	converts	all	of	the	collection's	nested	objects	that	are	an	instance	of	Arrayable	to	an	array.	If
you	want	to	get	the	raw	array	underlying	the	collection,	use	the	all	method	instead.

toJson()

The	toJson	method	converts	the	collection	into	a	JSON	serialized	string:

$collection	=	collect(['name'	=>	'Desk',	'price'	=>	200]);

$collection->toJson();

//	'{"name":"Desk",	"price":200}'

transform()

The	transform	method	iterates	over	the	collection	and	calls	the	given	callback	with	each	item	in	the	collection.
The	items	in	the	collection	will	be	replaced	by	the	values	returned	by	the	callback:

$collection	=	collect([1,	2,	3,	4,	5]);

$collection->transform(function	(int	$item,	int	$key)	{

				return	$item	*	2;

});

$collection->all();

//	[2,	4,	6,	8,	10]

[!WARNING]
Unlike	most	other	collection	methods,	transform	modifies	the	collection	itself.	If	you	wish	to	create	a	new
collection	instead,	use	the	map	method.

undot()

The	undot	method	expands	a	single-dimensional	collection	that	uses	"dot"	notation	into	a	multi-dimensional
collection:

$person	=	collect([

				'name.first_name'	=>	'Marie',

				'name.last_name'	=>	'Valentine',

				'address.line_1'	=>	'2992	Eagle	Drive',

				'address.line_2'	=>	'',

				'address.suburb'	=>	'Detroit',

				'address.state'	=>	'MI',

				'address.postcode'	=>	'48219'

]);

$person	=	$person->undot();

$person->toArray();

/*

				[

								"name"	=>	[

												"first_name"	=>	"Marie",

												"last_name"	=>	"Valentine",

],

								"address"	=>	[

												"line_1"	=>	"2992	Eagle	Drive",

												"line_2"	=>	"",

												"suburb"	=>	"Detroit",

												"state"	=>	"MI",

												"postcode"	=>	"48219",

],

]

*/

Laravel	Documentation	-	10.x	/	Collections 306

union()

The	union	method	adds	the	given	array	to	the	collection.	If	the	given	array	contains	keys	that	are	already	in	the
original	collection,	the	original	collection's	values	will	be	preferred:

$collection	=	collect([1	=>	['a'],	2	=>	['b']]);

$union	=	$collection->union([3	=>	['c'],	1	=>	['d']]);

$union->all();

//	[1	=>	['a'],	2	=>	['b'],	3	=>	['c']]

unique()

The	unique	method	returns	all	of	the	unique	items	in	the	collection.	The	returned	collection	keeps	the	original
array	keys,	so	in	the	following	example	we	will	use	the	values	method	to	reset	the	keys	to	consecutively
numbered	indexes:

$collection	=	collect([1,	1,	2,	2,	3,	4,	2]);

$unique	=	$collection->unique();

$unique->values()->all();

//	[1,	2,	3,	4]

When	dealing	with	nested	arrays	or	objects,	you	may	specify	the	key	used	to	determine	uniqueness:

$collection	=	collect([

				['name'	=>	'iPhone	6',	'brand'	=>	'Apple',	'type'	=>	'phone'],

				['name'	=>	'iPhone	5',	'brand'	=>	'Apple',	'type'	=>	'phone'],

				['name'	=>	'Apple	Watch',	'brand'	=>	'Apple',	'type'	=>	'watch'],

				['name'	=>	'Galaxy	S6',	'brand'	=>	'Samsung',	'type'	=>	'phone'],

				['name'	=>	'Galaxy	Gear',	'brand'	=>	'Samsung',	'type'	=>	'watch'],

]);

$unique	=	$collection->unique('brand');

$unique->values()->all();

/*

				[

								['name'	=>	'iPhone	6',	'brand'	=>	'Apple',	'type'	=>	'phone'],

								['name'	=>	'Galaxy	S6',	'brand'	=>	'Samsung',	'type'	=>	'phone'],

]

*/

Finally,	you	may	also	pass	your	own	closure	to	the	unique	method	to	specify	which	value	should	determine	an
item's	uniqueness:

$unique	=	$collection->unique(function	(array	$item)	{

				return	$item['brand'].$item['type'];

});

$unique->values()->all();

/*

				[

								['name'	=>	'iPhone	6',	'brand'	=>	'Apple',	'type'	=>	'phone'],

								['name'	=>	'Apple	Watch',	'brand'	=>	'Apple',	'type'	=>	'watch'],

								['name'	=>	'Galaxy	S6',	'brand'	=>	'Samsung',	'type'	=>	'phone'],

								['name'	=>	'Galaxy	Gear',	'brand'	=>	'Samsung',	'type'	=>	'watch'],

]

*/

The	unique	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an	integer
value	will	be	considered	equal	to	an	integer	of	the	same	value.	Use	the	uniqueStrict	method	to	filter	using
"strict"	comparisons.

[!NOTE]

Laravel	Documentation	-	10.x	/	Collections 307

This	method's	behavior	is	modified	when	using	Eloquent	Collections.

uniqueStrict()

This	method	has	the	same	signature	as	the	unique	method;	however,	all	values	are	compared	using	"strict"
comparisons.

unless()

The	unless	method	will	execute	the	given	callback	unless	the	first	argument	given	to	the	method	evaluates	to	
true:

$collection	=	collect([1,	2,	3]);

$collection->unless(true,	function	(Collection	$collection)	{

				return	$collection->push(4);

});

$collection->unless(false,	function	(Collection	$collection)	{

				return	$collection->push(5);

});

$collection->all();

//	[1,	2,	3,	5]

A	second	callback	may	be	passed	to	the	unless	method.	The	second	callback	will	be	executed	when	the	first
argument	given	to	the	unless	method	evaluates	to	true:

$collection	=	collect([1,	2,	3]);

$collection->unless(true,	function	(Collection	$collection)	{

				return	$collection->push(4);

},	function	(Collection	$collection)	{

				return	$collection->push(5);

});

$collection->all();

//	[1,	2,	3,	5]

For	the	inverse	of	unless,	see	the	when	method.

unlessEmpty()

Alias	for	the	whenNotEmpty	method.

unlessNotEmpty()

Alias	for	the	whenEmpty	method.

unwrap()

The	static	unwrap	method	returns	the	collection's	underlying	items	from	the	given	value	when	applicable:

Collection::unwrap(collect('John	Doe'));

//	['John	Doe']

Laravel	Documentation	-	10.x	/	Collections 308

Collection::unwrap(['John	Doe']);

//	['John	Doe']

Collection::unwrap('John	Doe');

//	'John	Doe'

value()

The	value	method	retrieves	a	given	value	from	the	first	element	of	the	collection:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Speaker',	'price'	=>	400],

]);

$value	=	$collection->value('price');

//	200

values()

The	values	method	returns	a	new	collection	with	the	keys	reset	to	consecutive	integers:

$collection	=	collect([

				10	=>	['product'	=>	'Desk',	'price'	=>	200],

				11	=>	['product'	=>	'Desk',	'price'	=>	200],

]);

$values	=	$collection->values();

$values->all();

/*

				[

								0	=>	['product'	=>	'Desk',	'price'	=>	200],

								1	=>	['product'	=>	'Desk',	'price'	=>	200],

]

*/

when()

The	when	method	will	execute	the	given	callback	when	the	first	argument	given	to	the	method	evaluates	to	true.
The	collection	instance	and	the	first	argument	given	to	the	when	method	will	be	provided	to	the	closure:

$collection	=	collect([1,	2,	3]);

$collection->when(true,	function	(Collection	$collection,	int	$value)	{

				return	$collection->push(4);

});

$collection->when(false,	function	(Collection	$collection,	int	$value)	{

				return	$collection->push(5);

});

$collection->all();

//	[1,	2,	3,	4]

A	second	callback	may	be	passed	to	the	when	method.	The	second	callback	will	be	executed	when	the	first
argument	given	to	the	when	method	evaluates	to	false:

$collection	=	collect([1,	2,	3]);

$collection->when(false,	function	(Collection	$collection,	int	$value)	{

				return	$collection->push(4);

Laravel	Documentation	-	10.x	/	Collections 309

},	function	(Collection	$collection)	{

				return	$collection->push(5);

});

$collection->all();

//	[1,	2,	3,	5]

For	the	inverse	of	when,	see	the	unless	method.

whenEmpty()

The	whenEmpty	method	will	execute	the	given	callback	when	the	collection	is	empty:

$collection	=	collect(['Michael',	'Tom']);

$collection->whenEmpty(function	(Collection	$collection)	{

				return	$collection->push('Adam');

});

$collection->all();

//	['Michael',	'Tom']

$collection	=	collect();

$collection->whenEmpty(function	(Collection	$collection)	{

				return	$collection->push('Adam');

});

$collection->all();

//	['Adam']

A	second	closure	may	be	passed	to	the	whenEmpty	method	that	will	be	executed	when	the	collection	is	not
empty:

$collection	=	collect(['Michael',	'Tom']);

$collection->whenEmpty(function	(Collection	$collection)	{

				return	$collection->push('Adam');

},	function	(Collection	$collection)	{

				return	$collection->push('Taylor');

});

$collection->all();

//	['Michael',	'Tom',	'Taylor']

For	the	inverse	of	whenEmpty,	see	the	whenNotEmpty	method.

whenNotEmpty()

The	whenNotEmpty	method	will	execute	the	given	callback	when	the	collection	is	not	empty:

$collection	=	collect(['michael',	'tom']);

$collection->whenNotEmpty(function	(Collection	$collection)	{

				return	$collection->push('adam');

});

$collection->all();

//	['michael',	'tom',	'adam']

$collection	=	collect();

$collection->whenNotEmpty(function	(Collection	$collection)	{

				return	$collection->push('adam');

});

Laravel	Documentation	-	10.x	/	Collections 310

$collection->all();

//	[]

A	second	closure	may	be	passed	to	the	whenNotEmpty	method	that	will	be	executed	when	the	collection	is	empty:

$collection	=	collect();

$collection->whenNotEmpty(function	(Collection	$collection)	{

				return	$collection->push('adam');

},	function	(Collection	$collection)	{

				return	$collection->push('taylor');

});

$collection->all();

//	['taylor']

For	the	inverse	of	whenNotEmpty,	see	the	whenEmpty	method.

where()

The	where	method	filters	the	collection	by	a	given	key	/	value	pair:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

				['product'	=>	'Bookcase',	'price'	=>	150],

				['product'	=>	'Door',	'price'	=>	100],

]);

$filtered	=	$collection->where('price',	100);

$filtered->all();

/*

				[

								['product'	=>	'Chair',	'price'	=>	100],

								['product'	=>	'Door',	'price'	=>	100],

]

*/

The	where	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an	integer	value
will	be	considered	equal	to	an	integer	of	the	same	value.	Use	the	whereStrict	method	to	filter	using	"strict"
comparisons.

Optionally,	you	may	pass	a	comparison	operator	as	the	second	parameter.	Supported	operators	are:	'===',	'!==',
'!=',	'==',	'=',	'<>',	'>',	'<',	'>=',	and	'<=':

$collection	=	collect([

				['name'	=>	'Jim',	'deleted_at'	=>	'2019-01-01	00:00:00'],

				['name'	=>	'Sally',	'deleted_at'	=>	'2019-01-02	00:00:00'],

				['name'	=>	'Sue',	'deleted_at'	=>	null],

]);

$filtered	=	$collection->where('deleted_at',	'!=',	null);

$filtered->all();

/*

				[

								['name'	=>	'Jim',	'deleted_at'	=>	'2019-01-01	00:00:00'],

								['name'	=>	'Sally',	'deleted_at'	=>	'2019-01-02	00:00:00'],

]

*/

whereStrict()

This	method	has	the	same	signature	as	the	where	method;	however,	all	values	are	compared	using	"strict"

Laravel	Documentation	-	10.x	/	Collections 311

comparisons.

whereBetween()

The	whereBetween	method	filters	the	collection	by	determining	if	a	specified	item	value	is	within	a	given	range:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	80],

				['product'	=>	'Bookcase',	'price'	=>	150],

				['product'	=>	'Pencil',	'price'	=>	30],

				['product'	=>	'Door',	'price'	=>	100],

]);

$filtered	=	$collection->whereBetween('price',	[100,	200]);

$filtered->all();

/*

				[

								['product'	=>	'Desk',	'price'	=>	200],

								['product'	=>	'Bookcase',	'price'	=>	150],

								['product'	=>	'Door',	'price'	=>	100],

]

*/

whereIn()

The	whereIn	method	removes	elements	from	the	collection	that	do	not	have	a	specified	item	value	that	is
contained	within	the	given	array:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

				['product'	=>	'Bookcase',	'price'	=>	150],

				['product'	=>	'Door',	'price'	=>	100],

]);

$filtered	=	$collection->whereIn('price',	[150,	200]);

$filtered->all();

/*

				[

								['product'	=>	'Desk',	'price'	=>	200],

								['product'	=>	'Bookcase',	'price'	=>	150],

]

*/

The	whereIn	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an	integer
value	will	be	considered	equal	to	an	integer	of	the	same	value.	Use	the	whereInStrict	method	to	filter	using
"strict"	comparisons.

whereInStrict()

This	method	has	the	same	signature	as	the	whereIn	method;	however,	all	values	are	compared	using	"strict"
comparisons.

whereInstanceOf()

The	whereInstanceOf	method	filters	the	collection	by	a	given	class	type:

use	App\Models\User;

Laravel	Documentation	-	10.x	/	Collections 312

use	App\Models\Post;

$collection	=	collect([

				new	User,

				new	User,

				new	Post,

]);

$filtered	=	$collection->whereInstanceOf(User::class);

$filtered->all();

//	[App\Models\User,	App\Models\User]

whereNotBetween()

The	whereNotBetween	method	filters	the	collection	by	determining	if	a	specified	item	value	is	outside	of	a	given
range:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	80],

				['product'	=>	'Bookcase',	'price'	=>	150],

				['product'	=>	'Pencil',	'price'	=>	30],

				['product'	=>	'Door',	'price'	=>	100],

]);

$filtered	=	$collection->whereNotBetween('price',	[100,	200]);

$filtered->all();

/*

				[

								['product'	=>	'Chair',	'price'	=>	80],

								['product'	=>	'Pencil',	'price'	=>	30],

]

*/

whereNotIn()

The	whereNotIn	method	removes	elements	from	the	collection	that	have	a	specified	item	value	that	is	contained
within	the	given	array:

$collection	=	collect([

				['product'	=>	'Desk',	'price'	=>	200],

				['product'	=>	'Chair',	'price'	=>	100],

				['product'	=>	'Bookcase',	'price'	=>	150],

				['product'	=>	'Door',	'price'	=>	100],

]);

$filtered	=	$collection->whereNotIn('price',	[150,	200]);

$filtered->all();

/*

				[

								['product'	=>	'Chair',	'price'	=>	100],

								['product'	=>	'Door',	'price'	=>	100],

]

*/

The	whereNotIn	method	uses	"loose"	comparisons	when	checking	item	values,	meaning	a	string	with	an	integer
value	will	be	considered	equal	to	an	integer	of	the	same	value.	Use	the	whereNotInStrict	method	to	filter	using
"strict"	comparisons.

whereNotInStrict()

Laravel	Documentation	-	10.x	/	Collections 313

This	method	has	the	same	signature	as	the	whereNotIn	method;	however,	all	values	are	compared	using	"strict"
comparisons.

whereNotNull()

The	whereNotNull	method	returns	items	from	the	collection	where	the	given	key	is	not	null:

$collection	=	collect([

				['name'	=>	'Desk'],

				['name'	=>	null],

				['name'	=>	'Bookcase'],

]);

$filtered	=	$collection->whereNotNull('name');

$filtered->all();

/*

				[

								['name'	=>	'Desk'],

								['name'	=>	'Bookcase'],

]

*/

whereNull()

The	whereNull	method	returns	items	from	the	collection	where	the	given	key	is	null:

$collection	=	collect([

				['name'	=>	'Desk'],

				['name'	=>	null],

				['name'	=>	'Bookcase'],

]);

$filtered	=	$collection->whereNull('name');

$filtered->all();

/*

				[

								['name'	=>	null],

]

*/

wrap()

The	static	wrap	method	wraps	the	given	value	in	a	collection	when	applicable:

use	Illuminate\Support\Collection;

$collection	=	Collection::wrap('John	Doe');

$collection->all();

//	['John	Doe']

$collection	=	Collection::wrap(['John	Doe']);

$collection->all();

//	['John	Doe']

$collection	=	Collection::wrap(collect('John	Doe'));

$collection->all();

//	['John	Doe']

Laravel	Documentation	-	10.x	/	Collections 314

zip()

The	zip	method	merges	together	the	values	of	the	given	array	with	the	values	of	the	original	collection	at	their
corresponding	index:

$collection	=	collect(['Chair',	'Desk']);

$zipped	=	$collection->zip([100,	200]);

$zipped->all();

//	[['Chair',	100],	['Desk',	200]]

Higher	Order	Messages

Collections	also	provide	support	for	"higher	order	messages",	which	are	short-cuts	for	performing	common
actions	on	collections.	The	collection	methods	that	provide	higher	order	messages	are:	average,	avg,	contains,	
each,	every,	filter,	first,	flatMap,	groupBy,	keyBy,	map,	max,	min,	partition,	reject,	skipUntil,	skipWhile,	some,	
sortBy,	sortByDesc,	sum,	takeUntil,	takeWhile,	and	unique.

Each	higher	order	message	can	be	accessed	as	a	dynamic	property	on	a	collection	instance.	For	instance,	let's
use	the	each	higher	order	message	to	call	a	method	on	each	object	within	a	collection:

use	App\Models\User;

$users	=	User::where('votes',	'>',	500)->get();

$users->each->markAsVip();

Likewise,	we	can	use	the	sum	higher	order	message	to	gather	the	total	number	of	"votes"	for	a	collection	of
users:

$users	=	User::where('group',	'Development')->get();

return	$users->sum->votes;

Lazy	Collections

Introduction

[!WARNING]
Before	learning	more	about	Laravel's	lazy	collections,	take	some	time	to	familiarize	yourself	with	PHP
generators.

To	supplement	the	already	powerful	Collection	class,	the	LazyCollection	class	leverages	PHP's	generators	to
allow	you	to	work	with	very	large	datasets	while	keeping	memory	usage	low.

For	example,	imagine	your	application	needs	to	process	a	multi-gigabyte	log	file	while	taking	advantage	of
Laravel's	collection	methods	to	parse	the	logs.	Instead	of	reading	the	entire	file	into	memory	at	once,	lazy
collections	may	be	used	to	keep	only	a	small	part	of	the	file	in	memory	at	a	given	time:

use	App\Models\LogEntry;

use	Illuminate\Support\LazyCollection;

LazyCollection::make(function	()	{

				$handle	=	fopen('log.txt',	'r');

				while	(($line	=	fgets($handle))	!==	false)	{

								yield	$line;

				}

})->chunk(4)->map(function	(array	$lines)	{

				return	LogEntry::fromLines($lines);

})->each(function	(LogEntry	$logEntry)	{

				//	Process	the	log	entry...

});

Or,	imagine	you	need	to	iterate	through	10,000	Eloquent	models.	When	using	traditional	Laravel	collections,	all
10,000	Eloquent	models	must	be	loaded	into	memory	at	the	same	time:

Laravel	Documentation	-	10.x	/	Collections 315

https://www.php.net/manual/en/language.generators.overview.php
https://www.php.net/manual/en/language.generators.overview.php

use	App\Models\User;

$users	=	User::all()->filter(function	(User	$user)	{

				return	$user->id	>	500;

});

However,	the	query	builder's	cursor	method	returns	a	LazyCollection	instance.	This	allows	you	to	still	only	run
a	single	query	against	the	database	but	also	only	keep	one	Eloquent	model	loaded	in	memory	at	a	time.	In	this
example,	the	filter	callback	is	not	executed	until	we	actually	iterate	over	each	user	individually,	allowing	for	a
drastic	reduction	in	memory	usage:

use	App\Models\User;

$users	=	User::cursor()->filter(function	(User	$user)	{

				return	$user->id	>	500;

});

foreach	($users	as	$user)	{

				echo	$user->id;

}

Creating	Lazy	Collections

To	create	a	lazy	collection	instance,	you	should	pass	a	PHP	generator	function	to	the	collection's	make	method:

use	Illuminate\Support\LazyCollection;

LazyCollection::make(function	()	{

				$handle	=	fopen('log.txt',	'r');

				while	(($line	=	fgets($handle))	!==	false)	{

								yield	$line;

				}

});

The	Enumerable	Contract

Almost	all	methods	available	on	the	Collection	class	are	also	available	on	the	LazyCollection	class.	Both	of
these	classes	implement	the	Illuminate\Support\Enumerable	contract,	which	defines	the	following	methods:

all
average
avg
chunk
chunkWhile
collapse
collect
combine
concat
contains
containsStrict
count
countBy
crossJoin
dd
diff
diffAssoc
diffKeys
dump
duplicates
duplicatesStrict
each
eachSpread
every
except
filter
first

intersect
intersectAssoc
intersectByKeys
isEmpty
isNotEmpty
join
keyBy
keys
last
macro
make
map
mapInto
mapSpread
mapToGroups
mapWithKeys
max
median
merge
mergeRecursive
min
mode
nth
only
pad
partition
pipe

slice
sole
some
sort
sortBy
sortByDesc
sortKeys
sortKeysDesc
split
sum
take
tap
times
toArray
toJson
union
unique
uniqueStrict
unless
unlessEmpty
unlessNotEmpty
unwrap
values
when
whenEmpty
whenNotEmpty
where

Laravel	Documentation	-	10.x	/	Collections 316

first
firstOrFail
firstWhere
flatMap
flatten
flip
forPage
get
groupBy
has
implode

pipe
pluck
random
reduce
reject
replace
replaceRecursive
reverse
search
shuffle
skip

where
whereStrict
whereBetween
whereIn
whereInStrict
whereInstanceOf
whereNotBetween
whereNotIn
whereNotInStrict
wrap
zip

[!WARNING]
Methods	that	mutate	the	collection	(such	as	shift,	pop,	prepend	etc.)	are	not	available	on	the	
LazyCollection	class.

Lazy	Collection	Methods

In	addition	to	the	methods	defined	in	the	Enumerable	contract,	the	LazyCollection	class	contains	the	following
methods:

takeUntilTimeout()

The	takeUntilTimeout	method	returns	a	new	lazy	collection	that	will	enumerate	values	until	the	specified	time.
After	that	time,	the	collection	will	then	stop	enumerating:

$lazyCollection	=	LazyCollection::times(INF)

				->takeUntilTimeout(now()->addMinute());

$lazyCollection->each(function	(int	$number)	{

				dump($number);

				sleep(1);

});

//	1

//	2

//	...

//	58

//	59

To	illustrate	the	usage	of	this	method,	imagine	an	application	that	submits	invoices	from	the	database	using	a
cursor.	You	could	define	a	scheduled	task	that	runs	every	15	minutes	and	only	processes	invoices	for	a
maximum	of	14	minutes:

use	App\Models\Invoice;

use	Illuminate\Support\Carbon;

Invoice::pending()->cursor()

				->takeUntilTimeout(

								Carbon::createFromTimestamp(LARAVEL_START)->add(14,	'minutes')

)

				->each(fn	(Invoice	$invoice)	=>	$invoice->submit());

tapEach()

While	the	each	method	calls	the	given	callback	for	each	item	in	the	collection	right	away,	the	tapEach	method
only	calls	the	given	callback	as	the	items	are	being	pulled	out	of	the	list	one	by	one:

//	Nothing	has	been	dumped	so	far...

$lazyCollection	=	LazyCollection::times(INF)->tapEach(function	(int	$value)	{

				dump($value);

});

Laravel	Documentation	-	10.x	/	Collections 317

//	Three	items	are	dumped...

$array	=	$lazyCollection->take(3)->all();

//	1

//	2

//	3

remember()

The	remember	method	returns	a	new	lazy	collection	that	will	remember	any	values	that	have	already	been
enumerated	and	will	not	retrieve	them	again	on	subsequent	collection	enumerations:

//	No	query	has	been	executed	yet...

$users	=	User::cursor()->remember();

//	The	query	is	executed...

//	The	first	5	users	are	hydrated	from	the	database...

$users->take(5)->all();

//	First	5	users	come	from	the	collection's	cache...

//	The	rest	are	hydrated	from	the	database...

$users->take(20)->all();

Laravel	Documentation	-	10.x	/	Collections 318

Digging	Deeper

Contracts
Introduction

Contracts	vs.	Facades
When	to	Use	Contracts
How	to	Use	Contracts
Contract	Reference

Introduction

Laravel's	"contracts"	are	a	set	of	interfaces	that	define	the	core	services	provided	by	the	framework.	For
example,	an	Illuminate\Contracts\Queue\Queue	contract	defines	the	methods	needed	for	queueing	jobs,	while
the	Illuminate\Contracts\Mail\Mailer	contract	defines	the	methods	needed	for	sending	e-mail.

Each	contract	has	a	corresponding	implementation	provided	by	the	framework.	For	example,	Laravel	provides
a	queue	implementation	with	a	variety	of	drivers,	and	a	mailer	implementation	that	is	powered	by	Symfony
Mailer.

All	of	the	Laravel	contracts	live	in	their	own	GitHub	repository.	This	provides	a	quick	reference	point	for	all
available	contracts,	as	well	as	a	single,	decoupled	package	that	may	be	utilized	when	building	packages	that
interact	with	Laravel	services.

Contracts	vs.	Facades

Laravel's	facades	and	helper	functions	provide	a	simple	way	of	utilizing	Laravel's	services	without	needing	to
type-hint	and	resolve	contracts	out	of	the	service	container.	In	most	cases,	each	facade	has	an	equivalent
contract.

Unlike	facades,	which	do	not	require	you	to	require	them	in	your	class'	constructor,	contracts	allow	you	to
define	explicit	dependencies	for	your	classes.	Some	developers	prefer	to	explicitly	define	their	dependencies	in
this	way	and	therefore	prefer	to	use	contracts,	while	other	developers	enjoy	the	convenience	of	facades.	In
general,	most	applications	can	use	facades	without	issue	during	development.

When	to	Use	Contracts

The	decision	to	use	contracts	or	facades	will	come	down	to	personal	taste	and	the	tastes	of	your	development
team.	Both	contracts	and	facades	can	be	used	to	create	robust,	well-tested	Laravel	applications.	Contracts	and
facades	are	not	mutually	exclusive.	Some	parts	of	your	applications	may	use	facades	while	others	depend	on
contracts.	As	long	as	you	are	keeping	your	class'	responsibilities	focused,	you	will	notice	very	few	practical
differences	between	using	contracts	and	facades.

In	general,	most	applications	can	use	facades	without	issue	during	development.	If	you	are	building	a	package
that	integrates	with	multiple	PHP	frameworks	you	may	wish	to	use	the	illuminate/contracts	package	to	define
your	integration	with	Laravel's	services	without	the	need	to	require	Laravel's	concrete	implementations	in	your
package's	composer.json	file.

How	to	Use	Contracts

So,	how	do	you	get	an	implementation	of	a	contract?	It's	actually	quite	simple.

Many	types	of	classes	in	Laravel	are	resolved	through	the	service	container,	including	controllers,	event
listeners,	middleware,	queued	jobs,	and	even	route	closures.	So,	to	get	an	implementation	of	a	contract,	you	can
just	"type-hint"	the	interface	in	the	constructor	of	the	class	being	resolved.

For	example,	take	a	look	at	this	event	listener:

<?php

Laravel	Documentation	-	10.x	/	Contracts 319

https://symfony.com/doc/6.0/mailer.html
https://github.com/illuminate/contracts

namespace	App\Listeners;

use	App\Events\OrderWasPlaced;

use	App\Models\User;

use	Illuminate\Contracts\Redis\Factory;

class	CacheOrderInformation

{

				/**

					*	Create	a	new	event	handler	instance.

					*/

				public	function	__construct(

								protected	Factory	$redis,

)	{}

				/**

					*	Handle	the	event.

					*/

				public	function	handle(OrderWasPlaced	$event):	void

				{

								//	...

				}

}

When	the	event	listener	is	resolved,	the	service	container	will	read	the	type-hints	on	the	constructor	of	the	class,
and	inject	the	appropriate	value.	To	learn	more	about	registering	things	in	the	service	container,	check	out	its
documentation.

Contract	Reference

This	table	provides	a	quick	reference	to	all	of	the	Laravel	contracts	and	their	equivalent	facades:

Contract References	Facade

Illuminate\Contracts\Auth\Access\Authorizable 		
Illuminate\Contracts\Auth\Access\Gate Gate

Illuminate\Contracts\Auth\Authenticatable 		
Illuminate\Contracts\Auth\CanResetPassword 	
Illuminate\Contracts\Auth\Factory Auth

Illuminate\Contracts\Auth\Guard Auth::guard()

Illuminate\Contracts\Auth\PasswordBroker Password::broker()

Illuminate\Contracts\Auth\PasswordBrokerFactory Password

Illuminate\Contracts\Auth\StatefulGuard 	
Illuminate\Contracts\Auth\SupportsBasicAuth 	
Illuminate\Contracts\Auth\UserProvider 	
Illuminate\Contracts\Bus\Dispatcher Bus

Illuminate\Contracts\Bus\QueueingDispatcher Bus::dispatchToQueue()

Illuminate\Contracts\Broadcasting\Factory Broadcast

Illuminate\Contracts\Broadcasting\Broadcaster Broadcast::connection()

Illuminate\Contracts\Broadcasting\ShouldBroadcast 	
Illuminate\Contracts\Broadcasting\ShouldBroadcastNow 	
Illuminate\Contracts\Cache\Factory Cache

Illuminate\Contracts\Cache\Lock 	
Illuminate\Contracts\Cache\LockProvider 	
Illuminate\Contracts\Cache\Repository Cache::driver()

Illuminate\Contracts\Cache\Store 	
Illuminate\Contracts\Config\Repository Config

Illuminate\Contracts\Console\Application 	
Illuminate\Contracts\Console\Kernel Artisan

Illuminate\Contracts\Container\Container App

Illuminate\Contracts\Cookie\Factory Cookie

Illuminate\Contracts\Cookie\QueueingFactory Cookie::queue()

Laravel	Documentation	-	10.x	/	Contracts 320

https://github.com/illuminate/contracts/blob/{{version}}/Auth/Access/Authorizable.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Access/Gate.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Authenticatable.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/CanResetPassword.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Guard.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/PasswordBrokerFactory.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/StatefulGuard.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/SupportsBasicAuth.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/UserProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Bus/QueueingDispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/ShouldBroadcast.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/ShouldBroadcastNow.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Lock.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/LockProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Repository.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Store.php
https://github.com/illuminate/contracts/blob/{{version}}/Config/Repository.php
https://github.com/illuminate/contracts/blob/{{version}}/Console/Application.php
https://github.com/illuminate/contracts/blob/{{version}}/Console/Kernel.php
https://github.com/illuminate/contracts/blob/{{version}}/Container/Container.php
https://github.com/illuminate/contracts/blob/{{version}}/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Cookie/QueueingFactory.php

Illuminate\Contracts\Database\ModelIdentifier 	
Illuminate\Contracts\Debug\ExceptionHandler 	
Illuminate\Contracts\Encryption\Encrypter Crypt

Illuminate\Contracts\Events\Dispatcher Event

Illuminate\Contracts\Filesystem\Cloud Storage::cloud()

Illuminate\Contracts\Filesystem\Factory Storage

Illuminate\Contracts\Filesystem\Filesystem Storage::disk()

Illuminate\Contracts\Foundation\Application App

Illuminate\Contracts\Hashing\Hasher Hash

Illuminate\Contracts\Http\Kernel 	
Illuminate\Contracts\Mail\MailQueue Mail::queue()

Illuminate\Contracts\Mail\Mailable 	
Illuminate\Contracts\Mail\Mailer Mail

Illuminate\Contracts\Notifications\Dispatcher Notification

Illuminate\Contracts\Notifications\Factory Notification

Illuminate\Contracts\Pagination\LengthAwarePaginator 	
Illuminate\Contracts\Pagination\Paginator 	
Illuminate\Contracts\Pipeline\Hub 	
Illuminate\Contracts\Pipeline\Pipeline Pipeline;
Illuminate\Contracts\Queue\EntityResolver 	
Illuminate\Contracts\Queue\Factory Queue

Illuminate\Contracts\Queue\Job 	
Illuminate\Contracts\Queue\Monitor Queue

Illuminate\Contracts\Queue\Queue Queue::connection()

Illuminate\Contracts\Queue\QueueableCollection 	
Illuminate\Contracts\Queue\QueueableEntity 	
Illuminate\Contracts\Queue\ShouldQueue 	
Illuminate\Contracts\Redis\Factory Redis

Illuminate\Contracts\Routing\BindingRegistrar Route

Illuminate\Contracts\Routing\Registrar Route

Illuminate\Contracts\Routing\ResponseFactory Response

Illuminate\Contracts\Routing\UrlGenerator URL

Illuminate\Contracts\Routing\UrlRoutable 	
Illuminate\Contracts\Session\Session Session::driver()

Illuminate\Contracts\Support\Arrayable 	
Illuminate\Contracts\Support\Htmlable 	
Illuminate\Contracts\Support\Jsonable 	
Illuminate\Contracts\Support\MessageBag 	
Illuminate\Contracts\Support\MessageProvider 	
Illuminate\Contracts\Support\Renderable 	
Illuminate\Contracts\Support\Responsable 	
Illuminate\Contracts\Translation\Loader 	
Illuminate\Contracts\Translation\Translator Lang

Illuminate\Contracts\Validation\Factory Validator

Illuminate\Contracts\Validation\ImplicitRule 	
Illuminate\Contracts\Validation\Rule 	
Illuminate\Contracts\Validation\ValidatesWhenResolved 	
Illuminate\Contracts\Validation\Validator Validator::make()

Illuminate\Contracts\View\Engine 	
Illuminate\Contracts\View\Factory View

Illuminate\Contracts\View\View View::make()

Laravel	Documentation	-	10.x	/	Contracts 321

https://github.com/illuminate/contracts/blob/{{version}}/Database/ModelIdentifier.php
https://github.com/illuminate/contracts/blob/{{version}}/Debug/ExceptionHandler.php
https://github.com/illuminate/contracts/blob/{{version}}/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/{{version}}/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/{{version}}/Foundation/Application.php
https://github.com/illuminate/contracts/blob/{{version}}/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/{{version}}/Http/Kernel.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/Mailable.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/{{version}}/Notifications/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Notifications/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Pagination/LengthAwarePaginator.php
https://github.com/illuminate/contracts/blob/{{version}}/Pagination/Paginator.php
https://github.com/illuminate/contracts/blob/{{version}}/Pipeline/Hub.php
https://github.com/illuminate/contracts/blob/{{version}}/Pipeline/Pipeline.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/EntityResolver.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Job.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Monitor.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Queue.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/QueueableCollection.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/QueueableEntity.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/ShouldQueue.php
https://github.com/illuminate/contracts/blob/{{version}}/Redis/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/BindingRegistrar.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/UrlRoutable.php
https://github.com/illuminate/contracts/blob/{{version}}/Session/Session.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Htmlable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/MessageBag.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/MessageProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Renderable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Responsable.php
https://github.com/illuminate/contracts/blob/{{version}}/Translation/Loader.php
https://github.com/illuminate/contracts/blob/{{version}}/Translation/Translator.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/ImplicitRule.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Rule.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/ValidatesWhenResolved.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Validator.php
https://github.com/illuminate/contracts/blob/{{version}}/View/Engine.php
https://github.com/illuminate/contracts/blob/{{version}}/View/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/View/View.php

Digging	Deeper

Events
Introduction
Registering	Events	and	Listeners

Generating	Events	and	Listeners
Manually	Registering	Events
Event	Discovery

Defining	Events
Defining	Listeners
Queued	Event	Listeners

Manually	Interacting	With	the	Queue
Queued	Event	Listeners	and	Database	Transactions
Handling	Failed	Jobs

Dispatching	Events
Dispatching	Events	After	Database	Transactions

Event	Subscribers
Writing	Event	Subscribers
Registering	Event	Subscribers

Testing
Faking	a	Subset	of	Events
Scoped	Events	Fakes

Introduction

Laravel's	events	provide	a	simple	observer	pattern	implementation,	allowing	you	to	subscribe	and	listen	for
various	events	that	occur	within	your	application.	Event	classes	are	typically	stored	in	the	app/Events	directory,
while	their	listeners	are	stored	in	app/Listeners.	Don't	worry	if	you	don't	see	these	directories	in	your
application	as	they	will	be	created	for	you	as	you	generate	events	and	listeners	using	Artisan	console
commands.

Events	serve	as	a	great	way	to	decouple	various	aspects	of	your	application,	since	a	single	event	can	have
multiple	listeners	that	do	not	depend	on	each	other.	For	example,	you	may	wish	to	send	a	Slack	notification	to
your	user	each	time	an	order	has	shipped.	Instead	of	coupling	your	order	processing	code	to	your	Slack
notification	code,	you	can	raise	an	App\Events\OrderShipped	event	which	a	listener	can	receive	and	use	to
dispatch	a	Slack	notification.

Registering	Events	and	Listeners

The	App\Providers\EventServiceProvider	included	with	your	Laravel	application	provides	a	convenient	place	to
register	all	of	your	application's	event	listeners.	The	listen	property	contains	an	array	of	all	events	(keys)	and
their	listeners	(values).	You	may	add	as	many	events	to	this	array	as	your	application	requires.	For	example,
let's	add	an	OrderShipped	event:

use	App\Events\OrderShipped;

use	App\Listeners\SendShipmentNotification;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array<class-string,	array<int,	class-string>>

	*/

protected	$listen	=	[

				OrderShipped::class	=>	[

								SendShipmentNotification::class,

],

];

[!NOTE]
The	event:list	command	may	be	used	to	display	a	list	of	all	events	and	listeners	registered	by	your
application.

Laravel	Documentation	-	10.x	/	Events 322

Generating	Events	and	Listeners

Of	course,	manually	creating	the	files	for	each	event	and	listener	is	cumbersome.	Instead,	add	listeners	and
events	to	your	EventServiceProvider	and	use	the	event:generate	Artisan	command.	This	command	will	generate
any	events	or	listeners	that	are	listed	in	your	EventServiceProvider	that	do	not	already	exist:

php	artisan	event:generate

Alternatively,	you	may	use	the	make:event	and	make:listener	Artisan	commands	to	generate	individual	events
and	listeners:

php	artisan	make:event	PodcastProcessed

php	artisan	make:listener	SendPodcastNotification	--event=PodcastProcessed

Manually	Registering	Events

Typically,	events	should	be	registered	via	the	EventServiceProvider	$listen	array;	however,	you	may	also
register	class	or	closure	based	event	listeners	manually	in	the	boot	method	of	your	EventServiceProvider:

use	App\Events\PodcastProcessed;

use	App\Listeners\SendPodcastNotification;

use	Illuminate\Support\Facades\Event;

/**

	*	Register	any	other	events	for	your	application.

	*/

public	function	boot():	void

{

				Event::listen(

								PodcastProcessed::class,

								SendPodcastNotification::class,

);

				Event::listen(function	(PodcastProcessed	$event)	{

								//	...

				});

}

Queueable	Anonymous	Event	Listeners

When	registering	closure	based	event	listeners	manually,	you	may	wrap	the	listener	closure	within	the	
Illuminate\Events\queueable	function	to	instruct	Laravel	to	execute	the	listener	using	the	queue:

use	App\Events\PodcastProcessed;

use	function	Illuminate\Events\queueable;

use	Illuminate\Support\Facades\Event;

/**

	*	Register	any	other	events	for	your	application.

	*/

public	function	boot():	void

{

				Event::listen(queueable(function	(PodcastProcessed	$event)	{

								//	...

				}));

}

Like	queued	jobs,	you	may	use	the	onConnection,	onQueue,	and	delay	methods	to	customize	the	execution	of	the
queued	listener:

Event::listen(queueable(function	(PodcastProcessed	$event)	{

				//	...

})->onConnection('redis')->onQueue('podcasts')->delay(now()->addSeconds(10)));

If	you	would	like	to	handle	anonymous	queued	listener	failures,	you	may	provide	a	closure	to	the	catch	method
while	defining	the	queueable	listener.	This	closure	will	receive	the	event	instance	and	the	Throwable	instance
that	caused	the	listener's	failure:

use	App\Events\PodcastProcessed;

use	function	Illuminate\Events\queueable;

Laravel	Documentation	-	10.x	/	Events 323

use	Illuminate\Support\Facades\Event;

use	Throwable;

Event::listen(queueable(function	(PodcastProcessed	$event)	{

				//	...

})->catch(function	(PodcastProcessed	$event,	Throwable	$e)	{

				//	The	queued	listener	failed...

}));

Wildcard	Event	Listeners

You	may	even	register	listeners	using	the	*	as	a	wildcard	parameter,	allowing	you	to	catch	multiple	events	on
the	same	listener.	Wildcard	listeners	receive	the	event	name	as	their	first	argument	and	the	entire	event	data
array	as	their	second	argument:

Event::listen('event.*',	function	(string	$eventName,	array	$data)	{

				//	...

});

Event	Discovery

Instead	of	registering	events	and	listeners	manually	in	the	$listen	array	of	the	EventServiceProvider,	you	can
enable	automatic	event	discovery.	When	event	discovery	is	enabled,	Laravel	will	automatically	find	and
register	your	events	and	listeners	by	scanning	your	application's	Listeners	directory.	In	addition,	any	explicitly
defined	events	listed	in	the	EventServiceProvider	will	still	be	registered.

Laravel	finds	event	listeners	by	scanning	the	listener	classes	using	PHP's	reflection	services.	When	Laravel
finds	any	listener	class	method	that	begins	with	handle	or	__invoke,	Laravel	will	register	those	methods	as	event
listeners	for	the	event	that	is	type-hinted	in	the	method's	signature:

use	App\Events\PodcastProcessed;

class	SendPodcastNotification

{

				/**

					*	Handle	the	given	event.

					*/

				public	function	handle(PodcastProcessed	$event):	void

				{

								//	...

				}

}

Event	discovery	is	disabled	by	default,	but	you	can	enable	it	by	overriding	the	shouldDiscoverEvents	method	of
your	application's	EventServiceProvider:

/**

	*	Determine	if	events	and	listeners	should	be	automatically	discovered.

	*/

public	function	shouldDiscoverEvents():	bool

{

				return	true;

}

By	default,	all	listeners	within	your	application's	app/Listeners	directory	will	be	scanned.	If	you	would	like	to
define	additional	directories	to	scan,	you	may	override	the	discoverEventsWithin	method	in	your	
EventServiceProvider:

/**

	*	Get	the	listener	directories	that	should	be	used	to	discover	events.

	*

	*	@return	array<int,	string>

	*/

protected	function	discoverEventsWithin():	array

{

				return	[

								$this->app->path('Listeners'),

];

}

Event	Discovery	In	Production

Laravel	Documentation	-	10.x	/	Events 324

In	production,	it	is	not	efficient	for	the	framework	to	scan	all	of	your	listeners	on	every	request.	Therefore,
during	your	deployment	process,	you	should	run	the	event:cache	Artisan	command	to	cache	a	manifest	of	all	of
your	application's	events	and	listeners.	This	manifest	will	be	used	by	the	framework	to	speed	up	the	event
registration	process.	The	event:clear	command	may	be	used	to	destroy	the	cache.

Defining	Events

An	event	class	is	essentially	a	data	container	which	holds	the	information	related	to	the	event.	For	example,	let's
assume	an	App\Events\OrderShipped	event	receives	an	Eloquent	ORM	object:

<?php

namespace	App\Events;

use	App\Models\Order;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Foundation\Events\Dispatchable;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped

{

				use	Dispatchable,	InteractsWithSockets,	SerializesModels;

				/**

					*	Create	a	new	event	instance.

					*/

				public	function	__construct(

								public	Order	$order,

)	{}

}

As	you	can	see,	this	event	class	contains	no	logic.	It	is	a	container	for	the	App\Models\Order	instance	that	was
purchased.	The	SerializesModels	trait	used	by	the	event	will	gracefully	serialize	any	Eloquent	models	if	the
event	object	is	serialized	using	PHP's	serialize	function,	such	as	when	utilizing	queued	listeners.

Defining	Listeners

Next,	let's	take	a	look	at	the	listener	for	our	example	event.	Event	listeners	receive	event	instances	in	their	
handle	method.	The	event:generate	and	make:listener	Artisan	commands	will	automatically	import	the	proper
event	class	and	type-hint	the	event	on	the	handle	method.	Within	the	handle	method,	you	may	perform	any
actions	necessary	to	respond	to	the	event:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

class	SendShipmentNotification

{

				/**

					*	Create	the	event	listener.

					*/

				public	function	__construct()

				{

								//	...

				}

				/**

					*	Handle	the	event.

					*/

				public	function	handle(OrderShipped	$event):	void

				{

								//	Access	the	order	using	$event->order...

				}

}

[!NOTE]
Your	event	listeners	may	also	type-hint	any	dependencies	they	need	on	their	constructors.	All	event
listeners	are	resolved	via	the	Laravel	service	container,	so	dependencies	will	be	injected	automatically.

Laravel	Documentation	-	10.x	/	Events 325

Stopping	The	Propagation	Of	An	Event

Sometimes,	you	may	wish	to	stop	the	propagation	of	an	event	to	other	listeners.	You	may	do	so	by	returning	
false	from	your	listener's	handle	method.

Queued	Event	Listeners

Queueing	listeners	can	be	beneficial	if	your	listener	is	going	to	perform	a	slow	task	such	as	sending	an	email	or
making	an	HTTP	request.	Before	using	queued	listeners,	make	sure	to	configure	your	queue	and	start	a	queue
worker	on	your	server	or	local	development	environment.

To	specify	that	a	listener	should	be	queued,	add	the	ShouldQueue	interface	to	the	listener	class.	Listeners
generated	by	the	event:generate	and	make:listener	Artisan	commands	already	have	this	interface	imported	into
the	current	namespace	so	you	can	use	it	immediately:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				//	...

}

That's	it!	Now,	when	an	event	handled	by	this	listener	is	dispatched,	the	listener	will	automatically	be	queued
by	the	event	dispatcher	using	Laravel's	queue	system.	If	no	exceptions	are	thrown	when	the	listener	is	executed
by	the	queue,	the	queued	job	will	automatically	be	deleted	after	it	has	finished	processing.

Customizing	The	Queue	Connection,	Name,	&	Delay

If	you	would	like	to	customize	the	queue	connection,	queue	name,	or	queue	delay	time	of	an	event	listener,	you
may	define	the	$connection,	$queue,	or	$delay	properties	on	your	listener	class:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				/**

					*	The	name	of	the	connection	the	job	should	be	sent	to.

					*

					*	@var	string|null

					*/

				public	$connection	=	'sqs';

				/**

					*	The	name	of	the	queue	the	job	should	be	sent	to.

					*

					*	@var	string|null

					*/

				public	$queue	=	'listeners';

				/**

					*	The	time	(seconds)	before	the	job	should	be	processed.

					*

					*	@var	int

					*/

				public	$delay	=	60;

}

If	you	would	like	to	define	the	listener's	queue	connection,	queue	name,	or	delay	at	runtime,	you	may	define	
viaConnection,	viaQueue,	or	withDelay	methods	on	the	listener:

/**

Laravel	Documentation	-	10.x	/	Events 326

	*	Get	the	name	of	the	listener's	queue	connection.

	*/

public	function	viaConnection():	string

{

				return	'sqs';

}

/**

	*	Get	the	name	of	the	listener's	queue.

	*/

public	function	viaQueue():	string

{

				return	'listeners';

}

/**

	*	Get	the	number	of	seconds	before	the	job	should	be	processed.

	*/

public	function	withDelay(OrderShipped	$event):	int

{

				return	$event->highPriority	?	0	:	60;

}

Conditionally	Queueing	Listeners

Sometimes,	you	may	need	to	determine	whether	a	listener	should	be	queued	based	on	some	data	that	are	only
available	at	runtime.	To	accomplish	this,	a	shouldQueue	method	may	be	added	to	a	listener	to	determine	whether
the	listener	should	be	queued.	If	the	shouldQueue	method	returns	false,	the	listener	will	not	be	executed:

<?php

namespace	App\Listeners;

use	App\Events\OrderCreated;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	RewardGiftCard	implements	ShouldQueue

{

				/**

					*	Reward	a	gift	card	to	the	customer.

					*/

				public	function	handle(OrderCreated	$event):	void

				{

								//	...

				}

				/**

					*	Determine	whether	the	listener	should	be	queued.

					*/

				public	function	shouldQueue(OrderCreated	$event):	bool

				{

								return	$event->order->subtotal	>=	5000;

				}

}

Manually	Interacting	With	the	Queue

If	you	need	to	manually	access	the	listener's	underlying	queue	job's	delete	and	release	methods,	you	may	do	so
using	the	Illuminate\Queue\InteractsWithQueue	trait.	This	trait	is	imported	by	default	on	generated	listeners	and
provides	access	to	these	methods:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				use	InteractsWithQueue;

				/**

					*	Handle	the	event.

Laravel	Documentation	-	10.x	/	Events 327

					*/

				public	function	handle(OrderShipped	$event):	void

				{

								if	(true)	{

												$this->release(30);

								}

				}

}

Queued	Event	Listeners	and	Database	Transactions

When	queued	listeners	are	dispatched	within	database	transactions,	they	may	be	processed	by	the	queue	before
the	database	transaction	has	committed.	When	this	happens,	any	updates	you	have	made	to	models	or	database
records	during	the	database	transaction	may	not	yet	be	reflected	in	the	database.	In	addition,	any	models	or
database	records	created	within	the	transaction	may	not	exist	in	the	database.	If	your	listener	depends	on	these
models,	unexpected	errors	can	occur	when	the	job	that	dispatches	the	queued	listener	is	processed.

If	your	queue	connection's	after_commit	configuration	option	is	set	to	false,	you	may	still	indicate	that	a
particular	queued	listener	should	be	dispatched	after	all	open	database	transactions	have	been	committed	by
implementing	the	ShouldHandleEventsAfterCommit	interface	on	the	listener	class:

<?php

namespace	App\Listeners;

use	Illuminate\Contracts\Events\ShouldHandleEventsAfterCommit;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

class	SendShipmentNotification	implements	ShouldQueue,	ShouldHandleEventsAfterCommit

{

				use	InteractsWithQueue;

}

[!NOTE]
To	learn	more	about	working	around	these	issues,	please	review	the	documentation	regarding	queued	jobs
and	database	transactions.

Handling	Failed	Jobs

Sometimes	your	queued	event	listeners	may	fail.	If	the	queued	listener	exceeds	the	maximum	number	of
attempts	as	defined	by	your	queue	worker,	the	failed	method	will	be	called	on	your	listener.	The	failed	method
receives	the	event	instance	and	the	Throwable	that	caused	the	failure:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

use	Throwable;

class	SendShipmentNotification	implements	ShouldQueue

{

				use	InteractsWithQueue;

				/**

					*	Handle	the	event.

					*/

				public	function	handle(OrderShipped	$event):	void

				{

								//	...

				}

				/**

					*	Handle	a	job	failure.

					*/

				public	function	failed(OrderShipped	$event,	Throwable	$exception):	void

				{

								//	...

				}

Laravel	Documentation	-	10.x	/	Events 328

}

Specifying	Queued	Listener	Maximum	Attempts

If	one	of	your	queued	listeners	is	encountering	an	error,	you	likely	do	not	want	it	to	keep	retrying	indefinitely.
Therefore,	Laravel	provides	various	ways	to	specify	how	many	times	or	for	how	long	a	listener	may	be
attempted.

You	may	define	a	$tries	property	on	your	listener	class	to	specify	how	many	times	the	listener	may	be
attempted	before	it	is	considered	to	have	failed:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				use	InteractsWithQueue;

				/**

					*	The	number	of	times	the	queued	listener	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	5;

}

As	an	alternative	to	defining	how	many	times	a	listener	may	be	attempted	before	it	fails,	you	may	define	a	time
at	which	the	listener	should	no	longer	be	attempted.	This	allows	a	listener	to	be	attempted	any	number	of	times
within	a	given	time	frame.	To	define	the	time	at	which	a	listener	should	no	longer	be	attempted,	add	a	
retryUntil	method	to	your	listener	class.	This	method	should	return	a	DateTime	instance:

use	DateTime;

/**

	*	Determine	the	time	at	which	the	listener	should	timeout.

	*/

public	function	retryUntil():	DateTime

{

				return	now()->addMinutes(5);

}

Dispatching	Events

To	dispatch	an	event,	you	may	call	the	static	dispatch	method	on	the	event.	This	method	is	made	available	on
the	event	by	the	Illuminate\Foundation\Events\Dispatchable	trait.	Any	arguments	passed	to	the	dispatch
method	will	be	passed	to	the	event's	constructor:

<?php

namespace	App\Http\Controllers;

use	App\Events\OrderShipped;

use	App\Http\Controllers\Controller;

use	App\Models\Order;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	OrderShipmentController	extends	Controller

{

				/**

					*	Ship	the	given	order.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$order	=	Order::findOrFail($request->order_id);

								//	Order	shipment	logic...

Laravel	Documentation	-	10.x	/	Events 329

								OrderShipped::dispatch($order);

								return	redirect('/orders');

				}

}

If	you	would	like	to	conditionally	dispatch	an	event,	you	may	use	the	dispatchIf	and	dispatchUnless	methods:

OrderShipped::dispatchIf($condition,	$order);

OrderShipped::dispatchUnless($condition,	$order);

[!NOTE]
When	testing,	it	can	be	helpful	to	assert	that	certain	events	were	dispatched	without	actually	triggering
their	listeners.	Laravel's	built-in	testing	helpers	make	it	a	cinch.

Dispatching	Events	After	Database	Transactions

Sometimes,	you	may	want	to	instruct	Laravel	to	only	dispatch	an	event	after	the	active	database	transaction	has
committed.	To	do	so,	you	may	implement	the	ShouldDispatchAfterCommit	interface	on	the	event	class.

This	interface	instructs	Laravel	to	not	dispatch	the	event	until	the	current	database	transaction	is	committed.	If
the	transaction	fails,	the	event	will	be	discarded.	If	no	database	transaction	is	in	progress	when	the	event	is
dispatched,	the	event	will	be	dispatched	immediately:

<?php

namespace	App\Events;

use	App\Models\Order;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Contracts\Events\ShouldDispatchAfterCommit;

use	Illuminate\Foundation\Events\Dispatchable;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped	implements	ShouldDispatchAfterCommit

{

				use	Dispatchable,	InteractsWithSockets,	SerializesModels;

				/**

					*	Create	a	new	event	instance.

					*/

				public	function	__construct(

								public	Order	$order,

)	{}

}

Event	Subscribers

Writing	Event	Subscribers

Event	subscribers	are	classes	that	may	subscribe	to	multiple	events	from	within	the	subscriber	class	itself,
allowing	you	to	define	several	event	handlers	within	a	single	class.	Subscribers	should	define	a	subscribe
method,	which	will	be	passed	an	event	dispatcher	instance.	You	may	call	the	listen	method	on	the	given
dispatcher	to	register	event	listeners:

<?php

namespace	App\Listeners;

use	Illuminate\Auth\Events\Login;

use	Illuminate\Auth\Events\Logout;

use	Illuminate\Events\Dispatcher;

class	UserEventSubscriber

{

				/**

					*	Handle	user	login	events.

					*/

				public	function	handleUserLogin(Login	$event):	void	{}

Laravel	Documentation	-	10.x	/	Events 330

				/**

					*	Handle	user	logout	events.

					*/

				public	function	handleUserLogout(Logout	$event):	void	{}

				/**

					*	Register	the	listeners	for	the	subscriber.

					*/

				public	function	subscribe(Dispatcher	$events):	void

				{

								$events->listen(

												Login::class,

												[UserEventSubscriber::class,	'handleUserLogin']

);

								$events->listen(

												Logout::class,

												[UserEventSubscriber::class,	'handleUserLogout']

);

				}

}

If	your	event	listener	methods	are	defined	within	the	subscriber	itself,	you	may	find	it	more	convenient	to
return	an	array	of	events	and	method	names	from	the	subscriber's	subscribe	method.	Laravel	will	automatically
determine	the	subscriber's	class	name	when	registering	the	event	listeners:

<?php

namespace	App\Listeners;

use	Illuminate\Auth\Events\Login;

use	Illuminate\Auth\Events\Logout;

use	Illuminate\Events\Dispatcher;

class	UserEventSubscriber

{

				/**

					*	Handle	user	login	events.

					*/

				public	function	handleUserLogin(Login	$event):	void	{}

				/**

					*	Handle	user	logout	events.

					*/

				public	function	handleUserLogout(Logout	$event):	void	{}

				/**

					*	Register	the	listeners	for	the	subscriber.

					*

					*	@return	array<string,	string>

					*/

				public	function	subscribe(Dispatcher	$events):	array

				{

								return	[

												Login::class	=>	'handleUserLogin',

												Logout::class	=>	'handleUserLogout',

];

				}

}

Registering	Event	Subscribers

After	writing	the	subscriber,	you	are	ready	to	register	it	with	the	event	dispatcher.	You	may	register	subscribers
using	the	$subscribe	property	on	the	EventServiceProvider.	For	example,	let's	add	the	UserEventSubscriber	to
the	list:

<?php

namespace	App\Providers;

use	App\Listeners\UserEventSubscriber;

use	Illuminate\Foundation\Support\Providers\EventServiceProvider	as	ServiceProvider;

class	EventServiceProvider	extends	ServiceProvider

{

				/**

					*	The	event	listener	mappings	for	the	application.

Laravel	Documentation	-	10.x	/	Events 331

					*

					*	@var	array

					*/

				protected	$listen	=	[

								//	...

];

				/**

					*	The	subscriber	classes	to	register.

					*

					*	@var	array

					*/

				protected	$subscribe	=	[

								UserEventSubscriber::class,

];

}

Testing

When	testing	code	that	dispatches	events,	you	may	wish	to	instruct	Laravel	to	not	actually	execute	the	event's
listeners,	since	the	listener's	code	can	be	tested	directly	and	separately	of	the	code	that	dispatches	the
corresponding	event.	Of	course,	to	test	the	listener	itself,	you	may	instantiate	a	listener	instance	and	invoke	the	
handle	method	directly	in	your	test.

Using	the	Event	facade's	fake	method,	you	may	prevent	listeners	from	executing,	execute	the	code	under	test,
and	then	assert	which	events	were	dispatched	by	your	application	using	the	assertDispatched,	
assertNotDispatched,	and	assertNothingDispatched	methods:

<?php

namespace	Tests\Feature;

use	App\Events\OrderFailedToShip;

use	App\Events\OrderShipped;

use	Illuminate\Support\Facades\Event;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	Test	order	shipping.

					*/

				public	function	test_orders_can_be_shipped():	void

				{

								Event::fake();

								//	Perform	order	shipping...

								//	Assert	that	an	event	was	dispatched...

								Event::assertDispatched(OrderShipped::class);

								//	Assert	an	event	was	dispatched	twice...

								Event::assertDispatched(OrderShipped::class,	2);

								//	Assert	an	event	was	not	dispatched...

								Event::assertNotDispatched(OrderFailedToShip::class);

								//	Assert	that	no	events	were	dispatched...

								Event::assertNothingDispatched();

				}

}

You	may	pass	a	closure	to	the	assertDispatched	or	assertNotDispatched	methods	in	order	to	assert	that	an	event
was	dispatched	that	passes	a	given	"truth	test".	If	at	least	one	event	was	dispatched	that	passes	the	given	truth
test	then	the	assertion	will	be	successful:

Event::assertDispatched(function	(OrderShipped	$event)	use	($order)	{

				return	$event->order->id	===	$order->id;

});

If	you	would	simply	like	to	assert	that	an	event	listener	is	listening	to	a	given	event,	you	may	use	the	
assertListening	method:

Event::assertListening(

Laravel	Documentation	-	10.x	/	Events 332

				OrderShipped::class,

				SendShipmentNotification::class

);

[!WARNING]
After	calling	Event::fake(),	no	event	listeners	will	be	executed.	So,	if	your	tests	use	model	factories	that
rely	on	events,	such	as	creating	a	UUID	during	a	model's	creating	event,	you	should	call	Event::fake()
after	using	your	factories.

Faking	a	Subset	of	Events

If	you	only	want	to	fake	event	listeners	for	a	specific	set	of	events,	you	may	pass	them	to	the	fake	or	fakeFor
method:

/**

	*	Test	order	process.

	*/

public	function	test_orders_can_be_processed():	void

{

				Event::fake([

								OrderCreated::class,

]);

				$order	=	Order::factory()->create();

				Event::assertDispatched(OrderCreated::class);

				//	Other	events	are	dispatched	as	normal...

				$order->update([...]);

}

You	may	fake	all	events	except	for	a	set	of	specified	events	using	the	except	method:

Event::fake()->except([

				OrderCreated::class,

]);

Scoped	Event	Fakes

If	you	only	want	to	fake	event	listeners	for	a	portion	of	your	test,	you	may	use	the	fakeFor	method:

<?php

namespace	Tests\Feature;

use	App\Events\OrderCreated;

use	App\Models\Order;

use	Illuminate\Support\Facades\Event;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	Test	order	process.

					*/

				public	function	test_orders_can_be_processed():	void

				{

								$order	=	Event::fakeFor(function	()	{

												$order	=	Order::factory()->create();

												Event::assertDispatched(OrderCreated::class);

												return	$order;

								});

								//	Events	are	dispatched	as	normal	and	observers	will	run	...

								$order->update([...]);

				}

}

Laravel	Documentation	-	10.x	/	Events 333

Digging	Deeper

File	Storage
Introduction
Configuration

The	Local	Driver
The	Public	Disk
Driver	Prerequisites
Scoped	and	Read-Only	Filesystems
Amazon	S3	Compatible	Filesystems

Obtaining	Disk	Instances
On-Demand	Disks

Retrieving	Files
Downloading	Files
File	URLs
Temporary	URLs
File	Metadata

Storing	Files
Prepending	and	Appending	To	Files
Copying	and	Moving	Files
Automatic	Streaming
File	Uploads
File	Visibility

Deleting	Files
Directories
Testing
Custom	Filesystems

Introduction

Laravel	provides	a	powerful	filesystem	abstraction	thanks	to	the	wonderful	Flysystem	PHP	package	by	Frank
de	Jonge.	The	Laravel	Flysystem	integration	provides	simple	drivers	for	working	with	local	filesystems,	SFTP,
and	Amazon	S3.	Even	better,	it's	amazingly	simple	to	switch	between	these	storage	options	between	your	local
development	machine	and	production	server	as	the	API	remains	the	same	for	each	system.

Configuration

Laravel's	filesystem	configuration	file	is	located	at	config/filesystems.php.	Within	this	file,	you	may	configure
all	of	your	filesystem	"disks".	Each	disk	represents	a	particular	storage	driver	and	storage	location.	Example
configurations	for	each	supported	driver	are	included	in	the	configuration	file	so	you	can	modify	the
configuration	to	reflect	your	storage	preferences	and	credentials.

The	local	driver	interacts	with	files	stored	locally	on	the	server	running	the	Laravel	application	while	the	s3
driver	is	used	to	write	to	Amazon's	S3	cloud	storage	service.

[!NOTE]
You	may	configure	as	many	disks	as	you	like	and	may	even	have	multiple	disks	that	use	the	same	driver.

The	Local	Driver

When	using	the	local	driver,	all	file	operations	are	relative	to	the	root	directory	defined	in	your	filesystems
configuration	file.	By	default,	this	value	is	set	to	the	storage/app	directory.	Therefore,	the	following	method
would	write	to	storage/app/example.txt:

use	Illuminate\Support\Facades\Storage;

Storage::disk('local')->put('example.txt',	'Contents');

Laravel	Documentation	-	10.x	/	File	Storage 334

https://github.com/thephpleague/flysystem

The	Public	Disk

The	public	disk	included	in	your	application's	filesystems	configuration	file	is	intended	for	files	that	are	going
to	be	publicly	accessible.	By	default,	the	public	disk	uses	the	local	driver	and	stores	its	files	in	
storage/app/public.

To	make	these	files	accessible	from	the	web,	you	should	create	a	symbolic	link	from	public/storage	to	
storage/app/public.	Utilizing	this	folder	convention	will	keep	your	publicly	accessible	files	in	one	directory
that	can	be	easily	shared	across	deployments	when	using	zero	down-time	deployment	systems	like	Envoyer.

To	create	the	symbolic	link,	you	may	use	the	storage:link	Artisan	command:

php	artisan	storage:link

Once	a	file	has	been	stored	and	the	symbolic	link	has	been	created,	you	can	create	a	URL	to	the	files	using	the	
asset	helper:

echo	asset('storage/file.txt');

You	may	configure	additional	symbolic	links	in	your	filesystems	configuration	file.	Each	of	the	configured
links	will	be	created	when	you	run	the	storage:link	command:

'links'	=>	[

				public_path('storage')	=>	storage_path('app/public'),

				public_path('images')	=>	storage_path('app/images'),

],

The	storage:unlink	command	may	be	used	to	destroy	your	configured	symbolic	links:

php	artisan	storage:unlink

Driver	Prerequisites

S3	Driver	Configuration

Before	using	the	S3	driver,	you	will	need	to	install	the	Flysystem	S3	package	via	the	Composer	package
manager:

composer	require	league/flysystem-aws-s3-v3	"^3.0"	--with-all-dependencies

The	S3	driver	configuration	information	is	located	in	your	config/filesystems.php	configuration	file.	This	file
contains	an	example	configuration	array	for	an	S3	driver.	You	are	free	to	modify	this	array	with	your	own	S3
configuration	and	credentials.	For	convenience,	these	environment	variables	match	the	naming	convention	used
by	the	AWS	CLI.

FTP	Driver	Configuration

Before	using	the	FTP	driver,	you	will	need	to	install	the	Flysystem	FTP	package	via	the	Composer	package
manager:

composer	require	league/flysystem-ftp	"^3.0"

Laravel's	Flysystem	integrations	work	great	with	FTP;	however,	a	sample	configuration	is	not	included	with	the
framework's	default	filesystems.php	configuration	file.	If	you	need	to	configure	an	FTP	filesystem,	you	may
use	the	configuration	example	below:

'ftp'	=>	[

				'driver'	=>	'ftp',

				'host'	=>	env('FTP_HOST'),

				'username'	=>	env('FTP_USERNAME'),

				'password'	=>	env('FTP_PASSWORD'),

				//	Optional	FTP	Settings...

				//	'port'	=>	env('FTP_PORT',	21),

				//	'root'	=>	env('FTP_ROOT'),

				//	'passive'	=>	true,

Laravel	Documentation	-	10.x	/	File	Storage 335

https://envoyer.io

				//	'ssl'	=>	true,

				//	'timeout'	=>	30,

],

SFTP	Driver	Configuration

Before	using	the	SFTP	driver,	you	will	need	to	install	the	Flysystem	SFTP	package	via	the	Composer	package
manager:

composer	require	league/flysystem-sftp-v3	"^3.0"

Laravel's	Flysystem	integrations	work	great	with	SFTP;	however,	a	sample	configuration	is	not	included	with
the	framework's	default	filesystems.php	configuration	file.	If	you	need	to	configure	an	SFTP	filesystem,	you
may	use	the	configuration	example	below:

'sftp'	=>	[

				'driver'	=>	'sftp',

				'host'	=>	env('SFTP_HOST'),

				//	Settings	for	basic	authentication...

				'username'	=>	env('SFTP_USERNAME'),

				'password'	=>	env('SFTP_PASSWORD'),

				//	Settings	for	SSH	key	based	authentication	with	encryption	password...

				'privateKey'	=>	env('SFTP_PRIVATE_KEY'),

				'passphrase'	=>	env('SFTP_PASSPHRASE'),

				//	Settings	for	file	/	directory	permissions...

				'visibility'	=>	'private',	//	`private`	=	0600,	`public`	=	0644

				'directory_visibility'	=>	'private',	//	`private`	=	0700,	`public`	=	0755

				//	Optional	SFTP	Settings...

				//	'hostFingerprint'	=>	env('SFTP_HOST_FINGERPRINT'),

				//	'maxTries'	=>	4,

				//	'passphrase'	=>	env('SFTP_PASSPHRASE'),

				//	'port'	=>	env('SFTP_PORT',	22),

				//	'root'	=>	env('SFTP_ROOT',	''),

				//	'timeout'	=>	30,

				//	'useAgent'	=>	true,

],

Scoped	and	Read-Only	Filesystems

Scoped	disks	allow	you	to	define	a	filesystem	where	all	paths	are	automatically	prefixed	with	a	given	path
prefix.	Before	creating	a	scoped	filesystem	disk,	you	will	need	to	install	an	additional	Flysystem	package	via
the	Composer	package	manager:

composer	require	league/flysystem-path-prefixing	"^3.0"

You	may	create	a	path	scoped	instance	of	any	existing	filesystem	disk	by	defining	a	disk	that	utilizes	the	scoped
driver.	For	example,	you	may	create	a	disk	which	scopes	your	existing	s3	disk	to	a	specific	path	prefix,	and	then
every	file	operation	using	your	scoped	disk	will	utilize	the	specified	prefix:

's3-videos'	=>	[

				'driver'	=>	'scoped',

				'disk'	=>	's3',

				'prefix'	=>	'path/to/videos',

],

"Read-only"	disks	allow	you	to	create	filesystem	disks	that	do	not	allow	write	operations.	Before	using	the	
read-only	configuration	option,	you	will	need	to	install	an	additional	Flysystem	package	via	the	Composer
package	manager:

composer	require	league/flysystem-read-only	"^3.0"

Next,	you	may	include	the	read-only	configuration	option	in	one	or	more	of	your	disk's	configuration	arrays:

's3-videos'	=>	[

				'driver'	=>	's3',

				//	...

				'read-only'	=>	true,

Laravel	Documentation	-	10.x	/	File	Storage 336

],

Amazon	S3	Compatible	Filesystems

By	default,	your	application's	filesystems	configuration	file	contains	a	disk	configuration	for	the	s3	disk.	In
addition	to	using	this	disk	to	interact	with	Amazon	S3,	you	may	use	it	to	interact	with	any	S3	compatible	file
storage	service	such	as	MinIO	or	DigitalOcean	Spaces.

Typically,	after	updating	the	disk's	credentials	to	match	the	credentials	of	the	service	you	are	planning	to	use,
you	only	need	to	update	the	value	of	the	endpoint	configuration	option.	This	option's	value	is	typically	defined
via	the	AWS_ENDPOINT	environment	variable:

'endpoint'	=>	env('AWS_ENDPOINT',	'https://minio:9000'),

MinIO

In	order	for	Laravel's	Flysystem	integration	to	generate	proper	URLs	when	using	MinIO,	you	should	define	the	
AWS_URL	environment	variable	so	that	it	matches	your	application's	local	URL	and	includes	the	bucket	name	in
the	URL	path:

AWS_URL=http://localhost:9000/local

[!WARNING]
Generating	temporary	storage	URLs	via	the	temporaryUrl	method	is	not	supported	when	using	MinIO.

Obtaining	Disk	Instances

The	Storage	facade	may	be	used	to	interact	with	any	of	your	configured	disks.	For	example,	you	may	use	the	
put	method	on	the	facade	to	store	an	avatar	on	the	default	disk.	If	you	call	methods	on	the	Storage	facade
without	first	calling	the	disk	method,	the	method	will	automatically	be	passed	to	the	default	disk:

use	Illuminate\Support\Facades\Storage;

Storage::put('avatars/1',	$content);

If	your	application	interacts	with	multiple	disks,	you	may	use	the	disk	method	on	the	Storage	facade	to	work
with	files	on	a	particular	disk:

Storage::disk('s3')->put('avatars/1',	$content);

On-Demand	Disks

Sometimes	you	may	wish	to	create	a	disk	at	runtime	using	a	given	configuration	without	that	configuration
actually	being	present	in	your	application's	filesystems	configuration	file.	To	accomplish	this,	you	may	pass	a
configuration	array	to	the	Storage	facade's	build	method:

use	Illuminate\Support\Facades\Storage;

$disk	=	Storage::build([

				'driver'	=>	'local',

				'root'	=>	'/path/to/root',

]);

$disk->put('image.jpg',	$content);

Retrieving	Files

The	get	method	may	be	used	to	retrieve	the	contents	of	a	file.	The	raw	string	contents	of	the	file	will	be
returned	by	the	method.	Remember,	all	file	paths	should	be	specified	relative	to	the	disk's	"root"	location:

$contents	=	Storage::get('file.jpg');

If	the	file	you	are	retrieving	contains	JSON,	you	may	use	the	json	method	to	retrieve	the	file	and	decode	its
contents:

Laravel	Documentation	-	10.x	/	File	Storage 337

https://github.com/minio/minio
https://www.digitalocean.com/products/spaces/

$orders	=	Storage::json('orders.json');

The	exists	method	may	be	used	to	determine	if	a	file	exists	on	the	disk:

if	(Storage::disk('s3')->exists('file.jpg'))	{

				//	...

}

The	missing	method	may	be	used	to	determine	if	a	file	is	missing	from	the	disk:

if	(Storage::disk('s3')->missing('file.jpg'))	{

				//	...

}

Downloading	Files

The	download	method	may	be	used	to	generate	a	response	that	forces	the	user's	browser	to	download	the	file	at
the	given	path.	The	download	method	accepts	a	filename	as	the	second	argument	to	the	method,	which	will
determine	the	filename	that	is	seen	by	the	user	downloading	the	file.	Finally,	you	may	pass	an	array	of	HTTP
headers	as	the	third	argument	to	the	method:

return	Storage::download('file.jpg');

return	Storage::download('file.jpg',	$name,	$headers);

File	URLs

You	may	use	the	url	method	to	get	the	URL	for	a	given	file.	If	you	are	using	the	local	driver,	this	will	typically
just	prepend	/storage	to	the	given	path	and	return	a	relative	URL	to	the	file.	If	you	are	using	the	s3	driver,	the
fully	qualified	remote	URL	will	be	returned:

use	Illuminate\Support\Facades\Storage;

$url	=	Storage::url('file.jpg');

When	using	the	local	driver,	all	files	that	should	be	publicly	accessible	should	be	placed	in	the	
storage/app/public	directory.	Furthermore,	you	should	create	a	symbolic	link	at	public/storage	which	points	to
the	storage/app/public	directory.

[!WARNING]
When	using	the	local	driver,	the	return	value	of	url	is	not	URL	encoded.	For	this	reason,	we	recommend
always	storing	your	files	using	names	that	will	create	valid	URLs.

URL	Host	Customization

If	you	would	like	to	pre-define	the	host	for	URLs	generated	using	the	Storage	facade,	you	may	add	a	url	option
to	the	disk's	configuration	array:

'public'	=>	[

				'driver'	=>	'local',

				'root'	=>	storage_path('app/public'),

				'url'	=>	env('APP_URL').'/storage',

				'visibility'	=>	'public',

],

Temporary	URLs

Using	the	temporaryUrl	method,	you	may	create	temporary	URLs	to	files	stored	using	the	s3	driver.	This
method	accepts	a	path	and	a	DateTime	instance	specifying	when	the	URL	should	expire:

use	Illuminate\Support\Facades\Storage;

$url	=	Storage::temporaryUrl(

				'file.jpg',	now()->addMinutes(5)

);

If	you	need	to	specify	additional	S3	request	parameters,	you	may	pass	the	array	of	request	parameters	as	the

Laravel	Documentation	-	10.x	/	File	Storage 338

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html#RESTObjectGET-requests

third	argument	to	the	temporaryUrl	method:

$url	=	Storage::temporaryUrl(

				'file.jpg',

				now()->addMinutes(5),

				[

								'ResponseContentType'	=>	'application/octet-stream',

								'ResponseContentDisposition'	=>	'attachment;	filename=file2.jpg',

]

);

If	you	need	to	customize	how	temporary	URLs	are	created	for	a	specific	storage	disk,	you	can	use	the	
buildTemporaryUrlsUsing	method.	For	example,	this	can	be	useful	if	you	have	a	controller	that	allows	you	to
download	files	stored	via	a	disk	that	doesn't	typically	support	temporary	URLs.	Usually,	this	method	should	be
called	from	the	boot	method	of	a	service	provider:

<?php

namespace	App\Providers;

use	DateTime;

use	Illuminate\Support\Facades\Storage;

use	Illuminate\Support\Facades\URL;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Storage::disk('local')->buildTemporaryUrlsUsing(

												function	(string	$path,	DateTime	$expiration,	array	$options)	{

																return	URL::temporarySignedRoute(

																				'files.download',

																				$expiration,

																				array_merge($options,	['path'	=>	$path])

);

												}

);

				}

}

Temporary	Upload	URLs

[!WARNING]
The	ability	to	generate	temporary	upload	URLs	is	only	supported	by	the	s3	driver.

If	you	need	to	generate	a	temporary	URL	that	can	be	used	to	upload	a	file	directly	from	your	client-side
application,	you	may	use	the	temporaryUploadUrl	method.	This	method	accepts	a	path	and	a	DateTime	instance
specifying	when	the	URL	should	expire.	The	temporaryUploadUrl	method	returns	an	associative	array	which
may	be	destructured	into	the	upload	URL	and	the	headers	that	should	be	included	with	the	upload	request:

use	Illuminate\Support\Facades\Storage;

['url'	=>	$url,	'headers'	=>	$headers]	=	Storage::temporaryUploadUrl(

				'file.jpg',	now()->addMinutes(5)

);

This	method	is	primarily	useful	in	serverless	environments	that	require	the	client-side	application	to	directly
upload	files	to	a	cloud	storage	system	such	as	Amazon	S3.

File	Metadata

In	addition	to	reading	and	writing	files,	Laravel	can	also	provide	information	about	the	files	themselves.	For
example,	the	size	method	may	be	used	to	get	the	size	of	a	file	in	bytes:

use	Illuminate\Support\Facades\Storage;

$size	=	Storage::size('file.jpg');

Laravel	Documentation	-	10.x	/	File	Storage 339

The	lastModified	method	returns	the	UNIX	timestamp	of	the	last	time	the	file	was	modified:

$time	=	Storage::lastModified('file.jpg');

The	MIME	type	of	a	given	file	may	be	obtained	via	the	mimeType	method:

$mime	=	Storage::mimeType('file.jpg');

File	Paths

You	may	use	the	path	method	to	get	the	path	for	a	given	file.	If	you	are	using	the	local	driver,	this	will	return
the	absolute	path	to	the	file.	If	you	are	using	the	s3	driver,	this	method	will	return	the	relative	path	to	the	file	in
the	S3	bucket:

use	Illuminate\Support\Facades\Storage;

$path	=	Storage::path('file.jpg');

Storing	Files

The	put	method	may	be	used	to	store	file	contents	on	a	disk.	You	may	also	pass	a	PHP	resource	to	the	put
method,	which	will	use	Flysystem's	underlying	stream	support.	Remember,	all	file	paths	should	be	specified
relative	to	the	"root"	location	configured	for	the	disk:

use	Illuminate\Support\Facades\Storage;

Storage::put('file.jpg',	$contents);

Storage::put('file.jpg',	$resource);

Failed	Writes

If	the	put	method	(or	other	"write"	operations)	is	unable	to	write	the	file	to	disk,	false	will	be	returned:

if	(!	Storage::put('file.jpg',	$contents))	{

				//	The	file	could	not	be	written	to	disk...

}

If	you	wish,	you	may	define	the	throw	option	within	your	filesystem	disk's	configuration	array.	When	this
option	is	defined	as	true,	"write"	methods	such	as	put	will	throw	an	instance	of	
League\Flysystem\UnableToWriteFile	when	write	operations	fail:

'public'	=>	[

				'driver'	=>	'local',

				//	...

				'throw'	=>	true,

],

Prepending	and	Appending	To	Files

The	prepend	and	append	methods	allow	you	to	write	to	the	beginning	or	end	of	a	file:

Storage::prepend('file.log',	'Prepended	Text');

Storage::append('file.log',	'Appended	Text');

Copying	and	Moving	Files

The	copy	method	may	be	used	to	copy	an	existing	file	to	a	new	location	on	the	disk,	while	the	move	method	may
be	used	to	rename	or	move	an	existing	file	to	a	new	location:

Storage::copy('old/file.jpg',	'new/file.jpg');

Storage::move('old/file.jpg',	'new/file.jpg');

Automatic	Streaming

Laravel	Documentation	-	10.x	/	File	Storage 340

Streaming	files	to	storage	offers	significantly	reduced	memory	usage.	If	you	would	like	Laravel	to
automatically	manage	streaming	a	given	file	to	your	storage	location,	you	may	use	the	putFile	or	putFileAs
method.	This	method	accepts	either	an	Illuminate\Http\File	or	Illuminate\Http\UploadedFile	instance	and	will
automatically	stream	the	file	to	your	desired	location:

use	Illuminate\Http\File;

use	Illuminate\Support\Facades\Storage;

//	Automatically	generate	a	unique	ID	for	filename...

$path	=	Storage::putFile('photos',	new	File('/path/to/photo'));

//	Manually	specify	a	filename...

$path	=	Storage::putFileAs('photos',	new	File('/path/to/photo'),	'photo.jpg');

There	are	a	few	important	things	to	note	about	the	putFile	method.	Note	that	we	only	specified	a	directory
name	and	not	a	filename.	By	default,	the	putFile	method	will	generate	a	unique	ID	to	serve	as	the	filename.
The	file's	extension	will	be	determined	by	examining	the	file's	MIME	type.	The	path	to	the	file	will	be	returned
by	the	putFile	method	so	you	can	store	the	path,	including	the	generated	filename,	in	your	database.

The	putFile	and	putFileAs	methods	also	accept	an	argument	to	specify	the	"visibility"	of	the	stored	file.	This	is
particularly	useful	if	you	are	storing	the	file	on	a	cloud	disk	such	as	Amazon	S3	and	would	like	the	file	to	be
publicly	accessible	via	generated	URLs:

Storage::putFile('photos',	new	File('/path/to/photo'),	'public');

File	Uploads

In	web	applications,	one	of	the	most	common	use-cases	for	storing	files	is	storing	user	uploaded	files	such	as
photos	and	documents.	Laravel	makes	it	very	easy	to	store	uploaded	files	using	the	store	method	on	an
uploaded	file	instance.	Call	the	store	method	with	the	path	at	which	you	wish	to	store	the	uploaded	file:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

class	UserAvatarController	extends	Controller

{

				/**

					*	Update	the	avatar	for	the	user.

					*/

				public	function	update(Request	$request):	string

				{

								$path	=	$request->file('avatar')->store('avatars');

								return	$path;

				}

}

There	are	a	few	important	things	to	note	about	this	example.	Note	that	we	only	specified	a	directory	name,	not	a
filename.	By	default,	the	store	method	will	generate	a	unique	ID	to	serve	as	the	filename.	The	file's	extension
will	be	determined	by	examining	the	file's	MIME	type.	The	path	to	the	file	will	be	returned	by	the	store
method	so	you	can	store	the	path,	including	the	generated	filename,	in	your	database.

You	may	also	call	the	putFile	method	on	the	Storage	facade	to	perform	the	same	file	storage	operation	as	the
example	above:

$path	=	Storage::putFile('avatars',	$request->file('avatar'));

Specifying	a	File	Name

If	you	do	not	want	a	filename	to	be	automatically	assigned	to	your	stored	file,	you	may	use	the	storeAs	method,
which	receives	the	path,	the	filename,	and	the	(optional)	disk	as	its	arguments:

$path	=	$request->file('avatar')->storeAs(

				'avatars',	$request->user()->id

);

Laravel	Documentation	-	10.x	/	File	Storage 341

You	may	also	use	the	putFileAs	method	on	the	Storage	facade,	which	will	perform	the	same	file	storage
operation	as	the	example	above:

$path	=	Storage::putFileAs(

				'avatars',	$request->file('avatar'),	$request->user()->id

);

[!WARNING]
Unprintable	and	invalid	unicode	characters	will	automatically	be	removed	from	file	paths.	Therefore,	you
may	wish	to	sanitize	your	file	paths	before	passing	them	to	Laravel's	file	storage	methods.	File	paths	are
normalized	using	the	League\Flysystem\WhitespacePathNormalizer::normalizePath	method.

Specifying	a	Disk

By	default,	this	uploaded	file's	store	method	will	use	your	default	disk.	If	you	would	like	to	specify	another
disk,	pass	the	disk	name	as	the	second	argument	to	the	store	method:

$path	=	$request->file('avatar')->store(

				'avatars/'.$request->user()->id,	's3'

);

If	you	are	using	the	storeAs	method,	you	may	pass	the	disk	name	as	the	third	argument	to	the	method:

$path	=	$request->file('avatar')->storeAs(

				'avatars',

				$request->user()->id,

				's3'

);

Other	Uploaded	File	Information

If	you	would	like	to	get	the	original	name	and	extension	of	the	uploaded	file,	you	may	do	so	using	the	
getClientOriginalName	and	getClientOriginalExtension	methods:

$file	=	$request->file('avatar');

$name	=	$file->getClientOriginalName();

$extension	=	$file->getClientOriginalExtension();

However,	keep	in	mind	that	the	getClientOriginalName	and	getClientOriginalExtension	methods	are	considered
unsafe,	as	the	file	name	and	extension	may	be	tampered	with	by	a	malicious	user.	For	this	reason,	you	should
typically	prefer	the	hashName	and	extension	methods	to	get	a	name	and	an	extension	for	the	given	file	upload:

$file	=	$request->file('avatar');

$name	=	$file->hashName();	//	Generate	a	unique,	random	name...

$extension	=	$file->extension();	//	Determine	the	file's	extension	based	on	the	file's	MIME	type...

File	Visibility

In	Laravel's	Flysystem	integration,	"visibility"	is	an	abstraction	of	file	permissions	across	multiple	platforms.
Files	may	either	be	declared	public	or	private.	When	a	file	is	declared	public,	you	are	indicating	that	the	file
should	generally	be	accessible	to	others.	For	example,	when	using	the	S3	driver,	you	may	retrieve	URLs	for	
public	files.

You	can	set	the	visibility	when	writing	the	file	via	the	put	method:

use	Illuminate\Support\Facades\Storage;

Storage::put('file.jpg',	$contents,	'public');

If	the	file	has	already	been	stored,	its	visibility	can	be	retrieved	and	set	via	the	getVisibility	and	setVisibility
methods:

$visibility	=	Storage::getVisibility('file.jpg');

Storage::setVisibility('file.jpg',	'public');

Laravel	Documentation	-	10.x	/	File	Storage 342

When	interacting	with	uploaded	files,	you	may	use	the	storePublicly	and	storePubliclyAs	methods	to	store	the
uploaded	file	with	public	visibility:

$path	=	$request->file('avatar')->storePublicly('avatars',	's3');

$path	=	$request->file('avatar')->storePubliclyAs(

				'avatars',

				$request->user()->id,

				's3'

);

Local	Files	and	Visibility

When	using	the	local	driver,	public	visibility	translates	to	0755	permissions	for	directories	and	0644	permissions
for	files.	You	can	modify	the	permissions	mappings	in	your	application's	filesystems	configuration	file:

'local'	=>	[

				'driver'	=>	'local',

				'root'	=>	storage_path('app'),

				'permissions'	=>	[

								'file'	=>	[

												'public'	=>	0644,

												'private'	=>	0600,

],

								'dir'	=>	[

												'public'	=>	0755,

												'private'	=>	0700,

],

],

],

Deleting	Files

The	delete	method	accepts	a	single	filename	or	an	array	of	files	to	delete:

use	Illuminate\Support\Facades\Storage;

Storage::delete('file.jpg');

Storage::delete(['file.jpg',	'file2.jpg']);

If	necessary,	you	may	specify	the	disk	that	the	file	should	be	deleted	from:

use	Illuminate\Support\Facades\Storage;

Storage::disk('s3')->delete('path/file.jpg');

Directories

Get	All	Files	Within	a	Directory

The	files	method	returns	an	array	of	all	of	the	files	in	a	given	directory.	If	you	would	like	to	retrieve	a	list	of	all
files	within	a	given	directory	including	all	subdirectories,	you	may	use	the	allFiles	method:

use	Illuminate\Support\Facades\Storage;

$files	=	Storage::files($directory);

$files	=	Storage::allFiles($directory);

Get	All	Directories	Within	a	Directory

The	directories	method	returns	an	array	of	all	the	directories	within	a	given	directory.	Additionally,	you	may
use	the	allDirectories	method	to	get	a	list	of	all	directories	within	a	given	directory	and	all	of	its
subdirectories:

$directories	=	Storage::directories($directory);

$directories	=	Storage::allDirectories($directory);

Laravel	Documentation	-	10.x	/	File	Storage 343

Create	a	Directory

The	makeDirectory	method	will	create	the	given	directory,	including	any	needed	subdirectories:

Storage::makeDirectory($directory);

Delete	a	Directory

Finally,	the	deleteDirectory	method	may	be	used	to	remove	a	directory	and	all	of	its	files:

Storage::deleteDirectory($directory);

Testing

The	Storage	facade's	fake	method	allows	you	to	easily	generate	a	fake	disk	that,	combined	with	the	file
generation	utilities	of	the	Illuminate\Http\UploadedFile	class,	greatly	simplifies	the	testing	of	file	uploads.	For
example:

<?php

namespace	Tests\Feature;

use	Illuminate\Http\UploadedFile;

use	Illuminate\Support\Facades\Storage;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_albums_can_be_uploaded():	void

				{

								Storage::fake('photos');

								$response	=	$this->json('POST',	'/photos',	[

												UploadedFile::fake()->image('photo1.jpg'),

												UploadedFile::fake()->image('photo2.jpg')

]);

								//	Assert	one	or	more	files	were	stored...

								Storage::disk('photos')->assertExists('photo1.jpg');

								Storage::disk('photos')->assertExists(['photo1.jpg',	'photo2.jpg']);

								//	Assert	one	or	more	files	were	not	stored...

								Storage::disk('photos')->assertMissing('missing.jpg');

								Storage::disk('photos')->assertMissing(['missing.jpg',	'non-existing.jpg']);

								//	Assert	that	a	given	directory	is	empty...

								Storage::disk('photos')->assertDirectoryEmpty('/wallpapers');

				}

}

By	default,	the	fake	method	will	delete	all	files	in	its	temporary	directory.	If	you	would	like	to	keep	these	files,
you	may	use	the	"persistentFake"	method	instead.	For	more	information	on	testing	file	uploads,	you	may
consult	the	HTTP	testing	documentation's	information	on	file	uploads.

[!WARNING]
The	image	method	requires	the	GD	extension.

Custom	Filesystems

Laravel's	Flysystem	integration	provides	support	for	several	"drivers"	out	of	the	box;	however,	Flysystem	is	not
limited	to	these	and	has	adapters	for	many	other	storage	systems.	You	can	create	a	custom	driver	if	you	want	to
use	one	of	these	additional	adapters	in	your	Laravel	application.

In	order	to	define	a	custom	filesystem	you	will	need	a	Flysystem	adapter.	Let's	add	a	community	maintained
Dropbox	adapter	to	our	project:

composer	require	spatie/flysystem-dropbox

Laravel	Documentation	-	10.x	/	File	Storage 344

https://www.php.net/manual/en/book.image.php

Next,	you	can	register	the	driver	within	the	boot	method	of	one	of	your	application's	service	providers.	To
accomplish	this,	you	should	use	the	extend	method	of	the	Storage	facade:

<?php

namespace	App\Providers;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Filesystem\FilesystemAdapter;

use	Illuminate\Support\Facades\Storage;

use	Illuminate\Support\ServiceProvider;

use	League\Flysystem\Filesystem;

use	Spatie\Dropbox\Client	as	DropboxClient;

use	Spatie\FlysystemDropbox\DropboxAdapter;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Storage::extend('dropbox',	function	(Application	$app,	array	$config)	{

												$adapter	=	new	DropboxAdapter(new	DropboxClient(

																$config['authorization_token']

));

												return	new	FilesystemAdapter(

																new	Filesystem($adapter,	$config),

																$adapter,

																$config

);

								});

				}

}

The	first	argument	of	the	extend	method	is	the	name	of	the	driver	and	the	second	is	a	closure	that	receives	the	
$app	and	$config	variables.	The	closure	must	return	an	instance	of	Illuminate\Filesystem\FilesystemAdapter.
The	$config	variable	contains	the	values	defined	in	config/filesystems.php	for	the	specified	disk.

Once	you	have	created	and	registered	the	extension's	service	provider,	you	may	use	the	dropbox	driver	in	your	
config/filesystems.php	configuration	file.

Laravel	Documentation	-	10.x	/	File	Storage 345

Digging	Deeper

Helpers
Introduction
Available	Methods
Other	Utilities

Benchmarking
Dates
Lottery
Pipeline
Sleep

Introduction

Laravel	includes	a	variety	of	global	"helper"	PHP	functions.	Many	of	these	functions	are	used	by	the
framework	itself;	however,	you	are	free	to	use	them	in	your	own	applications	if	you	find	them	convenient.

Available	Methods

Arrays	&	Objects

Arr::accessible
Arr::add
Arr::collapse
Arr::crossJoin
Arr::divide
Arr::dot
Arr::except
Arr::exists
Arr::first
Arr::flatten
Arr::forget
Arr::get
Arr::has
Arr::hasAny
Arr::isAssoc
Arr::isList

Arr::join
Arr::keyBy
Arr::last
Arr::map
Arr::mapWithKeys
Arr::only
Arr::pluck
Arr::prepend
Arr::prependKeysWith
Arr::pull
Arr::query
Arr::random
Arr::set
Arr::shuffle
Arr::sort
Arr::sortDesc

Arr::sortRecursive
Arr::sortRecursiveDesc
Arr::take
Arr::toCssClasses
Arr::toCssStyles
Arr::undot
Arr::where
Arr::whereNotNull
Arr::wrap
data_fill
data_get
data_set
data_forget
head
last

Numbers

Number::abbreviate
Number::clamp
Number::currency
Number::fileSize

Number::forHumans
Number::format
Number::ordinal
Number::percentage

Number::spell
Number::useLocale
Number::withLocale

Paths

app_path
base_path
config_path

database_path
lang_path
mix

public_path
resource_path
storage_path

URLs

action
asset
route

secure_asset
secure_url
to_route

url

Laravel	Documentation	-	10.x	/	Helpers 346

route to_route

Miscellaneous

abort
abort_if
abort_unless
app
auth
back
bcrypt
blank
broadcast
cache
class_uses_recursive
collect
config
cookie
csrf_field
csrf_token
decrypt
dd

dispatch
dispatch_sync
dump
encrypt
env
event
fake
filled
info
logger
method_field
now
old
optional
policy
redirect
report
report_if

report_unless
request
rescue
resolve
response
retry
session
tap
throw_if
throw_unless
today
trait_uses_recursive
transform
validator
value
view
with

Arrays	&	Objects
Arr::accessible()

The	Arr::accessible	method	determines	if	the	given	value	is	array	accessible:

use	Illuminate\Support\Arr;

use	Illuminate\Support\Collection;

$isAccessible	=	Arr::accessible(['a'	=>	1,	'b'	=>	2]);

//	true

$isAccessible	=	Arr::accessible(new	Collection);

//	true

$isAccessible	=	Arr::accessible('abc');

//	false

$isAccessible	=	Arr::accessible(new	stdClass);

//	false

Arr::add()

The	Arr::add	method	adds	a	given	key	/	value	pair	to	an	array	if	the	given	key	doesn't	already	exist	in	the	array
or	is	set	to	null:

use	Illuminate\Support\Arr;

$array	=	Arr::add(['name'	=>	'Desk'],	'price',	100);

//	['name'	=>	'Desk',	'price'	=>	100]

$array	=	Arr::add(['name'	=>	'Desk',	'price'	=>	null],	'price',	100);

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::collapse()

The	Arr::collapse	method	collapses	an	array	of	arrays	into	a	single	array:

Laravel	Documentation	-	10.x	/	Helpers 347

use	Illuminate\Support\Arr;

$array	=	Arr::collapse([[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]);

//	[1,	2,	3,	4,	5,	6,	7,	8,	9]

Arr::crossJoin()

The	Arr::crossJoin	method	cross	joins	the	given	arrays,	returning	a	Cartesian	product	with	all	possible
permutations:

use	Illuminate\Support\Arr;

$matrix	=	Arr::crossJoin([1,	2],	['a',	'b']);

/*

				[

								[1,	'a'],

								[1,	'b'],

								[2,	'a'],

								[2,	'b'],

]

*/

$matrix	=	Arr::crossJoin([1,	2],	['a',	'b'],	['I',	'II']);

/*

				[

								[1,	'a',	'I'],

								[1,	'a',	'II'],

								[1,	'b',	'I'],

								[1,	'b',	'II'],

								[2,	'a',	'I'],

								[2,	'a',	'II'],

								[2,	'b',	'I'],

								[2,	'b',	'II'],

]

*/

Arr::divide()

The	Arr::divide	method	returns	two	arrays:	one	containing	the	keys	and	the	other	containing	the	values	of	the
given	array:

use	Illuminate\Support\Arr;

[$keys,	$values]	=	Arr::divide(['name'	=>	'Desk']);

//	$keys:	['name']

//	$values:	['Desk']

Arr::dot()

The	Arr::dot	method	flattens	a	multi-dimensional	array	into	a	single	level	array	that	uses	"dot"	notation	to
indicate	depth:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

$flattened	=	Arr::dot($array);

//	['products.desk.price'	=>	100]

Arr::except()

The	Arr::except	method	removes	the	given	key	/	value	pairs	from	an	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100];

$filtered	=	Arr::except($array,	['price']);

Laravel	Documentation	-	10.x	/	Helpers 348

//	['name'	=>	'Desk']

Arr::exists()

The	Arr::exists	method	checks	that	the	given	key	exists	in	the	provided	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'John	Doe',	'age'	=>	17];

$exists	=	Arr::exists($array,	'name');

//	true

$exists	=	Arr::exists($array,	'salary');

//	false

Arr::first()

The	Arr::first	method	returns	the	first	element	of	an	array	passing	a	given	truth	test:

use	Illuminate\Support\Arr;

$array	=	[100,	200,	300];

$first	=	Arr::first($array,	function	(int	$value,	int	$key)	{

				return	$value	>=	150;

});

//	200

A	default	value	may	also	be	passed	as	the	third	parameter	to	the	method.	This	value	will	be	returned	if	no	value
passes	the	truth	test:

use	Illuminate\Support\Arr;

$first	=	Arr::first($array,	$callback,	$default);

Arr::flatten()

The	Arr::flatten	method	flattens	a	multi-dimensional	array	into	a	single	level	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Joe',	'languages'	=>	['PHP',	'Ruby']];

$flattened	=	Arr::flatten($array);

//	['Joe',	'PHP',	'Ruby']

Arr::forget()

The	Arr::forget	method	removes	a	given	key	/	value	pair	from	a	deeply	nested	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

Arr::forget($array,	'products.desk');

//	['products'	=>	[]]

Arr::get()

The	Arr::get	method	retrieves	a	value	from	a	deeply	nested	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

Laravel	Documentation	-	10.x	/	Helpers 349

$price	=	Arr::get($array,	'products.desk.price');

//	100

The	Arr::get	method	also	accepts	a	default	value,	which	will	be	returned	if	the	specified	key	is	not	present	in
the	array:

use	Illuminate\Support\Arr;

$discount	=	Arr::get($array,	'products.desk.discount',	0);

//	0

Arr::has()

The	Arr::has	method	checks	whether	a	given	item	or	items	exists	in	an	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['product'	=>	['name'	=>	'Desk',	'price'	=>	100]];

$contains	=	Arr::has($array,	'product.name');

//	true

$contains	=	Arr::has($array,	['product.price',	'product.discount']);

//	false

Arr::hasAny()

The	Arr::hasAny	method	checks	whether	any	item	in	a	given	set	exists	in	an	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['product'	=>	['name'	=>	'Desk',	'price'	=>	100]];

$contains	=	Arr::hasAny($array,	'product.name');

//	true

$contains	=	Arr::hasAny($array,	['product.name',	'product.discount']);

//	true

$contains	=	Arr::hasAny($array,	['category',	'product.discount']);

//	false

Arr::isAssoc()

The	Arr::isAssoc	method	returns	true	if	the	given	array	is	an	associative	array.	An	array	is	considered
"associative"	if	it	doesn't	have	sequential	numerical	keys	beginning	with	zero:

use	Illuminate\Support\Arr;

$isAssoc	=	Arr::isAssoc(['product'	=>	['name'	=>	'Desk',	'price'	=>	100]]);

//	true

$isAssoc	=	Arr::isAssoc([1,	2,	3]);

//	false

Arr::isList()

The	Arr::isList	method	returns	true	if	the	given	array's	keys	are	sequential	integers	beginning	from	zero:

use	Illuminate\Support\Arr;

$isList	=	Arr::isList(['foo',	'bar',	'baz']);

//	true

Laravel	Documentation	-	10.x	/	Helpers 350

$isList	=	Arr::isList(['product'	=>	['name'	=>	'Desk',	'price'	=>	100]]);

//	false

Arr::join()

The	Arr::join	method	joins	array	elements	with	a	string.	Using	this	method's	second	argument,	you	may	also
specify	the	joining	string	for	the	final	element	of	the	array:

use	Illuminate\Support\Arr;

$array	=	['Tailwind',	'Alpine',	'Laravel',	'Livewire'];

$joined	=	Arr::join($array,	',	');

//	Tailwind,	Alpine,	Laravel,	Livewire

$joined	=	Arr::join($array,	',	',	'	and	');

//	Tailwind,	Alpine,	Laravel	and	Livewire

Arr::keyBy()

The	Arr::keyBy	method	keys	the	array	by	the	given	key.	If	multiple	items	have	the	same	key,	only	the	last	one
will	appear	in	the	new	array:

use	Illuminate\Support\Arr;

$array	=	[

				['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

				['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

];

$keyed	=	Arr::keyBy($array,	'product_id');

/*

				[

								'prod-100'	=>	['product_id'	=>	'prod-100',	'name'	=>	'Desk'],

								'prod-200'	=>	['product_id'	=>	'prod-200',	'name'	=>	'Chair'],

]

*/

Arr::last()

The	Arr::last	method	returns	the	last	element	of	an	array	passing	a	given	truth	test:

use	Illuminate\Support\Arr;

$array	=	[100,	200,	300,	110];

$last	=	Arr::last($array,	function	(int	$value,	int	$key)	{

				return	$value	>=	150;

});

//	300

A	default	value	may	be	passed	as	the	third	argument	to	the	method.	This	value	will	be	returned	if	no	value
passes	the	truth	test:

use	Illuminate\Support\Arr;

$last	=	Arr::last($array,	$callback,	$default);

Arr::map()

The	Arr::map	method	iterates	through	the	array	and	passes	each	value	and	key	to	the	given	callback.	The	array
value	is	replaced	by	the	value	returned	by	the	callback:

use	Illuminate\Support\Arr;

$array	=	['first'	=>	'james',	'last'	=>	'kirk'];

Laravel	Documentation	-	10.x	/	Helpers 351

$mapped	=	Arr::map($array,	function	(string	$value,	string	$key)	{

				return	ucfirst($value);

});

//	['first'	=>	'James',	'last'	=>	'Kirk']

Arr::mapWithKeys()

The	Arr::mapWithKeys	method	iterates	through	the	array	and	passes	each	value	to	the	given	callback.	The
callback	should	return	an	associative	array	containing	a	single	key	/	value	pair:

use	Illuminate\Support\Arr;

$array	=	[

				[

								'name'	=>	'John',

								'department'	=>	'Sales',

								'email'	=>	'john@example.com',

],

				[

								'name'	=>	'Jane',

								'department'	=>	'Marketing',

								'email'	=>	'jane@example.com',

]

];

$mapped	=	Arr::mapWithKeys($array,	function	(array	$item,	int	$key)	{

				return	[$item['email']	=>	$item['name']];

});

/*

				[

								'john@example.com'	=>	'John',

								'jane@example.com'	=>	'Jane',

]

*/

Arr::only()

The	Arr::only	method	returns	only	the	specified	key	/	value	pairs	from	the	given	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100,	'orders'	=>	10];

$slice	=	Arr::only($array,	['name',	'price']);

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::pluck()

The	Arr::pluck	method	retrieves	all	of	the	values	for	a	given	key	from	an	array:

use	Illuminate\Support\Arr;

$array	=	[

				['developer'	=>	['id'	=>	1,	'name'	=>	'Taylor']],

				['developer'	=>	['id'	=>	2,	'name'	=>	'Abigail']],

];

$names	=	Arr::pluck($array,	'developer.name');

//	['Taylor',	'Abigail']

You	may	also	specify	how	you	wish	the	resulting	list	to	be	keyed:

use	Illuminate\Support\Arr;

$names	=	Arr::pluck($array,	'developer.name',	'developer.id');

//	[1	=>	'Taylor',	2	=>	'Abigail']

Arr::prepend()

Laravel	Documentation	-	10.x	/	Helpers 352

The	Arr::prepend	method	will	push	an	item	onto	the	beginning	of	an	array:

use	Illuminate\Support\Arr;

$array	=	['one',	'two',	'three',	'four'];

$array	=	Arr::prepend($array,	'zero');

//	['zero',	'one',	'two',	'three',	'four']

If	needed,	you	may	specify	the	key	that	should	be	used	for	the	value:

use	Illuminate\Support\Arr;

$array	=	['price'	=>	100];

$array	=	Arr::prepend($array,	'Desk',	'name');

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::prependKeysWith()

The	Arr::prependKeysWith	prepends	all	key	names	of	an	associative	array	with	the	given	prefix:

use	Illuminate\Support\Arr;

$array	=	[

				'name'	=>	'Desk',

				'price'	=>	100,

];

$keyed	=	Arr::prependKeysWith($array,	'product.');

/*

				[

								'product.name'	=>	'Desk',

								'product.price'	=>	100,

]

*/

Arr::pull()

The	Arr::pull	method	returns	and	removes	a	key	/	value	pair	from	an	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100];

$name	=	Arr::pull($array,	'name');

//	$name:	Desk

//	$array:	['price'	=>	100]

A	default	value	may	be	passed	as	the	third	argument	to	the	method.	This	value	will	be	returned	if	the	key
doesn't	exist:

use	Illuminate\Support\Arr;

$value	=	Arr::pull($array,	$key,	$default);

Arr::query()

The	Arr::query	method	converts	the	array	into	a	query	string:

use	Illuminate\Support\Arr;

$array	=	[

				'name'	=>	'Taylor',

				'order'	=>	[

								'column'	=>	'created_at',

								'direction'	=>	'desc'

]

];

Laravel	Documentation	-	10.x	/	Helpers 353

Arr::query($array);

//	name=Taylor&order[column]=created_at&order[direction]=desc

Arr::random()

The	Arr::random	method	returns	a	random	value	from	an	array:

use	Illuminate\Support\Arr;

$array	=	[1,	2,	3,	4,	5];

$random	=	Arr::random($array);

//	4	-	(retrieved	randomly)

You	may	also	specify	the	number	of	items	to	return	as	an	optional	second	argument.	Note	that	providing	this
argument	will	return	an	array	even	if	only	one	item	is	desired:

use	Illuminate\Support\Arr;

$items	=	Arr::random($array,	2);

//	[2,	5]	-	(retrieved	randomly)

Arr::set()

The	Arr::set	method	sets	a	value	within	a	deeply	nested	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

Arr::set($array,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	200]]]

Arr::shuffle()

The	Arr::shuffle	method	randomly	shuffles	the	items	in	the	array:

use	Illuminate\Support\Arr;

$array	=	Arr::shuffle([1,	2,	3,	4,	5]);

//	[3,	2,	5,	1,	4]	-	(generated	randomly)

Arr::sort()

The	Arr::sort	method	sorts	an	array	by	its	values:

use	Illuminate\Support\Arr;

$array	=	['Desk',	'Table',	'Chair'];

$sorted	=	Arr::sort($array);

//	['Chair',	'Desk',	'Table']

You	may	also	sort	the	array	by	the	results	of	a	given	closure:

use	Illuminate\Support\Arr;

$array	=	[

				['name'	=>	'Desk'],

				['name'	=>	'Table'],

				['name'	=>	'Chair'],

];

$sorted	=	array_values(Arr::sort($array,	function	(array	$value)	{

				return	$value['name'];

}));

Laravel	Documentation	-	10.x	/	Helpers 354

/*

				[

								['name'	=>	'Chair'],

								['name'	=>	'Desk'],

								['name'	=>	'Table'],

]

*/

Arr::sortDesc()

The	Arr::sortDesc	method	sorts	an	array	in	descending	order	by	its	values:

use	Illuminate\Support\Arr;

$array	=	['Desk',	'Table',	'Chair'];

$sorted	=	Arr::sortDesc($array);

//	['Table',	'Desk',	'Chair']

You	may	also	sort	the	array	by	the	results	of	a	given	closure:

use	Illuminate\Support\Arr;

$array	=	[

				['name'	=>	'Desk'],

				['name'	=>	'Table'],

				['name'	=>	'Chair'],

];

$sorted	=	array_values(Arr::sortDesc($array,	function	(array	$value)	{

				return	$value['name'];

}));

/*

				[

								['name'	=>	'Table'],

								['name'	=>	'Desk'],

								['name'	=>	'Chair'],

]

*/

Arr::sortRecursive()

The	Arr::sortRecursive	method	recursively	sorts	an	array	using	the	sort	function	for	numerically	indexed	sub-
arrays	and	the	ksort	function	for	associative	sub-arrays:

use	Illuminate\Support\Arr;

$array	=	[

				['Roman',	'Taylor',	'Li'],

				['PHP',	'Ruby',	'JavaScript'],

				['one'	=>	1,	'two'	=>	2,	'three'	=>	3],

];

$sorted	=	Arr::sortRecursive($array);

/*

				[

								['JavaScript',	'PHP',	'Ruby'],

								['one'	=>	1,	'three'	=>	3,	'two'	=>	2],

								['Li',	'Roman',	'Taylor'],

]

*/

If	you	would	like	the	results	sorted	in	descending	order,	you	may	use	the	Arr::sortRecursiveDesc	method.

$sorted	=	Arr::sortRecursiveDesc($array);

Arr::take()

The	Arr::take	method	returns	a	new	array	with	the	specified	number	of	items:

use	Illuminate\Support\Arr;

Laravel	Documentation	-	10.x	/	Helpers 355

$array	=	[0,	1,	2,	3,	4,	5];

$chunk	=	Arr::take($array,	3);

//	[0,	1,	2]

You	may	also	pass	a	negative	integer	to	take	the	specified	number	of	items	from	the	end	of	the	array:

$array	=	[0,	1,	2,	3,	4,	5];

$chunk	=	Arr::take($array,	-2);

//	[4,	5]

Arr::toCssClasses()

The	Arr::toCssClasses	method	conditionally	compiles	a	CSS	class	string.	The	method	accepts	an	array	of
classes	where	the	array	key	contains	the	class	or	classes	you	wish	to	add,	while	the	value	is	a	boolean
expression.	If	the	array	element	has	a	numeric	key,	it	will	always	be	included	in	the	rendered	class	list:

use	Illuminate\Support\Arr;

$isActive	=	false;

$hasError	=	true;

$array	=	['p-4',	'font-bold'	=>	$isActive,	'bg-red'	=>	$hasError];

$classes	=	Arr::toCssClasses($array);

/*

				'p-4	bg-red'

*/

Arr::toCssStyles()

The	Arr::toCssStyles	conditionally	compiles	a	CSS	style	string.	The	method	accepts	an	array	of	classes	where
the	array	key	contains	the	class	or	classes	you	wish	to	add,	while	the	value	is	a	boolean	expression.	If	the	array
element	has	a	numeric	key,	it	will	always	be	included	in	the	rendered	class	list:

use	Illuminate\Support\Arr;

$hasColor	=	true;

$array	=	['background-color:	blue',	'color:	blue'	=>	$hasColor];

$classes	=	Arr::toCssStyles($array);

/*

				'background-color:	blue;	color:	blue;'

*/

This	method	powers	Laravel's	functionality	allowing	merging	classes	with	a	Blade	component's	attribute	bag	as
well	as	the	@class	Blade	directive.

Arr::undot()

The	Arr::undot	method	expands	a	single-dimensional	array	that	uses	"dot"	notation	into	a	multi-dimensional
array:

use	Illuminate\Support\Arr;

$array	=	[

				'user.name'	=>	'Kevin	Malone',

				'user.occupation'	=>	'Accountant',

];

$array	=	Arr::undot($array);

//	['user'	=>	['name'	=>	'Kevin	Malone',	'occupation'	=>	'Accountant']]

Arr::where()

Laravel	Documentation	-	10.x	/	Helpers 356

The	Arr::where	method	filters	an	array	using	the	given	closure:

use	Illuminate\Support\Arr;

$array	=	[100,	'200',	300,	'400',	500];

$filtered	=	Arr::where($array,	function	(string|int	$value,	int	$key)	{

				return	is_string($value);

});

//	[1	=>	'200',	3	=>	'400']

Arr::whereNotNull()

The	Arr::whereNotNull	method	removes	all	null	values	from	the	given	array:

use	Illuminate\Support\Arr;

$array	=	[0,	null];

$filtered	=	Arr::whereNotNull($array);

//	[0	=>	0]

Arr::wrap()

The	Arr::wrap	method	wraps	the	given	value	in	an	array.	If	the	given	value	is	already	an	array	it	will	be
returned	without	modification:

use	Illuminate\Support\Arr;

$string	=	'Laravel';

$array	=	Arr::wrap($string);

//	['Laravel']

If	the	given	value	is	null,	an	empty	array	will	be	returned:

use	Illuminate\Support\Arr;

$array	=	Arr::wrap(null);

//	[]

data_fill()

The	data_fill	function	sets	a	missing	value	within	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_fill($data,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	100]]]

data_fill($data,	'products.desk.discount',	10);

//	['products'	=>	['desk'	=>	['price'	=>	100,	'discount'	=>	10]]]

This	function	also	accepts	asterisks	as	wildcards	and	will	fill	the	target	accordingly:

$data	=	[

				'products'	=>	[

								['name'	=>	'Desk	1',	'price'	=>	100],

								['name'	=>	'Desk	2'],

],

];

data_fill($data,	'products.*.price',	200);

/*

				[

								'products'	=>	[

												['name'	=>	'Desk	1',	'price'	=>	100],

Laravel	Documentation	-	10.x	/	Helpers 357

												['name'	=>	'Desk	2',	'price'	=>	200],

],

]

*/

data_get()

The	data_get	function	retrieves	a	value	from	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

$price	=	data_get($data,	'products.desk.price');

//	100

The	data_get	function	also	accepts	a	default	value,	which	will	be	returned	if	the	specified	key	is	not	found:

$discount	=	data_get($data,	'products.desk.discount',	0);

//	0

The	function	also	accepts	wildcards	using	asterisks,	which	may	target	any	key	of	the	array	or	object:

$data	=	[

				'product-one'	=>	['name'	=>	'Desk	1',	'price'	=>	100],

				'product-two'	=>	['name'	=>	'Desk	2',	'price'	=>	150],

];

data_get($data,	'*.name');

//	['Desk	1',	'Desk	2'];

data_set()

The	data_set	function	sets	a	value	within	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_set($data,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	200]]]

This	function	also	accepts	wildcards	using	asterisks	and	will	set	values	on	the	target	accordingly:

$data	=	[

				'products'	=>	[

								['name'	=>	'Desk	1',	'price'	=>	100],

								['name'	=>	'Desk	2',	'price'	=>	150],

],

];

data_set($data,	'products.*.price',	200);

/*

				[

								'products'	=>	[

												['name'	=>	'Desk	1',	'price'	=>	200],

												['name'	=>	'Desk	2',	'price'	=>	200],

],

]

*/

By	default,	any	existing	values	are	overwritten.	If	you	wish	to	only	set	a	value	if	it	doesn't	exist,	you	may	pass	
false	as	the	fourth	argument	to	the	function:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_set($data,	'products.desk.price',	200,	overwrite:	false);

//	['products'	=>	['desk'	=>	['price'	=>	100]]]

data_forget()

The	data_forget	function	removes	a	value	within	a	nested	array	or	object	using	"dot"	notation:

Laravel	Documentation	-	10.x	/	Helpers 358

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_forget($data,	'products.desk.price');

//	['products'	=>	['desk'	=>	[]]]

This	function	also	accepts	wildcards	using	asterisks	and	will	remove	values	on	the	target	accordingly:

$data	=	[

				'products'	=>	[

								['name'	=>	'Desk	1',	'price'	=>	100],

								['name'	=>	'Desk	2',	'price'	=>	150],

],

];

data_forget($data,	'products.*.price');

/*

				[

								'products'	=>	[

												['name'	=>	'Desk	1'],

												['name'	=>	'Desk	2'],

],

]

*/

head()

The	head	function	returns	the	first	element	in	the	given	array:

$array	=	[100,	200,	300];

$first	=	head($array);

//	100

last()

The	last	function	returns	the	last	element	in	the	given	array:

$array	=	[100,	200,	300];

$last	=	last($array);

//	300

Numbers
Number::abbreviate()

The	Number::abbreviate	method	returns	the	human-readable	format	of	the	provided	numerical	value,	with	an
abbreviation	for	the	units:

use	Illuminate\Support\Number;

$number	=	Number::abbreviate(1000);

//	1K

$number	=	Number::abbreviate(489939);

//	490K

$number	=	Number::abbreviate(1230000,	precision:	2);

//	1.23M

Number::clamp()

The	Number::clamp	method	ensures	a	given	number	stays	within	a	specified	range.	If	the	number	is	lower	than
the	minimum,	the	minimum	value	is	returned.	If	the	number	is	higher	than	the	maximum,	the	maximum	value
is	returned:

Laravel	Documentation	-	10.x	/	Helpers 359

use	Illuminate\Support\Number;

$number	=	Number::clamp(105,	min:	10,	max:	100);

//	100

$number	=	Number::clamp(5,	min:	10,	max:	100);

//	10

$number	=	Number::clamp(10,	min:	10,	max:	100);

//	10

$number	=	Number::clamp(20,	min:	10,	max:	100);

//	20

Number::currency()

The	Number::currency	method	returns	the	currency	representation	of	the	given	value	as	a	string:

use	Illuminate\Support\Number;

$currency	=	Number::currency(1000);

//	$1,000

$currency	=	Number::currency(1000,	in:	'EUR');

//	€1,000

$currency	=	Number::currency(1000,	in:	'EUR',	locale:	'de');

//	1.000	€

Number::fileSize()

The	Number::fileSize	method	returns	the	file	size	representation	of	the	given	byte	value	as	a	string:

use	Illuminate\Support\Number;

$size	=	Number::fileSize(1024);

//	1	KB

$size	=	Number::fileSize(1024	*	1024);

//	1	MB

$size	=	Number::fileSize(1024,	precision:	2);

//	1.00	KB

Number::forHumans()

The	Number::forHumans	method	returns	the	human-readable	format	of	the	provided	numerical	value:

use	Illuminate\Support\Number;

$number	=	Number::forHumans(1000);

//	1	thousand

$number	=	Number::forHumans(489939);

//	490	thousand

$number	=	Number::forHumans(1230000,	precision:	2);

//	1.23	million

Number::format()

The	Number::format	method	formats	the	given	number	into	a	locale	specific	string:

Laravel	Documentation	-	10.x	/	Helpers 360

use	Illuminate\Support\Number;

$number	=	Number::format(100000);

//	100,000

$number	=	Number::format(100000,	precision:	2);

//	100,000.00

$number	=	Number::format(100000.123,	maxPrecision:	2);

//	100,000.12

$number	=	Number::format(100000,	locale:	'de');

//	100.000

Number::ordinal()

The	Number::ordinal	method	returns	a	number's	ordinal	representation:

use	Illuminate\Support\Number;

$number	=	Number::ordinal(1);

//	1st

$number	=	Number::ordinal(2);

//	2nd

$number	=	Number::ordinal(21);

//	21st

Number::percentage()

The	Number::percentage	method	returns	the	percentage	representation	of	the	given	value	as	a	string:

use	Illuminate\Support\Number;

$percentage	=	Number::percentage(10);

//	10%

$percentage	=	Number::percentage(10,	precision:	2);

//	10.00%

$percentage	=	Number::percentage(10.123,	maxPrecision:	2);

//	10.12%

$percentage	=	Number::percentage(10,	precision:	2,	locale:	'de');

//	10,00%

Number::spell()

The	Number::spell	method	transforms	the	given	number	into	a	string	of	words:

use	Illuminate\Support\Number;

$number	=	Number::spell(102);

//	one	hundred	and	two

$number	=	Number::spell(88,	locale:	'fr');

//	quatre-vingt-huit

The	after	argument	allows	you	to	specify	a	value	after	which	all	numbers	should	be	spelled	out:

$number	=	Number::spell(10,	after:	10);

Laravel	Documentation	-	10.x	/	Helpers 361

//	10

$number	=	Number::spell(11,	after:	10);

//	eleven

The	until	argument	allows	you	to	specify	a	value	before	which	all	numbers	should	be	spelled	out:

$number	=	Number::spell(5,	until:	10);

//	five

$number	=	Number::spell(10,	until:	10);

//	10

Number::useLocale()

The	Number::useLocale	method	sets	the	default	number	locale	globally,	which	affects	how	numbers	and
currency	are	formatted	by	subsequent	invocations	to	the	Number	class's	methods:

use	Illuminate\Support\Number;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Number::useLocale('de');

}

Number::withLocale()

The	Number::withLocale	method	executes	the	given	closure	using	the	specified	locale	and	then	restores	the
original	locale	after	the	callback	has	executed:

use	Illuminate\Support\Number;

$number	=	Number::withLocale('de',	function	()	{

				return	Number::format(1500);

});

Paths
app_path()

The	app_path	function	returns	the	fully	qualified	path	to	your	application's	app	directory.	You	may	also	use	the	
app_path	function	to	generate	a	fully	qualified	path	to	a	file	relative	to	the	application	directory:

$path	=	app_path();

$path	=	app_path('Http/Controllers/Controller.php');

base_path()

The	base_path	function	returns	the	fully	qualified	path	to	your	application's	root	directory.	You	may	also	use	the
base_path	function	to	generate	a	fully	qualified	path	to	a	given	file	relative	to	the	project	root	directory:

$path	=	base_path();

$path	=	base_path('vendor/bin');

config_path()

The	config_path	function	returns	the	fully	qualified	path	to	your	application's	config	directory.	You	may	also
use	the	config_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	application's
configuration	directory:

Laravel	Documentation	-	10.x	/	Helpers 362

$path	=	config_path();

$path	=	config_path('app.php');

database_path()

The	database_path	function	returns	the	fully	qualified	path	to	your	application's	database	directory.	You	may
also	use	the	database_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	database
directory:

$path	=	database_path();

$path	=	database_path('factories/UserFactory.php');

lang_path()

The	lang_path	function	returns	the	fully	qualified	path	to	your	application's	lang	directory.	You	may	also	use	the
lang_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	directory:

$path	=	lang_path();

$path	=	lang_path('en/messages.php');

[!NOTE]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

mix()

The	mix	function	returns	the	path	to	a	versioned	Mix	file:

$path	=	mix('css/app.css');

public_path()

The	public_path	function	returns	the	fully	qualified	path	to	your	application's	public	directory.	You	may	also
use	the	public_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	public	directory:

$path	=	public_path();

$path	=	public_path('css/app.css');

resource_path()

The	resource_path	function	returns	the	fully	qualified	path	to	your	application's	resources	directory.	You	may
also	use	the	resource_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	resources
directory:

$path	=	resource_path();

$path	=	resource_path('sass/app.scss');

storage_path()

The	storage_path	function	returns	the	fully	qualified	path	to	your	application's	storage	directory.	You	may	also
use	the	storage_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	storage	directory:

$path	=	storage_path();

$path	=	storage_path('app/file.txt');

URLs
action()

The	action	function	generates	a	URL	for	the	given	controller	action:

Laravel	Documentation	-	10.x	/	Helpers 363

use	App\Http\Controllers\HomeController;

$url	=	action([HomeController::class,	'index']);

If	the	method	accepts	route	parameters,	you	may	pass	them	as	the	second	argument	to	the	method:

$url	=	action([UserController::class,	'profile'],	['id'	=>	1]);

asset()

The	asset	function	generates	a	URL	for	an	asset	using	the	current	scheme	of	the	request	(HTTP	or	HTTPS):

$url	=	asset('img/photo.jpg');

You	can	configure	the	asset	URL	host	by	setting	the	ASSET_URL	variable	in	your	.env	file.	This	can	be	useful	if
you	host	your	assets	on	an	external	service	like	Amazon	S3	or	another	CDN:

//	ASSET_URL=http://example.com/assets

$url	=	asset('img/photo.jpg');	//	http://example.com/assets/img/photo.jpg

route()

The	route	function	generates	a	URL	for	a	given	named	route:

$url	=	route('route.name');

If	the	route	accepts	parameters,	you	may	pass	them	as	the	second	argument	to	the	function:

$url	=	route('route.name',	['id'	=>	1]);

By	default,	the	route	function	generates	an	absolute	URL.	If	you	wish	to	generate	a	relative	URL,	you	may	pass
false	as	the	third	argument	to	the	function:

$url	=	route('route.name',	['id'	=>	1],	false);

secure_asset()

The	secure_asset	function	generates	a	URL	for	an	asset	using	HTTPS:

$url	=	secure_asset('img/photo.jpg');

secure_url()

The	secure_url	function	generates	a	fully	qualified	HTTPS	URL	to	the	given	path.	Additional	URL	segments
may	be	passed	in	the	function's	second	argument:

$url	=	secure_url('user/profile');

$url	=	secure_url('user/profile',	[1]);

to_route()

The	to_route	function	generates	a	redirect	HTTP	response	for	a	given	named	route:

return	to_route('users.show',	['user'	=>	1]);

If	necessary,	you	may	pass	the	HTTP	status	code	that	should	be	assigned	to	the	redirect	and	any	additional
response	headers	as	the	third	and	fourth	arguments	to	the	to_route	method:

return	to_route('users.show',	['user'	=>	1],	302,	['X-Framework'	=>	'Laravel']);

url()

The	url	function	generates	a	fully	qualified	URL	to	the	given	path:

$url	=	url('user/profile');

Laravel	Documentation	-	10.x	/	Helpers 364

$url	=	url('user/profile',	[1]);

If	no	path	is	provided,	an	Illuminate\Routing\UrlGenerator	instance	is	returned:

$current	=	url()->current();

$full	=	url()->full();

$previous	=	url()->previous();

Miscellaneous
abort()

The	abort	function	throws	an	HTTP	exception	which	will	be	rendered	by	the	exception	handler:

abort(403);

You	may	also	provide	the	exception's	message	and	custom	HTTP	response	headers	that	should	be	sent	to	the
browser:

abort(403,	'Unauthorized.',	$headers);

abort_if()

The	abort_if	function	throws	an	HTTP	exception	if	a	given	boolean	expression	evaluates	to	true:

abort_if(!	Auth::user()->isAdmin(),	403);

Like	the	abort	method,	you	may	also	provide	the	exception's	response	text	as	the	third	argument	and	an	array	of
custom	response	headers	as	the	fourth	argument	to	the	function.

abort_unless()

The	abort_unless	function	throws	an	HTTP	exception	if	a	given	boolean	expression	evaluates	to	false:

abort_unless(Auth::user()->isAdmin(),	403);

Like	the	abort	method,	you	may	also	provide	the	exception's	response	text	as	the	third	argument	and	an	array	of
custom	response	headers	as	the	fourth	argument	to	the	function.

app()

The	app	function	returns	the	service	container	instance:

$container	=	app();

You	may	pass	a	class	or	interface	name	to	resolve	it	from	the	container:

$api	=	app('HelpSpot\API');

auth()

The	auth	function	returns	an	authenticator	instance.	You	may	use	it	as	an	alternative	to	the	Auth	facade:

$user	=	auth()->user();

If	needed,	you	may	specify	which	guard	instance	you	would	like	to	access:

$user	=	auth('admin')->user();

back()

The	back	function	generates	a	redirect	HTTP	response	to	the	user's	previous	location:

Laravel	Documentation	-	10.x	/	Helpers 365

return	back($status	=	302,	$headers	=	[],	$fallback	=	'/');

return	back();

bcrypt()

The	bcrypt	function	hashes	the	given	value	using	Bcrypt.	You	may	use	this	function	as	an	alternative	to	the	Hash
facade:

$password	=	bcrypt('my-secret-password');

blank()

The	blank	function	determines	whether	the	given	value	is	"blank":

blank('');

blank('			');

blank(null);

blank(collect());

//	true

blank(0);

blank(true);

blank(false);

//	false

For	the	inverse	of	blank,	see	the	filled	method.

broadcast()

The	broadcast	function	broadcasts	the	given	event	to	its	listeners:

broadcast(new	UserRegistered($user));

broadcast(new	UserRegistered($user))->toOthers();

cache()

The	cache	function	may	be	used	to	get	values	from	the	cache.	If	the	given	key	does	not	exist	in	the	cache,	an
optional	default	value	will	be	returned:

$value	=	cache('key');

$value	=	cache('key',	'default');

You	may	add	items	to	the	cache	by	passing	an	array	of	key	/	value	pairs	to	the	function.	You	should	also	pass
the	number	of	seconds	or	duration	the	cached	value	should	be	considered	valid:

cache(['key'	=>	'value'],	300);

cache(['key'	=>	'value'],	now()->addSeconds(10));

class_uses_recursive()

The	class_uses_recursive	function	returns	all	traits	used	by	a	class,	including	traits	used	by	all	of	its	parent
classes:

$traits	=	class_uses_recursive(App\Models\User::class);

collect()

The	collect	function	creates	a	collection	instance	from	the	given	value:

$collection	=	collect(['taylor',	'abigail']);

config()

Laravel	Documentation	-	10.x	/	Helpers 366

The	config	function	gets	the	value	of	a	configuration	variable.	The	configuration	values	may	be	accessed	using
"dot"	syntax,	which	includes	the	name	of	the	file	and	the	option	you	wish	to	access.	A	default	value	may	be
specified	and	is	returned	if	the	configuration	option	does	not	exist:

$value	=	config('app.timezone');

$value	=	config('app.timezone',	$default);

You	may	set	configuration	variables	at	runtime	by	passing	an	array	of	key	/	value	pairs.	However,	note	that	this
function	only	affects	the	configuration	value	for	the	current	request	and	does	not	update	your	actual
configuration	values:

config(['app.debug'	=>	true]);

cookie()

The	cookie	function	creates	a	new	cookie	instance:

$cookie	=	cookie('name',	'value',	$minutes);

csrf_field()

The	csrf_field	function	generates	an	HTML	hidden	input	field	containing	the	value	of	the	CSRF	token.	For
example,	using	Blade	syntax:

{{	csrf_field()	}}

csrf_token()

The	csrf_token	function	retrieves	the	value	of	the	current	CSRF	token:

$token	=	csrf_token();

decrypt()

The	decrypt	function	decrypts	the	given	value.	You	may	use	this	function	as	an	alternative	to	the	Crypt	facade:

$password	=	decrypt($value);

dd()

The	dd	function	dumps	the	given	variables	and	ends	the	execution	of	the	script:

dd($value);

dd($value1,	$value2,	$value3,	...);

If	you	do	not	want	to	halt	the	execution	of	your	script,	use	the	dump	function	instead.

dispatch()

The	dispatch	function	pushes	the	given	job	onto	the	Laravel	job	queue:

dispatch(new	App\Jobs\SendEmails);

dispatch_sync()

The	dispatch_sync	function	pushes	the	given	job	to	the	sync	queue	so	that	it	is	processed	immediately:

dispatch_sync(new	App\Jobs\SendEmails);

dump()

The	dump	function	dumps	the	given	variables:

dump($value);

Laravel	Documentation	-	10.x	/	Helpers 367

dump($value1,	$value2,	$value3,	...);

If	you	want	to	stop	executing	the	script	after	dumping	the	variables,	use	the	dd	function	instead.

encrypt()

The	encrypt	function	encrypts	the	given	value.	You	may	use	this	function	as	an	alternative	to	the	Crypt	facade:

$secret	=	encrypt('my-secret-value');

env()

The	env	function	retrieves	the	value	of	an	environment	variable	or	returns	a	default	value:

$env	=	env('APP_ENV');

$env	=	env('APP_ENV',	'production');

[!WARNING]
If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that	you
are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded	and	all	calls	to	the	env	function	will	return	null.

event()

The	event	function	dispatches	the	given	event	to	its	listeners:

event(new	UserRegistered($user));

fake()

The	fake	function	resolves	a	Faker	singleton	from	the	container,	which	can	be	useful	when	creating	fake	data	in
model	factories,	database	seeding,	tests,	and	prototyping	views:

@for($i	=	0;	$i	<	10;	$i++)

				<dl>

								<dt>Name</dt>

								<dd>{{	fake()->name()	}}</dd>

								<dt>Email</dt>

								<dd>{{	fake()->unique()->safeEmail()	}}</dd>

				</dl>

@endfor

By	default,	the	fake	function	will	utilize	the	app.faker_locale	configuration	option	in	your	config/app.php
configuration	file;	however,	you	may	also	specify	the	locale	by	passing	it	to	the	fake	function.	Each	locale	will
resolve	an	individual	singleton:

fake('nl_NL')->name()

filled()

The	filled	function	determines	whether	the	given	value	is	not	"blank":

filled(0);

filled(true);

filled(false);

//	true

filled('');

filled('			');

filled(null);

filled(collect());

//	false

For	the	inverse	of	filled,	see	the	blank	method.

Laravel	Documentation	-	10.x	/	Helpers 368

https://github.com/FakerPHP/Faker

info()

The	info	function	will	write	information	to	your	application's	log:

info('Some	helpful	information!');

An	array	of	contextual	data	may	also	be	passed	to	the	function:

info('User	login	attempt	failed.',	['id'	=>	$user->id]);

logger()

The	logger	function	can	be	used	to	write	a	debug	level	message	to	the	log:

logger('Debug	message');

An	array	of	contextual	data	may	also	be	passed	to	the	function:

logger('User	has	logged	in.',	['id'	=>	$user->id]);

A	logger	instance	will	be	returned	if	no	value	is	passed	to	the	function:

logger()->error('You	are	not	allowed	here.');

method_field()

The	method_field	function	generates	an	HTML	hidden	input	field	containing	the	spoofed	value	of	the	form's
HTTP	verb.	For	example,	using	Blade	syntax:

<form	method="POST">

				{{	method_field('DELETE')	}}

</form>

now()

The	now	function	creates	a	new	Illuminate\Support\Carbon	instance	for	the	current	time:

$now	=	now();

old()

The	old	function	retrieves	an	old	input	value	flashed	into	the	session:

$value	=	old('value');

$value	=	old('value',	'default');

Since	the	"default	value"	provided	as	the	second	argument	to	the	old	function	is	often	an	attribute	of	an
Eloquent	model,	Laravel	allows	you	to	simply	pass	the	entire	Eloquent	model	as	the	second	argument	to	the	old
function.	When	doing	so,	Laravel	will	assume	the	first	argument	provided	to	the	old	function	is	the	name	of	the
Eloquent	attribute	that	should	be	considered	the	"default	value":

{{	old('name',	$user->name)	}}

//	Is	equivalent	to...

{{	old('name',	$user)	}}

optional()

The	optional	function	accepts	any	argument	and	allows	you	to	access	properties	or	call	methods	on	that	object.
If	the	given	object	is	null,	properties	and	methods	will	return	null	instead	of	causing	an	error:

return	optional($user->address)->street;

{!!	old('name',	optional($user)->name)	!!}

The	optional	function	also	accepts	a	closure	as	its	second	argument.	The	closure	will	be	invoked	if	the	value

Laravel	Documentation	-	10.x	/	Helpers 369

provided	as	the	first	argument	is	not	null:

return	optional(User::find($id),	function	(User	$user)	{

				return	$user->name;

});

policy()

The	policy	method	retrieves	a	policy	instance	for	a	given	class:

$policy	=	policy(App\Models\User::class);

redirect()

The	redirect	function	returns	a	redirect	HTTP	response,	or	returns	the	redirector	instance	if	called	with	no
arguments:

return	redirect($to	=	null,	$status	=	302,	$headers	=	[],	$https	=	null);

return	redirect('/home');

return	redirect()->route('route.name');

report()

The	report	function	will	report	an	exception	using	your	exception	handler:

report($e);

The	report	function	also	accepts	a	string	as	an	argument.	When	a	string	is	given	to	the	function,	the	function
will	create	an	exception	with	the	given	string	as	its	message:

report('Something	went	wrong.');

report_if()

The	report_if	function	will	report	an	exception	using	your	exception	handler	if	the	given	condition	is	true:

report_if($shouldReport,	$e);

report_if($shouldReport,	'Something	went	wrong.');

report_unless()

The	report_unless	function	will	report	an	exception	using	your	exception	handler	if	the	given	condition	is	
false:

report_unless($reportingDisabled,	$e);

report_unless($reportingDisabled,	'Something	went	wrong.');

request()

The	request	function	returns	the	current	request	instance	or	obtains	an	input	field's	value	from	the	current
request:

$request	=	request();

$value	=	request('key',	$default);

rescue()

The	rescue	function	executes	the	given	closure	and	catches	any	exceptions	that	occur	during	its	execution.	All
exceptions	that	are	caught	will	be	sent	to	your	exception	handler;	however,	the	request	will	continue
processing:

return	rescue(function	()	{

Laravel	Documentation	-	10.x	/	Helpers 370

				return	$this->method();

});

You	may	also	pass	a	second	argument	to	the	rescue	function.	This	argument	will	be	the	"default"	value	that
should	be	returned	if	an	exception	occurs	while	executing	the	closure:

return	rescue(function	()	{

				return	$this->method();

},	false);

return	rescue(function	()	{

				return	$this->method();

},	function	()	{

				return	$this->failure();

});

A	report	argument	may	be	provided	to	the	rescue	function	to	determine	if	the	exception	should	be	reported	via
the	report	function:

return	rescue(function	()	{

				return	$this->method();

},	report:	function	(Throwable	$throwable)	{

				return	$throwable	instanceof	InvalidArgumentException;

});

resolve()

The	resolve	function	resolves	a	given	class	or	interface	name	to	an	instance	using	the	service	container:

$api	=	resolve('HelpSpot\API');

response()

The	response	function	creates	a	response	instance	or	obtains	an	instance	of	the	response	factory:

return	response('Hello	World',	200,	$headers);

return	response()->json(['foo'	=>	'bar'],	200,	$headers);

retry()

The	retry	function	attempts	to	execute	the	given	callback	until	the	given	maximum	attempt	threshold	is	met.	If
the	callback	does	not	throw	an	exception,	its	return	value	will	be	returned.	If	the	callback	throws	an	exception,
it	will	automatically	be	retried.	If	the	maximum	attempt	count	is	exceeded,	the	exception	will	be	thrown:

return	retry(5,	function	()	{

				//	Attempt	5	times	while	resting	100ms	between	attempts...

},	100);

If	you	would	like	to	manually	calculate	the	number	of	milliseconds	to	sleep	between	attempts,	you	may	pass	a
closure	as	the	third	argument	to	the	retry	function:

use	Exception;

return	retry(5,	function	()	{

				//	...

},	function	(int	$attempt,	Exception	$exception)	{

				return	$attempt	*	100;

});

For	convenience,	you	may	provide	an	array	as	the	first	argument	to	the	retry	function.	This	array	will	be	used
to	determine	how	many	milliseconds	to	sleep	between	subsequent	attempts:

return	retry([100,	200],	function	()	{

				//	Sleep	for	100ms	on	first	retry,	200ms	on	second	retry...

});

To	only	retry	under	specific	conditions,	you	may	pass	a	closure	as	the	fourth	argument	to	the	retry	function:

use	Exception;

Laravel	Documentation	-	10.x	/	Helpers 371

return	retry(5,	function	()	{

				//	...

},	100,	function	(Exception	$exception)	{

				return	$exception	instanceof	RetryException;

});

session()

The	session	function	may	be	used	to	get	or	set	session	values:

$value	=	session('key');

You	may	set	values	by	passing	an	array	of	key	/	value	pairs	to	the	function:

session(['chairs'	=>	7,	'instruments'	=>	3]);

The	session	store	will	be	returned	if	no	value	is	passed	to	the	function:

$value	=	session()->get('key');

session()->put('key',	$value);

tap()

The	tap	function	accepts	two	arguments:	an	arbitrary	$value	and	a	closure.	The	$value	will	be	passed	to	the
closure	and	then	be	returned	by	the	tap	function.	The	return	value	of	the	closure	is	irrelevant:

$user	=	tap(User::first(),	function	(User	$user)	{

				$user->name	=	'taylor';

				$user->save();

});

If	no	closure	is	passed	to	the	tap	function,	you	may	call	any	method	on	the	given	$value.	The	return	value	of	the
method	you	call	will	always	be	$value,	regardless	of	what	the	method	actually	returns	in	its	definition.	For
example,	the	Eloquent	update	method	typically	returns	an	integer.	However,	we	can	force	the	method	to	return
the	model	itself	by	chaining	the	update	method	call	through	the	tap	function:

$user	=	tap($user)->update([

				'name'	=>	$name,

				'email'	=>	$email,

]);

To	add	a	tap	method	to	a	class,	you	may	add	the	Illuminate\Support\Traits\Tappable	trait	to	the	class.	The	tap
method	of	this	trait	accepts	a	Closure	as	its	only	argument.	The	object	instance	itself	will	be	passed	to	the
Closure	and	then	be	returned	by	the	tap	method:

return	$user->tap(function	(User	$user)	{

				//	...

});

throw_if()

The	throw_if	function	throws	the	given	exception	if	a	given	boolean	expression	evaluates	to	true:

throw_if(!	Auth::user()->isAdmin(),	AuthorizationException::class);

throw_if(

				!	Auth::user()->isAdmin(),

				AuthorizationException::class,

				'You	are	not	allowed	to	access	this	page.'

);

throw_unless()

The	throw_unless	function	throws	the	given	exception	if	a	given	boolean	expression	evaluates	to	false:

throw_unless(Auth::user()->isAdmin(),	AuthorizationException::class);

throw_unless(

Laravel	Documentation	-	10.x	/	Helpers 372

				Auth::user()->isAdmin(),

				AuthorizationException::class,

				'You	are	not	allowed	to	access	this	page.'

);

today()

The	today	function	creates	a	new	Illuminate\Support\Carbon	instance	for	the	current	date:

$today	=	today();

trait_uses_recursive()

The	trait_uses_recursive	function	returns	all	traits	used	by	a	trait:

$traits	=	trait_uses_recursive(\Illuminate\Notifications\Notifiable::class);

transform()

The	transform	function	executes	a	closure	on	a	given	value	if	the	value	is	not	blank	and	then	returns	the	return
value	of	the	closure:

$callback	=	function	(int	$value)	{

				return	$value	*	2;

};

$result	=	transform(5,	$callback);

//	10

A	default	value	or	closure	may	be	passed	as	the	third	argument	to	the	function.	This	value	will	be	returned	if	the
given	value	is	blank:

$result	=	transform(null,	$callback,	'The	value	is	blank');

//	The	value	is	blank

validator()

The	validator	function	creates	a	new	validator	instance	with	the	given	arguments.	You	may	use	it	as	an
alternative	to	the	Validator	facade:

$validator	=	validator($data,	$rules,	$messages);

value()

The	value	function	returns	the	value	it	is	given.	However,	if	you	pass	a	closure	to	the	function,	the	closure	will
be	executed	and	its	returned	value	will	be	returned:

$result	=	value(true);

//	true

$result	=	value(function	()	{

				return	false;

});

//	false

Additional	arguments	may	be	passed	to	the	value	function.	If	the	first	argument	is	a	closure	then	the	additional
parameters	will	be	passed	to	the	closure	as	arguments,	otherwise	they	will	be	ignored:

$result	=	value(function	(string	$name)	{

				return	$name;

},	'Taylor');

//	'Taylor'

view()

Laravel	Documentation	-	10.x	/	Helpers 373

The	view	function	retrieves	a	view	instance:

return	view('auth.login');

with()

The	with	function	returns	the	value	it	is	given.	If	a	closure	is	passed	as	the	second	argument	to	the	function,	the
closure	will	be	executed	and	its	returned	value	will	be	returned:

$callback	=	function	(mixed	$value)	{

				return	is_numeric($value)	?	$value	*	2	:	0;

};

$result	=	with(5,	$callback);

//	10

$result	=	with(null,	$callback);

//	0

$result	=	with(5,	null);

//	5

Other	Utilities

Benchmarking

Sometimes	you	may	wish	to	quickly	test	the	performance	of	certain	parts	of	your	application.	On	those
occasions,	you	may	utilize	the	Benchmark	support	class	to	measure	the	number	of	milliseconds	it	takes	for	the
given	callbacks	to	complete:

<?php

use	App\Models\User;

use	Illuminate\Support\Benchmark;

Benchmark::dd(fn	()	=>	User::find(1));	//	0.1	ms

Benchmark::dd([

				'Scenario	1'	=>	fn	()	=>	User::count(),	//	0.5	ms

				'Scenario	2'	=>	fn	()	=>	User::all()->count(),	//	20.0	ms

]);

By	default,	the	given	callbacks	will	be	executed	once	(one	iteration),	and	their	duration	will	be	displayed	in	the
browser	/	console.

To	invoke	a	callback	more	than	once,	you	may	specify	the	number	of	iterations	that	the	callback	should	be
invoked	as	the	second	argument	to	the	method.	When	executing	a	callback	more	than	once,	the	Benchmark	class
will	return	the	average	amount	of	milliseconds	it	took	to	execute	the	callback	across	all	iterations:

Benchmark::dd(fn	()	=>	User::count(),	iterations:	10);	//	0.5	ms

Sometimes,	you	may	want	to	benchmark	the	execution	of	a	callback	while	still	obtaining	the	value	returned	by
the	callback.	The	value	method	will	return	a	tuple	containing	the	value	returned	by	the	callback	and	the	amount
of	milliseconds	it	took	to	execute	the	callback:

[$count,	$duration]	=	Benchmark::value(fn	()	=>	User::count());

Dates

Laravel	includes	Carbon,	a	powerful	date	and	time	manipulation	library.	To	create	a	new	Carbon	instance,	you
may	invoke	the	now	function.	This	function	is	globally	available	within	your	Laravel	application:

$now	=	now();

Or,	you	may	create	a	new	Carbon	instance	using	the	Illuminate\Support\Carbon	class:

Laravel	Documentation	-	10.x	/	Helpers 374

https://carbon.nesbot.com/docs/

use	Illuminate\Support\Carbon;

$now	=	Carbon::now();

For	a	thorough	discussion	of	Carbon	and	its	features,	please	consult	the	official	Carbon	documentation.

Lottery

Laravel's	lottery	class	may	be	used	to	execute	callbacks	based	on	a	set	of	given	odds.	This	can	be	particularly
useful	when	you	only	want	to	execute	code	for	a	percentage	of	your	incoming	requests:

use	Illuminate\Support\Lottery;

Lottery::odds(1,	20)

				->winner(fn	()	=>	$user->won())

				->loser(fn	()	=>	$user->lost())

				->choose();

You	may	combine	Laravel's	lottery	class	with	other	Laravel	features.	For	example,	you	may	wish	to	only	report
a	small	percentage	of	slow	queries	to	your	exception	handler.	And,	since	the	lottery	class	is	callable,	we	may
pass	an	instance	of	the	class	into	any	method	that	accepts	callables:

use	Carbon\CarbonInterval;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\Lottery;

DB::whenQueryingForLongerThan(

				CarbonInterval::seconds(2),

				Lottery::odds(1,	100)->winner(fn	()	=>	report('Querying	>	2	seconds.')),

);

Testing	Lotteries

Laravel	provides	some	simple	methods	to	allow	you	to	easily	test	your	application's	lottery	invocations:

//	Lottery	will	always	win...

Lottery::alwaysWin();

//	Lottery	will	always	lose...

Lottery::alwaysLose();

//	Lottery	will	win	then	lose,	and	finally	return	to	normal	behavior...

Lottery::fix([true,	false]);

//	Lottery	will	return	to	normal	behavior...

Lottery::determineResultsNormally();

Pipeline

Laravel's	Pipeline	facade	provides	a	convenient	way	to	"pipe"	a	given	input	through	a	series	of	invokable
classes,	closures,	or	callables,	giving	each	class	the	opportunity	to	inspect	or	modify	the	input	and	invoke	the
next	callable	in	the	pipeline:

use	Closure;

use	App\Models\User;

use	Illuminate\Support\Facades\Pipeline;

$user	=	Pipeline::send($user)

												->through([

																function	(User	$user,	Closure	$next)	{

																				//	...

																				return	$next($user);

																},

																function	(User	$user,	Closure	$next)	{

																				//	...

																				return	$next($user);

																},

])

												->then(fn	(User	$user)	=>	$user);

Laravel	Documentation	-	10.x	/	Helpers 375

https://carbon.nesbot.com/docs/

As	you	can	see,	each	invokable	class	or	closure	in	the	pipeline	is	provided	the	input	and	a	$next	closure.
Invoking	the	$next	closure	will	invoke	the	next	callable	in	the	pipeline.	As	you	may	have	noticed,	this	is	very
similar	to	middleware.

When	the	last	callable	in	the	pipeline	invokes	the	$next	closure,	the	callable	provided	to	the	then	method	will	be
invoked.	Typically,	this	callable	will	simply	return	the	given	input.

Of	course,	as	discussed	previously,	you	are	not	limited	to	providing	closures	to	your	pipeline.	You	may	also
provide	invokable	classes.	If	a	class	name	is	provided,	the	class	will	be	instantiated	via	Laravel's	service
container,	allowing	dependencies	to	be	injected	into	the	invokable	class:

$user	=	Pipeline::send($user)

												->through([

																GenerateProfilePhoto::class,

																ActivateSubscription::class,

																SendWelcomeEmail::class,

])

												->then(fn	(User	$user)	=>	$user);

Sleep

Laravel's	Sleep	class	is	a	light-weight	wrapper	around	PHP's	native	sleep	and	usleep	functions,	offering	greater
testability	while	also	exposing	a	developer	friendly	API	for	working	with	time:

use	Illuminate\Support\Sleep;

$waiting	=	true;

while	($waiting)	{

				Sleep::for(1)->second();

				$waiting	=	/*	...	*/;

}

The	Sleep	class	offers	a	variety	of	methods	that	allow	you	to	work	with	different	units	of	time:

//	Pause	execution	for	90	seconds...

Sleep::for(1.5)->minutes();

//	Pause	execution	for	2	seconds...

Sleep::for(2)->seconds();

//	Pause	execution	for	500	milliseconds...

Sleep::for(500)->milliseconds();

//	Pause	execution	for	5,000	microseconds...

Sleep::for(5000)->microseconds();

//	Pause	execution	until	a	given	time...

Sleep::until(now()->addMinute());

//	Alias	of	PHP's	native	"sleep"	function...

Sleep::sleep(2);

//	Alias	of	PHP's	native	"usleep"	function...

Sleep::usleep(5000);

To	easily	combine	units	of	time,	you	may	use	the	and	method:

Sleep::for(1)->second()->and(10)->milliseconds();

Testing	Sleep

When	testing	code	that	utilizes	the	Sleep	class	or	PHP's	native	sleep	functions,	your	test	will	pause	execution.
As	you	might	expect,	this	makes	your	test	suite	significantly	slower.	For	example,	imagine	you	are	testing	the
following	code:

$waiting	=	/*	...	*/;

$seconds	=	1;

Laravel	Documentation	-	10.x	/	Helpers 376

while	($waiting)	{

				Sleep::for($seconds++)->seconds();

				$waiting	=	/*	...	*/;

}

Typically,	testing	this	code	would	take	at	least	one	second.	Luckily,	the	Sleep	class	allows	us	to	"fake"	sleeping
so	that	our	test	suite	stays	fast:

public	function	test_it_waits_until_ready()

{

				Sleep::fake();

				//	...

}

When	faking	the	Sleep	class,	the	actual	execution	pause	is	by-passed,	leading	to	a	substantially	faster	test.

Once	the	Sleep	class	has	been	faked,	it	is	possible	to	make	assertions	against	the	expected	"sleeps"	that	should
have	occurred.	To	illustrate	this,	let's	imagine	we	are	testing	code	that	pauses	execution	three	times,	with	each
pause	increasing	by	a	single	second.	Using	the	assertSequence	method,	we	can	assert	that	our	code	"slept"	for
the	proper	amount	of	time	while	keeping	our	test	fast:

public	function	test_it_checks_if_ready_four_times()

{

				Sleep::fake();

				//	...

				Sleep::assertSequence([

								Sleep::for(1)->second(),

								Sleep::for(2)->seconds(),

								Sleep::for(3)->seconds(),

]);

}

Of	course,	the	Sleep	class	offers	a	variety	of	other	assertions	you	may	use	when	testing:

use	Carbon\CarbonInterval	as	Duration;

use	Illuminate\Support\Sleep;

//	Assert	that	sleep	was	called	3	times...

Sleep::assertSleptTimes(3);

//	Assert	against	the	duration	of	sleep...

Sleep::assertSlept(function	(Duration	$duration):	bool	{

				return	/*	...	*/;

},	times:	1);

//	Assert	that	the	Sleep	class	was	never	invoked...

Sleep::assertNeverSlept();

//	Assert	that,	even	if	Sleep	was	called,	no	execution	paused	occurred...

Sleep::assertInsomniac();

Sometimes	it	may	be	useful	to	perform	an	action	whenever	a	fake	sleep	occurs	in	your	application	code.	To
achieve	this,	you	may	provide	a	callback	to	the	whenFakingSleep	method.	In	the	following	example,	we	use
Laravel's	time	manipulation	helpers	to	instantly	progress	time	by	the	duration	of	each	sleep:

use	Carbon\CarbonInterval	as	Duration;

$this->freezeTime();

Sleep::fake();

Sleep::whenFakingSleep(function	(Duration	$duration)	{

				//	Progress	time	when	faking	sleep...

				$this->travel($duration->totalMilliseconds)->milliseconds();

});

Laravel	uses	the	Sleep	class	internally	whenever	it	is	pausing	execution.	For	example,	the	retry	helper	uses	the	
Sleep	class	when	sleeping,	allowing	for	improved	testability	when	using	that	helper.

Laravel	Documentation	-	10.x	/	Helpers 377

Digging	Deeper

HTTP	Client
Introduction
Making	Requests

Request	Data
Headers
Authentication
Timeout
Retries
Error	Handling
Guzzle	Middleware
Guzzle	Options

Concurrent	Requests
Macros
Testing

Faking	Responses
Inspecting	Requests
Preventing	Stray	Requests

Events

Introduction

Laravel	provides	an	expressive,	minimal	API	around	the	Guzzle	HTTP	client,	allowing	you	to	quickly	make
outgoing	HTTP	requests	to	communicate	with	other	web	applications.	Laravel's	wrapper	around	Guzzle	is
focused	on	its	most	common	use	cases	and	a	wonderful	developer	experience.

Before	getting	started,	you	should	ensure	that	you	have	installed	the	Guzzle	package	as	a	dependency	of	your
application.	By	default,	Laravel	automatically	includes	this	dependency.	However,	if	you	have	previously
removed	the	package,	you	may	install	it	again	via	Composer:

composer	require	guzzlehttp/guzzle

Making	Requests

To	make	requests,	you	may	use	the	head,	get,	post,	put,	patch,	and	delete	methods	provided	by	the	Http	facade.
First,	let's	examine	how	to	make	a	basic	GET	request	to	another	URL:

use	Illuminate\Support\Facades\Http;

$response	=	Http::get('http://example.com');

The	get	method	returns	an	instance	of	Illuminate\Http\Client\Response,	which	provides	a	variety	of	methods
that	may	be	used	to	inspect	the	response:

$response->body()	:	string;

$response->json($key	=	null,	$default	=	null)	:	array|mixed;

$response->object()	:	object;

$response->collect($key	=	null)	:	Illuminate\Support\Collection;

$response->status()	:	int;

$response->successful()	:	bool;

$response->redirect():	bool;

$response->failed()	:	bool;

$response->clientError()	:	bool;

$response->header($header)	:	string;

$response->headers()	:	array;

The	Illuminate\Http\Client\Response	object	also	implements	the	PHP	ArrayAccess	interface,	allowing	you	to
access	JSON	response	data	directly	on	the	response:

return	Http::get('http://example.com/users/1')['name'];

In	addition	to	the	response	methods	listed	above,	the	following	methods	may	be	used	to	determine	if	the

Laravel	Documentation	-	10.x	/	HTTP	Client 378

http://docs.guzzlephp.org/en/stable/

response	has	a	given	status	code:

$response->ok()	:	bool;																		//	200	OK

$response->created()	:	bool;													//	201	Created

$response->accepted()	:	bool;												//	202	Accepted

$response->noContent()	:	bool;											//	204	No	Content

$response->movedPermanently()	:	bool;				//	301	Moved	Permanently

$response->found()	:	bool;															//	302	Found

$response->badRequest()	:	bool;										//	400	Bad	Request

$response->unauthorized()	:	bool;								//	401	Unauthorized

$response->paymentRequired()	:	bool;					//	402	Payment	Required

$response->forbidden()	:	bool;											//	403	Forbidden

$response->notFound()	:	bool;												//	404	Not	Found

$response->requestTimeout()	:	bool;						//	408	Request	Timeout

$response->conflict()	:	bool;												//	409	Conflict

$response->unprocessableEntity()	:	bool;	//	422	Unprocessable	Entity

$response->tooManyRequests()	:	bool;					//	429	Too	Many	Requests

$response->serverError()	:	bool;									//	500	Internal	Server	Error

URI	Templates

The	HTTP	client	also	allows	you	to	construct	request	URLs	using	the	URI	template	specification.	To	define	the
URL	parameters	that	can	be	expanded	by	your	URI	template,	you	may	use	the	withUrlParameters	method:

Http::withUrlParameters([

				'endpoint'	=>	'https://laravel.com',

				'page'	=>	'docs',

				'version'	=>	'9.x',

				'topic'	=>	'validation',

])->get('{+endpoint}/{page}/{version}/{topic}');

Dumping	Requests

If	you	would	like	to	dump	the	outgoing	request	instance	before	it	is	sent	and	terminate	the	script's	execution,
you	may	add	the	dd	method	to	the	beginning	of	your	request	definition:

return	Http::dd()->get('http://example.com');

Request	Data

Of	course,	it	is	common	when	making	POST,	PUT,	and	PATCH	requests	to	send	additional	data	with	your	request,
so	these	methods	accept	an	array	of	data	as	their	second	argument.	By	default,	data	will	be	sent	using	the	
application/json	content	type:

use	Illuminate\Support\Facades\Http;

$response	=	Http::post('http://example.com/users',	[

				'name'	=>	'Steve',

				'role'	=>	'Network	Administrator',

]);

GET	Request	Query	Parameters

When	making	GET	requests,	you	may	either	append	a	query	string	to	the	URL	directly	or	pass	an	array	of	key	/
value	pairs	as	the	second	argument	to	the	get	method:

$response	=	Http::get('http://example.com/users',	[

				'name'	=>	'Taylor',

				'page'	=>	1,

]);

Alternatively,	the	withQueryParameters	method	may	be	used:

Http::retry(3,	100)->withQueryParameters([

				'name'	=>	'Taylor',

				'page'	=>	1,

])->get('http://example.com/users')

Sending	Form	URL	Encoded	Requests

Laravel	Documentation	-	10.x	/	HTTP	Client 379

https://www.rfc-editor.org/rfc/rfc6570

If	you	would	like	to	send	data	using	the	application/x-www-form-urlencoded	content	type,	you	should	call	the	
asForm	method	before	making	your	request:

$response	=	Http::asForm()->post('http://example.com/users',	[

				'name'	=>	'Sara',

				'role'	=>	'Privacy	Consultant',

]);

Sending	a	Raw	Request	Body

You	may	use	the	withBody	method	if	you	would	like	to	provide	a	raw	request	body	when	making	a	request.	The
content	type	may	be	provided	via	the	method's	second	argument:

$response	=	Http::withBody(

				base64_encode($photo),	'image/jpeg'

)->post('http://example.com/photo');

Multi-Part	Requests

If	you	would	like	to	send	files	as	multi-part	requests,	you	should	call	the	attach	method	before	making	your
request.	This	method	accepts	the	name	of	the	file	and	its	contents.	If	needed,	you	may	provide	a	third	argument
which	will	be	considered	the	file's	filename,	while	a	fourth	argument	may	be	used	to	provide	headers	associated
with	the	file:

$response	=	Http::attach(

				'attachment',	file_get_contents('photo.jpg'),	'photo.jpg',	['Content-Type'	=>	'image/jpeg']

)->post('http://example.com/attachments');

Instead	of	passing	the	raw	contents	of	a	file,	you	may	pass	a	stream	resource:

$photo	=	fopen('photo.jpg',	'r');

$response	=	Http::attach(

				'attachment',	$photo,	'photo.jpg'

)->post('http://example.com/attachments');

Headers

Headers	may	be	added	to	requests	using	the	withHeaders	method.	This	withHeaders	method	accepts	an	array	of
key	/	value	pairs:

$response	=	Http::withHeaders([

				'X-First'	=>	'foo',

				'X-Second'	=>	'bar'

])->post('http://example.com/users',	[

				'name'	=>	'Taylor',

]);

You	may	use	the	accept	method	to	specify	the	content	type	that	your	application	is	expecting	in	response	to
your	request:

$response	=	Http::accept('application/json')->get('http://example.com/users');

For	convenience,	you	may	use	the	acceptJson	method	to	quickly	specify	that	your	application	expects	the	
application/json	content	type	in	response	to	your	request:

$response	=	Http::acceptJson()->get('http://example.com/users');

The	withHeaders	method	merges	new	headers	into	the	request's	existing	headers.	If	needed,	you	may	replace	all
of	the	headers	entirely	using	the	replaceHeaders	method:

$response	=	Http::withHeaders([

				'X-Original'	=>	'foo',

])->replaceHeaders([

				'X-Replacement'	=>	'bar',

])->post('http://example.com/users',	[

				'name'	=>	'Taylor',

]);

Laravel	Documentation	-	10.x	/	HTTP	Client 380

Authentication

You	may	specify	basic	and	digest	authentication	credentials	using	the	withBasicAuth	and	withDigestAuth
methods,	respectively:

//	Basic	authentication...

$response	=	Http::withBasicAuth('taylor@laravel.com',	'secret')->post(/*	...	*/);

//	Digest	authentication...

$response	=	Http::withDigestAuth('taylor@laravel.com',	'secret')->post(/*	...	*/);

Bearer	Tokens

If	you	would	like	to	quickly	add	a	bearer	token	to	the	request's	Authorization	header,	you	may	use	the	
withToken	method:

$response	=	Http::withToken('token')->post(/*	...	*/);

Timeout

The	timeout	method	may	be	used	to	specify	the	maximum	number	of	seconds	to	wait	for	a	response.	By
default,	the	HTTP	client	will	timeout	after	30	seconds:

$response	=	Http::timeout(3)->get(/*	...	*/);

If	the	given	timeout	is	exceeded,	an	instance	of	Illuminate\Http\Client\ConnectionException	will	be	thrown.

You	may	specify	the	maximum	number	of	seconds	to	wait	while	trying	to	connect	to	a	server	using	the	
connectTimeout	method:

$response	=	Http::connectTimeout(3)->get(/*	...	*/);

Retries

If	you	would	like	the	HTTP	client	to	automatically	retry	the	request	if	a	client	or	server	error	occurs,	you	may
use	the	retry	method.	The	retry	method	accepts	the	maximum	number	of	times	the	request	should	be
attempted	and	the	number	of	milliseconds	that	Laravel	should	wait	in	between	attempts:

$response	=	Http::retry(3,	100)->post(/*	...	*/);

If	you	would	like	to	manually	calculate	the	number	of	milliseconds	to	sleep	between	attempts,	you	may	pass	a
closure	as	the	second	argument	to	the	retry	method:

use	Exception;

$response	=	Http::retry(3,	function	(int	$attempt,	Exception	$exception)	{

				return	$attempt	*	100;

})->post(/*	...	*/);

For	convenience,	you	may	also	provide	an	array	as	the	first	argument	to	the	retry	method.	This	array	will	be
used	to	determine	how	many	milliseconds	to	sleep	between	subsequent	attempts:

$response	=	Http::retry([100,	200])->post(/*	...	*/);

If	needed,	you	may	pass	a	third	argument	to	the	retry	method.	The	third	argument	should	be	a	callable	that
determines	if	the	retries	should	actually	be	attempted.	For	example,	you	may	wish	to	only	retry	the	request	if
the	initial	request	encounters	an	ConnectionException:

use	Exception;

use	Illuminate\Http\Client\PendingRequest;

$response	=	Http::retry(3,	100,	function	(Exception	$exception,	PendingRequest	$request)	{

				return	$exception	instanceof	ConnectionException;

})->post(/*	...	*/);

If	a	request	attempt	fails,	you	may	wish	to	make	a	change	to	the	request	before	a	new	attempt	is	made.	You	can

Laravel	Documentation	-	10.x	/	HTTP	Client 381

achieve	this	by	modifying	the	request	argument	provided	to	the	callable	you	provided	to	the	retry	method.	For
example,	you	might	want	to	retry	the	request	with	a	new	authorization	token	if	the	first	attempt	returned	an
authentication	error:

use	Exception;

use	Illuminate\Http\Client\PendingRequest;

use	Illuminate\Http\Client\RequestException;

$response	=	Http::withToken($this->getToken())->retry(2,	0,	function	(Exception	$exception,	

PendingRequest	$request)	{

				if	(!	$exception	instanceof	RequestException	||	$exception->response->status()	!==	401)	{

								return	false;

				}

				$request->withToken($this->getNewToken());

				return	true;

})->post(/*	...	*/);

If	all	of	the	requests	fail,	an	instance	of	Illuminate\Http\Client\RequestException	will	be	thrown.	If	you	would
like	to	disable	this	behavior,	you	may	provide	a	throw	argument	with	a	value	of	false.	When	disabled,	the	last
response	received	by	the	client	will	be	returned	after	all	retries	have	been	attempted:

$response	=	Http::retry(3,	100,	throw:	false)->post(/*	...	*/);

[!WARNING]
If	all	of	the	requests	fail	because	of	a	connection	issue,	a	Illuminate\Http\Client\ConnectionException	will
still	be	thrown	even	when	the	throw	argument	is	set	to	false.

Error	Handling

Unlike	Guzzle's	default	behavior,	Laravel's	HTTP	client	wrapper	does	not	throw	exceptions	on	client	or	server
errors	(400	and	500	level	responses	from	servers).	You	may	determine	if	one	of	these	errors	was	returned	using
the	successful,	clientError,	or	serverError	methods:

//	Determine	if	the	status	code	is	>=	200	and	<	300...

$response->successful();

//	Determine	if	the	status	code	is	>=	400...

$response->failed();

//	Determine	if	the	response	has	a	400	level	status	code...

$response->clientError();

//	Determine	if	the	response	has	a	500	level	status	code...

$response->serverError();

//	Immediately	execute	the	given	callback	if	there	was	a	client	or	server	error...

$response->onError(callable	$callback);

Throwing	Exceptions

If	you	have	a	response	instance	and	would	like	to	throw	an	instance	of	
Illuminate\Http\Client\RequestException	if	the	response	status	code	indicates	a	client	or	server	error,	you	may
use	the	throw	or	throwIf	methods:

use	Illuminate\Http\Client\Response;

$response	=	Http::post(/*	...	*/);

//	Throw	an	exception	if	a	client	or	server	error	occurred...

$response->throw();

//	Throw	an	exception	if	an	error	occurred	and	the	given	condition	is	true...

$response->throwIf($condition);

//	Throw	an	exception	if	an	error	occurred	and	the	given	closure	resolves	to	true...

$response->throwIf(fn	(Response	$response)	=>	true);

//	Throw	an	exception	if	an	error	occurred	and	the	given	condition	is	false...

$response->throwUnless($condition);

Laravel	Documentation	-	10.x	/	HTTP	Client 382

//	Throw	an	exception	if	an	error	occurred	and	the	given	closure	resolves	to	false...

$response->throwUnless(fn	(Response	$response)	=>	false);

//	Throw	an	exception	if	the	response	has	a	specific	status	code...

$response->throwIfStatus(403);

//	Throw	an	exception	unless	the	response	has	a	specific	status	code...

$response->throwUnlessStatus(200);

return	$response['user']['id'];

The	Illuminate\Http\Client\RequestException	instance	has	a	public	$response	property	which	will	allow	you	to
inspect	the	returned	response.

The	throw	method	returns	the	response	instance	if	no	error	occurred,	allowing	you	to	chain	other	operations
onto	the	throw	method:

return	Http::post(/*	...	*/)->throw()->json();

If	you	would	like	to	perform	some	additional	logic	before	the	exception	is	thrown,	you	may	pass	a	closure	to
the	throw	method.	The	exception	will	be	thrown	automatically	after	the	closure	is	invoked,	so	you	do	not	need
to	re-throw	the	exception	from	within	the	closure:

use	Illuminate\Http\Client\Response;

use	Illuminate\Http\Client\RequestException;

return	Http::post(/*	...	*/)->throw(function	(Response	$response,	RequestException	$e)	{

				//	...

})->json();

Guzzle	Middleware

Since	Laravel's	HTTP	client	is	powered	by	Guzzle,	you	may	take	advantage	of	Guzzle	Middleware	to
manipulate	the	outgoing	request	or	inspect	the	incoming	response.	To	manipulate	the	outgoing	request,	register
a	Guzzle	middleware	via	the	withRequestMiddleware	method:

use	Illuminate\Support\Facades\Http;

use	Psr\Http\Message\RequestInterface;

$response	=	Http::withRequestMiddleware(

				function	(RequestInterface	$request)	{

								return	$request->withHeader('X-Example',	'Value');

				}

)->get('http://example.com');

Likewise,	you	can	inspect	the	incoming	HTTP	response	by	registering	a	middleware	via	the	
withResponseMiddleware	method:

use	Illuminate\Support\Facades\Http;

use	Psr\Http\Message\ResponseInterface;

$response	=	Http::withResponseMiddleware(

				function	(ResponseInterface	$response)	{

								$header	=	$response->getHeader('X-Example');

								//	...

								return	$response;

				}

)->get('http://example.com');

Global	Middleware

Sometimes,	you	may	want	to	register	a	middleware	that	applies	to	every	outgoing	request	and	incoming
response.	To	accomplish	this,	you	may	use	the	globalRequestMiddleware	and	globalResponseMiddleware	methods.
Typically,	these	methods	should	be	invoked	in	the	boot	method	of	your	application's	AppServiceProvider:

use	Illuminate\Support\Facades\Http;

Http::globalRequestMiddleware(fn	($request)	=>	$request->withHeader(

				'User-Agent',	'Example	Application/1.0'

Laravel	Documentation	-	10.x	/	HTTP	Client 383

https://docs.guzzlephp.org/en/stable/handlers-and-middleware.html

));

Http::globalResponseMiddleware(fn	($response)	=>	$response->withHeader(

				'X-Finished-At',	now()->toDateTimeString()

));

Guzzle	Options

You	may	specify	additional	Guzzle	request	options	using	the	withOptions	method.	The	withOptions	method
accepts	an	array	of	key	/	value	pairs:

$response	=	Http::withOptions([

				'debug'	=>	true,

])->get('http://example.com/users');

Concurrent	Requests

Sometimes,	you	may	wish	to	make	multiple	HTTP	requests	concurrently.	In	other	words,	you	want	several
requests	to	be	dispatched	at	the	same	time	instead	of	issuing	the	requests	sequentially.	This	can	lead	to
substantial	performance	improvements	when	interacting	with	slow	HTTP	APIs.

Thankfully,	you	may	accomplish	this	using	the	pool	method.	The	pool	method	accepts	a	closure	which	receives
an	Illuminate\Http\Client\Pool	instance,	allowing	you	to	easily	add	requests	to	the	request	pool	for
dispatching:

use	Illuminate\Http\Client\Pool;

use	Illuminate\Support\Facades\Http;

$responses	=	Http::pool(fn	(Pool	$pool)	=>	[

				$pool->get('http://localhost/first'),

				$pool->get('http://localhost/second'),

				$pool->get('http://localhost/third'),

]);

return	$responses[0]->ok()	&&

							$responses[1]->ok()	&&

							$responses[2]->ok();

As	you	can	see,	each	response	instance	can	be	accessed	based	on	the	order	it	was	added	to	the	pool.	If	you
wish,	you	can	name	the	requests	using	the	as	method,	which	allows	you	to	access	the	corresponding	responses
by	name:

use	Illuminate\Http\Client\Pool;

use	Illuminate\Support\Facades\Http;

$responses	=	Http::pool(fn	(Pool	$pool)	=>	[

				$pool->as('first')->get('http://localhost/first'),

				$pool->as('second')->get('http://localhost/second'),

				$pool->as('third')->get('http://localhost/third'),

]);

return	$responses['first']->ok();

Customizing	Concurrent	Requests

The	pool	method	cannot	be	chained	with	other	HTTP	client	methods	such	as	the	withHeaders	or	middleware
methods.	If	you	want	to	apply	custom	headers	or	middleware	to	pooled	requests,	you	should	configure	those
options	on	each	request	in	the	pool:

use	Illuminate\Http\Client\Pool;

use	Illuminate\Support\Facades\Http;

$headers	=	[

				'X-Example'	=>	'example',

];

$responses	=	Http::pool(fn	(Pool	$pool)	=>	[

				$pool->withHeaders($headers)->get('http://laravel.test/test'),

				$pool->withHeaders($headers)->get('http://laravel.test/test'),

				$pool->withHeaders($headers)->get('http://laravel.test/test'),

Laravel	Documentation	-	10.x	/	HTTP	Client 384

http://docs.guzzlephp.org/en/stable/request-options.html

]);

Macros

The	Laravel	HTTP	client	allows	you	to	define	"macros",	which	can	serve	as	a	fluent,	expressive	mechanism	to
configure	common	request	paths	and	headers	when	interacting	with	services	throughout	your	application.	To
get	started,	you	may	define	the	macro	within	the	boot	method	of	your	application's	
App\Providers\AppServiceProvider	class:

use	Illuminate\Support\Facades\Http;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Http::macro('github',	function	()	{

								return	Http::withHeaders([

												'X-Example'	=>	'example',

])->baseUrl('https://github.com');

				});

}

Once	your	macro	has	been	configured,	you	may	invoke	it	from	anywhere	in	your	application	to	create	a
pending	request	with	the	specified	configuration:

$response	=	Http::github()->get('/');

Testing

Many	Laravel	services	provide	functionality	to	help	you	easily	and	expressively	write	tests,	and	Laravel's
HTTP	client	is	no	exception.	The	Http	facade's	fake	method	allows	you	to	instruct	the	HTTP	client	to	return
stubbed	/	dummy	responses	when	requests	are	made.

Faking	Responses

For	example,	to	instruct	the	HTTP	client	to	return	empty,	200	status	code	responses	for	every	request,	you	may
call	the	fake	method	with	no	arguments:

use	Illuminate\Support\Facades\Http;

Http::fake();

$response	=	Http::post(/*	...	*/);

Faking	Specific	URLs

Alternatively,	you	may	pass	an	array	to	the	fake	method.	The	array's	keys	should	represent	URL	patterns	that
you	wish	to	fake	and	their	associated	responses.	The	*	character	may	be	used	as	a	wildcard	character.	Any
requests	made	to	URLs	that	have	not	been	faked	will	actually	be	executed.	You	may	use	the	Http	facade's	
response	method	to	construct	stub	/	fake	responses	for	these	endpoints:

Http::fake([

				//	Stub	a	JSON	response	for	GitHub	endpoints...

				'github.com/*'	=>	Http::response(['foo'	=>	'bar'],	200,	$headers),

				//	Stub	a	string	response	for	Google	endpoints...

				'google.com/*'	=>	Http::response('Hello	World',	200,	$headers),

]);

If	you	would	like	to	specify	a	fallback	URL	pattern	that	will	stub	all	unmatched	URLs,	you	may	use	a	single	*
character:

Http::fake([

				//	Stub	a	JSON	response	for	GitHub	endpoints...

				'github.com/*'	=>	Http::response(['foo'	=>	'bar'],	200,	['Headers']),

				//	Stub	a	string	response	for	all	other	endpoints...

Laravel	Documentation	-	10.x	/	HTTP	Client 385

				'*'	=>	Http::response('Hello	World',	200,	['Headers']),

]);

Faking	Response	Sequences

Sometimes	you	may	need	to	specify	that	a	single	URL	should	return	a	series	of	fake	responses	in	a	specific
order.	You	may	accomplish	this	using	the	Http::sequence	method	to	build	the	responses:

Http::fake([

				//	Stub	a	series	of	responses	for	GitHub	endpoints...

				'github.com/*'	=>	Http::sequence()

																												->push('Hello	World',	200)

																												->push(['foo'	=>	'bar'],	200)

																												->pushStatus(404),

]);

When	all	the	responses	in	a	response	sequence	have	been	consumed,	any	further	requests	will	cause	the
response	sequence	to	throw	an	exception.	If	you	would	like	to	specify	a	default	response	that	should	be
returned	when	a	sequence	is	empty,	you	may	use	the	whenEmpty	method:

Http::fake([

				//	Stub	a	series	of	responses	for	GitHub	endpoints...

				'github.com/*'	=>	Http::sequence()

																												->push('Hello	World',	200)

																												->push(['foo'	=>	'bar'],	200)

																												->whenEmpty(Http::response()),

]);

If	you	would	like	to	fake	a	sequence	of	responses	but	do	not	need	to	specify	a	specific	URL	pattern	that	should
be	faked,	you	may	use	the	Http::fakeSequence	method:

Http::fakeSequence()

								->push('Hello	World',	200)

								->whenEmpty(Http::response());

Fake	Callback

If	you	require	more	complicated	logic	to	determine	what	responses	to	return	for	certain	endpoints,	you	may
pass	a	closure	to	the	fake	method.	This	closure	will	receive	an	instance	of	Illuminate\Http\Client\Request	and
should	return	a	response	instance.	Within	your	closure,	you	may	perform	whatever	logic	is	necessary	to
determine	what	type	of	response	to	return:

use	Illuminate\Http\Client\Request;

Http::fake(function	(Request	$request)	{

				return	Http::response('Hello	World',	200);

});

Preventing	Stray	Requests

If	you	would	like	to	ensure	that	all	requests	sent	via	the	HTTP	client	have	been	faked	throughout	your
individual	test	or	complete	test	suite,	you	can	call	the	preventStrayRequests	method.	After	calling	this	method,
any	requests	that	do	not	have	a	corresponding	fake	response	will	throw	an	exception	rather	than	making	the
actual	HTTP	request:

use	Illuminate\Support\Facades\Http;

Http::preventStrayRequests();

Http::fake([

				'github.com/*'	=>	Http::response('ok'),

]);

//	An	"ok"	response	is	returned...

Http::get('https://github.com/laravel/framework');

//	An	exception	is	thrown...

Http::get('https://laravel.com');

Laravel	Documentation	-	10.x	/	HTTP	Client 386

Inspecting	Requests

When	faking	responses,	you	may	occasionally	wish	to	inspect	the	requests	the	client	receives	in	order	to	make
sure	your	application	is	sending	the	correct	data	or	headers.	You	may	accomplish	this	by	calling	the	
Http::assertSent	method	after	calling	Http::fake.

The	assertSent	method	accepts	a	closure	which	will	receive	an	Illuminate\Http\Client\Request	instance	and
should	return	a	boolean	value	indicating	if	the	request	matches	your	expectations.	In	order	for	the	test	to	pass,
at	least	one	request	must	have	been	issued	matching	the	given	expectations:

use	Illuminate\Http\Client\Request;

use	Illuminate\Support\Facades\Http;

Http::fake();

Http::withHeaders([

				'X-First'	=>	'foo',

])->post('http://example.com/users',	[

				'name'	=>	'Taylor',

				'role'	=>	'Developer',

]);

Http::assertSent(function	(Request	$request)	{

				return	$request->hasHeader('X-First',	'foo')	&&

											$request->url()	==	'http://example.com/users'	&&

											$request['name']	==	'Taylor'	&&

											$request['role']	==	'Developer';

});

If	needed,	you	may	assert	that	a	specific	request	was	not	sent	using	the	assertNotSent	method:

use	Illuminate\Http\Client\Request;

use	Illuminate\Support\Facades\Http;

Http::fake();

Http::post('http://example.com/users',	[

				'name'	=>	'Taylor',

				'role'	=>	'Developer',

]);

Http::assertNotSent(function	(Request	$request)	{

				return	$request->url()	===	'http://example.com/posts';

});

You	may	use	the	assertSentCount	method	to	assert	how	many	requests	were	"sent"	during	the	test:

Http::fake();

Http::assertSentCount(5);

Or,	you	may	use	the	assertNothingSent	method	to	assert	that	no	requests	were	sent	during	the	test:

Http::fake();

Http::assertNothingSent();

Recording	Requests	/	Responses

You	may	use	the	recorded	method	to	gather	all	requests	and	their	corresponding	responses.	The	recorded
method	returns	a	collection	of	arrays	that	contains	instances	of	Illuminate\Http\Client\Request	and	
Illuminate\Http\Client\Response:

Http::fake([

				'https://laravel.com'	=>	Http::response(status:	500),

				'https://nova.laravel.com/'	=>	Http::response(),

]);

Http::get('https://laravel.com');

Http::get('https://nova.laravel.com/');

$recorded	=	Http::recorded();

Laravel	Documentation	-	10.x	/	HTTP	Client 387

[$request,	$response]	=	$recorded[0];

Additionally,	the	recorded	method	accepts	a	closure	which	will	receive	an	instance	of	
Illuminate\Http\Client\Request	and	Illuminate\Http\Client\Response	and	may	be	used	to	filter	request	/
response	pairs	based	on	your	expectations:

use	Illuminate\Http\Client\Request;

use	Illuminate\Http\Client\Response;

Http::fake([

				'https://laravel.com'	=>	Http::response(status:	500),

				'https://nova.laravel.com/'	=>	Http::response(),

]);

Http::get('https://laravel.com');

Http::get('https://nova.laravel.com/');

$recorded	=	Http::recorded(function	(Request	$request,	Response	$response)	{

				return	$request->url()	!==	'https://laravel.com'	&&

											$response->successful();

});

Events

Laravel	fires	three	events	during	the	process	of	sending	HTTP	requests.	The	RequestSending	event	is	fired	prior
to	a	request	being	sent,	while	the	ResponseReceived	event	is	fired	after	a	response	is	received	for	a	given	request.
The	ConnectionFailed	event	is	fired	if	no	response	is	received	for	a	given	request.

The	RequestSending	and	ConnectionFailed	events	both	contain	a	public	$request	property	that	you	may	use	to
inspect	the	Illuminate\Http\Client\Request	instance.	Likewise,	the	ResponseReceived	event	contains	a	$request
property	as	well	as	a	$response	property	which	may	be	used	to	inspect	the	Illuminate\Http\Client\Response
instance.	You	may	register	event	listeners	for	this	event	in	your	App\Providers\EventServiceProvider	service
provider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Http\Client\Events\RequestSending'	=>	[

								'App\Listeners\LogRequestSending',

],

				'Illuminate\Http\Client\Events\ResponseReceived'	=>	[

								'App\Listeners\LogResponseReceived',

],

				'Illuminate\Http\Client\Events\ConnectionFailed'	=>	[

								'App\Listeners\LogConnectionFailed',

],

];

Laravel	Documentation	-	10.x	/	HTTP	Client 388

Digging	Deeper

Localization
Introduction

Publishing	the	Language	Files
Configuring	the	Locale
Pluralization	Language

Defining	Translation	Strings
Using	Short	Keys
Using	Translation	Strings	as	Keys

Retrieving	Translation	Strings
Replacing	Parameters	in	Translation	Strings
Pluralization

Overriding	Package	Language	Files

Introduction

[!NOTE]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

Laravel's	localization	features	provide	a	convenient	way	to	retrieve	strings	in	various	languages,	allowing	you
to	easily	support	multiple	languages	within	your	application.

Laravel	provides	two	ways	to	manage	translation	strings.	First,	language	strings	may	be	stored	in	files	within
the	application's	lang	directory.	Within	this	directory,	there	may	be	subdirectories	for	each	language	supported
by	the	application.	This	is	the	approach	Laravel	uses	to	manage	translation	strings	for	built-in	Laravel	features
such	as	validation	error	messages:

/lang

				/en

								messages.php

				/es

								messages.php

Or,	translation	strings	may	be	defined	within	JSON	files	that	are	placed	within	the	lang	directory.	When	taking
this	approach,	each	language	supported	by	your	application	would	have	a	corresponding	JSON	file	within	this
directory.	This	approach	is	recommended	for	applications	that	have	a	large	number	of	translatable	strings:

/lang

				en.json

				es.json

We'll	discuss	each	approach	to	managing	translation	strings	within	this	documentation.

Publishing	the	Language	Files

By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to	customize
Laravel's	language	files	or	create	your	own,	you	should	scaffold	the	lang	directory	via	the	lang:publish	Artisan
command.	The	lang:publish	command	will	create	the	lang	directory	in	your	application	and	publish	the	default
set	of	language	files	used	by	Laravel:

php	artisan	lang:publish

Configuring	the	Locale

The	default	language	for	your	application	is	stored	in	the	config/app.php	configuration	file's	locale
configuration	option.	You	are	free	to	modify	this	value	to	suit	the	needs	of	your	application.

You	may	modify	the	default	language	for	a	single	HTTP	request	at	runtime	using	the	setLocale	method
provided	by	the	App	facade:

Laravel	Documentation	-	10.x	/	Localization 389

use	Illuminate\Support\Facades\App;

Route::get('/greeting/{locale}',	function	(string	$locale)	{

				if	(!	in_array($locale,	['en',	'es',	'fr']))	{

								abort(400);

				}

				App::setLocale($locale);

				//	...

});

You	may	configure	a	"fallback	language",	which	will	be	used	when	the	active	language	does	not	contain	a
given	translation	string.	Like	the	default	language,	the	fallback	language	is	also	configured	in	the	
config/app.php	configuration	file:

'fallback_locale'	=>	'en',

Determining	the	Current	Locale

You	may	use	the	currentLocale	and	isLocale	methods	on	the	App	facade	to	determine	the	current	locale	or	check
if	the	locale	is	a	given	value:

use	Illuminate\Support\Facades\App;

$locale	=	App::currentLocale();

if	(App::isLocale('en'))	{

				//	...

}

Pluralization	Language

You	may	instruct	Laravel's	"pluralizer",	which	is	used	by	Eloquent	and	other	portions	of	the	framework	to
convert	singular	strings	to	plural	strings,	to	use	a	language	other	than	English.	This	may	be	accomplished	by
invoking	the	useLanguage	method	within	the	boot	method	of	one	of	your	application's	service	providers.	The
pluralizer's	currently	supported	languages	are:	french,	norwegian-bokmal,	portuguese,	spanish,	and	turkish:

use	Illuminate\Support\Pluralizer;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Pluralizer::useLanguage('spanish');					

				//	...					

}

[!WARNING]
If	you	customize	the	pluralizer's	language,	you	should	explicitly	define	your	Eloquent	model's	table
names.

Defining	Translation	Strings

Using	Short	Keys

Typically,	translation	strings	are	stored	in	files	within	the	lang	directory.	Within	this	directory,	there	should	be	a
subdirectory	for	each	language	supported	by	your	application.	This	is	the	approach	Laravel	uses	to	manage
translation	strings	for	built-in	Laravel	features	such	as	validation	error	messages:

/lang

				/en

								messages.php

				/es

								messages.php

All	language	files	return	an	array	of	keyed	strings.	For	example:

Laravel	Documentation	-	10.x	/	Localization 390

<?php

//	lang/en/messages.php

return	[

				'welcome'	=>	'Welcome	to	our	application!',

];

[!WARNING]
For	languages	that	differ	by	territory,	you	should	name	the	language	directories	according	to	the	ISO
15897.	For	example,	"en_GB"	should	be	used	for	British	English	rather	than	"en-gb".

Using	Translation	Strings	as	Keys

For	applications	with	a	large	number	of	translatable	strings,	defining	every	string	with	a	"short	key"	can
become	confusing	when	referencing	the	keys	in	your	views	and	it	is	cumbersome	to	continually	invent	keys	for
every	translation	string	supported	by	your	application.

For	this	reason,	Laravel	also	provides	support	for	defining	translation	strings	using	the	"default"	translation	of
the	string	as	the	key.	Language	files	that	use	translation	strings	as	keys	are	stored	as	JSON	files	in	the	lang
directory.	For	example,	if	your	application	has	a	Spanish	translation,	you	should	create	a	lang/es.json	file:

{

				"I	love	programming.":	"Me	encanta	programar."

}

Key	/	File	Conflicts

You	should	not	define	translation	string	keys	that	conflict	with	other	translation	filenames.	For	example,
translating	__('Action')	for	the	"NL"	locale	while	a	nl/action.php	file	exists	but	a	nl.json	file	does	not	exist
will	result	in	the	translator	returning	the	entire	contents	of	nl/action.php.

Retrieving	Translation	Strings

You	may	retrieve	translation	strings	from	your	language	files	using	the	__	helper	function.	If	you	are	using
"short	keys"	to	define	your	translation	strings,	you	should	pass	the	file	that	contains	the	key	and	the	key	itself	to
the	__	function	using	"dot"	syntax.	For	example,	let's	retrieve	the	welcome	translation	string	from	the	
lang/en/messages.php	language	file:

echo	__('messages.welcome');

If	the	specified	translation	string	does	not	exist,	the	__	function	will	return	the	translation	string	key.	So,	using
the	example	above,	the	__	function	would	return	messages.welcome	if	the	translation	string	does	not	exist.

If	you	are	using	your	default	translation	strings	as	your	translation	keys,	you	should	pass	the	default	translation
of	your	string	to	the	__	function;

echo	__('I	love	programming.');

Again,	if	the	translation	string	does	not	exist,	the	__	function	will	return	the	translation	string	key	that	it	was
given.

If	you	are	using	the	Blade	templating	engine,	you	may	use	the	{{	}}	echo	syntax	to	display	the	translation
string:

{{	__('messages.welcome')	}}

Replacing	Parameters	in	Translation	Strings

If	you	wish,	you	may	define	placeholders	in	your	translation	strings.	All	placeholders	are	prefixed	with	a	:.	For
example,	you	may	define	a	welcome	message	with	a	placeholder	name:

'welcome'	=>	'Welcome,	:name',

Laravel	Documentation	-	10.x	/	Localization 391

To	replace	the	placeholders	when	retrieving	a	translation	string,	you	may	pass	an	array	of	replacements	as	the
second	argument	to	the	__	function:

echo	__('messages.welcome',	['name'	=>	'dayle']);

If	your	placeholder	contains	all	capital	letters,	or	only	has	its	first	letter	capitalized,	the	translated	value	will	be
capitalized	accordingly:

'welcome'	=>	'Welcome,	:NAME',	//	Welcome,	DAYLE

'goodbye'	=>	'Goodbye,	:Name',	//	Goodbye,	Dayle

Object	Replacement	Formatting

If	you	attempt	to	provide	an	object	as	a	translation	placeholder,	the	object's	__toString	method	will	be	invoked.
The	__toString	method	is	one	of	PHP's	built-in	"magic	methods".	However,	sometimes	you	may	not	have
control	over	the	__toString	method	of	a	given	class,	such	as	when	the	class	that	you	are	interacting	with
belongs	to	a	third-party	library.

In	these	cases,	Laravel	allows	you	to	register	a	custom	formatting	handler	for	that	particular	type	of	object.	To
accomplish	this,	you	should	invoke	the	translator's	stringable	method.	The	stringable	method	accepts	a
closure,	which	should	type-hint	the	type	of	object	that	it	is	responsible	for	formatting.	Typically,	the	stringable
method	should	be	invoked	within	the	boot	method	of	your	application's	AppServiceProvider	class:

use	Illuminate\Support\Facades\Lang;

use	Money\Money;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Lang::stringable(function	(Money	$money)	{

								return	$money->formatTo('en_GB');

				});

}

Pluralization

Pluralization	is	a	complex	problem,	as	different	languages	have	a	variety	of	complex	rules	for	pluralization;
however,	Laravel	can	help	you	translate	strings	differently	based	on	pluralization	rules	that	you	define.	Using	a	
|	character,	you	may	distinguish	singular	and	plural	forms	of	a	string:

'apples'	=>	'There	is	one	apple|There	are	many	apples',

Of	course,	pluralization	is	also	supported	when	using	translation	strings	as	keys:

{

				"There	is	one	apple|There	are	many	apples":	"Hay	una	manzana|Hay	muchas	manzanas"

}

You	may	even	create	more	complex	pluralization	rules	which	specify	translation	strings	for	multiple	ranges	of
values:

'apples'	=>	'{0}	There	are	none|[1,19]	There	are	some|[20,*]	There	are	many',

After	defining	a	translation	string	that	has	pluralization	options,	you	may	use	the	trans_choice	function	to
retrieve	the	line	for	a	given	"count".	In	this	example,	since	the	count	is	greater	than	one,	the	plural	form	of	the
translation	string	is	returned:

echo	trans_choice('messages.apples',	10);

You	may	also	define	placeholder	attributes	in	pluralization	strings.	These	placeholders	may	be	replaced	by
passing	an	array	as	the	third	argument	to	the	trans_choice	function:

'minutes_ago'	=>	'{1}	:value	minute	ago|[2,*]	:value	minutes	ago',

echo	trans_choice('time.minutes_ago',	5,	['value'	=>	5]);

Laravel	Documentation	-	10.x	/	Localization 392

https://www.php.net/manual/en/language.oop5.magic.php#object.tostring

If	you	would	like	to	display	the	integer	value	that	was	passed	to	the	trans_choice	function,	you	may	use	the
built-in	:count	placeholder:

'apples'	=>	'{0}	There	are	none|{1}	There	is	one|[2,*]	There	are	:count',

Overriding	Package	Language	Files

Some	packages	may	ship	with	their	own	language	files.	Instead	of	changing	the	package's	core	files	to	tweak
these	lines,	you	may	override	them	by	placing	files	in	the	lang/vendor/{package}/{locale}	directory.

So,	for	example,	if	you	need	to	override	the	English	translation	strings	in	messages.php	for	a	package	named	
skyrim/hearthfire,	you	should	place	a	language	file	at:	lang/vendor/hearthfire/en/messages.php.	Within	this
file,	you	should	only	define	the	translation	strings	you	wish	to	override.	Any	translation	strings	you	don't
override	will	still	be	loaded	from	the	package's	original	language	files.

Laravel	Documentation	-	10.x	/	Localization 393

Digging	Deeper

Mail
Introduction

Configuration
Driver	Prerequisites
Failover	Configuration
Round	Robin	Configuration

Generating	Mailables
Writing	Mailables

Configuring	the	Sender
Configuring	the	View
View	Data
Attachments
Inline	Attachments
Attachable	Objects
Headers
Tags	and	Metadata
Customizing	the	Symfony	Message

Markdown	Mailables
Generating	Markdown	Mailables
Writing	Markdown	Messages
Customizing	the	Components

Sending	Mail
Queueing	Mail

Rendering	Mailables
Previewing	Mailables	in	the	Browser

Localizing	Mailables
Testing

Testing	Mailable	Content
Testing	Mailable	Sending

Mail	and	Local	Development
Events
Custom	Transports

Additional	Symfony	Transports

Introduction

Sending	email	doesn't	have	to	be	complicated.	Laravel	provides	a	clean,	simple	email	API	powered	by	the
popular	Symfony	Mailer	component.	Laravel	and	Symfony	Mailer	provide	drivers	for	sending	email	via	SMTP,
Mailgun,	Postmark,	Amazon	SES,	and	sendmail,	allowing	you	to	quickly	get	started	sending	mail	through	a
local	or	cloud	based	service	of	your	choice.

Configuration

Laravel's	email	services	may	be	configured	via	your	application's	config/mail.php	configuration	file.	Each
mailer	configured	within	this	file	may	have	its	own	unique	configuration	and	even	its	own	unique	"transport",
allowing	your	application	to	use	different	email	services	to	send	certain	email	messages.	For	example,	your
application	might	use	Postmark	to	send	transactional	emails	while	using	Amazon	SES	to	send	bulk	emails.

Within	your	mail	configuration	file,	you	will	find	a	mailers	configuration	array.	This	array	contains	a	sample
configuration	entry	for	each	of	the	major	mail	drivers	/	transports	supported	by	Laravel,	while	the	default
configuration	value	determines	which	mailer	will	be	used	by	default	when	your	application	needs	to	send	an
email	message.

Driver	/	Transport	Prerequisites

Laravel	Documentation	-	10.x	/	Mail 394

https://symfony.com/doc/6.2/mailer.html

The	API	based	drivers	such	as	Mailgun,	Postmark,	and	MailerSend	are	often	simpler	and	faster	than	sending
mail	via	SMTP	servers.	Whenever	possible,	we	recommend	that	you	use	one	of	these	drivers.

Mailgun	Driver

To	use	the	Mailgun	driver,	install	Symfony's	Mailgun	Mailer	transport	via	Composer:

composer	require	symfony/mailgun-mailer	symfony/http-client

Next,	set	the	default	option	in	your	application's	config/mail.php	configuration	file	to	mailgun.	After
configuring	your	application's	default	mailer,	verify	that	your	config/services.php	configuration	file	contains
the	following	options:

'mailgun'	=>	[

				'transport'	=>	'mailgun',

				'domain'	=>	env('MAILGUN_DOMAIN'),

				'secret'	=>	env('MAILGUN_SECRET'),

],

If	you	are	not	using	the	United	States	Mailgun	region,	you	may	define	your	region's	endpoint	in	the	services
configuration	file:

'mailgun'	=>	[

				'domain'	=>	env('MAILGUN_DOMAIN'),

				'secret'	=>	env('MAILGUN_SECRET'),

				'endpoint'	=>	env('MAILGUN_ENDPOINT',	'api.eu.mailgun.net'),

],

Postmark	Driver

To	use	the	Postmark	driver,	install	Symfony's	Postmark	Mailer	transport	via	Composer:

composer	require	symfony/postmark-mailer	symfony/http-client

Next,	set	the	default	option	in	your	application's	config/mail.php	configuration	file	to	postmark.	After
configuring	your	application's	default	mailer,	verify	that	your	config/services.php	configuration	file	contains
the	following	options:

'postmark'	=>	[

				'token'	=>	env('POSTMARK_TOKEN'),

],

If	you	would	like	to	specify	the	Postmark	message	stream	that	should	be	used	by	a	given	mailer,	you	may	add
the	message_stream_id	configuration	option	to	the	mailer's	configuration	array.	This	configuration	array	can	be
found	in	your	application's	config/mail.php	configuration	file:

'postmark'	=>	[

				'transport'	=>	'postmark',

				'message_stream_id'	=>	env('POSTMARK_MESSAGE_STREAM_ID'),

],

This	way	you	are	also	able	to	set	up	multiple	Postmark	mailers	with	different	message	streams.

SES	Driver

To	use	the	Amazon	SES	driver	you	must	first	install	the	Amazon	AWS	SDK	for	PHP.	You	may	install	this
library	via	the	Composer	package	manager:

composer	require	aws/aws-sdk-php

Next,	set	the	default	option	in	your	config/mail.php	configuration	file	to	ses	and	verify	that	your	
config/services.php	configuration	file	contains	the	following	options:

'ses'	=>	[

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

],

Laravel	Documentation	-	10.x	/	Mail 395

https://documentation.mailgun.com/en/latest/api-intro.html#mailgun-regions

To	utilize	AWS	temporary	credentials	via	a	session	token,	you	may	add	a	token	key	to	your	application's	SES
configuration:

'ses'	=>	[

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

				'token'	=>	env('AWS_SESSION_TOKEN'),

],

If	you	would	like	to	define	additional	options	that	Laravel	should	pass	to	the	AWS	SDK's	SendEmail	method
when	sending	an	email,	you	may	define	an	options	array	within	your	ses	configuration:

'ses'	=>	[

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

				'options'	=>	[

								'ConfigurationSetName'	=>	'MyConfigurationSet',

								'EmailTags'	=>	[

												['Name'	=>	'foo',	'Value'	=>	'bar'],

],

],

],

MailerSend	Driver

MailerSend,	a	transactional	email	and	SMS	service,	maintains	their	own	API	based	mail	driver	for	Laravel.	The
package	containing	the	driver	may	be	installed	via	the	Composer	package	manager:

composer	require	mailersend/laravel-driver

Once	the	package	is	installed,	add	the	MAILERSEND_API_KEY	environment	variable	to	your	application's	.env	file.
In	addition,	the	MAIL_MAILER	environment	variable	should	be	defined	as	mailersend:

MAIL_MAILER=mailersend

MAIL_FROM_ADDRESS=app@yourdomain.com

MAIL_FROM_NAME="App	Name"

MAILERSEND_API_KEY=your-api-key

To	learn	more	about	MailerSend,	including	how	to	use	hosted	templates,	consult	the	MailerSend	driver
documentation.

Failover	Configuration

Sometimes,	an	external	service	you	have	configured	to	send	your	application's	mail	may	be	down.	In	these
cases,	it	can	be	useful	to	define	one	or	more	backup	mail	delivery	configurations	that	will	be	used	in	case	your
primary	delivery	driver	is	down.

To	accomplish	this,	you	should	define	a	mailer	within	your	application's	mail	configuration	file	that	uses	the	
failover	transport.	The	configuration	array	for	your	application's	failover	mailer	should	contain	an	array	of	
mailers	that	reference	the	order	in	which	configured	mailers	should	be	chosen	for	delivery:

'mailers'	=>	[

				'failover'	=>	[

								'transport'	=>	'failover',

								'mailers'	=>	[

												'postmark',

												'mailgun',

												'sendmail',

],

],

				//	...

],

Once	your	failover	mailer	has	been	defined,	you	should	set	this	mailer	as	the	default	mailer	used	by	your
application	by	specifying	its	name	as	the	value	of	the	default	configuration	key	within	your	application's	mail
configuration	file:

Laravel	Documentation	-	10.x	/	Mail 396

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-sesv2-2019-09-27.html#sendemail
https://www.mailersend.com/
https://github.com/mailersend/mailersend-laravel-driver#usage

'default'	=>	env('MAIL_MAILER',	'failover'),

Round	Robin	Configuration

The	roundrobin	transport	allows	you	to	distribute	your	mailing	workload	across	multiple	mailers.	To	get	started,
define	a	mailer	within	your	application's	mail	configuration	file	that	uses	the	roundrobin	transport.	The
configuration	array	for	your	application's	roundrobin	mailer	should	contain	an	array	of	mailers	that	reference
which	configured	mailers	should	be	used	for	delivery:

'mailers'	=>	[

				'roundrobin'	=>	[

								'transport'	=>	'roundrobin',

								'mailers'	=>	[

												'ses',

												'postmark',

],

],

				//	...

],

Once	your	round	robin	mailer	has	been	defined,	you	should	set	this	mailer	as	the	default	mailer	used	by	your
application	by	specifying	its	name	as	the	value	of	the	default	configuration	key	within	your	application's	mail
configuration	file:

'default'	=>	env('MAIL_MAILER',	'roundrobin'),

The	round	robin	transport	selects	a	random	mailer	from	the	list	of	configured	mailers	and	then	switches	to	the
next	available	mailer	for	each	subsequent	email.	In	contrast	to	failover	transport,	which	helps	to	achieve	high
availability,	the	roundrobin	transport	provides	load	balancing.

Generating	Mailables

When	building	Laravel	applications,	each	type	of	email	sent	by	your	application	is	represented	as	a	"mailable"
class.	These	classes	are	stored	in	the	app/Mail	directory.	Don't	worry	if	you	don't	see	this	directory	in	your
application,	since	it	will	be	generated	for	you	when	you	create	your	first	mailable	class	using	the	make:mail
Artisan	command:

php	artisan	make:mail	OrderShipped

Writing	Mailables

Once	you	have	generated	a	mailable	class,	open	it	up	so	we	can	explore	its	contents.	Mailable	class
configuration	is	done	in	several	methods,	including	the	envelope,	content,	and	attachments	methods.

The	envelope	method	returns	an	Illuminate\Mail\Mailables\Envelope	object	that	defines	the	subject	and,
sometimes,	the	recipients	of	the	message.	The	content	method	returns	an	Illuminate\Mail\Mailables\Content
object	that	defines	the	Blade	template	that	will	be	used	to	generate	the	message	content.

Configuring	the	Sender

Using	the	Envelope

First,	let's	explore	configuring	the	sender	of	the	email.	Or,	in	other	words,	who	the	email	is	going	to	be	"from".
There	are	two	ways	to	configure	the	sender.	First,	you	may	specify	the	"from"	address	on	your	message's
envelope:

use	Illuminate\Mail\Mailables\Address;

use	Illuminate\Mail\Mailables\Envelope;

/**

	*	Get	the	message	envelope.

	*/

public	function	envelope():	Envelope

{

Laravel	Documentation	-	10.x	/	Mail 397

https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Load_balancing_(computing)

				return	new	Envelope(

								from:	new	Address('jeffrey@example.com',	'Jeffrey	Way'),

								subject:	'Order	Shipped',

);

}

If	you	would	like,	you	may	also	specify	a	replyTo	address:

return	new	Envelope(

				from:	new	Address('jeffrey@example.com',	'Jeffrey	Way'),

				replyTo:	[

								new	Address('taylor@example.com',	'Taylor	Otwell'),

],

				subject:	'Order	Shipped',

);

Using	a	Global	from	Address

However,	if	your	application	uses	the	same	"from"	address	for	all	of	its	emails,	it	can	become	cumbersome	to
add	it	to	each	mailable	class	you	generate.	Instead,	you	may	specify	a	global	"from"	address	in	your	
config/mail.php	configuration	file.	This	address	will	be	used	if	no	other	"from"	address	is	specified	within	the
mailable	class:

'from'	=>	[

				'address'	=>	env('MAIL_FROM_ADDRESS',	'hello@example.com'),

				'name'	=>	env('MAIL_FROM_NAME',	'Example'),

],

In	addition,	you	may	define	a	global	"reply_to"	address	within	your	config/mail.php	configuration	file:

'reply_to'	=>	['address'	=>	'example@example.com',	'name'	=>	'App	Name'],

Configuring	the	View

Within	a	mailable	class's	content	method,	you	may	define	the	view,	or	which	template	should	be	used	when
rendering	the	email's	contents.	Since	each	email	typically	uses	a	Blade	template	to	render	its	contents,	you	have
the	full	power	and	convenience	of	the	Blade	templating	engine	when	building	your	email's	HTML:

/**

	*	Get	the	message	content	definition.

	*/

public	function	content():	Content

{

				return	new	Content(

								view:	'mail.orders.shipped',

);

}

[!NOTE]
You	may	wish	to	create	a	resources/views/emails	directory	to	house	all	of	your	email	templates;	however,
you	are	free	to	place	them	wherever	you	wish	within	your	resources/views	directory.

Plain	Text	Emails

If	you	would	like	to	define	a	plain-text	version	of	your	email,	you	may	specify	the	plain-text	template	when
creating	the	message's	Content	definition.	Like	the	view	parameter,	the	text	parameter	should	be	a	template
name	which	will	be	used	to	render	the	contents	of	the	email.	You	are	free	to	define	both	an	HTML	and	plain-
text	version	of	your	message:

/**

	*	Get	the	message	content	definition.

	*/

public	function	content():	Content

{

				return	new	Content(

								view:	'mail.orders.shipped',

								text:	'mail.orders.shipped-text'

);

}

Laravel	Documentation	-	10.x	/	Mail 398

For	clarity,	the	html	parameter	may	be	used	as	an	alias	of	the	view	parameter:

return	new	Content(

				html:	'mail.orders.shipped',

				text:	'mail.orders.shipped-text'

);

View	Data

Via	Public	Properties

Typically,	you	will	want	to	pass	some	data	to	your	view	that	you	can	utilize	when	rendering	the	email's	HTML.
There	are	two	ways	you	may	make	data	available	to	your	view.	First,	any	public	property	defined	on	your
mailable	class	will	automatically	be	made	available	to	the	view.	So,	for	example,	you	may	pass	data	into	your
mailable	class's	constructor	and	set	that	data	to	public	properties	defined	on	the	class:

<?php

namespace	App\Mail;

use	App\Models\Order;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

use	Illuminate\Mail\Mailables\Content;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped	extends	Mailable

{

				use	Queueable,	SerializesModels;

				/**

					*	Create	a	new	message	instance.

					*/

				public	function	__construct(

								public	Order	$order,

)	{}

				/**

					*	Get	the	message	content	definition.

					*/

				public	function	content():	Content

				{

								return	new	Content(

												view:	'mail.orders.shipped',

);

				}

}

Once	the	data	has	been	set	to	a	public	property,	it	will	automatically	be	available	in	your	view,	so	you	may
access	it	like	you	would	access	any	other	data	in	your	Blade	templates:

<div>

				Price:	{{	$order->price	}}

</div>

Via	the	with	Parameter:

If	you	would	like	to	customize	the	format	of	your	email's	data	before	it	is	sent	to	the	template,	you	may
manually	pass	your	data	to	the	view	via	the	Content	definition's	with	parameter.	Typically,	you	will	still	pass
data	via	the	mailable	class's	constructor;	however,	you	should	set	this	data	to	protected	or	private	properties	so
the	data	is	not	automatically	made	available	to	the	template:

<?php

namespace	App\Mail;

use	App\Models\Order;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

use	Illuminate\Mail\Mailables\Content;

use	Illuminate\Queue\SerializesModels;

Laravel	Documentation	-	10.x	/	Mail 399

class	OrderShipped	extends	Mailable

{

				use	Queueable,	SerializesModels;

				/**

					*	Create	a	new	message	instance.

					*/

				public	function	__construct(

								protected	Order	$order,

)	{}

				/**

					*	Get	the	message	content	definition.

					*/

				public	function	content():	Content

				{

								return	new	Content(

												view:	'mail.orders.shipped',

												with:	[

																'orderName'	=>	$this->order->name,

																'orderPrice'	=>	$this->order->price,

],

);

				}

}

Once	the	data	has	been	passed	to	the	with	method,	it	will	automatically	be	available	in	your	view,	so	you	may
access	it	like	you	would	access	any	other	data	in	your	Blade	templates:

<div>

				Price:	{{	$orderPrice	}}

</div>

Attachments

To	add	attachments	to	an	email,	you	will	add	attachments	to	the	array	returned	by	the	message's	attachments
method.	First,	you	may	add	an	attachment	by	providing	a	file	path	to	the	fromPath	method	provided	by	the	
Attachment	class:

use	Illuminate\Mail\Mailables\Attachment;

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromPath('/path/to/file'),

];

}

When	attaching	files	to	a	message,	you	may	also	specify	the	display	name	and	/	or	MIME	type	for	the
attachment	using	the	as	and	withMime	methods:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromPath('/path/to/file')

																->as('name.pdf')

																->withMime('application/pdf'),

];

}

Attaching	Files	From	Disk

If	you	have	stored	a	file	on	one	of	your	filesystem	disks,	you	may	attach	it	to	the	email	using	the	fromStorage
attachment	method:

Laravel	Documentation	-	10.x	/	Mail 400

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromStorage('/path/to/file'),

];

}

Of	course,	you	may	also	specify	the	attachment's	name	and	MIME	type:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromStorage('/path/to/file')

																->as('name.pdf')

																->withMime('application/pdf'),

];

}

The	fromStorageDisk	method	may	be	used	if	you	need	to	specify	a	storage	disk	other	than	your	default	disk:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromStorageDisk('s3',	'/path/to/file')

																->as('name.pdf')

																->withMime('application/pdf'),

];

}

Raw	Data	Attachments

The	fromData	attachment	method	may	be	used	to	attach	a	raw	string	of	bytes	as	an	attachment.	For	example,
you	might	use	this	method	if	you	have	generated	a	PDF	in	memory	and	want	to	attach	it	to	the	email	without
writing	it	to	disk.	The	fromData	method	accepts	a	closure	which	resolves	the	raw	data	bytes	as	well	as	the	name
that	the	attachment	should	be	assigned:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[

								Attachment::fromData(fn	()	=>	$this->pdf,	'Report.pdf')

																->withMime('application/pdf'),

];

}

Inline	Attachments

Embedding	inline	images	into	your	emails	is	typically	cumbersome;	however,	Laravel	provides	a	convenient
way	to	attach	images	to	your	emails.	To	embed	an	inline	image,	use	the	embed	method	on	the	$message	variable
within	your	email	template.	Laravel	automatically	makes	the	$message	variable	available	to	all	of	your	email
templates,	so	you	don't	need	to	worry	about	passing	it	in	manually:

<body>

				Here	is	an	image:

Laravel	Documentation	-	10.x	/	Mail 401

				embed($pathToImage)	}}">

</body>

[!WARNING]
The	$message	variable	is	not	available	in	plain-text	message	templates	since	plain-text	messages	do	not
utilize	inline	attachments.

Embedding	Raw	Data	Attachments

If	you	already	have	a	raw	image	data	string	you	wish	to	embed	into	an	email	template,	you	may	call	the	
embedData	method	on	the	$message	variable.	When	calling	the	embedData	method,	you	will	need	to	provide	a
filename	that	should	be	assigned	to	the	embedded	image:

<body>

				Here	is	an	image	from	raw	data:

				embedData($data,	'example-image.jpg')	}}">

</body>

Attachable	Objects

While	attaching	files	to	messages	via	simple	string	paths	is	often	sufficient,	in	many	cases	the	attachable
entities	within	your	application	are	represented	by	classes.	For	example,	if	your	application	is	attaching	a	photo
to	a	message,	your	application	may	also	have	a	Photo	model	that	represents	that	photo.	When	that	is	the	case,
wouldn't	it	be	convenient	to	simply	pass	the	Photo	model	to	the	attach	method?	Attachable	objects	allow	you	to
do	just	that.

To	get	started,	implement	the	Illuminate\Contracts\Mail\Attachable	interface	on	the	object	that	will	be
attachable	to	messages.	This	interface	dictates	that	your	class	defines	a	toMailAttachment	method	that	returns	an
Illuminate\Mail\Attachment	instance:

<?php

namespace	App\Models;

use	Illuminate\Contracts\Mail\Attachable;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Mail\Attachment;

class	Photo	extends	Model	implements	Attachable

{

				/**

					*	Get	the	attachable	representation	of	the	model.

					*/

				public	function	toMailAttachment():	Attachment

				{

								return	Attachment::fromPath('/path/to/file');

				}

}

Once	you	have	defined	your	attachable	object,	you	may	return	an	instance	of	that	object	from	the	attachments
method	when	building	an	email	message:

/**

	*	Get	the	attachments	for	the	message.

	*

	*	@return	array<int,	\Illuminate\Mail\Mailables\Attachment>

	*/

public	function	attachments():	array

{

				return	[$this->photo];

}

Of	course,	attachment	data	may	be	stored	on	a	remote	file	storage	service	such	as	Amazon	S3.	So,	Laravel	also
allows	you	to	generate	attachment	instances	from	data	that	is	stored	on	one	of	your	application's	filesystem
disks:

//	Create	an	attachment	from	a	file	on	your	default	disk...

return	Attachment::fromStorage($this->path);

Laravel	Documentation	-	10.x	/	Mail 402

//	Create	an	attachment	from	a	file	on	a	specific	disk...

return	Attachment::fromStorageDisk('backblaze',	$this->path);

In	addition,	you	may	create	attachment	instances	via	data	that	you	have	in	memory.	To	accomplish	this,	provide
a	closure	to	the	fromData	method.	The	closure	should	return	the	raw	data	that	represents	the	attachment:

return	Attachment::fromData(fn	()	=>	$this->content,	'Photo	Name');

Laravel	also	provides	additional	methods	that	you	may	use	to	customize	your	attachments.	For	example,	you
may	use	the	as	and	withMime	methods	to	customize	the	file's	name	and	MIME	type:

return	Attachment::fromPath('/path/to/file')

								->as('Photo	Name')

								->withMime('image/jpeg');

Headers

Sometimes	you	may	need	to	attach	additional	headers	to	the	outgoing	message.	For	instance,	you	may	need	to
set	a	custom	Message-Id	or	other	arbitrary	text	headers.

To	accomplish	this,	define	a	headers	method	on	your	mailable.	The	headers	method	should	return	an	
Illuminate\Mail\Mailables\Headers	instance.	This	class	accepts	messageId,	references,	and	text	parameters.	Of
course,	you	may	provide	only	the	parameters	you	need	for	your	particular	message:

use	Illuminate\Mail\Mailables\Headers;

/**

	*	Get	the	message	headers.

	*/

public	function	headers():	Headers

{

				return	new	Headers(

								messageId:	'custom-message-id@example.com',

								references:	['previous-message@example.com'],

								text:	[

												'X-Custom-Header'	=>	'Custom	Value',

],

);

}

Tags	and	Metadata

Some	third-party	email	providers	such	as	Mailgun	and	Postmark	support	message	"tags"	and	"metadata",	which
may	be	used	to	group	and	track	emails	sent	by	your	application.	You	may	add	tags	and	metadata	to	an	email
message	via	your	Envelope	definition:

use	Illuminate\Mail\Mailables\Envelope;

/**

	*	Get	the	message	envelope.

	*

	*	@return	\Illuminate\Mail\Mailables\Envelope

	*/

public	function	envelope():	Envelope

{

				return	new	Envelope(

								subject:	'Order	Shipped',

								tags:	['shipment'],

								metadata:	[

												'order_id'	=>	$this->order->id,

],

);

}

If	your	application	is	using	the	Mailgun	driver,	you	may	consult	Mailgun's	documentation	for	more	information
on	tags	and	metadata.	Likewise,	the	Postmark	documentation	may	also	be	consulted	for	more	information	on
their	support	for	tags	and	metadata.

If	your	application	is	using	Amazon	SES	to	send	emails,	you	should	use	the	metadata	method	to	attach	SES
"tags"	to	the	message.

Laravel	Documentation	-	10.x	/	Mail 403

https://documentation.mailgun.com/en/latest/user_manual.html#tagging-1
https://documentation.mailgun.com/en/latest/user_manual.html#attaching-data-to-messages
https://postmarkapp.com/blog/tags-support-for-smtp
https://postmarkapp.com/support/article/1125-custom-metadata-faq
https://docs.aws.amazon.com/ses/latest/APIReference/API_MessageTag.html

Customizing	the	Symfony	Message

Laravel's	mail	capabilities	are	powered	by	Symfony	Mailer.	Laravel	allows	you	to	register	custom	callbacks
that	will	be	invoked	with	the	Symfony	Message	instance	before	sending	the	message.	This	gives	you	an
opportunity	to	deeply	customize	the	message	before	it	is	sent.	To	accomplish	this,	define	a	using	parameter	on
your	Envelope	definition:

use	Illuminate\Mail\Mailables\Envelope;

use	Symfony\Component\Mime\Email;

/**

	*	Get	the	message	envelope.

	*/

public	function	envelope():	Envelope

{

				return	new	Envelope(

								subject:	'Order	Shipped',

								using:	[

												function	(Email	$message)	{

																//	...

												},

]

);

}

Markdown	Mailables

Markdown	mailable	messages	allow	you	to	take	advantage	of	the	pre-built	templates	and	components	of	mail
notifications	in	your	mailables.	Since	the	messages	are	written	in	Markdown,	Laravel	is	able	to	render
beautiful,	responsive	HTML	templates	for	the	messages	while	also	automatically	generating	a	plain-text
counterpart.

Generating	Markdown	Mailables

To	generate	a	mailable	with	a	corresponding	Markdown	template,	you	may	use	the	--markdown	option	of	the	
make:mail	Artisan	command:

php	artisan	make:mail	OrderShipped	--markdown=mail.orders.shipped

Then,	when	configuring	the	mailable	Content	definition	within	its	content	method,	use	the	markdown	parameter
instead	of	the	view	parameter:

use	Illuminate\Mail\Mailables\Content;

/**

	*	Get	the	message	content	definition.

	*/

public	function	content():	Content

{

				return	new	Content(

								markdown:	'mail.orders.shipped',

								with:	[

												'url'	=>	$this->orderUrl,

],

);

}

Writing	Markdown	Messages

Markdown	mailables	use	a	combination	of	Blade	components	and	Markdown	syntax	which	allow	you	to	easily
construct	mail	messages	while	leveraging	Laravel's	pre-built	email	UI	components:

<x-mail::message>

#	Order	Shipped

Your	order	has	been	shipped!

<x-mail::button	:url="$url">

View	Order

Laravel	Documentation	-	10.x	/	Mail 404

</x-mail::button>

Thanks,

{{	config('app.name')	}}

</x-mail::message>

[!NOTE]
Do	not	use	excess	indentation	when	writing	Markdown	emails.	Per	Markdown	standards,	Markdown
parsers	will	render	indented	content	as	code	blocks.

Button	Component

The	button	component	renders	a	centered	button	link.	The	component	accepts	two	arguments,	a	url	and	an
optional	color.	Supported	colors	are	primary,	success,	and	error.	You	may	add	as	many	button	components	to	a
message	as	you	wish:

<x-mail::button	:url="$url"	color="success">

View	Order

</x-mail::button>

Panel	Component

The	panel	component	renders	the	given	block	of	text	in	a	panel	that	has	a	slightly	different	background	color
than	the	rest	of	the	message.	This	allows	you	to	draw	attention	to	a	given	block	of	text:

<x-mail::panel>

This	is	the	panel	content.

</x-mail::panel>

Table	Component

The	table	component	allows	you	to	transform	a	Markdown	table	into	an	HTML	table.	The	component	accepts
the	Markdown	table	as	its	content.	Table	column	alignment	is	supported	using	the	default	Markdown	table
alignment	syntax:

<x-mail::table>

|	Laravel							|	Table									|	Example		|

|	-------------	|:-------------:|	--------:|

|	Col	2	is						|	Centered						|	$10						|

|	Col	3	is						|	Right-Aligned	|	$20						|

</x-mail::table>

Customizing	the	Components

You	may	export	all	of	the	Markdown	mail	components	to	your	own	application	for	customization.	To	export	the
components,	use	the	vendor:publish	Artisan	command	to	publish	the	laravel-mail	asset	tag:

php	artisan	vendor:publish	--tag=laravel-mail

This	command	will	publish	the	Markdown	mail	components	to	the	resources/views/vendor/mail	directory.	The	
mail	directory	will	contain	an	html	and	a	text	directory,	each	containing	their	respective	representations	of
every	available	component.	You	are	free	to	customize	these	components	however	you	like.

Customizing	the	CSS

After	exporting	the	components,	the	resources/views/vendor/mail/html/themes	directory	will	contain	a	
default.css	file.	You	may	customize	the	CSS	in	this	file	and	your	styles	will	automatically	be	converted	to
inline	CSS	styles	within	the	HTML	representations	of	your	Markdown	mail	messages.

If	you	would	like	to	build	an	entirely	new	theme	for	Laravel's	Markdown	components,	you	may	place	a	CSS
file	within	the	html/themes	directory.	After	naming	and	saving	your	CSS	file,	update	the	theme	option	of	your
application's	config/mail.php	configuration	file	to	match	the	name	of	your	new	theme.

To	customize	the	theme	for	an	individual	mailable,	you	may	set	the	$theme	property	of	the	mailable	class	to	the
name	of	the	theme	that	should	be	used	when	sending	that	mailable.

Laravel	Documentation	-	10.x	/	Mail 405

Sending	Mail

To	send	a	message,	use	the	to	method	on	the	Mail	facade.	The	to	method	accepts	an	email	address,	a	user
instance,	or	a	collection	of	users.	If	you	pass	an	object	or	collection	of	objects,	the	mailer	will	automatically	use
their	email	and	name	properties	when	determining	the	email's	recipients,	so	make	sure	these	attributes	are
available	on	your	objects.	Once	you	have	specified	your	recipients,	you	may	pass	an	instance	of	your	mailable
class	to	the	send	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Mail\OrderShipped;

use	App\Models\Order;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Mail;

class	OrderShipmentController	extends	Controller

{

				/**

					*	Ship	the	given	order.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$order	=	Order::findOrFail($request->order_id);

								//	Ship	the	order...

								Mail::to($request->user())->send(new	OrderShipped($order));

								return	redirect('/orders');

				}

}

You	are	not	limited	to	just	specifying	the	"to"	recipients	when	sending	a	message.	You	are	free	to	set	"to",	"cc",
and	"bcc"	recipients	by	chaining	their	respective	methods	together:

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->send(new	OrderShipped($order));

Looping	Over	Recipients

Occasionally,	you	may	need	to	send	a	mailable	to	a	list	of	recipients	by	iterating	over	an	array	of	recipients	/
email	addresses.	However,	since	the	to	method	appends	email	addresses	to	the	mailable's	list	of	recipients,	each
iteration	through	the	loop	will	send	another	email	to	every	previous	recipient.	Therefore,	you	should	always	re-
create	the	mailable	instance	for	each	recipient:

foreach	(['taylor@example.com',	'dries@example.com']	as	$recipient)	{

				Mail::to($recipient)->send(new	OrderShipped($order));

}

Sending	Mail	via	a	Specific	Mailer

By	default,	Laravel	will	send	email	using	the	mailer	configured	as	the	default	mailer	in	your	application's	mail
configuration	file.	However,	you	may	use	the	mailer	method	to	send	a	message	using	a	specific	mailer
configuration:

Mail::mailer('postmark')

								->to($request->user())

								->send(new	OrderShipped($order));

Queueing	Mail

Queueing	a	Mail	Message

Laravel	Documentation	-	10.x	/	Mail 406

Since	sending	email	messages	can	negatively	impact	the	response	time	of	your	application,	many	developers
choose	to	queue	email	messages	for	background	sending.	Laravel	makes	this	easy	using	its	built-in	unified
queue	API.	To	queue	a	mail	message,	use	the	queue	method	on	the	Mail	facade	after	specifying	the	message's
recipients:

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->queue(new	OrderShipped($order));

This	method	will	automatically	take	care	of	pushing	a	job	onto	the	queue	so	the	message	is	sent	in	the
background.	You	will	need	to	configure	your	queues	before	using	this	feature.

Delayed	Message	Queueing

If	you	wish	to	delay	the	delivery	of	a	queued	email	message,	you	may	use	the	later	method.	As	its	first
argument,	the	later	method	accepts	a	DateTime	instance	indicating	when	the	message	should	be	sent:

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->later(now()->addMinutes(10),	new	OrderShipped($order));

Pushing	to	Specific	Queues

Since	all	mailable	classes	generated	using	the	make:mail	command	make	use	of	the	Illuminate\Bus\Queueable
trait,	you	may	call	the	onQueue	and	onConnection	methods	on	any	mailable	class	instance,	allowing	you	to
specify	the	connection	and	queue	name	for	the	message:

$message	=	(new	OrderShipped($order))

																->onConnection('sqs')

																->onQueue('emails');

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->queue($message);

Queueing	by	Default

If	you	have	mailable	classes	that	you	want	to	always	be	queued,	you	may	implement	the	ShouldQueue	contract
on	the	class.	Now,	even	if	you	call	the	send	method	when	mailing,	the	mailable	will	still	be	queued	since	it
implements	the	contract:

use	Illuminate\Contracts\Queue\ShouldQueue;

class	OrderShipped	extends	Mailable	implements	ShouldQueue

{

				//	...

}

Queued	Mailables	and	Database	Transactions

When	queued	mailables	are	dispatched	within	database	transactions,	they	may	be	processed	by	the	queue
before	the	database	transaction	has	committed.	When	this	happens,	any	updates	you	have	made	to	models	or
database	records	during	the	database	transaction	may	not	yet	be	reflected	in	the	database.	In	addition,	any
models	or	database	records	created	within	the	transaction	may	not	exist	in	the	database.	If	your	mailable
depends	on	these	models,	unexpected	errors	can	occur	when	the	job	that	sends	the	queued	mailable	is
processed.

If	your	queue	connection's	after_commit	configuration	option	is	set	to	false,	you	may	still	indicate	that	a
particular	queued	mailable	should	be	dispatched	after	all	open	database	transactions	have	been	committed	by
calling	the	afterCommit	method	when	sending	the	mail	message:

Mail::to($request->user())->send(

				(new	OrderShipped($order))->afterCommit()

);

Laravel	Documentation	-	10.x	/	Mail 407

Alternatively,	you	may	call	the	afterCommit	method	from	your	mailable's	constructor:

<?php

namespace	App\Mail;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Mail\Mailable;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped	extends	Mailable	implements	ShouldQueue

{

				use	Queueable,	SerializesModels;

				/**

					*	Create	a	new	message	instance.

					*/

				public	function	__construct()

				{

								$this->afterCommit();

				}

}

[!NOTE]
To	learn	more	about	working	around	these	issues,	please	review	the	documentation	regarding	queued	jobs
and	database	transactions.

Rendering	Mailables

Sometimes	you	may	wish	to	capture	the	HTML	content	of	a	mailable	without	sending	it.	To	accomplish	this,
you	may	call	the	render	method	of	the	mailable.	This	method	will	return	the	evaluated	HTML	content	of	the
mailable	as	a	string:

use	App\Mail\InvoicePaid;

use	App\Models\Invoice;

$invoice	=	Invoice::find(1);

return	(new	InvoicePaid($invoice))->render();

Previewing	Mailables	in	the	Browser

When	designing	a	mailable's	template,	it	is	convenient	to	quickly	preview	the	rendered	mailable	in	your
browser	like	a	typical	Blade	template.	For	this	reason,	Laravel	allows	you	to	return	any	mailable	directly	from	a
route	closure	or	controller.	When	a	mailable	is	returned,	it	will	be	rendered	and	displayed	in	the	browser,
allowing	you	to	quickly	preview	its	design	without	needing	to	send	it	to	an	actual	email	address:

Route::get('/mailable',	function	()	{

				$invoice	=	App\Models\Invoice::find(1);

				return	new	App\Mail\InvoicePaid($invoice);

});

Localizing	Mailables

Laravel	allows	you	to	send	mailables	in	a	locale	other	than	the	request's	current	locale,	and	will	even	remember
this	locale	if	the	mail	is	queued.

To	accomplish	this,	the	Mail	facade	offers	a	locale	method	to	set	the	desired	language.	The	application	will
change	into	this	locale	when	the	mailable's	template	is	being	evaluated	and	then	revert	back	to	the	previous
locale	when	evaluation	is	complete:

Mail::to($request->user())->locale('es')->send(

				new	OrderShipped($order)

);

User	Preferred	Locales

Laravel	Documentation	-	10.x	/	Mail 408

Sometimes,	applications	store	each	user's	preferred	locale.	By	implementing	the	HasLocalePreference	contract
on	one	or	more	of	your	models,	you	may	instruct	Laravel	to	use	this	stored	locale	when	sending	mail:

use	Illuminate\Contracts\Translation\HasLocalePreference;

class	User	extends	Model	implements	HasLocalePreference

{

				/**

					*	Get	the	user's	preferred	locale.

					*/

				public	function	preferredLocale():	string

				{

								return	$this->locale;

				}

}

Once	you	have	implemented	the	interface,	Laravel	will	automatically	use	the	preferred	locale	when	sending
mailables	and	notifications	to	the	model.	Therefore,	there	is	no	need	to	call	the	locale	method	when	using	this
interface:

Mail::to($request->user())->send(new	OrderShipped($order));

Testing

Testing	Mailable	Content

Laravel	provides	a	variety	of	methods	for	inspecting	your	mailable's	structure.	In	addition,	Laravel	provides
several	convenient	methods	for	testing	that	your	mailable	contains	the	content	that	you	expect.	These	methods
are:	assertSeeInHtml,	assertDontSeeInHtml,	assertSeeInOrderInHtml,	assertSeeInText,	assertDontSeeInText,	
assertSeeInOrderInText,	assertHasAttachment,	assertHasAttachedData,	assertHasAttachmentFromStorage,	and	
assertHasAttachmentFromStorageDisk.

As	you	might	expect,	the	"HTML"	assertions	assert	that	the	HTML	version	of	your	mailable	contains	a	given
string,	while	the	"text"	assertions	assert	that	the	plain-text	version	of	your	mailable	contains	a	given	string:

use	App\Mail\InvoicePaid;

use	App\Models\User;

public	function	test_mailable_content():	void

{

				$user	=	User::factory()->create();

				$mailable	=	new	InvoicePaid($user);

				$mailable->assertFrom('jeffrey@example.com');

				$mailable->assertTo('taylor@example.com');

				$mailable->assertHasCc('abigail@example.com');

				$mailable->assertHasBcc('victoria@example.com');

				$mailable->assertHasReplyTo('tyler@example.com');

				$mailable->assertHasSubject('Invoice	Paid');

				$mailable->assertHasTag('example-tag');

				$mailable->assertHasMetadata('key',	'value');

				$mailable->assertSeeInHtml($user->email);

				$mailable->assertSeeInHtml('Invoice	Paid');

				$mailable->assertSeeInOrderInHtml(['Invoice	Paid',	'Thanks']);

				$mailable->assertSeeInText($user->email);

				$mailable->assertSeeInOrderInText(['Invoice	Paid',	'Thanks']);

				$mailable->assertHasAttachment('/path/to/file');

				$mailable->assertHasAttachment(Attachment::fromPath('/path/to/file'));

				$mailable->assertHasAttachedData($pdfData,	'name.pdf',	['mime'	=>	'application/pdf']);

				$mailable->assertHasAttachmentFromStorage('/path/to/file',	'name.pdf',	['mime'	=>	

'application/pdf']);

				$mailable->assertHasAttachmentFromStorageDisk('s3',	'/path/to/file',	'name.pdf',	['mime'	=>	

'application/pdf']);

}

Testing	Mailable	Sending

Laravel	Documentation	-	10.x	/	Mail 409

We	suggest	testing	the	content	of	your	mailables	separately	from	your	tests	that	assert	that	a	given	mailable	was
"sent"	to	a	specific	user.	Typically,	the	content	of	mailables	is	not	relevant	to	the	code	you	are	testing,	and	it	is
sufficient	to	simply	assert	that	Laravel	was	instructed	to	send	a	given	mailable.

You	may	use	the	Mail	facade's	fake	method	to	prevent	mail	from	being	sent.	After	calling	the	Mail	facade's	fake
method,	you	may	then	assert	that	mailables	were	instructed	to	be	sent	to	users	and	even	inspect	the	data	the
mailables	received:

<?php

namespace	Tests\Feature;

use	App\Mail\OrderShipped;

use	Illuminate\Support\Facades\Mail;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_orders_can_be_shipped():	void

				{

								Mail::fake();

								//	Perform	order	shipping...

								//	Assert	that	no	mailables	were	sent...

								Mail::assertNothingSent();

								//	Assert	that	a	mailable	was	sent...

								Mail::assertSent(OrderShipped::class);

								//	Assert	a	mailable	was	sent	twice...

								Mail::assertSent(OrderShipped::class,	2);

								//	Assert	a	mailable	was	not	sent...

								Mail::assertNotSent(AnotherMailable::class);

								//	Assert	3	total	mailables	were	sent...

								Mail::assertSentCount(3);

				}

}

If	you	are	queueing	mailables	for	delivery	in	the	background,	you	should	use	the	assertQueued	method	instead
of	assertSent:

Mail::assertQueued(OrderShipped::class);

Mail::assertNotQueued(OrderShipped::class);

Mail::assertNothingQueued();

Mail::assertQueuedCount(3);

You	may	pass	a	closure	to	the	assertSent,	assertNotSent,	assertQueued,	or	assertNotQueued	methods	in	order	to
assert	that	a	mailable	was	sent	that	passes	a	given	"truth	test".	If	at	least	one	mailable	was	sent	that	passes	the
given	truth	test	then	the	assertion	will	be	successful:

Mail::assertSent(function	(OrderShipped	$mail)	use	($order)	{

				return	$mail->order->id	===	$order->id;

});

When	calling	the	Mail	facade's	assertion	methods,	the	mailable	instance	accepted	by	the	provided	closure
exposes	helpful	methods	for	examining	the	mailable:

Mail::assertSent(OrderShipped::class,	function	(OrderShipped	$mail)	use	($user)	{

				return	$mail->hasTo($user->email)	&&

											$mail->hasCc('...')	&&

											$mail->hasBcc('...')	&&

											$mail->hasReplyTo('...')	&&

											$mail->hasFrom('...')	&&

											$mail->hasSubject('...');

});

The	mailable	instance	also	includes	several	helpful	methods	for	examining	the	attachments	on	a	mailable:

use	Illuminate\Mail\Mailables\Attachment;

Mail::assertSent(OrderShipped::class,	function	(OrderShipped	$mail)	{

				return	$mail->hasAttachment(

Laravel	Documentation	-	10.x	/	Mail 410

								Attachment::fromPath('/path/to/file')

																->as('name.pdf')

																->withMime('application/pdf')

);

});

Mail::assertSent(OrderShipped::class,	function	(OrderShipped	$mail)	{

				return	$mail->hasAttachment(

								Attachment::fromStorageDisk('s3',	'/path/to/file')

);

});

Mail::assertSent(OrderShipped::class,	function	(OrderShipped	$mail)	use	($pdfData)	{

				return	$mail->hasAttachment(

								Attachment::fromData(fn	()	=>	$pdfData,	'name.pdf')

);

});

You	may	have	noticed	that	there	are	two	methods	for	asserting	that	mail	was	not	sent:	assertNotSent	and	
assertNotQueued.	Sometimes	you	may	wish	to	assert	that	no	mail	was	sent	or	queued.	To	accomplish	this,	you
may	use	the	assertNothingOutgoing	and	assertNotOutgoing	methods:

Mail::assertNothingOutgoing();

Mail::assertNotOutgoing(function	(OrderShipped	$mail)	use	($order)	{

				return	$mail->order->id	===	$order->id;

});

Mail	and	Local	Development

When	developing	an	application	that	sends	email,	you	probably	don't	want	to	actually	send	emails	to	live	email
addresses.	Laravel	provides	several	ways	to	"disable"	the	actual	sending	of	emails	during	local	development.

Log	Driver

Instead	of	sending	your	emails,	the	log	mail	driver	will	write	all	email	messages	to	your	log	files	for	inspection.
Typically,	this	driver	would	only	be	used	during	local	development.	For	more	information	on	configuring	your
application	per	environment,	check	out	the	configuration	documentation.

HELO	/	Mailtrap	/	Mailpit

Alternatively,	you	may	use	a	service	like	HELO	or	Mailtrap	and	the	smtp	driver	to	send	your	email	messages	to
a	"dummy"	mailbox	where	you	may	view	them	in	a	true	email	client.	This	approach	has	the	benefit	of	allowing
you	to	actually	inspect	the	final	emails	in	Mailtrap's	message	viewer.

If	you	are	using	Laravel	Sail,	you	may	preview	your	messages	using	Mailpit.	When	Sail	is	running,	you	may
access	the	Mailpit	interface	at:	http://localhost:8025.

Using	a	Global	to	Address

Finally,	you	may	specify	a	global	"to"	address	by	invoking	the	alwaysTo	method	offered	by	the	Mail	facade.
Typically,	this	method	should	be	called	from	the	boot	method	of	one	of	your	application's	service	providers:

use	Illuminate\Support\Facades\Mail;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				if	($this->app->environment('local'))	{

								Mail::alwaysTo('taylor@example.com');

				}

}

Events

Laravel	Documentation	-	10.x	/	Mail 411

https://usehelo.com
https://mailtrap.io
https://github.com/axllent/mailpit

Laravel	fires	two	events	during	the	process	of	sending	mail	messages.	The	MessageSending	event	is	fired	prior	to
a	message	being	sent,	while	the	MessageSent	event	is	fired	after	a	message	has	been	sent.	Remember,	these
events	are	fired	when	the	mail	is	being	sent,	not	when	it	is	queued.	You	may	register	event	listeners	for	this
event	in	your	App\Providers\EventServiceProvider	service	provider:

use	App\Listeners\LogSendingMessage;

use	App\Listeners\LogSentMessage;

use	Illuminate\Mail\Events\MessageSending;

use	Illuminate\Mail\Events\MessageSent;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				MessageSending::class	=>	[

								LogSendingMessage::class,

],

				MessageSent::class	=>	[

								LogSentMessage::class,

],

];

Custom	Transports

Laravel	includes	a	variety	of	mail	transports;	however,	you	may	wish	to	write	your	own	transports	to	deliver
email	via	other	services	that	Laravel	does	not	support	out	of	the	box.	To	get	started,	define	a	class	that	extends
the	Symfony\Component\Mailer\Transport\AbstractTransport	class.	Then,	implement	the	doSend	and	__toString()
methods	on	your	transport:

use	MailchimpTransactional\ApiClient;

use	Symfony\Component\Mailer\SentMessage;

use	Symfony\Component\Mailer\Transport\AbstractTransport;

use	Symfony\Component\Mime\Address;

use	Symfony\Component\Mime\MessageConverter;

class	MailchimpTransport	extends	AbstractTransport

{

				/**

					*	Create	a	new	Mailchimp	transport	instance.

					*/

				public	function	__construct(

								protected	ApiClient	$client,

)	{

								parent::__construct();

				}

				/**

					*	{@inheritDoc}

					*/

				protected	function	doSend(SentMessage	$message):	void

				{

								$email	=	MessageConverter::toEmail($message->getOriginalMessage());

								$this->client->messages->send(['message'	=>	[

												'from_email'	=>	$email->getFrom(),

												'to'	=>	collect($email->getTo())->map(function	(Address	$email)	{

																return	['email'	=>	$email->getAddress(),	'type'	=>	'to'];

												})->all(),

												'subject'	=>	$email->getSubject(),

												'text'	=>	$email->getTextBody(),

]]);

				}

				/**

					*	Get	the	string	representation	of	the	transport.

					*/

				public	function	__toString():	string

				{

								return	'mailchimp';

				}

}

Laravel	Documentation	-	10.x	/	Mail 412

Once	you've	defined	your	custom	transport,	you	may	register	it	via	the	extend	method	provided	by	the	Mail
facade.	Typically,	this	should	be	done	within	the	boot	method	of	your	application's	AppServiceProvider	service
provider.	A	$config	argument	will	be	passed	to	the	closure	provided	to	the	extend	method.	This	argument	will
contain	the	configuration	array	defined	for	the	mailer	in	the	application's	config/mail.php	configuration	file:

use	App\Mail\MailchimpTransport;

use	Illuminate\Support\Facades\Mail;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Mail::extend('mailchimp',	function	(array	$config	=	[])	{

								return	new	MailchimpTransport(/*	...	*/);

				});

}

Once	your	custom	transport	has	been	defined	and	registered,	you	may	create	a	mailer	definition	within	your
application's	config/mail.php	configuration	file	that	utilizes	the	new	transport:

'mailchimp'	=>	[

				'transport'	=>	'mailchimp',

				//	...

],

Additional	Symfony	Transports

Laravel	includes	support	for	some	existing	Symfony	maintained	mail	transports	like	Mailgun	and	Postmark.
However,	you	may	wish	to	extend	Laravel	with	support	for	additional	Symfony	maintained	transports.	You	can
do	so	by	requiring	the	necessary	Symfony	mailer	via	Composer	and	registering	the	transport	with	Laravel.	For
example,	you	may	install	and	register	the	"Brevo"	(formerly	"Sendinblue")	Symfony	mailer:

composer	require	symfony/brevo-mailer	symfony/http-client

Once	the	Brevo	mailer	package	has	been	installed,	you	may	add	an	entry	for	your	Brevo	API	credentials	to
your	application's	services	configuration	file:

'brevo'	=>	[

				'key'	=>	'your-api-key',

],

Next,	you	may	use	the	Mail	facade's	extend	method	to	register	the	transport	with	Laravel.	Typically,	this	should
be	done	within	the	boot	method	of	a	service	provider:

use	Illuminate\Support\Facades\Mail;

use	Symfony\Component\Mailer\Bridge\Brevo\Transport\BrevoTransportFactory;

use	Symfony\Component\Mailer\Transport\Dsn;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Mail::extend('brevo',	function	()	{

								return	(new	BrevoTransportFactory)->create(

												new	Dsn(

																'brevo+api',

																'default',

																config('services.brevo.key')

)

);

				});

}

Once	your	transport	has	been	registered,	you	may	create	a	mailer	definition	within	your	application's
config/mail.php	configuration	file	that	utilizes	the	new	transport:

'brevo'	=>	[

				'transport'	=>	'brevo',

				//	...

],

Laravel	Documentation	-	10.x	/	Mail 413

Digging	Deeper

Notifications
Introduction
Generating	Notifications
Sending	Notifications

Using	the	Notifiable	Trait
Using	the	Notification	Facade
Specifying	Delivery	Channels
Queueing	Notifications
On-Demand	Notifications

Mail	Notifications
Formatting	Mail	Messages
Customizing	the	Sender
Customizing	the	Recipient
Customizing	the	Subject
Customizing	the	Mailer
Customizing	the	Templates
Attachments
Adding	Tags	and	Metadata
Customizing	the	Symfony	Message
Using	Mailables
Previewing	Mail	Notifications

Markdown	Mail	Notifications
Generating	the	Message
Writing	the	Message
Customizing	the	Components

Database	Notifications
Prerequisites
Formatting	Database	Notifications
Accessing	the	Notifications
Marking	Notifications	as	Read

Broadcast	Notifications
Prerequisites
Formatting	Broadcast	Notifications
Listening	for	Notifications

SMS	Notifications
Prerequisites
Formatting	SMS	Notifications
Unicode	Content
Customizing	the	"From"	Number
Adding	a	Client	Reference
Routing	SMS	Notifications

Slack	Notifications
Prerequisites
Formatting	Slack	Notifications
Slack	Interactivity
Routing	Slack	Notifications
Notifying	External	Slack	Workspaces

Localizing	Notifications
Testing
Notification	Events
Custom	Channels

Introduction

In	addition	to	support	for	sending	email,	Laravel	provides	support	for	sending	notifications	across	a	variety	of
delivery	channels,	including	email,	SMS	(via	Vonage,	formerly	known	as	Nexmo),	and	Slack.	In	addition,	a

Laravel	Documentation	-	10.x	/	Notifications 414

https://www.vonage.com/communications-apis/
https://slack.com

variety	of	community	built	notification	channels	have	been	created	to	send	notifications	over	dozens	of
different	channels!	Notifications	may	also	be	stored	in	a	database	so	they	may	be	displayed	in	your	web
interface.

Typically,	notifications	should	be	short,	informational	messages	that	notify	users	of	something	that	occurred	in
your	application.	For	example,	if	you	are	writing	a	billing	application,	you	might	send	an	"Invoice	Paid"
notification	to	your	users	via	the	email	and	SMS	channels.

Generating	Notifications

In	Laravel,	each	notification	is	represented	by	a	single	class	that	is	typically	stored	in	the	app/Notifications
directory.	Don't	worry	if	you	don't	see	this	directory	in	your	application	-	it	will	be	created	for	you	when	you
run	the	make:notification	Artisan	command:

php	artisan	make:notification	InvoicePaid

This	command	will	place	a	fresh	notification	class	in	your	app/Notifications	directory.	Each	notification	class
contains	a	via	method	and	a	variable	number	of	message	building	methods,	such	as	toMail	or	toDatabase,	that
convert	the	notification	to	a	message	tailored	for	that	particular	channel.

Sending	Notifications

Using	the	Notifiable	Trait

Notifications	may	be	sent	in	two	ways:	using	the	notify	method	of	the	Notifiable	trait	or	using	the	
Notification	facade.	The	Notifiable	trait	is	included	on	your	application's	App\Models\User	model	by	default:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

}

The	notify	method	that	is	provided	by	this	trait	expects	to	receive	a	notification	instance:

use	App\Notifications\InvoicePaid;

$user->notify(new	InvoicePaid($invoice));

[!NOTE]
Remember,	you	may	use	the	Notifiable	trait	on	any	of	your	models.	You	are	not	limited	to	only	including
it	on	your	User	model.

Using	the	Notification	Facade

Alternatively,	you	may	send	notifications	via	the	Notification	facade.	This	approach	is	useful	when	you	need
to	send	a	notification	to	multiple	notifiable	entities	such	as	a	collection	of	users.	To	send	notifications	using	the
facade,	pass	all	of	the	notifiable	entities	and	the	notification	instance	to	the	send	method:

use	Illuminate\Support\Facades\Notification;

Notification::send($users,	new	InvoicePaid($invoice));

You	can	also	send	notifications	immediately	using	the	sendNow	method.	This	method	will	send	the	notification
immediately	even	if	the	notification	implements	the	ShouldQueue	interface:

Notification::sendNow($developers,	new	DeploymentCompleted($deployment));

Laravel	Documentation	-	10.x	/	Notifications 415

https://laravel-notification-channels.com/about/#suggesting-a-new-channel

Specifying	Delivery	Channels

Every	notification	class	has	a	via	method	that	determines	on	which	channels	the	notification	will	be	delivered.
Notifications	may	be	sent	on	the	mail,	database,	broadcast,	vonage,	and	slack	channels.

[!NOTE]
If	you	would	like	to	use	other	delivery	channels	such	as	Telegram	or	Pusher,	check	out	the	community
driven	Laravel	Notification	Channels	website.

The	via	method	receives	a	$notifiable	instance,	which	will	be	an	instance	of	the	class	to	which	the	notification
is	being	sent.	You	may	use	$notifiable	to	determine	which	channels	the	notification	should	be	delivered	on:

/**

	*	Get	the	notification's	delivery	channels.

	*

	*	@return	array<int,	string>

	*/

public	function	via(object	$notifiable):	array

{

				return	$notifiable->prefers_sms	?	['vonage']	:	['mail',	'database'];

}

Queueing	Notifications

[!WARNING]
Before	queueing	notifications	you	should	configure	your	queue	and	start	a	worker.

Sending	notifications	can	take	time,	especially	if	the	channel	needs	to	make	an	external	API	call	to	deliver	the
notification.	To	speed	up	your	application's	response	time,	let	your	notification	be	queued	by	adding	the	
ShouldQueue	interface	and	Queueable	trait	to	your	class.	The	interface	and	trait	are	already	imported	for	all
notifications	generated	using	the	make:notification	command,	so	you	may	immediately	add	them	to	your
notification	class:

<?php

namespace	App\Notifications;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification	implements	ShouldQueue

{

				use	Queueable;

				//	...

}

Once	the	ShouldQueue	interface	has	been	added	to	your	notification,	you	may	send	the	notification	like	normal.
Laravel	will	detect	the	ShouldQueue	interface	on	the	class	and	automatically	queue	the	delivery	of	the
notification:

$user->notify(new	InvoicePaid($invoice));

When	queueing	notifications,	a	queued	job	will	be	created	for	each	recipient	and	channel	combination.	For
example,	six	jobs	will	be	dispatched	to	the	queue	if	your	notification	has	three	recipients	and	two	channels.

Delaying	Notifications

If	you	would	like	to	delay	the	delivery	of	the	notification,	you	may	chain	the	delay	method	onto	your
notification	instantiation:

$delay	=	now()->addMinutes(10);

$user->notify((new	InvoicePaid($invoice))->delay($delay));

Delaying	Notifications	per	Channel

Laravel	Documentation	-	10.x	/	Notifications 416

http://laravel-notification-channels.com

You	may	pass	an	array	to	the	delay	method	to	specify	the	delay	amount	for	specific	channels:

$user->notify((new	InvoicePaid($invoice))->delay([

				'mail'	=>	now()->addMinutes(5),

				'sms'	=>	now()->addMinutes(10),

]));

Alternatively,	you	may	define	a	withDelay	method	on	the	notification	class	itself.	The	withDelay	method	should
return	an	array	of	channel	names	and	delay	values:

/**

	*	Determine	the	notification's	delivery	delay.

	*

	*	@return	array<string,	\Illuminate\Support\Carbon>

	*/

public	function	withDelay(object	$notifiable):	array

{

				return	[

								'mail'	=>	now()->addMinutes(5),

								'sms'	=>	now()->addMinutes(10),

];

}

Customizing	the	Notification	Queue	Connection

By	default,	queued	notifications	will	be	queued	using	your	application's	default	queue	connection.	If	you	would
like	to	specify	a	different	connection	that	should	be	used	for	a	particular	notification,	you	may	call	the	
onConnection	method	from	your	notification's	constructor:

<?php

namespace	App\Notifications;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification	implements	ShouldQueue

{

				use	Queueable;

				/**

					*	Create	a	new	notification	instance.

					*/

				public	function	__construct()

				{

								$this->onConnection('redis');

				}

}

Or,	if	you	would	like	to	specify	a	specific	queue	connection	that	should	be	used	for	each	notification	channel
supported	by	the	notification,	you	may	define	a	viaConnections	method	on	your	notification.	This	method
should	return	an	array	of	channel	name	/	queue	connection	name	pairs:

/**

	*	Determine	which	connections	should	be	used	for	each	notification	channel.

	*

	*	@return	array<string,	string>

	*/

public	function	viaConnections():	array

{

				return	[

								'mail'	=>	'redis',

								'database'	=>	'sync',

];

}

Customizing	Notification	Channel	Queues

If	you	would	like	to	specify	a	specific	queue	that	should	be	used	for	each	notification	channel	supported	by	the
notification,	you	may	define	a	viaQueues	method	on	your	notification.	This	method	should	return	an	array	of
channel	name	/	queue	name	pairs:

Laravel	Documentation	-	10.x	/	Notifications 417

/**

	*	Determine	which	queues	should	be	used	for	each	notification	channel.

	*

	*	@return	array<string,	string>

	*/

public	function	viaQueues():	array

{

				return	[

								'mail'	=>	'mail-queue',

								'slack'	=>	'slack-queue',

];

}

Queued	Notifications	and	Database	Transactions

When	queued	notifications	are	dispatched	within	database	transactions,	they	may	be	processed	by	the	queue
before	the	database	transaction	has	committed.	When	this	happens,	any	updates	you	have	made	to	models	or
database	records	during	the	database	transaction	may	not	yet	be	reflected	in	the	database.	In	addition,	any
models	or	database	records	created	within	the	transaction	may	not	exist	in	the	database.	If	your	notification
depends	on	these	models,	unexpected	errors	can	occur	when	the	job	that	sends	the	queued	notification	is
processed.

If	your	queue	connection's	after_commit	configuration	option	is	set	to	false,	you	may	still	indicate	that	a
particular	queued	notification	should	be	dispatched	after	all	open	database	transactions	have	been	committed	by
calling	the	afterCommit	method	when	sending	the	notification:

use	App\Notifications\InvoicePaid;

$user->notify((new	InvoicePaid($invoice))->afterCommit());

Alternatively,	you	may	call	the	afterCommit	method	from	your	notification's	constructor:

<?php

namespace	App\Notifications;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification	implements	ShouldQueue

{

				use	Queueable;

				/**

					*	Create	a	new	notification	instance.

					*/

				public	function	__construct()

				{

								$this->afterCommit();

				}

}

[!NOTE]
To	learn	more	about	working	around	these	issues,	please	review	the	documentation	regarding	queued	jobs
and	database	transactions.

Determining	if	a	Queued	Notification	Should	Be	Sent

After	a	queued	notification	has	been	dispatched	for	the	queue	for	background	processing,	it	will	typically	be
accepted	by	a	queue	worker	and	sent	to	its	intended	recipient.

However,	if	you	would	like	to	make	the	final	determination	on	whether	the	queued	notification	should	be	sent
after	it	is	being	processed	by	a	queue	worker,	you	may	define	a	shouldSend	method	on	the	notification	class.	If
this	method	returns	false,	the	notification	will	not	be	sent:

/**

	*	Determine	if	the	notification	should	be	sent.

	*/

public	function	shouldSend(object	$notifiable,	string	$channel):	bool

{

Laravel	Documentation	-	10.x	/	Notifications 418

				return	$this->invoice->isPaid();

}

On-Demand	Notifications

Sometimes	you	may	need	to	send	a	notification	to	someone	who	is	not	stored	as	a	"user"	of	your	application.
Using	the	Notification	facade's	route	method,	you	may	specify	ad-hoc	notification	routing	information	before
sending	the	notification:

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Support\Facades\Notification;

Notification::route('mail',	'taylor@example.com')

												->route('vonage',	'5555555555')

												->route('slack',	'#slack-channel')

												->route('broadcast',	[new	Channel('channel-name')])

												->notify(new	InvoicePaid($invoice));

If	you	would	like	to	provide	the	recipient's	name	when	sending	an	on-demand	notification	to	the	mail	route,	you
may	provide	an	array	that	contains	the	email	address	as	the	key	and	the	name	as	the	value	of	the	first	element	in
the	array:

Notification::route('mail',	[

				'barrett@example.com'	=>	'Barrett	Blair',

])->notify(new	InvoicePaid($invoice));

Using	the	routes	method,	you	may	provide	ad-hoc	routing	information	for	multiple	notification	channels	at
once:

Notification::routes([

				'mail'	=>	['barrett@example.com'	=>	'Barrett	Blair'],

				'vonage'	=>	'5555555555',

])->notify(new	InvoicePaid($invoice));

Mail	Notifications

Formatting	Mail	Messages

If	a	notification	supports	being	sent	as	an	email,	you	should	define	a	toMail	method	on	the	notification	class.
This	method	will	receive	a	$notifiable	entity	and	should	return	an	
Illuminate\Notifications\Messages\MailMessage	instance.

The	MailMessage	class	contains	a	few	simple	methods	to	help	you	build	transactional	email	messages.	Mail
messages	may	contain	lines	of	text	as	well	as	a	"call	to	action".	Let's	take	a	look	at	an	example	toMail	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				$url	=	url('/invoice/'.$this->invoice->id);

				return	(new	MailMessage)

																->greeting('Hello!')

																->line('One	of	your	invoices	has	been	paid!')

																->lineIf($this->amount	>	0,	"Amount	paid:	{$this->amount}")

																->action('View	Invoice',	$url)

																->line('Thank	you	for	using	our	application!');

}

[!NOTE]
Note	we	are	using	$this->invoice->id	in	our	toMail	method.	You	may	pass	any	data	your	notification
needs	to	generate	its	message	into	the	notification's	constructor.

In	this	example,	we	register	a	greeting,	a	line	of	text,	a	call	to	action,	and	then	another	line	of	text.	These
methods	provided	by	the	MailMessage	object	make	it	simple	and	fast	to	format	small	transactional	emails.	The
mail	channel	will	then	translate	the	message	components	into	a	beautiful,	responsive	HTML	email	template
with	a	plain-text	counterpart.	Here	is	an	example	of	an	email	generated	by	the	mail	channel:

Laravel	Documentation	-	10.x	/	Notifications 419

[!NOTE]
When	sending	mail	notifications,	be	sure	to	set	the	name	configuration	option	in	your	config/app.php
configuration	file.	This	value	will	be	used	in	the	header	and	footer	of	your	mail	notification	messages.

Error	Messages

Some	notifications	inform	users	of	errors,	such	as	a	failed	invoice	payment.	You	may	indicate	that	a	mail
message	is	regarding	an	error	by	calling	the	error	method	when	building	your	message.	When	using	the	error
method	on	a	mail	message,	the	call	to	action	button	will	be	red	instead	of	black:

/**

	*	Get	the	mail	representation	of	the	notification.

Laravel	Documentation	-	10.x	/	Notifications 420

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->error()

																->subject('Invoice	Payment	Failed')

																->line('...');

}

Other	Mail	Notification	Formatting	Options

Instead	of	defining	the	"lines"	of	text	in	the	notification	class,	you	may	use	the	view	method	to	specify	a	custom
template	that	should	be	used	to	render	the	notification	email:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)->view(

								'mail.invoice.paid',	['invoice'	=>	$this->invoice]

);

}

You	may	specify	a	plain-text	view	for	the	mail	message	by	passing	the	view	name	as	the	second	element	of	an
array	that	is	given	to	the	view	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)->view(

								['mail.invoice.paid',	'mail.invoice.paid-text'],

								['invoice'	=>	$this->invoice]

);

}

Or,	if	your	message	only	has	a	plain-text	view,	you	may	utilize	the	text	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)->text(

								'mail.invoice.paid-text',	['invoice'	=>	$this->invoice]

);

}

Customizing	the	Sender

By	default,	the	email's	sender	/	from	address	is	defined	in	the	config/mail.php	configuration	file.	However,	you
may	specify	the	from	address	for	a	specific	notification	using	the	from	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->from('barrett@example.com',	'Barrett	Blair')

																->line('...');

}

Customizing	the	Recipient

When	sending	notifications	via	the	mail	channel,	the	notification	system	will	automatically	look	for	an	email
property	on	your	notifiable	entity.	You	may	customize	which	email	address	is	used	to	deliver	the	notification	by
defining	a	routeNotificationForMail	method	on	the	notifiable	entity:

<?php

Laravel	Documentation	-	10.x	/	Notifications 421

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Notifications\Notification;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	mail	channel.

					*

					*	@return		array<string,	string>|string

					*/

				public	function	routeNotificationForMail(Notification	$notification):	array|string

				{

								//	Return	email	address	only...

								return	$this->email_address;

								//	Return	email	address	and	name...

								return	[$this->email_address	=>	$this->name];

				}

}

Customizing	the	Subject

By	default,	the	email's	subject	is	the	class	name	of	the	notification	formatted	to	"Title	Case".	So,	if	your
notification	class	is	named	InvoicePaid,	the	email's	subject	will	be	Invoice	Paid.	If	you	would	like	to	specify	a
different	subject	for	the	message,	you	may	call	the	subject	method	when	building	your	message:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->subject('Notification	Subject')

																->line('...');

}

Customizing	the	Mailer

By	default,	the	email	notification	will	be	sent	using	the	default	mailer	defined	in	the	config/mail.php
configuration	file.	However,	you	may	specify	a	different	mailer	at	runtime	by	calling	the	mailer	method	when
building	your	message:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->mailer('postmark')

																->line('...');

}

Customizing	the	Templates

You	can	modify	the	HTML	and	plain-text	template	used	by	mail	notifications	by	publishing	the	notification
package's	resources.	After	running	this	command,	the	mail	notification	templates	will	be	located	in	the	
resources/views/vendor/notifications	directory:

php	artisan	vendor:publish	--tag=laravel-notifications

Attachments

To	add	attachments	to	an	email	notification,	use	the	attach	method	while	building	your	message.	The	attach
method	accepts	the	absolute	path	to	the	file	as	its	first	argument:

Laravel	Documentation	-	10.x	/	Notifications 422

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->greeting('Hello!')

																->attach('/path/to/file');

}

[!NOTE]
The	attach	method	offered	by	notification	mail	messages	also	accepts	attachable	objects.	Please	consult
the	comprehensive	attachable	object	documentation	to	learn	more.

When	attaching	files	to	a	message,	you	may	also	specify	the	display	name	and	/	or	MIME	type	by	passing	an	
array	as	the	second	argument	to	the	attach	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->greeting('Hello!')

																->attach('/path/to/file',	[

																				'as'	=>	'name.pdf',

																				'mime'	=>	'application/pdf',

]);

}

Unlike	attaching	files	in	mailable	objects,	you	may	not	attach	a	file	directly	from	a	storage	disk	using	
attachFromStorage.	You	should	rather	use	the	attach	method	with	an	absolute	path	to	the	file	on	the	storage
disk.	Alternatively,	you	could	return	a	mailable	from	the	toMail	method:

use	App\Mail\InvoicePaid	as	InvoicePaidMailable;

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	Mailable

{

				return	(new	InvoicePaidMailable($this->invoice))

																->to($notifiable->email)

																->attachFromStorage('/path/to/file');

}

When	necessary,	multiple	files	may	be	attached	to	a	message	using	the	attachMany	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->greeting('Hello!')

																->attachMany([

																				'/path/to/forge.svg',

																				'/path/to/vapor.svg'	=>	[

																								'as'	=>	'Logo.svg',

																								'mime'	=>	'image/svg+xml',

],

]);

}

Raw	Data	Attachments

The	attachData	method	may	be	used	to	attach	a	raw	string	of	bytes	as	an	attachment.	When	calling	the	
attachData	method,	you	should	provide	the	filename	that	should	be	assigned	to	the	attachment:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

Laravel	Documentation	-	10.x	/	Notifications 423

				return	(new	MailMessage)

																->greeting('Hello!')

																->attachData($this->pdf,	'name.pdf',	[

																				'mime'	=>	'application/pdf',

]);

}

Adding	Tags	and	Metadata

Some	third-party	email	providers	such	as	Mailgun	and	Postmark	support	message	"tags"	and	"metadata",	which
may	be	used	to	group	and	track	emails	sent	by	your	application.	You	may	add	tags	and	metadata	to	an	email
message	via	the	tag	and	metadata	methods:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->greeting('Comment	Upvoted!')

																->tag('upvote')

																->metadata('comment_id',	$this->comment->id);

}

If	your	application	is	using	the	Mailgun	driver,	you	may	consult	Mailgun's	documentation	for	more	information
on	tags	and	metadata.	Likewise,	the	Postmark	documentation	may	also	be	consulted	for	more	information	on
their	support	for	tags	and	metadata.

If	your	application	is	using	Amazon	SES	to	send	emails,	you	should	use	the	metadata	method	to	attach	SES
"tags"	to	the	message.

Customizing	the	Symfony	Message

The	withSymfonyMessage	method	of	the	MailMessage	class	allows	you	to	register	a	closure	which	will	be	invoked
with	the	Symfony	Message	instance	before	sending	the	message.	This	gives	you	an	opportunity	to	deeply
customize	the	message	before	it	is	delivered:

use	Symfony\Component\Mime\Email;

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->withSymfonyMessage(function	(Email	$message)	{

																				$message->getHeaders()->addTextHeader(

																								'Custom-Header',	'Header	Value'

);

																});

}

Using	Mailables

If	needed,	you	may	return	a	full	mailable	object	from	your	notification's	toMail	method.	When	returning	a	
Mailable	instead	of	a	MailMessage,	you	will	need	to	specify	the	message	recipient	using	the	mailable	object's	to
method:

use	App\Mail\InvoicePaid	as	InvoicePaidMailable;

use	Illuminate\Mail\Mailable;

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	Mailable

{

				return	(new	InvoicePaidMailable($this->invoice))

																->to($notifiable->email);

}

Laravel	Documentation	-	10.x	/	Notifications 424

https://documentation.mailgun.com/en/latest/user_manual.html#tagging-1
https://documentation.mailgun.com/en/latest/user_manual.html#attaching-data-to-messages
https://postmarkapp.com/blog/tags-support-for-smtp
https://postmarkapp.com/support/article/1125-custom-metadata-faq
https://docs.aws.amazon.com/ses/latest/APIReference/API_MessageTag.html

Mailables	and	On-Demand	Notifications

If	you	are	sending	an	on-demand	notification,	the	$notifiable	instance	given	to	the	toMail	method	will	be	an
instance	of	Illuminate\Notifications\AnonymousNotifiable,	which	offers	a	routeNotificationFor	method	that
may	be	used	to	retrieve	the	email	address	the	on-demand	notification	should	be	sent	to:

use	App\Mail\InvoicePaid	as	InvoicePaidMailable;

use	Illuminate\Notifications\AnonymousNotifiable;

use	Illuminate\Mail\Mailable;

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	Mailable

{

				$address	=	$notifiable	instanceof	AnonymousNotifiable

												?	$notifiable->routeNotificationFor('mail')

												:	$notifiable->email;

				return	(new	InvoicePaidMailable($this->invoice))

																->to($address);

}

Previewing	Mail	Notifications

When	designing	a	mail	notification	template,	it	is	convenient	to	quickly	preview	the	rendered	mail	message	in
your	browser	like	a	typical	Blade	template.	For	this	reason,	Laravel	allows	you	to	return	any	mail	message
generated	by	a	mail	notification	directly	from	a	route	closure	or	controller.	When	a	MailMessage	is	returned,	it
will	be	rendered	and	displayed	in	the	browser,	allowing	you	to	quickly	preview	its	design	without	needing	to
send	it	to	an	actual	email	address:

use	App\Models\Invoice;

use	App\Notifications\InvoicePaid;

Route::get('/notification',	function	()	{

				$invoice	=	Invoice::find(1);

				return	(new	InvoicePaid($invoice))

																->toMail($invoice->user);

});

Markdown	Mail	Notifications

Markdown	mail	notifications	allow	you	to	take	advantage	of	the	pre-built	templates	of	mail	notifications,	while
giving	you	more	freedom	to	write	longer,	customized	messages.	Since	the	messages	are	written	in	Markdown,
Laravel	is	able	to	render	beautiful,	responsive	HTML	templates	for	the	messages	while	also	automatically
generating	a	plain-text	counterpart.

Generating	the	Message

To	generate	a	notification	with	a	corresponding	Markdown	template,	you	may	use	the	--markdown	option	of	the	
make:notification	Artisan	command:

php	artisan	make:notification	InvoicePaid	--markdown=mail.invoice.paid

Like	all	other	mail	notifications,	notifications	that	use	Markdown	templates	should	define	a	toMail	method	on
their	notification	class.	However,	instead	of	using	the	line	and	action	methods	to	construct	the	notification,	use
the	markdown	method	to	specify	the	name	of	the	Markdown	template	that	should	be	used.	An	array	of	data	you
wish	to	make	available	to	the	template	may	be	passed	as	the	method's	second	argument:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				$url	=	url('/invoice/'.$this->invoice->id);

				return	(new	MailMessage)

Laravel	Documentation	-	10.x	/	Notifications 425

																->subject('Invoice	Paid')

																->markdown('mail.invoice.paid',	['url'	=>	$url]);

}

Writing	the	Message

Markdown	mail	notifications	use	a	combination	of	Blade	components	and	Markdown	syntax	which	allow	you
to	easily	construct	notifications	while	leveraging	Laravel's	pre-crafted	notification	components:

<x-mail::message>

#	Invoice	Paid

Your	invoice	has	been	paid!

<x-mail::button	:url="$url">

View	Invoice

</x-mail::button>

Thanks,

{{	config('app.name')	}}

</x-mail::message>

Button	Component

The	button	component	renders	a	centered	button	link.	The	component	accepts	two	arguments,	a	url	and	an
optional	color.	Supported	colors	are	primary,	green,	and	red.	You	may	add	as	many	button	components	to	a
notification	as	you	wish:

<x-mail::button	:url="$url"	color="green">

View	Invoice

</x-mail::button>

Panel	Component

The	panel	component	renders	the	given	block	of	text	in	a	panel	that	has	a	slightly	different	background	color
than	the	rest	of	the	notification.	This	allows	you	to	draw	attention	to	a	given	block	of	text:

<x-mail::panel>

This	is	the	panel	content.

</x-mail::panel>

Table	Component

The	table	component	allows	you	to	transform	a	Markdown	table	into	an	HTML	table.	The	component	accepts
the	Markdown	table	as	its	content.	Table	column	alignment	is	supported	using	the	default	Markdown	table
alignment	syntax:

<x-mail::table>

|	Laravel							|	Table									|	Example		|

|	-------------	|:-------------:|	--------:|

|	Col	2	is						|	Centered						|	$10						|

|	Col	3	is						|	Right-Aligned	|	$20						|

</x-mail::table>

Customizing	the	Components

You	may	export	all	of	the	Markdown	notification	components	to	your	own	application	for	customization.	To
export	the	components,	use	the	vendor:publish	Artisan	command	to	publish	the	laravel-mail	asset	tag:

php	artisan	vendor:publish	--tag=laravel-mail

This	command	will	publish	the	Markdown	mail	components	to	the	resources/views/vendor/mail	directory.	The	
mail	directory	will	contain	an	html	and	a	text	directory,	each	containing	their	respective	representations	of
every	available	component.	You	are	free	to	customize	these	components	however	you	like.

Customizing	the	CSS

Laravel	Documentation	-	10.x	/	Notifications 426

After	exporting	the	components,	the	resources/views/vendor/mail/html/themes	directory	will	contain	a	
default.css	file.	You	may	customize	the	CSS	in	this	file	and	your	styles	will	automatically	be	in-lined	within
the	HTML	representations	of	your	Markdown	notifications.

If	you	would	like	to	build	an	entirely	new	theme	for	Laravel's	Markdown	components,	you	may	place	a	CSS
file	within	the	html/themes	directory.	After	naming	and	saving	your	CSS	file,	update	the	theme	option	of	the	
mail	configuration	file	to	match	the	name	of	your	new	theme.

To	customize	the	theme	for	an	individual	notification,	you	may	call	the	theme	method	while	building	the
notification's	mail	message.	The	theme	method	accepts	the	name	of	the	theme	that	should	be	used	when	sending
the	notification:

/**

	*	Get	the	mail	representation	of	the	notification.

	*/

public	function	toMail(object	$notifiable):	MailMessage

{

				return	(new	MailMessage)

																->theme('invoice')

																->subject('Invoice	Paid')

																->markdown('mail.invoice.paid',	['url'	=>	$url]);

}

Database	Notifications

Prerequisites

The	database	notification	channel	stores	the	notification	information	in	a	database	table.	This	table	will	contain
information	such	as	the	notification	type	as	well	as	a	JSON	data	structure	that	describes	the	notification.

You	can	query	the	table	to	display	the	notifications	in	your	application's	user	interface.	But,	before	you	can	do
that,	you	will	need	to	create	a	database	table	to	hold	your	notifications.	You	may	use	the	notifications:table
command	to	generate	a	migration	with	the	proper	table	schema:

php	artisan	notifications:table

php	artisan	migrate

[!NOTE]
If	your	notifiable	models	are	using	UUID	or	ULID	primary	keys,	you	should	replace	the	morphs	method
with	uuidMorphs	or	ulidMorphs	in	the	notification	table	migration.

Formatting	Database	Notifications

If	a	notification	supports	being	stored	in	a	database	table,	you	should	define	a	toDatabase	or	toArray	method	on
the	notification	class.	This	method	will	receive	a	$notifiable	entity	and	should	return	a	plain	PHP	array.	The
returned	array	will	be	encoded	as	JSON	and	stored	in	the	data	column	of	your	notifications	table.	Let's	take	a
look	at	an	example	toArray	method:

/**

	*	Get	the	array	representation	of	the	notification.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(object	$notifiable):	array

{

				return	[

								'invoice_id'	=>	$this->invoice->id,

								'amount'	=>	$this->invoice->amount,

];

}

When	the	notification	is	stored	in	your	application's	database,	the	type	column	will	be	populated	with	the
notification's	class	name.	However,	you	may	customize	this	behavior	by	defining	a	databaseType	method	on
your	notification	class:

/**

Laravel	Documentation	-	10.x	/	Notifications 427

	*	Get	the	notification's	database	type.

	*

	*	@return	string

	*/

public	function	databaseType(object	$notifiable):	string

{

				return	'invoice-paid';

}

toDatabase	vs.	toArray

The	toArray	method	is	also	used	by	the	broadcast	channel	to	determine	which	data	to	broadcast	to	your
JavaScript	powered	frontend.	If	you	would	like	to	have	two	different	array	representations	for	the	database	and	
broadcast	channels,	you	should	define	a	toDatabase	method	instead	of	a	toArray	method.

Accessing	the	Notifications

Once	notifications	are	stored	in	the	database,	you	need	a	convenient	way	to	access	them	from	your	notifiable
entities.	The	Illuminate\Notifications\Notifiable	trait,	which	is	included	on	Laravel's	default	App\Models\User
model,	includes	a	notifications	Eloquent	relationship	that	returns	the	notifications	for	the	entity.	To	fetch
notifications,	you	may	access	this	method	like	any	other	Eloquent	relationship.	By	default,	notifications	will	be
sorted	by	the	created_at	timestamp	with	the	most	recent	notifications	at	the	beginning	of	the	collection:

$user	=	App\Models\User::find(1);

foreach	($user->notifications	as	$notification)	{

				echo	$notification->type;

}

If	you	want	to	retrieve	only	the	"unread"	notifications,	you	may	use	the	unreadNotifications	relationship.
Again,	these	notifications	will	be	sorted	by	the	created_at	timestamp	with	the	most	recent	notifications	at	the
beginning	of	the	collection:

$user	=	App\Models\User::find(1);

foreach	($user->unreadNotifications	as	$notification)	{

				echo	$notification->type;

}

[!NOTE]
To	access	your	notifications	from	your	JavaScript	client,	you	should	define	a	notification	controller	for
your	application	which	returns	the	notifications	for	a	notifiable	entity,	such	as	the	current	user.	You	may
then	make	an	HTTP	request	to	that	controller's	URL	from	your	JavaScript	client.

Marking	Notifications	as	Read

Typically,	you	will	want	to	mark	a	notification	as	"read"	when	a	user	views	it.	The	
Illuminate\Notifications\Notifiable	trait	provides	a	markAsRead	method,	which	updates	the	read_at	column	on
the	notification's	database	record:

$user	=	App\Models\User::find(1);

foreach	($user->unreadNotifications	as	$notification)	{

				$notification->markAsRead();

}

However,	instead	of	looping	through	each	notification,	you	may	use	the	markAsRead	method	directly	on	a
collection	of	notifications:

$user->unreadNotifications->markAsRead();

You	may	also	use	a	mass-update	query	to	mark	all	of	the	notifications	as	read	without	retrieving	them	from	the
database:

$user	=	App\Models\User::find(1);

$user->unreadNotifications()->update(['read_at'	=>	now()]);

Laravel	Documentation	-	10.x	/	Notifications 428

You	may	delete	the	notifications	to	remove	them	from	the	table	entirely:

$user->notifications()->delete();

Broadcast	Notifications

Prerequisites

Before	broadcasting	notifications,	you	should	configure	and	be	familiar	with	Laravel's	event	broadcasting
services.	Event	broadcasting	provides	a	way	to	react	to	server-side	Laravel	events	from	your	JavaScript
powered	frontend.

Formatting	Broadcast	Notifications

The	broadcast	channel	broadcasts	notifications	using	Laravel's	event	broadcasting	services,	allowing	your
JavaScript	powered	frontend	to	catch	notifications	in	realtime.	If	a	notification	supports	broadcasting,	you	can
define	a	toBroadcast	method	on	the	notification	class.	This	method	will	receive	a	$notifiable	entity	and	should
return	a	BroadcastMessage	instance.	If	the	toBroadcast	method	does	not	exist,	the	toArray	method	will	be	used	to
gather	the	data	that	should	be	broadcast.	The	returned	data	will	be	encoded	as	JSON	and	broadcast	to	your
JavaScript	powered	frontend.	Let's	take	a	look	at	an	example	toBroadcast	method:

use	Illuminate\Notifications\Messages\BroadcastMessage;

/**

	*	Get	the	broadcastable	representation	of	the	notification.

	*/

public	function	toBroadcast(object	$notifiable):	BroadcastMessage

{

				return	new	BroadcastMessage([

								'invoice_id'	=>	$this->invoice->id,

								'amount'	=>	$this->invoice->amount,

]);

}

Broadcast	Queue	Configuration

All	broadcast	notifications	are	queued	for	broadcasting.	If	you	would	like	to	configure	the	queue	connection	or
queue	name	that	is	used	to	queue	the	broadcast	operation,	you	may	use	the	onConnection	and	onQueue	methods
of	the	BroadcastMessage:

return	(new	BroadcastMessage($data))

																->onConnection('sqs')

																->onQueue('broadcasts');

Customizing	the	Notification	Type

In	addition	to	the	data	you	specify,	all	broadcast	notifications	also	have	a	type	field	containing	the	full	class
name	of	the	notification.	If	you	would	like	to	customize	the	notification	type,	you	may	define	a	broadcastType
method	on	the	notification	class:

/**

	*	Get	the	type	of	the	notification	being	broadcast.

	*/

public	function	broadcastType():	string

{

				return	'broadcast.message';

}

Listening	for	Notifications

Notifications	will	broadcast	on	a	private	channel	formatted	using	a	{notifiable}.{id}	convention.	So,	if	you	are
sending	a	notification	to	an	App\Models\User	instance	with	an	ID	of	1,	the	notification	will	be	broadcast	on	the	
App.Models.User.1	private	channel.	When	using	Laravel	Echo,	you	may	easily	listen	for	notifications	on	a
channel	using	the	notification	method:

Laravel	Documentation	-	10.x	/	Notifications 429

Echo.private('App.Models.User.'	+	userId)

				.notification((notification)	=>	{

								console.log(notification.type);

				});

Customizing	the	Notification	Channel

If	you	would	like	to	customize	which	channel	that	an	entity's	broadcast	notifications	are	broadcast	on,	you	may
define	a	receivesBroadcastNotificationsOn	method	on	the	notifiable	entity:

<?php

namespace	App\Models;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	The	channels	the	user	receives	notification	broadcasts	on.

					*/

				public	function	receivesBroadcastNotificationsOn():	string

				{

								return	'users.'.$this->id;

				}

}

SMS	Notifications

Prerequisites

Sending	SMS	notifications	in	Laravel	is	powered	by	Vonage	(formerly	known	as	Nexmo).	Before	you	can	send
notifications	via	Vonage,	you	need	to	install	the	laravel/vonage-notification-channel	and	guzzlehttp/guzzle
packages:

composer	require	laravel/vonage-notification-channel	guzzlehttp/guzzle

The	package	includes	a	configuration	file.	However,	you	are	not	required	to	export	this	configuration	file	to
your	own	application.	You	can	simply	use	the	VONAGE_KEY	and	VONAGE_SECRET	environment	variables	to	define
your	Vonage	public	and	secret	keys.

After	defining	your	keys,	you	should	set	a	VONAGE_SMS_FROM	environment	variable	that	defines	the	phone	number
that	your	SMS	messages	should	be	sent	from	by	default.	You	may	generate	this	phone	number	within	the
Vonage	control	panel:

VONAGE_SMS_FROM=15556666666

Formatting	SMS	Notifications

If	a	notification	supports	being	sent	as	an	SMS,	you	should	define	a	toVonage	method	on	the	notification	class.
This	method	will	receive	a	$notifiable	entity	and	should	return	an	
Illuminate\Notifications\Messages\VonageMessage	instance:

use	Illuminate\Notifications\Messages\VonageMessage;

/**

	*	Get	the	Vonage	/	SMS	representation	of	the	notification.

	*/

public	function	toVonage(object	$notifiable):	VonageMessage

{

				return	(new	VonageMessage)

																->content('Your	SMS	message	content');

}

Laravel	Documentation	-	10.x	/	Notifications 430

https://www.vonage.com/
https://github.com/laravel/vonage-notification-channel/blob/3.x/config/vonage.php

Unicode	Content

If	your	SMS	message	will	contain	unicode	characters,	you	should	call	the	unicode	method	when	constructing
the	VonageMessage	instance:

use	Illuminate\Notifications\Messages\VonageMessage;

/**

	*	Get	the	Vonage	/	SMS	representation	of	the	notification.

	*/

public	function	toVonage(object	$notifiable):	VonageMessage

{

				return	(new	VonageMessage)

																->content('Your	unicode	message')

																->unicode();

}

Customizing	the	"From"	Number

If	you	would	like	to	send	some	notifications	from	a	phone	number	that	is	different	from	the	phone	number
specified	by	your	VONAGE_SMS_FROM	environment	variable,	you	may	call	the	from	method	on	a	VonageMessage
instance:

use	Illuminate\Notifications\Messages\VonageMessage;

/**

	*	Get	the	Vonage	/	SMS	representation	of	the	notification.

	*/

public	function	toVonage(object	$notifiable):	VonageMessage

{

				return	(new	VonageMessage)

																->content('Your	SMS	message	content')

																->from('15554443333');

}

Adding	a	Client	Reference

If	you	would	like	to	keep	track	of	costs	per	user,	team,	or	client,	you	may	add	a	"client	reference"	to	the
notification.	Vonage	will	allow	you	to	generate	reports	using	this	client	reference	so	that	you	can	better
understand	a	particular	customer's	SMS	usage.	The	client	reference	can	be	any	string	up	to	40	characters:

use	Illuminate\Notifications\Messages\VonageMessage;

/**

	*	Get	the	Vonage	/	SMS	representation	of	the	notification.

	*/

public	function	toVonage(object	$notifiable):	VonageMessage

{

				return	(new	VonageMessage)

																->clientReference((string)	$notifiable->id)

																->content('Your	SMS	message	content');

}

Routing	SMS	Notifications

To	route	Vonage	notifications	to	the	proper	phone	number,	define	a	routeNotificationForVonage	method	on	your
notifiable	entity:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Notifications\Notification;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

Laravel	Documentation	-	10.x	/	Notifications 431

					*	Route	notifications	for	the	Vonage	channel.

					*/

				public	function	routeNotificationForVonage(Notification	$notification):	string

				{

								return	$this->phone_number;

				}

}

Slack	Notifications

Prerequisites

Before	sending	Slack	notifications,	you	should	install	the	Slack	notification	channel	via	Composer:

composer	require	laravel/slack-notification-channel

Additionally,	you	must	create	a	Slack	App	for	your	Slack	workspace.

If	you	only	need	to	send	notifications	to	the	same	Slack	workspace	that	the	App	is	created	in,	you	should	ensure
that	your	App	has	the	chat:write,	chat:write.public,	and	chat:write.customize	scopes.	These	scopes	can	be
added	from	the	"OAuth	&	Permissions"	App	management	tab	within	Slack.

Next,	copy	the	App's	"Bot	User	OAuth	Token"	and	place	it	within	a	slack	configuration	array	in	your
application's	services.php	configuration	file.	This	token	can	be	found	on	the	"OAuth	&	Permissions"	tab	within
Slack:

'slack'	=>	[

				'notifications'	=>	[

								'bot_user_oauth_token'	=>	env('SLACK_BOT_USER_OAUTH_TOKEN'),

								'channel'	=>	env('SLACK_BOT_USER_DEFAULT_CHANNEL'),

],

],

App	Distribution

If	your	application	will	be	sending	notifications	to	external	Slack	workspaces	that	are	owned	by	your
application's	users,	you	will	need	to	"distribute"	your	App	via	Slack.	App	distribution	can	be	managed	from
your	App's	"Manage	Distribution"	tab	within	Slack.	Once	your	App	has	been	distributed,	you	may	use	Socialite
to	obtain	Slack	Bot	tokens	on	behalf	of	your	application's	users.

Formatting	Slack	Notifications

If	a	notification	supports	being	sent	as	a	Slack	message,	you	should	define	a	toSlack	method	on	the	notification
class.	This	method	will	receive	a	$notifiable	entity	and	should	return	an	
Illuminate\Notifications\Slack\SlackMessage	instance.	You	can	construct	rich	notifications	using	Slack's	Block
Kit	API.	The	following	example	may	be	previewed	in	Slack's	Block	Kit	builder:

use	Illuminate\Notifications\Slack\BlockKit\Blocks\ContextBlock;

use	Illuminate\Notifications\Slack\BlockKit\Blocks\SectionBlock;

use	Illuminate\Notifications\Slack\BlockKit\Composites\ConfirmObject;

use	Illuminate\Notifications\Slack\SlackMessage;

/**

	*	Get	the	Slack	representation	of	the	notification.

	*/

public	function	toSlack(object	$notifiable):	SlackMessage

{

				return	(new	SlackMessage)

												->text('One	of	your	invoices	has	been	paid!')

												->headerBlock('Invoice	Paid')

												->contextBlock(function	(ContextBlock	$block)	{

																$block->text('Customer	#1234');

												})

												->sectionBlock(function	(SectionBlock	$block)	{

																$block->text('An	invoice	has	been	paid.');

																$block->field("*Invoice	No:*\n1000")->markdown();

																$block->field("*Invoice	Recipient:*\ntaylor@laravel.com")->markdown();

												})

												->dividerBlock()

Laravel	Documentation	-	10.x	/	Notifications 432

https://api.slack.com/apps?new_app=1
https://api.slack.com/block-kit
https://app.slack.com/block-kit-builder/T01KWS6K23Z#%7B%22blocks%22:%5B%7B%22type%22:%22header%22,%22text%22:%7B%22type%22:%22plain_text%22,%22text%22:%22Invoice%20Paid%22%7D%7D,%7B%22type%22:%22context%22,%22elements%22:%5B%7B%22type%22:%22plain_text%22,%22text%22:%22Customer%20%231234%22%7D%5D%7D,%7B%22type%22:%22section%22,%22text%22:%7B%22type%22:%22plain_text%22,%22text%22:%22An%20invoice%20has%20been%20paid.%22%7D,%22fields%22:%5B%7B%22type%22:%22mrkdwn%22,%22text%22:%22*Invoice%20No:*%5Cn1000%22%7D,%7B%22type%22:%22mrkdwn%22,%22text%22:%22*Invoice%20Recipient:*%5Cntaylor@laravel.com%22%7D%5D%7D,%7B%22type%22:%22divider%22%7D,%7B%22type%22:%22section%22,%22text%22:%7B%22type%22:%22plain_text%22,%22text%22:%22Congratulations!%22%7D%7D%5D%7D

												->sectionBlock(function	(SectionBlock	$block)	{

																$block->text('Congratulations!');

												});

}

Slack	Interactivity

Slack's	Block	Kit	notification	system	provides	powerful	features	to	handle	user	interaction.	To	utilize	these
features,	your	Slack	App	should	have	"Interactivity"	enabled	and	a	"Request	URL"	configured	that	points	to	a
URL	served	by	your	application.	These	settings	can	be	managed	from	the	"Interactivity	&	Shortcuts"	App
management	tab	within	Slack.

In	the	following	example,	which	utilizes	the	actionsBlock	method,	Slack	will	send	a	POST	request	to	your
"Request	URL"	with	a	payload	containing	the	Slack	user	who	clicked	the	button,	the	ID	of	the	clicked	button,
and	more.	Your	application	can	then	determine	the	action	to	take	based	on	the	payload.	You	should	also	verify
the	request	was	made	by	Slack:

use	Illuminate\Notifications\Slack\BlockKit\Blocks\ActionsBlock;

use	Illuminate\Notifications\Slack\BlockKit\Blocks\ContextBlock;

use	Illuminate\Notifications\Slack\BlockKit\Blocks\SectionBlock;

use	Illuminate\Notifications\Slack\SlackMessage;

/**

	*	Get	the	Slack	representation	of	the	notification.

	*/

public	function	toSlack(object	$notifiable):	SlackMessage

{

				return	(new	SlackMessage)

												->text('One	of	your	invoices	has	been	paid!')

												->headerBlock('Invoice	Paid')

												->contextBlock(function	(ContextBlock	$block)	{

																$block->text('Customer	#1234');

												})

												->sectionBlock(function	(SectionBlock	$block)	{

																$block->text('An	invoice	has	been	paid.');

												})

												->actionsBlock(function	(ActionsBlock	$block)	{

																	//	ID	defaults	to	"button_acknowledge_invoice"...

																$block->button('Acknowledge	Invoice')->primary();

																//	Manually	configure	the	ID...

																$block->button('Deny')->danger()->id('deny_invoice');

												});

}

Confirmation	Modals

If	you	would	like	users	to	be	required	to	confirm	an	action	before	it	is	performed,	you	may	invoke	the	confirm
method	when	defining	your	button.	The	confirm	method	accepts	a	message	and	a	closure	which	receives	a	
ConfirmObject	instance:

use	Illuminate\Notifications\Slack\BlockKit\Blocks\ActionsBlock;

use	Illuminate\Notifications\Slack\BlockKit\Blocks\ContextBlock;

use	Illuminate\Notifications\Slack\BlockKit\Blocks\SectionBlock;

use	Illuminate\Notifications\Slack\BlockKit\Composites\ConfirmObject;

use	Illuminate\Notifications\Slack\SlackMessage;

/**

	*	Get	the	Slack	representation	of	the	notification.

	*/

public	function	toSlack(object	$notifiable):	SlackMessage

{

				return	(new	SlackMessage)

												->text('One	of	your	invoices	has	been	paid!')

												->headerBlock('Invoice	Paid')

												->contextBlock(function	(ContextBlock	$block)	{

																$block->text('Customer	#1234');

												})

												->sectionBlock(function	(SectionBlock	$block)	{

																$block->text('An	invoice	has	been	paid.');

												})

												->actionsBlock(function	(ActionsBlock	$block)	{

																$block->button('Acknowledge	Invoice')

																				->primary()

Laravel	Documentation	-	10.x	/	Notifications 433

https://api.slack.com/interactivity/handling
https://api.slack.com/authentication/verifying-requests-from-slack

																				->confirm(

																								'Acknowledge	the	payment	and	send	a	thank	you	email?',

																								function	(ConfirmObject	$dialog)	{

																												$dialog->confirm('Yes');

																												$dialog->deny('No');

																								}

);

												});

}

Inspecting	Slack	Blocks

If	you	would	like	to	quickly	inspect	the	blocks	you've	been	building,	you	can	invoke	the	dd	method	on	the	
SlackMessage	instance.	The	dd	method	will	generate	and	dump	a	URL	to	Slack's	Block	Kit	Builder,	which
displays	a	preview	of	the	payload	and	notification	in	your	browser.	You	may	pass	true	to	the	dd	method	to
dump	the	raw	payload:

return	(new	SlackMessage)

								->text('One	of	your	invoices	has	been	paid!')

								->headerBlock('Invoice	Paid')

								->dd();

Routing	Slack	Notifications

To	direct	Slack	notifications	to	the	appropriate	Slack	team	and	channel,	define	a	routeNotificationForSlack
method	on	your	notifiable	model.	This	method	can	return	one	of	three	values:

null	-	which	defers	routing	to	the	channel	configured	in	the	notification	itself.	You	may	use	the	to
method	when	building	your	SlackMessage	to	configure	the	channel	within	the	notification.
A	string	specifying	the	Slack	channel	to	send	the	notification	to,	e.g.	#support-channel.
A	SlackRoute	instance,	which	allows	you	to	specify	an	OAuth	token	and	channel	name,	e.g.	
SlackRoute::make($this->slack_channel,	$this->slack_token).	This	method	should	be	used	to	send
notifications	to	external	workspaces.

For	instance,	returning	#support-channel	from	the	routeNotificationForSlack	method	will	send	the	notification
to	the	#support-channel	channel	in	the	workspace	associated	with	the	Bot	User	OAuth	token	located	in	your
application's	services.php	configuration	file:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Notifications\Notification;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	Slack	channel.

					*/

				public	function	routeNotificationForSlack(Notification	$notification):	mixed

				{

								return	'#support-channel';

				}

}

Notifying	External	Slack	Workspaces

[!NOTE]
Before	sending	notifications	to	external	Slack	workspaces,	your	Slack	App	must	be	distributed.

Of	course,	you	will	often	want	to	send	notifications	to	the	Slack	workspaces	owned	by	your	application's	users.
To	do	so,	you	will	first	need	to	obtain	a	Slack	OAuth	token	for	the	user.	Thankfully,	Laravel	Socialite	includes	a
Slack	driver	that	will	allow	you	to	easily	authenticate	your	application's	users	with	Slack	and	obtain	a	bot
token.

Laravel	Documentation	-	10.x	/	Notifications 434

https://app.slack.com/block-kit-builder/

Once	you	have	obtained	the	bot	token	and	stored	it	within	your	application's	database,	you	may	utilize	the	
SlackRoute::make	method	to	route	a	notification	to	the	user's	workspace.	In	addition,	your	application	will	likely
need	to	offer	an	opportunity	for	the	user	to	specify	which	channel	notifications	should	be	sent	to:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Notifications\Notification;

use	Illuminate\Notifications\Slack\SlackRoute;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	Slack	channel.

					*/

				public	function	routeNotificationForSlack(Notification	$notification):	mixed

				{

								return	SlackRoute::make($this->slack_channel,	$this->slack_token);

				}

}

Localizing	Notifications

Laravel	allows	you	to	send	notifications	in	a	locale	other	than	the	HTTP	request's	current	locale,	and	will	even
remember	this	locale	if	the	notification	is	queued.

To	accomplish	this,	the	Illuminate\Notifications\Notification	class	offers	a	locale	method	to	set	the	desired
language.	The	application	will	change	into	this	locale	when	the	notification	is	being	evaluated	and	then	revert
back	to	the	previous	locale	when	evaluation	is	complete:

$user->notify((new	InvoicePaid($invoice))->locale('es'));

Localization	of	multiple	notifiable	entries	may	also	be	achieved	via	the	Notification	facade:

Notification::locale('es')->send(

				$users,	new	InvoicePaid($invoice)

);

User	Preferred	Locales

Sometimes,	applications	store	each	user's	preferred	locale.	By	implementing	the	HasLocalePreference	contract
on	your	notifiable	model,	you	may	instruct	Laravel	to	use	this	stored	locale	when	sending	a	notification:

use	Illuminate\Contracts\Translation\HasLocalePreference;

class	User	extends	Model	implements	HasLocalePreference

{

				/**

					*	Get	the	user's	preferred	locale.

					*/

				public	function	preferredLocale():	string

				{

								return	$this->locale;

				}

}

Once	you	have	implemented	the	interface,	Laravel	will	automatically	use	the	preferred	locale	when	sending
notifications	and	mailables	to	the	model.	Therefore,	there	is	no	need	to	call	the	locale	method	when	using	this
interface:

$user->notify(new	InvoicePaid($invoice));

Testing

Laravel	Documentation	-	10.x	/	Notifications 435

You	may	use	the	Notification	facade's	fake	method	to	prevent	notifications	from	being	sent.	Typically,	sending
notifications	is	unrelated	to	the	code	you	are	actually	testing.	Most	likely,	it	is	sufficient	to	simply	assert	that
Laravel	was	instructed	to	send	a	given	notification.

After	calling	the	Notification	facade's	fake	method,	you	may	then	assert	that	notifications	were	instructed	to	be
sent	to	users	and	even	inspect	the	data	the	notifications	received:

<?php

namespace	Tests\Feature;

use	App\Notifications\OrderShipped;

use	Illuminate\Support\Facades\Notification;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_orders_can_be_shipped():	void

				{

								Notification::fake();

								//	Perform	order	shipping...

								//	Assert	that	no	notifications	were	sent...

								Notification::assertNothingSent();

								//	Assert	a	notification	was	sent	to	the	given	users...

								Notification::assertSentTo(

												[$user],	OrderShipped::class

);

								//	Assert	a	notification	was	not	sent...

								Notification::assertNotSentTo(

												[$user],	AnotherNotification::class

);

								//	Assert	that	a	given	number	of	notifications	were	sent...

								Notification::assertCount(3);

				}

}

You	may	pass	a	closure	to	the	assertSentTo	or	assertNotSentTo	methods	in	order	to	assert	that	a	notification	was
sent	that	passes	a	given	"truth	test".	If	at	least	one	notification	was	sent	that	passes	the	given	truth	test	then	the
assertion	will	be	successful:

Notification::assertSentTo(

				$user,

				function	(OrderShipped	$notification,	array	$channels)	use	($order)	{

								return	$notification->order->id	===	$order->id;

				}

);

On-Demand	Notifications

If	the	code	you	are	testing	sends	on-demand	notifications,	you	can	test	that	the	on-demand	notification	was	sent
via	the	assertSentOnDemand	method:

Notification::assertSentOnDemand(OrderShipped::class);

By	passing	a	closure	as	the	second	argument	to	the	assertSentOnDemand	method,	you	may	determine	if	an	on-
demand	notification	was	sent	to	the	correct	"route"	address:

Notification::assertSentOnDemand(

				OrderShipped::class,

				function	(OrderShipped	$notification,	array	$channels,	object	$notifiable)	use	($user)	{

								return	$notifiable->routes['mail']	===	$user->email;

				}

);

Notification	Events

Notification	Sending	Event

Laravel	Documentation	-	10.x	/	Notifications 436

When	a	notification	is	sending,	the	Illuminate\Notifications\Events\NotificationSending	event	is	dispatched
by	the	notification	system.	This	contains	the	"notifiable"	entity	and	the	notification	instance	itself.	You	may
register	listeners	for	this	event	in	your	application's	EventServiceProvider:

use	App\Listeners\CheckNotificationStatus;

use	Illuminate\Notifications\Events\NotificationSending;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				NotificationSending::class	=>	[

								CheckNotificationStatus::class,

],

];

The	notification	will	not	be	sent	if	an	event	listener	for	the	NotificationSending	event	returns	false	from	its	
handle	method:

use	Illuminate\Notifications\Events\NotificationSending;

/**

	*	Handle	the	event.

	*/

public	function	handle(NotificationSending	$event):	bool

{

				return	false;

}

Within	an	event	listener,	you	may	access	the	notifiable,	notification,	and	channel	properties	on	the	event	to
learn	more	about	the	notification	recipient	or	the	notification	itself:

/**

	*	Handle	the	event.

	*/

public	function	handle(NotificationSending	$event):	void

{

				//	$event->channel

				//	$event->notifiable

				//	$event->notification

}

Notification	Sent	Event

When	a	notification	is	sent,	the	Illuminate\Notifications\Events\NotificationSent	event	is	dispatched	by	the
notification	system.	This	contains	the	"notifiable"	entity	and	the	notification	instance	itself.	You	may	register
listeners	for	this	event	in	your	EventServiceProvider:

use	App\Listeners\LogNotification;

use	Illuminate\Notifications\Events\NotificationSent;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				NotificationSent::class	=>	[

								LogNotification::class,

],

];

[!NOTE]
After	registering	listeners	in	your	EventServiceProvider,	use	the	event:generate	Artisan	command	to
quickly	generate	listener	classes.

Within	an	event	listener,	you	may	access	the	notifiable,	notification,	channel,	and	response	properties	on	the
event	to	learn	more	about	the	notification	recipient	or	the	notification	itself:

/**

	*	Handle	the	event.

Laravel	Documentation	-	10.x	/	Notifications 437

	*/

public	function	handle(NotificationSent	$event):	void

{

				//	$event->channel

				//	$event->notifiable

				//	$event->notification

				//	$event->response

}

Custom	Channels

Laravel	ships	with	a	handful	of	notification	channels,	but	you	may	want	to	write	your	own	drivers	to	deliver
notifications	via	other	channels.	Laravel	makes	it	simple.	To	get	started,	define	a	class	that	contains	a	send
method.	The	method	should	receive	two	arguments:	a	$notifiable	and	a	$notification.

Within	the	send	method,	you	may	call	methods	on	the	notification	to	retrieve	a	message	object	understood	by
your	channel	and	then	send	the	notification	to	the	$notifiable	instance	however	you	wish:

<?php

namespace	App\Notifications;

use	Illuminate\Notifications\Notification;

class	VoiceChannel

{

				/**

					*	Send	the	given	notification.

					*/

				public	function	send(object	$notifiable,	Notification	$notification):	void

				{

								$message	=	$notification->toVoice($notifiable);

								//	Send	notification	to	the	$notifiable	instance...

				}

}

Once	your	notification	channel	class	has	been	defined,	you	may	return	the	class	name	from	the	via	method	of
any	of	your	notifications.	In	this	example,	the	toVoice	method	of	your	notification	can	return	whatever	object
you	choose	to	represent	voice	messages.	For	example,	you	might	define	your	own	VoiceMessage	class	to
represent	these	messages:

<?php

namespace	App\Notifications;

use	App\Notifications\Messages\VoiceMessage;

use	App\Notifications\VoiceChannel;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification

{

				use	Queueable;

				/**

					*	Get	the	notification	channels.

					*/

				public	function	via(object	$notifiable):	string

				{

								return	VoiceChannel::class;

				}

				/**

					*	Get	the	voice	representation	of	the	notification.

					*/

				public	function	toVoice(object	$notifiable):	VoiceMessage

				{

								//	...

				}

}

Laravel	Documentation	-	10.x	/	Notifications 438

Digging	Deeper

Package	Development
Introduction

A	Note	on	Facades
Package	Discovery
Service	Providers
Resources

Configuration
Migrations
Routes
Language	Files
Views
View	Components
"About"	Artisan	Command

Commands
Public	Assets
Publishing	File	Groups

Introduction

Packages	are	the	primary	way	of	adding	functionality	to	Laravel.	Packages	might	be	anything	from	a	great	way
to	work	with	dates	like	Carbon	or	a	package	that	allows	you	to	associate	files	with	Eloquent	models	like
Spatie's	Laravel	Media	Library.

There	are	different	types	of	packages.	Some	packages	are	stand-alone,	meaning	they	work	with	any	PHP
framework.	Carbon	and	PHPUnit	are	examples	of	stand-alone	packages.	Any	of	these	packages	may	be	used
with	Laravel	by	requiring	them	in	your	composer.json	file.

On	the	other	hand,	other	packages	are	specifically	intended	for	use	with	Laravel.	These	packages	may	have
routes,	controllers,	views,	and	configuration	specifically	intended	to	enhance	a	Laravel	application.	This	guide
primarily	covers	the	development	of	those	packages	that	are	Laravel	specific.

A	Note	on	Facades

When	writing	a	Laravel	application,	it	generally	does	not	matter	if	you	use	contracts	or	facades	since	both
provide	essentially	equal	levels	of	testability.	However,	when	writing	packages,	your	package	will	not	typically
have	access	to	all	of	Laravel's	testing	helpers.	If	you	would	like	to	be	able	to	write	your	package	tests	as	if	the
package	were	installed	inside	a	typical	Laravel	application,	you	may	use	the	Orchestral	Testbench	package.

Package	Discovery

In	a	Laravel	application's	config/app.php	configuration	file,	the	providers	option	defines	a	list	of	service
providers	that	should	be	loaded	by	Laravel.	When	someone	installs	your	package,	you	will	typically	want	your
service	provider	to	be	included	in	this	list.	Instead	of	requiring	users	to	manually	add	your	service	provider	to
the	list,	you	may	define	the	provider	in	the	extra	section	of	your	package's	composer.json	file.	In	addition	to
service	providers,	you	may	also	list	any	facades	you	would	like	to	be	registered:

"extra":	{

				"laravel":	{

								"providers":	[

												"Barryvdh\\Debugbar\\ServiceProvider"

],

								"aliases":	{

												"Debugbar":	"Barryvdh\\Debugbar\\Facade"

								}

				}

},

Once	your	package	has	been	configured	for	discovery,	Laravel	will	automatically	register	its	service	providers

Laravel	Documentation	-	10.x	/	Package	Development 439

https://github.com/briannesbitt/Carbon
https://github.com/spatie/laravel-medialibrary
https://github.com/orchestral/testbench

and	facades	when	it	is	installed,	creating	a	convenient	installation	experience	for	your	package's	users.

Opting	Out	of	Package	Discovery

If	you	are	the	consumer	of	a	package	and	would	like	to	disable	package	discovery	for	a	package,	you	may	list
the	package	name	in	the	extra	section	of	your	application's	composer.json	file:

"extra":	{

				"laravel":	{

								"dont-discover":	[

												"barryvdh/laravel-debugbar"

]

				}

},

You	may	disable	package	discovery	for	all	packages	using	the	*	character	inside	of	your	application's	dont-
discover	directive:

"extra":	{

				"laravel":	{

								"dont-discover":	[

												"*"

]

				}

},

Service	Providers

Service	providers	are	the	connection	point	between	your	package	and	Laravel.	A	service	provider	is	responsible
for	binding	things	into	Laravel's	service	container	and	informing	Laravel	where	to	load	package	resources	such
as	views,	configuration,	and	language	files.

A	service	provider	extends	the	Illuminate\Support\ServiceProvider	class	and	contains	two	methods:	register
and	boot.	The	base	ServiceProvider	class	is	located	in	the	illuminate/support	Composer	package,	which	you
should	add	to	your	own	package's	dependencies.	To	learn	more	about	the	structure	and	purpose	of	service
providers,	check	out	their	documentation.

Resources

Configuration

Typically,	you	will	need	to	publish	your	package's	configuration	file	to	the	application's	config	directory.	This
will	allow	users	of	your	package	to	easily	override	your	default	configuration	options.	To	allow	your
configuration	files	to	be	published,	call	the	publishes	method	from	the	boot	method	of	your	service	provider:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->publishes([

								__DIR__.'/../config/courier.php'	=>	config_path('courier.php'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	command,	your	file	will	be	copied	to	the
specified	publish	location.	Once	your	configuration	has	been	published,	its	values	may	be	accessed	like	any
other	configuration	file:

$value	=	config('courier.option');

[!WARNING]
You	should	not	define	closures	in	your	configuration	files.	They	can	not	be	serialized	correctly	when	users
execute	the	config:cache	Artisan	command.

Default	Package	Configuration

Laravel	Documentation	-	10.x	/	Package	Development 440

You	may	also	merge	your	own	package	configuration	file	with	the	application's	published	copy.	This	will	allow
your	users	to	define	only	the	options	they	actually	want	to	override	in	the	published	copy	of	the	configuration
file.	To	merge	the	configuration	file	values,	use	the	mergeConfigFrom	method	within	your	service	provider's	
register	method.

The	mergeConfigFrom	method	accepts	the	path	to	your	package's	configuration	file	as	its	first	argument	and	the
name	of	the	application's	copy	of	the	configuration	file	as	its	second	argument:

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->mergeConfigFrom(

								__DIR__.'/../config/courier.php',	'courier'

);

}

[!WARNING]
This	method	only	merges	the	first	level	of	the	configuration	array.	If	your	users	partially	define	a	multi-
dimensional	configuration	array,	the	missing	options	will	not	be	merged.

Routes

If	your	package	contains	routes,	you	may	load	them	using	the	loadRoutesFrom	method.	This	method	will
automatically	determine	if	the	application's	routes	are	cached	and	will	not	load	your	routes	file	if	the	routes
have	already	been	cached:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadRoutesFrom(__DIR__.'/../routes/web.php');

}

Migrations

If	your	package	contains	database	migrations,	you	may	use	the	loadMigrationsFrom	method	to	inform	Laravel
how	to	load	them.	The	loadMigrationsFrom	method	accepts	the	path	to	your	package's	migrations	as	its	only
argument:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadMigrationsFrom(__DIR__.'/../database/migrations');

}

Once	your	package's	migrations	have	been	registered,	they	will	automatically	be	run	when	the	php	artisan	
migrate	command	is	executed.	You	do	not	need	to	export	them	to	the	application's	database/migrations
directory.

Language	Files

If	your	package	contains	language	files,	you	may	use	the	loadTranslationsFrom	method	to	inform	Laravel	how
to	load	them.	For	example,	if	your	package	is	named	courier,	you	should	add	the	following	to	your	service
provider's	boot	method:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadTranslationsFrom(__DIR__.'/../lang',	'courier');

}

Laravel	Documentation	-	10.x	/	Package	Development 441

Package	translation	lines	are	referenced	using	the	package::file.line	syntax	convention.	So,	you	may	load	the	
courier	package's	welcome	line	from	the	messages	file	like	so:

echo	trans('courier::messages.welcome');

You	can	register	JSON	translation	files	for	your	package	using	the	loadJsonTranslationsFrom	method.	This
method	accepts	the	path	to	the	directory	that	contains	your	package's	JSON	translation	files:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadJsonTranslationsFrom(__DIR__.'/../lang');

}

Publishing	Language	Files

If	you	would	like	to	publish	your	package's	language	files	to	the	application's	lang/vendor	directory,	you	may
use	the	service	provider's	publishes	method.	The	publishes	method	accepts	an	array	of	package	paths	and	their
desired	publish	locations.	For	example,	to	publish	the	language	files	for	the	courier	package,	you	may	do	the
following:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadTranslationsFrom(__DIR__.'/../lang',	'courier');

				$this->publishes([

								__DIR__.'/../lang'	=>	$this->app->langPath('vendor/courier'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	Artisan	command,	your	package's	language
files	will	be	published	to	the	specified	publish	location.

Views

To	register	your	package's	views	with	Laravel,	you	need	to	tell	Laravel	where	the	views	are	located.	You	may
do	this	using	the	service	provider's	loadViewsFrom	method.	The	loadViewsFrom	method	accepts	two	arguments:
the	path	to	your	view	templates	and	your	package's	name.	For	example,	if	your	package's	name	is	courier,	you
would	add	the	following	to	your	service	provider's	boot	method:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->loadViewsFrom(__DIR__.'/../resources/views',	'courier');

}

Package	views	are	referenced	using	the	package::view	syntax	convention.	So,	once	your	view	path	is	registered
in	a	service	provider,	you	may	load	the	dashboard	view	from	the	courier	package	like	so:

Route::get('/dashboard',	function	()	{

				return	view('courier::dashboard');

});

Overriding	Package	Views

When	you	use	the	loadViewsFrom	method,	Laravel	actually	registers	two	locations	for	your	views:	the
application's	resources/views/vendor	directory	and	the	directory	you	specify.	So,	using	the	courier	package	as
an	example,	Laravel	will	first	check	if	a	custom	version	of	the	view	has	been	placed	in	the	
resources/views/vendor/courier	directory	by	the	developer.	Then,	if	the	view	has	not	been	customized,	Laravel
will	search	the	package	view	directory	you	specified	in	your	call	to	loadViewsFrom.	This	makes	it	easy	for
package	users	to	customize	/	override	your	package's	views.

Laravel	Documentation	-	10.x	/	Package	Development 442

Publishing	Views

If	you	would	like	to	make	your	views	available	for	publishing	to	the	application's	resources/views/vendor
directory,	you	may	use	the	service	provider's	publishes	method.	The	publishes	method	accepts	an	array	of
package	view	paths	and	their	desired	publish	locations:

/**

	*	Bootstrap	the	package	services.

	*/

public	function	boot():	void

{

				$this->loadViewsFrom(__DIR__.'/../resources/views',	'courier');

				$this->publishes([

								__DIR__.'/../resources/views'	=>	resource_path('views/vendor/courier'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	Artisan	command,	your	package's	views
will	be	copied	to	the	specified	publish	location.

View	Components

If	you	are	building	a	package	that	utilizes	Blade	components	or	placing	components	in	non-conventional
directories,	you	will	need	to	manually	register	your	component	class	and	its	HTML	tag	alias	so	that	Laravel
knows	where	to	find	the	component.	You	should	typically	register	your	components	in	the	boot	method	of	your
package's	service	provider:

use	Illuminate\Support\Facades\Blade;

use	VendorPackage\View\Components\AlertComponent;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::component('package-alert',	AlertComponent::class);

}

Once	your	component	has	been	registered,	it	may	be	rendered	using	its	tag	alias:

<x-package-alert/>

Autoloading	Package	Components

Alternatively,	you	may	use	the	componentNamespace	method	to	autoload	component	classes	by	convention.	For
example,	a	Nightshade	package	might	have	Calendar	and	ColorPicker	components	that	reside	within	the	
Nightshade\Views\Components	namespace:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot():	void

{

				Blade::componentNamespace('Nightshade\\Views\\Components',	'nightshade');

}

This	will	allow	the	usage	of	package	components	by	their	vendor	namespace	using	the	package-name::	syntax:

<x-nightshade::calendar	/>

<x-nightshade::color-picker	/>

Blade	will	automatically	detect	the	class	that's	linked	to	this	component	by	pascal-casing	the	component	name.
Subdirectories	are	also	supported	using	"dot"	notation.

Anonymous	Components

Laravel	Documentation	-	10.x	/	Package	Development 443

If	your	package	contains	anonymous	components,	they	must	be	placed	within	a	components	directory	of	your
package's	"views"	directory	(as	specified	by	the	loadViewsFrom	method).	Then,	you	may	render	them	by
prefixing	the	component	name	with	the	package's	view	namespace:

<x-courier::alert	/>

"About"	Artisan	Command

Laravel's	built-in	about	Artisan	command	provides	a	synopsis	of	the	application's	environment	and
configuration.	Packages	may	push	additional	information	to	this	command's	output	via	the	AboutCommand	class.
Typically,	this	information	may	be	added	from	your	package	service	provider's	boot	method:

use	Illuminate\Foundation\Console\AboutCommand;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				AboutCommand::add('My	Package',	fn	()	=>	['Version'	=>	'1.0.0']);

}

Commands

To	register	your	package's	Artisan	commands	with	Laravel,	you	may	use	the	commands	method.	This	method
expects	an	array	of	command	class	names.	Once	the	commands	have	been	registered,	you	may	execute	them
using	the	Artisan	CLI:

use	Courier\Console\Commands\InstallCommand;

use	Courier\Console\Commands\NetworkCommand;

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				if	($this->app->runningInConsole())	{

								$this->commands([

												InstallCommand::class,

												NetworkCommand::class,

]);

				}

}

Public	Assets

Your	package	may	have	assets	such	as	JavaScript,	CSS,	and	images.	To	publish	these	assets	to	the	application's	
public	directory,	use	the	service	provider's	publishes	method.	In	this	example,	we	will	also	add	a	public	asset
group	tag,	which	may	be	used	to	easily	publish	groups	of	related	assets:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->publishes([

								__DIR__.'/../public'	=>	public_path('vendor/courier'),

],	'public');

}

Now,	when	your	package's	users	execute	the	vendor:publish	command,	your	assets	will	be	copied	to	the
specified	publish	location.	Since	users	will	typically	need	to	overwrite	the	assets	every	time	the	package	is
updated,	you	may	use	the	--force	flag:

php	artisan	vendor:publish	--tag=public	--force

Publishing	File	Groups

Laravel	Documentation	-	10.x	/	Package	Development 444

You	may	want	to	publish	groups	of	package	assets	and	resources	separately.	For	instance,	you	might	want	to
allow	your	users	to	publish	your	package's	configuration	files	without	being	forced	to	publish	your	package's
assets.	You	may	do	this	by	"tagging"	them	when	calling	the	publishes	method	from	a	package's	service
provider.	For	example,	let's	use	tags	to	define	two	publish	groups	for	the	courier	package	(courier-config	and	
courier-migrations)	in	the	boot	method	of	the	package's	service	provider:

/**

	*	Bootstrap	any	package	services.

	*/

public	function	boot():	void

{

				$this->publishes([

								__DIR__.'/../config/package.php'	=>	config_path('package.php')

],	'courier-config');

				$this->publishes([

								__DIR__.'/../database/migrations/'	=>	database_path('migrations')

],	'courier-migrations');

}

Now	your	users	may	publish	these	groups	separately	by	referencing	their	tag	when	executing	the	
vendor:publish	command:

php	artisan	vendor:publish	--tag=courier-config

Laravel	Documentation	-	10.x	/	Package	Development 445

Digging	Deeper

Processes
Introduction
Invoking	Processes

Process	Options
Process	Output
Pipelines

Asynchronous	Processes
Process	IDs	and	Signals
Asynchronous	Process	Output

Concurrent	Processes
Naming	Pool	Processes
Pool	Process	IDs	and	Signals

Testing
Faking	Processes
Faking	Specific	Processes
Faking	Process	Sequences
Faking	Asynchronous	Process	Lifecycles
Available	Assertions
Preventing	Stray	Processes

Introduction

Laravel	provides	an	expressive,	minimal	API	around	the	Symfony	Process	component,	allowing	you	to
conveniently	invoke	external	processes	from	your	Laravel	application.	Laravel's	process	features	are	focused	on
the	most	common	use	cases	and	a	wonderful	developer	experience.

Invoking	Processes

To	invoke	a	process,	you	may	use	the	run	and	start	methods	offered	by	the	Process	facade.	The	run	method
will	invoke	a	process	and	wait	for	the	process	to	finish	executing,	while	the	start	method	is	used	for
asynchronous	process	execution.	We'll	examine	both	approaches	within	this	documentation.	First,	let's	examine
how	to	invoke	a	basic,	synchronous	process	and	inspect	its	result:

use	Illuminate\Support\Facades\Process;

$result	=	Process::run('ls	-la');

return	$result->output();

Of	course,	the	Illuminate\Contracts\Process\ProcessResult	instance	returned	by	the	run	method	offers	a	variety
of	helpful	methods	that	may	be	used	to	inspect	the	process	result:

$result	=	Process::run('ls	-la');

$result->successful();

$result->failed();

$result->exitCode();

$result->output();

$result->errorOutput();

Throwing	Exceptions

If	you	have	a	process	result	and	would	like	to	throw	an	instance	of	
Illuminate\Process\Exceptions\ProcessFailedException	if	the	exit	code	is	greater	than	zero	(thus	indicating
failure),	you	may	use	the	throw	and	throwIf	methods.	If	the	process	did	not	fail,	the	process	result	instance	will
be	returned:

$result	=	Process::run('ls	-la')->throw();

Laravel	Documentation	-	10.x	/	Processes 446

https://symfony.com/doc/current/components/process.html

$result	=	Process::run('ls	-la')->throwIf($condition);

Process	Options

Of	course,	you	may	need	to	customize	the	behavior	of	a	process	before	invoking	it.	Thankfully,	Laravel	allows
you	to	tweak	a	variety	of	process	features,	such	as	the	working	directory,	timeout,	and	environment	variables.

Working	Directory	Path

You	may	use	the	path	method	to	specify	the	working	directory	of	the	process.	If	this	method	is	not	invoked,	the
process	will	inherit	the	working	directory	of	the	currently	executing	PHP	script:

$result	=	Process::path(__DIR__)->run('ls	-la');

Input

You	may	provide	input	via	the	"standard	input"	of	the	process	using	the	input	method:

$result	=	Process::input('Hello	World')->run('cat');

Timeouts

By	default,	processes	will	throw	an	instance	of	Illuminate\Process\Exceptions\ProcessTimedOutException	after
executing	for	more	than	60	seconds.	However,	you	can	customize	this	behavior	via	the	timeout	method:

$result	=	Process::timeout(120)->run('bash	import.sh');

Or,	if	you	would	like	to	disable	the	process	timeout	entirely,	you	may	invoke	the	forever	method:

$result	=	Process::forever()->run('bash	import.sh');

The	idleTimeout	method	may	be	used	to	specify	the	maximum	number	of	seconds	the	process	may	run	without
returning	any	output:

$result	=	Process::timeout(60)->idleTimeout(30)->run('bash	import.sh');

Environment	Variables

Environment	variables	may	be	provided	to	the	process	via	the	env	method.	The	invoked	process	will	also	inherit
all	of	the	environment	variables	defined	by	your	system:

$result	=	Process::forever()

												->env(['IMPORT_PATH'	=>	__DIR__])

												->run('bash	import.sh');

If	you	wish	to	remove	an	inherited	environment	variable	from	the	invoked	process,	you	may	provide	that
environment	variable	with	a	value	of	false:

$result	=	Process::forever()

												->env(['LOAD_PATH'	=>	false])

												->run('bash	import.sh');

TTY	Mode

The	tty	method	may	be	used	to	enable	TTY	mode	for	your	process.	TTY	mode	connects	the	input	and	output
of	the	process	to	the	input	and	output	of	your	program,	allowing	your	process	to	open	an	editor	like	Vim	or
Nano	as	a	process:

Process::forever()->tty()->run('vim');

Process	Output

As	previously	discussed,	process	output	may	be	accessed	using	the	output	(stdout)	and	errorOutput	(stderr)

Laravel	Documentation	-	10.x	/	Processes 447

methods	on	a	process	result:

use	Illuminate\Support\Facades\Process;

$result	=	Process::run('ls	-la');

echo	$result->output();

echo	$result->errorOutput();

However,	output	may	also	be	gathered	in	real-time	by	passing	a	closure	as	the	second	argument	to	the	run
method.	The	closure	will	receive	two	arguments:	the	"type"	of	output	(stdout	or	stderr)	and	the	output	string
itself:

$result	=	Process::run('ls	-la',	function	(string	$type,	string	$output)	{

				echo	$output;

});

Laravel	also	offers	the	seeInOutput	and	seeInErrorOutput	methods,	which	provide	a	convenient	way	to
determine	if	a	given	string	was	contained	in	the	process'	output:

if	(Process::run('ls	-la')->seeInOutput('laravel'))	{

				//	...

}

Disabling	Process	Output

If	your	process	is	writing	a	significant	amount	of	output	that	you	are	not	interested	in,	you	can	conserve
memory	by	disabling	output	retrieval	entirely.	To	accomplish	this,	invoke	the	quietly	method	while	building
the	process:

use	Illuminate\Support\Facades\Process;

$result	=	Process::quietly()->run('bash	import.sh');

Pipelines

Sometimes	you	may	want	to	make	the	output	of	one	process	the	input	of	another	process.	This	is	often	referred
to	as	"piping"	the	output	of	a	process	into	another.	The	pipe	method	provided	by	the	Process	facades	makes	this
easy	to	accomplish.	The	pipe	method	will	execute	the	piped	processes	synchronously	and	return	the	process
result	for	the	last	process	in	the	pipeline:

use	Illuminate\Process\Pipe;

use	Illuminate\Support\Facades\Process;

$result	=	Process::pipe(function	(Pipe	$pipe)	{

				$pipe->command('cat	example.txt');

				$pipe->command('grep	-i	"laravel"');

});

if	($result->successful())	{

				//	...

}

If	you	do	not	need	to	customize	the	individual	processes	that	make	up	the	pipeline,	you	may	simply	pass	an
array	of	command	strings	to	the	pipe	method:

$result	=	Process::pipe([

				'cat	example.txt',

				'grep	-i	"laravel"',

]);

The	process	output	may	be	gathered	in	real-time	by	passing	a	closure	as	the	second	argument	to	the	pipe
method.	The	closure	will	receive	two	arguments:	the	"type"	of	output	(stdout	or	stderr)	and	the	output	string
itself:

$result	=	Process::pipe(function	(Pipe	$pipe)	{

				$pipe->command('cat	example.txt');

				$pipe->command('grep	-i	"laravel"');

},	function	(string	$type,	string	$output)	{

				echo	$output;

Laravel	Documentation	-	10.x	/	Processes 448

});

Laravel	also	allows	you	to	assign	string	keys	to	each	process	within	a	pipeline	via	the	as	method.	This	key	will
also	be	passed	to	the	output	closure	provided	to	the	pipe	method,	allowing	you	to	determine	which	process	the
output	belongs	to:

$result	=	Process::pipe(function	(Pipe	$pipe)	{

				$pipe->as('first')->command('cat	example.txt');

				$pipe->as('second')->command('grep	-i	"laravel"');

})->start(function	(string	$type,	string	$output,	string	$key)	{

				//	...

});

Asynchronous	Processes

While	the	run	method	invokes	processes	synchronously,	the	start	method	may	be	used	to	invoke	a	process
asynchronously.	This	allows	your	application	to	continue	performing	other	tasks	while	the	process	runs	in	the
background.	Once	the	process	has	been	invoked,	you	may	utilize	the	running	method	to	determine	if	the	process
is	still	running:

$process	=	Process::timeout(120)->start('bash	import.sh');

while	($process->running())	{

				//	...

}

$result	=	$process->wait();

As	you	may	have	noticed,	you	may	invoke	the	wait	method	to	wait	until	the	process	is	finished	executing	and
retrieve	the	process	result	instance:

$process	=	Process::timeout(120)->start('bash	import.sh');

//	...

$result	=	$process->wait();

Process	IDs	and	Signals

The	id	method	may	be	used	to	retrieve	the	operating	system	assigned	process	ID	of	the	running	process:

$process	=	Process::start('bash	import.sh');

return	$process->id();

You	may	use	the	signal	method	to	send	a	"signal"	to	the	running	process.	A	list	of	predefined	signal	constants
can	be	found	within	the	PHP	documentation:

$process->signal(SIGUSR2);

Asynchronous	Process	Output

While	an	asynchronous	process	is	running,	you	may	access	its	entire	current	output	using	the	output	and	
errorOutput	methods;	however,	you	may	utilize	the	latestOutput	and	latestErrorOutput	to	access	the	output
from	the	process	that	has	occurred	since	the	output	was	last	retrieved:

$process	=	Process::timeout(120)->start('bash	import.sh');

while	($process->running())	{

				echo	$process->latestOutput();

				echo	$process->latestErrorOutput();

				sleep(1);

}

Like	the	run	method,	output	may	also	be	gathered	in	real-time	from	asynchronous	processes	by	passing	a
closure	as	the	second	argument	to	the	start	method.	The	closure	will	receive	two	arguments:	the	"type"	of
output	(stdout	or	stderr)	and	the	output	string	itself:

Laravel	Documentation	-	10.x	/	Processes 449

https://www.php.net/manual/en/pcntl.constants.php

$process	=	Process::start('bash	import.sh',	function	(string	$type,	string	$output)	{

				echo	$output;

});

$result	=	$process->wait();

Concurrent	Processes

Laravel	also	makes	it	a	breeze	to	manage	a	pool	of	concurrent,	asynchronous	processes,	allowing	you	to	easily
execute	many	tasks	simultaneously.	To	get	started,	invoke	the	pool	method,	which	accepts	a	closure	that
receives	an	instance	of	Illuminate\Process\Pool.

Within	this	closure,	you	may	define	the	processes	that	belong	to	the	pool.	Once	a	process	pool	is	started	via	the	
start	method,	you	may	access	the	collection	of	running	processes	via	the	running	method:

use	Illuminate\Process\Pool;

use	Illuminate\Support\Facades\Process;

$pool	=	Process::pool(function	(Pool	$pool)	{

				$pool->path(__DIR__)->command('bash	import-1.sh');

				$pool->path(__DIR__)->command('bash	import-2.sh');

				$pool->path(__DIR__)->command('bash	import-3.sh');

})->start(function	(string	$type,	string	$output,	int	$key)	{

				//	...

});

while	($pool->running()->isNotEmpty())	{

				//	...

}

$results	=	$pool->wait();

As	you	can	see,	you	may	wait	for	all	of	the	pool	processes	to	finish	executing	and	resolve	their	results	via	the	
wait	method.	The	wait	method	returns	an	array	accessible	object	that	allows	you	to	access	the	process	result
instance	of	each	process	in	the	pool	by	its	key:

$results	=	$pool->wait();

echo	$results[0]->output();

Or,	for	convenience,	the	concurrently	method	may	be	used	to	start	an	asynchronous	process	pool	and
immediately	wait	on	its	results.	This	can	provide	particularly	expressive	syntax	when	combined	with	PHP's
array	destructuring	capabilities:

[$first,	$second,	$third]	=	Process::concurrently(function	(Pool	$pool)	{

				$pool->path(__DIR__)->command('ls	-la');

				$pool->path(app_path())->command('ls	-la');

				$pool->path(storage_path())->command('ls	-la');

});

echo	$first->output();

Naming	Pool	Processes

Accessing	process	pool	results	via	a	numeric	key	is	not	very	expressive;	therefore,	Laravel	allows	you	to	assign
string	keys	to	each	process	within	a	pool	via	the	as	method.	This	key	will	also	be	passed	to	the	closure	provided
to	the	start	method,	allowing	you	to	determine	which	process	the	output	belongs	to:

$pool	=	Process::pool(function	(Pool	$pool)	{

				$pool->as('first')->command('bash	import-1.sh');

				$pool->as('second')->command('bash	import-2.sh');

				$pool->as('third')->command('bash	import-3.sh');

})->start(function	(string	$type,	string	$output,	string	$key)	{

				//	...

});

$results	=	$pool->wait();

return	$results['first']->output();

Pool	Process	IDs	and	Signals

Laravel	Documentation	-	10.x	/	Processes 450

Since	the	process	pool's	running	method	provides	a	collection	of	all	invoked	processes	within	the	pool,	you	may
easily	access	the	underlying	pool	process	IDs:

$processIds	=	$pool->running()->each->id();

And,	for	convenience,	you	may	invoke	the	signal	method	on	a	process	pool	to	send	a	signal	to	every	process
within	the	pool:

$pool->signal(SIGUSR2);

Testing

Many	Laravel	services	provide	functionality	to	help	you	easily	and	expressively	write	tests,	and	Laravel's
process	service	is	no	exception.	The	Process	facade's	fake	method	allows	you	to	instruct	Laravel	to	return
stubbed	/	dummy	results	when	processes	are	invoked.

Faking	Processes

To	explore	Laravel's	ability	to	fake	processes,	let's	imagine	a	route	that	invokes	a	process:

use	Illuminate\Support\Facades\Process;

use	Illuminate\Support\Facades\Route;

Route::get('/import',	function	()	{

				Process::run('bash	import.sh');

				return	'Import	complete!';

});

When	testing	this	route,	we	can	instruct	Laravel	to	return	a	fake,	successful	process	result	for	every	invoked
process	by	calling	the	fake	method	on	the	Process	facade	with	no	arguments.	In	addition,	we	can	even	assert
that	a	given	process	was	"run":

<?php

namespace	Tests\Feature;

use	Illuminate\Process\PendingProcess;

use	Illuminate\Contracts\Process\ProcessResult;

use	Illuminate\Support\Facades\Process;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_process_is_invoked():	void

				{

								Process::fake();

								$response	=	$this->get('/import');

								//	Simple	process	assertion...

								Process::assertRan('bash	import.sh');

								//	Or,	inspecting	the	process	configuration...

								Process::assertRan(function	(PendingProcess	$process,	ProcessResult	$result)	{

												return	$process->command	===	'bash	import.sh'	&&

																			$process->timeout	===	60;

								});

				}

}

As	discussed,	invoking	the	fake	method	on	the	Process	facade	will	instruct	Laravel	to	always	return	a
successful	process	result	with	no	output.	However,	you	may	easily	specify	the	output	and	exit	code	for	faked
processes	using	the	Process	facade's	result	method:

Process::fake([

				'*'	=>	Process::result(

								output:	'Test	output',

								errorOutput:	'Test	error	output',

								exitCode:	1,

),

Laravel	Documentation	-	10.x	/	Processes 451

]);

Faking	Specific	Processes

As	you	may	have	noticed	in	a	previous	example,	the	Process	facade	allows	you	to	specify	different	fake	results
per	process	by	passing	an	array	to	the	fake	method.

The	array's	keys	should	represent	command	patterns	that	you	wish	to	fake	and	their	associated	results.	The	*
character	may	be	used	as	a	wildcard	character.	Any	process	commands	that	have	not	been	faked	will	actually	be
invoked.	You	may	use	the	Process	facade's	result	method	to	construct	stub	/	fake	results	for	these	commands:

Process::fake([

				'cat	*'	=>	Process::result(

								output:	'Test	"cat"	output',

),

				'ls	*'	=>	Process::result(

								output:	'Test	"ls"	output',

),

]);

If	you	do	not	need	to	customize	the	exit	code	or	error	output	of	a	faked	process,	you	may	find	it	more
convenient	to	specify	the	fake	process	results	as	simple	strings:

Process::fake([

				'cat	*'	=>	'Test	"cat"	output',

				'ls	*'	=>	'Test	"ls"	output',

]);

Faking	Process	Sequences

If	the	code	you	are	testing	invokes	multiple	processes	with	the	same	command,	you	may	wish	to	assign	a
different	fake	process	result	to	each	process	invocation.	You	may	accomplish	this	via	the	Process	facade's	
sequence	method:

Process::fake([

				'ls	*'	=>	Process::sequence()

																->push(Process::result('First	invocation'))

																->push(Process::result('Second	invocation')),

]);

Faking	Asynchronous	Process	Lifecycles

Thus	far,	we	have	primarily	discussed	faking	processes	which	are	invoked	synchronously	using	the	run	method.
However,	if	you	are	attempting	to	test	code	that	interacts	with	asynchronous	processes	invoked	via	start,	you
may	need	a	more	sophisticated	approach	to	describing	your	fake	processes.

For	example,	let's	imagine	the	following	route	which	interacts	with	an	asynchronous	process:

use	Illuminate\Support\Facades\Log;

use	Illuminate\Support\Facades\Route;

Route::get('/import',	function	()	{

				$process	=	Process::start('bash	import.sh');

				while	($process->running())	{

								Log::info($process->latestOutput());

								Log::info($process->latestErrorOutput());

				}

				return	'Done';

});

To	properly	fake	this	process,	we	need	to	be	able	to	describe	how	many	times	the	running	method	should	return	
true.	In	addition,	we	may	want	to	specify	multiple	lines	of	output	that	should	be	returned	in	sequence.	To
accomplish	this,	we	can	use	the	Process	facade's	describe	method:

Process::fake([

				'bash	import.sh'	=>	Process::describe()

												->output('First	line	of	standard	output')

Laravel	Documentation	-	10.x	/	Processes 452

												->errorOutput('First	line	of	error	output')

												->output('Second	line	of	standard	output')

												->exitCode(0)

												->iterations(3),

]);

Let's	dig	into	the	example	above.	Using	the	output	and	errorOutput	methods,	we	may	specify	multiple	lines	of
output	that	will	be	returned	in	sequence.	The	exitCode	method	may	be	used	to	specify	the	final	exit	code	of	the
fake	process.	Finally,	the	iterations	method	may	be	used	to	specify	how	many	times	the	running	method
should	return	true.

Available	Assertions

As	previously	discussed,	Laravel	provides	several	process	assertions	for	your	feature	tests.	We'll	discuss	each	of
these	assertions	below.

assertRan

Assert	that	a	given	process	was	invoked:

use	Illuminate\Support\Facades\Process;

Process::assertRan('ls	-la');

The	assertRan	method	also	accepts	a	closure,	which	will	receive	an	instance	of	a	process	and	a	process	result,
allowing	you	to	inspect	the	process'	configured	options.	If	this	closure	returns	true,	the	assertion	will	"pass":

Process::assertRan(fn	($process,	$result)	=>

				$process->command	===	'ls	-la'	&&

				$process->path	===	__DIR__	&&

				$process->timeout	===	60

);

The	$process	passed	to	the	assertRan	closure	is	an	instance	of	Illuminate\Process\PendingProcess,	while	the	
$result	is	an	instance	of	Illuminate\Contracts\Process\ProcessResult.

assertDidntRun

Assert	that	a	given	process	was	not	invoked:

use	Illuminate\Support\Facades\Process;

Process::assertDidntRun('ls	-la');

Like	the	assertRan	method,	the	assertDidntRun	method	also	accepts	a	closure,	which	will	receive	an	instance	of
a	process	and	a	process	result,	allowing	you	to	inspect	the	process'	configured	options.	If	this	closure	returns	
true,	the	assertion	will	"fail":

Process::assertDidntRun(fn	(PendingProcess	$process,	ProcessResult	$result)	=>

				$process->command	===	'ls	-la'

);

assertRanTimes

Assert	that	a	given	process	was	invoked	a	given	number	of	times:

use	Illuminate\Support\Facades\Process;

Process::assertRanTimes('ls	-la',	times:	3);

The	assertRanTimes	method	also	accepts	a	closure,	which	will	receive	an	instance	of	a	process	and	a	process
result,	allowing	you	to	inspect	the	process'	configured	options.	If	this	closure	returns	true	and	the	process	was
invoked	the	specified	number	of	times,	the	assertion	will	"pass":

Process::assertRanTimes(function	(PendingProcess	$process,	ProcessResult	$result)	{

				return	$process->command	===	'ls	-la';

},	times:	3);

Laravel	Documentation	-	10.x	/	Processes 453

Preventing	Stray	Processes

If	you	would	like	to	ensure	that	all	invoked	processes	have	been	faked	throughout	your	individual	test	or
complete	test	suite,	you	can	call	the	preventStrayProcesses	method.	After	calling	this	method,	any	processes
that	do	not	have	a	corresponding	fake	result	will	throw	an	exception	rather	than	starting	an	actual	process:

use	Illuminate\Support\Facades\Process;

Process::preventStrayProcesses();

Process::fake([

				'ls	*'	=>	'Test	output...',

]);

//	Fake	response	is	returned...

Process::run('ls	-la');

//	An	exception	is	thrown...

Process::run('bash	import.sh');

Laravel	Documentation	-	10.x	/	Processes 454

Digging	Deeper

Queues
Introduction

Connections	vs.	Queues
Driver	Notes	and	Prerequisites

Creating	Jobs
Generating	Job	Classes
Class	Structure
Unique	Jobs
Encrypted	Jobs

Job	Middleware
Rate	Limiting
Preventing	Job	Overlaps
Throttling	Exceptions

Dispatching	Jobs
Delayed	Dispatching
Synchronous	Dispatching
Jobs	&	Database	Transactions
Job	Chaining
Customizing	The	Queue	and	Connection
Specifying	Max	Job	Attempts	/	Timeout	Values
Error	Handling

Job	Batching
Defining	Batchable	Jobs
Dispatching	Batches
Chains	and	Batches
Adding	Jobs	to	Batches
Inspecting	Batches
Cancelling	Batches
Batch	Failures
Pruning	Batches
Storing	Batches	in	DynamoDB

Queueing	Closures
Running	the	Queue	Worker

The	queue:work	Command
Queue	Priorities
Queue	Workers	and	Deployment
Job	Expirations	and	Timeouts

Supervisor	Configuration
Dealing	With	Failed	Jobs

Cleaning	Up	After	Failed	Jobs
Retrying	Failed	Jobs
Ignoring	Missing	Models
Pruning	Failed	Jobs
Storing	Failed	Jobs	in	DynamoDB
Disabling	Failed	Job	Storage
Failed	Job	Events

Clearing	Jobs	From	Queues
Monitoring	Your	Queues
Testing

Faking	a	Subset	of	Jobs
Testing	Job	Chains
Testing	Job	Batches

Job	Events

Introduction

Laravel	Documentation	-	10.x	/	Queues 455

While	building	your	web	application,	you	may	have	some	tasks,	such	as	parsing	and	storing	an	uploaded	CSV
file,	that	take	too	long	to	perform	during	a	typical	web	request.	Thankfully,	Laravel	allows	you	to	easily	create
queued	jobs	that	may	be	processed	in	the	background.	By	moving	time	intensive	tasks	to	a	queue,	your
application	can	respond	to	web	requests	with	blazing	speed	and	provide	a	better	user	experience	to	your
customers.

Laravel	queues	provide	a	unified	queueing	API	across	a	variety	of	different	queue	backends,	such	as	Amazon
SQS,	Redis,	or	even	a	relational	database.

Laravel's	queue	configuration	options	are	stored	in	your	application's	config/queue.php	configuration	file.	In
this	file,	you	will	find	connection	configurations	for	each	of	the	queue	drivers	that	are	included	with	the
framework,	including	the	database,	Amazon	SQS,	Redis,	and	Beanstalkd	drivers,	as	well	as	a	synchronous
driver	that	will	execute	jobs	immediately	(for	use	during	local	development).	A	null	queue	driver	is	also
included	which	discards	queued	jobs.

[!NOTE]
Laravel	now	offers	Horizon,	a	beautiful	dashboard	and	configuration	system	for	your	Redis	powered
queues.	Check	out	the	full	Horizon	documentation	for	more	information.

Connections	vs.	Queues

Before	getting	started	with	Laravel	queues,	it	is	important	to	understand	the	distinction	between	"connections"
and	"queues".	In	your	config/queue.php	configuration	file,	there	is	a	connections	configuration	array.	This
option	defines	the	connections	to	backend	queue	services	such	as	Amazon	SQS,	Beanstalk,	or	Redis.	However,
any	given	queue	connection	may	have	multiple	"queues"	which	may	be	thought	of	as	different	stacks	or	piles	of
queued	jobs.

Note	that	each	connection	configuration	example	in	the	queue	configuration	file	contains	a	queue	attribute.	This
is	the	default	queue	that	jobs	will	be	dispatched	to	when	they	are	sent	to	a	given	connection.	In	other	words,	if
you	dispatch	a	job	without	explicitly	defining	which	queue	it	should	be	dispatched	to,	the	job	will	be	placed	on
the	queue	that	is	defined	in	the	queue	attribute	of	the	connection	configuration:

use	App\Jobs\ProcessPodcast;

//	This	job	is	sent	to	the	default	connection's	default	queue...

ProcessPodcast::dispatch();

//	This	job	is	sent	to	the	default	connection's	"emails"	queue...

ProcessPodcast::dispatch()->onQueue('emails');

Some	applications	may	not	need	to	ever	push	jobs	onto	multiple	queues,	instead	preferring	to	have	one	simple
queue.	However,	pushing	jobs	to	multiple	queues	can	be	especially	useful	for	applications	that	wish	to
prioritize	or	segment	how	jobs	are	processed,	since	the	Laravel	queue	worker	allows	you	to	specify	which
queues	it	should	process	by	priority.	For	example,	if	you	push	jobs	to	a	high	queue,	you	may	run	a	worker	that
gives	them	higher	processing	priority:

php	artisan	queue:work	--queue=high,default

Driver	Notes	and	Prerequisites

Database

In	order	to	use	the	database	queue	driver,	you	will	need	a	database	table	to	hold	the	jobs.	To	generate	a
migration	that	creates	this	table,	run	the	queue:table	Artisan	command.	Once	the	migration	has	been	created,
you	may	migrate	your	database	using	the	migrate	command:

php	artisan	queue:table

php	artisan	migrate

Finally,	don't	forget	to	instruct	your	application	to	use	the	database	driver	by	updating	the	QUEUE_CONNECTION
variable	in	your	application's	.env	file:

QUEUE_CONNECTION=database

Laravel	Documentation	-	10.x	/	Queues 456

https://aws.amazon.com/sqs/
https://redis.io
https://aws.amazon.com/sqs/
https://redis.io
https://beanstalkd.github.io/

Redis

In	order	to	use	the	redis	queue	driver,	you	should	configure	a	Redis	database	connection	in	your	
config/database.php	configuration	file.

[!WARNING]
The	serializer	and	compression	Redis	options	are	not	supported	by	the	redis	queue	driver.

Redis	Cluster

If	your	Redis	queue	connection	uses	a	Redis	Cluster,	your	queue	names	must	contain	a	key	hash	tag.	This	is
required	in	order	to	ensure	all	of	the	Redis	keys	for	a	given	queue	are	placed	into	the	same	hash	slot:

'redis'	=>	[

				'driver'	=>	'redis',

				'connection'	=>	'default',

				'queue'	=>	'{default}',

				'retry_after'	=>	90,

],

Blocking

When	using	the	Redis	queue,	you	may	use	the	block_for	configuration	option	to	specify	how	long	the	driver
should	wait	for	a	job	to	become	available	before	iterating	through	the	worker	loop	and	re-polling	the	Redis
database.

Adjusting	this	value	based	on	your	queue	load	can	be	more	efficient	than	continually	polling	the	Redis	database
for	new	jobs.	For	instance,	you	may	set	the	value	to	5	to	indicate	that	the	driver	should	block	for	five	seconds
while	waiting	for	a	job	to	become	available:

'redis'	=>	[

				'driver'	=>	'redis',

				'connection'	=>	'default',

				'queue'	=>	'default',

				'retry_after'	=>	90,

				'block_for'	=>	5,

],

[!WARNING]
Setting	block_for	to	0	will	cause	queue	workers	to	block	indefinitely	until	a	job	is	available.	This	will	also
prevent	signals	such	as	SIGTERM	from	being	handled	until	the	next	job	has	been	processed.

Other	Driver	Prerequisites

The	following	dependencies	are	needed	for	the	listed	queue	drivers.	These	dependencies	may	be	installed	via
the	Composer	package	manager:

Amazon	SQS:	aws/aws-sdk-php	~3.0
Beanstalkd:	pda/pheanstalk	~4.0
Redis:	predis/predis	~1.0	or	phpredis	PHP	extension

Creating	Jobs

Generating	Job	Classes

By	default,	all	of	the	queueable	jobs	for	your	application	are	stored	in	the	app/Jobs	directory.	If	the	app/Jobs
directory	doesn't	exist,	it	will	be	created	when	you	run	the	make:job	Artisan	command:

php	artisan	make:job	ProcessPodcast

The	generated	class	will	implement	the	Illuminate\Contracts\Queue\ShouldQueue	interface,	indicating	to	Laravel
that	the	job	should	be	pushed	onto	the	queue	to	run	asynchronously.

[!NOTE]

Laravel	Documentation	-	10.x	/	Queues 457

https://redis.io/docs/reference/cluster-spec/#hash-tags

Job	stubs	may	be	customized	using	stub	publishing.

Class	Structure

Job	classes	are	very	simple,	normally	containing	only	a	handle	method	that	is	invoked	when	the	job	is
processed	by	the	queue.	To	get	started,	let's	take	a	look	at	an	example	job	class.	In	this	example,	we'll	pretend
we	manage	a	podcast	publishing	service	and	need	to	process	the	uploaded	podcast	files	before	they	are
published:

<?php

namespace	App\Jobs;

use	App\Models\Podcast;

use	App\Services\AudioProcessor;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Foundation\Bus\Dispatchable;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	ProcessPodcast	implements	ShouldQueue

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*/

				public	function	__construct(

								public	Podcast	$podcast,

)	{}

				/**

					*	Execute	the	job.

					*/

				public	function	handle(AudioProcessor	$processor):	void

				{

								//	Process	uploaded	podcast...

				}

}

In	this	example,	note	that	we	were	able	to	pass	an	Eloquent	model	directly	into	the	queued	job's	constructor.
Because	of	the	SerializesModels	trait	that	the	job	is	using,	Eloquent	models	and	their	loaded	relationships	will
be	gracefully	serialized	and	unserialized	when	the	job	is	processing.

If	your	queued	job	accepts	an	Eloquent	model	in	its	constructor,	only	the	identifier	for	the	model	will	be
serialized	onto	the	queue.	When	the	job	is	actually	handled,	the	queue	system	will	automatically	re-retrieve	the
full	model	instance	and	its	loaded	relationships	from	the	database.	This	approach	to	model	serialization	allows
for	much	smaller	job	payloads	to	be	sent	to	your	queue	driver.

handle	Method	Dependency	Injection

The	handle	method	is	invoked	when	the	job	is	processed	by	the	queue.	Note	that	we	are	able	to	type-hint
dependencies	on	the	handle	method	of	the	job.	The	Laravel	service	container	automatically	injects	these
dependencies.

If	you	would	like	to	take	total	control	over	how	the	container	injects	dependencies	into	the	handle	method,	you
may	use	the	container's	bindMethod	method.	The	bindMethod	method	accepts	a	callback	which	receives	the	job
and	the	container.	Within	the	callback,	you	are	free	to	invoke	the	handle	method	however	you	wish.	Typically,
you	should	call	this	method	from	the	boot	method	of	your	App\Providers\AppServiceProvider	service	provider:

use	App\Jobs\ProcessPodcast;

use	App\Services\AudioProcessor;

use	Illuminate\Contracts\Foundation\Application;

$this->app->bindMethod([ProcessPodcast::class,	'handle'],	function	(ProcessPodcast	$job,	Application	

$app)	{

				return	$job->handle($app->make(AudioProcessor::class));

});

Laravel	Documentation	-	10.x	/	Queues 458

[!WARNING]
Binary	data,	such	as	raw	image	contents,	should	be	passed	through	the	base64_encode	function	before	being
passed	to	a	queued	job.	Otherwise,	the	job	may	not	properly	serialize	to	JSON	when	being	placed	on	the
queue.

Queued	Relationships

Because	all	loaded	Eloquent	model	relationships	also	get	serialized	when	a	job	is	queued,	the	serialized	job
string	can	sometimes	become	quite	large.	Furthermore,	when	a	job	is	deserialized	and	model	relationships	are
re-retrieved	from	the	database,	they	will	be	retrieved	in	their	entirety.	Any	previous	relationship	constraints	that
were	applied	before	the	model	was	serialized	during	the	job	queueing	process	will	not	be	applied	when	the	job
is	deserialized.	Therefore,	if	you	wish	to	work	with	a	subset	of	a	given	relationship,	you	should	re-constrain
that	relationship	within	your	queued	job.

Or,	to	prevent	relations	from	being	serialized,	you	can	call	the	withoutRelations	method	on	the	model	when
setting	a	property	value.	This	method	will	return	an	instance	of	the	model	without	its	loaded	relationships:

/**

	*	Create	a	new	job	instance.

	*/

public	function	__construct(Podcast	$podcast)

{

				$this->podcast	=	$podcast->withoutRelations();

}

If	you	are	using	PHP	constructor	property	promotion	and	would	like	to	indicate	that	an	Eloquent	model	should
not	have	its	relations	serialized,	you	may	use	the	WithoutRelations	attribute:

use	Illuminate\Queue\Attributes\WithoutRelations;

/**

	*	Create	a	new	job	instance.

	*/

public	function	__construct(

				#[WithoutRelations]

				public	Podcast	$podcast

)	{

}

If	a	job	receives	a	collection	or	array	of	Eloquent	models	instead	of	a	single	model,	the	models	within	that
collection	will	not	have	their	relationships	restored	when	the	job	is	deserialized	and	executed.	This	is	to	prevent
excessive	resource	usage	on	jobs	that	deal	with	large	numbers	of	models.

Unique	Jobs

[!WARNING]
Unique	jobs	require	a	cache	driver	that	supports	locks.	Currently,	the	memcached,	redis,	dynamodb,	database,	
file,	and	array	cache	drivers	support	atomic	locks.	In	addition,	unique	job	constraints	do	not	apply	to	jobs
within	batches.

Sometimes,	you	may	want	to	ensure	that	only	one	instance	of	a	specific	job	is	on	the	queue	at	any	point	in	time.
You	may	do	so	by	implementing	the	ShouldBeUnique	interface	on	your	job	class.	This	interface	does	not	require
you	to	define	any	additional	methods	on	your	class:

<?php

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Contracts\Queue\ShouldBeUnique;

class	UpdateSearchIndex	implements	ShouldQueue,	ShouldBeUnique

{

				...

}

In	the	example	above,	the	UpdateSearchIndex	job	is	unique.	So,	the	job	will	not	be	dispatched	if	another	instance
of	the	job	is	already	on	the	queue	and	has	not	finished	processing.

Laravel	Documentation	-	10.x	/	Queues 459

In	certain	cases,	you	may	want	to	define	a	specific	"key"	that	makes	the	job	unique	or	you	may	want	to	specify
a	timeout	beyond	which	the	job	no	longer	stays	unique.	To	accomplish	this,	you	may	define	uniqueId	and	
uniqueFor	properties	or	methods	on	your	job	class:

<?php

use	App\Models\Product;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Contracts\Queue\ShouldBeUnique;

class	UpdateSearchIndex	implements	ShouldQueue,	ShouldBeUnique

{

				/**

					*	The	product	instance.

					*

					*	@var	\App\Product

					*/

				public	$product;

				/**

					*	The	number	of	seconds	after	which	the	job's	unique	lock	will	be	released.

					*

					*	@var	int

					*/

				public	$uniqueFor	=	3600;

				/**

					*	Get	the	unique	ID	for	the	job.

					*/

				public	function	uniqueId():	string

				{

								return	$this->product->id;

				}

}

In	the	example	above,	the	UpdateSearchIndex	job	is	unique	by	a	product	ID.	So,	any	new	dispatches	of	the	job
with	the	same	product	ID	will	be	ignored	until	the	existing	job	has	completed	processing.	In	addition,	if	the
existing	job	is	not	processed	within	one	hour,	the	unique	lock	will	be	released	and	another	job	with	the	same
unique	key	can	be	dispatched	to	the	queue.

[!WARNING]
If	your	application	dispatches	jobs	from	multiple	web	servers	or	containers,	you	should	ensure	that	all	of
your	servers	are	communicating	with	the	same	central	cache	server	so	that	Laravel	can	accurately
determine	if	a	job	is	unique.

Keeping	Jobs	Unique	Until	Processing	Begins

By	default,	unique	jobs	are	"unlocked"	after	a	job	completes	processing	or	fails	all	of	its	retry	attempts.
However,	there	may	be	situations	where	you	would	like	your	job	to	unlock	immediately	before	it	is	processed.
To	accomplish	this,	your	job	should	implement	the	ShouldBeUniqueUntilProcessing	contract	instead	of	the	
ShouldBeUnique	contract:

<?php

use	App\Models\Product;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Contracts\Queue\ShouldBeUniqueUntilProcessing;

class	UpdateSearchIndex	implements	ShouldQueue,	ShouldBeUniqueUntilProcessing

{

				//	...

}

Unique	Job	Locks

Behind	the	scenes,	when	a	ShouldBeUnique	job	is	dispatched,	Laravel	attempts	to	acquire	a	lock	with	the	
uniqueId	key.	If	the	lock	is	not	acquired,	the	job	is	not	dispatched.	This	lock	is	released	when	the	job	completes
processing	or	fails	all	of	its	retry	attempts.	By	default,	Laravel	will	use	the	default	cache	driver	to	obtain	this
lock.	However,	if	you	wish	to	use	another	driver	for	acquiring	the	lock,	you	may	define	a	uniqueVia	method	that
returns	the	cache	driver	that	should	be	used:

Laravel	Documentation	-	10.x	/	Queues 460

use	Illuminate\Contracts\Cache\Repository;

use	Illuminate\Support\Facades\Cache;

class	UpdateSearchIndex	implements	ShouldQueue,	ShouldBeUnique

{

				...

				/**

					*	Get	the	cache	driver	for	the	unique	job	lock.

					*/

				public	function	uniqueVia():	Repository

				{

								return	Cache::driver('redis');

				}

}

[!NOTE]
If	you	only	need	to	limit	the	concurrent	processing	of	a	job,	use	the	WithoutOverlapping	job	middleware
instead.

Encrypted	Jobs

Laravel	allows	you	to	ensure	the	privacy	and	integrity	of	a	job's	data	via	encryption.	To	get	started,	simply	add
the	ShouldBeEncrypted	interface	to	the	job	class.	Once	this	interface	has	been	added	to	the	class,	Laravel	will
automatically	encrypt	your	job	before	pushing	it	onto	a	queue:

<?php

use	Illuminate\Contracts\Queue\ShouldBeEncrypted;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	UpdateSearchIndex	implements	ShouldQueue,	ShouldBeEncrypted

{

				//	...

}

Job	Middleware

Job	middleware	allow	you	to	wrap	custom	logic	around	the	execution	of	queued	jobs,	reducing	boilerplate	in
the	jobs	themselves.	For	example,	consider	the	following	handle	method	which	leverages	Laravel's	Redis	rate
limiting	features	to	allow	only	one	job	to	process	every	five	seconds:

use	Illuminate\Support\Facades\Redis;

/**

	*	Execute	the	job.

	*/

public	function	handle():	void

{

				Redis::throttle('key')->block(0)->allow(1)->every(5)->then(function	()	{

								info('Lock	obtained...');

								//	Handle	job...

				},	function	()	{

								//	Could	not	obtain	lock...

								return	$this->release(5);

				});

}

While	this	code	is	valid,	the	implementation	of	the	handle	method	becomes	noisy	since	it	is	cluttered	with	Redis
rate	limiting	logic.	In	addition,	this	rate	limiting	logic	must	be	duplicated	for	any	other	jobs	that	we	want	to	rate
limit.

Instead	of	rate	limiting	in	the	handle	method,	we	could	define	a	job	middleware	that	handles	rate	limiting.
Laravel	does	not	have	a	default	location	for	job	middleware,	so	you	are	welcome	to	place	job	middleware
anywhere	in	your	application.	In	this	example,	we	will	place	the	middleware	in	an	app/Jobs/Middleware
directory:

<?php

Laravel	Documentation	-	10.x	/	Queues 461

namespace	App\Jobs\Middleware;

use	Closure;

use	Illuminate\Support\Facades\Redis;

class	RateLimited

{

				/**

					*	Process	the	queued	job.

					*

					*	@param		\Closure(object):	void		$next

					*/

				public	function	handle(object	$job,	Closure	$next):	void

				{

								Redis::throttle('key')

																->block(0)->allow(1)->every(5)

																->then(function	()	use	($job,	$next)	{

																				//	Lock	obtained...

																				$next($job);

																},	function	()	use	($job)	{

																				//	Could	not	obtain	lock...

																				$job->release(5);

																});

				}

}

As	you	can	see,	like	route	middleware,	job	middleware	receive	the	job	being	processed	and	a	callback	that
should	be	invoked	to	continue	processing	the	job.

After	creating	job	middleware,	they	may	be	attached	to	a	job	by	returning	them	from	the	job's	middleware
method.	This	method	does	not	exist	on	jobs	scaffolded	by	the	make:job	Artisan	command,	so	you	will	need	to
manually	add	it	to	your	job	class:

use	App\Jobs\Middleware\RateLimited;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[new	RateLimited];

}

[!NOTE]
Job	middleware	can	also	be	assigned	to	queueable	event	listeners,	mailables,	and	notifications.

Rate	Limiting

Although	we	just	demonstrated	how	to	write	your	own	rate	limiting	job	middleware,	Laravel	actually	includes	a
rate	limiting	middleware	that	you	may	utilize	to	rate	limit	jobs.	Like	route	rate	limiters,	job	rate	limiters	are
defined	using	the	RateLimiter	facade's	for	method.

For	example,	you	may	wish	to	allow	users	to	backup	their	data	once	per	hour	while	imposing	no	such	limit	on
premium	customers.	To	accomplish	this,	you	may	define	a	RateLimiter	in	the	boot	method	of	your	
AppServiceProvider:

use	Illuminate\Cache\RateLimiting\Limit;

use	Illuminate\Support\Facades\RateLimiter;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				RateLimiter::for('backups',	function	(object	$job)	{

								return	$job->user->vipCustomer()

																				?	Limit::none()

																				:	Limit::perHour(1)->by($job->user->id);

				});

}

Laravel	Documentation	-	10.x	/	Queues 462

In	the	example	above,	we	defined	an	hourly	rate	limit;	however,	you	may	easily	define	a	rate	limit	based	on
minutes	using	the	perMinute	method.	In	addition,	you	may	pass	any	value	you	wish	to	the	by	method	of	the	rate
limit;	however,	this	value	is	most	often	used	to	segment	rate	limits	by	customer:

return	Limit::perMinute(50)->by($job->user->id);

Once	you	have	defined	your	rate	limit,	you	may	attach	the	rate	limiter	to	your	job	using	the	
Illuminate\Queue\Middleware\RateLimited	middleware.	Each	time	the	job	exceeds	the	rate	limit,	this
middleware	will	release	the	job	back	to	the	queue	with	an	appropriate	delay	based	on	the	rate	limit	duration.

use	Illuminate\Queue\Middleware\RateLimited;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[new	RateLimited('backups')];

}

Releasing	a	rate	limited	job	back	onto	the	queue	will	still	increment	the	job's	total	number	of	attempts.	You	may
wish	to	tune	your	tries	and	maxExceptions	properties	on	your	job	class	accordingly.	Or,	you	may	wish	to	use	the
retryUntil	method	to	define	the	amount	of	time	until	the	job	should	no	longer	be	attempted.

If	you	do	not	want	a	job	to	be	retried	when	it	is	rate	limited,	you	may	use	the	dontRelease	method:

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[(new	RateLimited('backups'))->dontRelease()];

}

[!NOTE]
If	you	are	using	Redis,	you	may	use	the	Illuminate\Queue\Middleware\RateLimitedWithRedis	middleware,
which	is	fine-tuned	for	Redis	and	more	efficient	than	the	basic	rate	limiting	middleware.

Preventing	Job	Overlaps

Laravel	includes	an	Illuminate\Queue\Middleware\WithoutOverlapping	middleware	that	allows	you	to	prevent
job	overlaps	based	on	an	arbitrary	key.	This	can	be	helpful	when	a	queued	job	is	modifying	a	resource	that
should	only	be	modified	by	one	job	at	a	time.

For	example,	let's	imagine	you	have	a	queued	job	that	updates	a	user's	credit	score	and	you	want	to	prevent
credit	score	update	job	overlaps	for	the	same	user	ID.	To	accomplish	this,	you	can	return	the	
WithoutOverlapping	middleware	from	your	job's	middleware	method:

use	Illuminate\Queue\Middleware\WithoutOverlapping;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[new	WithoutOverlapping($this->user->id)];

}

Any	overlapping	jobs	of	the	same	type	will	be	released	back	to	the	queue.	You	may	also	specify	the	number	of
seconds	that	must	elapse	before	the	released	job	will	be	attempted	again:

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

Laravel	Documentation	-	10.x	/	Queues 463

	*/

public	function	middleware():	array

{

				return	[(new	WithoutOverlapping($this->order->id))->releaseAfter(60)];

}

If	you	wish	to	immediately	delete	any	overlapping	jobs	so	that	they	will	not	be	retried,	you	may	use	the	
dontRelease	method:

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[(new	WithoutOverlapping($this->order->id))->dontRelease()];

}

The	WithoutOverlapping	middleware	is	powered	by	Laravel's	atomic	lock	feature.	Sometimes,	your	job	may
unexpectedly	fail	or	timeout	in	such	a	way	that	the	lock	is	not	released.	Therefore,	you	may	explicitly	define	a
lock	expiration	time	using	the	expireAfter	method.	For	example,	the	example	below	will	instruct	Laravel	to
release	the	WithoutOverlapping	lock	three	minutes	after	the	job	has	started	processing:

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[(new	WithoutOverlapping($this->order->id))->expireAfter(180)];

}

[!WARNING]
The	WithoutOverlapping	middleware	requires	a	cache	driver	that	supports	locks.	Currently,	the	memcached,	
redis,	dynamodb,	database,	file,	and	array	cache	drivers	support	atomic	locks.

Sharing	Lock	Keys	Across	Job	Classes

By	default,	the	WithoutOverlapping	middleware	will	only	prevent	overlapping	jobs	of	the	same	class.	So,
although	two	different	job	classes	may	use	the	same	lock	key,	they	will	not	be	prevented	from	overlapping.
However,	you	can	instruct	Laravel	to	apply	the	key	across	job	classes	using	the	shared	method:

use	Illuminate\Queue\Middleware\WithoutOverlapping;

class	ProviderIsDown

{

				//	...

				public	function	middleware():	array

				{

								return	[

												(new	WithoutOverlapping("status:{$this->provider}"))->shared(),

];

				}

}

class	ProviderIsUp

{

				//	...

				public	function	middleware():	array

				{

								return	[

												(new	WithoutOverlapping("status:{$this->provider}"))->shared(),

];

				}

}

Throttling	Exceptions

Laravel	includes	a	Illuminate\Queue\Middleware\ThrottlesExceptions	middleware	that	allows	you	to	throttle

Laravel	Documentation	-	10.x	/	Queues 464

exceptions.	Once	the	job	throws	a	given	number	of	exceptions,	all	further	attempts	to	execute	the	job	are
delayed	until	a	specified	time	interval	lapses.	This	middleware	is	particularly	useful	for	jobs	that	interact	with
third-party	services	that	are	unstable.

For	example,	let's	imagine	a	queued	job	that	interacts	with	a	third-party	API	that	begins	throwing	exceptions.
To	throttle	exceptions,	you	can	return	the	ThrottlesExceptions	middleware	from	your	job's	middleware	method.
Typically,	this	middleware	should	be	paired	with	a	job	that	implements	time	based	attempts:

use	DateTime;

use	Illuminate\Queue\Middleware\ThrottlesExceptions;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[new	ThrottlesExceptions(10,	5)];

}

/**

	*	Determine	the	time	at	which	the	job	should	timeout.

	*/

public	function	retryUntil():	DateTime

{

				return	now()->addMinutes(5);

}

The	first	constructor	argument	accepted	by	the	middleware	is	the	number	of	exceptions	the	job	can	throw
before	being	throttled,	while	the	second	constructor	argument	is	the	number	of	minutes	that	should	elapse
before	the	job	is	attempted	again	once	it	has	been	throttled.	In	the	code	example	above,	if	the	job	throws	10
exceptions	within	5	minutes,	we	will	wait	5	minutes	before	attempting	the	job	again.

When	a	job	throws	an	exception	but	the	exception	threshold	has	not	yet	been	reached,	the	job	will	typically	be
retried	immediately.	However,	you	may	specify	the	number	of	minutes	such	a	job	should	be	delayed	by	calling
the	backoff	method	when	attaching	the	middleware	to	the	job:

use	Illuminate\Queue\Middleware\ThrottlesExceptions;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[(new	ThrottlesExceptions(10,	5))->backoff(5)];

}

Internally,	this	middleware	uses	Laravel's	cache	system	to	implement	rate	limiting,	and	the	job's	class	name	is
utilized	as	the	cache	"key".	You	may	override	this	key	by	calling	the	by	method	when	attaching	the	middleware
to	your	job.	This	may	be	useful	if	you	have	multiple	jobs	interacting	with	the	same	third-party	service	and	you
would	like	them	to	share	a	common	throttling	"bucket":

use	Illuminate\Queue\Middleware\ThrottlesExceptions;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array<int,	object>

	*/

public	function	middleware():	array

{

				return	[(new	ThrottlesExceptions(10,	10))->by('key')];

}

[!NOTE]
If	you	are	using	Redis,	you	may	use	the	Illuminate\Queue\Middleware\ThrottlesExceptionsWithRedis
middleware,	which	is	fine-tuned	for	Redis	and	more	efficient	than	the	basic	exception	throttling
middleware.

Laravel	Documentation	-	10.x	/	Queues 465

Dispatching	Jobs

Once	you	have	written	your	job	class,	you	may	dispatch	it	using	the	dispatch	method	on	the	job	itself.	The
arguments	passed	to	the	dispatch	method	will	be	given	to	the	job's	constructor:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	App\Models\Podcast;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$podcast	=	Podcast::create(/*	...	*/);

								//	...

								ProcessPodcast::dispatch($podcast);

								return	redirect('/podcasts');

				}

}

If	you	would	like	to	conditionally	dispatch	a	job,	you	may	use	the	dispatchIf	and	dispatchUnless	methods:

ProcessPodcast::dispatchIf($accountActive,	$podcast);

ProcessPodcast::dispatchUnless($accountSuspended,	$podcast);

In	new	Laravel	applications,	the	sync	driver	is	the	default	queue	driver.	This	driver	executes	jobs	synchronously
in	the	foreground	of	the	current	request,	which	is	often	convenient	during	local	development.	If	you	would	like
to	actually	begin	queueing	jobs	for	background	processing,	you	may	specify	a	different	queue	driver	within
your	application's	config/queue.php	configuration	file.

Delayed	Dispatching

If	you	would	like	to	specify	that	a	job	should	not	be	immediately	available	for	processing	by	a	queue	worker,
you	may	use	the	delay	method	when	dispatching	the	job.	For	example,	let's	specify	that	a	job	should	not	be
available	for	processing	until	10	minutes	after	it	has	been	dispatched:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	App\Models\Podcast;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$podcast	=	Podcast::create(/*	...	*/);

								//	...

								ProcessPodcast::dispatch($podcast)

																				->delay(now()->addMinutes(10));

								return	redirect('/podcasts');

Laravel	Documentation	-	10.x	/	Queues 466

				}

}

[!WARNING]
The	Amazon	SQS	queue	service	has	a	maximum	delay	time	of	15	minutes.

Dispatching	After	the	Response	is	Sent	to	the	Browser

Alternatively,	the	dispatchAfterResponse	method	delays	dispatching	a	job	until	after	the	HTTP	response	is	sent
to	the	user's	browser	if	your	web	server	is	using	FastCGI.	This	will	still	allow	the	user	to	begin	using	the
application	even	though	a	queued	job	is	still	executing.	This	should	typically	only	be	used	for	jobs	that	take
about	a	second,	such	as	sending	an	email.	Since	they	are	processed	within	the	current	HTTP	request,	jobs
dispatched	in	this	fashion	do	not	require	a	queue	worker	to	be	running	in	order	for	them	to	be	processed:

use	App\Jobs\SendNotification;

SendNotification::dispatchAfterResponse();

You	may	also	dispatch	a	closure	and	chain	the	afterResponse	method	onto	the	dispatch	helper	to	execute	a
closure	after	the	HTTP	response	has	been	sent	to	the	browser:

use	App\Mail\WelcomeMessage;

use	Illuminate\Support\Facades\Mail;

dispatch(function	()	{

				Mail::to('taylor@example.com')->send(new	WelcomeMessage);

})->afterResponse();

Synchronous	Dispatching

If	you	would	like	to	dispatch	a	job	immediately	(synchronously),	you	may	use	the	dispatchSync	method.	When
using	this	method,	the	job	will	not	be	queued	and	will	be	executed	immediately	within	the	current	process:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	App\Models\Podcast;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$podcast	=	Podcast::create(/*	...	*/);

								//	Create	podcast...

								ProcessPodcast::dispatchSync($podcast);

								return	redirect('/podcasts');

				}

}

Jobs	&	Database	Transactions

While	it	is	perfectly	fine	to	dispatch	jobs	within	database	transactions,	you	should	take	special	care	to	ensure
that	your	job	will	actually	be	able	to	execute	successfully.	When	dispatching	a	job	within	a	transaction,	it	is
possible	that	the	job	will	be	processed	by	a	worker	before	the	parent	transaction	has	committed.	When	this
happens,	any	updates	you	have	made	to	models	or	database	records	during	the	database	transaction(s)	may	not
yet	be	reflected	in	the	database.	In	addition,	any	models	or	database	records	created	within	the	transaction(s)
may	not	exist	in	the	database.

Laravel	Documentation	-	10.x	/	Queues 467

Thankfully,	Laravel	provides	several	methods	of	working	around	this	problem.	First,	you	may	set	the	
after_commit	connection	option	in	your	queue	connection's	configuration	array:

'redis'	=>	[

				'driver'	=>	'redis',

				//	...

				'after_commit'	=>	true,

],

When	the	after_commit	option	is	true,	you	may	dispatch	jobs	within	database	transactions;	however,	Laravel
will	wait	until	the	open	parent	database	transactions	have	been	committed	before	actually	dispatching	the	job.
Of	course,	if	no	database	transactions	are	currently	open,	the	job	will	be	dispatched	immediately.

If	a	transaction	is	rolled	back	due	to	an	exception	that	occurs	during	the	transaction,	the	jobs	that	were
dispatched	during	that	transaction	will	be	discarded.

[!NOTE]
Setting	the	after_commit	configuration	option	to	true	will	also	cause	any	queued	event	listeners,	mailables,
notifications,	and	broadcast	events	to	be	dispatched	after	all	open	database	transactions	have	been
committed.

Specifying	Commit	Dispatch	Behavior	Inline

If	you	do	not	set	the	after_commit	queue	connection	configuration	option	to	true,	you	may	still	indicate	that	a
specific	job	should	be	dispatched	after	all	open	database	transactions	have	been	committed.	To	accomplish	this,
you	may	chain	the	afterCommit	method	onto	your	dispatch	operation:

use	App\Jobs\ProcessPodcast;

ProcessPodcast::dispatch($podcast)->afterCommit();

Likewise,	if	the	after_commit	configuration	option	is	set	to	true,	you	may	indicate	that	a	specific	job	should	be
dispatched	immediately	without	waiting	for	any	open	database	transactions	to	commit:

ProcessPodcast::dispatch($podcast)->beforeCommit();

Job	Chaining

Job	chaining	allows	you	to	specify	a	list	of	queued	jobs	that	should	be	run	in	sequence	after	the	primary	job	has
executed	successfully.	If	one	job	in	the	sequence	fails,	the	rest	of	the	jobs	will	not	be	run.	To	execute	a	queued
job	chain,	you	may	use	the	chain	method	provided	by	the	Bus	facade.	Laravel's	command	bus	is	a	lower	level
component	that	queued	job	dispatching	is	built	on	top	of:

use	App\Jobs\OptimizePodcast;

use	App\Jobs\ProcessPodcast;

use	App\Jobs\ReleasePodcast;

use	Illuminate\Support\Facades\Bus;

Bus::chain([

				new	ProcessPodcast,

				new	OptimizePodcast,

				new	ReleasePodcast,

])->dispatch();

In	addition	to	chaining	job	class	instances,	you	may	also	chain	closures:

Bus::chain([

				new	ProcessPodcast,

				new	OptimizePodcast,

				function	()	{

								Podcast::update(/*	...	*/);

				},

])->dispatch();

[!WARNING]
Deleting	jobs	using	the	$this->delete()	method	within	the	job	will	not	prevent	chained	jobs	from	being
processed.	The	chain	will	only	stop	executing	if	a	job	in	the	chain	fails.

Laravel	Documentation	-	10.x	/	Queues 468

Chain	Connection	and	Queue

If	you	would	like	to	specify	the	connection	and	queue	that	should	be	used	for	the	chained	jobs,	you	may	use	the
onConnection	and	onQueue	methods.	These	methods	specify	the	queue	connection	and	queue	name	that	should	be
used	unless	the	queued	job	is	explicitly	assigned	a	different	connection	/	queue:

Bus::chain([

				new	ProcessPodcast,

				new	OptimizePodcast,

				new	ReleasePodcast,

])->onConnection('redis')->onQueue('podcasts')->dispatch();

Chain	Failures

When	chaining	jobs,	you	may	use	the	catch	method	to	specify	a	closure	that	should	be	invoked	if	a	job	within
the	chain	fails.	The	given	callback	will	receive	the	Throwable	instance	that	caused	the	job	failure:

use	Illuminate\Support\Facades\Bus;

use	Throwable;

Bus::chain([

				new	ProcessPodcast,

				new	OptimizePodcast,

				new	ReleasePodcast,

])->catch(function	(Throwable	$e)	{

				//	A	job	within	the	chain	has	failed...

})->dispatch();

[!WARNING]
Since	chain	callbacks	are	serialized	and	executed	at	a	later	time	by	the	Laravel	queue,	you	should	not	use
the	$this	variable	within	chain	callbacks.

Customizing	The	Queue	a	Connection

Dispatching	to	a	Particular	Queue

By	pushing	jobs	to	different	queues,	you	may	"categorize"	your	queued	jobs	and	even	prioritize	how	many
workers	you	assign	to	various	queues.	Keep	in	mind,	this	does	not	push	jobs	to	different	queue	"connections"	as
defined	by	your	queue	configuration	file,	but	only	to	specific	queues	within	a	single	connection.	To	specify	the
queue,	use	the	onQueue	method	when	dispatching	the	job:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	App\Models\Podcast;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$podcast	=	Podcast::create(/*	...	*/);

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast)->onQueue('processing');

								return	redirect('/podcasts');

				}

}

Alternatively,	you	may	specify	the	job's	queue	by	calling	the	onQueue	method	within	the	job's	constructor:

<?php

Laravel	Documentation	-	10.x	/	Queues 469

namespace	App\Jobs;

	use	Illuminate\Bus\Queueable;

	use	Illuminate\Contracts\Queue\ShouldQueue;

	use	Illuminate\Foundation\Bus\Dispatchable;

	use	Illuminate\Queue\InteractsWithQueue;

	use	Illuminate\Queue\SerializesModels;

class	ProcessPodcast	implements	ShouldQueue

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*/

				public	function	__construct()

				{

								$this->onQueue('processing');

				}

}

Dispatching	to	a	Particular	Connection

If	your	application	interacts	with	multiple	queue	connections,	you	may	specify	which	connection	to	push	a	job
to	using	the	onConnection	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	App\Models\Podcast;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$podcast	=	Podcast::create(/*	...	*/);

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast)->onConnection('sqs');

								return	redirect('/podcasts');

				}

}

You	may	chain	the	onConnection	and	onQueue	methods	together	to	specify	the	connection	and	the	queue	for	a
job:

ProcessPodcast::dispatch($podcast)

														->onConnection('sqs')

														->onQueue('processing');

Alternatively,	you	may	specify	the	job's	connection	by	calling	the	onConnection	method	within	the	job's
constructor:

<?php

namespace	App\Jobs;

	use	Illuminate\Bus\Queueable;

	use	Illuminate\Contracts\Queue\ShouldQueue;

	use	Illuminate\Foundation\Bus\Dispatchable;

	use	Illuminate\Queue\InteractsWithQueue;

	use	Illuminate\Queue\SerializesModels;

class	ProcessPodcast	implements	ShouldQueue

{

Laravel	Documentation	-	10.x	/	Queues 470

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*/

				public	function	__construct()

				{

								$this->onConnection('sqs');

				}

}

Specifying	Max	Job	Attempts	/	Timeout	Values

Max	Attempts

If	one	of	your	queued	jobs	is	encountering	an	error,	you	likely	do	not	want	it	to	keep	retrying	indefinitely.
Therefore,	Laravel	provides	various	ways	to	specify	how	many	times	or	for	how	long	a	job	may	be	attempted.

One	approach	to	specifying	the	maximum	number	of	times	a	job	may	be	attempted	is	via	the	--tries	switch	on
the	Artisan	command	line.	This	will	apply	to	all	jobs	processed	by	the	worker	unless	the	job	being	processed
specifies	the	number	of	times	it	may	be	attempted:

php	artisan	queue:work	--tries=3

If	a	job	exceeds	its	maximum	number	of	attempts,	it	will	be	considered	a	"failed"	job.	For	more	information	on
handling	failed	jobs,	consult	the	failed	job	documentation.	If	--tries=0	is	provided	to	the	queue:work	command,
the	job	will	be	retried	indefinitely.

You	may	take	a	more	granular	approach	by	defining	the	maximum	number	of	times	a	job	may	be	attempted	on
the	job	class	itself.	If	the	maximum	number	of	attempts	is	specified	on	the	job,	it	will	take	precedence	over	the	
--tries	value	provided	on	the	command	line:

<?php

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	times	the	job	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	5;

}

If	you	need	dynamic	control	over	a	particular	job's	maximum	attempts,	you	may	define	a	tries	method	on	the
job:

/**

	*	Determine	number	of	times	the	job	may	be	attempted.

	*/

public	function	tries():	int

{

				return	5;

}

Time	Based	Attempts

As	an	alternative	to	defining	how	many	times	a	job	may	be	attempted	before	it	fails,	you	may	define	a	time	at
which	the	job	should	no	longer	be	attempted.	This	allows	a	job	to	be	attempted	any	number	of	times	within	a
given	time	frame.	To	define	the	time	at	which	a	job	should	no	longer	be	attempted,	add	a	retryUntil	method	to
your	job	class.	This	method	should	return	a	DateTime	instance:

use	DateTime;

/**

	*	Determine	the	time	at	which	the	job	should	timeout.

	*/

public	function	retryUntil():	DateTime

Laravel	Documentation	-	10.x	/	Queues 471

{

				return	now()->addMinutes(10);

}

[!NOTE]
You	may	also	define	a	tries	property	or	retryUntil	method	on	your	queued	event	listeners.

Max	Exceptions

Sometimes	you	may	wish	to	specify	that	a	job	may	be	attempted	many	times,	but	should	fail	if	the	retries	are
triggered	by	a	given	number	of	unhandled	exceptions	(as	opposed	to	being	released	by	the	release	method
directly).	To	accomplish	this,	you	may	define	a	maxExceptions	property	on	your	job	class:

<?php

namespace	App\Jobs;

use	Illuminate\Support\Facades\Redis;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	times	the	job	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	25;

				/**

					*	The	maximum	number	of	unhandled	exceptions	to	allow	before	failing.

					*

					*	@var	int

					*/

				public	$maxExceptions	=	3;

				/**

					*	Execute	the	job.

					*/

				public	function	handle():	void

				{

								Redis::throttle('key')->allow(10)->every(60)->then(function	()	{

												//	Lock	obtained,	process	the	podcast...

								},	function	()	{

												//	Unable	to	obtain	lock...

												return	$this->release(10);

								});

				}

}

In	this	example,	the	job	is	released	for	ten	seconds	if	the	application	is	unable	to	obtain	a	Redis	lock	and	will
continue	to	be	retried	up	to	25	times.	However,	the	job	will	fail	if	three	unhandled	exceptions	are	thrown	by	the
job.

Timeout

Often,	you	know	roughly	how	long	you	expect	your	queued	jobs	to	take.	For	this	reason,	Laravel	allows	you	to
specify	a	"timeout"	value.	By	default,	the	timeout	value	is	60	seconds.	If	a	job	is	processing	for	longer	than	the
number	of	seconds	specified	by	the	timeout	value,	the	worker	processing	the	job	will	exit	with	an	error.
Typically,	the	worker	will	be	restarted	automatically	by	a	process	manager	configured	on	your	server.

The	maximum	number	of	seconds	that	jobs	can	run	may	be	specified	using	the	--timeout	switch	on	the	Artisan
command	line:

php	artisan	queue:work	--timeout=30

If	the	job	exceeds	its	maximum	attempts	by	continually	timing	out,	it	will	be	marked	as	failed.

You	may	also	define	the	maximum	number	of	seconds	a	job	should	be	allowed	to	run	on	the	job	class	itself.	If
the	timeout	is	specified	on	the	job,	it	will	take	precedence	over	any	timeout	specified	on	the	command	line:

<?php

Laravel	Documentation	-	10.x	/	Queues 472

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	seconds	the	job	can	run	before	timing	out.

					*

					*	@var	int

					*/

				public	$timeout	=	120;

}

Sometimes,	IO	blocking	processes	such	as	sockets	or	outgoing	HTTP	connections	may	not	respect	your
specified	timeout.	Therefore,	when	using	these	features,	you	should	always	attempt	to	specify	a	timeout	using
their	APIs	as	well.	For	example,	when	using	Guzzle,	you	should	always	specify	a	connection	and	request
timeout	value.

[!WARNING]
The	pcntl	PHP	extension	must	be	installed	in	order	to	specify	job	timeouts.	In	addition,	a	job's	"timeout"
value	should	always	be	less	than	its	"retry	after"	value.	Otherwise,	the	job	may	be	re-attempted	before	it
has	actually	finished	executing	or	timed	out.

Failing	on	Timeout

If	you	would	like	to	indicate	that	a	job	should	be	marked	as	failed	on	timeout,	you	may	define	the	
$failOnTimeout	property	on	the	job	class:

/**

	*	Indicate	if	the	job	should	be	marked	as	failed	on	timeout.

	*

	*	@var	bool

	*/

public	$failOnTimeout	=	true;

Error	Handling

If	an	exception	is	thrown	while	the	job	is	being	processed,	the	job	will	automatically	be	released	back	onto	the
queue	so	it	may	be	attempted	again.	The	job	will	continue	to	be	released	until	it	has	been	attempted	the
maximum	number	of	times	allowed	by	your	application.	The	maximum	number	of	attempts	is	defined	by	the	--
tries	switch	used	on	the	queue:work	Artisan	command.	Alternatively,	the	maximum	number	of	attempts	may	be
defined	on	the	job	class	itself.	More	information	on	running	the	queue	worker	can	be	found	below.

Manually	Releasing	a	Job

Sometimes	you	may	wish	to	manually	release	a	job	back	onto	the	queue	so	that	it	can	be	attempted	again	at	a
later	time.	You	may	accomplish	this	by	calling	the	release	method:

/**

	*	Execute	the	job.

	*/

public	function	handle():	void

{

				//	...

				$this->release();

}

By	default,	the	release	method	will	release	the	job	back	onto	the	queue	for	immediate	processing.	However,
you	may	instruct	the	queue	to	not	make	the	job	available	for	processing	until	a	given	number	of	seconds	has
elapsed	by	passing	an	integer	or	date	instance	to	the	release	method:

$this->release(10);

$this->release(now()->addSeconds(10));

Manually	Failing	a	Job

Laravel	Documentation	-	10.x	/	Queues 473

Occasionally	you	may	need	to	manually	mark	a	job	as	"failed".	To	do	so,	you	may	call	the	fail	method:

/**

	*	Execute	the	job.

	*/

public	function	handle():	void

{

				//	...

				$this->fail();

}

If	you	would	like	to	mark	your	job	as	failed	because	of	an	exception	that	you	have	caught,	you	may	pass	the
exception	to	the	fail	method.	Or,	for	convenience,	you	may	pass	a	string	error	message	which	will	be
converted	to	an	exception	for	you:

$this->fail($exception);

$this->fail('Something	went	wrong.');

[!NOTE]
For	more	information	on	failed	jobs,	check	out	the	documentation	on	dealing	with	job	failures.

Job	Batching

Laravel's	job	batching	feature	allows	you	to	easily	execute	a	batch	of	jobs	and	then	perform	some	action	when
the	batch	of	jobs	has	completed	executing.	Before	getting	started,	you	should	create	a	database	migration	to
build	a	table	which	will	contain	meta	information	about	your	job	batches,	such	as	their	completion	percentage.
This	migration	may	be	generated	using	the	queue:batches-table	Artisan	command:

php	artisan	queue:batches-table

php	artisan	migrate

Defining	Batchable	Jobs

To	define	a	batchable	job,	you	should	create	a	queueable	job	as	normal;	however,	you	should	add	the	
Illuminate\Bus\Batchable	trait	to	the	job	class.	This	trait	provides	access	to	a	batch	method	which	may	be	used
to	retrieve	the	current	batch	that	the	job	is	executing	within:

<?php

namespace	App\Jobs;

use	Illuminate\Bus\Batchable;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Foundation\Bus\Dispatchable;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	ImportCsv	implements	ShouldQueue

{

				use	Batchable,	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Execute	the	job.

					*/

				public	function	handle():	void

				{

								if	($this->batch()->cancelled())	{

												//	Determine	if	the	batch	has	been	cancelled...

												return;

								}

								//	Import	a	portion	of	the	CSV	file...

				}

}

Dispatching	Batches

Laravel	Documentation	-	10.x	/	Queues 474

To	dispatch	a	batch	of	jobs,	you	should	use	the	batch	method	of	the	Bus	facade.	Of	course,	batching	is	primarily
useful	when	combined	with	completion	callbacks.	So,	you	may	use	the	then,	catch,	and	finally	methods	to
define	completion	callbacks	for	the	batch.	Each	of	these	callbacks	will	receive	an	Illuminate\Bus\Batch
instance	when	they	are	invoked.	In	this	example,	we	will	imagine	we	are	queueing	a	batch	of	jobs	that	each
process	a	given	number	of	rows	from	a	CSV	file:

use	App\Jobs\ImportCsv;

use	Illuminate\Bus\Batch;

use	Illuminate\Support\Facades\Bus;

use	Throwable;

$batch	=	Bus::batch([

				new	ImportCsv(1,	100),

				new	ImportCsv(101,	200),

				new	ImportCsv(201,	300),

				new	ImportCsv(301,	400),

				new	ImportCsv(401,	500),

])->before(function	(Batch	$batch)	{

				//	The	batch	has	been	created	but	no	jobs	have	been	added...

})->progress(function	(Batch	$batch)	{

				//	A	single	job	has	completed	successfully...

})->then(function	(Batch	$batch)	{

				//	All	jobs	completed	successfully...

})->catch(function	(Batch	$batch,	Throwable	$e)	{

				//	First	batch	job	failure	detected...

})->finally(function	(Batch	$batch)	{

				//	The	batch	has	finished	executing...

})->dispatch();

return	$batch->id;

The	batch's	ID,	which	may	be	accessed	via	the	$batch->id	property,	may	be	used	to	query	the	Laravel	command
bus	for	information	about	the	batch	after	it	has	been	dispatched.

[!WARNING]
Since	batch	callbacks	are	serialized	and	executed	at	a	later	time	by	the	Laravel	queue,	you	should	not	use
the	$this	variable	within	the	callbacks.

Naming	Batches

Some	tools	such	as	Laravel	Horizon	and	Laravel	Telescope	may	provide	more	user-friendly	debug	information
for	batches	if	batches	are	named.	To	assign	an	arbitrary	name	to	a	batch,	you	may	call	the	name	method	while
defining	the	batch:

$batch	=	Bus::batch([

				//	...

])->then(function	(Batch	$batch)	{

				//	All	jobs	completed	successfully...

})->name('Import	CSV')->dispatch();

Batch	Connection	and	Queue

If	you	would	like	to	specify	the	connection	and	queue	that	should	be	used	for	the	batched	jobs,	you	may	use	the
onConnection	and	onQueue	methods.	All	batched	jobs	must	execute	within	the	same	connection	and	queue:

$batch	=	Bus::batch([

				//	...

])->then(function	(Batch	$batch)	{

				//	All	jobs	completed	successfully...

})->onConnection('redis')->onQueue('imports')->dispatch();

Chains	and	Batches

You	may	define	a	set	of	chained	jobs	within	a	batch	by	placing	the	chained	jobs	within	an	array.	For	example,
we	may	execute	two	job	chains	in	parallel	and	execute	a	callback	when	both	job	chains	have	finished
processing:

use	App\Jobs\ReleasePodcast;

use	App\Jobs\SendPodcastReleaseNotification;

use	Illuminate\Bus\Batch;

Laravel	Documentation	-	10.x	/	Queues 475

use	Illuminate\Support\Facades\Bus;

Bus::batch([

				[

								new	ReleasePodcast(1),

								new	SendPodcastReleaseNotification(1),

],

				[

								new	ReleasePodcast(2),

								new	SendPodcastReleaseNotification(2),

],

])->then(function	(Batch	$batch)	{

				//	...

})->dispatch();

Conversely,	you	may	run	batches	of	jobs	within	a	chain	by	defining	batches	within	the	chain.	For	example,	you
could	first	run	a	batch	of	jobs	to	release	multiple	podcasts	then	a	batch	of	jobs	to	send	the	release	notifications:

use	App\Jobs\FlushPodcastCache;

use	App\Jobs\ReleasePodcast;

use	App\Jobs\SendPodcastReleaseNotification;

use	Illuminate\Support\Facades\Bus;

Bus::chain([

				new	FlushPodcastCache,

				Bus::batch([

								new	ReleasePodcast(1),

								new	ReleasePodcast(2),

]),

				Bus::batch([

								new	SendPodcastReleaseNotification(1),

								new	SendPodcastReleaseNotification(2),

]),

])->dispatch();

Adding	Jobs	to	Batches

Sometimes	it	may	be	useful	to	add	additional	jobs	to	a	batch	from	within	a	batched	job.	This	pattern	can	be
useful	when	you	need	to	batch	thousands	of	jobs	which	may	take	too	long	to	dispatch	during	a	web	request.	So,
instead,	you	may	wish	to	dispatch	an	initial	batch	of	"loader"	jobs	that	hydrate	the	batch	with	even	more	jobs:

$batch	=	Bus::batch([

				new	LoadImportBatch,

				new	LoadImportBatch,

				new	LoadImportBatch,

])->then(function	(Batch	$batch)	{

				//	All	jobs	completed	successfully...

})->name('Import	Contacts')->dispatch();

In	this	example,	we	will	use	the	LoadImportBatch	job	to	hydrate	the	batch	with	additional	jobs.	To	accomplish
this,	we	may	use	the	add	method	on	the	batch	instance	that	may	be	accessed	via	the	job's	batch	method:

use	App\Jobs\ImportContacts;

use	Illuminate\Support\Collection;

/**

	*	Execute	the	job.

	*/

public	function	handle():	void

{

				if	($this->batch()->cancelled())	{

								return;

				}

				$this->batch()->add(Collection::times(1000,	function	()	{

								return	new	ImportContacts;

				}));

}

[!WARNING]
You	may	only	add	jobs	to	a	batch	from	within	a	job	that	belongs	to	the	same	batch.

Inspecting	Batches

Laravel	Documentation	-	10.x	/	Queues 476

The	Illuminate\Bus\Batch	instance	that	is	provided	to	batch	completion	callbacks	has	a	variety	of	properties
and	methods	to	assist	you	in	interacting	with	and	inspecting	a	given	batch	of	jobs:

//	The	UUID	of	the	batch...

$batch->id;

//	The	name	of	the	batch	(if	applicable)...

$batch->name;

//	The	number	of	jobs	assigned	to	the	batch...

$batch->totalJobs;

//	The	number	of	jobs	that	have	not	been	processed	by	the	queue...

$batch->pendingJobs;

//	The	number	of	jobs	that	have	failed...

$batch->failedJobs;

//	The	number	of	jobs	that	have	been	processed	thus	far...

$batch->processedJobs();

//	The	completion	percentage	of	the	batch	(0-100)...

$batch->progress();

//	Indicates	if	the	batch	has	finished	executing...

$batch->finished();

//	Cancel	the	execution	of	the	batch...

$batch->cancel();

//	Indicates	if	the	batch	has	been	cancelled...

$batch->cancelled();

Returning	Batches	From	Routes

All	Illuminate\Bus\Batch	instances	are	JSON	serializable,	meaning	you	can	return	them	directly	from	one	of
your	application's	routes	to	retrieve	a	JSON	payload	containing	information	about	the	batch,	including	its
completion	progress.	This	makes	it	convenient	to	display	information	about	the	batch's	completion	progress	in
your	application's	UI.

To	retrieve	a	batch	by	its	ID,	you	may	use	the	Bus	facade's	findBatch	method:

use	Illuminate\Support\Facades\Bus;

use	Illuminate\Support\Facades\Route;

Route::get('/batch/{batchId}',	function	(string	$batchId)	{

				return	Bus::findBatch($batchId);

});

Cancelling	Batches

Sometimes	you	may	need	to	cancel	a	given	batch's	execution.	This	can	be	accomplished	by	calling	the	cancel
method	on	the	Illuminate\Bus\Batch	instance:

/**

	*	Execute	the	job.

	*/

public	function	handle():	void

{

				if	($this->user->exceedsImportLimit())	{

								return	$this->batch()->cancel();

				}

				if	($this->batch()->cancelled())	{

								return;

				}

}

As	you	may	have	noticed	in	the	previous	examples,	batched	jobs	should	typically	determine	if	their
corresponding	batch	has	been	cancelled	before	continuing	execution.	However,	for	convenience,	you	may
assign	the	SkipIfBatchCancelled	middleware	to	the	job	instead.	As	its	name	indicates,	this	middleware	will
instruct	Laravel	to	not	process	the	job	if	its	corresponding	batch	has	been	cancelled:

Laravel	Documentation	-	10.x	/	Queues 477

use	Illuminate\Queue\Middleware\SkipIfBatchCancelled;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*/

public	function	middleware():	array

{

				return	[new	SkipIfBatchCancelled];

}

Batch	Failures

When	a	batched	job	fails,	the	catch	callback	(if	assigned)	will	be	invoked.	This	callback	is	only	invoked	for	the
first	job	that	fails	within	the	batch.

Allowing	Failures

When	a	job	within	a	batch	fails,	Laravel	will	automatically	mark	the	batch	as	"cancelled".	If	you	wish,	you	may
disable	this	behavior	so	that	a	job	failure	does	not	automatically	mark	the	batch	as	cancelled.	This	may	be
accomplished	by	calling	the	allowFailures	method	while	dispatching	the	batch:

$batch	=	Bus::batch([

				//	...

])->then(function	(Batch	$batch)	{

				//	All	jobs	completed	successfully...

})->allowFailures()->dispatch();

Retrying	Failed	Batch	Jobs

For	convenience,	Laravel	provides	a	queue:retry-batch	Artisan	command	that	allows	you	to	easily	retry	all	of
the	failed	jobs	for	a	given	batch.	The	queue:retry-batch	command	accepts	the	UUID	of	the	batch	whose	failed
jobs	should	be	retried:

php	artisan	queue:retry-batch	32dbc76c-4f82-4749-b610-a639fe0099b5

Pruning	Batches

Without	pruning,	the	job_batches	table	can	accumulate	records	very	quickly.	To	mitigate	this,	you	should
schedule	the	queue:prune-batches	Artisan	command	to	run	daily:

$schedule->command('queue:prune-batches')->daily();

By	default,	all	finished	batches	that	are	more	than	24	hours	old	will	be	pruned.	You	may	use	the	hours	option
when	calling	the	command	to	determine	how	long	to	retain	batch	data.	For	example,	the	following	command
will	delete	all	batches	that	finished	over	48	hours	ago:

$schedule->command('queue:prune-batches	--hours=48')->daily();

Sometimes,	your	jobs_batches	table	may	accumulate	batch	records	for	batches	that	never	completed
successfully,	such	as	batches	where	a	job	failed	and	that	job	was	never	retried	successfully.	You	may	instruct
the	queue:prune-batches	command	to	prune	these	unfinished	batch	records	using	the	unfinished	option:

$schedule->command('queue:prune-batches	--hours=48	--unfinished=72')->daily();

Likewise,	your	jobs_batches	table	may	also	accumulate	batch	records	for	cancelled	batches.	You	may	instruct
the	queue:prune-batches	command	to	prune	these	cancelled	batch	records	using	the	cancelled	option:

$schedule->command('queue:prune-batches	--hours=48	--cancelled=72')->daily();

Storing	Batches	in	DynamoDB

Laravel	also	provides	support	for	storing	batch	meta	information	in	DynamoDB	instead	of	a	relational	database.
However,	you	will	need	to	manually	create	a	DynamoDB	table	to	store	all	of	the	batch	records.

Typically,	this	table	should	be	named	job_batches,	but	you	should	name	the	table	based	on	the	value	of	the	

Laravel	Documentation	-	10.x	/	Queues 478

https://aws.amazon.com/dynamodb

queue.batching.table	configuration	value	within	your	application's	queue	configuration	file.

DynamoDB	Batch	Table	Configuration

The	job_batches	table	should	have	a	string	primary	partition	key	named	application	and	a	string	primary	sort
key	named	id.	The	application	portion	of	the	key	will	contain	your	application's	name	as	defined	by	the	name
configuration	value	within	your	application's	app	configuration	file.	Since	the	application	name	is	part	of	the
DynamoDB	table's	key,	you	can	use	the	same	table	to	store	job	batches	for	multiple	Laravel	applications.

In	addition,	you	may	define	ttl	attribute	for	your	table	if	you	would	like	to	take	advantage	of	automatic	batch
pruning.

DynamoDB	Configuration

Next,	install	the	AWS	SDK	so	that	your	Laravel	application	can	communicate	with	Amazon	DynamoDB:

composer	require	aws/aws-sdk-php

Then,	set	the	queue.batching.driver	configuration	option's	value	to	dynamodb.	In	addition,	you	should	define	
key,	secret,	and	region	configuration	options	within	the	batching	configuration	array.	These	options	will	be
used	to	authenticate	with	AWS.	When	using	the	dynamodb	driver,	the	queue.batching.database	configuration
option	is	unnecessary:

'batching'	=>	[

				'driver'	=>	env('QUEUE_FAILED_DRIVER',	'dynamodb'),

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

				'table'	=>	'job_batches',

],

Pruning	Batches	in	DynamoDB

When	utilizing	DynamoDB	to	store	job	batch	information,	the	typical	pruning	commands	used	to	prune	batches
stored	in	a	relational	database	will	not	work.	Instead,	you	may	utilize	DynamoDB's	native	TTL	functionality	to
automatically	remove	records	for	old	batches.

If	you	defined	your	DynamoDB	table	with	a	ttl	attribute,	you	may	define	configuration	parameters	to	instruct
Laravel	how	to	prune	batch	records.	The	queue.batching.ttl_attribute	configuration	value	defines	the	name	of
the	attribute	holding	the	TTL,	while	the	queue.batching.ttl	configuration	value	defines	the	number	of	seconds
after	which	a	batch	record	can	be	removed	from	the	DynamoDB	table,	relative	to	the	last	time	the	record	was
updated:

'batching'	=>	[

				'driver'	=>	env('QUEUE_FAILED_DRIVER',	'dynamodb'),

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

				'table'	=>	'job_batches',

				'ttl_attribute'	=>	'ttl',

				'ttl'	=>	60	*	60	*	24	*	7,	//	7	days...

],

Queueing	Closures

Instead	of	dispatching	a	job	class	to	the	queue,	you	may	also	dispatch	a	closure.	This	is	great	for	quick,	simple
tasks	that	need	to	be	executed	outside	of	the	current	request	cycle.	When	dispatching	closures	to	the	queue,	the
closure's	code	content	is	cryptographically	signed	so	that	it	can	not	be	modified	in	transit:

$podcast	=	App\Podcast::find(1);

dispatch(function	()	use	($podcast)	{

				$podcast->publish();

});

Using	the	catch	method,	you	may	provide	a	closure	that	should	be	executed	if	the	queued	closure	fails	to

Laravel	Documentation	-	10.x	/	Queues 479

https://aws.amazon.com/dynamodb
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html

complete	successfully	after	exhausting	all	of	your	queue's	configured	retry	attempts:

use	Throwable;

dispatch(function	()	use	($podcast)	{

				$podcast->publish();

})->catch(function	(Throwable	$e)	{

				//	This	job	has	failed...

});

[!WARNING]
Since	catch	callbacks	are	serialized	and	executed	at	a	later	time	by	the	Laravel	queue,	you	should	not	use
the	$this	variable	within	catch	callbacks.

Running	the	Queue	Worker

The	queue:work	Command

Laravel	includes	an	Artisan	command	that	will	start	a	queue	worker	and	process	new	jobs	as	they	are	pushed
onto	the	queue.	You	may	run	the	worker	using	the	queue:work	Artisan	command.	Note	that	once	the	queue:work
command	has	started,	it	will	continue	to	run	until	it	is	manually	stopped	or	you	close	your	terminal:

php	artisan	queue:work

[!NOTE]
To	keep	the	queue:work	process	running	permanently	in	the	background,	you	should	use	a	process	monitor
such	as	Supervisor	to	ensure	that	the	queue	worker	does	not	stop	running.

You	may	include	the	-v	flag	when	invoking	the	queue:work	command	if	you	would	like	the	processed	job	IDs	to
be	included	in	the	command's	output:

php	artisan	queue:work	-v

Remember,	queue	workers	are	long-lived	processes	and	store	the	booted	application	state	in	memory.	As	a
result,	they	will	not	notice	changes	in	your	code	base	after	they	have	been	started.	So,	during	your	deployment
process,	be	sure	to	restart	your	queue	workers.	In	addition,	remember	that	any	static	state	created	or	modified
by	your	application	will	not	be	automatically	reset	between	jobs.

Alternatively,	you	may	run	the	queue:listen	command.	When	using	the	queue:listen	command,	you	don't	have
to	manually	restart	the	worker	when	you	want	to	reload	your	updated	code	or	reset	the	application	state;
however,	this	command	is	significantly	less	efficient	than	the	queue:work	command:

php	artisan	queue:listen

Running	Multiple	Queue	Workers

To	assign	multiple	workers	to	a	queue	and	process	jobs	concurrently,	you	should	simply	start	multiple	
queue:work	processes.	This	can	either	be	done	locally	via	multiple	tabs	in	your	terminal	or	in	production	using
your	process	manager's	configuration	settings.	When	using	Supervisor,	you	may	use	the	numprocs	configuration
value.

Specifying	the	Connection	and	Queue

You	may	also	specify	which	queue	connection	the	worker	should	utilize.	The	connection	name	passed	to	the	
work	command	should	correspond	to	one	of	the	connections	defined	in	your	config/queue.php	configuration	file:

php	artisan	queue:work	redis

By	default,	the	queue:work	command	only	processes	jobs	for	the	default	queue	on	a	given	connection.	However,
you	may	customize	your	queue	worker	even	further	by	only	processing	particular	queues	for	a	given
connection.	For	example,	if	all	of	your	emails	are	processed	in	an	emails	queue	on	your	redis	queue
connection,	you	may	issue	the	following	command	to	start	a	worker	that	only	processes	that	queue:

php	artisan	queue:work	redis	--queue=emails

Laravel	Documentation	-	10.x	/	Queues 480

Processing	a	Specified	Number	of	Jobs

The	--once	option	may	be	used	to	instruct	the	worker	to	only	process	a	single	job	from	the	queue:

php	artisan	queue:work	--once

The	--max-jobs	option	may	be	used	to	instruct	the	worker	to	process	the	given	number	of	jobs	and	then	exit.
This	option	may	be	useful	when	combined	with	Supervisor	so	that	your	workers	are	automatically	restarted
after	processing	a	given	number	of	jobs,	releasing	any	memory	they	may	have	accumulated:

php	artisan	queue:work	--max-jobs=1000

Processing	All	Queued	Jobs	and	Then	Exiting

The	--stop-when-empty	option	may	be	used	to	instruct	the	worker	to	process	all	jobs	and	then	exit	gracefully.
This	option	can	be	useful	when	processing	Laravel	queues	within	a	Docker	container	if	you	wish	to	shutdown
the	container	after	the	queue	is	empty:

php	artisan	queue:work	--stop-when-empty

Processing	Jobs	for	a	Given	Number	of	Seconds

The	--max-time	option	may	be	used	to	instruct	the	worker	to	process	jobs	for	the	given	number	of	seconds	and
then	exit.	This	option	may	be	useful	when	combined	with	Supervisor	so	that	your	workers	are	automatically
restarted	after	processing	jobs	for	a	given	amount	of	time,	releasing	any	memory	they	may	have	accumulated:

#	Process	jobs	for	one	hour	and	then	exit...

php	artisan	queue:work	--max-time=3600

Worker	Sleep	Duration

When	jobs	are	available	on	the	queue,	the	worker	will	keep	processing	jobs	with	no	delay	in	between	jobs.
However,	the	sleep	option	determines	how	many	seconds	the	worker	will	"sleep"	if	there	are	no	jobs	available.
Of	course,	while	sleeping,	the	worker	will	not	process	any	new	jobs:

php	artisan	queue:work	--sleep=3

Maintenance	Mode	and	Queues

While	your	application	is	in	maintenance	mode,	no	queued	jobs	will	be	handled.	The	jobs	will	continue	to	be
handled	as	normal	once	the	application	is	out	of	maintenance	mode.

To	force	your	queue	workers	to	process	jobs	even	if	maintenance	mode	is	enabled,	you	may	use	--force	option:

php	artisan	queue:work	--force

Resource	Considerations

Daemon	queue	workers	do	not	"reboot"	the	framework	before	processing	each	job.	Therefore,	you	should
release	any	heavy	resources	after	each	job	completes.	For	example,	if	you	are	doing	image	manipulation	with
the	GD	library,	you	should	free	the	memory	with	imagedestroy	when	you	are	done	processing	the	image.

Queue	Priorities

Sometimes	you	may	wish	to	prioritize	how	your	queues	are	processed.	For	example,	in	your	config/queue.php
configuration	file,	you	may	set	the	default	queue	for	your	redis	connection	to	low.	However,	occasionally	you
may	wish	to	push	a	job	to	a	high	priority	queue	like	so:

dispatch((new	Job)->onQueue('high'));

To	start	a	worker	that	verifies	that	all	of	the	high	queue	jobs	are	processed	before	continuing	to	any	jobs	on	the	
low	queue,	pass	a	comma-delimited	list	of	queue	names	to	the	work	command:

Laravel	Documentation	-	10.x	/	Queues 481

php	artisan	queue:work	--queue=high,low

Queue	Workers	and	Deployment

Since	queue	workers	are	long-lived	processes,	they	will	not	notice	changes	to	your	code	without	being
restarted.	So,	the	simplest	way	to	deploy	an	application	using	queue	workers	is	to	restart	the	workers	during
your	deployment	process.	You	may	gracefully	restart	all	of	the	workers	by	issuing	the	queue:restart	command:

php	artisan	queue:restart

This	command	will	instruct	all	queue	workers	to	gracefully	exit	after	they	finish	processing	their	current	job	so
that	no	existing	jobs	are	lost.	Since	the	queue	workers	will	exit	when	the	queue:restart	command	is	executed,
you	should	be	running	a	process	manager	such	as	Supervisor	to	automatically	restart	the	queue	workers.

[!NOTE]
The	queue	uses	the	cache	to	store	restart	signals,	so	you	should	verify	that	a	cache	driver	is	properly
configured	for	your	application	before	using	this	feature.

Job	Expirations	and	Timeouts

Job	Expiration

In	your	config/queue.php	configuration	file,	each	queue	connection	defines	a	retry_after	option.	This	option
specifies	how	many	seconds	the	queue	connection	should	wait	before	retrying	a	job	that	is	being	processed.	For
example,	if	the	value	of	retry_after	is	set	to	90,	the	job	will	be	released	back	onto	the	queue	if	it	has	been
processing	for	90	seconds	without	being	released	or	deleted.	Typically,	you	should	set	the	retry_after	value	to
the	maximum	number	of	seconds	your	jobs	should	reasonably	take	to	complete	processing.

[!WARNING]
The	only	queue	connection	which	does	not	contain	a	retry_after	value	is	Amazon	SQS.	SQS	will	retry	the
job	based	on	the	Default	Visibility	Timeout	which	is	managed	within	the	AWS	console.

Worker	Timeouts

The	queue:work	Artisan	command	exposes	a	--timeout	option.	By	default,	the	--timeout	value	is	60	seconds.	If
a	job	is	processing	for	longer	than	the	number	of	seconds	specified	by	the	timeout	value,	the	worker	processing
the	job	will	exit	with	an	error.	Typically,	the	worker	will	be	restarted	automatically	by	a	process	manager
configured	on	your	server:

php	artisan	queue:work	--timeout=60

The	retry_after	configuration	option	and	the	--timeout	CLI	option	are	different,	but	work	together	to	ensure
that	jobs	are	not	lost	and	that	jobs	are	only	successfully	processed	once.

[!WARNING]
The	--timeout	value	should	always	be	at	least	several	seconds	shorter	than	your	retry_after	configuration
value.	This	will	ensure	that	a	worker	processing	a	frozen	job	is	always	terminated	before	the	job	is	retried.
If	your	--timeout	option	is	longer	than	your	retry_after	configuration	value,	your	jobs	may	be	processed
twice.

Supervisor	Configuration

In	production,	you	need	a	way	to	keep	your	queue:work	processes	running.	A	queue:work	process	may	stop
running	for	a	variety	of	reasons,	such	as	an	exceeded	worker	timeout	or	the	execution	of	the	queue:restart
command.

For	this	reason,	you	need	to	configure	a	process	monitor	that	can	detect	when	your	queue:work	processes	exit
and	automatically	restart	them.	In	addition,	process	monitors	can	allow	you	to	specify	how	many	queue:work
processes	you	would	like	to	run	concurrently.	Supervisor	is	a	process	monitor	commonly	used	in	Linux
environments	and	we	will	discuss	how	to	configure	it	in	the	following	documentation.

Laravel	Documentation	-	10.x	/	Queues 482

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html

Installing	Supervisor

Supervisor	is	a	process	monitor	for	the	Linux	operating	system,	and	will	automatically	restart	your	queue:work
processes	if	they	fail.	To	install	Supervisor	on	Ubuntu,	you	may	use	the	following	command:

sudo	apt-get	install	supervisor

[!NOTE]
If	configuring	and	managing	Supervisor	yourself	sounds	overwhelming,	consider	using	Laravel	Forge,
which	will	automatically	install	and	configure	Supervisor	for	your	production	Laravel	projects.

Configuring	Supervisor

Supervisor	configuration	files	are	typically	stored	in	the	/etc/supervisor/conf.d	directory.	Within	this	directory,
you	may	create	any	number	of	configuration	files	that	instruct	supervisor	how	your	processes	should	be
monitored.	For	example,	let's	create	a	laravel-worker.conf	file	that	starts	and	monitors	queue:work	processes:

[program:laravel-worker]

process_name=%(program_name)s_%(process_num)02d

command=php	/home/forge/app.com/artisan	queue:work	sqs	--sleep=3	--tries=3	--max-time=3600

autostart=true

autorestart=true

stopasgroup=true

killasgroup=true

user=forge

numprocs=8

redirect_stderr=true

stdout_logfile=/home/forge/app.com/worker.log

stopwaitsecs=3600

In	this	example,	the	numprocs	directive	will	instruct	Supervisor	to	run	eight	queue:work	processes	and	monitor	all
of	them,	automatically	restarting	them	if	they	fail.	You	should	change	the	command	directive	of	the	configuration
to	reflect	your	desired	queue	connection	and	worker	options.

[!WARNING]
You	should	ensure	that	the	value	of	stopwaitsecs	is	greater	than	the	number	of	seconds	consumed	by	your
longest	running	job.	Otherwise,	Supervisor	may	kill	the	job	before	it	is	finished	processing.

Starting	Supervisor

Once	the	configuration	file	has	been	created,	you	may	update	the	Supervisor	configuration	and	start	the
processes	using	the	following	commands:

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	"laravel-worker:*"

For	more	information	on	Supervisor,	consult	the	Supervisor	documentation.

Dealing	With	Failed	Jobs

Sometimes	your	queued	jobs	will	fail.	Don't	worry,	things	don't	always	go	as	planned!	Laravel	includes	a
convenient	way	to	specify	the	maximum	number	of	times	a	job	should	be	attempted.	After	an	asynchronous	job
has	exceeded	this	number	of	attempts,	it	will	be	inserted	into	the	failed_jobs	database	table.	Synchronously
dispatched	jobs	that	fail	are	not	stored	in	this	table	and	their	exceptions	are	immediately	handled	by	the
application.

A	migration	to	create	the	failed_jobs	table	is	typically	already	present	in	new	Laravel	applications.	However,	if
your	application	does	not	contain	a	migration	for	this	table,	you	may	use	the	queue:failed-table	command	to
create	the	migration:

php	artisan	queue:failed-table

php	artisan	migrate

Laravel	Documentation	-	10.x	/	Queues 483

https://forge.laravel.com
http://supervisord.org/index.html

When	running	a	queue	worker	process,	you	may	specify	the	maximum	number	of	times	a	job	should	be
attempted	using	the	--tries	switch	on	the	queue:work	command.	If	you	do	not	specify	a	value	for	the	--tries
option,	jobs	will	only	be	attempted	once	or	as	many	times	as	specified	by	the	job	class'	$tries	property:

php	artisan	queue:work	redis	--tries=3

Using	the	--backoff	option,	you	may	specify	how	many	seconds	Laravel	should	wait	before	retrying	a	job	that
has	encountered	an	exception.	By	default,	a	job	is	immediately	released	back	onto	the	queue	so	that	it	may	be
attempted	again:

php	artisan	queue:work	redis	--tries=3	--backoff=3

If	you	would	like	to	configure	how	many	seconds	Laravel	should	wait	before	retrying	a	job	that	has
encountered	an	exception	on	a	per-job	basis,	you	may	do	so	by	defining	a	backoff	property	on	your	job	class:

/**

	*	The	number	of	seconds	to	wait	before	retrying	the	job.

	*

	*	@var	int

	*/

public	$backoff	=	3;

If	you	require	more	complex	logic	for	determining	the	job's	backoff	time,	you	may	define	a	backoff	method	on
your	job	class:

/**

*	Calculate	the	number	of	seconds	to	wait	before	retrying	the	job.

*/

public	function	backoff():	int

{

				return	3;

}

You	may	easily	configure	"exponential"	backoffs	by	returning	an	array	of	backoff	values	from	the	backoff
method.	In	this	example,	the	retry	delay	will	be	1	second	for	the	first	retry,	5	seconds	for	the	second	retry,	10
seconds	for	the	third	retry,	and	10	seconds	for	every	subsequent	retry	if	there	are	more	attempts	remaining:

/**

*	Calculate	the	number	of	seconds	to	wait	before	retrying	the	job.

*

*	@return	array<int,	int>

*/

public	function	backoff():	array

{

				return	[1,	5,	10];

}

Cleaning	Up	After	Failed	Jobs

When	a	particular	job	fails,	you	may	want	to	send	an	alert	to	your	users	or	revert	any	actions	that	were	partially
completed	by	the	job.	To	accomplish	this,	you	may	define	a	failed	method	on	your	job	class.	The	Throwable
instance	that	caused	the	job	to	fail	will	be	passed	to	the	failed	method:

<?php

namespace	App\Jobs;

use	App\Models\Podcast;

use	App\Services\AudioProcessor;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

use	Throwable;

class	ProcessPodcast	implements	ShouldQueue

{

				use	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*/

Laravel	Documentation	-	10.x	/	Queues 484

				public	function	__construct(

								public	Podcast	$podcast,

)	{}

				/**

					*	Execute	the	job.

					*/

				public	function	handle(AudioProcessor	$processor):	void

				{

								//	Process	uploaded	podcast...

				}

				/**

					*	Handle	a	job	failure.

					*/

				public	function	failed(?Throwable	$exception):	void

				{

								//	Send	user	notification	of	failure,	etc...

				}

}

[!WARNING]
A	new	instance	of	the	job	is	instantiated	before	invoking	the	failed	method;	therefore,	any	class	property
modifications	that	may	have	occurred	within	the	handle	method	will	be	lost.

Retrying	Failed	Jobs

To	view	all	of	the	failed	jobs	that	have	been	inserted	into	your	failed_jobs	database	table,	you	may	use	the	
queue:failed	Artisan	command:

php	artisan	queue:failed

The	queue:failed	command	will	list	the	job	ID,	connection,	queue,	failure	time,	and	other	information	about	the
job.	The	job	ID	may	be	used	to	retry	the	failed	job.	For	instance,	to	retry	a	failed	job	that	has	an	ID	of	ce7bb17c-
cdd8-41f0-a8ec-7b4fef4e5ece,	issue	the	following	command:

php	artisan	queue:retry	ce7bb17c-cdd8-41f0-a8ec-7b4fef4e5ece

If	necessary,	you	may	pass	multiple	IDs	to	the	command:

php	artisan	queue:retry	ce7bb17c-cdd8-41f0-a8ec-7b4fef4e5ece	91401d2c-0784-4f43-824c-34f94a33c24d

You	may	also	retry	all	of	the	failed	jobs	for	a	particular	queue:

php	artisan	queue:retry	--queue=name

To	retry	all	of	your	failed	jobs,	execute	the	queue:retry	command	and	pass	all	as	the	ID:

php	artisan	queue:retry	all

If	you	would	like	to	delete	a	failed	job,	you	may	use	the	queue:forget	command:

php	artisan	queue:forget	91401d2c-0784-4f43-824c-34f94a33c24d

[!NOTE]
When	using	Horizon,	you	should	use	the	horizon:forget	command	to	delete	a	failed	job	instead	of	the	
queue:forget	command.

To	delete	all	of	your	failed	jobs	from	the	failed_jobs	table,	you	may	use	the	queue:flush	command:

php	artisan	queue:flush

Ignoring	Missing	Models

When	injecting	an	Eloquent	model	into	a	job,	the	model	is	automatically	serialized	before	being	placed	on	the
queue	and	re-retrieved	from	the	database	when	the	job	is	processed.	However,	if	the	model	has	been	deleted
while	the	job	was	waiting	to	be	processed	by	a	worker,	your	job	may	fail	with	a	ModelNotFoundException.

For	convenience,	you	may	choose	to	automatically	delete	jobs	with	missing	models	by	setting	your	job's	

Laravel	Documentation	-	10.x	/	Queues 485

deleteWhenMissingModels	property	to	true.	When	this	property	is	set	to	true,	Laravel	will	quietly	discard	the	job
without	raising	an	exception:

/**

	*	Delete	the	job	if	its	models	no	longer	exist.

	*

	*	@var	bool

	*/

public	$deleteWhenMissingModels	=	true;

Pruning	Failed	Jobs

You	may	prune	the	records	in	your	application's	failed_jobs	table	by	invoking	the	queue:prune-failed	Artisan
command:

php	artisan	queue:prune-failed

By	default,	all	the	failed	job	records	that	are	more	than	24	hours	old	will	be	pruned.	If	you	provide	the	--hours
option	to	the	command,	only	the	failed	job	records	that	were	inserted	within	the	last	N	number	of	hours	will	be
retained.	For	example,	the	following	command	will	delete	all	the	failed	job	records	that	were	inserted	more
than	48	hours	ago:

php	artisan	queue:prune-failed	--hours=48

Storing	Failed	Jobs	in	DynamoDB

Laravel	also	provides	support	for	storing	your	failed	job	records	in	DynamoDB	instead	of	a	relational	database
table.	However,	you	must	manually	create	a	DynamoDB	table	to	store	all	of	the	failed	job	records.	Typically,
this	table	should	be	named	failed_jobs,	but	you	should	name	the	table	based	on	the	value	of	the	
queue.failed.table	configuration	value	within	your	application's	queue	configuration	file.

The	failed_jobs	table	should	have	a	string	primary	partition	key	named	application	and	a	string	primary	sort
key	named	uuid.	The	application	portion	of	the	key	will	contain	your	application's	name	as	defined	by	the	name
configuration	value	within	your	application's	app	configuration	file.	Since	the	application	name	is	part	of	the
DynamoDB	table's	key,	you	can	use	the	same	table	to	store	failed	jobs	for	multiple	Laravel	applications.

In	addition,	ensure	that	you	install	the	AWS	SDK	so	that	your	Laravel	application	can	communicate	with
Amazon	DynamoDB:

composer	require	aws/aws-sdk-php

Next,	set	the	queue.failed.driver	configuration	option's	value	to	dynamodb.	In	addition,	you	should	define	key,	
secret,	and	region	configuration	options	within	the	failed	job	configuration	array.	These	options	will	be	used	to
authenticate	with	AWS.	When	using	the	dynamodb	driver,	the	queue.failed.database	configuration	option	is
unnecessary:

'failed'	=>	[

				'driver'	=>	env('QUEUE_FAILED_DRIVER',	'dynamodb'),

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION',	'us-east-1'),

				'table'	=>	'failed_jobs',

],

Disabling	Failed	Job	Storage

You	may	instruct	Laravel	to	discard	failed	jobs	without	storing	them	by	setting	the	queue.failed.driver
configuration	option's	value	to	null.	Typically,	this	may	be	accomplished	via	the	QUEUE_FAILED_DRIVER
environment	variable:

QUEUE_FAILED_DRIVER=null

Failed	Job	Events

If	you	would	like	to	register	an	event	listener	that	will	be	invoked	when	a	job	fails,	you	may	use	the	Queue

Laravel	Documentation	-	10.x	/	Queues 486

https://aws.amazon.com/dynamodb

facade's	failing	method.	For	example,	we	may	attach	a	closure	to	this	event	from	the	boot	method	of	the	
AppServiceProvider	that	is	included	with	Laravel:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Queue;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Queue\Events\JobFailed;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Queue::failing(function	(JobFailed	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->exception

								});

				}

}

Clearing	Jobs	From	Queues

[!NOTE]
When	using	Horizon,	you	should	use	the	horizon:clear	command	to	clear	jobs	from	the	queue	instead	of
the	queue:clear	command.

If	you	would	like	to	delete	all	jobs	from	the	default	queue	of	the	default	connection,	you	may	do	so	using	the	
queue:clear	Artisan	command:

php	artisan	queue:clear

You	may	also	provide	the	connection	argument	and	queue	option	to	delete	jobs	from	a	specific	connection	and
queue:

php	artisan	queue:clear	redis	--queue=emails

[!WARNING]
Clearing	jobs	from	queues	is	only	available	for	the	SQS,	Redis,	and	database	queue	drivers.	In	addition,
the	SQS	message	deletion	process	takes	up	to	60	seconds,	so	jobs	sent	to	the	SQS	queue	up	to	60	seconds
after	you	clear	the	queue	might	also	be	deleted.

Monitoring	Your	Queues

If	your	queue	receives	a	sudden	influx	of	jobs,	it	could	become	overwhelmed,	leading	to	a	long	wait	time	for
jobs	to	complete.	If	you	wish,	Laravel	can	alert	you	when	your	queue	job	count	exceeds	a	specified	threshold.

To	get	started,	you	should	schedule	the	queue:monitor	command	to	run	every	minute.	The	command	accepts	the
names	of	the	queues	you	wish	to	monitor	as	well	as	your	desired	job	count	threshold:

php	artisan	queue:monitor	redis:default,redis:deployments	--max=100

Scheduling	this	command	alone	is	not	enough	to	trigger	a	notification	alerting	you	of	the	queue's	overwhelmed
status.	When	the	command	encounters	a	queue	that	has	a	job	count	exceeding	your	threshold,	an	
Illuminate\Queue\Events\QueueBusy	event	will	be	dispatched.	You	may	listen	for	this	event	within	your
application's	EventServiceProvider	in	order	to	send	a	notification	to	you	or	your	development	team:

Laravel	Documentation	-	10.x	/	Queues 487

use	App\Notifications\QueueHasLongWaitTime;

use	Illuminate\Queue\Events\QueueBusy;

use	Illuminate\Support\Facades\Event;

use	Illuminate\Support\Facades\Notification;

/**

	*	Register	any	other	events	for	your	application.

	*/

public	function	boot():	void

{

				Event::listen(function	(QueueBusy	$event)	{

								Notification::route('mail',	'dev@example.com')

																->notify(new	QueueHasLongWaitTime(

																				$event->connection,

																				$event->queue,

																				$event->size

));

				});

}

Testing

When	testing	code	that	dispatches	jobs,	you	may	wish	to	instruct	Laravel	to	not	actually	execute	the	job	itself,
since	the	job's	code	can	be	tested	directly	and	separately	of	the	code	that	dispatches	it.	Of	course,	to	test	the	job
itself,	you	may	instantiate	a	job	instance	and	invoke	the	handle	method	directly	in	your	test.

You	may	use	the	Queue	facade's	fake	method	to	prevent	queued	jobs	from	actually	being	pushed	to	the	queue.
After	calling	the	Queue	facade's	fake	method,	you	may	then	assert	that	the	application	attempted	to	push	jobs	to
the	queue:

<?php

namespace	Tests\Feature;

use	App\Jobs\AnotherJob;

use	App\Jobs\FinalJob;

use	App\Jobs\ShipOrder;

use	Illuminate\Support\Facades\Queue;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_orders_can_be_shipped():	void

				{

								Queue::fake();

								//	Perform	order	shipping...

								//	Assert	that	no	jobs	were	pushed...

								Queue::assertNothingPushed();

								//	Assert	a	job	was	pushed	to	a	given	queue...

								Queue::assertPushedOn('queue-name',	ShipOrder::class);

								//	Assert	a	job	was	pushed	twice...

								Queue::assertPushed(ShipOrder::class,	2);

								//	Assert	a	job	was	not	pushed...

								Queue::assertNotPushed(AnotherJob::class);

								//	Assert	that	a	Closure	was	pushed	to	the	queue...

								Queue::assertClosurePushed();

								//	Assert	the	total	number	of	jobs	that	were	pushed...

								Queue::assertCount(3);

				}

}

You	may	pass	a	closure	to	the	assertPushed	or	assertNotPushed	methods	in	order	to	assert	that	a	job	was	pushed
that	passes	a	given	"truth	test".	If	at	least	one	job	was	pushed	that	passes	the	given	truth	test	then	the	assertion
will	be	successful:

Queue::assertPushed(function	(ShipOrder	$job)	use	($order)	{

				return	$job->order->id	===	$order->id;

});

Laravel	Documentation	-	10.x	/	Queues 488

Faking	a	Subset	of	Jobs

If	you	only	need	to	fake	specific	jobs	while	allowing	your	other	jobs	to	execute	normally,	you	may	pass	the
class	names	of	the	jobs	that	should	be	faked	to	the	fake	method:

public	function	test_orders_can_be_shipped():	void

{

				Queue::fake([

								ShipOrder::class,

]);

				//	Perform	order	shipping...

				//	Assert	a	job	was	pushed	twice...

				Queue::assertPushed(ShipOrder::class,	2);

}

You	may	fake	all	jobs	except	for	a	set	of	specified	jobs	using	the	except	method:

Queue::fake()->except([

				ShipOrder::class,

]);

Testing	Job	Chains

To	test	job	chains,	you	will	need	to	utilize	the	Bus	facade's	faking	capabilities.	The	Bus	facade's	assertChained
method	may	be	used	to	assert	that	a	chain	of	jobs	was	dispatched.	The	assertChained	method	accepts	an	array
of	chained	jobs	as	its	first	argument:

use	App\Jobs\RecordShipment;

use	App\Jobs\ShipOrder;

use	App\Jobs\UpdateInventory;

use	Illuminate\Support\Facades\Bus;

Bus::fake();

//	...

Bus::assertChained([

				ShipOrder::class,

				RecordShipment::class,

				UpdateInventory::class

]);

As	you	can	see	in	the	example	above,	the	array	of	chained	jobs	may	be	an	array	of	the	job's	class	names.
However,	you	may	also	provide	an	array	of	actual	job	instances.	When	doing	so,	Laravel	will	ensure	that	the
job	instances	are	of	the	same	class	and	have	the	same	property	values	of	the	chained	jobs	dispatched	by	your
application:

Bus::assertChained([

				new	ShipOrder,

				new	RecordShipment,

				new	UpdateInventory,

]);

You	may	use	the	assertDispatchedWithoutChain	method	to	assert	that	a	job	was	pushed	without	a	chain	of	jobs:

Bus::assertDispatchedWithoutChain(ShipOrder::class);

Testing	Chained	Batches

If	your	job	chain	contains	a	batch	of	jobs,	you	may	assert	that	the	chained	batch	matches	your	expectations	by
inserting	a	Bus::chainedBatch	definition	within	your	chain	assertion:

use	App\Jobs\ShipOrder;

use	App\Jobs\UpdateInventory;

use	Illuminate\Bus\PendingBatch;

use	Illuminate\Support\Facades\Bus;

Bus::assertChained([

				new	ShipOrder,

Laravel	Documentation	-	10.x	/	Queues 489

				Bus::chainedBatch(function	(PendingBatch	$batch)	{

								return	$batch->jobs->count()	===	3;

				}),

				new	UpdateInventory,

]);

Testing	Job	Batches

The	Bus	facade's	assertBatched	method	may	be	used	to	assert	that	a	batch	of	jobs	was	dispatched.	The	closure
given	to	the	assertBatched	method	receives	an	instance	of	Illuminate\Bus\PendingBatch,	which	may	be	used	to
inspect	the	jobs	within	the	batch:

use	Illuminate\Bus\PendingBatch;

use	Illuminate\Support\Facades\Bus;

Bus::fake();

//	...

Bus::assertBatched(function	(PendingBatch	$batch)	{

				return	$batch->name	==	'import-csv'	&&

											$batch->jobs->count()	===	10;

});

You	may	use	the	assertBatchCount	method	to	assert	that	a	given	number	of	batches	were	dispatched:

Bus::assertBatchCount(3);

You	may	use	assertNothingBatched	to	assert	that	no	batches	were	dispatched:

Bus::assertNothingBatched();

Testing	Job	/	Batch	Interaction

In	addition,	you	may	occasionally	need	to	test	an	individual	job's	interaction	with	its	underlying	batch.	For
example,	you	may	need	to	test	if	a	job	cancelled	further	processing	for	its	batch.	To	accomplish	this,	you	need
to	assign	a	fake	batch	to	the	job	via	the	withFakeBatch	method.	The	withFakeBatch	method	returns	a	tuple
containing	the	job	instance	and	the	fake	batch:

[$job,	$batch]	=	(new	ShipOrder)->withFakeBatch();

$job->handle();

$this->assertTrue($batch->cancelled());

$this->assertEmpty($batch->added);

Job	Events

Using	the	before	and	after	methods	on	the	Queue	facade,	you	may	specify	callbacks	to	be	executed	before	or
after	a	queued	job	is	processed.	These	callbacks	are	a	great	opportunity	to	perform	additional	logging	or
increment	statistics	for	a	dashboard.	Typically,	you	should	call	these	methods	from	the	boot	method	of	a	service
provider.	For	example,	we	may	use	the	AppServiceProvider	that	is	included	with	Laravel:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Queue;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Queue\Events\JobProcessed;

use	Illuminate\Queue\Events\JobProcessing;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

Laravel	Documentation	-	10.x	/	Queues 490

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Queue::before(function	(JobProcessing	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->job->payload()

								});

								Queue::after(function	(JobProcessed	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->job->payload()

								});

				}

}

Using	the	looping	method	on	the	Queue	facade,	you	may	specify	callbacks	that	execute	before	the	worker
attempts	to	fetch	a	job	from	a	queue.	For	example,	you	might	register	a	closure	to	rollback	any	transactions	that
were	left	open	by	a	previously	failed	job:

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\Facades\Queue;

Queue::looping(function	()	{

				while	(DB::transactionLevel()	>	0)	{

								DB::rollBack();

				}

});

Laravel	Documentation	-	10.x	/	Queues 491

Digging	Deeper

Rate	Limiting
Introduction

Cache	Configuration
Basic	Usage

Manually	Incrementing	Attempts
Clearing	Attempts

Introduction

Laravel	includes	a	simple	to	use	rate	limiting	abstraction	which,	in	conjunction	with	your	application's	cache,
provides	an	easy	way	to	limit	any	action	during	a	specified	window	of	time.

[!NOTE]
If	you	are	interested	in	rate	limiting	incoming	HTTP	requests,	please	consult	the	rate	limiter	middleware
documentation.

Cache	Configuration

Typically,	the	rate	limiter	utilizes	your	default	application	cache	as	defined	by	the	default	key	within	your
application's	cache	configuration	file.	However,	you	may	specify	which	cache	driver	the	rate	limiter	should	use
by	defining	a	limiter	key	within	your	application's	cache	configuration	file:

'default'	=>	'memcached',

'limiter'	=>	'redis',

Basic	Usage

The	Illuminate\Support\Facades\RateLimiter	facade	may	be	used	to	interact	with	the	rate	limiter.	The	simplest
method	offered	by	the	rate	limiter	is	the	attempt	method,	which	rate	limits	a	given	callback	for	a	given	number
of	seconds.

The	attempt	method	returns	false	when	the	callback	has	no	remaining	attempts	available;	otherwise,	the	
attempt	method	will	return	the	callback's	result	or	true.	The	first	argument	accepted	by	the	attempt	method	is	a
rate	limiter	"key",	which	may	be	any	string	of	your	choosing	that	represents	the	action	being	rate	limited:

use	Illuminate\Support\Facades\RateLimiter;

$executed	=	RateLimiter::attempt(

				'send-message:'.$user->id,

				$perMinute	=	5,

				function()	{

								//	Send	message...

				}

);

if	(!	$executed)	{

		return	'Too	many	messages	sent!';

}

If	necessary,	you	may	provide	a	fourth	argument	to	the	attempt	method,	which	is	the	"decay	rate",	or	the
number	of	seconds	until	the	available	attempts	are	reset.	For	example,	we	can	modify	the	example	above	to
allow	five	attempts	every	two	minutes:

$executed	=	RateLimiter::attempt(

				'send-message:'.$user->id,

				$perTwoMinutes	=	5,

				function()	{

								//	Send	message...

				},

				$decayRate	=	120,

);

Laravel	Documentation	-	10.x	/	Rate	Limiting 492

Manually	Incrementing	Attempts

If	you	would	like	to	manually	interact	with	the	rate	limiter,	a	variety	of	other	methods	are	available.	For
example,	you	may	invoke	the	tooManyAttempts	method	to	determine	if	a	given	rate	limiter	key	has	exceeded	its
maximum	number	of	allowed	attempts	per	minute:

use	Illuminate\Support\Facades\RateLimiter;

if	(RateLimiter::tooManyAttempts('send-message:'.$user->id,	$perMinute	=	5))	{

				return	'Too	many	attempts!';

}

RateLimiter::increment('send-message:'.$user->id);

//	Send	message...

Alternatively,	you	may	use	the	remaining	method	to	retrieve	the	number	of	attempts	remaining	for	a	given	key.
If	a	given	key	has	retries	remaining,	you	may	invoke	the	increment	method	to	increment	the	number	of	total
attempts:

use	Illuminate\Support\Facades\RateLimiter;

if	(RateLimiter::remaining('send-message:'.$user->id,	$perMinute	=	5))	{

				RateLimiter::increment('send-message:'.$user->id);

				//	Send	message...

}

If	you	would	like	to	increment	the	value	for	a	given	rate	limiter	key	by	more	than	one,	you	may	provide	the
desired	amount	to	the	increment	method:

RateLimiter::increment('send-message:'.$user->id,	amount:	5);

Determining	Limiter	Availability

When	a	key	has	no	more	attempts	left,	the	availableIn	method	returns	the	number	of	seconds	remaining	until
more	attempts	will	be	available:

use	Illuminate\Support\Facades\RateLimiter;

if	(RateLimiter::tooManyAttempts('send-message:'.$user->id,	$perMinute	=	5))	{

				$seconds	=	RateLimiter::availableIn('send-message:'.$user->id);

				return	'You	may	try	again	in	'.$seconds.'	seconds.';

}

RateLimiter::increment('send-message:'.$user->id);

//	Send	message...

Clearing	Attempts

You	may	reset	the	number	of	attempts	for	a	given	rate	limiter	key	using	the	clear	method.	For	example,	you
may	reset	the	number	of	attempts	when	a	given	message	is	read	by	the	receiver:

use	App\Models\Message;

use	Illuminate\Support\Facades\RateLimiter;

/**

	*	Mark	the	message	as	read.

	*/

public	function	read(Message	$message):	Message

{

				$message->markAsRead();

				RateLimiter::clear('send-message:'.$message->user_id);

				return	$message;

}

Laravel	Documentation	-	10.x	/	Rate	Limiting 493

Digging	Deeper

Strings
Introduction
Available	Methods

Introduction

Laravel	includes	a	variety	of	functions	for	manipulating	string	values.	Many	of	these	functions	are	used	by	the
framework	itself;	however,	you	are	free	to	use	them	in	your	own	applications	if	you	find	them	convenient.

Available	Methods

Strings

__
class_basename
e
preg_replace_array
Str::after
Str::afterLast
Str::apa
Str::ascii
Str::before
Str::beforeLast
Str::between
Str::betweenFirst
Str::camel
Str::charAt
Str::contains
Str::containsAll
Str::endsWith
Str::excerpt
Str::finish
Str::headline
Str::inlineMarkdown
Str::is
Str::isAscii
Str::isJson
Str::isUlid
Str::isUrl
Str::isUuid

Str::kebab
Str::lcfirst
Str::length
Str::limit
Str::lower
Str::markdown
Str::mask
Str::orderedUuid
Str::padBoth
Str::padLeft
Str::padRight
Str::password
Str::plural
Str::pluralStudly
Str::position
Str::random
Str::remove
Str::repeat
Str::replace
Str::replaceArray
Str::replaceFirst
Str::replaceLast
Str::replaceMatches
Str::replaceStart
Str::replaceEnd
Str::reverse
Str::singular

Str::slug
Str::snake
Str::squish
Str::start
Str::startsWith
Str::studly
Str::substr
Str::substrCount
Str::substrReplace
Str::swap
Str::take
Str::title
Str::toBase64
Str::toHtmlString
Str::ucfirst
Str::ucsplit
Str::upper
Str::ulid
Str::unwrap
Str::uuid
Str::wordCount
Str::wordWrap
Str::words
Str::wrap
str
trans
trans_choice

Fluent	Strings

after
afterLast
apa
append
ascii
basename
before
beforeLast
between
betweenFirst
camel
charAt
classBasename

length
limit
lower
ltrim
markdown
mask
match
matchAll
isMatch
newLine
padBoth
padLeft
padRight

start
startsWith
stripTags
studly
substr
substrReplace
swap
take
tap
test
title
toBase64
trim

Laravel	Documentation	-	10.x	/	Strings 494

classBasename
contains
containsAll
dirname
endsWith
excerpt
exactly
explode
finish
headline
inlineMarkdown
is
isAscii
isEmpty
isNotEmpty
isJson
isUlid
isUrl
isUuid
kebab
lcfirst

padRight
pipe
plural
position
prepend
remove
repeat
replace
replaceArray
replaceFirst
replaceLast
replaceMatches
replaceStart
replaceEnd
rtrim
scan
singular
slug
snake
split
squish

trim
ucfirst
ucsplit
unwrap
upper
when
whenContains
whenContainsAll
whenEmpty
whenNotEmpty
whenStartsWith
whenEndsWith
whenExactly
whenNotExactly
whenIs
whenIsAscii
whenIsUlid
whenIsUuid
whenTest
wordCount
words

Strings
__()

The	__	function	translates	the	given	translation	string	or	translation	key	using	your	language	files:

echo	__('Welcome	to	our	application');

echo	__('messages.welcome');

If	the	specified	translation	string	or	key	does	not	exist,	the	__	function	will	return	the	given	value.	So,	using	the
example	above,	the	__	function	would	return	messages.welcome	if	that	translation	key	does	not	exist.

class_basename()

The	class_basename	function	returns	the	class	name	of	the	given	class	with	the	class's	namespace	removed:

$class	=	class_basename('Foo\Bar\Baz');

//	Baz

e()

The	e	function	runs	PHP's	htmlspecialchars	function	with	the	double_encode	option	set	to	true	by	default:

echo	e('<html>foo</html>');

//	<html>foo</html>

preg_replace_array()

The	preg_replace_array	function	replaces	a	given	pattern	in	the	string	sequentially	using	an	array:

$string	=	'The	event	will	take	place	between	:start	and	:end';

$replaced	=	preg_replace_array('/:[a-z_]+/',	['8:30',	'9:00'],	$string);

//	The	event	will	take	place	between	8:30	and	9:00

Str::after()

The	Str::after	method	returns	everything	after	the	given	value	in	a	string.	The	entire	string	will	be	returned	if

Laravel	Documentation	-	10.x	/	Strings 495

the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::after('This	is	my	name',	'This	is');

//	'	my	name'

Str::afterLast()

The	Str::afterLast	method	returns	everything	after	the	last	occurrence	of	the	given	value	in	a	string.	The	entire
string	will	be	returned	if	the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::afterLast('App\Http\Controllers\Controller',	'\\');

//	'Controller'

Str::apa()

The	Str::apa	method	converts	the	given	string	to	title	case	following	the	APA	guidelines:

use	Illuminate\Support\Str;

$title	=	Str::apa('Creating	A	Project');

//	'Creating	a	Project'

Str::ascii()

The	Str::ascii	method	will	attempt	to	transliterate	the	string	into	an	ASCII	value:

use	Illuminate\Support\Str;

$slice	=	Str::ascii('û');

//	'u'

Str::before()

The	Str::before	method	returns	everything	before	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::before('This	is	my	name',	'my	name');

//	'This	is	'

Str::beforeLast()

The	Str::beforeLast	method	returns	everything	before	the	last	occurrence	of	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::beforeLast('This	is	my	name',	'is');

//	'This	'

Str::between()

The	Str::between	method	returns	the	portion	of	a	string	between	two	values:

use	Illuminate\Support\Str;

$slice	=	Str::between('This	is	my	name',	'This',	'name');

//	'	is	my	'

Str::betweenFirst()

Laravel	Documentation	-	10.x	/	Strings 496

https://apastyle.apa.org/style-grammar-guidelines/capitalization/title-case

The	Str::betweenFirst	method	returns	the	smallest	possible	portion	of	a	string	between	two	values:

use	Illuminate\Support\Str;

$slice	=	Str::betweenFirst('[a]	bc	[d]',	'[',	']');

//	'a'

Str::camel()

The	Str::camel	method	converts	the	given	string	to	camelCase:

use	Illuminate\Support\Str;

$converted	=	Str::camel('foo_bar');

//	'fooBar'

Str::charAt()

The	Str::charAt	method	returns	the	character	at	the	specified	index.	If	the	index	is	out	of	bounds,	false	is
returned:

use	Illuminate\Support\Str;

$character	=	Str::charAt('This	is	my	name.',	6);

//	's'

Str::contains()

The	Str::contains	method	determines	if	the	given	string	contains	the	given	value.	This	method	is	case
sensitive:

use	Illuminate\Support\Str;

$contains	=	Str::contains('This	is	my	name',	'my');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	contains	any	of	the	values	in	the	array:

use	Illuminate\Support\Str;

$contains	=	Str::contains('This	is	my	name',	['my',	'foo']);

//	true

Str::containsAll()

The	Str::containsAll	method	determines	if	the	given	string	contains	all	of	the	values	in	a	given	array:

use	Illuminate\Support\Str;

$containsAll	=	Str::containsAll('This	is	my	name',	['my',	'name']);

//	true

Str::endsWith()

The	Str::endsWith	method	determines	if	the	given	string	ends	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::endsWith('This	is	my	name',	'name');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	ends	with	any	of	the	values	in	the	array:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 497

$result	=	Str::endsWith('This	is	my	name',	['name',	'foo']);

//	true

$result	=	Str::endsWith('This	is	my	name',	['this',	'foo']);

//	false

Str::excerpt()

The	Str::excerpt	method	extracts	an	excerpt	from	a	given	string	that	matches	the	first	instance	of	a	phrase
within	that	string:

use	Illuminate\Support\Str;

$excerpt	=	Str::excerpt('This	is	my	name',	'my',	[

				'radius'	=>	3

]);

//	'...is	my	na...'

The	radius	option,	which	defaults	to	100,	allows	you	to	define	the	number	of	characters	that	should	appear	on
each	side	of	the	truncated	string.

In	addition,	you	may	use	the	omission	option	to	define	the	string	that	will	be	prepended	and	appended	to	the
truncated	string:

use	Illuminate\Support\Str;

$excerpt	=	Str::excerpt('This	is	my	name',	'name',	[

				'radius'	=>	3,

				'omission'	=>	'(...)	'

]);

//	'(...)	my	name'

Str::finish()

The	Str::finish	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	end	with	that
value:

use	Illuminate\Support\Str;

$adjusted	=	Str::finish('this/string',	'/');

//	this/string/

$adjusted	=	Str::finish('this/string/',	'/');

//	this/string/

Str::headline()

The	Str::headline	method	will	convert	strings	delimited	by	casing,	hyphens,	or	underscores	into	a	space
delimited	string	with	each	word's	first	letter	capitalized:

use	Illuminate\Support\Str;

$headline	=	Str::headline('steve_jobs');

//	Steve	Jobs

$headline	=	Str::headline('EmailNotificationSent');

//	Email	Notification	Sent

Str::inlineMarkdown()

The	Str::inlineMarkdown	method	converts	GitHub	flavored	Markdown	into	inline	HTML	using	CommonMark.
However,	unlike	the	markdown	method,	it	does	not	wrap	all	generated	HTML	in	a	block-level	element:

Laravel	Documentation	-	10.x	/	Strings 498

https://commonmark.thephpleague.com/

use	Illuminate\Support\Str;

$html	=	Str::inlineMarkdown('**Laravel**');

//	Laravel

Markdown	Security

By	default,	Markdown	supports	raw	HTML,	which	will	expose	Cross-Site	Scripting	(XSS)	vulnerabilities	when
used	with	raw	user	input.	As	per	the	CommonMark	Security	documentation,	you	may	use	the	html_input	option
to	either	escape	or	strip	raw	HTML,	and	the	allow_unsafe_links	option	to	specify	whether	to	allow	unsafe	links.
If	you	need	to	allow	some	raw	HTML,	you	should	pass	your	compiled	Markdown	through	an	HTML	Purifier:

use	Illuminate\Support\Str;

Str::inlineMarkdown('Inject:	<script>alert("Hello	XSS!");</script>',	[

				'html_input'	=>	'strip',

				'allow_unsafe_links'	=>	false,

]);

//	Inject:	alert("Hello	XSS!");

Str::is()

The	Str::is	method	determines	if	a	given	string	matches	a	given	pattern.	Asterisks	may	be	used	as	wildcard
values:

use	Illuminate\Support\Str;

$matches	=	Str::is('foo*',	'foobar');

//	true

$matches	=	Str::is('baz*',	'foobar');

//	false

Str::isAscii()

The	Str::isAscii	method	determines	if	a	given	string	is	7	bit	ASCII:

use	Illuminate\Support\Str;

$isAscii	=	Str::isAscii('Taylor');

//	true

$isAscii	=	Str::isAscii('ü');

//	false

Str::isJson()

The	Str::isJson	method	determines	if	the	given	string	is	valid	JSON:

use	Illuminate\Support\Str;

$result	=	Str::isJson('[1,2,3]');

//	true

$result	=	Str::isJson('{"first":	"John",	"last":	"Doe"}');

//	true

$result	=	Str::isJson('{first:	"John",	last:	"Doe"}');

//	false

Str::isUrl()

The	Str::isUrl	method	determines	if	the	given	string	is	a	valid	URL:

Laravel	Documentation	-	10.x	/	Strings 499

https://commonmark.thephpleague.com/security/

use	Illuminate\Support\Str;

$isUrl	=	Str::isUrl('http://example.com');

//	true

$isUrl	=	Str::isUrl('laravel');

//	false

The	isUrl	method	considers	a	wide	range	of	protocols	as	valid.	However,	you	may	specify	the	protocols	that
should	be	considered	valid	by	providing	them	to	the	isUrl	method:

$isUrl	=	Str::isUrl('http://example.com',	['http',	'https']);

Str::isUlid()

The	Str::isUlid	method	determines	if	the	given	string	is	a	valid	ULID:

use	Illuminate\Support\Str;

$isUlid	=	Str::isUlid('01gd6r360bp37zj17nxb55yv40');

//	true

$isUlid	=	Str::isUlid('laravel');

//	false

Str::isUuid()

The	Str::isUuid	method	determines	if	the	given	string	is	a	valid	UUID:

use	Illuminate\Support\Str;

$isUuid	=	Str::isUuid('a0a2a2d2-0b87-4a18-83f2-2529882be2de');

//	true

$isUuid	=	Str::isUuid('laravel');

//	false

Str::kebab()

The	Str::kebab	method	converts	the	given	string	to	kebab-case:

use	Illuminate\Support\Str;

$converted	=	Str::kebab('fooBar');

//	foo-bar

Str::lcfirst()

The	Str::lcfirst	method	returns	the	given	string	with	the	first	character	lowercased:

use	Illuminate\Support\Str;

$string	=	Str::lcfirst('Foo	Bar');

//	foo	Bar

Str::length()

The	Str::length	method	returns	the	length	of	the	given	string:

use	Illuminate\Support\Str;

$length	=	Str::length('Laravel');

//	7

Laravel	Documentation	-	10.x	/	Strings 500

Str::limit()

The	Str::limit	method	truncates	the	given	string	to	the	specified	length:

use	Illuminate\Support\Str;

$truncated	=	Str::limit('The	quick	brown	fox	jumps	over	the	lazy	dog',	20);

//	The	quick	brown	fox...

You	may	pass	a	third	argument	to	the	method	to	change	the	string	that	will	be	appended	to	the	end	of	the
truncated	string:

use	Illuminate\Support\Str;

$truncated	=	Str::limit('The	quick	brown	fox	jumps	over	the	lazy	dog',	20,	'	(...)');

//	The	quick	brown	fox	(...)

Str::lower()

The	Str::lower	method	converts	the	given	string	to	lowercase:

use	Illuminate\Support\Str;

$converted	=	Str::lower('LARAVEL');

//	laravel

Str::markdown()

The	Str::markdown	method	converts	GitHub	flavored	Markdown	into	HTML	using	CommonMark:

use	Illuminate\Support\Str;

$html	=	Str::markdown('#	Laravel');

//	<h1>Laravel</h1>

$html	=	Str::markdown('#	Taylor	Otwell',	[

				'html_input'	=>	'strip',

]);

//	<h1>Taylor	Otwell</h1>

Markdown	Security

By	default,	Markdown	supports	raw	HTML,	which	will	expose	Cross-Site	Scripting	(XSS)	vulnerabilities	when
used	with	raw	user	input.	As	per	the	CommonMark	Security	documentation,	you	may	use	the	html_input	option
to	either	escape	or	strip	raw	HTML,	and	the	allow_unsafe_links	option	to	specify	whether	to	allow	unsafe	links.
If	you	need	to	allow	some	raw	HTML,	you	should	pass	your	compiled	Markdown	through	an	HTML	Purifier:

use	Illuminate\Support\Str;

Str::markdown('Inject:	<script>alert("Hello	XSS!");</script>',	[

				'html_input'	=>	'strip',

				'allow_unsafe_links'	=>	false,

]);

//	<p>Inject:	alert("Hello	XSS!");</p>

Str::mask()

The	Str::mask	method	masks	a	portion	of	a	string	with	a	repeated	character,	and	may	be	used	to	obfuscate
segments	of	strings	such	as	email	addresses	and	phone	numbers:

use	Illuminate\Support\Str;

$string	=	Str::mask('taylor@example.com',	'*',	3);

//	tay***************

Laravel	Documentation	-	10.x	/	Strings 501

https://commonmark.thephpleague.com/
https://commonmark.thephpleague.com/security/

If	needed,	you	provide	a	negative	number	as	the	third	argument	to	the	mask	method,	which	will	instruct	the
method	to	begin	masking	at	the	given	distance	from	the	end	of	the	string:

$string	=	Str::mask('taylor@example.com',	'*',	-15,	3);

//	tay***@example.com

Str::orderedUuid()

The	Str::orderedUuid	method	generates	a	"timestamp	first"	UUID	that	may	be	efficiently	stored	in	an	indexed
database	column.	Each	UUID	that	is	generated	using	this	method	will	be	sorted	after	UUIDs	previously
generated	using	the	method:

use	Illuminate\Support\Str;

return	(string)	Str::orderedUuid();

Str::padBoth()

The	Str::padBoth	method	wraps	PHP's	str_pad	function,	padding	both	sides	of	a	string	with	another	string	until
the	final	string	reaches	a	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::padBoth('James',	10,	'_');

//	'__James___'

$padded	=	Str::padBoth('James',	10);

//	'		James			'

Str::padLeft()

The	Str::padLeft	method	wraps	PHP's	str_pad	function,	padding	the	left	side	of	a	string	with	another	string
until	the	final	string	reaches	a	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::padLeft('James',	10,	'-=');

//	'-=-=-James'

$padded	=	Str::padLeft('James',	10);

//	'					James'

Str::padRight()

The	Str::padRight	method	wraps	PHP's	str_pad	function,	padding	the	right	side	of	a	string	with	another	string
until	the	final	string	reaches	a	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::padRight('James',	10,	'-');

//	'James-----'

$padded	=	Str::padRight('James',	10);

//	'James					'

Str::password()

The	Str::password	method	may	be	used	to	generate	a	secure,	random	password	of	a	given	length.	The	password
will	consist	of	a	combination	of	letters,	numbers,	symbols,	and	spaces.	By	default,	passwords	are	32	characters
long:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 502

$password	=	Str::password();

//	'EbJo2vE-AS:U,$%_gkrV4n,q~1xy/-_4'

$password	=	Str::password(12);

//	'qwuar>#V|i]N'

Str::plural()

The	Str::plural	method	converts	a	singular	word	string	to	its	plural	form.	This	function	supports	any	of	the
languages	support	by	Laravel's	pluralizer:

use	Illuminate\Support\Str;

$plural	=	Str::plural('car');

//	cars

$plural	=	Str::plural('child');

//	children

You	may	provide	an	integer	as	a	second	argument	to	the	function	to	retrieve	the	singular	or	plural	form	of	the
string:

use	Illuminate\Support\Str;

$plural	=	Str::plural('child',	2);

//	children

$singular	=	Str::plural('child',	1);

//	child

Str::pluralStudly()

The	Str::pluralStudly	method	converts	a	singular	word	string	formatted	in	studly	caps	case	to	its	plural	form.
This	function	supports	any	of	the	languages	support	by	Laravel's	pluralizer:

use	Illuminate\Support\Str;

$plural	=	Str::pluralStudly('VerifiedHuman');

//	VerifiedHumans

$plural	=	Str::pluralStudly('UserFeedback');

//	UserFeedback

You	may	provide	an	integer	as	a	second	argument	to	the	function	to	retrieve	the	singular	or	plural	form	of	the
string:

use	Illuminate\Support\Str;

$plural	=	Str::pluralStudly('VerifiedHuman',	2);

//	VerifiedHumans

$singular	=	Str::pluralStudly('VerifiedHuman',	1);

//	VerifiedHuman

Str::position()

The	Str::position	method	returns	the	position	of	the	first	occurrence	of	a	substring	in	a	string.	If	the	substring
does	not	exist	in	the	given	string,	false	is	returned:

use	Illuminate\Support\Str;

$position	=	Str::position('Hello,	World!',	'Hello');

Laravel	Documentation	-	10.x	/	Strings 503

//	0

$position	=	Str::position('Hello,	World!',	'W');

//	7

Str::random()

The	Str::random	method	generates	a	random	string	of	the	specified	length.	This	function	uses	PHP's	
random_bytes	function:

use	Illuminate\Support\Str;

$random	=	Str::random(40);

During	testing,	it	may	be	useful	to	"fake"	the	value	that	is	returned	by	the	Str::random	method.	To	accomplish
this,	you	may	use	the	createRandomStringsUsing	method:

Str::createRandomStringsUsing(function	()	{

				return	'fake-random-string';

});

To	instruct	the	random	method	to	return	to	generating	random	strings	normally,	you	may	invoke	the	
createRandomStringsNormally	method:

Str::createRandomStringsNormally();

Str::remove()

The	Str::remove	method	removes	the	given	value	or	array	of	values	from	the	string:

use	Illuminate\Support\Str;

$string	=	'Peter	Piper	picked	a	peck	of	pickled	peppers.';

$removed	=	Str::remove('e',	$string);

//	Ptr	Pipr	pickd	a	pck	of	pickld	ppprs.

You	may	also	pass	false	as	a	third	argument	to	the	remove	method	to	ignore	case	when	removing	strings.

Str::repeat()

The	Str::repeat	method	repeats	the	given	string:

use	Illuminate\Support\Str;

$string	=	'a';

$repeat	=	Str::repeat($string,	5);

//	aaaaa

Str::replace()

The	Str::replace	method	replaces	a	given	string	within	the	string:

use	Illuminate\Support\Str;

$string	=	'Laravel	8.x';

$replaced	=	Str::replace('8.x',	'9.x',	$string);

//	Laravel	9.x

The	replace	method	also	accepts	a	caseSensitive	argument.	By	default,	the	replace	method	is	case	sensitive:

Str::replace('Framework',	'Laravel',	caseSensitive:	false);

Str::replaceArray()

Laravel	Documentation	-	10.x	/	Strings 504

The	Str::replaceArray	method	replaces	a	given	value	in	the	string	sequentially	using	an	array:

use	Illuminate\Support\Str;

$string	=	'The	event	will	take	place	between	?	and	?';

$replaced	=	Str::replaceArray('?',	['8:30',	'9:00'],	$string);

//	The	event	will	take	place	between	8:30	and	9:00

Str::replaceFirst()

The	Str::replaceFirst	method	replaces	the	first	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceFirst('the',	'a',	'the	quick	brown	fox	jumps	over	the	lazy	dog');

//	a	quick	brown	fox	jumps	over	the	lazy	dog

Str::replaceLast()

The	Str::replaceLast	method	replaces	the	last	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceLast('the',	'a',	'the	quick	brown	fox	jumps	over	the	lazy	dog');

//	the	quick	brown	fox	jumps	over	a	lazy	dog

Str::replaceMatches()

The	Str::replaceMatches	method	replaces	all	portions	of	a	string	matching	a	pattern	with	the	given	replacement
string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceMatches(

				pattern:	'/[^A-Za-z0-9]++/',

				replace:	'',

				subject:	'(+1)	501-555-1000'

)

//	'15015551000'

The	replaceMatches	method	also	accepts	a	closure	that	will	be	invoked	with	each	portion	of	the	string	matching
the	given	pattern,	allowing	you	to	perform	the	replacement	logic	within	the	closure	and	return	the	replaced
value:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceMatches('/\d/',	function	(array	$matches)	{

				return	'['.$matches[0].']';

},	'123');

//	'[1][2][3]'

Str::replaceStart()

The	Str::replaceStart	method	replaces	the	first	occurrence	of	the	given	value	only	if	the	value	appears	at	the
start	of	the	string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceStart('Hello',	'Laravel',	'Hello	World');

//	Laravel	World

$replaced	=	Str::replaceStart('World',	'Laravel',	'Hello	World');

//	Hello	World

Laravel	Documentation	-	10.x	/	Strings 505

Str::replaceEnd()

The	Str::replaceEnd	method	replaces	the	last	occurrence	of	the	given	value	only	if	the	value	appears	at	the	end
of	the	string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceEnd('World',	'Laravel',	'Hello	World');

//	Hello	Laravel

$replaced	=	Str::replaceEnd('Hello',	'Laravel',	'Hello	World');

//	Hello	World

Str::reverse()

The	Str::reverse	method	reverses	the	given	string:

use	Illuminate\Support\Str;

$reversed	=	Str::reverse('Hello	World');

//	dlroW	olleH

Str::singular()

The	Str::singular	method	converts	a	string	to	its	singular	form.	This	function	supports	any	of	the	languages
support	by	Laravel's	pluralizer:

use	Illuminate\Support\Str;

$singular	=	Str::singular('cars');

//	car

$singular	=	Str::singular('children');

//	child

Str::slug()

The	Str::slug	method	generates	a	URL	friendly	"slug"	from	the	given	string:

use	Illuminate\Support\Str;

$slug	=	Str::slug('Laravel	5	Framework',	'-');

//	laravel-5-framework

Str::snake()

The	Str::snake	method	converts	the	given	string	to	snake_case:

use	Illuminate\Support\Str;

$converted	=	Str::snake('fooBar');

//	foo_bar

$converted	=	Str::snake('fooBar',	'-');

//	foo-bar

Str::squish()

The	Str::squish	method	removes	all	extraneous	white	space	from	a	string,	including	extraneous	white	space
between	words:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 506

$string	=	Str::squish('				laravel				framework				');

//	laravel	framework

Str::start()

The	Str::start	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	start	with	that
value:

use	Illuminate\Support\Str;

$adjusted	=	Str::start('this/string',	'/');

//	/this/string

$adjusted	=	Str::start('/this/string',	'/');

//	/this/string

Str::startsWith()

The	Str::startsWith	method	determines	if	the	given	string	begins	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::startsWith('This	is	my	name',	'This');

//	true

If	an	array	of	possible	values	is	passed,	the	startsWith	method	will	return	true	if	the	string	begins	with	any	of
the	given	values:

$result	=	Str::startsWith('This	is	my	name',	['This',	'That',	'There']);

//	true

Str::studly()

The	Str::studly	method	converts	the	given	string	to	StudlyCase:

use	Illuminate\Support\Str;

$converted	=	Str::studly('foo_bar');

//	FooBar

Str::substr()

The	Str::substr	method	returns	the	portion	of	string	specified	by	the	start	and	length	parameters:

use	Illuminate\Support\Str;

$converted	=	Str::substr('The	Laravel	Framework',	4,	7);

//	Laravel

Str::substrCount()

The	Str::substrCount	method	returns	the	number	of	occurrences	of	a	given	value	in	the	given	string:

use	Illuminate\Support\Str;

$count	=	Str::substrCount('If	you	like	ice	cream,	you	will	like	snow	cones.',	'like');

//	2

Str::substrReplace()

The	Str::substrReplace	method	replaces	text	within	a	portion	of	a	string,	starting	at	the	position	specified	by
the	third	argument	and	replacing	the	number	of	characters	specified	by	the	fourth	argument.	Passing	0	to	the

Laravel	Documentation	-	10.x	/	Strings 507

method's	fourth	argument	will	insert	the	string	at	the	specified	position	without	replacing	any	of	the	existing
characters	in	the	string:

use	Illuminate\Support\Str;

$result	=	Str::substrReplace('1300',	':',	2);

//	13:

$result	=	Str::substrReplace('1300',	':',	2,	0);

//	13:00

Str::swap()

The	Str::swap	method	replaces	multiple	values	in	the	given	string	using	PHP's	strtr	function:

use	Illuminate\Support\Str;

$string	=	Str::swap([

				'Tacos'	=>	'Burritos',

				'great'	=>	'fantastic',

],	'Tacos	are	great!');

//	Burritos	are	fantastic!

Str::take()

The	Str::take	method	returns	a	specified	number	of	characters	from	the	beginning	of	a	string:

use	Illuminate\Support\Str;

$taken	=	Str::take('Build	something	amazing!',	5);

//	Build

Str::title()

The	Str::title	method	converts	the	given	string	to	Title	Case:

use	Illuminate\Support\Str;

$converted	=	Str::title('a	nice	title	uses	the	correct	case');

//	A	Nice	Title	Uses	The	Correct	Case

Str::toBase64()

The	Str::toBase64	method	converts	the	given	string	to	Base64:

use	Illuminate\Support\Str;

$base64	=	Str::toBase64('Laravel');

//	TGFyYXZlbA==

Str::toHtmlString()

The	Str::toHtmlString	method	converts	the	string	instance	to	an	instance	of	Illuminate\Support\HtmlString,
which	may	be	displayed	in	Blade	templates:

use	Illuminate\Support\Str;

$htmlString	=	Str::of('Nuno	Maduro')->toHtmlString();

Str::ucfirst()

The	Str::ucfirst	method	returns	the	given	string	with	the	first	character	capitalized:

use	Illuminate\Support\Str;

$string	=	Str::ucfirst('foo	bar');

Laravel	Documentation	-	10.x	/	Strings 508

//	Foo	bar

Str::ucsplit()

The	Str::ucsplit	method	splits	the	given	string	into	an	array	by	uppercase	characters:

use	Illuminate\Support\Str;

$segments	=	Str::ucsplit('FooBar');

//	[0	=>	'Foo',	1	=>	'Bar']

Str::upper()

The	Str::upper	method	converts	the	given	string	to	uppercase:

use	Illuminate\Support\Str;

$string	=	Str::upper('laravel');

//	LARAVEL

Str::ulid()

The	Str::ulid	method	generates	a	ULID,	which	is	a	compact,	time-ordered	unique	identifier:

use	Illuminate\Support\Str;

return	(string)	Str::ulid();

//	01gd6r360bp37zj17nxb55yv40

If	you	would	like	to	retrieve	a	Illuminate\Support\Carbon	date	instance	representing	the	date	and	time	that	a
given	ULID	was	created,	you	may	use	the	createFromId	method	provided	by	Laravel's	Carbon	integration:

use	Illuminate\Support\Carbon;

use	Illuminate\Support\Str;

$date	=	Carbon::createFromId((string)	Str::ulid());

During	testing,	it	may	be	useful	to	"fake"	the	value	that	is	returned	by	the	Str::ulid	method.	To	accomplish
this,	you	may	use	the	createUlidsUsing	method:

use	Symfony\Component\Uid\Ulid;

Str::createUlidsUsing(function	()	{

				return	new	Ulid('01HRDBNHHCKNW2AK4Z29SN82T9');

});

To	instruct	the	ulid	method	to	return	to	generating	ULIDs	normally,	you	may	invoke	the	createUlidsNormally
method:

Str::createUlidsNormally();

Str::unwrap()

The	Str::unwrap	method	removes	the	specified	strings	from	the	beginning	and	end	of	a	given	string:

use	Illuminate\Support\Str;

Str::unwrap('-Laravel-',	'-');

//	Laravel

Str::unwrap('{framework:	"Laravel"}',	'{',	'}');

//	framework:	"Laravel"

Str::uuid()

The	Str::uuid	method	generates	a	UUID	(version	4):

Laravel	Documentation	-	10.x	/	Strings 509

use	Illuminate\Support\Str;

return	(string)	Str::uuid();

During	testing,	it	may	be	useful	to	"fake"	the	value	that	is	returned	by	the	Str::uuid	method.	To	accomplish
this,	you	may	use	the	createUuidsUsing	method:

use	Ramsey\Uuid\Uuid;

Str::createUuidsUsing(function	()	{

				return	Uuid::fromString('eadbfeac-5258-45c2-bab7-ccb9b5ef74f9');

});

To	instruct	the	uuid	method	to	return	to	generating	UUIDs	normally,	you	may	invoke	the	createUuidsNormally
method:

Str::createUuidsNormally();

Str::wordCount()

The	Str::wordCount	method	returns	the	number	of	words	that	a	string	contains:

use	Illuminate\Support\Str;

Str::wordCount('Hello,	world!');	//	2

Str::wordWrap()

The	Str::wordWrap	method	wraps	a	string	to	a	given	number	of	characters:

use	Illuminate\Support\Str;

$text	=	"The	quick	brown	fox	jumped	over	the	lazy	dog."

Str::wordWrap($text,	characters:	20,	break:	"
\n");

/*

The	quick	brown	fox

jumped	over	the	lazy

dog.

*/

Str::words()

The	Str::words	method	limits	the	number	of	words	in	a	string.	An	additional	string	may	be	passed	to	this
method	via	its	third	argument	to	specify	which	string	should	be	appended	to	the	end	of	the	truncated	string:

use	Illuminate\Support\Str;

return	Str::words('Perfectly	balanced,	as	all	things	should	be.',	3,	'	>>>');

//	Perfectly	balanced,	as	>>>

Str::wrap()

The	Str::wrap	method	wraps	the	given	string	with	an	additional	string	or	pair	of	strings:

use	Illuminate\Support\Str;

Str::wrap('Laravel',	'"');

//	"Laravel"

Str::wrap('is',	before:	'This	',	after:	'	Laravel!');

//	This	is	Laravel!

str()

The	str	function	returns	a	new	Illuminate\Support\Stringable	instance	of	the	given	string.	This	function	is
equivalent	to	the	Str::of	method:

Laravel	Documentation	-	10.x	/	Strings 510

$string	=	str('Taylor')->append('	Otwell');

//	'Taylor	Otwell'

If	no	argument	is	provided	to	the	str	function,	the	function	returns	an	instance	of	Illuminate\Support\Str:

$snake	=	str()->snake('FooBar');

//	'foo_bar'

trans()

The	trans	function	translates	the	given	translation	key	using	your	language	files:

echo	trans('messages.welcome');

If	the	specified	translation	key	does	not	exist,	the	trans	function	will	return	the	given	key.	So,	using	the
example	above,	the	trans	function	would	return	messages.welcome	if	the	translation	key	does	not	exist.

trans_choice()

The	trans_choice	function	translates	the	given	translation	key	with	inflection:

echo	trans_choice('messages.notifications',	$unreadCount);

If	the	specified	translation	key	does	not	exist,	the	trans_choice	function	will	return	the	given	key.	So,	using	the
example	above,	the	trans_choice	function	would	return	messages.notifications	if	the	translation	key	does	not
exist.

Fluent	Strings

Fluent	strings	provide	a	more	fluent,	object-oriented	interface	for	working	with	string	values,	allowing	you	to
chain	multiple	string	operations	together	using	a	more	readable	syntax	compared	to	traditional	string
operations.

after

The	after	method	returns	everything	after	the	given	value	in	a	string.	The	entire	string	will	be	returned	if	the
value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->after('This	is');

//	'	my	name'

afterLast

The	afterLast	method	returns	everything	after	the	last	occurrence	of	the	given	value	in	a	string.	The	entire
string	will	be	returned	if	the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('App\Http\Controllers\Controller')->afterLast('\\');

//	'Controller'

apa

The	apa	method	converts	the	given	string	to	title	case	following	the	APA	guidelines:

use	Illuminate\Support\Str;

$converted	=	Str::of('a	nice	title	uses	the	correct	case')->apa();

//	A	Nice	Title	Uses	the	Correct	Case

Laravel	Documentation	-	10.x	/	Strings 511

https://apastyle.apa.org/style-grammar-guidelines/capitalization/title-case

append

The	append	method	appends	the	given	values	to	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Taylor')->append('	Otwell');

//	'Taylor	Otwell'

ascii

The	ascii	method	will	attempt	to	transliterate	the	string	into	an	ASCII	value:

use	Illuminate\Support\Str;

$string	=	Str::of('ü')->ascii();

//	'u'

basename

The	basename	method	will	return	the	trailing	name	component	of	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz')->basename();

//	'baz'

If	needed,	you	may	provide	an	"extension"	that	will	be	removed	from	the	trailing	component:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz.jpg')->basename('.jpg');

//	'baz'

before

The	before	method	returns	everything	before	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->before('my	name');

//	'This	is	'

beforeLast

The	beforeLast	method	returns	everything	before	the	last	occurrence	of	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->beforeLast('is');

//	'This	'

between

The	between	method	returns	the	portion	of	a	string	between	two	values:

use	Illuminate\Support\Str;

$converted	=	Str::of('This	is	my	name')->between('This',	'name');

//	'	is	my	'

betweenFirst

Laravel	Documentation	-	10.x	/	Strings 512

The	betweenFirst	method	returns	the	smallest	possible	portion	of	a	string	between	two	values:

use	Illuminate\Support\Str;

$converted	=	Str::of('[a]	bc	[d]')->betweenFirst('[',	']');

//	'a'

camel

The	camel	method	converts	the	given	string	to	camelCase:

use	Illuminate\Support\Str;

$converted	=	Str::of('foo_bar')->camel();

//	'fooBar'

charAt

The	charAt	method	returns	the	character	at	the	specified	index.	If	the	index	is	out	of	bounds,	false	is	returned:

use	Illuminate\Support\Str;

$character	=	Str::of('This	is	my	name.')->charAt(6);

//	's'

classBasename

The	classBasename	method	returns	the	class	name	of	the	given	class	with	the	class's	namespace	removed:

use	Illuminate\Support\Str;

$class	=	Str::of('Foo\Bar\Baz')->classBasename();

//	'Baz'

contains

The	contains	method	determines	if	the	given	string	contains	the	given	value.	This	method	is	case	sensitive:

use	Illuminate\Support\Str;

$contains	=	Str::of('This	is	my	name')->contains('my');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	contains	any	of	the	values	in	the	array:

use	Illuminate\Support\Str;

$contains	=	Str::of('This	is	my	name')->contains(['my',	'foo']);

//	true

containsAll

The	containsAll	method	determines	if	the	given	string	contains	all	of	the	values	in	the	given	array:

use	Illuminate\Support\Str;

$containsAll	=	Str::of('This	is	my	name')->containsAll(['my',	'name']);

//	true

dirname

The	dirname	method	returns	the	parent	directory	portion	of	the	given	string:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 513

$string	=	Str::of('/foo/bar/baz')->dirname();

//	'/foo/bar'

If	necessary,	you	may	specify	how	many	directory	levels	you	wish	to	trim	from	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz')->dirname(2);

//	'/foo'

excerpt

The	excerpt	method	extracts	an	excerpt	from	the	string	that	matches	the	first	instance	of	a	phrase	within	that
string:

use	Illuminate\Support\Str;

$excerpt	=	Str::of('This	is	my	name')->excerpt('my',	[

				'radius'	=>	3

]);

//	'...is	my	na...'

The	radius	option,	which	defaults	to	100,	allows	you	to	define	the	number	of	characters	that	should	appear	on
each	side	of	the	truncated	string.

In	addition,	you	may	use	the	omission	option	to	change	the	string	that	will	be	prepended	and	appended	to	the
truncated	string:

use	Illuminate\Support\Str;

$excerpt	=	Str::of('This	is	my	name')->excerpt('name',	[

				'radius'	=>	3,

				'omission'	=>	'(...)	'

]);

//	'(...)	my	name'

endsWith

The	endsWith	method	determines	if	the	given	string	ends	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->endsWith('name');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	ends	with	any	of	the	values	in	the	array:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->endsWith(['name',	'foo']);

//	true

$result	=	Str::of('This	is	my	name')->endsWith(['this',	'foo']);

//	false

exactly

The	exactly	method	determines	if	the	given	string	is	an	exact	match	with	another	string:

use	Illuminate\Support\Str;

$result	=	Str::of('Laravel')->exactly('Laravel');

//	true

Laravel	Documentation	-	10.x	/	Strings 514

explode

The	explode	method	splits	the	string	by	the	given	delimiter	and	returns	a	collection	containing	each	section	of
the	split	string:

use	Illuminate\Support\Str;

$collection	=	Str::of('foo	bar	baz')->explode('	');

//	collect(['foo',	'bar',	'baz'])

finish

The	finish	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	end	with	that
value:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('this/string')->finish('/');

//	this/string/

$adjusted	=	Str::of('this/string/')->finish('/');

//	this/string/

headline

The	headline	method	will	convert	strings	delimited	by	casing,	hyphens,	or	underscores	into	a	space	delimited
string	with	each	word's	first	letter	capitalized:

use	Illuminate\Support\Str;

$headline	=	Str::of('taylor_otwell')->headline();

//	Taylor	Otwell

$headline	=	Str::of('EmailNotificationSent')->headline();

//	Email	Notification	Sent

inlineMarkdown

The	inlineMarkdown	method	converts	GitHub	flavored	Markdown	into	inline	HTML	using	CommonMark.
However,	unlike	the	markdown	method,	it	does	not	wrap	all	generated	HTML	in	a	block-level	element:

use	Illuminate\Support\Str;

$html	=	Str::of('**Laravel**')->inlineMarkdown();

//	Laravel

Markdown	Security

By	default,	Markdown	supports	raw	HTML,	which	will	expose	Cross-Site	Scripting	(XSS)	vulnerabilities	when
used	with	raw	user	input.	As	per	the	CommonMark	Security	documentation,	you	may	use	the	html_input	option
to	either	escape	or	strip	raw	HTML,	and	the	allow_unsafe_links	option	to	specify	whether	to	allow	unsafe	links.
If	you	need	to	allow	some	raw	HTML,	you	should	pass	your	compiled	Markdown	through	an	HTML	Purifier:

use	Illuminate\Support\Str;

Str::of('Inject:	<script>alert("Hello	XSS!");</script>')->inlineMarkdown([

				'html_input'	=>	'strip',

				'allow_unsafe_links'	=>	false,

]);

//	Inject:	alert("Hello	XSS!");

is

Laravel	Documentation	-	10.x	/	Strings 515

https://commonmark.thephpleague.com/
https://commonmark.thephpleague.com/security/

The	is	method	determines	if	a	given	string	matches	a	given	pattern.	Asterisks	may	be	used	as	wildcard	values

use	Illuminate\Support\Str;

$matches	=	Str::of('foobar')->is('foo*');

//	true

$matches	=	Str::of('foobar')->is('baz*');

//	false

isAscii

The	isAscii	method	determines	if	a	given	string	is	an	ASCII	string:

use	Illuminate\Support\Str;

$result	=	Str::of('Taylor')->isAscii();

//	true

$result	=	Str::of('ü')->isAscii();

//	false

isEmpty

The	isEmpty	method	determines	if	the	given	string	is	empty:

use	Illuminate\Support\Str;

$result	=	Str::of('		')->trim()->isEmpty();

//	true

$result	=	Str::of('Laravel')->trim()->isEmpty();

//	false

isNotEmpty

The	isNotEmpty	method	determines	if	the	given	string	is	not	empty:

use	Illuminate\Support\Str;

$result	=	Str::of('		')->trim()->isNotEmpty();

//	false

$result	=	Str::of('Laravel')->trim()->isNotEmpty();

//	true

isJson

The	isJson	method	determines	if	a	given	string	is	valid	JSON:

use	Illuminate\Support\Str;

$result	=	Str::of('[1,2,3]')->isJson();

//	true

$result	=	Str::of('{"first":	"John",	"last":	"Doe"}')->isJson();

//	true

$result	=	Str::of('{first:	"John",	last:	"Doe"}')->isJson();

//	false

isUlid

Laravel	Documentation	-	10.x	/	Strings 516

The	isUlid	method	determines	if	a	given	string	is	a	ULID:

use	Illuminate\Support\Str;

$result	=	Str::of('01gd6r360bp37zj17nxb55yv40')->isUlid();

//	true

$result	=	Str::of('Taylor')->isUlid();

//	false

isUrl

The	isUrl	method	determines	if	a	given	string	is	a	URL:

use	Illuminate\Support\Str;

$result	=	Str::of('http://example.com')->isUrl();

//	true

$result	=	Str::of('Taylor')->isUrl();

//	false

The	isUrl	method	considers	a	wide	range	of	protocols	as	valid.	However,	you	may	specify	the	protocols	that
should	be	considered	valid	by	providing	them	to	the	isUrl	method:

$result	=	Str::of('http://example.com')->isUrl(['http',	'https']);

isUuid

The	isUuid	method	determines	if	a	given	string	is	a	UUID:

use	Illuminate\Support\Str;

$result	=	Str::of('5ace9ab9-e9cf-4ec6-a19d-5881212a452c')->isUuid();

//	true

$result	=	Str::of('Taylor')->isUuid();

//	false

kebab

The	kebab	method	converts	the	given	string	to	kebab-case:

use	Illuminate\Support\Str;

$converted	=	Str::of('fooBar')->kebab();

//	foo-bar

lcfirst

The	lcfirst	method	returns	the	given	string	with	the	first	character	lowercased:

use	Illuminate\Support\Str;

$string	=	Str::of('Foo	Bar')->lcfirst();

//	foo	Bar

length

The	length	method	returns	the	length	of	the	given	string:

use	Illuminate\Support\Str;

$length	=	Str::of('Laravel')->length();

Laravel	Documentation	-	10.x	/	Strings 517

//	7

limit

The	limit	method	truncates	the	given	string	to	the	specified	length:

use	Illuminate\Support\Str;

$truncated	=	Str::of('The	quick	brown	fox	jumps	over	the	lazy	dog')->limit(20);

//	The	quick	brown	fox...

You	may	also	pass	a	second	argument	to	change	the	string	that	will	be	appended	to	the	end	of	the	truncated
string:

use	Illuminate\Support\Str;

$truncated	=	Str::of('The	quick	brown	fox	jumps	over	the	lazy	dog')->limit(20,	'	(...)');

//	The	quick	brown	fox	(...)

lower

The	lower	method	converts	the	given	string	to	lowercase:

use	Illuminate\Support\Str;

$result	=	Str::of('LARAVEL')->lower();

//	'laravel'

ltrim

The	ltrim	method	trims	the	left	side	of	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->ltrim();

//	'Laravel		'

$string	=	Str::of('/Laravel/')->ltrim('/');

//	'Laravel/'

markdown

The	markdown	method	converts	GitHub	flavored	Markdown	into	HTML:

use	Illuminate\Support\Str;

$html	=	Str::of('#	Laravel')->markdown();

//	<h1>Laravel</h1>

$html	=	Str::of('#	Taylor	Otwell')->markdown([

				'html_input'	=>	'strip',

]);

//	<h1>Taylor	Otwell</h1>

Markdown	Security

By	default,	Markdown	supports	raw	HTML,	which	will	expose	Cross-Site	Scripting	(XSS)	vulnerabilities	when
used	with	raw	user	input.	As	per	the	CommonMark	Security	documentation,	you	may	use	the	html_input	option
to	either	escape	or	strip	raw	HTML,	and	the	allow_unsafe_links	option	to	specify	whether	to	allow	unsafe	links.
If	you	need	to	allow	some	raw	HTML,	you	should	pass	your	compiled	Markdown	through	an	HTML	Purifier:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 518

https://commonmark.thephpleague.com/security/

Str::of('Inject:	<script>alert("Hello	XSS!");</script>')->markdown([

				'html_input'	=>	'strip',

				'allow_unsafe_links'	=>	false,

]);

//	<p>Inject:	alert("Hello	XSS!");</p>

mask

The	mask	method	masks	a	portion	of	a	string	with	a	repeated	character,	and	may	be	used	to	obfuscate	segments
of	strings	such	as	email	addresses	and	phone	numbers:

use	Illuminate\Support\Str;

$string	=	Str::of('taylor@example.com')->mask('*',	3);

//	tay***************

If	needed,	you	may	provide	negative	numbers	as	the	third	or	fourth	argument	to	the	mask	method,	which	will
instruct	the	method	to	begin	masking	at	the	given	distance	from	the	end	of	the	string:

$string	=	Str::of('taylor@example.com')->mask('*',	-15,	3);

//	tay***@example.com

$string	=	Str::of('taylor@example.com')->mask('*',	4,	-4);

//	tayl**********.com

match

The	match	method	will	return	the	portion	of	a	string	that	matches	a	given	regular	expression	pattern:

use	Illuminate\Support\Str;

$result	=	Str::of('foo	bar')->match('/bar/');

//	'bar'

$result	=	Str::of('foo	bar')->match('/foo	(.*)/');

//	'bar'

matchAll

The	matchAll	method	will	return	a	collection	containing	the	portions	of	a	string	that	match	a	given	regular
expression	pattern:

use	Illuminate\Support\Str;

$result	=	Str::of('bar	foo	bar')->matchAll('/bar/');

//	collect(['bar',	'bar'])

If	you	specify	a	matching	group	within	the	expression,	Laravel	will	return	a	collection	of	that	group's	matches:

use	Illuminate\Support\Str;

$result	=	Str::of('bar	fun	bar	fly')->matchAll('/f(\w*)/');

//	collect(['un',	'ly']);

If	no	matches	are	found,	an	empty	collection	will	be	returned.

isMatch

The	isMatch	method	will	return	true	if	the	string	matches	a	given	regular	expression:

use	Illuminate\Support\Str;

$result	=	Str::of('foo	bar')->isMatch('/foo	(.*)/');

Laravel	Documentation	-	10.x	/	Strings 519

//	true

$result	=	Str::of('laravel')->isMatch('/foo	(.*)/');

//	false

newLine

The	newLine	method	appends	an	"end	of	line"	character	to	a	string:

use	Illuminate\Support\Str;

$padded	=	Str::of('Laravel')->newLine()->append('Framework');

//	'Laravel

//		Framework'

padBoth

The	padBoth	method	wraps	PHP's	str_pad	function,	padding	both	sides	of	a	string	with	another	string	until	the
final	string	reaches	the	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padBoth(10,	'_');

//	'__James___'

$padded	=	Str::of('James')->padBoth(10);

//	'		James			'

padLeft

The	padLeft	method	wraps	PHP's	str_pad	function,	padding	the	left	side	of	a	string	with	another	string	until	the
final	string	reaches	the	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padLeft(10,	'-=');

//	'-=-=-James'

$padded	=	Str::of('James')->padLeft(10);

//	'					James'

padRight

The	padRight	method	wraps	PHP's	str_pad	function,	padding	the	right	side	of	a	string	with	another	string	until
the	final	string	reaches	the	desired	length:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padRight(10,	'-');

//	'James-----'

$padded	=	Str::of('James')->padRight(10);

//	'James					'

pipe

The	pipe	method	allows	you	to	transform	the	string	by	passing	its	current	value	to	the	given	callable:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$hash	=	Str::of('Laravel')->pipe('md5')->prepend('Checksum:	');

//	'Checksum:	a5c95b86291ea299fcbe64458ed12702'

Laravel	Documentation	-	10.x	/	Strings 520

$closure	=	Str::of('foo')->pipe(function	(Stringable	$str)	{

				return	'bar';

});

//	'bar'

plural

The	plural	method	converts	a	singular	word	string	to	its	plural	form.	This	function	supports	any	of	the
languages	support	by	Laravel's	pluralizer:

use	Illuminate\Support\Str;

$plural	=	Str::of('car')->plural();

//	cars

$plural	=	Str::of('child')->plural();

//	children

You	may	provide	an	integer	as	a	second	argument	to	the	function	to	retrieve	the	singular	or	plural	form	of	the
string:

use	Illuminate\Support\Str;

$plural	=	Str::of('child')->plural(2);

//	children

$plural	=	Str::of('child')->plural(1);

//	child

position

The	position	method	returns	the	position	of	the	first	occurrence	of	a	substring	in	a	string.	If	the	substring	does
not	exist	within	the	string,	false	is	returned:

use	Illuminate\Support\Str;

$position	=	Str::of('Hello,	World!')->position('Hello');

//	0

$position	=	Str::of('Hello,	World!')->position('W');

//	7

prepend

The	prepend	method	prepends	the	given	values	onto	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Framework')->prepend('Laravel	');

//	Laravel	Framework

remove

The	remove	method	removes	the	given	value	or	array	of	values	from	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Arkansas	is	quite	beautiful!')->remove('quite');

//	Arkansas	is	beautiful!

You	may	also	pass	false	as	a	second	parameter	to	ignore	case	when	removing	strings.

Laravel	Documentation	-	10.x	/	Strings 521

repeat

The	repeat	method	repeats	the	given	string:

use	Illuminate\Support\Str;

$repeated	=	Str::of('a')->repeat(5);

//	aaaaa

replace

The	replace	method	replaces	a	given	string	within	the	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('Laravel	6.x')->replace('6.x',	'7.x');

//	Laravel	7.x

The	replace	method	also	accepts	a	caseSensitive	argument.	By	default,	the	replace	method	is	case	sensitive:

$replaced	=	Str::of('macOS	13.x')->replace(

				'macOS',	'iOS',	caseSensitive:	false

);

replaceArray

The	replaceArray	method	replaces	a	given	value	in	the	string	sequentially	using	an	array:

use	Illuminate\Support\Str;

$string	=	'The	event	will	take	place	between	?	and	?';

$replaced	=	Str::of($string)->replaceArray('?',	['8:30',	'9:00']);

//	The	event	will	take	place	between	8:30	and	9:00

replaceFirst

The	replaceFirst	method	replaces	the	first	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('the	quick	brown	fox	jumps	over	the	lazy	dog')->replaceFirst('the',	'a');

//	a	quick	brown	fox	jumps	over	the	lazy	dog

replaceLast

The	replaceLast	method	replaces	the	last	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('the	quick	brown	fox	jumps	over	the	lazy	dog')->replaceLast('the',	'a');

//	the	quick	brown	fox	jumps	over	a	lazy	dog

replaceMatches

The	replaceMatches	method	replaces	all	portions	of	a	string	matching	a	pattern	with	the	given	replacement
string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('(+1)	501-555-1000')->replaceMatches('/[^A-Za-z0-9]++/',	'')

//	'15015551000'

The	replaceMatches	method	also	accepts	a	closure	that	will	be	invoked	with	each	portion	of	the	string	matching
the	given	pattern,	allowing	you	to	perform	the	replacement	logic	within	the	closure	and	return	the	replaced

Laravel	Documentation	-	10.x	/	Strings 522

value:

use	Illuminate\Support\Str;

$replaced	=	Str::of('123')->replaceMatches('/\d/',	function	(array	$matches)	{

				return	'['.$matches[0].']';

});

//	'[1][2][3]'

replaceStart

The	replaceStart	method	replaces	the	first	occurrence	of	the	given	value	only	if	the	value	appears	at	the	start	of
the	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('Hello	World')->replaceStart('Hello',	'Laravel');

//	Laravel	World

$replaced	=	Str::of('Hello	World')->replaceStart('World',	'Laravel');

//	Hello	World

replaceEnd

The	replaceEnd	method	replaces	the	last	occurrence	of	the	given	value	only	if	the	value	appears	at	the	end	of	the
string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('Hello	World')->replaceEnd('World',	'Laravel');

//	Hello	Laravel

$replaced	=	Str::of('Hello	World')->replaceEnd('Hello',	'Laravel');

//	Hello	World

rtrim

The	rtrim	method	trims	the	right	side	of	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->rtrim();

//	'		Laravel'

$string	=	Str::of('/Laravel/')->rtrim('/');

//	'/Laravel'

scan

The	scan	method	parses	input	from	a	string	into	a	collection	according	to	a	format	supported	by	the	sscanf	PHP
function:

use	Illuminate\Support\Str;

$collection	=	Str::of('filename.jpg')->scan('%[^.].%s');

//	collect(['filename',	'jpg'])

singular

The	singular	method	converts	a	string	to	its	singular	form.	This	function	supports	any	of	the	languages	support
by	Laravel's	pluralizer:

use	Illuminate\Support\Str;

Laravel	Documentation	-	10.x	/	Strings 523

https://www.php.net/manual/en/function.sscanf.php

$singular	=	Str::of('cars')->singular();

//	car

$singular	=	Str::of('children')->singular();

//	child

slug

The	slug	method	generates	a	URL	friendly	"slug"	from	the	given	string:

use	Illuminate\Support\Str;

$slug	=	Str::of('Laravel	Framework')->slug('-');

//	laravel-framework

snake

The	snake	method	converts	the	given	string	to	snake_case:

use	Illuminate\Support\Str;

$converted	=	Str::of('fooBar')->snake();

//	foo_bar

split

The	split	method	splits	a	string	into	a	collection	using	a	regular	expression:

use	Illuminate\Support\Str;

$segments	=	Str::of('one,	two,	three')->split('/[\s,]+/');

//	collect(["one",	"two",	"three"])

squish

The	squish	method	removes	all	extraneous	white	space	from	a	string,	including	extraneous	white	space
between	words:

use	Illuminate\Support\Str;

$string	=	Str::of('				laravel				framework				')->squish();

//	laravel	framework

start

The	start	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	start	with	that	value:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('this/string')->start('/');

//	/this/string

$adjusted	=	Str::of('/this/string')->start('/');

//	/this/string

startsWith

The	startsWith	method	determines	if	the	given	string	begins	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->startsWith('This');

Laravel	Documentation	-	10.x	/	Strings 524

//	true

stripTags

The	stripTags	method	removes	all	HTML	and	PHP	tags	from	a	string:

use	Illuminate\Support\Str;

$result	=	Str::of('Taylor	Otwell')->stripTags();

//	Taylor	Otwell

$result	=	Str::of('Taylor	Otwell')->stripTags('');

//	Taylor	Otwell

studly

The	studly	method	converts	the	given	string	to	StudlyCase:

use	Illuminate\Support\Str;

$converted	=	Str::of('foo_bar')->studly();

//	FooBar

substr

The	substr	method	returns	the	portion	of	the	string	specified	by	the	given	start	and	length	parameters:

use	Illuminate\Support\Str;

$string	=	Str::of('Laravel	Framework')->substr(8);

//	Framework

$string	=	Str::of('Laravel	Framework')->substr(8,	5);

//	Frame

substrReplace

The	substrReplace	method	replaces	text	within	a	portion	of	a	string,	starting	at	the	position	specified	by	the
second	argument	and	replacing	the	number	of	characters	specified	by	the	third	argument.	Passing	0	to	the
method's	third	argument	will	insert	the	string	at	the	specified	position	without	replacing	any	of	the	existing
characters	in	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('1300')->substrReplace(':',	2);

//	13:

$string	=	Str::of('The	Framework')->substrReplace('	Laravel',	3,	0);

//	The	Laravel	Framework

swap

The	swap	method	replaces	multiple	values	in	the	string	using	PHP's	strtr	function:

use	Illuminate\Support\Str;

$string	=	Str::of('Tacos	are	great!')

				->swap([

								'Tacos'	=>	'Burritos',

								'great'	=>	'fantastic',

]);

//	Burritos	are	fantastic!

Laravel	Documentation	-	10.x	/	Strings 525

take

The	take	method	returns	a	specified	number	of	characters	from	the	beginning	of	the	string:

use	Illuminate\Support\Str;

$taken	=	Str::of('Build	something	amazing!')->take(5);

//	Build

tap

The	tap	method	passes	the	string	to	the	given	closure,	allowing	you	to	examine	and	interact	with	the	string
while	not	affecting	the	string	itself.	The	original	string	is	returned	by	the	tap	method	regardless	of	what	is
returned	by	the	closure:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('Laravel')

				->append('	Framework')

				->tap(function	(Stringable	$string)	{

								dump('String	after	append:	'.$string);

				})

				->upper();

//	LARAVEL	FRAMEWORK

test

The	test	method	determines	if	a	string	matches	the	given	regular	expression	pattern:

use	Illuminate\Support\Str;

$result	=	Str::of('Laravel	Framework')->test('/Laravel/');

//	true

title

The	title	method	converts	the	given	string	to	Title	Case:

use	Illuminate\Support\Str;

$converted	=	Str::of('a	nice	title	uses	the	correct	case')->title();

//	A	Nice	Title	Uses	The	Correct	Case

toBase64()

The	toBase64	method	converts	the	given	string	to	Base64:

use	Illuminate\Support\Str;

$base64	=	Str::of('Laravel')->toBase64();

//	TGFyYXZlbA==

trim

The	trim	method	trims	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->trim();

//	'Laravel'

$string	=	Str::of('/Laravel/')->trim('/');

//	'Laravel'

Laravel	Documentation	-	10.x	/	Strings 526

ucfirst

The	ucfirst	method	returns	the	given	string	with	the	first	character	capitalized:

use	Illuminate\Support\Str;

$string	=	Str::of('foo	bar')->ucfirst();

//	Foo	bar

ucsplit

The	ucsplit	method	splits	the	given	string	into	a	collection	by	uppercase	characters:

use	Illuminate\Support\Str;

$string	=	Str::of('Foo	Bar')->ucsplit();

//	collect(['Foo',	'Bar'])

unwrap

The	unwrap	method	removes	the	specified	strings	from	the	beginning	and	end	of	a	given	string:

use	Illuminate\Support\Str;

Str::of('-Laravel-')->unwrap('-');

//	Laravel

Str::of('{framework:	"Laravel"}')->unwrap('{',	'}');

//	framework:	"Laravel"

upper

The	upper	method	converts	the	given	string	to	uppercase:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('laravel')->upper();

//	LARAVEL

when

The	when	method	invokes	the	given	closure	if	a	given	condition	is	true.	The	closure	will	receive	the	fluent
string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('Taylor')

																->when(true,	function	(Stringable	$string)	{

																				return	$string->append('	Otwell');

																});

//	'Taylor	Otwell'

If	necessary,	you	may	pass	another	closure	as	the	third	parameter	to	the	when	method.	This	closure	will	execute
if	the	condition	parameter	evaluates	to	false.

whenContains

The	whenContains	method	invokes	the	given	closure	if	the	string	contains	the	given	value.	The	closure	will
receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('tony	stark')

Laravel	Documentation	-	10.x	/	Strings 527

												->whenContains('tony',	function	(Stringable	$string)	{

																return	$string->title();

												});

//	'Tony	Stark'

If	necessary,	you	may	pass	another	closure	as	the	third	parameter	to	the	when	method.	This	closure	will	execute
if	the	string	does	not	contain	the	given	value.

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	contains	any	of	the	values	in	the	array:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('tony	stark')

												->whenContains(['tony',	'hulk'],	function	(Stringable	$string)	{

																return	$string->title();

												});

//	Tony	Stark

whenContainsAll

The	whenContainsAll	method	invokes	the	given	closure	if	the	string	contains	all	of	the	given	sub-strings.	The
closure	will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('tony	stark')

																->whenContainsAll(['tony',	'stark'],	function	(Stringable	$string)	{

																				return	$string->title();

																});

//	'Tony	Stark'

If	necessary,	you	may	pass	another	closure	as	the	third	parameter	to	the	when	method.	This	closure	will	execute
if	the	condition	parameter	evaluates	to	false.

whenEmpty

The	whenEmpty	method	invokes	the	given	closure	if	the	string	is	empty.	If	the	closure	returns	a	value,	that	value
will	also	be	returned	by	the	whenEmpty	method.	If	the	closure	does	not	return	a	value,	the	fluent	string	instance
will	be	returned:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('		')->whenEmpty(function	(Stringable	$string)	{

				return	$string->trim()->prepend('Laravel');

});

//	'Laravel'

whenNotEmpty

The	whenNotEmpty	method	invokes	the	given	closure	if	the	string	is	not	empty.	If	the	closure	returns	a	value,	that
value	will	also	be	returned	by	the	whenNotEmpty	method.	If	the	closure	does	not	return	a	value,	the	fluent	string
instance	will	be	returned:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('Framework')->whenNotEmpty(function	(Stringable	$string)	{

				return	$string->prepend('Laravel	');

});

//	'Laravel	Framework'

whenStartsWith

Laravel	Documentation	-	10.x	/	Strings 528

The	whenStartsWith	method	invokes	the	given	closure	if	the	string	starts	with	the	given	sub-string.	The	closure
will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('disney	world')->whenStartsWith('disney',	function	(Stringable	$string)	{

				return	$string->title();

});

//	'Disney	World'

whenEndsWith

The	whenEndsWith	method	invokes	the	given	closure	if	the	string	ends	with	the	given	sub-string.	The	closure	will
receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('disney	world')->whenEndsWith('world',	function	(Stringable	$string)	{

				return	$string->title();

});

//	'Disney	World'

whenExactly

The	whenExactly	method	invokes	the	given	closure	if	the	string	exactly	matches	the	given	string.	The	closure
will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('laravel')->whenExactly('laravel',	function	(Stringable	$string)	{

				return	$string->title();

});

//	'Laravel'

whenNotExactly

The	whenNotExactly	method	invokes	the	given	closure	if	the	string	does	not	exactly	match	the	given	string.	The
closure	will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('framework')->whenNotExactly('laravel',	function	(Stringable	$string)	{

				return	$string->title();

});

//	'Framework'

whenIs

The	whenIs	method	invokes	the	given	closure	if	the	string	matches	a	given	pattern.	Asterisks	may	be	used	as
wildcard	values.	The	closure	will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('foo/bar')->whenIs('foo/*',	function	(Stringable	$string)	{

				return	$string->append('/baz');

});

//	'foo/bar/baz'

whenIsAscii

The	whenIsAscii	method	invokes	the	given	closure	if	the	string	is	7	bit	ASCII.	The	closure	will	receive	the

Laravel	Documentation	-	10.x	/	Strings 529

fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('laravel')->whenIsAscii(function	(Stringable	$string)	{

				return	$string->title();

});

//	'Laravel'

whenIsUlid

The	whenIsUlid	method	invokes	the	given	closure	if	the	string	is	a	valid	ULID.	The	closure	will	receive	the
fluent	string	instance:

use	Illuminate\Support\Str;

$string	=	Str::of('01gd6r360bp37zj17nxb55yv40')->whenIsUlid(function	(Stringable	$string)	{

				return	$string->substr(0,	8);

});

//	'01gd6r36'

whenIsUuid

The	whenIsUuid	method	invokes	the	given	closure	if	the	string	is	a	valid	UUID.	The	closure	will	receive	the
fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('a0a2a2d2-0b87-4a18-83f2-2529882be2de')->whenIsUuid(function	(Stringable	$string)	{

				return	$string->substr(0,	8);

});

//	'a0a2a2d2'

whenTest

The	whenTest	method	invokes	the	given	closure	if	the	string	matches	the	given	regular	expression.	The	closure
will	receive	the	fluent	string	instance:

use	Illuminate\Support\Str;

use	Illuminate\Support\Stringable;

$string	=	Str::of('laravel	framework')->whenTest('/laravel/',	function	(Stringable	$string)	{

				return	$string->title();

});

//	'Laravel	Framework'

wordCount

The	wordCount	method	returns	the	number	of	words	that	a	string	contains:

use	Illuminate\Support\Str;

Str::of('Hello,	world!')->wordCount();	//	2

words

The	words	method	limits	the	number	of	words	in	a	string.	If	necessary,	you	may	specify	an	additional	string	that
will	be	appended	to	the	truncated	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Perfectly	balanced,	as	all	things	should	be.')->words(3,	'	>>>');

//	Perfectly	balanced,	as	>>>

Laravel	Documentation	-	10.x	/	Strings 530

Digging	Deeper

Task	Scheduling
Introduction
Defining	Schedules

Scheduling	Artisan	Commands
Scheduling	Queued	Jobs
Scheduling	Shell	Commands
Schedule	Frequency	Options
Timezones
Preventing	Task	Overlaps
Running	Tasks	on	One	Server
Background	Tasks
Maintenance	Mode

Running	the	Scheduler
Sub-Minute	Scheduled	Tasks
Running	the	Scheduler	Locally

Task	Output
Task	Hooks
Events

Introduction

In	the	past,	you	may	have	written	a	cron	configuration	entry	for	each	task	you	needed	to	schedule	on	your
server.	However,	this	can	quickly	become	a	pain	because	your	task	schedule	is	no	longer	in	source	control	and
you	must	SSH	into	your	server	to	view	your	existing	cron	entries	or	add	additional	entries.

Laravel's	command	scheduler	offers	a	fresh	approach	to	managing	scheduled	tasks	on	your	server.	The
scheduler	allows	you	to	fluently	and	expressively	define	your	command	schedule	within	your	Laravel
application	itself.	When	using	the	scheduler,	only	a	single	cron	entry	is	needed	on	your	server.	Your	task
schedule	is	defined	in	the	app/Console/Kernel.php	file's	schedule	method.	To	help	you	get	started,	a	simple
example	is	defined	within	the	method.

Defining	Schedules

You	may	define	all	of	your	scheduled	tasks	in	the	schedule	method	of	your	application's	App\Console\Kernel
class.	To	get	started,	let's	take	a	look	at	an	example.	In	this	example,	we	will	schedule	a	closure	to	be	called
every	day	at	midnight.	Within	the	closure	we	will	execute	a	database	query	to	clear	a	table:

<?php

namespace	App\Console;

use	Illuminate\Console\Scheduling\Schedule;

use	Illuminate\Foundation\Console\Kernel	as	ConsoleKernel;

use	Illuminate\Support\Facades\DB;

class	Kernel	extends	ConsoleKernel

{

				/**

					*	Define	the	application's	command	schedule.

					*/

				protected	function	schedule(Schedule	$schedule):	void

				{

								$schedule->call(function	()	{

												DB::table('recent_users')->delete();

								})->daily();

				}

}

In	addition	to	scheduling	using	closures,	you	may	also	schedule	invokable	objects.	Invokable	objects	are	simple
PHP	classes	that	contain	an	__invoke	method:

Laravel	Documentation	-	10.x	/	Task	Scheduling 531

https://secure.php.net/manual/en/language.oop5.magic.php#object.invoke

$schedule->call(new	DeleteRecentUsers)->daily();

If	you	would	like	to	view	an	overview	of	your	scheduled	tasks	and	the	next	time	they	are	scheduled	to	run,	you
may	use	the	schedule:list	Artisan	command:

php	artisan	schedule:list

Scheduling	Artisan	Commands

In	addition	to	scheduling	closures,	you	may	also	schedule	Artisan	commands	and	system	commands.	For
example,	you	may	use	the	command	method	to	schedule	an	Artisan	command	using	either	the	command's	name
or	class.

When	scheduling	Artisan	commands	using	the	command's	class	name,	you	may	pass	an	array	of	additional
command-line	arguments	that	should	be	provided	to	the	command	when	it	is	invoked:

use	App\Console\Commands\SendEmailsCommand;

$schedule->command('emails:send	Taylor	--force')->daily();

$schedule->command(SendEmailsCommand::class,	['Taylor',	'--force'])->daily();

Scheduling	Queued	Jobs

The	job	method	may	be	used	to	schedule	a	queued	job.	This	method	provides	a	convenient	way	to	schedule
queued	jobs	without	using	the	call	method	to	define	closures	to	queue	the	job:

use	App\Jobs\Heartbeat;

$schedule->job(new	Heartbeat)->everyFiveMinutes();

Optional	second	and	third	arguments	may	be	provided	to	the	job	method	which	specifies	the	queue	name	and
queue	connection	that	should	be	used	to	queue	the	job:

use	App\Jobs\Heartbeat;

//	Dispatch	the	job	to	the	"heartbeats"	queue	on	the	"sqs"	connection...

$schedule->job(new	Heartbeat,	'heartbeats',	'sqs')->everyFiveMinutes();

Scheduling	Shell	Commands

The	exec	method	may	be	used	to	issue	a	command	to	the	operating	system:

$schedule->exec('node	/home/forge/script.js')->daily();

Schedule	Frequency	Options

We've	already	seen	a	few	examples	of	how	you	may	configure	a	task	to	run	at	specified	intervals.	However,
there	are	many	more	task	schedule	frequencies	that	you	may	assign	to	a	task:

Method	|	Description	-------------	|	-------------	`->cron('*	*	*	*	*');`	|	Run	the	task	on	a	custom	cron	schedule	`-
>everySecond();`	|	Run	the	task	every	second	`->everyTwoSeconds();`	|	Run	the	task	every	two	seconds	`-
>everyFiveSeconds();`	|	Run	the	task	every	five	seconds	`->everyTenSeconds();`	|	Run	the	task	every	ten
seconds	`->everyFifteenSeconds();`	|	Run	the	task	every	fifteen	seconds	`->everyTwentySeconds();`	|	Run	the
task	every	twenty	seconds	`->everyThirtySeconds();`	|	Run	the	task	every	thirty	seconds	`->everyMinute();`	|
Run	the	task	every	minute	`->everyTwoMinutes();`	|	Run	the	task	every	two	minutes	`->everyThreeMinutes();`
|	Run	the	task	every	three	minutes	`->everyFourMinutes();`	|	Run	the	task	every	four	minutes	`-
>everyFiveMinutes();`	|	Run	the	task	every	five	minutes	`->everyTenMinutes();`	|	Run	the	task	every	ten
minutes	`->everyFifteenMinutes();`	|	Run	the	task	every	fifteen	minutes	`->everyThirtyMinutes();`	|	Run	the
task	every	thirty	minutes	`->hourly();`	|	Run	the	task	every	hour	`->hourlyAt(17);`	|	Run	the	task	every	hour	at
17	minutes	past	the	hour	`->everyOddHour($minutes	=	0);`	|	Run	the	task	every	odd	hour	`-
>everyTwoHours($minutes	=	0);`	|	Run	the	task	every	two	hours	`->everyThreeHours($minutes	=	0);`	|	Run	the
task	every	three	hours	`->everyFourHours($minutes	=	0);`	|	Run	the	task	every	four	hours	`-
>everySixHours($minutes	=	0);`	|	Run	the	task	every	six	hours	`->daily();`	|	Run	the	task	every	day	at	midnight

Laravel	Documentation	-	10.x	/	Task	Scheduling 532

`->dailyAt('13:00');`	|	Run	the	task	every	day	at	13:00	`->twiceDaily(1,	13);`	|	Run	the	task	daily	at	1:00	&
13:00	`->twiceDailyAt(1,	13,	15);`	|	Run	the	task	daily	at	1:15	&	13:15	`->weekly();`	|	Run	the	task	every
Sunday	at	00:00	`->weeklyOn(1,	'8:00');`	|	Run	the	task	every	week	on	Monday	at	8:00	`->monthly();`	|	Run	the
task	on	the	first	day	of	every	month	at	00:00	`->monthlyOn(4,	'15:00');`	|	Run	the	task	every	month	on	the	4th
at	15:00	`->twiceMonthly(1,	16,	'13:00');`	|	Run	the	task	monthly	on	the	1st	and	16th	at	13:00	`-
>lastDayOfMonth('15:00');`	|	Run	the	task	on	the	last	day	of	the	month	at	15:00	`->quarterly();`	|	Run	the	task
on	the	first	day	of	every	quarter	at	00:00	`->quarterlyOn(4,	'14:00');`	|	Run	the	task	every	quarter	on	the	4th	at
14:00	`->yearly();`	|	Run	the	task	on	the	first	day	of	every	year	at	00:00	`->yearlyOn(6,	1,	'17:00');`	|	Run	the
task	every	year	on	June	1st	at	17:00	`->timezone('America/New_York');`	|	Set	the	timezone	for	the	task

These	methods	may	be	combined	with	additional	constraints	to	create	even	more	finely	tuned	schedules	that
only	run	on	certain	days	of	the	week.	For	example,	you	may	schedule	a	command	to	run	weekly	on	Monday:

//	Run	once	per	week	on	Monday	at	1	PM...

$schedule->call(function	()	{

				//	...

})->weekly()->mondays()->at('13:00');

//	Run	hourly	from	8	AM	to	5	PM	on	weekdays...

$schedule->command('foo')

										->weekdays()

										->hourly()

										->timezone('America/Chicago')

										->between('8:00',	'17:00');

A	list	of	additional	schedule	constraints	may	be	found	below:

Method	|	Description	-------------	|	-------------	`->weekdays();`	|	Limit	the	task	to	weekdays	`->weekends();`	|
Limit	the	task	to	weekends	`->sundays();`	|	Limit	the	task	to	Sunday	`->mondays();`	|	Limit	the	task	to	Monday
`->tuesdays();`	|	Limit	the	task	to	Tuesday	`->wednesdays();`	|	Limit	the	task	to	Wednesday	`->thursdays();`	|
Limit	the	task	to	Thursday	`->fridays();`	|	Limit	the	task	to	Friday	`->saturdays();`	|	Limit	the	task	to	Saturday	`-
>days(array\|mixed);`	|	Limit	the	task	to	specific	days	`->between($startTime,	$endTime);`	|	Limit	the	task	to
run	between	start	and	end	times	`->unlessBetween($startTime,	$endTime);`	|	Limit	the	task	to	not	run	between
start	and	end	times	`->when(Closure);`	|	Limit	the	task	based	on	a	truth	test	`->environments($env);`	|	Limit	the
task	to	specific	environments

Day	Constraints

The	days	method	may	be	used	to	limit	the	execution	of	a	task	to	specific	days	of	the	week.	For	example,	you
may	schedule	a	command	to	run	hourly	on	Sundays	and	Wednesdays:

$schedule->command('emails:send')

																->hourly()

																->days([0,	3]);

Alternatively,	you	may	use	the	constants	available	on	the	Illuminate\Console\Scheduling\Schedule	class	when
defining	the	days	on	which	a	task	should	run:

use	Illuminate\Console\Scheduling\Schedule;

$schedule->command('emails:send')

																->hourly()

																->days([Schedule::SUNDAY,	Schedule::WEDNESDAY]);

Between	Time	Constraints

The	between	method	may	be	used	to	limit	the	execution	of	a	task	based	on	the	time	of	day:

$schedule->command('emails:send')

																				->hourly()

																				->between('7:00',	'22:00');

Similarly,	the	unlessBetween	method	can	be	used	to	exclude	the	execution	of	a	task	for	a	period	of	time:

$schedule->command('emails:send')

																				->hourly()

																				->unlessBetween('23:00',	'4:00');

Laravel	Documentation	-	10.x	/	Task	Scheduling 533

Truth	Test	Constraints

The	when	method	may	be	used	to	limit	the	execution	of	a	task	based	on	the	result	of	a	given	truth	test.	In	other
words,	if	the	given	closure	returns	true,	the	task	will	execute	as	long	as	no	other	constraining	conditions
prevent	the	task	from	running:

$schedule->command('emails:send')->daily()->when(function	()	{

				return	true;

});

The	skip	method	may	be	seen	as	the	inverse	of	when.	If	the	skip	method	returns	true,	the	scheduled	task	will	not
be	executed:

$schedule->command('emails:send')->daily()->skip(function	()	{

				return	true;

});

When	using	chained	when	methods,	the	scheduled	command	will	only	execute	if	all	when	conditions	return	true.

Environment	Constraints

The	environments	method	may	be	used	to	execute	tasks	only	on	the	given	environments	(as	defined	by	the	
APP_ENV	environment	variable):

$schedule->command('emails:send')

												->daily()

												->environments(['staging',	'production']);

Timezones

Using	the	timezone	method,	you	may	specify	that	a	scheduled	task's	time	should	be	interpreted	within	a	given
timezone:

$schedule->command('report:generate')

									->timezone('America/New_York')

									->at('2:00')

If	you	are	repeatedly	assigning	the	same	timezone	to	all	of	your	scheduled	tasks,	you	may	wish	to	define	a	
scheduleTimezone	method	in	your	App\Console\Kernel	class.	This	method	should	return	the	default	timezone	that
should	be	assigned	to	all	scheduled	tasks:

use	DateTimeZone;

/**

	*	Get	the	timezone	that	should	be	used	by	default	for	scheduled	events.

	*/

protected	function	scheduleTimezone():	DateTimeZone|string|null

{

				return	'America/Chicago';

}

[!WARNING]
Remember	that	some	timezones	utilize	daylight	savings	time.	When	daylight	saving	time	changes	occur,
your	scheduled	task	may	run	twice	or	even	not	run	at	all.	For	this	reason,	we	recommend	avoiding
timezone	scheduling	when	possible.

Preventing	Task	Overlaps

By	default,	scheduled	tasks	will	be	run	even	if	the	previous	instance	of	the	task	is	still	running.	To	prevent	this,
you	may	use	the	withoutOverlapping	method:

$schedule->command('emails:send')->withoutOverlapping();

In	this	example,	the	emails:send	Artisan	command	will	be	run	every	minute	if	it	is	not	already	running.	The	
withoutOverlapping	method	is	especially	useful	if	you	have	tasks	that	vary	drastically	in	their	execution	time,
preventing	you	from	predicting	exactly	how	long	a	given	task	will	take.

Laravel	Documentation	-	10.x	/	Task	Scheduling 534

If	needed,	you	may	specify	how	many	minutes	must	pass	before	the	"without	overlapping"	lock	expires.	By
default,	the	lock	will	expire	after	24	hours:

$schedule->command('emails:send')->withoutOverlapping(10);

Behind	the	scenes,	the	withoutOverlapping	method	utilizes	your	application's	cache	to	obtain	locks.	If	necessary,
you	can	clear	these	cache	locks	using	the	schedule:clear-cache	Artisan	command.	This	is	typically	only
necessary	if	a	task	becomes	stuck	due	to	an	unexpected	server	problem.

Running	Tasks	on	One	Server

[!WARNING]
To	utilize	this	feature,	your	application	must	be	using	the	database,	memcached,	dynamodb,	or	redis	cache
driver	as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be	communicating	with	the
same	central	cache	server.

If	your	application's	scheduler	is	running	on	multiple	servers,	you	may	limit	a	scheduled	job	to	only	execute	on
a	single	server.	For	instance,	assume	you	have	a	scheduled	task	that	generates	a	new	report	every	Friday	night.
If	the	task	scheduler	is	running	on	three	worker	servers,	the	scheduled	task	will	run	on	all	three	servers	and
generate	the	report	three	times.	Not	good!

To	indicate	that	the	task	should	run	on	only	one	server,	use	the	onOneServer	method	when	defining	the
scheduled	task.	The	first	server	to	obtain	the	task	will	secure	an	atomic	lock	on	the	job	to	prevent	other	servers
from	running	the	same	task	at	the	same	time:

$schedule->command('report:generate')

																->fridays()

																->at('17:00')

																->onOneServer();

Naming	Single	Server	Jobs

Sometimes	you	may	need	to	schedule	the	same	job	to	be	dispatched	with	different	parameters,	while	still
instructing	Laravel	to	run	each	permutation	of	the	job	on	a	single	server.	To	accomplish	this,	you	may	assign
each	schedule	definition	a	unique	name	via	the	name	method:

$schedule->job(new	CheckUptime('https://laravel.com'))

												->name('check_uptime:laravel.com')

												->everyFiveMinutes()

												->onOneServer();

$schedule->job(new	CheckUptime('https://vapor.laravel.com'))

												->name('check_uptime:vapor.laravel.com')

												->everyFiveMinutes()

												->onOneServer();

Similarly,	scheduled	closures	must	be	assigned	a	name	if	they	are	intended	to	be	run	on	one	server:

$schedule->call(fn	()	=>	User::resetApiRequestCount())

				->name('reset-api-request-count')

				->daily()

				->onOneServer();

Background	Tasks

By	default,	multiple	tasks	scheduled	at	the	same	time	will	execute	sequentially	based	on	the	order	they	are
defined	in	your	schedule	method.	If	you	have	long-running	tasks,	this	may	cause	subsequent	tasks	to	start	much
later	than	anticipated.	If	you	would	like	to	run	tasks	in	the	background	so	that	they	may	all	run	simultaneously,
you	may	use	the	runInBackground	method:

$schedule->command('analytics:report')

									->daily()

									->runInBackground();

[!WARNING]
The	runInBackground	method	may	only	be	used	when	scheduling	tasks	via	the	command	and	exec	methods.

Laravel	Documentation	-	10.x	/	Task	Scheduling 535

Maintenance	Mode

Your	application's	scheduled	tasks	will	not	run	when	the	application	is	in	maintenance	mode,	since	we	don't
want	your	tasks	to	interfere	with	any	unfinished	maintenance	you	may	be	performing	on	your	server.	However,
if	you	would	like	to	force	a	task	to	run	even	in	maintenance	mode,	you	may	call	the	evenInMaintenanceMode
method	when	defining	the	task:

$schedule->command('emails:send')->evenInMaintenanceMode();

Running	the	Scheduler

Now	that	we	have	learned	how	to	define	scheduled	tasks,	let's	discuss	how	to	actually	run	them	on	our	server.
The	schedule:run	Artisan	command	will	evaluate	all	of	your	scheduled	tasks	and	determine	if	they	need	to	run
based	on	the	server's	current	time.

So,	when	using	Laravel's	scheduler,	we	only	need	to	add	a	single	cron	configuration	entry	to	our	server	that
runs	the	schedule:run	command	every	minute.	If	you	do	not	know	how	to	add	cron	entries	to	your	server,
consider	using	a	service	such	as	Laravel	Forge	which	can	manage	the	cron	entries	for	you:

*	*	*	*	*	cd	/path-to-your-project	&&	php	artisan	schedule:run	>>	/dev/null	2>&1

Sub-Minute	Scheduled	Tasks

On	most	operating	systems,	cron	jobs	are	limited	to	running	a	maximum	of	once	per	minute.	However,
Laravel's	scheduler	allows	you	to	schedule	tasks	to	run	at	more	frequent	intervals,	even	as	often	as	once	per
second:

$schedule->call(function	()	{

				DB::table('recent_users')->delete();

})->everySecond();

When	sub-minute	tasks	are	defined	within	your	application,	the	schedule:run	command	will	continue	running
until	the	end	of	the	current	minute	instead	of	exiting	immediately.	This	allows	the	command	to	invoke	all
required	sub-minute	tasks	throughout	the	minute.

Since	sub-minute	tasks	that	take	longer	than	expected	to	run	could	delay	the	execution	of	later	sub-minute
tasks,	it	is	recommend	that	all	sub-minute	tasks	dispatch	queued	jobs	or	background	commands	to	handle	the
actual	task	processing:

use	App\Jobs\DeleteRecentUsers;

$schedule->job(new	DeleteRecentUsers)->everyTenSeconds();

$schedule->command('users:delete')->everyTenSeconds()->runInBackground();

Interrupting	Sub-Minute	Tasks

As	the	schedule:run	command	runs	for	the	entire	minute	of	invocation	when	sub-minute	tasks	are	defined,	you
may	sometimes	need	to	interrupt	the	command	when	deploying	your	application.	Otherwise,	an	instance	of	the	
schedule:run	command	that	is	already	running	would	continue	using	your	application's	previously	deployed
code	until	the	current	minute	ends.

To	interrupt	in-progress	schedule:run	invocations,	you	may	add	the	schedule:interrupt	command	to	your
application's	deployment	script.	This	command	should	be	invoked	after	your	application	is	finished	deploying:

php	artisan	schedule:interrupt

Running	the	Scheduler	Locally

Typically,	you	would	not	add	a	scheduler	cron	entry	to	your	local	development	machine.	Instead,	you	may	use
the	schedule:work	Artisan	command.	This	command	will	run	in	the	foreground	and	invoke	the	scheduler	every
minute	until	you	terminate	the	command:

Laravel	Documentation	-	10.x	/	Task	Scheduling 536

https://forge.laravel.com

php	artisan	schedule:work

Task	Output

The	Laravel	scheduler	provides	several	convenient	methods	for	working	with	the	output	generated	by
scheduled	tasks.	First,	using	the	sendOutputTo	method,	you	may	send	the	output	to	a	file	for	later	inspection:

$schedule->command('emails:send')

									->daily()

									->sendOutputTo($filePath);

If	you	would	like	to	append	the	output	to	a	given	file,	you	may	use	the	appendOutputTo	method:

$schedule->command('emails:send')

									->daily()

									->appendOutputTo($filePath);

Using	the	emailOutputTo	method,	you	may	email	the	output	to	an	email	address	of	your	choice.	Before	emailing
the	output	of	a	task,	you	should	configure	Laravel's	email	services:

$schedule->command('report:generate')

									->daily()

									->sendOutputTo($filePath)

									->emailOutputTo('taylor@example.com');

If	you	only	want	to	email	the	output	if	the	scheduled	Artisan	or	system	command	terminates	with	a	non-zero
exit	code,	use	the	emailOutputOnFailure	method:

$schedule->command('report:generate')

									->daily()

									->emailOutputOnFailure('taylor@example.com');

[!WARNING]
The	emailOutputTo,	emailOutputOnFailure,	sendOutputTo,	and	appendOutputTo	methods	are	exclusive	to	the	
command	and	exec	methods.

Task	Hooks

Using	the	before	and	after	methods,	you	may	specify	code	to	be	executed	before	and	after	the	scheduled	task	is
executed:

$schedule->command('emails:send')

									->daily()

									->before(function	()	{

													//	The	task	is	about	to	execute...

									})

									->after(function	()	{

													//	The	task	has	executed...

									});

The	onSuccess	and	onFailure	methods	allow	you	to	specify	code	to	be	executed	if	the	scheduled	task	succeeds
or	fails.	A	failure	indicates	that	the	scheduled	Artisan	or	system	command	terminated	with	a	non-zero	exit	code:

$schedule->command('emails:send')

									->daily()

									->onSuccess(function	()	{

													//	The	task	succeeded...

									})

									->onFailure(function	()	{

													//	The	task	failed...

									});

If	output	is	available	from	your	command,	you	may	access	it	in	your	after,	onSuccess	or	onFailure	hooks	by
type-hinting	an	Illuminate\Support\Stringable	instance	as	the	$output	argument	of	your	hook's	closure
definition:

use	Illuminate\Support\Stringable;

$schedule->command('emails:send')

									->daily()

Laravel	Documentation	-	10.x	/	Task	Scheduling 537

									->onSuccess(function	(Stringable	$output)	{

													//	The	task	succeeded...

									})

									->onFailure(function	(Stringable	$output)	{

													//	The	task	failed...

									});

Pinging	URLs

Using	the	pingBefore	and	thenPing	methods,	the	scheduler	can	automatically	ping	a	given	URL	before	or	after	a
task	is	executed.	This	method	is	useful	for	notifying	an	external	service,	such	as	Envoyer,	that	your	scheduled
task	is	beginning	or	has	finished	execution:

$schedule->command('emails:send')

									->daily()

									->pingBefore($url)

									->thenPing($url);

The	pingBeforeIf	and	thenPingIf	methods	may	be	used	to	ping	a	given	URL	only	if	a	given	condition	is	true:

$schedule->command('emails:send')

									->daily()

									->pingBeforeIf($condition,	$url)

									->thenPingIf($condition,	$url);

The	pingOnSuccess	and	pingOnFailure	methods	may	be	used	to	ping	a	given	URL	only	if	the	task	succeeds	or
fails.	A	failure	indicates	that	the	scheduled	Artisan	or	system	command	terminated	with	a	non-zero	exit	code:

$schedule->command('emails:send')

									->daily()

									->pingOnSuccess($successUrl)

									->pingOnFailure($failureUrl);

All	of	the	ping	methods	require	the	Guzzle	HTTP	library.	Guzzle	is	typically	installed	in	all	new	Laravel
projects	by	default,	but,	you	may	manually	install	Guzzle	into	your	project	using	the	Composer	package
manager	if	it	has	been	accidentally	removed:

composer	require	guzzlehttp/guzzle

Events

If	needed,	you	may	listen	to	events	dispatched	by	the	scheduler.	Typically,	event	listener	mappings	will	be
defined	within	your	application's	App\Providers\EventServiceProvider	class:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Console\Events\ScheduledTaskStarting'	=>	[

								'App\Listeners\LogScheduledTaskStarting',

],

				'Illuminate\Console\Events\ScheduledTaskFinished'	=>	[

								'App\Listeners\LogScheduledTaskFinished',

],

				'Illuminate\Console\Events\ScheduledBackgroundTaskFinished'	=>	[

								'App\Listeners\LogScheduledBackgroundTaskFinished',

],

				'Illuminate\Console\Events\ScheduledTaskSkipped'	=>	[

								'App\Listeners\LogScheduledTaskSkipped',

],

				'Illuminate\Console\Events\ScheduledTaskFailed'	=>	[

								'App\Listeners\LogScheduledTaskFailed',

],

];

Laravel	Documentation	-	10.x	/	Task	Scheduling 538

https://envoyer.io

Security

Authentication
Introduction

Starter	Kits
Database	Considerations
Ecosystem	Overview

Authentication	Quickstart
Install	a	Starter	Kit
Retrieving	the	Authenticated	User
Protecting	Routes
Login	Throttling

Manually	Authenticating	Users
Remembering	Users
Other	Authentication	Methods

HTTP	Basic	Authentication
Stateless	HTTP	Basic	Authentication

Logging	Out
Invalidating	Sessions	on	Other	Devices

Password	Confirmation
Configuration
Routing
Protecting	Routes

Adding	Custom	Guards
Closure	Request	Guards

Adding	Custom	User	Providers
The	User	Provider	Contract
The	Authenticatable	Contract

Social	Authentication
Events

Introduction

Many	web	applications	provide	a	way	for	their	users	to	authenticate	with	the	application	and	"login".
Implementing	this	feature	in	web	applications	can	be	a	complex	and	potentially	risky	endeavor.	For	this	reason,
Laravel	strives	to	give	you	the	tools	you	need	to	implement	authentication	quickly,	securely,	and	easily.

At	its	core,	Laravel's	authentication	facilities	are	made	up	of	"guards"	and	"providers".	Guards	define	how	users
are	authenticated	for	each	request.	For	example,	Laravel	ships	with	a	session	guard	which	maintains	state	using
session	storage	and	cookies.

Providers	define	how	users	are	retrieved	from	your	persistent	storage.	Laravel	ships	with	support	for	retrieving
users	using	Eloquent	and	the	database	query	builder.	However,	you	are	free	to	define	additional	providers	as
needed	for	your	application.

Your	application's	authentication	configuration	file	is	located	at	config/auth.php.	This	file	contains	several
well-documented	options	for	tweaking	the	behavior	of	Laravel's	authentication	services.

[!NOTE]
Guards	and	providers	should	not	be	confused	with	"roles"	and	"permissions".	To	learn	more	about
authorizing	user	actions	via	permissions,	please	refer	to	the	authorization	documentation.

Starter	Kits

Want	to	get	started	fast?	Install	a	Laravel	application	starter	kit	in	a	fresh	Laravel	application.	After	migrating
your	database,	navigate	your	browser	to	/register	or	any	other	URL	that	is	assigned	to	your	application.	The
starter	kits	will	take	care	of	scaffolding	your	entire	authentication	system!

Laravel	Documentation	-	10.x	/	Security 539

Even	if	you	choose	not	to	use	a	starter	kit	in	your	final	Laravel	application,	installing	the	Laravel	Breeze
starter	kit	can	be	a	wonderful	opportunity	to	learn	how	to	implement	all	of	Laravel's	authentication
functionality	in	an	actual	Laravel	project.	Since	Laravel	Breeze	creates	authentication	controllers,	routes,
and	views	for	you,	you	can	examine	the	code	within	these	files	to	learn	how	Laravel's	authentication	features
may	be	implemented.

Database	Considerations

By	default,	Laravel	includes	an	App\Models\User	Eloquent	model	in	your	app/Models	directory.	This	model	may
be	used	with	the	default	Eloquent	authentication	driver.	If	your	application	is	not	using	Eloquent,	you	may	use
the	database	authentication	provider	which	uses	the	Laravel	query	builder.

When	building	the	database	schema	for	the	App\Models\User	model,	make	sure	the	password	column	is	at	least
60	characters	in	length.	Of	course,	the	users	table	migration	that	is	included	in	new	Laravel	applications	already
creates	a	column	that	exceeds	this	length.

Also,	you	should	verify	that	your	users	(or	equivalent)	table	contains	a	nullable,	string	remember_token	column
of	100	characters.	This	column	will	be	used	to	store	a	token	for	users	that	select	the	"remember	me"	option
when	logging	into	your	application.	Again,	the	default	users	table	migration	that	is	included	in	new	Laravel
applications	already	contains	this	column.

Ecosystem	Overview

Laravel	offers	several	packages	related	to	authentication.	Before	continuing,	we'll	review	the	general
authentication	ecosystem	in	Laravel	and	discuss	each	package's	intended	purpose.

First,	consider	how	authentication	works.	When	using	a	web	browser,	a	user	will	provide	their	username	and
password	via	a	login	form.	If	these	credentials	are	correct,	the	application	will	store	information	about	the
authenticated	user	in	the	user's	session.	A	cookie	issued	to	the	browser	contains	the	session	ID	so	that
subsequent	requests	to	the	application	can	associate	the	user	with	the	correct	session.	After	the	session	cookie	is
received,	the	application	will	retrieve	the	session	data	based	on	the	session	ID,	note	that	the	authentication
information	has	been	stored	in	the	session,	and	will	consider	the	user	as	"authenticated".

When	a	remote	service	needs	to	authenticate	to	access	an	API,	cookies	are	not	typically	used	for	authentication
because	there	is	no	web	browser.	Instead,	the	remote	service	sends	an	API	token	to	the	API	on	each	request.
The	application	may	validate	the	incoming	token	against	a	table	of	valid	API	tokens	and	"authenticate"	the
request	as	being	performed	by	the	user	associated	with	that	API	token.

Laravel's	Built-in	Browser	Authentication	Services

Laravel	includes	built-in	authentication	and	session	services	which	are	typically	accessed	via	the	Auth	and	
Session	facades.	These	features	provide	cookie-based	authentication	for	requests	that	are	initiated	from	web
browsers.	They	provide	methods	that	allow	you	to	verify	a	user's	credentials	and	authenticate	the	user.	In
addition,	these	services	will	automatically	store	the	proper	authentication	data	in	the	user's	session	and	issue	the
user's	session	cookie.	A	discussion	of	how	to	use	these	services	is	contained	within	this	documentation.

Application	Starter	Kits

As	discussed	in	this	documentation,	you	can	interact	with	these	authentication	services	manually	to	build	your
application's	own	authentication	layer.	However,	to	help	you	get	started	more	quickly,	we	have	released	free
packages	that	provide	robust,	modern	scaffolding	of	the	entire	authentication	layer.	These	packages	are	Laravel
Breeze,	Laravel	Jetstream,	and	Laravel	Fortify.

Laravel	Breeze	is	a	simple,	minimal	implementation	of	all	of	Laravel's	authentication	features,	including	login,
registration,	password	reset,	email	verification,	and	password	confirmation.	Laravel	Breeze's	view	layer	is
comprised	of	simple	Blade	templates	styled	with	Tailwind	CSS.	To	get	started,	check	out	the	documentation	on
Laravel's	application	starter	kits.

Laravel	Fortify	is	a	headless	authentication	backend	for	Laravel	that	implements	many	of	the	features	found	in
this	documentation,	including	cookie-based	authentication	as	well	as	other	features	such	as	two-factor

Laravel	Documentation	-	10.x	/	Security 540

https://tailwindcss.com

authentication	and	email	verification.	Fortify	provides	the	authentication	backend	for	Laravel	Jetstream	or	may
be	used	independently	in	combination	with	Laravel	Sanctum	to	provide	authentication	for	an	SPA	that	needs	to
authenticate	with	Laravel.

Laravel	Jetstream	is	a	robust	application	starter	kit	that	consumes	and	exposes	Laravel	Fortify's	authentication
services	with	a	beautiful,	modern	UI	powered	by	Tailwind	CSS,	Livewire,	and	/	or	Inertia.	Laravel	Jetstream
includes	optional	support	for	two-factor	authentication,	team	support,	browser	session	management,	profile
management,	and	built-in	integration	with	Laravel	Sanctum	to	offer	API	token	authentication.	Laravel's	API
authentication	offerings	are	discussed	below.

Laravel's	API	Authentication	Services

Laravel	provides	two	optional	packages	to	assist	you	in	managing	API	tokens	and	authenticating	requests	made
with	API	tokens:	Passport	and	Sanctum.	Please	note	that	these	libraries	and	Laravel's	built-in	cookie	based
authentication	libraries	are	not	mutually	exclusive.	These	libraries	primarily	focus	on	API	token	authentication
while	the	built-in	authentication	services	focus	on	cookie	based	browser	authentication.	Many	applications	will
use	both	Laravel's	built-in	cookie	based	authentication	services	and	one	of	Laravel's	API	authentication
packages.

Passport

Passport	is	an	OAuth2	authentication	provider,	offering	a	variety	of	OAuth2	"grant	types"	which	allow	you	to
issue	various	types	of	tokens.	In	general,	this	is	a	robust	and	complex	package	for	API	authentication.	However,
most	applications	do	not	require	the	complex	features	offered	by	the	OAuth2	spec,	which	can	be	confusing	for
both	users	and	developers.	In	addition,	developers	have	been	historically	confused	about	how	to	authenticate
SPA	applications	or	mobile	applications	using	OAuth2	authentication	providers	like	Passport.

Sanctum

In	response	to	the	complexity	of	OAuth2	and	developer	confusion,	we	set	out	to	build	a	simpler,	more
streamlined	authentication	package	that	could	handle	both	first-party	web	requests	from	a	web	browser	and	API
requests	via	tokens.	This	goal	was	realized	with	the	release	of	Laravel	Sanctum,	which	should	be	considered
the	preferred	and	recommended	authentication	package	for	applications	that	will	be	offering	a	first-party	web
UI	in	addition	to	an	API,	or	will	be	powered	by	a	single-page	application	(SPA)	that	exists	separately	from	the
backend	Laravel	application,	or	applications	that	offer	a	mobile	client.

Laravel	Sanctum	is	a	hybrid	web	/	API	authentication	package	that	can	manage	your	application's	entire
authentication	process.	This	is	possible	because	when	Sanctum	based	applications	receive	a	request,	Sanctum
will	first	determine	if	the	request	includes	a	session	cookie	that	references	an	authenticated	session.	Sanctum
accomplishes	this	by	calling	Laravel's	built-in	authentication	services	which	we	discussed	earlier.	If	the	request
is	not	being	authenticated	via	a	session	cookie,	Sanctum	will	inspect	the	request	for	an	API	token.	If	an	API
token	is	present,	Sanctum	will	authenticate	the	request	using	that	token.	To	learn	more	about	this	process,
please	consult	Sanctum's	"how	it	works"	documentation.

Laravel	Sanctum	is	the	API	package	we	have	chosen	to	include	with	the	Laravel	Jetstream	application	starter
kit	because	we	believe	it	is	the	best	fit	for	the	majority	of	web	application's	authentication	needs.

Summary	and	Choosing	Your	Stack

In	summary,	if	your	application	will	be	accessed	using	a	browser	and	you	are	building	a	monolithic	Laravel
application,	your	application	will	use	Laravel's	built-in	authentication	services.

Next,	if	your	application	offers	an	API	that	will	be	consumed	by	third	parties,	you	will	choose	between
Passport	or	Sanctum	to	provide	API	token	authentication	for	your	application.	In	general,	Sanctum	should	be
preferred	when	possible	since	it	is	a	simple,	complete	solution	for	API	authentication,	SPA	authentication,	and
mobile	authentication,	including	support	for	"scopes"	or	"abilities".

If	you	are	building	a	single-page	application	(SPA)	that	will	be	powered	by	a	Laravel	backend,	you	should	use
Laravel	Sanctum.	When	using	Sanctum,	you	will	either	need	to	manually	implement	your	own	backend
authentication	routes	or	utilize	Laravel	Fortify	as	a	headless	authentication	backend	service	that	provides	routes
and	controllers	for	features	such	as	registration,	password	reset,	email	verification,	and	more.

Laravel	Documentation	-	10.x	/	Security 541

https://jetstream.laravel.com
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com
https://jetstream.laravel.com

Passport	may	be	chosen	when	your	application	absolutely	needs	all	of	the	features	provided	by	the	OAuth2
specification.

And,	if	you	would	like	to	get	started	quickly,	we	are	pleased	to	recommend	Laravel	Breeze	as	a	quick	way	to
start	a	new	Laravel	application	that	already	uses	our	preferred	authentication	stack	of	Laravel's	built-in
authentication	services	and	Laravel	Sanctum.

Authentication	Quickstart

[!WARNING]
This	portion	of	the	documentation	discusses	authenticating	users	via	the	Laravel	application	starter	kits,
which	includes	UI	scaffolding	to	help	you	get	started	quickly.	If	you	would	like	to	integrate	with	Laravel's
authentication	systems	directly,	check	out	the	documentation	on	manually	authenticating	users.

Install	a	Starter	Kit

First,	you	should	install	a	Laravel	application	starter	kit.	Our	current	starter	kits,	Laravel	Breeze	and	Laravel
Jetstream,	offer	beautifully	designed	starting	points	for	incorporating	authentication	into	your	fresh	Laravel
application.

Laravel	Breeze	is	a	minimal,	simple	implementation	of	all	of	Laravel's	authentication	features,	including	login,
registration,	password	reset,	email	verification,	and	password	confirmation.	Laravel	Breeze's	view	layer	is
made	up	of	simple	Blade	templates	styled	with	Tailwind	CSS.	Additionally,	Breeze	provides	scaffolding
options	based	on	Livewire	or	Inertia,	with	the	choice	of	using	Vue	or	React	for	the	Inertia-based	scaffolding.

Laravel	Jetstream	is	a	more	robust	application	starter	kit	that	includes	support	for	scaffolding	your	application
with	Livewire	or	Inertia	and	Vue.	In	addition,	Jetstream	features	optional	support	for	two-factor	authentication,
teams,	profile	management,	browser	session	management,	API	support	via	Laravel	Sanctum,	account	deletion,
and	more.

Retrieving	the	Authenticated	User

After	installing	an	authentication	starter	kit	and	allowing	users	to	register	and	authenticate	with	your
application,	you	will	often	need	to	interact	with	the	currently	authenticated	user.	While	handling	an	incoming
request,	you	may	access	the	authenticated	user	via	the	Auth	facade's	user	method:

use	Illuminate\Support\Facades\Auth;

//	Retrieve	the	currently	authenticated	user...

$user	=	Auth::user();

//	Retrieve	the	currently	authenticated	user's	ID...

$id	=	Auth::id();

Alternatively,	once	a	user	is	authenticated,	you	may	access	the	authenticated	user	via	an	
Illuminate\Http\Request	instance.	Remember,	type-hinted	classes	will	automatically	be	injected	into	your
controller	methods.	By	type-hinting	the	Illuminate\Http\Request	object,	you	may	gain	convenient	access	to	the
authenticated	user	from	any	controller	method	in	your	application	via	the	request's	user	method:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	FlightController	extends	Controller

{

				/**

					*	Update	the	flight	information	for	an	existing	flight.

					*/

				public	function	update(Request	$request):	RedirectResponse

				{

								$user	=	$request->user();

								//	...

Laravel	Documentation	-	10.x	/	Security 542

https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com
https://jetstream.laravel.com
https://livewire.laravel.com
https://inertiajs.com

								return	redirect('/flights');

				}

}

Determining	if	the	Current	User	is	Authenticated

To	determine	if	the	user	making	the	incoming	HTTP	request	is	authenticated,	you	may	use	the	check	method	on
the	Auth	facade.	This	method	will	return	true	if	the	user	is	authenticated:

use	Illuminate\Support\Facades\Auth;

if	(Auth::check())	{

				//	The	user	is	logged	in...

}

[!NOTE]
Even	though	it	is	possible	to	determine	if	a	user	is	authenticated	using	the	check	method,	you	will	typically
use	a	middleware	to	verify	that	the	user	is	authenticated	before	allowing	the	user	access	to	certain	routes	/
controllers.	To	learn	more	about	this,	check	out	the	documentation	on	protecting	routes.

Protecting	Routes

Route	middleware	can	be	used	to	only	allow	authenticated	users	to	access	a	given	route.	Laravel	ships	with	an	
auth	middleware,	which	references	the	Illuminate\Auth\Middleware\Authenticate	class.	Since	this	middleware
is	already	registered	in	your	application's	HTTP	kernel,	all	you	need	to	do	is	attach	the	middleware	to	a	route
definition:

Route::get('/flights',	function	()	{

				//	Only	authenticated	users	may	access	this	route...

})->middleware('auth');

Redirecting	Unauthenticated	Users

When	the	auth	middleware	detects	an	unauthenticated	user,	it	will	redirect	the	user	to	the	login	named	route.
You	may	modify	this	behavior	by	updating	the	redirectTo	function	in	your	application's	
app/Http/Middleware/Authenticate.php	file:

use	Illuminate\Http\Request;

/**

	*	Get	the	path	the	user	should	be	redirected	to.

	*/

protected	function	redirectTo(Request	$request):	string

{

				return	route('login');

}

Specifying	a	Guard

When	attaching	the	auth	middleware	to	a	route,	you	may	also	specify	which	"guard"	should	be	used	to
authenticate	the	user.	The	guard	specified	should	correspond	to	one	of	the	keys	in	the	guards	array	of	your	
auth.php	configuration	file:

Route::get('/flights',	function	()	{

				//	Only	authenticated	users	may	access	this	route...

})->middleware('auth:admin');

Login	Throttling

If	you	are	using	the	Laravel	Breeze	or	Laravel	Jetstream	starter	kits,	rate	limiting	will	automatically	be	applied
to	login	attempts.	By	default,	the	user	will	not	be	able	to	login	for	one	minute	if	they	fail	to	provide	the	correct
credentials	after	several	attempts.	The	throttling	is	unique	to	the	user's	username	/	email	address	and	their	IP
address.

[!NOTE]

Laravel	Documentation	-	10.x	/	Security 543

If	you	would	like	to	rate	limit	other	routes	in	your	application,	check	out	the	rate	limiting	documentation.

Manually	Authenticating	Users

You	are	not	required	to	use	the	authentication	scaffolding	included	with	Laravel's	application	starter	kits.	If	you
choose	not	to	use	this	scaffolding,	you	will	need	to	manage	user	authentication	using	the	Laravel	authentication
classes	directly.	Don't	worry,	it's	a	cinch!

We	will	access	Laravel's	authentication	services	via	the	Auth	facade,	so	we'll	need	to	make	sure	to	import	the	
Auth	facade	at	the	top	of	the	class.	Next,	let's	check	out	the	attempt	method.	The	attempt	method	is	normally
used	to	handle	authentication	attempts	from	your	application's	"login"	form.	If	authentication	is	successful,	you
should	regenerate	the	user's	session	to	prevent	session	fixation:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Support\Facades\Auth;

class	LoginController	extends	Controller

{

				/**

					*	Handle	an	authentication	attempt.

					*/

				public	function	authenticate(Request	$request):	RedirectResponse

				{

								$credentials	=	$request->validate([

												'email'	=>	['required',	'email'],

												'password'	=>	['required'],

]);

								if	(Auth::attempt($credentials))	{

												$request->session()->regenerate();

												return	redirect()->intended('dashboard');

								}

								return	back()->withErrors([

												'email'	=>	'The	provided	credentials	do	not	match	our	records.',

])->onlyInput('email');

				}

}

The	attempt	method	accepts	an	array	of	key	/	value	pairs	as	its	first	argument.	The	values	in	the	array	will	be
used	to	find	the	user	in	your	database	table.	So,	in	the	example	above,	the	user	will	be	retrieved	by	the	value	of
the	email	column.	If	the	user	is	found,	the	hashed	password	stored	in	the	database	will	be	compared	with	the	
password	value	passed	to	the	method	via	the	array.	You	should	not	hash	the	incoming	request's	password	value,
since	the	framework	will	automatically	hash	the	value	before	comparing	it	to	the	hashed	password	in	the
database.	An	authenticated	session	will	be	started	for	the	user	if	the	two	hashed	passwords	match.

Remember,	Laravel's	authentication	services	will	retrieve	users	from	your	database	based	on	your
authentication	guard's	"provider"	configuration.	In	the	default	config/auth.php	configuration	file,	the	Eloquent
user	provider	is	specified	and	it	is	instructed	to	use	the	App\Models\User	model	when	retrieving	users.	You	may
change	these	values	within	your	configuration	file	based	on	the	needs	of	your	application.

The	attempt	method	will	return	true	if	authentication	was	successful.	Otherwise,	false	will	be	returned.

The	intended	method	provided	by	Laravel's	redirector	will	redirect	the	user	to	the	URL	they	were	attempting	to
access	before	being	intercepted	by	the	authentication	middleware.	A	fallback	URI	may	be	given	to	this	method
in	case	the	intended	destination	is	not	available.

Specifying	Additional	Conditions

If	you	wish,	you	may	also	add	extra	query	conditions	to	the	authentication	query	in	addition	to	the	user's	email
and	password.	To	accomplish	this,	we	may	simply	add	the	query	conditions	to	the	array	passed	to	the	attempt
method.	For	example,	we	may	verify	that	the	user	is	marked	as	"active":

Laravel	Documentation	-	10.x	/	Security 544

https://en.wikipedia.org/wiki/Session_fixation

if	(Auth::attempt(['email'	=>	$email,	'password'	=>	$password,	'active'	=>	1]))	{

				//	Authentication	was	successful...

}

For	complex	query	conditions,	you	may	provide	a	closure	in	your	array	of	credentials.	This	closure	will	be
invoked	with	the	query	instance,	allowing	you	to	customize	the	query	based	on	your	application's	needs:

use	Illuminate\Database\Eloquent\Builder;

if	(Auth::attempt([

				'email'	=>	$email,	

				'password'	=>	$password,	

				fn	(Builder	$query)	=>	$query->has('activeSubscription'),

]))	{

				//	Authentication	was	successful...

}

[!WARNING]
In	these	examples,	email	is	not	a	required	option,	it	is	merely	used	as	an	example.	You	should	use	whatever
column	name	corresponds	to	a	"username"	in	your	database	table.

The	attemptWhen	method,	which	receives	a	closure	as	its	second	argument,	may	be	used	to	perform	more
extensive	inspection	of	the	potential	user	before	actually	authenticating	the	user.	The	closure	receives	the
potential	user	and	should	return	true	or	false	to	indicate	if	the	user	may	be	authenticated:

if	(Auth::attemptWhen([

				'email'	=>	$email,

				'password'	=>	$password,

],	function	(User	$user)	{

				return	$user->isNotBanned();

}))	{

				//	Authentication	was	successful...

}

Accessing	Specific	Guard	Instances

Via	the	Auth	facade's	guard	method,	you	may	specify	which	guard	instance	you	would	like	to	utilize	when
authenticating	the	user.	This	allows	you	to	manage	authentication	for	separate	parts	of	your	application	using
entirely	separate	authenticatable	models	or	user	tables.

The	guard	name	passed	to	the	guard	method	should	correspond	to	one	of	the	guards	configured	in	your	auth.php
configuration	file:

if	(Auth::guard('admin')->attempt($credentials))	{

				//	...

}

Remembering	Users

Many	web	applications	provide	a	"remember	me"	checkbox	on	their	login	form.	If	you	would	like	to	provide
"remember	me"	functionality	in	your	application,	you	may	pass	a	boolean	value	as	the	second	argument	to	the	
attempt	method.

When	this	value	is	true,	Laravel	will	keep	the	user	authenticated	indefinitely	or	until	they	manually	logout.
Your	users	table	must	include	the	string	remember_token	column,	which	will	be	used	to	store	the	"remember	me"
token.	The	users	table	migration	included	with	new	Laravel	applications	already	includes	this	column:

use	Illuminate\Support\Facades\Auth;

if	(Auth::attempt(['email'	=>	$email,	'password'	=>	$password],	$remember))	{

				//	The	user	is	being	remembered...

}

If	your	application	offers	"remember	me"	functionality,	you	may	use	the	viaRemember	method	to	determine	if	the
currently	authenticated	user	was	authenticated	using	the	"remember	me"	cookie:

use	Illuminate\Support\Facades\Auth;

if	(Auth::viaRemember())	{

Laravel	Documentation	-	10.x	/	Security 545

				//	...

}

Other	Authentication	Methods

Authenticate	a	User	Instance

If	you	need	to	set	an	existing	user	instance	as	the	currently	authenticated	user,	you	may	pass	the	user	instance	to
the	Auth	facade's	login	method.	The	given	user	instance	must	be	an	implementation	of	the	
Illuminate\Contracts\Auth\Authenticatable	contract.	The	App\Models\User	model	included	with	Laravel	already
implements	this	interface.	This	method	of	authentication	is	useful	when	you	already	have	a	valid	user	instance,
such	as	directly	after	a	user	registers	with	your	application:

use	Illuminate\Support\Facades\Auth;

Auth::login($user);

You	may	pass	a	boolean	value	as	the	second	argument	to	the	login	method.	This	value	indicates	if	"remember
me"	functionality	is	desired	for	the	authenticated	session.	Remember,	this	means	that	the	session	will	be
authenticated	indefinitely	or	until	the	user	manually	logs	out	of	the	application:

Auth::login($user,	$remember	=	true);

If	needed,	you	may	specify	an	authentication	guard	before	calling	the	login	method:

Auth::guard('admin')->login($user);

Authenticate	a	User	by	ID

To	authenticate	a	user	using	their	database	record's	primary	key,	you	may	use	the	loginUsingId	method.	This
method	accepts	the	primary	key	of	the	user	you	wish	to	authenticate:

Auth::loginUsingId(1);

You	may	pass	a	boolean	value	as	the	second	argument	to	the	loginUsingId	method.	This	value	indicates	if
"remember	me"	functionality	is	desired	for	the	authenticated	session.	Remember,	this	means	that	the	session
will	be	authenticated	indefinitely	or	until	the	user	manually	logs	out	of	the	application:

Auth::loginUsingId(1,	$remember	=	true);

Authenticate	a	User	Once

You	may	use	the	once	method	to	authenticate	a	user	with	the	application	for	a	single	request.	No	sessions	or
cookies	will	be	utilized	when	calling	this	method:

if	(Auth::once($credentials))	{

				//	...

}

HTTP	Basic	Authentication

HTTP	Basic	Authentication	provides	a	quick	way	to	authenticate	users	of	your	application	without	setting	up	a
dedicated	"login"	page.	To	get	started,	attach	the	auth.basic	middleware	to	a	route.	The	auth.basic	middleware
is	included	with	the	Laravel	framework,	so	you	do	not	need	to	define	it:

Route::get('/profile',	function	()	{

				//	Only	authenticated	users	may	access	this	route...

})->middleware('auth.basic');

Once	the	middleware	has	been	attached	to	the	route,	you	will	automatically	be	prompted	for	credentials	when
accessing	the	route	in	your	browser.	By	default,	the	auth.basic	middleware	will	assume	the	email	column	on
your	users	database	table	is	the	user's	"username".

A	Note	on	FastCGI

Laravel	Documentation	-	10.x	/	Security 546

https://en.wikipedia.org/wiki/Basic_access_authentication

If	you	are	using	PHP	FastCGI	and	Apache	to	serve	your	Laravel	application,	HTTP	Basic	authentication	may
not	work	correctly.	To	correct	these	problems,	the	following	lines	may	be	added	to	your	application's	.htaccess
file:

RewriteCond	%{HTTP:Authorization}	^(.+)$

RewriteRule	.*	-	[E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

Stateless	HTTP	Basic	Authentication

You	may	also	use	HTTP	Basic	Authentication	without	setting	a	user	identifier	cookie	in	the	session.	This	is
primarily	helpful	if	you	choose	to	use	HTTP	Authentication	to	authenticate	requests	to	your	application's	API.
To	accomplish	this,	define	a	middleware	that	calls	the	onceBasic	method.	If	no	response	is	returned	by	the	
onceBasic	method,	the	request	may	be	passed	further	into	the	application:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Auth;

use	Symfony\Component\HttpFoundation\Response;

class	AuthenticateOnceWithBasicAuth

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								return	Auth::onceBasic()	?:	$next($request);

				}

}

Next,	attach	the	middleware	to	a	route:

Route::get('/api/user',	function	()	{

				//	Only	authenticated	users	may	access	this	route...

})->middleware(AuthenticateOnceWithBasicAuth::class);

Logging	Out

To	manually	log	users	out	of	your	application,	you	may	use	the	logout	method	provided	by	the	Auth	facade.
This	will	remove	the	authentication	information	from	the	user's	session	so	that	subsequent	requests	are	not
authenticated.

In	addition	to	calling	the	logout	method,	it	is	recommended	that	you	invalidate	the	user's	session	and	regenerate
their	CSRF	token.	After	logging	the	user	out,	you	would	typically	redirect	the	user	to	the	root	of	your
application:

use	Illuminate\Http\Request;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Support\Facades\Auth;

/**

	*	Log	the	user	out	of	the	application.

	*/

public	function	logout(Request	$request):	RedirectResponse

{

				Auth::logout();

				$request->session()->invalidate();

				$request->session()->regenerateToken();

				return	redirect('/');

}

Laravel	Documentation	-	10.x	/	Security 547

Invalidating	Sessions	on	Other	Devices

Laravel	also	provides	a	mechanism	for	invalidating	and	"logging	out"	a	user's	sessions	that	are	active	on	other
devices	without	invalidating	the	session	on	their	current	device.	This	feature	is	typically	utilized	when	a	user	is
changing	or	updating	their	password	and	you	would	like	to	invalidate	sessions	on	other	devices	while	keeping
the	current	device	authenticated.

Before	getting	started,	you	should	make	sure	that	the	Illuminate\Session\Middleware\AuthenticateSession
middleware	is	included	on	the	routes	that	should	receive	session	authentication.	Typically,	you	should	place	this
middleware	on	a	route	group	definition	so	that	it	can	be	applied	to	the	majority	of	your	application's	routes.	By
default,	the	AuthenticateSession	middleware	may	be	attached	to	a	route	using	the	auth.session	route
middleware	alias	as	defined	in	your	application's	HTTP	kernel:

Route::middleware(['auth',	'auth.session'])->group(function	()	{

				Route::get('/',	function	()	{

								//	...

				});

});

Then,	you	may	use	the	logoutOtherDevices	method	provided	by	the	Auth	facade.	This	method	requires	the	user
to	confirm	their	current	password,	which	your	application	should	accept	through	an	input	form:

use	Illuminate\Support\Facades\Auth;

Auth::logoutOtherDevices($currentPassword);

When	the	logoutOtherDevices	method	is	invoked,	the	user's	other	sessions	will	be	invalidated	entirely,	meaning
they	will	be	"logged	out"	of	all	guards	they	were	previously	authenticated	by.

Password	Confirmation

While	building	your	application,	you	may	occasionally	have	actions	that	should	require	the	user	to	confirm
their	password	before	the	action	is	performed	or	before	the	user	is	redirected	to	a	sensitive	area	of	the
application.	Laravel	includes	built-in	middleware	to	make	this	process	a	breeze.	Implementing	this	feature	will
require	you	to	define	two	routes:	one	route	to	display	a	view	asking	the	user	to	confirm	their	password	and
another	route	to	confirm	that	the	password	is	valid	and	redirect	the	user	to	their	intended	destination.

[!NOTE]
The	following	documentation	discusses	how	to	integrate	with	Laravel's	password	confirmation	features
directly;	however,	if	you	would	like	to	get	started	more	quickly,	the	Laravel	application	starter	kits	include
support	for	this	feature!

Configuration

After	confirming	their	password,	a	user	will	not	be	asked	to	confirm	their	password	again	for	three	hours.
However,	you	may	configure	the	length	of	time	before	the	user	is	re-prompted	for	their	password	by	changing
the	value	of	the	password_timeout	configuration	value	within	your	application's	config/auth.php	configuration
file.

Routing

The	Password	Confirmation	Form

First,	we	will	define	a	route	to	display	a	view	that	requests	the	user	to	confirm	their	password:

Route::get('/confirm-password',	function	()	{

				return	view('auth.confirm-password');

})->middleware('auth')->name('password.confirm');

As	you	might	expect,	the	view	that	is	returned	by	this	route	should	have	a	form	containing	a	password	field.	In
addition,	feel	free	to	include	text	within	the	view	that	explains	that	the	user	is	entering	a	protected	area	of	the
application	and	must	confirm	their	password.

Laravel	Documentation	-	10.x	/	Security 548

Confirming	the	Password

Next,	we	will	define	a	route	that	will	handle	the	form	request	from	the	"confirm	password"	view.	This	route
will	be	responsible	for	validating	the	password	and	redirecting	the	user	to	their	intended	destination:

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Support\Facades\Redirect;

Route::post('/confirm-password',	function	(Request	$request)	{

				if	(!	Hash::check($request->password,	$request->user()->password))	{

								return	back()->withErrors([

												'password'	=>	['The	provided	password	does	not	match	our	records.']

]);

				}

				$request->session()->passwordConfirmed();

				return	redirect()->intended();

})->middleware(['auth',	'throttle:6,1']);

Before	moving	on,	let's	examine	this	route	in	more	detail.	First,	the	request's	password	field	is	determined	to
actually	match	the	authenticated	user's	password.	If	the	password	is	valid,	we	need	to	inform	Laravel's	session
that	the	user	has	confirmed	their	password.	The	passwordConfirmed	method	will	set	a	timestamp	in	the	user's
session	that	Laravel	can	use	to	determine	when	the	user	last	confirmed	their	password.	Finally,	we	can	redirect
the	user	to	their	intended	destination.

Protecting	Routes

You	should	ensure	that	any	route	that	performs	an	action	which	requires	recent	password	confirmation	is
assigned	the	password.confirm	middleware.	This	middleware	is	included	with	the	default	installation	of	Laravel
and	will	automatically	store	the	user's	intended	destination	in	the	session	so	that	the	user	may	be	redirected	to
that	location	after	confirming	their	password.	After	storing	the	user's	intended	destination	in	the	session,	the
middleware	will	redirect	the	user	to	the	password.confirm	named	route:

Route::get('/settings',	function	()	{

				//	...

})->middleware(['password.confirm']);

Route::post('/settings',	function	()	{

				//	...

})->middleware(['password.confirm']);

Adding	Custom	Guards

You	may	define	your	own	authentication	guards	using	the	extend	method	on	the	Auth	facade.	You	should	place
your	call	to	the	extend	method	within	a	service	provider.	Since	Laravel	already	ships	with	an	
AuthServiceProvider,	we	can	place	the	code	in	that	provider:

<?php

namespace	App\Providers;

use	App\Services\Auth\JwtGuard;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Auth;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*/

				public	function	boot():	void

				{

								Auth::extend('jwt',	function	(Application	$app,	string	$name,	array	$config)	{

												//	Return	an	instance	of	Illuminate\Contracts\Auth\Guard...

												return	new	JwtGuard(Auth::createUserProvider($config['provider']));

								});

				}

Laravel	Documentation	-	10.x	/	Security 549

}

As	you	can	see	in	the	example	above,	the	callback	passed	to	the	extend	method	should	return	an
implementation	of	Illuminate\Contracts\Auth\Guard.	This	interface	contains	a	few	methods	you	will	need	to
implement	to	define	a	custom	guard.	Once	your	custom	guard	has	been	defined,	you	may	reference	the	guard	in
the	guards	configuration	of	your	auth.php	configuration	file:

'guards'	=>	[

				'api'	=>	[

								'driver'	=>	'jwt',

								'provider'	=>	'users',

],

],

Closure	Request	Guards

The	simplest	way	to	implement	a	custom,	HTTP	request	based	authentication	system	is	by	using	the	
Auth::viaRequest	method.	This	method	allows	you	to	quickly	define	your	authentication	process	using	a	single
closure.

To	get	started,	call	the	Auth::viaRequest	method	within	the	boot	method	of	your	AuthServiceProvider.	The	
viaRequest	method	accepts	an	authentication	driver	name	as	its	first	argument.	This	name	can	be	any	string	that
describes	your	custom	guard.	The	second	argument	passed	to	the	method	should	be	a	closure	that	receives	the
incoming	HTTP	request	and	returns	a	user	instance	or,	if	authentication	fails,	null:

use	App\Models\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Auth;

/**

	*	Register	any	application	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Auth::viaRequest('custom-token',	function	(Request	$request)	{

								return	User::where('token',	(string)	$request->token)->first();

				});

}

Once	your	custom	authentication	driver	has	been	defined,	you	may	configure	it	as	a	driver	within	the	guards
configuration	of	your	auth.php	configuration	file:

'guards'	=>	[

				'api'	=>	[

								'driver'	=>	'custom-token',

],

],

Finally,	you	may	reference	the	guard	when	assigning	the	authentication	middleware	to	a	route:

Route::middleware('auth:api')->group(function	()	{

				//	...

});

Adding	Custom	User	Providers

If	you	are	not	using	a	traditional	relational	database	to	store	your	users,	you	will	need	to	extend	Laravel	with
your	own	authentication	user	provider.	We	will	use	the	provider	method	on	the	Auth	facade	to	define	a	custom
user	provider.	The	user	provider	resolver	should	return	an	implementation	of	
Illuminate\Contracts\Auth\UserProvider:

<?php

namespace	App\Providers;

use	App\Extensions\MongoUserProvider;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Auth;

Laravel	Documentation	-	10.x	/	Security 550

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*/

				public	function	boot():	void

				{

								Auth::provider('mongo',	function	(Application	$app,	array	$config)	{

												//	Return	an	instance	of	Illuminate\Contracts\Auth\UserProvider...

												return	new	MongoUserProvider($app->make('mongo.connection'));

								});

				}

}

After	you	have	registered	the	provider	using	the	provider	method,	you	may	switch	to	the	new	user	provider	in
your	auth.php	configuration	file.	First,	define	a	provider	that	uses	your	new	driver:

'providers'	=>	[

				'users'	=>	[

								'driver'	=>	'mongo',

],

],

Finally,	you	may	reference	this	provider	in	your	guards	configuration:

'guards'	=>	[

				'web'	=>	[

								'driver'	=>	'session',

								'provider'	=>	'users',

],

],

The	User	Provider	Contract

Illuminate\Contracts\Auth\UserProvider	implementations	are	responsible	for	fetching	an	
Illuminate\Contracts\Auth\Authenticatable	implementation	out	of	a	persistent	storage	system,	such	as
MySQL,	MongoDB,	etc.	These	two	interfaces	allow	the	Laravel	authentication	mechanisms	to	continue
functioning	regardless	of	how	the	user	data	is	stored	or	what	type	of	class	is	used	to	represent	the	authenticated
user:

Let's	take	a	look	at	the	Illuminate\Contracts\Auth\UserProvider	contract:

<?php

namespace	Illuminate\Contracts\Auth;

interface	UserProvider

{

				public	function	retrieveById($identifier);

				public	function	retrieveByToken($identifier,	$token);

				public	function	updateRememberToken(Authenticatable	$user,	$token);

				public	function	retrieveByCredentials(array	$credentials);

				public	function	validateCredentials(Authenticatable	$user,	array	$credentials);

}

The	retrieveById	function	typically	receives	a	key	representing	the	user,	such	as	an	auto-incrementing	ID	from
a	MySQL	database.	The	Authenticatable	implementation	matching	the	ID	should	be	retrieved	and	returned	by
the	method.

The	retrieveByToken	function	retrieves	a	user	by	their	unique	$identifier	and	"remember	me"	$token,	typically
stored	in	a	database	column	like	remember_token.	As	with	the	previous	method,	the	Authenticatable
implementation	with	a	matching	token	value	should	be	returned	by	this	method.

The	updateRememberToken	method	updates	the	$user	instance's	remember_token	with	the	new	$token.	A	fresh
token	is	assigned	to	users	on	a	successful	"remember	me"	authentication	attempt	or	when	the	user	is	logging
out.

The	retrieveByCredentials	method	receives	the	array	of	credentials	passed	to	the	Auth::attempt	method	when
attempting	to	authenticate	with	an	application.	The	method	should	then	"query"	the	underlying	persistent
storage	for	the	user	matching	those	credentials.	Typically,	this	method	will	run	a	query	with	a	"where"

Laravel	Documentation	-	10.x	/	Security 551

condition	that	searches	for	a	user	record	with	a	"username"	matching	the	value	of	$credentials['username'].
The	method	should	return	an	implementation	of	Authenticatable.	This	method	should	not	attempt	to	do	any
password	validation	or	authentication.

The	validateCredentials	method	should	compare	the	given	$user	with	the	$credentials	to	authenticate	the	user.
For	example,	this	method	will	typically	use	the	Hash::check	method	to	compare	the	value	of	$user-
>getAuthPassword()	to	the	value	of	$credentials['password'].	This	method	should	return	true	or	false
indicating	whether	the	password	is	valid.

The	Authenticatable	Contract

Now	that	we	have	explored	each	of	the	methods	on	the	UserProvider,	let's	take	a	look	at	the	Authenticatable
contract.	Remember,	user	providers	should	return	implementations	of	this	interface	from	the	retrieveById,	
retrieveByToken,	and	retrieveByCredentials	methods:

<?php

namespace	Illuminate\Contracts\Auth;

interface	Authenticatable

{

				public	function	getAuthIdentifierName();

				public	function	getAuthIdentifier();

				public	function	getAuthPassword();

				public	function	getRememberToken();

				public	function	setRememberToken($value);

				public	function	getRememberTokenName();

}

This	interface	is	simple.	The	getAuthIdentifierName	method	should	return	the	name	of	the	"primary	key"	field
of	the	user	and	the	getAuthIdentifier	method	should	return	the	"primary	key"	of	the	user.	When	using	a
MySQL	back-end,	this	would	likely	be	the	auto-incrementing	primary	key	assigned	to	the	user	record.	The	
getAuthPassword	method	should	return	the	user's	hashed	password.

This	interface	allows	the	authentication	system	to	work	with	any	"user"	class,	regardless	of	what	ORM	or
storage	abstraction	layer	you	are	using.	By	default,	Laravel	includes	an	App\Models\User	class	in	the	app/Models
directory	which	implements	this	interface.

Events

Laravel	dispatches	a	variety	of	events	during	the	authentication	process.	You	may	attach	listeners	to	these
events	in	your	EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Auth\Events\Registered'	=>	[

								'App\Listeners\LogRegisteredUser',

],

				'Illuminate\Auth\Events\Attempting'	=>	[

								'App\Listeners\LogAuthenticationAttempt',

],

				'Illuminate\Auth\Events\Authenticated'	=>	[

								'App\Listeners\LogAuthenticated',

],

				'Illuminate\Auth\Events\Login'	=>	[

								'App\Listeners\LogSuccessfulLogin',

],

				'Illuminate\Auth\Events\Failed'	=>	[

								'App\Listeners\LogFailedLogin',

],

				'Illuminate\Auth\Events\Validated'	=>	[

Laravel	Documentation	-	10.x	/	Security 552

								'App\Listeners\LogValidated',

],

				'Illuminate\Auth\Events\Verified'	=>	[

								'App\Listeners\LogVerified',

],

				'Illuminate\Auth\Events\Logout'	=>	[

								'App\Listeners\LogSuccessfulLogout',

],

				'Illuminate\Auth\Events\CurrentDeviceLogout'	=>	[

								'App\Listeners\LogCurrentDeviceLogout',

],

				'Illuminate\Auth\Events\OtherDeviceLogout'	=>	[

								'App\Listeners\LogOtherDeviceLogout',

],

				'Illuminate\Auth\Events\Lockout'	=>	[

								'App\Listeners\LogLockout',

],

				'Illuminate\Auth\Events\PasswordReset'	=>	[

								'App\Listeners\LogPasswordReset',

],

];

Laravel	Documentation	-	10.x	/	Security 553

Security

Authorization
Introduction
Gates

Writing	Gates
Authorizing	Actions
Gate	Responses
Intercepting	Gate	Checks
Inline	Authorization

Creating	Policies
Generating	Policies
Registering	Policies

Writing	Policies
Policy	Methods
Policy	Responses
Methods	Without	Models
Guest	Users
Policy	Filters

Authorizing	Actions	Using	Policies
Via	the	User	Model
Via	Controller	Helpers
Via	Middleware
Via	Blade	Templates
Supplying	Additional	Context

Introduction

In	addition	to	providing	built-in	authentication	services,	Laravel	also	provides	a	simple	way	to	authorize	user
actions	against	a	given	resource.	For	example,	even	though	a	user	is	authenticated,	they	may	not	be	authorized
to	update	or	delete	certain	Eloquent	models	or	database	records	managed	by	your	application.	Laravel's
authorization	features	provide	an	easy,	organized	way	of	managing	these	types	of	authorization	checks.

Laravel	provides	two	primary	ways	of	authorizing	actions:	gates	and	policies.	Think	of	gates	and	policies	like
routes	and	controllers.	Gates	provide	a	simple,	closure-based	approach	to	authorization	while	policies,	like
controllers,	group	logic	around	a	particular	model	or	resource.	In	this	documentation,	we'll	explore	gates	first
and	then	examine	policies.

You	do	not	need	to	choose	between	exclusively	using	gates	or	exclusively	using	policies	when	building	an
application.	Most	applications	will	most	likely	contain	some	mixture	of	gates	and	policies,	and	that	is	perfectly
fine!	Gates	are	most	applicable	to	actions	that	are	not	related	to	any	model	or	resource,	such	as	viewing	an
administrator	dashboard.	In	contrast,	policies	should	be	used	when	you	wish	to	authorize	an	action	for	a
particular	model	or	resource.

Gates

Writing	Gates

[!WARNING]
Gates	are	a	great	way	to	learn	the	basics	of	Laravel's	authorization	features;	however,	when	building	robust
Laravel	applications	you	should	consider	using	policies	to	organize	your	authorization	rules.

Gates	are	simply	closures	that	determine	if	a	user	is	authorized	to	perform	a	given	action.	Typically,	gates	are
defined	within	the	boot	method	of	the	App\Providers\AuthServiceProvider	class	using	the	Gate	facade.	Gates
always	receive	a	user	instance	as	their	first	argument	and	may	optionally	receive	additional	arguments	such	as	a
relevant	Eloquent	model.

In	this	example,	we'll	define	a	gate	to	determine	if	a	user	can	update	a	given	App\Models\Post	model.	The	gate

Laravel	Documentation	-	10.x	/	Authorization 554

will	accomplish	this	by	comparing	the	user's	id	against	the	user_id	of	the	user	that	created	the	post:

use	App\Models\Post;

use	App\Models\User;

use	Illuminate\Support\Facades\Gate;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Gate::define('update-post',	function	(User	$user,	Post	$post)	{

								return	$user->id	===	$post->user_id;

				});

}

Like	controllers,	gates	may	also	be	defined	using	a	class	callback	array:

use	App\Policies\PostPolicy;

use	Illuminate\Support\Facades\Gate;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Gate::define('update-post',	[PostPolicy::class,	'update']);

}

Authorizing	Actions

To	authorize	an	action	using	gates,	you	should	use	the	allows	or	denies	methods	provided	by	the	Gate	facade.
Note	that	you	are	not	required	to	pass	the	currently	authenticated	user	to	these	methods.	Laravel	will
automatically	take	care	of	passing	the	user	into	the	gate	closure.	It	is	typical	to	call	the	gate	authorization
methods	within	your	application's	controllers	before	performing	an	action	that	requires	authorization:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\Post;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Gate;

class	PostController	extends	Controller

{

				/**

					*	Update	the	given	post.

					*/

				public	function	update(Request	$request,	Post	$post):	RedirectResponse

				{

								if	(!	Gate::allows('update-post',	$post))	{

												abort(403);

								}

								//	Update	the	post...

								return	redirect('/posts');

				}

}

If	you	would	like	to	determine	if	a	user	other	than	the	currently	authenticated	user	is	authorized	to	perform	an
action,	you	may	use	the	forUser	method	on	the	Gate	facade:

if	(Gate::forUser($user)->allows('update-post',	$post))	{

				//	The	user	can	update	the	post...

}

if	(Gate::forUser($user)->denies('update-post',	$post))	{

				//	The	user	can't	update	the	post...

}

You	may	authorize	multiple	actions	at	a	time	using	the	any	or	none	methods:

Laravel	Documentation	-	10.x	/	Authorization 555

if	(Gate::any(['update-post',	'delete-post'],	$post))	{

				//	The	user	can	update	or	delete	the	post...

}

if	(Gate::none(['update-post',	'delete-post'],	$post))	{

				//	The	user	can't	update	or	delete	the	post...

}

Authorizing	or	Throwing	Exceptions

If	you	would	like	to	attempt	to	authorize	an	action	and	automatically	throw	an	
Illuminate\Auth\Access\AuthorizationException	if	the	user	is	not	allowed	to	perform	the	given	action,	you	may
use	the	Gate	facade's	authorize	method.	Instances	of	AuthorizationException	are	automatically	converted	to	a
403	HTTP	response	by	Laravel's	exception	handler:

Gate::authorize('update-post',	$post);

//	The	action	is	authorized...

Supplying	Additional	Context

The	gate	methods	for	authorizing	abilities	(allows,	denies,	check,	any,	none,	authorize,	can,	cannot)	and	the
authorization	Blade	directives	(@can,	@cannot,	@canany)	can	receive	an	array	as	their	second	argument.	These
array	elements	are	passed	as	parameters	to	the	gate	closure,	and	can	be	used	for	additional	context	when
making	authorization	decisions:

use	App\Models\Category;

use	App\Models\User;

use	Illuminate\Support\Facades\Gate;

Gate::define('create-post',	function	(User	$user,	Category	$category,	bool	$pinned)	{

				if	(!	$user->canPublishToGroup($category->group))	{

								return	false;

				}	elseif	($pinned	&&	!	$user->canPinPosts())	{

								return	false;

				}

				return	true;

});

if	(Gate::check('create-post',	[$category,	$pinned]))	{

				//	The	user	can	create	the	post...

}

Gate	Responses

So	far,	we	have	only	examined	gates	that	return	simple	boolean	values.	However,	sometimes	you	may	wish	to
return	a	more	detailed	response,	including	an	error	message.	To	do	so,	you	may	return	an	
Illuminate\Auth\Access\Response	from	your	gate:

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

use	Illuminate\Support\Facades\Gate;

Gate::define('edit-settings',	function	(User	$user)	{

				return	$user->isAdmin

																?	Response::allow()

																:	Response::deny('You	must	be	an	administrator.');

});

Even	when	you	return	an	authorization	response	from	your	gate,	the	Gate::allows	method	will	still	return	a
simple	boolean	value;	however,	you	may	use	the	Gate::inspect	method	to	get	the	full	authorization	response
returned	by	the	gate:

$response	=	Gate::inspect('edit-settings');

if	($response->allowed())	{

				//	The	action	is	authorized...

}	else	{

				echo	$response->message();

}

Laravel	Documentation	-	10.x	/	Authorization 556

When	using	the	Gate::authorize	method,	which	throws	an	AuthorizationException	if	the	action	is	not
authorized,	the	error	message	provided	by	the	authorization	response	will	be	propagated	to	the	HTTP	response:

Gate::authorize('edit-settings');

//	The	action	is	authorized...

Customizing	The	HTTP	Response	Status

When	an	action	is	denied	via	a	Gate,	a	403	HTTP	response	is	returned;	however,	it	can	sometimes	be	useful	to
return	an	alternative	HTTP	status	code.	You	may	customize	the	HTTP	status	code	returned	for	a	failed
authorization	check	using	the	denyWithStatus	static	constructor	on	the	Illuminate\Auth\Access\Response	class:

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

use	Illuminate\Support\Facades\Gate;

Gate::define('edit-settings',	function	(User	$user)	{

				return	$user->isAdmin

																?	Response::allow()

																:	Response::denyWithStatus(404);

});

Because	hiding	resources	via	a	404	response	is	such	a	common	pattern	for	web	applications,	the	denyAsNotFound
method	is	offered	for	convenience:

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

use	Illuminate\Support\Facades\Gate;

Gate::define('edit-settings',	function	(User	$user)	{

				return	$user->isAdmin

																?	Response::allow()

																:	Response::denyAsNotFound();

});

Intercepting	Gate	Checks

Sometimes,	you	may	wish	to	grant	all	abilities	to	a	specific	user.	You	may	use	the	before	method	to	define	a
closure	that	is	run	before	all	other	authorization	checks:

use	App\Models\User;

use	Illuminate\Support\Facades\Gate;

Gate::before(function	(User	$user,	string	$ability)	{

				if	($user->isAdministrator())	{

								return	true;

				}

});

If	the	before	closure	returns	a	non-null	result	that	result	will	be	considered	the	result	of	the	authorization	check.

You	may	use	the	after	method	to	define	a	closure	to	be	executed	after	all	other	authorization	checks:

use	App\Models\User;

Gate::after(function	(User	$user,	string	$ability,	bool|null	$result,	mixed	$arguments)	{

				if	($user->isAdministrator())	{

								return	true;

				}

});

Similar	to	the	before	method,	if	the	after	closure	returns	a	non-null	result	that	result	will	be	considered	the
result	of	the	authorization	check.

Inline	Authorization

Occasionally,	you	may	wish	to	determine	if	the	currently	authenticated	user	is	authorized	to	perform	a	given
action	without	writing	a	dedicated	gate	that	corresponds	to	the	action.	Laravel	allows	you	to	perform	these
types	of	"inline"	authorization	checks	via	the	Gate::allowIf	and	Gate::denyIf	methods.	Inline	authorization

Laravel	Documentation	-	10.x	/	Authorization 557

does	not	execute	any	defined	"before"	or	"after"	authorization	hooks:

use	App\Models\User;

use	Illuminate\Support\Facades\Gate;

Gate::allowIf(fn	(User	$user)	=>	$user->isAdministrator());

Gate::denyIf(fn	(User	$user)	=>	$user->banned());

If	the	action	is	not	authorized	or	if	no	user	is	currently	authenticated,	Laravel	will	automatically	throw	an	
Illuminate\Auth\Access\AuthorizationException	exception.	Instances	of	AuthorizationException	are
automatically	converted	to	a	403	HTTP	response	by	Laravel's	exception	handler.

Creating	Policies

Generating	Policies

Policies	are	classes	that	organize	authorization	logic	around	a	particular	model	or	resource.	For	example,	if
your	application	is	a	blog,	you	may	have	an	App\Models\Post	model	and	a	corresponding	
App\Policies\PostPolicy	to	authorize	user	actions	such	as	creating	or	updating	posts.

You	may	generate	a	policy	using	the	make:policy	Artisan	command.	The	generated	policy	will	be	placed	in	the	
app/Policies	directory.	If	this	directory	does	not	exist	in	your	application,	Laravel	will	create	it	for	you:

php	artisan	make:policy	PostPolicy

The	make:policy	command	will	generate	an	empty	policy	class.	If	you	would	like	to	generate	a	class	with
example	policy	methods	related	to	viewing,	creating,	updating,	and	deleting	the	resource,	you	may	provide	a	--
model	option	when	executing	the	command:

php	artisan	make:policy	PostPolicy	--model=Post

Registering	Policies

Once	the	policy	class	has	been	created,	it	needs	to	be	registered.	Registering	policies	is	how	we	can	inform
Laravel	which	policy	to	use	when	authorizing	actions	against	a	given	model	type.

The	App\Providers\AuthServiceProvider	included	with	fresh	Laravel	applications	contains	a	policies	property
which	maps	your	Eloquent	models	to	their	corresponding	policies.	Registering	a	policy	will	instruct	Laravel
which	policy	to	utilize	when	authorizing	actions	against	a	given	Eloquent	model:

<?php

namespace	App\Providers;

use	App\Models\Post;

use	App\Policies\PostPolicy;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Gate;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	The	policy	mappings	for	the	application.

					*

					*	@var	array

					*/

				protected	$policies	=	[

								Post::class	=>	PostPolicy::class,

];

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*/

				public	function	boot():	void

				{

								//	...

				}

}

Laravel	Documentation	-	10.x	/	Authorization 558

Policy	Auto-Discovery

Instead	of	manually	registering	model	policies,	Laravel	can	automatically	discover	policies	as	long	as	the
model	and	policy	follow	standard	Laravel	naming	conventions.	Specifically,	the	policies	must	be	in	a	Policies
directory	at	or	above	the	directory	that	contains	your	models.	So,	for	example,	the	models	may	be	placed	in	the	
app/Models	directory	while	the	policies	may	be	placed	in	the	app/Policies	directory.	In	this	situation,	Laravel
will	check	for	policies	in	app/Models/Policies	then	app/Policies.	In	addition,	the	policy	name	must	match	the
model	name	and	have	a	Policy	suffix.	So,	a	User	model	would	correspond	to	a	UserPolicy	policy	class.

If	you	would	like	to	define	your	own	policy	discovery	logic,	you	may	register	a	custom	policy	discovery
callback	using	the	Gate::guessPolicyNamesUsing	method.	Typically,	this	method	should	be	called	from	the	boot
method	of	your	application's	AuthServiceProvider:

use	Illuminate\Support\Facades\Gate;

Gate::guessPolicyNamesUsing(function	(string	$modelClass)	{

				//	Return	the	name	of	the	policy	class	for	the	given	model...

});

[!WARNING]
Any	policies	that	are	explicitly	mapped	in	your	AuthServiceProvider	will	take	precedence	over	any
potentially	auto-discovered	policies.

Writing	Policies

Policy	Methods

Once	the	policy	class	has	been	registered,	you	may	add	methods	for	each	action	it	authorizes.	For	example,	let's
define	an	update	method	on	our	PostPolicy	which	determines	if	a	given	App\Models\User	can	update	a	given	
App\Models\Post	instance.

The	update	method	will	receive	a	User	and	a	Post	instance	as	its	arguments,	and	should	return	true	or	false
indicating	whether	the	user	is	authorized	to	update	the	given	Post.	So,	in	this	example,	we	will	verify	that	the
user's	id	matches	the	user_id	on	the	post:

<?php

namespace	App\Policies;

use	App\Models\Post;

use	App\Models\User;

class	PostPolicy

{

				/**

					*	Determine	if	the	given	post	can	be	updated	by	the	user.

					*/

				public	function	update(User	$user,	Post	$post):	bool

				{

								return	$user->id	===	$post->user_id;

				}

}

You	may	continue	to	define	additional	methods	on	the	policy	as	needed	for	the	various	actions	it	authorizes.	For
example,	you	might	define	view	or	delete	methods	to	authorize	various	Post	related	actions,	but	remember	you
are	free	to	give	your	policy	methods	any	name	you	like.

If	you	used	the	--model	option	when	generating	your	policy	via	the	Artisan	console,	it	will	already	contain
methods	for	the	viewAny,	view,	create,	update,	delete,	restore,	and	forceDelete	actions.

[!NOTE]
All	policies	are	resolved	via	the	Laravel	service	container,	allowing	you	to	type-hint	any	needed
dependencies	in	the	policy's	constructor	to	have	them	automatically	injected.

Policy	Responses

Laravel	Documentation	-	10.x	/	Authorization 559

So	far,	we	have	only	examined	policy	methods	that	return	simple	boolean	values.	However,	sometimes	you
may	wish	to	return	a	more	detailed	response,	including	an	error	message.	To	do	so,	you	may	return	an	
Illuminate\Auth\Access\Response	instance	from	your	policy	method:

use	App\Models\Post;

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*/

public	function	update(User	$user,	Post	$post):	Response

{

				return	$user->id	===	$post->user_id

																?	Response::allow()

																:	Response::deny('You	do	not	own	this	post.');

}

When	returning	an	authorization	response	from	your	policy,	the	Gate::allows	method	will	still	return	a	simple
boolean	value;	however,	you	may	use	the	Gate::inspect	method	to	get	the	full	authorization	response	returned
by	the	gate:

use	Illuminate\Support\Facades\Gate;

$response	=	Gate::inspect('update',	$post);

if	($response->allowed())	{

				//	The	action	is	authorized...

}	else	{

				echo	$response->message();

}

When	using	the	Gate::authorize	method,	which	throws	an	AuthorizationException	if	the	action	is	not
authorized,	the	error	message	provided	by	the	authorization	response	will	be	propagated	to	the	HTTP	response:

Gate::authorize('update',	$post);

//	The	action	is	authorized...

Customizing	the	HTTP	Response	Status

When	an	action	is	denied	via	a	policy	method,	a	403	HTTP	response	is	returned;	however,	it	can	sometimes	be
useful	to	return	an	alternative	HTTP	status	code.	You	may	customize	the	HTTP	status	code	returned	for	a	failed
authorization	check	using	the	denyWithStatus	static	constructor	on	the	Illuminate\Auth\Access\Response	class:

use	App\Models\Post;

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*/

public	function	update(User	$user,	Post	$post):	Response

{

				return	$user->id	===	$post->user_id

																?	Response::allow()

																:	Response::denyWithStatus(404);

}

Because	hiding	resources	via	a	404	response	is	such	a	common	pattern	for	web	applications,	the	denyAsNotFound
method	is	offered	for	convenience:

use	App\Models\Post;

use	App\Models\User;

use	Illuminate\Auth\Access\Response;

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*/

public	function	update(User	$user,	Post	$post):	Response

{

				return	$user->id	===	$post->user_id

																?	Response::allow()

																:	Response::denyAsNotFound();

Laravel	Documentation	-	10.x	/	Authorization 560

}

Methods	Without	Models

Some	policy	methods	only	receive	an	instance	of	the	currently	authenticated	user.	This	situation	is	most
common	when	authorizing	create	actions.	For	example,	if	you	are	creating	a	blog,	you	may	wish	to	determine
if	a	user	is	authorized	to	create	any	posts	at	all.	In	these	situations,	your	policy	method	should	only	expect	to
receive	a	user	instance:

/**

	*	Determine	if	the	given	user	can	create	posts.

	*/

public	function	create(User	$user):	bool

{

				return	$user->role	==	'writer';

}

Guest	Users

By	default,	all	gates	and	policies	automatically	return	false	if	the	incoming	HTTP	request	was	not	initiated	by
an	authenticated	user.	However,	you	may	allow	these	authorization	checks	to	pass	through	to	your	gates	and
policies	by	declaring	an	"optional"	type-hint	or	supplying	a	null	default	value	for	the	user	argument	definition:

<?php

namespace	App\Policies;

use	App\Models\Post;

use	App\Models\User;

class	PostPolicy

{

				/**

					*	Determine	if	the	given	post	can	be	updated	by	the	user.

					*/

				public	function	update(?User	$user,	Post	$post):	bool

				{

								return	$user?->id	===	$post->user_id;

				}

}

Policy	Filters

For	certain	users,	you	may	wish	to	authorize	all	actions	within	a	given	policy.	To	accomplish	this,	define	a	
before	method	on	the	policy.	The	before	method	will	be	executed	before	any	other	methods	on	the	policy,
giving	you	an	opportunity	to	authorize	the	action	before	the	intended	policy	method	is	actually	called.	This
feature	is	most	commonly	used	for	authorizing	application	administrators	to	perform	any	action:

use	App\Models\User;

/**

	*	Perform	pre-authorization	checks.

	*/

public	function	before(User	$user,	string	$ability):	bool|null

{

				if	($user->isAdministrator())	{

								return	true;

				}

				return	null;

}

If	you	would	like	to	deny	all	authorization	checks	for	a	particular	type	of	user	then	you	may	return	false	from
the	before	method.	If	null	is	returned,	the	authorization	check	will	fall	through	to	the	policy	method.

[!WARNING]
The	before	method	of	a	policy	class	will	not	be	called	if	the	class	doesn't	contain	a	method	with	a	name
matching	the	name	of	the	ability	being	checked.

Laravel	Documentation	-	10.x	/	Authorization 561

Authorizing	Actions	Using	Policies

Via	the	User	Model

The	App\Models\User	model	that	is	included	with	your	Laravel	application	includes	two	helpful	methods	for
authorizing	actions:	can	and	cannot.	The	can	and	cannot	methods	receive	the	name	of	the	action	you	wish	to
authorize	and	the	relevant	model.	For	example,	let's	determine	if	a	user	is	authorized	to	update	a	given	
App\Models\Post	model.	Typically,	this	will	be	done	within	a	controller	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\Post;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				/**

					*	Update	the	given	post.

					*/

				public	function	update(Request	$request,	Post	$post):	RedirectResponse

				{

								if	($request->user()->cannot('update',	$post))	{

												abort(403);

								}

								//	Update	the	post...

								return	redirect('/posts');

				}

}

If	a	policy	is	registered	for	the	given	model,	the	can	method	will	automatically	call	the	appropriate	policy	and
return	the	boolean	result.	If	no	policy	is	registered	for	the	model,	the	can	method	will	attempt	to	call	the
closure-based	Gate	matching	the	given	action	name.

Actions	That	Don't	Require	Models

Remember,	some	actions	may	correspond	to	policy	methods	like	create	that	do	not	require	a	model	instance.	In
these	situations,	you	may	pass	a	class	name	to	the	can	method.	The	class	name	will	be	used	to	determine	which
policy	to	use	when	authorizing	the	action:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\Post;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				/**

					*	Create	a	post.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								if	($request->user()->cannot('create',	Post::class))	{

												abort(403);

								}

								//	Create	the	post...

								return	redirect('/posts');

				}

}

Via	Controller	Helpers

Laravel	Documentation	-	10.x	/	Authorization 562

In	addition	to	helpful	methods	provided	to	the	App\Models\User	model,	Laravel	provides	a	helpful	authorize
method	to	any	of	your	controllers	which	extend	the	App\Http\Controllers\Controller	base	class.

Like	the	can	method,	this	method	accepts	the	name	of	the	action	you	wish	to	authorize	and	the	relevant	model.
If	the	action	is	not	authorized,	the	authorize	method	will	throw	an	
Illuminate\Auth\Access\AuthorizationException	exception	which	the	Laravel	exception	handler	will
automatically	convert	to	an	HTTP	response	with	a	403	status	code:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\Post;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				/**

					*	Update	the	given	blog	post.

					*

					*	@throws	\Illuminate\Auth\Access\AuthorizationException

					*/

				public	function	update(Request	$request,	Post	$post):	RedirectResponse

				{

								$this->authorize('update',	$post);

								//	The	current	user	can	update	the	blog	post...

								return	redirect('/posts');

				}

}

Actions	That	Don't	Require	Models

As	previously	discussed,	some	policy	methods	like	create	do	not	require	a	model	instance.	In	these	situations,
you	should	pass	a	class	name	to	the	authorize	method.	The	class	name	will	be	used	to	determine	which	policy
to	use	when	authorizing	the	action:

use	App\Models\Post;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

/**

	*	Create	a	new	blog	post.

	*

	*	@throws	\Illuminate\Auth\Access\AuthorizationException

	*/

public	function	create(Request	$request):	RedirectResponse

{

				$this->authorize('create',	Post::class);

				//	The	current	user	can	create	blog	posts...

				return	redirect('/posts');

}

Authorizing	Resource	Controllers

If	you	are	utilizing	resource	controllers,	you	may	make	use	of	the	authorizeResource	method	in	your	controller's
constructor.	This	method	will	attach	the	appropriate	can	middleware	definitions	to	the	resource	controller's
methods.

The	authorizeResource	method	accepts	the	model's	class	name	as	its	first	argument,	and	the	name	of	the	route	/
request	parameter	that	will	contain	the	model's	ID	as	its	second	argument.	You	should	ensure	your	resource
controller	is	created	using	the	--model	flag	so	that	it	has	the	required	method	signatures	and	type	hints:

<?php

namespace	App\Http\Controllers;

Laravel	Documentation	-	10.x	/	Authorization 563

use	App\Http\Controllers\Controller;

use	App\Models\Post;

class	PostController	extends	Controller

{

				/**

					*	Create	the	controller	instance.

					*/

				public	function	__construct()

				{

								$this->authorizeResource(Post::class,	'post');

				}

}

The	following	controller	methods	will	be	mapped	to	their	corresponding	policy	method.	When	requests	are
routed	to	the	given	controller	method,	the	corresponding	policy	method	will	automatically	be	invoked	before
the	controller	method	is	executed:

|	Controller	Method	|	Policy	Method	|	|	---	|	---	|	|	index	|	viewAny	|	|	show	|	view	|	|	create	|	create	|	|	store	|
create	|	|	edit	|	update	|	|	update	|	update	|	|	destroy	|	delete	|

[!NOTE]
You	may	use	the	make:policy	command	with	the	--model	option	to	quickly	generate	a	policy	class	for	a
given	model:	php	artisan	make:policy	PostPolicy	--model=Post.

Via	Middleware

Laravel	includes	a	middleware	that	can	authorize	actions	before	the	incoming	request	even	reaches	your	routes
or	controllers.	By	default,	the	Illuminate\Auth\Middleware\Authorize	middleware	is	assigned	the	can	key	in
your	App\Http\Kernel	class.	Let's	explore	an	example	of	using	the	can	middleware	to	authorize	that	a	user	can
update	a	post:

use	App\Models\Post;

Route::put('/post/{post}',	function	(Post	$post)	{

				//	The	current	user	may	update	the	post...

})->middleware('can:update,post');

In	this	example,	we're	passing	the	can	middleware	two	arguments.	The	first	is	the	name	of	the	action	we	wish	to
authorize	and	the	second	is	the	route	parameter	we	wish	to	pass	to	the	policy	method.	In	this	case,	since	we	are
using	implicit	model	binding,	an	App\Models\Post	model	will	be	passed	to	the	policy	method.	If	the	user	is	not
authorized	to	perform	the	given	action,	an	HTTP	response	with	a	403	status	code	will	be	returned	by	the
middleware.

For	convenience,	you	may	also	attach	the	can	middleware	to	your	route	using	the	can	method:

use	App\Models\Post;

Route::put('/post/{post}',	function	(Post	$post)	{

				//	The	current	user	may	update	the	post...

})->can('update',	'post');

Actions	That	Don't	Require	Models

Again,	some	policy	methods	like	create	do	not	require	a	model	instance.	In	these	situations,	you	may	pass	a
class	name	to	the	middleware.	The	class	name	will	be	used	to	determine	which	policy	to	use	when	authorizing
the	action:

Route::post('/post',	function	()	{

				//	The	current	user	may	create	posts...

})->middleware('can:create,App\Models\Post');

Specifying	the	entire	class	name	within	a	string	middleware	definition	can	become	cumbersome.	For	that
reason,	you	may	choose	to	attach	the	can	middleware	to	your	route	using	the	can	method:

use	App\Models\Post;

Route::post('/post',	function	()	{

				//	The	current	user	may	create	posts...

Laravel	Documentation	-	10.x	/	Authorization 564

})->can('create',	Post::class);

Via	Blade	Templates

When	writing	Blade	templates,	you	may	wish	to	display	a	portion	of	the	page	only	if	the	user	is	authorized	to
perform	a	given	action.	For	example,	you	may	wish	to	show	an	update	form	for	a	blog	post	only	if	the	user	can
actually	update	the	post.	In	this	situation,	you	may	use	the	@can	and	@cannot	directives:

@can('update',	$post)

				<!--	The	current	user	can	update	the	post...	-->

@elsecan('create',	App\Models\Post::class)

				<!--	The	current	user	can	create	new	posts...	-->

@else

				<!--	...	-->

@endcan

@cannot('update',	$post)

				<!--	The	current	user	cannot	update	the	post...	-->

@elsecannot('create',	App\Models\Post::class)

				<!--	The	current	user	cannot	create	new	posts...	-->

@endcannot

These	directives	are	convenient	shortcuts	for	writing	@if	and	@unless	statements.	The	@can	and	@cannot
statements	above	are	equivalent	to	the	following	statements:

@if	(Auth::user()->can('update',	$post))

				<!--	The	current	user	can	update	the	post...	-->

@endif

@unless	(Auth::user()->can('update',	$post))

				<!--	The	current	user	cannot	update	the	post...	-->

@endunless

You	may	also	determine	if	a	user	is	authorized	to	perform	any	action	from	a	given	array	of	actions.	To
accomplish	this,	use	the	@canany	directive:

@canany(['update',	'view',	'delete'],	$post)

				<!--	The	current	user	can	update,	view,	or	delete	the	post...	-->

@elsecanany(['create'],	\App\Models\Post::class)

				<!--	The	current	user	can	create	a	post...	-->

@endcanany

Actions	That	Don't	Require	Models

Like	most	of	the	other	authorization	methods,	you	may	pass	a	class	name	to	the	@can	and	@cannot	directives	if
the	action	does	not	require	a	model	instance:

@can('create',	App\Models\Post::class)

				<!--	The	current	user	can	create	posts...	-->

@endcan

@cannot('create',	App\Models\Post::class)

				<!--	The	current	user	can't	create	posts...	-->

@endcannot

Supplying	Additional	Context

When	authorizing	actions	using	policies,	you	may	pass	an	array	as	the	second	argument	to	the	various
authorization	functions	and	helpers.	The	first	element	in	the	array	will	be	used	to	determine	which	policy
should	be	invoked,	while	the	rest	of	the	array	elements	are	passed	as	parameters	to	the	policy	method	and	can
be	used	for	additional	context	when	making	authorization	decisions.	For	example,	consider	the	following	
PostPolicy	method	definition	which	contains	an	additional	$category	parameter:

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*/

public	function	update(User	$user,	Post	$post,	int	$category):	bool

{

				return	$user->id	===	$post->user_id	&&

											$user->canUpdateCategory($category);

}

Laravel	Documentation	-	10.x	/	Authorization 565

When	attempting	to	determine	if	the	authenticated	user	can	update	a	given	post,	we	can	invoke	this	policy
method	like	so:

/**

	*	Update	the	given	blog	post.

	*

	*	@throws	\Illuminate\Auth\Access\AuthorizationException

	*/

public	function	update(Request	$request,	Post	$post):	RedirectResponse

{

				$this->authorize('update',	[$post,	$request->category]);

				//	The	current	user	can	update	the	blog	post...

				return	redirect('/posts');

}

Laravel	Documentation	-	10.x	/	Authorization 566

Security

Email	Verification
Introduction

Model	Preparation
Database	Preparation

Routing
The	Email	Verification	Notice
The	Email	Verification	Handler
Resending	the	Verification	Email
Protecting	Routes

Customization
Events

Introduction

Many	web	applications	require	users	to	verify	their	email	addresses	before	using	the	application.	Rather	than
forcing	you	to	re-implement	this	feature	by	hand	for	each	application	you	create,	Laravel	provides	convenient
built-in	services	for	sending	and	verifying	email	verification	requests.

[!NOTE]
Want	to	get	started	fast?	Install	one	of	the	Laravel	application	starter	kits	in	a	fresh	Laravel	application.
The	starter	kits	will	take	care	of	scaffolding	your	entire	authentication	system,	including	email	verification
support.

Model	Preparation

Before	getting	started,	verify	that	your	App\Models\User	model	implements	the	
Illuminate\Contracts\Auth\MustVerifyEmail	contract:

<?php

namespace	App\Models;

use	Illuminate\Contracts\Auth\MustVerifyEmail;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable	implements	MustVerifyEmail

{

				use	Notifiable;

				//	...

}

Once	this	interface	has	been	added	to	your	model,	newly	registered	users	will	automatically	be	sent	an	email
containing	an	email	verification	link.	As	you	can	see	by	examining	your	application's	
App\Providers\EventServiceProvider,	Laravel	already	contains	a	SendEmailVerificationNotification	listener
that	is	attached	to	the	Illuminate\Auth\Events\Registered	event.	This	event	listener	will	send	the	email
verification	link	to	the	user.

If	you	are	manually	implementing	registration	within	your	application	instead	of	using	a	starter	kit,	you	should
ensure	that	you	are	dispatching	the	Illuminate\Auth\Events\Registered	event	after	a	user's	registration	is
successful:

use	Illuminate\Auth\Events\Registered;

event(new	Registered($user));

Database	Preparation

Next,	your	users	table	must	contain	an	email_verified_at	column	to	store	the	date	and	time	that	the	user's	email

Laravel	Documentation	-	10.x	/	Email	Verification 567

address	was	verified.	By	default,	the	users	table	migration	included	with	the	Laravel	framework	already
includes	this	column.	So,	all	you	need	to	do	is	run	your	database	migrations:

php	artisan	migrate

Routing

To	properly	implement	email	verification,	three	routes	will	need	to	be	defined.	First,	a	route	will	be	needed	to
display	a	notice	to	the	user	that	they	should	click	the	email	verification	link	in	the	verification	email	that
Laravel	sent	them	after	registration.

Second,	a	route	will	be	needed	to	handle	requests	generated	when	the	user	clicks	the	email	verification	link	in
the	email.

Third,	a	route	will	be	needed	to	resend	a	verification	link	if	the	user	accidentally	loses	the	first	verification	link.

The	Email	Verification	Notice

As	mentioned	previously,	a	route	should	be	defined	that	will	return	a	view	instructing	the	user	to	click	the	email
verification	link	that	was	emailed	to	them	by	Laravel	after	registration.	This	view	will	be	displayed	to	users
when	they	try	to	access	other	parts	of	the	application	without	verifying	their	email	address	first.	Remember,	the
link	is	automatically	emailed	to	the	user	as	long	as	your	App\Models\User	model	implements	the	MustVerifyEmail
interface:

Route::get('/email/verify',	function	()	{

				return	view('auth.verify-email');

})->middleware('auth')->name('verification.notice');

The	route	that	returns	the	email	verification	notice	should	be	named	verification.notice.	It	is	important	that
the	route	is	assigned	this	exact	name	since	the	verified	middleware	included	with	Laravel	will	automatically
redirect	to	this	route	name	if	a	user	has	not	verified	their	email	address.

[!NOTE]
When	manually	implementing	email	verification,	you	are	required	to	define	the	contents	of	the	verification
notice	view	yourself.	If	you	would	like	scaffolding	that	includes	all	necessary	authentication	and
verification	views,	check	out	the	Laravel	application	starter	kits.

The	Email	Verification	Handler

Next,	we	need	to	define	a	route	that	will	handle	requests	generated	when	the	user	clicks	the	email	verification
link	that	was	emailed	to	them.	This	route	should	be	named	verification.verify	and	be	assigned	the	auth	and	
signed	middlewares:

use	Illuminate\Foundation\Auth\EmailVerificationRequest;

Route::get('/email/verify/{id}/{hash}',	function	(EmailVerificationRequest	$request)	{

				$request->fulfill();

				return	redirect('/home');

})->middleware(['auth',	'signed'])->name('verification.verify');

Before	moving	on,	let's	take	a	closer	look	at	this	route.	First,	you'll	notice	we	are	using	an	
EmailVerificationRequest	request	type	instead	of	the	typical	Illuminate\Http\Request	instance.	The	
EmailVerificationRequest	is	a	form	request	that	is	included	with	Laravel.	This	request	will	automatically	take
care	of	validating	the	request's	id	and	hash	parameters.

Next,	we	can	proceed	directly	to	calling	the	fulfill	method	on	the	request.	This	method	will	call	the	
markEmailAsVerified	method	on	the	authenticated	user	and	dispatch	the	Illuminate\Auth\Events\Verified	event.
The	markEmailAsVerified	method	is	available	to	the	default	App\Models\User	model	via	the	
Illuminate\Foundation\Auth\User	base	class.	Once	the	user's	email	address	has	been	verified,	you	may	redirect
them	wherever	you	wish.

Resending	the	Verification	Email

Laravel	Documentation	-	10.x	/	Email	Verification 568

Sometimes	a	user	may	misplace	or	accidentally	delete	the	email	address	verification	email.	To	accommodate
this,	you	may	wish	to	define	a	route	to	allow	the	user	to	request	that	the	verification	email	be	resent.	You	may
then	make	a	request	to	this	route	by	placing	a	simple	form	submission	button	within	your	verification	notice
view:

use	Illuminate\Http\Request;

Route::post('/email/verification-notification',	function	(Request	$request)	{

				$request->user()->sendEmailVerificationNotification();

				return	back()->with('message',	'Verification	link	sent!');

})->middleware(['auth',	'throttle:6,1'])->name('verification.send');

Protecting	Routes

Route	middleware	may	be	used	to	only	allow	verified	users	to	access	a	given	route.	Laravel	ships	with	a	
verified	middleware	alias,	which	is	an	alias	for	the	Illuminate\Auth\Middleware\EnsureEmailIsVerified	class.
Since	this	middleware	is	already	registered	in	your	application's	HTTP	kernel,	all	you	need	to	do	is	attach	the
middleware	to	a	route	definition.	Typically,	this	middleware	is	paired	with	the	auth	middleware:

Route::get('/profile',	function	()	{

				//	Only	verified	users	may	access	this	route...

})->middleware(['auth',	'verified']);

If	an	unverified	user	attempts	to	access	a	route	that	has	been	assigned	this	middleware,	they	will	automatically
be	redirected	to	the	verification.notice	named	route.

Customization

Verification	Email	Customization

Although	the	default	email	verification	notification	should	satisfy	the	requirements	of	most	applications,
Laravel	allows	you	to	customize	how	the	email	verification	mail	message	is	constructed.

To	get	started,	pass	a	closure	to	the	toMailUsing	method	provided	by	the	
Illuminate\Auth\Notifications\VerifyEmail	notification.	The	closure	will	receive	the	notifiable	model	instance
that	is	receiving	the	notification	as	well	as	the	signed	email	verification	URL	that	the	user	must	visit	to	verify
their	email	address.	The	closure	should	return	an	instance	of	Illuminate\Notifications\Messages\MailMessage.
Typically,	you	should	call	the	toMailUsing	method	from	the	boot	method	of	your	application's	
App\Providers\AuthServiceProvider	class:

use	Illuminate\Auth\Notifications\VerifyEmail;

use	Illuminate\Notifications\Messages\MailMessage;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				//	...

				VerifyEmail::toMailUsing(function	(object	$notifiable,	string	$url)	{

								return	(new	MailMessage)

												->subject('Verify	Email	Address')

												->line('Click	the	button	below	to	verify	your	email	address.')

												->action('Verify	Email	Address',	$url);

				});

}

[!NOTE]
To	learn	more	about	mail	notifications,	please	consult	the	mail	notification	documentation.

Events

When	using	the	Laravel	application	starter	kits,	Laravel	dispatches	events	during	the	email	verification	process.
If	you	are	manually	handling	email	verification	for	your	application,	you	may	wish	to	manually	dispatch	these

Laravel	Documentation	-	10.x	/	Email	Verification 569

events	after	verification	is	completed.	You	may	attach	listeners	to	these	events	in	your	application's	
EventServiceProvider:

use	App\Listeners\LogVerifiedUser;

use	Illuminate\Auth\Events\Verified;

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				Verified::class	=>	[

								LogVerifiedUser::class,

],

];

Laravel	Documentation	-	10.x	/	Email	Verification 570

Security

Encryption
Introduction
Configuration
Using	the	Encrypter

Introduction

Laravel's	encryption	services	provide	a	simple,	convenient	interface	for	encrypting	and	decrypting	text	via
OpenSSL	using	AES-256	and	AES-128	encryption.	All	of	Laravel's	encrypted	values	are	signed	using	a
message	authentication	code	(MAC)	so	that	their	underlying	value	can	not	be	modified	or	tampered	with	once
encrypted.

Configuration

Before	using	Laravel's	encrypter,	you	must	set	the	key	configuration	option	in	your	config/app.php
configuration	file.	This	configuration	value	is	driven	by	the	APP_KEY	environment	variable.	You	should	use	the	
php	artisan	key:generate	command	to	generate	this	variable's	value	since	the	key:generate	command	will	use
PHP's	secure	random	bytes	generator	to	build	a	cryptographically	secure	key	for	your	application.	Typically,
the	value	of	the	APP_KEY	environment	variable	will	be	generated	for	you	during	Laravel's	installation.

Using	the	Encrypter

Encrypting	a	Value

You	may	encrypt	a	value	using	the	encryptString	method	provided	by	the	Crypt	facade.	All	encrypted	values
are	encrypted	using	OpenSSL	and	the	AES-256-CBC	cipher.	Furthermore,	all	encrypted	values	are	signed	with
a	message	authentication	code	(MAC).	The	integrated	message	authentication	code	will	prevent	the	decryption
of	any	values	that	have	been	tampered	with	by	malicious	users:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Crypt;

class	DigitalOceanTokenController	extends	Controller

{

				/**

					*	Store	a	DigitalOcean	API	token	for	the	user.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								$request->user()->fill([

												'token'	=>	Crypt::encryptString($request->token),

])->save();

								return	redirect('/secrets');

				}

}

Decrypting	a	Value

You	may	decrypt	values	using	the	decryptString	method	provided	by	the	Crypt	facade.	If	the	value	can	not	be
properly	decrypted,	such	as	when	the	message	authentication	code	is	invalid,	an	
Illuminate\Contracts\Encryption\DecryptException	will	be	thrown:

use	Illuminate\Contracts\Encryption\DecryptException;

use	Illuminate\Support\Facades\Crypt;

Laravel	Documentation	-	10.x	/	Encryption 571

try	{

				$decrypted	=	Crypt::decryptString($encryptedValue);

}	catch	(DecryptException	$e)	{

				//	...

}

Laravel	Documentation	-	10.x	/	Encryption 572

Security

Hashing
Introduction
Configuration
Basic	Usage

Hashing	Passwords
Verifying	That	a	Password	Matches	a	Hash
Determining	if	a	Password	Needs	to	be	Rehashed

Introduction

The	Laravel	Hash	facade	provides	secure	Bcrypt	and	Argon2	hashing	for	storing	user	passwords.	If	you	are
using	one	of	the	Laravel	application	starter	kits,	Bcrypt	will	be	used	for	registration	and	authentication	by
default.

Bcrypt	is	a	great	choice	for	hashing	passwords	because	its	"work	factor"	is	adjustable,	which	means	that	the
time	it	takes	to	generate	a	hash	can	be	increased	as	hardware	power	increases.	When	hashing	passwords,	slow
is	good.	The	longer	an	algorithm	takes	to	hash	a	password,	the	longer	it	takes	malicious	users	to	generate
"rainbow	tables"	of	all	possible	string	hash	values	that	may	be	used	in	brute	force	attacks	against	applications.

Configuration

The	default	hashing	driver	for	your	application	is	configured	in	your	application's	config/hashing.php
configuration	file.	There	are	currently	several	supported	drivers:	Bcrypt	and	Argon2	(Argon2i	and	Argon2id
variants).

Basic	Usage

Hashing	Passwords

You	may	hash	a	password	by	calling	the	make	method	on	the	Hash	facade:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

class	PasswordController	extends	Controller

{

				/**

					*	Update	the	password	for	the	user.

					*/

				public	function	update(Request	$request):	RedirectResponse

				{

								//	Validate	the	new	password	length...

								$request->user()->fill([

												'password'	=>	Hash::make($request->newPassword)

])->save();

								return	redirect('/profile');

				}

}

Adjusting	The	Bcrypt	Work	Factor

If	you	are	using	the	Bcrypt	algorithm,	the	make	method	allows	you	to	manage	the	work	factor	of	the	algorithm
using	the	rounds	option;	however,	the	default	work	factor	managed	by	Laravel	is	acceptable	for	most

Laravel	Documentation	-	10.x	/	Hashing 573

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Argon2

applications:

$hashed	=	Hash::make('password',	[

				'rounds'	=>	12,

]);

Adjusting	The	Argon2	Work	Factor

If	you	are	using	the	Argon2	algorithm,	the	make	method	allows	you	to	manage	the	work	factor	of	the	algorithm
using	the	memory,	time,	and	threads	options;	however,	the	default	values	managed	by	Laravel	are	acceptable	for
most	applications:

$hashed	=	Hash::make('password',	[

				'memory'	=>	1024,

				'time'	=>	2,

				'threads'	=>	2,

]);

[!NOTE]
For	more	information	on	these	options,	please	refer	to	the	official	PHP	documentation	regarding	Argon
hashing.

Verifying	That	a	Password	Matches	a	Hash

The	check	method	provided	by	the	Hash	facade	allows	you	to	verify	that	a	given	plain-text	string	corresponds	to
a	given	hash:

if	(Hash::check('plain-text',	$hashedPassword))	{

				//	The	passwords	match...

}

Determining	if	a	Password	Needs	to	be	Rehashed

The	needsRehash	method	provided	by	the	Hash	facade	allows	you	to	determine	if	the	work	factor	used	by	the
hasher	has	changed	since	the	password	was	hashed.	Some	applications	choose	to	perform	this	check	during	the
application's	authentication	process:

if	(Hash::needsRehash($hashed))	{

				$hashed	=	Hash::make('plain-text');

}

Laravel	Documentation	-	10.x	/	Hashing 574

https://secure.php.net/manual/en/function.password-hash.php

Security

Resetting	Passwords
Introduction

Model	Preparation
Database	Preparation
Configuring	Trusted	Hosts

Routing
Requesting	the	Password	Reset	Link
Resetting	the	Password

Deleting	Expired	Tokens
Customization

Introduction

Most	web	applications	provide	a	way	for	users	to	reset	their	forgotten	passwords.	Rather	than	forcing	you	to	re-
implement	this	by	hand	for	every	application	you	create,	Laravel	provides	convenient	services	for	sending
password	reset	links	and	secure	resetting	passwords.

[!NOTE]
Want	to	get	started	fast?	Install	a	Laravel	application	starter	kit	in	a	fresh	Laravel	application.	Laravel's
starter	kits	will	take	care	of	scaffolding	your	entire	authentication	system,	including	resetting	forgotten
passwords.

Model	Preparation

Before	using	the	password	reset	features	of	Laravel,	your	application's	App\Models\User	model	must	use	the	
Illuminate\Notifications\Notifiable	trait.	Typically,	this	trait	is	already	included	on	the	default	
App\Models\User	model	that	is	created	with	new	Laravel	applications.

Next,	verify	that	your	App\Models\User	model	implements	the	Illuminate\Contracts\Auth\CanResetPassword
contract.	The	App\Models\User	model	included	with	the	framework	already	implements	this	interface,	and	uses
the	Illuminate\Auth\Passwords\CanResetPassword	trait	to	include	the	methods	needed	to	implement	the	interface.

Database	Preparation

A	table	must	be	created	to	store	your	application's	password	reset	tokens.	The	migration	for	this	table	is
included	in	the	default	Laravel	application,	so	you	only	need	to	migrate	your	database	to	create	this	table:

php	artisan	migrate

Configuring	Trusted	Hosts

By	default,	Laravel	will	respond	to	all	requests	it	receives	regardless	of	the	content	of	the	HTTP	request's	Host
header.	In	addition,	the	Host	header's	value	will	be	used	when	generating	absolute	URLs	to	your	application
during	a	web	request.

Typically,	you	should	configure	your	web	server,	such	as	Nginx	or	Apache,	to	only	send	requests	to	your
application	that	match	a	given	host	name.	However,	if	you	do	not	have	the	ability	to	customize	your	web	server
directly	and	need	to	instruct	Laravel	to	only	respond	to	certain	host	names,	you	may	do	so	by	enabling	the	
App\Http\Middleware\TrustHosts	middleware	for	your	application.	This	is	particularly	important	when	your
application	offers	password	reset	functionality.

To	learn	more	about	this	middleware,	please	consult	the	TrustHosts	middleware	documentation.

Routing

Laravel	Documentation	-	10.x	/	Password	Reset 575

To	properly	implement	support	for	allowing	users	to	reset	their	passwords,	we	will	need	to	define	several
routes.	First,	we	will	need	a	pair	of	routes	to	handle	allowing	the	user	to	request	a	password	reset	link	via	their
email	address.	Second,	we	will	need	a	pair	of	routes	to	handle	actually	resetting	the	password	once	the	user
visits	the	password	reset	link	that	is	emailed	to	them	and	completes	the	password	reset	form.

Requesting	the	Password	Reset	Link

The	Password	Reset	Link	Request	Form

First,	we	will	define	the	routes	that	are	needed	to	request	password	reset	links.	To	get	started,	we	will	define	a
route	that	returns	a	view	with	the	password	reset	link	request	form:

Route::get('/forgot-password',	function	()	{

				return	view('auth.forgot-password');

})->middleware('guest')->name('password.request');

The	view	that	is	returned	by	this	route	should	have	a	form	containing	an	email	field,	which	will	allow	the	user
to	request	a	password	reset	link	for	a	given	email	address.

Handling	the	Form	Submission

Next,	we	will	define	a	route	that	handles	the	form	submission	request	from	the	"forgot	password"	view.	This
route	will	be	responsible	for	validating	the	email	address	and	sending	the	password	reset	request	to	the
corresponding	user:

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Password;

Route::post('/forgot-password',	function	(Request	$request)	{

				$request->validate(['email'	=>	'required|email']);

				$status	=	Password::sendResetLink(

								$request->only('email')

);

				return	$status	===	Password::RESET_LINK_SENT

																?	back()->with(['status'	=>	__($status)])

																:	back()->withErrors(['email'	=>	__($status)]);

})->middleware('guest')->name('password.email');

Before	moving	on,	let's	examine	this	route	in	more	detail.	First,	the	request's	email	attribute	is	validated.	Next,
we	will	use	Laravel's	built-in	"password	broker"	(via	the	Password	facade)	to	send	a	password	reset	link	to	the
user.	The	password	broker	will	take	care	of	retrieving	the	user	by	the	given	field	(in	this	case,	the	email
address)	and	sending	the	user	a	password	reset	link	via	Laravel's	built-in	notification	system.

The	sendResetLink	method	returns	a	"status"	slug.	This	status	may	be	translated	using	Laravel's	localization
helpers	in	order	to	display	a	user-friendly	message	to	the	user	regarding	the	status	of	their	request.	The
translation	of	the	password	reset	status	is	determined	by	your	application's	lang/{lang}/passwords.php	language
file.	An	entry	for	each	possible	value	of	the	status	slug	is	located	within	the	passwords	language	file.

[!NOTE]
By	default,	the	Laravel	application	skeleton	does	not	include	the	lang	directory.	If	you	would	like	to
customize	Laravel's	language	files,	you	may	publish	them	via	the	lang:publish	Artisan	command.

You	may	be	wondering	how	Laravel	knows	how	to	retrieve	the	user	record	from	your	application's	database
when	calling	the	Password	facade's	sendResetLink	method.	The	Laravel	password	broker	utilizes	your
authentication	system's	"user	providers"	to	retrieve	database	records.	The	user	provider	used	by	the	password
broker	is	configured	within	the	passwords	configuration	array	of	your	config/auth.php	configuration	file.	To
learn	more	about	writing	custom	user	providers,	consult	the	authentication	documentation.

[!NOTE]
When	manually	implementing	password	resets,	you	are	required	to	define	the	contents	of	the	views	and
routes	yourself.	If	you	would	like	scaffolding	that	includes	all	necessary	authentication	and	verification
logic,	check	out	the	Laravel	application	starter	kits.

Laravel	Documentation	-	10.x	/	Password	Reset 576

Resetting	the	Password

The	Password	Reset	Form

Next,	we	will	define	the	routes	necessary	to	actually	reset	the	password	once	the	user	clicks	on	the	password
reset	link	that	has	been	emailed	to	them	and	provides	a	new	password.	First,	let's	define	the	route	that	will
display	the	reset	password	form	that	is	displayed	when	the	user	clicks	the	reset	password	link.	This	route	will
receive	a	token	parameter	that	we	will	use	later	to	verify	the	password	reset	request:

Route::get('/reset-password/{token}',	function	(string	$token)	{

				return	view('auth.reset-password',	['token'	=>	$token]);

})->middleware('guest')->name('password.reset');

The	view	that	is	returned	by	this	route	should	display	a	form	containing	an	email	field,	a	password	field,	a	
password_confirmation	field,	and	a	hidden	token	field,	which	should	contain	the	value	of	the	secret	$token
received	by	our	route.

Handling	the	Form	Submission

Of	course,	we	need	to	define	a	route	to	actually	handle	the	password	reset	form	submission.	This	route	will	be
responsible	for	validating	the	incoming	request	and	updating	the	user's	password	in	the	database:

use	App\Models\User;

use	Illuminate\Auth\Events\PasswordReset;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Support\Facades\Password;

use	Illuminate\Support\Str;

Route::post('/reset-password',	function	(Request	$request)	{

				$request->validate([

								'token'	=>	'required',

								'email'	=>	'required|email',

								'password'	=>	'required|min:8|confirmed',

]);

				$status	=	Password::reset(

								$request->only('email',	'password',	'password_confirmation',	'token'),

								function	(User	$user,	string	$password)	{

												$user->forceFill([

																'password'	=>	Hash::make($password)

])->setRememberToken(Str::random(60));

												$user->save();

												event(new	PasswordReset($user));

								}

);

				return	$status	===	Password::PASSWORD_RESET

																?	redirect()->route('login')->with('status',	__($status))

																:	back()->withErrors(['email'	=>	[__($status)]]);

})->middleware('guest')->name('password.update');

Before	moving	on,	let's	examine	this	route	in	more	detail.	First,	the	request's	token,	email,	and	password
attributes	are	validated.	Next,	we	will	use	Laravel's	built-in	"password	broker"	(via	the	Password	facade)	to
validate	the	password	reset	request	credentials.

If	the	token,	email	address,	and	password	given	to	the	password	broker	are	valid,	the	closure	passed	to	the	reset
method	will	be	invoked.	Within	this	closure,	which	receives	the	user	instance	and	the	plain-text	password
provided	to	the	password	reset	form,	we	may	update	the	user's	password	in	the	database.

The	reset	method	returns	a	"status"	slug.	This	status	may	be	translated	using	Laravel's	localization	helpers	in
order	to	display	a	user-friendly	message	to	the	user	regarding	the	status	of	their	request.	The	translation	of	the
password	reset	status	is	determined	by	your	application's	lang/{lang}/passwords.php	language	file.	An	entry	for
each	possible	value	of	the	status	slug	is	located	within	the	passwords	language	file.	If	your	application	does	not
contain	a	lang	directory,	you	may	create	it	using	the	lang:publish	Artisan	command.

Before	moving	on,	you	may	be	wondering	how	Laravel	knows	how	to	retrieve	the	user	record	from	your

Laravel	Documentation	-	10.x	/	Password	Reset 577

application's	database	when	calling	the	Password	facade's	reset	method.	The	Laravel	password	broker	utilizes
your	authentication	system's	"user	providers"	to	retrieve	database	records.	The	user	provider	used	by	the
password	broker	is	configured	within	the	passwords	configuration	array	of	your	config/auth.php	configuration
file.	To	learn	more	about	writing	custom	user	providers,	consult	the	authentication	documentation.

Deleting	Expired	Tokens

Password	reset	tokens	that	have	expired	will	still	be	present	within	your	database.	However,	you	may	easily
delete	these	records	using	the	auth:clear-resets	Artisan	command:

php	artisan	auth:clear-resets

If	you	would	like	to	automate	this	process,	consider	adding	the	command	to	your	application's	scheduler:

$schedule->command('auth:clear-resets')->everyFifteenMinutes();

Customization

Reset	Link	Customization

You	may	customize	the	password	reset	link	URL	using	the	createUrlUsing	method	provided	by	the	
ResetPassword	notification	class.	This	method	accepts	a	closure	which	receives	the	user	instance	that	is
receiving	the	notification	as	well	as	the	password	reset	link	token.	Typically,	you	should	call	this	method	from
your	App\Providers\AuthServiceProvider	service	provider's	boot	method:

use	App\Models\User;

use	Illuminate\Auth\Notifications\ResetPassword;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				ResetPassword::createUrlUsing(function	(User	$user,	string	$token)	{

								return	'https://example.com/reset-password?token='.$token;

				});

}

Reset	Email	Customization

You	may	easily	modify	the	notification	class	used	to	send	the	password	reset	link	to	the	user.	To	get	started,
override	the	sendPasswordResetNotification	method	on	your	App\Models\User	model.	Within	this	method,	you
may	send	the	notification	using	any	notification	class	of	your	own	creation.	The	password	reset	$token	is	the
first	argument	received	by	the	method.	You	may	use	this	$token	to	build	the	password	reset	URL	of	your	choice
and	send	your	notification	to	the	user:

use	App\Notifications\ResetPasswordNotification;

/**

	*	Send	a	password	reset	notification	to	the	user.

	*

	*	@param		string		$token

	*/

public	function	sendPasswordResetNotification($token):	void

{

				$url	=	'https://example.com/reset-password?token='.$token;

				$this->notify(new	ResetPasswordNotification($url));

}

Laravel	Documentation	-	10.x	/	Password	Reset 578

Database

Database:	Getting	Started
Introduction

Configuration
Read	and	Write	Connections

Running	SQL	Queries
Using	Multiple	Database	Connections
Listening	for	Query	Events
Monitoring	Cumulative	Query	Time

Database	Transactions
Connecting	to	the	Database	CLI
Inspecting	Your	Databases
Monitoring	Your	Databases

Introduction

Almost	every	modern	web	application	interacts	with	a	database.	Laravel	makes	interacting	with	databases
extremely	simple	across	a	variety	of	supported	databases	using	raw	SQL,	a	fluent	query	builder,	and	the
Eloquent	ORM.	Currently,	Laravel	provides	first-party	support	for	five	databases:

MariaDB	10.10+	(Version	Policy)
MySQL	5.7+	(Version	Policy)
PostgreSQL	11.0+	(Version	Policy)
SQLite	3.8.8+
SQL	Server	2017+	(Version	Policy)

Configuration

The	configuration	for	Laravel's	database	services	is	located	in	your	application's	config/database.php
configuration	file.	In	this	file,	you	may	define	all	of	your	database	connections,	as	well	as	specify	which
connection	should	be	used	by	default.	Most	of	the	configuration	options	within	this	file	are	driven	by	the	values
of	your	application's	environment	variables.	Examples	for	most	of	Laravel's	supported	database	systems	are
provided	in	this	file.

By	default,	Laravel's	sample	environment	configuration	is	ready	to	use	with	Laravel	Sail,	which	is	a	Docker
configuration	for	developing	Laravel	applications	on	your	local	machine.	However,	you	are	free	to	modify	your
database	configuration	as	needed	for	your	local	database.

SQLite	Configuration

SQLite	databases	are	contained	within	a	single	file	on	your	filesystem.	You	can	create	a	new	SQLite	database
using	the	touch	command	in	your	terminal:	touch	database/database.sqlite.	After	the	database	has	been
created,	you	may	easily	configure	your	environment	variables	to	point	to	this	database	by	placing	the	absolute
path	to	the	database	in	the	DB_DATABASE	environment	variable:

DB_CONNECTION=sqlite

DB_DATABASE=/absolute/path/to/database.sqlite

To	enable	foreign	key	constraints	for	SQLite	connections,	you	should	set	the	DB_FOREIGN_KEYS	environment
variable	to	true:

DB_FOREIGN_KEYS=true

Microsoft	SQL	Server	Configuration

To	use	a	Microsoft	SQL	Server	database,	you	should	ensure	that	you	have	the	sqlsrv	and	pdo_sqlsrv	PHP
extensions	installed	as	well	as	any	dependencies	they	may	require	such	as	the	Microsoft	SQL	ODBC	driver.

Laravel	Documentation	-	10.x	/	Database 579

https://mariadb.org/about/#maintenance-policy
https://en.wikipedia.org/wiki/MySQL#Release_history
https://www.postgresql.org/support/versioning/
https://docs.microsoft.com/en-us/lifecycle/products/?products=sql-server

Configuration	Using	URLs

Typically,	database	connections	are	configured	using	multiple	configuration	values	such	as	host,	database,	
username,	password,	etc.	Each	of	these	configuration	values	has	its	own	corresponding	environment	variable.
This	means	that	when	configuring	your	database	connection	information	on	a	production	server,	you	need	to
manage	several	environment	variables.

Some	managed	database	providers	such	as	AWS	and	Heroku	provide	a	single	database	"URL"	that	contains	all
of	the	connection	information	for	the	database	in	a	single	string.	An	example	database	URL	may	look
something	like	the	following:

mysql://root:password@127.0.0.1/forge?charset=UTF-8

These	URLs	typically	follow	a	standard	schema	convention:

driver://username:password@host:port/database?options

For	convenience,	Laravel	supports	these	URLs	as	an	alternative	to	configuring	your	database	with	multiple
configuration	options.	If	the	url	(or	corresponding	DATABASE_URL	environment	variable)	configuration	option	is
present,	it	will	be	used	to	extract	the	database	connection	and	credential	information.

Read	and	Write	Connections

Sometimes	you	may	wish	to	use	one	database	connection	for	SELECT	statements,	and	another	for	INSERT,
UPDATE,	and	DELETE	statements.	Laravel	makes	this	a	breeze,	and	the	proper	connections	will	always	be
used	whether	you	are	using	raw	queries,	the	query	builder,	or	the	Eloquent	ORM.

To	see	how	read	/	write	connections	should	be	configured,	let's	look	at	this	example:

'mysql'	=>	[

				'read'	=>	[

								'host'	=>	[

												'192.168.1.1',

												'196.168.1.2',

],

],

				'write'	=>	[

								'host'	=>	[

												'196.168.1.3',

],

],

				'sticky'	=>	true,

				'driver'	=>	'mysql',

				'database'	=>	'database',

				'username'	=>	'root',

				'password'	=>	'',

				'charset'	=>	'utf8mb4',

				'collation'	=>	'utf8mb4_unicode_ci',

				'prefix'	=>	'',

],

Note	that	three	keys	have	been	added	to	the	configuration	array:	read,	write	and	sticky.	The	read	and	write
keys	have	array	values	containing	a	single	key:	host.	The	rest	of	the	database	options	for	the	read	and	write
connections	will	be	merged	from	the	main	mysql	configuration	array.

You	only	need	to	place	items	in	the	read	and	write	arrays	if	you	wish	to	override	the	values	from	the	main	mysql
array.	So,	in	this	case,	192.168.1.1	will	be	used	as	the	host	for	the	"read"	connection,	while	192.168.1.3	will	be
used	for	the	"write"	connection.	The	database	credentials,	prefix,	character	set,	and	all	other	options	in	the	main
mysql	array	will	be	shared	across	both	connections.	When	multiple	values	exist	in	the	host	configuration	array,	a
database	host	will	be	randomly	chosen	for	each	request.

The	sticky	Option

The	sticky	option	is	an	optional	value	that	can	be	used	to	allow	the	immediate	reading	of	records	that	have
been	written	to	the	database	during	the	current	request	cycle.	If	the	sticky	option	is	enabled	and	a	"write"
operation	has	been	performed	against	the	database	during	the	current	request	cycle,	any	further	"read"
operations	will	use	the	"write"	connection.	This	ensures	that	any	data	written	during	the	request	cycle	can	be

Laravel	Documentation	-	10.x	/	Database 580

immediately	read	back	from	the	database	during	that	same	request.	It	is	up	to	you	to	decide	if	this	is	the	desired
behavior	for	your	application.

Running	SQL	Queries

Once	you	have	configured	your	database	connection,	you	may	run	queries	using	the	DB	facade.	The	DB	facade
provides	methods	for	each	type	of	query:	select,	update,	insert,	delete,	and	statement.

Running	a	Select	Query

To	run	a	basic	SELECT	query,	you	may	use	the	select	method	on	the	DB	facade:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\DB;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	of	the	application's	users.

					*/

				public	function	index():	View

				{

								$users	=	DB::select('select	*	from	users	where	active	=	?',	[1]);

								return	view('user.index',	['users'	=>	$users]);

				}

}

The	first	argument	passed	to	the	select	method	is	the	SQL	query,	while	the	second	argument	is	any	parameter
bindings	that	need	to	be	bound	to	the	query.	Typically,	these	are	the	values	of	the	where	clause	constraints.
Parameter	binding	provides	protection	against	SQL	injection.

The	select	method	will	always	return	an	array	of	results.	Each	result	within	the	array	will	be	a	PHP	stdClass
object	representing	a	record	from	the	database:

use	Illuminate\Support\Facades\DB;

$users	=	DB::select('select	*	from	users');

foreach	($users	as	$user)	{

				echo	$user->name;

}

Selecting	Scalar	Values

Sometimes	your	database	query	may	result	in	a	single,	scalar	value.	Instead	of	being	required	to	retrieve	the
query's	scalar	result	from	a	record	object,	Laravel	allows	you	to	retrieve	this	value	directly	using	the	scalar
method:

$burgers	=	DB::scalar(

				"select	count(case	when	food	=	'burger'	then	1	end)	as	burgers	from	menu"

);

Selecting	Multiple	Result	Sets

If	your	application	calls	stored	procedures	that	return	multiple	result	sets,	you	may	use	the	selectResultSets
method	to	retrieve	all	of	the	result	sets	returned	by	the	stored	procedure:

[$options,	$notifications]	=	DB::selectResultSets(

				"CALL	get_user_options_and_notifications(?)",	$request->user()->id

);

Using	Named	Bindings

Laravel	Documentation	-	10.x	/	Database 581

Instead	of	using	?	to	represent	your	parameter	bindings,	you	may	execute	a	query	using	named	bindings:

$results	=	DB::select('select	*	from	users	where	id	=	:id',	['id'	=>	1]);

Running	an	Insert	Statement

To	execute	an	insert	statement,	you	may	use	the	insert	method	on	the	DB	facade.	Like	select,	this	method
accepts	the	SQL	query	as	its	first	argument	and	bindings	as	its	second	argument:

use	Illuminate\Support\Facades\DB;

DB::insert('insert	into	users	(id,	name)	values	(?,	?)',	[1,	'Marc']);

Running	an	Update	Statement

The	update	method	should	be	used	to	update	existing	records	in	the	database.	The	number	of	rows	affected	by
the	statement	is	returned	by	the	method:

use	Illuminate\Support\Facades\DB;

$affected	=	DB::update(

				'update	users	set	votes	=	100	where	name	=	?',

				['Anita']

);

Running	a	Delete	Statement

The	delete	method	should	be	used	to	delete	records	from	the	database.	Like	update,	the	number	of	rows
affected	will	be	returned	by	the	method:

use	Illuminate\Support\Facades\DB;

$deleted	=	DB::delete('delete	from	users');

Running	a	General	Statement

Some	database	statements	do	not	return	any	value.	For	these	types	of	operations,	you	may	use	the	statement
method	on	the	DB	facade:

DB::statement('drop	table	users');

Running	an	Unprepared	Statement

Sometimes	you	may	want	to	execute	an	SQL	statement	without	binding	any	values.	You	may	use	the	DB
facade's	unprepared	method	to	accomplish	this:

DB::unprepared('update	users	set	votes	=	100	where	name	=	"Dries"');

[!WARNING]
Since	unprepared	statements	do	not	bind	parameters,	they	may	be	vulnerable	to	SQL	injection.	You	should
never	allow	user	controlled	values	within	an	unprepared	statement.

Implicit	Commits

When	using	the	DB	facade's	statement	and	unprepared	methods	within	transactions	you	must	be	careful	to	avoid
statements	that	cause	implicit	commits.	These	statements	will	cause	the	database	engine	to	indirectly	commit
the	entire	transaction,	leaving	Laravel	unaware	of	the	database's	transaction	level.	An	example	of	such	a
statement	is	creating	a	database	table:

DB::unprepared('create	table	a	(col	varchar(1)	null)');

Please	refer	to	the	MySQL	manual	for	a	list	of	all	statements	that	trigger	implicit	commits.

Using	Multiple	Database	Connections

Laravel	Documentation	-	10.x	/	Database 582

https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html

If	your	application	defines	multiple	connections	in	your	config/database.php	configuration	file,	you	may	access
each	connection	via	the	connection	method	provided	by	the	DB	facade.	The	connection	name	passed	to	the	
connection	method	should	correspond	to	one	of	the	connections	listed	in	your	config/database.php
configuration	file	or	configured	at	runtime	using	the	config	helper:

use	Illuminate\Support\Facades\DB;

$users	=	DB::connection('sqlite')->select(/*	...	*/);

You	may	access	the	raw,	underlying	PDO	instance	of	a	connection	using	the	getPdo	method	on	a	connection
instance:

$pdo	=	DB::connection()->getPdo();

Listening	for	Query	Events

If	you	would	like	to	specify	a	closure	that	is	invoked	for	each	SQL	query	executed	by	your	application,	you
may	use	the	DB	facade's	listen	method.	This	method	can	be	useful	for	logging	queries	or	debugging.	You	may
register	your	query	listener	closure	in	the	boot	method	of	a	service	provider:

<?php

namespace	App\Providers;

use	Illuminate\Database\Events\QueryExecuted;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								DB::listen(function	(QueryExecuted	$query)	{

												//	$query->sql;

												//	$query->bindings;

												//	$query->time;

								});

				}

}

Monitoring	Cumulative	Query	Time

A	common	performance	bottleneck	of	modern	web	applications	is	the	amount	of	time	they	spend	querying
databases.	Thankfully,	Laravel	can	invoke	a	closure	or	callback	of	your	choice	when	it	spends	too	much	time
querying	the	database	during	a	single	request.	To	get	started,	provide	a	query	time	threshold	(in	milliseconds)
and	closure	to	the	whenQueryingForLongerThan	method.	You	may	invoke	this	method	in	the	boot	method	of	a
service	provider:

<?php

namespace	App\Providers;

use	Illuminate\Database\Connection;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Database\Events\QueryExecuted;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

Laravel	Documentation	-	10.x	/	Database 583

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								DB::whenQueryingForLongerThan(500,	function	(Connection	$connection,	QueryExecuted	$event)	{

												//	Notify	development	team...

								});

				}

}

Database	Transactions

You	may	use	the	transaction	method	provided	by	the	DB	facade	to	run	a	set	of	operations	within	a	database
transaction.	If	an	exception	is	thrown	within	the	transaction	closure,	the	transaction	will	automatically	be	rolled
back	and	the	exception	is	re-thrown.	If	the	closure	executes	successfully,	the	transaction	will	automatically	be
committed.	You	don't	need	to	worry	about	manually	rolling	back	or	committing	while	using	the	transaction
method:

use	Illuminate\Support\Facades\DB;

DB::transaction(function	()	{

				DB::update('update	users	set	votes	=	1');

				DB::delete('delete	from	posts');

});

Handling	Deadlocks

The	transaction	method	accepts	an	optional	second	argument	which	defines	the	number	of	times	a	transaction
should	be	retried	when	a	deadlock	occurs.	Once	these	attempts	have	been	exhausted,	an	exception	will	be
thrown:

use	Illuminate\Support\Facades\DB;

DB::transaction(function	()	{

				DB::update('update	users	set	votes	=	1');

				DB::delete('delete	from	posts');

},	5);

Manually	Using	Transactions

If	you	would	like	to	begin	a	transaction	manually	and	have	complete	control	over	rollbacks	and	commits,	you
may	use	the	beginTransaction	method	provided	by	the	DB	facade:

use	Illuminate\Support\Facades\DB;

DB::beginTransaction();

You	can	rollback	the	transaction	via	the	rollBack	method:

DB::rollBack();

Lastly,	you	can	commit	a	transaction	via	the	commit	method:

DB::commit();

[!NOTE]
The	DB	facade's	transaction	methods	control	the	transactions	for	both	the	query	builder	and	Eloquent	ORM.

Connecting	to	the	Database	CLI

Laravel	Documentation	-	10.x	/	Database 584

If	you	would	like	to	connect	to	your	database's	CLI,	you	may	use	the	db	Artisan	command:

php	artisan	db

If	needed,	you	may	specify	a	database	connection	name	to	connect	to	a	database	connection	that	is	not	the
default	connection:

php	artisan	db	mysql

Inspecting	Your	Databases

Using	the	db:show	and	db:table	Artisan	commands,	you	can	get	valuable	insight	into	your	database	and	its
associated	tables.	To	see	an	overview	of	your	database,	including	its	size,	type,	number	of	open	connections,
and	a	summary	of	its	tables,	you	may	use	the	db:show	command:

php	artisan	db:show

You	may	specify	which	database	connection	should	be	inspected	by	providing	the	database	connection	name	to
the	command	via	the	--database	option:

php	artisan	db:show	--database=pgsql

If	you	would	like	to	include	table	row	counts	and	database	view	details	within	the	output	of	the	command,	you
may	provide	the	--counts	and	--views	options,	respectively.	On	large	databases,	retrieving	row	counts	and	view
details	can	be	slow:

php	artisan	db:show	--counts	--views

Table	Overview

If	you	would	like	to	get	an	overview	of	an	individual	table	within	your	database,	you	may	execute	the	db:table
Artisan	command.	This	command	provides	a	general	overview	of	a	database	table,	including	its	columns,	types,
attributes,	keys,	and	indexes:

php	artisan	db:table	users

Monitoring	Your	Databases

Using	the	db:monitor	Artisan	command,	you	can	instruct	Laravel	to	dispatch	an	
Illuminate\Database\Events\DatabaseBusy	event	if	your	database	is	managing	more	than	a	specified	number	of
open	connections.

To	get	started,	you	should	schedule	the	db:monitor	command	to	run	every	minute.	The	command	accepts	the
names	of	the	database	connection	configurations	that	you	wish	to	monitor	as	well	as	the	maximum	number	of
open	connections	that	should	be	tolerated	before	dispatching	an	event:

php	artisan	db:monitor	--databases=mysql,pgsql	--max=100

Scheduling	this	command	alone	is	not	enough	to	trigger	a	notification	alerting	you	of	the	number	of	open
connections.	When	the	command	encounters	a	database	that	has	an	open	connection	count	that	exceeds	your
threshold,	a	DatabaseBusy	event	will	be	dispatched.	You	should	listen	for	this	event	within	your	application's	
EventServiceProvider	in	order	to	send	a	notification	to	you	or	your	development	team:

use	App\Notifications\DatabaseApproachingMaxConnections;

use	Illuminate\Database\Events\DatabaseBusy;

use	Illuminate\Support\Facades\Event;

use	Illuminate\Support\Facades\Notification;

/**

	*	Register	any	other	events	for	your	application.

	*/

public	function	boot():	void

{

				Event::listen(function	(DatabaseBusy	$event)	{

								Notification::route('mail',	'dev@example.com')

																->notify(new	DatabaseApproachingMaxConnections(

Laravel	Documentation	-	10.x	/	Database 585

																				$event->connectionName,

																				$event->connections

));

				});

}

Laravel	Documentation	-	10.x	/	Database 586

Database

Database:	Query	Builder
Introduction
Running	Database	Queries

Chunking	Results
Streaming	Results	Lazily
Aggregates

Select	Statements
Raw	Expressions
Joins
Unions
Basic	Where	Clauses

Where	Clauses
Or	Where	Clauses
Where	Not	Clauses
Where	Any	/	All	Clauses
JSON	Where	Clauses
Additional	Where	Clauses
Logical	Grouping

Advanced	Where	Clauses
Where	Exists	Clauses
Subquery	Where	Clauses
Full	Text	Where	Clauses

Ordering,	Grouping,	Limit	and	Offset
Ordering
Grouping
Limit	and	Offset

Conditional	Clauses
Insert	Statements

Upserts
Update	Statements

Updating	JSON	Columns
Increment	and	Decrement

Delete	Statements
Pessimistic	Locking
Debugging

Introduction

Laravel's	database	query	builder	provides	a	convenient,	fluent	interface	to	creating	and	running	database
queries.	It	can	be	used	to	perform	most	database	operations	in	your	application	and	works	perfectly	with	all	of
Laravel's	supported	database	systems.

The	Laravel	query	builder	uses	PDO	parameter	binding	to	protect	your	application	against	SQL	injection
attacks.	There	is	no	need	to	clean	or	sanitize	strings	passed	to	the	query	builder	as	query	bindings.

[!WARNING]
PDO	does	not	support	binding	column	names.	Therefore,	you	should	never	allow	user	input	to	dictate	the
column	names	referenced	by	your	queries,	including	"order	by"	columns.

Running	Database	Queries

Retrieving	All	Rows	From	a	Table

You	may	use	the	table	method	provided	by	the	DB	facade	to	begin	a	query.	The	table	method	returns	a	fluent
query	builder	instance	for	the	given	table,	allowing	you	to	chain	more	constraints	onto	the	query	and	then

Laravel	Documentation	-	10.x	/	Query	Builder 587

finally	retrieve	the	results	of	the	query	using	the	get	method:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\Facades\DB;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	of	the	application's	users.

					*/

				public	function	index():	View

				{

								$users	=	DB::table('users')->get();

								return	view('user.index',	['users'	=>	$users]);

				}

}

The	get	method	returns	an	Illuminate\Support\Collection	instance	containing	the	results	of	the	query	where
each	result	is	an	instance	of	the	PHP	stdClass	object.	You	may	access	each	column's	value	by	accessing	the
column	as	a	property	of	the	object:

use	Illuminate\Support\Facades\DB;

$users	=	DB::table('users')->get();

foreach	($users	as	$user)	{

				echo	$user->name;

}

[!NOTE]
Laravel	collections	provide	a	variety	of	extremely	powerful	methods	for	mapping	and	reducing	data.	For
more	information	on	Laravel	collections,	check	out	the	collection	documentation.

Retrieving	a	Single	Row	/	Column	From	a	Table

If	you	just	need	to	retrieve	a	single	row	from	a	database	table,	you	may	use	the	DB	facade's	first	method.	This
method	will	return	a	single	stdClass	object:

$user	=	DB::table('users')->where('name',	'John')->first();

return	$user->email;

If	you	don't	need	an	entire	row,	you	may	extract	a	single	value	from	a	record	using	the	value	method.	This
method	will	return	the	value	of	the	column	directly:

$email	=	DB::table('users')->where('name',	'John')->value('email');

To	retrieve	a	single	row	by	its	id	column	value,	use	the	find	method:

$user	=	DB::table('users')->find(3);

Retrieving	a	List	of	Column	Values

If	you	would	like	to	retrieve	an	Illuminate\Support\Collection	instance	containing	the	values	of	a	single
column,	you	may	use	the	pluck	method.	In	this	example,	we'll	retrieve	a	collection	of	user	titles:

use	Illuminate\Support\Facades\DB;

$titles	=	DB::table('users')->pluck('title');

foreach	($titles	as	$title)	{

				echo	$title;

}

You	may	specify	the	column	that	the	resulting	collection	should	use	as	its	keys	by	providing	a	second	argument
to	the	pluck	method:

Laravel	Documentation	-	10.x	/	Query	Builder 588

$titles	=	DB::table('users')->pluck('title',	'name');

foreach	($titles	as	$name	=>	$title)	{

				echo	$title;

}

Chunking	Results

If	you	need	to	work	with	thousands	of	database	records,	consider	using	the	chunk	method	provided	by	the	DB
facade.	This	method	retrieves	a	small	chunk	of	results	at	a	time	and	feeds	each	chunk	into	a	closure	for
processing.	For	example,	let's	retrieve	the	entire	users	table	in	chunks	of	100	records	at	a	time:

use	Illuminate\Support\Collection;

use	Illuminate\Support\Facades\DB;

DB::table('users')->orderBy('id')->chunk(100,	function	(Collection	$users)	{

				foreach	($users	as	$user)	{

								//	...

				}

});

You	may	stop	further	chunks	from	being	processed	by	returning	false	from	the	closure:

DB::table('users')->orderBy('id')->chunk(100,	function	(Collection	$users)	{

				//	Process	the	records...

				return	false;

});

If	you	are	updating	database	records	while	chunking	results,	your	chunk	results	could	change	in	unexpected
ways.	If	you	plan	to	update	the	retrieved	records	while	chunking,	it	is	always	best	to	use	the	chunkById	method
instead.	This	method	will	automatically	paginate	the	results	based	on	the	record's	primary	key:

DB::table('users')->where('active',	false)

				->chunkById(100,	function	(Collection	$users)	{

								foreach	($users	as	$user)	{

												DB::table('users')

																->where('id',	$user->id)

																->update(['active'	=>	true]);

								}

				});

[!WARNING]
When	updating	or	deleting	records	inside	the	chunk	callback,	any	changes	to	the	primary	key	or	foreign
keys	could	affect	the	chunk	query.	This	could	potentially	result	in	records	not	being	included	in	the
chunked	results.

Streaming	Results	Lazily

The	lazy	method	works	similarly	to	the	chunk	method	in	the	sense	that	it	executes	the	query	in	chunks.
However,	instead	of	passing	each	chunk	into	a	callback,	the	lazy()	method	returns	a	LazyCollection,	which	lets
you	interact	with	the	results	as	a	single	stream:

use	Illuminate\Support\Facades\DB;

DB::table('users')->orderBy('id')->lazy()->each(function	(object	$user)	{

				//	...

});

Once	again,	if	you	plan	to	update	the	retrieved	records	while	iterating	over	them,	it	is	best	to	use	the	lazyById	or
lazyByIdDesc	methods	instead.	These	methods	will	automatically	paginate	the	results	based	on	the	record's
primary	key:

DB::table('users')->where('active',	false)

				->lazyById()->each(function	(object	$user)	{

								DB::table('users')

												->where('id',	$user->id)

												->update(['active'	=>	true]);

				});

Laravel	Documentation	-	10.x	/	Query	Builder 589

[!WARNING]
When	updating	or	deleting	records	while	iterating	over	them,	any	changes	to	the	primary	key	or	foreign
keys	could	affect	the	chunk	query.	This	could	potentially	result	in	records	not	being	included	in	the	results.

Aggregates

The	query	builder	also	provides	a	variety	of	methods	for	retrieving	aggregate	values	like	count,	max,	min,	avg,
and	sum.	You	may	call	any	of	these	methods	after	constructing	your	query:

use	Illuminate\Support\Facades\DB;

$users	=	DB::table('users')->count();

$price	=	DB::table('orders')->max('price');

Of	course,	you	may	combine	these	methods	with	other	clauses	to	fine-tune	how	your	aggregate	value	is
calculated:

$price	=	DB::table('orders')

																->where('finalized',	1)

																->avg('price');

Determining	if	Records	Exist

Instead	of	using	the	count	method	to	determine	if	any	records	exist	that	match	your	query's	constraints,	you
may	use	the	exists	and	doesntExist	methods:

if	(DB::table('orders')->where('finalized',	1)->exists())	{

				//	...

}

if	(DB::table('orders')->where('finalized',	1)->doesntExist())	{

				//	...

}

Select	Statements

Specifying	a	Select	Clause

You	may	not	always	want	to	select	all	columns	from	a	database	table.	Using	the	select	method,	you	can	specify
a	custom	"select"	clause	for	the	query:

use	Illuminate\Support\Facades\DB;

$users	=	DB::table('users')

												->select('name',	'email	as	user_email')

												->get();

The	distinct	method	allows	you	to	force	the	query	to	return	distinct	results:

$users	=	DB::table('users')->distinct()->get();

If	you	already	have	a	query	builder	instance	and	you	wish	to	add	a	column	to	its	existing	select	clause,	you	may
use	the	addSelect	method:

$query	=	DB::table('users')->select('name');

$users	=	$query->addSelect('age')->get();

Raw	Expressions

Sometimes	you	may	need	to	insert	an	arbitrary	string	into	a	query.	To	create	a	raw	string	expression,	you	may
use	the	raw	method	provided	by	the	DB	facade:

$users	=	DB::table('users')

													->select(DB::raw('count(*)	as	user_count,	status'))

													->where('status',	'<>',	1)

Laravel	Documentation	-	10.x	/	Query	Builder 590

													->groupBy('status')

													->get();

[!WARNING]
Raw	statements	will	be	injected	into	the	query	as	strings,	so	you	should	be	extremely	careful	to	avoid
creating	SQL	injection	vulnerabilities.

Raw	Methods

Instead	of	using	the	DB::raw	method,	you	may	also	use	the	following	methods	to	insert	a	raw	expression	into
various	parts	of	your	query.	Remember,	Laravel	can	not	guarantee	that	any	query	using	raw	expressions	is
protected	against	SQL	injection	vulnerabilities.

selectRaw

The	selectRaw	method	can	be	used	in	place	of	addSelect(DB::raw(/*	...	*/)).	This	method	accepts	an	optional
array	of	bindings	as	its	second	argument:

$orders	=	DB::table('orders')

																->selectRaw('price	*	?	as	price_with_tax',	[1.0825])

																->get();

whereRaw	/	orWhereRaw

The	whereRaw	and	orWhereRaw	methods	can	be	used	to	inject	a	raw	"where"	clause	into	your	query.	These
methods	accept	an	optional	array	of	bindings	as	their	second	argument:

$orders	=	DB::table('orders')

																->whereRaw('price	>	IF(state	=	"TX",	?,	100)',	[200])

																->get();

havingRaw	/	orHavingRaw

The	havingRaw	and	orHavingRaw	methods	may	be	used	to	provide	a	raw	string	as	the	value	of	the	"having"
clause.	These	methods	accept	an	optional	array	of	bindings	as	their	second	argument:

$orders	=	DB::table('orders')

																->select('department',	DB::raw('SUM(price)	as	total_sales'))

																->groupBy('department')

																->havingRaw('SUM(price)	>	?',	[2500])

																->get();

orderByRaw

The	orderByRaw	method	may	be	used	to	provide	a	raw	string	as	the	value	of	the	"order	by"	clause:

$orders	=	DB::table('orders')

																->orderByRaw('updated_at	-	created_at	DESC')

																->get();

groupByRaw

The	groupByRaw	method	may	be	used	to	provide	a	raw	string	as	the	value	of	the	group	by	clause:

$orders	=	DB::table('orders')

																->select('city',	'state')

																->groupByRaw('city,	state')

																->get();

Joins

Inner	Join	Clause

The	query	builder	may	also	be	used	to	add	join	clauses	to	your	queries.	To	perform	a	basic	"inner	join",	you
may	use	the	join	method	on	a	query	builder	instance.	The	first	argument	passed	to	the	join	method	is	the	name

Laravel	Documentation	-	10.x	/	Query	Builder 591

of	the	table	you	need	to	join	to,	while	the	remaining	arguments	specify	the	column	constraints	for	the	join.	You
may	even	join	multiple	tables	in	a	single	query:

use	Illuminate\Support\Facades\DB;

$users	=	DB::table('users')

												->join('contacts',	'users.id',	'=',	'contacts.user_id')

												->join('orders',	'users.id',	'=',	'orders.user_id')

												->select('users.*',	'contacts.phone',	'orders.price')

												->get();

Left	Join	/	Right	Join	Clause

If	you	would	like	to	perform	a	"left	join"	or	"right	join"	instead	of	an	"inner	join",	use	the	leftJoin	or	rightJoin
methods.	These	methods	have	the	same	signature	as	the	join	method:

$users	=	DB::table('users')

												->leftJoin('posts',	'users.id',	'=',	'posts.user_id')

												->get();

$users	=	DB::table('users')

												->rightJoin('posts',	'users.id',	'=',	'posts.user_id')

												->get();

Cross	Join	Clause

You	may	use	the	crossJoin	method	to	perform	a	"cross	join".	Cross	joins	generate	a	cartesian	product	between
the	first	table	and	the	joined	table:

$sizes	=	DB::table('sizes')

												->crossJoin('colors')

												->get();

Advanced	Join	Clauses

You	may	also	specify	more	advanced	join	clauses.	To	get	started,	pass	a	closure	as	the	second	argument	to	the	
join	method.	The	closure	will	receive	a	Illuminate\Database\Query\JoinClause	instance	which	allows	you	to
specify	constraints	on	the	"join"	clause:

DB::table('users')

								->join('contacts',	function	(JoinClause	$join)	{

												$join->on('users.id',	'=',	'contacts.user_id')->orOn(/*	...	*/);

								})

								->get();

If	you	would	like	to	use	a	"where"	clause	on	your	joins,	you	may	use	the	where	and	orWhere	methods	provided
by	the	JoinClause	instance.	Instead	of	comparing	two	columns,	these	methods	will	compare	the	column	against
a	value:

DB::table('users')

								->join('contacts',	function	(JoinClause	$join)	{

												$join->on('users.id',	'=',	'contacts.user_id')

																	->where('contacts.user_id',	'>',	5);

								})

								->get();

Subquery	Joins

You	may	use	the	joinSub,	leftJoinSub,	and	rightJoinSub	methods	to	join	a	query	to	a	subquery.	Each	of	these
methods	receives	three	arguments:	the	subquery,	its	table	alias,	and	a	closure	that	defines	the	related	columns.
In	this	example,	we	will	retrieve	a	collection	of	users	where	each	user	record	also	contains	the	created_at
timestamp	of	the	user's	most	recently	published	blog	post:

$latestPosts	=	DB::table('posts')

																			->select('user_id',	DB::raw('MAX(created_at)	as	last_post_created_at'))

																			->where('is_published',	true)

																			->groupBy('user_id');

$users	=	DB::table('users')

Laravel	Documentation	-	10.x	/	Query	Builder 592

								->joinSub($latestPosts,	'latest_posts',	function	(JoinClause	$join)	{

												$join->on('users.id',	'=',	'latest_posts.user_id');

								})->get();

Lateral	Joins

[!WARNING]
Lateral	joins	are	currently	supported	by	PostgreSQL,	MySQL	>=	8.0.14,	and	SQL	Server.

You	may	use	the	joinLateral	and	leftJoinLateral	methods	to	perform	a	"lateral	join"	with	a	subquery.	Each	of
these	methods	receives	two	arguments:	the	subquery	and	its	table	alias.	The	join	condition(s)	should	be
specified	within	the	where	clause	of	the	given	subquery.	Lateral	joins	are	evaluated	for	each	row	and	can
reference	columns	outside	the	subquery.

In	this	example,	we	will	retrieve	a	collection	of	users	as	well	as	the	user's	three	most	recent	blog	posts.	Each
user	can	produce	up	to	three	rows	in	the	result	set:	one	for	each	of	their	most	recent	blog	posts.	The	join
condition	is	specified	with	a	whereColumn	clause	within	the	subquery,	referencing	the	current	user	row:

$latestPosts	=	DB::table('posts')

																			->select('id	as	post_id',	'title	as	post_title',	'created_at	as	post_created_at')

																			->whereColumn('user_id',	'users.id')

																			->orderBy('created_at',	'desc')

																			->limit(3);

$users	=	DB::table('users')

												->joinLateral($latestPosts,	'latest_posts')

												->get();

Unions

The	query	builder	also	provides	a	convenient	method	to	"union"	two	or	more	queries	together.	For	example,
you	may	create	an	initial	query	and	use	the	union	method	to	union	it	with	more	queries:

use	Illuminate\Support\Facades\DB;

$first	=	DB::table('users')

												->whereNull('first_name');

$users	=	DB::table('users')

												->whereNull('last_name')

												->union($first)

												->get();

In	addition	to	the	union	method,	the	query	builder	provides	a	unionAll	method.	Queries	that	are	combined	using
the	unionAll	method	will	not	have	their	duplicate	results	removed.	The	unionAll	method	has	the	same	method
signature	as	the	union	method.

Basic	Where	Clauses

Where	Clauses

You	may	use	the	query	builder's	where	method	to	add	"where"	clauses	to	the	query.	The	most	basic	call	to	the	
where	method	requires	three	arguments.	The	first	argument	is	the	name	of	the	column.	The	second	argument	is
an	operator,	which	can	be	any	of	the	database's	supported	operators.	The	third	argument	is	the	value	to	compare
against	the	column's	value.

For	example,	the	following	query	retrieves	users	where	the	value	of	the	votes	column	is	equal	to	100	and	the
value	of	the	age	column	is	greater	than	35:

$users	=	DB::table('users')

																->where('votes',	'=',	100)

																->where('age',	'>',	35)

																->get();

For	convenience,	if	you	want	to	verify	that	a	column	is	=	to	a	given	value,	you	may	pass	the	value	as	the	second
argument	to	the	where	method.	Laravel	will	assume	you	would	like	to	use	the	=	operator:

Laravel	Documentation	-	10.x	/	Query	Builder 593

$users	=	DB::table('users')->where('votes',	100)->get();

As	previously	mentioned,	you	may	use	any	operator	that	is	supported	by	your	database	system:

$users	=	DB::table('users')

																->where('votes',	'>=',	100)

																->get();

$users	=	DB::table('users')

																->where('votes',	'<>',	100)

																->get();

$users	=	DB::table('users')

																->where('name',	'like',	'T%')

																->get();

You	may	also	pass	an	array	of	conditions	to	the	where	function.	Each	element	of	the	array	should	be	an	array
containing	the	three	arguments	typically	passed	to	the	where	method:

$users	=	DB::table('users')->where([

				['status',	'=',	'1'],

				['subscribed',	'<>',	'1'],

])->get();

[!WARNING]
PDO	does	not	support	binding	column	names.	Therefore,	you	should	never	allow	user	input	to	dictate	the
column	names	referenced	by	your	queries,	including	"order	by"	columns.

Or	Where	Clauses

When	chaining	together	calls	to	the	query	builder's	where	method,	the	"where"	clauses	will	be	joined	together
using	the	and	operator.	However,	you	may	use	the	orWhere	method	to	join	a	clause	to	the	query	using	the	or
operator.	The	orWhere	method	accepts	the	same	arguments	as	the	where	method:

$users	=	DB::table('users')

																				->where('votes',	'>',	100)

																				->orWhere('name',	'John')

																				->get();

If	you	need	to	group	an	"or"	condition	within	parentheses,	you	may	pass	a	closure	as	the	first	argument	to	the	
orWhere	method:

$users	=	DB::table('users')

												->where('votes',	'>',	100)

												->orWhere(function	(Builder	$query)	{

																$query->where('name',	'Abigail')

																						->where('votes',	'>',	50);

												})

												->get();

The	example	above	will	produce	the	following	SQL:

select	*	from	users	where	votes	>	100	or	(name	=	'Abigail'	and	votes	>	50)

[!WARNING]
You	should	always	group	orWhere	calls	in	order	to	avoid	unexpected	behavior	when	global	scopes	are
applied.

Where	Not	Clauses

The	whereNot	and	orWhereNot	methods	may	be	used	to	negate	a	given	group	of	query	constraints.	For	example,
the	following	query	excludes	products	that	are	on	clearance	or	which	have	a	price	that	is	less	than	ten:

$products	=	DB::table('products')

																->whereNot(function	(Builder	$query)	{

																				$query->where('clearance',	true)

																										->orWhere('price',	'<',	10);

																})

																->get();

Laravel	Documentation	-	10.x	/	Query	Builder 594

Where	Any	/	All	Clauses

Sometimes	you	may	need	to	apply	the	same	query	constraints	to	multiple	columns.	For	example,	you	may	want
to	retrieve	all	records	where	any	columns	in	a	given	list	are	LIKE	a	given	value.	You	may	accomplish	this	using
the	whereAny	method:

$users	=	DB::table('users')

												->where('active',	true)

												->whereAny([

																'name',

																'email',

																'phone',

],	'LIKE',	'Example%')

												->get();

The	query	above	will	result	in	the	following	SQL:

SELECT	*

FROM	users

WHERE	active	=	true	AND	(

				name	LIKE	'Example%'	OR

				email	LIKE	'Example%'	OR

				phone	LIKE	'Example%'

)

Similarly,	the	whereAll	method	may	be	used	to	retrieve	records	where	all	of	the	given	columns	match	a	given
constraint:

$posts	=	DB::table('posts')

												->where('published',	true)

												->whereAll([

																'title',

																'content',

],	'LIKE',	'%Laravel%')

												->get();

The	query	above	will	result	in	the	following	SQL:

SELECT	*

FROM	posts

WHERE	published	=	true	AND	(

				title	LIKE	'%Laravel%'	AND

				content	LIKE	'%Laravel%'

)

JSON	Where	Clauses

Laravel	also	supports	querying	JSON	column	types	on	databases	that	provide	support	for	JSON	column	types.
Currently,	this	includes	MySQL	5.7+,	PostgreSQL,	SQL	Server	2016,	and	SQLite	3.39.0	(with	the	JSON1
extension).	To	query	a	JSON	column,	use	the	->	operator:

$users	=	DB::table('users')

																->where('preferences->dining->meal',	'salad')

																->get();

You	may	use	whereJsonContains	to	query	JSON	arrays:

$users	=	DB::table('users')

																->whereJsonContains('options->languages',	'en')

																->get();

If	your	application	uses	the	MySQL	or	PostgreSQL	databases,	you	may	pass	an	array	of	values	to	the	
whereJsonContains	method:

$users	=	DB::table('users')

																->whereJsonContains('options->languages',	['en',	'de'])

																->get();

You	may	use	whereJsonLength	method	to	query	JSON	arrays	by	their	length:

$users	=	DB::table('users')

Laravel	Documentation	-	10.x	/	Query	Builder 595

https://www.sqlite.org/json1.html

																->whereJsonLength('options->languages',	0)

																->get();

$users	=	DB::table('users')

																->whereJsonLength('options->languages',	'>',	1)

																->get();

Additional	Where	Clauses

whereBetween	/	orWhereBetween

The	whereBetween	method	verifies	that	a	column's	value	is	between	two	values:

$users	=	DB::table('users')

											->whereBetween('votes',	[1,	100])

											->get();

whereNotBetween	/	orWhereNotBetween

The	whereNotBetween	method	verifies	that	a	column's	value	lies	outside	of	two	values:

$users	=	DB::table('users')

																				->whereNotBetween('votes',	[1,	100])

																				->get();

whereBetweenColumns	/	whereNotBetweenColumns	/	orWhereBetweenColumns	/
orWhereNotBetweenColumns

The	whereBetweenColumns	method	verifies	that	a	column's	value	is	between	the	two	values	of	two	columns	in	the
same	table	row:

$patients	=	DB::table('patients')

																							->whereBetweenColumns('weight',	['minimum_allowed_weight',	

'maximum_allowed_weight'])

																							->get();

The	whereNotBetweenColumns	method	verifies	that	a	column's	value	lies	outside	the	two	values	of	two	columns	in
the	same	table	row:

$patients	=	DB::table('patients')

																							->whereNotBetweenColumns('weight',	['minimum_allowed_weight',	

'maximum_allowed_weight'])

																							->get();

whereIn	/	whereNotIn	/	orWhereIn	/	orWhereNotIn

The	whereIn	method	verifies	that	a	given	column's	value	is	contained	within	the	given	array:

$users	=	DB::table('users')

																				->whereIn('id',	[1,	2,	3])

																				->get();

The	whereNotIn	method	verifies	that	the	given	column's	value	is	not	contained	in	the	given	array:

$users	=	DB::table('users')

																				->whereNotIn('id',	[1,	2,	3])

																				->get();

You	may	also	provide	a	query	object	as	the	whereIn	method's	second	argument:

$activeUsers	=	DB::table('users')->select('id')->where('is_active',	1);

$users	=	DB::table('comments')

																				->whereIn('user_id',	$activeUsers)

																				->get();

The	example	above	will	produce	the	following	SQL:

select	*	from	comments	where	user_id	in	(

				select	id

				from	users

				where	is_active	=	1

Laravel	Documentation	-	10.x	/	Query	Builder 596

)

[!WARNING]
If	you	are	adding	a	large	array	of	integer	bindings	to	your	query,	the	whereIntegerInRaw	or	
whereIntegerNotInRaw	methods	may	be	used	to	greatly	reduce	your	memory	usage.

whereNull	/	whereNotNull	/	orWhereNull	/	orWhereNotNull

The	whereNull	method	verifies	that	the	value	of	the	given	column	is	NULL:

$users	=	DB::table('users')

																->whereNull('updated_at')

																->get();

The	whereNotNull	method	verifies	that	the	column's	value	is	not	NULL:

$users	=	DB::table('users')

																->whereNotNull('updated_at')

																->get();

whereDate	/	whereMonth	/	whereDay	/	whereYear	/	whereTime

The	whereDate	method	may	be	used	to	compare	a	column's	value	against	a	date:

$users	=	DB::table('users')

																->whereDate('created_at',	'2016-12-31')

																->get();

The	whereMonth	method	may	be	used	to	compare	a	column's	value	against	a	specific	month:

$users	=	DB::table('users')

																->whereMonth('created_at',	'12')

																->get();

The	whereDay	method	may	be	used	to	compare	a	column's	value	against	a	specific	day	of	the	month:

$users	=	DB::table('users')

																->whereDay('created_at',	'31')

																->get();

The	whereYear	method	may	be	used	to	compare	a	column's	value	against	a	specific	year:

$users	=	DB::table('users')

																->whereYear('created_at',	'2016')

																->get();

The	whereTime	method	may	be	used	to	compare	a	column's	value	against	a	specific	time:

$users	=	DB::table('users')

																->whereTime('created_at',	'=',	'11:20:45')

																->get();

whereColumn	/	orWhereColumn

The	whereColumn	method	may	be	used	to	verify	that	two	columns	are	equal:

$users	=	DB::table('users')

																->whereColumn('first_name',	'last_name')

																->get();

You	may	also	pass	a	comparison	operator	to	the	whereColumn	method:

$users	=	DB::table('users')

																->whereColumn('updated_at',	'>',	'created_at')

																->get();

You	may	also	pass	an	array	of	column	comparisons	to	the	whereColumn	method.	These	conditions	will	be	joined
using	the	and	operator:

$users	=	DB::table('users')

																->whereColumn([

																				['first_name',	'=',	'last_name'],

Laravel	Documentation	-	10.x	/	Query	Builder 597

																				['updated_at',	'>',	'created_at'],

])->get();

Logical	Grouping

Sometimes	you	may	need	to	group	several	"where"	clauses	within	parentheses	in	order	to	achieve	your	query's
desired	logical	grouping.	In	fact,	you	should	generally	always	group	calls	to	the	orWhere	method	in	parentheses
in	order	to	avoid	unexpected	query	behavior.	To	accomplish	this,	you	may	pass	a	closure	to	the	where	method:

$users	=	DB::table('users')

											->where('name',	'=',	'John')

											->where(function	(Builder	$query)	{

															$query->where('votes',	'>',	100)

																					->orWhere('title',	'=',	'Admin');

											})

											->get();

As	you	can	see,	passing	a	closure	into	the	where	method	instructs	the	query	builder	to	begin	a	constraint	group.
The	closure	will	receive	a	query	builder	instance	which	you	can	use	to	set	the	constraints	that	should	be
contained	within	the	parenthesis	group.	The	example	above	will	produce	the	following	SQL:

select	*	from	users	where	name	=	'John'	and	(votes	>	100	or	title	=	'Admin')

[!WARNING]
You	should	always	group	orWhere	calls	in	order	to	avoid	unexpected	behavior	when	global	scopes	are
applied.

Advanced	Where	Clauses

Where	Exists	Clauses

The	whereExists	method	allows	you	to	write	"where	exists"	SQL	clauses.	The	whereExists	method	accepts	a
closure	which	will	receive	a	query	builder	instance,	allowing	you	to	define	the	query	that	should	be	placed
inside	of	the	"exists"	clause:

$users	=	DB::table('users')

											->whereExists(function	(Builder	$query)	{

															$query->select(DB::raw(1))

																					->from('orders')

																					->whereColumn('orders.user_id',	'users.id');

											})

											->get();

Alternatively,	you	may	provide	a	query	object	to	the	whereExists	method	instead	of	a	closure:

$orders	=	DB::table('orders')

																->select(DB::raw(1))

																->whereColumn('orders.user_id',	'users.id');

$users	=	DB::table('users')

																				->whereExists($orders)

																				->get();

Both	of	the	examples	above	will	produce	the	following	SQL:

select	*	from	users

where	exists	(

				select	1

				from	orders

				where	orders.user_id	=	users.id

)

Subquery	Where	Clauses

Sometimes	you	may	need	to	construct	a	"where"	clause	that	compares	the	results	of	a	subquery	to	a	given
value.	You	may	accomplish	this	by	passing	a	closure	and	a	value	to	the	where	method.	For	example,	the
following	query	will	retrieve	all	users	who	have	a	recent	"membership"	of	a	given	type;

Laravel	Documentation	-	10.x	/	Query	Builder 598

use	App\Models\User;

use	Illuminate\Database\Query\Builder;

$users	=	User::where(function	(Builder	$query)	{

				$query->select('type')

								->from('membership')

								->whereColumn('membership.user_id',	'users.id')

								->orderByDesc('membership.start_date')

								->limit(1);

},	'Pro')->get();

Or,	you	may	need	to	construct	a	"where"	clause	that	compares	a	column	to	the	results	of	a	subquery.	You	may
accomplish	this	by	passing	a	column,	operator,	and	closure	to	the	where	method.	For	example,	the	following
query	will	retrieve	all	income	records	where	the	amount	is	less	than	average;

use	App\Models\Income;

use	Illuminate\Database\Query\Builder;

$incomes	=	Income::where('amount',	'<',	function	(Builder	$query)	{

				$query->selectRaw('avg(i.amount)')->from('incomes	as	i');

})->get();

Full	Text	Where	Clauses

[!WARNING]
Full	text	where	clauses	are	currently	supported	by	MySQL	and	PostgreSQL.

The	whereFullText	and	orWhereFullText	methods	may	be	used	to	add	full	text	"where"	clauses	to	a	query	for
columns	that	have	full	text	indexes.	These	methods	will	be	transformed	into	the	appropriate	SQL	for	the
underlying	database	system	by	Laravel.	For	example,	a	MATCH	AGAINST	clause	will	be	generated	for	applications
utilizing	MySQL:

$users	=	DB::table('users')

											->whereFullText('bio',	'web	developer')

											->get();

Ordering,	Grouping,	Limit	and	Offset

Ordering

The	orderBy	Method

The	orderBy	method	allows	you	to	sort	the	results	of	the	query	by	a	given	column.	The	first	argument	accepted
by	the	orderBy	method	should	be	the	column	you	wish	to	sort	by,	while	the	second	argument	determines	the
direction	of	the	sort	and	may	be	either	asc	or	desc:

$users	=	DB::table('users')

																->orderBy('name',	'desc')

																->get();

To	sort	by	multiple	columns,	you	may	simply	invoke	orderBy	as	many	times	as	necessary:

$users	=	DB::table('users')

																->orderBy('name',	'desc')

																->orderBy('email',	'asc')

																->get();

The	latest	and	oldest	Methods

The	latest	and	oldest	methods	allow	you	to	easily	order	results	by	date.	By	default,	the	result	will	be	ordered
by	the	table's	created_at	column.	Or,	you	may	pass	the	column	name	that	you	wish	to	sort	by:

$user	=	DB::table('users')

																->latest()

																->first();

Random	Ordering

Laravel	Documentation	-	10.x	/	Query	Builder 599

The	inRandomOrder	method	may	be	used	to	sort	the	query	results	randomly.	For	example,	you	may	use	this
method	to	fetch	a	random	user:

$randomUser	=	DB::table('users')

																->inRandomOrder()

																->first();

Removing	Existing	Orderings

The	reorder	method	removes	all	of	the	"order	by"	clauses	that	have	previously	been	applied	to	the	query:

$query	=	DB::table('users')->orderBy('name');

$unorderedUsers	=	$query->reorder()->get();

You	may	pass	a	column	and	direction	when	calling	the	reorder	method	in	order	to	remove	all	existing	"order
by"	clauses	and	apply	an	entirely	new	order	to	the	query:

$query	=	DB::table('users')->orderBy('name');

$usersOrderedByEmail	=	$query->reorder('email',	'desc')->get();

Grouping

The	groupBy	and	having	Methods

As	you	might	expect,	the	groupBy	and	having	methods	may	be	used	to	group	the	query	results.	The	having
method's	signature	is	similar	to	that	of	the	where	method:

$users	=	DB::table('users')

																->groupBy('account_id')

																->having('account_id',	'>',	100)

																->get();

You	can	use	the	havingBetween	method	to	filter	the	results	within	a	given	range:

$report	=	DB::table('orders')

																->selectRaw('count(id)	as	number_of_orders,	customer_id')

																->groupBy('customer_id')

																->havingBetween('number_of_orders',	[5,	15])

																->get();

You	may	pass	multiple	arguments	to	the	groupBy	method	to	group	by	multiple	columns:

$users	=	DB::table('users')

																->groupBy('first_name',	'status')

																->having('account_id',	'>',	100)

																->get();

To	build	more	advanced	having	statements,	see	the	havingRaw	method.

Limit	and	Offset

The	skip	and	take	Methods

You	may	use	the	skip	and	take	methods	to	limit	the	number	of	results	returned	from	the	query	or	to	skip	a	given
number	of	results	in	the	query:

$users	=	DB::table('users')->skip(10)->take(5)->get();

Alternatively,	you	may	use	the	limit	and	offset	methods.	These	methods	are	functionally	equivalent	to	the	take
and	skip	methods,	respectively:

$users	=	DB::table('users')

																->offset(10)

																->limit(5)

																->get();

Laravel	Documentation	-	10.x	/	Query	Builder 600

Conditional	Clauses

Sometimes	you	may	want	certain	query	clauses	to	apply	to	a	query	based	on	another	condition.	For	instance,
you	may	only	want	to	apply	a	where	statement	if	a	given	input	value	is	present	on	the	incoming	HTTP	request.
You	may	accomplish	this	using	the	when	method:

$role	=	$request->string('role');

$users	=	DB::table('users')

																->when($role,	function	(Builder	$query,	string	$role)	{

																				$query->where('role_id',	$role);

																})

																->get();

The	when	method	only	executes	the	given	closure	when	the	first	argument	is	true.	If	the	first	argument	is	false,
the	closure	will	not	be	executed.	So,	in	the	example	above,	the	closure	given	to	the	when	method	will	only	be
invoked	if	the	role	field	is	present	on	the	incoming	request	and	evaluates	to	true.

You	may	pass	another	closure	as	the	third	argument	to	the	when	method.	This	closure	will	only	execute	if	the
first	argument	evaluates	as	false.	To	illustrate	how	this	feature	may	be	used,	we	will	use	it	to	configure	the
default	ordering	of	a	query:

$sortByVotes	=	$request->boolean('sort_by_votes');

$users	=	DB::table('users')

																->when($sortByVotes,	function	(Builder	$query,	bool	$sortByVotes)	{

																				$query->orderBy('votes');

																},	function	(Builder	$query)	{

																				$query->orderBy('name');

																})

																->get();

Insert	Statements

The	query	builder	also	provides	an	insert	method	that	may	be	used	to	insert	records	into	the	database	table.
The	insert	method	accepts	an	array	of	column	names	and	values:

DB::table('users')->insert([

				'email'	=>	'kayla@example.com',

				'votes'	=>	0

]);

You	may	insert	several	records	at	once	by	passing	an	array	of	arrays.	Each	array	represents	a	record	that	should
be	inserted	into	the	table:

DB::table('users')->insert([

				['email'	=>	'picard@example.com',	'votes'	=>	0],

				['email'	=>	'janeway@example.com',	'votes'	=>	0],

]);

The	insertOrIgnore	method	will	ignore	errors	while	inserting	records	into	the	database.	When	using	this
method,	you	should	be	aware	that	duplicate	record	errors	will	be	ignored	and	other	types	of	errors	may	also	be
ignored	depending	on	the	database	engine.	For	example,	insertOrIgnore	will	bypass	MySQL's	strict	mode:

DB::table('users')->insertOrIgnore([

				['id'	=>	1,	'email'	=>	'sisko@example.com'],

				['id'	=>	2,	'email'	=>	'archer@example.com'],

]);

The	insertUsing	method	will	insert	new	records	into	the	table	while	using	a	subquery	to	determine	the	data	that
should	be	inserted:

DB::table('pruned_users')->insertUsing([

				'id',	'name',	'email',	'email_verified_at'

],	DB::table('users')->select(

				'id',	'name',	'email',	'email_verified_at'

)->where('updated_at',	'<=',	now()->subMonth()));

Auto-Incrementing	IDs

Laravel	Documentation	-	10.x	/	Query	Builder 601

https://dev.mysql.com/doc/refman/en/sql-mode.html#ignore-effect-on-execution

If	the	table	has	an	auto-incrementing	id,	use	the	insertGetId	method	to	insert	a	record	and	then	retrieve	the	ID:

$id	=	DB::table('users')->insertGetId(

				['email'	=>	'john@example.com',	'votes'	=>	0]

);

[!WARNING]
When	using	PostgreSQL	the	insertGetId	method	expects	the	auto-incrementing	column	to	be	named	id.	If
you	would	like	to	retrieve	the	ID	from	a	different	"sequence",	you	may	pass	the	column	name	as	the
second	parameter	to	the	insertGetId	method.

Upserts

The	upsert	method	will	insert	records	that	do	not	exist	and	update	the	records	that	already	exist	with	new
values	that	you	may	specify.	The	method's	first	argument	consists	of	the	values	to	insert	or	update,	while	the
second	argument	lists	the	column(s)	that	uniquely	identify	records	within	the	associated	table.	The	method's
third	and	final	argument	is	an	array	of	columns	that	should	be	updated	if	a	matching	record	already	exists	in	the
database:

DB::table('flights')->upsert(

				[

								['departure'	=>	'Oakland',	'destination'	=>	'San	Diego',	'price'	=>	99],

								['departure'	=>	'Chicago',	'destination'	=>	'New	York',	'price'	=>	150]

],

				['departure',	'destination'],

				['price']

);

In	the	example	above,	Laravel	will	attempt	to	insert	two	records.	If	a	record	already	exists	with	the	same	
departure	and	destination	column	values,	Laravel	will	update	that	record's	price	column.

[!WARNING]
All	databases	except	SQL	Server	require	the	columns	in	the	second	argument	of	the	upsert	method	to	have
a	"primary"	or	"unique"	index.	In	addition,	the	MySQL	database	driver	ignores	the	second	argument	of	the
upsert	method	and	always	uses	the	"primary"	and	"unique"	indexes	of	the	table	to	detect	existing	records.

Update	Statements

In	addition	to	inserting	records	into	the	database,	the	query	builder	can	also	update	existing	records	using	the	
update	method.	The	update	method,	like	the	insert	method,	accepts	an	array	of	column	and	value	pairs
indicating	the	columns	to	be	updated.	The	update	method	returns	the	number	of	affected	rows.	You	may
constrain	the	update	query	using	where	clauses:

$affected	=	DB::table('users')

														->where('id',	1)

														->update(['votes'	=>	1]);

Update	or	Insert

Sometimes	you	may	want	to	update	an	existing	record	in	the	database	or	create	it	if	no	matching	record	exists.
In	this	scenario,	the	updateOrInsert	method	may	be	used.	The	updateOrInsert	method	accepts	two	arguments:
an	array	of	conditions	by	which	to	find	the	record,	and	an	array	of	column	and	value	pairs	indicating	the
columns	to	be	updated.

The	updateOrInsert	method	will	attempt	to	locate	a	matching	database	record	using	the	first	argument's	column
and	value	pairs.	If	the	record	exists,	it	will	be	updated	with	the	values	in	the	second	argument.	If	the	record	can
not	be	found,	a	new	record	will	be	inserted	with	the	merged	attributes	of	both	arguments:

DB::table('users')

				->updateOrInsert(

								['email'	=>	'john@example.com',	'name'	=>	'John'],

								['votes'	=>	'2']

);

Updating	JSON	Columns

Laravel	Documentation	-	10.x	/	Query	Builder 602

When	updating	a	JSON	column,	you	should	use	->	syntax	to	update	the	appropriate	key	in	the	JSON	object.
This	operation	is	supported	on	MySQL	5.7+	and	PostgreSQL	9.5+:

$affected	=	DB::table('users')

														->where('id',	1)

														->update(['options->enabled'	=>	true]);

Increment	and	Decrement

The	query	builder	also	provides	convenient	methods	for	incrementing	or	decrementing	the	value	of	a	given
column.	Both	of	these	methods	accept	at	least	one	argument:	the	column	to	modify.	A	second	argument	may	be
provided	to	specify	the	amount	by	which	the	column	should	be	incremented	or	decremented:

DB::table('users')->increment('votes');

DB::table('users')->increment('votes',	5);

DB::table('users')->decrement('votes');

DB::table('users')->decrement('votes',	5);

If	needed,	you	may	also	specify	additional	columns	to	update	during	the	increment	or	decrement	operation:

DB::table('users')->increment('votes',	1,	['name'	=>	'John']);

In	addition,	you	may	increment	or	decrement	multiple	columns	at	once	using	the	incrementEach	and	
decrementEach	methods:

DB::table('users')->incrementEach([

				'votes'	=>	5,

				'balance'	=>	100,

]);

Delete	Statements

The	query	builder's	delete	method	may	be	used	to	delete	records	from	the	table.	The	delete	method	returns	the
number	of	affected	rows.	You	may	constrain	delete	statements	by	adding	"where"	clauses	before	calling	the	
delete	method:

$deleted	=	DB::table('users')->delete();

$deleted	=	DB::table('users')->where('votes',	'>',	100)->delete();

If	you	wish	to	truncate	an	entire	table,	which	will	remove	all	records	from	the	table	and	reset	the	auto-
incrementing	ID	to	zero,	you	may	use	the	truncate	method:

DB::table('users')->truncate();

Table	Truncation	and	PostgreSQL

When	truncating	a	PostgreSQL	database,	the	CASCADE	behavior	will	be	applied.	This	means	that	all	foreign	key
related	records	in	other	tables	will	be	deleted	as	well.

Pessimistic	Locking

The	query	builder	also	includes	a	few	functions	to	help	you	achieve	"pessimistic	locking"	when	executing	your	
select	statements.	To	execute	a	statement	with	a	"shared	lock",	you	may	call	the	sharedLock	method.	A	shared
lock	prevents	the	selected	rows	from	being	modified	until	your	transaction	is	committed:

DB::table('users')

								->where('votes',	'>',	100)

								->sharedLock()

								->get();

Alternatively,	you	may	use	the	lockForUpdate	method.	A	"for	update"	lock	prevents	the	selected	records	from
being	modified	or	from	being	selected	with	another	shared	lock:

Laravel	Documentation	-	10.x	/	Query	Builder 603

DB::table('users')

								->where('votes',	'>',	100)

								->lockForUpdate()

								->get();

Debugging

You	may	use	the	dd	and	dump	methods	while	building	a	query	to	dump	the	current	query	bindings	and	SQL.	The	
dd	method	will	display	the	debug	information	and	then	stop	executing	the	request.	The	dump	method	will	display
the	debug	information	but	allow	the	request	to	continue	executing:

DB::table('users')->where('votes',	'>',	100)->dd();

DB::table('users')->where('votes',	'>',	100)->dump();

The	dumpRawSql	and	ddRawSql	methods	may	be	invoked	on	a	query	to	dump	the	query's	SQL	with	all	parameter
bindings	properly	substituted:

DB::table('users')->where('votes',	'>',	100)->dumpRawSql();

DB::table('users')->where('votes',	'>',	100)->ddRawSql();

Laravel	Documentation	-	10.x	/	Query	Builder 604

Database

Database:	Pagination
Introduction
Basic	Usage

Paginating	Query	Builder	Results
Paginating	Eloquent	Results
Cursor	Pagination
Manually	Creating	a	Paginator
Customizing	Pagination	URLs

Displaying	Pagination	Results
Adjusting	the	Pagination	Link	Window
Converting	Results	to	JSON

Customizing	the	Pagination	View
Using	Bootstrap

Paginator	and	LengthAwarePaginator	Instance	Methods
Cursor	Paginator	Instance	Methods

Introduction

In	other	frameworks,	pagination	can	be	very	painful.	We	hope	Laravel's	approach	to	pagination	will	be	a	breath
of	fresh	air.	Laravel's	paginator	is	integrated	with	the	query	builder	and	Eloquent	ORM	and	provides
convenient,	easy-to-use	pagination	of	database	records	with	zero	configuration.

By	default,	the	HTML	generated	by	the	paginator	is	compatible	with	the	Tailwind	CSS	framework;	however,
Bootstrap	pagination	support	is	also	available.

Tailwind	JIT

If	you	are	using	Laravel's	default	Tailwind	pagination	views	and	the	Tailwind	JIT	engine,	you	should	ensure
your	application's	tailwind.config.js	file's	content	key	references	Laravel's	pagination	views	so	that	their
Tailwind	classes	are	not	purged:

content:	[

				'./resources/**/*.blade.php',

				'./resources/**/*.js',

				'./resources/**/*.vue',

				'./vendor/laravel/framework/src/Illuminate/Pagination/resources/views/*.blade.php',

],

Basic	Usage

Paginating	Query	Builder	Results

There	are	several	ways	to	paginate	items.	The	simplest	is	by	using	the	paginate	method	on	the	query	builder	or
an	Eloquent	query.	The	paginate	method	automatically	takes	care	of	setting	the	query's	"limit"	and	"offset"
based	on	the	current	page	being	viewed	by	the	user.	By	default,	the	current	page	is	detected	by	the	value	of	the	
page	query	string	argument	on	the	HTTP	request.	This	value	is	automatically	detected	by	Laravel,	and	is	also
automatically	inserted	into	links	generated	by	the	paginator.

In	this	example,	the	only	argument	passed	to	the	paginate	method	is	the	number	of	items	you	would	like
displayed	"per	page".	In	this	case,	let's	specify	that	we	would	like	to	display	15	items	per	page:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\DB;

use	Illuminate\View\View;

Laravel	Documentation	-	10.x	/	Pagination 605

https://tailwindcss.com/

class	UserController	extends	Controller

{

				/**

					*	Show	all	application	users.

					*/

				public	function	index():	View

				{

								return	view('user.index',	[

												'users'	=>	DB::table('users')->paginate(15)

]);

				}

}

Simple	Pagination

The	paginate	method	counts	the	total	number	of	records	matched	by	the	query	before	retrieving	the	records
from	the	database.	This	is	done	so	that	the	paginator	knows	how	many	pages	of	records	there	are	in	total.
However,	if	you	do	not	plan	to	show	the	total	number	of	pages	in	your	application's	UI	then	the	record	count
query	is	unnecessary.

Therefore,	if	you	only	need	to	display	simple	"Next"	and	"Previous"	links	in	your	application's	UI,	you	may	use
the	simplePaginate	method	to	perform	a	single,	efficient	query:

$users	=	DB::table('users')->simplePaginate(15);

Paginating	Eloquent	Results

You	may	also	paginate	Eloquent	queries.	In	this	example,	we	will	paginate	the	App\Models\User	model	and
indicate	that	we	plan	to	display	15	records	per	page.	As	you	can	see,	the	syntax	is	nearly	identical	to	paginating
query	builder	results:

use	App\Models\User;

$users	=	User::paginate(15);

Of	course,	you	may	call	the	paginate	method	after	setting	other	constraints	on	the	query,	such	as	where	clauses:

$users	=	User::where('votes',	'>',	100)->paginate(15);

You	may	also	use	the	simplePaginate	method	when	paginating	Eloquent	models:

$users	=	User::where('votes',	'>',	100)->simplePaginate(15);

Similarly,	you	may	use	the	cursorPaginate	method	to	cursor	paginate	Eloquent	models:

$users	=	User::where('votes',	'>',	100)->cursorPaginate(15);

Multiple	Paginator	Instances	per	Page

Sometimes	you	may	need	to	render	two	separate	paginators	on	a	single	screen	that	is	rendered	by	your
application.	However,	if	both	paginator	instances	use	the	page	query	string	parameter	to	store	the	current	page,
the	two	paginator's	will	conflict.	To	resolve	this	conflict,	you	may	pass	the	name	of	the	query	string	parameter
you	wish	to	use	to	store	the	paginator's	current	page	via	the	third	argument	provided	to	the	paginate,	
simplePaginate,	and	cursorPaginate	methods:

use	App\Models\User;

$users	=	User::where('votes',	'>',	100)->paginate(

				$perPage	=	15,	$columns	=	['*'],	$pageName	=	'users'

);

Cursor	Pagination

While	paginate	and	simplePaginate	create	queries	using	the	SQL	"offset"	clause,	cursor	pagination	works	by
constructing	"where"	clauses	that	compare	the	values	of	the	ordered	columns	contained	in	the	query,	providing
the	most	efficient	database	performance	available	amongst	all	of	Laravel's	pagination	methods.	This	method	of
pagination	is	particularly	well-suited	for	large	data-sets	and	"infinite"	scrolling	user	interfaces.

Laravel	Documentation	-	10.x	/	Pagination 606

Unlike	offset	based	pagination,	which	includes	a	page	number	in	the	query	string	of	the	URLs	generated	by	the
paginator,	cursor	based	pagination	places	a	"cursor"	string	in	the	query	string.	The	cursor	is	an	encoded	string
containing	the	location	that	the	next	paginated	query	should	start	paginating	and	the	direction	that	it	should
paginate:

http://localhost/users?cursor=eyJpZCI6MTUsIl9wb2ludHNUb05leHRJdGVtcyI6dHJ1ZX0

You	may	create	a	cursor	based	paginator	instance	via	the	cursorPaginate	method	offered	by	the	query	builder.
This	method	returns	an	instance	of	Illuminate\Pagination\CursorPaginator:

$users	=	DB::table('users')->orderBy('id')->cursorPaginate(15);

Once	you	have	retrieved	a	cursor	paginator	instance,	you	may	display	the	pagination	results	as	you	typically
would	when	using	the	paginate	and	simplePaginate	methods.	For	more	information	on	the	instance	methods
offered	by	the	cursor	paginator,	please	consult	the	cursor	paginator	instance	method	documentation.

[!WARNING]
Your	query	must	contain	an	"order	by"	clause	in	order	to	take	advantage	of	cursor	pagination.	In	addition,
the	columns	that	the	query	are	ordered	by	must	belong	to	the	table	you	are	paginating.

Cursor	vs.	Offset	Pagination

To	illustrate	the	differences	between	offset	pagination	and	cursor	pagination,	let's	examine	some	example	SQL
queries.	Both	of	the	following	queries	will	both	display	the	"second	page"	of	results	for	a	users	table	ordered	by
id:

#	Offset	Pagination...

select	*	from	users	order	by	id	asc	limit	15	offset	15;

#	Cursor	Pagination...

select	*	from	users	where	id	>	15	order	by	id	asc	limit	15;

The	cursor	pagination	query	offers	the	following	advantages	over	offset	pagination:

For	large	data-sets,	cursor	pagination	will	offer	better	performance	if	the	"order	by"	columns	are
indexed.	This	is	because	the	"offset"	clause	scans	through	all	previously	matched	data.
For	data-sets	with	frequent	writes,	offset	pagination	may	skip	records	or	show	duplicates	if	results	have
been	recently	added	to	or	deleted	from	the	page	a	user	is	currently	viewing.

However,	cursor	pagination	has	the	following	limitations:

Like	simplePaginate,	cursor	pagination	can	only	be	used	to	display	"Next"	and	"Previous"	links	and	does
not	support	generating	links	with	page	numbers.
It	requires	that	the	ordering	is	based	on	at	least	one	unique	column	or	a	combination	of	columns	that	are
unique.	Columns	with	null	values	are	not	supported.
Query	expressions	in	"order	by"	clauses	are	supported	only	if	they	are	aliased	and	added	to	the	"select"
clause	as	well.
Query	expressions	with	parameters	are	not	supported.

Manually	Creating	a	Paginator

Sometimes	you	may	wish	to	create	a	pagination	instance	manually,	passing	it	an	array	of	items	that	you	already
have	in	memory.	You	may	do	so	by	creating	either	an	Illuminate\Pagination\Paginator,	
Illuminate\Pagination\LengthAwarePaginator	or	Illuminate\Pagination\CursorPaginator	instance,	depending	on
your	needs.

The	Paginator	and	CursorPaginator	classes	do	not	need	to	know	the	total	number	of	items	in	the	result	set;
however,	because	of	this,	these	classes	do	not	have	methods	for	retrieving	the	index	of	the	last	page.	The	
LengthAwarePaginator	accepts	almost	the	same	arguments	as	the	Paginator;	however,	it	requires	a	count	of	the
total	number	of	items	in	the	result	set.

In	other	words,	the	Paginator	corresponds	to	the	simplePaginate	method	on	the	query	builder,	the	
CursorPaginator	corresponds	to	the	cursorPaginate	method,	and	the	LengthAwarePaginator	corresponds	to	the	

Laravel	Documentation	-	10.x	/	Pagination 607

paginate	method.

[!WARNING]
When	manually	creating	a	paginator	instance,	you	should	manually	"slice"	the	array	of	results	you	pass	to
the	paginator.	If	you're	unsure	how	to	do	this,	check	out	the	array_slice	PHP	function.

Customizing	Pagination	URLs

By	default,	links	generated	by	the	paginator	will	match	the	current	request's	URI.	However,	the	paginator's	
withPath	method	allows	you	to	customize	the	URI	used	by	the	paginator	when	generating	links.	For	example,	if
you	want	the	paginator	to	generate	links	like	http://example.com/admin/users?page=N,	you	should	pass	
/admin/users	to	the	withPath	method:

use	App\Models\User;

Route::get('/users',	function	()	{

				$users	=	User::paginate(15);

				$users->withPath('/admin/users');

				//	...

});

Appending	Query	String	Values

You	may	append	to	the	query	string	of	pagination	links	using	the	appends	method.	For	example,	to	append	
sort=votes	to	each	pagination	link,	you	should	make	the	following	call	to	appends:

use	App\Models\User;

Route::get('/users',	function	()	{

				$users	=	User::paginate(15);

				$users->appends(['sort'	=>	'votes']);

				//	...

});

You	may	use	the	withQueryString	method	if	you	would	like	to	append	all	of	the	current	request's	query	string
values	to	the	pagination	links:

$users	=	User::paginate(15)->withQueryString();

Appending	Hash	Fragments

If	you	need	to	append	a	"hash	fragment"	to	URLs	generated	by	the	paginator,	you	may	use	the	fragment
method.	For	example,	to	append	#users	to	the	end	of	each	pagination	link,	you	should	invoke	the	fragment
method	like	so:

$users	=	User::paginate(15)->fragment('users');

Displaying	Pagination	Results

When	calling	the	paginate	method,	you	will	receive	an	instance	of	
Illuminate\Pagination\LengthAwarePaginator,	while	calling	the	simplePaginate	method	returns	an	instance	of	
Illuminate\Pagination\Paginator.	And,	finally,	calling	the	cursorPaginate	method	returns	an	instance	of	
Illuminate\Pagination\CursorPaginator.

These	objects	provide	several	methods	that	describe	the	result	set.	In	addition	to	these	helper	methods,	the
paginator	instances	are	iterators	and	may	be	looped	as	an	array.	So,	once	you	have	retrieved	the	results,	you
may	display	the	results	and	render	the	page	links	using	Blade:

<div	class="container">

				@foreach	($users	as	$user)

								{{	$user->name	}}

				@endforeach

Laravel	Documentation	-	10.x	/	Pagination 608

https://secure.php.net/manual/en/function.array-slice.php

</div>

{{	$users->links()	}}

The	links	method	will	render	the	links	to	the	rest	of	the	pages	in	the	result	set.	Each	of	these	links	will	already
contain	the	proper	page	query	string	variable.	Remember,	the	HTML	generated	by	the	links	method	is
compatible	with	the	Tailwind	CSS	framework.

Adjusting	the	Pagination	Link	Window

When	the	paginator	displays	pagination	links,	the	current	page	number	is	displayed	as	well	as	links	for	the	three
pages	before	and	after	the	current	page.	Using	the	onEachSide	method,	you	may	control	how	many	additional
links	are	displayed	on	each	side	of	the	current	page	within	the	middle,	sliding	window	of	links	generated	by	the
paginator:

{{	$users->onEachSide(5)->links()	}}

Converting	Results	to	JSON

The	Laravel	paginator	classes	implement	the	Illuminate\Contracts\Support\Jsonable	Interface	contract	and
expose	the	toJson	method,	so	it's	very	easy	to	convert	your	pagination	results	to	JSON.	You	may	also	convert	a
paginator	instance	to	JSON	by	returning	it	from	a	route	or	controller	action:

use	App\Models\User;

Route::get('/users',	function	()	{

				return	User::paginate();

});

The	JSON	from	the	paginator	will	include	meta	information	such	as	total,	current_page,	last_page,	and	more.
The	result	records	are	available	via	the	data	key	in	the	JSON	array.	Here	is	an	example	of	the	JSON	created	by
returning	a	paginator	instance	from	a	route:

{

			"total":	50,

			"per_page":	15,

			"current_page":	1,

			"last_page":	4,

			"first_page_url":	"http://laravel.app?page=1",

			"last_page_url":	"http://laravel.app?page=4",

			"next_page_url":	"http://laravel.app?page=2",

			"prev_page_url":	null,

			"path":	"http://laravel.app",

			"from":	1,

			"to":	15,

			"data":[

								{

												//	Record...

								},

								{

												//	Record...

								}

]

}

Customizing	the	Pagination	View

By	default,	the	views	rendered	to	display	the	pagination	links	are	compatible	with	the	Tailwind	CSS
framework.	However,	if	you	are	not	using	Tailwind,	you	are	free	to	define	your	own	views	to	render	these
links.	When	calling	the	links	method	on	a	paginator	instance,	you	may	pass	the	view	name	as	the	first
argument	to	the	method:

{{	$paginator->links('view.name')	}}

<!--	Passing	additional	data	to	the	view...	-->

{{	$paginator->links('view.name',	['foo'	=>	'bar'])	}}

However,	the	easiest	way	to	customize	the	pagination	views	is	by	exporting	them	to	your	

Laravel	Documentation	-	10.x	/	Pagination 609

https://tailwindcss.com
https://tailwindcss.com

resources/views/vendor	directory	using	the	vendor:publish	command:

php	artisan	vendor:publish	--tag=laravel-pagination

This	command	will	place	the	views	in	your	application's	resources/views/vendor/pagination	directory.	The	
tailwind.blade.php	file	within	this	directory	corresponds	to	the	default	pagination	view.	You	may	edit	this	file
to	modify	the	pagination	HTML.

If	you	would	like	to	designate	a	different	file	as	the	default	pagination	view,	you	may	invoke	the	paginator's	
defaultView	and	defaultSimpleView	methods	within	the	boot	method	of	your	App\Providers\AppServiceProvider
class:

<?php

namespace	App\Providers;

use	Illuminate\Pagination\Paginator;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Paginator::defaultView('view-name');

								Paginator::defaultSimpleView('view-name');

				}

}

Using	Bootstrap

Laravel	includes	pagination	views	built	using	Bootstrap	CSS.	To	use	these	views	instead	of	the	default	Tailwind
views,	you	may	call	the	paginator's	useBootstrapFour	or	useBootstrapFive	methods	within	the	boot	method	of
your	App\Providers\AppServiceProvider	class:

use	Illuminate\Pagination\Paginator;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Paginator::useBootstrapFive();

				Paginator::useBootstrapFour();

}

Paginator	/	LengthAwarePaginator	Instance	Methods

Each	paginator	instance	provides	additional	pagination	information	via	the	following	methods:

Method Description
$paginator->count() Get	the	number	of	items	for	the	current	page.
$paginator->currentPage() Get	the	current	page	number.
$paginator->firstItem() Get	the	result	number	of	the	first	item	in	the	results.
$paginator->getOptions() Get	the	paginator	options.
$paginator->getUrlRange($start,	

$end)
Create	a	range	of	pagination	URLs.

$paginator->hasPages() Determine	if	there	are	enough	items	to	split	into	multiple	pages.
$paginator->hasMorePages() Determine	if	there	are	more	items	in	the	data	store.
$paginator->items() Get	the	items	for	the	current	page.
$paginator->lastItem() Get	the	result	number	of	the	last	item	in	the	results.
$paginator->lastPage() Get	the	page	number	of	the	last	available	page.	(Not	available	when	using	simplePaginate).
$paginator->nextPageUrl() Get	the	URL	for	the	next	page.

Laravel	Documentation	-	10.x	/	Pagination 610

https://getbootstrap.com/

$paginator->onFirstPage() Determine	if	the	paginator	is	on	the	first	page.
$paginator->perPage() The	number	of	items	to	be	shown	per	page.
$paginator->previousPageUrl() Get	the	URL	for	the	previous	page.

$paginator->total()
Determine	the	total	number	of	matching	items	in	the	data	store.	(Not	available	when	using	
simplePaginate).

$paginator->url($page) Get	the	URL	for	a	given	page	number.
$paginator->getPageName() Get	the	query	string	variable	used	to	store	the	page.
$paginator->setPageName($name) Set	the	query	string	variable	used	to	store	the	page.
$paginator->through($callback) Transform	each	item	using	a	callback.

Cursor	Paginator	Instance	Methods

Each	cursor	paginator	instance	provides	additional	pagination	information	via	the	following	methods:

Method Description
$paginator->count() Get	the	number	of	items	for	the	current	page.
$paginator->cursor() Get	the	current	cursor	instance.
$paginator->getOptions() Get	the	paginator	options.
$paginator->hasPages() Determine	if	there	are	enough	items	to	split	into	multiple	pages.
$paginator->hasMorePages() Determine	if	there	are	more	items	in	the	data	store.
$paginator->getCursorName() Get	the	query	string	variable	used	to	store	the	cursor.
$paginator->items() Get	the	items	for	the	current	page.
$paginator->nextCursor() Get	the	cursor	instance	for	the	next	set	of	items.
$paginator->nextPageUrl() Get	the	URL	for	the	next	page.
$paginator->onFirstPage() Determine	if	the	paginator	is	on	the	first	page.
$paginator->onLastPage() Determine	if	the	paginator	is	on	the	last	page.
$paginator->perPage() The	number	of	items	to	be	shown	per	page.
$paginator->previousCursor() Get	the	cursor	instance	for	the	previous	set	of	items.
$paginator->previousPageUrl() Get	the	URL	for	the	previous	page.
$paginator->setCursorName() Set	the	query	string	variable	used	to	store	the	cursor.
$paginator->url($cursor) Get	the	URL	for	a	given	cursor	instance.

Laravel	Documentation	-	10.x	/	Pagination 611

Database

Database:	Migrations
Introduction
Generating	Migrations

Squashing	Migrations
Migration	Structure
Running	Migrations

Rolling	Back	Migrations
Tables

Creating	Tables
Updating	Tables
Renaming	/	Dropping	Tables

Columns
Creating	Columns
Available	Column	Types
Column	Modifiers
Modifying	Columns
Renaming	Columns
Dropping	Columns

Indexes
Creating	Indexes
Renaming	Indexes
Dropping	Indexes
Foreign	Key	Constraints

Events

Introduction

Migrations	are	like	version	control	for	your	database,	allowing	your	team	to	define	and	share	the	application's
database	schema	definition.	If	you	have	ever	had	to	tell	a	teammate	to	manually	add	a	column	to	their	local
database	schema	after	pulling	in	your	changes	from	source	control,	you've	faced	the	problem	that	database
migrations	solve.

The	Laravel	Schema	facade	provides	database	agnostic	support	for	creating	and	manipulating	tables	across	all	of
Laravel's	supported	database	systems.	Typically,	migrations	will	use	this	facade	to	create	and	modify	database
tables	and	columns.

Generating	Migrations

You	may	use	the	make:migration	Artisan	command	to	generate	a	database	migration.	The	new	migration	will	be
placed	in	your	database/migrations	directory.	Each	migration	filename	contains	a	timestamp	that	allows
Laravel	to	determine	the	order	of	the	migrations:

php	artisan	make:migration	create_flights_table

Laravel	will	use	the	name	of	the	migration	to	attempt	to	guess	the	name	of	the	table	and	whether	or	not	the
migration	will	be	creating	a	new	table.	If	Laravel	is	able	to	determine	the	table	name	from	the	migration	name,
Laravel	will	pre-fill	the	generated	migration	file	with	the	specified	table.	Otherwise,	you	may	simply	specify
the	table	in	the	migration	file	manually.

If	you	would	like	to	specify	a	custom	path	for	the	generated	migration,	you	may	use	the	--path	option	when
executing	the	make:migration	command.	The	given	path	should	be	relative	to	your	application's	base	path.

[!NOTE]
Migration	stubs	may	be	customized	using	stub	publishing.

Squashing	Migrations

Laravel	Documentation	-	10.x	/	Migrations 612

As	you	build	your	application,	you	may	accumulate	more	and	more	migrations	over	time.	This	can	lead	to	your	
database/migrations	directory	becoming	bloated	with	potentially	hundreds	of	migrations.	If	you	would	like,
you	may	"squash"	your	migrations	into	a	single	SQL	file.	To	get	started,	execute	the	schema:dump	command:

php	artisan	schema:dump

#	Dump	the	current	database	schema	and	prune	all	existing	migrations...

php	artisan	schema:dump	--prune

When	you	execute	this	command,	Laravel	will	write	a	"schema"	file	to	your	application's	database/schema
directory.	The	schema	file's	name	will	correspond	to	the	database	connection.	Now,	when	you	attempt	to
migrate	your	database	and	no	other	migrations	have	been	executed,	Laravel	will	first	execute	the	SQL
statements	in	the	schema	file	of	the	database	connection	you	are	using.	After	executing	the	schema	file's	SQL
statements,	Laravel	will	execute	any	remaining	migrations	that	were	not	part	of	the	schema	dump.

If	your	application's	tests	use	a	different	database	connection	than	the	one	you	typically	use	during	local
development,	you	should	ensure	you	have	dumped	a	schema	file	using	that	database	connection	so	that	your
tests	are	able	to	build	your	database.	You	may	wish	to	do	this	after	dumping	the	database	connection	you
typically	use	during	local	development:

php	artisan	schema:dump

php	artisan	schema:dump	--database=testing	--prune

You	should	commit	your	database	schema	file	to	source	control	so	that	other	new	developers	on	your	team	may
quickly	create	your	application's	initial	database	structure.

[!WARNING]
Migration	squashing	is	only	available	for	the	MySQL,	PostgreSQL,	and	SQLite	databases	and	utilizes	the
database's	command-line	client.

Migration	Structure

A	migration	class	contains	two	methods:	up	and	down.	The	up	method	is	used	to	add	new	tables,	columns,	or
indexes	to	your	database,	while	the	down	method	should	reverse	the	operations	performed	by	the	up	method.

Within	both	of	these	methods,	you	may	use	the	Laravel	schema	builder	to	expressively	create	and	modify
tables.	To	learn	about	all	of	the	methods	available	on	the	Schema	builder,	check	out	its	documentation.	For
example,	the	following	migration	creates	a	flights	table:

<?php

use	Illuminate\Database\Migrations\Migration;

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

return	new	class	extends	Migration

{

				/**

					*	Run	the	migrations.

					*/

				public	function	up():	void

				{

								Schema::create('flights',	function	(Blueprint	$table)	{

												$table->id();

												$table->string('name');

												$table->string('airline');

												$table->timestamps();

								});

				}

				/**

					*	Reverse	the	migrations.

					*/

				public	function	down():	void

				{

								Schema::drop('flights');

				}

};

Laravel	Documentation	-	10.x	/	Migrations 613

Setting	the	Migration	Connection

If	your	migration	will	be	interacting	with	a	database	connection	other	than	your	application's	default	database
connection,	you	should	set	the	$connection	property	of	your	migration:

/**

	*	The	database	connection	that	should	be	used	by	the	migration.

	*

	*	@var	string

	*/

protected	$connection	=	'pgsql';

/**

	*	Run	the	migrations.

	*/

public	function	up():	void

{

				//	...

}

Running	Migrations

To	run	all	of	your	outstanding	migrations,	execute	the	migrate	Artisan	command:

php	artisan	migrate

If	you	would	like	to	see	which	migrations	have	run	thus	far,	you	may	use	the	migrate:status	Artisan	command:

php	artisan	migrate:status

If	you	would	like	to	see	the	SQL	statements	that	will	be	executed	by	the	migrations	without	actually	running
them,	you	may	provide	the	--pretend	flag	to	the	migrate	command:

php	artisan	migrate	--pretend

Isolating	Migration	Execution

If	you	are	deploying	your	application	across	multiple	servers	and	running	migrations	as	part	of	your
deployment	process,	you	likely	do	not	want	two	servers	attempting	to	migrate	the	database	at	the	same	time.	To
avoid	this,	you	may	use	the	isolated	option	when	invoking	the	migrate	command.

When	the	isolated	option	is	provided,	Laravel	will	acquire	an	atomic	lock	using	your	application's	cache	driver
before	attempting	to	run	your	migrations.	All	other	attempts	to	run	the	migrate	command	while	that	lock	is	held
will	not	execute;	however,	the	command	will	still	exit	with	a	successful	exit	status	code:

php	artisan	migrate	--isolated

[!WARNING]
To	utilize	this	feature,	your	application	must	be	using	the	memcached,	redis,	dynamodb,	database,	file,	or	
array	cache	driver	as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be
communicating	with	the	same	central	cache	server.

Forcing	Migrations	to	Run	in	Production

Some	migration	operations	are	destructive,	which	means	they	may	cause	you	to	lose	data.	In	order	to	protect
you	from	running	these	commands	against	your	production	database,	you	will	be	prompted	for	confirmation
before	the	commands	are	executed.	To	force	the	commands	to	run	without	a	prompt,	use	the	--force	flag:

php	artisan	migrate	--force

Rolling	Back	Migrations

To	roll	back	the	latest	migration	operation,	you	may	use	the	rollback	Artisan	command.	This	command	rolls
back	the	last	"batch"	of	migrations,	which	may	include	multiple	migration	files:

Laravel	Documentation	-	10.x	/	Migrations 614

php	artisan	migrate:rollback

You	may	roll	back	a	limited	number	of	migrations	by	providing	the	step	option	to	the	rollback	command.	For
example,	the	following	command	will	roll	back	the	last	five	migrations:

php	artisan	migrate:rollback	--step=5

You	may	roll	back	a	specific	"batch"	of	migrations	by	providing	the	batch	option	to	the	rollback	command,
where	the	batch	option	corresponds	to	a	batch	value	within	your	application's	migrations	database	table.	For
example,	the	following	command	will	roll	back	all	migrations	in	batch	three:

	php	artisan	migrate:rollback	--batch=3

If	you	would	like	to	see	the	SQL	statements	that	will	be	executed	by	the	migrations	without	actually	running
them,	you	may	provide	the	--pretend	flag	to	the	migrate:rollback	command:

php	artisan	migrate:rollback	--pretend

The	migrate:reset	command	will	roll	back	all	of	your	application's	migrations:

php	artisan	migrate:reset

Roll	Back	and	Migrate	Using	a	Single	Command

The	migrate:refresh	command	will	roll	back	all	of	your	migrations	and	then	execute	the	migrate	command.
This	command	effectively	re-creates	your	entire	database:

php	artisan	migrate:refresh

#	Refresh	the	database	and	run	all	database	seeds...

php	artisan	migrate:refresh	--seed

You	may	roll	back	and	re-migrate	a	limited	number	of	migrations	by	providing	the	step	option	to	the	refresh
command.	For	example,	the	following	command	will	roll	back	and	re-migrate	the	last	five	migrations:

php	artisan	migrate:refresh	--step=5

Drop	All	Tables	and	Migrate

The	migrate:fresh	command	will	drop	all	tables	from	the	database	and	then	execute	the	migrate	command:

php	artisan	migrate:fresh

php	artisan	migrate:fresh	--seed

By	default,	the	migrate:fresh	command	only	drops	tables	from	the	default	database	connection.	However,	you
may	use	the	--database	option	to	specify	the	database	connection	that	should	be	migrated.	The	database
connection	name	should	correspond	to	a	connection	defined	in	your	application's	database	configuration	file:

php	artisan	migrate:fresh	--database=admin

[!WARNING]
The	migrate:fresh	command	will	drop	all	database	tables	regardless	of	their	prefix.	This	command	should
be	used	with	caution	when	developing	on	a	database	that	is	shared	with	other	applications.

Tables

Creating	Tables

To	create	a	new	database	table,	use	the	create	method	on	the	Schema	facade.	The	create	method	accepts	two
arguments:	the	first	is	the	name	of	the	table,	while	the	second	is	a	closure	which	receives	a	Blueprint	object	that
may	be	used	to	define	the	new	table:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Laravel	Documentation	-	10.x	/	Migrations 615

Schema::create('users',	function	(Blueprint	$table)	{

				$table->id();

				$table->string('name');

				$table->string('email');

				$table->timestamps();

});

When	creating	the	table,	you	may	use	any	of	the	schema	builder's	column	methods	to	define	the	table's
columns.

Determining	Table	/	Column	Existence

You	may	determine	the	existence	of	a	table	or	column	using	the	hasTable	and	hasColumn	methods:

if	(Schema::hasTable('users'))	{

				//	The	"users"	table	exists...

}

if	(Schema::hasColumn('users',	'email'))	{

				//	The	"users"	table	exists	and	has	an	"email"	column...

}

Database	Connection	and	Table	Options

If	you	want	to	perform	a	schema	operation	on	a	database	connection	that	is	not	your	application's	default
connection,	use	the	connection	method:

Schema::connection('sqlite')->create('users',	function	(Blueprint	$table)	{

				$table->id();

});

In	addition,	a	few	other	properties	and	methods	may	be	used	to	define	other	aspects	of	the	table's	creation.	The	
engine	property	may	be	used	to	specify	the	table's	storage	engine	when	using	MySQL:

Schema::create('users',	function	(Blueprint	$table)	{

				$table->engine	=	'InnoDB';

				//	...

});

The	charset	and	collation	properties	may	be	used	to	specify	the	character	set	and	collation	for	the	created	table
when	using	MySQL:

Schema::create('users',	function	(Blueprint	$table)	{

				$table->charset	=	'utf8mb4';

				$table->collation	=	'utf8mb4_unicode_ci';

				//	...

});

The	temporary	method	may	be	used	to	indicate	that	the	table	should	be	"temporary".	Temporary	tables	are	only
visible	to	the	current	connection's	database	session	and	are	dropped	automatically	when	the	connection	is
closed:

Schema::create('calculations',	function	(Blueprint	$table)	{

				$table->temporary();

				//	...

});

If	you	would	like	to	add	a	"comment"	to	a	database	table,	you	may	invoke	the	comment	method	on	the	table
instance.	Table	comments	are	currently	only	supported	by	MySQL	and	Postgres:

Schema::create('calculations',	function	(Blueprint	$table)	{

				$table->comment('Business	calculations');

				//	...

});

Updating	Tables

Laravel	Documentation	-	10.x	/	Migrations 616

The	table	method	on	the	Schema	facade	may	be	used	to	update	existing	tables.	Like	the	create	method,	the	table
method	accepts	two	arguments:	the	name	of	the	table	and	a	closure	that	receives	a	Blueprint	instance	you	may
use	to	add	columns	or	indexes	to	the	table:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('users',	function	(Blueprint	$table)	{

				$table->integer('votes');

});

Renaming	/	Dropping	Tables

To	rename	an	existing	database	table,	use	the	rename	method:

use	Illuminate\Support\Facades\Schema;

Schema::rename($from,	$to);

To	drop	an	existing	table,	you	may	use	the	drop	or	dropIfExists	methods:

Schema::drop('users');

Schema::dropIfExists('users');

Renaming	Tables	With	Foreign	Keys

Before	renaming	a	table,	you	should	verify	that	any	foreign	key	constraints	on	the	table	have	an	explicit	name
in	your	migration	files	instead	of	letting	Laravel	assign	a	convention	based	name.	Otherwise,	the	foreign	key
constraint	name	will	refer	to	the	old	table	name.

Columns

Creating	Columns

The	table	method	on	the	Schema	facade	may	be	used	to	update	existing	tables.	Like	the	create	method,	the	table
method	accepts	two	arguments:	the	name	of	the	table	and	a	closure	that	receives	an	
Illuminate\Database\Schema\Blueprint	instance	you	may	use	to	add	columns	to	the	table:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('users',	function	(Blueprint	$table)	{

				$table->integer('votes');

});

Available	Column	Types

The	schema	builder	blueprint	offers	a	variety	of	methods	that	correspond	to	the	different	types	of	columns	you
can	add	to	your	database	tables.	Each	of	the	available	methods	are	listed	in	the	table	below:

bigIncrements
bigInteger
binary
boolean
char
dateTimeTz
dateTime
date
decimal
double
enum
float
foreignId
foreignIdFor

jsonb
lineString
longText
macAddress
mediumIncrements
mediumInteger
mediumText
morphs
multiLineString
multiPoint
multiPolygon
nullableMorphs
nullableTimestamps
nullableUlidMorphs

string
text
timeTz
time
timestampTz
timestamp
timestampsTz
timestamps
tinyIncrements
tinyInteger
tinyText
unsignedBigInteger
unsignedDecimal
unsignedInteger

Laravel	Documentation	-	10.x	/	Migrations 617

foreignIdFor
foreignUlid
foreignUuid
geometryCollection
geometry
id
increments
integer
ipAddress
json

nullableUlidMorphs
nullableUuidMorphs
point
polygon
rememberToken
set
smallIncrements
smallInteger
softDeletesTz
softDeletes

unsignedInteger
unsignedMediumInteger
unsignedSmallInteger
unsignedTinyInteger
ulidMorphs
uuidMorphs
ulid
uuid
year

bigIncrements()

The	bigIncrements	method	creates	an	auto-incrementing	UNSIGNED	BIGINT	(primary	key)	equivalent	column:

$table->bigIncrements('id');

bigInteger()

The	bigInteger	method	creates	a	BIGINT	equivalent	column:

$table->bigInteger('votes');

binary()

The	binary	method	creates	a	BLOB	equivalent	column:

$table->binary('photo');

boolean()

The	boolean	method	creates	a	BOOLEAN	equivalent	column:

$table->boolean('confirmed');

char()

The	char	method	creates	a	CHAR	equivalent	column	with	of	a	given	length:

$table->char('name',	100);

dateTimeTz()

The	dateTimeTz	method	creates	a	DATETIME	(with	timezone)	equivalent	column	with	an	optional	precision	(total
digits):

$table->dateTimeTz('created_at',	$precision	=	0);

dateTime()

The	dateTime	method	creates	a	DATETIME	equivalent	column	with	an	optional	precision	(total	digits):

Laravel	Documentation	-	10.x	/	Migrations 618

$table->dateTime('created_at',	$precision	=	0);

date()

The	date	method	creates	a	DATE	equivalent	column:

$table->date('created_at');

decimal()

The	decimal	method	creates	a	DECIMAL	equivalent	column	with	the	given	precision	(total	digits)	and	scale
(decimal	digits):

$table->decimal('amount',	$precision	=	8,	$scale	=	2);

double()

The	double	method	creates	a	DOUBLE	equivalent	column	with	the	given	precision	(total	digits)	and	scale	(decimal
digits):

$table->double('amount',	8,	2);

enum()

The	enum	method	creates	a	ENUM	equivalent	column	with	the	given	valid	values:

$table->enum('difficulty',	['easy',	'hard']);

float()

The	float	method	creates	a	FLOAT	equivalent	column	with	the	given	precision	(total	digits)	and	scale	(decimal
digits):

$table->float('amount',	8,	2);

foreignId()

The	foreignId	method	creates	an	UNSIGNED	BIGINT	equivalent	column:

$table->foreignId('user_id');

foreignIdFor()

The	foreignIdFor	method	adds	a	{column}_id	equivalent	column	for	a	given	model	class.	The	column	type	will
be	UNSIGNED	BIGINT,	CHAR(36),	or	CHAR(26)	depending	on	the	model	key	type:

$table->foreignIdFor(User::class);

Laravel	Documentation	-	10.x	/	Migrations 619

foreignUlid()

The	foreignUlid	method	creates	a	ULID	equivalent	column:

$table->foreignUlid('user_id');

foreignUuid()

The	foreignUuid	method	creates	a	UUID	equivalent	column:

$table->foreignUuid('user_id');

geometryCollection()

The	geometryCollection	method	creates	a	GEOMETRYCOLLECTION	equivalent	column:

$table->geometryCollection('positions');

geometry()

The	geometry	method	creates	a	GEOMETRY	equivalent	column:

$table->geometry('positions');

id()

The	id	method	is	an	alias	of	the	bigIncrements	method.	By	default,	the	method	will	create	an	id	column;
however,	you	may	pass	a	column	name	if	you	would	like	to	assign	a	different	name	to	the	column:

$table->id();

increments()

The	increments	method	creates	an	auto-incrementing	UNSIGNED	INTEGER	equivalent	column	as	a	primary	key:

$table->increments('id');

integer()

The	integer	method	creates	an	INTEGER	equivalent	column:

$table->integer('votes');

ipAddress()

The	ipAddress	method	creates	a	VARCHAR	equivalent	column:

$table->ipAddress('visitor');

When	using	Postgres,	an	INET	column	will	be	created.

Laravel	Documentation	-	10.x	/	Migrations 620

json()

The	json	method	creates	a	JSON	equivalent	column:

$table->json('options');

jsonb()

The	jsonb	method	creates	a	JSONB	equivalent	column:

$table->jsonb('options');

lineString()

The	lineString	method	creates	a	LINESTRING	equivalent	column:

$table->lineString('positions');

longText()

The	longText	method	creates	a	LONGTEXT	equivalent	column:

$table->longText('description');

macAddress()

The	macAddress	method	creates	a	column	that	is	intended	to	hold	a	MAC	address.	Some	database	systems,	such
as	PostgreSQL,	have	a	dedicated	column	type	for	this	type	of	data.	Other	database	systems	will	use	a	string
equivalent	column:

$table->macAddress('device');

mediumIncrements()

The	mediumIncrements	method	creates	an	auto-incrementing	UNSIGNED	MEDIUMINT	equivalent	column	as	a	primary
key:

$table->mediumIncrements('id');

mediumInteger()

The	mediumInteger	method	creates	a	MEDIUMINT	equivalent	column:

$table->mediumInteger('votes');

mediumText()

The	mediumText	method	creates	a	MEDIUMTEXT	equivalent	column:

$table->mediumText('description');

Laravel	Documentation	-	10.x	/	Migrations 621

morphs()

The	morphs	method	is	a	convenience	method	that	adds	a	{column}_id	equivalent	column	and	a	{column}_type	
VARCHAR	equivalent	column.	The	column	type	for	the	{column}_id	will	be	UNSIGNED	BIGINT,	CHAR(36),	or	CHAR(26)
depending	on	the	model	key	type.

This	method	is	intended	to	be	used	when	defining	the	columns	necessary	for	a	polymorphic	Eloquent
relationship.	In	the	following	example,	taggable_id	and	taggable_type	columns	would	be	created:

$table->morphs('taggable');

multiLineString()

The	multiLineString	method	creates	a	MULTILINESTRING	equivalent	column:

$table->multiLineString('positions');

multiPoint()

The	multiPoint	method	creates	a	MULTIPOINT	equivalent	column:

$table->multiPoint('positions');

multiPolygon()

The	multiPolygon	method	creates	a	MULTIPOLYGON	equivalent	column:

$table->multiPolygon('positions');

nullableTimestamps()

The	nullableTimestamps	method	is	an	alias	of	the	timestamps	method:

$table->nullableTimestamps(0);

nullableMorphs()

The	method	is	similar	to	the	morphs	method;	however,	the	columns	that	are	created	will	be	"nullable":

$table->nullableMorphs('taggable');

nullableUlidMorphs()

The	method	is	similar	to	the	ulidMorphs	method;	however,	the	columns	that	are	created	will	be	"nullable":

$table->nullableUlidMorphs('taggable');

nullableUuidMorphs()

The	method	is	similar	to	the	uuidMorphs	method;	however,	the	columns	that	are	created	will	be	"nullable":

Laravel	Documentation	-	10.x	/	Migrations 622

$table->nullableUuidMorphs('taggable');

point()

The	point	method	creates	a	POINT	equivalent	column:

$table->point('position');

polygon()

The	polygon	method	creates	a	POLYGON	equivalent	column:

$table->polygon('position');

rememberToken()

The	rememberToken	method	creates	a	nullable,	VARCHAR(100)	equivalent	column	that	is	intended	to	store	the
current	"remember	me"	authentication	token:

$table->rememberToken();

set()

The	set	method	creates	a	SET	equivalent	column	with	the	given	list	of	valid	values:

$table->set('flavors',	['strawberry',	'vanilla']);

smallIncrements()

The	smallIncrements	method	creates	an	auto-incrementing	UNSIGNED	SMALLINT	equivalent	column	as	a	primary
key:

$table->smallIncrements('id');

smallInteger()

The	smallInteger	method	creates	a	SMALLINT	equivalent	column:

$table->smallInteger('votes');

softDeletesTz()

The	softDeletesTz	method	adds	a	nullable	deleted_at	TIMESTAMP	(with	timezone)	equivalent	column	with	an
optional	precision	(total	digits).	This	column	is	intended	to	store	the	deleted_at	timestamp	needed	for
Eloquent's	"soft	delete"	functionality:

$table->softDeletesTz($column	=	'deleted_at',	$precision	=	0);

Laravel	Documentation	-	10.x	/	Migrations 623

softDeletes()

The	softDeletes	method	adds	a	nullable	deleted_at	TIMESTAMP	equivalent	column	with	an	optional	precision
(total	digits).	This	column	is	intended	to	store	the	deleted_at	timestamp	needed	for	Eloquent's	"soft	delete"
functionality:

$table->softDeletes($column	=	'deleted_at',	$precision	=	0);

string()

The	string	method	creates	a	VARCHAR	equivalent	column	of	the	given	length:

$table->string('name',	100);

text()

The	text	method	creates	a	TEXT	equivalent	column:

$table->text('description');

timeTz()

The	timeTz	method	creates	a	TIME	(with	timezone)	equivalent	column	with	an	optional	precision	(total	digits):

$table->timeTz('sunrise',	$precision	=	0);

time()

The	time	method	creates	a	TIME	equivalent	column	with	an	optional	precision	(total	digits):

$table->time('sunrise',	$precision	=	0);

timestampTz()

The	timestampTz	method	creates	a	TIMESTAMP	(with	timezone)	equivalent	column	with	an	optional	precision
(total	digits):

$table->timestampTz('added_at',	$precision	=	0);

timestamp()

The	timestamp	method	creates	a	TIMESTAMP	equivalent	column	with	an	optional	precision	(total	digits):

$table->timestamp('added_at',	$precision	=	0);

timestampsTz()

The	timestampsTz	method	creates	created_at	and	updated_at	TIMESTAMP	(with	timezone)	equivalent	columns	with
an	optional	precision	(total	digits):

$table->timestampsTz($precision	=	0);

Laravel	Documentation	-	10.x	/	Migrations 624

timestamps()

The	timestamps	method	creates	created_at	and	updated_at	TIMESTAMP	equivalent	columns	with	an	optional
precision	(total	digits):

$table->timestamps($precision	=	0);

tinyIncrements()

The	tinyIncrements	method	creates	an	auto-incrementing	UNSIGNED	TINYINT	equivalent	column	as	a	primary	key:

$table->tinyIncrements('id');

tinyInteger()

The	tinyInteger	method	creates	a	TINYINT	equivalent	column:

$table->tinyInteger('votes');

tinyText()

The	tinyText	method	creates	a	TINYTEXT	equivalent	column:

$table->tinyText('notes');

unsignedBigInteger()

The	unsignedBigInteger	method	creates	an	UNSIGNED	BIGINT	equivalent	column:

$table->unsignedBigInteger('votes');

unsignedDecimal()

The	unsignedDecimal	method	creates	an	UNSIGNED	DECIMAL	equivalent	column	with	an	optional	precision	(total
digits)	and	scale	(decimal	digits):

$table->unsignedDecimal('amount',	$precision	=	8,	$scale	=	2);

unsignedInteger()

The	unsignedInteger	method	creates	an	UNSIGNED	INTEGER	equivalent	column:

$table->unsignedInteger('votes');

unsignedMediumInteger()

The	unsignedMediumInteger	method	creates	an	UNSIGNED	MEDIUMINT	equivalent	column:

$table->unsignedMediumInteger('votes');

Laravel	Documentation	-	10.x	/	Migrations 625

unsignedSmallInteger()

The	unsignedSmallInteger	method	creates	an	UNSIGNED	SMALLINT	equivalent	column:

$table->unsignedSmallInteger('votes');

unsignedTinyInteger()

The	unsignedTinyInteger	method	creates	an	UNSIGNED	TINYINT	equivalent	column:

$table->unsignedTinyInteger('votes');

ulidMorphs()

The	ulidMorphs	method	is	a	convenience	method	that	adds	a	{column}_id	CHAR(26)	equivalent	column	and	a	
{column}_type	VARCHAR	equivalent	column.

This	method	is	intended	to	be	used	when	defining	the	columns	necessary	for	a	polymorphic	Eloquent
relationship	that	use	ULID	identifiers.	In	the	following	example,	taggable_id	and	taggable_type	columns	would
be	created:

$table->ulidMorphs('taggable');

uuidMorphs()

The	uuidMorphs	method	is	a	convenience	method	that	adds	a	{column}_id	CHAR(36)	equivalent	column	and	a	
{column}_type	VARCHAR	equivalent	column.

This	method	is	intended	to	be	used	when	defining	the	columns	necessary	for	a	polymorphic	Eloquent
relationship	that	use	UUID	identifiers.	In	the	following	example,	taggable_id	and	taggable_type	columns	would
be	created:

$table->uuidMorphs('taggable');

ulid()

The	ulid	method	creates	a	ULID	equivalent	column:

$table->ulid('id');

uuid()

The	uuid	method	creates	a	UUID	equivalent	column:

$table->uuid('id');

year()

The	year	method	creates	a	YEAR	equivalent	column:

$table->year('birth_year');

Laravel	Documentation	-	10.x	/	Migrations 626

Column	Modifiers

In	addition	to	the	column	types	listed	above,	there	are	several	column	"modifiers"	you	may	use	when	adding	a
column	to	a	database	table.	For	example,	to	make	the	column	"nullable",	you	may	use	the	nullable	method:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('email')->nullable();

});

The	following	table	contains	all	of	the	available	column	modifiers.	This	list	does	not	include	index	modifiers:

Modifier Description
->after('column') Place	the	column	"after"	another	column	(MySQL).
->autoIncrement() Set	INTEGER	columns	as	auto-incrementing	(primary	key).
->charset('utf8mb4') Specify	a	character	set	for	the	column	(MySQL).
-

>collation('utf8mb4_unicode_ci')
Specify	a	collation	for	the	column	(MySQL/PostgreSQL/SQL	Server).

->comment('my	comment') Add	a	comment	to	a	column	(MySQL/PostgreSQL).
->default($value) Specify	a	"default"	value	for	the	column.
->first() Place	the	column	"first"	in	the	table	(MySQL).
->from($integer) Set	the	starting	value	of	an	auto-incrementing	field	(MySQL	/	PostgreSQL).
->invisible() Make	the	column	"invisible"	to	SELECT	*	queries	(MySQL).
->nullable($value	=	true) Allow	NULL	values	to	be	inserted	into	the	column.
->storedAs($expression) Create	a	stored	generated	column	(MySQL	/	PostgreSQL).
->unsigned() Set	INTEGER	columns	as	UNSIGNED	(MySQL).
->useCurrent() Set	TIMESTAMP	columns	to	use	CURRENT_TIMESTAMP	as	default	value.

->useCurrentOnUpdate()
Set	TIMESTAMP	columns	to	use	CURRENT_TIMESTAMP	when	a	record	is	updated
(MySQL).

->virtualAs($expression) Create	a	virtual	generated	column	(MySQL	/	PostgreSQL	/	SQLite).
->generatedAs($expression) Create	an	identity	column	with	specified	sequence	options	(PostgreSQL).
->always() Defines	the	precedence	of	sequence	values	over	input	for	an	identity	column	(PostgreSQL).
->isGeometry() Set	spatial	column	type	to	geometry	-	the	default	type	is	geography	(PostgreSQL).

Default	Expressions

The	default	modifier	accepts	a	value	or	an	Illuminate\Database\Query\Expression	instance.	Using	an	
Expression	instance	will	prevent	Laravel	from	wrapping	the	value	in	quotes	and	allow	you	to	use	database
specific	functions.	One	situation	where	this	is	particularly	useful	is	when	you	need	to	assign	default	values	to
JSON	columns:

<?php

use	Illuminate\Support\Facades\Schema;

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Database\Query\Expression;

use	Illuminate\Database\Migrations\Migration;

return	new	class	extends	Migration

{

				/**

					*	Run	the	migrations.

					*/

				public	function	up():	void

				{

								Schema::create('flights',	function	(Blueprint	$table)	{

												$table->id();

												$table->json('movies')->default(new	Expression('(JSON_ARRAY())'));

												$table->timestamps();

								});

				}

};

Laravel	Documentation	-	10.x	/	Migrations 627

[!WARNING]
Support	for	default	expressions	depends	on	your	database	driver,	database	version,	and	the	field	type.
Please	refer	to	your	database's	documentation.

Column	Order

When	using	the	MySQL	database,	the	after	method	may	be	used	to	add	columns	after	an	existing	column	in
the	schema:

$table->after('password',	function	(Blueprint	$table)	{

				$table->string('address_line1');

				$table->string('address_line2');

				$table->string('city');

});

Modifying	Columns

The	change	method	allows	you	to	modify	the	type	and	attributes	of	existing	columns.	For	example,	you	may
wish	to	increase	the	size	of	a	string	column.	To	see	the	change	method	in	action,	let's	increase	the	size	of	the	
name	column	from	25	to	50.	To	accomplish	this,	we	simply	define	the	new	state	of	the	column	and	then	call	the	
change	method:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('name',	50)->change();

});

When	modifying	a	column,	you	must	explicitly	include	all	of	the	modifiers	you	want	to	keep	on	the	column
definition	-	any	missing	attribute	will	be	dropped.	For	example,	to	retain	the	unsigned,	default,	and	comment
attributes,	you	must	call	each	modifier	explicitly	when	changing	the	column:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->integer('votes')->unsigned()->default(1)->comment('my	comment')->change();

});

Modifying	Columns	on	SQLite

If	your	application	is	utilizing	an	SQLite	database,	you	must	install	the	doctrine/dbal	package	using	the
Composer	package	manager	before	modifying	a	column.	The	Doctrine	DBAL	library	is	used	to	determine	the
current	state	of	the	column	and	to	create	the	SQL	queries	needed	to	make	the	requested	changes	to	your
column:

composer	require	doctrine/dbal

If	you	plan	to	modify	columns	created	using	the	timestamp	method,	you	must	also	add	the	following
configuration	to	your	application's	config/database.php	configuration	file:

use	Illuminate\Database\DBAL\TimestampType;

'dbal'	=>	[

				'types'	=>	[

								'timestamp'	=>	TimestampType::class,

],

],

[!WARNING]
When	using	the	doctrine/dbal	package,	the	following	column	types	can	be	modified:	bigInteger,	binary,	
boolean,	char,	date,	dateTime,	dateTimeTz,	decimal,	double,	integer,	json,	longText,	mediumText,	
smallInteger,	string,	text,	time,	tinyText,	unsignedBigInteger,	unsignedInteger,	unsignedSmallInteger,	
ulid,	and	uuid.

Renaming	Columns

To	rename	a	column,	you	may	use	the	renameColumn	method	provided	by	the	schema	builder:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->renameColumn('from',	'to');

Laravel	Documentation	-	10.x	/	Migrations 628

});

Renaming	Columns	on	Legacy	Databases

If	you	are	running	a	database	installation	older	than	one	of	the	following	releases,	you	should	ensure	that	you
have	installed	the	doctrine/dbal	library	via	the	Composer	package	manager	before	renaming	a	column:

MySQL

Dropping	Columns

To	drop	a	column,	you	may	use	the	dropColumn	method	on	the	schema	builder:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->dropColumn('votes');

});

You	may	drop	multiple	columns	from	a	table	by	passing	an	array	of	column	names	to	the	dropColumn	method:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->dropColumn(['votes',	'avatar',	'location']);

});

Dropping	Columns	on	Legacy	Databases

If	you	are	running	a	version	of	SQLite	prior	to	3.35.0,	you	must	install	the	doctrine/dbal	package	via	the
Composer	package	manager	before	the	dropColumn	method	may	be	used.	Dropping	or	modifying	multiple
columns	within	a	single	migration	while	using	this	package	is	not	supported.

Available	Command	Aliases

Laravel	provides	several	convenient	methods	related	to	dropping	common	types	of	columns.	Each	of	these
methods	is	described	in	the	table	below:

Command Description
$table->dropMorphs('morphable'); Drop	the	morphable_id	and	morphable_type	columns.
$table->dropRememberToken(); Drop	the	remember_token	column.
$table->dropSoftDeletes(); Drop	the	deleted_at	column.
$table->dropSoftDeletesTz(); Alias	of	dropSoftDeletes()	method.
$table->dropTimestamps(); Drop	the	created_at	and	updated_at	columns.
$table->dropTimestampsTz(); Alias	of	dropTimestamps()	method.

Indexes

Creating	Indexes

The	Laravel	schema	builder	supports	several	types	of	indexes.	The	following	example	creates	a	new	email
column	and	specifies	that	its	values	should	be	unique.	To	create	the	index,	we	can	chain	the	unique	method	onto
the	column	definition:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('email')->unique();

});

Alternatively,	you	may	create	the	index	after	defining	the	column.	To	do	so,	you	should	call	the	unique	method
on	the	schema	builder	blueprint.	This	method	accepts	the	name	of	the	column	that	should	receive	a	unique
index:

$table->unique('email');

Laravel	Documentation	-	10.x	/	Migrations 629

You	may	even	pass	an	array	of	columns	to	an	index	method	to	create	a	compound	(or	composite)	index:

$table->index(['account_id',	'created_at']);

When	creating	an	index,	Laravel	will	automatically	generate	an	index	name	based	on	the	table,	column	names,
and	the	index	type,	but	you	may	pass	a	second	argument	to	the	method	to	specify	the	index	name	yourself:

$table->unique('email',	'unique_email');

Available	Index	Types

Laravel's	schema	builder	blueprint	class	provides	methods	for	creating	each	type	of	index	supported	by	Laravel.
Each	index	method	accepts	an	optional	second	argument	to	specify	the	name	of	the	index.	If	omitted,	the	name
will	be	derived	from	the	names	of	the	table	and	column(s)	used	for	the	index,	as	well	as	the	index	type.	Each	of
the	available	index	methods	is	described	in	the	table	below:

Command Description
$table->primary('id'); Adds	a	primary	key.
$table->primary(['id',	'parent_id']); Adds	composite	keys.
$table->unique('email'); Adds	a	unique	index.
$table->index('state'); Adds	an	index.
$table->fullText('body'); Adds	a	full	text	index	(MySQL/PostgreSQL).
$table->fullText('body')->language('english'); Adds	a	full	text	index	of	the	specified	language	(PostgreSQL).
$table->spatialIndex('location'); Adds	a	spatial	index	(except	SQLite).

Index	Lengths	and	MySQL	/	MariaDB

By	default,	Laravel	uses	the	utf8mb4	character	set.	If	you	are	running	a	version	of	MySQL	older	than	the	5.7.7
release	or	MariaDB	older	than	the	10.2.2	release,	you	may	need	to	manually	configure	the	default	string	length
generated	by	migrations	in	order	for	MySQL	to	create	indexes	for	them.	You	may	configure	the	default	string
length	by	calling	the	Schema::defaultStringLength	method	within	the	boot	method	of	your	
App\Providers\AppServiceProvider	class:

use	Illuminate\Support\Facades\Schema;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Schema::defaultStringLength(191);

}

Alternatively,	you	may	enable	the	innodb_large_prefix	option	for	your	database.	Refer	to	your	database's
documentation	for	instructions	on	how	to	properly	enable	this	option.

Renaming	Indexes

To	rename	an	index,	you	may	use	the	renameIndex	method	provided	by	the	schema	builder	blueprint.	This
method	accepts	the	current	index	name	as	its	first	argument	and	the	desired	name	as	its	second	argument:

$table->renameIndex('from',	'to')

[!WARNING]
If	your	application	is	utilizing	an	SQLite	database,	you	must	install	the	doctrine/dbal	package	via	the
Composer	package	manager	before	the	renameIndex	method	may	be	used.

Dropping	Indexes

To	drop	an	index,	you	must	specify	the	index's	name.	By	default,	Laravel	automatically	assigns	an	index	name
based	on	the	table	name,	the	name	of	the	indexed	column,	and	the	index	type.	Here	are	some	examples:

Laravel	Documentation	-	10.x	/	Migrations 630

Command Description
$table->dropPrimary('users_id_primary'); Drop	a	primary	key	from	the	"users"	table.
$table->dropUnique('users_email_unique'); Drop	a	unique	index	from	the	"users"	table.
$table->dropIndex('geo_state_index'); Drop	a	basic	index	from	the	"geo"	table.
$table->dropFullText('posts_body_fulltext'); Drop	a	full	text	index	from	the	"posts"	table.
$table->dropSpatialIndex('geo_location_spatialindex'); Drop	a	spatial	index	from	the	"geo"	table	(except	SQLite).

If	you	pass	an	array	of	columns	into	a	method	that	drops	indexes,	the	conventional	index	name	will	be
generated	based	on	the	table	name,	columns,	and	index	type:

Schema::table('geo',	function	(Blueprint	$table)	{

				$table->dropIndex(['state']);	//	Drops	index	'geo_state_index'

});

Foreign	Key	Constraints

Laravel	also	provides	support	for	creating	foreign	key	constraints,	which	are	used	to	force	referential	integrity
at	the	database	level.	For	example,	let's	define	a	user_id	column	on	the	posts	table	that	references	the	id
column	on	a	users	table:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->unsignedBigInteger('user_id');

				$table->foreign('user_id')->references('id')->on('users');

});

Since	this	syntax	is	rather	verbose,	Laravel	provides	additional,	terser	methods	that	use	conventions	to	provide
a	better	developer	experience.	When	using	the	foreignId	method	to	create	your	column,	the	example	above	can
be	rewritten	like	so:

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->foreignId('user_id')->constrained();

});

The	foreignId	method	creates	an	UNSIGNED	BIGINT	equivalent	column,	while	the	constrained	method	will	use
conventions	to	determine	the	table	and	column	being	referenced.	If	your	table	name	does	not	match	Laravel's
conventions,	you	may	manually	provide	it	to	the	constrained	method.	In	addition,	the	name	that	should	be
assigned	to	the	generated	index	may	be	specified	as	well:

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->foreignId('user_id')->constrained(

								table:	'users',	indexName:	'posts_user_id'

);

});

You	may	also	specify	the	desired	action	for	the	"on	delete"	and	"on	update"	properties	of	the	constraint:

$table->foreignId('user_id')

						->constrained()

						->onUpdate('cascade')

						->onDelete('cascade');

An	alternative,	expressive	syntax	is	also	provided	for	these	actions:

Method Description
$table->cascadeOnUpdate(); Updates	should	cascade.
$table->restrictOnUpdate(); Updates	should	be	restricted.
$table->noActionOnUpdate(); No	action	on	updates.
$table->cascadeOnDelete(); Deletes	should	cascade.
$table->restrictOnDelete(); Deletes	should	be	restricted.
$table->nullOnDelete(); Deletes	should	set	the	foreign	key	value	to	null.

Laravel	Documentation	-	10.x	/	Migrations 631

Any	additional	column	modifiers	must	be	called	before	the	constrained	method:

$table->foreignId('user_id')

						->nullable()

						->constrained();

Dropping	Foreign	Keys

To	drop	a	foreign	key,	you	may	use	the	dropForeign	method,	passing	the	name	of	the	foreign	key	constraint	to
be	deleted	as	an	argument.	Foreign	key	constraints	use	the	same	naming	convention	as	indexes.	In	other	words,
the	foreign	key	constraint	name	is	based	on	the	name	of	the	table	and	the	columns	in	the	constraint,	followed	by
a	"_foreign"	suffix:

$table->dropForeign('posts_user_id_foreign');

Alternatively,	you	may	pass	an	array	containing	the	column	name	that	holds	the	foreign	key	to	the	dropForeign
method.	The	array	will	be	converted	to	a	foreign	key	constraint	name	using	Laravel's	constraint	naming
conventions:

$table->dropForeign(['user_id']);

Toggling	Foreign	Key	Constraints

You	may	enable	or	disable	foreign	key	constraints	within	your	migrations	by	using	the	following	methods:

Schema::enableForeignKeyConstraints();

Schema::disableForeignKeyConstraints();

Schema::withoutForeignKeyConstraints(function	()	{

				//	Constraints	disabled	within	this	closure...

});

[!WARNING]
SQLite	disables	foreign	key	constraints	by	default.	When	using	SQLite,	make	sure	to	enable	foreign	key
support	in	your	database	configuration	before	attempting	to	create	them	in	your	migrations.	In	addition,
SQLite	only	supports	foreign	keys	upon	creation	of	the	table	and	not	when	tables	are	altered.

Events

For	convenience,	each	migration	operation	will	dispatch	an	event.	All	of	the	following	events	extend	the	base	
Illuminate\Database\Events\MigrationEvent	class:

Class Description
Illuminate\Database\Events\MigrationsStarted A	batch	of	migrations	is	about	to	be	executed.
Illuminate\Database\Events\MigrationsEnded A	batch	of	migrations	has	finished	executing.
Illuminate\Database\Events\MigrationStarted A	single	migration	is	about	to	be	executed.
Illuminate\Database\Events\MigrationEnded A	single	migration	has	finished	executing.
Illuminate\Database\Events\SchemaDumped A	database	schema	dump	has	completed.
Illuminate\Database\Events\SchemaLoaded An	existing	database	schema	dump	has	loaded.

Laravel	Documentation	-	10.x	/	Migrations 632

https://www.sqlite.org/omitted.html

Database

Database:	Seeding
Introduction
Writing	Seeders

Using	Model	Factories
Calling	Additional	Seeders
Muting	Model	Events

Running	Seeders

Introduction

Laravel	includes	the	ability	to	seed	your	database	with	data	using	seed	classes.	All	seed	classes	are	stored	in	the
database/seeders	directory.	By	default,	a	DatabaseSeeder	class	is	defined	for	you.	From	this	class,	you	may	use
the	call	method	to	run	other	seed	classes,	allowing	you	to	control	the	seeding	order.

[!NOTE]
Mass	assignment	protection	is	automatically	disabled	during	database	seeding.

Writing	Seeders

To	generate	a	seeder,	execute	the	make:seeder	Artisan	command.	All	seeders	generated	by	the	framework	will
be	placed	in	the	database/seeders	directory:

php	artisan	make:seeder	UserSeeder

A	seeder	class	only	contains	one	method	by	default:	run.	This	method	is	called	when	the	db:seed	Artisan
command	is	executed.	Within	the	run	method,	you	may	insert	data	into	your	database	however	you	wish.	You
may	use	the	query	builder	to	manually	insert	data	or	you	may	use	Eloquent	model	factories.

As	an	example,	let's	modify	the	default	DatabaseSeeder	class	and	add	a	database	insert	statement	to	the	run
method:

<?php

namespace	Database\Seeders;

use	Illuminate\Database\Seeder;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Support\Str;

class	DatabaseSeeder	extends	Seeder

{

				/**

					*	Run	the	database	seeders.

					*/

				public	function	run():	void

				{

								DB::table('users')->insert([

												'name'	=>	Str::random(10),

												'email'	=>	Str::random(10).'@example.com',

												'password'	=>	Hash::make('password'),

]);

				}

}

[!NOTE]
You	may	type-hint	any	dependencies	you	need	within	the	run	method's	signature.	They	will	automatically
be	resolved	via	the	Laravel	service	container.

Using	Model	Factories

Of	course,	manually	specifying	the	attributes	for	each	model	seed	is	cumbersome.	Instead,	you	can	use	model

Laravel	Documentation	-	10.x	/	Seeding 633

factories	to	conveniently	generate	large	amounts	of	database	records.	First,	review	the	model	factory
documentation	to	learn	how	to	define	your	factories.

For	example,	let's	create	50	users	that	each	has	one	related	post:

use	App\Models\User;

/**

	*	Run	the	database	seeders.

	*/

public	function	run():	void

{

				User::factory()

												->count(50)

												->hasPosts(1)

												->create();

}

Calling	Additional	Seeders

Within	the	DatabaseSeeder	class,	you	may	use	the	call	method	to	execute	additional	seed	classes.	Using	the	
call	method	allows	you	to	break	up	your	database	seeding	into	multiple	files	so	that	no	single	seeder	class
becomes	too	large.	The	call	method	accepts	an	array	of	seeder	classes	that	should	be	executed:

/**

	*	Run	the	database	seeders.

	*/

public	function	run():	void

{

				$this->call([

								UserSeeder::class,

								PostSeeder::class,

								CommentSeeder::class,

]);

}

Muting	Model	Events

While	running	seeds,	you	may	want	to	prevent	models	from	dispatching	events.	You	may	achieve	this	using	the
WithoutModelEvents	trait.	When	used,	the	WithoutModelEvents	trait	ensures	no	model	events	are	dispatched,	even
if	additional	seed	classes	are	executed	via	the	call	method:

<?php

namespace	Database\Seeders;

use	Illuminate\Database\Seeder;

use	Illuminate\Database\Console\Seeds\WithoutModelEvents;

class	DatabaseSeeder	extends	Seeder

{

				use	WithoutModelEvents;

				/**

					*	Run	the	database	seeders.

					*/

				public	function	run():	void

				{

								$this->call([

												UserSeeder::class,

]);

				}

}

Running	Seeders

You	may	execute	the	db:seed	Artisan	command	to	seed	your	database.	By	default,	the	db:seed	command	runs
the	Database\Seeders\DatabaseSeeder	class,	which	may	in	turn	invoke	other	seed	classes.	However,	you	may	use
the	--class	option	to	specify	a	specific	seeder	class	to	run	individually:

php	artisan	db:seed

Laravel	Documentation	-	10.x	/	Seeding 634

php	artisan	db:seed	--class=UserSeeder

You	may	also	seed	your	database	using	the	migrate:fresh	command	in	combination	with	the	--seed	option,
which	will	drop	all	tables	and	re-run	all	of	your	migrations.	This	command	is	useful	for	completely	re-building
your	database.	The	--seeder	option	may	be	used	to	specify	a	specific	seeder	to	run:

php	artisan	migrate:fresh	--seed

php	artisan	migrate:fresh	--seed	--seeder=UserSeeder	

Forcing	Seeders	to	Run	in	Production

Some	seeding	operations	may	cause	you	to	alter	or	lose	data.	In	order	to	protect	you	from	running	seeding
commands	against	your	production	database,	you	will	be	prompted	for	confirmation	before	the	seeders	are
executed	in	the	production	environment.	To	force	the	seeders	to	run	without	a	prompt,	use	the	--force	flag:

php	artisan	db:seed	--force

Laravel	Documentation	-	10.x	/	Seeding 635

Database

Redis
Introduction
Configuration

Clusters
Predis
PhpRedis

Interacting	With	Redis
Transactions
Pipelining	Commands

Pub	/	Sub

Introduction

Redis	is	an	open	source,	advanced	key-value	store.	It	is	often	referred	to	as	a	data	structure	server	since	keys
can	contain	strings,	hashes,	lists,	sets,	and	sorted	sets.

Before	using	Redis	with	Laravel,	we	encourage	you	to	install	and	use	the	PhpRedis	PHP	extension	via	PECL.
The	extension	is	more	complex	to	install	compared	to	"user-land"	PHP	packages	but	may	yield	better
performance	for	applications	that	make	heavy	use	of	Redis.	If	you	are	using	Laravel	Sail,	this	extension	is
already	installed	in	your	application's	Docker	container.

If	you	are	unable	to	install	the	PhpRedis	extension,	you	may	install	the	predis/predis	package	via	Composer.
Predis	is	a	Redis	client	written	entirely	in	PHP	and	does	not	require	any	additional	extensions:

composer	require	predis/predis

Configuration

You	may	configure	your	application's	Redis	settings	via	the	config/database.php	configuration	file.	Within	this
file,	you	will	see	a	redis	array	containing	the	Redis	servers	utilized	by	your	application:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD'),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_DB',	0),

],

				'cache'	=>	[

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD'),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_CACHE_DB',	1),

],

],

Each	Redis	server	defined	in	your	configuration	file	is	required	to	have	a	name,	host,	and	a	port	unless	you
define	a	single	URL	to	represent	the	Redis	connection:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'url'	=>	'tcp://127.0.0.1:6379?database=0',

],

				'cache'	=>	[

								'url'	=>	'tls://user:password@127.0.0.1:6380?database=1',

Laravel	Documentation	-	10.x	/	Redis 636

https://redis.io
https://redis.io/docs/data-types/strings/
https://redis.io/docs/data-types/hashes/
https://redis.io/docs/data-types/lists/
https://redis.io/docs/data-types/sets/
https://redis.io/docs/data-types/sorted-sets/
https://github.com/phpredis/phpredis

],

],

Configuring	the	Connection	Scheme

By	default,	Redis	clients	will	use	the	tcp	scheme	when	connecting	to	your	Redis	servers;	however,	you	may	use
TLS	/	SSL	encryption	by	specifying	a	scheme	configuration	option	in	your	Redis	server's	configuration	array:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'scheme'	=>	'tls',

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD'),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_DB',	0),

],

],

Clusters

If	your	application	is	utilizing	a	cluster	of	Redis	servers,	you	should	define	these	clusters	within	a	clusters	key
of	your	Redis	configuration.	This	configuration	key	does	not	exist	by	default	so	you	will	need	to	create	it	within
your	application's	config/database.php	configuration	file:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'clusters'	=>	[

								'default'	=>	[

												[

																'host'	=>	env('REDIS_HOST',	'localhost'),

																'password'	=>	env('REDIS_PASSWORD'),

																'port'	=>	env('REDIS_PORT',	6379),

																'database'	=>	0,

],

],

],

],

By	default,	clusters	will	perform	client-side	sharding	across	your	nodes,	allowing	you	to	pool	nodes	and	create
a	large	amount	of	available	RAM.	However,	client-side	sharding	does	not	handle	failover;	therefore,	it	is
primarily	suited	for	transient	cached	data	that	is	available	from	another	primary	data	store.

If	you	would	like	to	use	native	Redis	clustering	instead	of	client-side	sharding,	you	may	specify	this	by	setting
the	options.cluster	configuration	value	to	redis	within	your	application's	config/database.php	configuration
file:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'options'	=>	[

								'cluster'	=>	env('REDIS_CLUSTER',	'redis'),

],

				'clusters'	=>	[

								//	...

],

],

Predis

If	you	would	like	your	application	to	interact	with	Redis	via	the	Predis	package,	you	should	ensure	the	

Laravel	Documentation	-	10.x	/	Redis 637

REDIS_CLIENT	environment	variable's	value	is	predis:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'predis'),

				//	...

],

In	addition	to	the	default	host,	port,	database,	and	password	server	configuration	options,	Predis	supports
additional	connection	parameters	that	may	be	defined	for	each	of	your	Redis	servers.	To	utilize	these	additional
configuration	options,	add	them	to	your	Redis	server	configuration	in	your	application's	config/database.php
configuration	file:

'default'	=>	[

				'host'	=>	env('REDIS_HOST',	'localhost'),

				'password'	=>	env('REDIS_PASSWORD'),

				'port'	=>	env('REDIS_PORT',	6379),

				'database'	=>	0,

				'read_write_timeout'	=>	60,

],

The	Redis	Facade	Alias

Laravel's	config/app.php	configuration	file	contains	an	aliases	array	which	defines	all	of	the	class	aliases	that
will	be	registered	by	the	framework.	By	default,	no	Redis	alias	is	included	because	it	would	conflict	with	the	
Redis	class	name	provided	by	the	PhpRedis	extension.	If	you	are	using	the	Predis	client	and	would	like	to	add	a	
Redis	alias,	you	may	add	it	to	the	aliases	array	in	your	application's	config/app.php	configuration	file:

'aliases'	=>	Facade::defaultAliases()->merge([

				'Redis'	=>	Illuminate\Support\Facades\Redis::class,

])->toArray(),

PhpRedis

By	default,	Laravel	will	use	the	PhpRedis	extension	to	communicate	with	Redis.	The	client	that	Laravel	will
use	to	communicate	with	Redis	is	dictated	by	the	value	of	the	redis.client	configuration	option,	which
typically	reflects	the	value	of	the	REDIS_CLIENT	environment	variable:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				//	Rest	of	Redis	configuration...

],

In	addition	to	the	default	scheme,	host,	port,	database,	and	password	server	configuration	options,	PhpRedis
supports	the	following	additional	connection	parameters:	name,	persistent,	persistent_id,	prefix,	read_timeout,
retry_interval,	timeout,	and	context.	You	may	add	any	of	these	options	to	your	Redis	server	configuration	in
the	config/database.php	configuration	file:

'default'	=>	[

				'host'	=>	env('REDIS_HOST',	'localhost'),

				'password'	=>	env('REDIS_PASSWORD'),

				'port'	=>	env('REDIS_PORT',	6379),

				'database'	=>	0,

				'read_timeout'	=>	60,

				'context'	=>	[

								//	'auth'	=>	['username',	'secret'],

								//	'stream'	=>	['verify_peer'	=>	false],

],

],

PhpRedis	Serialization	and	Compression

The	PhpRedis	extension	may	also	be	configured	to	use	a	variety	of	serializers	and	compression	algorithms.
These	algorithms	can	be	configured	via	the	options	array	of	your	Redis	configuration:

'redis'	=>	[

Laravel	Documentation	-	10.x	/	Redis 638

https://github.com/nrk/predis/wiki/Connection-Parameters

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'options'	=>	[

								'serializer'	=>	Redis::SERIALIZER_MSGPACK,

								'compression'	=>	Redis::COMPRESSION_LZ4,

],

				//	Rest	of	Redis	configuration...

],

Currently	supported	serializers	include:	Redis::SERIALIZER_NONE	(default),	Redis::SERIALIZER_PHP,	
Redis::SERIALIZER_JSON,	Redis::SERIALIZER_IGBINARY,	and	Redis::SERIALIZER_MSGPACK.

Supported	compression	algorithms	include:	Redis::COMPRESSION_NONE	(default),	Redis::COMPRESSION_LZF,	
Redis::COMPRESSION_ZSTD,	and	Redis::COMPRESSION_LZ4.

Interacting	With	Redis

You	may	interact	with	Redis	by	calling	various	methods	on	the	Redis	facade.	The	Redis	facade	supports
dynamic	methods,	meaning	you	may	call	any	Redis	command	on	the	facade	and	the	command	will	be	passed
directly	to	Redis.	In	this	example,	we	will	call	the	Redis	GET	command	by	calling	the	get	method	on	the	Redis
facade:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\Redis;

use	Illuminate\View\View;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*/

				public	function	show(string	$id):	View

				{

								return	view('user.profile',	[

												'user'	=>	Redis::get('user:profile:'.$id)

]);

				}

}

As	mentioned	above,	you	may	call	any	of	Redis'	commands	on	the	Redis	facade.	Laravel	uses	magic	methods	to
pass	the	commands	to	the	Redis	server.	If	a	Redis	command	expects	arguments,	you	should	pass	those	to	the
facade's	corresponding	method:

use	Illuminate\Support\Facades\Redis;

Redis::set('name',	'Taylor');

$values	=	Redis::lrange('names',	5,	10);

Alternatively,	you	may	pass	commands	to	the	server	using	the	Redis	facade's	command	method,	which	accepts	the
name	of	the	command	as	its	first	argument	and	an	array	of	values	as	its	second	argument:

$values	=	Redis::command('lrange',	['name',	5,	10]);

Using	Multiple	Redis	Connections

Your	application's	config/database.php	configuration	file	allows	you	to	define	multiple	Redis	connections	/
servers.	You	may	obtain	a	connection	to	a	specific	Redis	connection	using	the	Redis	facade's	connection
method:

$redis	=	Redis::connection('connection-name');

To	obtain	an	instance	of	the	default	Redis	connection,	you	may	call	the	connection	method	without	any
additional	arguments:

Laravel	Documentation	-	10.x	/	Redis 639

https://redis.io/commands

$redis	=	Redis::connection();

Transactions

The	Redis	facade's	transaction	method	provides	a	convenient	wrapper	around	Redis'	native	MULTI	and	EXEC
commands.	The	transaction	method	accepts	a	closure	as	its	only	argument.	This	closure	will	receive	a	Redis
connection	instance	and	may	issue	any	commands	it	would	like	to	this	instance.	All	of	the	Redis	commands
issued	within	the	closure	will	be	executed	in	a	single,	atomic	transaction:

use	Redis;

use	Illuminate\Support\Facades;

Facades\Redis::transaction(function	(Redis	$redis)	{

				$redis->incr('user_visits',	1);

				$redis->incr('total_visits',	1);

});

[!WARNING]
When	defining	a	Redis	transaction,	you	may	not	retrieve	any	values	from	the	Redis	connection.
Remember,	your	transaction	is	executed	as	a	single,	atomic	operation	and	that	operation	is	not	executed
until	your	entire	closure	has	finished	executing	its	commands.

Lua	Scripts

The	eval	method	provides	another	method	of	executing	multiple	Redis	commands	in	a	single,	atomic	operation.
However,	the	eval	method	has	the	benefit	of	being	able	to	interact	with	and	inspect	Redis	key	values	during	that
operation.	Redis	scripts	are	written	in	the	Lua	programming	language.

The	eval	method	can	be	a	bit	scary	at	first,	but	we'll	explore	a	basic	example	to	break	the	ice.	The	eval	method
expects	several	arguments.	First,	you	should	pass	the	Lua	script	(as	a	string)	to	the	method.	Secondly,	you
should	pass	the	number	of	keys	(as	an	integer)	that	the	script	interacts	with.	Thirdly,	you	should	pass	the	names
of	those	keys.	Finally,	you	may	pass	any	other	additional	arguments	that	you	need	to	access	within	your	script.

In	this	example,	we	will	increment	a	counter,	inspect	its	new	value,	and	increment	a	second	counter	if	the	first
counter's	value	is	greater	than	five.	Finally,	we	will	return	the	value	of	the	first	counter:

$value	=	Redis::eval(<<<'LUA'

				local	counter	=	redis.call("incr",	KEYS[1])

				if	counter	>	5	then

								redis.call("incr",	KEYS[2])

				end

				return	counter

LUA,	2,	'first-counter',	'second-counter');

[!WARNING]
Please	consult	the	Redis	documentation	for	more	information	on	Redis	scripting.

Pipelining	Commands

Sometimes	you	may	need	to	execute	dozens	of	Redis	commands.	Instead	of	making	a	network	trip	to	your
Redis	server	for	each	command,	you	may	use	the	pipeline	method.	The	pipeline	method	accepts	one	argument:
a	closure	that	receives	a	Redis	instance.	You	may	issue	all	of	your	commands	to	this	Redis	instance	and	they
will	all	be	sent	to	the	Redis	server	at	the	same	time	to	reduce	network	trips	to	the	server.	The	commands	will
still	be	executed	in	the	order	they	were	issued:

use	Redis;

use	Illuminate\Support\Facades;

Facades\Redis::pipeline(function	(Redis	$pipe)	{

				for	($i	=	0;	$i	<	1000;	$i++)	{

								$pipe->set("key:$i",	$i);

				}

});

Laravel	Documentation	-	10.x	/	Redis 640

https://www.lua.org
https://redis.io/commands/eval

Pub	/	Sub

Laravel	provides	a	convenient	interface	to	the	Redis	publish	and	subscribe	commands.	These	Redis	commands
allow	you	to	listen	for	messages	on	a	given	"channel".	You	may	publish	messages	to	the	channel	from	another
application,	or	even	using	another	programming	language,	allowing	easy	communication	between	applications
and	processes.

First,	let's	setup	a	channel	listener	using	the	subscribe	method.	We'll	place	this	method	call	within	an	Artisan
command	since	calling	the	subscribe	method	begins	a	long-running	process:

<?php

namespace	App\Console\Commands;

use	Illuminate\Console\Command;

use	Illuminate\Support\Facades\Redis;

class	RedisSubscribe	extends	Command

{

				/**

					*	The	name	and	signature	of	the	console	command.

					*

					*	@var	string

					*/

				protected	$signature	=	'redis:subscribe';

				/**

					*	The	console	command	description.

					*

					*	@var	string

					*/

				protected	$description	=	'Subscribe	to	a	Redis	channel';

				/**

					*	Execute	the	console	command.

					*/

				public	function	handle():	void

				{

								Redis::subscribe(['test-channel'],	function	(string	$message)	{

												echo	$message;

								});

				}

}

Now	we	may	publish	messages	to	the	channel	using	the	publish	method:

use	Illuminate\Support\Facades\Redis;

Route::get('/publish',	function	()	{

				//	...

				Redis::publish('test-channel',	json_encode([

								'name'	=>	'Adam	Wathan'

]));

});

Wildcard	Subscriptions

Using	the	psubscribe	method,	you	may	subscribe	to	a	wildcard	channel,	which	may	be	useful	for	catching	all
messages	on	all	channels.	The	channel	name	will	be	passed	as	the	second	argument	to	the	provided	closure:

Redis::psubscribe(['*'],	function	(string	$message,	string	$channel)	{

				echo	$message;

});

Redis::psubscribe(['users.*'],	function	(string	$message,	string	$channel)	{

				echo	$message;

});

Laravel	Documentation	-	10.x	/	Redis 641

Eloquent	ORM

Eloquent:	Getting	Started
Introduction
Generating	Model	Classes
Eloquent	Model	Conventions

Table	Names
Primary	Keys
UUID	and	ULID	Keys
Timestamps
Database	Connections
Default	Attribute	Values
Configuring	Eloquent	Strictness

Retrieving	Models
Collections
Chunking	Results
Chunk	Using	Lazy	Collections
Cursors
Advanced	Subqueries

Retrieving	Single	Models	/	Aggregates
Retrieving	or	Creating	Models
Retrieving	Aggregates

Inserting	and	Updating	Models
Inserts
Updates
Mass	Assignment
Upserts

Deleting	Models
Soft	Deleting
Querying	Soft	Deleted	Models

Pruning	Models
Replicating	Models
Query	Scopes

Global	Scopes
Local	Scopes

Comparing	Models
Events

Using	Closures
Observers
Muting	Events

Introduction

Laravel	includes	Eloquent,	an	object-relational	mapper	(ORM)	that	makes	it	enjoyable	to	interact	with	your
database.	When	using	Eloquent,	each	database	table	has	a	corresponding	"Model"	that	is	used	to	interact	with
that	table.	In	addition	to	retrieving	records	from	the	database	table,	Eloquent	models	allow	you	to	insert,
update,	and	delete	records	from	the	table	as	well.

[!NOTE]
Before	getting	started,	be	sure	to	configure	a	database	connection	in	your	application's	
config/database.php	configuration	file.	For	more	information	on	configuring	your	database,	check	out	the
database	configuration	documentation.

Laravel	Bootcamp

If	you're	new	to	Laravel,	feel	free	to	jump	into	the	Laravel	Bootcamp.	The	Laravel	Bootcamp	will	walk	you
through	building	your	first	Laravel	application	using	Eloquent.	It's	a	great	way	to	get	a	tour	of	everything	that
Laravel	and	Eloquent	have	to	offer.

Laravel	Documentation	-	10.x	/	Eloquent	ORM 642

https://bootcamp.laravel.com

Generating	Model	Classes

To	get	started,	let's	create	an	Eloquent	model.	Models	typically	live	in	the	app\Models	directory	and	extend	the	
Illuminate\Database\Eloquent\Model	class.	You	may	use	the	make:model	Artisan	command	to	generate	a	new
model:

php	artisan	make:model	Flight

If	you	would	like	to	generate	a	database	migration	when	you	generate	the	model,	you	may	use	the	--migration
or	-m	option:

php	artisan	make:model	Flight	--migration

You	may	generate	various	other	types	of	classes	when	generating	a	model,	such	as	factories,	seeders,	policies,
controllers,	and	form	requests.	In	addition,	these	options	may	be	combined	to	create	multiple	classes	at	once:

#	Generate	a	model	and	a	FlightFactory	class...

php	artisan	make:model	Flight	--factory

php	artisan	make:model	Flight	-f

#	Generate	a	model	and	a	FlightSeeder	class...

php	artisan	make:model	Flight	--seed

php	artisan	make:model	Flight	-s

#	Generate	a	model	and	a	FlightController	class...

php	artisan	make:model	Flight	--controller

php	artisan	make:model	Flight	-c

#	Generate	a	model,	FlightController	resource	class,	and	form	request	classes...

php	artisan	make:model	Flight	--controller	--resource	--requests

php	artisan	make:model	Flight	-crR

#	Generate	a	model	and	a	FlightPolicy	class...

php	artisan	make:model	Flight	--policy

#	Generate	a	model	and	a	migration,	factory,	seeder,	and	controller...

php	artisan	make:model	Flight	-mfsc

#	Shortcut	to	generate	a	model,	migration,	factory,	seeder,	policy,	controller,	and	form	requests...

php	artisan	make:model	Flight	--all

#	Generate	a	pivot	model...

php	artisan	make:model	Member	--pivot

php	artisan	make:model	Member	-p

Inspecting	Models

Sometimes	it	can	be	difficult	to	determine	all	of	a	model's	available	attributes	and	relationships	just	by
skimming	its	code.	Instead,	try	the	model:show	Artisan	command,	which	provides	a	convenient	overview	of	all
the	model's	attributes	and	relations:

php	artisan	model:show	Flight

Eloquent	Model	Conventions

Models	generated	by	the	make:model	command	will	be	placed	in	the	app/Models	directory.	Let's	examine	a	basic
model	class	and	discuss	some	of	Eloquent's	key	conventions:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				//	...

}

Table	Names

Laravel	Documentation	-	10.x	/	Eloquent	ORM 643

After	glancing	at	the	example	above,	you	may	have	noticed	that	we	did	not	tell	Eloquent	which	database	table
corresponds	to	our	Flight	model.	By	convention,	the	"snake	case",	plural	name	of	the	class	will	be	used	as	the
table	name	unless	another	name	is	explicitly	specified.	So,	in	this	case,	Eloquent	will	assume	the	Flight	model
stores	records	in	the	flights	table,	while	an	AirTrafficController	model	would	store	records	in	an	
air_traffic_controllers	table.

If	your	model's	corresponding	database	table	does	not	fit	this	convention,	you	may	manually	specify	the
model's	table	name	by	defining	a	table	property	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	table	associated	with	the	model.

					*

					*	@var	string

					*/

				protected	$table	=	'my_flights';

}

Primary	Keys

Eloquent	will	also	assume	that	each	model's	corresponding	database	table	has	a	primary	key	column	named	id.
If	necessary,	you	may	define	a	protected	$primaryKey	property	on	your	model	to	specify	a	different	column	that
serves	as	your	model's	primary	key:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	primary	key	associated	with	the	table.

					*

					*	@var	string

					*/

				protected	$primaryKey	=	'flight_id';

}

In	addition,	Eloquent	assumes	that	the	primary	key	is	an	incrementing	integer	value,	which	means	that	Eloquent
will	automatically	cast	the	primary	key	to	an	integer.	If	you	wish	to	use	a	non-incrementing	or	a	non-numeric
primary	key	you	must	define	a	public	$incrementing	property	on	your	model	that	is	set	to	false:

<?php

class	Flight	extends	Model

{

				/**

					*	Indicates	if	the	model's	ID	is	auto-incrementing.

					*

					*	@var	bool

					*/

				public	$incrementing	=	false;

}

If	your	model's	primary	key	is	not	an	integer,	you	should	define	a	protected	$keyType	property	on	your	model.
This	property	should	have	a	value	of	string:

<?php

class	Flight	extends	Model

{

				/**

					*	The	data	type	of	the	primary	key	ID.

					*

Laravel	Documentation	-	10.x	/	Eloquent	ORM 644

					*	@var	string

					*/

				protected	$keyType	=	'string';

}

"Composite"	Primary	Keys

Eloquent	requires	each	model	to	have	at	least	one	uniquely	identifying	"ID"	that	can	serve	as	its	primary	key.
"Composite"	primary	keys	are	not	supported	by	Eloquent	models.	However,	you	are	free	to	add	additional
multi-column,	unique	indexes	to	your	database	tables	in	addition	to	the	table's	uniquely	identifying	primary
key.

UUID	and	ULID	Keys

Instead	of	using	auto-incrementing	integers	as	your	Eloquent	model's	primary	keys,	you	may	choose	to	use
UUIDs	instead.	UUIDs	are	universally	unique	alpha-numeric	identifiers	that	are	36	characters	long.

If	you	would	like	a	model	to	use	a	UUID	key	instead	of	an	auto-incrementing	integer	key,	you	may	use	the	
Illuminate\Database\Eloquent\Concerns\HasUuids	trait	on	the	model.	Of	course,	you	should	ensure	that	the
model	has	a	UUID	equivalent	primary	key	column:

use	Illuminate\Database\Eloquent\Concerns\HasUuids;

use	Illuminate\Database\Eloquent\Model;

class	Article	extends	Model

{

				use	HasUuids;

				//	...

}

$article	=	Article::create(['title'	=>	'Traveling	to	Europe']);

$article->id;	//	"8f8e8478-9035-4d23-b9a7-62f4d2612ce5"

By	default,	The	HasUuids	trait	will	generate	"ordered"	UUIDs	for	your	models.	These	UUIDs	are	more	efficient
for	indexed	database	storage	because	they	can	be	sorted	lexicographically.

You	can	override	the	UUID	generation	process	for	a	given	model	by	defining	a	newUniqueId	method	on	the
model.	In	addition,	you	may	specify	which	columns	should	receive	UUIDs	by	defining	a	uniqueIds	method	on
the	model:

use	Ramsey\Uuid\Uuid;

/**

	*	Generate	a	new	UUID	for	the	model.

	*/

public	function	newUniqueId():	string

{

				return	(string)	Uuid::uuid4();

}

/**

	*	Get	the	columns	that	should	receive	a	unique	identifier.

	*

	*	@return	array<int,	string>

	*/

public	function	uniqueIds():	array

{

				return	['id',	'discount_code'];

}

If	you	wish,	you	may	choose	to	utilize	"ULIDs"	instead	of	UUIDs.	ULIDs	are	similar	to	UUIDs;	however,	they
are	only	26	characters	in	length.	Like	ordered	UUIDs,	ULIDs	are	lexicographically	sortable	for	efficient
database	indexing.	To	utilize	ULIDs,	you	should	use	the	Illuminate\Database\Eloquent\Concerns\HasUlids	trait
on	your	model.	You	should	also	ensure	that	the	model	has	a	ULID	equivalent	primary	key	column:

use	Illuminate\Database\Eloquent\Concerns\HasUlids;

use	Illuminate\Database\Eloquent\Model;

class	Article	extends	Model

Laravel	Documentation	-	10.x	/	Eloquent	ORM 645

{

				use	HasUlids;

				//	...

}

$article	=	Article::create(['title'	=>	'Traveling	to	Asia']);

$article->id;	//	"01gd4d3tgrrfqeda94gdbtdk5c"

Timestamps

By	default,	Eloquent	expects	created_at	and	updated_at	columns	to	exist	on	your	model's	corresponding
database	table.	Eloquent	will	automatically	set	these	column's	values	when	models	are	created	or	updated.	If
you	do	not	want	these	columns	to	be	automatically	managed	by	Eloquent,	you	should	define	a	$timestamps
property	on	your	model	with	a	value	of	false:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	Indicates	if	the	model	should	be	timestamped.

					*

					*	@var	bool

					*/

				public	$timestamps	=	false;

}

If	you	need	to	customize	the	format	of	your	model's	timestamps,	set	the	$dateFormat	property	on	your	model.
This	property	determines	how	date	attributes	are	stored	in	the	database	as	well	as	their	format	when	the	model
is	serialized	to	an	array	or	JSON:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	storage	format	of	the	model's	date	columns.

					*

					*	@var	string

					*/

				protected	$dateFormat	=	'U';

}

If	you	need	to	customize	the	names	of	the	columns	used	to	store	the	timestamps,	you	may	define	CREATED_AT
and	UPDATED_AT	constants	on	your	model:

<?php

class	Flight	extends	Model

{

				const	CREATED_AT	=	'creation_date';

				const	UPDATED_AT	=	'updated_date';

}

If	you	would	like	to	perform	model	operations	without	the	model	having	its	updated_at	timestamp	modified,
you	may	operate	on	the	model	within	a	closure	given	to	the	withoutTimestamps	method:

Model::withoutTimestamps(fn	()	=>	$post->increment(['reads']));

Database	Connections

By	default,	all	Eloquent	models	will	use	the	default	database	connection	that	is	configured	for	your	application.

Laravel	Documentation	-	10.x	/	Eloquent	ORM 646

If	you	would	like	to	specify	a	different	connection	that	should	be	used	when	interacting	with	a	particular	model,
you	should	define	a	$connection	property	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	database	connection	that	should	be	used	by	the	model.

					*

					*	@var	string

					*/

				protected	$connection	=	'sqlite';

}

Default	Attribute	Values

By	default,	a	newly	instantiated	model	instance	will	not	contain	any	attribute	values.	If	you	would	like	to	define
the	default	values	for	some	of	your	model's	attributes,	you	may	define	an	$attributes	property	on	your	model.
Attribute	values	placed	in	the	$attributes	array	should	be	in	their	raw,	"storable"	format	as	if	they	were	just
read	from	the	database:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	model's	default	values	for	attributes.

					*

					*	@var	array

					*/

				protected	$attributes	=	[

								'options'	=>	'[]',

								'delayed'	=>	false,

];

}

Configuring	Eloquent	Strictness

Laravel	offers	several	methods	that	allow	you	to	configure	Eloquent's	behavior	and	"strictness"	in	a	variety	of
situations.

First,	the	preventLazyLoading	method	accepts	an	optional	boolean	argument	that	indicates	if	lazy	loading	should
be	prevented.	For	example,	you	may	wish	to	only	disable	lazy	loading	in	non-production	environments	so	that
your	production	environment	will	continue	to	function	normally	even	if	a	lazy	loaded	relationship	is
accidentally	present	in	production	code.	Typically,	this	method	should	be	invoked	in	the	boot	method	of	your
application's	AppServiceProvider:

use	Illuminate\Database\Eloquent\Model;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Model::preventLazyLoading(!	$this->app->isProduction());

}

Also,	you	may	instruct	Laravel	to	throw	an	exception	when	attempting	to	fill	an	unfillable	attribute	by	invoking
the	preventSilentlyDiscardingAttributes	method.	This	can	help	prevent	unexpected	errors	during	local
development	when	attempting	to	set	an	attribute	that	has	not	been	added	to	the	model's	fillable	array:

Model::preventSilentlyDiscardingAttributes(!	$this->app->isProduction());

Laravel	Documentation	-	10.x	/	Eloquent	ORM 647

Retrieving	Models

Once	you	have	created	a	model	and	its	associated	database	table,	you	are	ready	to	start	retrieving	data	from
your	database.	You	can	think	of	each	Eloquent	model	as	a	powerful	query	builder	allowing	you	to	fluently
query	the	database	table	associated	with	the	model.	The	model's	all	method	will	retrieve	all	of	the	records	from
the	model's	associated	database	table:

use	App\Models\Flight;

foreach	(Flight::all()	as	$flight)	{

				echo	$flight->name;

}

Building	Queries

The	Eloquent	all	method	will	return	all	of	the	results	in	the	model's	table.	However,	since	each	Eloquent	model
serves	as	a	query	builder,	you	may	add	additional	constraints	to	queries	and	then	invoke	the	get	method	to
retrieve	the	results:

$flights	=	Flight::where('active',	1)

															->orderBy('name')

															->take(10)

															->get();

[!NOTE]
Since	Eloquent	models	are	query	builders,	you	should	review	all	of	the	methods	provided	by	Laravel's
query	builder.	You	may	use	any	of	these	methods	when	writing	your	Eloquent	queries.

Refreshing	Models

If	you	already	have	an	instance	of	an	Eloquent	model	that	was	retrieved	from	the	database,	you	can	"refresh"
the	model	using	the	fresh	and	refresh	methods.	The	fresh	method	will	re-retrieve	the	model	from	the	database.
The	existing	model	instance	will	not	be	affected:

$flight	=	Flight::where('number',	'FR	900')->first();

$freshFlight	=	$flight->fresh();

The	refresh	method	will	re-hydrate	the	existing	model	using	fresh	data	from	the	database.	In	addition,	all	of	its
loaded	relationships	will	be	refreshed	as	well:

$flight	=	Flight::where('number',	'FR	900')->first();

$flight->number	=	'FR	456';

$flight->refresh();

$flight->number;	//	"FR	900"

Collections

As	we	have	seen,	Eloquent	methods	like	all	and	get	retrieve	multiple	records	from	the	database.	However,
these	methods	don't	return	a	plain	PHP	array.	Instead,	an	instance	of	Illuminate\Database\Eloquent\Collection
is	returned.

The	Eloquent	Collection	class	extends	Laravel's	base	Illuminate\Support\Collection	class,	which	provides	a
variety	of	helpful	methods	for	interacting	with	data	collections.	For	example,	the	reject	method	may	be	used	to
remove	models	from	a	collection	based	on	the	results	of	an	invoked	closure:

$flights	=	Flight::where('destination',	'Paris')->get();

$flights	=	$flights->reject(function	(Flight	$flight)	{

				return	$flight->cancelled;

});

In	addition	to	the	methods	provided	by	Laravel's	base	collection	class,	the	Eloquent	collection	class	provides	a

Laravel	Documentation	-	10.x	/	Eloquent	ORM 648

few	extra	methods	that	are	specifically	intended	for	interacting	with	collections	of	Eloquent	models.

Since	all	of	Laravel's	collections	implement	PHP's	iterable	interfaces,	you	may	loop	over	collections	as	if	they
were	an	array:

foreach	($flights	as	$flight)	{

				echo	$flight->name;

}

Chunking	Results

Your	application	may	run	out	of	memory	if	you	attempt	to	load	tens	of	thousands	of	Eloquent	records	via	the	
all	or	get	methods.	Instead	of	using	these	methods,	the	chunk	method	may	be	used	to	process	large	numbers	of
models	more	efficiently.

The	chunk	method	will	retrieve	a	subset	of	Eloquent	models,	passing	them	to	a	closure	for	processing.	Since
only	the	current	chunk	of	Eloquent	models	is	retrieved	at	a	time,	the	chunk	method	will	provide	significantly
reduced	memory	usage	when	working	with	a	large	number	of	models:

use	App\Models\Flight;

use	Illuminate\Database\Eloquent\Collection;

Flight::chunk(200,	function	(Collection	$flights)	{

				foreach	($flights	as	$flight)	{

								//	...

				}

});

The	first	argument	passed	to	the	chunk	method	is	the	number	of	records	you	wish	to	receive	per	"chunk".	The
closure	passed	as	the	second	argument	will	be	invoked	for	each	chunk	that	is	retrieved	from	the	database.	A
database	query	will	be	executed	to	retrieve	each	chunk	of	records	passed	to	the	closure.

If	you	are	filtering	the	results	of	the	chunk	method	based	on	a	column	that	you	will	also	be	updating	while
iterating	over	the	results,	you	should	use	the	chunkById	method.	Using	the	chunk	method	in	these	scenarios	could
lead	to	unexpected	and	inconsistent	results.	Internally,	the	chunkById	method	will	always	retrieve	models	with
an	id	column	greater	than	the	last	model	in	the	previous	chunk:

Flight::where('departed',	true)

				->chunkById(200,	function	(Collection	$flights)	{

								$flights->each->update(['departed'	=>	false]);

				},	$column	=	'id');

Chunking	Using	Lazy	Collections

The	lazy	method	works	similarly	to	the	chunk	method	in	the	sense	that,	behind	the	scenes,	it	executes	the	query
in	chunks.	However,	instead	of	passing	each	chunk	directly	into	a	callback	as	is,	the	lazy	method	returns	a
flattened	LazyCollection	of	Eloquent	models,	which	lets	you	interact	with	the	results	as	a	single	stream:

use	App\Models\Flight;

foreach	(Flight::lazy()	as	$flight)	{

				//	...

}

If	you	are	filtering	the	results	of	the	lazy	method	based	on	a	column	that	you	will	also	be	updating	while
iterating	over	the	results,	you	should	use	the	lazyById	method.	Internally,	the	lazyById	method	will	always
retrieve	models	with	an	id	column	greater	than	the	last	model	in	the	previous	chunk:

Flight::where('departed',	true)

				->lazyById(200,	$column	=	'id')

				->each->update(['departed'	=>	false]);

You	may	filter	the	results	based	on	the	descending	order	of	the	id	using	the	lazyByIdDesc	method.

Cursors

Similar	to	the	lazy	method,	the	cursor	method	may	be	used	to	significantly	reduce	your	application's	memory

Laravel	Documentation	-	10.x	/	Eloquent	ORM 649

consumption	when	iterating	through	tens	of	thousands	of	Eloquent	model	records.

The	cursor	method	will	only	execute	a	single	database	query;	however,	the	individual	Eloquent	models	will	not
be	hydrated	until	they	are	actually	iterated	over.	Therefore,	only	one	Eloquent	model	is	kept	in	memory	at	any
given	time	while	iterating	over	the	cursor.

[!WARNING]
Since	the	cursor	method	only	ever	holds	a	single	Eloquent	model	in	memory	at	a	time,	it	cannot	eager	load
relationships.	If	you	need	to	eager	load	relationships,	consider	using	the	lazy	method	instead.

Internally,	the	cursor	method	uses	PHP	generators	to	implement	this	functionality:

use	App\Models\Flight;

foreach	(Flight::where('destination',	'Zurich')->cursor()	as	$flight)	{

				//	...

}

The	cursor	returns	an	Illuminate\Support\LazyCollection	instance.	Lazy	collections	allow	you	to	use	many	of
the	collection	methods	available	on	typical	Laravel	collections	while	only	loading	a	single	model	into	memory
at	a	time:

use	App\Models\User;

$users	=	User::cursor()->filter(function	(User	$user)	{

				return	$user->id	>	500;

});

foreach	($users	as	$user)	{

				echo	$user->id;

}

Although	the	cursor	method	uses	far	less	memory	than	a	regular	query	(by	only	holding	a	single	Eloquent
model	in	memory	at	a	time),	it	will	still	eventually	run	out	of	memory.	This	is	due	to	PHP's	PDO	driver
internally	caching	all	raw	query	results	in	its	buffer.	If	you're	dealing	with	a	very	large	number	of	Eloquent
records,	consider	using	the	lazy	method	instead.

Advanced	Subqueries

Subquery	Selects

Eloquent	also	offers	advanced	subquery	support,	which	allows	you	to	pull	information	from	related	tables	in	a
single	query.	For	example,	let's	imagine	that	we	have	a	table	of	flight	destinations	and	a	table	of	flights	to
destinations.	The	flights	table	contains	an	arrived_at	column	which	indicates	when	the	flight	arrived	at	the
destination.

Using	the	subquery	functionality	available	to	the	query	builder's	select	and	addSelect	methods,	we	can	select
all	of	the	destinations	and	the	name	of	the	flight	that	most	recently	arrived	at	that	destination	using	a	single
query:

use	App\Models\Destination;

use	App\Models\Flight;

return	Destination::addSelect(['last_flight'	=>	Flight::select('name')

				->whereColumn('destination_id',	'destinations.id')

				->orderByDesc('arrived_at')

				->limit(1)

])->get();

Subquery	Ordering

In	addition,	the	query	builder's	orderBy	function	supports	subqueries.	Continuing	to	use	our	flight	example,	we
may	use	this	functionality	to	sort	all	destinations	based	on	when	the	last	flight	arrived	at	that	destination.	Again,
this	may	be	done	while	executing	a	single	database	query:

return	Destination::orderByDesc(

				Flight::select('arrived_at')

Laravel	Documentation	-	10.x	/	Eloquent	ORM 650

https://www.php.net/manual/en/language.generators.overview.php
https://www.php.net/manual/en/mysqlinfo.concepts.buffering.php

								->whereColumn('destination_id',	'destinations.id')

								->orderByDesc('arrived_at')

								->limit(1)

)->get();

Retrieving	Single	Models	/	Aggregates

In	addition	to	retrieving	all	of	the	records	matching	a	given	query,	you	may	also	retrieve	single	records	using
the	find,	first,	or	firstWhere	methods.	Instead	of	returning	a	collection	of	models,	these	methods	return	a
single	model	instance:

use	App\Models\Flight;

//	Retrieve	a	model	by	its	primary	key...

$flight	=	Flight::find(1);

//	Retrieve	the	first	model	matching	the	query	constraints...

$flight	=	Flight::where('active',	1)->first();

//	Alternative	to	retrieving	the	first	model	matching	the	query	constraints...

$flight	=	Flight::firstWhere('active',	1);

Sometimes	you	may	wish	to	perform	some	other	action	if	no	results	are	found.	The	findOr	and	firstOr	methods
will	return	a	single	model	instance	or,	if	no	results	are	found,	execute	the	given	closure.	The	value	returned	by
the	closure	will	be	considered	the	result	of	the	method:

$flight	=	Flight::findOr(1,	function	()	{

				//	...

});

$flight	=	Flight::where('legs',	'>',	3)->firstOr(function	()	{

				//	...

});

Not	Found	Exceptions

Sometimes	you	may	wish	to	throw	an	exception	if	a	model	is	not	found.	This	is	particularly	useful	in	routes	or
controllers.	The	findOrFail	and	firstOrFail	methods	will	retrieve	the	first	result	of	the	query;	however,	if	no
result	is	found,	an	Illuminate\Database\Eloquent\ModelNotFoundException	will	be	thrown:

$flight	=	Flight::findOrFail(1);

$flight	=	Flight::where('legs',	'>',	3)->firstOrFail();

If	the	ModelNotFoundException	is	not	caught,	a	404	HTTP	response	is	automatically	sent	back	to	the	client:

use	App\Models\Flight;

Route::get('/api/flights/{id}',	function	(string	$id)	{

				return	Flight::findOrFail($id);

});

Retrieving	or	Creating	Models

The	firstOrCreate	method	will	attempt	to	locate	a	database	record	using	the	given	column	/	value	pairs.	If	the
model	can	not	be	found	in	the	database,	a	record	will	be	inserted	with	the	attributes	resulting	from	merging	the
first	array	argument	with	the	optional	second	array	argument:

The	firstOrNew	method,	like	firstOrCreate,	will	attempt	to	locate	a	record	in	the	database	matching	the	given
attributes.	However,	if	a	model	is	not	found,	a	new	model	instance	will	be	returned.	Note	that	the	model
returned	by	firstOrNew	has	not	yet	been	persisted	to	the	database.	You	will	need	to	manually	call	the	save
method	to	persist	it:

use	App\Models\Flight;

//	Retrieve	flight	by	name	or	create	it	if	it	doesn't	exist...

$flight	=	Flight::firstOrCreate([

				'name'	=>	'London	to	Paris'

]);

Laravel	Documentation	-	10.x	/	Eloquent	ORM 651

//	Retrieve	flight	by	name	or	create	it	with	the	name,	delayed,	and	arrival_time	attributes...

$flight	=	Flight::firstOrCreate(

				['name'	=>	'London	to	Paris'],

				['delayed'	=>	1,	'arrival_time'	=>	'11:30']

);

//	Retrieve	flight	by	name	or	instantiate	a	new	Flight	instance...

$flight	=	Flight::firstOrNew([

				'name'	=>	'London	to	Paris'

]);

//	Retrieve	flight	by	name	or	instantiate	with	the	name,	delayed,	and	arrival_time	attributes...

$flight	=	Flight::firstOrNew(

				['name'	=>	'Tokyo	to	Sydney'],

				['delayed'	=>	1,	'arrival_time'	=>	'11:30']

);

Retrieving	Aggregates

When	interacting	with	Eloquent	models,	you	may	also	use	the	count,	sum,	max,	and	other	aggregate	methods
provided	by	the	Laravel	query	builder.	As	you	might	expect,	these	methods	return	a	scalar	value	instead	of	an
Eloquent	model	instance:

$count	=	Flight::where('active',	1)->count();

$max	=	Flight::where('active',	1)->max('price');

Inserting	and	Updating	Models

Inserts

Of	course,	when	using	Eloquent,	we	don't	only	need	to	retrieve	models	from	the	database.	We	also	need	to
insert	new	records.	Thankfully,	Eloquent	makes	it	simple.	To	insert	a	new	record	into	the	database,	you	should
instantiate	a	new	model	instance	and	set	attributes	on	the	model.	Then,	call	the	save	method	on	the	model
instance:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Models\Flight;

use	Illuminate\Http\RedirectResponse;

use	Illuminate\Http\Request;

class	FlightController	extends	Controller

{

				/**

					*	Store	a	new	flight	in	the	database.

					*/

				public	function	store(Request	$request):	RedirectResponse

				{

								//	Validate	the	request...

								$flight	=	new	Flight;

								$flight->name	=	$request->name;

								$flight->save();

								return	redirect('/flights');

				}

}

In	this	example,	we	assign	the	name	field	from	the	incoming	HTTP	request	to	the	name	attribute	of	the	
App\Models\Flight	model	instance.	When	we	call	the	save	method,	a	record	will	be	inserted	into	the	database.
The	model's	created_at	and	updated_at	timestamps	will	automatically	be	set	when	the	save	method	is	called,	so
there	is	no	need	to	set	them	manually.

Alternatively,	you	may	use	the	create	method	to	"save"	a	new	model	using	a	single	PHP	statement.	The

Laravel	Documentation	-	10.x	/	Eloquent	ORM 652

inserted	model	instance	will	be	returned	to	you	by	the	create	method:

use	App\Models\Flight;

$flight	=	Flight::create([

				'name'	=>	'London	to	Paris',

]);

However,	before	using	the	create	method,	you	will	need	to	specify	either	a	fillable	or	guarded	property	on
your	model	class.	These	properties	are	required	because	all	Eloquent	models	are	protected	against	mass
assignment	vulnerabilities	by	default.	To	learn	more	about	mass	assignment,	please	consult	the	mass
assignment	documentation.

Updates

The	save	method	may	also	be	used	to	update	models	that	already	exist	in	the	database.	To	update	a	model,	you
should	retrieve	it	and	set	any	attributes	you	wish	to	update.	Then,	you	should	call	the	model's	save	method.
Again,	the	updated_at	timestamp	will	automatically	be	updated,	so	there	is	no	need	to	manually	set	its	value:

use	App\Models\Flight;

$flight	=	Flight::find(1);

$flight->name	=	'Paris	to	London';

$flight->save();

Mass	Updates

Updates	can	also	be	performed	against	models	that	match	a	given	query.	In	this	example,	all	flights	that	are	
active	and	have	a	destination	of	San	Diego	will	be	marked	as	delayed:

Flight::where('active',	1)

						->where('destination',	'San	Diego')

						->update(['delayed'	=>	1]);

The	update	method	expects	an	array	of	column	and	value	pairs	representing	the	columns	that	should	be
updated.	The	update	method	returns	the	number	of	affected	rows.

[!WARNING]
When	issuing	a	mass	update	via	Eloquent,	the	saving,	saved,	updating,	and	updated	model	events	will	not
be	fired	for	the	updated	models.	This	is	because	the	models	are	never	actually	retrieved	when	issuing	a
mass	update.

Examining	Attribute	Changes

Eloquent	provides	the	isDirty,	isClean,	and	wasChanged	methods	to	examine	the	internal	state	of	your	model	and
determine	how	its	attributes	have	changed	from	when	the	model	was	originally	retrieved.

The	isDirty	method	determines	if	any	of	the	model's	attributes	have	been	changed	since	the	model	was
retrieved.	You	may	pass	a	specific	attribute	name	or	an	array	of	attributes	to	the	isDirty	method	to	determine	if
any	of	the	attributes	are	"dirty".	The	isClean	method	will	determine	if	an	attribute	has	remained	unchanged
since	the	model	was	retrieved.	This	method	also	accepts	an	optional	attribute	argument:

use	App\Models\User;

$user	=	User::create([

				'first_name'	=>	'Taylor',

				'last_name'	=>	'Otwell',

				'title'	=>	'Developer',

]);

$user->title	=	'Painter';

$user->isDirty();	//	true

$user->isDirty('title');	//	true

$user->isDirty('first_name');	//	false

$user->isDirty(['first_name',	'title']);	//	true

Laravel	Documentation	-	10.x	/	Eloquent	ORM 653

$user->isClean();	//	false

$user->isClean('title');	//	false

$user->isClean('first_name');	//	true

$user->isClean(['first_name',	'title']);	//	false

$user->save();

$user->isDirty();	//	false

$user->isClean();	//	true

The	wasChanged	method	determines	if	any	attributes	were	changed	when	the	model	was	last	saved	within	the
current	request	cycle.	If	needed,	you	may	pass	an	attribute	name	to	see	if	a	particular	attribute	was	changed:

$user	=	User::create([

				'first_name'	=>	'Taylor',

				'last_name'	=>	'Otwell',

				'title'	=>	'Developer',

]);

$user->title	=	'Painter';

$user->save();

$user->wasChanged();	//	true

$user->wasChanged('title');	//	true

$user->wasChanged(['title',	'slug']);	//	true

$user->wasChanged('first_name');	//	false

$user->wasChanged(['first_name',	'title']);	//	true

The	getOriginal	method	returns	an	array	containing	the	original	attributes	of	the	model	regardless	of	any
changes	to	the	model	since	it	was	retrieved.	If	needed,	you	may	pass	a	specific	attribute	name	to	get	the	original
value	of	a	particular	attribute:

$user	=	User::find(1);

$user->name;	//	John

$user->email;	//	john@example.com

$user->name	=	"Jack";

$user->name;	//	Jack

$user->getOriginal('name');	//	John

$user->getOriginal();	//	Array	of	original	attributes...

Mass	Assignment

You	may	use	the	create	method	to	"save"	a	new	model	using	a	single	PHP	statement.	The	inserted	model
instance	will	be	returned	to	you	by	the	method:

use	App\Models\Flight;

$flight	=	Flight::create([

				'name'	=>	'London	to	Paris',

]);

However,	before	using	the	create	method,	you	will	need	to	specify	either	a	fillable	or	guarded	property	on
your	model	class.	These	properties	are	required	because	all	Eloquent	models	are	protected	against	mass
assignment	vulnerabilities	by	default.

A	mass	assignment	vulnerability	occurs	when	a	user	passes	an	unexpected	HTTP	request	field	and	that	field
changes	a	column	in	your	database	that	you	did	not	expect.	For	example,	a	malicious	user	might	send	an	
is_admin	parameter	through	an	HTTP	request,	which	is	then	passed	to	your	model's	create	method,	allowing	the
user	to	escalate	themselves	to	an	administrator.

So,	to	get	started,	you	should	define	which	model	attributes	you	want	to	make	mass	assignable.	You	may	do
this	using	the	$fillable	property	on	the	model.	For	example,	let's	make	the	name	attribute	of	our	Flight	model
mass	assignable:

<?php

namespace	App\Models;

Laravel	Documentation	-	10.x	/	Eloquent	ORM 654

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	attributes	that	are	mass	assignable.

					*

					*	@var	array

					*/

				protected	$fillable	=	['name'];

}

Once	you	have	specified	which	attributes	are	mass	assignable,	you	may	use	the	create	method	to	insert	a	new
record	in	the	database.	The	create	method	returns	the	newly	created	model	instance:

$flight	=	Flight::create(['name'	=>	'London	to	Paris']);

If	you	already	have	a	model	instance,	you	may	use	the	fill	method	to	populate	it	with	an	array	of	attributes:

$flight->fill(['name'	=>	'Amsterdam	to	Frankfurt']);

Mass	Assignment	and	JSON	Columns

When	assigning	JSON	columns,	each	column's	mass	assignable	key	must	be	specified	in	your	model's	
$fillable	array.	For	security,	Laravel	does	not	support	updating	nested	JSON	attributes	when	using	the	guarded
property:

/**

	*	The	attributes	that	are	mass	assignable.

	*

	*	@var	array

	*/

protected	$fillable	=	[

				'options->enabled',

];

Allowing	Mass	Assignment

If	you	would	like	to	make	all	of	your	attributes	mass	assignable,	you	may	define	your	model's	$guarded
property	as	an	empty	array.	If	you	choose	to	unguard	your	model,	you	should	take	special	care	to	always	hand-
craft	the	arrays	passed	to	Eloquent's	fill,	create,	and	update	methods:

/**

	*	The	attributes	that	aren't	mass	assignable.

	*

	*	@var	array

	*/

protected	$guarded	=	[];

Mass	Assignment	Exceptions

By	default,	attributes	that	are	not	included	in	the	$fillable	array	are	silently	discarded	when	performing	mass-
assignment	operations.	In	production,	this	is	expected	behavior;	however,	during	local	development	it	can	lead
to	confusion	as	to	why	model	changes	are	not	taking	effect.

If	you	wish,	you	may	instruct	Laravel	to	throw	an	exception	when	attempting	to	fill	an	unfillable	attribute	by
invoking	the	preventSilentlyDiscardingAttributes	method.	Typically,	this	method	should	be	invoked	within	the
boot	method	of	one	of	your	application's	service	providers:

use	Illuminate\Database\Eloquent\Model;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Model::preventSilentlyDiscardingAttributes($this->app->isLocal());

}

Laravel	Documentation	-	10.x	/	Eloquent	ORM 655

Upserts

Occasionally,	you	may	need	to	update	an	existing	model	or	create	a	new	model	if	no	matching	model	exists.
Like	the	firstOrCreate	method,	the	updateOrCreate	method	persists	the	model,	so	there's	no	need	to	manually
call	the	save	method.

In	the	example	below,	if	a	flight	exists	with	a	departure	location	of	Oakland	and	a	destination	location	of	San	
Diego,	its	price	and	discounted	columns	will	be	updated.	If	no	such	flight	exists,	a	new	flight	will	be	created
which	has	the	attributes	resulting	from	merging	the	first	argument	array	with	the	second	argument	array:

$flight	=	Flight::updateOrCreate(

				['departure'	=>	'Oakland',	'destination'	=>	'San	Diego'],

				['price'	=>	99,	'discounted'	=>	1]

);

If	you	would	like	to	perform	multiple	"upserts"	in	a	single	query,	then	you	should	use	the	upsert	method
instead.	The	method's	first	argument	consists	of	the	values	to	insert	or	update,	while	the	second	argument	lists
the	column(s)	that	uniquely	identify	records	within	the	associated	table.	The	method's	third	and	final	argument
is	an	array	of	the	columns	that	should	be	updated	if	a	matching	record	already	exists	in	the	database.	The	upsert
method	will	automatically	set	the	created_at	and	updated_at	timestamps	if	timestamps	are	enabled	on	the
model:

Flight::upsert([

				['departure'	=>	'Oakland',	'destination'	=>	'San	Diego',	'price'	=>	99],

				['departure'	=>	'Chicago',	'destination'	=>	'New	York',	'price'	=>	150]

],	['departure',	'destination'],	['price']);

[!WARNING]
All	databases	except	SQL	Server	require	the	columns	in	the	second	argument	of	the	upsert	method	to	have
a	"primary"	or	"unique"	index.	In	addition,	the	MySQL	database	driver	ignores	the	second	argument	of	the
upsert	method	and	always	uses	the	"primary"	and	"unique"	indexes	of	the	table	to	detect	existing	records.

Deleting	Models

To	delete	a	model,	you	may	call	the	delete	method	on	the	model	instance:

use	App\Models\Flight;

$flight	=	Flight::find(1);

$flight->delete();

You	may	call	the	truncate	method	to	delete	all	of	the	model's	associated	database	records.	The	truncate
operation	will	also	reset	any	auto-incrementing	IDs	on	the	model's	associated	table:

Flight::truncate();

Deleting	an	Existing	Model	by	its	Primary	Key

In	the	example	above,	we	are	retrieving	the	model	from	the	database	before	calling	the	delete	method.
However,	if	you	know	the	primary	key	of	the	model,	you	may	delete	the	model	without	explicitly	retrieving	it
by	calling	the	destroy	method.	In	addition	to	accepting	the	single	primary	key,	the	destroy	method	will	accept
multiple	primary	keys,	an	array	of	primary	keys,	or	a	collection	of	primary	keys:

Flight::destroy(1);

Flight::destroy(1,	2,	3);

Flight::destroy([1,	2,	3]);

Flight::destroy(collect([1,	2,	3]));

[!WARNING]
The	destroy	method	loads	each	model	individually	and	calls	the	delete	method	so	that	the	deleting	and	
deleted	events	are	properly	dispatched	for	each	model.

Laravel	Documentation	-	10.x	/	Eloquent	ORM 656

Deleting	Models	Using	Queries

Of	course,	you	may	build	an	Eloquent	query	to	delete	all	models	matching	your	query's	criteria.	In	this
example,	we	will	delete	all	flights	that	are	marked	as	inactive.	Like	mass	updates,	mass	deletes	will	not
dispatch	model	events	for	the	models	that	are	deleted:

$deleted	=	Flight::where('active',	0)->delete();

[!WARNING]
When	executing	a	mass	delete	statement	via	Eloquent,	the	deleting	and	deleted	model	events	will	not	be
dispatched	for	the	deleted	models.	This	is	because	the	models	are	never	actually	retrieved	when	executing
the	delete	statement.

Soft	Deleting

In	addition	to	actually	removing	records	from	your	database,	Eloquent	can	also	"soft	delete"	models.	When
models	are	soft	deleted,	they	are	not	actually	removed	from	your	database.	Instead,	a	deleted_at	attribute	is	set
on	the	model	indicating	the	date	and	time	at	which	the	model	was	"deleted".	To	enable	soft	deletes	for	a	model,
add	the	Illuminate\Database\Eloquent\SoftDeletes	trait	to	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\SoftDeletes;

class	Flight	extends	Model

{

				use	SoftDeletes;

}

[!NOTE]
The	SoftDeletes	trait	will	automatically	cast	the	deleted_at	attribute	to	a	DateTime	/	Carbon	instance	for
you.

You	should	also	add	the	deleted_at	column	to	your	database	table.	The	Laravel	schema	builder	contains	a
helper	method	to	create	this	column:

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

Schema::table('flights',	function	(Blueprint	$table)	{

				$table->softDeletes();

});

Schema::table('flights',	function	(Blueprint	$table)	{

				$table->dropSoftDeletes();

});

Now,	when	you	call	the	delete	method	on	the	model,	the	deleted_at	column	will	be	set	to	the	current	date	and
time.	However,	the	model's	database	record	will	be	left	in	the	table.	When	querying	a	model	that	uses	soft
deletes,	the	soft	deleted	models	will	automatically	be	excluded	from	all	query	results.

To	determine	if	a	given	model	instance	has	been	soft	deleted,	you	may	use	the	trashed	method:

if	($flight->trashed())	{

				//	...

}

Restoring	Soft	Deleted	Models

Sometimes	you	may	wish	to	"un-delete"	a	soft	deleted	model.	To	restore	a	soft	deleted	model,	you	may	call	the	
restore	method	on	a	model	instance.	The	restore	method	will	set	the	model's	deleted_at	column	to	null:

$flight->restore();

You	may	also	use	the	restore	method	in	a	query	to	restore	multiple	models.	Again,	like	other	"mass"

Laravel	Documentation	-	10.x	/	Eloquent	ORM 657

operations,	this	will	not	dispatch	any	model	events	for	the	models	that	are	restored:

Flight::withTrashed()

								->where('airline_id',	1)

								->restore();

The	restore	method	may	also	be	used	when	building	relationship	queries:

$flight->history()->restore();

Permanently	Deleting	Models

Sometimes	you	may	need	to	truly	remove	a	model	from	your	database.	You	may	use	the	forceDelete	method	to
permanently	remove	a	soft	deleted	model	from	the	database	table:

$flight->forceDelete();

You	may	also	use	the	forceDelete	method	when	building	Eloquent	relationship	queries:

$flight->history()->forceDelete();

Querying	Soft	Deleted	Models

Including	Soft	Deleted	Models

As	noted	above,	soft	deleted	models	will	automatically	be	excluded	from	query	results.	However,	you	may
force	soft	deleted	models	to	be	included	in	a	query's	results	by	calling	the	withTrashed	method	on	the	query:

use	App\Models\Flight;

$flights	=	Flight::withTrashed()

																->where('account_id',	1)

																->get();

The	withTrashed	method	may	also	be	called	when	building	a	relationship	query:

$flight->history()->withTrashed()->get();

Retrieving	Only	Soft	Deleted	Models

The	onlyTrashed	method	will	retrieve	only	soft	deleted	models:

$flights	=	Flight::onlyTrashed()

																->where('airline_id',	1)

																->get();

Pruning	Models

Sometimes	you	may	want	to	periodically	delete	models	that	are	no	longer	needed.	To	accomplish	this,	you	may
add	the	Illuminate\Database\Eloquent\Prunable	or	Illuminate\Database\Eloquent\MassPrunable	trait	to	the
models	you	would	like	to	periodically	prune.	After	adding	one	of	the	traits	to	the	model,	implement	a	prunable
method	which	returns	an	Eloquent	query	builder	that	resolves	the	models	that	are	no	longer	needed:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Prunable;

class	Flight	extends	Model

{

				use	Prunable;

				/**

					*	Get	the	prunable	model	query.

					*/

Laravel	Documentation	-	10.x	/	Eloquent	ORM 658

				public	function	prunable():	Builder

				{

								return	static::where('created_at',	'<=',	now()->subMonth());

				}

}

When	marking	models	as	Prunable,	you	may	also	define	a	pruning	method	on	the	model.	This	method	will	be
called	before	the	model	is	deleted.	This	method	can	be	useful	for	deleting	any	additional	resources	associated
with	the	model,	such	as	stored	files,	before	the	model	is	permanently	removed	from	the	database:

/**

	*	Prepare	the	model	for	pruning.

	*/

protected	function	pruning():	void

{

				//	...

}

After	configuring	your	prunable	model,	you	should	schedule	the	model:prune	Artisan	command	in	your
application's	App\Console\Kernel	class.	You	are	free	to	choose	the	appropriate	interval	at	which	this	command
should	be	run:

/**

	*	Define	the	application's	command	schedule.

	*/

protected	function	schedule(Schedule	$schedule):	void

{

				$schedule->command('model:prune')->daily();

}

Behind	the	scenes,	the	model:prune	command	will	automatically	detect	"Prunable"	models	within	your
application's	app/Models	directory.	If	your	models	are	in	a	different	location,	you	may	use	the	--model	option	to
specify	the	model	class	names:

$schedule->command('model:prune',	[

				'--model'	=>	[Address::class,	Flight::class],

])->daily();

If	you	wish	to	exclude	certain	models	from	being	pruned	while	pruning	all	other	detected	models,	you	may	use
the	--except	option:

$schedule->command('model:prune',	[

				'--except'	=>	[Address::class,	Flight::class],

])->daily();

You	may	test	your	prunable	query	by	executing	the	model:prune	command	with	the	--pretend	option.	When
pretending,	the	model:prune	command	will	simply	report	how	many	records	would	be	pruned	if	the	command
were	to	actually	run:

php	artisan	model:prune	--pretend

[!WARNING]
Soft	deleting	models	will	be	permanently	deleted	(forceDelete)	if	they	match	the	prunable	query.

Mass	Pruning

When	models	are	marked	with	the	Illuminate\Database\Eloquent\MassPrunable	trait,	models	are	deleted	from
the	database	using	mass-deletion	queries.	Therefore,	the	pruning	method	will	not	be	invoked,	nor	will	the	
deleting	and	deleted	model	events	be	dispatched.	This	is	because	the	models	are	never	actually	retrieved
before	deletion,	thus	making	the	pruning	process	much	more	efficient:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\MassPrunable;

class	Flight	extends	Model

{

Laravel	Documentation	-	10.x	/	Eloquent	ORM 659

				use	MassPrunable;

				/**

					*	Get	the	prunable	model	query.

					*/

				public	function	prunable():	Builder

				{

								return	static::where('created_at',	'<=',	now()->subMonth());

				}

}

Replicating	Models

You	may	create	an	unsaved	copy	of	an	existing	model	instance	using	the	replicate	method.	This	method	is
particularly	useful	when	you	have	model	instances	that	share	many	of	the	same	attributes:

use	App\Models\Address;

$shipping	=	Address::create([

				'type'	=>	'shipping',

				'line_1'	=>	'123	Example	Street',

				'city'	=>	'Victorville',

				'state'	=>	'CA',

				'postcode'	=>	'90001',

]);

$billing	=	$shipping->replicate()->fill([

				'type'	=>	'billing'

]);

$billing->save();

To	exclude	one	or	more	attributes	from	being	replicated	to	the	new	model,	you	may	pass	an	array	to	the	
replicate	method:

$flight	=	Flight::create([

				'destination'	=>	'LAX',

				'origin'	=>	'LHR',

				'last_flown'	=>	'2020-03-04	11:00:00',

				'last_pilot_id'	=>	747,

]);

$flight	=	$flight->replicate([

				'last_flown',

				'last_pilot_id'

]);

Query	Scopes

Global	Scopes

Global	scopes	allow	you	to	add	constraints	to	all	queries	for	a	given	model.	Laravel's	own	soft	delete
functionality	utilizes	global	scopes	to	only	retrieve	"non-deleted"	models	from	the	database.	Writing	your	own
global	scopes	can	provide	a	convenient,	easy	way	to	make	sure	every	query	for	a	given	model	receives	certain
constraints.

Generating	Scopes

To	generate	a	new	global	scope,	you	may	invoke	the	make:scope	Artisan	command,	which	will	place	the
generated	scope	in	your	application's	app/Models/Scopes	directory:

php	artisan	make:scope	AncientScope

Writing	Global	Scopes

Writing	a	global	scope	is	simple.	First,	use	the	make:scope	command	to	generate	a	class	that	implements	the	
Illuminate\Database\Eloquent\Scope	interface.	The	Scope	interface	requires	you	to	implement	one	method:	
apply.	The	apply	method	may	add	where	constraints	or	other	types	of	clauses	to	the	query	as	needed:

Laravel	Documentation	-	10.x	/	Eloquent	ORM 660

<?php

namespace	App\Models\Scopes;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Scope;

class	AncientScope	implements	Scope

{

				/**

					*	Apply	the	scope	to	a	given	Eloquent	query	builder.

					*/

				public	function	apply(Builder	$builder,	Model	$model):	void

				{

								$builder->where('created_at',	'<',	now()->subYears(2000));

				}

}

[!NOTE]
If	your	global	scope	is	adding	columns	to	the	select	clause	of	the	query,	you	should	use	the	addSelect
method	instead	of	select.	This	will	prevent	the	unintentional	replacement	of	the	query's	existing	select
clause.

Applying	Global	Scopes

To	assign	a	global	scope	to	a	model,	you	may	simply	place	the	ScopedBy	attribute	on	the	model:

<?php

namespace	App\Models;

use	App\Models\Scopes\AncientScope;

use	Illuminate\Database\Eloquent\Attributes\ScopedBy;

#[ScopedBy([AncientScope::class])]

class	User	extends	Model

{

				//

}

Or,	you	may	manually	register	the	global	scope	by	overriding	the	model's	booted	method	and	invoke	the
model's	addGlobalScope	method.	The	addGlobalScope	method	accepts	an	instance	of	your	scope	as	its	only
argument:

<?php

namespace	App\Models;

use	App\Models\Scopes\AncientScope;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	"booted"	method	of	the	model.

					*/

				protected	static	function	booted():	void

				{

								static::addGlobalScope(new	AncientScope);

				}

}

After	adding	the	scope	in	the	example	above	to	the	App\Models\User	model,	a	call	to	the	User::all()	method
will	execute	the	following	SQL	query:

select	*	from	`users`	where	`created_at`	<	0021-02-18	00:00:00

Anonymous	Global	Scopes

Eloquent	also	allows	you	to	define	global	scopes	using	closures,	which	is	particularly	useful	for	simple	scopes
that	do	not	warrant	a	separate	class	of	their	own.	When	defining	a	global	scope	using	a	closure,	you	should
provide	a	scope	name	of	your	own	choosing	as	the	first	argument	to	the	addGlobalScope	method:

Laravel	Documentation	-	10.x	/	Eloquent	ORM 661

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	"booted"	method	of	the	model.

					*/

				protected	static	function	booted():	void

				{

								static::addGlobalScope('ancient',	function	(Builder	$builder)	{

												$builder->where('created_at',	'<',	now()->subYears(2000));

								});

				}

}

Removing	Global	Scopes

If	you	would	like	to	remove	a	global	scope	for	a	given	query,	you	may	use	the	withoutGlobalScope	method.	This
method	accepts	the	class	name	of	the	global	scope	as	its	only	argument:

User::withoutGlobalScope(AncientScope::class)->get();

Or,	if	you	defined	the	global	scope	using	a	closure,	you	should	pass	the	string	name	that	you	assigned	to	the
global	scope:

User::withoutGlobalScope('ancient')->get();

If	you	would	like	to	remove	several	or	even	all	of	the	query's	global	scopes,	you	may	use	the	
withoutGlobalScopes	method:

//	Remove	all	of	the	global	scopes...

User::withoutGlobalScopes()->get();

//	Remove	some	of	the	global	scopes...

User::withoutGlobalScopes([

				FirstScope::class,	SecondScope::class

])->get();

Local	Scopes

Local	scopes	allow	you	to	define	common	sets	of	query	constraints	that	you	may	easily	re-use	throughout	your
application.	For	example,	you	may	need	to	frequently	retrieve	all	users	that	are	considered	"popular".	To	define
a	scope,	prefix	an	Eloquent	model	method	with	scope.

Scopes	should	always	return	the	same	query	builder	instance	or	void:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Scope	a	query	to	only	include	popular	users.

					*/

				public	function	scopePopular(Builder	$query):	void

				{

								$query->where('votes',	'>',	100);

				}

				/**

					*	Scope	a	query	to	only	include	active	users.

					*/

				public	function	scopeActive(Builder	$query):	void

				{

Laravel	Documentation	-	10.x	/	Eloquent	ORM 662

								$query->where('active',	1);

				}

}

Utilizing	a	Local	Scope

Once	the	scope	has	been	defined,	you	may	call	the	scope	methods	when	querying	the	model.	However,	you
should	not	include	the	scope	prefix	when	calling	the	method.	You	can	even	chain	calls	to	various	scopes:

use	App\Models\User;

$users	=	User::popular()->active()->orderBy('created_at')->get();

Combining	multiple	Eloquent	model	scopes	via	an	or	query	operator	may	require	the	use	of	closures	to	achieve
the	correct	logical	grouping:

$users	=	User::popular()->orWhere(function	(Builder	$query)	{

				$query->active();

})->get();

However,	since	this	can	be	cumbersome,	Laravel	provides	a	"higher	order"	orWhere	method	that	allows	you	to
fluently	chain	scopes	together	without	the	use	of	closures:

$users	=	User::popular()->orWhere->active()->get();

Dynamic	Scopes

Sometimes	you	may	wish	to	define	a	scope	that	accepts	parameters.	To	get	started,	just	add	your	additional
parameters	to	your	scope	method's	signature.	Scope	parameters	should	be	defined	after	the	$query	parameter:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Scope	a	query	to	only	include	users	of	a	given	type.

					*/

				public	function	scopeOfType(Builder	$query,	string	$type):	void

				{

								$query->where('type',	$type);

				}

}

Once	the	expected	arguments	have	been	added	to	your	scope	method's	signature,	you	may	pass	the	arguments
when	calling	the	scope:

$users	=	User::ofType('admin')->get();

Comparing	Models

Sometimes	you	may	need	to	determine	if	two	models	are	the	"same"	or	not.	The	is	and	isNot	methods	may	be
used	to	quickly	verify	two	models	have	the	same	primary	key,	table,	and	database	connection	or	not:

if	($post->is($anotherPost))	{

				//	...

}

if	($post->isNot($anotherPost))	{

				//	...

}

The	is	and	isNot	methods	are	also	available	when	using	the	belongsTo,	hasOne,	morphTo,	and	morphOne
relationships.	This	method	is	particularly	helpful	when	you	would	like	to	compare	a	related	model	without
issuing	a	query	to	retrieve	that	model:

Laravel	Documentation	-	10.x	/	Eloquent	ORM 663

if	($post->author()->is($user))	{

				//	...

}

Events

[!NOTE]
Want	to	broadcast	your	Eloquent	events	directly	to	your	client-side	application?	Check	out	Laravel's	model
event	broadcasting.

Eloquent	models	dispatch	several	events,	allowing	you	to	hook	into	the	following	moments	in	a	model's
lifecycle:	retrieved,	creating,	created,	updating,	updated,	saving,	saved,	deleting,	deleted,	trashed,	
forceDeleting,	forceDeleted,	restoring,	restored,	and	replicating.

The	retrieved	event	will	dispatch	when	an	existing	model	is	retrieved	from	the	database.	When	a	new	model	is
saved	for	the	first	time,	the	creating	and	created	events	will	dispatch.	The	updating	/	updated	events	will
dispatch	when	an	existing	model	is	modified	and	the	save	method	is	called.	The	saving	/	saved	events	will
dispatch	when	a	model	is	created	or	updated	-	even	if	the	model's	attributes	have	not	been	changed.	Event
names	ending	with	-ing	are	dispatched	before	any	changes	to	the	model	are	persisted,	while	events	ending	with	
-ed	are	dispatched	after	the	changes	to	the	model	are	persisted.

To	start	listening	to	model	events,	define	a	$dispatchesEvents	property	on	your	Eloquent	model.	This	property
maps	various	points	of	the	Eloquent	model's	lifecycle	to	your	own	event	classes.	Each	model	event	class	should
expect	to	receive	an	instance	of	the	affected	model	via	its	constructor:

<?php

namespace	App\Models;

use	App\Events\UserDeleted;

use	App\Events\UserSaved;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	The	event	map	for	the	model.

					*

					*	@var	array

					*/

				protected	$dispatchesEvents	=	[

								'saved'	=>	UserSaved::class,

								'deleted'	=>	UserDeleted::class,

];

}

After	defining	and	mapping	your	Eloquent	events,	you	may	use	event	listeners	to	handle	the	events.

[!WARNING]
When	issuing	a	mass	update	or	delete	query	via	Eloquent,	the	saved,	updated,	deleting,	and	deleted	model
events	will	not	be	dispatched	for	the	affected	models.	This	is	because	the	models	are	never	actually
retrieved	when	performing	mass	updates	or	deletes.

Using	Closures

Instead	of	using	custom	event	classes,	you	may	register	closures	that	execute	when	various	model	events	are
dispatched.	Typically,	you	should	register	these	closures	in	the	booted	method	of	your	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

Laravel	Documentation	-	10.x	/	Eloquent	ORM 664

				/**

					*	The	"booted"	method	of	the	model.

					*/

				protected	static	function	booted():	void

				{

								static::created(function	(User	$user)	{

												//	...

								});

				}

}

If	needed,	you	may	utilize	queueable	anonymous	event	listeners	when	registering	model	events.	This	will
instruct	Laravel	to	execute	the	model	event	listener	in	the	background	using	your	application's	queue:

use	function	Illuminate\Events\queueable;

static::created(queueable(function	(User	$user)	{

				//	...

}));

Observers

Defining	Observers

If	you	are	listening	for	many	events	on	a	given	model,	you	may	use	observers	to	group	all	of	your	listeners	into
a	single	class.	Observer	classes	have	method	names	which	reflect	the	Eloquent	events	you	wish	to	listen	for.
Each	of	these	methods	receives	the	affected	model	as	their	only	argument.	The	make:observer	Artisan	command
is	the	easiest	way	to	create	a	new	observer	class:

php	artisan	make:observer	UserObserver	--model=User

This	command	will	place	the	new	observer	in	your	app/Observers	directory.	If	this	directory	does	not	exist,
Artisan	will	create	it	for	you.	Your	fresh	observer	will	look	like	the	following:

<?php

namespace	App\Observers;

use	App\Models\User;

class	UserObserver

{

				/**

					*	Handle	the	User	"created"	event.

					*/

				public	function	created(User	$user):	void

				{

								//	...

				}

				/**

					*	Handle	the	User	"updated"	event.

					*/

				public	function	updated(User	$user):	void

				{

								//	...

				}

				/**

					*	Handle	the	User	"deleted"	event.

					*/

				public	function	deleted(User	$user):	void

				{

								//	...

				}

				/**

					*	Handle	the	User	"restored"	event.

					*/

				public	function	restored(User	$user):	void

				{

								//	...

				}

				/**

Laravel	Documentation	-	10.x	/	Eloquent	ORM 665

					*	Handle	the	User	"forceDeleted"	event.

					*/

				public	function	forceDeleted(User	$user):	void

				{

								//	...

				}

}

To	register	an	observer,	you	may	place	the	ObservedBy	attribute	on	the	corresponding	model:

use	App\Observers\UserObserver;

use	Illuminate\Database\Eloquent\Attributes\ObservedBy;

#[ObservedBy([UserObserver::class])]

class	User	extends	Authenticatable

{

				//

}

Or,	you	may	manually	register	an	observer	by	calling	the	observe	method	on	the	model	you	wish	to	observe.
You	may	register	observers	in	the	boot	method	of	your	application's	App\Providers\EventServiceProvider
service	provider:

use	App\Models\User;

use	App\Observers\UserObserver;

/**

	*	Register	any	events	for	your	application.

	*/

public	function	boot():	void

{

				User::observe(UserObserver::class);

}

[!NOTE]
There	are	additional	events	an	observer	can	listen	to,	such	as	saving	and	retrieved.	These	events	are
described	within	the	events	documentation.

Observers	and	Database	Transactions

When	models	are	being	created	within	a	database	transaction,	you	may	want	to	instruct	an	observer	to	only
execute	its	event	handlers	after	the	database	transaction	is	committed.	You	may	accomplish	this	by
implementing	the	ShouldHandleEventsAfterCommit	interface	on	your	observer.	If	a	database	transaction	is	not	in
progress,	the	event	handlers	will	execute	immediately:

<?php

namespace	App\Observers;

use	App\Models\User;

use	Illuminate\Contracts\Events\ShouldHandleEventsAfterCommit;

class	UserObserver	implements	ShouldHandleEventsAfterCommit

{

				/**

					*	Handle	the	User	"created"	event.

					*/

				public	function	created(User	$user):	void

				{

								//	...

				}

}

Muting	Events

You	may	occasionally	need	to	temporarily	"mute"	all	events	fired	by	a	model.	You	may	achieve	this	using	the	
withoutEvents	method.	The	withoutEvents	method	accepts	a	closure	as	its	only	argument.	Any	code	executed
within	this	closure	will	not	dispatch	model	events,	and	any	value	returned	by	the	closure	will	be	returned	by	the
withoutEvents	method:

use	App\Models\User;

Laravel	Documentation	-	10.x	/	Eloquent	ORM 666

$user	=	User::withoutEvents(function	()	{

				User::findOrFail(1)->delete();

				return	User::find(2);

});

Saving	a	Single	Model	Without	Events

Sometimes	you	may	wish	to	"save"	a	given	model	without	dispatching	any	events.	You	may	accomplish	this
using	the	saveQuietly	method:

$user	=	User::findOrFail(1);

$user->name	=	'Victoria	Faith';

$user->saveQuietly();

You	may	also	"update",	"delete",	"soft	delete",	"restore",	and	"replicate"	a	given	model	without	dispatching	any
events:

$user->deleteQuietly();

$user->forceDeleteQuietly();

$user->restoreQuietly();

Laravel	Documentation	-	10.x	/	Eloquent	ORM 667

Eloquent	ORM

Eloquent:	Relationships
Introduction
Defining	Relationships

One	to	One
One	to	Many
One	to	Many	(Inverse)	/	Belongs	To
Has	One	of	Many
Has	One	Through
Has	Many	Through

Many	to	Many	Relationships
Retrieving	Intermediate	Table	Columns
Filtering	Queries	via	Intermediate	Table	Columns
Ordering	Queries	via	Intermediate	Table	Columns
Defining	Custom	Intermediate	Table	Models

Polymorphic	Relationships
One	to	One
One	to	Many
One	of	Many
Many	to	Many
Custom	Polymorphic	Types

Dynamic	Relationships
Querying	Relations

Relationship	Methods	vs.	Dynamic	Properties
Querying	Relationship	Existence
Querying	Relationship	Absence
Querying	Morph	To	Relationships

Aggregating	Related	Models
Counting	Related	Models
Other	Aggregate	Functions
Counting	Related	Models	on	Morph	To	Relationships

Eager	Loading
Constraining	Eager	Loads
Lazy	Eager	Loading
Preventing	Lazy	Loading

Inserting	and	Updating	Related	Models
The	save	Method
The	create	Method
Belongs	To	Relationships
Many	to	Many	Relationships

Touching	Parent	Timestamps

Introduction

Database	tables	are	often	related	to	one	another.	For	example,	a	blog	post	may	have	many	comments	or	an
order	could	be	related	to	the	user	who	placed	it.	Eloquent	makes	managing	and	working	with	these
relationships	easy,	and	supports	a	variety	of	common	relationships:

One	To	One
One	To	Many
Many	To	Many
Has	One	Through
Has	Many	Through
One	To	One	(Polymorphic)
One	To	Many	(Polymorphic)
Many	To	Many	(Polymorphic)

Laravel	Documentation	-	10.x	/	Relationships 668

Defining	Relationships

Eloquent	relationships	are	defined	as	methods	on	your	Eloquent	model	classes.	Since	relationships	also	serve	as
powerful	query	builders,	defining	relationships	as	methods	provides	powerful	method	chaining	and	querying
capabilities.	For	example,	we	may	chain	additional	query	constraints	on	this	posts	relationship:

$user->posts()->where('active',	1)->get();

But,	before	diving	too	deep	into	using	relationships,	let's	learn	how	to	define	each	type	of	relationship
supported	by	Eloquent.

One	to	One

A	one-to-one	relationship	is	a	very	basic	type	of	database	relationship.	For	example,	a	User	model	might	be
associated	with	one	Phone	model.	To	define	this	relationship,	we	will	place	a	phone	method	on	the	User	model.
The	phone	method	should	call	the	hasOne	method	and	return	its	result.	The	hasOne	method	is	available	to	your
model	via	the	model's	Illuminate\Database\Eloquent\Model	base	class:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\HasOne;

class	User	extends	Model

{

				/**

					*	Get	the	phone	associated	with	the	user.

					*/

				public	function	phone():	HasOne

				{

								return	$this->hasOne(Phone::class);

				}

}

The	first	argument	passed	to	the	hasOne	method	is	the	name	of	the	related	model	class.	Once	the	relationship	is
defined,	we	may	retrieve	the	related	record	using	Eloquent's	dynamic	properties.	Dynamic	properties	allow	you
to	access	relationship	methods	as	if	they	were	properties	defined	on	the	model:

$phone	=	User::find(1)->phone;

Eloquent	determines	the	foreign	key	of	the	relationship	based	on	the	parent	model	name.	In	this	case,	the	Phone
model	is	automatically	assumed	to	have	a	user_id	foreign	key.	If	you	wish	to	override	this	convention,	you	may
pass	a	second	argument	to	the	hasOne	method:

return	$this->hasOne(Phone::class,	'foreign_key');

Additionally,	Eloquent	assumes	that	the	foreign	key	should	have	a	value	matching	the	primary	key	column	of
the	parent.	In	other	words,	Eloquent	will	look	for	the	value	of	the	user's	id	column	in	the	user_id	column	of	the	
Phone	record.	If	you	would	like	the	relationship	to	use	a	primary	key	value	other	than	id	or	your	model's	
$primaryKey	property,	you	may	pass	a	third	argument	to	the	hasOne	method:

return	$this->hasOne(Phone::class,	'foreign_key',	'local_key');

Defining	the	Inverse	of	the	Relationship

So,	we	can	access	the	Phone	model	from	our	User	model.	Next,	let's	define	a	relationship	on	the	Phone	model	that
will	let	us	access	the	user	that	owns	the	phone.	We	can	define	the	inverse	of	a	hasOne	relationship	using	the	
belongsTo	method:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

Laravel	Documentation	-	10.x	/	Relationships 669

class	Phone	extends	Model

{

				/**

					*	Get	the	user	that	owns	the	phone.

					*/

				public	function	user():	BelongsTo

				{

								return	$this->belongsTo(User::class);

				}

}

When	invoking	the	user	method,	Eloquent	will	attempt	to	find	a	User	model	that	has	an	id	which	matches	the	
user_id	column	on	the	Phone	model.

Eloquent	determines	the	foreign	key	name	by	examining	the	name	of	the	relationship	method	and	suffixing	the
method	name	with	_id.	So,	in	this	case,	Eloquent	assumes	that	the	Phone	model	has	a	user_id	column.	However,
if	the	foreign	key	on	the	Phone	model	is	not	user_id,	you	may	pass	a	custom	key	name	as	the	second	argument
to	the	belongsTo	method:

/**

	*	Get	the	user	that	owns	the	phone.

	*/

public	function	user():	BelongsTo

{

				return	$this->belongsTo(User::class,	'foreign_key');

}

If	the	parent	model	does	not	use	id	as	its	primary	key,	or	you	wish	to	find	the	associated	model	using	a	different
column,	you	may	pass	a	third	argument	to	the	belongsTo	method	specifying	the	parent	table's	custom	key:

/**

	*	Get	the	user	that	owns	the	phone.

	*/

public	function	user():	BelongsTo

{

				return	$this->belongsTo(User::class,	'foreign_key',	'owner_key');

}

One	to	Many

A	one-to-many	relationship	is	used	to	define	relationships	where	a	single	model	is	the	parent	to	one	or	more
child	models.	For	example,	a	blog	post	may	have	an	infinite	number	of	comments.	Like	all	other	Eloquent
relationships,	one-to-many	relationships	are	defined	by	defining	a	method	on	your	Eloquent	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\HasMany;

class	Post	extends	Model

{

				/**

					*	Get	the	comments	for	the	blog	post.

					*/

				public	function	comments():	HasMany

				{

								return	$this->hasMany(Comment::class);

				}

}

Remember,	Eloquent	will	automatically	determine	the	proper	foreign	key	column	for	the	Comment	model.	By
convention,	Eloquent	will	take	the	"snake	case"	name	of	the	parent	model	and	suffix	it	with	_id.	So,	in	this
example,	Eloquent	will	assume	the	foreign	key	column	on	the	Comment	model	is	post_id.

Once	the	relationship	method	has	been	defined,	we	can	access	the	collection	of	related	comments	by	accessing
the	comments	property.	Remember,	since	Eloquent	provides	"dynamic	relationship	properties",	we	can	access
relationship	methods	as	if	they	were	defined	as	properties	on	the	model:

use	App\Models\Post;

Laravel	Documentation	-	10.x	/	Relationships 670

$comments	=	Post::find(1)->comments;

foreach	($comments	as	$comment)	{

				//	...

}

Since	all	relationships	also	serve	as	query	builders,	you	may	add	further	constraints	to	the	relationship	query	by
calling	the	comments	method	and	continuing	to	chain	conditions	onto	the	query:

$comment	=	Post::find(1)->comments()

																				->where('title',	'foo')

																				->first();

Like	the	hasOne	method,	you	may	also	override	the	foreign	and	local	keys	by	passing	additional	arguments	to
the	hasMany	method:

return	$this->hasMany(Comment::class,	'foreign_key');

return	$this->hasMany(Comment::class,	'foreign_key',	'local_key');

One	to	Many	(Inverse)	/	Belongs	To

Now	that	we	can	access	all	of	a	post's	comments,	let's	define	a	relationship	to	allow	a	comment	to	access	its
parent	post.	To	define	the	inverse	of	a	hasMany	relationship,	define	a	relationship	method	on	the	child	model
which	calls	the	belongsTo	method:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

class	Comment	extends	Model

{

				/**

					*	Get	the	post	that	owns	the	comment.

					*/

				public	function	post():	BelongsTo

				{

								return	$this->belongsTo(Post::class);

				}

}

Once	the	relationship	has	been	defined,	we	can	retrieve	a	comment's	parent	post	by	accessing	the	post
"dynamic	relationship	property":

use	App\Models\Comment;

$comment	=	Comment::find(1);

return	$comment->post->title;

In	the	example	above,	Eloquent	will	attempt	to	find	a	Post	model	that	has	an	id	which	matches	the	post_id
column	on	the	Comment	model.

Eloquent	determines	the	default	foreign	key	name	by	examining	the	name	of	the	relationship	method	and
suffixing	the	method	name	with	a	_	followed	by	the	name	of	the	parent	model's	primary	key	column.	So,	in	this
example,	Eloquent	will	assume	the	Post	model's	foreign	key	on	the	comments	table	is	post_id.

However,	if	the	foreign	key	for	your	relationship	does	not	follow	these	conventions,	you	may	pass	a	custom
foreign	key	name	as	the	second	argument	to	the	belongsTo	method:

/**

	*	Get	the	post	that	owns	the	comment.

	*/

public	function	post():	BelongsTo

{

				return	$this->belongsTo(Post::class,	'foreign_key');

}

If	your	parent	model	does	not	use	id	as	its	primary	key,	or	you	wish	to	find	the	associated	model	using	a

Laravel	Documentation	-	10.x	/	Relationships 671

different	column,	you	may	pass	a	third	argument	to	the	belongsTo	method	specifying	your	parent	table's	custom
key:

/**

	*	Get	the	post	that	owns	the	comment.

	*/

public	function	post():	BelongsTo

{

				return	$this->belongsTo(Post::class,	'foreign_key',	'owner_key');

}

Default	Models

The	belongsTo,	hasOne,	hasOneThrough,	and	morphOne	relationships	allow	you	to	define	a	default	model	that	will
be	returned	if	the	given	relationship	is	null.	This	pattern	is	often	referred	to	as	the	Null	Object	pattern	and	can
help	remove	conditional	checks	in	your	code.	In	the	following	example,	the	user	relation	will	return	an	empty	
App\Models\User	model	if	no	user	is	attached	to	the	Post	model:

/**

	*	Get	the	author	of	the	post.

	*/

public	function	user():	BelongsTo

{

				return	$this->belongsTo(User::class)->withDefault();

}

To	populate	the	default	model	with	attributes,	you	may	pass	an	array	or	closure	to	the	withDefault	method:

/**

	*	Get	the	author	of	the	post.

	*/

public	function	user():	BelongsTo

{

				return	$this->belongsTo(User::class)->withDefault([

								'name'	=>	'Guest	Author',

]);

}

/**

	*	Get	the	author	of	the	post.

	*/

public	function	user():	BelongsTo

{

				return	$this->belongsTo(User::class)->withDefault(function	(User	$user,	Post	$post)	{

								$user->name	=	'Guest	Author';

				});

}

Querying	Belongs	To	Relationships

When	querying	for	the	children	of	a	"belongs	to"	relationship,	you	may	manually	build	the	where	clause	to
retrieve	the	corresponding	Eloquent	models:

use	App\Models\Post;

$posts	=	Post::where('user_id',	$user->id)->get();

However,	you	may	find	it	more	convenient	to	use	the	whereBelongsTo	method,	which	will	automatically
determine	the	proper	relationship	and	foreign	key	for	the	given	model:

$posts	=	Post::whereBelongsTo($user)->get();

You	may	also	provide	a	collection	instance	to	the	whereBelongsTo	method.	When	doing	so,	Laravel	will	retrieve
models	that	belong	to	any	of	the	parent	models	within	the	collection:

$users	=	User::where('vip',	true)->get();

$posts	=	Post::whereBelongsTo($users)->get();

By	default,	Laravel	will	determine	the	relationship	associated	with	the	given	model	based	on	the	class	name	of
the	model;	however,	you	may	specify	the	relationship	name	manually	by	providing	it	as	the	second	argument	to

Laravel	Documentation	-	10.x	/	Relationships 672

https://en.wikipedia.org/wiki/Null_Object_pattern

the	whereBelongsTo	method:

$posts	=	Post::whereBelongsTo($user,	'author')->get();

Has	One	of	Many

Sometimes	a	model	may	have	many	related	models,	yet	you	want	to	easily	retrieve	the	"latest"	or	"oldest"
related	model	of	the	relationship.	For	example,	a	User	model	may	be	related	to	many	Order	models,	but	you
want	to	define	a	convenient	way	to	interact	with	the	most	recent	order	the	user	has	placed.	You	may	accomplish
this	using	the	hasOne	relationship	type	combined	with	the	ofMany	methods:

/**

	*	Get	the	user's	most	recent	order.

	*/

public	function	latestOrder():	HasOne

{

				return	$this->hasOne(Order::class)->latestOfMany();

}

Likewise,	you	may	define	a	method	to	retrieve	the	"oldest",	or	first,	related	model	of	a	relationship:

/**

	*	Get	the	user's	oldest	order.

	*/

public	function	oldestOrder():	HasOne

{

				return	$this->hasOne(Order::class)->oldestOfMany();

}

By	default,	the	latestOfMany	and	oldestOfMany	methods	will	retrieve	the	latest	or	oldest	related	model	based	on
the	model's	primary	key,	which	must	be	sortable.	However,	sometimes	you	may	wish	to	retrieve	a	single	model
from	a	larger	relationship	using	a	different	sorting	criteria.

For	example,	using	the	ofMany	method,	you	may	retrieve	the	user's	most	expensive	order.	The	ofMany	method
accepts	the	sortable	column	as	its	first	argument	and	which	aggregate	function	(min	or	max)	to	apply	when
querying	for	the	related	model:

/**

	*	Get	the	user's	largest	order.

	*/

public	function	largestOrder():	HasOne

{

				return	$this->hasOne(Order::class)->ofMany('price',	'max');

}

[!WARNING]
Because	PostgreSQL	does	not	support	executing	the	MAX	function	against	UUID	columns,	it	is	not	currently
possible	to	use	one-of-many	relationships	in	combination	with	PostgreSQL	UUID	columns.

Converting	"Many"	Relationships	to	Has	One	Relationships

Often,	when	retrieving	a	single	model	using	the	latestOfMany,	oldestOfMany,	or	ofMany	methods,	you	already
have	a	"has	many"	relationship	defined	for	the	same	model.	For	convenience,	Laravel	allows	you	to	easily
convert	this	relationship	into	a	"has	one"	relationship	by	invoking	the	one	method	on	the	relationship:

/**

	*	Get	the	user's	orders.

	*/

public	function	orders():	HasMany

{

				return	$this->hasMany(Order::class);

}

/**

	*	Get	the	user's	largest	order.

	*/

public	function	largestOrder():	HasOne

{

				return	$this->orders()->one()->ofMany('price',	'max');

}

Laravel	Documentation	-	10.x	/	Relationships 673

Advanced	Has	One	of	Many	Relationships

It	is	possible	to	construct	more	advanced	"has	one	of	many"	relationships.	For	example,	a	Product	model	may
have	many	associated	Price	models	that	are	retained	in	the	system	even	after	new	pricing	is	published.	In
addition,	new	pricing	data	for	the	product	may	be	able	to	be	published	in	advance	to	take	effect	at	a	future	date
via	a	published_at	column.

So,	in	summary,	we	need	to	retrieve	the	latest	published	pricing	where	the	published	date	is	not	in	the	future.	In
addition,	if	two	prices	have	the	same	published	date,	we	will	prefer	the	price	with	the	greatest	ID.	To
accomplish	this,	we	must	pass	an	array	to	the	ofMany	method	that	contains	the	sortable	columns	which
determine	the	latest	price.	In	addition,	a	closure	will	be	provided	as	the	second	argument	to	the	ofMany	method.
This	closure	will	be	responsible	for	adding	additional	publish	date	constraints	to	the	relationship	query:

/**

	*	Get	the	current	pricing	for	the	product.

	*/

public	function	currentPricing():	HasOne

{

				return	$this->hasOne(Price::class)->ofMany([

								'published_at'	=>	'max',

								'id'	=>	'max',

],	function	(Builder	$query)	{

								$query->where('published_at',	'<',	now());

				});

}

Has	One	Through

The	"has-one-through"	relationship	defines	a	one-to-one	relationship	with	another	model.	However,	this
relationship	indicates	that	the	declaring	model	can	be	matched	with	one	instance	of	another	model	by
proceeding	through	a	third	model.

For	example,	in	a	vehicle	repair	shop	application,	each	Mechanic	model	may	be	associated	with	one	Car	model,
and	each	Car	model	may	be	associated	with	one	Owner	model.	While	the	mechanic	and	the	owner	have	no	direct
relationship	within	the	database,	the	mechanic	can	access	the	owner	through	the	Car	model.	Let's	look	at	the
tables	necessary	to	define	this	relationship:

mechanics

				id	-	integer

				name	-	string

cars

				id	-	integer

				model	-	string

				mechanic_id	-	integer

owners

				id	-	integer

				name	-	string

				car_id	-	integer

Now	that	we	have	examined	the	table	structure	for	the	relationship,	let's	define	the	relationship	on	the	Mechanic
model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\HasOneThrough;

class	Mechanic	extends	Model

{

				/**

					*	Get	the	car's	owner.

					*/

				public	function	carOwner():	HasOneThrough

				{

								return	$this->hasOneThrough(Owner::class,	Car::class);

				}

}

Laravel	Documentation	-	10.x	/	Relationships 674

The	first	argument	passed	to	the	hasOneThrough	method	is	the	name	of	the	final	model	we	wish	to	access,	while
the	second	argument	is	the	name	of	the	intermediate	model.

Or,	if	the	relevant	relationships	have	already	been	defined	on	all	of	the	models	involved	in	the	relationship,	you
may	fluently	define	a	"has-one-through"	relationship	by	invoking	the	through	method	and	supplying	the	names
of	those	relationships.	For	example,	if	the	Mechanic	model	has	a	cars	relationship	and	the	Car	model	has	an	
owner	relationship,	you	may	define	a	"has-one-through"	relationship	connecting	the	mechanic	and	the	owner
like	so:

//	String	based	syntax...

return	$this->through('cars')->has('owner');

//	Dynamic	syntax...

return	$this->throughCars()->hasOwner();

Key	Conventions

Typical	Eloquent	foreign	key	conventions	will	be	used	when	performing	the	relationship's	queries.	If	you	would
like	to	customize	the	keys	of	the	relationship,	you	may	pass	them	as	the	third	and	fourth	arguments	to	the	
hasOneThrough	method.	The	third	argument	is	the	name	of	the	foreign	key	on	the	intermediate	model.	The	fourth
argument	is	the	name	of	the	foreign	key	on	the	final	model.	The	fifth	argument	is	the	local	key,	while	the	sixth
argument	is	the	local	key	of	the	intermediate	model:

class	Mechanic	extends	Model

{

				/**

					*	Get	the	car's	owner.

					*/

				public	function	carOwner():	HasOneThrough

				{

								return	$this->hasOneThrough(

												Owner::class,

												Car::class,

												'mechanic_id',	//	Foreign	key	on	the	cars	table...

												'car_id',	//	Foreign	key	on	the	owners	table...

												'id',	//	Local	key	on	the	mechanics	table...

												'id'	//	Local	key	on	the	cars	table...

);

				}

}

Or,	as	discussed	earlier,	if	the	relevant	relationships	have	already	been	defined	on	all	of	the	models	involved	in
the	relationship,	you	may	fluently	define	a	"has-one-through"	relationship	by	invoking	the	through	method	and
supplying	the	names	of	those	relationships.	This	approach	offers	the	advantage	of	reusing	the	key	conventions
already	defined	on	the	existing	relationships:

//	String	based	syntax...

return	$this->through('cars')->has('owner');

//	Dynamic	syntax...

return	$this->throughCars()->hasOwner();

Has	Many	Through

The	"has-many-through"	relationship	provides	a	convenient	way	to	access	distant	relations	via	an	intermediate
relation.	For	example,	let's	assume	we	are	building	a	deployment	platform	like	Laravel	Vapor.	A	Project	model
might	access	many	Deployment	models	through	an	intermediate	Environment	model.	Using	this	example,	you
could	easily	gather	all	deployments	for	a	given	project.	Let's	look	at	the	tables	required	to	define	this
relationship:

projects

				id	-	integer

				name	-	string

environments

				id	-	integer

				project_id	-	integer

				name	-	string

deployments

Laravel	Documentation	-	10.x	/	Relationships 675

https://vapor.laravel.com

				id	-	integer

				environment_id	-	integer

				commit_hash	-	string

Now	that	we	have	examined	the	table	structure	for	the	relationship,	let's	define	the	relationship	on	the	Project
model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\HasManyThrough;

class	Project	extends	Model

{

				/**

					*	Get	all	of	the	deployments	for	the	project.

					*/

				public	function	deployments():	HasManyThrough

				{

								return	$this->hasManyThrough(Deployment::class,	Environment::class);

				}

}

The	first	argument	passed	to	the	hasManyThrough	method	is	the	name	of	the	final	model	we	wish	to	access,	while
the	second	argument	is	the	name	of	the	intermediate	model.

Or,	if	the	relevant	relationships	have	already	been	defined	on	all	of	the	models	involved	in	the	relationship,	you
may	fluently	define	a	"has-many-through"	relationship	by	invoking	the	through	method	and	supplying	the
names	of	those	relationships.	For	example,	if	the	Project	model	has	a	environments	relationship	and	the	
Environment	model	has	a	deployments	relationship,	you	may	define	a	"has-many-through"	relationship
connecting	the	project	and	the	deployments	like	so:

//	String	based	syntax...

return	$this->through('environments')->has('deployments');

//	Dynamic	syntax...

return	$this->throughEnvironments()->hasDeployments();

Though	the	Deployment	model's	table	does	not	contain	a	project_id	column,	the	hasManyThrough	relation
provides	access	to	a	project's	deployments	via	$project->deployments.	To	retrieve	these	models,	Eloquent
inspects	the	project_id	column	on	the	intermediate	Environment	model's	table.	After	finding	the	relevant
environment	IDs,	they	are	used	to	query	the	Deployment	model's	table.

Key	Conventions

Typical	Eloquent	foreign	key	conventions	will	be	used	when	performing	the	relationship's	queries.	If	you	would
like	to	customize	the	keys	of	the	relationship,	you	may	pass	them	as	the	third	and	fourth	arguments	to	the	
hasManyThrough	method.	The	third	argument	is	the	name	of	the	foreign	key	on	the	intermediate	model.	The
fourth	argument	is	the	name	of	the	foreign	key	on	the	final	model.	The	fifth	argument	is	the	local	key,	while	the
sixth	argument	is	the	local	key	of	the	intermediate	model:

class	Project	extends	Model

{

				public	function	deployments():	HasManyThrough

				{

								return	$this->hasManyThrough(

												Deployment::class,

												Environment::class,

												'project_id',	//	Foreign	key	on	the	environments	table...

												'environment_id',	//	Foreign	key	on	the	deployments	table...

												'id',	//	Local	key	on	the	projects	table...

												'id'	//	Local	key	on	the	environments	table...

);

				}

}

Or,	as	discussed	earlier,	if	the	relevant	relationships	have	already	been	defined	on	all	of	the	models	involved	in
the	relationship,	you	may	fluently	define	a	"has-many-through"	relationship	by	invoking	the	through	method
and	supplying	the	names	of	those	relationships.	This	approach	offers	the	advantage	of	reusing	the	key

Laravel	Documentation	-	10.x	/	Relationships 676

conventions	already	defined	on	the	existing	relationships:

//	String	based	syntax...

return	$this->through('environments')->has('deployments');

//	Dynamic	syntax...

return	$this->throughEnvironments()->hasDeployments();

Many	to	Many	Relationships

Many-to-many	relations	are	slightly	more	complicated	than	hasOne	and	hasMany	relationships.	An	example	of	a
many-to-many	relationship	is	a	user	that	has	many	roles	and	those	roles	are	also	shared	by	other	users	in	the
application.	For	example,	a	user	may	be	assigned	the	role	of	"Author"	and	"Editor";	however,	those	roles	may
also	be	assigned	to	other	users	as	well.	So,	a	user	has	many	roles	and	a	role	has	many	users.

Table	Structure

To	define	this	relationship,	three	database	tables	are	needed:	users,	roles,	and	role_user.	The	role_user	table	is
derived	from	the	alphabetical	order	of	the	related	model	names	and	contains	user_id	and	role_id	columns.	This
table	is	used	as	an	intermediate	table	linking	the	users	and	roles.

Remember,	since	a	role	can	belong	to	many	users,	we	cannot	simply	place	a	user_id	column	on	the	roles	table.
This	would	mean	that	a	role	could	only	belong	to	a	single	user.	In	order	to	provide	support	for	roles	being
assigned	to	multiple	users,	the	role_user	table	is	needed.	We	can	summarize	the	relationship's	table	structure
like	so:

users

				id	-	integer

				name	-	string

roles

				id	-	integer

				name	-	string

role_user

				user_id	-	integer

				role_id	-	integer

Model	Structure

Many-to-many	relationships	are	defined	by	writing	a	method	that	returns	the	result	of	the	belongsToMany
method.	The	belongsToMany	method	is	provided	by	the	Illuminate\Database\Eloquent\Model	base	class	that	is
used	by	all	of	your	application's	Eloquent	models.	For	example,	let's	define	a	roles	method	on	our	User	model.
The	first	argument	passed	to	this	method	is	the	name	of	the	related	model	class:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsToMany;

class	User	extends	Model

{

				/**

					*	The	roles	that	belong	to	the	user.

					*/

				public	function	roles():	BelongsToMany

				{

								return	$this->belongsToMany(Role::class);

				}

}

Once	the	relationship	is	defined,	you	may	access	the	user's	roles	using	the	roles	dynamic	relationship	property:

use	App\Models\User;

$user	=	User::find(1);

foreach	($user->roles	as	$role)	{

Laravel	Documentation	-	10.x	/	Relationships 677

				//	...

}

Since	all	relationships	also	serve	as	query	builders,	you	may	add	further	constraints	to	the	relationship	query	by
calling	the	roles	method	and	continuing	to	chain	conditions	onto	the	query:

$roles	=	User::find(1)->roles()->orderBy('name')->get();

To	determine	the	table	name	of	the	relationship's	intermediate	table,	Eloquent	will	join	the	two	related	model
names	in	alphabetical	order.	However,	you	are	free	to	override	this	convention.	You	may	do	so	by	passing	a
second	argument	to	the	belongsToMany	method:

return	$this->belongsToMany(Role::class,	'role_user');

In	addition	to	customizing	the	name	of	the	intermediate	table,	you	may	also	customize	the	column	names	of	the
keys	on	the	table	by	passing	additional	arguments	to	the	belongsToMany	method.	The	third	argument	is	the
foreign	key	name	of	the	model	on	which	you	are	defining	the	relationship,	while	the	fourth	argument	is	the
foreign	key	name	of	the	model	that	you	are	joining	to:

return	$this->belongsToMany(Role::class,	'role_user',	'user_id',	'role_id');

Defining	the	Inverse	of	the	Relationship

To	define	the	"inverse"	of	a	many-to-many	relationship,	you	should	define	a	method	on	the	related	model
which	also	returns	the	result	of	the	belongsToMany	method.	To	complete	our	user	/	role	example,	let's	define	the	
users	method	on	the	Role	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsToMany;

class	Role	extends	Model

{

				/**

					*	The	users	that	belong	to	the	role.

					*/

				public	function	users():	BelongsToMany

				{

								return	$this->belongsToMany(User::class);

				}

}

As	you	can	see,	the	relationship	is	defined	exactly	the	same	as	its	User	model	counterpart	with	the	exception	of
referencing	the	App\Models\User	model.	Since	we're	reusing	the	belongsToMany	method,	all	of	the	usual	table	and
key	customization	options	are	available	when	defining	the	"inverse"	of	many-to-many	relationships.

Retrieving	Intermediate	Table	Columns

As	you	have	already	learned,	working	with	many-to-many	relations	requires	the	presence	of	an	intermediate
table.	Eloquent	provides	some	very	helpful	ways	of	interacting	with	this	table.	For	example,	let's	assume	our	
User	model	has	many	Role	models	that	it	is	related	to.	After	accessing	this	relationship,	we	may	access	the
intermediate	table	using	the	pivot	attribute	on	the	models:

use	App\Models\User;

$user	=	User::find(1);

foreach	($user->roles	as	$role)	{

				echo	$role->pivot->created_at;

}

Notice	that	each	Role	model	we	retrieve	is	automatically	assigned	a	pivot	attribute.	This	attribute	contains	a
model	representing	the	intermediate	table.

By	default,	only	the	model	keys	will	be	present	on	the	pivot	model.	If	your	intermediate	table	contains	extra
attributes,	you	must	specify	them	when	defining	the	relationship:

Laravel	Documentation	-	10.x	/	Relationships 678

return	$this->belongsToMany(Role::class)->withPivot('active',	'created_by');

If	you	would	like	your	intermediate	table	to	have	created_at	and	updated_at	timestamps	that	are	automatically
maintained	by	Eloquent,	call	the	withTimestamps	method	when	defining	the	relationship:

return	$this->belongsToMany(Role::class)->withTimestamps();

[!WARNING]
Intermediate	tables	that	utilize	Eloquent's	automatically	maintained	timestamps	are	required	to	have	both	
created_at	and	updated_at	timestamp	columns.

Customizing	the	pivot	Attribute	Name

As	noted	previously,	attributes	from	the	intermediate	table	may	be	accessed	on	models	via	the	pivot	attribute.
However,	you	are	free	to	customize	the	name	of	this	attribute	to	better	reflect	its	purpose	within	your
application.

For	example,	if	your	application	contains	users	that	may	subscribe	to	podcasts,	you	likely	have	a	many-to-many
relationship	between	users	and	podcasts.	If	this	is	the	case,	you	may	wish	to	rename	your	intermediate	table
attribute	to	subscription	instead	of	pivot.	This	can	be	done	using	the	as	method	when	defining	the	relationship:

return	$this->belongsToMany(Podcast::class)

																->as('subscription')

																->withTimestamps();

Once	the	custom	intermediate	table	attribute	has	been	specified,	you	may	access	the	intermediate	table	data
using	the	customized	name:

$users	=	User::with('podcasts')->get();

foreach	($users->flatMap->podcasts	as	$podcast)	{

				echo	$podcast->subscription->created_at;

}

Filtering	Queries	via	Intermediate	Table	Columns

You	can	also	filter	the	results	returned	by	belongsToMany	relationship	queries	using	the	wherePivot,	wherePivotIn,
wherePivotNotIn,	wherePivotBetween,	wherePivotNotBetween,	wherePivotNull,	and	wherePivotNotNull	methods
when	defining	the	relationship:

return	$this->belongsToMany(Role::class)

																->wherePivot('approved',	1);

return	$this->belongsToMany(Role::class)

																->wherePivotIn('priority',	[1,	2]);

return	$this->belongsToMany(Role::class)

																->wherePivotNotIn('priority',	[1,	2]);

return	$this->belongsToMany(Podcast::class)

																->as('subscriptions')

																->wherePivotBetween('created_at',	['2020-01-01	00:00:00',	'2020-12-31	00:00:00']);

return	$this->belongsToMany(Podcast::class)

																->as('subscriptions')

																->wherePivotNotBetween('created_at',	['2020-01-01	00:00:00',	'2020-12-31	00:00:00']);

return	$this->belongsToMany(Podcast::class)

																->as('subscriptions')

																->wherePivotNull('expired_at');

return	$this->belongsToMany(Podcast::class)

																->as('subscriptions')

																->wherePivotNotNull('expired_at');

Ordering	Queries	via	Intermediate	Table	Columns

You	can	order	the	results	returned	by	belongsToMany	relationship	queries	using	the	orderByPivot	method.	In	the
following	example,	we	will	retrieve	all	of	the	latest	badges	for	the	user:

Laravel	Documentation	-	10.x	/	Relationships 679

return	$this->belongsToMany(Badge::class)

																->where('rank',	'gold')

																->orderByPivot('created_at',	'desc');

Defining	Custom	Intermediate	Table	Models

If	you	would	like	to	define	a	custom	model	to	represent	the	intermediate	table	of	your	many-to-many
relationship,	you	may	call	the	using	method	when	defining	the	relationship.	Custom	pivot	models	give	you	the
opportunity	to	define	additional	behavior	on	the	pivot	model,	such	as	methods	and	casts.

Custom	many-to-many	pivot	models	should	extend	the	Illuminate\Database\Eloquent\Relations\Pivot	class
while	custom	polymorphic	many-to-many	pivot	models	should	extend	the	
Illuminate\Database\Eloquent\Relations\MorphPivot	class.	For	example,	we	may	define	a	Role	model	which
uses	a	custom	RoleUser	pivot	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsToMany;

class	Role	extends	Model

{

				/**

					*	The	users	that	belong	to	the	role.

					*/

				public	function	users():	BelongsToMany

				{

								return	$this->belongsToMany(User::class)->using(RoleUser::class);

				}

}

When	defining	the	RoleUser	model,	you	should	extend	the	Illuminate\Database\Eloquent\Relations\Pivot	class:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Relations\Pivot;

class	RoleUser	extends	Pivot

{

				//	...

}

[!WARNING]
Pivot	models	may	not	use	the	SoftDeletes	trait.	If	you	need	to	soft	delete	pivot	records	consider	converting
your	pivot	model	to	an	actual	Eloquent	model.

Custom	Pivot	Models	and	Incrementing	IDs

If	you	have	defined	a	many-to-many	relationship	that	uses	a	custom	pivot	model,	and	that	pivot	model	has	an
auto-incrementing	primary	key,	you	should	ensure	your	custom	pivot	model	class	defines	an	incrementing
property	that	is	set	to	true.

/**

	*	Indicates	if	the	IDs	are	auto-incrementing.

	*

	*	@var	bool

	*/

public	$incrementing	=	true;

Polymorphic	Relationships

A	polymorphic	relationship	allows	the	child	model	to	belong	to	more	than	one	type	of	model	using	a	single
association.	For	example,	imagine	you	are	building	an	application	that	allows	users	to	share	blog	posts	and
videos.	In	such	an	application,	a	Comment	model	might	belong	to	both	the	Post	and	Video	models.

Laravel	Documentation	-	10.x	/	Relationships 680

One	to	One	(Polymorphic)

Table	Structure

A	one-to-one	polymorphic	relation	is	similar	to	a	typical	one-to-one	relation;	however,	the	child	model	can
belong	to	more	than	one	type	of	model	using	a	single	association.	For	example,	a	blog	Post	and	a	User	may
share	a	polymorphic	relation	to	an	Image	model.	Using	a	one-to-one	polymorphic	relation	allows	you	to	have	a
single	table	of	unique	images	that	may	be	associated	with	posts	and	users.	First,	let's	examine	the	table
structure:

posts

				id	-	integer

				name	-	string

users

				id	-	integer

				name	-	string

images

				id	-	integer

				url	-	string

				imageable_id	-	integer

				imageable_type	-	string

Note	the	imageable_id	and	imageable_type	columns	on	the	images	table.	The	imageable_id	column	will	contain
the	ID	value	of	the	post	or	user,	while	the	imageable_type	column	will	contain	the	class	name	of	the	parent
model.	The	imageable_type	column	is	used	by	Eloquent	to	determine	which	"type"	of	parent	model	to	return
when	accessing	the	imageable	relation.	In	this	case,	the	column	would	contain	either	App\Models\Post	or	
App\Models\User.

Model	Structure

Next,	let's	examine	the	model	definitions	needed	to	build	this	relationship:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphTo;

class	Image	extends	Model

{

				/**

					*	Get	the	parent	imageable	model	(user	or	post).

					*/

				public	function	imageable():	MorphTo

				{

								return	$this->morphTo();

				}

}

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphOne;

class	Post	extends	Model

{

				/**

					*	Get	the	post's	image.

					*/

				public	function	image():	MorphOne

				{

								return	$this->morphOne(Image::class,	'imageable');

				}

}

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphOne;

class	User	extends	Model

{

				/**

					*	Get	the	user's	image.

Laravel	Documentation	-	10.x	/	Relationships 681

					*/

				public	function	image():	MorphOne

				{

								return	$this->morphOne(Image::class,	'imageable');

				}

}

Retrieving	the	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	models.	For
example,	to	retrieve	the	image	for	a	post,	we	can	access	the	image	dynamic	relationship	property:

use	App\Models\Post;

$post	=	Post::find(1);

$image	=	$post->image;

You	may	retrieve	the	parent	of	the	polymorphic	model	by	accessing	the	name	of	the	method	that	performs	the
call	to	morphTo.	In	this	case,	that	is	the	imageable	method	on	the	Image	model.	So,	we	will	access	that	method	as
a	dynamic	relationship	property:

use	App\Models\Image;

$image	=	Image::find(1);

$imageable	=	$image->imageable;

The	imageable	relation	on	the	Image	model	will	return	either	a	Post	or	User	instance,	depending	on	which	type	of
model	owns	the	image.

Key	Conventions

If	necessary,	you	may	specify	the	name	of	the	"id"	and	"type"	columns	utilized	by	your	polymorphic	child
model.	If	you	do	so,	ensure	that	you	always	pass	the	name	of	the	relationship	as	the	first	argument	to	the	
morphTo	method.	Typically,	this	value	should	match	the	method	name,	so	you	may	use	PHP's	__FUNCTION__
constant:

/**

	*	Get	the	model	that	the	image	belongs	to.

	*/

public	function	imageable():	MorphTo

{

				return	$this->morphTo(__FUNCTION__,	'imageable_type',	'imageable_id');

}

One	to	Many	(Polymorphic)

Table	Structure

A	one-to-many	polymorphic	relation	is	similar	to	a	typical	one-to-many	relation;	however,	the	child	model	can
belong	to	more	than	one	type	of	model	using	a	single	association.	For	example,	imagine	users	of	your
application	can	"comment"	on	posts	and	videos.	Using	polymorphic	relationships,	you	may	use	a	single	
comments	table	to	contain	comments	for	both	posts	and	videos.	First,	let's	examine	the	table	structure	required	to
build	this	relationship:

posts

				id	-	integer

				title	-	string

				body	-	text

videos

				id	-	integer

				title	-	string

				url	-	string

comments

				id	-	integer

				body	-	text

Laravel	Documentation	-	10.x	/	Relationships 682

				commentable_id	-	integer

				commentable_type	-	string

Model	Structure

Next,	let's	examine	the	model	definitions	needed	to	build	this	relationship:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphTo;

class	Comment	extends	Model

{

				/**

					*	Get	the	parent	commentable	model	(post	or	video).

					*/

				public	function	commentable():	MorphTo

				{

								return	$this->morphTo();

				}

}

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphMany;

class	Post	extends	Model

{

				/**

					*	Get	all	of	the	post's	comments.

					*/

				public	function	comments():	MorphMany

				{

								return	$this->morphMany(Comment::class,	'commentable');

				}

}

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphMany;

class	Video	extends	Model

{

				/**

					*	Get	all	of	the	video's	comments.

					*/

				public	function	comments():	MorphMany

				{

								return	$this->morphMany(Comment::class,	'commentable');

				}

}

Retrieving	the	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	model's	dynamic
relationship	properties.	For	example,	to	access	all	of	the	comments	for	a	post,	we	can	use	the	comments	dynamic
property:

use	App\Models\Post;

$post	=	Post::find(1);

foreach	($post->comments	as	$comment)	{

				//	...

}

You	may	also	retrieve	the	parent	of	a	polymorphic	child	model	by	accessing	the	name	of	the	method	that
performs	the	call	to	morphTo.	In	this	case,	that	is	the	commentable	method	on	the	Comment	model.	So,	we	will
access	that	method	as	a	dynamic	relationship	property	in	order	to	access	the	comment's	parent	model:

use	App\Models\Comment;

$comment	=	Comment::find(1);

Laravel	Documentation	-	10.x	/	Relationships 683

$commentable	=	$comment->commentable;

The	commentable	relation	on	the	Comment	model	will	return	either	a	Post	or	Video	instance,	depending	on	which
type	of	model	is	the	comment's	parent.

One	of	Many	(Polymorphic)

Sometimes	a	model	may	have	many	related	models,	yet	you	want	to	easily	retrieve	the	"latest"	or	"oldest"
related	model	of	the	relationship.	For	example,	a	User	model	may	be	related	to	many	Image	models,	but	you
want	to	define	a	convenient	way	to	interact	with	the	most	recent	image	the	user	has	uploaded.	You	may
accomplish	this	using	the	morphOne	relationship	type	combined	with	the	ofMany	methods:

/**

	*	Get	the	user's	most	recent	image.

	*/

public	function	latestImage():	MorphOne

{

				return	$this->morphOne(Image::class,	'imageable')->latestOfMany();

}

Likewise,	you	may	define	a	method	to	retrieve	the	"oldest",	or	first,	related	model	of	a	relationship:

/**

	*	Get	the	user's	oldest	image.

	*/

public	function	oldestImage():	MorphOne

{

				return	$this->morphOne(Image::class,	'imageable')->oldestOfMany();

}

By	default,	the	latestOfMany	and	oldestOfMany	methods	will	retrieve	the	latest	or	oldest	related	model	based	on
the	model's	primary	key,	which	must	be	sortable.	However,	sometimes	you	may	wish	to	retrieve	a	single	model
from	a	larger	relationship	using	a	different	sorting	criteria.

For	example,	using	the	ofMany	method,	you	may	retrieve	the	user's	most	"liked"	image.	The	ofMany	method
accepts	the	sortable	column	as	its	first	argument	and	which	aggregate	function	(min	or	max)	to	apply	when
querying	for	the	related	model:

/**

	*	Get	the	user's	most	popular	image.

	*/

public	function	bestImage():	MorphOne

{

				return	$this->morphOne(Image::class,	'imageable')->ofMany('likes',	'max');

}

[!NOTE]
It	is	possible	to	construct	more	advanced	"one	of	many"	relationships.	For	more	information,	please
consult	the	has	one	of	many	documentation.

Many	to	Many	(Polymorphic)

Table	Structure

Many-to-many	polymorphic	relations	are	slightly	more	complicated	than	"morph	one"	and	"morph	many"
relationships.	For	example,	a	Post	model	and	Video	model	could	share	a	polymorphic	relation	to	a	Tag	model.
Using	a	many-to-many	polymorphic	relation	in	this	situation	would	allow	your	application	to	have	a	single
table	of	unique	tags	that	may	be	associated	with	posts	or	videos.	First,	let's	examine	the	table	structure	required
to	build	this	relationship:

posts

				id	-	integer

				name	-	string

videos

				id	-	integer

				name	-	string

Laravel	Documentation	-	10.x	/	Relationships 684

tags

				id	-	integer

				name	-	string

taggables

				tag_id	-	integer

				taggable_id	-	integer

				taggable_type	-	string

[!NOTE]
Before	diving	into	polymorphic	many-to-many	relationships,	you	may	benefit	from	reading	the
documentation	on	typical	many-to-many	relationships.

Model	Structure

Next,	we're	ready	to	define	the	relationships	on	the	models.	The	Post	and	Video	models	will	both	contain	a	tags
method	that	calls	the	morphToMany	method	provided	by	the	base	Eloquent	model	class.

The	morphToMany	method	accepts	the	name	of	the	related	model	as	well	as	the	"relationship	name".	Based	on	the
name	we	assigned	to	our	intermediate	table	name	and	the	keys	it	contains,	we	will	refer	to	the	relationship	as
"taggable":

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphToMany;

class	Post	extends	Model

{

				/**

					*	Get	all	of	the	tags	for	the	post.

					*/

				public	function	tags():	MorphToMany

				{

								return	$this->morphToMany(Tag::class,	'taggable');

				}

}

Defining	the	Inverse	of	the	Relationship

Next,	on	the	Tag	model,	you	should	define	a	method	for	each	of	its	possible	parent	models.	So,	in	this	example,
we	will	define	a	posts	method	and	a	videos	method.	Both	of	these	methods	should	return	the	result	of	the	
morphedByMany	method.

The	morphedByMany	method	accepts	the	name	of	the	related	model	as	well	as	the	"relationship	name".	Based	on
the	name	we	assigned	to	our	intermediate	table	name	and	the	keys	it	contains,	we	will	refer	to	the	relationship
as	"taggable":

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphToMany;

class	Tag	extends	Model

{

				/**

					*	Get	all	of	the	posts	that	are	assigned	this	tag.

					*/

				public	function	posts():	MorphToMany

				{

								return	$this->morphedByMany(Post::class,	'taggable');

				}

				/**

					*	Get	all	of	the	videos	that	are	assigned	this	tag.

					*/

				public	function	videos():	MorphToMany

				{

Laravel	Documentation	-	10.x	/	Relationships 685

								return	$this->morphedByMany(Video::class,	'taggable');

				}

}

Retrieving	the	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	models.	For
example,	to	access	all	of	the	tags	for	a	post,	you	may	use	the	tags	dynamic	relationship	property:

use	App\Models\Post;

$post	=	Post::find(1);

foreach	($post->tags	as	$tag)	{

				//	...

}

You	may	retrieve	the	parent	of	a	polymorphic	relation	from	the	polymorphic	child	model	by	accessing	the	name
of	the	method	that	performs	the	call	to	morphedByMany.	In	this	case,	that	is	the	posts	or	videos	methods	on	the	Tag
model:

use	App\Models\Tag;

$tag	=	Tag::find(1);

foreach	($tag->posts	as	$post)	{

				//	...

}

foreach	($tag->videos	as	$video)	{

				//	...

}

Custom	Polymorphic	Types

By	default,	Laravel	will	use	the	fully	qualified	class	name	to	store	the	"type"	of	the	related	model.	For	instance,
given	the	one-to-many	relationship	example	above	where	a	Comment	model	may	belong	to	a	Post	or	a	Video
model,	the	default	commentable_type	would	be	either	App\Models\Post	or	App\Models\Video,	respectively.
However,	you	may	wish	to	decouple	these	values	from	your	application's	internal	structure.

For	example,	instead	of	using	the	model	names	as	the	"type",	we	may	use	simple	strings	such	as	post	and	video.
By	doing	so,	the	polymorphic	"type"	column	values	in	our	database	will	remain	valid	even	if	the	models	are
renamed:

use	Illuminate\Database\Eloquent\Relations\Relation;

Relation::enforceMorphMap([

				'post'	=>	'App\Models\Post',

				'video'	=>	'App\Models\Video',

]);

You	may	call	the	enforceMorphMap	method	in	the	boot	method	of	your	App\Providers\AppServiceProvider	class	or
create	a	separate	service	provider	if	you	wish.

You	may	determine	the	morph	alias	of	a	given	model	at	runtime	using	the	model's	getMorphClass	method.
Conversely,	you	may	determine	the	fully-qualified	class	name	associated	with	a	morph	alias	using	the	
Relation::getMorphedModel	method:

use	Illuminate\Database\Eloquent\Relations\Relation;

$alias	=	$post->getMorphClass();

$class	=	Relation::getMorphedModel($alias);

[!WARNING]
When	adding	a	"morph	map"	to	your	existing	application,	every	morphable	*_type	column	value	in	your
database	that	still	contains	a	fully-qualified	class	will	need	to	be	converted	to	its	"map"	name.

Dynamic	Relationships

Laravel	Documentation	-	10.x	/	Relationships 686

You	may	use	the	resolveRelationUsing	method	to	define	relations	between	Eloquent	models	at	runtime.	While
not	typically	recommended	for	normal	application	development,	this	may	occasionally	be	useful	when
developing	Laravel	packages.

The	resolveRelationUsing	method	accepts	the	desired	relationship	name	as	its	first	argument.	The	second
argument	passed	to	the	method	should	be	a	closure	that	accepts	the	model	instance	and	returns	a	valid	Eloquent
relationship	definition.	Typically,	you	should	configure	dynamic	relationships	within	the	boot	method	of	a
service	provider:

use	App\Models\Order;

use	App\Models\Customer;

Order::resolveRelationUsing('customer',	function	(Order	$orderModel)	{

				return	$orderModel->belongsTo(Customer::class,	'customer_id');

});

[!WARNING]
When	defining	dynamic	relationships,	always	provide	explicit	key	name	arguments	to	the	Eloquent
relationship	methods.

Querying	Relations

Since	all	Eloquent	relationships	are	defined	via	methods,	you	may	call	those	methods	to	obtain	an	instance	of
the	relationship	without	actually	executing	a	query	to	load	the	related	models.	In	addition,	all	types	of	Eloquent
relationships	also	serve	as	query	builders,	allowing	you	to	continue	to	chain	constraints	onto	the	relationship
query	before	finally	executing	the	SQL	query	against	your	database.

For	example,	imagine	a	blog	application	in	which	a	User	model	has	many	associated	Post	models:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\HasMany;

class	User	extends	Model

{

				/**

					*	Get	all	of	the	posts	for	the	user.

					*/

				public	function	posts():	HasMany

				{

								return	$this->hasMany(Post::class);

				}

}

You	may	query	the	posts	relationship	and	add	additional	constraints	to	the	relationship	like	so:

use	App\Models\User;

$user	=	User::find(1);

$user->posts()->where('active',	1)->get();

You	are	able	to	use	any	of	the	Laravel	query	builder's	methods	on	the	relationship,	so	be	sure	to	explore	the
query	builder	documentation	to	learn	about	all	of	the	methods	that	are	available	to	you.

Chaining	orWhere	Clauses	After	Relationships

As	demonstrated	in	the	example	above,	you	are	free	to	add	additional	constraints	to	relationships	when
querying	them.	However,	use	caution	when	chaining	orWhere	clauses	onto	a	relationship,	as	the	orWhere	clauses
will	be	logically	grouped	at	the	same	level	as	the	relationship	constraint:

$user->posts()

								->where('active',	1)

								->orWhere('votes',	'>=',	100)

								->get();

Laravel	Documentation	-	10.x	/	Relationships 687

The	example	above	will	generate	the	following	SQL.	As	you	can	see,	the	or	clause	instructs	the	query	to	return
any	post	with	greater	than	100	votes.	The	query	is	no	longer	constrained	to	a	specific	user:

select	*

from	posts

where	user_id	=	?	and	active	=	1	or	votes	>=	100

In	most	situations,	you	should	use	logical	groups	to	group	the	conditional	checks	between	parentheses:

use	Illuminate\Database\Eloquent\Builder;

$user->posts()

								->where(function	(Builder	$query)	{

												return	$query->where('active',	1)

																									->orWhere('votes',	'>=',	100);

								})

								->get();

The	example	above	will	produce	the	following	SQL.	Note	that	the	logical	grouping	has	properly	grouped	the
constraints	and	the	query	remains	constrained	to	a	specific	user:

select	*

from	posts

where	user_id	=	?	and	(active	=	1	or	votes	>=	100)

Relationship	Methods	vs.	Dynamic	Properties

If	you	do	not	need	to	add	additional	constraints	to	an	Eloquent	relationship	query,	you	may	access	the
relationship	as	if	it	were	a	property.	For	example,	continuing	to	use	our	User	and	Post	example	models,	we	may
access	all	of	a	user's	posts	like	so:

use	App\Models\User;

$user	=	User::find(1);

foreach	($user->posts	as	$post)	{

				//	...

}

Dynamic	relationship	properties	perform	"lazy	loading",	meaning	they	will	only	load	their	relationship	data
when	you	actually	access	them.	Because	of	this,	developers	often	use	eager	loading	to	pre-load	relationships
they	know	will	be	accessed	after	loading	the	model.	Eager	loading	provides	a	significant	reduction	in	SQL
queries	that	must	be	executed	to	load	a	model's	relations.

Querying	Relationship	Existence

When	retrieving	model	records,	you	may	wish	to	limit	your	results	based	on	the	existence	of	a	relationship.	For
example,	imagine	you	want	to	retrieve	all	blog	posts	that	have	at	least	one	comment.	To	do	so,	you	may	pass
the	name	of	the	relationship	to	the	has	and	orHas	methods:

use	App\Models\Post;

//	Retrieve	all	posts	that	have	at	least	one	comment...

$posts	=	Post::has('comments')->get();

You	may	also	specify	an	operator	and	count	value	to	further	customize	the	query:

//	Retrieve	all	posts	that	have	three	or	more	comments...

$posts	=	Post::has('comments',	'>=',	3)->get();

Nested	has	statements	may	be	constructed	using	"dot"	notation.	For	example,	you	may	retrieve	all	posts	that
have	at	least	one	comment	that	has	at	least	one	image:

//	Retrieve	posts	that	have	at	least	one	comment	with	images...

$posts	=	Post::has('comments.images')->get();

If	you	need	even	more	power,	you	may	use	the	whereHas	and	orWhereHas	methods	to	define	additional	query
constraints	on	your	has	queries,	such	as	inspecting	the	content	of	a	comment:

Laravel	Documentation	-	10.x	/	Relationships 688

use	Illuminate\Database\Eloquent\Builder;

//	Retrieve	posts	with	at	least	one	comment	containing	words	like	code%...

$posts	=	Post::whereHas('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'code%');

})->get();

//	Retrieve	posts	with	at	least	ten	comments	containing	words	like	code%...

$posts	=	Post::whereHas('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'code%');

},	'>=',	10)->get();

[!WARNING]
Eloquent	does	not	currently	support	querying	for	relationship	existence	across	databases.	The	relationships
must	exist	within	the	same	database.

Inline	Relationship	Existence	Queries

If	you	would	like	to	query	for	a	relationship's	existence	with	a	single,	simple	where	condition	attached	to	the
relationship	query,	you	may	find	it	more	convenient	to	use	the	whereRelation,	orWhereRelation,	
whereMorphRelation,	and	orWhereMorphRelation	methods.	For	example,	we	may	query	for	all	posts	that	have
unapproved	comments:

use	App\Models\Post;

$posts	=	Post::whereRelation('comments',	'is_approved',	false)->get();

Of	course,	like	calls	to	the	query	builder's	where	method,	you	may	also	specify	an	operator:

$posts	=	Post::whereRelation(

				'comments',	'created_at',	'>=',	now()->subHour()

)->get();

Querying	Relationship	Absence

When	retrieving	model	records,	you	may	wish	to	limit	your	results	based	on	the	absence	of	a	relationship.	For
example,	imagine	you	want	to	retrieve	all	blog	posts	that	don't	have	any	comments.	To	do	so,	you	may	pass	the
name	of	the	relationship	to	the	doesntHave	and	orDoesntHave	methods:

use	App\Models\Post;

$posts	=	Post::doesntHave('comments')->get();

If	you	need	even	more	power,	you	may	use	the	whereDoesntHave	and	orWhereDoesntHave	methods	to	add
additional	query	constraints	to	your	doesntHave	queries,	such	as	inspecting	the	content	of	a	comment:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	Post::whereDoesntHave('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'code%');

})->get();

You	may	use	"dot"	notation	to	execute	a	query	against	a	nested	relationship.	For	example,	the	following	query
will	retrieve	all	posts	that	do	not	have	comments;	however,	posts	that	have	comments	from	authors	that	are	not
banned	will	be	included	in	the	results:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	Post::whereDoesntHave('comments.author',	function	(Builder	$query)	{

				$query->where('banned',	0);

})->get();

Querying	Morph	To	Relationships

To	query	the	existence	of	"morph	to"	relationships,	you	may	use	the	whereHasMorph	and	whereDoesntHaveMorph
methods.	These	methods	accept	the	name	of	the	relationship	as	their	first	argument.	Next,	the	methods	accept
the	names	of	the	related	models	that	you	wish	to	include	in	the	query.	Finally,	you	may	provide	a	closure	which
customizes	the	relationship	query:

Laravel	Documentation	-	10.x	/	Relationships 689

use	App\Models\Comment;

use	App\Models\Post;

use	App\Models\Video;

use	Illuminate\Database\Eloquent\Builder;

//	Retrieve	comments	associated	to	posts	or	videos	with	a	title	like	code%...

$comments	=	Comment::whereHasMorph(

				'commentable',

				[Post::class,	Video::class],

				function	(Builder	$query)	{

								$query->where('title',	'like',	'code%');

				}

)->get();

//	Retrieve	comments	associated	to	posts	with	a	title	not	like	code%...

$comments	=	Comment::whereDoesntHaveMorph(

				'commentable',

				Post::class,

				function	(Builder	$query)	{

								$query->where('title',	'like',	'code%');

				}

)->get();

You	may	occasionally	need	to	add	query	constraints	based	on	the	"type"	of	the	related	polymorphic	model.	The
closure	passed	to	the	whereHasMorph	method	may	receive	a	$type	value	as	its	second	argument.	This	argument
allows	you	to	inspect	the	"type"	of	the	query	that	is	being	built:

use	Illuminate\Database\Eloquent\Builder;

$comments	=	Comment::whereHasMorph(

				'commentable',

				[Post::class,	Video::class],

				function	(Builder	$query,	string	$type)	{

								$column	=	$type	===	Post::class	?	'content'	:	'title';

								$query->where($column,	'like',	'code%');

				}

)->get();

Querying	All	Related	Models

Instead	of	passing	an	array	of	possible	polymorphic	models,	you	may	provide	*	as	a	wildcard	value.	This	will
instruct	Laravel	to	retrieve	all	of	the	possible	polymorphic	types	from	the	database.	Laravel	will	execute	an
additional	query	in	order	to	perform	this	operation:

use	Illuminate\Database\Eloquent\Builder;

$comments	=	Comment::whereHasMorph('commentable',	'*',	function	(Builder	$query)	{

				$query->where('title',	'like',	'foo%');

})->get();

Aggregating	Related	Models

Counting	Related	Models

Sometimes	you	may	want	to	count	the	number	of	related	models	for	a	given	relationship	without	actually
loading	the	models.	To	accomplish	this,	you	may	use	the	withCount	method.	The	withCount	method	will	place	a	
{relation}_count	attribute	on	the	resulting	models:

use	App\Models\Post;

$posts	=	Post::withCount('comments')->get();

foreach	($posts	as	$post)	{

				echo	$post->comments_count;

}

By	passing	an	array	to	the	withCount	method,	you	may	add	the	"counts"	for	multiple	relations	as	well	as	add
additional	constraints	to	the	queries:

use	Illuminate\Database\Eloquent\Builder;

Laravel	Documentation	-	10.x	/	Relationships 690

$posts	=	Post::withCount(['votes',	'comments'	=>	function	(Builder	$query)	{

				$query->where('content',	'like',	'code%');

}])->get();

echo	$posts[0]->votes_count;

echo	$posts[0]->comments_count;

You	may	also	alias	the	relationship	count	result,	allowing	multiple	counts	on	the	same	relationship:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	Post::withCount([

				'comments',

				'comments	as	pending_comments_count'	=>	function	(Builder	$query)	{

								$query->where('approved',	false);

				},

])->get();

echo	$posts[0]->comments_count;

echo	$posts[0]->pending_comments_count;

Deferred	Count	Loading

Using	the	loadCount	method,	you	may	load	a	relationship	count	after	the	parent	model	has	already	been
retrieved:

$book	=	Book::first();

$book->loadCount('genres');

If	you	need	to	set	additional	query	constraints	on	the	count	query,	you	may	pass	an	array	keyed	by	the
relationships	you	wish	to	count.	The	array	values	should	be	closures	which	receive	the	query	builder	instance:

$book->loadCount(['reviews'	=>	function	(Builder	$query)	{

				$query->where('rating',	5);

}])

Relationship	Counting	and	Custom	Select	Statements

If	you're	combining	withCount	with	a	select	statement,	ensure	that	you	call	withCount	after	the	select	method:

$posts	=	Post::select(['title',	'body'])

																->withCount('comments')

																->get();

Other	Aggregate	Functions

In	addition	to	the	withCount	method,	Eloquent	provides	withMin,	withMax,	withAvg,	withSum,	and	withExists
methods.	These	methods	will	place	a	{relation}_{function}_{column}	attribute	on	your	resulting	models:

use	App\Models\Post;

$posts	=	Post::withSum('comments',	'votes')->get();

foreach	($posts	as	$post)	{

				echo	$post->comments_sum_votes;

}

If	you	wish	to	access	the	result	of	the	aggregate	function	using	another	name,	you	may	specify	your	own	alias:

$posts	=	Post::withSum('comments	as	total_comments',	'votes')->get();

foreach	($posts	as	$post)	{

				echo	$post->total_comments;

}

Like	the	loadCount	method,	deferred	versions	of	these	methods	are	also	available.	These	additional	aggregate
operations	may	be	performed	on	Eloquent	models	that	have	already	been	retrieved:

$post	=	Post::first();

Laravel	Documentation	-	10.x	/	Relationships 691

$post->loadSum('comments',	'votes');

If	you're	combining	these	aggregate	methods	with	a	select	statement,	ensure	that	you	call	the	aggregate
methods	after	the	select	method:

$posts	=	Post::select(['title',	'body'])

																->withExists('comments')

																->get();

Counting	Related	Models	on	Morph	To	Relationships

If	you	would	like	to	eager	load	a	"morph	to"	relationship,	as	well	as	related	model	counts	for	the	various
entities	that	may	be	returned	by	that	relationship,	you	may	utilize	the	with	method	in	combination	with	the	
morphTo	relationship's	morphWithCount	method.

In	this	example,	let's	assume	that	Photo	and	Post	models	may	create	ActivityFeed	models.	We	will	assume	the	
ActivityFeed	model	defines	a	"morph	to"	relationship	named	parentable	that	allows	us	to	retrieve	the	parent	
Photo	or	Post	model	for	a	given	ActivityFeed	instance.	Additionally,	let's	assume	that	Photo	models	"have
many"	Tag	models	and	Post	models	"have	many"	Comment	models.

Now,	let's	imagine	we	want	to	retrieve	ActivityFeed	instances	and	eager	load	the	parentable	parent	models	for
each	ActivityFeed	instance.	In	addition,	we	want	to	retrieve	the	number	of	tags	that	are	associated	with	each
parent	photo	and	the	number	of	comments	that	are	associated	with	each	parent	post:

use	Illuminate\Database\Eloquent\Relations\MorphTo;

$activities	=	ActivityFeed::with([

				'parentable'	=>	function	(MorphTo	$morphTo)	{

								$morphTo->morphWithCount([

												Photo::class	=>	['tags'],

												Post::class	=>	['comments'],

]);

				}])->get();

Deferred	Count	Loading

Let's	assume	we	have	already	retrieved	a	set	of	ActivityFeed	models	and	now	we	would	like	to	load	the	nested
relationship	counts	for	the	various	parentable	models	associated	with	the	activity	feeds.	You	may	use	the	
loadMorphCount	method	to	accomplish	this:

$activities	=	ActivityFeed::with('parentable')->get();

$activities->loadMorphCount('parentable',	[

				Photo::class	=>	['tags'],

				Post::class	=>	['comments'],

]);

Eager	Loading

When	accessing	Eloquent	relationships	as	properties,	the	related	models	are	"lazy	loaded".	This	means	the
relationship	data	is	not	actually	loaded	until	you	first	access	the	property.	However,	Eloquent	can	"eager	load"
relationships	at	the	time	you	query	the	parent	model.	Eager	loading	alleviates	the	"N	+	1"	query	problem.	To
illustrate	the	N	+	1	query	problem,	consider	a	Book	model	that	"belongs	to"	to	an	Author	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

class	Book	extends	Model

{

				/**

					*	Get	the	author	that	wrote	the	book.

					*/

				public	function	author():	BelongsTo

				{

								return	$this->belongsTo(Author::class);

Laravel	Documentation	-	10.x	/	Relationships 692

				}

}

Now,	let's	retrieve	all	books	and	their	authors:

use	App\Models\Book;

$books	=	Book::all();

foreach	($books	as	$book)	{

				echo	$book->author->name;

}

This	loop	will	execute	one	query	to	retrieve	all	of	the	books	within	the	database	table,	then	another	query	for
each	book	in	order	to	retrieve	the	book's	author.	So,	if	we	have	25	books,	the	code	above	would	run	26	queries:
one	for	the	original	book,	and	25	additional	queries	to	retrieve	the	author	of	each	book.

Thankfully,	we	can	use	eager	loading	to	reduce	this	operation	to	just	two	queries.	When	building	a	query,	you
may	specify	which	relationships	should	be	eager	loaded	using	the	with	method:

$books	=	Book::with('author')->get();

foreach	($books	as	$book)	{

				echo	$book->author->name;

}

For	this	operation,	only	two	queries	will	be	executed	-	one	query	to	retrieve	all	of	the	books	and	one	query	to
retrieve	all	of	the	authors	for	all	of	the	books:

select	*	from	books

select	*	from	authors	where	id	in	(1,	2,	3,	4,	5,	...)

Eager	Loading	Multiple	Relationships

Sometimes	you	may	need	to	eager	load	several	different	relationships.	To	do	so,	just	pass	an	array	of
relationships	to	the	with	method:

$books	=	Book::with(['author',	'publisher'])->get();

Nested	Eager	Loading

To	eager	load	a	relationship's	relationships,	you	may	use	"dot"	syntax.	For	example,	let's	eager	load	all	of	the
book's	authors	and	all	of	the	author's	personal	contacts:

$books	=	Book::with('author.contacts')->get();

Alternatively,	you	may	specify	nested	eager	loaded	relationships	by	providing	a	nested	array	to	the	with
method,	which	can	be	convenient	when	eager	loading	multiple	nested	relationships:

$books	=	Book::with([

				'author'	=>	[

								'contacts',

								'publisher',

],

])->get();

Nested	Eager	Loading	morphTo	Relationships

If	you	would	like	to	eager	load	a	morphTo	relationship,	as	well	as	nested	relationships	on	the	various	entities	that
may	be	returned	by	that	relationship,	you	may	use	the	with	method	in	combination	with	the	morphTo
relationship's	morphWith	method.	To	help	illustrate	this	method,	let's	consider	the	following	model:

<?php

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphTo;

class	ActivityFeed	extends	Model

Laravel	Documentation	-	10.x	/	Relationships 693

{

				/**

					*	Get	the	parent	of	the	activity	feed	record.

					*/

				public	function	parentable():	MorphTo

				{

								return	$this->morphTo();

				}

}

In	this	example,	let's	assume	Event,	Photo,	and	Post	models	may	create	ActivityFeed	models.	Additionally,	let's
assume	that	Event	models	belong	to	a	Calendar	model,	Photo	models	are	associated	with	Tag	models,	and	Post
models	belong	to	an	Author	model.

Using	these	model	definitions	and	relationships,	we	may	retrieve	ActivityFeed	model	instances	and	eager	load
all	parentable	models	and	their	respective	nested	relationships:

use	Illuminate\Database\Eloquent\Relations\MorphTo;

$activities	=	ActivityFeed::query()

				->with(['parentable'	=>	function	(MorphTo	$morphTo)	{

								$morphTo->morphWith([

												Event::class	=>	['calendar'],

												Photo::class	=>	['tags'],

												Post::class	=>	['author'],

]);

				}])->get();

Eager	Loading	Specific	Columns

You	may	not	always	need	every	column	from	the	relationships	you	are	retrieving.	For	this	reason,	Eloquent
allows	you	to	specify	which	columns	of	the	relationship	you	would	like	to	retrieve:

$books	=	Book::with('author:id,name,book_id')->get();

[!WARNING]
When	using	this	feature,	you	should	always	include	the	id	column	and	any	relevant	foreign	key	columns	in
the	list	of	columns	you	wish	to	retrieve.

Eager	Loading	by	Default

Sometimes	you	might	want	to	always	load	some	relationships	when	retrieving	a	model.	To	accomplish	this,	you
may	define	a	$with	property	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

class	Book	extends	Model

{

				/**

					*	The	relationships	that	should	always	be	loaded.

					*

					*	@var	array

					*/

				protected	$with	=	['author'];

				/**

					*	Get	the	author	that	wrote	the	book.

					*/

				public	function	author():	BelongsTo

				{

								return	$this->belongsTo(Author::class);

				}

				/**

					*	Get	the	genre	of	the	book.

					*/

				public	function	genre():	BelongsTo

				{

Laravel	Documentation	-	10.x	/	Relationships 694

								return	$this->belongsTo(Genre::class);

				}

}

If	you	would	like	to	remove	an	item	from	the	$with	property	for	a	single	query,	you	may	use	the	without
method:

$books	=	Book::without('author')->get();

If	you	would	like	to	override	all	items	within	the	$with	property	for	a	single	query,	you	may	use	the	withOnly
method:

$books	=	Book::withOnly('genre')->get();

Constraining	Eager	Loads

Sometimes	you	may	wish	to	eager	load	a	relationship	but	also	specify	additional	query	conditions	for	the	eager
loading	query.	You	can	accomplish	this	by	passing	an	array	of	relationships	to	the	with	method	where	the	array
key	is	a	relationship	name	and	the	array	value	is	a	closure	that	adds	additional	constraints	to	the	eager	loading
query:

use	App\Models\User;

use	Illuminate\Contracts\Database\Eloquent\Builder;

$users	=	User::with(['posts'	=>	function	(Builder	$query)	{

				$query->where('title',	'like',	'%code%');

}])->get();

In	this	example,	Eloquent	will	only	eager	load	posts	where	the	post's	title	column	contains	the	word	code.	You
may	call	other	query	builder	methods	to	further	customize	the	eager	loading	operation:

$users	=	User::with(['posts'	=>	function	(Builder	$query)	{

				$query->orderBy('created_at',	'desc');

}])->get();

[!WARNING]
The	limit	and	take	query	builder	methods	may	not	be	used	when	constraining	eager	loads.

Constraining	Eager	Loading	of	morphTo	Relationships

If	you	are	eager	loading	a	morphTo	relationship,	Eloquent	will	run	multiple	queries	to	fetch	each	type	of	related
model.	You	may	add	additional	constraints	to	each	of	these	queries	using	the	MorphTo	relation's	constrain
method:

use	Illuminate\Database\Eloquent\Relations\MorphTo;

$comments	=	Comment::with(['commentable'	=>	function	(MorphTo	$morphTo)	{

				$morphTo->constrain([

								Post::class	=>	function	($query)	{

												$query->whereNull('hidden_at');

								},

								Video::class	=>	function	($query)	{

												$query->where('type',	'educational');

								},

]);

}])->get();

In	this	example,	Eloquent	will	only	eager	load	posts	that	have	not	been	hidden	and	videos	that	have	a	type
value	of	"educational".

Constraining	Eager	Loads	With	Relationship	Existence

You	may	sometimes	find	yourself	needing	to	check	for	the	existence	of	a	relationship	while	simultaneously
loading	the	relationship	based	on	the	same	conditions.	For	example,	you	may	wish	to	only	retrieve	User	models
that	have	child	Post	models	matching	a	given	query	condition	while	also	eager	loading	the	matching	posts.	You
may	accomplish	this	using	the	withWhereHas	method:

use	App\Models\User;

Laravel	Documentation	-	10.x	/	Relationships 695

$users	=	User::withWhereHas('posts',	function	($query)	{

				$query->where('featured',	true);

})->get();

Lazy	Eager	Loading

Sometimes	you	may	need	to	eager	load	a	relationship	after	the	parent	model	has	already	been	retrieved.	For
example,	this	may	be	useful	if	you	need	to	dynamically	decide	whether	to	load	related	models:

use	App\Models\Book;

$books	=	Book::all();

if	($someCondition)	{

				$books->load('author',	'publisher');

}

If	you	need	to	set	additional	query	constraints	on	the	eager	loading	query,	you	may	pass	an	array	keyed	by	the
relationships	you	wish	to	load.	The	array	values	should	be	closure	instances	which	receive	the	query	instance:

$author->load(['books'	=>	function	(Builder	$query)	{

				$query->orderBy('published_date',	'asc');

}]);

To	load	a	relationship	only	when	it	has	not	already	been	loaded,	use	the	loadMissing	method:

$book->loadMissing('author');

Nested	Lazy	Eager	Loading	and	morphTo

If	you	would	like	to	eager	load	a	morphTo	relationship,	as	well	as	nested	relationships	on	the	various	entities	that
may	be	returned	by	that	relationship,	you	may	use	the	loadMorph	method.

This	method	accepts	the	name	of	the	morphTo	relationship	as	its	first	argument,	and	an	array	of	model	/
relationship	pairs	as	its	second	argument.	To	help	illustrate	this	method,	let's	consider	the	following	model:

<?php

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\MorphTo;

class	ActivityFeed	extends	Model

{

				/**

					*	Get	the	parent	of	the	activity	feed	record.

					*/

				public	function	parentable():	MorphTo

				{

								return	$this->morphTo();

				}

}

In	this	example,	let's	assume	Event,	Photo,	and	Post	models	may	create	ActivityFeed	models.	Additionally,	let's
assume	that	Event	models	belong	to	a	Calendar	model,	Photo	models	are	associated	with	Tag	models,	and	Post
models	belong	to	an	Author	model.

Using	these	model	definitions	and	relationships,	we	may	retrieve	ActivityFeed	model	instances	and	eager	load
all	parentable	models	and	their	respective	nested	relationships:

$activities	=	ActivityFeed::with('parentable')

				->get()

				->loadMorph('parentable',	[

								Event::class	=>	['calendar'],

								Photo::class	=>	['tags'],

								Post::class	=>	['author'],

]);

Preventing	Lazy	Loading

Laravel	Documentation	-	10.x	/	Relationships 696

As	previously	discussed,	eager	loading	relationships	can	often	provide	significant	performance	benefits	to	your
application.	Therefore,	if	you	would	like,	you	may	instruct	Laravel	to	always	prevent	the	lazy	loading	of
relationships.	To	accomplish	this,	you	may	invoke	the	preventLazyLoading	method	offered	by	the	base	Eloquent
model	class.	Typically,	you	should	call	this	method	within	the	boot	method	of	your	application's	
AppServiceProvider	class.

The	preventLazyLoading	method	accepts	an	optional	boolean	argument	that	indicates	if	lazy	loading	should	be
prevented.	For	example,	you	may	wish	to	only	disable	lazy	loading	in	non-production	environments	so	that
your	production	environment	will	continue	to	function	normally	even	if	a	lazy	loaded	relationship	is
accidentally	present	in	production	code:

use	Illuminate\Database\Eloquent\Model;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Model::preventLazyLoading(!	$this->app->isProduction());

}

After	preventing	lazy	loading,	Eloquent	will	throw	a	Illuminate\Database\LazyLoadingViolationException
exception	when	your	application	attempts	to	lazy	load	any	Eloquent	relationship.

You	may	customize	the	behavior	of	lazy	loading	violations	using	the	handleLazyLoadingViolationsUsing
method.	For	example,	using	this	method,	you	may	instruct	lazy	loading	violations	to	only	be	logged	instead	of
interrupting	the	application's	execution	with	exceptions:

Model::handleLazyLoadingViolationUsing(function	(Model	$model,	string	$relation)	{

				$class	=	$model::class;

				info("Attempted	to	lazy	load	[{$relation}]	on	model	[{$class}].");

});

Inserting	and	Updating	Related	Models

The	save	Method

Eloquent	provides	convenient	methods	for	adding	new	models	to	relationships.	For	example,	perhaps	you	need
to	add	a	new	comment	to	a	post.	Instead	of	manually	setting	the	post_id	attribute	on	the	Comment	model	you	may
insert	the	comment	using	the	relationship's	save	method:

use	App\Models\Comment;

use	App\Models\Post;

$comment	=	new	Comment(['message'	=>	'A	new	comment.']);

$post	=	Post::find(1);

$post->comments()->save($comment);

Note	that	we	did	not	access	the	comments	relationship	as	a	dynamic	property.	Instead,	we	called	the	comments
method	to	obtain	an	instance	of	the	relationship.	The	save	method	will	automatically	add	the	appropriate	
post_id	value	to	the	new	Comment	model.

If	you	need	to	save	multiple	related	models,	you	may	use	the	saveMany	method:

$post	=	Post::find(1);

$post->comments()->saveMany([

				new	Comment(['message'	=>	'A	new	comment.']),

				new	Comment(['message'	=>	'Another	new	comment.']),

]);

The	save	and	saveMany	methods	will	persist	the	given	model	instances,	but	will	not	add	the	newly	persisted
models	to	any	in-memory	relationships	that	are	already	loaded	onto	the	parent	model.	If	you	plan	on	accessing
the	relationship	after	using	the	save	or	saveMany	methods,	you	may	wish	to	use	the	refresh	method	to	reload	the
model	and	its	relationships:

Laravel	Documentation	-	10.x	/	Relationships 697

$post->comments()->save($comment);

$post->refresh();

//	All	comments,	including	the	newly	saved	comment...

$post->comments;

Recursively	Saving	Models	and	Relationships

If	you	would	like	to	save	your	model	and	all	of	its	associated	relationships,	you	may	use	the	push	method.	In
this	example,	the	Post	model	will	be	saved	as	well	as	its	comments	and	the	comment's	authors:

$post	=	Post::find(1);

$post->comments[0]->message	=	'Message';

$post->comments[0]->author->name	=	'Author	Name';

$post->push();

The	pushQuietly	method	may	be	used	to	save	a	model	and	its	associated	relationships	without	raising	any
events:

$post->pushQuietly();

The	create	Method

In	addition	to	the	save	and	saveMany	methods,	you	may	also	use	the	create	method,	which	accepts	an	array	of
attributes,	creates	a	model,	and	inserts	it	into	the	database.	The	difference	between	save	and	create	is	that	save
accepts	a	full	Eloquent	model	instance	while	create	accepts	a	plain	PHP	array.	The	newly	created	model	will
be	returned	by	the	create	method:

use	App\Models\Post;

$post	=	Post::find(1);

$comment	=	$post->comments()->create([

				'message'	=>	'A	new	comment.',

]);

You	may	use	the	createMany	method	to	create	multiple	related	models:

$post	=	Post::find(1);

$post->comments()->createMany([

				['message'	=>	'A	new	comment.'],

				['message'	=>	'Another	new	comment.'],

]);

The	createQuietly	and	createManyQuietly	methods	may	be	used	to	create	a	model(s)	without	dispatching	any
events:

$user	=	User::find(1);

$user->posts()->createQuietly([

				'title'	=>	'Post	title.',

]);

$user->posts()->createManyQuietly([

				['title'	=>	'First	post.'],

				['title'	=>	'Second	post.'],

]);

You	may	also	use	the	findOrNew,	firstOrNew,	firstOrCreate,	and	updateOrCreate	methods	to	create	and	update
models	on	relationships.

[!NOTE]
Before	using	the	create	method,	be	sure	to	review	the	mass	assignment	documentation.

Belongs	To	Relationships

Laravel	Documentation	-	10.x	/	Relationships 698

If	you	would	like	to	assign	a	child	model	to	a	new	parent	model,	you	may	use	the	associate	method.	In	this
example,	the	User	model	defines	a	belongsTo	relationship	to	the	Account	model.	This	associate	method	will	set
the	foreign	key	on	the	child	model:

use	App\Models\Account;

$account	=	Account::find(10);

$user->account()->associate($account);

$user->save();

To	remove	a	parent	model	from	a	child	model,	you	may	use	the	dissociate	method.	This	method	will	set	the
relationship's	foreign	key	to	null:

$user->account()->dissociate();

$user->save();

Many	to	Many	Relationships

Attaching	/	Detaching

Eloquent	also	provides	methods	to	make	working	with	many-to-many	relationships	more	convenient.	For
example,	let's	imagine	a	user	can	have	many	roles	and	a	role	can	have	many	users.	You	may	use	the	attach
method	to	attach	a	role	to	a	user	by	inserting	a	record	in	the	relationship's	intermediate	table:

use	App\Models\User;

$user	=	User::find(1);

$user->roles()->attach($roleId);

When	attaching	a	relationship	to	a	model,	you	may	also	pass	an	array	of	additional	data	to	be	inserted	into	the
intermediate	table:

$user->roles()->attach($roleId,	['expires'	=>	$expires]);

Sometimes	it	may	be	necessary	to	remove	a	role	from	a	user.	To	remove	a	many-to-many	relationship	record,
use	the	detach	method.	The	detach	method	will	delete	the	appropriate	record	out	of	the	intermediate	table;
however,	both	models	will	remain	in	the	database:

//	Detach	a	single	role	from	the	user...

$user->roles()->detach($roleId);

//	Detach	all	roles	from	the	user...

$user->roles()->detach();

For	convenience,	attach	and	detach	also	accept	arrays	of	IDs	as	input:

$user	=	User::find(1);

$user->roles()->detach([1,	2,	3]);

$user->roles()->attach([

				1	=>	['expires'	=>	$expires],

				2	=>	['expires'	=>	$expires],

]);

Syncing	Associations

You	may	also	use	the	sync	method	to	construct	many-to-many	associations.	The	sync	method	accepts	an	array
of	IDs	to	place	on	the	intermediate	table.	Any	IDs	that	are	not	in	the	given	array	will	be	removed	from	the
intermediate	table.	So,	after	this	operation	is	complete,	only	the	IDs	in	the	given	array	will	exist	in	the
intermediate	table:

$user->roles()->sync([1,	2,	3]);

You	may	also	pass	additional	intermediate	table	values	with	the	IDs:

Laravel	Documentation	-	10.x	/	Relationships 699

$user->roles()->sync([1	=>	['expires'	=>	true],	2,	3]);

If	you	would	like	to	insert	the	same	intermediate	table	values	with	each	of	the	synced	model	IDs,	you	may	use
the	syncWithPivotValues	method:

$user->roles()->syncWithPivotValues([1,	2,	3],	['active'	=>	true]);

If	you	do	not	want	to	detach	existing	IDs	that	are	missing	from	the	given	array,	you	may	use	the	
syncWithoutDetaching	method:

$user->roles()->syncWithoutDetaching([1,	2,	3]);

Toggling	Associations

The	many-to-many	relationship	also	provides	a	toggle	method	which	"toggles"	the	attachment	status	of	the
given	related	model	IDs.	If	the	given	ID	is	currently	attached,	it	will	be	detached.	Likewise,	if	it	is	currently
detached,	it	will	be	attached:

$user->roles()->toggle([1,	2,	3]);

You	may	also	pass	additional	intermediate	table	values	with	the	IDs:

$user->roles()->toggle([

				1	=>	['expires'	=>	true],

				2	=>	['expires'	=>	true],

]);

Updating	a	Record	on	the	Intermediate	Table

If	you	need	to	update	an	existing	row	in	your	relationship's	intermediate	table,	you	may	use	the	
updateExistingPivot	method.	This	method	accepts	the	intermediate	record	foreign	key	and	an	array	of	attributes
to	update:

$user	=	User::find(1);

$user->roles()->updateExistingPivot($roleId,	[

				'active'	=>	false,

]);

Touching	Parent	Timestamps

When	a	model	defines	a	belongsTo	or	belongsToMany	relationship	to	another	model,	such	as	a	Comment	which
belongs	to	a	Post,	it	is	sometimes	helpful	to	update	the	parent's	timestamp	when	the	child	model	is	updated.

For	example,	when	a	Comment	model	is	updated,	you	may	want	to	automatically	"touch"	the	updated_at
timestamp	of	the	owning	Post	so	that	it	is	set	to	the	current	date	and	time.	To	accomplish	this,	you	may	add	a	
touches	property	to	your	child	model	containing	the	names	of	the	relationships	that	should	have	their	
updated_at	timestamps	updated	when	the	child	model	is	updated:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Relations\BelongsTo;

class	Comment	extends	Model

{

				/**

					*	All	of	the	relationships	to	be	touched.

					*

					*	@var	array

					*/

				protected	$touches	=	['post'];

				/**

					*	Get	the	post	that	the	comment	belongs	to.

					*/

				public	function	post():	BelongsTo

Laravel	Documentation	-	10.x	/	Relationships 700

				{

								return	$this->belongsTo(Post::class);

				}

}

[!WARNING]
Parent	model	timestamps	will	only	be	updated	if	the	child	model	is	updated	using	Eloquent's	save	method.

Laravel	Documentation	-	10.x	/	Relationships 701

Eloquent	ORM

Eloquent:	Collections
Introduction
Available	Methods
Custom	Collections

Introduction

All	Eloquent	methods	that	return	more	than	one	model	result	will	return	instances	of	the	
Illuminate\Database\Eloquent\Collection	class,	including	results	retrieved	via	the	get	method	or	accessed	via	a
relationship.	The	Eloquent	collection	object	extends	Laravel's	base	collection,	so	it	naturally	inherits	dozens	of
methods	used	to	fluently	work	with	the	underlying	array	of	Eloquent	models.	Be	sure	to	review	the	Laravel
collection	documentation	to	learn	all	about	these	helpful	methods!

All	collections	also	serve	as	iterators,	allowing	you	to	loop	over	them	as	if	they	were	simple	PHP	arrays:

use	App\Models\User;

$users	=	User::where('active',	1)->get();

foreach	($users	as	$user)	{

				echo	$user->name;

}

However,	as	previously	mentioned,	collections	are	much	more	powerful	than	arrays	and	expose	a	variety	of
map	/	reduce	operations	that	may	be	chained	using	an	intuitive	interface.	For	example,	we	may	remove	all
inactive	models	and	then	gather	the	first	name	for	each	remaining	user:

$names	=	User::all()->reject(function	(User	$user)	{

				return	$user->active	===	false;

})->map(function	(User	$user)	{

				return	$user->name;

});

Eloquent	Collection	Conversion

While	most	Eloquent	collection	methods	return	a	new	instance	of	an	Eloquent	collection,	the	collapse,	flatten,
flip,	keys,	pluck,	and	zip	methods	return	a	base	collection	instance.	Likewise,	if	a	map	operation	returns	a
collection	that	does	not	contain	any	Eloquent	models,	it	will	be	converted	to	a	base	collection	instance.

Available	Methods

All	Eloquent	collections	extend	the	base	Laravel	collection	object;	therefore,	they	inherit	all	of	the	powerful
methods	provided	by	the	base	collection	class.

In	addition,	the	Illuminate\Database\Eloquent\Collection	class	provides	a	superset	of	methods	to	aid	with
managing	your	model	collections.	Most	methods	return	Illuminate\Database\Eloquent\Collection	instances;
however,	some	methods,	like	modelKeys,	return	an	Illuminate\Support\Collection	instance.

append
contains
diff
except
find
fresh
intersect
load
loadMissing
modelKeys
makeVisible
makeHidden

Laravel	Documentation	-	10.x	/	Collections 702

makeHidden
only
setVisible
setHidden
toQuery
unique

append($attributes)

The	append	method	may	be	used	to	indicate	that	an	attribute	should	be	appended	for	every	model	in	the
collection.	This	method	accepts	an	array	of	attributes	or	a	single	attribute:

$users->append('team');

$users->append(['team',	'is_admin']);

contains($key,	$operator	=	null,	$value	=	null)

The	contains	method	may	be	used	to	determine	if	a	given	model	instance	is	contained	by	the	collection.	This
method	accepts	a	primary	key	or	a	model	instance:

$users->contains(1);

$users->contains(User::find(1));

diff($items)

The	diff	method	returns	all	of	the	models	that	are	not	present	in	the	given	collection:

use	App\Models\User;

$users	=	$users->diff(User::whereIn('id',	[1,	2,	3])->get());

except($keys)

The	except	method	returns	all	of	the	models	that	do	not	have	the	given	primary	keys:

$users	=	$users->except([1,	2,	3]);

find($key)

The	find	method	returns	the	model	that	has	a	primary	key	matching	the	given	key.	If	$key	is	a	model	instance,	
find	will	attempt	to	return	a	model	matching	the	primary	key.	If	$key	is	an	array	of	keys,	find	will	return	all
models	which	have	a	primary	key	in	the	given	array:

$users	=	User::all();

$user	=	$users->find(1);

fresh($with	=	[])

The	fresh	method	retrieves	a	fresh	instance	of	each	model	in	the	collection	from	the	database.	In	addition,	any
specified	relationships	will	be	eager	loaded:

$users	=	$users->fresh();

Laravel	Documentation	-	10.x	/	Collections 703

$users	=	$users->fresh('comments');

intersect($items)

The	intersect	method	returns	all	of	the	models	that	are	also	present	in	the	given	collection:

use	App\Models\User;

$users	=	$users->intersect(User::whereIn('id',	[1,	2,	3])->get());

load($relations)

The	load	method	eager	loads	the	given	relationships	for	all	models	in	the	collection:

$users->load(['comments',	'posts']);

$users->load('comments.author');

$users->load(['comments',	'posts'	=>	fn	($query)	=>	$query->where('active',	1)]);

loadMissing($relations)

The	loadMissing	method	eager	loads	the	given	relationships	for	all	models	in	the	collection	if	the	relationships
are	not	already	loaded:

$users->loadMissing(['comments',	'posts']);

$users->loadMissing('comments.author');

$users->loadMissing(['comments',	'posts'	=>	fn	($query)	=>	$query->where('active',	1)]);

modelKeys()

The	modelKeys	method	returns	the	primary	keys	for	all	models	in	the	collection:

$users->modelKeys();

//	[1,	2,	3,	4,	5]

makeVisible($attributes)

The	makeVisible	method	makes	attributes	visible	that	are	typically	"hidden"	on	each	model	in	the	collection:

$users	=	$users->makeVisible(['address',	'phone_number']);

makeHidden($attributes)

The	makeHidden	method	hides	attributes	that	are	typically	"visible"	on	each	model	in	the	collection:

$users	=	$users->makeHidden(['address',	'phone_number']);

only($keys)

Laravel	Documentation	-	10.x	/	Collections 704

The	only	method	returns	all	of	the	models	that	have	the	given	primary	keys:

$users	=	$users->only([1,	2,	3]);

setVisible($attributes)

The	setVisible	method	temporarily	overrides	all	of	the	visible	attributes	on	each	model	in	the	collection:

$users	=	$users->setVisible(['id',	'name']);

setHidden($attributes)

The	setHidden	method	temporarily	overrides	all	of	the	hidden	attributes	on	each	model	in	the	collection:

$users	=	$users->setHidden(['email',	'password',	'remember_token']);

toQuery()

The	toQuery	method	returns	an	Eloquent	query	builder	instance	containing	a	whereIn	constraint	on	the	collection
model's	primary	keys:

use	App\Models\User;

$users	=	User::where('status',	'VIP')->get();

$users->toQuery()->update([

				'status'	=>	'Administrator',

]);

unique($key	=	null,	$strict	=	false)

The	unique	method	returns	all	of	the	unique	models	in	the	collection.	Any	models	of	the	same	type	with	the
same	primary	key	as	another	model	in	the	collection	are	removed:

$users	=	$users->unique();

Custom	Collections

If	you	would	like	to	use	a	custom	Collection	object	when	interacting	with	a	given	model,	you	may	define	a	
newCollection	method	on	your	model:

<?php

namespace	App\Models;

use	App\Support\UserCollection;

use	Illuminate\Database\Eloquent\Collection;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Create	a	new	Eloquent	Collection	instance.

					*

					*	@param		array<int,	\Illuminate\Database\Eloquent\Model>		$models

					*	@return	\Illuminate\Database\Eloquent\Collection<int,	\Illuminate\Database\Eloquent\Model>

					*/

				public	function	newCollection(array	$models	=	[]):	Collection

				{

								return	new	UserCollection($models);

				}

Laravel	Documentation	-	10.x	/	Collections 705

}

Once	you	have	defined	a	newCollection	method,	you	will	receive	an	instance	of	your	custom	collection	anytime
Eloquent	would	normally	return	an	Illuminate\Database\Eloquent\Collection	instance.	If	you	would	like	to	use
a	custom	collection	for	every	model	in	your	application,	you	should	define	the	newCollection	method	on	a	base
model	class	that	is	extended	by	all	of	your	application's	models.

Laravel	Documentation	-	10.x	/	Collections 706

Eloquent	ORM

Eloquent:	Mutators	&	Casting
Introduction
Accessors	and	Mutators

Defining	an	Accessor
Defining	a	Mutator

Attribute	Casting
Array	and	JSON	Casting
Date	Casting
Enum	Casting
Encrypted	Casting
Query	Time	Casting

Custom	Casts
Value	Object	Casting
Array	/	JSON	Serialization
Inbound	Casting
Cast	Parameters
Castables

Introduction

Accessors,	mutators,	and	attribute	casting	allow	you	to	transform	Eloquent	attribute	values	when	you	retrieve
or	set	them	on	model	instances.	For	example,	you	may	want	to	use	the	Laravel	encrypter	to	encrypt	a	value
while	it	is	stored	in	the	database,	and	then	automatically	decrypt	the	attribute	when	you	access	it	on	an	Eloquent
model.	Or,	you	may	want	to	convert	a	JSON	string	that	is	stored	in	your	database	to	an	array	when	it	is
accessed	via	your	Eloquent	model.

Accessors	and	Mutators

Defining	an	Accessor

An	accessor	transforms	an	Eloquent	attribute	value	when	it	is	accessed.	To	define	an	accessor,	create	a
protected	method	on	your	model	to	represent	the	accessible	attribute.	This	method	name	should	correspond	to
the	"camel	case"	representation	of	the	true	underlying	model	attribute	/	database	column	when	applicable.

In	this	example,	we'll	define	an	accessor	for	the	first_name	attribute.	The	accessor	will	automatically	be	called
by	Eloquent	when	attempting	to	retrieve	the	value	of	the	first_name	attribute.	All	attribute	accessor	/	mutator
methods	must	declare	a	return	type-hint	of	Illuminate\Database\Eloquent\Casts\Attribute:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Casts\Attribute;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Get	the	user's	first	name.

					*/

				protected	function	firstName():	Attribute

				{

								return	Attribute::make(

												get:	fn	(string	$value)	=>	ucfirst($value),

);

				}

}

All	accessor	methods	return	an	Attribute	instance	which	defines	how	the	attribute	will	be	accessed	and,

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 707

optionally,	mutated.	In	this	example,	we	are	only	defining	how	the	attribute	will	be	accessed.	To	do	so,	we
supply	the	get	argument	to	the	Attribute	class	constructor.

As	you	can	see,	the	original	value	of	the	column	is	passed	to	the	accessor,	allowing	you	to	manipulate	and
return	the	value.	To	access	the	value	of	the	accessor,	you	may	simply	access	the	first_name	attribute	on	a	model
instance:

use	App\Models\User;

$user	=	User::find(1);

$firstName	=	$user->first_name;

[!NOTE]
If	you	would	like	these	computed	values	to	be	added	to	the	array	/	JSON	representations	of	your	model,
you	will	need	to	append	them.

Building	Value	Objects	From	Multiple	Attributes

Sometimes	your	accessor	may	need	to	transform	multiple	model	attributes	into	a	single	"value	object".	To	do
so,	your	get	closure	may	accept	a	second	argument	of	$attributes,	which	will	be	automatically	supplied	to	the
closure	and	will	contain	an	array	of	all	of	the	model's	current	attributes:

use	App\Support\Address;

use	Illuminate\Database\Eloquent\Casts\Attribute;

/**

	*	Interact	with	the	user's	address.

	*/

protected	function	address():	Attribute

{

				return	Attribute::make(

								get:	fn	(mixed	$value,	array	$attributes)	=>	new	Address(

												$attributes['address_line_one'],

												$attributes['address_line_two'],

),

);

}

Accessor	Caching

When	returning	value	objects	from	accessors,	any	changes	made	to	the	value	object	will	automatically	be
synced	back	to	the	model	before	the	model	is	saved.	This	is	possible	because	Eloquent	retains	instances
returned	by	accessors	so	it	can	return	the	same	instance	each	time	the	accessor	is	invoked:

use	App\Models\User;

$user	=	User::find(1);

$user->address->lineOne	=	'Updated	Address	Line	1	Value';

$user->address->lineTwo	=	'Updated	Address	Line	2	Value';

$user->save();

However,	you	may	sometimes	wish	to	enable	caching	for	primitive	values	like	strings	and	booleans,
particularly	if	they	are	computationally	intensive.	To	accomplish	this,	you	may	invoke	the	shouldCache	method
when	defining	your	accessor:

protected	function	hash():	Attribute

{

				return	Attribute::make(

								get:	fn	(string	$value)	=>	bcrypt(gzuncompress($value)),

)->shouldCache();

}

If	you	would	like	to	disable	the	object	caching	behavior	of	attributes,	you	may	invoke	the	withoutObjectCaching
method	when	defining	the	attribute:

/**

	*	Interact	with	the	user's	address.

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 708

	*/

protected	function	address():	Attribute

{

				return	Attribute::make(

								get:	fn	(mixed	$value,	array	$attributes)	=>	new	Address(

												$attributes['address_line_one'],

												$attributes['address_line_two'],

),

)->withoutObjectCaching();

}

Defining	a	Mutator

A	mutator	transforms	an	Eloquent	attribute	value	when	it	is	set.	To	define	a	mutator,	you	may	provide	the	set
argument	when	defining	your	attribute.	Let's	define	a	mutator	for	the	first_name	attribute.	This	mutator	will	be
automatically	called	when	we	attempt	to	set	the	value	of	the	first_name	attribute	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Casts\Attribute;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Interact	with	the	user's	first	name.

					*/

				protected	function	firstName():	Attribute

				{

								return	Attribute::make(

												get:	fn	(string	$value)	=>	ucfirst($value),

												set:	fn	(string	$value)	=>	strtolower($value),

);

				}

}

The	mutator	closure	will	receive	the	value	that	is	being	set	on	the	attribute,	allowing	you	to	manipulate	the
value	and	return	the	manipulated	value.	To	use	our	mutator,	we	only	need	to	set	the	first_name	attribute	on	an
Eloquent	model:

use	App\Models\User;

$user	=	User::find(1);

$user->first_name	=	'Sally';

In	this	example,	the	set	callback	will	be	called	with	the	value	Sally.	The	mutator	will	then	apply	the	strtolower
function	to	the	name	and	set	its	resulting	value	in	the	model's	internal	$attributes	array.

Mutating	Multiple	Attributes

Sometimes	your	mutator	may	need	to	set	multiple	attributes	on	the	underlying	model.	To	do	so,	you	may	return
an	array	from	the	set	closure.	Each	key	in	the	array	should	correspond	with	an	underlying	attribute	/	database
column	associated	with	the	model:

use	App\Support\Address;

use	Illuminate\Database\Eloquent\Casts\Attribute;

/**

	*	Interact	with	the	user's	address.

	*/

protected	function	address():	Attribute

{

				return	Attribute::make(

								get:	fn	(mixed	$value,	array	$attributes)	=>	new	Address(

												$attributes['address_line_one'],

												$attributes['address_line_two'],

),

								set:	fn	(Address	$value)	=>	[

												'address_line_one'	=>	$value->lineOne,

												'address_line_two'	=>	$value->lineTwo,

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 709

],

);

}

Attribute	Casting

Attribute	casting	provides	functionality	similar	to	accessors	and	mutators	without	requiring	you	to	define	any
additional	methods	on	your	model.	Instead,	your	model's	$casts	property	provides	a	convenient	method	of
converting	attributes	to	common	data	types.

The	$casts	property	should	be	an	array	where	the	key	is	the	name	of	the	attribute	being	cast	and	the	value	is	the
type	you	wish	to	cast	the	column	to.	The	supported	cast	types	are:

array

AsStringable::class

boolean

collection

date

datetime

immutable_date

immutable_datetime

decimal:<precision>

double

encrypted

encrypted:array

encrypted:collection

encrypted:object

float

hashed

integer

object

real

string

timestamp

To	demonstrate	attribute	casting,	let's	cast	the	is_admin	attribute,	which	is	stored	in	our	database	as	an	integer	(0
or	1)	to	a	boolean	value:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'is_admin'	=>	'boolean',

];

}

After	defining	the	cast,	the	is_admin	attribute	will	always	be	cast	to	a	boolean	when	you	access	it,	even	if	the
underlying	value	is	stored	in	the	database	as	an	integer:

$user	=	App\Models\User::find(1);

if	($user->is_admin)	{

				//	...

}

If	you	need	to	add	a	new,	temporary	cast	at	runtime,	you	may	use	the	mergeCasts	method.	These	cast	definitions
will	be	added	to	any	of	the	casts	already	defined	on	the	model:

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 710

$user->mergeCasts([

				'is_admin'	=>	'integer',

				'options'	=>	'object',

]);

[!WARNING]
Attributes	that	are	null	will	not	be	cast.	In	addition,	you	should	never	define	a	cast	(or	an	attribute)	that	has
the	same	name	as	a	relationship	or	assign	a	cast	to	the	model's	primary	key.

Stringable	Casting

You	may	use	the	Illuminate\Database\Eloquent\Casts\AsStringable	cast	class	to	cast	a	model	attribute	to	a
fluent	Illuminate\Support\Stringable	object:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Casts\AsStringable;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'directory'	=>	AsStringable::class,

];

}

Array	and	JSON	Casting

The	array	cast	is	particularly	useful	when	working	with	columns	that	are	stored	as	serialized	JSON.	For
example,	if	your	database	has	a	JSON	or	TEXT	field	type	that	contains	serialized	JSON,	adding	the	array	cast	to
that	attribute	will	automatically	deserialize	the	attribute	to	a	PHP	array	when	you	access	it	on	your	Eloquent
model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'options'	=>	'array',

];

}

Once	the	cast	is	defined,	you	may	access	the	options	attribute	and	it	will	automatically	be	deserialized	from
JSON	into	a	PHP	array.	When	you	set	the	value	of	the	options	attribute,	the	given	array	will	automatically	be
serialized	back	into	JSON	for	storage:

use	App\Models\User;

$user	=	User::find(1);

$options	=	$user->options;

$options['key']	=	'value';

$user->options	=	$options;

$user->save();

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 711

To	update	a	single	field	of	a	JSON	attribute	with	a	more	terse	syntax,	you	may	make	the	attribute	mass
assignable	and	use	the	->	operator	when	calling	the	update	method:

$user	=	User::find(1);

$user->update(['options->key'	=>	'value']);

Array	Object	and	Collection	Casting

Although	the	standard	array	cast	is	sufficient	for	many	applications,	it	does	have	some	disadvantages.	Since	the
array	cast	returns	a	primitive	type,	it	is	not	possible	to	mutate	an	offset	of	the	array	directly.	For	example,	the
following	code	will	trigger	a	PHP	error:

$user	=	User::find(1);

$user->options['key']	=	$value;

To	solve	this,	Laravel	offers	an	AsArrayObject	cast	that	casts	your	JSON	attribute	to	an	ArrayObject	class.	This
feature	is	implemented	using	Laravel's	custom	cast	implementation,	which	allows	Laravel	to	intelligently	cache
and	transform	the	mutated	object	such	that	individual	offsets	may	be	modified	without	triggering	a	PHP	error.
To	use	the	AsArrayObject	cast,	simply	assign	it	to	an	attribute:

use	Illuminate\Database\Eloquent\Casts\AsArrayObject;

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'options'	=>	AsArrayObject::class,

];

Similarly,	Laravel	offers	an	AsCollection	cast	that	casts	your	JSON	attribute	to	a	Laravel	Collection	instance:

use	Illuminate\Database\Eloquent\Casts\AsCollection;

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'options'	=>	AsCollection::class,

];

If	you	would	like	the	AsCollection	cast	to	instantiate	a	custom	collection	class	instead	of	Laravel's	base
collection	class,	you	may	provide	the	collection	class	name	as	a	cast	argument:

use	App\Collections\OptionCollection;

use	Illuminate\Database\Eloquent\Casts\AsCollection;

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'options'	=>	AsCollection::class.':'.OptionCollection::class,

];

Date	Casting

By	default,	Eloquent	will	cast	the	created_at	and	updated_at	columns	to	instances	of	Carbon,	which	extends	the
PHP	DateTime	class	and	provides	an	assortment	of	helpful	methods.	You	may	cast	additional	date	attributes	by
defining	additional	date	casts	within	your	model's	$casts	property	array.	Typically,	dates	should	be	cast	using
the	datetime	or	immutable_datetime	cast	types.

When	defining	a	date	or	datetime	cast,	you	may	also	specify	the	date's	format.	This	format	will	be	used	when
the	model	is	serialized	to	an	array	or	JSON:

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 712

https://www.php.net/manual/en/class.arrayobject.php
https://github.com/briannesbitt/Carbon

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'created_at'	=>	'datetime:Y-m-d',

];

When	a	column	is	cast	as	a	date,	you	may	set	the	corresponding	model	attribute	value	to	a	UNIX	timestamp,
date	string	(Y-m-d),	date-time	string,	or	a	DateTime	/	Carbon	instance.	The	date's	value	will	be	correctly	converted
and	stored	in	your	database.

You	may	customize	the	default	serialization	format	for	all	of	your	model's	dates	by	defining	a	serializeDate
method	on	your	model.	This	method	does	not	affect	how	your	dates	are	formatted	for	storage	in	the	database:

/**

	*	Prepare	a	date	for	array	/	JSON	serialization.

	*/

protected	function	serializeDate(DateTimeInterface	$date):	string

{

				return	$date->format('Y-m-d');

}

To	specify	the	format	that	should	be	used	when	actually	storing	a	model's	dates	within	your	database,	you
should	define	a	$dateFormat	property	on	your	model:

/**

	*	The	storage	format	of	the	model's	date	columns.

	*

	*	@var	string

	*/

protected	$dateFormat	=	'U';

Date	Casting,	Serialization,	and	Timezones

By	default,	the	date	and	datetime	casts	will	serialize	dates	to	a	UTC	ISO-8601	date	string	(YYYY-MM-
DDTHH:MM:SS.uuuuuuZ),	regardless	of	the	timezone	specified	in	your	application's	timezone	configuration	option.
You	are	strongly	encouraged	to	always	use	this	serialization	format,	as	well	as	to	store	your	application's	dates
in	the	UTC	timezone	by	not	changing	your	application's	timezone	configuration	option	from	its	default	UTC
value.	Consistently	using	the	UTC	timezone	throughout	your	application	will	provide	the	maximum	level	of
interoperability	with	other	date	manipulation	libraries	written	in	PHP	and	JavaScript.

If	a	custom	format	is	applied	to	the	date	or	datetime	cast,	such	as	datetime:Y-m-d	H:i:s,	the	inner	timezone	of
the	Carbon	instance	will	be	used	during	date	serialization.	Typically,	this	will	be	the	timezone	specified	in	your
application's	timezone	configuration	option.

Enum	Casting

Eloquent	also	allows	you	to	cast	your	attribute	values	to	PHP	Enums.	To	accomplish	this,	you	may	specify	the
attribute	and	enum	you	wish	to	cast	in	your	model's	$casts	property	array:

use	App\Enums\ServerStatus;

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'status'	=>	ServerStatus::class,

];

Once	you	have	defined	the	cast	on	your	model,	the	specified	attribute	will	be	automatically	cast	to	and	from	an
enum	when	you	interact	with	the	attribute:

if	($server->status	==	ServerStatus::Provisioned)	{

				$server->status	=	ServerStatus::Ready;

				$server->save();

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 713

https://www.php.net/manual/en/language.enumerations.backed.php

}

Casting	Arrays	of	Enums

Sometimes	you	may	need	your	model	to	store	an	array	of	enum	values	within	a	single	column.	To	accomplish
this,	you	may	utilize	the	AsEnumArrayObject	or	AsEnumCollection	casts	provided	by	Laravel:

use	App\Enums\ServerStatus;

use	Illuminate\Database\Eloquent\Casts\AsEnumCollection;

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'statuses'	=>	AsEnumCollection::class.':'.ServerStatus::class,

];

Encrypted	Casting

The	encrypted	cast	will	encrypt	a	model's	attribute	value	using	Laravel's	built-in	encryption	features.	In
addition,	the	encrypted:array,	encrypted:collection,	encrypted:object,	AsEncryptedArrayObject,	and
AsEncryptedCollection	casts	work	like	their	unencrypted	counterparts;	however,	as	you	might	expect,	the
underlying	value	is	encrypted	when	stored	in	your	database.

As	the	final	length	of	the	encrypted	text	is	not	predictable	and	is	longer	than	its	plain	text	counterpart,	make
sure	the	associated	database	column	is	of	TEXT	type	or	larger.	In	addition,	since	the	values	are	encrypted	in	the
database,	you	will	not	be	able	to	query	or	search	encrypted	attribute	values.

Key	Rotation

As	you	may	know,	Laravel	encrypts	strings	using	the	key	configuration	value	specified	in	your	application's	app
configuration	file.	Typically,	this	value	corresponds	to	the	value	of	the	APP_KEY	environment	variable.	If	you
need	to	rotate	your	application's	encryption	key,	you	will	need	to	manually	re-encrypt	your	encrypted	attributes
using	the	new	key.

Query	Time	Casting

Sometimes	you	may	need	to	apply	casts	while	executing	a	query,	such	as	when	selecting	a	raw	value	from	a
table.	For	example,	consider	the	following	query:

use	App\Models\Post;

use	App\Models\User;

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->get();

The	last_posted_at	attribute	on	the	results	of	this	query	will	be	a	simple	string.	It	would	be	wonderful	if	we
could	apply	a	datetime	cast	to	this	attribute	when	executing	the	query.	Thankfully,	we	may	accomplish	this
using	the	withCasts	method:

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->withCasts([

				'last_posted_at'	=>	'datetime'

])->get();

Custom	Casts

Laravel	has	a	variety	of	built-in,	helpful	cast	types;	however,	you	may	occasionally	need	to	define	your	own

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 714

cast	types.	To	create	a	cast,	execute	the	make:cast	Artisan	command.	The	new	cast	class	will	be	placed	in	your
app/Casts	directory:

php	artisan	make:cast	Json

All	custom	cast	classes	implement	the	CastsAttributes	interface.	Classes	that	implement	this	interface	must
define	a	get	and	set	method.	The	get	method	is	responsible	for	transforming	a	raw	value	from	the	database	into
a	cast	value,	while	the	set	method	should	transform	a	cast	value	into	a	raw	value	that	can	be	stored	in	the
database.	As	an	example,	we	will	re-implement	the	built-in	json	cast	type	as	a	custom	cast	type:

<?php

namespace	App\Casts;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

use	Illuminate\Database\Eloquent\Model;

class	Json	implements	CastsAttributes

{

				/**

					*	Cast	the	given	value.

					*

					*	@param		array<string,	mixed>		$attributes

					*	@return	array<string,	mixed>

					*/

				public	function	get(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	array

				{

								return	json_decode($value,	true);

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		array<string,	mixed>		$attributes

					*/

				public	function	set(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	string

				{

								return	json_encode($value);

				}

}

Once	you	have	defined	a	custom	cast	type,	you	may	attach	it	to	a	model	attribute	using	its	class	name:

<?php

namespace	App\Models;

use	App\Casts\Json;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'options'	=>	Json::class,

];

}

Value	Object	Casting

You	are	not	limited	to	casting	values	to	primitive	types.	You	may	also	cast	values	to	objects.	Defining	custom
casts	that	cast	values	to	objects	is	very	similar	to	casting	to	primitive	types;	however,	the	set	method	should
return	an	array	of	key	/	value	pairs	that	will	be	used	to	set	raw,	storable	values	on	the	model.

As	an	example,	we	will	define	a	custom	cast	class	that	casts	multiple	model	values	into	a	single	Address	value
object.	We	will	assume	the	Address	value	has	two	public	properties:	lineOne	and	lineTwo:

<?php

namespace	App\Casts;

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 715

use	App\ValueObjects\Address	as	AddressValueObject;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

use	Illuminate\Database\Eloquent\Model;

use	InvalidArgumentException;

class	Address	implements	CastsAttributes

{

				/**

					*	Cast	the	given	value.

					*

					*	@param		array<string,	mixed>		$attributes

					*/

				public	function	get(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	AddressValueObject

				{

								return	new	AddressValueObject(

												$attributes['address_line_one'],

												$attributes['address_line_two']

);

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		array<string,	mixed>		$attributes

					*	@return	array<string,	string>

					*/

				public	function	set(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	array

				{

								if	(!	$value	instanceof	AddressValueObject)	{

												throw	new	InvalidArgumentException('The	given	value	is	not	an	Address	instance.');

								}

								return	[

												'address_line_one'	=>	$value->lineOne,

												'address_line_two'	=>	$value->lineTwo,

];

				}

}

When	casting	to	value	objects,	any	changes	made	to	the	value	object	will	automatically	be	synced	back	to	the
model	before	the	model	is	saved:

use	App\Models\User;

$user	=	User::find(1);

$user->address->lineOne	=	'Updated	Address	Value';

$user->save();

[!NOTE]
If	you	plan	to	serialize	your	Eloquent	models	containing	value	objects	to	JSON	or	arrays,	you	should
implement	the	Illuminate\Contracts\Support\Arrayable	and	JsonSerializable	interfaces	on	the	value
object.

Value	Object	Caching

When	attributes	that	are	cast	to	value	objects	are	resolved,	they	are	cached	by	Eloquent.	Therefore,	the	same
object	instance	will	be	returned	if	the	attribute	is	accessed	again.

If	you	would	like	to	disable	the	object	caching	behavior	of	custom	cast	classes,	you	may	declare	a	public
withoutObjectCaching	property	on	your	custom	cast	class:

class	Address	implements	CastsAttributes

{

				public	bool	$withoutObjectCaching	=	true;

				//	...

}

Array	/	JSON	Serialization

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 716

When	an	Eloquent	model	is	converted	to	an	array	or	JSON	using	the	toArray	and	toJson	methods,	your	custom
cast	value	objects	will	typically	be	serialized	as	well	as	long	as	they	implement	the
Illuminate\Contracts\Support\Arrayable	and	JsonSerializable	interfaces.	However,	when	using	value	objects
provided	by	third-party	libraries,	you	may	not	have	the	ability	to	add	these	interfaces	to	the	object.

Therefore,	you	may	specify	that	your	custom	cast	class	will	be	responsible	for	serializing	the	value	object.	To
do	so,	your	custom	cast	class	should	implement	the
Illuminate\Contracts\Database\Eloquent\SerializesCastableAttributes	interface.	This	interface	states	that	your
class	should	contain	a	serialize	method	which	should	return	the	serialized	form	of	your	value	object:

/**

	*	Get	the	serialized	representation	of	the	value.

	*

	*	@param		array<string,	mixed>		$attributes

	*/

public	function	serialize(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	string

{

				return	(string)	$value;

}

Inbound	Casting

Occasionally,	you	may	need	to	write	a	custom	cast	class	that	only	transforms	values	that	are	being	set	on	the
model	and	does	not	perform	any	operations	when	attributes	are	being	retrieved	from	the	model.

Inbound	only	custom	casts	should	implement	the	CastsInboundAttributes	interface,	which	only	requires	a	set
method	to	be	defined.	The	make:cast	Artisan	command	may	be	invoked	with	the	--inbound	option	to	generate
an	inbound	only	cast	class:

php	artisan	make:cast	Hash	--inbound

A	classic	example	of	an	inbound	only	cast	is	a	"hashing"	cast.	For	example,	we	may	define	a	cast	that	hashes
inbound	values	via	a	given	algorithm:

<?php

namespace	App\Casts;

use	Illuminate\Contracts\Database\Eloquent\CastsInboundAttributes;

use	Illuminate\Database\Eloquent\Model;

class	Hash	implements	CastsInboundAttributes

{

				/**

					*	Create	a	new	cast	class	instance.

					*/

				public	function	__construct(

								protected	string|null	$algorithm	=	null,

)	{}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		array<string,	mixed>		$attributes

					*/

				public	function	set(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	string

				{

								return	is_null($this->algorithm)

																				?	bcrypt($value)

																				:	hash($this->algorithm,	$value);

				}

}

Cast	Parameters

When	attaching	a	custom	cast	to	a	model,	cast	parameters	may	be	specified	by	separating	them	from	the	class
name	using	a	:	character	and	comma-delimiting	multiple	parameters.	The	parameters	will	be	passed	to	the
constructor	of	the	cast	class:

/**

	*	The	attributes	that	should	be	cast.

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 717

	*

	*	@var	array

	*/

protected	$casts	=	[

				'secret'	=>	Hash::class.':sha256',

];

Castables

You	may	want	to	allow	your	application's	value	objects	to	define	their	own	custom	cast	classes.	Instead	of
attaching	the	custom	cast	class	to	your	model,	you	may	alternatively	attach	a	value	object	class	that	implements
the	Illuminate\Contracts\Database\Eloquent\Castable	interface:

use	App\ValueObjects\Address;

protected	$casts	=	[

				'address'	=>	Address::class,

];

Objects	that	implement	the	Castable	interface	must	define	a	castUsing	method	that	returns	the	class	name	of	the
custom	caster	class	that	is	responsible	for	casting	to	and	from	the	Castable	class:

<?php

namespace	App\ValueObjects;

use	Illuminate\Contracts\Database\Eloquent\Castable;

use	App\Casts\Address	as	AddressCast;

class	Address	implements	Castable

{

				/**

					*	Get	the	name	of	the	caster	class	to	use	when	casting	from	/	to	this	cast	target.

					*

					*	@param		array<string,	mixed>		$arguments

					*/

				public	static	function	castUsing(array	$arguments):	string

				{

								return	AddressCast::class;

				}

}

When	using	Castable	classes,	you	may	still	provide	arguments	in	the	$casts	definition.	The	arguments	will	be
passed	to	the	castUsing	method:

use	App\ValueObjects\Address;

protected	$casts	=	[

				'address'	=>	Address::class.':argument',

];

Castables	&	Anonymous	Cast	Classes

By	combining	"castables"	with	PHP's	anonymous	classes,	you	may	define	a	value	object	and	its	casting	logic	as
a	single	castable	object.	To	accomplish	this,	return	an	anonymous	class	from	your	value	object's	castUsing
method.	The	anonymous	class	should	implement	the	CastsAttributes	interface:

<?php

namespace	App\ValueObjects;

use	Illuminate\Contracts\Database\Eloquent\Castable;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

class	Address	implements	Castable

{

				//	...

				/**

					*	Get	the	caster	class	to	use	when	casting	from	/	to	this	cast	target.

					*

					*	@param		array<string,	mixed>		$arguments

					*/

				public	static	function	castUsing(array	$arguments):	CastsAttributes

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 718

https://www.php.net/manual/en/language.oop5.anonymous.php

				{

								return	new	class	implements	CastsAttributes

								{

												public	function	get(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	Address

												{

																return	new	Address(

																				$attributes['address_line_one'],

																				$attributes['address_line_two']

);

												}

												public	function	set(Model	$model,	string	$key,	mixed	$value,	array	$attributes):	array

												{

																return	[

																				'address_line_one'	=>	$value->lineOne,

																				'address_line_two'	=>	$value->lineTwo,

];

												}

								};

				}

}

Laravel	Documentation	-	10.x	/	Mutators	/	Casts 719

Eloquent	ORM

Eloquent:	API	Resources
Introduction
Generating	Resources
Concept	Overview

Resource	Collections
Writing	Resources

Data	Wrapping
Pagination
Conditional	Attributes
Conditional	Relationships
Adding	Meta	Data

Resource	Responses

Introduction

When	building	an	API,	you	may	need	a	transformation	layer	that	sits	between	your	Eloquent	models	and	the
JSON	responses	that	are	actually	returned	to	your	application's	users.	For	example,	you	may	wish	to	display
certain	attributes	for	a	subset	of	users	and	not	others,	or	you	may	wish	to	always	include	certain	relationships	in
the	JSON	representation	of	your	models.	Eloquent's	resource	classes	allow	you	to	expressively	and	easily
transform	your	models	and	model	collections	into	JSON.

Of	course,	you	may	always	convert	Eloquent	models	or	collections	to	JSON	using	their	toJson	methods;
however,	Eloquent	resources	provide	more	granular	and	robust	control	over	the	JSON	serialization	of	your
models	and	their	relationships.

Generating	Resources

To	generate	a	resource	class,	you	may	use	the	make:resource	Artisan	command.	By	default,	resources	will	be
placed	in	the	app/Http/Resources	directory	of	your	application.	Resources	extend	the	
Illuminate\Http\Resources\Json\JsonResource	class:

php	artisan	make:resource	UserResource

Resource	Collections

In	addition	to	generating	resources	that	transform	individual	models,	you	may	generate	resources	that	are
responsible	for	transforming	collections	of	models.	This	allows	your	JSON	responses	to	include	links	and	other
meta	information	that	is	relevant	to	an	entire	collection	of	a	given	resource.

To	create	a	resource	collection,	you	should	use	the	--collection	flag	when	creating	the	resource.	Or,	including
the	word	Collection	in	the	resource	name	will	indicate	to	Laravel	that	it	should	create	a	collection	resource.
Collection	resources	extend	the	Illuminate\Http\Resources\Json\ResourceCollection	class:

php	artisan	make:resource	User	--collection

php	artisan	make:resource	UserCollection

Concept	Overview

[!NOTE]
This	is	a	high-level	overview	of	resources	and	resource	collections.	You	are	highly	encouraged	to	read	the
other	sections	of	this	documentation	to	gain	a	deeper	understanding	of	the	customization	and	power
offered	to	you	by	resources.

Before	diving	into	all	of	the	options	available	to	you	when	writing	resources,	let's	first	take	a	high-level	look	at
how	resources	are	used	within	Laravel.	A	resource	class	represents	a	single	model	that	needs	to	be	transformed

Laravel	Documentation	-	10.x	/	API	Resources 720

into	a	JSON	structure.	For	example,	here	is	a	simple	UserResource	resource	class:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Request;

use	Illuminate\Http\Resources\Json\JsonResource;

class	UserResource	extends	JsonResource

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	[

												'id'	=>	$this->id,

												'name'	=>	$this->name,

												'email'	=>	$this->email,

												'created_at'	=>	$this->created_at,

												'updated_at'	=>	$this->updated_at,

];

				}

}

Every	resource	class	defines	a	toArray	method	which	returns	the	array	of	attributes	that	should	be	converted	to
JSON	when	the	resource	is	returned	as	a	response	from	a	route	or	controller	method.

Note	that	we	can	access	model	properties	directly	from	the	$this	variable.	This	is	because	a	resource	class	will
automatically	proxy	property	and	method	access	down	to	the	underlying	model	for	convenient	access.	Once	the
resource	is	defined,	it	may	be	returned	from	a	route	or	controller.	The	resource	accepts	the	underlying	model
instance	via	its	constructor:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/user/{id}',	function	(string	$id)	{

				return	new	UserResource(User::findOrFail($id));

});

Resource	Collections

If	you	are	returning	a	collection	of	resources	or	a	paginated	response,	you	should	use	the	collection	method
provided	by	your	resource	class	when	creating	the	resource	instance	in	your	route	or	controller:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	UserResource::collection(User::all());

});

Note	that	this	does	not	allow	any	addition	of	custom	meta	data	that	may	need	to	be	returned	with	your
collection.	If	you	would	like	to	customize	the	resource	collection	response,	you	may	create	a	dedicated	resource
to	represent	the	collection:

php	artisan	make:resource	UserCollection

Once	the	resource	collection	class	has	been	generated,	you	may	easily	define	any	meta	data	that	should	be
included	with	the	response:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Request;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

Laravel	Documentation	-	10.x	/	API	Resources 721

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@return	array<int|string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	[

												'data'	=>	$this->collection,

												'links'	=>	[

																'self'	=>	'link-value',

],

];

				}

}

After	defining	your	resource	collection,	it	may	be	returned	from	a	route	or	controller:

use	App\Http\Resources\UserCollection;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::all());

});

Preserving	Collection	Keys

When	returning	a	resource	collection	from	a	route,	Laravel	resets	the	collection's	keys	so	that	they	are	in
numerical	order.	However,	you	may	add	a	preserveKeys	property	to	your	resource	class	indicating	whether	a
collection's	original	keys	should	be	preserved:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	UserResource	extends	JsonResource

{

				/**

					*	Indicates	if	the	resource's	collection	keys	should	be	preserved.

					*

					*	@var	bool

					*/

				public	$preserveKeys	=	true;

}

When	the	preserveKeys	property	is	set	to	true,	collection	keys	will	be	preserved	when	the	collection	is	returned
from	a	route	or	controller:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	UserResource::collection(User::all()->keyBy->id);

});

Customizing	the	Underlying	Resource	Class

Typically,	the	$this->collection	property	of	a	resource	collection	is	automatically	populated	with	the	result	of
mapping	each	item	of	the	collection	to	its	singular	resource	class.	The	singular	resource	class	is	assumed	to	be
the	collection's	class	name	without	the	trailing	Collection	portion	of	the	class	name.	In	addition,	depending	on
your	personal	preference,	the	singular	resource	class	may	or	may	not	be	suffixed	with	Resource.

For	example,	UserCollection	will	attempt	to	map	the	given	user	instances	into	the	UserResource	resource.	To
customize	this	behavior,	you	may	override	the	$collects	property	of	your	resource	collection:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

Laravel	Documentation	-	10.x	/	API	Resources 722

class	UserCollection	extends	ResourceCollection

{

				/**

					*	The	resource	that	this	resource	collects.

					*

					*	@var	string

					*/

				public	$collects	=	Member::class;

}

Writing	Resources

[!NOTE]
If	you	have	not	read	the	concept	overview,	you	are	highly	encouraged	to	do	so	before	proceeding	with	this
documentation.

Resources	only	need	to	transform	a	given	model	into	an	array.	So,	each	resource	contains	a	toArray	method
which	translates	your	model's	attributes	into	an	API	friendly	array	that	can	be	returned	from	your	application's
routes	or	controllers:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Request;

use	Illuminate\Http\Resources\Json\JsonResource;

class	UserResource	extends	JsonResource

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	[

												'id'	=>	$this->id,

												'name'	=>	$this->name,

												'email'	=>	$this->email,

												'created_at'	=>	$this->created_at,

												'updated_at'	=>	$this->updated_at,

];

				}

}

Once	a	resource	has	been	defined,	it	may	be	returned	directly	from	a	route	or	controller:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/user/{id}',	function	(string	$id)	{

				return	new	UserResource(User::findOrFail($id));

});

Relationships

If	you	would	like	to	include	related	resources	in	your	response,	you	may	add	them	to	the	array	returned	by	your
resource's	toArray	method.	In	this	example,	we	will	use	the	PostResource	resource's	collection	method	to	add
the	user's	blog	posts	to	the	resource	response:

use	App\Http\Resources\PostResource;

use	Illuminate\Http\Request;

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

Laravel	Documentation	-	10.x	/	API	Resources 723

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'posts'	=>	PostResource::collection($this->posts),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

[!NOTE]
If	you	would	like	to	include	relationships	only	when	they	have	already	been	loaded,	check	out	the
documentation	on	conditional	relationships.

Resource	Collections

While	resources	transform	a	single	model	into	an	array,	resource	collections	transform	a	collection	of	models
into	an	array.	However,	it	is	not	absolutely	necessary	to	define	a	resource	collection	class	for	each	one	of	your
models	since	all	resources	provide	a	collection	method	to	generate	an	"ad-hoc"	resource	collection	on	the	fly:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	UserResource::collection(User::all());

});

However,	if	you	need	to	customize	the	meta	data	returned	with	the	collection,	it	is	necessary	to	define	your	own
resource	collection:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Request;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	[

												'data'	=>	$this->collection,

												'links'	=>	[

																'self'	=>	'link-value',

],

];

				}

}

Like	singular	resources,	resource	collections	may	be	returned	directly	from	routes	or	controllers:

use	App\Http\Resources\UserCollection;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::all());

});

Data	Wrapping

By	default,	your	outermost	resource	is	wrapped	in	a	data	key	when	the	resource	response	is	converted	to	JSON.
So,	for	example,	a	typical	resource	collection	response	looks	like	the	following:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com"

Laravel	Documentation	-	10.x	/	API	Resources 724

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com"

								}

]

}

If	you	would	like	to	disable	the	wrapping	of	the	outermost	resource,	you	should	invoke	the	withoutWrapping
method	on	the	base	Illuminate\Http\Resources\Json\JsonResource	class.	Typically,	you	should	call	this	method
from	your	AppServiceProvider	or	another	service	provider	that	is	loaded	on	every	request	to	your	application:

<?php

namespace	App\Providers;

use	Illuminate\Http\Resources\Json\JsonResource;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								JsonResource::withoutWrapping();

				}

}

[!WARNING]
The	withoutWrapping	method	only	affects	the	outermost	response	and	will	not	remove	data	keys	that	you
manually	add	to	your	own	resource	collections.

Wrapping	Nested	Resources

You	have	total	freedom	to	determine	how	your	resource's	relationships	are	wrapped.	If	you	would	like	all
resource	collections	to	be	wrapped	in	a	data	key,	regardless	of	their	nesting,	you	should	define	a	resource
collection	class	for	each	resource	and	return	the	collection	within	a	data	key.

You	may	be	wondering	if	this	will	cause	your	outermost	resource	to	be	wrapped	in	two	data	keys.	Don't	worry,
Laravel	will	never	let	your	resources	be	accidentally	double-wrapped,	so	you	don't	have	to	be	concerned	about
the	nesting	level	of	the	resource	collection	you	are	transforming:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	CommentsCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	['data'	=>	$this->collection];

				}

}

Data	Wrapping	and	Pagination

Laravel	Documentation	-	10.x	/	API	Resources 725

When	returning	paginated	collections	via	a	resource	response,	Laravel	will	wrap	your	resource	data	in	a	data
key	even	if	the	withoutWrapping	method	has	been	called.	This	is	because	paginated	responses	always	contain	
meta	and	links	keys	with	information	about	the	paginator's	state:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com"

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com"

								}

],

				"links":{

								"first":	"http://example.com/users?page=1",

								"last":	"http://example.com/users?page=1",

								"prev":	null,

								"next":	null

				},

				"meta":{

								"current_page":	1,

								"from":	1,

								"last_page":	1,

								"path":	"http://example.com/users",

								"per_page":	15,

								"to":	10,

								"total":	10

				}

}

Pagination

You	may	pass	a	Laravel	paginator	instance	to	the	collection	method	of	a	resource	or	to	a	custom	resource
collection:

use	App\Http\Resources\UserCollection;

use	App\Models\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::paginate());

});

Paginated	responses	always	contain	meta	and	links	keys	with	information	about	the	paginator's	state:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com"

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com"

								}

],

				"links":{

								"first":	"http://example.com/users?page=1",

								"last":	"http://example.com/users?page=1",

								"prev":	null,

								"next":	null

				},

				"meta":{

								"current_page":	1,

								"from":	1,

								"last_page":	1,

								"path":	"http://example.com/users",

								"per_page":	15,

								"to":	10,

								"total":	10

				}

Laravel	Documentation	-	10.x	/	API	Resources 726

}

Customizing	the	Pagination	Information

If	you	would	like	to	customize	the	information	included	in	the	links	or	meta	keys	of	the	pagination	response,
you	may	define	a	paginationInformation	method	on	the	resource.	This	method	will	receive	the	$paginated	data
and	the	array	of	$default	information,	which	is	an	array	containing	the	links	and	meta	keys:

/**

	*	Customize	the	pagination	information	for	the	resource.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@param		array	$paginated

	*	@param		array	$default

	*	@return	array

	*/

public	function	paginationInformation($request,	$paginated,	$default)

{

				$default['links']['custom']	=	'https://example.com';

				return	$default;

}

Conditional	Attributes

Sometimes	you	may	wish	to	only	include	an	attribute	in	a	resource	response	if	a	given	condition	is	met.	For
example,	you	may	wish	to	only	include	a	value	if	the	current	user	is	an	"administrator".	Laravel	provides	a
variety	of	helper	methods	to	assist	you	in	this	situation.	The	when	method	may	be	used	to	conditionally	add	an
attribute	to	a	resource	response:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'secret'	=>	$this->when($request->user()->isAdmin(),	'secret-value'),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

In	this	example,	the	secret	key	will	only	be	returned	in	the	final	resource	response	if	the	authenticated	user's	
isAdmin	method	returns	true.	If	the	method	returns	false,	the	secret	key	will	be	removed	from	the	resource
response	before	it	is	sent	to	the	client.	The	when	method	allows	you	to	expressively	define	your	resources
without	resorting	to	conditional	statements	when	building	the	array.

The	when	method	also	accepts	a	closure	as	its	second	argument,	allowing	you	to	calculate	the	resulting	value
only	if	the	given	condition	is	true:

'secret'	=>	$this->when($request->user()->isAdmin(),	function	()	{

				return	'secret-value';

}),

The	whenHas	method	may	be	used	to	include	an	attribute	if	it	is	actually	present	on	the	underlying	model:

'name'	=>	$this->whenHas('name'),

Additionally,	the	whenNotNull	method	may	be	used	to	include	an	attribute	in	the	resource	response	if	the
attribute	is	not	null:

'name'	=>	$this->whenNotNull($this->name),

Merging	Conditional	Attributes

Laravel	Documentation	-	10.x	/	API	Resources 727

Sometimes	you	may	have	several	attributes	that	should	only	be	included	in	the	resource	response	based	on	the
same	condition.	In	this	case,	you	may	use	the	mergeWhen	method	to	include	the	attributes	in	the	response	only
when	the	given	condition	is	true:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								$this->mergeWhen($request->user()->isAdmin(),	[

												'first-secret'	=>	'value',

												'second-secret'	=>	'value',

]),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

Again,	if	the	given	condition	is	false,	these	attributes	will	be	removed	from	the	resource	response	before	it	is
sent	to	the	client.

[!WARNING]
The	mergeWhen	method	should	not	be	used	within	arrays	that	mix	string	and	numeric	keys.	Furthermore,	it
should	not	be	used	within	arrays	with	numeric	keys	that	are	not	ordered	sequentially.

Conditional	Relationships

In	addition	to	conditionally	loading	attributes,	you	may	conditionally	include	relationships	on	your	resource
responses	based	on	if	the	relationship	has	already	been	loaded	on	the	model.	This	allows	your	controller	to
decide	which	relationships	should	be	loaded	on	the	model	and	your	resource	can	easily	include	them	only	when
they	have	actually	been	loaded.	Ultimately,	this	makes	it	easier	to	avoid	"N+1"	query	problems	within	your
resources.

The	whenLoaded	method	may	be	used	to	conditionally	load	a	relationship.	In	order	to	avoid	unnecessarily
loading	relationships,	this	method	accepts	the	name	of	the	relationship	instead	of	the	relationship	itself:

use	App\Http\Resources\PostResource;

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'posts'	=>	PostResource::collection($this->whenLoaded('posts')),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

In	this	example,	if	the	relationship	has	not	been	loaded,	the	posts	key	will	be	removed	from	the	resource
response	before	it	is	sent	to	the	client.

Conditional	Relationship	Counts

In	addition	to	conditionally	including	relationships,	you	may	conditionally	include	relationship	"counts"	on
your	resource	responses	based	on	if	the	relationship's	count	has	been	loaded	on	the	model:

new	UserResource($user->loadCount('posts'));

Laravel	Documentation	-	10.x	/	API	Resources 728

The	whenCounted	method	may	be	used	to	conditionally	include	a	relationship's	count	in	your	resource	response.
This	method	avoids	unnecessarily	including	the	attribute	if	the	relationships'	count	is	not	present:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'posts_count'	=>	$this->whenCounted('posts'),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

In	this	example,	if	the	posts	relationship's	count	has	not	been	loaded,	the	posts_count	key	will	be	removed	from
the	resource	response	before	it	is	sent	to	the	client.

Other	types	of	aggregates,	such	as	avg,	sum,	min,	and	max	may	also	be	conditionally	loaded	using	the	
whenAggregated	method:

'words_avg'	=>	$this->whenAggregated('posts',	'words',	'avg'),

'words_sum'	=>	$this->whenAggregated('posts',	'words',	'sum'),

'words_min'	=>	$this->whenAggregated('posts',	'words',	'min'),

'words_max'	=>	$this->whenAggregated('posts',	'words',	'max'),

Conditional	Pivot	Information

In	addition	to	conditionally	including	relationship	information	in	your	resource	responses,	you	may
conditionally	include	data	from	the	intermediate	tables	of	many-to-many	relationships	using	the	
whenPivotLoaded	method.	The	whenPivotLoaded	method	accepts	the	name	of	the	pivot	table	as	its	first	argument.
The	second	argument	should	be	a	closure	that	returns	the	value	to	be	returned	if	the	pivot	information	is
available	on	the	model:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'expires_at'	=>	$this->whenPivotLoaded('role_user',	function	()	{

												return	$this->pivot->expires_at;

								}),

];

}

If	your	relationship	is	using	a	custom	intermediate	table	model,	you	may	pass	an	instance	of	the	intermediate
table	model	as	the	first	argument	to	the	whenPivotLoaded	method:

'expires_at'	=>	$this->whenPivotLoaded(new	Membership,	function	()	{

				return	$this->pivot->expires_at;

}),

If	your	intermediate	table	is	using	an	accessor	other	than	pivot,	you	may	use	the	whenPivotLoadedAs	method:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'id'	=>	$this->id,

Laravel	Documentation	-	10.x	/	API	Resources 729

								'name'	=>	$this->name,

								'expires_at'	=>	$this->whenPivotLoadedAs('subscription',	'role_user',	function	()	{

												return	$this->subscription->expires_at;

								}),

];

}

Adding	Meta	Data

Some	JSON	API	standards	require	the	addition	of	meta	data	to	your	resource	and	resource	collections
responses.	This	often	includes	things	like	links	to	the	resource	or	related	resources,	or	meta	data	about	the
resource	itself.	If	you	need	to	return	additional	meta	data	about	a	resource,	include	it	in	your	toArray	method.
For	example,	you	might	include	link	information	when	transforming	a	resource	collection:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toArray(Request	$request):	array

{

				return	[

								'data'	=>	$this->collection,

								'links'	=>	[

												'self'	=>	'link-value',

],

];

}

When	returning	additional	meta	data	from	your	resources,	you	never	have	to	worry	about	accidentally
overriding	the	links	or	meta	keys	that	are	automatically	added	by	Laravel	when	returning	paginated	responses.
Any	additional	links	you	define	will	be	merged	with	the	links	provided	by	the	paginator.

Top	Level	Meta	Data

Sometimes	you	may	wish	to	only	include	certain	meta	data	with	a	resource	response	if	the	resource	is	the
outermost	resource	being	returned.	Typically,	this	includes	meta	information	about	the	response	as	a	whole.	To
define	this	meta	data,	add	a	with	method	to	your	resource	class.	This	method	should	return	an	array	of	meta
data	to	be	included	with	the	resource	response	only	when	the	resource	is	the	outermost	resource	being
transformed:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	parent::toArray($request);

				}

				/**

					*	Get	additional	data	that	should	be	returned	with	the	resource	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	with(Request	$request):	array

				{

								return	[

												'meta'	=>	[

																'key'	=>	'value',

],

];

				}

}

Laravel	Documentation	-	10.x	/	API	Resources 730

Adding	Meta	Data	When	Constructing	Resources

You	may	also	add	top-level	data	when	constructing	resource	instances	in	your	route	or	controller.	The	
additional	method,	which	is	available	on	all	resources,	accepts	an	array	of	data	that	should	be	added	to	the
resource	response:

return	(new	UserCollection(User::all()->load('roles')))

																->additional(['meta'	=>	[

																				'key'	=>	'value',

]]);

Resource	Responses

As	you	have	already	read,	resources	may	be	returned	directly	from	routes	and	controllers:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/user/{id}',	function	(string	$id)	{

				return	new	UserResource(User::findOrFail($id));

});

However,	sometimes	you	may	need	to	customize	the	outgoing	HTTP	response	before	it	is	sent	to	the	client.
There	are	two	ways	to	accomplish	this.	First,	you	may	chain	the	response	method	onto	the	resource.	This
method	will	return	an	Illuminate\Http\JsonResponse	instance,	giving	you	full	control	over	the	response's
headers:

use	App\Http\Resources\UserResource;

use	App\Models\User;

Route::get('/user',	function	()	{

				return	(new	UserResource(User::find(1)))

																->response()

																->header('X-Value',	'True');

});

Alternatively,	you	may	define	a	withResponse	method	within	the	resource	itself.	This	method	will	be	called
when	the	resource	is	returned	as	the	outermost	resource	in	a	response:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\JsonResponse;

use	Illuminate\Http\Request;

use	Illuminate\Http\Resources\Json\JsonResource;

class	UserResource	extends	JsonResource

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toArray(Request	$request):	array

				{

								return	[

												'id'	=>	$this->id,

];

				}

				/**

					*	Customize	the	outgoing	response	for	the	resource.

					*/

				public	function	withResponse(Request	$request,	JsonResponse	$response):	void

				{

								$response->header('X-Value',	'True');

				}

}

Laravel	Documentation	-	10.x	/	API	Resources 731

Eloquent	ORM

Eloquent:	Serialization
Introduction
Serializing	Models	and	Collections

Serializing	to	Arrays
Serializing	to	JSON

Hiding	Attributes	From	JSON
Appending	Values	to	JSON
Date	Serialization

Introduction

When	building	APIs	using	Laravel,	you	will	often	need	to	convert	your	models	and	relationships	to	arrays	or
JSON.	Eloquent	includes	convenient	methods	for	making	these	conversions,	as	well	as	controlling	which
attributes	are	included	in	the	serialized	representation	of	your	models.

[!NOTE]
For	an	even	more	robust	way	of	handling	Eloquent	model	and	collection	JSON	serialization,	check	out	the
documentation	on	Eloquent	API	resources.

Serializing	Models	and	Collections

Serializing	to	Arrays

To	convert	a	model	and	its	loaded	relationships	to	an	array,	you	should	use	the	toArray	method.	This	method	is
recursive,	so	all	attributes	and	all	relations	(including	the	relations	of	relations)	will	be	converted	to	arrays:

use	App\Models\User;

$user	=	User::with('roles')->first();

return	$user->toArray();

The	attributesToArray	method	may	be	used	to	convert	a	model's	attributes	to	an	array	but	not	its	relationships:

$user	=	User::first();

return	$user->attributesToArray();

You	may	also	convert	entire	collections	of	models	to	arrays	by	calling	the	toArray	method	on	the	collection
instance:

$users	=	User::all();

return	$users->toArray();

Serializing	to	JSON

To	convert	a	model	to	JSON,	you	should	use	the	toJson	method.	Like	toArray,	the	toJson	method	is	recursive,
so	all	attributes	and	relations	will	be	converted	to	JSON.	You	may	also	specify	any	JSON	encoding	options	that
are	supported	by	PHP:

use	App\Models\User;

$user	=	User::find(1);

return	$user->toJson();

return	$user->toJson(JSON_PRETTY_PRINT);

Alternatively,	you	may	cast	a	model	or	collection	to	a	string,	which	will	automatically	call	the	toJson	method

Laravel	Documentation	-	10.x	/	Serialization 732

https://secure.php.net/manual/en/function.json-encode.php

on	the	model	or	collection:

return	(string)	User::find(1);

Since	models	and	collections	are	converted	to	JSON	when	cast	to	a	string,	you	can	return	Eloquent	objects
directly	from	your	application's	routes	or	controllers.	Laravel	will	automatically	serialize	your	Eloquent	models
and	collections	to	JSON	when	they	are	returned	from	routes	or	controllers:

Route::get('users',	function	()	{

				return	User::all();

});

Relationships

When	an	Eloquent	model	is	converted	to	JSON,	its	loaded	relationships	will	automatically	be	included	as
attributes	on	the	JSON	object.	Also,	though	Eloquent	relationship	methods	are	defined	using	"camel	case"
method	names,	a	relationship's	JSON	attribute	will	be	"snake	case".

Hiding	Attributes	From	JSON

Sometimes	you	may	wish	to	limit	the	attributes,	such	as	passwords,	that	are	included	in	your	model's	array	or
JSON	representation.	To	do	so,	add	a	$hidden	property	to	your	model.	Attributes	that	are	listed	in	the	$hidden
property's	array	will	not	be	included	in	the	serialized	representation	of	your	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	hidden	for	arrays.

					*

					*	@var	array

					*/

				protected	$hidden	=	['password'];

}

[!NOTE]
To	hide	relationships,	add	the	relationship's	method	name	to	your	Eloquent	model's	$hidden	property.

Alternatively,	you	may	use	the	visible	property	to	define	an	"allow	list"	of	attributes	that	should	be	included	in
your	model's	array	and	JSON	representation.	All	attributes	that	are	not	present	in	the	$visible	array	will	be
hidden	when	the	model	is	converted	to	an	array	or	JSON:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	visible	in	arrays.

					*

					*	@var	array

					*/

				protected	$visible	=	['first_name',	'last_name'];

}

Temporarily	Modifying	Attribute	Visibility

If	you	would	like	to	make	some	typically	hidden	attributes	visible	on	a	given	model	instance,	you	may	use	the	
makeVisible	method.	The	makeVisible	method	returns	the	model	instance:

return	$user->makeVisible('attribute')->toArray();

Laravel	Documentation	-	10.x	/	Serialization 733

Likewise,	if	you	would	like	to	hide	some	attributes	that	are	typically	visible,	you	may	use	the	makeHidden
method.

return	$user->makeHidden('attribute')->toArray();

If	you	wish	to	temporarily	override	all	of	the	visible	or	hidden	attributes,	you	may	use	the	setVisible	and	
setHidden	methods	respectively:

return	$user->setVisible(['id',	'name'])->toArray();

return	$user->setHidden(['email',	'password',	'remember_token'])->toArray();

Appending	Values	to	JSON

Occasionally,	when	converting	models	to	arrays	or	JSON,	you	may	wish	to	add	attributes	that	do	not	have	a
corresponding	column	in	your	database.	To	do	so,	first	define	an	accessor	for	the	value:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Casts\Attribute;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Determine	if	the	user	is	an	administrator.

					*/

				protected	function	isAdmin():	Attribute

				{

								return	new	Attribute(

												get:	fn	()	=>	'yes',

);

				}

}

If	you	would	like	the	accessor	to	always	be	appended	to	your	model's	array	and	JSON	representations,	you	may
add	the	attribute	name	to	the	appends	property	of	your	model.	Note	that	attribute	names	are	typically	referenced
using	their	"snake	case"	serialized	representation,	even	though	the	accessor's	PHP	method	is	defined	using
"camel	case":

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	accessors	to	append	to	the	model's	array	form.

					*

					*	@var	array

					*/

				protected	$appends	=	['is_admin'];

}

Once	the	attribute	has	been	added	to	the	appends	list,	it	will	be	included	in	both	the	model's	array	and	JSON
representations.	Attributes	in	the	appends	array	will	also	respect	the	visible	and	hidden	settings	configured	on
the	model.

Appending	at	Run	Time

At	runtime,	you	may	instruct	a	model	instance	to	append	additional	attributes	using	the	append	method.	Or,	you
may	use	the	setAppends	method	to	override	the	entire	array	of	appended	properties	for	a	given	model	instance:

return	$user->append('is_admin')->toArray();

return	$user->setAppends(['is_admin'])->toArray();

Laravel	Documentation	-	10.x	/	Serialization 734

Date	Serialization

Customizing	the	Default	Date	Format

You	may	customize	the	default	serialization	format	by	overriding	the	serializeDate	method.	This	method	does
not	affect	how	your	dates	are	formatted	for	storage	in	the	database:

/**

	*	Prepare	a	date	for	array	/	JSON	serialization.

	*/

protected	function	serializeDate(DateTimeInterface	$date):	string

{

				return	$date->format('Y-m-d');

}

Customizing	the	Date	Format	per	Attribute

You	may	customize	the	serialization	format	of	individual	Eloquent	date	attributes	by	specifying	the	date	format
in	the	model's	cast	declarations:

protected	$casts	=	[

				'birthday'	=>	'date:Y-m-d',

				'joined_at'	=>	'datetime:Y-m-d	H:00',

];

Laravel	Documentation	-	10.x	/	Serialization 735

Eloquent	ORM

Eloquent:	Factories
Introduction
Defining	Model	Factories

Generating	Factories
Factory	States
Factory	Callbacks

Creating	Models	Using	Factories
Instantiating	Models
Persisting	Models
Sequences

Factory	Relationships
Has	Many	Relationships
Belongs	To	Relationships
Many	to	Many	Relationships
Polymorphic	Relationships
Defining	Relationships	Within	Factories
Recycling	an	Existing	Model	for	Relationships

Introduction

When	testing	your	application	or	seeding	your	database,	you	may	need	to	insert	a	few	records	into	your
database.	Instead	of	manually	specifying	the	value	of	each	column,	Laravel	allows	you	to	define	a	set	of	default
attributes	for	each	of	your	Eloquent	models	using	model	factories.

To	see	an	example	of	how	to	write	a	factory,	take	a	look	at	the	database/factories/UserFactory.php	file	in	your
application.	This	factory	is	included	with	all	new	Laravel	applications	and	contains	the	following	factory
definition:

namespace	Database\Factories;

use	Illuminate\Support\Str;

use	Illuminate\Database\Eloquent\Factories\Factory;

class	UserFactory	extends	Factory

{

				/**

					*	Define	the	model's	default	state.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	definition():	array

				{

								return	[

												'name'	=>	fake()->name(),

												'email'	=>	fake()->unique()->safeEmail(),

												'email_verified_at'	=>	now(),

												'password'	=>	'$2y$10$92IXUNpkjO0rOQ5byMi.Ye4oKoEa3Ro9llC/.og/at2.uheWG/igi',	//	password

												'remember_token'	=>	Str::random(10),

];

				}

}

As	you	can	see,	in	their	most	basic	form,	factories	are	classes	that	extend	Laravel's	base	factory	class	and	define
a	definition	method.	The	definition	method	returns	the	default	set	of	attribute	values	that	should	be	applied
when	creating	a	model	using	the	factory.

Via	the	fake	helper,	factories	have	access	to	the	Faker	PHP	library,	which	allows	you	to	conveniently	generate
various	kinds	of	random	data	for	testing	and	seeding.

[!NOTE]
You	can	set	your	application's	Faker	locale	by	adding	a	faker_locale	option	to	your	config/app.php
configuration	file.

Laravel	Documentation	-	10.x	/	Factories 736

https://github.com/FakerPHP/Faker

Defining	Model	Factories

Generating	Factories

To	create	a	factory,	execute	the	make:factory	Artisan	command:

php	artisan	make:factory	PostFactory

The	new	factory	class	will	be	placed	in	your	database/factories	directory.

Model	and	Factory	Discovery	Conventions

Once	you	have	defined	your	factories,	you	may	use	the	static	factory	method	provided	to	your	models	by	the	
Illuminate\Database\Eloquent\Factories\HasFactory	trait	in	order	to	instantiate	a	factory	instance	for	that
model.

The	HasFactory	trait's	factory	method	will	use	conventions	to	determine	the	proper	factory	for	the	model	the
trait	is	assigned	to.	Specifically,	the	method	will	look	for	a	factory	in	the	Database\Factories	namespace	that
has	a	class	name	matching	the	model	name	and	is	suffixed	with	Factory.	If	these	conventions	do	not	apply	to
your	particular	application	or	factory,	you	may	overwrite	the	newFactory	method	on	your	model	to	return	an
instance	of	the	model's	corresponding	factory	directly:

use	Illuminate\Database\Eloquent\Factories\Factory;

use	Database\Factories\Administration\FlightFactory;

/**

	*	Create	a	new	factory	instance	for	the	model.

	*/

protected	static	function	newFactory():	Factory

{

				return	FlightFactory::new();

}

Then,	define	a	model	property	on	the	corresponding	factory:

use	App\Administration\Flight;

use	Illuminate\Database\Eloquent\Factories\Factory;

class	FlightFactory	extends	Factory

{

				/**

					*	The	name	of	the	factory's	corresponding	model.

					*

					*	@var	class-string<\Illuminate\Database\Eloquent\Model>

					*/

				protected	$model	=	Flight::class;

}

Factory	States

State	manipulation	methods	allow	you	to	define	discrete	modifications	that	can	be	applied	to	your	model
factories	in	any	combination.	For	example,	your	Database\Factories\UserFactory	factory	might	contain	a	
suspended	state	method	that	modifies	one	of	its	default	attribute	values.

State	transformation	methods	typically	call	the	state	method	provided	by	Laravel's	base	factory	class.	The	
state	method	accepts	a	closure	which	will	receive	the	array	of	raw	attributes	defined	for	the	factory	and	should
return	an	array	of	attributes	to	modify:

use	Illuminate\Database\Eloquent\Factories\Factory;

/**

	*	Indicate	that	the	user	is	suspended.

	*/

public	function	suspended():	Factory

{

				return	$this->state(function	(array	$attributes)	{

								return	[

												'account_status'	=>	'suspended',

Laravel	Documentation	-	10.x	/	Factories 737

];

				});

}

"Trashed"	State

If	your	Eloquent	model	can	be	soft	deleted,	you	may	invoke	the	built-in	trashed	state	method	to	indicate	that
the	created	model	should	already	be	"soft	deleted".	You	do	not	need	to	manually	define	the	trashed	state	as	it	is
automatically	available	to	all	factories:

use	App\Models\User;

$user	=	User::factory()->trashed()->create();

Factory	Callbacks

Factory	callbacks	are	registered	using	the	afterMaking	and	afterCreating	methods	and	allow	you	to	perform
additional	tasks	after	making	or	creating	a	model.	You	should	register	these	callbacks	by	defining	a	configure
method	on	your	factory	class.	This	method	will	be	automatically	called	by	Laravel	when	the	factory	is
instantiated:

namespace	Database\Factories;

use	App\Models\User;

use	Illuminate\Database\Eloquent\Factories\Factory;

class	UserFactory	extends	Factory

{

				/**

					*	Configure	the	model	factory.

					*/

				public	function	configure():	static

				{

								return	$this->afterMaking(function	(User	$user)	{

												//	...

								})->afterCreating(function	(User	$user)	{

												//	...

								});

				}

				//	...

}

You	may	also	register	factory	callbacks	within	state	methods	to	perform	additional	tasks	that	are	specific	to	a
given	state:

use	App\Models\User;

use	Illuminate\Database\Eloquent\Factories\Factory;

/**

	*	Indicate	that	the	user	is	suspended.

	*/

public	function	suspended():	Factory

{

				return	$this->state(function	(array	$attributes)	{

								return	[

												'account_status'	=>	'suspended',

];

				})->afterMaking(function	(User	$user)	{

								//	...

				})->afterCreating(function	(User	$user)	{

								//	...

				});

}

Creating	Models	Using	Factories

Instantiating	Models

Once	you	have	defined	your	factories,	you	may	use	the	static	factory	method	provided	to	your	models	by	the	
Illuminate\Database\Eloquent\Factories\HasFactory	trait	in	order	to	instantiate	a	factory	instance	for	that

Laravel	Documentation	-	10.x	/	Factories 738

model.	Let's	take	a	look	at	a	few	examples	of	creating	models.	First,	we'll	use	the	make	method	to	create	models
without	persisting	them	to	the	database:

use	App\Models\User;

$user	=	User::factory()->make();

You	may	create	a	collection	of	many	models	using	the	count	method:

$users	=	User::factory()->count(3)->make();

Applying	States

You	may	also	apply	any	of	your	states	to	the	models.	If	you	would	like	to	apply	multiple	state	transformations
to	the	models,	you	may	simply	call	the	state	transformation	methods	directly:

$users	=	User::factory()->count(5)->suspended()->make();

Overriding	Attributes

If	you	would	like	to	override	some	of	the	default	values	of	your	models,	you	may	pass	an	array	of	values	to	the	
make	method.	Only	the	specified	attributes	will	be	replaced	while	the	rest	of	the	attributes	remain	set	to	their
default	values	as	specified	by	the	factory:

$user	=	User::factory()->make([

				'name'	=>	'Abigail	Otwell',

]);

Alternatively,	the	state	method	may	be	called	directly	on	the	factory	instance	to	perform	an	inline	state
transformation:

$user	=	User::factory()->state([

				'name'	=>	'Abigail	Otwell',

])->make();

[!NOTE]
Mass	assignment	protection	is	automatically	disabled	when	creating	models	using	factories.

Persisting	Models

The	create	method	instantiates	model	instances	and	persists	them	to	the	database	using	Eloquent's	save	method:

use	App\Models\User;

//	Create	a	single	App\Models\User	instance...

$user	=	User::factory()->create();

//	Create	three	App\Models\User	instances...

$users	=	User::factory()->count(3)->create();

You	may	override	the	factory's	default	model	attributes	by	passing	an	array	of	attributes	to	the	create	method:

$user	=	User::factory()->create([

				'name'	=>	'Abigail',

]);

Sequences

Sometimes	you	may	wish	to	alternate	the	value	of	a	given	model	attribute	for	each	created	model.	You	may
accomplish	this	by	defining	a	state	transformation	as	a	sequence.	For	example,	you	may	wish	to	alternate	the
value	of	an	admin	column	between	Y	and	N	for	each	created	user:

use	App\Models\User;

use	Illuminate\Database\Eloquent\Factories\Sequence;

$users	=	User::factory()

																->count(10)

																->state(new	Sequence(

Laravel	Documentation	-	10.x	/	Factories 739

																				['admin'	=>	'Y'],

																				['admin'	=>	'N'],

))

																->create();

In	this	example,	five	users	will	be	created	with	an	admin	value	of	Y	and	five	users	will	be	created	with	an	admin
value	of	N.

If	necessary,	you	may	include	a	closure	as	a	sequence	value.	The	closure	will	be	invoked	each	time	the
sequence	needs	a	new	value:

use	Illuminate\Database\Eloquent\Factories\Sequence;

$users	=	User::factory()

																->count(10)

																->state(new	Sequence(

																				fn	(Sequence	$sequence)	=>	['role'	=>	UserRoles::all()->random()],

))

																->create();

Within	a	sequence	closure,	you	may	access	the	$index	or	$count	properties	on	the	sequence	instance	that	is
injected	into	the	closure.	The	$index	property	contains	the	number	of	iterations	through	the	sequence	that	have
occurred	thus	far,	while	the	$count	property	contains	the	total	number	of	times	the	sequence	will	be	invoked:

$users	=	User::factory()

																->count(10)

																->sequence(fn	(Sequence	$sequence)	=>	['name'	=>	'Name	'.$sequence->index])

																->create();

For	convenience,	sequences	may	also	be	applied	using	the	sequence	method,	which	simply	invokes	the	state
method	internally.	The	sequence	method	accepts	a	closure	or	arrays	of	sequenced	attributes:

$users	=	User::factory()

																->count(2)

																->sequence(

																				['name'	=>	'First	User'],

																				['name'	=>	'Second	User'],

)

																->create();

Factory	Relationships

Has	Many	Relationships

Next,	let's	explore	building	Eloquent	model	relationships	using	Laravel's	fluent	factory	methods.	First,	let's
assume	our	application	has	an	App\Models\User	model	and	an	App\Models\Post	model.	Also,	let's	assume	that	the
User	model	defines	a	hasMany	relationship	with	Post.	We	can	create	a	user	that	has	three	posts	using	the	has
method	provided	by	the	Laravel's	factories.	The	has	method	accepts	a	factory	instance:

use	App\Models\Post;

use	App\Models\User;

$user	=	User::factory()

												->has(Post::factory()->count(3))

												->create();

By	convention,	when	passing	a	Post	model	to	the	has	method,	Laravel	will	assume	that	the	User	model	must
have	a	posts	method	that	defines	the	relationship.	If	necessary,	you	may	explicitly	specify	the	name	of	the
relationship	that	you	would	like	to	manipulate:

$user	=	User::factory()

												->has(Post::factory()->count(3),	'posts')

												->create();

Of	course,	you	may	perform	state	manipulations	on	the	related	models.	In	addition,	you	may	pass	a	closure
based	state	transformation	if	your	state	change	requires	access	to	the	parent	model:

$user	=	User::factory()

												->has(

																Post::factory()

Laravel	Documentation	-	10.x	/	Factories 740

																								->count(3)

																								->state(function	(array	$attributes,	User	$user)	{

																												return	['user_type'	=>	$user->type];

																								})

)

												->create();

Using	Magic	Methods

For	convenience,	you	may	use	Laravel's	magic	factory	relationship	methods	to	build	relationships.	For
example,	the	following	example	will	use	convention	to	determine	that	the	related	models	should	be	created	via
a	posts	relationship	method	on	the	User	model:

$user	=	User::factory()

												->hasPosts(3)

												->create();

When	using	magic	methods	to	create	factory	relationships,	you	may	pass	an	array	of	attributes	to	override	on
the	related	models:

$user	=	User::factory()

												->hasPosts(3,	[

																'published'	=>	false,

])

												->create();

You	may	provide	a	closure	based	state	transformation	if	your	state	change	requires	access	to	the	parent	model:

$user	=	User::factory()

												->hasPosts(3,	function	(array	$attributes,	User	$user)	{

																return	['user_type'	=>	$user->type];

												})

												->create();

Belongs	To	Relationships

Now	that	we	have	explored	how	to	build	"has	many"	relationships	using	factories,	let's	explore	the	inverse	of
the	relationship.	The	for	method	may	be	used	to	define	the	parent	model	that	factory	created	models	belong	to.
For	example,	we	can	create	three	App\Models\Post	model	instances	that	belong	to	a	single	user:

use	App\Models\Post;

use	App\Models\User;

$posts	=	Post::factory()

												->count(3)

												->for(User::factory()->state([

																'name'	=>	'Jessica	Archer',

]))

												->create();

If	you	already	have	a	parent	model	instance	that	should	be	associated	with	the	models	you	are	creating,	you
may	pass	the	model	instance	to	the	for	method:

$user	=	User::factory()->create();

$posts	=	Post::factory()

												->count(3)

												->for($user)

												->create();

Using	Magic	Methods

For	convenience,	you	may	use	Laravel's	magic	factory	relationship	methods	to	define	"belongs	to"
relationships.	For	example,	the	following	example	will	use	convention	to	determine	that	the	three	posts	should
belong	to	the	user	relationship	on	the	Post	model:

$posts	=	Post::factory()

												->count(3)

												->forUser([

																'name'	=>	'Jessica	Archer',

Laravel	Documentation	-	10.x	/	Factories 741

])

												->create();

Many	to	Many	Relationships

Like	has	many	relationships,	"many	to	many"	relationships	may	be	created	using	the	has	method:

use	App\Models\Role;

use	App\Models\User;

$user	=	User::factory()

												->has(Role::factory()->count(3))

												->create();

Pivot	Table	Attributes

If	you	need	to	define	attributes	that	should	be	set	on	the	pivot	/	intermediate	table	linking	the	models,	you	may
use	the	hasAttached	method.	This	method	accepts	an	array	of	pivot	table	attribute	names	and	values	as	its
second	argument:

use	App\Models\Role;

use	App\Models\User;

$user	=	User::factory()

												->hasAttached(

																Role::factory()->count(3),

																['active'	=>	true]

)

												->create();

You	may	provide	a	closure	based	state	transformation	if	your	state	change	requires	access	to	the	related	model:

$user	=	User::factory()

												->hasAttached(

																Role::factory()

																				->count(3)

																				->state(function	(array	$attributes,	User	$user)	{

																								return	['name'	=>	$user->name.'	Role'];

																				}),

																['active'	=>	true]

)

												->create();

If	you	already	have	model	instances	that	you	would	like	to	be	attached	to	the	models	you	are	creating,	you	may
pass	the	model	instances	to	the	hasAttached	method.	In	this	example,	the	same	three	roles	will	be	attached	to	all
three	users:

$roles	=	Role::factory()->count(3)->create();

$user	=	User::factory()

												->count(3)

												->hasAttached($roles,	['active'	=>	true])

												->create();

Using	Magic	Methods

For	convenience,	you	may	use	Laravel's	magic	factory	relationship	methods	to	define	many	to	many
relationships.	For	example,	the	following	example	will	use	convention	to	determine	that	the	related	models
should	be	created	via	a	roles	relationship	method	on	the	User	model:

$user	=	User::factory()

												->hasRoles(1,	[

																'name'	=>	'Editor'

])

												->create();

Polymorphic	Relationships

Polymorphic	relationships	may	also	be	created	using	factories.	Polymorphic	"morph	many"	relationships	are
created	in	the	same	way	as	typical	"has	many"	relationships.	For	example,	if	an	App\Models\Post	model	has	a	

Laravel	Documentation	-	10.x	/	Factories 742

morphMany	relationship	with	an	App\Models\Comment	model:

use	App\Models\Post;

$post	=	Post::factory()->hasComments(3)->create();

Morph	To	Relationships

Magic	methods	may	not	be	used	to	create	morphTo	relationships.	Instead,	the	for	method	must	be	used	directly
and	the	name	of	the	relationship	must	be	explicitly	provided.	For	example,	imagine	that	the	Comment	model	has	a
commentable	method	that	defines	a	morphTo	relationship.	In	this	situation,	we	may	create	three	comments	that
belong	to	a	single	post	by	using	the	for	method	directly:

$comments	=	Comment::factory()->count(3)->for(

				Post::factory(),	'commentable'

)->create();

Polymorphic	Many	to	Many	Relationships

Polymorphic	"many	to	many"	(morphToMany	/	morphedByMany)	relationships	may	be	created	just	like	non-
polymorphic	"many	to	many"	relationships:

use	App\Models\Tag;

use	App\Models\Video;

$videos	=	Video::factory()

												->hasAttached(

																Tag::factory()->count(3),

																['public'	=>	true]

)

												->create();

Of	course,	the	magic	has	method	may	also	be	used	to	create	polymorphic	"many	to	many"	relationships:

$videos	=	Video::factory()

												->hasTags(3,	['public'	=>	true])

												->create();

Defining	Relationships	Within	Factories

To	define	a	relationship	within	your	model	factory,	you	will	typically	assign	a	new	factory	instance	to	the
foreign	key	of	the	relationship.	This	is	normally	done	for	the	"inverse"	relationships	such	as	belongsTo	and	
morphTo	relationships.	For	example,	if	you	would	like	to	create	a	new	user	when	creating	a	post,	you	may	do	the
following:

use	App\Models\User;

/**

	*	Define	the	model's	default	state.

	*

	*	@return	array<string,	mixed>

	*/

public	function	definition():	array

{

				return	[

								'user_id'	=>	User::factory(),

								'title'	=>	fake()->title(),

								'content'	=>	fake()->paragraph(),

];

}

If	the	relationship's	columns	depend	on	the	factory	that	defines	it	you	may	assign	a	closure	to	an	attribute.	The
closure	will	receive	the	factory's	evaluated	attribute	array:

/**

	*	Define	the	model's	default	state.

	*

	*	@return	array<string,	mixed>

	*/

public	function	definition():	array

{

Laravel	Documentation	-	10.x	/	Factories 743

				return	[

								'user_id'	=>	User::factory(),

								'user_type'	=>	function	(array	$attributes)	{

												return	User::find($attributes['user_id'])->type;

								},

								'title'	=>	fake()->title(),

								'content'	=>	fake()->paragraph(),

];

}

Recycling	an	Existing	Model	for	Relationships

If	you	have	models	that	share	a	common	relationship	with	another	model,	you	may	use	the	recycle	method	to
ensure	a	single	instance	of	the	related	model	is	recycled	for	all	of	the	relationships	created	by	the	factory.

For	example,	imagine	you	have	Airline,	Flight,	and	Ticket	models,	where	the	ticket	belongs	to	an	airline	and	a
flight,	and	the	flight	also	belongs	to	an	airline.	When	creating	tickets,	you	will	probably	want	the	same	airline
for	both	the	ticket	and	the	flight,	so	you	may	pass	an	airline	instance	to	the	recycle	method:

Ticket::factory()

				->recycle(Airline::factory()->create())

				->create();

You	may	find	the	recycle	method	particularly	useful	if	you	have	models	belonging	to	a	common	user	or	team.

The	recycle	method	also	accepts	a	collection	of	existing	models.	When	a	collection	is	provided	to	the	recycle
method,	a	random	model	from	the	collection	will	be	chosen	when	the	factory	needs	a	model	of	that	type:

Ticket::factory()

				->recycle($airlines)

				->create();

Laravel	Documentation	-	10.x	/	Factories 744

Testing

Testing:	Getting	Started
Introduction
Environment
Creating	Tests
Running	Tests

Running	Tests	in	Parallel
Reporting	Test	Coverage
Profiling	Tests

Introduction

Laravel	is	built	with	testing	in	mind.	In	fact,	support	for	testing	with	PHPUnit	is	included	out	of	the	box	and	a	
phpunit.xml	file	is	already	set	up	for	your	application.	The	framework	also	ships	with	convenient	helper
methods	that	allow	you	to	expressively	test	your	applications.

By	default,	your	application's	tests	directory	contains	two	directories:	Feature	and	Unit.	Unit	tests	are	tests	that
focus	on	a	very	small,	isolated	portion	of	your	code.	In	fact,	most	unit	tests	probably	focus	on	a	single	method.
Tests	within	your	"Unit"	test	directory	do	not	boot	your	Laravel	application	and	therefore	are	unable	to	access
your	application's	database	or	other	framework	services.

Feature	tests	may	test	a	larger	portion	of	your	code,	including	how	several	objects	interact	with	each	other	or
even	a	full	HTTP	request	to	a	JSON	endpoint.	Generally,	most	of	your	tests	should	be	feature	tests.	These
types	of	tests	provide	the	most	confidence	that	your	system	as	a	whole	is	functioning	as	intended.

An	ExampleTest.php	file	is	provided	in	both	the	Feature	and	Unit	test	directories.	After	installing	a	new	Laravel
application,	execute	the	vendor/bin/phpunit	or	php	artisan	test	commands	to	run	your	tests.

Environment

When	running	tests,	Laravel	will	automatically	set	the	configuration	environment	to	testing	because	of	the
environment	variables	defined	in	the	phpunit.xml	file.	Laravel	also	automatically	configures	the	session	and
cache	to	the	array	driver	so	that	no	session	or	cache	data	will	be	persisted	while	testing.

You	are	free	to	define	other	testing	environment	configuration	values	as	necessary.	The	testing	environment
variables	may	be	configured	in	your	application's	phpunit.xml	file,	but	make	sure	to	clear	your	configuration
cache	using	the	config:clear	Artisan	command	before	running	your	tests!

The	.env.testing	Environment	File

In	addition,	you	may	create	a	.env.testing	file	in	the	root	of	your	project.	This	file	will	be	used	instead	of	the	
.env	file	when	running	PHPUnit	tests	or	executing	Artisan	commands	with	the	--env=testing	option.

The	CreatesApplication	Trait

Laravel	includes	a	CreatesApplication	trait	that	is	applied	to	your	application's	base	TestCase	class.	This	trait
contains	a	createApplication	method	that	bootstraps	the	Laravel	application	before	running	your	tests.	It's
important	that	you	leave	this	trait	at	its	original	location	as	some	features,	such	as	Laravel's	parallel	testing
feature,	depend	on	it.

Creating	Tests

To	create	a	new	test	case,	use	the	make:test	Artisan	command.	By	default,	tests	will	be	placed	in	the	
tests/Feature	directory:

php	artisan	make:test	UserTest

Laravel	Documentation	-	10.x	/	Testing 745

If	you	would	like	to	create	a	test	within	the	tests/Unit	directory,	you	may	use	the	--unit	option	when	executing
the	make:test	command:

php	artisan	make:test	UserTest	--unit

If	you	would	like	to	create	a	Pest	PHP	test,	you	may	provide	the	--pest	option	to	the	make:test	command:

php	artisan	make:test	UserTest	--pest

php	artisan	make:test	UserTest	--unit	--pest

[!NOTE]
Test	stubs	may	be	customized	using	stub	publishing.

Once	the	test	has	been	generated,	you	may	define	test	methods	as	you	normally	would	using	PHPUnit.	To	run
your	tests,	execute	the	vendor/bin/phpunit	or	php	artisan	test	command	from	your	terminal:

<?php

namespace	Tests\Unit;

use	PHPUnit\Framework\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*/

				public	function	test_basic_test():	void

				{

								$this->assertTrue(true);

				}

}

[!WARNING]
If	you	define	your	own	setUp	/	tearDown	methods	within	a	test	class,	be	sure	to	call	the	respective	
parent::setUp()	/	parent::tearDown()	methods	on	the	parent	class.	Typically,	you	should	invoke	
parent::setUp()	at	the	start	of	your	own	setUp	method,	and	parent::tearDown()	at	the	end	of	your	tearDown
method.

Running	Tests

As	mentioned	previously,	once	you've	written	tests,	you	may	run	them	using	phpunit:

./vendor/bin/phpunit

In	addition	to	the	phpunit	command,	you	may	use	the	test	Artisan	command	to	run	your	tests.	The	Artisan	test
runner	provides	verbose	test	reports	in	order	to	ease	development	and	debugging:

php	artisan	test

Any	arguments	that	can	be	passed	to	the	phpunit	command	may	also	be	passed	to	the	Artisan	test	command:

php	artisan	test	--testsuite=Feature	--stop-on-failure

Running	Tests	in	Parallel

By	default,	Laravel	and	PHPUnit	execute	your	tests	sequentially	within	a	single	process.	However,	you	may
greatly	reduce	the	amount	of	time	it	takes	to	run	your	tests	by	running	tests	simultaneously	across	multiple
processes.	To	get	started,	you	should	install	the	brianium/paratest	Composer	package	as	a	"dev"	dependency.
Then,	include	the	--parallel	option	when	executing	the	test	Artisan	command:

composer	require	brianium/paratest	--dev

php	artisan	test	--parallel

By	default,	Laravel	will	create	as	many	processes	as	there	are	available	CPU	cores	on	your	machine.	However,
you	may	adjust	the	number	of	processes	using	the	--processes	option:

Laravel	Documentation	-	10.x	/	Testing 746

https://pestphp.com
https://phpunit.de

php	artisan	test	--parallel	--processes=4

[!WARNING]
When	running	tests	in	parallel,	some	PHPUnit	options	(such	as	--do-not-cache-result)	may	not	be
available.

Parallel	Testing	and	Databases

As	long	as	you	have	configured	a	primary	database	connection,	Laravel	automatically	handles	creating	and
migrating	a	test	database	for	each	parallel	process	that	is	running	your	tests.	The	test	databases	will	be	suffixed
with	a	process	token	which	is	unique	per	process.	For	example,	if	you	have	two	parallel	test	processes,	Laravel
will	create	and	use	your_db_test_1	and	your_db_test_2	test	databases.

By	default,	test	databases	persist	between	calls	to	the	test	Artisan	command	so	that	they	can	be	used	again	by
subsequent	test	invocations.	However,	you	may	re-create	them	using	the	--recreate-databases	option:

php	artisan	test	--parallel	--recreate-databases

Parallel	Testing	Hooks

Occasionally,	you	may	need	to	prepare	certain	resources	used	by	your	application's	tests	so	they	may	be	safely
used	by	multiple	test	processes.

Using	the	ParallelTesting	facade,	you	may	specify	code	to	be	executed	on	the	setUp	and	tearDown	of	a	process
or	test	case.	The	given	closures	receive	the	$token	and	$testCase	variables	that	contain	the	process	token	and
the	current	test	case,	respectively:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Artisan;

use	Illuminate\Support\Facades\ParallelTesting;

use	Illuminate\Support\ServiceProvider;

use	PHPUnit\Framework\TestCase;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								ParallelTesting::setUpProcess(function	(int	$token)	{

												//	...

								});

								ParallelTesting::setUpTestCase(function	(int	$token,	TestCase	$testCase)	{

												//	...

								});

								//	Executed	when	a	test	database	is	created...

								ParallelTesting::setUpTestDatabase(function	(string	$database,	int	$token)	{

												Artisan::call('db:seed');

								});

								ParallelTesting::tearDownTestCase(function	(int	$token,	TestCase	$testCase)	{

												//	...

								});

								ParallelTesting::tearDownProcess(function	(int	$token)	{

												//	...

								});

				}

}

Accessing	the	Parallel	Testing	Token

If	you	would	like	to	access	the	current	parallel	process	"token"	from	any	other	location	in	your	application's	test
code,	you	may	use	the	token	method.	This	token	is	a	unique,	string	identifier	for	an	individual	test	process	and

Laravel	Documentation	-	10.x	/	Testing 747

may	be	used	to	segment	resources	across	parallel	test	processes.	For	example,	Laravel	automatically	appends
this	token	to	the	end	of	the	test	databases	created	by	each	parallel	testing	process:

$token	=	ParallelTesting::token();

Reporting	Test	Coverage

[!WARNING]
This	feature	requires	Xdebug	or	PCOV.

When	running	your	application	tests,	you	may	want	to	determine	whether	your	test	cases	are	actually	covering
the	application	code	and	how	much	application	code	is	used	when	running	your	tests.	To	accomplish	this,	you
may	provide	the	--coverage	option	when	invoking	the	test	command:

php	artisan	test	--coverage

Enforcing	a	Minimum	Coverage	Threshold

You	may	use	the	--min	option	to	define	a	minimum	test	coverage	threshold	for	your	application.	The	test	suite
will	fail	if	this	threshold	is	not	met:

php	artisan	test	--coverage	--min=80.3

Profiling	Tests

The	Artisan	test	runner	also	includes	a	convenient	mechanism	for	listing	your	application's	slowest	tests.
Invoke	the	test	command	with	the	--profile	option	to	be	presented	with	a	list	of	your	ten	slowest	tests,
allowing	you	to	easily	investigate	which	tests	can	be	improved	to	speed	up	your	test	suite:

php	artisan	test	--profile

Laravel	Documentation	-	10.x	/	Testing 748

https://xdebug.org
https://pecl.php.net/package/pcov

Testing

HTTP	Tests
Introduction
Making	Requests

Customizing	Request	Headers
Cookies
Session	/	Authentication
Debugging	Responses
Exception	Handling

Testing	JSON	APIs
Fluent	JSON	Testing

Testing	File	Uploads
Testing	Views

Rendering	Blade	and	Components
Available	Assertions

Response	Assertions
Authentication	Assertions
Validation	Assertions

Introduction

Laravel	provides	a	very	fluent	API	for	making	HTTP	requests	to	your	application	and	examining	the	responses.
For	example,	take	a	look	at	the	feature	test	defined	below:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*/

				public	function	test_the_application_returns_a_successful_response():	void

				{

								$response	=	$this->get('/');

								$response->assertStatus(200);

				}

}

The	get	method	makes	a	GET	request	into	the	application,	while	the	assertStatus	method	asserts	that	the
returned	response	should	have	the	given	HTTP	status	code.	In	addition	to	this	simple	assertion,	Laravel	also
contains	a	variety	of	assertions	for	inspecting	the	response	headers,	content,	JSON	structure,	and	more.

Making	Requests

To	make	a	request	to	your	application,	you	may	invoke	the	get,	post,	put,	patch,	or	delete	methods	within	your
test.	These	methods	do	not	actually	issue	a	"real"	HTTP	request	to	your	application.	Instead,	the	entire	network
request	is	simulated	internally.

Instead	of	returning	an	Illuminate\Http\Response	instance,	test	request	methods	return	an	instance	of	
Illuminate\Testing\TestResponse,	which	provides	a	variety	of	helpful	assertions	that	allow	you	to	inspect	your
application's	responses:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

Laravel	Documentation	-	10.x	/	HTTP	Tests 749

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*/

				public	function	test_a_basic_request():	void

				{

								$response	=	$this->get('/');

								$response->assertStatus(200);

				}

}

In	general,	each	of	your	tests	should	only	make	one	request	to	your	application.	Unexpected	behavior	may
occur	if	multiple	requests	are	executed	within	a	single	test	method.

[!NOTE]
For	convenience,	the	CSRF	middleware	is	automatically	disabled	when	running	tests.

Customizing	Request	Headers

You	may	use	the	withHeaders	method	to	customize	the	request's	headers	before	it	is	sent	to	the	application.	This
method	allows	you	to	add	any	custom	headers	you	would	like	to	the	request:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*/

				public	function	test_interacting_with_headers():	void

				{

								$response	=	$this->withHeaders([

												'X-Header'	=>	'Value',

])->post('/user',	['name'	=>	'Sally']);

								$response->assertStatus(201);

				}

}

Cookies

You	may	use	the	withCookie	or	withCookies	methods	to	set	cookie	values	before	making	a	request.	The	
withCookie	method	accepts	a	cookie	name	and	value	as	its	two	arguments,	while	the	withCookies	method
accepts	an	array	of	name	/	value	pairs:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_interacting_with_cookies():	void

				{

								$response	=	$this->withCookie('color',	'blue')->get('/');

								$response	=	$this->withCookies([

												'color'	=>	'blue',

												'name'	=>	'Taylor',

])->get('/');

				}

}

Session	/	Authentication

Laravel	Documentation	-	10.x	/	HTTP	Tests 750

Laravel	provides	several	helpers	for	interacting	with	the	session	during	HTTP	testing.	First,	you	may	set	the
session	data	to	a	given	array	using	the	withSession	method.	This	is	useful	for	loading	the	session	with	data
before	issuing	a	request	to	your	application:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_interacting_with_the_session():	void

				{

								$response	=	$this->withSession(['banned'	=>	false])->get('/');

				}

}

Laravel's	session	is	typically	used	to	maintain	state	for	the	currently	authenticated	user.	Therefore,	the	actingAs
helper	method	provides	a	simple	way	to	authenticate	a	given	user	as	the	current	user.	For	example,	we	may	use
a	model	factory	to	generate	and	authenticate	a	user:

<?php

namespace	Tests\Feature;

use	App\Models\User;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_an_action_that_requires_authentication():	void

				{

								$user	=	User::factory()->create();

								$response	=	$this->actingAs($user)

																									->withSession(['banned'	=>	false])

																									->get('/');

				}

}

You	may	also	specify	which	guard	should	be	used	to	authenticate	the	given	user	by	passing	the	guard	name	as
the	second	argument	to	the	actingAs	method.	The	guard	that	is	provided	to	the	actingAs	method	will	also
become	the	default	guard	for	the	duration	of	the	test:

$this->actingAs($user,	'web')

Debugging	Responses

After	making	a	test	request	to	your	application,	the	dump,	dumpHeaders,	and	dumpSession	methods	may	be	used	to
examine	and	debug	the	response	contents:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*/

				public	function	test_basic_test():	void

				{

								$response	=	$this->get('/');

								$response->dumpHeaders();

								$response->dumpSession();

								$response->dump();

				}

}

Laravel	Documentation	-	10.x	/	HTTP	Tests 751

Alternatively,	you	may	use	the	dd,	ddHeaders,	and	ddSession	methods	to	dump	information	about	the	response
and	then	stop	execution:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*/

				public	function	test_basic_test():	void

				{

								$response	=	$this->get('/');

								$response->ddHeaders();

								$response->ddSession();

								$response->dd();

				}

}

Exception	Handling

Sometimes	you	may	want	to	test	that	your	application	is	throwing	a	specific	exception.	To	ensure	that	the
exception	does	not	get	caught	by	Laravel's	exception	handler	and	returned	as	an	HTTP	response,	you	may
invoke	the	withoutExceptionHandling	method	before	making	your	request:

$response	=	$this->withoutExceptionHandling()->get('/');

In	addition,	if	you	would	like	to	ensure	that	your	application	is	not	utilizing	features	that	have	been	deprecated
by	the	PHP	language	or	the	libraries	your	application	is	using,	you	may	invoke	the	withoutDeprecationHandling
method	before	making	your	request.	When	deprecation	handling	is	disabled,	deprecation	warnings	will	be
converted	to	exceptions,	thus	causing	your	test	to	fail:

$response	=	$this->withoutDeprecationHandling()->get('/');

The	assertThrows	method	may	be	used	to	assert	that	code	within	a	given	closure	throws	an	exception	of	the
specified	type:

$this->assertThrows(

				fn	()	=>	(new	ProcessOrder)->execute(),

				OrderInvalid::class

);

Testing	JSON	APIs

Laravel	also	provides	several	helpers	for	testing	JSON	APIs	and	their	responses.	For	example,	the	json,	
getJson,	postJson,	putJson,	patchJson,	deleteJson,	and	optionsJson	methods	may	be	used	to	issue	JSON
requests	with	various	HTTP	verbs.	You	may	also	easily	pass	data	and	headers	to	these	methods.	To	get	started,
let's	write	a	test	to	make	a	POST	request	to	/api/user	and	assert	that	the	expected	JSON	data	was	returned:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*/

				public	function	test_making_an_api_request():	void

				{

								$response	=	$this->postJson('/api/user',	['name'	=>	'Sally']);

Laravel	Documentation	-	10.x	/	HTTP	Tests 752

								$response

												->assertStatus(201)

												->assertJson([

																'created'	=>	true,

]);

				}

}

In	addition,	JSON	response	data	may	be	accessed	as	array	variables	on	the	response,	making	it	convenient	for
you	to	inspect	the	individual	values	returned	within	a	JSON	response:

$this->assertTrue($response['created']);

[!NOTE]
The	assertJson	method	converts	the	response	to	an	array	and	utilizes	PHPUnit::assertArraySubset	to	verify
that	the	given	array	exists	within	the	JSON	response	returned	by	the	application.	So,	if	there	are	other
properties	in	the	JSON	response,	this	test	will	still	pass	as	long	as	the	given	fragment	is	present.

Asserting	Exact	JSON	Matches

As	previously	mentioned,	the	assertJson	method	may	be	used	to	assert	that	a	fragment	of	JSON	exists	within
the	JSON	response.	If	you	would	like	to	verify	that	a	given	array	exactly	matches	the	JSON	returned	by	your
application,	you	should	use	the	assertExactJson	method:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*/

				public	function	test_asserting_an_exact_json_match():	void

				{

								$response	=	$this->postJson('/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

												->assertExactJson([

																'created'	=>	true,

]);

				}

}

Asserting	on	JSON	Paths

If	you	would	like	to	verify	that	the	JSON	response	contains	the	given	data	at	a	specified	path,	you	should	use
the	assertJsonPath	method:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*/

				public	function	test_asserting_a_json_paths_value():	void

				{

								$response	=	$this->postJson('/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

												->assertJsonPath('team.owner.name',	'Darian');

				}

}

Laravel	Documentation	-	10.x	/	HTTP	Tests 753

The	assertJsonPath	method	also	accepts	a	closure,	which	may	be	used	to	dynamically	determine	if	the	assertion
should	pass:

$response->assertJsonPath('team.owner.name',	fn	(string	$name)	=>	strlen($name)	>=	3);

Fluent	JSON	Testing

Laravel	also	offers	a	beautiful	way	to	fluently	test	your	application's	JSON	responses.	To	get	started,	pass	a
closure	to	the	assertJson	method.	This	closure	will	be	invoked	with	an	instance	of	
Illuminate\Testing\Fluent\AssertableJson	which	can	be	used	to	make	assertions	against	the	JSON	that	was
returned	by	your	application.	The	where	method	may	be	used	to	make	assertions	against	a	particular	attribute	of
the	JSON,	while	the	missing	method	may	be	used	to	assert	that	a	particular	attribute	is	missing	from	the	JSON:

use	Illuminate\Testing\Fluent\AssertableJson;

/**

	*	A	basic	functional	test	example.

	*/

public	function	test_fluent_json():	void

{

				$response	=	$this->getJson('/users/1');

				$response

								->assertJson(fn	(AssertableJson	$json)	=>

												$json->where('id',	1)

																	->where('name',	'Victoria	Faith')

																	->where('email',	fn	(string	$email)	=>	str($email)->is('victoria@gmail.com'))

																	->whereNot('status',	'pending')

																	->missing('password')

																	->etc()

);

}

Understanding	the	etc	Method

In	the	example	above,	you	may	have	noticed	we	invoked	the	etc	method	at	the	end	of	our	assertion	chain.	This
method	informs	Laravel	that	there	may	be	other	attributes	present	on	the	JSON	object.	If	the	etc	method	is	not
used,	the	test	will	fail	if	other	attributes	that	you	did	not	make	assertions	against	exist	on	the	JSON	object.

The	intention	behind	this	behavior	is	to	protect	you	from	unintentionally	exposing	sensitive	information	in	your
JSON	responses	by	forcing	you	to	either	explicitly	make	an	assertion	against	the	attribute	or	explicitly	allow
additional	attributes	via	the	etc	method.

However,	you	should	be	aware	that	not	including	the	etc	method	in	your	assertion	chain	does	not	ensure	that
additional	attributes	are	not	being	added	to	arrays	that	are	nested	within	your	JSON	object.	The	etc	method
only	ensures	that	no	additional	attributes	exist	at	the	nesting	level	in	which	the	etc	method	is	invoked.

Asserting	Attribute	Presence	/	Absence

To	assert	that	an	attribute	is	present	or	absent,	you	may	use	the	has	and	missing	methods:

$response->assertJson(fn	(AssertableJson	$json)	=>

				$json->has('data')

									->missing('message')

);

In	addition,	the	hasAll	and	missingAll	methods	allow	asserting	the	presence	or	absence	of	multiple	attributes
simultaneously:

$response->assertJson(fn	(AssertableJson	$json)	=>

				$json->hasAll(['status',	'data'])

									->missingAll(['message',	'code'])

);

You	may	use	the	hasAny	method	to	determine	if	at	least	one	of	a	given	list	of	attributes	is	present:

$response->assertJson(fn	(AssertableJson	$json)	=>

				$json->has('status')

Laravel	Documentation	-	10.x	/	HTTP	Tests 754

									->hasAny('data',	'message',	'code')

);

Asserting	Against	JSON	Collections

Often,	your	route	will	return	a	JSON	response	that	contains	multiple	items,	such	as	multiple	users:

Route::get('/users',	function	()	{

				return	User::all();

});

In	these	situations,	we	may	use	the	fluent	JSON	object's	has	method	to	make	assertions	against	the	users
included	in	the	response.	For	example,	let's	assert	that	the	JSON	response	contains	three	users.	Next,	we'll	make
some	assertions	about	the	first	user	in	the	collection	using	the	first	method.	The	first	method	accepts	a
closure	which	receives	another	assertable	JSON	string	that	we	can	use	to	make	assertions	about	the	first	object
in	the	JSON	collection:

$response

				->assertJson(fn	(AssertableJson	$json)	=>

								$json->has(3)

													->first(fn	(AssertableJson	$json)	=>

																$json->where('id',	1)

																					->where('name',	'Victoria	Faith')

																					->where('email',	fn	(string	$email)	=>	str($email)->is('victoria@gmail.com'))

																					->missing('password')

																					->etc()

)

);

Scoping	JSON	Collection	Assertions

Sometimes,	your	application's	routes	will	return	JSON	collections	that	are	assigned	named	keys:

Route::get('/users',	function	()	{

				return	[

								'meta'	=>	[...],

								'users'	=>	User::all(),

];

})

When	testing	these	routes,	you	may	use	the	has	method	to	assert	against	the	number	of	items	in	the	collection.
In	addition,	you	may	use	the	has	method	to	scope	a	chain	of	assertions:

$response

				->assertJson(fn	(AssertableJson	$json)	=>

								$json->has('meta')

													->has('users',	3)

													->has('users.0',	fn	(AssertableJson	$json)	=>

																$json->where('id',	1)

																					->where('name',	'Victoria	Faith')

																					->where('email',	fn	(string	$email)	=>	str($email)->is('victoria@gmail.com'))

																					->missing('password')

																					->etc()

)

);

However,	instead	of	making	two	separate	calls	to	the	has	method	to	assert	against	the	users	collection,	you	may
make	a	single	call	which	provides	a	closure	as	its	third	parameter.	When	doing	so,	the	closure	will
automatically	be	invoked	and	scoped	to	the	first	item	in	the	collection:

$response

				->assertJson(fn	(AssertableJson	$json)	=>

								$json->has('meta')

													->has('users',	3,	fn	(AssertableJson	$json)	=>

																$json->where('id',	1)

																					->where('name',	'Victoria	Faith')

																					->where('email',	fn	(string	$email)	=>	str($email)->is('victoria@gmail.com'))

																					->missing('password')

																					->etc()

)

);

Laravel	Documentation	-	10.x	/	HTTP	Tests 755

Asserting	JSON	Types

You	may	only	want	to	assert	that	the	properties	in	the	JSON	response	are	of	a	certain	type.	The	
Illuminate\Testing\Fluent\AssertableJson	class	provides	the	whereType	and	whereAllType	methods	for	doing
just	that:

$response->assertJson(fn	(AssertableJson	$json)	=>

				$json->whereType('id',	'integer')

									->whereAllType([

												'users.0.name'	=>	'string',

												'meta'	=>	'array'

])

);

You	may	specify	multiple	types	using	the	|	character,	or	passing	an	array	of	types	as	the	second	parameter	to
the	whereType	method.	The	assertion	will	be	successful	if	the	response	value	is	any	of	the	listed	types:

$response->assertJson(fn	(AssertableJson	$json)	=>

				$json->whereType('name',	'string|null')

									->whereType('id',	['string',	'integer'])

);

The	whereType	and	whereAllType	methods	recognize	the	following	types:	string,	integer,	double,	boolean,	array,
and	null.

Testing	File	Uploads

The	Illuminate\Http\UploadedFile	class	provides	a	fake	method	which	may	be	used	to	generate	dummy	files	or
images	for	testing.	This,	combined	with	the	Storage	facade's	fake	method,	greatly	simplifies	the	testing	of	file
uploads.	For	example,	you	may	combine	these	two	features	to	easily	test	an	avatar	upload	form:

<?php

namespace	Tests\Feature;

use	Illuminate\Http\UploadedFile;

use	Illuminate\Support\Facades\Storage;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_avatars_can_be_uploaded():	void

				{

								Storage::fake('avatars');

								$file	=	UploadedFile::fake()->image('avatar.jpg');

								$response	=	$this->post('/avatar',	[

												'avatar'	=>	$file,

]);

								Storage::disk('avatars')->assertExists($file->hashName());

				}

}

If	you	would	like	to	assert	that	a	given	file	does	not	exist,	you	may	use	the	assertMissing	method	provided	by
the	Storage	facade:

Storage::fake('avatars');

//	...

Storage::disk('avatars')->assertMissing('missing.jpg');

Fake	File	Customization

When	creating	files	using	the	fake	method	provided	by	the	UploadedFile	class,	you	may	specify	the	width,
height,	and	size	of	the	image	(in	kilobytes)	in	order	to	better	test	your	application's	validation	rules:

UploadedFile::fake()->image('avatar.jpg',	$width,	$height)->size(100);

Laravel	Documentation	-	10.x	/	HTTP	Tests 756

In	addition	to	creating	images,	you	may	create	files	of	any	other	type	using	the	create	method:

UploadedFile::fake()->create('document.pdf',	$sizeInKilobytes);

If	needed,	you	may	pass	a	$mimeType	argument	to	the	method	to	explicitly	define	the	MIME	type	that	should	be
returned	by	the	file:

UploadedFile::fake()->create(

				'document.pdf',	$sizeInKilobytes,	'application/pdf'

);

Testing	Views

Laravel	also	allows	you	to	render	a	view	without	making	a	simulated	HTTP	request	to	the	application.	To
accomplish	this,	you	may	call	the	view	method	within	your	test.	The	view	method	accepts	the	view	name	and	an
optional	array	of	data.	The	method	returns	an	instance	of	Illuminate\Testing\TestView,	which	offers	several
methods	to	conveniently	make	assertions	about	the	view's	contents:

<?php

namespace	Tests\Feature;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	test_a_welcome_view_can_be_rendered():	void

				{

								$view	=	$this->view('welcome',	['name'	=>	'Taylor']);

								$view->assertSee('Taylor');

				}

}

The	TestView	class	provides	the	following	assertion	methods:	assertSee,	assertSeeInOrder,	assertSeeText,	
assertSeeTextInOrder,	assertDontSee,	and	assertDontSeeText.

If	needed,	you	may	get	the	raw,	rendered	view	contents	by	casting	the	TestView	instance	to	a	string:

$contents	=	(string)	$this->view('welcome');

Sharing	Errors

Some	views	may	depend	on	errors	shared	in	the	global	error	bag	provided	by	Laravel.	To	hydrate	the	error	bag
with	error	messages,	you	may	use	the	withViewErrors	method:

$view	=	$this->withViewErrors([

				'name'	=>	['Please	provide	a	valid	name.']

])->view('form');

$view->assertSee('Please	provide	a	valid	name.');

Rendering	Blade	and	Components

If	necessary,	you	may	use	the	blade	method	to	evaluate	and	render	a	raw	Blade	string.	Like	the	view	method,	the
blade	method	returns	an	instance	of	Illuminate\Testing\TestView:

$view	=	$this->blade(

				'<x-component	:name="$name"	/>',

				['name'	=>	'Taylor']

);

$view->assertSee('Taylor');

You	may	use	the	component	method	to	evaluate	and	render	a	Blade	component.	The	component	method	returns	an
instance	of	Illuminate\Testing\TestComponent:

$view	=	$this->component(Profile::class,	['name'	=>	'Taylor']);

Laravel	Documentation	-	10.x	/	HTTP	Tests 757

$view->assertSee('Taylor');

Available	Assertions

Response	Assertions

Laravel's	Illuminate\Testing\TestResponse	class	provides	a	variety	of	custom	assertion	methods	that	you	may
utilize	when	testing	your	application.	These	assertions	may	be	accessed	on	the	response	that	is	returned	by	the	
json,	get,	post,	put,	and	delete	test	methods:

assertAccepted
assertBadRequest
assertConflict
assertCookie
assertCookieExpired
assertCookieNotExpired
assertCookieMissing
assertCreated
assertDontSee
assertDontSeeText
assertDownload
assertExactJson
assertForbidden
assertFound
assertGone
assertHeader
assertHeaderMissing
assertInternalServerError
assertJson
assertJsonCount
assertJsonFragment
assertJsonIsArray
assertJsonIsObject
assertJsonMissing
assertJsonMissingExact
assertJsonMissingValidationErrors
assertJsonPath
assertJsonMissingPath
assertJsonStructure
assertJsonValidationErrors
assertJsonValidationErrorFor
assertLocation
assertMethodNotAllowed
assertMovedPermanently
assertContent
assertNoContent

assertStreamedContent
assertNotFound
assertOk
assertPaymentRequired
assertPlainCookie
assertRedirect
assertRedirectContains
assertRedirectToRoute
assertRedirectToSignedRoute
assertRequestTimeout
assertSee
assertSeeInOrder
assertSeeText
assertSeeTextInOrder
assertServerError
assertServiceUnavailable
assertSessionHas
assertSessionHasInput
assertSessionHasAll
assertSessionHasErrors
assertSessionHasErrorsIn
assertSessionHasNoErrors
assertSessionDoesntHaveErrors
assertSessionMissing
assertStatus
assertSuccessful
assertTooManyRequests
assertUnauthorized
assertUnprocessable
assertUnsupportedMediaType
assertValid
assertInvalid
assertViewHas
assertViewHasAll
assertViewIs
assertViewMissing

assertBadRequest

Assert	that	the	response	has	a	bad	request	(400)	HTTP	status	code:

$response->assertBadRequest();

assertAccepted

Assert	that	the	response	has	an	accepted	(202)	HTTP	status	code:

$response->assertAccepted();

assertConflict

Laravel	Documentation	-	10.x	/	HTTP	Tests 758

Assert	that	the	response	has	a	conflict	(409)	HTTP	status	code:

$response->assertConflict();

assertCookie

Assert	that	the	response	contains	the	given	cookie:

$response->assertCookie($cookieName,	$value	=	null);

assertCookieExpired

Assert	that	the	response	contains	the	given	cookie	and	it	is	expired:

$response->assertCookieExpired($cookieName);

assertCookieNotExpired

Assert	that	the	response	contains	the	given	cookie	and	it	is	not	expired:

$response->assertCookieNotExpired($cookieName);

assertCookieMissing

Assert	that	the	response	does	not	contain	the	given	cookie:

$response->assertCookieMissing($cookieName);

assertCreated

Assert	that	the	response	has	a	201	HTTP	status	code:

$response->assertCreated();

assertDontSee

Assert	that	the	given	string	is	not	contained	within	the	response	returned	by	the	application.	This	assertion	will
automatically	escape	the	given	string	unless	you	pass	a	second	argument	of	false:

$response->assertDontSee($value,	$escaped	=	true);

assertDontSeeText

Assert	that	the	given	string	is	not	contained	within	the	response	text.	This	assertion	will	automatically	escape
the	given	string	unless	you	pass	a	second	argument	of	false.	This	method	will	pass	the	response	content	to	the	
strip_tags	PHP	function	before	making	the	assertion:

$response->assertDontSeeText($value,	$escaped	=	true);

assertDownload

Assert	that	the	response	is	a	"download".	Typically,	this	means	the	invoked	route	that	returned	the	response
returned	a	Response::download	response,	BinaryFileResponse,	or	Storage::download	response:

$response->assertDownload();

If	you	wish,	you	may	assert	that	the	downloadable	file	was	assigned	a	given	file	name:

$response->assertDownload('image.jpg');

assertExactJson

Laravel	Documentation	-	10.x	/	HTTP	Tests 759

Assert	that	the	response	contains	an	exact	match	of	the	given	JSON	data:

$response->assertExactJson(array	$data);

assertForbidden

Assert	that	the	response	has	a	forbidden	(403)	HTTP	status	code:

$response->assertForbidden();

assertFound

Assert	that	the	response	has	a	found	(302)	HTTP	status	code:

$response->assertFound();

assertGone

Assert	that	the	response	has	a	gone	(410)	HTTP	status	code:

$response->assertGone();

assertHeader

Assert	that	the	given	header	and	value	is	present	on	the	response:

$response->assertHeader($headerName,	$value	=	null);

assertHeaderMissing

Assert	that	the	given	header	is	not	present	on	the	response:

$response->assertHeaderMissing($headerName);

assertInternalServerError

Assert	that	the	response	has	an	"Internal	Server	Error"	(500)	HTTP	status	code:

$response->assertInternalServerError();

assertJson

Assert	that	the	response	contains	the	given	JSON	data:

$response->assertJson(array	$data,	$strict	=	false);

The	assertJson	method	converts	the	response	to	an	array	and	utilizes	PHPUnit::assertArraySubset	to	verify	that
the	given	array	exists	within	the	JSON	response	returned	by	the	application.	So,	if	there	are	other	properties	in
the	JSON	response,	this	test	will	still	pass	as	long	as	the	given	fragment	is	present.

assertJsonCount

Assert	that	the	response	JSON	has	an	array	with	the	expected	number	of	items	at	the	given	key:

$response->assertJsonCount($count,	$key	=	null);

assertJsonFragment

Assert	that	the	response	contains	the	given	JSON	data	anywhere	in	the	response:

Route::get('/users',	function	()	{

				return	[

								'users'	=>	[

Laravel	Documentation	-	10.x	/	HTTP	Tests 760

												[

																'name'	=>	'Taylor	Otwell',

],

],

];

});

$response->assertJsonFragment(['name'	=>	'Taylor	Otwell']);

assertJsonIsArray

Assert	that	the	response	JSON	is	an	array:

$response->assertJsonIsArray();

assertJsonIsObject

Assert	that	the	response	JSON	is	an	object:

$response->assertJsonIsObject();

assertJsonMissing

Assert	that	the	response	does	not	contain	the	given	JSON	data:

$response->assertJsonMissing(array	$data);

assertJsonMissingExact

Assert	that	the	response	does	not	contain	the	exact	JSON	data:

$response->assertJsonMissingExact(array	$data);

assertJsonMissingValidationErrors

Assert	that	the	response	has	no	JSON	validation	errors	for	the	given	keys:

$response->assertJsonMissingValidationErrors($keys);

[!NOTE]
The	more	generic	assertValid	method	may	be	used	to	assert	that	a	response	does	not	have	validation	errors
that	were	returned	as	JSON	and	that	no	errors	were	flashed	to	session	storage.

assertJsonPath

Assert	that	the	response	contains	the	given	data	at	the	specified	path:

$response->assertJsonPath($path,	$expectedValue);

For	example,	if	the	following	JSON	response	is	returned	by	your	application:

{

				"user":	{

								"name":	"Steve	Schoger"

				}

}

You	may	assert	that	the	name	property	of	the	user	object	matches	a	given	value	like	so:

$response->assertJsonPath('user.name',	'Steve	Schoger');

assertJsonMissingPath

Assert	that	the	response	does	not	contain	the	given	path:

$response->assertJsonMissingPath($path);

Laravel	Documentation	-	10.x	/	HTTP	Tests 761

For	example,	if	the	following	JSON	response	is	returned	by	your	application:

{

				"user":	{

								"name":	"Steve	Schoger"

				}

}

You	may	assert	that	it	does	not	contain	the	email	property	of	the	user	object:

$response->assertJsonMissingPath('user.email');

assertJsonStructure

Assert	that	the	response	has	a	given	JSON	structure:

$response->assertJsonStructure(array	$structure);

For	example,	if	the	JSON	response	returned	by	your	application	contains	the	following	data:

{

				"user":	{

								"name":	"Steve	Schoger"

				}

}

You	may	assert	that	the	JSON	structure	matches	your	expectations	like	so:

$response->assertJsonStructure([

				'user'	=>	[

								'name',

]

]);

Sometimes,	JSON	responses	returned	by	your	application	may	contain	arrays	of	objects:

{

				"user":	[

								{

												"name":	"Steve	Schoger",

												"age":	55,

												"location":	"Earth"

								},

								{

												"name":	"Mary	Schoger",

												"age":	60,

												"location":	"Earth"

								}

]

}

In	this	situation,	you	may	use	the	*	character	to	assert	against	the	structure	of	all	of	the	objects	in	the	array:

$response->assertJsonStructure([

				'user'	=>	[

								'*'	=>	[

													'name',

													'age',

													'location'

]

]

]);

assertJsonValidationErrors

Assert	that	the	response	has	the	given	JSON	validation	errors	for	the	given	keys.	This	method	should	be	used
when	asserting	against	responses	where	the	validation	errors	are	returned	as	a	JSON	structure	instead	of	being
flashed	to	the	session:

$response->assertJsonValidationErrors(array	$data,	$responseKey	=	'errors');

[!NOTE]

Laravel	Documentation	-	10.x	/	HTTP	Tests 762

The	more	generic	assertInvalid	method	may	be	used	to	assert	that	a	response	has	validation	errors	returned
as	JSON	or	that	errors	were	flashed	to	session	storage.

assertJsonValidationErrorFor

Assert	the	response	has	any	JSON	validation	errors	for	the	given	key:

$response->assertJsonValidationErrorFor(string	$key,	$responseKey	=	'errors');

assertMethodNotAllowed

Assert	that	the	response	has	a	method	not	allowed	(405)	HTTP	status	code:

$response->assertMethodNotAllowed();

assertMovedPermanently

Assert	that	the	response	has	a	moved	permanently	(301)	HTTP	status	code:

$response->assertMovedPermanently();

assertLocation

Assert	that	the	response	has	the	given	URI	value	in	the	Location	header:

$response->assertLocation($uri);

assertContent

Assert	that	the	given	string	matches	the	response	content:

$response->assertContent($value);

assertNoContent

Assert	that	the	response	has	the	given	HTTP	status	code	and	no	content:

$response->assertNoContent($status	=	204);

assertStreamedContent

Assert	that	the	given	string	matches	the	streamed	response	content:

$response->assertStreamedContent($value);

assertNotFound

Assert	that	the	response	has	a	not	found	(404)	HTTP	status	code:

$response->assertNotFound();

assertOk

Assert	that	the	response	has	a	200	HTTP	status	code:

$response->assertOk();

assertPaymentRequired

Assert	that	the	response	has	a	payment	required	(402)	HTTP	status	code:

$response->assertPaymentRequired();

Laravel	Documentation	-	10.x	/	HTTP	Tests 763

assertPlainCookie

Assert	that	the	response	contains	the	given	unencrypted	cookie:

$response->assertPlainCookie($cookieName,	$value	=	null);

assertRedirect

Assert	that	the	response	is	a	redirect	to	the	given	URI:

$response->assertRedirect($uri	=	null);

assertRedirectContains

Assert	whether	the	response	is	redirecting	to	a	URI	that	contains	the	given	string:

$response->assertRedirectContains($string);

assertRedirectToRoute

Assert	that	the	response	is	a	redirect	to	the	given	named	route:

$response->assertRedirectToRoute($name,	$parameters	=	[]);

assertRedirectToSignedRoute

Assert	that	the	response	is	a	redirect	to	the	given	signed	route:

$response->assertRedirectToSignedRoute($name	=	null,	$parameters	=	[]);

assertRequestTimeout

Assert	that	the	response	has	a	request	timeout	(408)	HTTP	status	code:

$response->assertRequestTimeout();

assertSee

Assert	that	the	given	string	is	contained	within	the	response.	This	assertion	will	automatically	escape	the	given
string	unless	you	pass	a	second	argument	of	false:

$response->assertSee($value,	$escaped	=	true);

assertSeeInOrder

Assert	that	the	given	strings	are	contained	in	order	within	the	response.	This	assertion	will	automatically	escape
the	given	strings	unless	you	pass	a	second	argument	of	false:

$response->assertSeeInOrder(array	$values,	$escaped	=	true);

assertSeeText

Assert	that	the	given	string	is	contained	within	the	response	text.	This	assertion	will	automatically	escape	the
given	string	unless	you	pass	a	second	argument	of	false.	The	response	content	will	be	passed	to	the	strip_tags
PHP	function	before	the	assertion	is	made:

$response->assertSeeText($value,	$escaped	=	true);

assertSeeTextInOrder

Assert	that	the	given	strings	are	contained	in	order	within	the	response	text.	This	assertion	will	automatically
escape	the	given	strings	unless	you	pass	a	second	argument	of	false.	The	response	content	will	be	passed	to	the

Laravel	Documentation	-	10.x	/	HTTP	Tests 764

strip_tags	PHP	function	before	the	assertion	is	made:

$response->assertSeeTextInOrder(array	$values,	$escaped	=	true);

assertServerError

Assert	that	the	response	has	a	server	error	(>=	500	,	<	600)	HTTP	status	code:

$response->assertServerError();

assertServiceUnavailable

Assert	that	the	response	has	a	"Service	Unavailable"	(503)	HTTP	status	code:

$response->assertServiceUnavailable();

assertSessionHas

Assert	that	the	session	contains	the	given	piece	of	data:

$response->assertSessionHas($key,	$value	=	null);

If	needed,	a	closure	can	be	provided	as	the	second	argument	to	the	assertSessionHas	method.	The	assertion	will
pass	if	the	closure	returns	true:

$response->assertSessionHas($key,	function	(User	$value)	{

				return	$value->name	===	'Taylor	Otwell';

});

assertSessionHasInput

Assert	that	the	session	has	a	given	value	in	the	flashed	input	array:

$response->assertSessionHasInput($key,	$value	=	null);

If	needed,	a	closure	can	be	provided	as	the	second	argument	to	the	assertSessionHasInput	method.	The
assertion	will	pass	if	the	closure	returns	true:

use	Illuminate\Support\Facades\Crypt;

$response->assertSessionHasInput($key,	function	(string	$value)	{

				return	Crypt::decryptString($value)	===	'secret';

});

assertSessionHasAll

Assert	that	the	session	contains	a	given	array	of	key	/	value	pairs:

$response->assertSessionHasAll(array	$data);

For	example,	if	your	application's	session	contains	name	and	status	keys,	you	may	assert	that	both	exist	and
have	the	specified	values	like	so:

$response->assertSessionHasAll([

				'name'	=>	'Taylor	Otwell',

				'status'	=>	'active',

]);

assertSessionHasErrors

Assert	that	the	session	contains	an	error	for	the	given	$keys.	If	$keys	is	an	associative	array,	assert	that	the
session	contains	a	specific	error	message	(value)	for	each	field	(key).	This	method	should	be	used	when	testing
routes	that	flash	validation	errors	to	the	session	instead	of	returning	them	as	a	JSON	structure:

$response->assertSessionHasErrors(

				array	$keys	=	[],	$format	=	null,	$errorBag	=	'default'

Laravel	Documentation	-	10.x	/	HTTP	Tests 765

);

For	example,	to	assert	that	the	name	and	email	fields	have	validation	error	messages	that	were	flashed	to	the
session,	you	may	invoke	the	assertSessionHasErrors	method	like	so:

$response->assertSessionHasErrors(['name',	'email']);

Or,	you	may	assert	that	a	given	field	has	a	particular	validation	error	message:

$response->assertSessionHasErrors([

				'name'	=>	'The	given	name	was	invalid.'

]);

[!NOTE]
The	more	generic	assertInvalid	method	may	be	used	to	assert	that	a	response	has	validation	errors	returned
as	JSON	or	that	errors	were	flashed	to	session	storage.

assertSessionHasErrorsIn

Assert	that	the	session	contains	an	error	for	the	given	$keys	within	a	specific	error	bag.	If	$keys	is	an	associative
array,	assert	that	the	session	contains	a	specific	error	message	(value)	for	each	field	(key),	within	the	error	bag:

$response->assertSessionHasErrorsIn($errorBag,	$keys	=	[],	$format	=	null);

assertSessionHasNoErrors

Assert	that	the	session	has	no	validation	errors:

$response->assertSessionHasNoErrors();

assertSessionDoesntHaveErrors

Assert	that	the	session	has	no	validation	errors	for	the	given	keys:

$response->assertSessionDoesntHaveErrors($keys	=	[],	$format	=	null,	$errorBag	=	'default');

[!NOTE]
The	more	generic	assertValid	method	may	be	used	to	assert	that	a	response	does	not	have	validation	errors
that	were	returned	as	JSON	and	that	no	errors	were	flashed	to	session	storage.

assertSessionMissing

Assert	that	the	session	does	not	contain	the	given	key:

$response->assertSessionMissing($key);

assertStatus

Assert	that	the	response	has	a	given	HTTP	status	code:

$response->assertStatus($code);

assertSuccessful

Assert	that	the	response	has	a	successful	(>=	200	and	<	300)	HTTP	status	code:

$response->assertSuccessful();

assertTooManyRequests

Assert	that	the	response	has	a	too	many	requests	(429)	HTTP	status	code:

$response->assertTooManyRequests();

Laravel	Documentation	-	10.x	/	HTTP	Tests 766

assertUnauthorized

Assert	that	the	response	has	an	unauthorized	(401)	HTTP	status	code:

$response->assertUnauthorized();

assertUnprocessable

Assert	that	the	response	has	an	unprocessable	entity	(422)	HTTP	status	code:

$response->assertUnprocessable();

assertUnsupportedMediaType

Assert	that	the	response	has	an	unsupported	media	type	(415)	HTTP	status	code:

$response->assertUnsupportedMediaType();

assertValid

Assert	that	the	response	has	no	validation	errors	for	the	given	keys.	This	method	may	be	used	for	asserting
against	responses	where	the	validation	errors	are	returned	as	a	JSON	structure	or	where	the	validation	errors
have	been	flashed	to	the	session:

//	Assert	that	no	validation	errors	are	present...

$response->assertValid();

//	Assert	that	the	given	keys	do	not	have	validation	errors...

$response->assertValid(['name',	'email']);

assertInvalid

Assert	that	the	response	has	validation	errors	for	the	given	keys.	This	method	may	be	used	for	asserting	against
responses	where	the	validation	errors	are	returned	as	a	JSON	structure	or	where	the	validation	errors	have	been
flashed	to	the	session:

$response->assertInvalid(['name',	'email']);

You	may	also	assert	that	a	given	key	has	a	particular	validation	error	message.	When	doing	so,	you	may
provide	the	entire	message	or	only	a	small	portion	of	the	message:

$response->assertInvalid([

				'name'	=>	'The	name	field	is	required.',

				'email'	=>	'valid	email	address',

]);

assertViewHas

Assert	that	the	response	view	contains	a	given	piece	of	data:

$response->assertViewHas($key,	$value	=	null);

Passing	a	closure	as	the	second	argument	to	the	assertViewHas	method	will	allow	you	to	inspect	and	make
assertions	against	a	particular	piece	of	view	data:

$response->assertViewHas('user',	function	(User	$user)	{

				return	$user->name	===	'Taylor';

});

In	addition,	view	data	may	be	accessed	as	array	variables	on	the	response,	allowing	you	to	conveniently	inspect
it:

$this->assertEquals('Taylor',	$response['name']);

assertViewHasAll

Laravel	Documentation	-	10.x	/	HTTP	Tests 767

Assert	that	the	response	view	has	a	given	list	of	data:

$response->assertViewHasAll(array	$data);

This	method	may	be	used	to	assert	that	the	view	simply	contains	data	matching	the	given	keys:

$response->assertViewHasAll([

				'name',

				'email',

]);

Or,	you	may	assert	that	the	view	data	is	present	and	has	specific	values:

$response->assertViewHasAll([

				'name'	=>	'Taylor	Otwell',

				'email'	=>	'taylor@example.com,',

]);

assertViewIs

Assert	that	the	given	view	was	returned	by	the	route:

$response->assertViewIs($value);

assertViewMissing

Assert	that	the	given	data	key	was	not	made	available	to	the	view	returned	in	the	application's	response:

$response->assertViewMissing($key);

Authentication	Assertions

Laravel	also	provides	a	variety	of	authentication	related	assertions	that	you	may	utilize	within	your
application's	feature	tests.	Note	that	these	methods	are	invoked	on	the	test	class	itself	and	not	the	
Illuminate\Testing\TestResponse	instance	returned	by	methods	such	as	get	and	post.

assertAuthenticated

Assert	that	a	user	is	authenticated:

$this->assertAuthenticated($guard	=	null);

assertGuest

Assert	that	a	user	is	not	authenticated:

$this->assertGuest($guard	=	null);

assertAuthenticatedAs

Assert	that	a	specific	user	is	authenticated:

$this->assertAuthenticatedAs($user,	$guard	=	null);

Validation	Assertions

Laravel	provides	two	primary	validation	related	assertions	that	you	may	use	to	ensure	the	data	provided	in	your
request	was	either	valid	or	invalid.

assertValid

Assert	that	the	response	has	no	validation	errors	for	the	given	keys.	This	method	may	be	used	for	asserting
against	responses	where	the	validation	errors	are	returned	as	a	JSON	structure	or	where	the	validation	errors

Laravel	Documentation	-	10.x	/	HTTP	Tests 768

have	been	flashed	to	the	session:

//	Assert	that	no	validation	errors	are	present...

$response->assertValid();

//	Assert	that	the	given	keys	do	not	have	validation	errors...

$response->assertValid(['name',	'email']);

assertInvalid

Assert	that	the	response	has	validation	errors	for	the	given	keys.	This	method	may	be	used	for	asserting	against
responses	where	the	validation	errors	are	returned	as	a	JSON	structure	or	where	the	validation	errors	have	been
flashed	to	the	session:

$response->assertInvalid(['name',	'email']);

You	may	also	assert	that	a	given	key	has	a	particular	validation	error	message.	When	doing	so,	you	may
provide	the	entire	message	or	only	a	small	portion	of	the	message:

$response->assertInvalid([

				'name'	=>	'The	name	field	is	required.',

				'email'	=>	'valid	email	address',

]);

Laravel	Documentation	-	10.x	/	HTTP	Tests 769

Testing

Console	Tests
Introduction
Success	/	Failure	Expectations
Input	/	Output	Expectations
Console	Events

Introduction

In	addition	to	simplifying	HTTP	testing,	Laravel	provides	a	simple	API	for	testing	your	application's	custom
console	commands.

Success	/	Failure	Expectations

To	get	started,	let's	explore	how	to	make	assertions	regarding	an	Artisan	command's	exit	code.	To	accomplish
this,	we	will	use	the	artisan	method	to	invoke	an	Artisan	command	from	our	test.	Then,	we	will	use	the	
assertExitCode	method	to	assert	that	the	command	completed	with	a	given	exit	code:

/**

	*	Test	a	console	command.

	*/

public	function	test_console_command():	void

{

				$this->artisan('inspire')->assertExitCode(0);

}

You	may	use	the	assertNotExitCode	method	to	assert	that	the	command	did	not	exit	with	a	given	exit	code:

$this->artisan('inspire')->assertNotExitCode(1);

Of	course,	all	terminal	commands	typically	exit	with	a	status	code	of	0	when	they	are	successful	and	a	non-zero
exit	code	when	they	are	not	successful.	Therefore,	for	convenience,	you	may	utilize	the	assertSuccessful	and	
assertFailed	assertions	to	assert	that	a	given	command	exited	with	a	successful	exit	code	or	not:

$this->artisan('inspire')->assertSuccessful();

$this->artisan('inspire')->assertFailed();

Input	/	Output	Expectations

Laravel	allows	you	to	easily	"mock"	user	input	for	your	console	commands	using	the	expectsQuestion	method.
In	addition,	you	may	specify	the	exit	code	and	text	that	you	expect	to	be	output	by	the	console	command	using
the	assertExitCode	and	expectsOutput	methods.	For	example,	consider	the	following	console	command:

Artisan::command('question',	function	()	{

				$name	=	$this->ask('What	is	your	name?');

				$language	=	$this->choice('Which	language	do	you	prefer?',	[

								'PHP',

								'Ruby',

								'Python',

]);

				$this->line('Your	name	is	'.$name.'	and	you	prefer	'.$language.'.');

});

You	may	test	this	command	with	the	following	test	which	utilizes	the	expectsQuestion,	expectsOutput,	
doesntExpectOutput,	expectsOutputToContain,	doesntExpectOutputToContain,	and	assertExitCode	methods:

/**

	*	Test	a	console	command.

	*/

public	function	test_console_command():	void

{

Laravel	Documentation	-	10.x	/	Console	Tests 770

				$this->artisan('question')

									->expectsQuestion('What	is	your	name?',	'Taylor	Otwell')

									->expectsQuestion('Which	language	do	you	prefer?',	'PHP')

									->expectsOutput('Your	name	is	Taylor	Otwell	and	you	prefer	PHP.')

									->doesntExpectOutput('Your	name	is	Taylor	Otwell	and	you	prefer	Ruby.')

									->expectsOutputToContain('Taylor	Otwell')

									->doesntExpectOutputToContain('you	prefer	Ruby')

									->assertExitCode(0);

}

Confirmation	Expectations

When	writing	a	command	which	expects	confirmation	in	the	form	of	a	"yes"	or	"no"	answer,	you	may	utilize
the	expectsConfirmation	method:

$this->artisan('module:import')

				->expectsConfirmation('Do	you	really	wish	to	run	this	command?',	'no')

				->assertExitCode(1);

Table	Expectations

If	your	command	displays	a	table	of	information	using	Artisan's	table	method,	it	can	be	cumbersome	to	write
output	expectations	for	the	entire	table.	Instead,	you	may	use	the	expectsTable	method.	This	method	accepts	the
table's	headers	as	its	first	argument	and	the	table's	data	as	its	second	argument:

$this->artisan('users:all')

				->expectsTable([

								'ID',

								'Email',

],	[

								[1,	'taylor@example.com'],

								[2,	'abigail@example.com'],

]);

Console	Events

By	default,	the	Illuminate\Console\Events\CommandStarting	and	Illuminate\Console\Events\CommandFinished
events	are	not	dispatched	while	running	your	application's	tests.	However,	you	can	enable	these	events	for	a
given	test	class	by	adding	the	Illuminate\Foundation\Testing\WithConsoleEvents	trait	to	the	class:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\WithConsoleEvents;

use	Tests\TestCase;

class	ConsoleEventTest	extends	TestCase

{

				use	WithConsoleEvents;

				//	...

}

Laravel	Documentation	-	10.x	/	Console	Tests 771

Testing

Laravel	Dusk
Introduction
Installation

Managing	ChromeDriver	Installations
Using	Other	Browsers

Getting	Started
Generating	Tests
Resetting	the	Database	After	Each	Test
Running	Tests
Environment	Handling

Browser	Basics
Creating	Browsers
Navigation
Resizing	Browser	Windows
Browser	Macros
Authentication
Cookies
Executing	JavaScript
Taking	a	Screenshot
Storing	Console	Output	to	Disk
Storing	Page	Source	to	Disk

Interacting	With	Elements
Dusk	Selectors
Text,	Values,	and	Attributes
Interacting	With	Forms
Attaching	Files
Pressing	Buttons
Clicking	Links
Using	the	Keyboard
Using	the	Mouse
JavaScript	Dialogs
Interacting	With	Inline	Frames
Scoping	Selectors
Waiting	for	Elements
Scrolling	an	Element	Into	View

Available	Assertions
Pages

Generating	Pages
Configuring	Pages
Navigating	to	Pages
Shorthand	Selectors
Page	Methods

Components
Generating	Components
Using	Components

Continuous	Integration
Heroku	CI
Travis	CI
GitHub	Actions
Chipper	CI

Introduction

Laravel	Dusk	provides	an	expressive,	easy-to-use	browser	automation	and	testing	API.	By	default,	Dusk	does
not	require	you	to	install	JDK	or	Selenium	on	your	local	computer.	Instead,	Dusk	uses	a	standalone
ChromeDriver	installation.	However,	you	are	free	to	utilize	any	other	Selenium	compatible	driver	you	wish.

Laravel	Documentation	-	10.x	/	Browser	Tests 772

https://github.com/laravel/dusk
https://sites.google.com/chromium.org/driver

Installation

To	get	started,	you	should	install	Google	Chrome	and	add	the	laravel/dusk	Composer	dependency	to	your
project:

composer	require	laravel/dusk	--dev

[!WARNING]
If	you	are	manually	registering	Dusk's	service	provider,	you	should	never	register	it	in	your	production
environment,	as	doing	so	could	lead	to	arbitrary	users	being	able	to	authenticate	with	your	application.

After	installing	the	Dusk	package,	execute	the	dusk:install	Artisan	command.	The	dusk:install	command	will
create	a	tests/Browser	directory,	an	example	Dusk	test,	and	install	the	Chrome	Driver	binary	for	your	operating
system:

php	artisan	dusk:install

Next,	set	the	APP_URL	environment	variable	in	your	application's	.env	file.	This	value	should	match	the	URL	you
use	to	access	your	application	in	a	browser.

[!NOTE]
If	you	are	using	Laravel	Sail	to	manage	your	local	development	environment,	please	also	consult	the	Sail
documentation	on	configuring	and	running	Dusk	tests.

Managing	ChromeDriver	Installations

If	you	would	like	to	install	a	different	version	of	ChromeDriver	than	what	is	installed	by	Laravel	Dusk	via	the	
dusk:install	command,	you	may	use	the	dusk:chrome-driver	command:

#	Install	the	latest	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver

#	Install	a	given	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver	86

#	Install	a	given	version	of	ChromeDriver	for	all	supported	OSs...

php	artisan	dusk:chrome-driver	--all

#	Install	the	version	of	ChromeDriver	that	matches	the	detected	version	of	Chrome	/	Chromium	for	your	

OS...

php	artisan	dusk:chrome-driver	--detect

[!WARNING]
Dusk	requires	the	chromedriver	binaries	to	be	executable.	If	you're	having	problems	running	Dusk,	you
should	ensure	the	binaries	are	executable	using	the	following	command:	chmod	-R	0755	
vendor/laravel/dusk/bin/.

Using	Other	Browsers

By	default,	Dusk	uses	Google	Chrome	and	a	standalone	ChromeDriver	installation	to	run	your	browser	tests.
However,	you	may	start	your	own	Selenium	server	and	run	your	tests	against	any	browser	you	wish.

To	get	started,	open	your	tests/DuskTestCase.php	file,	which	is	the	base	Dusk	test	case	for	your	application.
Within	this	file,	you	can	remove	the	call	to	the	startChromeDriver	method.	This	will	stop	Dusk	from
automatically	starting	the	ChromeDriver:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*/

public	static	function	prepare():	void

{

				//	static::startChromeDriver();

}

Laravel	Documentation	-	10.x	/	Browser	Tests 773

https://www.google.com/chrome
https://sites.google.com/chromium.org/driver

Next,	you	may	modify	the	driver	method	to	connect	to	the	URL	and	port	of	your	choice.	In	addition,	you	may
modify	the	"desired	capabilities"	that	should	be	passed	to	the	WebDriver:

use	Facebook\WebDriver\Remote\RemoteWebDriver;

/**

	*	Create	the	RemoteWebDriver	instance.

	*/

protected	function	driver():	RemoteWebDriver

{

				return	RemoteWebDriver::create(

								'http://localhost:4444/wd/hub',	DesiredCapabilities::phantomjs()

);

}

Getting	Started

Generating	Tests

To	generate	a	Dusk	test,	use	the	dusk:make	Artisan	command.	The	generated	test	will	be	placed	in	the	
tests/Browser	directory:

php	artisan	dusk:make	LoginTest

Resetting	the	Database	After	Each	Test

Most	of	the	tests	you	write	will	interact	with	pages	that	retrieve	data	from	your	application's	database;	however,
your	Dusk	tests	should	never	use	the	RefreshDatabase	trait.	The	RefreshDatabase	trait	leverages	database
transactions	which	will	not	be	applicable	or	available	across	HTTP	requests.	Instead,	you	have	two	options:	the	
DatabaseMigrations	trait	and	the	DatabaseTruncation	trait.

Using	Database	Migrations

The	DatabaseMigrations	trait	will	run	your	database	migrations	before	each	test.	However,	dropping	and	re-
creating	your	database	tables	for	each	test	is	typically	slower	than	truncating	the	tables:

<?php

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

}

[!WARNING]
SQLite	in-memory	databases	may	not	be	used	when	executing	Dusk	tests.	Since	the	browser	executes
within	its	own	process,	it	will	not	be	able	to	access	the	in-memory	databases	of	other	processes.

Using	Database	Truncation

Before	using	the	DatabaseTruncation	trait,	you	must	install	the	doctrine/dbal	package	using	the	Composer
package	manager:

composer	require	--dev	doctrine/dbal

The	DatabaseTruncation	trait	will	migrate	your	database	on	the	first	test	in	order	to	ensure	your	database	tables
have	been	properly	created.	However,	on	subsequent	tests,	the	database's	tables	will	simply	be	truncated	-
providing	a	speed	boost	over	re-running	all	of	your	database	migrations:

<?php

Laravel	Documentation	-	10.x	/	Browser	Tests 774

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseTruncation;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseTruncation;

}

By	default,	this	trait	will	truncate	all	tables	except	the	migrations	table.	If	you	would	like	to	customize	the
tables	that	should	be	truncated,	you	may	define	a	$tablesToTruncate	property	on	your	test	class:

/**

	*	Indicates	which	tables	should	be	truncated.

	*

	*	@var	array

	*/

protected	$tablesToTruncate	=	['users'];

Alternatively,	you	may	define	an	$exceptTables	property	on	your	test	class	to	specify	which	tables	should	be
excluded	from	truncation:

/**

	*	Indicates	which	tables	should	be	excluded	from	truncation.

	*

	*	@var	array

	*/

protected	$exceptTables	=	['users'];

To	specify	the	database	connections	that	should	have	their	tables	truncated,	you	may	define	a	
$connectionsToTruncate	property	on	your	test	class:

/**

	*	Indicates	which	connections	should	have	their	tables	truncated.

	*

	*	@var	array

	*/

protected	$connectionsToTruncate	=	['mysql'];

If	you	would	like	to	execute	code	before	or	after	database	truncation	is	performed,	you	may	define	
beforeTruncatingDatabase	or	afterTruncatingDatabase	methods	on	your	test	class:

/**

	*	Perform	any	work	that	should	take	place	before	the	database	has	started	truncating.

	*/

protected	function	beforeTruncatingDatabase():	void

{

				//

}

/**

	*	Perform	any	work	that	should	take	place	after	the	database	has	finished	truncating.

	*/

protected	function	afterTruncatingDatabase():	void

{

				//

}

Running	Tests

To	run	your	browser	tests,	execute	the	dusk	Artisan	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

The	dusk	command	accepts	any	argument	that	is	normally	accepted	by	the	PHPUnit	test	runner,	such	as

Laravel	Documentation	-	10.x	/	Browser	Tests 775

allowing	you	to	only	run	the	tests	for	a	given	group:

php	artisan	dusk	--group=foo

[!NOTE]
If	you	are	using	Laravel	Sail	to	manage	your	local	development	environment,	please	consult	the	Sail
documentation	on	configuring	and	running	Dusk	tests.

Manually	Starting	ChromeDriver

By	default,	Dusk	will	automatically	attempt	to	start	ChromeDriver.	If	this	does	not	work	for	your	particular
system,	you	may	manually	start	ChromeDriver	before	running	the	dusk	command.	If	you	choose	to	start
ChromeDriver	manually,	you	should	comment	out	the	following	line	of	your	tests/DuskTestCase.php	file:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*/

public	static	function	prepare():	void

{

				//	static::startChromeDriver();

}

In	addition,	if	you	start	ChromeDriver	on	a	port	other	than	9515,	you	should	modify	the	driver	method	of	the
same	class	to	reflect	the	correct	port:

use	Facebook\WebDriver\Remote\RemoteWebDriver;

/**

	*	Create	the	RemoteWebDriver	instance.

	*/

protected	function	driver():	RemoteWebDriver

{

				return	RemoteWebDriver::create(

								'http://localhost:9515',	DesiredCapabilities::chrome()

);

}

Environment	Handling

To	force	Dusk	to	use	its	own	environment	file	when	running	tests,	create	a	.env.dusk.{environment}	file	in	the
root	of	your	project.	For	example,	if	you	will	be	initiating	the	dusk	command	from	your	local	environment,	you
should	create	a	.env.dusk.local	file.

When	running	tests,	Dusk	will	back-up	your	.env	file	and	rename	your	Dusk	environment	to	.env.	Once	the
tests	have	completed,	your	.env	file	will	be	restored.

Browser	Basics

Creating	Browsers

To	get	started,	let's	write	a	test	that	verifies	we	can	log	into	our	application.	After	generating	a	test,	we	can
modify	it	to	navigate	to	the	login	page,	enter	some	credentials,	and	click	the	"Login"	button.	To	create	a
browser	instance,	you	may	call	the	browse	method	from	within	your	Dusk	test:

<?php

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

Laravel	Documentation	-	10.x	/	Browser	Tests 776

https://docs.phpunit.de/en/10.5/annotations.html#group

				use	DatabaseMigrations;

				/**

					*	A	basic	browser	test	example.

					*/

				public	function	test_basic_example():	void

				{

								$user	=	User::factory()->create([

												'email'	=>	'taylor@laravel.com',

]);

								$this->browse(function	(Browser	$browser)	use	($user)	{

												$browser->visit('/login')

																				->type('email',	$user->email)

																				->type('password',	'password')

																				->press('Login')

																				->assertPathIs('/home');

								});

				}

}

As	you	can	see	in	the	example	above,	the	browse	method	accepts	a	closure.	A	browser	instance	will
automatically	be	passed	to	this	closure	by	Dusk	and	is	the	main	object	used	to	interact	with	and	make	assertions
against	your	application.

Creating	Multiple	Browsers

Sometimes	you	may	need	multiple	browsers	in	order	to	properly	carry	out	a	test.	For	example,	multiple
browsers	may	be	needed	to	test	a	chat	screen	that	interacts	with	websockets.	To	create	multiple	browsers,
simply	add	more	browser	arguments	to	the	signature	of	the	closure	given	to	the	browse	method:

$this->browse(function	(Browser	$first,	Browser	$second)	{

				$first->loginAs(User::find(1))

										->visit('/home')

										->waitForText('Message');

				$second->loginAs(User::find(2))

											->visit('/home')

											->waitForText('Message')

											->type('message',	'Hey	Taylor')

											->press('Send');

				$first->waitForText('Hey	Taylor')

										->assertSee('Jeffrey	Way');

});

Navigation

The	visit	method	may	be	used	to	navigate	to	a	given	URI	within	your	application:

$browser->visit('/login');

You	may	use	the	visitRoute	method	to	navigate	to	a	named	route:

$browser->visitRoute('login');

You	may	navigate	"back"	and	"forward"	using	the	back	and	forward	methods:

$browser->back();

$browser->forward();

You	may	use	the	refresh	method	to	refresh	the	page:

$browser->refresh();

Resizing	Browser	Windows

You	may	use	the	resize	method	to	adjust	the	size	of	the	browser	window:

$browser->resize(1920,	1080);

Laravel	Documentation	-	10.x	/	Browser	Tests 777

The	maximize	method	may	be	used	to	maximize	the	browser	window:

$browser->maximize();

The	fitContent	method	will	resize	the	browser	window	to	match	the	size	of	its	content:

$browser->fitContent();

When	a	test	fails,	Dusk	will	automatically	resize	the	browser	to	fit	the	content	prior	to	taking	a	screenshot.	You
may	disable	this	feature	by	calling	the	disableFitOnFailure	method	within	your	test:

$browser->disableFitOnFailure();

You	may	use	the	move	method	to	move	the	browser	window	to	a	different	position	on	your	screen:

$browser->move($x	=	100,	$y	=	100);

Browser	Macros

If	you	would	like	to	define	a	custom	browser	method	that	you	can	re-use	in	a	variety	of	your	tests,	you	may	use
the	macro	method	on	the	Browser	class.	Typically,	you	should	call	this	method	from	a	service	provider's	boot
method:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Browser;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	Dusk's	browser	macros.

					*/

				public	function	boot():	void

				{

								Browser::macro('scrollToElement',	function	(string	$element	=	null)	{

												$this->script("$('html,	body').animate({	scrollTop:	$('$element').offset().top	},	0);");

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	closure	as	its	second.	The	macro's	closure	will	be
executed	when	calling	the	macro	as	a	method	on	a	Browser	instance:

$this->browse(function	(Browser	$browser)	use	($user)	{

				$browser->visit('/pay')

												->scrollToElement('#credit-card-details')

												->assertSee('Enter	Credit	Card	Details');

});

Authentication

Often,	you	will	be	testing	pages	that	require	authentication.	You	can	use	Dusk's	loginAs	method	in	order	to
avoid	interacting	with	your	application's	login	screen	during	every	test.	The	loginAs	method	accepts	a	primary
key	associated	with	your	authenticatable	model	or	an	authenticatable	model	instance:

use	App\Models\User;

use	Laravel\Dusk\Browser;

$this->browse(function	(Browser	$browser)	{

				$browser->loginAs(User::find(1))

										->visit('/home');

});

[!WARNING]
After	using	the	loginAs	method,	the	user	session	will	be	maintained	for	all	tests	within	the	file.

Laravel	Documentation	-	10.x	/	Browser	Tests 778

Cookies

You	may	use	the	cookie	method	to	get	or	set	an	encrypted	cookie's	value.	By	default,	all	of	the	cookies	created
by	Laravel	are	encrypted:

$browser->cookie('name');

$browser->cookie('name',	'Taylor');

You	may	use	the	plainCookie	method	to	get	or	set	an	unencrypted	cookie's	value:

$browser->plainCookie('name');

$browser->plainCookie('name',	'Taylor');

You	may	use	the	deleteCookie	method	to	delete	the	given	cookie:

$browser->deleteCookie('name');

Executing	JavaScript

You	may	use	the	script	method	to	execute	arbitrary	JavaScript	statements	within	the	browser:

$browser->script('document.documentElement.scrollTop	=	0');

$browser->script([

				'document.body.scrollTop	=	0',

				'document.documentElement.scrollTop	=	0',

]);

$output	=	$browser->script('return	window.location.pathname');

Taking	a	Screenshot

You	may	use	the	screenshot	method	to	take	a	screenshot	and	store	it	with	the	given	filename.	All	screenshots
will	be	stored	within	the	tests/Browser/screenshots	directory:

$browser->screenshot('filename');

The	responsiveScreenshots	method	may	be	used	to	take	a	series	of	screenshots	at	various	breakpoints:

$browser->responsiveScreenshots('filename');

Storing	Console	Output	to	Disk

You	may	use	the	storeConsoleLog	method	to	write	the	current	browser's	console	output	to	disk	with	the	given
filename.	Console	output	will	be	stored	within	the	tests/Browser/console	directory:

$browser->storeConsoleLog('filename');

Storing	Page	Source	to	Disk

You	may	use	the	storeSource	method	to	write	the	current	page's	source	to	disk	with	the	given	filename.	The
page	source	will	be	stored	within	the	tests/Browser/source	directory:

$browser->storeSource('filename');

Interacting	With	Elements

Dusk	Selectors

Choosing	good	CSS	selectors	for	interacting	with	elements	is	one	of	the	hardest	parts	of	writing	Dusk	tests.
Over	time,	frontend	changes	can	cause	CSS	selectors	like	the	following	to	break	your	tests:

Laravel	Documentation	-	10.x	/	Browser	Tests 779

//	HTML...

<button>Login</button>

//	Test...

$browser->click('.login-page	.container	div	>	button');

Dusk	selectors	allow	you	to	focus	on	writing	effective	tests	rather	than	remembering	CSS	selectors.	To	define	a
selector,	add	a	dusk	attribute	to	your	HTML	element.	Then,	when	interacting	with	a	Dusk	browser,	prefix	the
selector	with	@	to	manipulate	the	attached	element	within	your	test:

//	HTML...

<button	dusk="login-button">Login</button>

//	Test...

$browser->click('@login-button');

If	desired,	you	may	customize	the	HTML	attribute	that	the	Dusk	selector	utilizes	via	the	selectorHtmlAttribute
method.	Typically,	this	method	should	be	called	from	the	boot	method	of	your	application's	AppServiceProvider:

use	Laravel\Dusk\Dusk;

Dusk::selectorHtmlAttribute('data-dusk');

Text,	Values,	and	Attributes

Retrieving	and	Setting	Values

Dusk	provides	several	methods	for	interacting	with	the	current	value,	display	text,	and	attributes	of	elements	on
the	page.	For	example,	to	get	the	"value"	of	an	element	that	matches	a	given	CSS	or	Dusk	selector,	use	the	
value	method:

//	Retrieve	the	value...

$value	=	$browser->value('selector');

//	Set	the	value...

$browser->value('selector',	'value');

You	may	use	the	inputValue	method	to	get	the	"value"	of	an	input	element	that	has	a	given	field	name:

$value	=	$browser->inputValue('field');

Retrieving	Text

The	text	method	may	be	used	to	retrieve	the	display	text	of	an	element	that	matches	the	given	selector:

$text	=	$browser->text('selector');

Retrieving	Attributes

Finally,	the	attribute	method	may	be	used	to	retrieve	the	value	of	an	attribute	of	an	element	matching	the	given
selector:

$attribute	=	$browser->attribute('selector',	'value');

Interacting	With	Forms

Typing	Values

Dusk	provides	a	variety	of	methods	for	interacting	with	forms	and	input	elements.	First,	let's	take	a	look	at	an
example	of	typing	text	into	an	input	field:

$browser->type('email',	'taylor@laravel.com');

Laravel	Documentation	-	10.x	/	Browser	Tests 780

Note	that,	although	the	method	accepts	one	if	necessary,	we	are	not	required	to	pass	a	CSS	selector	into	the	type
method.	If	a	CSS	selector	is	not	provided,	Dusk	will	search	for	an	input	or	textarea	field	with	the	given	name
attribute.

To	append	text	to	a	field	without	clearing	its	content,	you	may	use	the	append	method:

$browser->type('tags',	'foo')

								->append('tags',	',	bar,	baz');

You	may	clear	the	value	of	an	input	using	the	clear	method:

$browser->clear('email');

You	can	instruct	Dusk	to	type	slowly	using	the	typeSlowly	method.	By	default,	Dusk	will	pause	for	100
milliseconds	between	key	presses.	To	customize	the	amount	of	time	between	key	presses,	you	may	pass	the
appropriate	number	of	milliseconds	as	the	third	argument	to	the	method:

$browser->typeSlowly('mobile',	'+1	(202)	555-5555');

$browser->typeSlowly('mobile',	'+1	(202)	555-5555',	300);

You	may	use	the	appendSlowly	method	to	append	text	slowly:

$browser->type('tags',	'foo')

								->appendSlowly('tags',	',	bar,	baz');

Dropdowns

To	select	a	value	available	on	a	select	element,	you	may	use	the	select	method.	Like	the	type	method,	the	
select	method	does	not	require	a	full	CSS	selector.	When	passing	a	value	to	the	select	method,	you	should
pass	the	underlying	option	value	instead	of	the	display	text:

$browser->select('size',	'Large');

You	may	select	a	random	option	by	omitting	the	second	argument:

$browser->select('size');

By	providing	an	array	as	the	second	argument	to	the	select	method,	you	can	instruct	the	method	to	select
multiple	options:

$browser->select('categories',	['Art',	'Music']);

Checkboxes

To	"check"	a	checkbox	input,	you	may	use	the	check	method.	Like	many	other	input	related	methods,	a	full	CSS
selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	checkbox	with	a
matching	name	attribute:

$browser->check('terms');

The	uncheck	method	may	be	used	to	"uncheck"	a	checkbox	input:

$browser->uncheck('terms');

Radio	Buttons

To	"select"	a	radio	input	option,	you	may	use	the	radio	method.	Like	many	other	input	related	methods,	a	full
CSS	selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	radio	input	with
matching	name	and	value	attributes:

$browser->radio('size',	'large');

Attaching	Files

Laravel	Documentation	-	10.x	/	Browser	Tests 781

The	attach	method	may	be	used	to	attach	a	file	to	a	file	input	element.	Like	many	other	input	related	methods,
a	full	CSS	selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	file	input
with	a	matching	name	attribute:

$browser->attach('photo',	__DIR__.'/photos/mountains.png');

[!WARNING]
The	attach	function	requires	the	Zip	PHP	extension	to	be	installed	and	enabled	on	your	server.

Pressing	Buttons

The	press	method	may	be	used	to	click	a	button	element	on	the	page.	The	argument	given	to	the	press	method
may	be	either	the	display	text	of	the	button	or	a	CSS	/	Dusk	selector:

$browser->press('Login');

When	submitting	forms,	many	applications	disable	the	form's	submission	button	after	it	is	pressed	and	then	re-
enable	the	button	when	the	form	submission's	HTTP	request	is	complete.	To	press	a	button	and	wait	for	the
button	to	be	re-enabled,	you	may	use	the	pressAndWaitFor	method:

//	Press	the	button	and	wait	a	maximum	of	5	seconds	for	it	to	be	enabled...

$browser->pressAndWaitFor('Save');

//	Press	the	button	and	wait	a	maximum	of	1	second	for	it	to	be	enabled...

$browser->pressAndWaitFor('Save',	1);

Clicking	Links

To	click	a	link,	you	may	use	the	clickLink	method	on	the	browser	instance.	The	clickLink	method	will	click	the
link	that	has	the	given	display	text:

$browser->clickLink($linkText);

You	may	use	the	seeLink	method	to	determine	if	a	link	with	the	given	display	text	is	visible	on	the	page:

if	($browser->seeLink($linkText))	{

				//	...

}

[!WARNING]
These	methods	interact	with	jQuery.	If	jQuery	is	not	available	on	the	page,	Dusk	will	automatically	inject
it	into	the	page	so	it	is	available	for	the	test's	duration.

Using	the	Keyboard

The	keys	method	allows	you	to	provide	more	complex	input	sequences	to	a	given	element	than	normally
allowed	by	the	type	method.	For	example,	you	may	instruct	Dusk	to	hold	modifier	keys	while	entering	values.
In	this	example,	the	shift	key	will	be	held	while	taylor	is	entered	into	the	element	matching	the	given	selector.
After	taylor	is	typed,	swift	will	be	typed	without	any	modifier	keys:

$browser->keys('selector',	['{shift}',	'taylor'],	'swift');

Another	valuable	use	case	for	the	keys	method	is	sending	a	"keyboard	shortcut"	combination	to	the	primary
CSS	selector	for	your	application:

$browser->keys('.app',	['{command}',	'j']);

[!NOTE]
All	modifier	keys	such	as	{command}	are	wrapped	in	{}	characters,	and	match	the	constants	defined	in	the	
Facebook\WebDriver\WebDriverKeys	class,	which	can	be	found	on	GitHub.

Fluent	Keyboard	Interactions

Dusk	also	provides	a	withKeyboard	method,	allowing	you	to	fluently	perform	complex	keyboard	interactions	via

Laravel	Documentation	-	10.x	/	Browser	Tests 782

https://github.com/php-webdriver/php-webdriver/blob/master/lib/WebDriverKeys.php

the	Laravel\Dusk\Keyboard	class.	The	Keyboard	class	provides	press,	release,	type,	and	pause	methods:

use	Laravel\Dusk\Keyboard;

$browser->withKeyboard(function	(Keyboard	$keyboard)	{

				$keyboard->press('c')

								->pause(1000)

								->release('c')

								->type(['c',	'e',	'o']);

});

Keyboard	Macros

If	you	would	like	to	define	custom	keyboard	interactions	that	you	can	easily	re-use	throughout	your	test	suite,
you	may	use	the	macro	method	provided	by	the	Keyboard	class.	Typically,	you	should	call	this	method	from	a
service	provider's	boot	method:

<?php

namespace	App\Providers;

use	Facebook\WebDriver\WebDriverKeys;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Keyboard;

use	Laravel\Dusk\OperatingSystem;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	Dusk's	browser	macros.

					*/

				public	function	boot():	void

				{

								Keyboard::macro('copy',	function	(string	$element	=	null)	{

												$this->type([

																OperatingSystem::onMac()	?	WebDriverKeys::META	:	WebDriverKeys::CONTROL,	'c',

]);

												return	$this;

								});

								Keyboard::macro('paste',	function	(string	$element	=	null)	{

												$this->type([

																OperatingSystem::onMac()	?	WebDriverKeys::META	:	WebDriverKeys::CONTROL,	'v',

]);

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument	and	a	closure	as	its	second.	The	macro's	closure	will	be
executed	when	calling	the	macro	as	a	method	on	a	Keyboard	instance:

$browser->click('@textarea')

				->withKeyboard(fn	(Keyboard	$keyboard)	=>	$keyboard->copy())

				->click('@another-textarea')

				->withKeyboard(fn	(Keyboard	$keyboard)	=>	$keyboard->paste());

Using	the	Mouse

Clicking	on	Elements

The	click	method	may	be	used	to	click	on	an	element	matching	the	given	CSS	or	Dusk	selector:

$browser->click('.selector');

The	clickAtXPath	method	may	be	used	to	click	on	an	element	matching	the	given	XPath	expression:

$browser->clickAtXPath('//div[@class	=	"selector"]');

The	clickAtPoint	method	may	be	used	to	click	on	the	topmost	element	at	a	given	pair	of	coordinates	relative	to

Laravel	Documentation	-	10.x	/	Browser	Tests 783

the	viewable	area	of	the	browser:

$browser->clickAtPoint($x	=	0,	$y	=	0);

The	doubleClick	method	may	be	used	to	simulate	the	double	click	of	a	mouse:

$browser->doubleClick();

$browser->doubleClick('.selector');

The	rightClick	method	may	be	used	to	simulate	the	right	click	of	a	mouse:

$browser->rightClick();

$browser->rightClick('.selector');

The	clickAndHold	method	may	be	used	to	simulate	a	mouse	button	being	clicked	and	held	down.	A	subsequent
call	to	the	releaseMouse	method	will	undo	this	behavior	and	release	the	mouse	button:

$browser->clickAndHold('.selector');

$browser->clickAndHold()

								->pause(1000)

								->releaseMouse();

The	controlClick	method	may	be	used	to	simulate	the	ctrl+click	event	within	the	browser:

$browser->controlClick();

$browser->controlClick('.selector');

Mouseover

The	mouseover	method	may	be	used	when	you	need	to	move	the	mouse	over	an	element	matching	the	given
CSS	or	Dusk	selector:

$browser->mouseover('.selector');

Drag	and	Drop

The	drag	method	may	be	used	to	drag	an	element	matching	the	given	selector	to	another	element:

$browser->drag('.from-selector',	'.to-selector');

Or,	you	may	drag	an	element	in	a	single	direction:

$browser->dragLeft('.selector',	$pixels	=	10);

$browser->dragRight('.selector',	$pixels	=	10);

$browser->dragUp('.selector',	$pixels	=	10);

$browser->dragDown('.selector',	$pixels	=	10);

Finally,	you	may	drag	an	element	by	a	given	offset:

$browser->dragOffset('.selector',	$x	=	10,	$y	=	10);

JavaScript	Dialogs

Dusk	provides	various	methods	to	interact	with	JavaScript	Dialogs.	For	example,	you	may	use	the	
waitForDialog	method	to	wait	for	a	JavaScript	dialog	to	appear.	This	method	accepts	an	optional	argument
indicating	how	many	seconds	to	wait	for	the	dialog	to	appear:

$browser->waitForDialog($seconds	=	null);

The	assertDialogOpened	method	may	be	used	to	assert	that	a	dialog	has	been	displayed	and	contains	the	given
message:

$browser->assertDialogOpened('Dialog	message');

Laravel	Documentation	-	10.x	/	Browser	Tests 784

If	the	JavaScript	dialog	contains	a	prompt,	you	may	use	the	typeInDialog	method	to	type	a	value	into	the
prompt:

$browser->typeInDialog('Hello	World');

To	close	an	open	JavaScript	dialog	by	clicking	the	"OK"	button,	you	may	invoke	the	acceptDialog	method:

$browser->acceptDialog();

To	close	an	open	JavaScript	dialog	by	clicking	the	"Cancel"	button,	you	may	invoke	the	dismissDialog	method:

$browser->dismissDialog();

Interacting	With	Inline	Frames

If	you	need	to	interact	with	elements	within	an	iframe,	you	may	use	the	withinFrame	method.	All	element
interactions	that	take	place	within	the	closure	provided	to	the	withinFrame	method	will	be	scoped	to	the	context
of	the	specified	iframe:

$browser->withinFrame('#credit-card-details',	function	($browser)	{

				$browser->type('input[name="cardnumber"]',	'4242424242424242')

								->type('input[name="exp-date"]',	'12/24')

								->type('input[name="cvc"]',	'123');

				})->press('Pay');

});

Scoping	Selectors

Sometimes	you	may	wish	to	perform	several	operations	while	scoping	all	of	the	operations	within	a	given
selector.	For	example,	you	may	wish	to	assert	that	some	text	exists	only	within	a	table	and	then	click	a	button
within	that	table.	You	may	use	the	with	method	to	accomplish	this.	All	operations	performed	within	the	closure
given	to	the	with	method	will	be	scoped	to	the	original	selector:

$browser->with('.table',	function	(Browser	$table)	{

				$table->assertSee('Hello	World')

										->clickLink('Delete');

});

You	may	occasionally	need	to	execute	assertions	outside	of	the	current	scope.	You	may	use	the	elsewhere	and	
elsewhereWhenAvailable	methods	to	accomplish	this:

	$browser->with('.table',	function	(Browser	$table)	{

				//	Current	scope	is	`body	.table`...

				$browser->elsewhere('.page-title',	function	(Browser	$title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

				$browser->elsewhereWhenAvailable('.page-title',	function	(Browser	$title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

	});

Waiting	for	Elements

When	testing	applications	that	use	JavaScript	extensively,	it	often	becomes	necessary	to	"wait"	for	certain
elements	or	data	to	be	available	before	proceeding	with	a	test.	Dusk	makes	this	a	cinch.	Using	a	variety	of
methods,	you	may	wait	for	elements	to	become	visible	on	the	page	or	even	wait	until	a	given	JavaScript
expression	evaluates	to	true.

Waiting

If	you	just	need	to	pause	the	test	for	a	given	number	of	milliseconds,	use	the	pause	method:

$browser->pause(1000);

Laravel	Documentation	-	10.x	/	Browser	Tests 785

If	you	need	to	pause	the	test	only	if	a	given	condition	is	true,	use	the	pauseIf	method:

$browser->pauseIf(App::environment('production'),	1000);

Likewise,	if	you	need	to	pause	the	test	unless	a	given	condition	is	true,	you	may	use	the	pauseUnless	method:

$browser->pauseUnless(App::environment('testing'),	1000);

Waiting	for	Selectors

The	waitFor	method	may	be	used	to	pause	the	execution	of	the	test	until	the	element	matching	the	given	CSS	or
Dusk	selector	is	displayed	on	the	page.	By	default,	this	will	pause	the	test	for	a	maximum	of	five	seconds
before	throwing	an	exception.	If	necessary,	you	may	pass	a	custom	timeout	threshold	as	the	second	argument	to
the	method:

//	Wait	a	maximum	of	five	seconds	for	the	selector...

$browser->waitFor('.selector');

//	Wait	a	maximum	of	one	second	for	the	selector...

$browser->waitFor('.selector',	1);

You	may	also	wait	until	the	element	matching	the	given	selector	contains	the	given	text:

//	Wait	a	maximum	of	five	seconds	for	the	selector	to	contain	the	given	text...

$browser->waitForTextIn('.selector',	'Hello	World');

//	Wait	a	maximum	of	one	second	for	the	selector	to	contain	the	given	text...

$browser->waitForTextIn('.selector',	'Hello	World',	1);

You	may	also	wait	until	the	element	matching	the	given	selector	is	missing	from	the	page:

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	missing...

$browser->waitUntilMissing('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	missing...

$browser->waitUntilMissing('.selector',	1);

Or,	you	may	wait	until	the	element	matching	the	given	selector	is	enabled	or	disabled:

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	enabled...

$browser->waitUntilEnabled('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	enabled...

$browser->waitUntilEnabled('.selector',	1);

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	disabled...

$browser->waitUntilDisabled('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	disabled...

$browser->waitUntilDisabled('.selector',	1);

Scoping	Selectors	When	Available

Occasionally,	you	may	wish	to	wait	for	an	element	to	appear	that	matches	a	given	selector	and	then	interact
with	the	element.	For	example,	you	may	wish	to	wait	until	a	modal	window	is	available	and	then	press	the
"OK"	button	within	the	modal.	The	whenAvailable	method	may	be	used	to	accomplish	this.	All	element
operations	performed	within	the	given	closure	will	be	scoped	to	the	original	selector:

$browser->whenAvailable('.modal',	function	(Browser	$modal)	{

				$modal->assertSee('Hello	World')

										->press('OK');

});

Waiting	for	Text

The	waitForText	method	may	be	used	to	wait	until	the	given	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text...

$browser->waitForText('Hello	World');

Laravel	Documentation	-	10.x	/	Browser	Tests 786

//	Wait	a	maximum	of	one	second	for	the	text...

$browser->waitForText('Hello	World',	1);

You	may	use	the	waitUntilMissingText	method	to	wait	until	the	displayed	text	has	been	removed	from	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World',	1);

Waiting	for	Links

The	waitForLink	method	may	be	used	to	wait	until	the	given	link	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	link...

$browser->waitForLink('Create');

//	Wait	a	maximum	of	one	second	for	the	link...

$browser->waitForLink('Create',	1);

Waiting	for	Inputs

The	waitForInput	method	may	be	used	to	wait	until	the	given	input	field	is	visible	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	input...

$browser->waitForInput($field);

//	Wait	a	maximum	of	one	second	for	the	input...

$browser->waitForInput($field,	1);

Waiting	on	the	Page	Location

When	making	a	path	assertion	such	as	$browser->assertPathIs('/home'),	the	assertion	can	fail	if	
window.location.pathname	is	being	updated	asynchronously.	You	may	use	the	waitForLocation	method	to	wait
for	the	location	to	be	a	given	value:

$browser->waitForLocation('/secret');

The	waitForLocation	method	can	also	be	used	to	wait	for	the	current	window	location	to	be	a	fully	qualified
URL:

$browser->waitForLocation('https://example.com/path');

You	may	also	wait	for	a	named	route's	location:

$browser->waitForRoute($routeName,	$parameters);

Waiting	for	Page	Reloads

If	you	need	to	wait	for	a	page	to	reload	after	performing	an	action,	use	the	waitForReload	method:

use	Laravel\Dusk\Browser;

$browser->waitForReload(function	(Browser	$browser)	{

				$browser->press('Submit');

})

->assertSee('Success!');

Since	the	need	to	wait	for	the	page	to	reload	typically	occurs	after	clicking	a	button,	you	may	use	the	
clickAndWaitForReload	method	for	convenience:

$browser->clickAndWaitForReload('.selector')

								->assertSee('something');

Waiting	on	JavaScript	Expressions

Sometimes	you	may	wish	to	pause	the	execution	of	a	test	until	a	given	JavaScript	expression	evaluates	to	true.

Laravel	Documentation	-	10.x	/	Browser	Tests 787

You	may	easily	accomplish	this	using	the	waitUntil	method.	When	passing	an	expression	to	this	method,	you
do	not	need	to	include	the	return	keyword	or	an	ending	semi-colon:

//	Wait	a	maximum	of	five	seconds	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0');

//	Wait	a	maximum	of	one	second	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0',	1);

Waiting	on	Vue	Expressions

The	waitUntilVue	and	waitUntilVueIsNot	methods	may	be	used	to	wait	until	a	Vue	component	attribute	has	a
given	value:

//	Wait	until	the	component	attribute	contains	the	given	value...

$browser->waitUntilVue('user.name',	'Taylor',	'@user');

//	Wait	until	the	component	attribute	doesn't	contain	the	given	value...

$browser->waitUntilVueIsNot('user.name',	null,	'@user');

Waiting	for	JavaScript	Events

The	waitForEvent	method	can	be	used	to	pause	the	execution	of	a	test	until	a	JavaScript	event	occurs:

$browser->waitForEvent('load');

The	event	listener	is	attached	to	the	current	scope,	which	is	the	body	element	by	default.	When	using	a	scoped
selector,	the	event	listener	will	be	attached	to	the	matching	element:

$browser->with('iframe',	function	(Browser	$iframe)	{

				//	Wait	for	the	iframe's	load	event...

				$iframe->waitForEvent('load');

});

You	may	also	provide	a	selector	as	the	second	argument	to	the	waitForEvent	method	to	attach	the	event	listener
to	a	specific	element:

$browser->waitForEvent('load',	'.selector');

You	may	also	wait	for	events	on	the	document	and	window	objects:

//	Wait	until	the	document	is	scrolled...

$browser->waitForEvent('scroll',	'document');

//	Wait	a	maximum	of	five	seconds	until	the	window	is	resized...

$browser->waitForEvent('resize',	'window',	5);

Waiting	With	a	Callback

Many	of	the	"wait"	methods	in	Dusk	rely	on	the	underlying	waitUsing	method.	You	may	use	this	method
directly	to	wait	for	a	given	closure	to	return	true.	The	waitUsing	method	accepts	the	maximum	number	of
seconds	to	wait,	the	interval	at	which	the	closure	should	be	evaluated,	the	closure,	and	an	optional	failure
message:

$browser->waitUsing(10,	1,	function	()	use	($something)	{

				return	$something->isReady();

},	"Something	wasn't	ready	in	time.");

Scrolling	an	Element	Into	View

Sometimes	you	may	not	be	able	to	click	on	an	element	because	it	is	outside	of	the	viewable	area	of	the	browser.
The	scrollIntoView	method	will	scroll	the	browser	window	until	the	element	at	the	given	selector	is	within	the
view:

$browser->scrollIntoView('.selector')

								->click('.selector');

Laravel	Documentation	-	10.x	/	Browser	Tests 788

https://vuejs.org

Available	Assertions

Dusk	provides	a	variety	of	assertions	that	you	may	make	against	your	application.	All	of	the	available
assertions	are	documented	in	the	list	below:

assertTitle
assertTitleContains
assertUrlIs
assertSchemeIs
assertSchemeIsNot
assertHostIs
assertHostIsNot
assertPortIs
assertPortIsNot
assertPathBeginsWith
assertPathIs
assertPathIsNot
assertRouteIs
assertQueryStringHas
assertQueryStringMissing
assertFragmentIs
assertFragmentBeginsWith
assertFragmentIsNot
assertHasCookie
assertHasPlainCookie
assertCookieMissing
assertPlainCookieMissing
assertCookieValue
assertPlainCookieValue
assertSee

assertDontSee
assertSeeIn
assertDontSeeIn
assertSeeAnythingIn
assertSeeNothingIn
assertScript
assertSourceHas
assertSourceMissing
assertSeeLink
assertDontSeeLink
assertInputValue
assertInputValueIsNot
assertChecked
assertNotChecked
assertIndeterminate
assertRadioSelected
assertRadioNotSelected
assertSelected
assertNotSelected
assertSelectHasOptions
assertSelectMissingOptions
assertSelectHasOption
assertSelectMissingOption
assertValue
assertValueIsNot

assertAttribute
assertAttributeContains
assertAttributeDoesntContain
assertAriaAttribute
assertDataAttribute
assertVisible
assertPresent
assertNotPresent
assertMissing
assertInputPresent
assertInputMissing
assertDialogOpened
assertEnabled
assertDisabled
assertButtonEnabled
assertButtonDisabled
assertFocused
assertNotFocused
assertAuthenticated
assertGuest
assertAuthenticatedAs
assertVue
assertVueIsNot
assertVueContains
assertVueDoesntContain

assertTitle

Assert	that	the	page	title	matches	the	given	text:

$browser->assertTitle($title);

assertTitleContains

Assert	that	the	page	title	contains	the	given	text:

$browser->assertTitleContains($title);

assertUrlIs

Assert	that	the	current	URL	(without	the	query	string)	matches	the	given	string:

$browser->assertUrlIs($url);

assertSchemeIs

Assert	that	the	current	URL	scheme	matches	the	given	scheme:

$browser->assertSchemeIs($scheme);

assertSchemeIsNot

Assert	that	the	current	URL	scheme	does	not	match	the	given	scheme:

$browser->assertSchemeIsNot($scheme);

Laravel	Documentation	-	10.x	/	Browser	Tests 789

assertHostIs

Assert	that	the	current	URL	host	matches	the	given	host:

$browser->assertHostIs($host);

assertHostIsNot

Assert	that	the	current	URL	host	does	not	match	the	given	host:

$browser->assertHostIsNot($host);

assertPortIs

Assert	that	the	current	URL	port	matches	the	given	port:

$browser->assertPortIs($port);

assertPortIsNot

Assert	that	the	current	URL	port	does	not	match	the	given	port:

$browser->assertPortIsNot($port);

assertPathBeginsWith

Assert	that	the	current	URL	path	begins	with	the	given	path:

$browser->assertPathBeginsWith('/home');

assertPathIs

Assert	that	the	current	path	matches	the	given	path:

$browser->assertPathIs('/home');

assertPathIsNot

Assert	that	the	current	path	does	not	match	the	given	path:

$browser->assertPathIsNot('/home');

assertRouteIs

Assert	that	the	current	URL	matches	the	given	named	route's	URL:

$browser->assertRouteIs($name,	$parameters);

assertQueryStringHas

Assert	that	the	given	query	string	parameter	is	present:

$browser->assertQueryStringHas($name);

Assert	that	the	given	query	string	parameter	is	present	and	has	a	given	value:

$browser->assertQueryStringHas($name,	$value);

assertQueryStringMissing

Assert	that	the	given	query	string	parameter	is	missing:

Laravel	Documentation	-	10.x	/	Browser	Tests 790

$browser->assertQueryStringMissing($name);

assertFragmentIs

Assert	that	the	URL's	current	hash	fragment	matches	the	given	fragment:

$browser->assertFragmentIs('anchor');

assertFragmentBeginsWith

Assert	that	the	URL's	current	hash	fragment	begins	with	the	given	fragment:

$browser->assertFragmentBeginsWith('anchor');

assertFragmentIsNot

Assert	that	the	URL's	current	hash	fragment	does	not	match	the	given	fragment:

$browser->assertFragmentIsNot('anchor');

assertHasCookie

Assert	that	the	given	encrypted	cookie	is	present:

$browser->assertHasCookie($name);

assertHasPlainCookie

Assert	that	the	given	unencrypted	cookie	is	present:

$browser->assertHasPlainCookie($name);

assertCookieMissing

Assert	that	the	given	encrypted	cookie	is	not	present:

$browser->assertCookieMissing($name);

assertPlainCookieMissing

Assert	that	the	given	unencrypted	cookie	is	not	present:

$browser->assertPlainCookieMissing($name);

assertCookieValue

Assert	that	an	encrypted	cookie	has	a	given	value:

$browser->assertCookieValue($name,	$value);

assertPlainCookieValue

Assert	that	an	unencrypted	cookie	has	a	given	value:

$browser->assertPlainCookieValue($name,	$value);

assertSee

Assert	that	the	given	text	is	present	on	the	page:

$browser->assertSee($text);

Laravel	Documentation	-	10.x	/	Browser	Tests 791

assertDontSee

Assert	that	the	given	text	is	not	present	on	the	page:

$browser->assertDontSee($text);

assertSeeIn

Assert	that	the	given	text	is	present	within	the	selector:

$browser->assertSeeIn($selector,	$text);

assertDontSeeIn

Assert	that	the	given	text	is	not	present	within	the	selector:

$browser->assertDontSeeIn($selector,	$text);

assertSeeAnythingIn

Assert	that	any	text	is	present	within	the	selector:

$browser->assertSeeAnythingIn($selector);

assertSeeNothingIn

Assert	that	no	text	is	present	within	the	selector:

$browser->assertSeeNothingIn($selector);

assertScript

Assert	that	the	given	JavaScript	expression	evaluates	to	the	given	value:

$browser->assertScript('window.isLoaded')

								->assertScript('document.readyState',	'complete');

assertSourceHas

Assert	that	the	given	source	code	is	present	on	the	page:

$browser->assertSourceHas($code);

assertSourceMissing

Assert	that	the	given	source	code	is	not	present	on	the	page:

$browser->assertSourceMissing($code);

assertSeeLink

Assert	that	the	given	link	is	present	on	the	page:

$browser->assertSeeLink($linkText);

assertDontSeeLink

Assert	that	the	given	link	is	not	present	on	the	page:

$browser->assertDontSeeLink($linkText);

assertInputValue

Laravel	Documentation	-	10.x	/	Browser	Tests 792

Assert	that	the	given	input	field	has	the	given	value:

$browser->assertInputValue($field,	$value);

assertInputValueIsNot

Assert	that	the	given	input	field	does	not	have	the	given	value:

$browser->assertInputValueIsNot($field,	$value);

assertChecked

Assert	that	the	given	checkbox	is	checked:

$browser->assertChecked($field);

assertNotChecked

Assert	that	the	given	checkbox	is	not	checked:

$browser->assertNotChecked($field);

assertIndeterminate

Assert	that	the	given	checkbox	is	in	an	indeterminate	state:

$browser->assertIndeterminate($field);

assertRadioSelected

Assert	that	the	given	radio	field	is	selected:

$browser->assertRadioSelected($field,	$value);

assertRadioNotSelected

Assert	that	the	given	radio	field	is	not	selected:

$browser->assertRadioNotSelected($field,	$value);

assertSelected

Assert	that	the	given	dropdown	has	the	given	value	selected:

$browser->assertSelected($field,	$value);

assertNotSelected

Assert	that	the	given	dropdown	does	not	have	the	given	value	selected:

$browser->assertNotSelected($field,	$value);

assertSelectHasOptions

Assert	that	the	given	array	of	values	are	available	to	be	selected:

$browser->assertSelectHasOptions($field,	$values);

assertSelectMissingOptions

Assert	that	the	given	array	of	values	are	not	available	to	be	selected:

Laravel	Documentation	-	10.x	/	Browser	Tests 793

$browser->assertSelectMissingOptions($field,	$values);

assertSelectHasOption

Assert	that	the	given	value	is	available	to	be	selected	on	the	given	field:

$browser->assertSelectHasOption($field,	$value);

assertSelectMissingOption

Assert	that	the	given	value	is	not	available	to	be	selected:

$browser->assertSelectMissingOption($field,	$value);

assertValue

Assert	that	the	element	matching	the	given	selector	has	the	given	value:

$browser->assertValue($selector,	$value);

assertValueIsNot

Assert	that	the	element	matching	the	given	selector	does	not	have	the	given	value:

$browser->assertValueIsNot($selector,	$value);

assertAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	attribute:

$browser->assertAttribute($selector,	$attribute,	$value);

assertAttributeContains

Assert	that	the	element	matching	the	given	selector	contains	the	given	value	in	the	provided	attribute:

$browser->assertAttributeContains($selector,	$attribute,	$value);

assertAttributeDoesntContain

Assert	that	the	element	matching	the	given	selector	does	not	contain	the	given	value	in	the	provided	attribute:

$browser->assertAttributeDoesntContain($selector,	$attribute,	$value);

assertAriaAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	aria	attribute:

$browser->assertAriaAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<button	aria-label="Add"></button>,	you	may	assert	against	the	aria-label
attribute	like	so:

$browser->assertAriaAttribute('button',	'label',	'Add')

assertDataAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	data	attribute:

$browser->assertDataAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<tr	id="row-1"	data-content="attendees"></tr>,	you	may	assert	against	the	
data-label	attribute	like	so:

Laravel	Documentation	-	10.x	/	Browser	Tests 794

$browser->assertDataAttribute('#row-1',	'content',	'attendees')

assertVisible

Assert	that	the	element	matching	the	given	selector	is	visible:

$browser->assertVisible($selector);

assertPresent

Assert	that	the	element	matching	the	given	selector	is	present	in	the	source:

$browser->assertPresent($selector);

assertNotPresent

Assert	that	the	element	matching	the	given	selector	is	not	present	in	the	source:

$browser->assertNotPresent($selector);

assertMissing

Assert	that	the	element	matching	the	given	selector	is	not	visible:

$browser->assertMissing($selector);

assertInputPresent

Assert	that	an	input	with	the	given	name	is	present:

$browser->assertInputPresent($name);

assertInputMissing

Assert	that	an	input	with	the	given	name	is	not	present	in	the	source:

$browser->assertInputMissing($name);

assertDialogOpened

Assert	that	a	JavaScript	dialog	with	the	given	message	has	been	opened:

$browser->assertDialogOpened($message);

assertEnabled

Assert	that	the	given	field	is	enabled:

$browser->assertEnabled($field);

assertDisabled

Assert	that	the	given	field	is	disabled:

$browser->assertDisabled($field);

assertButtonEnabled

Assert	that	the	given	button	is	enabled:

$browser->assertButtonEnabled($button);

Laravel	Documentation	-	10.x	/	Browser	Tests 795

assertButtonDisabled

Assert	that	the	given	button	is	disabled:

$browser->assertButtonDisabled($button);

assertFocused

Assert	that	the	given	field	is	focused:

$browser->assertFocused($field);

assertNotFocused

Assert	that	the	given	field	is	not	focused:

$browser->assertNotFocused($field);

assertAuthenticated

Assert	that	the	user	is	authenticated:

$browser->assertAuthenticated();

assertGuest

Assert	that	the	user	is	not	authenticated:

$browser->assertGuest();

assertAuthenticatedAs

Assert	that	the	user	is	authenticated	as	the	given	user:

$browser->assertAuthenticatedAs($user);

assertVue

Dusk	even	allows	you	to	make	assertions	on	the	state	of	Vue	component	data.	For	example,	imagine	your
application	contains	the	following	Vue	component:

//	HTML...

<profile	dusk="profile-component"></profile>

//	Component	Definition...

Vue.component('profile',	{

				template:	'<div>{{	user.name	}}</div>',

				data:	function	()	{

								return	{

												user:	{

																name:	'Taylor'

												}

								};

				}

});

You	may	assert	on	the	state	of	the	Vue	component	like	so:

/**

	*	A	basic	Vue	test	example.

	*/

public	function	test_vue():	void

{

				$this->browse(function	(Browser	$browser)	{

								$browser->visit('/')

Laravel	Documentation	-	10.x	/	Browser	Tests 796

https://vuejs.org

																->assertVue('user.name',	'Taylor',	'@profile-component');

				});

}

assertVueIsNot

Assert	that	a	given	Vue	component	data	property	does	not	match	the	given	value:

$browser->assertVueIsNot($property,	$value,	$componentSelector	=	null);

assertVueContains

Assert	that	a	given	Vue	component	data	property	is	an	array	and	contains	the	given	value:

$browser->assertVueContains($property,	$value,	$componentSelector	=	null);

assertVueDoesntContain

Assert	that	a	given	Vue	component	data	property	is	an	array	and	does	not	contain	the	given	value:

$browser->assertVueDoesntContain($property,	$value,	$componentSelector	=	null);

Pages

Sometimes,	tests	require	several	complicated	actions	to	be	performed	in	sequence.	This	can	make	your	tests
harder	to	read	and	understand.	Dusk	Pages	allow	you	to	define	expressive	actions	that	may	then	be	performed
on	a	given	page	via	a	single	method.	Pages	also	allow	you	to	define	short-cuts	to	common	selectors	for	your
application	or	for	a	single	page.

Generating	Pages

To	generate	a	page	object,	execute	the	dusk:page	Artisan	command.	All	page	objects	will	be	placed	in	your
application's	tests/Browser/Pages	directory:

php	artisan	dusk:page	Login

Configuring	Pages

By	default,	pages	have	three	methods:	url,	assert,	and	elements.	We	will	discuss	the	url	and	assert	methods
now.	The	elements	method	will	be	discussed	in	more	detail	below.

The	url	Method

The	url	method	should	return	the	path	of	the	URL	that	represents	the	page.	Dusk	will	use	this	URL	when
navigating	to	the	page	in	the	browser:

/**

	*	Get	the	URL	for	the	page.

	*/

public	function	url():	string

{

				return	'/login';

}

The	assert	Method

The	assert	method	may	make	any	assertions	necessary	to	verify	that	the	browser	is	actually	on	the	given	page.
It	is	not	actually	necessary	to	place	anything	within	this	method;	however,	you	are	free	to	make	these	assertions
if	you	wish.	These	assertions	will	be	run	automatically	when	navigating	to	the	page:

/**

	*	Assert	that	the	browser	is	on	the	page.

	*/

Laravel	Documentation	-	10.x	/	Browser	Tests 797

public	function	assert(Browser	$browser):	void

{

				$browser->assertPathIs($this->url());

}

Navigating	to	Pages

Once	a	page	has	been	defined,	you	may	navigate	to	it	using	the	visit	method:

use	Tests\Browser\Pages\Login;

$browser->visit(new	Login);

Sometimes	you	may	already	be	on	a	given	page	and	need	to	"load"	the	page's	selectors	and	methods	into	the
current	test	context.	This	is	common	when	pressing	a	button	and	being	redirected	to	a	given	page	without
explicitly	navigating	to	it.	In	this	situation,	you	may	use	the	on	method	to	load	the	page:

use	Tests\Browser\Pages\CreatePlaylist;

$browser->visit('/dashboard')

								->clickLink('Create	Playlist')

								->on(new	CreatePlaylist)

								->assertSee('@create');

Shorthand	Selectors

The	elements	method	within	page	classes	allows	you	to	define	quick,	easy-to-remember	shortcuts	for	any	CSS
selector	on	your	page.	For	example,	let's	define	a	shortcut	for	the	"email"	input	field	of	the	application's	login
page:

/**

	*	Get	the	element	shortcuts	for	the	page.

	*

	*	@return	array<string,	string>

	*/

public	function	elements():	array

{

				return	[

								'@email'	=>	'input[name=email]',

];

}

Once	the	shortcut	has	been	defined,	you	may	use	the	shorthand	selector	anywhere	you	would	typically	use	a
full	CSS	selector:

$browser->type('@email',	'taylor@laravel.com');

Global	Shorthand	Selectors

After	installing	Dusk,	a	base	Page	class	will	be	placed	in	your	tests/Browser/Pages	directory.	This	class	contains
a	siteElements	method	which	may	be	used	to	define	global	shorthand	selectors	that	should	be	available	on
every	page	throughout	your	application:

/**

	*	Get	the	global	element	shortcuts	for	the	site.

	*

	*	@return	array<string,	string>

	*/

public	static	function	siteElements():	array

{

				return	[

								'@element'	=>	'#selector',

];

}

Page	Methods

In	addition	to	the	default	methods	defined	on	pages,	you	may	define	additional	methods	which	may	be	used
throughout	your	tests.	For	example,	let's	imagine	we	are	building	a	music	management	application.	A	common

Laravel	Documentation	-	10.x	/	Browser	Tests 798

action	for	one	page	of	the	application	might	be	to	create	a	playlist.	Instead	of	re-writing	the	logic	to	create	a
playlist	in	each	test,	you	may	define	a	createPlaylist	method	on	a	page	class:

<?php

namespace	Tests\Browser\Pages;

use	Laravel\Dusk\Browser;

class	Dashboard	extends	Page

{

				//	Other	page	methods...

				/**

					*	Create	a	new	playlist.

					*/

				public	function	createPlaylist(Browser	$browser,	string	$name):	void

				{

								$browser->type('name',	$name)

																->check('share')

																->press('Create	Playlist');

				}

}

Once	the	method	has	been	defined,	you	may	use	it	within	any	test	that	utilizes	the	page.	The	browser	instance
will	automatically	be	passed	as	the	first	argument	to	custom	page	methods:

use	Tests\Browser\Pages\Dashboard;

$browser->visit(new	Dashboard)

								->createPlaylist('My	Playlist')

								->assertSee('My	Playlist');

Components

Components	are	similar	to	Dusk’s	“page	objects”,	but	are	intended	for	pieces	of	UI	and	functionality	that	are
re-used	throughout	your	application,	such	as	a	navigation	bar	or	notification	window.	As	such,	components	are
not	bound	to	specific	URLs.

Generating	Components

To	generate	a	component,	execute	the	dusk:component	Artisan	command.	New	components	are	placed	in	the	
tests/Browser/Components	directory:

php	artisan	dusk:component	DatePicker

As	shown	above,	a	"date	picker"	is	an	example	of	a	component	that	might	exist	throughout	your	application	on
a	variety	of	pages.	It	can	become	cumbersome	to	manually	write	the	browser	automation	logic	to	select	a	date
in	dozens	of	tests	throughout	your	test	suite.	Instead,	we	can	define	a	Dusk	component	to	represent	the	date
picker,	allowing	us	to	encapsulate	that	logic	within	the	component:

<?php

namespace	Tests\Browser\Components;

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Component	as	BaseComponent;

class	DatePicker	extends	BaseComponent

{

				/**

					*	Get	the	root	selector	for	the	component.

					*/

				public	function	selector():	string

				{

								return	'.date-picker';

				}

				/**

					*	Assert	that	the	browser	page	contains	the	component.

					*/

				public	function	assert(Browser	$browser):	void

Laravel	Documentation	-	10.x	/	Browser	Tests 799

				{

								$browser->assertVisible($this->selector());

				}

				/**

					*	Get	the	element	shortcuts	for	the	component.

					*

					*	@return	array<string,	string>

					*/

				public	function	elements():	array

				{

								return	[

												'@date-field'	=>	'input.datepicker-input',

												'@year-list'	=>	'div	>	div.datepicker-years',

												'@month-list'	=>	'div	>	div.datepicker-months',

												'@day-list'	=>	'div	>	div.datepicker-days',

];

				}

				/**

					*	Select	the	given	date.

					*/

				public	function	selectDate(Browser	$browser,	int	$year,	int	$month,	int	$day):	void

				{

								$browser->click('@date-field')

																->within('@year-list',	function	(Browser	$browser)	use	($year)	{

																				$browser->click($year);

																})

																->within('@month-list',	function	(Browser	$browser)	use	($month)	{

																				$browser->click($month);

																})

																->within('@day-list',	function	(Browser	$browser)	use	($day)	{

																				$browser->click($day);

																});

				}

}

Using	Components

Once	the	component	has	been	defined,	we	can	easily	select	a	date	within	the	date	picker	from	any	test.	And,	if
the	logic	necessary	to	select	a	date	changes,	we	only	need	to	update	the	component:

<?php

namespace	Tests\Browser;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Tests\Browser\Components\DatePicker;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				/**

					*	A	basic	component	test	example.

					*/

				public	function	test_basic_example():	void

				{

								$this->browse(function	(Browser	$browser)	{

												$browser->visit('/')

																				->within(new	DatePicker,	function	(Browser	$browser)	{

																								$browser->selectDate(2019,	1,	30);

																				})

																				->assertSee('January');

								});

				}

}

Continuous	Integration

[!WARNING]
Most	Dusk	continuous	integration	configurations	expect	your	Laravel	application	to	be	served	using	the
built-in	PHP	development	server	on	port	8000.	Therefore,	before	continuing,	you	should	ensure	that	your
continuous	integration	environment	has	an	APP_URL	environment	variable	value	of	http://127.0.0.1:8000.

Laravel	Documentation	-	10.x	/	Browser	Tests 800

Heroku	CI

To	run	Dusk	tests	on	Heroku	CI,	add	the	following	Google	Chrome	buildpack	and	scripts	to	your	Heroku	
app.json	file:

{

		"environments":	{

				"test":	{

						"buildpacks":	[

								{	"url":	"heroku/php"	},

								{	"url":	"https://github.com/heroku/heroku-buildpack-google-chrome"	}

],

						"scripts":	{

								"test-setup":	"cp	.env.testing	.env",

								"test":	"nohup	bash	-c	'./vendor/laravel/dusk/bin/chromedriver-linux	>	/dev/null	2>&1	&'	&&	

nohup	bash	-c	'php	artisan	serve	--no-reload	>	/dev/null	2>&1	&'	&&	php	artisan	dusk"

						}

				}

		}

}

Travis	CI

To	run	your	Dusk	tests	on	Travis	CI,	use	the	following	.travis.yml	configuration.	Since	Travis	CI	is	not	a
graphical	environment,	we	will	need	to	take	some	extra	steps	in	order	to	launch	a	Chrome	browser.	In	addition,
we	will	use	php	artisan	serve	to	launch	PHP's	built-in	web	server:

language:	php

php:

		-	7.3

addons:

		chrome:	stable

install:

		-	cp	.env.testing	.env

		-	travis_retry	composer	install	--no-interaction	--prefer-dist

		-	php	artisan	key:generate

		-	php	artisan	dusk:chrome-driver

before_script:

		-	google-chrome-stable	--headless	--disable-gpu	--remote-debugging-port=9222	http://localhost	&

		-	php	artisan	serve	--no-reload	&

script:

		-	php	artisan	dusk

GitHub	Actions

If	you	are	using	GitHub	Actions	to	run	your	Dusk	tests,	you	may	use	the	following	configuration	file	as	a
starting	point.	Like	TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

name:	CI

on:	[push]

jobs:

		dusk-php:

				runs-on:	ubuntu-latest

				env:

						APP_URL:	"http://127.0.0.1:8000"

						DB_USERNAME:	root

						DB_PASSWORD:	root

						MAIL_MAILER:	log

				steps:

						-	uses:	actions/checkout@v4

						-	name:	Prepare	The	Environment

								run:	cp	.env.example	.env

						-	name:	Create	Database

								run:	|

										sudo	systemctl	start	mysql

										mysql	--user="root"	--password="root"	-e	"CREATE	DATABASE	\`my-database\`	character	set	

UTF8mb4	collate	utf8mb4_bin;"

						-	name:	Install	Composer	Dependencies

Laravel	Documentation	-	10.x	/	Browser	Tests 801

https://www.heroku.com/continuous-integration
https://travis-ci.org
https://github.com/features/actions

								run:	composer	install	--no-progress	--prefer-dist	--optimize-autoloader

						-	name:	Generate	Application	Key

								run:	php	artisan	key:generate

						-	name:	Upgrade	Chrome	Driver

								run:	php	artisan	dusk:chrome-driver	--detect

						-	name:	Start	Chrome	Driver

								run:	./vendor/laravel/dusk/bin/chromedriver-linux	&

						-	name:	Run	Laravel	Server

								run:	php	artisan	serve	--no-reload	&

						-	name:	Run	Dusk	Tests

								run:	php	artisan	dusk

						-	name:	Upload	Screenshots

								if:	failure()

								uses:	actions/upload-artifact@v2

								with:

										name:	screenshots

										path:	tests/Browser/screenshots

						-	name:	Upload	Console	Logs

								if:	failure()

								uses:	actions/upload-artifact@v2

								with:

										name:	console

										path:	tests/Browser/console

Chipper	CI

If	you	are	using	Chipper	CI	to	run	your	Dusk	tests,	you	may	use	the	following	configuration	file	as	a	starting
point.	We	will	use	PHP's	built-in	server	to	run	Laravel	so	we	can	listen	for	requests:

#	file	.chipperci.yml

version:	1

environment:

		php:	8.2

		node:	16

#	Include	Chrome	in	the	build	environment

services:

		-	dusk

#	Build	all	commits

on:

			push:

						branches:	.*

pipeline:

		-	name:	Setup

				cmd:	|

						cp	-v	.env.example	.env

						composer	install	--no-interaction	--prefer-dist	--optimize-autoloader

						php	artisan	key:generate

						#	Create	a	dusk	env	file,	ensuring	APP_URL	uses	BUILD_HOST

						cp	-v	.env	.env.dusk.ci

						sed	-i	"s@APP_URL=.*@APP_URL=http://$BUILD_HOST:8000@g"	.env.dusk.ci

		-	name:	Compile	Assets

				cmd:	|

						npm	ci	--no-audit

						npm	run	build

		-	name:	Browser	Tests

				cmd:	|

						php	-S	[::0]:8000	-t	public	2>server.log	&

						sleep	2

						php	artisan	dusk:chrome-driver	$CHROME_DRIVER

						php	artisan	dusk	--env=ci

To	learn	more	about	running	Dusk	tests	on	Chipper	CI,	including	how	to	use	databases,	consult	the	official
Chipper	CI	documentation.

Laravel	Documentation	-	10.x	/	Browser	Tests 802

https://chipperci.com
https://chipperci.com/docs/testing/laravel-dusk-new/

Testing

Database	Testing
Introduction

Resetting	the	Database	After	Each	Test
Model	Factories
Running	Seeders
Available	Assertions

Introduction

Laravel	provides	a	variety	of	helpful	tools	and	assertions	to	make	it	easier	to	test	your	database	driven
applications.	In	addition,	Laravel	model	factories	and	seeders	make	it	painless	to	create	test	database	records
using	your	application's	Eloquent	models	and	relationships.	We'll	discuss	all	of	these	powerful	features	in	the
following	documentation.

Resetting	the	Database	After	Each	Test

Before	proceeding	much	further,	let's	discuss	how	to	reset	your	database	after	each	of	your	tests	so	that	data
from	a	previous	test	does	not	interfere	with	subsequent	tests.	Laravel's	included	
Illuminate\Foundation\Testing\RefreshDatabase	trait	will	take	care	of	this	for	you.	Simply	use	the	trait	on	your
test	class:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	A	basic	functional	test	example.

					*/

				public	function	test_basic_example():	void

				{

								$response	=	$this->get('/');

								//	...

				}

}

The	Illuminate\Foundation\Testing\RefreshDatabase	trait	does	not	migrate	your	database	if	your	schema	is	up
to	date.	Instead,	it	will	only	execute	the	test	within	a	database	transaction.	Therefore,	any	records	added	to	the
database	by	test	cases	that	do	not	use	this	trait	may	still	exist	in	the	database.

If	you	would	like	to	totally	reset	the	database,	you	may	use	the	
Illuminate\Foundation\Testing\DatabaseMigrations	or	Illuminate\Foundation\Testing\DatabaseTruncation	traits
instead.	However,	both	of	these	options	are	significantly	slower	than	the	RefreshDatabase	trait.

Model	Factories

When	testing,	you	may	need	to	insert	a	few	records	into	your	database	before	executing	your	test.	Instead	of
manually	specifying	the	value	of	each	column	when	you	create	this	test	data,	Laravel	allows	you	to	define	a	set
of	default	attributes	for	each	of	your	Eloquent	models	using	model	factories.

To	learn	more	about	creating	and	utilizing	model	factories	to	create	models,	please	consult	the	complete	model
factory	documentation.	Once	you	have	defined	a	model	factory,	you	may	utilize	the	factory	within	your	test	to
create	models:

Laravel	Documentation	-	10.x	/	Database 803

use	App\Models\User;

public	function	test_models_can_be_instantiated():	void

{

				$user	=	User::factory()->create();

				//	...

}

Running	Seeders

If	you	would	like	to	use	database	seeders	to	populate	your	database	during	a	feature	test,	you	may	invoke	the	
seed	method.	By	default,	the	seed	method	will	execute	the	DatabaseSeeder,	which	should	execute	all	of	your
other	seeders.	Alternatively,	you	pass	a	specific	seeder	class	name	to	the	seed	method:

<?php

namespace	Tests\Feature;

use	Database\Seeders\OrderStatusSeeder;

use	Database\Seeders\TransactionStatusSeeder;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	Test	creating	a	new	order.

					*/

				public	function	test_orders_can_be_created():	void

				{

								//	Run	the	DatabaseSeeder...

								$this->seed();

								//	Run	a	specific	seeder...

								$this->seed(OrderStatusSeeder::class);

								//	...

								//	Run	an	array	of	specific	seeders...

								$this->seed([

												OrderStatusSeeder::class,

												TransactionStatusSeeder::class,

												//	...

]);

				}

}

Alternatively,	you	may	instruct	Laravel	to	automatically	seed	the	database	before	each	test	that	uses	the	
RefreshDatabase	trait.	You	may	accomplish	this	by	defining	a	$seed	property	on	your	base	test	class:

<?php

namespace	Tests;

use	Illuminate\Foundation\Testing\TestCase	as	BaseTestCase;

abstract	class	TestCase	extends	BaseTestCase

{

				use	CreatesApplication;

				/**

					*	Indicates	whether	the	default	seeder	should	run	before	each	test.

					*

					*	@var	bool

					*/

				protected	$seed	=	true;

}

When	the	$seed	property	is	true,	the	test	will	run	the	Database\Seeders\DatabaseSeeder	class	before	each	test
that	uses	the	RefreshDatabase	trait.	However,	you	may	specify	a	specific	seeder	that	should	be	executed	by
defining	a	$seeder	property	on	your	test	class:

Laravel	Documentation	-	10.x	/	Database 804

use	Database\Seeders\OrderStatusSeeder;

/**

	*	Run	a	specific	seeder	before	each	test.

	*

	*	@var	string

	*/

protected	$seeder	=	OrderStatusSeeder::class;

Available	Assertions

Laravel	provides	several	database	assertions	for	your	PHPUnit	feature	tests.	We'll	discuss	each	of	these
assertions	below.

assertDatabaseCount

Assert	that	a	table	in	the	database	contains	the	given	number	of	records:

$this->assertDatabaseCount('users',	5);

assertDatabaseHas

Assert	that	a	table	in	the	database	contains	records	matching	the	given	key	/	value	query	constraints:

$this->assertDatabaseHas('users',	[

				'email'	=>	'sally@example.com',

]);

assertDatabaseMissing

Assert	that	a	table	in	the	database	does	not	contain	records	matching	the	given	key	/	value	query	constraints:

$this->assertDatabaseMissing('users',	[

				'email'	=>	'sally@example.com',

]);

assertSoftDeleted

The	assertSoftDeleted	method	may	be	used	to	assert	a	given	Eloquent	model	has	been	"soft	deleted":

$this->assertSoftDeleted($user);

assertNotSoftDeleted

The	assertNotSoftDeleted	method	may	be	used	to	assert	a	given	Eloquent	model	hasn't	been	"soft	deleted":

$this->assertNotSoftDeleted($user);

assertModelExists

Assert	that	a	given	model	exists	in	the	database:

use	App\Models\User;

$user	=	User::factory()->create();

$this->assertModelExists($user);

assertModelMissing

Assert	that	a	given	model	does	not	exist	in	the	database:

use	App\Models\User;

$user	=	User::factory()->create();

Laravel	Documentation	-	10.x	/	Database 805

https://phpunit.de/

$user->delete();

$this->assertModelMissing($user);

expectsDatabaseQueryCount

The	expectsDatabaseQueryCount	method	may	be	invoked	at	the	beginning	of	your	test	to	specify	the	total
number	of	database	queries	that	you	expect	to	be	run	during	the	test.	If	the	actual	number	of	executed	queries
does	not	exactly	match	this	expectation,	the	test	will	fail:

$this->expectsDatabaseQueryCount(5);

//	Test...

Laravel	Documentation	-	10.x	/	Database 806

Testing

Mocking
Introduction
Mocking	Objects
Mocking	Facades

Facade	Spies
Interacting	With	Time

Introduction

When	testing	Laravel	applications,	you	may	wish	to	"mock"	certain	aspects	of	your	application	so	they	are	not
actually	executed	during	a	given	test.	For	example,	when	testing	a	controller	that	dispatches	an	event,	you	may
wish	to	mock	the	event	listeners	so	they	are	not	actually	executed	during	the	test.	This	allows	you	to	only	test
the	controller's	HTTP	response	without	worrying	about	the	execution	of	the	event	listeners	since	the	event
listeners	can	be	tested	in	their	own	test	case.

Laravel	provides	helpful	methods	for	mocking	events,	jobs,	and	other	facades	out	of	the	box.	These	helpers
primarily	provide	a	convenience	layer	over	Mockery	so	you	do	not	have	to	manually	make	complicated
Mockery	method	calls.

Mocking	Objects

When	mocking	an	object	that	is	going	to	be	injected	into	your	application	via	Laravel's	service	container,	you
will	need	to	bind	your	mocked	instance	into	the	container	as	an	instance	binding.	This	will	instruct	the
container	to	use	your	mocked	instance	of	the	object	instead	of	constructing	the	object	itself:

use	App\Service;

use	Mockery;

use	Mockery\MockInterface;

public	function	test_something_can_be_mocked():	void

{

				$this->instance(

								Service::class,

								Mockery::mock(Service::class,	function	(MockInterface	$mock)	{

												$mock->shouldReceive('process')->once();

								})

);

}

In	order	to	make	this	more	convenient,	you	may	use	the	mock	method	that	is	provided	by	Laravel's	base	test	case
class.	For	example,	the	following	example	is	equivalent	to	the	example	above:

use	App\Service;

use	Mockery\MockInterface;

$mock	=	$this->mock(Service::class,	function	(MockInterface	$mock)	{

				$mock->shouldReceive('process')->once();

});

You	may	use	the	partialMock	method	when	you	only	need	to	mock	a	few	methods	of	an	object.	The	methods
that	are	not	mocked	will	be	executed	normally	when	called:

use	App\Service;

use	Mockery\MockInterface;

$mock	=	$this->partialMock(Service::class,	function	(MockInterface	$mock)	{

				$mock->shouldReceive('process')->once();

});

Similarly,	if	you	want	to	spy	on	an	object,	Laravel's	base	test	case	class	offers	a	spy	method	as	a	convenient
wrapper	around	the	Mockery::spy	method.	Spies	are	similar	to	mocks;	however,	spies	record	any	interaction
between	the	spy	and	the	code	being	tested,	allowing	you	to	make	assertions	after	the	code	is	executed:

Laravel	Documentation	-	10.x	/	Mocking 807

http://docs.mockery.io/en/latest/reference/spies.html

use	App\Service;

$spy	=	$this->spy(Service::class);

//	...

$spy->shouldHaveReceived('process');

Mocking	Facades

Unlike	traditional	static	method	calls,	facades	(including	real-time	facades)	may	be	mocked.	This	provides	a
great	advantage	over	traditional	static	methods	and	grants	you	the	same	testability	that	you	would	have	if	you
were	using	traditional	dependency	injection.	When	testing,	you	may	often	want	to	mock	a	call	to	a	Laravel
facade	that	occurs	in	one	of	your	controllers.	For	example,	consider	the	following	controller	action:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\Facades\Cache;

class	UserController	extends	Controller

{

				/**

					*	Retrieve	a	list	of	all	users	of	the	application.

					*/

				public	function	index():	array

				{

								$value	=	Cache::get('key');

								return	[

												//	...

];

				}

}

We	can	mock	the	call	to	the	Cache	facade	by	using	the	shouldReceive	method,	which	will	return	an	instance	of	a
Mockery	mock.	Since	facades	are	actually	resolved	and	managed	by	the	Laravel	service	container,	they	have
much	more	testability	than	a	typical	static	class.	For	example,	let's	mock	our	call	to	the	Cache	facade's	get
method:

<?php

namespace	Tests\Feature;

use	Illuminate\Support\Facades\Cache;

use	Tests\TestCase;

class	UserControllerTest	extends	TestCase

{

				public	function	test_get_index():	void

				{

								Cache::shouldReceive('get')

																				->once()

																				->with('key')

																				->andReturn('value');

								$response	=	$this->get('/users');

								//	...

				}

}

[!WARNING]
You	should	not	mock	the	Request	facade.	Instead,	pass	the	input	you	desire	into	the	HTTP	testing	methods
such	as	get	and	post	when	running	your	test.	Likewise,	instead	of	mocking	the	Config	facade,	call	the	
Config::set	method	in	your	tests.

Facade	Spies

If	you	would	like	to	spy	on	a	facade,	you	may	call	the	spy	method	on	the	corresponding	facade.	Spies	are
similar	to	mocks;	however,	spies	record	any	interaction	between	the	spy	and	the	code	being	tested,	allowing

Laravel	Documentation	-	10.x	/	Mocking 808

https://github.com/padraic/mockery
http://docs.mockery.io/en/latest/reference/spies.html

you	to	make	assertions	after	the	code	is	executed:

use	Illuminate\Support\Facades\Cache;

public	function	test_values_are_be_stored_in_cache():	void

{

				Cache::spy();

				$response	=	$this->get('/');

				$response->assertStatus(200);

				Cache::shouldHaveReceived('put')->once()->with('name',	'Taylor',	10);

}

Interacting	With	Time

When	testing,	you	may	occasionally	need	to	modify	the	time	returned	by	helpers	such	as	now	or	
Illuminate\Support\Carbon::now().	Thankfully,	Laravel's	base	feature	test	class	includes	helpers	that	allow	you
to	manipulate	the	current	time:

use	Illuminate\Support\Carbon;

public	function	test_time_can_be_manipulated():	void

{

				//	Travel	into	the	future...

				$this->travel(5)->milliseconds();

				$this->travel(5)->seconds();

				$this->travel(5)->minutes();

				$this->travel(5)->hours();

				$this->travel(5)->days();

				$this->travel(5)->weeks();

				$this->travel(5)->years();

				//	Travel	into	the	past...

				$this->travel(-5)->hours();

				//	Travel	to	an	explicit	time...

				$this->travelTo(now()->subHours(6));

				//	Return	back	to	the	present	time...

				$this->travelBack();

}

You	may	also	provide	a	closure	to	the	various	time	travel	methods.	The	closure	will	be	invoked	with	time
frozen	at	the	specified	time.	Once	the	closure	has	executed,	time	will	resume	as	normal:

$this->travel(5)->days(function	()	{

				//	Test	something	five	days	into	the	future...

});

$this->travelTo(now()->subDays(10),	function	()	{

				//	Test	something	during	a	given	moment...

});

The	freezeTime	method	may	be	used	to	freeze	the	current	time.	Similarly,	the	freezeSecond	method	will	freeze
the	current	time	but	at	the	start	of	the	current	second:

use	Illuminate\Support\Carbon;

//	Freeze	time	and	resume	normal	time	after	executing	closure...

$this->freezeTime(function	(Carbon	$time)	{

				//	...

});

//	Freeze	time	at	the	current	second	and	resume	normal	time	after	executing	closure...

$this->freezeSecond(function	(Carbon	$time)	{

				//	...

})

As	you	would	expect,	all	of	the	methods	discussed	above	are	primarily	useful	for	testing	time	sensitive
application	behavior,	such	as	locking	inactive	posts	on	a	discussion	forum:

use	App\Models\Thread;

Laravel	Documentation	-	10.x	/	Mocking 809

public	function	test_forum_threads_lock_after_one_week_of_inactivity()

{

				$thread	=	Thread::factory()->create();

				$this->travel(1)->week();

				$this->assertTrue($thread->isLockedByInactivity());

}

Laravel	Documentation	-	10.x	/	Mocking 810

Packages

Starter	Kits
Introduction
Laravel	Breeze

Installation
Breeze	and	Blade
Breeze	and	Livewire
Breeze	and	React	/	Vue
Breeze	and	Next.js	/	API

Laravel	Jetstream

Introduction

To	give	you	a	head	start	building	your	new	Laravel	application,	we	are	happy	to	offer	authentication	and
application	starter	kits.	These	kits	automatically	scaffold	your	application	with	the	routes,	controllers,	and
views	you	need	to	register	and	authenticate	your	application's	users.

While	you	are	welcome	to	use	these	starter	kits,	they	are	not	required.	You	are	free	to	build	your	own
application	from	the	ground	up	by	simply	installing	a	fresh	copy	of	Laravel.	Either	way,	we	know	you	will
build	something	great!

Laravel	Breeze

Laravel	Breeze	is	a	minimal,	simple	implementation	of	all	of	Laravel's	authentication	features,	including	login,
registration,	password	reset,	email	verification,	and	password	confirmation.	In	addition,	Breeze	includes	a
simple	"profile"	page	where	the	user	may	update	their	name,	email	address,	and	password.

Laravel	Breeze's	default	view	layer	is	made	up	of	simple	Blade	templates	styled	with	Tailwind	CSS.
Additionally,	Breeze	provides	scaffolding	options	based	on	Livewire	or	Inertia,	with	the	choice	of	using	Vue	or
React	for	the	Inertia-based	scaffolding.

Laravel	Documentation	-	10.x	/	Packages 811

https://github.com/laravel/breeze
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com

Laravel	Bootcamp

If	you're	new	to	Laravel,	feel	free	to	jump	into	the	Laravel	Bootcamp.	The	Laravel	Bootcamp	will	walk	you
through	building	your	first	Laravel	application	using	Breeze.	It's	a	great	way	to	get	a	tour	of	everything	that
Laravel	and	Breeze	have	to	offer.

Installation

First,	you	should	create	a	new	Laravel	application,	configure	your	database,	and	run	your	database	migrations.
Once	you	have	created	a	new	Laravel	application,	you	may	install	Laravel	Breeze	using	Composer:

composer	require	laravel/breeze	--dev

After	Composer	has	installed	the	Laravel	Breeze	package,	you	may	run	the	breeze:install	Artisan	command.
This	command	publishes	the	authentication	views,	routes,	controllers,	and	other	resources	to	your	application.
Laravel	Breeze	publishes	all	of	its	code	to	your	application	so	that	you	have	full	control	and	visibility	over	its
features	and	implementation.

The	breeze:install	command	will	prompt	you	for	your	preferred	frontend	stack	and	testing	framework:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Breeze	and	Blade

Laravel	Documentation	-	10.x	/	Packages 812

https://bootcamp.laravel.com

The	default	Breeze	"stack"	is	the	Blade	stack,	which	utilizes	simple	Blade	templates	to	render	your	application's
frontend.	The	Blade	stack	may	be	installed	by	invoking	the	breeze:install	command	with	no	other	additional
arguments	and	selecting	the	Blade	frontend	stack.	After	Breeze's	scaffolding	is	installed,	you	should	also
compile	your	application's	frontend	assets:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Next,	you	may	navigate	to	your	application's	/login	or	/register	URLs	in	your	web	browser.	All	of	Breeze's
routes	are	defined	within	the	routes/auth.php	file.

[!NOTE]
To	learn	more	about	compiling	your	application's	CSS	and	JavaScript,	check	out	Laravel's	Vite
documentation.

Breeze	and	Livewire

Laravel	Breeze	also	offers	Livewire	scaffolding.	Livewire	is	a	powerful	way	of	building	dynamic,	reactive,
front-end	UIs	using	just	PHP.

Livewire	is	a	great	fit	for	teams	that	primarily	use	Blade	templates	and	are	looking	for	a	simpler	alternative	to
JavaScript-driven	SPA	frameworks	like	Vue	and	React.

To	use	the	Livewire	stack,	you	may	select	the	Livewire	frontend	stack	when	executing	the	breeze:install
Artisan	command.	After	Breeze's	scaffolding	is	installed,	you	should	run	your	database	migrations:

php	artisan	breeze:install

php	artisan	migrate

Breeze	and	React	/	Vue

Laravel	Breeze	also	offers	React	and	Vue	scaffolding	via	an	Inertia	frontend	implementation.	Inertia	allows	you
to	build	modern,	single-page	React	and	Vue	applications	using	classic	server-side	routing	and	controllers.

Inertia	lets	you	enjoy	the	frontend	power	of	React	and	Vue	combined	with	the	incredible	backend	productivity
of	Laravel	and	lightning-fast	Vite	compilation.	To	use	an	Inertia	stack,	you	may	select	the	Vue	or	React
frontend	stacks	when	executing	the	breeze:install	Artisan	command.

When	selecting	the	Vue	or	React	frontend	stack,	the	Breeze	installer	will	also	prompt	you	to	determine	if	you
would	like	Inertia	SSR	or	TypeScript	support.	After	Breeze's	scaffolding	is	installed,	you	should	also	compile
your	application's	frontend	assets:

php	artisan	breeze:install

php	artisan	migrate

npm	install

npm	run	dev

Next,	you	may	navigate	to	your	application's	/login	or	/register	URLs	in	your	web	browser.	All	of	Breeze's
routes	are	defined	within	the	routes/auth.php	file.

Breeze	and	Next.js	/	API

Laravel	Breeze	can	also	scaffold	an	authentication	API	that	is	ready	to	authenticate	modern	JavaScript
applications	such	as	those	powered	by	Next,	Nuxt,	and	others.	To	get	started,	select	the	API	stack	as	your
desired	stack	when	executing	the	breeze:install	Artisan	command:

php	artisan	breeze:install

php	artisan	migrate

Laravel	Documentation	-	10.x	/	Packages 813

https://livewire.laravel.com
https://inertiajs.com
https://vitejs.dev
https://inertiajs.com/server-side-rendering
https://nextjs.org
https://nuxt.com

During	installation,	Breeze	will	add	a	FRONTEND_URL	environment	variable	to	your	application's	.env	file.	This
URL	should	be	the	URL	of	your	JavaScript	application.	This	will	typically	be	http://localhost:3000	during
local	development.	In	addition,	you	should	ensure	that	your	APP_URL	is	set	to	http://localhost:8000,	which	is
the	default	URL	used	by	the	serve	Artisan	command.

Next.js	Reference	Implementation

Finally,	you	are	ready	to	pair	this	backend	with	the	frontend	of	your	choice.	A	Next	reference	implementation
of	the	Breeze	frontend	is	available	on	GitHub.	This	frontend	is	maintained	by	Laravel	and	contains	the	same
user	interface	as	the	traditional	Blade	and	Inertia	stacks	provided	by	Breeze.

Laravel	Jetstream

While	Laravel	Breeze	provides	a	simple	and	minimal	starting	point	for	building	a	Laravel	application,
Jetstream	augments	that	functionality	with	more	robust	features	and	additional	frontend	technology	stacks.	For
those	brand	new	to	Laravel,	we	recommend	learning	the	ropes	with	Laravel	Breeze	before	graduating	to
Laravel	Jetstream.

Jetstream	provides	a	beautifully	designed	application	scaffolding	for	Laravel	and	includes	login,	registration,
email	verification,	two-factor	authentication,	session	management,	API	support	via	Laravel	Sanctum,	and
optional	team	management.	Jetstream	is	designed	using	Tailwind	CSS	and	offers	your	choice	of	Livewire	or
Inertia	driven	frontend	scaffolding.

Complete	documentation	for	installing	Laravel	Jetstream	can	be	found	within	the	official	Jetstream
documentation.

Laravel	Documentation	-	10.x	/	Packages 814

https://github.com/laravel/breeze-next
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com
https://jetstream.laravel.com

Packages

Laravel	Cashier	(Stripe)
Introduction
Upgrading	Cashier
Installation
Configuration

Billable	Model
API	Keys
Currency	Configuration
Tax	Configuration
Logging
Using	Custom	Models

Quickstart
Selling	Products
Selling	Subscriptions

Customers
Retrieving	Customers
Creating	Customers
Updating	Customers
Balances
Tax	IDs
Syncing	Customer	Data	With	Stripe
Billing	Portal

Payment	Methods
Storing	Payment	Methods
Retrieving	Payment	Methods
Payment	Method	Presence
Updating	the	Default	Payment	Method
Adding	Payment	Methods
Deleting	Payment	Methods

Subscriptions
Creating	Subscriptions
Checking	Subscription	Status
Changing	Prices
Subscription	Quantity
Subscriptions	With	Multiple	Products
Multiple	Subscriptions
Metered	Billing
Subscription	Taxes
Subscription	Anchor	Date
Canceling	Subscriptions
Resuming	Subscriptions

Subscription	Trials
With	Payment	Method	Up	Front
Without	Payment	Method	Up	Front
Extending	Trials

Handling	Stripe	Webhooks
Defining	Webhook	Event	Handlers
Verifying	Webhook	Signatures

Single	Charges
Simple	Charge
Charge	With	Invoice
Creating	Payment	Intents
Refunding	Charges

Checkout
Product	Checkouts
Single	Charge	Checkouts

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 815

Subscription	Checkouts
Collecting	Tax	IDs
Guest	Checkouts

Invoices
Retrieving	Invoices
Upcoming	Invoices
Previewing	Subscription	Invoices
Generating	Invoice	PDFs

Handling	Failed	Payments
Confirming	Payments

Strong	Customer	Authentication	(SCA)
Payments	Requiring	Additional	Confirmation
Off-session	Payment	Notifications

Stripe	SDK
Testing

Introduction

Laravel	Cashier	Stripe	provides	an	expressive,	fluent	interface	to	Stripe's	subscription	billing	services.	It
handles	almost	all	of	the	boilerplate	subscription	billing	code	you	are	dreading	writing.	In	addition	to	basic
subscription	management,	Cashier	can	handle	coupons,	swapping	subscription,	subscription	"quantities",
cancellation	grace	periods,	and	even	generate	invoice	PDFs.

Upgrading	Cashier

When	upgrading	to	a	new	version	of	Cashier,	it's	important	that	you	carefully	review	the	upgrade	guide.

[!WARNING]
To	prevent	breaking	changes,	Cashier	uses	a	fixed	Stripe	API	version.	Cashier	15	utilizes	Stripe	API
version	2023-10-16.	The	Stripe	API	version	will	be	updated	on	minor	releases	in	order	to	make	use	of	new
Stripe	features	and	improvements.

Installation

First,	install	the	Cashier	package	for	Stripe	using	the	Composer	package	manager:

composer	require	laravel/cashier

After	installing	the	package,	publish	Cashier's	migrations	using	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag="cashier-migrations"

Then,	migrate	your	database:

php	artisan	migrate

Cashier's	migrations	will	add	several	columns	to	your	users	table.	They	will	also	create	a	new	subscriptions
table	to	hold	all	of	your	customer's	subscriptions	and	a	subscription_items	table	for	subscriptions	with	multiple
prices.

If	you	wish,	you	can	also	publish	Cashier's	configuration	file	using	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag="cashier-config"

Lastly,	to	ensure	Cashier	properly	handles	all	Stripe	events,	remember	to	configure	Cashier's	webhook
handling.

[!WARNING]
Stripe	recommends	that	any	column	used	for	storing	Stripe	identifiers	should	be	case-sensitive.	Therefore,
you	should	ensure	the	column	collation	for	the	stripe_id	column	is	set	to	utf8_bin	when	using	MySQL.
More	information	regarding	this	can	be	found	in	the	Stripe	documentation.

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 816

https://github.com/laravel/cashier-stripe
https://stripe.com
https://github.com/laravel/cashier-stripe/blob/master/UPGRADE.md
https://stripe.com/docs/upgrades#what-changes-does-stripe-consider-to-be-backwards-compatible

Configuration

Billable	Model

Before	using	Cashier,	add	the	Billable	trait	to	your	billable	model	definition.	Typically,	this	will	be	the	
App\Models\User	model.	This	trait	provides	various	methods	to	allow	you	to	perform	common	billing	tasks,	such
as	creating	subscriptions,	applying	coupons,	and	updating	payment	method	information:

use	Laravel\Cashier\Billable;

class	User	extends	Authenticatable

{

				use	Billable;

}

Cashier	assumes	your	billable	model	will	be	the	App\Models\User	class	that	ships	with	Laravel.	If	you	wish	to
change	this	you	may	specify	a	different	model	via	the	useCustomerModel	method.	This	method	should	typically
be	called	in	the	boot	method	of	your	AppServiceProvider	class:

use	App\Models\Cashier\User;

use	Laravel\Cashier\Cashier;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Cashier::useCustomerModel(User::class);

}

[!WARNING]
If	you're	using	a	model	other	than	Laravel's	supplied	App\Models\User	model,	you'll	need	to	publish	and
alter	the	Cashier	migrations	provided	to	match	your	alternative	model's	table	name.

API	Keys

Next,	you	should	configure	your	Stripe	API	keys	in	your	application's	.env	file.	You	can	retrieve	your	Stripe
API	keys	from	the	Stripe	control	panel:

STRIPE_KEY=your-stripe-key

STRIPE_SECRET=your-stripe-secret

STRIPE_WEBHOOK_SECRET=your-stripe-webhook-secret

[!WARNING]
You	should	ensure	that	the	STRIPE_WEBHOOK_SECRET	environment	variable	is	defined	in	your	application's	
.env	file,	as	this	variable	is	used	to	ensure	that	incoming	webhooks	are	actually	from	Stripe.

Currency	Configuration

The	default	Cashier	currency	is	United	States	Dollars	(USD).	You	can	change	the	default	currency	by	setting
the	CASHIER_CURRENCY	environment	variable	within	your	application's	.env	file:

CASHIER_CURRENCY=eur

In	addition	to	configuring	Cashier's	currency,	you	may	also	specify	a	locale	to	be	used	when	formatting	money
values	for	display	on	invoices.	Internally,	Cashier	utilizes	PHP's	NumberFormatter	class	to	set	the	currency
locale:

CASHIER_CURRENCY_LOCALE=nl_BE

[!WARNING]
In	order	to	use	locales	other	than	en,	ensure	the	ext-intl	PHP	extension	is	installed	and	configured	on	your
server.

Tax	Configuration

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 817

https://www.php.net/manual/en/class.numberformatter.php

Thanks	to	Stripe	Tax,	it's	possible	to	automatically	calculate	taxes	for	all	invoices	generated	by	Stripe.	You	can
enable	automatic	tax	calculation	by	invoking	the	calculateTaxes	method	in	the	boot	method	of	your
application's	App\Providers\AppServiceProvider	class:

use	Laravel\Cashier\Cashier;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Cashier::calculateTaxes();

}

Once	tax	calculation	has	been	enabled,	any	new	subscriptions	and	any	one-off	invoices	that	are	generated	will
receive	automatic	tax	calculation.

For	this	feature	to	work	properly,	your	customer's	billing	details,	such	as	the	customer's	name,	address,	and	tax
ID,	need	to	be	synced	to	Stripe.	You	may	use	the	customer	data	synchronization	and	Tax	ID	methods	offered	by
Cashier	to	accomplish	this.

[!WARNING]
No	tax	is	calculated	for	single	charges	or	single	charge	checkouts.

Logging

Cashier	allows	you	to	specify	the	log	channel	to	be	used	when	logging	fatal	Stripe	errors.	You	may	specify	the
log	channel	by	defining	the	CASHIER_LOGGER	environment	variable	within	your	application's	.env	file:

CASHIER_LOGGER=stack

Exceptions	that	are	generated	by	API	calls	to	Stripe	will	be	logged	through	your	application's	default	log
channel.

Using	Custom	Models

You	are	free	to	extend	the	models	used	internally	by	Cashier	by	defining	your	own	model	and	extending	the
corresponding	Cashier	model:

use	Laravel\Cashier\Subscription	as	CashierSubscription;

class	Subscription	extends	CashierSubscription

{

				//	...

}

After	defining	your	model,	you	may	instruct	Cashier	to	use	your	custom	model	via	the	Laravel\Cashier\Cashier
class.	Typically,	you	should	inform	Cashier	about	your	custom	models	in	the	boot	method	of	your	application's	
App\Providers\AppServiceProvider	class:

use	App\Models\Cashier\Subscription;

use	App\Models\Cashier\SubscriptionItem;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Cashier::useSubscriptionModel(Subscription::class);

				Cashier::useSubscriptionItemModel(SubscriptionItem::class);

}

Quickstart

Selling	Products

[!NOTE]

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 818

https://stripe.com/tax

Before	utilizing	Stripe	Checkout,	you	should	define	Products	with	fixed	prices	in	your	Stripe	dashboard.	In
addition,	you	should	configure	Cashier's	webhook	handling.

Offering	product	and	subscription	billing	via	your	application	can	be	intimidating.	However,	thanks	to	Cashier
and	Stripe	Checkout,	you	can	easily	build	modern,	robust	payment	integrations.

To	charge	customers	for	non-recurring,	single-charge	products,	we'll	utilize	Cashier	to	direct	customers	to
Stripe	Checkout,	where	they	will	provide	their	payment	details	and	confirm	their	purchase.	Once	the	payment
has	been	made	via	Checkout,	the	customer	will	be	redirected	to	a	success	URL	of	your	choosing	within	your
application:

use	Illuminate\Http\Request;

Route::get('/checkout',	function	(Request	$request)	{

				$stripePriceId	=	'price_deluxe_album';

				$quantity	=	1;

				return	$request->user()->checkout([$stripePriceId	=>	$quantity],	[

								'success_url'	=>	route('checkout-success'),

								'cancel_url'	=>	route('checkout-cancel'),

]);

})->name('checkout');

Route::view('checkout.success')->name('checkout-success');

Route::view('checkout.cancel')->name('checkout-cancel');

As	you	can	see	in	the	example	above,	we	will	utilize	Cashier's	provided	checkout	method	to	redirect	the
customer	to	Stripe	Checkout	for	a	given	"price	identifier".	When	using	Stripe,	"prices"	refer	to	defined	prices
for	specific	products.

If	necessary,	the	checkout	method	will	automatically	create	a	customer	in	Stripe	and	connect	that	Stripe
customer	record	to	the	corresponding	user	in	your	application's	database.	After	completing	the	checkout
session,	the	customer	will	be	redirected	to	a	dedicated	success	or	cancellation	page	where	you	can	display	an
informational	message	to	the	customer.

Providing	Meta	Data	to	Stripe	Checkout

When	selling	products,	it's	common	to	keep	track	of	completed	orders	and	purchased	products	via	Cart	and	
Order	models	defined	by	your	own	application.	When	redirecting	customers	to	Stripe	Checkout	to	complete	a
purchase,	you	may	need	to	provide	an	existing	order	identifier	so	that	you	can	associate	the	completed	purchase
with	the	corresponding	order	when	the	customer	is	redirected	back	to	your	application.

To	accomplish	this,	you	may	provide	an	array	of	metadata	to	the	checkout	method.	Let's	imagine	that	a	pending	
Order	is	created	within	our	application	when	a	user	begins	the	checkout	process.	Remember,	the	Cart	and	Order
models	in	this	example	are	illustrative	and	not	provided	by	Cashier.	You	are	free	to	implement	these	concepts
based	on	the	needs	of	your	own	application:

use	App\Models\Cart;

use	App\Models\Order;

use	Illuminate\Http\Request;

Route::get('/cart/{cart}/checkout',	function	(Request	$request,	Cart	$cart)	{

				$order	=	Order::create([

								'cart_id'	=>	$cart->id,

								'price_ids'	=>	$cart->price_ids,

								'status'	=>	'incomplete',

]);

				return	$request->user()->checkout($order->price_ids,	[

								'success_url'	=>	route('checkout-success').'?session_id={CHECKOUT_SESSION_ID}',

								'cancel_url'	=>	route('checkout-cancel'),

								'metadata'	=>	['order_id'	=>	$order->id],

]);

})->name('checkout');

As	you	can	see	in	the	example	above,	when	a	user	begins	the	checkout	process,	we	will	provide	all	of	the	cart	/
order's	associated	Stripe	price	identifiers	to	the	checkout	method.	Of	course,	your	application	is	responsible	for
associating	these	items	with	the	"shopping	cart"	or	order	as	a	customer	adds	them.	We	also	provide	the	order's

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 819

https://stripe.com/payments/checkout
https://stripe.com/docs/products-prices/how-products-and-prices-work

ID	to	the	Stripe	Checkout	session	via	the	metadata	array.	Finally,	we	have	added	the	CHECKOUT_SESSION_ID
template	variable	to	the	Checkout	success	route.	When	Stripe	redirects	customers	back	to	your	application,	this
template	variable	will	automatically	be	populated	with	the	Checkout	session	ID.

Next,	let's	build	the	Checkout	success	route.	This	is	the	route	that	users	will	be	redirected	to	after	their	purchase
has	been	completed	via	Stripe	Checkout.	Within	this	route,	we	can	retrieve	the	Stripe	Checkout	session	ID	and
the	associated	Stripe	Checkout	instance	in	order	to	access	our	provided	meta	data	and	update	our	customer's
order	accordingly:

use	App\Models\Order;

use	Illuminate\Http\Request;

use	Laravel\Cashier\Cashier;

Route::get('/checkout/success',	function	(Request	$request)	{

				$sessionId	=	$request->get('session_id');

				if	($sessionId	===	null)	{

								return;

				}

				$session	=	Cashier::stripe()->checkout->sessions->retrieve($sessionId);

				if	($session->payment_status	!==	'paid')	{

								return;

				}

				$orderId	=	$session['metadata']['order_id']	??	null;

				$order	=	Order::findOrFail($orderId);

				$order->update(['status'	=>	'completed']);

				return	view('checkout-success',	['order'	=>	$order]);

})->name('checkout-success');

Please	refer	to	Stripe's	documentation	for	more	information	on	the	data	contained	by	the	Checkout	session
object.

Selling	Subscriptions

[!NOTE]
Before	utilizing	Stripe	Checkout,	you	should	define	Products	with	fixed	prices	in	your	Stripe	dashboard.	In
addition,	you	should	configure	Cashier's	webhook	handling.

Offering	product	and	subscription	billing	via	your	application	can	be	intimidating.	However,	thanks	to	Cashier
and	Stripe	Checkout,	you	can	easily	build	modern,	robust	payment	integrations.

To	learn	how	to	sell	subscriptions	using	Cashier	and	Stripe	Checkout,	let's	consider	the	simple	scenario	of	a
subscription	service	with	a	basic	monthly	(price_basic_monthly)	and	yearly	(price_basic_yearly)	plan.	These
two	prices	could	be	grouped	under	a	"Basic"	product	(pro_basic)	in	our	Stripe	dashboard.	In	addition,	our
subscription	service	might	offer	an	Expert	plan	as	pro_expert.

First,	let's	discover	how	a	customer	can	subscribe	to	our	services.	Of	course,	you	can	imagine	the	customer
might	click	a	"subscribe"	button	for	the	Basic	plan	on	our	application's	pricing	page.	This	button	or	link	should
direct	the	user	to	a	Laravel	route	which	creates	the	Stripe	Checkout	session	for	their	chosen	plan:

use	Illuminate\Http\Request;

Route::get('/subscription-checkout',	function	(Request	$request)	{

				return	$request->user()

								->newSubscription('default',	'price_basic_monthly')

								->trialDays(5)

								->allowPromotionCodes()

								->checkout([

												'success_url'	=>	route('your-success-route'),

												'cancel_url'	=>	route('your-cancel-route'),

]);

});

As	you	can	see	in	the	example	above,	we	will	redirect	the	customer	to	a	Stripe	Checkout	session	which	will

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 820

https://stripe.com/docs/api/checkout/sessions/object
https://stripe.com/payments/checkout

allow	them	to	subscribe	to	our	Basic	plan.	After	a	successful	checkout	or	cancellation,	the	customer	will	be
redirected	back	to	the	URL	we	provided	to	the	checkout	method.	To	know	when	their	subscription	has	actually
started	(since	some	payment	methods	require	a	few	seconds	to	process),	we'll	also	need	to	configure	Cashier's
webhook	handling.

Now	that	customers	can	start	subscriptions,	we	need	to	restrict	certain	portions	of	our	application	so	that	only
subscribed	users	can	access	them.	Of	course,	we	can	always	determine	a	user's	current	subscription	status	via
the	subscribed	method	provided	by	Cashier's	Billable	trait:

@if	($user->subscribed())

				<p>You	are	subscribed.</p>

@endif

We	can	even	easily	determine	if	a	user	is	subscribed	to	specific	product	or	price:

@if	($user->subscribedToProduct('pro_basic'))

				<p>You	are	subscribed	to	our	Basic	product.</p>

@endif

@if	($user->subscribedToPrice('price_basic_monthly'))

				<p>You	are	subscribed	to	our	monthly	Basic	plan.</p>

@endif

Building	a	Subscribed	Middleware

For	convenience,	you	may	wish	to	create	a	middleware	which	determines	if	the	incoming	request	is	from	a
subscribed	user.	Once	this	middleware	has	been	defined,	you	may	easily	assign	it	to	a	route	to	prevent	users
that	are	not	subscribed	from	accessing	the	route:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	Subscribed

{

				/**

					*	Handle	an	incoming	request.

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								if	(!	$request->user()?->subscribed())	{

												//	Redirect	user	to	billing	page	and	ask	them	to	subscribe...

												return	redirect('/billing');

								}

								return	$next($request);

				}

}

Once	the	middleware	has	been	defined,	you	may	assign	it	to	a	route:

use	App\Http\Middleware\Subscribed;

Route::get('/dashboard',	function	()	{

				//	...

})->middleware([Subscribed::class]);

Allowing	Customers	to	Manage	Their	Billing	Plan

Of	course,	customers	may	want	to	change	their	subscription	plan	to	another	product	or	"tier".	The	easiest	way
to	allow	this	is	by	directing	customers	to	Stripe's	Customer	Billing	Portal,	which	provides	a	hosted	user
interface	that	allows	customers	to	download	invoices,	update	their	payment	method,	and	change	subscription
plans.

First,	define	a	link	or	button	within	your	application	that	directs	users	to	a	Laravel	route	which	we	will	utilize	to
initiate	a	Billing	Portal	session:

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 821

https://stripe.com/docs/no-code/customer-portal

				Billing

Next,	let's	define	the	route	that	initiates	a	Stripe	Customer	Billing	Portal	session	and	redirects	the	user	to	the
Portal.	The	redirectToBillingPortal	method	accepts	the	URL	that	users	should	be	returned	to	when	exiting	the
Portal:

use	Illuminate\Http\Request;

Route::get('/billing',	function	(Request	$request)	{

				return	$request->user()->redirectToBillingPortal(route('dashboard'));

})->middleware(['auth'])->name('billing');

[!NOTE]
As	long	as	you	have	configured	Cashier's	webhook	handling,	Cashier	will	automatically	keep	your
application's	Cashier-related	database	tables	in	sync	by	inspecting	the	incoming	webhooks	from	Stripe.	So,
for	example,	when	a	user	cancels	their	subscription	via	Stripe's	Customer	Billing	Portal,	Cashier	will
receive	the	corresponding	webhook	and	mark	the	subscription	as	"cancelled"	in	your	application's
database.

Customers

Retrieving	Customers

You	can	retrieve	a	customer	by	their	Stripe	ID	using	the	Cashier::findBillable	method.	This	method	will	return
an	instance	of	the	billable	model:

use	Laravel\Cashier\Cashier;

$user	=	Cashier::findBillable($stripeId);

Creating	Customers

Occasionally,	you	may	wish	to	create	a	Stripe	customer	without	beginning	a	subscription.	You	may	accomplish
this	using	the	createAsStripeCustomer	method:

$stripeCustomer	=	$user->createAsStripeCustomer();

Once	the	customer	has	been	created	in	Stripe,	you	may	begin	a	subscription	at	a	later	date.	You	may	provide	an
optional	$options	array	to	pass	in	any	additional	customer	creation	parameters	that	are	supported	by	the	Stripe
API:

$stripeCustomer	=	$user->createAsStripeCustomer($options);

You	may	use	the	asStripeCustomer	method	if	you	want	to	return	the	Stripe	customer	object	for	a	billable	model:

$stripeCustomer	=	$user->asStripeCustomer();

The	createOrGetStripeCustomer	method	may	be	used	if	you	would	like	to	retrieve	the	Stripe	customer	object	for
a	given	billable	model	but	are	not	sure	whether	the	billable	model	is	already	a	customer	within	Stripe.	This
method	will	create	a	new	customer	in	Stripe	if	one	does	not	already	exist:

$stripeCustomer	=	$user->createOrGetStripeCustomer();

Updating	Customers

Occasionally,	you	may	wish	to	update	the	Stripe	customer	directly	with	additional	information.	You	may
accomplish	this	using	the	updateStripeCustomer	method.	This	method	accepts	an	array	of	customer	update
options	supported	by	the	Stripe	API:

$stripeCustomer	=	$user->updateStripeCustomer($options);

Balances

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 822

https://stripe.com/docs/api/customers/create
https://stripe.com/docs/api/customers/update

Stripe	allows	you	to	credit	or	debit	a	customer's	"balance".	Later,	this	balance	will	be	credited	or	debited	on
new	invoices.	To	check	the	customer's	total	balance	you	may	use	the	balance	method	that	is	available	on	your
billable	model.	The	balance	method	will	return	a	formatted	string	representation	of	the	balance	in	the
customer's	currency:

$balance	=	$user->balance();

To	credit	a	customer's	balance,	you	may	provide	a	value	to	the	creditBalance	method.	If	you	wish,	you	may
also	provide	a	description:

$user->creditBalance(500,	'Premium	customer	top-up.');

Providing	a	value	to	the	debitBalance	method	will	debit	the	customer's	balance:

$user->debitBalance(300,	'Bad	usage	penalty.');

The	applyBalance	method	will	create	new	customer	balance	transactions	for	the	customer.	You	may	retrieve
these	transaction	records	using	the	balanceTransactions	method,	which	may	be	useful	in	order	to	provide	a	log
of	credits	and	debits	for	the	customer	to	review:

//	Retrieve	all	transactions...

$transactions	=	$user->balanceTransactions();

foreach	($transactions	as	$transaction)	{

				//	Transaction	amount...

				$amount	=	$transaction->amount();	//	$2.31

				//	Retrieve	the	related	invoice	when	available...

				$invoice	=	$transaction->invoice();

}

Tax	IDs

Cashier	offers	an	easy	way	to	manage	a	customer's	tax	IDs.	For	example,	the	taxIds	method	may	be	used	to
retrieve	all	of	the	tax	IDs	that	are	assigned	to	a	customer	as	a	collection:

$taxIds	=	$user->taxIds();

You	can	also	retrieve	a	specific	tax	ID	for	a	customer	by	its	identifier:

$taxId	=	$user->findTaxId('txi_belgium');

You	may	create	a	new	Tax	ID	by	providing	a	valid	type	and	value	to	the	createTaxId	method:

$taxId	=	$user->createTaxId('eu_vat',	'BE0123456789');

The	createTaxId	method	will	immediately	add	the	VAT	ID	to	the	customer's	account.	Verification	of	VAT	IDs	is
also	done	by	Stripe;	however,	this	is	an	asynchronous	process.	You	can	be	notified	of	verification	updates	by
subscribing	to	the	customer.tax_id.updated	webhook	event	and	inspecting	the	VAT	IDs	verification	parameter.
For	more	information	on	handling	webhooks,	please	consult	the	documentation	on	defining	webhook	handlers.

You	may	delete	a	tax	ID	using	the	deleteTaxId	method:

$user->deleteTaxId('txi_belgium');

Syncing	Customer	Data	With	Stripe

Typically,	when	your	application's	users	update	their	name,	email	address,	or	other	information	that	is	also
stored	by	Stripe,	you	should	inform	Stripe	of	the	updates.	By	doing	so,	Stripe's	copy	of	the	information	will	be
in	sync	with	your	application's.

To	automate	this,	you	may	define	an	event	listener	on	your	billable	model	that	reacts	to	the	model's	updated
event.	Then,	within	your	event	listener,	you	may	invoke	the	syncStripeCustomerDetails	method	on	the	model:

use	App\Models\User;

use	function	Illuminate\Events\queueable;

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 823

https://stripe.com/docs/api/customer_tax_ids/object
https://stripe.com/docs/api/customer_tax_ids/object#tax_id_object-type
https://stripe.com/docs/invoicing/customer/tax-ids#validation
https://stripe.com/docs/api/customer_tax_ids/object#tax_id_object-verification

/**

	*	The	"booted"	method	of	the	model.

	*/

protected	static	function	booted():	void

{

				static::updated(queueable(function	(User	$customer)	{

								if	($customer->hasStripeId())	{

												$customer->syncStripeCustomerDetails();

								}

				}));

}

Now,	every	time	your	customer	model	is	updated,	its	information	will	be	synced	with	Stripe.	For	convenience,
Cashier	will	automatically	sync	your	customer's	information	with	Stripe	on	the	initial	creation	of	the	customer.

You	may	customize	the	columns	used	for	syncing	customer	information	to	Stripe	by	overriding	a	variety	of
methods	provided	by	Cashier.	For	example,	you	may	override	the	stripeName	method	to	customize	the	attribute
that	should	be	considered	the	customer's	"name"	when	Cashier	syncs	customer	information	to	Stripe:

/**

	*	Get	the	customer	name	that	should	be	synced	to	Stripe.

	*/

public	function	stripeName():	string|null

{

				return	$this->company_name;

}

Similarly,	you	may	override	the	stripeEmail,	stripePhone,	stripeAddress,	and	stripePreferredLocales	methods.
These	methods	will	sync	information	to	their	corresponding	customer	parameters	when	updating	the	Stripe
customer	object.	If	you	wish	to	take	total	control	over	the	customer	information	sync	process,	you	may	override
the	syncStripeCustomerDetails	method.

Billing	Portal

Stripe	offers	an	easy	way	to	set	up	a	billing	portal	so	that	your	customer	can	manage	their	subscription,
payment	methods,	and	view	their	billing	history.	You	can	redirect	your	users	to	the	billing	portal	by	invoking
the	redirectToBillingPortal	method	on	the	billable	model	from	a	controller	or	route:

use	Illuminate\Http\Request;

Route::get('/billing-portal',	function	(Request	$request)	{

				return	$request->user()->redirectToBillingPortal();

});

By	default,	when	the	user	is	finished	managing	their	subscription,	they	will	be	able	to	return	to	the	home	route	of
your	application	via	a	link	within	the	Stripe	billing	portal.	You	may	provide	a	custom	URL	that	the	user	should
return	to	by	passing	the	URL	as	an	argument	to	the	redirectToBillingPortal	method:

use	Illuminate\Http\Request;

Route::get('/billing-portal',	function	(Request	$request)	{

				return	$request->user()->redirectToBillingPortal(route('billing'));

});

If	you	would	like	to	generate	the	URL	to	the	billing	portal	without	generating	an	HTTP	redirect	response,	you
may	invoke	the	billingPortalUrl	method:

$url	=	$request->user()->billingPortalUrl(route('billing'));

Payment	Methods

Storing	Payment	Methods

In	order	to	create	subscriptions	or	perform	"one-off"	charges	with	Stripe,	you	will	need	to	store	a	payment
method	and	retrieve	its	identifier	from	Stripe.	The	approach	used	to	accomplish	this	differs	based	on	whether
you	plan	to	use	the	payment	method	for	subscriptions	or	single	charges,	so	we	will	examine	both	below.

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 824

https://stripe.com/docs/api/customers/update
https://stripe.com/docs/billing/subscriptions/customer-portal

Payment	Methods	for	Subscriptions

When	storing	a	customer's	credit	card	information	for	future	use	by	a	subscription,	the	Stripe	"Setup	Intents"
API	must	be	used	to	securely	gather	the	customer's	payment	method	details.	A	"Setup	Intent"	indicates	to	Stripe
the	intention	to	charge	a	customer's	payment	method.	Cashier's	Billable	trait	includes	the	createSetupIntent
method	to	easily	create	a	new	Setup	Intent.	You	should	invoke	this	method	from	the	route	or	controller	that	will
render	the	form	which	gathers	your	customer's	payment	method	details:

return	view('update-payment-method',	[

				'intent'	=>	$user->createSetupIntent()

]);

After	you	have	created	the	Setup	Intent	and	passed	it	to	the	view,	you	should	attach	its	secret	to	the	element	that
will	gather	the	payment	method.	For	example,	consider	this	"update	payment	method"	form:

<input	id="card-holder-name"	type="text">

<!--	Stripe	Elements	Placeholder	-->

<div	id="card-element"></div>

<button	id="card-button"	data-secret="{{	$intent->client_secret	}}">

				Update	Payment	Method

</button>

Next,	the	Stripe.js	library	may	be	used	to	attach	a	Stripe	Element	to	the	form	and	securely	gather	the	customer's
payment	details:

<script	src="https://js.stripe.com/v3/"></script>

<script>

				const	stripe	=	Stripe('stripe-public-key');

				const	elements	=	stripe.elements();

				const	cardElement	=	elements.create('card');

				cardElement.mount('#card-element');

</script>

Next,	the	card	can	be	verified	and	a	secure	"payment	method	identifier"	can	be	retrieved	from	Stripe	using
Stripe's	confirmCardSetup	method:

const	cardHolderName	=	document.getElementById('card-holder-name');

const	cardButton	=	document.getElementById('card-button');

const	clientSecret	=	cardButton.dataset.secret;

cardButton.addEventListener('click',	async	(e)	=>	{

				const	{	setupIntent,	error	}	=	await	stripe.confirmCardSetup(

								clientSecret,	{

												payment_method:	{

																card:	cardElement,

																billing_details:	{	name:	cardHolderName.value	}

												}

								}

);

				if	(error)	{

								//	Display	"error.message"	to	the	user...

				}	else	{

								//	The	card	has	been	verified	successfully...

				}

});

After	the	card	has	been	verified	by	Stripe,	you	may	pass	the	resulting	setupIntent.payment_method	identifier	to
your	Laravel	application,	where	it	can	be	attached	to	the	customer.	The	payment	method	can	either	be	added	as
a	new	payment	method	or	used	to	update	the	default	payment	method.	You	can	also	immediately	use	the
payment	method	identifier	to	create	a	new	subscription.

[!NOTE]
If	you	would	like	more	information	about	Setup	Intents	and	gathering	customer	payment	details	please
review	this	overview	provided	by	Stripe.

Payment	Methods	for	Single	Charges

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 825

https://stripe.com/docs/stripe-js
https://stripe.com/docs/js/setup_intents/confirm_card_setup
https://stripe.com/docs/payments/save-and-reuse#php

Of	course,	when	making	a	single	charge	against	a	customer's	payment	method,	we	will	only	need	to	use	a
payment	method	identifier	once.	Due	to	Stripe	limitations,	you	may	not	use	the	stored	default	payment	method
of	a	customer	for	single	charges.	You	must	allow	the	customer	to	enter	their	payment	method	details	using	the
Stripe.js	library.	For	example,	consider	the	following	form:

<input	id="card-holder-name"	type="text">

<!--	Stripe	Elements	Placeholder	-->

<div	id="card-element"></div>

<button	id="card-button">

				Process	Payment

</button>

After	defining	such	a	form,	the	Stripe.js	library	may	be	used	to	attach	a	Stripe	Element	to	the	form	and	securely
gather	the	customer's	payment	details:

<script	src="https://js.stripe.com/v3/"></script>

<script>

				const	stripe	=	Stripe('stripe-public-key');

				const	elements	=	stripe.elements();

				const	cardElement	=	elements.create('card');

				cardElement.mount('#card-element');

</script>

Next,	the	card	can	be	verified	and	a	secure	"payment	method	identifier"	can	be	retrieved	from	Stripe	using
Stripe's	createPaymentMethod	method:

const	cardHolderName	=	document.getElementById('card-holder-name');

const	cardButton	=	document.getElementById('card-button');

cardButton.addEventListener('click',	async	(e)	=>	{

				const	{	paymentMethod,	error	}	=	await	stripe.createPaymentMethod(

								'card',	cardElement,	{

												billing_details:	{	name:	cardHolderName.value	}

								}

);

				if	(error)	{

								//	Display	"error.message"	to	the	user...

				}	else	{

								//	The	card	has	been	verified	successfully...

				}

});

If	the	card	is	verified	successfully,	you	may	pass	the	paymentMethod.id	to	your	Laravel	application	and	process	a
single	charge.

Retrieving	Payment	Methods

The	paymentMethods	method	on	the	billable	model	instance	returns	a	collection	of	
Laravel\Cashier\PaymentMethod	instances:

$paymentMethods	=	$user->paymentMethods();

By	default,	this	method	will	return	payment	methods	of	every	type.	To	retrieve	payment	methods	of	a	specific
type,	you	may	pass	the	type	as	an	argument	to	the	method:

$paymentMethods	=	$user->paymentMethods('sepa_debit');

To	retrieve	the	customer's	default	payment	method,	the	defaultPaymentMethod	method	may	be	used:

$paymentMethod	=	$user->defaultPaymentMethod();

You	can	retrieve	a	specific	payment	method	that	is	attached	to	the	billable	model	using	the	findPaymentMethod
method:

$paymentMethod	=	$user->findPaymentMethod($paymentMethodId);

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 826

https://stripe.com/docs/stripe-js
https://stripe.com/docs/stripe-js/reference#stripe-create-payment-method

Payment	Method	Presence

To	determine	if	a	billable	model	has	a	default	payment	method	attached	to	their	account,	invoke	the	
hasDefaultPaymentMethod	method:

if	($user->hasDefaultPaymentMethod())	{

				//	...

}

You	may	use	the	hasPaymentMethod	method	to	determine	if	a	billable	model	has	at	least	one	payment	method
attached	to	their	account:

if	($user->hasPaymentMethod())	{

				//	...

}

This	method	will	determine	if	the	billable	model	has	any	payment	method	at	all.	To	determine	if	a	payment
method	of	a	specific	type	exists	for	the	model,	you	may	pass	the	type	as	an	argument	to	the	method:

if	($user->hasPaymentMethod('sepa_debit'))	{

				//	...

}

Updating	the	Default	Payment	Method

The	updateDefaultPaymentMethod	method	may	be	used	to	update	a	customer's	default	payment	method
information.	This	method	accepts	a	Stripe	payment	method	identifier	and	will	assign	the	new	payment	method
as	the	default	billing	payment	method:

$user->updateDefaultPaymentMethod($paymentMethod);

To	sync	your	default	payment	method	information	with	the	customer's	default	payment	method	information	in
Stripe,	you	may	use	the	updateDefaultPaymentMethodFromStripe	method:

$user->updateDefaultPaymentMethodFromStripe();

[!WARNING]
The	default	payment	method	on	a	customer	can	only	be	used	for	invoicing	and	creating	new	subscriptions.
Due	to	limitations	imposed	by	Stripe,	it	may	not	be	used	for	single	charges.

Adding	Payment	Methods

To	add	a	new	payment	method,	you	may	call	the	addPaymentMethod	method	on	the	billable	model,	passing	the
payment	method	identifier:

$user->addPaymentMethod($paymentMethod);

[!NOTE]
To	learn	how	to	retrieve	payment	method	identifiers	please	review	the	payment	method	storage
documentation.

Deleting	Payment	Methods

To	delete	a	payment	method,	you	may	call	the	delete	method	on	the	Laravel\Cashier\PaymentMethod	instance
you	wish	to	delete:

$paymentMethod->delete();

The	deletePaymentMethod	method	will	delete	a	specific	payment	method	from	the	billable	model:

$user->deletePaymentMethod('pm_visa');

The	deletePaymentMethods	method	will	delete	all	of	the	payment	method	information	for	the	billable	model:

$user->deletePaymentMethods();

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 827

By	default,	this	method	will	delete	payment	methods	of	every	type.	To	delete	payment	methods	of	a	specific
type	you	can	pass	the	type	as	an	argument	to	the	method:

$user->deletePaymentMethods('sepa_debit');

[!WARNING]
If	a	user	has	an	active	subscription,	your	application	should	not	allow	them	to	delete	their	default	payment
method.

Subscriptions

Subscriptions	provide	a	way	to	set	up	recurring	payments	for	your	customers.	Stripe	subscriptions	managed	by
Cashier	provide	support	for	multiple	subscription	prices,	subscription	quantities,	trials,	and	more.

Creating	Subscriptions

To	create	a	subscription,	first	retrieve	an	instance	of	your	billable	model,	which	typically	will	be	an	instance	of	
App\Models\User.	Once	you	have	retrieved	the	model	instance,	you	may	use	the	newSubscription	method	to
create	the	model's	subscription:

use	Illuminate\Http\Request;

Route::post('/user/subscribe',	function	(Request	$request)	{

				$request->user()->newSubscription(

								'default',	'price_monthly'

)->create($request->paymentMethodId);

				//	...

});

The	first	argument	passed	to	the	newSubscription	method	should	be	the	internal	type	of	the	subscription.	If	your
application	only	offers	a	single	subscription,	you	might	call	this	default	or	primary.	This	subscription	type	is
only	for	internal	application	usage	and	is	not	meant	to	be	shown	to	users.	In	addition,	it	should	not	contain
spaces	and	it	should	never	be	changed	after	creating	the	subscription.	The	second	argument	is	the	specific	price
the	user	is	subscribing	to.	This	value	should	correspond	to	the	price's	identifier	in	Stripe.

The	create	method,	which	accepts	a	Stripe	payment	method	identifier	or	Stripe	PaymentMethod	object,	will	begin
the	subscription	as	well	as	update	your	database	with	the	billable	model's	Stripe	customer	ID	and	other	relevant
billing	information.

[!WARNING]
Passing	a	payment	method	identifier	directly	to	the	create	subscription	method	will	also	automatically	add
it	to	the	user's	stored	payment	methods.

Collecting	Recurring	Payments	via	Invoice	Emails

Instead	of	collecting	a	customer's	recurring	payments	automatically,	you	may	instruct	Stripe	to	email	an	invoice
to	the	customer	each	time	their	recurring	payment	is	due.	Then,	the	customer	may	manually	pay	the	invoice
once	they	receive	it.	The	customer	does	not	need	to	provide	a	payment	method	up	front	when	collecting
recurring	payments	via	invoices:

$user->newSubscription('default',	'price_monthly')->createAndSendInvoice();

The	amount	of	time	a	customer	has	to	pay	their	invoice	before	their	subscription	is	cancelled	is	determined	by
the	days_until_due	option.	By	default,	this	is	30	days;	however,	you	may	provide	a	specific	value	for	this	option
if	you	wish:

$user->newSubscription('default',	'price_monthly')->createAndSendInvoice([],	[

				'days_until_due'	=>	30

]);

Quantities

If	you	would	like	to	set	a	specific	quantity	for	the	price	when	creating	the	subscription,	you	should	invoke	the	

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 828

https://stripe.com/docs/billing/subscriptions/quantities

quantity	method	on	the	subscription	builder	before	creating	the	subscription:

$user->newSubscription('default',	'price_monthly')

					->quantity(5)

					->create($paymentMethod);

Additional	Details

If	you	would	like	to	specify	additional	customer	or	subscription	options	supported	by	Stripe,	you	may	do	so	by
passing	them	as	the	second	and	third	arguments	to	the	create	method:

$user->newSubscription('default',	'price_monthly')->create($paymentMethod,	[

				'email'	=>	$email,

],	[

				'metadata'	=>	['note'	=>	'Some	extra	information.'],

]);

Coupons

If	you	would	like	to	apply	a	coupon	when	creating	the	subscription,	you	may	use	the	withCoupon	method:

$user->newSubscription('default',	'price_monthly')

					->withCoupon('code')

					->create($paymentMethod);

Or,	if	you	would	like	to	apply	a	Stripe	promotion	code,	you	may	use	the	withPromotionCode	method:

$user->newSubscription('default',	'price_monthly')

					->withPromotionCode('promo_code_id')

					->create($paymentMethod);

The	given	promotion	code	ID	should	be	the	Stripe	API	ID	assigned	to	the	promotion	code	and	not	the	customer
facing	promotion	code.	If	you	need	to	find	a	promotion	code	ID	based	on	a	given	customer	facing	promotion
code,	you	may	use	the	findPromotionCode	method:

//	Find	a	promotion	code	ID	by	its	customer	facing	code...

$promotionCode	=	$user->findPromotionCode('SUMMERSALE');

//	Find	an	active	promotion	code	ID	by	its	customer	facing	code...

$promotionCode	=	$user->findActivePromotionCode('SUMMERSALE');

In	the	example	above,	the	returned	$promotionCode	object	is	an	instance	of	Laravel\Cashier\PromotionCode.	This
class	decorates	an	underlying	Stripe\PromotionCode	object.	You	can	retrieve	the	coupon	related	to	the
promotion	code	by	invoking	the	coupon	method:

$coupon	=	$user->findPromotionCode('SUMMERSALE')->coupon();

The	coupon	instance	allows	you	to	determine	the	discount	amount	and	whether	the	coupon	represents	a	fixed
discount	or	percentage	based	discount:

if	($coupon->isPercentage())	{

				return	$coupon->percentOff().'%';	//	21.5%

}	else	{

				return	$coupon->amountOff();	//	$5.99

}

You	can	also	retrieve	the	discounts	that	are	currently	applied	to	a	customer	or	subscription:

$discount	=	$billable->discount();

$discount	=	$subscription->discount();

The	returned	Laravel\Cashier\Discount	instances	decorate	an	underlying	Stripe\Discount	object	instance.	You
may	retrieve	the	coupon	related	to	this	discount	by	invoking	the	coupon	method:

$coupon	=	$subscription->discount()->coupon();

If	you	would	like	to	apply	a	new	coupon	or	promotion	code	to	a	customer	or	subscription,	you	may	do	so	via
the	applyCoupon	or	applyPromotionCode	methods:

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 829

https://stripe.com/docs/api/customers/create
https://stripe.com/docs/api/subscriptions/create
https://stripe.com/docs/billing/subscriptions/discounts/codes

$billable->applyCoupon('coupon_id');

$billable->applyPromotionCode('promotion_code_id');

$subscription->applyCoupon('coupon_id');

$subscription->applyPromotionCode('promotion_code_id');

Remember,	you	should	use	the	Stripe	API	ID	assigned	to	the	promotion	code	and	not	the	customer	facing
promotion	code.	Only	one	coupon	or	promotion	code	can	be	applied	to	a	customer	or	subscription	at	a	given
time.

For	more	info	on	this	subject,	please	consult	the	Stripe	documentation	regarding	coupons	and	promotion	codes.

Adding	Subscriptions

If	you	would	like	to	add	a	subscription	to	a	customer	who	already	has	a	default	payment	method	you	may
invoke	the	add	method	on	the	subscription	builder:

use	App\Models\User;

$user	=	User::find(1);

$user->newSubscription('default',	'price_monthly')->add();

Creating	Subscriptions	From	the	Stripe	Dashboard

You	may	also	create	subscriptions	from	the	Stripe	dashboard	itself.	When	doing	so,	Cashier	will	sync	newly
added	subscriptions	and	assign	them	a	type	of	default.	To	customize	the	subscription	type	that	is	assigned	to
dashboard	created	subscriptions,	define	webhook	event	handlers.

In	addition,	you	may	only	create	one	type	of	subscription	via	the	Stripe	dashboard.	If	your	application	offers
multiple	subscriptions	that	use	different	types,	only	one	type	of	subscription	may	be	added	through	the	Stripe
dashboard.

Finally,	you	should	always	make	sure	to	only	add	one	active	subscription	per	type	of	subscription	offered	by
your	application.	If	a	customer	has	two	default	subscriptions,	only	the	most	recently	added	subscription	will	be
used	by	Cashier	even	though	both	would	be	synced	with	your	application's	database.

Checking	Subscription	Status

Once	a	customer	is	subscribed	to	your	application,	you	may	easily	check	their	subscription	status	using	a
variety	of	convenient	methods.	First,	the	subscribed	method	returns	true	if	the	customer	has	an	active
subscription,	even	if	the	subscription	is	currently	within	its	trial	period.	The	subscribed	method	accepts	the	type
of	the	subscription	as	its	first	argument:

if	($user->subscribed('default'))	{

				//	...

}

The	subscribed	method	also	makes	a	great	candidate	for	a	route	middleware,	allowing	you	to	filter	access	to
routes	and	controllers	based	on	the	user's	subscription	status:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	EnsureUserIsSubscribed

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 830

https://stripe.com/docs/billing/subscriptions/coupons
https://stripe.com/docs/billing/subscriptions/coupons/codes

								if	($request->user()	&&	!	$request->user()->subscribed('default'))	{

												//	This	user	is	not	a	paying	customer...

												return	redirect('billing');

								}

								return	$next($request);

				}

}

If	you	would	like	to	determine	if	a	user	is	still	within	their	trial	period,	you	may	use	the	onTrial	method.	This
method	can	be	useful	for	determining	if	you	should	display	a	warning	to	the	user	that	they	are	still	on	their	trial
period:

if	($user->subscription('default')->onTrial())	{

				//	...

}

The	subscribedToProduct	method	may	be	used	to	determine	if	the	user	is	subscribed	to	a	given	product	based	on
a	given	Stripe	product's	identifier.	In	Stripe,	products	are	collections	of	prices.	In	this	example,	we	will
determine	if	the	user's	default	subscription	is	actively	subscribed	to	the	application's	"premium"	product.	The
given	Stripe	product	identifier	should	correspond	to	one	of	your	product's	identifiers	in	the	Stripe	dashboard:

if	($user->subscribedToProduct('prod_premium',	'default'))	{

				//	...

}

By	passing	an	array	to	the	subscribedToProduct	method,	you	may	determine	if	the	user's	default	subscription	is
actively	subscribed	to	the	application's	"basic"	or	"premium"	product:

if	($user->subscribedToProduct(['prod_basic',	'prod_premium'],	'default'))	{

				//	...

}

The	subscribedToPrice	method	may	be	used	to	determine	if	a	customer's	subscription	corresponds	to	a	given
price	ID:

if	($user->subscribedToPrice('price_basic_monthly',	'default'))	{

				//	...

}

The	recurring	method	may	be	used	to	determine	if	the	user	is	currently	subscribed	and	is	no	longer	within	their
trial	period:

if	($user->subscription('default')->recurring())	{

				//	...

}

[!WARNING]
If	a	user	has	two	subscriptions	with	the	same	type,	the	most	recent	subscription	will	always	be	returned	by
the	subscription	method.	For	example,	a	user	might	have	two	subscription	records	with	the	type	of	
default;	however,	one	of	the	subscriptions	may	be	an	old,	expired	subscription,	while	the	other	is	the
current,	active	subscription.	The	most	recent	subscription	will	always	be	returned	while	older	subscriptions
are	kept	in	the	database	for	historical	review.

Canceled	Subscription	Status

To	determine	if	the	user	was	once	an	active	subscriber	but	has	canceled	their	subscription,	you	may	use	the	
canceled	method:

if	($user->subscription('default')->canceled())	{

				//	...

}

You	may	also	determine	if	a	user	has	canceled	their	subscription	but	are	still	on	their	"grace	period"	until	the
subscription	fully	expires.	For	example,	if	a	user	cancels	a	subscription	on	March	5th	that	was	originally
scheduled	to	expire	on	March	10th,	the	user	is	on	their	"grace	period"	until	March	10th.	Note	that	the	
subscribed	method	still	returns	true	during	this	time:

if	($user->subscription('default')->onGracePeriod())	{

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 831

				//	...

}

To	determine	if	the	user	has	canceled	their	subscription	and	is	no	longer	within	their	"grace	period",	you	may
use	the	ended	method:

if	($user->subscription('default')->ended())	{

				//	...

}

Incomplete	and	Past	Due	Status

If	a	subscription	requires	a	secondary	payment	action	after	creation	the	subscription	will	be	marked	as	
incomplete.	Subscription	statuses	are	stored	in	the	stripe_status	column	of	Cashier's	subscriptions	database
table.

Similarly,	if	a	secondary	payment	action	is	required	when	swapping	prices	the	subscription	will	be	marked	as	
past_due.	When	your	subscription	is	in	either	of	these	states	it	will	not	be	active	until	the	customer	has
confirmed	their	payment.	Determining	if	a	subscription	has	an	incomplete	payment	may	be	accomplished	using
the	hasIncompletePayment	method	on	the	billable	model	or	a	subscription	instance:

if	($user->hasIncompletePayment('default'))	{

				//	...

}

if	($user->subscription('default')->hasIncompletePayment())	{

				//	...

}

When	a	subscription	has	an	incomplete	payment,	you	should	direct	the	user	to	Cashier's	payment	confirmation
page,	passing	the	latestPayment	identifier.	You	may	use	the	latestPayment	method	available	on	subscription
instance	to	retrieve	this	identifier:

latestPayment()->id)	}}">

				Please	confirm	your	payment.

If	you	would	like	the	subscription	to	still	be	considered	active	when	it's	in	a	past_due	or	incomplete	state,	you
may	use	the	keepPastDueSubscriptionsActive	and	keepIncompleteSubscriptionsActive	methods	provided	by
Cashier.	Typically,	these	methods	should	be	called	in	the	register	method	of	your	
App\Providers\AppServiceProvider:

use	Laravel\Cashier\Cashier;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				Cashier::keepPastDueSubscriptionsActive();

				Cashier::keepIncompleteSubscriptionsActive();

}

[!WARNING]
When	a	subscription	is	in	an	incomplete	state	it	cannot	be	changed	until	the	payment	is	confirmed.
Therefore,	the	swap	and	updateQuantity	methods	will	throw	an	exception	when	the	subscription	is	in	an	
incomplete	state.

Subscription	Scopes

Most	subscription	states	are	also	available	as	query	scopes	so	that	you	may	easily	query	your	database	for
subscriptions	that	are	in	a	given	state:

//	Get	all	active	subscriptions...

$subscriptions	=	Subscription::query()->active()->get();

//	Get	all	of	the	canceled	subscriptions	for	a	user...

$subscriptions	=	$user->subscriptions()->canceled()->get();

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 832

A	complete	list	of	available	scopes	is	available	below:

Subscription::query()->active();

Subscription::query()->canceled();

Subscription::query()->ended();

Subscription::query()->incomplete();

Subscription::query()->notCanceled();

Subscription::query()->notOnGracePeriod();

Subscription::query()->notOnTrial();

Subscription::query()->onGracePeriod();

Subscription::query()->onTrial();

Subscription::query()->pastDue();

Subscription::query()->recurring();

Changing	Prices

After	a	customer	is	subscribed	to	your	application,	they	may	occasionally	want	to	change	to	a	new	subscription
price.	To	swap	a	customer	to	a	new	price,	pass	the	Stripe	price's	identifier	to	the	swap	method.	When	swapping
prices,	it	is	assumed	that	the	user	would	like	to	re-activate	their	subscription	if	it	was	previously	canceled.	The
given	price	identifier	should	correspond	to	a	Stripe	price	identifier	available	in	the	Stripe	dashboard:

use	App\Models\User;

$user	=	App\Models\User::find(1);

$user->subscription('default')->swap('price_yearly');

If	the	customer	is	on	trial,	the	trial	period	will	be	maintained.	Additionally,	if	a	"quantity"	exists	for	the
subscription,	that	quantity	will	also	be	maintained.

If	you	would	like	to	swap	prices	and	cancel	any	trial	period	the	customer	is	currently	on,	you	may	invoke	the	
skipTrial	method:

$user->subscription('default')

								->skipTrial()

								->swap('price_yearly');

If	you	would	like	to	swap	prices	and	immediately	invoice	the	customer	instead	of	waiting	for	their	next	billing
cycle,	you	may	use	the	swapAndInvoice	method:

$user	=	User::find(1);

$user->subscription('default')->swapAndInvoice('price_yearly');

Prorations

By	default,	Stripe	prorates	charges	when	swapping	between	prices.	The	noProrate	method	may	be	used	to
update	the	subscription's	price	without	prorating	the	charges:

$user->subscription('default')->noProrate()->swap('price_yearly');

For	more	information	on	subscription	proration,	consult	the	Stripe	documentation.

[!WARNING]
Executing	the	noProrate	method	before	the	swapAndInvoice	method	will	have	no	effect	on	proration.	An
invoice	will	always	be	issued.

Subscription	Quantity

Sometimes	subscriptions	are	affected	by	"quantity".	For	example,	a	project	management	application	might
charge	$10	per	month	per	project.	You	may	use	the	incrementQuantity	and	decrementQuantity	methods	to	easily
increment	or	decrement	your	subscription	quantity:

use	App\Models\User;

$user	=	User::find(1);

$user->subscription('default')->incrementQuantity();

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 833

https://stripe.com/docs/billing/subscriptions/prorations

//	Add	five	to	the	subscription's	current	quantity...

$user->subscription('default')->incrementQuantity(5);

$user->subscription('default')->decrementQuantity();

//	Subtract	five	from	the	subscription's	current	quantity...

$user->subscription('default')->decrementQuantity(5);

Alternatively,	you	may	set	a	specific	quantity	using	the	updateQuantity	method:

$user->subscription('default')->updateQuantity(10);

The	noProrate	method	may	be	used	to	update	the	subscription's	quantity	without	prorating	the	charges:

$user->subscription('default')->noProrate()->updateQuantity(10);

For	more	information	on	subscription	quantities,	consult	the	Stripe	documentation.

Quantities	for	Subscriptions	With	Multiple	Products

If	your	subscription	is	a	subscription	with	multiple	products,	you	should	pass	the	ID	of	the	price	whose	quantity
you	wish	to	increment	or	decrement	as	the	second	argument	to	the	increment	/	decrement	methods:

$user->subscription('default')->incrementQuantity(1,	'price_chat');

Subscriptions	With	Multiple	Products

Subscription	with	multiple	products	allow	you	to	assign	multiple	billing	products	to	a	single	subscription.	For
example,	imagine	you	are	building	a	customer	service	"helpdesk"	application	that	has	a	base	subscription	price
of	$10	per	month	but	offers	a	live	chat	add-on	product	for	an	additional	$15	per	month.	Information	for
subscriptions	with	multiple	products	is	stored	in	Cashier's	subscription_items	database	table.

You	may	specify	multiple	products	for	a	given	subscription	by	passing	an	array	of	prices	as	the	second
argument	to	the	newSubscription	method:

use	Illuminate\Http\Request;

Route::post('/user/subscribe',	function	(Request	$request)	{

				$request->user()->newSubscription('default',	[

								'price_monthly',

								'price_chat',

])->create($request->paymentMethodId);

				//	...

});

In	the	example	above,	the	customer	will	have	two	prices	attached	to	their	default	subscription.	Both	prices	will
be	charged	on	their	respective	billing	intervals.	If	necessary,	you	may	use	the	quantity	method	to	indicate	a
specific	quantity	for	each	price:

$user	=	User::find(1);

$user->newSubscription('default',	['price_monthly',	'price_chat'])

				->quantity(5,	'price_chat')

				->create($paymentMethod);

If	you	would	like	to	add	another	price	to	an	existing	subscription,	you	may	invoke	the	subscription's	addPrice
method:

$user	=	User::find(1);

$user->subscription('default')->addPrice('price_chat');

The	example	above	will	add	the	new	price	and	the	customer	will	be	billed	for	it	on	their	next	billing	cycle.	If
you	would	like	to	bill	the	customer	immediately	you	may	use	the	addPriceAndInvoice	method:

$user->subscription('default')->addPriceAndInvoice('price_chat');

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 834

https://stripe.com/docs/subscriptions/quantities
https://stripe.com/docs/billing/subscriptions/multiple-products

If	you	would	like	to	add	a	price	with	a	specific	quantity,	you	can	pass	the	quantity	as	the	second	argument	of
the	addPrice	or	addPriceAndInvoice	methods:

$user	=	User::find(1);

$user->subscription('default')->addPrice('price_chat',	5);

You	may	remove	prices	from	subscriptions	using	the	removePrice	method:

$user->subscription('default')->removePrice('price_chat');

[!WARNING]
You	may	not	remove	the	last	price	on	a	subscription.	Instead,	you	should	simply	cancel	the	subscription.

Swapping	Prices

You	may	also	change	the	prices	attached	to	a	subscription	with	multiple	products.	For	example,	imagine	a
customer	has	a	price_basic	subscription	with	a	price_chat	add-on	product	and	you	want	to	upgrade	the
customer	from	the	price_basic	to	the	price_pro	price:

use	App\Models\User;

$user	=	User::find(1);

$user->subscription('default')->swap(['price_pro',	'price_chat']);

When	executing	the	example	above,	the	underlying	subscription	item	with	the	price_basic	is	deleted	and	the
one	with	the	price_chat	is	preserved.	Additionally,	a	new	subscription	item	for	the	price_pro	is	created.

You	can	also	specify	subscription	item	options	by	passing	an	array	of	key	/	value	pairs	to	the	swap	method.	For
example,	you	may	need	to	specify	the	subscription	price	quantities:

$user	=	User::find(1);

$user->subscription('default')->swap([

				'price_pro'	=>	['quantity'	=>	5],

				'price_chat'

]);

If	you	want	to	swap	a	single	price	on	a	subscription,	you	may	do	so	using	the	swap	method	on	the	subscription
item	itself.	This	approach	is	particularly	useful	if	you	would	like	to	preserve	all	of	the	existing	metadata	on	the
subscription's	other	prices:

$user	=	User::find(1);

$user->subscription('default')

								->findItemOrFail('price_basic')

								->swap('price_pro');

Proration

By	default,	Stripe	will	prorate	charges	when	adding	or	removing	prices	from	a	subscription	with	multiple
products.	If	you	would	like	to	make	a	price	adjustment	without	proration,	you	should	chain	the	noProrate
method	onto	your	price	operation:

$user->subscription('default')->noProrate()->removePrice('price_chat');

Quantities

If	you	would	like	to	update	quantities	on	individual	subscription	prices,	you	may	do	so	using	the	existing
quantity	methods	by	passing	the	ID	of	the	price	as	an	additional	argument	to	the	method:

$user	=	User::find(1);

$user->subscription('default')->incrementQuantity(5,	'price_chat');

$user->subscription('default')->decrementQuantity(3,	'price_chat');

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 835

$user->subscription('default')->updateQuantity(10,	'price_chat');

[!WARNING]
When	a	subscription	has	multiple	prices	the	stripe_price	and	quantity	attributes	on	the	Subscription
model	will	be	null.	To	access	the	individual	price	attributes,	you	should	use	the	items	relationship
available	on	the	Subscription	model.

Subscription	Items

When	a	subscription	has	multiple	prices,	it	will	have	multiple	subscription	"items"	stored	in	your	database's	
subscription_items	table.	You	may	access	these	via	the	items	relationship	on	the	subscription:

use	App\Models\User;

$user	=	User::find(1);

$subscriptionItem	=	$user->subscription('default')->items->first();

//	Retrieve	the	Stripe	price	and	quantity	for	a	specific	item...

$stripePrice	=	$subscriptionItem->stripe_price;

$quantity	=	$subscriptionItem->quantity;

You	can	also	retrieve	a	specific	price	using	the	findItemOrFail	method:

$user	=	User::find(1);

$subscriptionItem	=	$user->subscription('default')->findItemOrFail('price_chat');

Multiple	Subscriptions

Stripe	allows	your	customers	to	have	multiple	subscriptions	simultaneously.	For	example,	you	may	run	a	gym
that	offers	a	swimming	subscription	and	a	weight-lifting	subscription,	and	each	subscription	may	have	different
pricing.	Of	course,	customers	should	be	able	to	subscribe	to	either	or	both	plans.

When	your	application	creates	subscriptions,	you	may	provide	the	type	of	the	subscription	to	the	
newSubscription	method.	The	type	may	be	any	string	that	represents	the	type	of	subscription	the	user	is
initiating:

use	Illuminate\Http\Request;

Route::post('/swimming/subscribe',	function	(Request	$request)	{

				$request->user()->newSubscription('swimming')

								->price('price_swimming_monthly')

								->create($request->paymentMethodId);

				//	...

});

In	this	example,	we	initiated	a	monthly	swimming	subscription	for	the	customer.	However,	they	may	want	to
swap	to	a	yearly	subscription	at	a	later	time.	When	adjusting	the	customer's	subscription,	we	can	simply	swap
the	price	on	the	swimming	subscription:

$user->subscription('swimming')->swap('price_swimming_yearly');

Of	course,	you	may	also	cancel	the	subscription	entirely:

$user->subscription('swimming')->cancel();

Metered	Billing

Metered	billing	allows	you	to	charge	customers	based	on	their	product	usage	during	a	billing	cycle.	For
example,	you	may	charge	customers	based	on	the	number	of	text	messages	or	emails	they	send	per	month.

To	start	using	metered	billing,	you	will	first	need	to	create	a	new	product	in	your	Stripe	dashboard	with	a
metered	price.	Then,	use	the	meteredPrice	to	add	the	metered	price	ID	to	a	customer	subscription:

use	Illuminate\Http\Request;

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 836

https://stripe.com/docs/billing/subscriptions/metered-billing

Route::post('/user/subscribe',	function	(Request	$request)	{

				$request->user()->newSubscription('default')

								->meteredPrice('price_metered')

								->create($request->paymentMethodId);

				//	...

});

You	may	also	start	a	metered	subscription	via	Stripe	Checkout:

$checkout	=	Auth::user()

								->newSubscription('default',	[])

								->meteredPrice('price_metered')

								->checkout();

return	view('your-checkout-view',	[

				'checkout'	=>	$checkout,

]);

Reporting	Usage

As	your	customer	uses	your	application,	you	will	report	their	usage	to	Stripe	so	that	they	can	be	billed
accurately.	To	increment	the	usage	of	a	metered	subscription,	you	may	use	the	reportUsage	method:

$user	=	User::find(1);

$user->subscription('default')->reportUsage();

By	default,	a	"usage	quantity"	of	1	is	added	to	the	billing	period.	Alternatively,	you	may	pass	a	specific	amount
of	"usage"	to	add	to	the	customer's	usage	for	the	billing	period:

$user	=	User::find(1);

$user->subscription('default')->reportUsage(15);

If	your	application	offers	multiple	prices	on	a	single	subscription,	you	will	need	to	use	the	reportUsageFor
method	to	specify	the	metered	price	you	want	to	report	usage	for:

$user	=	User::find(1);

$user->subscription('default')->reportUsageFor('price_metered',	15);

Sometimes,	you	may	need	to	update	usage	which	you	have	previously	reported.	To	accomplish	this,	you	may
pass	a	timestamp	or	a	DateTimeInterface	instance	as	the	second	parameter	to	reportUsage.	When	doing	so,
Stripe	will	update	the	usage	that	was	reported	at	that	given	time.	You	can	continue	to	update	previous	usage
records	as	the	given	date	and	time	is	still	within	the	current	billing	period:

$user	=	User::find(1);

$user->subscription('default')->reportUsage(5,	$timestamp);

Retrieving	Usage	Records

To	retrieve	a	customer's	past	usage,	you	may	use	a	subscription	instance's	usageRecords	method:

$user	=	User::find(1);

$usageRecords	=	$user->subscription('default')->usageRecords();

If	your	application	offers	multiple	prices	on	a	single	subscription,	you	may	use	the	usageRecordsFor	method	to
specify	the	metered	price	that	you	wish	to	retrieve	usage	records	for:

$user	=	User::find(1);

$usageRecords	=	$user->subscription('default')->usageRecordsFor('price_metered');

The	usageRecords	and	usageRecordsFor	methods	return	a	Collection	instance	containing	an	associative	array	of
usage	records.	You	may	iterate	over	this	array	to	display	a	customer's	total	usage:

@foreach	($usageRecords	as	$usageRecord)

				-	Period	Starting:	{{	$usageRecord['period']['start']	}}

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 837

				-	Period	Ending:	{{	$usageRecord['period']['end']	}}

				-	Total	Usage:	{{	$usageRecord['total_usage']	}}

@endforeach

For	a	full	reference	of	all	usage	data	returned	and	how	to	use	Stripe's	cursor	based	pagination,	please	consult
the	official	Stripe	API	documentation.

Subscription	Taxes

[!WARNING]
Instead	of	calculating	Tax	Rates	manually,	you	can	automatically	calculate	taxes	using	Stripe	Tax

To	specify	the	tax	rates	a	user	pays	on	a	subscription,	you	should	implement	the	taxRates	method	on	your
billable	model	and	return	an	array	containing	the	Stripe	tax	rate	IDs.	You	can	define	these	tax	rates	in	your
Stripe	dashboard:

/**

	*	The	tax	rates	that	should	apply	to	the	customer's	subscriptions.

	*

	*	@return	array<int,	string>

	*/

public	function	taxRates():	array

{

				return	['txr_id'];

}

The	taxRates	method	enables	you	to	apply	a	tax	rate	on	a	customer-by-customer	basis,	which	may	be	helpful
for	a	user	base	that	spans	multiple	countries	and	tax	rates.

If	you're	offering	subscriptions	with	multiple	products,	you	may	define	different	tax	rates	for	each	price	by
implementing	a	priceTaxRates	method	on	your	billable	model:

/**

	*	The	tax	rates	that	should	apply	to	the	customer's	subscriptions.

	*

	*	@return	array<string,	array<int,	string>>

	*/

public	function	priceTaxRates():	array

{

				return	[

								'price_monthly'	=>	['txr_id'],

];

}

[!WARNING]
The	taxRates	method	only	applies	to	subscription	charges.	If	you	use	Cashier	to	make	"one-off"	charges,
you	will	need	to	manually	specify	the	tax	rate	at	that	time.

Syncing	Tax	Rates

When	changing	the	hard-coded	tax	rate	IDs	returned	by	the	taxRates	method,	the	tax	settings	on	any	existing
subscriptions	for	the	user	will	remain	the	same.	If	you	wish	to	update	the	tax	value	for	existing	subscriptions
with	the	new	taxRates	values,	you	should	call	the	syncTaxRates	method	on	the	user's	subscription	instance:

$user->subscription('default')->syncTaxRates();

This	will	also	sync	any	item	tax	rates	for	a	subscription	with	multiple	products.	If	your	application	is	offering
subscriptions	with	multiple	products,	you	should	ensure	that	your	billable	model	implements	the	priceTaxRates
method	discussed	above.

Tax	Exemption

Cashier	also	offers	the	isNotTaxExempt,	isTaxExempt,	and	reverseChargeApplies	methods	to	determine	if	the
customer	is	tax	exempt.	These	methods	will	call	the	Stripe	API	to	determine	a	customer's	tax	exemption	status:

use	App\Models\User;

$user	=	User::find(1);

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 838

https://stripe.com/docs/api/usage_records/subscription_item_summary_list
https://dashboard.stripe.com/test/tax-rates

$user->isTaxExempt();

$user->isNotTaxExempt();

$user->reverseChargeApplies();

[!WARNING]
These	methods	are	also	available	on	any	Laravel\Cashier\Invoice	object.	However,	when	invoked	on	an	
Invoice	object,	the	methods	will	determine	the	exemption	status	at	the	time	the	invoice	was	created.

Subscription	Anchor	Date

By	default,	the	billing	cycle	anchor	is	the	date	the	subscription	was	created	or,	if	a	trial	period	is	used,	the	date
that	the	trial	ends.	If	you	would	like	to	modify	the	billing	anchor	date,	you	may	use	the	anchorBillingCycleOn
method:

use	Illuminate\Http\Request;

Route::post('/user/subscribe',	function	(Request	$request)	{

				$anchor	=	Carbon::parse('first	day	of	next	month');

				$request->user()->newSubscription('default',	'price_monthly')

																->anchorBillingCycleOn($anchor->startOfDay())

																->create($request->paymentMethodId);

				//	...

});

For	more	information	on	managing	subscription	billing	cycles,	consult	the	Stripe	billing	cycle	documentation

Cancelling	Subscriptions

To	cancel	a	subscription,	call	the	cancel	method	on	the	user's	subscription:

$user->subscription('default')->cancel();

When	a	subscription	is	canceled,	Cashier	will	automatically	set	the	ends_at	column	in	your	subscriptions
database	table.	This	column	is	used	to	know	when	the	subscribed	method	should	begin	returning	false.

For	example,	if	a	customer	cancels	a	subscription	on	March	1st,	but	the	subscription	was	not	scheduled	to	end
until	March	5th,	the	subscribed	method	will	continue	to	return	true	until	March	5th.	This	is	done	because	a	user
is	typically	allowed	to	continue	using	an	application	until	the	end	of	their	billing	cycle.

You	may	determine	if	a	user	has	canceled	their	subscription	but	are	still	on	their	"grace	period"	using	the	
onGracePeriod	method:

if	($user->subscription('default')->onGracePeriod())	{

				//	...

}

If	you	wish	to	cancel	a	subscription	immediately,	call	the	cancelNow	method	on	the	user's	subscription:

$user->subscription('default')->cancelNow();

If	you	wish	to	cancel	a	subscription	immediately	and	invoice	any	remaining	un-invoiced	metered	usage	or	new
/	pending	proration	invoice	items,	call	the	cancelNowAndInvoice	method	on	the	user's	subscription:

$user->subscription('default')->cancelNowAndInvoice();

You	may	also	choose	to	cancel	the	subscription	at	a	specific	moment	in	time:

$user->subscription('default')->cancelAt(

				now()->addDays(10)

);

Finally,	you	should	always	cancel	user	subscriptions	before	deleting	the	associated	user	model:

$user->subscription('default')->cancelNow();

$user->delete();

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 839

https://stripe.com/docs/billing/subscriptions/billing-cycle

Resuming	Subscriptions

If	a	customer	has	canceled	their	subscription	and	you	wish	to	resume	it,	you	may	invoke	the	resume	method	on
the	subscription.	The	customer	must	still	be	within	their	"grace	period"	in	order	to	resume	a	subscription:

$user->subscription('default')->resume();

If	the	customer	cancels	a	subscription	and	then	resumes	that	subscription	before	the	subscription	has	fully
expired	the	customer	will	not	be	billed	immediately.	Instead,	their	subscription	will	be	re-activated	and	they
will	be	billed	on	the	original	billing	cycle.

Subscription	Trials

With	Payment	Method	Up	Front

If	you	would	like	to	offer	trial	periods	to	your	customers	while	still	collecting	payment	method	information	up
front,	you	should	use	the	trialDays	method	when	creating	your	subscriptions:

use	Illuminate\Http\Request;

Route::post('/user/subscribe',	function	(Request	$request)	{

				$request->user()->newSubscription('default',	'price_monthly')

																->trialDays(10)

																->create($request->paymentMethodId);

				//	...

});

This	method	will	set	the	trial	period	ending	date	on	the	subscription	record	within	the	database	and	instruct
Stripe	to	not	begin	billing	the	customer	until	after	this	date.	When	using	the	trialDays	method,	Cashier	will
overwrite	any	default	trial	period	configured	for	the	price	in	Stripe.

[!WARNING]
If	the	customer's	subscription	is	not	canceled	before	the	trial	ending	date	they	will	be	charged	as	soon	as
the	trial	expires,	so	you	should	be	sure	to	notify	your	users	of	their	trial	ending	date.

The	trialUntil	method	allows	you	to	provide	a	DateTime	instance	that	specifies	when	the	trial	period	should
end:

use	Carbon\Carbon;

$user->newSubscription('default',	'price_monthly')

												->trialUntil(Carbon::now()->addDays(10))

												->create($paymentMethod);

You	may	determine	if	a	user	is	within	their	trial	period	using	either	the	onTrial	method	of	the	user	instance	or
the	onTrial	method	of	the	subscription	instance.	The	two	examples	below	are	equivalent:

if	($user->onTrial('default'))	{

				//	...

}

if	($user->subscription('default')->onTrial())	{

				//	...

}

You	may	use	the	endTrial	method	to	immediately	end	a	subscription	trial:

$user->subscription('default')->endTrial();

To	determine	if	an	existing	trial	has	expired,	you	may	use	the	hasExpiredTrial	methods:

if	($user->hasExpiredTrial('default'))	{

				//	...

}

if	($user->subscription('default')->hasExpiredTrial())	{

				//	...

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 840

}

Defining	Trial	Days	in	Stripe	/	Cashier

You	may	choose	to	define	how	many	trial	days	your	price's	receive	in	the	Stripe	dashboard	or	always	pass	them
explicitly	using	Cashier.	If	you	choose	to	define	your	price's	trial	days	in	Stripe	you	should	be	aware	that	new
subscriptions,	including	new	subscriptions	for	a	customer	that	had	a	subscription	in	the	past,	will	always
receive	a	trial	period	unless	you	explicitly	call	the	skipTrial()	method.

Without	Payment	Method	Up	Front

If	you	would	like	to	offer	trial	periods	without	collecting	the	user's	payment	method	information	up	front,	you
may	set	the	trial_ends_at	column	on	the	user	record	to	your	desired	trial	ending	date.	This	is	typically	done
during	user	registration:

use	App\Models\User;

$user	=	User::create([

				//	...

				'trial_ends_at'	=>	now()->addDays(10),

]);

[!WARNING]
Be	sure	to	add	a	date	cast	for	the	trial_ends_at	attribute	within	your	billable	model's	class	definition.

Cashier	refers	to	this	type	of	trial	as	a	"generic	trial",	since	it	is	not	attached	to	any	existing	subscription.	The	
onTrial	method	on	the	billable	model	instance	will	return	true	if	the	current	date	is	not	past	the	value	of	
trial_ends_at:

if	($user->onTrial())	{

				//	User	is	within	their	trial	period...

}

Once	you	are	ready	to	create	an	actual	subscription	for	the	user,	you	may	use	the	newSubscription	method	as
usual:

$user	=	User::find(1);

$user->newSubscription('default',	'price_monthly')->create($paymentMethod);

To	retrieve	the	user's	trial	ending	date,	you	may	use	the	trialEndsAt	method.	This	method	will	return	a	Carbon
date	instance	if	a	user	is	on	a	trial	or	null	if	they	aren't.	You	may	also	pass	an	optional	subscription	type
parameter	if	you	would	like	to	get	the	trial	ending	date	for	a	specific	subscription	other	than	the	default	one:

if	($user->onTrial())	{

				$trialEndsAt	=	$user->trialEndsAt('main');

}

You	may	also	use	the	onGenericTrial	method	if	you	wish	to	know	specifically	that	the	user	is	within	their
"generic"	trial	period	and	has	not	yet	created	an	actual	subscription:

if	($user->onGenericTrial())	{

				//	User	is	within	their	"generic"	trial	period...

}

Extending	Trials

The	extendTrial	method	allows	you	to	extend	the	trial	period	of	a	subscription	after	the	subscription	has	been
created.	If	the	trial	has	already	expired	and	the	customer	is	already	being	billed	for	the	subscription,	you	can
still	offer	them	an	extended	trial.	The	time	spent	within	the	trial	period	will	be	deducted	from	the	customer's
next	invoice:

use	App\Models\User;

$subscription	=	User::find(1)->subscription('default');

//	End	the	trial	7	days	from	now...

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 841

$subscription->extendTrial(

				now()->addDays(7)

);

//	Add	an	additional	5	days	to	the	trial...

$subscription->extendTrial(

				$subscription->trial_ends_at->addDays(5)

);

Handling	Stripe	Webhooks

[!NOTE]
You	may	use	the	Stripe	CLI	to	help	test	webhooks	during	local	development.

Stripe	can	notify	your	application	of	a	variety	of	events	via	webhooks.	By	default,	a	route	that	points	to
Cashier's	webhook	controller	is	automatically	registered	by	the	Cashier	service	provider.	This	controller	will
handle	all	incoming	webhook	requests.

By	default,	the	Cashier	webhook	controller	will	automatically	handle	cancelling	subscriptions	that	have	too
many	failed	charges	(as	defined	by	your	Stripe	settings),	customer	updates,	customer	deletions,	subscription
updates,	and	payment	method	changes;	however,	as	we'll	soon	discover,	you	can	extend	this	controller	to
handle	any	Stripe	webhook	event	you	like.

To	ensure	your	application	can	handle	Stripe	webhooks,	be	sure	to	configure	the	webhook	URL	in	the	Stripe
control	panel.	By	default,	Cashier's	webhook	controller	responds	to	the	/stripe/webhook	URL	path.	The	full	list
of	all	webhooks	you	should	enable	in	the	Stripe	control	panel	are:

customer.subscription.created

customer.subscription.updated

customer.subscription.deleted

customer.updated

customer.deleted

payment_method.automatically_updated

invoice.payment_action_required

invoice.payment_succeeded

For	convenience,	Cashier	includes	a	cashier:webhook	Artisan	command.	This	command	will	create	a	webhook
in	Stripe	that	listens	to	all	of	the	events	required	by	Cashier:

php	artisan	cashier:webhook

By	default,	the	created	webhook	will	point	to	the	URL	defined	by	the	APP_URL	environment	variable	and	the	
cashier.webhook	route	that	is	included	with	Cashier.	You	may	provide	the	--url	option	when	invoking	the
command	if	you	would	like	to	use	a	different	URL:

php	artisan	cashier:webhook	--url	"https://example.com/stripe/webhook"

The	webhook	that	is	created	will	use	the	Stripe	API	version	that	your	version	of	Cashier	is	compatible	with.	If
you	would	like	to	use	a	different	Stripe	version,	you	may	provide	the	--api-version	option:

php	artisan	cashier:webhook	--api-version="2019-12-03"

After	creation,	the	webhook	will	be	immediately	active.	If	you	wish	to	create	the	webhook	but	have	it	disabled
until	you're	ready,	you	may	provide	the	--disabled	option	when	invoking	the	command:

php	artisan	cashier:webhook	--disabled

[!WARNING]
Make	sure	you	protect	incoming	Stripe	webhook	requests	with	Cashier's	included	webhook	signature
verification	middleware.

Webhooks	and	CSRF	Protection

Since	Stripe	webhooks	need	to	bypass	Laravel's	CSRF	protection,	be	sure	to	list	the	URI	as	an	exception	in

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 842

https://stripe.com/docs/stripe-cli

your	application's	App\Http\Middleware\VerifyCsrfToken	middleware	or	list	the	route	outside	of	the	web
middleware	group:

protected	$except	=	[

				'stripe/*',

];

Defining	Webhook	Event	Handlers

Cashier	automatically	handles	subscription	cancellations	for	failed	charges	and	other	common	Stripe	webhook
events.	However,	if	you	have	additional	webhook	events	you	would	like	to	handle,	you	may	do	so	by	listening
to	the	following	events	that	are	dispatched	by	Cashier:

Laravel\Cashier\Events\WebhookReceived

Laravel\Cashier\Events\WebhookHandled

Both	events	contain	the	full	payload	of	the	Stripe	webhook.	For	example,	if	you	wish	to	handle	the	
invoice.payment_succeeded	webhook,	you	may	register	a	listener	that	will	handle	the	event:

<?php

namespace	App\Listeners;

use	Laravel\Cashier\Events\WebhookReceived;

class	StripeEventListener

{

				/**

					*	Handle	received	Stripe	webhooks.

					*/

				public	function	handle(WebhookReceived	$event):	void

				{

								if	($event->payload['type']	===	'invoice.payment_succeeded')	{

												//	Handle	the	incoming	event...

								}

				}

}

Once	your	listener	has	been	defined,	you	may	register	it	within	your	application's	EventServiceProvider:

<?php

namespace	App\Providers;

use	App\Listeners\StripeEventListener;

use	Illuminate\Foundation\Support\Providers\EventServiceProvider	as	ServiceProvider;

use	Laravel\Cashier\Events\WebhookReceived;

class	EventServiceProvider	extends	ServiceProvider

{

				protected	$listen	=	[

								WebhookReceived::class	=>	[

												StripeEventListener::class,

],

];

}

Verifying	Webhook	Signatures

To	secure	your	webhooks,	you	may	use	Stripe's	webhook	signatures.	For	convenience,	Cashier	automatically
includes	a	middleware	which	validates	that	the	incoming	Stripe	webhook	request	is	valid.

To	enable	webhook	verification,	ensure	that	the	STRIPE_WEBHOOK_SECRET	environment	variable	is	set	in	your
application's	.env	file.	The	webhook	secret	may	be	retrieved	from	your	Stripe	account	dashboard.

Single	Charges

Simple	Charge

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 843

https://stripe.com/docs/webhooks/signatures

If	you	would	like	to	make	a	one-time	charge	against	a	customer,	you	may	use	the	charge	method	on	a	billable
model	instance.	You	will	need	to	provide	a	payment	method	identifier	as	the	second	argument	to	the	charge
method:

use	Illuminate\Http\Request;

Route::post('/purchase',	function	(Request	$request)	{

				$stripeCharge	=	$request->user()->charge(

								100,	$request->paymentMethodId

);

				//	...

});

The	charge	method	accepts	an	array	as	its	third	argument,	allowing	you	to	pass	any	options	you	wish	to	the
underlying	Stripe	charge	creation.	More	information	regarding	the	options	available	to	you	when	creating
charges	may	be	found	in	the	Stripe	documentation:

$user->charge(100,	$paymentMethod,	[

				'custom_option'	=>	$value,

]);

You	may	also	use	the	charge	method	without	an	underlying	customer	or	user.	To	accomplish	this,	invoke	the	
charge	method	on	a	new	instance	of	your	application's	billable	model:

use	App\Models\User;

$stripeCharge	=	(new	User)->charge(100,	$paymentMethod);

The	charge	method	will	throw	an	exception	if	the	charge	fails.	If	the	charge	is	successful,	an	instance	of	
Laravel\Cashier\Payment	will	be	returned	from	the	method:

try	{

				$payment	=	$user->charge(100,	$paymentMethod);

}	catch	(Exception	$e)	{

				//	...

}

[!WARNING]
The	charge	method	accepts	the	payment	amount	in	the	lowest	denominator	of	the	currency	used	by	your
application.	For	example,	if	customers	are	paying	in	United	States	Dollars,	amounts	should	be	specified	in
pennies.

Charge	With	Invoice

Sometimes	you	may	need	to	make	a	one-time	charge	and	offer	a	PDF	invoice	to	your	customer.	The	
invoicePrice	method	lets	you	do	just	that.	For	example,	let's	invoice	a	customer	for	five	new	shirts:

$user->invoicePrice('price_tshirt',	5);

The	invoice	will	be	immediately	charged	against	the	user's	default	payment	method.	The	invoicePrice	method
also	accepts	an	array	as	its	third	argument.	This	array	contains	the	billing	options	for	the	invoice	item.	The
fourth	argument	accepted	by	the	method	is	also	an	array	which	should	contain	the	billing	options	for	the
invoice	itself:

$user->invoicePrice('price_tshirt',	5,	[

				'discounts'	=>	[

								['coupon'	=>	'SUMMER21SALE']

],

],	[

				'default_tax_rates'	=>	['txr_id'],

]);

Similarly	to	invoicePrice,	you	may	use	the	tabPrice	method	to	create	a	one-time	charge	for	multiple	items	(up
to	250	items	per	invoice)	by	adding	them	to	the	customer's	"tab"	and	then	invoicing	the	customer.	For	example,
we	may	invoice	a	customer	for	five	shirts	and	two	mugs:

$user->tabPrice('price_tshirt',	5);

$user->tabPrice('price_mug',	2);

$user->invoice();

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 844

https://stripe.com/docs/api/charges/create

Alternatively,	you	may	use	the	invoiceFor	method	to	make	a	"one-off"	charge	against	the	customer's	default
payment	method:

$user->invoiceFor('One	Time	Fee',	500);

Although	the	invoiceFor	method	is	available	for	you	to	use,	it	is	recommended	that	you	use	the	invoicePrice
and	tabPrice	methods	with	pre-defined	prices.	By	doing	so,	you	will	have	access	to	better	analytics	and	data
within	your	Stripe	dashboard	regarding	your	sales	on	a	per-product	basis.

[!WARNING]
The	invoice,	invoicePrice,	and	invoiceFor	methods	will	create	a	Stripe	invoice	which	will	retry	failed
billing	attempts.	If	you	do	not	want	invoices	to	retry	failed	charges,	you	will	need	to	close	them	using	the
Stripe	API	after	the	first	failed	charge.

Creating	Payment	Intents

You	can	create	a	new	Stripe	payment	intent	by	invoking	the	pay	method	on	a	billable	model	instance.	Calling
this	method	will	create	a	payment	intent	that	is	wrapped	in	a	Laravel\Cashier\Payment	instance:

use	Illuminate\Http\Request;

Route::post('/pay',	function	(Request	$request)	{

				$payment	=	$request->user()->pay(

								$request->get('amount')

);

				return	$payment->client_secret;

});

After	creating	the	payment	intent,	you	can	return	the	client	secret	to	your	application's	frontend	so	that	the	user
can	complete	the	payment	in	their	browser.	To	read	more	about	building	entire	payment	flows	using	Stripe
payment	intents,	please	consult	the	Stripe	documentation.

When	using	the	pay	method,	the	default	payment	methods	that	are	enabled	within	your	Stripe	dashboard	will	be
available	to	the	customer.	Alternatively,	if	you	only	want	to	allow	for	some	specific	payment	methods	to	be
used,	you	may	use	the	payWith	method:

use	Illuminate\Http\Request;

Route::post('/pay',	function	(Request	$request)	{

				$payment	=	$request->user()->payWith(

								$request->get('amount'),	['card',	'bancontact']

);

				return	$payment->client_secret;

});

[!WARNING]
The	pay	and	payWith	methods	accept	the	payment	amount	in	the	lowest	denominator	of	the	currency	used
by	your	application.	For	example,	if	customers	are	paying	in	United	States	Dollars,	amounts	should	be
specified	in	pennies.

Refunding	Charges

If	you	need	to	refund	a	Stripe	charge,	you	may	use	the	refund	method.	This	method	accepts	the	Stripe	payment
intent	ID	as	its	first	argument:

$payment	=	$user->charge(100,	$paymentMethodId);

$user->refund($payment->id);

Invoices

Retrieving	Invoices

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 845

https://stripe.com/docs/payments/accept-a-payment?platform=web

You	may	easily	retrieve	an	array	of	a	billable	model's	invoices	using	the	invoices	method.	The	invoices	method
returns	a	collection	of	Laravel\Cashier\Invoice	instances:

$invoices	=	$user->invoices();

If	you	would	like	to	include	pending	invoices	in	the	results,	you	may	use	the	invoicesIncludingPending	method:

$invoices	=	$user->invoicesIncludingPending();

You	may	use	the	findInvoice	method	to	retrieve	a	specific	invoice	by	its	ID:

$invoice	=	$user->findInvoice($invoiceId);

Displaying	Invoice	Information

When	listing	the	invoices	for	the	customer,	you	may	use	the	invoice's	methods	to	display	the	relevant	invoice
information.	For	example,	you	may	wish	to	list	every	invoice	in	a	table,	allowing	the	user	to	easily	download
any	of	them:

<table>

				@foreach	($invoices	as	$invoice)

								<tr>

												<td>{{	$invoice->date()->toFormattedDateString()	}}</td>

												<td>{{	$invoice->total()	}}</td>

												<td>id	}}">Download</td>

								</tr>

				@endforeach

</table>

Upcoming	Invoices

To	retrieve	the	upcoming	invoice	for	a	customer,	you	may	use	the	upcomingInvoice	method:

$invoice	=	$user->upcomingInvoice();

Similarly,	if	the	customer	has	multiple	subscriptions,	you	can	also	retrieve	the	upcoming	invoice	for	a	specific
subscription:

$invoice	=	$user->subscription('default')->upcomingInvoice();

Previewing	Subscription	Invoices

Using	the	previewInvoice	method,	you	can	preview	an	invoice	before	making	price	changes.	This	will	allow
you	to	determine	what	your	customer's	invoice	will	look	like	when	a	given	price	change	is	made:

$invoice	=	$user->subscription('default')->previewInvoice('price_yearly');

You	may	pass	an	array	of	prices	to	the	previewInvoice	method	in	order	to	preview	invoices	with	multiple	new
prices:

$invoice	=	$user->subscription('default')->previewInvoice(['price_yearly',	'price_metered']);

Generating	Invoice	PDFs

Before	generating	invoice	PDFs,	you	should	use	Composer	to	install	the	Dompdf	library,	which	is	the	default
invoice	renderer	for	Cashier:

composer	require	dompdf/dompdf

From	within	a	route	or	controller,	you	may	use	the	downloadInvoice	method	to	generate	a	PDF	download	of	a
given	invoice.	This	method	will	automatically	generate	the	proper	HTTP	response	needed	to	download	the
invoice:

use	Illuminate\Http\Request;

Route::get('/user/invoice/{invoice}',	function	(Request	$request,	string	$invoiceId)	{

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 846

				return	$request->user()->downloadInvoice($invoiceId);

});

By	default,	all	data	on	the	invoice	is	derived	from	the	customer	and	invoice	data	stored	in	Stripe.	The	filename
is	based	on	your	app.name	config	value.	However,	you	can	customize	some	of	this	data	by	providing	an	array	as
the	second	argument	to	the	downloadInvoice	method.	This	array	allows	you	to	customize	information	such	as
your	company	and	product	details:

return	$request->user()->downloadInvoice($invoiceId,	[

				'vendor'	=>	'Your	Company',

				'product'	=>	'Your	Product',

				'street'	=>	'Main	Str.	1',

				'location'	=>	'2000	Antwerp,	Belgium',

				'phone'	=>	'+32	499	00	00	00',

				'email'	=>	'info@example.com',

				'url'	=>	'https://example.com',

				'vendorVat'	=>	'BE123456789',

]);

The	downloadInvoice	method	also	allows	for	a	custom	filename	via	its	third	argument.	This	filename	will
automatically	be	suffixed	with	.pdf:

return	$request->user()->downloadInvoice($invoiceId,	[],	'my-invoice');

Custom	Invoice	Renderer

Cashier	also	makes	it	possible	to	use	a	custom	invoice	renderer.	By	default,	Cashier	uses	the	
DompdfInvoiceRenderer	implementation,	which	utilizes	the	dompdf	PHP	library	to	generate	Cashier's	invoices.
However,	you	may	use	any	renderer	you	wish	by	implementing	the	Laravel\Cashier\Contracts\InvoiceRenderer
interface.	For	example,	you	may	wish	to	render	an	invoice	PDF	using	an	API	call	to	a	third-party	PDF
rendering	service:

use	Illuminate\Support\Facades\Http;

use	Laravel\Cashier\Contracts\InvoiceRenderer;

use	Laravel\Cashier\Invoice;

class	ApiInvoiceRenderer	implements	InvoiceRenderer

{

				/**

					*	Render	the	given	invoice	and	return	the	raw	PDF	bytes.

					*/

				public	function	render(Invoice	$invoice,	array	$data	=	[],	array	$options	=	[]):	string

				{

								$html	=	$invoice->view($data)->render();

								return	Http::get('https://example.com/html-to-pdf',	['html'	=>	$html])->get()->body();

				}

}

Once	you	have	implemented	the	invoice	renderer	contract,	you	should	update	the	cashier.invoices.renderer
configuration	value	in	your	application's	config/cashier.php	configuration	file.	This	configuration	value	should
be	set	to	the	class	name	of	your	custom	renderer	implementation.

Checkout

Cashier	Stripe	also	provides	support	for	Stripe	Checkout.	Stripe	Checkout	takes	the	pain	out	of	implementing
custom	pages	to	accept	payments	by	providing	a	pre-built,	hosted	payment	page.

The	following	documentation	contains	information	on	how	to	get	started	using	Stripe	Checkout	with	Cashier.
To	learn	more	about	Stripe	Checkout,	you	should	also	consider	reviewing	Stripe's	own	documentation	on
Checkout.

Product	Checkouts

You	may	perform	a	checkout	for	an	existing	product	that	has	been	created	within	your	Stripe	dashboard	using
the	checkout	method	on	a	billable	model.	The	checkout	method	will	initiate	a	new	Stripe	Checkout	session.	By
default,	you're	required	to	pass	a	Stripe	Price	ID:

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 847

https://github.com/dompdf/dompdf
https://stripe.com/payments/checkout
https://stripe.com/docs/payments/checkout

use	Illuminate\Http\Request;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	$request->user()->checkout('price_tshirt');

});

If	needed,	you	may	also	specify	a	product	quantity:

use	Illuminate\Http\Request;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	$request->user()->checkout(['price_tshirt'	=>	15]);

});

When	a	customer	visits	this	route	they	will	be	redirected	to	Stripe's	Checkout	page.	By	default,	when	a	user
successfully	completes	or	cancels	a	purchase	they	will	be	redirected	to	your	home	route	location,	but	you	may
specify	custom	callback	URLs	using	the	success_url	and	cancel_url	options:

use	Illuminate\Http\Request;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	$request->user()->checkout(['price_tshirt'	=>	1],	[

								'success_url'	=>	route('your-success-route'),

								'cancel_url'	=>	route('your-cancel-route'),

]);

});

When	defining	your	success_url	checkout	option,	you	may	instruct	Stripe	to	add	the	checkout	session	ID	as	a
query	string	parameter	when	invoking	your	URL.	To	do	so,	add	the	literal	string	{CHECKOUT_SESSION_ID}	to	your	
success_url	query	string.	Stripe	will	replace	this	placeholder	with	the	actual	checkout	session	ID:

use	Illuminate\Http\Request;

use	Stripe\Checkout\Session;

use	Stripe\Customer;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	$request->user()->checkout(['price_tshirt'	=>	1],	[

								'success_url'	=>	route('checkout-success').'?session_id={CHECKOUT_SESSION_ID}',

								'cancel_url'	=>	route('checkout-cancel'),

]);

});

Route::get('/checkout-success',	function	(Request	$request)	{

				$checkoutSession	=	$request->user()->stripe()->checkout->sessions->retrieve($request-

>get('session_id'));

				return	view('checkout.success',	['checkoutSession'	=>	$checkoutSession]);

})->name('checkout-success');

Promotion	Codes

By	default,	Stripe	Checkout	does	not	allow	user	redeemable	promotion	codes.	Luckily,	there's	an	easy	way	to
enable	these	for	your	Checkout	page.	To	do	so,	you	may	invoke	the	allowPromotionCodes	method:

use	Illuminate\Http\Request;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	$request->user()

								->allowPromotionCodes()

								->checkout('price_tshirt');

});

Single	Charge	Checkouts

You	can	also	perform	a	simple	charge	for	an	ad-hoc	product	that	has	not	been	created	in	your	Stripe	dashboard.
To	do	so	you	may	use	the	checkoutCharge	method	on	a	billable	model	and	pass	it	a	chargeable	amount,	a
product	name,	and	an	optional	quantity.	When	a	customer	visits	this	route	they	will	be	redirected	to	Stripe's
Checkout	page:

use	Illuminate\Http\Request;

Route::get('/charge-checkout',	function	(Request	$request)	{

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 848

https://stripe.com/docs/billing/subscriptions/discounts/codes

				return	$request->user()->checkoutCharge(1200,	'T-Shirt',	5);

});

[!WARNING]
When	using	the	checkoutCharge	method,	Stripe	will	always	create	a	new	product	and	price	in	your	Stripe
dashboard.	Therefore,	we	recommend	that	you	create	the	products	up	front	in	your	Stripe	dashboard	and
use	the	checkout	method	instead.

Subscription	Checkouts

[!WARNING]
Using	Stripe	Checkout	for	subscriptions	requires	you	to	enable	the	customer.subscription.created
webhook	in	your	Stripe	dashboard.	This	webhook	will	create	the	subscription	record	in	your	database	and
store	all	of	the	relevant	subscription	items.

You	may	also	use	Stripe	Checkout	to	initiate	subscriptions.	After	defining	your	subscription	with	Cashier's
subscription	builder	methods,	you	may	call	the	checkoutmethod.	When	a	customer	visits	this	route	they	will	be
redirected	to	Stripe's	Checkout	page:

use	Illuminate\Http\Request;

Route::get('/subscription-checkout',	function	(Request	$request)	{

				return	$request->user()

								->newSubscription('default',	'price_monthly')

								->checkout();

});

Just	as	with	product	checkouts,	you	may	customize	the	success	and	cancellation	URLs:

use	Illuminate\Http\Request;

Route::get('/subscription-checkout',	function	(Request	$request)	{

				return	$request->user()

								->newSubscription('default',	'price_monthly')

								->checkout([

												'success_url'	=>	route('your-success-route'),

												'cancel_url'	=>	route('your-cancel-route'),

]);

});

Of	course,	you	can	also	enable	promotion	codes	for	subscription	checkouts:

use	Illuminate\Http\Request;

Route::get('/subscription-checkout',	function	(Request	$request)	{

				return	$request->user()

								->newSubscription('default',	'price_monthly')

								->allowPromotionCodes()

								->checkout();

});

[!WARNING]
Unfortunately	Stripe	Checkout	does	not	support	all	subscription	billing	options	when	starting
subscriptions.	Using	the	anchorBillingCycleOn	method	on	the	subscription	builder,	setting	proration
behavior,	or	setting	payment	behavior	will	not	have	any	effect	during	Stripe	Checkout	sessions.	Please
consult	the	Stripe	Checkout	Session	API	documentation	to	review	which	parameters	are	available.

Stripe	Checkout	and	Trial	Periods

Of	course,	you	can	define	a	trial	period	when	building	a	subscription	that	will	be	completed	using	Stripe
Checkout:

$checkout	=	Auth::user()->newSubscription('default',	'price_monthly')

				->trialDays(3)

				->checkout();

However,	the	trial	period	must	be	at	least	48	hours,	which	is	the	minimum	amount	of	trial	time	supported	by
Stripe	Checkout.

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 849

https://stripe.com/docs/api/checkout/sessions/create

Subscriptions	and	Webhooks

Remember,	Stripe	and	Cashier	update	subscription	statuses	via	webhooks,	so	there's	a	possibility	a	subscription
might	not	yet	be	active	when	the	customer	returns	to	the	application	after	entering	their	payment	information.
To	handle	this	scenario,	you	may	wish	to	display	a	message	informing	the	user	that	their	payment	or
subscription	is	pending.

Collecting	Tax	IDs

Checkout	also	supports	collecting	a	customer's	Tax	ID.	To	enable	this	on	a	checkout	session,	invoke	the	
collectTaxIds	method	when	creating	the	session:

$checkout	=	$user->collectTaxIds()->checkout('price_tshirt');

When	this	method	is	invoked,	a	new	checkbox	will	be	available	to	the	customer	that	allows	them	to	indicate	if
they're	purchasing	as	a	company.	If	so,	they	will	have	the	opportunity	to	provide	their	Tax	ID	number.

[!WARNING]
If	you	have	already	configured	automatic	tax	collection	in	your	application's	service	provider	then	this
feature	will	be	enabled	automatically	and	there	is	no	need	to	invoke	the	collectTaxIds	method.

Guest	Checkouts

Using	the	Checkout::guest	method,	you	may	initiate	checkout	sessions	for	guests	of	your	application	that	do	not
have	an	"account":

use	Illuminate\Http\Request;

use	Laravel\Cashier\Checkout;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	Checkout::guest()->create('price_tshirt',	[

								'success_url'	=>	route('your-success-route'),

								'cancel_url'	=>	route('your-cancel-route'),

]);

});

Similarly	to	when	creating	checkout	sessions	for	existing	users,	you	may	utilize	additional	methods	available
on	the	Laravel\Cashier\CheckoutBuilder	instance	to	customize	the	guest	checkout	session:

use	Illuminate\Http\Request;

use	Laravel\Cashier\Checkout;

Route::get('/product-checkout',	function	(Request	$request)	{

				return	Checkout::guest()

								->withPromotionCode('promo-code')

								->create('price_tshirt',	[

												'success_url'	=>	route('your-success-route'),

												'cancel_url'	=>	route('your-cancel-route'),

]);

});

After	a	guest	checkout	has	been	completed,	Stripe	can	dispatch	a	checkout.session.completed	webhook	event,
so	make	sure	to	configure	your	Stripe	webhook	to	actually	send	this	event	to	your	application.	Once	the
webhook	has	been	enabled	within	the	Stripe	dashboard,	you	may	handle	the	webhook	with	Cashier.	The	object
contained	in	the	webhook	payload	will	be	a	checkout	object	that	you	may	inspect	in	order	to	fulfill	your
customer's	order.

Handling	Failed	Payments

Sometimes,	payments	for	subscriptions	or	single	charges	can	fail.	When	this	happens,	Cashier	will	throw	an	
Laravel\Cashier\Exceptions\IncompletePayment	exception	that	informs	you	that	this	happened.	After	catching
this	exception,	you	have	two	options	on	how	to	proceed.

First,	you	could	redirect	your	customer	to	the	dedicated	payment	confirmation	page	which	is	included	with
Cashier.	This	page	already	has	an	associated	named	route	that	is	registered	via	Cashier's	service	provider.	So,

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 850

https://dashboard.stripe.com/webhooks
https://stripe.com/docs/api/checkout/sessions/object

you	may	catch	the	IncompletePayment	exception	and	redirect	the	user	to	the	payment	confirmation	page:

use	Laravel\Cashier\Exceptions\IncompletePayment;

try	{

				$subscription	=	$user->newSubscription('default',	'price_monthly')

																												->create($paymentMethod);

}	catch	(IncompletePayment	$exception)	{

				return	redirect()->route(

								'cashier.payment',

								[$exception->payment->id,	'redirect'	=>	route('home')]

);

}

On	the	payment	confirmation	page,	the	customer	will	be	prompted	to	enter	their	credit	card	information	again
and	perform	any	additional	actions	required	by	Stripe,	such	as	"3D	Secure"	confirmation.	After	confirming
their	payment,	the	user	will	be	redirected	to	the	URL	provided	by	the	redirect	parameter	specified	above.	Upon
redirection,	message	(string)	and	success	(integer)	query	string	variables	will	be	added	to	the	URL.	The	payment
page	currently	supports	the	following	payment	method	types:

Credit	Cards
Alipay
Bancontact
BECS	Direct	Debit
EPS
Giropay
iDEAL
SEPA	Direct	Debit

Alternatively,	you	could	allow	Stripe	to	handle	the	payment	confirmation	for	you.	In	this	case,	instead	of
redirecting	to	the	payment	confirmation	page,	you	may	setup	Stripe's	automatic	billing	emails	in	your	Stripe
dashboard.	However,	if	an	IncompletePayment	exception	is	caught,	you	should	still	inform	the	user	they	will
receive	an	email	with	further	payment	confirmation	instructions.

Payment	exceptions	may	be	thrown	for	the	following	methods:	charge,	invoiceFor,	and	invoice	on	models
using	the	Billable	trait.	When	interacting	with	subscriptions,	the	create	method	on	the	SubscriptionBuilder,
and	the	incrementAndInvoice	and	swapAndInvoice	methods	on	the	Subscription	and	SubscriptionItem	models
may	throw	incomplete	payment	exceptions.

Determining	if	an	existing	subscription	has	an	incomplete	payment	may	be	accomplished	using	the	
hasIncompletePayment	method	on	the	billable	model	or	a	subscription	instance:

if	($user->hasIncompletePayment('default'))	{

				//	...

}

if	($user->subscription('default')->hasIncompletePayment())	{

				//	...

}

You	can	derive	the	specific	status	of	an	incomplete	payment	by	inspecting	the	payment	property	on	the
exception	instance:

use	Laravel\Cashier\Exceptions\IncompletePayment;

try	{

				$user->charge(1000,	'pm_card_threeDSecure2Required');

}	catch	(IncompletePayment	$exception)	{

				//	Get	the	payment	intent	status...

				$exception->payment->status;

				//	Check	specific	conditions...

				if	($exception->payment->requiresPaymentMethod())	{

								//	...

				}	elseif	($exception->payment->requiresConfirmation())	{

								//	...

				}

}

Confirming	Payments

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 851

https://dashboard.stripe.com/account/billing/automatic

Some	payment	methods	require	additional	data	in	order	to	confirm	payments.	For	example,	SEPA	payment
methods	require	additional	"mandate"	data	during	the	payment	process.	You	may	provide	this	data	to	Cashier
using	the	withPaymentConfirmationOptions	method:

$subscription->withPaymentConfirmationOptions([

				'mandate_data'	=>	'...',

])->swap('price_xxx');

You	may	consult	the	Stripe	API	documentation	to	review	all	of	the	options	accepted	when	confirming
payments.

Strong	Customer	Authentication

If	your	business	or	one	of	your	customers	is	based	in	Europe	you	will	need	to	abide	by	the	EU's	Strong
Customer	Authentication	(SCA)	regulations.	These	regulations	were	imposed	in	September	2019	by	the
European	Union	to	prevent	payment	fraud.	Luckily,	Stripe	and	Cashier	are	prepared	for	building	SCA
compliant	applications.

[!WARNING]
Before	getting	started,	review	Stripe's	guide	on	PSD2	and	SCA	as	well	as	their	documentation	on	the	new
SCA	APIs.

Payments	Requiring	Additional	Confirmation

SCA	regulations	often	require	extra	verification	in	order	to	confirm	and	process	a	payment.	When	this	happens,
Cashier	will	throw	a	Laravel\Cashier\Exceptions\IncompletePayment	exception	that	informs	you	that	extra
verification	is	needed.	More	information	on	how	to	handle	these	exceptions	be	found	can	be	found	in	the
documentation	on	handling	failed	payments.

Payment	confirmation	screens	presented	by	Stripe	or	Cashier	may	be	tailored	to	a	specific	bank	or	card	issuer's
payment	flow	and	can	include	additional	card	confirmation,	a	temporary	small	charge,	separate	device
authentication,	or	other	forms	of	verification.

Incomplete	and	Past	Due	State

When	a	payment	needs	additional	confirmation,	the	subscription	will	remain	in	an	incomplete	or	past_due	state
as	indicated	by	its	stripe_status	database	column.	Cashier	will	automatically	activate	the	customer's
subscription	as	soon	as	payment	confirmation	is	complete	and	your	application	is	notified	by	Stripe	via
webhook	of	its	completion.

For	more	information	on	incomplete	and	past_due	states,	please	refer	to	our	additional	documentation	on	these
states.

Off-Session	Payment	Notifications

Since	SCA	regulations	require	customers	to	occasionally	verify	their	payment	details	even	while	their
subscription	is	active,	Cashier	can	send	a	notification	to	the	customer	when	off-session	payment	confirmation	is
required.	For	example,	this	may	occur	when	a	subscription	is	renewing.	Cashier's	payment	notification	can	be
enabled	by	setting	the	CASHIER_PAYMENT_NOTIFICATION	environment	variable	to	a	notification	class.	By	default,
this	notification	is	disabled.	Of	course,	Cashier	includes	a	notification	class	you	may	use	for	this	purpose,	but
you	are	free	to	provide	your	own	notification	class	if	desired:

CASHIER_PAYMENT_NOTIFICATION=Laravel\Cashier\Notifications\ConfirmPayment

To	ensure	that	off-session	payment	confirmation	notifications	are	delivered,	verify	that	Stripe	webhooks	are
configured	for	your	application	and	the	invoice.payment_action_required	webhook	is	enabled	in	your	Stripe
dashboard.	In	addition,	your	Billable	model	should	also	use	Laravel's	Illuminate\Notifications\Notifiable
trait.

[!WARNING]
Notifications	will	be	sent	even	when	customers	are	manually	making	a	payment	that	requires	additional

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 852

https://stripe.com/docs/api/payment_intents/confirm
https://stripe.com/guides/strong-customer-authentication
https://stripe.com/docs/strong-customer-authentication

confirmation.	Unfortunately,	there	is	no	way	for	Stripe	to	know	that	the	payment	was	done	manually	or
"off-session".	But,	a	customer	will	simply	see	a	"Payment	Successful"	message	if	they	visit	the	payment
page	after	already	confirming	their	payment.	The	customer	will	not	be	allowed	to	accidentally	confirm	the
same	payment	twice	and	incur	an	accidental	second	charge.

Stripe	SDK

Many	of	Cashier's	objects	are	wrappers	around	Stripe	SDK	objects.	If	you	would	like	to	interact	with	the	Stripe
objects	directly,	you	may	conveniently	retrieve	them	using	the	asStripe	method:

$stripeSubscription	=	$subscription->asStripeSubscription();

$stripeSubscription->application_fee_percent	=	5;

$stripeSubscription->save();

You	may	also	use	the	updateStripeSubscription	method	to	update	a	Stripe	subscription	directly:

$subscription->updateStripeSubscription(['application_fee_percent'	=>	5]);

You	may	invoke	the	stripe	method	on	the	Cashier	class	if	you	would	like	to	use	the	Stripe\StripeClient	client
directly.	For	example,	you	could	use	this	method	to	access	the	StripeClient	instance	and	retrieve	a	list	of	prices
from	your	Stripe	account:

use	Laravel\Cashier\Cashier;

$prices	=	Cashier::stripe()->prices->all();

Testing

When	testing	an	application	that	uses	Cashier,	you	may	mock	the	actual	HTTP	requests	to	the	Stripe	API;
however,	this	requires	you	to	partially	re-implement	Cashier's	own	behavior.	Therefore,	we	recommend
allowing	your	tests	to	hit	the	actual	Stripe	API.	While	this	is	slower,	it	provides	more	confidence	that	your
application	is	working	as	expected	and	any	slow	tests	may	be	placed	within	their	own	PHPUnit	testing	group.

When	testing,	remember	that	Cashier	itself	already	has	a	great	test	suite,	so	you	should	only	focus	on	testing	the
subscription	and	payment	flow	of	your	own	application	and	not	every	underlying	Cashier	behavior.

To	get	started,	add	the	testing	version	of	your	Stripe	secret	to	your	phpunit.xml	file:

<env	name="STRIPE_SECRET"	value="sk_test_<your-key>"/>

Now,	whenever	you	interact	with	Cashier	while	testing,	it	will	send	actual	API	requests	to	your	Stripe	testing
environment.	For	convenience,	you	should	pre-fill	your	Stripe	testing	account	with	subscriptions	/	prices	that
you	may	use	during	testing.

[!NOTE]
In	order	to	test	a	variety	of	billing	scenarios,	such	as	credit	card	denials	and	failures,	you	may	use	the	vast
range	of	testing	card	numbers	and	tokens	provided	by	Stripe.

Laravel	Documentation	-	10.x	/	Cashier	(Stripe) 853

https://stripe.com/docs/testing

Packages

Laravel	Cashier	(Paddle)
Introduction
Upgrading	Cashier
Installation

Paddle	Sandbox
Configuration

Billable	Model
API	Keys
Paddle	JS
Currency	Configuration
Overriding	Default	Models

Quickstart
Selling	Products
Selling	Subscriptions

Checkout	Sessions
Overlay	Checkout
Inline	Checkout
Guest	Checkouts

Price	Previews
Customer	Price	Previews
Discounts

Customers
Customer	Defaults
Retrieving	Customers
Creating	Customers

Subscriptions
Creating	Subscriptions
Checking	Subscription	Status
Subscription	Single	Charges
Updating	Payment	Information
Changing	Plans
Subscription	Quantity
Subscriptions	With	Multiple	Products
Multiple	Subscriptions
Pausing	Subscriptions
Canceling	Subscriptions

Subscription	Trials
With	Payment	Method	Up	Front
Without	Payment	Method	Up	Front
Extend	or	Activate	a	Trial

Handling	Paddle	Webhooks
Defining	Webhook	Event	Handlers
Verifying	Webhook	Signatures

Single	Charges
Charging	for	Products
Refunding	Transactions
Crediting	Transactions

Transactions
Past	and	Upcoming	Payments

Testing

Introduction

[!WARNING]
This	documentation	is	for	Cashier	Paddle	2.x's	integration	with	Paddle	Billing.	If	you're	still	using	Paddle
Classic,	you	should	use	Cashier	Paddle	1.x.

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 854

https://github.com/laravel/cashier-paddle/tree/1.x

Laravel	Cashier	Paddle	provides	an	expressive,	fluent	interface	to	Paddle's	subscription	billing	services.	It
handles	almost	all	of	the	boilerplate	subscription	billing	code	you	are	dreading.	In	addition	to	basic	subscription
management,	Cashier	can	handle:	swapping	subscriptions,	subscription	"quantities",	subscription	pausing,
cancelation	grace	periods,	and	more.

Before	digging	into	Cashier	Paddle,	we	recommend	you	also	review	Paddle's	concept	guides	and	API
documentation.

Upgrading	Cashier

When	upgrading	to	a	new	version	of	Cashier,	it's	important	that	you	carefully	review	the	upgrade	guide.

Installation

First,	install	the	Cashier	package	for	Paddle	using	the	Composer	package	manager:

composer	require	laravel/cashier-paddle

Next,	you	should	publish	the	Cashier	migration	files	using	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag="cashier-migrations"

Then,	you	should	run	your	application's	database	migrations.	The	Cashier	migrations	will	create	a	new	
customers	table.	In	addition,	new	subscriptions	and	subscription_items	tables	will	be	created	to	store	all	of
your	customer's	subscriptions.	Lastly,	a	new	transactions	table	will	be	created	to	store	all	of	the	Paddle
transactions	associated	with	your	customers:

php	artisan	migrate

[!WARNING]
To	ensure	Cashier	properly	handles	all	Paddle	events,	remember	to	set	up	Cashier's	webhook	handling.

Paddle	Sandbox

During	local	and	staging	development,	you	should	register	a	Paddle	Sandbox	account.	This	account	will	give
you	a	sandboxed	environment	to	test	and	develop	your	applications	without	making	actual	payments.	You	may
use	Paddle's	test	card	numbers	to	simulate	various	payment	scenarios.

When	using	the	Paddle	Sandbox	environment,	you	should	set	the	PADDLE_SANDBOX	environment	variable	to	true
within	your	application's	.env	file:

PADDLE_SANDBOX=true

After	you	have	finished	developing	your	application	you	may	apply	for	a	Paddle	vendor	account.	Before	your
application	is	placed	into	production,	Paddle	will	need	to	approve	your	application's	domain.

Configuration

Billable	Model

Before	using	Cashier,	you	must	add	the	Billable	trait	to	your	user	model	definition.	This	trait	provides	various
methods	to	allow	you	to	perform	common	billing	tasks,	such	as	creating	subscriptions	and	updating	payment
method	information:

use	Laravel\Paddle\Billable;

class	User	extends	Authenticatable

{

				use	Billable;

}

If	you	have	billable	entities	that	are	not	users,	you	may	also	add	the	trait	to	those	classes:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 855

https://github.com/laravel/cashier-paddle
https://paddle.com
https://developer.paddle.com/concepts/overview
https://developer.paddle.com/api-reference/overview
https://github.com/laravel/cashier-paddle/blob/master/UPGRADE.md
https://sandbox-login.paddle.com/signup
https://developer.paddle.com/concepts/payment-methods/credit-debit-card
https://paddle.com

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Paddle\Billable;

class	Team	extends	Model

{

				use	Billable;

}

API	Keys

Next,	you	should	configure	your	Paddle	keys	in	your	application's	.env	file.	You	can	retrieve	your	Paddle	API
keys	from	the	Paddle	control	panel:

PADDLE_CLIENT_SIDE_TOKEN=your-paddle-client-side-token

PADDLE_API_KEY=your-paddle-api-key

PADDLE_RETAIN_KEY=your-paddle-retain-key

PADDLE_WEBHOOK_SECRET="your-paddle-webhook-secret"

PADDLE_SANDBOX=true

The	PADDLE_SANDBOX	environment	variable	should	be	set	to	true	when	you	are	using	Paddle's	Sandbox
environment.	The	PADDLE_SANDBOX	variable	should	be	set	to	false	if	you	are	deploying	your	application	to
production	and	are	using	Paddle's	live	vendor	environment.

The	PADDLE_RETAIN_KEY	is	optional	and	should	only	be	set	if	you're	using	Paddle	with	Retain.

Paddle	JS

Paddle	relies	on	its	own	JavaScript	library	to	initiate	the	Paddle	checkout	widget.	You	can	load	the	JavaScript
library	by	placing	the	@paddleJS	Blade	directive	right	before	your	application	layout's	closing	</head>	tag:

<head>

				...

				@paddleJS

</head>

Currency	Configuration

You	can	specify	a	locale	to	be	used	when	formatting	money	values	for	display	on	invoices.	Internally,	Cashier
utilizes	PHP's	NumberFormatter	class	class	to	set	the	currency	locale:

CASHIER_CURRENCY_LOCALE=nl_BE

[!WARNING]
In	order	to	use	locales	other	than	en,	ensure	the	ext-intl	PHP	extension	is	installed	and	configured	on	your
server.

Overriding	Default	Models

You	are	free	to	extend	the	models	used	internally	by	Cashier	by	defining	your	own	model	and	extending	the
corresponding	Cashier	model:

use	Laravel\Paddle\Subscription	as	CashierSubscription;

class	Subscription	extends	CashierSubscription

{

				//	...

}

After	defining	your	model,	you	may	instruct	Cashier	to	use	your	custom	model	via	the	Laravel\Paddle\Cashier
class.	Typically,	you	should	inform	Cashier	about	your	custom	models	in	the	boot	method	of	your	application's	
App\Providers\AppServiceProvider	class:

use	App\Models\Cashier\Subscription;

use	App\Models\Cashier\Transaction;

/**

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 856

https://developer.paddle.com/paddlejs/retain
https://www.php.net/manual/en/class.numberformatter.php

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Cashier::useSubscriptionModel(Subscription::class);

				Cashier::useTransactionModel(Transaction::class);

}

Quickstart

Selling	Products

[!NOTE]	Before	utilizing	Paddle	Checkout,	you	should	define	Products	with	fixed	prices	in	your	Paddle
dashboard.	In	addition,	you	should	configure	Paddle's	webhook	handling.

Offering	product	and	subscription	billing	via	your	application	can	be	intimidating.	However,	thanks	to	Cashier
and	Paddle's	Checkout	Overlay,	you	can	easily	build	modern,	robust	payment	integrations.

To	charge	customers	for	non-recurring,	single-charge	products,	we'll	utilize	Cashier	to	charge	customers	with
Paddle's	Checkout	Overlay,	where	they	will	provide	their	payment	details	and	confirm	their	purchase.	Once	the
payment	has	been	made	via	the	Checkout	Overlay,	the	customer	will	be	redirected	to	a	success	URL	of	your
choosing	within	your	application:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$request->user()->checkout('pri_deluxe_album')

								->returnTo(route('dashboard'));

				return	view('buy',	['checkout'	=>	$checkout]);

})->name('checkout');

As	you	can	see	in	the	example	above,	we	will	utilize	Cashier's	provided	checkout	method	to	create	a	checkout
object	to	present	the	customer	the	Paddle	Checkout	Overlay	for	a	given	"price	identifier".	When	using	Paddle,
"prices"	refer	to	defined	prices	for	specific	products.

If	necessary,	the	checkout	method	will	automatically	create	a	customer	in	Paddle	and	connect	that	Paddle
customer	record	to	the	corresponding	user	in	your	application's	database.	After	completing	the	checkout
session,	the	customer	will	be	redirected	to	a	dedicated	success	page	where	you	can	display	an	informational
message	to	the	customer.

In	the	buy	view,	we	will	include	a	button	to	display	the	Checkout	Overlay.	The	paddle-button	Blade	component
is	included	with	Cashier	Paddle;	however,	you	may	also	manually	render	an	overlay	checkout:

<x-paddle-button	:checkout="$checkout"	class="px-8	py-4">

				Buy	Product

</x-paddle-button>

Providing	Meta	Data	to	Paddle	Checkout

When	selling	products,	it's	common	to	keep	track	of	completed	orders	and	purchased	products	via	Cart	and	
Order	models	defined	by	your	own	application.	When	redirecting	customers	to	Paddle's	Checkout	Overlay	to
complete	a	purchase,	you	may	need	to	provide	an	existing	order	identifier	so	that	you	can	associate	the
completed	purchase	with	the	corresponding	order	when	the	customer	is	redirected	back	to	your	application.

To	accomplish	this,	you	may	provide	an	array	of	custom	data	to	the	checkout	method.	Let's	imagine	that	a
pending	Order	is	created	within	our	application	when	a	user	begins	the	checkout	process.	Remember,	the	Cart
and	Order	models	in	this	example	are	illustrative	and	not	provided	by	Cashier.	You	are	free	to	implement	these
concepts	based	on	the	needs	of	your	own	application:

use	App\Models\Cart;

use	App\Models\Order;

use	Illuminate\Http\Request;

Route::get('/cart/{cart}/checkout',	function	(Request	$request,	Cart	$cart)	{

				$order	=	Order::create([

								'cart_id'	=>	$cart->id,

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 857

https://www.paddle.com/billing/checkout
https://developer.paddle.com/build/products/create-products-prices

								'price_ids'	=>	$cart->price_ids,

								'status'	=>	'incomplete',

]);

				$checkout	=	$request->user()->checkout($order->price_ids)

								->customData(['order_id'	=>	$order->id]);

				return	view('billing',	['checkout'	=>	$checkout]);

})->name('checkout');

As	you	can	see	in	the	example	above,	when	a	user	begins	the	checkout	process,	we	will	provide	all	of	the	cart	/
order's	associated	Paddle	price	identifiers	to	the	checkout	method.	Of	course,	your	application	is	responsible	for
associating	these	items	with	the	"shopping	cart"	or	order	as	a	customer	adds	them.	We	also	provide	the	order's
ID	to	the	Paddle	Checkout	Overlay	via	the	customData	method.

Of	course,	you	will	likely	want	to	mark	the	order	as	"complete"	once	the	customer	has	finished	the	checkout
process.	To	accomplish	this,	you	may	listen	to	the	webhooks	dispatched	by	Paddle	and	raised	via	events	by
Cashier	to	store	order	information	in	your	database.

To	get	started,	listen	for	the	TransactionCompleted	event	dispatched	by	Cashier.	Typically,	you	should	register
the	event	listener	in	the	boot	method	of	one	of	your	application's	service	providers:

use	App\Listeners\CompleteOrder;

use	Illuminate\Support\Facades\Event;

use	Laravel\Paddle\Events\TransactionCompleted;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Event::listen(TransactionCompleted::class,	CompleteOrder::class);

}

In	this	example,	the	CompleteOrder	listener	might	look	like	the	following:

namespace	App\Listeners;

use	App\Models\Order;

use	Laravel\Cashier\Cashier;

use	Laravel\Cashier\Events\TransactionCompleted;

class	CompleteOrder

{

				/**

					*	Handle	the	incoming	Cashier	webhook	event.

					*/

				public	function	handle(TransactionCompleted	$event):	void

				{

								$orderId	=	$event->payload['data']['custom_data']['order_id']	??	null;

								$order	=	Order::findOrFail($orderId);

								$order->update(['status'	=>	'completed']);

				}

}

Please	refer	to	Paddle's	documentation	for	more	information	on	the	data	contained	by	the	
transaction.completed	event.

Selling	Subscriptions

[!NOTE]
Before	utilizing	Paddle	Checkout,	you	should	define	Products	with	fixed	prices	in	your	Paddle	dashboard.
In	addition,	you	should	configure	Paddle's	webhook	handling.

Offering	product	and	subscription	billing	via	your	application	can	be	intimidating.	However,	thanks	to	Cashier
and	Paddle's	Checkout	Overlay,	you	can	easily	build	modern,	robust	payment	integrations.

To	learn	how	to	sell	subscriptions	using	Cashier	and	Paddle's	Checkout	Overlay,	let's	consider	the	simple
scenario	of	a	subscription	service	with	a	basic	monthly	(price_basic_monthly)	and	yearly	(price_basic_yearly)

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 858

https://developer.paddle.com/webhooks/transactions/transaction-completed
https://www.paddle.com/billing/checkout

plan.	These	two	prices	could	be	grouped	under	a	"Basic"	product	(pro_basic)	in	our	Paddle	dashboard.	In
addition,	our	subscription	service	might	offer	an	Expert	plan	as	pro_expert.

First,	let's	discover	how	a	customer	can	subscribe	to	our	services.	Of	course,	you	can	imagine	the	customer
might	click	a	"subscribe"	button	for	the	Basic	plan	on	our	application's	pricing	page.	This	button	will	invoke	a
Paddle	Checkout	Overlay	for	their	chosen	plan.	To	get	started,	let's	initiate	a	checkout	session	via	the	checkout
method:

use	Illuminate\Http\Request;

Route::get('/subscribe',	function	(Request	$request)	{

				$checkout	=	$request->user()->checkout('price_basic_monthly')

								->returnTo(route('dashboard'));

				return	view('subscribe',	['checkout'	=>	$checkout]);

})->name('subscribe');

In	the	subscribe	view,	we	will	include	a	button	to	display	the	Checkout	Overlay.	The	paddle-button	Blade
component	is	included	with	Cashier	Paddle;	however,	you	may	also	manually	render	an	overlay	checkout:

<x-paddle-button	:checkout="$checkout"	class="px-8	py-4">

				Subscribe

</x-paddle-button>

Now,	when	the	Subscribe	button	is	clicked,	the	customer	will	be	able	to	enter	their	payment	details	and	initiate
their	subscription.	To	know	when	their	subscription	has	actually	started	(since	some	payment	methods	require	a
few	seconds	to	process),	you	should	also	configure	Cashier's	webhook	handling.

Now	that	customers	can	start	subscriptions,	we	need	to	restrict	certain	portions	of	our	application	so	that	only
subscribed	users	can	access	them.	Of	course,	we	can	always	determine	a	user's	current	subscription	status	via
the	subscribed	method	provided	by	Cashier's	Billable	trait:

@if	($user->subscribed())

				<p>You	are	subscribed.</p>

@endif

We	can	even	easily	determine	if	a	user	is	subscribed	to	specific	product	or	price:

@if	($user->subscribedToProduct('pro_basic'))

				<p>You	are	subscribed	to	our	Basic	product.</p>

@endif

@if	($user->subscribedToPrice('price_basic_monthly'))

				<p>You	are	subscribed	to	our	monthly	Basic	plan.</p>

@endif

Building	a	Subscribed	Middleware

For	convenience,	you	may	wish	to	create	a	middleware	which	determines	if	the	incoming	request	is	from	a
subscribed	user.	Once	this	middleware	has	been	defined,	you	may	easily	assign	it	to	a	route	to	prevent	users
that	are	not	subscribed	from	accessing	the	route:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	Subscribed

{

				/**

					*	Handle	an	incoming	request.

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								if	(!	$request->user()?->subscribed())	{

												//	Redirect	user	to	billing	page	and	ask	them	to	subscribe...

												return	redirect('/subscribe');

								}

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 859

								return	$next($request);

				}

}

Once	the	middleware	has	been	defined,	you	may	assign	it	to	a	route:

use	App\Http\Middleware\Subscribed;

Route::get('/dashboard',	function	()	{

				//	...

})->middleware([Subscribed::class]);

Allowing	Customers	to	Manage	Their	Billing	Plan

Of	course,	customers	may	want	to	change	their	subscription	plan	to	another	product	or	"tier".	In	our	example
from	above,	we'd	want	to	allow	the	customer	to	change	their	plan	from	a	monthly	subscription	to	a	yearly
subscription.	For	this	you'll	need	to	implement	something	like	a	button	that	leads	to	the	below	route:

use	Illuminate\Http\Request;

Route::put('/subscription/{price}/swap',	function	(Request	$request,	$price)	{

				$user->subscription()->swap($price);	//	With	"$price"	being	"price_basic_yearly"	for	this	example.

				return	redirect()->route('dashboard');

})->name('subscription.swap');

Besides	swapping	plans	you'll	also	need	to	allow	your	customers	to	cancel	their	subscription.	Like	swapping
plans,	provide	a	button	that	leads	to	the	following	route:

use	Illuminate\Http\Request;

Route::put('/subscription/cancel',	function	(Request	$request,	$price)	{

				$user->subscription()->cancel();

				return	redirect()->route('dashboard');

})->name('subscription.cancel');

And	now	your	subscription	will	get	cancelled	at	the	end	of	its	billing	period.

[!NOTE]
As	long	as	you	have	configured	Cashier's	webhook	handling,	Cashier	will	automatically	keep	your
application's	Cashier-related	database	tables	in	sync	by	inspecting	the	incoming	webhooks	from	Paddle.
So,	for	example,	when	you	cancel	a	customer's	subscription	via	Paddle's	dashboard,	Cashier	will	receive
the	corresponding	webhook	and	mark	the	subscription	as	"cancelled"	in	your	application's	database.

Checkout	Sessions

Most	operations	to	bill	customers	are	performed	using	"checkouts"	via	Paddle's	Checkout	Overlay	widget	or	by
utilizing	inline	checkout.

Before	processing	checkout	payments	using	Paddle,	you	should	define	your	application's	default	payment	link
in	your	Paddle	checkout	settings	dashboard.

Overlay	Checkout

Before	displaying	the	Checkout	Overlay	widget,	you	must	generate	a	checkout	session	using	Cashier.	A
checkout	session	will	inform	the	checkout	widget	of	the	billing	operation	that	should	be	performed:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$user->checkout('pri_34567')

								->returnTo(route('dashboard'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

Cashier	includes	a	paddle-button	Blade	component.	You	may	pass	the	checkout	session	to	this	component	as	a

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 860

https://developer.paddle.com/build/checkout/build-overlay-checkout
https://developer.paddle.com/build/checkout/build-branded-inline-checkout
https://developer.paddle.com/build/transactions/default-payment-link#set-default-link

"prop".	Then,	when	this	button	is	clicked,	Paddle's	checkout	widget	will	be	displayed:

<x-paddle-button	:checkout="$checkout"	class="px-8	py-4">

				Subscribe

</x-paddle-button>

By	default,	this	will	display	the	widget	using	Paddle's	default	styling.	You	can	customize	the	widget	by	adding
Paddle	supported	attributes	like	the	data-theme='light'	attribute	to	the	component:

<x-paddle-button	:url="$payLink"	class="px-8	py-4"	data-theme="light">

				Subscribe

</x-paddle-button>

The	Paddle	checkout	widget	is	asynchronous.	Once	the	user	creates	a	subscription	within	the	widget,	Paddle
will	send	your	application	a	webhook	so	that	you	may	properly	update	the	subscription	state	in	your
application's	database.	Therefore,	it's	important	that	you	properly	set	up	webhooks	to	accommodate	for	state
changes	from	Paddle.

[!WARNING]
After	a	subscription	state	change,	the	delay	for	receiving	the	corresponding	webhook	is	typically	minimal
but	you	should	account	for	this	in	your	application	by	considering	that	your	user's	subscription	might	not
be	immediately	available	after	completing	the	checkout.

Manually	Rendering	an	Overlay	Checkout

You	may	also	manually	render	an	overlay	checkout	without	using	Laravel's	built-in	Blade	components.	To	get
started,	generate	the	checkout	session	as	demonstrated	in	previous	examples:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$user->checkout('pri_34567')

								->returnTo(route('dashboard'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

Next,	you	may	use	Paddle.js	to	initialize	the	checkout.	In	this	example,	we	will	create	a	link	that	is	assigned	the
paddle_button	class.	Paddle.js	will	detect	this	class	and	display	the	overlay	checkout	when	the	link	is	clicked:

<?php

$items	=	$checkout->getItems();

$customer	=	$checkout->getCustomer();

$custom	=	$checkout->getCustomData();

?>

<a

				href='#!'

				class='paddle_button'

				data-items='{!!	json_encode($items)	!!}'

				@if	($customer)	data-customer-id='{{	$customer->paddle_id	}}'	@endif

				@if	($custom)	data-custom-data='{{	json_encode($custom)	}}'	@endif

				@if	($returnUrl	=	$checkout->getReturnUrl())	data-success-url='{{	$returnUrl	}}'	@endif

>

				Buy	Product

Inline	Checkout

If	you	don't	want	to	make	use	of	Paddle's	"overlay"	style	checkout	widget,	Paddle	also	provides	the	option	to
display	the	widget	inline.	While	this	approach	does	not	allow	you	to	adjust	any	of	the	checkout's	HTML	fields,
it	allows	you	to	embed	the	widget	within	your	application.

To	make	it	easy	for	you	to	get	started	with	inline	checkout,	Cashier	includes	a	paddle-checkout	Blade
component.	To	get	started,	you	should	generate	a	checkout	session:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$user->checkout('pri_34567')

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 861

https://developer.paddle.com/paddlejs/html-data-attributes

								->returnTo(route('dashboard'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

Then,	you	may	pass	the	checkout	session	to	the	component's	checkout	attribute:

<x-paddle-checkout	:checkout="$checkout"	class="w-full"	/>

To	adjust	the	height	of	the	inline	checkout	component,	you	may	pass	the	height	attribute	to	the	Blade
component:

<x-paddle-checkout	:checkout="$checkout"	class="w-full"	height="500"	/>

Please	consult	Paddle's	guide	on	Inline	Checkout	and	available	checkout	settings	for	further	details	on	the	inline
checkout's	customization	options.

Manually	Rendering	an	Inline	Checkout

You	may	also	manually	render	an	inline	checkout	without	using	Laravel's	built-in	Blade	components.	To	get
started,	generate	the	checkout	session	as	demonstrated	in	previous	examples:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$user->checkout('pri_34567')

								->returnTo(route('dashboard'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

Next,	you	may	use	Paddle.js	to	initialize	the	checkout.	In	this	example,	we	will	demonstrate	this	using
Alpine.js;	however,	you	are	free	to	modify	this	example	for	your	own	frontend	stack:

<?php

$options	=	$checkout->options();

$options['settings']['frameTarget']	=	'paddle-checkout';

$options['settings']['frameInitialHeight']	=	366;

?>

<div	class="paddle-checkout"	x-data="{}"	x-init="

				Paddle.Checkout.open(@json($options));

">

</div>

Guest	Checkouts

Sometimes,	you	may	need	to	create	a	checkout	session	for	users	that	do	not	need	an	account	with	your
application.	To	do	so,	you	may	use	the	guest	method:

use	Illuminate\Http\Request;

use	Laravel\Paddle\Checkout;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	Checkout::guest('pri_34567')

								->returnTo(route('home'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

Then,	you	may	provide	the	checkout	session	to	the	Paddle	button	or	inline	checkout	Blade	components.

Price	Previews

Paddle	allows	you	to	customize	prices	per	currency,	essentially	allowing	you	to	configure	different	prices	for
different	countries.	Cashier	Paddle	allows	you	to	retrieve	all	of	these	prices	using	the	previewPrices	method.
This	method	accepts	the	price	IDs	you	wish	to	retrieve	prices	for:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 862

https://developer.paddle.com/build/checkout/build-branded-inline-checkout
https://developer.paddle.com/build/checkout/set-up-checkout-default-settings
https://github.com/alpinejs/alpine

use	Laravel\Paddle\Cashier;

$prices	=	Cashier::previewPrices(['pri_123',	'pri_456']);

The	currency	will	be	determined	based	on	the	IP	address	of	the	request;	however,	you	may	optionally	provide	a
specific	country	to	retrieve	prices	for:

use	Laravel\Paddle\Cashier;

$prices	=	Cashier::productPrices(['pri_123',	'pri_456'],	['address'	=>	[

				'country_code'	=>	'BE',

				'postal_code'	=>	'1234',

]]);

After	retrieving	the	prices	you	may	display	them	however	you	wish:

				@foreach	($prices	as	$price)

								{{	$price->product['name']	}}	-	{{	$price->total()	}}

				@endforeach

You	may	also	display	the	subtotal	price	and	tax	amount	separately:

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	{{	$price->subtotal()	}}	(+	{{	$price->tax()	}}	tax)

				@endforeach

For	more	information,	checkout	Paddle's	API	documentation	regarding	price	previews.

Customer	Price	Previews

If	a	user	is	already	a	customer	and	you	would	like	to	display	the	prices	that	apply	to	that	customer,	you	may	do
so	by	retrieving	the	prices	directly	from	the	customer	instance:

use	App\Models\User;

$prices	=	User::find(1)->previewPrices(['pri_123',	'pri_456']);

Internally,	Cashier	will	use	the	user's	customer	ID	to	retrieve	the	prices	in	their	currency.	So,	for	example,	a
user	living	in	the	United	States	will	see	prices	in	US	dollars	while	a	user	in	Belgium	will	see	prices	in	Euros.	If
no	matching	currency	can	be	found,	the	default	currency	of	the	product	will	be	used.	You	can	customize	all
prices	of	a	product	or	subscription	plan	in	the	Paddle	control	panel.

Discounts

You	may	also	choose	to	display	prices	after	a	discount.	When	calling	the	previewPrices	method,	you	provide
the	discount	ID	via	the	discount_id	option:

use	Laravel\Paddle\Cashier;

$prices	=	Cashier::previewPrices(['pri_123',	'pri_456'],	[

				'discount_id'	=>	'dsc_123'

]);

Then,	display	the	calculated	prices:

				@foreach	($prices	as	$price)

								{{	$price->product['name']	}}	-	{{	$price->total()	}}

				@endforeach

Customers

Customer	Defaults

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 863

https://developer.paddle.com/api-reference/pricing-preview/preview-prices

Cashier	allows	you	to	define	some	useful	defaults	for	your	customers	when	creating	checkout	sessions.	Setting
these	defaults	allow	you	to	pre-fill	a	customer's	email	address	and	name	so	that	they	can	immediately	move	on
to	the	payment	portion	of	the	checkout	widget.	You	can	set	these	defaults	by	overriding	the	following	methods
on	your	billable	model:

/**

	*	Get	the	customer's	name	to	associate	with	Paddle.

	*/

public	function	paddleName():	string|null

{

				return	$this->name;

}

/**

	*	Get	the	customer's	email	address	to	associate	with	Paddle.

	*/

public	function	paddleEmail():	string|null

{

				return	$this->email;

}

These	defaults	will	be	used	for	every	action	in	Cashier	that	generates	a	checkout	session.

Retrieving	Customers

You	can	retrieve	a	customer	by	their	Paddle	Customer	ID	using	the	Cashier::findBillable	method.	This
method	will	return	an	instance	of	the	billable	model:

use	Laravel\Cashier\Cashier;

$user	=	Cashier::findBillable($customerId);

Creating	Customers

Occasionally,	you	may	wish	to	create	a	Paddle	customer	without	beginning	a	subscription.	You	may	accomplish
this	using	the	createAsCustomer	method:

$customer	=	$user->createAsCustomer();

An	instance	of	Laravel\Paddle\Customer	is	returned.	Once	the	customer	has	been	created	in	Paddle,	you	may
begin	a	subscription	at	a	later	date.	You	may	provide	an	optional	$options	array	to	pass	in	any	additional
customer	creation	parameters	that	are	supported	by	the	Paddle	API:

$customer	=	$user->createAsCustomer($options);

Subscriptions

Creating	Subscriptions

To	create	a	subscription,	first	retrieve	an	instance	of	your	billable	model	from	your	database,	which	will
typically	be	an	instance	of	App\Models\User.	Once	you	have	retrieved	the	model	instance,	you	may	use	the	
subscribe	method	to	create	the	model's	checkout	session:

use	Illuminate\Http\Request;

Route::get('/user/subscribe',	function	(Request	$request)	{

				$checkout	=	$request->user()->subscribe($premium	=	12345,	'default')

								->returnTo(route('home'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

The	first	argument	given	to	the	subscribe	method	is	the	specific	price	the	user	is	subscribing	to.	This	value
should	correspond	to	the	price's	identifier	in	Paddle.	The	returnTo	method	accepts	a	URL	that	your	user	will	be
redirected	to	after	they	successfully	complete	the	checkout.	The	second	argument	passed	to	the	subscribe
method	should	be	the	internal	"type"	of	the	subscription.	If	your	application	only	offers	a	single	subscription,
you	might	call	this	default	or	primary.	This	subscription	type	is	only	for	internal	application	usage	and	is	not

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 864

https://developer.paddle.com/api-reference/customers/create-customer

meant	to	be	displayed	to	users.	In	addition,	it	should	not	contain	spaces	and	it	should	never	be	changed	after
creating	the	subscription.

You	may	also	provide	an	array	of	custom	meta	data	regarding	the	subscription	using	the	customData	method:

$checkout	=	$request->user()->subscribe($premium	=	12345,	'default')

				->customData(['key'	=>	'value'])

				->returnTo(route('home'));

Once	a	subscription	checkout	session	has	been	created,	the	checkout	session	may	be	provided	to	the	paddle-
button	Blade	component	that	is	included	with	Cashier	Paddle:

<x-paddle-button	:checkout="$checkout"	class="px-8	py-4">

				Subscribe

</x-paddle-button>

After	the	user	has	finished	their	checkout,	a	subscription_created	webhook	will	be	dispatched	from	Paddle.
Cashier	will	receive	this	webhook	and	setup	the	subscription	for	your	customer.	In	order	to	make	sure	all
webhooks	are	properly	received	and	handled	by	your	application,	ensure	you	have	properly	setup	webhook
handling.

Checking	Subscription	Status

Once	a	user	is	subscribed	to	your	application,	you	may	check	their	subscription	status	using	a	variety	of
convenient	methods.	First,	the	subscribed	method	returns	true	if	the	user	has	an	valid	subscription,	even	if	the
subscription	is	currently	within	its	trial	period:

if	($user->subscribed())	{

				//	...

}

If	your	application	offers	multiple	subscriptions,	you	may	specify	the	subscription	when	invoking	the	
subscribed	method:

if	($user->subscribed('default'))	{

				//	...

}

The	subscribed	method	also	makes	a	great	candidate	for	a	route	middleware,	allowing	you	to	filter	access	to
routes	and	controllers	based	on	the	user's	subscription	status:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Http\Request;

use	Symfony\Component\HttpFoundation\Response;

class	EnsureUserIsSubscribed

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Closure(\Illuminate\Http\Request):	(\Symfony\Component\HttpFoundation\Response)		$next

					*/

				public	function	handle(Request	$request,	Closure	$next):	Response

				{

								if	($request->user()	&&	!	$request->user()->subscribed())	{

												//	This	user	is	not	a	paying	customer...

												return	redirect('billing');

								}

								return	$next($request);

				}

}

If	you	would	like	to	determine	if	a	user	is	still	within	their	trial	period,	you	may	use	the	onTrial	method.	This
method	can	be	useful	for	determining	if	you	should	display	a	warning	to	the	user	that	they	are	still	on	their	trial
period:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 865

if	($user->subscription()->onTrial())	{

				//	...

}

The	subscribedToPrice	method	may	be	used	to	determine	if	the	user	is	subscribed	to	a	given	plan	based	on	a
given	Paddle	price	ID.	In	this	example,	we	will	determine	if	the	user's	default	subscription	is	actively
subscribed	to	the	monthly	price:

if	($user->subscribedToPrice($monthly	=	'pri_123',	'default'))	{

				//	...

}

The	recurring	method	may	be	used	to	determine	if	the	user	is	currently	on	an	active	subscription	and	is	no
longer	within	their	trial	period	or	on	a	grace	period:

if	($user->subscription()->recurring())	{

				//	...

}

Canceled	Subscription	Status

To	determine	if	the	user	was	once	an	active	subscriber	but	has	canceled	their	subscription,	you	may	use	the	
canceled	method:

if	($user->subscription()->canceled())	{

				//	...

}

You	may	also	determine	if	a	user	has	canceled	their	subscription,	but	are	still	on	their	"grace	period"	until	the
subscription	fully	expires.	For	example,	if	a	user	cancels	a	subscription	on	March	5th	that	was	originally
scheduled	to	expire	on	March	10th,	the	user	is	on	their	"grace	period"	until	March	10th.	In	addition,	the	
subscribed	method	will	still	return	true	during	this	time:

if	($user->subscription()->onGracePeriod())	{

				//	...

}

Past	Due	Status

If	a	payment	fails	for	a	subscription,	it	will	be	marked	as	past_due.	When	your	subscription	is	in	this	state	it	will
not	be	active	until	the	customer	has	updated	their	payment	information.	You	may	determine	if	a	subscription	is
past	due	using	the	pastDue	method	on	the	subscription	instance:

if	($user->subscription()->pastDue())	{

				//	...

}

When	a	subscription	is	past	due,	you	should	instruct	the	user	to	update	their	payment	information.

If	you	would	like	subscriptions	to	still	be	considered	valid	when	they	are	past_due,	you	may	use	the	
keepPastDueSubscriptionsActive	method	provided	by	Cashier.	Typically,	this	method	should	be	called	in	the	
register	method	of	your	AppServiceProvider:

use	Laravel\Paddle\Cashier;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				Cashier::keepPastDueSubscriptionsActive();

}

[!WARNING]
When	a	subscription	is	in	a	past_due	state	it	cannot	be	changed	until	payment	information	has	been
updated.	Therefore,	the	swap	and	updateQuantity	methods	will	throw	an	exception	when	the	subscription	is
in	a	past_due	state.

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 866

Subscription	Scopes

Most	subscription	states	are	also	available	as	query	scopes	so	that	you	may	easily	query	your	database	for
subscriptions	that	are	in	a	given	state:

//	Get	all	valid	subscriptions...

$subscriptions	=	Subscription::query()->valid()->get();

//	Get	all	of	the	canceled	subscriptions	for	a	user...

$subscriptions	=	$user->subscriptions()->canceled()->get();

A	complete	list	of	available	scopes	is	available	below:

Subscription::query()->valid();

Subscription::query()->onTrial();

Subscription::query()->expiredTrial();

Subscription::query()->notOnTrial();

Subscription::query()->active();

Subscription::query()->recurring();

Subscription::query()->pastDue();

Subscription::query()->paused();

Subscription::query()->notPaused();

Subscription::query()->onPausedGracePeriod();

Subscription::query()->notOnPausedGracePeriod();

Subscription::query()->canceled();

Subscription::query()->notCanceled();

Subscription::query()->onGracePeriod();

Subscription::query()->notOnGracePeriod();

Subscription	Single	Charges

Subscription	single	charges	allow	you	to	charge	subscribers	with	a	one-time	charge	on	top	of	their
subscriptions.	You	must	provide	one	or	multiple	price	ID's	when	invoking	the	charge	method:

//	Charge	a	single	price...

$response	=	$user->subscription()->charge('pri_123');

//	Charge	multiple	prices	at	once...

$response	=	$user->subscription()->charge(['pri_123',	'pri_456']);

The	charge	method	will	not	actually	charge	the	customer	until	the	next	billing	interval	of	their	subscription.	If
you	would	like	to	bill	the	customer	immediately,	you	may	use	the	chargeAndInvoice	method	instead:

$response	=	$user->subscription()->chargeAndInvoice('pri_123');

Updating	Payment	Information

Paddle	always	saves	a	payment	method	per	subscription.	If	you	want	to	update	the	default	payment	method	for
a	subscription,	you	should	redirect	your	customer	to	Paddle's	hosted	payment	method	update	page	using	the	
redirectToUpdatePaymentMethod	method	on	the	subscription	model:

use	Illuminate\Http\Request;

Route::get('/update-payment-method',	function	(Request	$request)	{

				$user	=	$request->user();

				return	$user->subscription()->redirectToUpdatePaymentMethod();

});

When	a	user	has	finished	updating	their	information,	a	subscription_updated	webhook	will	be	dispatched	by
Paddle	and	the	subscription	details	will	be	updated	in	your	application's	database.

Changing	Plans

After	a	user	has	subscribed	to	your	application,	they	may	occasionally	want	to	change	to	a	new	subscription
plan.	To	update	the	subscription	plan	for	a	user,	you	should	pass	the	Paddle	price's	identifier	to	the
subscription's	swap	method:

use	App\Models\User;

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 867

$user	=	User::find(1);

$user->subscription()->swap($premium	=	'pri_456');

If	you	would	like	to	swap	plans	and	immediately	invoice	the	user	instead	of	waiting	for	their	next	billing	cycle,
you	may	use	the	swapAndInvoice	method:

$user	=	User::find(1);

$user->subscription()->swapAndInvoice($premium	=	'pri_456');

Prorations

By	default,	Paddle	prorates	charges	when	swapping	between	plans.	The	noProrate	method	may	be	used	to
update	the	subscriptions	without	prorating	the	charges:

$user->subscription('default')->noProrate()->swap($premium	=	'pri_456');

If	you	would	like	to	disable	proration	and	invoice	customers	immediately,	you	may	use	the	swapAndInvoice
method	in	combination	with	noProrate:

$user->subscription('default')->noProrate()->swapAndInvoice($premium	=	'pri_456');

Or,	to	not	bill	your	customer	for	a	subscription	change,	you	may	utilize	the	doNotBill	method:

$user->subscription('default')->doNotBill()->swap($premium	=	'pri_456');

For	more	information	on	Paddle's	proration	policies,	please	consult	Paddle's	proration	documentation.

Subscription	Quantity

Sometimes	subscriptions	are	affected	by	"quantity".	For	example,	a	project	management	application	might
charge	$10	per	month	per	project.	To	easily	increment	or	decrement	your	subscription's	quantity,	use	the	
incrementQuantity	and	decrementQuantity	methods:

$user	=	User::find(1);

$user->subscription()->incrementQuantity();

//	Add	five	to	the	subscription's	current	quantity...

$user->subscription()->incrementQuantity(5);

$user->subscription()->decrementQuantity();

//	Subtract	five	from	the	subscription's	current	quantity...

$user->subscription()->decrementQuantity(5);

Alternatively,	you	may	set	a	specific	quantity	using	the	updateQuantity	method:

$user->subscription()->updateQuantity(10);

The	noProrate	method	may	be	used	to	update	the	subscription's	quantity	without	prorating	the	charges:

$user->subscription()->noProrate()->updateQuantity(10);

Quantities	for	Subscriptions	With	Multiple	Products

If	your	subscription	is	a	subscription	with	multiple	products,	you	should	pass	the	ID	of	the	price	whose	quantity
you	wish	to	increment	or	decrement	as	the	second	argument	to	the	increment	/	decrement	methods:

$user->subscription()->incrementQuantity(1,	'price_chat');

Subscriptions	With	Multiple	Products

Subscription	with	multiple	products	allow	you	to	assign	multiple	billing	products	to	a	single	subscription.	For
example,	imagine	you	are	building	a	customer	service	"helpdesk"	application	that	has	a	base	subscription	price

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 868

https://developer.paddle.com/concepts/subscriptions/proration
https://developer.paddle.com/build/subscriptions/add-remove-products-prices-addons

of	$10	per	month	but	offers	a	live	chat	add-on	product	for	an	additional	$15	per	month.

When	creating	subscription	checkout	sessions,	you	may	specify	multiple	products	for	a	given	subscription	by
passing	an	array	of	prices	as	the	first	argument	to	the	subscribe	method:

use	Illuminate\Http\Request;

Route::post('/user/subscribe',	function	(Request	$request)	{

				$checkout	=	$request->user()->subscribe([

								'price_monthly',

								'price_chat',

]);

				return	view('billing',	['checkout'	=>	$checkout]);

});

In	the	example	above,	the	customer	will	have	two	prices	attached	to	their	default	subscription.	Both	prices	will
be	charged	on	their	respective	billing	intervals.	If	necessary,	you	may	pass	an	associative	array	of	key	/	value
pairs	to	indicate	a	specific	quantity	for	each	price:

$user	=	User::find(1);

$checkout	=	$user->subscribe('default',	['price_monthly',	'price_chat'	=>	5]);

If	you	would	like	to	add	another	price	to	an	existing	subscription,	you	must	use	the	subscription's	swap	method.
When	invoking	the	swap	method,	you	should	also	include	the	subscription's	current	prices	and	quantities	as
well:

$user	=	User::find(1);

$user->subscription()->swap(['price_chat',	'price_original'	=>	2]);

The	example	above	will	add	the	new	price,	but	the	customer	will	not	be	billed	for	it	until	their	next	billing
cycle.	If	you	would	like	to	bill	the	customer	immediately	you	may	use	the	swapAndInvoice	method:

$user->subscription()->swapAndInvoice(['price_chat',	'price_original'	=>	2]);

You	may	remove	prices	from	subscriptions	using	the	swap	method	and	omitting	the	price	you	want	to	remove:

$user->subscription()->swap(['price_original'	=>	2]);

[!WARNING]
You	may	not	remove	the	last	price	on	a	subscription.	Instead,	you	should	simply	cancel	the	subscription.

Multiple	Subscriptions

Paddle	allows	your	customers	to	have	multiple	subscriptions	simultaneously.	For	example,	you	may	run	a	gym
that	offers	a	swimming	subscription	and	a	weight-lifting	subscription,	and	each	subscription	may	have	different
pricing.	Of	course,	customers	should	be	able	to	subscribe	to	either	or	both	plans.

When	your	application	creates	subscriptions,	you	may	provide	the	type	of	the	subscription	to	the	subscribe
method	as	the	second	argument.	The	type	may	be	any	string	that	represents	the	type	of	subscription	the	user	is
initiating:

use	Illuminate\Http\Request;

Route::post('/swimming/subscribe',	function	(Request	$request)	{

				$checkout	=	$request->user()->subscribe($swimmingMonthly	=	'pri_123',	'swimming');

				return	view('billing',	['checkout'	=>	$checkout]);

});

In	this	example,	we	initiated	a	monthly	swimming	subscription	for	the	customer.	However,	they	may	want	to
swap	to	a	yearly	subscription	at	a	later	time.	When	adjusting	the	customer's	subscription,	we	can	simply	swap
the	price	on	the	swimming	subscription:

$user->subscription('swimming')->swap($swimmingYearly	=	'pri_456');

Of	course,	you	may	also	cancel	the	subscription	entirely:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 869

$user->subscription('swimming')->cancel();

Pausing	Subscriptions

To	pause	a	subscription,	call	the	pause	method	on	the	user's	subscription:

$user->subscription()->pause();

When	a	subscription	is	paused,	Cashier	will	automatically	set	the	paused_at	column	in	your	database.	This
column	is	used	to	determine	when	the	paused	method	should	begin	returning	true.	For	example,	if	a	customer
pauses	a	subscription	on	March	1st,	but	the	subscription	was	not	scheduled	to	recur	until	March	5th,	the	paused
method	will	continue	to	return	false	until	March	5th.	This	is	because	a	user	is	typically	allowed	to	continue
using	an	application	until	the	end	of	their	billing	cycle.

By	default,	pausing	happens	at	the	next	billing	interval	so	the	customer	can	use	the	remainder	of	the	period	they
paid	for.	If	you	want	to	pause	a	subscription	immediately,	you	may	use	the	pauseNow	method:

$user->subscription()->pauseNow();

Using	the	pauseUntil	method,	you	can	pause	the	subscription	until	a	specific	moment	in	time:

$user->subscription()->pauseUntil(now()->addMonth());

Or,	you	may	use	the	pauseNowUntil	method	to	immediately	pause	the	subscription	until	a	given	point	in	time:

$user->subscription()->pauseNowUntil(now()->addMonth());

You	may	determine	if	a	user	has	paused	their	subscription	but	are	still	on	their	"grace	period"	using	the	
onPausedGracePeriod	method:

if	($user->subscription()->onPausedGracePeriod())	{

				//	...

}

To	resume	a	paused	subscription,	you	may	invoke	the	resume	method	on	the	subscription:

$user->subscription()->resume();

[!WARNING]
A	subscription	cannot	be	modified	while	it	is	paused.	If	you	want	to	swap	to	a	different	plan	or	update
quantities	you	must	resume	the	subscription	first.

Canceling	Subscriptions

To	cancel	a	subscription,	call	the	cancel	method	on	the	user's	subscription:

$user->subscription()->cancel();

When	a	subscription	is	canceled,	Cashier	will	automatically	set	the	ends_at	column	in	your	database.	This
column	is	used	to	determine	when	the	subscribed	method	should	begin	returning	false.	For	example,	if	a
customer	cancels	a	subscription	on	March	1st,	but	the	subscription	was	not	scheduled	to	end	until	March	5th,
the	subscribed	method	will	continue	to	return	true	until	March	5th.	This	is	done	because	a	user	is	typically
allowed	to	continue	using	an	application	until	the	end	of	their	billing	cycle.

You	may	determine	if	a	user	has	canceled	their	subscription	but	are	still	on	their	"grace	period"	using	the	
onGracePeriod	method:

if	($user->subscription()->onGracePeriod())	{

				//	...

}

If	you	wish	to	cancel	a	subscription	immediately,	you	may	call	the	cancelNow	method	on	the	subscription:

$user->subscription()->cancelNow();

To	stop	a	subscription	on	its	grace	period	from	canceling,	you	may	invoke	the	stopCancelation	method:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 870

$user->subscription()->stopCancelation();

[!WARNING]
Paddle's	subscriptions	cannot	be	resumed	after	cancelation.	If	your	customer	wishes	to	resume	their
subscription,	they	will	have	to	create	a	new	subscription.

Subscription	Trials

With	Payment	Method	Up	Front

If	you	would	like	to	offer	trial	periods	to	your	customers	while	still	collecting	payment	method	information	up
front,	you	should	use	set	a	trial	time	in	the	Paddle	dashboard	on	the	price	your	customer	is	subscribing	to.	Then,
initiate	the	checkout	session	as	normal:

use	Illuminate\Http\Request;

Route::get('/user/subscribe',	function	(Request	$request)	{

				$checkout	=	$request->user()->subscribe('pri_monthly')

																->returnTo(route('home'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

When	your	application	receives	the	subscription_created	event,	Cashier	will	set	the	trial	period	ending	date	on
the	subscription	record	within	your	application's	database	as	well	as	instruct	Paddle	to	not	begin	billing	the
customer	until	after	this	date.

[!WARNING]
If	the	customer's	subscription	is	not	canceled	before	the	trial	ending	date	they	will	be	charged	as	soon	as
the	trial	expires,	so	you	should	be	sure	to	notify	your	users	of	their	trial	ending	date.

You	may	determine	if	the	user	is	within	their	trial	period	using	either	the	onTrial	method	of	the	user	instance	or
the	onTrial	method	of	the	subscription	instance.	The	two	examples	below	are	equivalent:

if	($user->onTrial())	{

				//	...

}

if	($user->subscription()->onTrial())	{

				//	...

}

To	determine	if	an	existing	trial	has	expired,	you	may	use	the	hasExpiredTrial	methods:

if	($user->hasExpiredTrial())	{

				//	...

}

if	($user->subscription()->hasExpiredTrial())	{

				//	...

}

To	determine	if	a	user	is	on	trial	for	a	specific	subscription	type,	you	may	provide	the	type	to	the	onTrial	or	
hasExpiredTrial	methods:

if	($user->onTrial('default'))	{

				//	...

}

if	($user->hasExpiredTrial('default'))	{

				//	...

}

Without	Payment	Method	Up	Front

If	you	would	like	to	offer	trial	periods	without	collecting	the	user's	payment	method	information	up	front,	you
may	set	the	trial_ends_at	column	on	the	customer	record	attached	to	your	user	to	your	desired	trial	ending
date.	This	is	typically	done	during	user	registration:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 871

use	App\Models\User;

$user	=	User::create([

				//	...

]);

$user->createAsCustomer([

				'trial_ends_at'	=>	now()->addDays(10)

]);

Cashier	refers	to	this	type	of	trial	as	a	"generic	trial",	since	it	is	not	attached	to	any	existing	subscription.	The	
onTrial	method	on	the	User	instance	will	return	true	if	the	current	date	is	not	past	the	value	of	trial_ends_at:

if	($user->onTrial())	{

				//	User	is	within	their	trial	period...

}

Once	you	are	ready	to	create	an	actual	subscription	for	the	user,	you	may	use	the	subscribe	method	as	usual:

use	Illuminate\Http\Request;

Route::get('/user/subscribe',	function	(Request	$request)	{

				$checkout	=	$user->subscribe('pri_monthly')

								->returnTo(route('home'));

				return	view('billing',	['checkout'	=>	$checkout]);

});

To	retrieve	the	user's	trial	ending	date,	you	may	use	the	trialEndsAt	method.	This	method	will	return	a	Carbon
date	instance	if	a	user	is	on	a	trial	or	null	if	they	aren't.	You	may	also	pass	an	optional	subscription	type
parameter	if	you	would	like	to	get	the	trial	ending	date	for	a	specific	subscription	other	than	the	default	one:

if	($user->onTrial('default'))	{

				$trialEndsAt	=	$user->trialEndsAt();

}

You	may	use	the	onGenericTrial	method	if	you	wish	to	know	specifically	that	the	user	is	within	their	"generic"
trial	period	and	has	not	created	an	actual	subscription	yet:

if	($user->onGenericTrial())	{

				//	User	is	within	their	"generic"	trial	period...

}

Extend	or	Activate	a	Trial

You	can	extend	an	existing	trial	period	on	a	subscription	by	invoking	the	extendTrial	method	and	specifying
the	moment	in	time	that	the	trial	should	end:

$user->subsription()->extendTrial(now()->addDays(5));

Or,	you	may	immediately	activate	a	subscription	by	ending	its	trial	by	calling	the	activate	method	on	the
subscription:

$user->subscription()->activate();

Handling	Paddle	Webhooks

Paddle	can	notify	your	application	of	a	variety	of	events	via	webhooks.	By	default,	a	route	that	points	to
Cashier's	webhook	controller	is	registered	by	the	Cashier	service	provider.	This	controller	will	handle	all
incoming	webhook	requests.

By	default,	this	controller	will	automatically	handle	canceling	subscriptions	that	have	too	many	failed	charges,
subscription	updates,	and	payment	method	changes;	however,	as	we'll	soon	discover,	you	can	extend	this
controller	to	handle	any	Paddle	webhook	event	you	like.

To	ensure	your	application	can	handle	Paddle	webhooks,	be	sure	to	configure	the	webhook	URL	in	the	Paddle
control	panel.	By	default,	Cashier's	webhook	controller	responds	to	the	/paddle/webhook	URL	path.	The	full	list
of	all	webhooks	you	should	enable	in	the	Paddle	control	panel	are:

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 872

https://vendors.paddle.com/alerts-webhooks

Customer	Updated
Transaction	Completed
Transaction	Updated
Subscription	Created
Subscription	Updated
Subscription	Paused
Subscription	Canceled

[!WARNING]
Make	sure	you	protect	incoming	requests	with	Cashier's	included	webhook	signature	verification
middleware.

Webhooks	and	CSRF	Protection

Since	Paddle	webhooks	need	to	bypass	Laravel's	CSRF	protection,	be	sure	to	list	the	URI	as	an	exception	in
your	App\Http\Middleware\VerifyCsrfToken	middleware	or	list	the	route	outside	of	the	web	middleware	group:

protected	$except	=	[

				'paddle/*',

];

Webhooks	and	Local	Development

For	Paddle	to	be	able	to	send	your	application	webhooks	during	local	development,	you	will	need	to	expose
your	application	via	a	site	sharing	service	such	as	Ngrok	or	Expose.	If	you	are	developing	your	application
locally	using	Laravel	Sail,	you	may	use	Sail's	site	sharing	command.

Defining	Webhook	Event	Handlers

Cashier	automatically	handles	subscription	cancelation	on	failed	charges	and	other	common	Paddle	webhooks.
However,	if	you	have	additional	webhook	events	you	would	like	to	handle,	you	may	do	so	by	listening	to	the
following	events	that	are	dispatched	by	Cashier:

Laravel\Paddle\Events\WebhookReceived

Laravel\Paddle\Events\WebhookHandled

Both	events	contain	the	full	payload	of	the	Paddle	webhook.	For	example,	if	you	wish	to	handle	the	
transaction_billed	webhook,	you	may	register	a	listener	that	will	handle	the	event:

<?php

namespace	App\Listeners;

use	Laravel\Paddle\Events\WebhookReceived;

class	PaddleEventListener

{

				/**

					*	Handle	received	Paddle	webhooks.

					*/

				public	function	handle(WebhookReceived	$event):	void

				{

								if	($event->payload['alert_name']	===	'transaction_billed')	{

												//	Handle	the	incoming	event...

								}

				}

}

Once	your	listener	has	been	defined,	you	may	register	it	within	your	application's	EventServiceProvider:

<?php

namespace	App\Providers;

use	App\Listeners\PaddleEventListener;

use	Illuminate\Foundation\Support\Providers\EventServiceProvider	as	ServiceProvider;

use	Laravel\Paddle\Events\WebhookReceived;

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 873

https://ngrok.com/
https://expose.dev/docs/introduction

class	EventServiceProvider	extends	ServiceProvider

{

				protected	$listen	=	[

								WebhookReceived::class	=>	[

												PaddleEventListener::class,

],

];

}

Cashier	also	emit	events	dedicated	to	the	type	of	the	received	webhook.	In	addition	to	the	full	payload	from
Paddle,	they	also	contain	the	relevant	models	that	were	used	to	process	the	webhook	such	as	the	billable	model,
the	subscription,	or	the	receipt:

Laravel\Paddle\Events\CustomerUpdated

Laravel\Paddle\Events\TransactionCompleted

Laravel\Paddle\Events\TransactionUpdated

Laravel\Paddle\Events\SubscriptionCreated

Laravel\Paddle\Events\SubscriptionUpdated

Laravel\Paddle\Events\SubscriptionPaused

Laravel\Paddle\Events\SubscriptionCanceled

You	can	also	override	the	default,	built-in	webhook	route	by	defining	the	CASHIER_WEBHOOK	environment	variable
in	your	application's	.env	file.	This	value	should	be	the	full	URL	to	your	webhook	route	and	needs	to	match	the
URL	set	in	your	Paddle	control	panel:

CASHIER_WEBHOOK=https://example.com/my-paddle-webhook-url

Verifying	Webhook	Signatures

To	secure	your	webhooks,	you	may	use	Paddle's	webhook	signatures.	For	convenience,	Cashier	automatically
includes	a	middleware	which	validates	that	the	incoming	Paddle	webhook	request	is	valid.

To	enable	webhook	verification,	ensure	that	the	PADDLE_WEBHOOK_SECRET	environment	variable	is	defined	in	your
application's	.env	file.	The	webhook	secret	may	be	retrieved	from	your	Paddle	account	dashboard.

Single	Charges

Charging	for	Products

If	you	would	like	to	initiate	a	product	purchase	for	a	customer,	you	may	use	the	checkout	method	on	a	billable
model	instance	to	generate	a	checkout	session	for	the	purchase.	The	checkout	method	accepts	one	or	multiple
price	ID's.	If	necessary,	an	associative	array	may	be	used	to	provide	the	quantity	of	the	product	that	is	being
purchased:

use	Illuminate\Http\Request;

Route::get('/buy',	function	(Request	$request)	{

				$checkout	=	$request->user()->checkout(['pri_tshirt',	'pri_socks'	=>	5]);

				return	view('buy',	['checkout'	=>	$checkout]);

});

After	generating	the	checkout	session,	you	may	use	Cashier's	provided	paddle-button	Blade	component	to
allow	the	user	to	view	the	Paddle	checkout	widget	and	complete	the	purchase:

<x-paddle-button	:checkout="$checkout"	class="px-8	py-4">

				Buy

</x-paddle-button>

A	checkout	session	has	a	customData	method,	allowing	you	to	pass	any	custom	data	you	wish	to	the	underlying
transaction	creation.	Please	consult	the	Paddle	documentation	to	learn	more	about	the	options	available	to	you
when	passing	custom	data:

$checkout	=	$user->checkout('pri_tshirt')

				->customData([

								'custom_option'	=>	$value,

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 874

https://developer.paddle.com/webhook-reference/verifying-webhooks
https://developer.paddle.com/build/transactions/custom-data

]);

Refunding	Transactions

Refunding	transactions	will	return	the	refunded	amount	to	your	customer's	payment	method	that	was	used	at
the	time	of	purchase.	If	you	need	to	refund	a	Paddle	purchase,	you	may	use	the	refund	method	on	a	
Cashier\Paddle\Transaction	model.	This	method	accepts	a	reason	as	the	first	argument,	one	or	more	price	ID's
to	refund	with	optional	amounts	as	an	associative	array.	You	may	retrieve	the	transactions	for	a	given	billable
model	using	the	transactions	method.

For	example,	imagine	we	want	to	refund	a	specific	transaction	for	prices	pri_123	and	pri_456.	We	want	to	fully
refund	pri_123,	but	only	refund	two	dollars	for	pri_456:

use	App\Models\User;

$user	=	User::find(1);

$transaction	=	$user->transactions()->first();

$response	=	$transaction->refund('Accidental	charge',	[

				'pri_123',	//	Fully	refund	this	price...

				'pri_456'	=>	200,	//	Only	partially	refund	this	price...

]);

The	example	above	refunds	specific	line	items	in	a	transaction.	If	you	want	to	refund	the	entire	transaction,
simply	provide	a	reason:

$response	=	$transaction->refund('Accidental	charge');

For	more	information	on	refunds,	please	consult	Paddle's	refund	documentation.

[!WARNING]
Refunds	must	always	be	approved	by	Paddle	before	fully	processing.

Crediting	Transactions

Just	like	refunding,	you	can	also	credit	transactions.	Crediting	transactions	will	add	the	funds	to	the	customer's
balance	so	it	may	be	used	for	future	purchases.	Crediting	transactions	can	only	be	done	for	manually-collected
transactions	and	not	for	automatically-collected	transactions	(like	subscriptions)	since	Paddle	handles
subscription	credits	automatically:

$transaction	=	$user->transactions()->first();

//	Credit	a	specific	line	item	fully...

$response	=	$transaction->credit('Compensation',	'pri_123');

For	more	info,	see	Paddle's	documentation	on	crediting.

[!WARNING]
Credits	can	only	be	applied	for	manually-collected	transactions.	Automatically-collected	transactions	are
credited	by	Paddle	themselves.

Transactions

You	may	easily	retrieve	an	array	of	a	billable	model's	transactions	via	the	transactions	property:

use	App\Models\User;

$user	=	User::find(1);

$transactions	=	$user->transactions;

Transactions	represent	payments	for	your	products	and	purchases	and	are	accompanied	by	invoices.	Only
completed	transactions	are	stored	in	your	application's	database.

When	listing	the	transactions	for	a	customer,	you	may	use	the	transaction	instance's	methods	to	display	the

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 875

https://developer.paddle.com/build/transactions/create-transaction-adjustments
https://developer.paddle.com/build/transactions/create-transaction-adjustments

relevant	payment	information.	For	example,	you	may	wish	to	list	every	transaction	in	a	table,	allowing	the	user
to	easily	download	any	of	the	invoices:

<table>

				@foreach	($transactions	as	$transaction)

								<tr>

												<td>{{	$transaction->billed_at->toFormattedDateString()	}}</td>

												<td>{{	$transaction->total()	}}</td>

												<td>{{	$transaction->tax()	}}</td>

												<td>id)	}}"	target="_blank">Download

</td>

								</tr>

				@endforeach

</table>

The	download-invoice	route	may	look	like	the	following:

use	Illuminate\Http\Request;

use	Laravel\Cashier\Transaction;

Route::get('/download-invoice/{transaction}',	function	(Request	$request,	Transaction	$transaction)	{

				return	$transaction->redirectToInvoicePdf();

})->name('download-invoice');

Past	and	Upcoming	Payments

You	may	use	the	lastPayment	and	nextPayment	methods	to	retrieve	and	display	a	customer's	past	or	upcoming
payments	for	recurring	subscriptions:

use	App\Models\User;

$user	=	User::find(1);

$subscription	=	$user->subscription();

$lastPayment	=	$subscription->lastPayment();

$nextPayment	=	$subscription->nextPayment();

Both	of	these	methods	will	return	an	instance	of	Laravel\Paddle\Payment;	however,	lastPayment	will	return	null
when	transactions	have	not	been	synced	by	webhooks	yet,	while	nextPayment	will	return	null	when	the	billing
cycle	has	ended	(such	as	when	a	subscription	has	been	canceled):

Next	payment:	{{	$nextPayment->amount()	}}	due	on	{{	$nextPayment->date()->format('d/m/Y')	}}

Testing

While	testing,	you	should	manually	test	your	billing	flow	to	make	sure	your	integration	works	as	expected.

For	automated	tests,	including	those	executed	within	a	CI	environment,	you	may	use	Laravel's	HTTP	Client	to
fake	HTTP	calls	made	to	Paddle.	Although	this	does	not	test	the	actual	responses	from	Paddle,	it	does	provide	a
way	to	test	your	application	without	actually	calling	Paddle's	API.

Laravel	Documentation	-	10.x	/	Cashier	(Paddle) 876

Packages

Laravel	Dusk
Introduction
Installation

Managing	ChromeDriver	Installations
Using	Other	Browsers

Getting	Started
Generating	Tests
Resetting	the	Database	After	Each	Test
Running	Tests
Environment	Handling

Browser	Basics
Creating	Browsers
Navigation
Resizing	Browser	Windows
Browser	Macros
Authentication
Cookies
Executing	JavaScript
Taking	a	Screenshot
Storing	Console	Output	to	Disk
Storing	Page	Source	to	Disk

Interacting	With	Elements
Dusk	Selectors
Text,	Values,	and	Attributes
Interacting	With	Forms
Attaching	Files
Pressing	Buttons
Clicking	Links
Using	the	Keyboard
Using	the	Mouse
JavaScript	Dialogs
Interacting	With	Inline	Frames
Scoping	Selectors
Waiting	for	Elements
Scrolling	an	Element	Into	View

Available	Assertions
Pages

Generating	Pages
Configuring	Pages
Navigating	to	Pages
Shorthand	Selectors
Page	Methods

Components
Generating	Components
Using	Components

Continuous	Integration
Heroku	CI
Travis	CI
GitHub	Actions
Chipper	CI

Introduction

Laravel	Dusk	provides	an	expressive,	easy-to-use	browser	automation	and	testing	API.	By	default,	Dusk	does
not	require	you	to	install	JDK	or	Selenium	on	your	local	computer.	Instead,	Dusk	uses	a	standalone
ChromeDriver	installation.	However,	you	are	free	to	utilize	any	other	Selenium	compatible	driver	you	wish.

Laravel	Documentation	-	10.x	/	Dusk 877

https://github.com/laravel/dusk
https://sites.google.com/chromium.org/driver

Installation

To	get	started,	you	should	install	Google	Chrome	and	add	the	laravel/dusk	Composer	dependency	to	your
project:

composer	require	laravel/dusk	--dev

[!WARNING]
If	you	are	manually	registering	Dusk's	service	provider,	you	should	never	register	it	in	your	production
environment,	as	doing	so	could	lead	to	arbitrary	users	being	able	to	authenticate	with	your	application.

After	installing	the	Dusk	package,	execute	the	dusk:install	Artisan	command.	The	dusk:install	command	will
create	a	tests/Browser	directory,	an	example	Dusk	test,	and	install	the	Chrome	Driver	binary	for	your	operating
system:

php	artisan	dusk:install

Next,	set	the	APP_URL	environment	variable	in	your	application's	.env	file.	This	value	should	match	the	URL	you
use	to	access	your	application	in	a	browser.

[!NOTE]
If	you	are	using	Laravel	Sail	to	manage	your	local	development	environment,	please	also	consult	the	Sail
documentation	on	configuring	and	running	Dusk	tests.

Managing	ChromeDriver	Installations

If	you	would	like	to	install	a	different	version	of	ChromeDriver	than	what	is	installed	by	Laravel	Dusk	via	the	
dusk:install	command,	you	may	use	the	dusk:chrome-driver	command:

#	Install	the	latest	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver

#	Install	a	given	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver	86

#	Install	a	given	version	of	ChromeDriver	for	all	supported	OSs...

php	artisan	dusk:chrome-driver	--all

#	Install	the	version	of	ChromeDriver	that	matches	the	detected	version	of	Chrome	/	Chromium	for	your	

OS...

php	artisan	dusk:chrome-driver	--detect

[!WARNING]
Dusk	requires	the	chromedriver	binaries	to	be	executable.	If	you're	having	problems	running	Dusk,	you
should	ensure	the	binaries	are	executable	using	the	following	command:	chmod	-R	0755	
vendor/laravel/dusk/bin/.

Using	Other	Browsers

By	default,	Dusk	uses	Google	Chrome	and	a	standalone	ChromeDriver	installation	to	run	your	browser	tests.
However,	you	may	start	your	own	Selenium	server	and	run	your	tests	against	any	browser	you	wish.

To	get	started,	open	your	tests/DuskTestCase.php	file,	which	is	the	base	Dusk	test	case	for	your	application.
Within	this	file,	you	can	remove	the	call	to	the	startChromeDriver	method.	This	will	stop	Dusk	from
automatically	starting	the	ChromeDriver:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*/

public	static	function	prepare():	void

{

				//	static::startChromeDriver();

}

Laravel	Documentation	-	10.x	/	Dusk 878

https://www.google.com/chrome
https://sites.google.com/chromium.org/driver

Next,	you	may	modify	the	driver	method	to	connect	to	the	URL	and	port	of	your	choice.	In	addition,	you	may
modify	the	"desired	capabilities"	that	should	be	passed	to	the	WebDriver:

use	Facebook\WebDriver\Remote\RemoteWebDriver;

/**

	*	Create	the	RemoteWebDriver	instance.

	*/

protected	function	driver():	RemoteWebDriver

{

				return	RemoteWebDriver::create(

								'http://localhost:4444/wd/hub',	DesiredCapabilities::phantomjs()

);

}

Getting	Started

Generating	Tests

To	generate	a	Dusk	test,	use	the	dusk:make	Artisan	command.	The	generated	test	will	be	placed	in	the	
tests/Browser	directory:

php	artisan	dusk:make	LoginTest

Resetting	the	Database	After	Each	Test

Most	of	the	tests	you	write	will	interact	with	pages	that	retrieve	data	from	your	application's	database;	however,
your	Dusk	tests	should	never	use	the	RefreshDatabase	trait.	The	RefreshDatabase	trait	leverages	database
transactions	which	will	not	be	applicable	or	available	across	HTTP	requests.	Instead,	you	have	two	options:	the	
DatabaseMigrations	trait	and	the	DatabaseTruncation	trait.

Using	Database	Migrations

The	DatabaseMigrations	trait	will	run	your	database	migrations	before	each	test.	However,	dropping	and	re-
creating	your	database	tables	for	each	test	is	typically	slower	than	truncating	the	tables:

<?php

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

}

[!WARNING]
SQLite	in-memory	databases	may	not	be	used	when	executing	Dusk	tests.	Since	the	browser	executes
within	its	own	process,	it	will	not	be	able	to	access	the	in-memory	databases	of	other	processes.

Using	Database	Truncation

Before	using	the	DatabaseTruncation	trait,	you	must	install	the	doctrine/dbal	package	using	the	Composer
package	manager:

composer	require	--dev	doctrine/dbal

The	DatabaseTruncation	trait	will	migrate	your	database	on	the	first	test	in	order	to	ensure	your	database	tables
have	been	properly	created.	However,	on	subsequent	tests,	the	database's	tables	will	simply	be	truncated	-
providing	a	speed	boost	over	re-running	all	of	your	database	migrations:

<?php

Laravel	Documentation	-	10.x	/	Dusk 879

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseTruncation;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseTruncation;

}

By	default,	this	trait	will	truncate	all	tables	except	the	migrations	table.	If	you	would	like	to	customize	the
tables	that	should	be	truncated,	you	may	define	a	$tablesToTruncate	property	on	your	test	class:

/**

	*	Indicates	which	tables	should	be	truncated.

	*

	*	@var	array

	*/

protected	$tablesToTruncate	=	['users'];

Alternatively,	you	may	define	an	$exceptTables	property	on	your	test	class	to	specify	which	tables	should	be
excluded	from	truncation:

/**

	*	Indicates	which	tables	should	be	excluded	from	truncation.

	*

	*	@var	array

	*/

protected	$exceptTables	=	['users'];

To	specify	the	database	connections	that	should	have	their	tables	truncated,	you	may	define	a	
$connectionsToTruncate	property	on	your	test	class:

/**

	*	Indicates	which	connections	should	have	their	tables	truncated.

	*

	*	@var	array

	*/

protected	$connectionsToTruncate	=	['mysql'];

If	you	would	like	to	execute	code	before	or	after	database	truncation	is	performed,	you	may	define	
beforeTruncatingDatabase	or	afterTruncatingDatabase	methods	on	your	test	class:

/**

	*	Perform	any	work	that	should	take	place	before	the	database	has	started	truncating.

	*/

protected	function	beforeTruncatingDatabase():	void

{

				//

}

/**

	*	Perform	any	work	that	should	take	place	after	the	database	has	finished	truncating.

	*/

protected	function	afterTruncatingDatabase():	void

{

				//

}

Running	Tests

To	run	your	browser	tests,	execute	the	dusk	Artisan	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

The	dusk	command	accepts	any	argument	that	is	normally	accepted	by	the	PHPUnit	test	runner,	such	as

Laravel	Documentation	-	10.x	/	Dusk 880

allowing	you	to	only	run	the	tests	for	a	given	group:

php	artisan	dusk	--group=foo

[!NOTE]
If	you	are	using	Laravel	Sail	to	manage	your	local	development	environment,	please	consult	the	Sail
documentation	on	configuring	and	running	Dusk	tests.

Manually	Starting	ChromeDriver

By	default,	Dusk	will	automatically	attempt	to	start	ChromeDriver.	If	this	does	not	work	for	your	particular
system,	you	may	manually	start	ChromeDriver	before	running	the	dusk	command.	If	you	choose	to	start
ChromeDriver	manually,	you	should	comment	out	the	following	line	of	your	tests/DuskTestCase.php	file:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*/

public	static	function	prepare():	void

{

				//	static::startChromeDriver();

}

In	addition,	if	you	start	ChromeDriver	on	a	port	other	than	9515,	you	should	modify	the	driver	method	of	the
same	class	to	reflect	the	correct	port:

use	Facebook\WebDriver\Remote\RemoteWebDriver;

/**

	*	Create	the	RemoteWebDriver	instance.

	*/

protected	function	driver():	RemoteWebDriver

{

				return	RemoteWebDriver::create(

								'http://localhost:9515',	DesiredCapabilities::chrome()

);

}

Environment	Handling

To	force	Dusk	to	use	its	own	environment	file	when	running	tests,	create	a	.env.dusk.{environment}	file	in	the
root	of	your	project.	For	example,	if	you	will	be	initiating	the	dusk	command	from	your	local	environment,	you
should	create	a	.env.dusk.local	file.

When	running	tests,	Dusk	will	back-up	your	.env	file	and	rename	your	Dusk	environment	to	.env.	Once	the
tests	have	completed,	your	.env	file	will	be	restored.

Browser	Basics

Creating	Browsers

To	get	started,	let's	write	a	test	that	verifies	we	can	log	into	our	application.	After	generating	a	test,	we	can
modify	it	to	navigate	to	the	login	page,	enter	some	credentials,	and	click	the	"Login"	button.	To	create	a
browser	instance,	you	may	call	the	browse	method	from	within	your	Dusk	test:

<?php

namespace	Tests\Browser;

use	App\Models\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

Laravel	Documentation	-	10.x	/	Dusk 881

https://docs.phpunit.de/en/10.5/annotations.html#group

				use	DatabaseMigrations;

				/**

					*	A	basic	browser	test	example.

					*/

				public	function	test_basic_example():	void

				{

								$user	=	User::factory()->create([

												'email'	=>	'taylor@laravel.com',

]);

								$this->browse(function	(Browser	$browser)	use	($user)	{

												$browser->visit('/login')

																				->type('email',	$user->email)

																				->type('password',	'password')

																				->press('Login')

																				->assertPathIs('/home');

								});

				}

}

As	you	can	see	in	the	example	above,	the	browse	method	accepts	a	closure.	A	browser	instance	will
automatically	be	passed	to	this	closure	by	Dusk	and	is	the	main	object	used	to	interact	with	and	make	assertions
against	your	application.

Creating	Multiple	Browsers

Sometimes	you	may	need	multiple	browsers	in	order	to	properly	carry	out	a	test.	For	example,	multiple
browsers	may	be	needed	to	test	a	chat	screen	that	interacts	with	websockets.	To	create	multiple	browsers,
simply	add	more	browser	arguments	to	the	signature	of	the	closure	given	to	the	browse	method:

$this->browse(function	(Browser	$first,	Browser	$second)	{

				$first->loginAs(User::find(1))

										->visit('/home')

										->waitForText('Message');

				$second->loginAs(User::find(2))

											->visit('/home')

											->waitForText('Message')

											->type('message',	'Hey	Taylor')

											->press('Send');

				$first->waitForText('Hey	Taylor')

										->assertSee('Jeffrey	Way');

});

Navigation

The	visit	method	may	be	used	to	navigate	to	a	given	URI	within	your	application:

$browser->visit('/login');

You	may	use	the	visitRoute	method	to	navigate	to	a	named	route:

$browser->visitRoute('login');

You	may	navigate	"back"	and	"forward"	using	the	back	and	forward	methods:

$browser->back();

$browser->forward();

You	may	use	the	refresh	method	to	refresh	the	page:

$browser->refresh();

Resizing	Browser	Windows

You	may	use	the	resize	method	to	adjust	the	size	of	the	browser	window:

$browser->resize(1920,	1080);

Laravel	Documentation	-	10.x	/	Dusk 882

The	maximize	method	may	be	used	to	maximize	the	browser	window:

$browser->maximize();

The	fitContent	method	will	resize	the	browser	window	to	match	the	size	of	its	content:

$browser->fitContent();

When	a	test	fails,	Dusk	will	automatically	resize	the	browser	to	fit	the	content	prior	to	taking	a	screenshot.	You
may	disable	this	feature	by	calling	the	disableFitOnFailure	method	within	your	test:

$browser->disableFitOnFailure();

You	may	use	the	move	method	to	move	the	browser	window	to	a	different	position	on	your	screen:

$browser->move($x	=	100,	$y	=	100);

Browser	Macros

If	you	would	like	to	define	a	custom	browser	method	that	you	can	re-use	in	a	variety	of	your	tests,	you	may	use
the	macro	method	on	the	Browser	class.	Typically,	you	should	call	this	method	from	a	service	provider's	boot
method:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Browser;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	Dusk's	browser	macros.

					*/

				public	function	boot():	void

				{

								Browser::macro('scrollToElement',	function	(string	$element	=	null)	{

												$this->script("$('html,	body').animate({	scrollTop:	$('$element').offset().top	},	0);");

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	closure	as	its	second.	The	macro's	closure	will	be
executed	when	calling	the	macro	as	a	method	on	a	Browser	instance:

$this->browse(function	(Browser	$browser)	use	($user)	{

				$browser->visit('/pay')

												->scrollToElement('#credit-card-details')

												->assertSee('Enter	Credit	Card	Details');

});

Authentication

Often,	you	will	be	testing	pages	that	require	authentication.	You	can	use	Dusk's	loginAs	method	in	order	to
avoid	interacting	with	your	application's	login	screen	during	every	test.	The	loginAs	method	accepts	a	primary
key	associated	with	your	authenticatable	model	or	an	authenticatable	model	instance:

use	App\Models\User;

use	Laravel\Dusk\Browser;

$this->browse(function	(Browser	$browser)	{

				$browser->loginAs(User::find(1))

										->visit('/home');

});

[!WARNING]
After	using	the	loginAs	method,	the	user	session	will	be	maintained	for	all	tests	within	the	file.

Laravel	Documentation	-	10.x	/	Dusk 883

Cookies

You	may	use	the	cookie	method	to	get	or	set	an	encrypted	cookie's	value.	By	default,	all	of	the	cookies	created
by	Laravel	are	encrypted:

$browser->cookie('name');

$browser->cookie('name',	'Taylor');

You	may	use	the	plainCookie	method	to	get	or	set	an	unencrypted	cookie's	value:

$browser->plainCookie('name');

$browser->plainCookie('name',	'Taylor');

You	may	use	the	deleteCookie	method	to	delete	the	given	cookie:

$browser->deleteCookie('name');

Executing	JavaScript

You	may	use	the	script	method	to	execute	arbitrary	JavaScript	statements	within	the	browser:

$browser->script('document.documentElement.scrollTop	=	0');

$browser->script([

				'document.body.scrollTop	=	0',

				'document.documentElement.scrollTop	=	0',

]);

$output	=	$browser->script('return	window.location.pathname');

Taking	a	Screenshot

You	may	use	the	screenshot	method	to	take	a	screenshot	and	store	it	with	the	given	filename.	All	screenshots
will	be	stored	within	the	tests/Browser/screenshots	directory:

$browser->screenshot('filename');

The	responsiveScreenshots	method	may	be	used	to	take	a	series	of	screenshots	at	various	breakpoints:

$browser->responsiveScreenshots('filename');

Storing	Console	Output	to	Disk

You	may	use	the	storeConsoleLog	method	to	write	the	current	browser's	console	output	to	disk	with	the	given
filename.	Console	output	will	be	stored	within	the	tests/Browser/console	directory:

$browser->storeConsoleLog('filename');

Storing	Page	Source	to	Disk

You	may	use	the	storeSource	method	to	write	the	current	page's	source	to	disk	with	the	given	filename.	The
page	source	will	be	stored	within	the	tests/Browser/source	directory:

$browser->storeSource('filename');

Interacting	With	Elements

Dusk	Selectors

Choosing	good	CSS	selectors	for	interacting	with	elements	is	one	of	the	hardest	parts	of	writing	Dusk	tests.
Over	time,	frontend	changes	can	cause	CSS	selectors	like	the	following	to	break	your	tests:

Laravel	Documentation	-	10.x	/	Dusk 884

//	HTML...

<button>Login</button>

//	Test...

$browser->click('.login-page	.container	div	>	button');

Dusk	selectors	allow	you	to	focus	on	writing	effective	tests	rather	than	remembering	CSS	selectors.	To	define	a
selector,	add	a	dusk	attribute	to	your	HTML	element.	Then,	when	interacting	with	a	Dusk	browser,	prefix	the
selector	with	@	to	manipulate	the	attached	element	within	your	test:

//	HTML...

<button	dusk="login-button">Login</button>

//	Test...

$browser->click('@login-button');

If	desired,	you	may	customize	the	HTML	attribute	that	the	Dusk	selector	utilizes	via	the	selectorHtmlAttribute
method.	Typically,	this	method	should	be	called	from	the	boot	method	of	your	application's	AppServiceProvider:

use	Laravel\Dusk\Dusk;

Dusk::selectorHtmlAttribute('data-dusk');

Text,	Values,	and	Attributes

Retrieving	and	Setting	Values

Dusk	provides	several	methods	for	interacting	with	the	current	value,	display	text,	and	attributes	of	elements	on
the	page.	For	example,	to	get	the	"value"	of	an	element	that	matches	a	given	CSS	or	Dusk	selector,	use	the	
value	method:

//	Retrieve	the	value...

$value	=	$browser->value('selector');

//	Set	the	value...

$browser->value('selector',	'value');

You	may	use	the	inputValue	method	to	get	the	"value"	of	an	input	element	that	has	a	given	field	name:

$value	=	$browser->inputValue('field');

Retrieving	Text

The	text	method	may	be	used	to	retrieve	the	display	text	of	an	element	that	matches	the	given	selector:

$text	=	$browser->text('selector');

Retrieving	Attributes

Finally,	the	attribute	method	may	be	used	to	retrieve	the	value	of	an	attribute	of	an	element	matching	the	given
selector:

$attribute	=	$browser->attribute('selector',	'value');

Interacting	With	Forms

Typing	Values

Dusk	provides	a	variety	of	methods	for	interacting	with	forms	and	input	elements.	First,	let's	take	a	look	at	an
example	of	typing	text	into	an	input	field:

$browser->type('email',	'taylor@laravel.com');

Laravel	Documentation	-	10.x	/	Dusk 885

Note	that,	although	the	method	accepts	one	if	necessary,	we	are	not	required	to	pass	a	CSS	selector	into	the	type
method.	If	a	CSS	selector	is	not	provided,	Dusk	will	search	for	an	input	or	textarea	field	with	the	given	name
attribute.

To	append	text	to	a	field	without	clearing	its	content,	you	may	use	the	append	method:

$browser->type('tags',	'foo')

								->append('tags',	',	bar,	baz');

You	may	clear	the	value	of	an	input	using	the	clear	method:

$browser->clear('email');

You	can	instruct	Dusk	to	type	slowly	using	the	typeSlowly	method.	By	default,	Dusk	will	pause	for	100
milliseconds	between	key	presses.	To	customize	the	amount	of	time	between	key	presses,	you	may	pass	the
appropriate	number	of	milliseconds	as	the	third	argument	to	the	method:

$browser->typeSlowly('mobile',	'+1	(202)	555-5555');

$browser->typeSlowly('mobile',	'+1	(202)	555-5555',	300);

You	may	use	the	appendSlowly	method	to	append	text	slowly:

$browser->type('tags',	'foo')

								->appendSlowly('tags',	',	bar,	baz');

Dropdowns

To	select	a	value	available	on	a	select	element,	you	may	use	the	select	method.	Like	the	type	method,	the	
select	method	does	not	require	a	full	CSS	selector.	When	passing	a	value	to	the	select	method,	you	should
pass	the	underlying	option	value	instead	of	the	display	text:

$browser->select('size',	'Large');

You	may	select	a	random	option	by	omitting	the	second	argument:

$browser->select('size');

By	providing	an	array	as	the	second	argument	to	the	select	method,	you	can	instruct	the	method	to	select
multiple	options:

$browser->select('categories',	['Art',	'Music']);

Checkboxes

To	"check"	a	checkbox	input,	you	may	use	the	check	method.	Like	many	other	input	related	methods,	a	full	CSS
selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	checkbox	with	a
matching	name	attribute:

$browser->check('terms');

The	uncheck	method	may	be	used	to	"uncheck"	a	checkbox	input:

$browser->uncheck('terms');

Radio	Buttons

To	"select"	a	radio	input	option,	you	may	use	the	radio	method.	Like	many	other	input	related	methods,	a	full
CSS	selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	radio	input	with
matching	name	and	value	attributes:

$browser->radio('size',	'large');

Attaching	Files

Laravel	Documentation	-	10.x	/	Dusk 886

The	attach	method	may	be	used	to	attach	a	file	to	a	file	input	element.	Like	many	other	input	related	methods,
a	full	CSS	selector	is	not	required.	If	a	CSS	selector	match	can't	be	found,	Dusk	will	search	for	a	file	input
with	a	matching	name	attribute:

$browser->attach('photo',	__DIR__.'/photos/mountains.png');

[!WARNING]
The	attach	function	requires	the	Zip	PHP	extension	to	be	installed	and	enabled	on	your	server.

Pressing	Buttons

The	press	method	may	be	used	to	click	a	button	element	on	the	page.	The	argument	given	to	the	press	method
may	be	either	the	display	text	of	the	button	or	a	CSS	/	Dusk	selector:

$browser->press('Login');

When	submitting	forms,	many	applications	disable	the	form's	submission	button	after	it	is	pressed	and	then	re-
enable	the	button	when	the	form	submission's	HTTP	request	is	complete.	To	press	a	button	and	wait	for	the
button	to	be	re-enabled,	you	may	use	the	pressAndWaitFor	method:

//	Press	the	button	and	wait	a	maximum	of	5	seconds	for	it	to	be	enabled...

$browser->pressAndWaitFor('Save');

//	Press	the	button	and	wait	a	maximum	of	1	second	for	it	to	be	enabled...

$browser->pressAndWaitFor('Save',	1);

Clicking	Links

To	click	a	link,	you	may	use	the	clickLink	method	on	the	browser	instance.	The	clickLink	method	will	click	the
link	that	has	the	given	display	text:

$browser->clickLink($linkText);

You	may	use	the	seeLink	method	to	determine	if	a	link	with	the	given	display	text	is	visible	on	the	page:

if	($browser->seeLink($linkText))	{

				//	...

}

[!WARNING]
These	methods	interact	with	jQuery.	If	jQuery	is	not	available	on	the	page,	Dusk	will	automatically	inject
it	into	the	page	so	it	is	available	for	the	test's	duration.

Using	the	Keyboard

The	keys	method	allows	you	to	provide	more	complex	input	sequences	to	a	given	element	than	normally
allowed	by	the	type	method.	For	example,	you	may	instruct	Dusk	to	hold	modifier	keys	while	entering	values.
In	this	example,	the	shift	key	will	be	held	while	taylor	is	entered	into	the	element	matching	the	given	selector.
After	taylor	is	typed,	swift	will	be	typed	without	any	modifier	keys:

$browser->keys('selector',	['{shift}',	'taylor'],	'swift');

Another	valuable	use	case	for	the	keys	method	is	sending	a	"keyboard	shortcut"	combination	to	the	primary
CSS	selector	for	your	application:

$browser->keys('.app',	['{command}',	'j']);

[!NOTE]
All	modifier	keys	such	as	{command}	are	wrapped	in	{}	characters,	and	match	the	constants	defined	in	the	
Facebook\WebDriver\WebDriverKeys	class,	which	can	be	found	on	GitHub.

Fluent	Keyboard	Interactions

Dusk	also	provides	a	withKeyboard	method,	allowing	you	to	fluently	perform	complex	keyboard	interactions	via

Laravel	Documentation	-	10.x	/	Dusk 887

https://github.com/php-webdriver/php-webdriver/blob/master/lib/WebDriverKeys.php

the	Laravel\Dusk\Keyboard	class.	The	Keyboard	class	provides	press,	release,	type,	and	pause	methods:

use	Laravel\Dusk\Keyboard;

$browser->withKeyboard(function	(Keyboard	$keyboard)	{

				$keyboard->press('c')

								->pause(1000)

								->release('c')

								->type(['c',	'e',	'o']);

});

Keyboard	Macros

If	you	would	like	to	define	custom	keyboard	interactions	that	you	can	easily	re-use	throughout	your	test	suite,
you	may	use	the	macro	method	provided	by	the	Keyboard	class.	Typically,	you	should	call	this	method	from	a
service	provider's	boot	method:

<?php

namespace	App\Providers;

use	Facebook\WebDriver\WebDriverKeys;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Keyboard;

use	Laravel\Dusk\OperatingSystem;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	Dusk's	browser	macros.

					*/

				public	function	boot():	void

				{

								Keyboard::macro('copy',	function	(string	$element	=	null)	{

												$this->type([

																OperatingSystem::onMac()	?	WebDriverKeys::META	:	WebDriverKeys::CONTROL,	'c',

]);

												return	$this;

								});

								Keyboard::macro('paste',	function	(string	$element	=	null)	{

												$this->type([

																OperatingSystem::onMac()	?	WebDriverKeys::META	:	WebDriverKeys::CONTROL,	'v',

]);

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument	and	a	closure	as	its	second.	The	macro's	closure	will	be
executed	when	calling	the	macro	as	a	method	on	a	Keyboard	instance:

$browser->click('@textarea')

				->withKeyboard(fn	(Keyboard	$keyboard)	=>	$keyboard->copy())

				->click('@another-textarea')

				->withKeyboard(fn	(Keyboard	$keyboard)	=>	$keyboard->paste());

Using	the	Mouse

Clicking	on	Elements

The	click	method	may	be	used	to	click	on	an	element	matching	the	given	CSS	or	Dusk	selector:

$browser->click('.selector');

The	clickAtXPath	method	may	be	used	to	click	on	an	element	matching	the	given	XPath	expression:

$browser->clickAtXPath('//div[@class	=	"selector"]');

The	clickAtPoint	method	may	be	used	to	click	on	the	topmost	element	at	a	given	pair	of	coordinates	relative	to

Laravel	Documentation	-	10.x	/	Dusk 888

the	viewable	area	of	the	browser:

$browser->clickAtPoint($x	=	0,	$y	=	0);

The	doubleClick	method	may	be	used	to	simulate	the	double	click	of	a	mouse:

$browser->doubleClick();

$browser->doubleClick('.selector');

The	rightClick	method	may	be	used	to	simulate	the	right	click	of	a	mouse:

$browser->rightClick();

$browser->rightClick('.selector');

The	clickAndHold	method	may	be	used	to	simulate	a	mouse	button	being	clicked	and	held	down.	A	subsequent
call	to	the	releaseMouse	method	will	undo	this	behavior	and	release	the	mouse	button:

$browser->clickAndHold('.selector');

$browser->clickAndHold()

								->pause(1000)

								->releaseMouse();

The	controlClick	method	may	be	used	to	simulate	the	ctrl+click	event	within	the	browser:

$browser->controlClick();

$browser->controlClick('.selector');

Mouseover

The	mouseover	method	may	be	used	when	you	need	to	move	the	mouse	over	an	element	matching	the	given
CSS	or	Dusk	selector:

$browser->mouseover('.selector');

Drag	and	Drop

The	drag	method	may	be	used	to	drag	an	element	matching	the	given	selector	to	another	element:

$browser->drag('.from-selector',	'.to-selector');

Or,	you	may	drag	an	element	in	a	single	direction:

$browser->dragLeft('.selector',	$pixels	=	10);

$browser->dragRight('.selector',	$pixels	=	10);

$browser->dragUp('.selector',	$pixels	=	10);

$browser->dragDown('.selector',	$pixels	=	10);

Finally,	you	may	drag	an	element	by	a	given	offset:

$browser->dragOffset('.selector',	$x	=	10,	$y	=	10);

JavaScript	Dialogs

Dusk	provides	various	methods	to	interact	with	JavaScript	Dialogs.	For	example,	you	may	use	the	
waitForDialog	method	to	wait	for	a	JavaScript	dialog	to	appear.	This	method	accepts	an	optional	argument
indicating	how	many	seconds	to	wait	for	the	dialog	to	appear:

$browser->waitForDialog($seconds	=	null);

The	assertDialogOpened	method	may	be	used	to	assert	that	a	dialog	has	been	displayed	and	contains	the	given
message:

$browser->assertDialogOpened('Dialog	message');

Laravel	Documentation	-	10.x	/	Dusk 889

If	the	JavaScript	dialog	contains	a	prompt,	you	may	use	the	typeInDialog	method	to	type	a	value	into	the
prompt:

$browser->typeInDialog('Hello	World');

To	close	an	open	JavaScript	dialog	by	clicking	the	"OK"	button,	you	may	invoke	the	acceptDialog	method:

$browser->acceptDialog();

To	close	an	open	JavaScript	dialog	by	clicking	the	"Cancel"	button,	you	may	invoke	the	dismissDialog	method:

$browser->dismissDialog();

Interacting	With	Inline	Frames

If	you	need	to	interact	with	elements	within	an	iframe,	you	may	use	the	withinFrame	method.	All	element
interactions	that	take	place	within	the	closure	provided	to	the	withinFrame	method	will	be	scoped	to	the	context
of	the	specified	iframe:

$browser->withinFrame('#credit-card-details',	function	($browser)	{

				$browser->type('input[name="cardnumber"]',	'4242424242424242')

								->type('input[name="exp-date"]',	'12/24')

								->type('input[name="cvc"]',	'123');

				})->press('Pay');

});

Scoping	Selectors

Sometimes	you	may	wish	to	perform	several	operations	while	scoping	all	of	the	operations	within	a	given
selector.	For	example,	you	may	wish	to	assert	that	some	text	exists	only	within	a	table	and	then	click	a	button
within	that	table.	You	may	use	the	with	method	to	accomplish	this.	All	operations	performed	within	the	closure
given	to	the	with	method	will	be	scoped	to	the	original	selector:

$browser->with('.table',	function	(Browser	$table)	{

				$table->assertSee('Hello	World')

										->clickLink('Delete');

});

You	may	occasionally	need	to	execute	assertions	outside	of	the	current	scope.	You	may	use	the	elsewhere	and	
elsewhereWhenAvailable	methods	to	accomplish	this:

	$browser->with('.table',	function	(Browser	$table)	{

				//	Current	scope	is	`body	.table`...

				$browser->elsewhere('.page-title',	function	(Browser	$title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

				$browser->elsewhereWhenAvailable('.page-title',	function	(Browser	$title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

	});

Waiting	for	Elements

When	testing	applications	that	use	JavaScript	extensively,	it	often	becomes	necessary	to	"wait"	for	certain
elements	or	data	to	be	available	before	proceeding	with	a	test.	Dusk	makes	this	a	cinch.	Using	a	variety	of
methods,	you	may	wait	for	elements	to	become	visible	on	the	page	or	even	wait	until	a	given	JavaScript
expression	evaluates	to	true.

Waiting

If	you	just	need	to	pause	the	test	for	a	given	number	of	milliseconds,	use	the	pause	method:

$browser->pause(1000);

Laravel	Documentation	-	10.x	/	Dusk 890

If	you	need	to	pause	the	test	only	if	a	given	condition	is	true,	use	the	pauseIf	method:

$browser->pauseIf(App::environment('production'),	1000);

Likewise,	if	you	need	to	pause	the	test	unless	a	given	condition	is	true,	you	may	use	the	pauseUnless	method:

$browser->pauseUnless(App::environment('testing'),	1000);

Waiting	for	Selectors

The	waitFor	method	may	be	used	to	pause	the	execution	of	the	test	until	the	element	matching	the	given	CSS	or
Dusk	selector	is	displayed	on	the	page.	By	default,	this	will	pause	the	test	for	a	maximum	of	five	seconds
before	throwing	an	exception.	If	necessary,	you	may	pass	a	custom	timeout	threshold	as	the	second	argument	to
the	method:

//	Wait	a	maximum	of	five	seconds	for	the	selector...

$browser->waitFor('.selector');

//	Wait	a	maximum	of	one	second	for	the	selector...

$browser->waitFor('.selector',	1);

You	may	also	wait	until	the	element	matching	the	given	selector	contains	the	given	text:

//	Wait	a	maximum	of	five	seconds	for	the	selector	to	contain	the	given	text...

$browser->waitForTextIn('.selector',	'Hello	World');

//	Wait	a	maximum	of	one	second	for	the	selector	to	contain	the	given	text...

$browser->waitForTextIn('.selector',	'Hello	World',	1);

You	may	also	wait	until	the	element	matching	the	given	selector	is	missing	from	the	page:

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	missing...

$browser->waitUntilMissing('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	missing...

$browser->waitUntilMissing('.selector',	1);

Or,	you	may	wait	until	the	element	matching	the	given	selector	is	enabled	or	disabled:

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	enabled...

$browser->waitUntilEnabled('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	enabled...

$browser->waitUntilEnabled('.selector',	1);

//	Wait	a	maximum	of	five	seconds	until	the	selector	is	disabled...

$browser->waitUntilDisabled('.selector');

//	Wait	a	maximum	of	one	second	until	the	selector	is	disabled...

$browser->waitUntilDisabled('.selector',	1);

Scoping	Selectors	When	Available

Occasionally,	you	may	wish	to	wait	for	an	element	to	appear	that	matches	a	given	selector	and	then	interact
with	the	element.	For	example,	you	may	wish	to	wait	until	a	modal	window	is	available	and	then	press	the
"OK"	button	within	the	modal.	The	whenAvailable	method	may	be	used	to	accomplish	this.	All	element
operations	performed	within	the	given	closure	will	be	scoped	to	the	original	selector:

$browser->whenAvailable('.modal',	function	(Browser	$modal)	{

				$modal->assertSee('Hello	World')

										->press('OK');

});

Waiting	for	Text

The	waitForText	method	may	be	used	to	wait	until	the	given	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text...

$browser->waitForText('Hello	World');

Laravel	Documentation	-	10.x	/	Dusk 891

//	Wait	a	maximum	of	one	second	for	the	text...

$browser->waitForText('Hello	World',	1);

You	may	use	the	waitUntilMissingText	method	to	wait	until	the	displayed	text	has	been	removed	from	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World',	1);

Waiting	for	Links

The	waitForLink	method	may	be	used	to	wait	until	the	given	link	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	link...

$browser->waitForLink('Create');

//	Wait	a	maximum	of	one	second	for	the	link...

$browser->waitForLink('Create',	1);

Waiting	for	Inputs

The	waitForInput	method	may	be	used	to	wait	until	the	given	input	field	is	visible	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	input...

$browser->waitForInput($field);

//	Wait	a	maximum	of	one	second	for	the	input...

$browser->waitForInput($field,	1);

Waiting	on	the	Page	Location

When	making	a	path	assertion	such	as	$browser->assertPathIs('/home'),	the	assertion	can	fail	if	
window.location.pathname	is	being	updated	asynchronously.	You	may	use	the	waitForLocation	method	to	wait
for	the	location	to	be	a	given	value:

$browser->waitForLocation('/secret');

The	waitForLocation	method	can	also	be	used	to	wait	for	the	current	window	location	to	be	a	fully	qualified
URL:

$browser->waitForLocation('https://example.com/path');

You	may	also	wait	for	a	named	route's	location:

$browser->waitForRoute($routeName,	$parameters);

Waiting	for	Page	Reloads

If	you	need	to	wait	for	a	page	to	reload	after	performing	an	action,	use	the	waitForReload	method:

use	Laravel\Dusk\Browser;

$browser->waitForReload(function	(Browser	$browser)	{

				$browser->press('Submit');

})

->assertSee('Success!');

Since	the	need	to	wait	for	the	page	to	reload	typically	occurs	after	clicking	a	button,	you	may	use	the	
clickAndWaitForReload	method	for	convenience:

$browser->clickAndWaitForReload('.selector')

								->assertSee('something');

Waiting	on	JavaScript	Expressions

Sometimes	you	may	wish	to	pause	the	execution	of	a	test	until	a	given	JavaScript	expression	evaluates	to	true.

Laravel	Documentation	-	10.x	/	Dusk 892

You	may	easily	accomplish	this	using	the	waitUntil	method.	When	passing	an	expression	to	this	method,	you
do	not	need	to	include	the	return	keyword	or	an	ending	semi-colon:

//	Wait	a	maximum	of	five	seconds	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0');

//	Wait	a	maximum	of	one	second	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0',	1);

Waiting	on	Vue	Expressions

The	waitUntilVue	and	waitUntilVueIsNot	methods	may	be	used	to	wait	until	a	Vue	component	attribute	has	a
given	value:

//	Wait	until	the	component	attribute	contains	the	given	value...

$browser->waitUntilVue('user.name',	'Taylor',	'@user');

//	Wait	until	the	component	attribute	doesn't	contain	the	given	value...

$browser->waitUntilVueIsNot('user.name',	null,	'@user');

Waiting	for	JavaScript	Events

The	waitForEvent	method	can	be	used	to	pause	the	execution	of	a	test	until	a	JavaScript	event	occurs:

$browser->waitForEvent('load');

The	event	listener	is	attached	to	the	current	scope,	which	is	the	body	element	by	default.	When	using	a	scoped
selector,	the	event	listener	will	be	attached	to	the	matching	element:

$browser->with('iframe',	function	(Browser	$iframe)	{

				//	Wait	for	the	iframe's	load	event...

				$iframe->waitForEvent('load');

});

You	may	also	provide	a	selector	as	the	second	argument	to	the	waitForEvent	method	to	attach	the	event	listener
to	a	specific	element:

$browser->waitForEvent('load',	'.selector');

You	may	also	wait	for	events	on	the	document	and	window	objects:

//	Wait	until	the	document	is	scrolled...

$browser->waitForEvent('scroll',	'document');

//	Wait	a	maximum	of	five	seconds	until	the	window	is	resized...

$browser->waitForEvent('resize',	'window',	5);

Waiting	With	a	Callback

Many	of	the	"wait"	methods	in	Dusk	rely	on	the	underlying	waitUsing	method.	You	may	use	this	method
directly	to	wait	for	a	given	closure	to	return	true.	The	waitUsing	method	accepts	the	maximum	number	of
seconds	to	wait,	the	interval	at	which	the	closure	should	be	evaluated,	the	closure,	and	an	optional	failure
message:

$browser->waitUsing(10,	1,	function	()	use	($something)	{

				return	$something->isReady();

},	"Something	wasn't	ready	in	time.");

Scrolling	an	Element	Into	View

Sometimes	you	may	not	be	able	to	click	on	an	element	because	it	is	outside	of	the	viewable	area	of	the	browser.
The	scrollIntoView	method	will	scroll	the	browser	window	until	the	element	at	the	given	selector	is	within	the
view:

$browser->scrollIntoView('.selector')

								->click('.selector');

Laravel	Documentation	-	10.x	/	Dusk 893

https://vuejs.org

Available	Assertions

Dusk	provides	a	variety	of	assertions	that	you	may	make	against	your	application.	All	of	the	available
assertions	are	documented	in	the	list	below:

assertTitle
assertTitleContains
assertUrlIs
assertSchemeIs
assertSchemeIsNot
assertHostIs
assertHostIsNot
assertPortIs
assertPortIsNot
assertPathBeginsWith
assertPathIs
assertPathIsNot
assertRouteIs
assertQueryStringHas
assertQueryStringMissing
assertFragmentIs
assertFragmentBeginsWith
assertFragmentIsNot
assertHasCookie
assertHasPlainCookie
assertCookieMissing
assertPlainCookieMissing
assertCookieValue
assertPlainCookieValue
assertSee

assertDontSee
assertSeeIn
assertDontSeeIn
assertSeeAnythingIn
assertSeeNothingIn
assertScript
assertSourceHas
assertSourceMissing
assertSeeLink
assertDontSeeLink
assertInputValue
assertInputValueIsNot
assertChecked
assertNotChecked
assertIndeterminate
assertRadioSelected
assertRadioNotSelected
assertSelected
assertNotSelected
assertSelectHasOptions
assertSelectMissingOptions
assertSelectHasOption
assertSelectMissingOption
assertValue
assertValueIsNot

assertAttribute
assertAttributeContains
assertAttributeDoesntContain
assertAriaAttribute
assertDataAttribute
assertVisible
assertPresent
assertNotPresent
assertMissing
assertInputPresent
assertInputMissing
assertDialogOpened
assertEnabled
assertDisabled
assertButtonEnabled
assertButtonDisabled
assertFocused
assertNotFocused
assertAuthenticated
assertGuest
assertAuthenticatedAs
assertVue
assertVueIsNot
assertVueContains
assertVueDoesntContain

assertTitle

Assert	that	the	page	title	matches	the	given	text:

$browser->assertTitle($title);

assertTitleContains

Assert	that	the	page	title	contains	the	given	text:

$browser->assertTitleContains($title);

assertUrlIs

Assert	that	the	current	URL	(without	the	query	string)	matches	the	given	string:

$browser->assertUrlIs($url);

assertSchemeIs

Assert	that	the	current	URL	scheme	matches	the	given	scheme:

$browser->assertSchemeIs($scheme);

assertSchemeIsNot

Assert	that	the	current	URL	scheme	does	not	match	the	given	scheme:

$browser->assertSchemeIsNot($scheme);

Laravel	Documentation	-	10.x	/	Dusk 894

assertHostIs

Assert	that	the	current	URL	host	matches	the	given	host:

$browser->assertHostIs($host);

assertHostIsNot

Assert	that	the	current	URL	host	does	not	match	the	given	host:

$browser->assertHostIsNot($host);

assertPortIs

Assert	that	the	current	URL	port	matches	the	given	port:

$browser->assertPortIs($port);

assertPortIsNot

Assert	that	the	current	URL	port	does	not	match	the	given	port:

$browser->assertPortIsNot($port);

assertPathBeginsWith

Assert	that	the	current	URL	path	begins	with	the	given	path:

$browser->assertPathBeginsWith('/home');

assertPathIs

Assert	that	the	current	path	matches	the	given	path:

$browser->assertPathIs('/home');

assertPathIsNot

Assert	that	the	current	path	does	not	match	the	given	path:

$browser->assertPathIsNot('/home');

assertRouteIs

Assert	that	the	current	URL	matches	the	given	named	route's	URL:

$browser->assertRouteIs($name,	$parameters);

assertQueryStringHas

Assert	that	the	given	query	string	parameter	is	present:

$browser->assertQueryStringHas($name);

Assert	that	the	given	query	string	parameter	is	present	and	has	a	given	value:

$browser->assertQueryStringHas($name,	$value);

assertQueryStringMissing

Assert	that	the	given	query	string	parameter	is	missing:

Laravel	Documentation	-	10.x	/	Dusk 895

$browser->assertQueryStringMissing($name);

assertFragmentIs

Assert	that	the	URL's	current	hash	fragment	matches	the	given	fragment:

$browser->assertFragmentIs('anchor');

assertFragmentBeginsWith

Assert	that	the	URL's	current	hash	fragment	begins	with	the	given	fragment:

$browser->assertFragmentBeginsWith('anchor');

assertFragmentIsNot

Assert	that	the	URL's	current	hash	fragment	does	not	match	the	given	fragment:

$browser->assertFragmentIsNot('anchor');

assertHasCookie

Assert	that	the	given	encrypted	cookie	is	present:

$browser->assertHasCookie($name);

assertHasPlainCookie

Assert	that	the	given	unencrypted	cookie	is	present:

$browser->assertHasPlainCookie($name);

assertCookieMissing

Assert	that	the	given	encrypted	cookie	is	not	present:

$browser->assertCookieMissing($name);

assertPlainCookieMissing

Assert	that	the	given	unencrypted	cookie	is	not	present:

$browser->assertPlainCookieMissing($name);

assertCookieValue

Assert	that	an	encrypted	cookie	has	a	given	value:

$browser->assertCookieValue($name,	$value);

assertPlainCookieValue

Assert	that	an	unencrypted	cookie	has	a	given	value:

$browser->assertPlainCookieValue($name,	$value);

assertSee

Assert	that	the	given	text	is	present	on	the	page:

$browser->assertSee($text);

Laravel	Documentation	-	10.x	/	Dusk 896

assertDontSee

Assert	that	the	given	text	is	not	present	on	the	page:

$browser->assertDontSee($text);

assertSeeIn

Assert	that	the	given	text	is	present	within	the	selector:

$browser->assertSeeIn($selector,	$text);

assertDontSeeIn

Assert	that	the	given	text	is	not	present	within	the	selector:

$browser->assertDontSeeIn($selector,	$text);

assertSeeAnythingIn

Assert	that	any	text	is	present	within	the	selector:

$browser->assertSeeAnythingIn($selector);

assertSeeNothingIn

Assert	that	no	text	is	present	within	the	selector:

$browser->assertSeeNothingIn($selector);

assertScript

Assert	that	the	given	JavaScript	expression	evaluates	to	the	given	value:

$browser->assertScript('window.isLoaded')

								->assertScript('document.readyState',	'complete');

assertSourceHas

Assert	that	the	given	source	code	is	present	on	the	page:

$browser->assertSourceHas($code);

assertSourceMissing

Assert	that	the	given	source	code	is	not	present	on	the	page:

$browser->assertSourceMissing($code);

assertSeeLink

Assert	that	the	given	link	is	present	on	the	page:

$browser->assertSeeLink($linkText);

assertDontSeeLink

Assert	that	the	given	link	is	not	present	on	the	page:

$browser->assertDontSeeLink($linkText);

assertInputValue

Laravel	Documentation	-	10.x	/	Dusk 897

Assert	that	the	given	input	field	has	the	given	value:

$browser->assertInputValue($field,	$value);

assertInputValueIsNot

Assert	that	the	given	input	field	does	not	have	the	given	value:

$browser->assertInputValueIsNot($field,	$value);

assertChecked

Assert	that	the	given	checkbox	is	checked:

$browser->assertChecked($field);

assertNotChecked

Assert	that	the	given	checkbox	is	not	checked:

$browser->assertNotChecked($field);

assertIndeterminate

Assert	that	the	given	checkbox	is	in	an	indeterminate	state:

$browser->assertIndeterminate($field);

assertRadioSelected

Assert	that	the	given	radio	field	is	selected:

$browser->assertRadioSelected($field,	$value);

assertRadioNotSelected

Assert	that	the	given	radio	field	is	not	selected:

$browser->assertRadioNotSelected($field,	$value);

assertSelected

Assert	that	the	given	dropdown	has	the	given	value	selected:

$browser->assertSelected($field,	$value);

assertNotSelected

Assert	that	the	given	dropdown	does	not	have	the	given	value	selected:

$browser->assertNotSelected($field,	$value);

assertSelectHasOptions

Assert	that	the	given	array	of	values	are	available	to	be	selected:

$browser->assertSelectHasOptions($field,	$values);

assertSelectMissingOptions

Assert	that	the	given	array	of	values	are	not	available	to	be	selected:

Laravel	Documentation	-	10.x	/	Dusk 898

$browser->assertSelectMissingOptions($field,	$values);

assertSelectHasOption

Assert	that	the	given	value	is	available	to	be	selected	on	the	given	field:

$browser->assertSelectHasOption($field,	$value);

assertSelectMissingOption

Assert	that	the	given	value	is	not	available	to	be	selected:

$browser->assertSelectMissingOption($field,	$value);

assertValue

Assert	that	the	element	matching	the	given	selector	has	the	given	value:

$browser->assertValue($selector,	$value);

assertValueIsNot

Assert	that	the	element	matching	the	given	selector	does	not	have	the	given	value:

$browser->assertValueIsNot($selector,	$value);

assertAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	attribute:

$browser->assertAttribute($selector,	$attribute,	$value);

assertAttributeContains

Assert	that	the	element	matching	the	given	selector	contains	the	given	value	in	the	provided	attribute:

$browser->assertAttributeContains($selector,	$attribute,	$value);

assertAttributeDoesntContain

Assert	that	the	element	matching	the	given	selector	does	not	contain	the	given	value	in	the	provided	attribute:

$browser->assertAttributeDoesntContain($selector,	$attribute,	$value);

assertAriaAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	aria	attribute:

$browser->assertAriaAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<button	aria-label="Add"></button>,	you	may	assert	against	the	aria-label
attribute	like	so:

$browser->assertAriaAttribute('button',	'label',	'Add')

assertDataAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	data	attribute:

$browser->assertDataAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<tr	id="row-1"	data-content="attendees"></tr>,	you	may	assert	against	the	
data-label	attribute	like	so:

Laravel	Documentation	-	10.x	/	Dusk 899

$browser->assertDataAttribute('#row-1',	'content',	'attendees')

assertVisible

Assert	that	the	element	matching	the	given	selector	is	visible:

$browser->assertVisible($selector);

assertPresent

Assert	that	the	element	matching	the	given	selector	is	present	in	the	source:

$browser->assertPresent($selector);

assertNotPresent

Assert	that	the	element	matching	the	given	selector	is	not	present	in	the	source:

$browser->assertNotPresent($selector);

assertMissing

Assert	that	the	element	matching	the	given	selector	is	not	visible:

$browser->assertMissing($selector);

assertInputPresent

Assert	that	an	input	with	the	given	name	is	present:

$browser->assertInputPresent($name);

assertInputMissing

Assert	that	an	input	with	the	given	name	is	not	present	in	the	source:

$browser->assertInputMissing($name);

assertDialogOpened

Assert	that	a	JavaScript	dialog	with	the	given	message	has	been	opened:

$browser->assertDialogOpened($message);

assertEnabled

Assert	that	the	given	field	is	enabled:

$browser->assertEnabled($field);

assertDisabled

Assert	that	the	given	field	is	disabled:

$browser->assertDisabled($field);

assertButtonEnabled

Assert	that	the	given	button	is	enabled:

$browser->assertButtonEnabled($button);

Laravel	Documentation	-	10.x	/	Dusk 900

assertButtonDisabled

Assert	that	the	given	button	is	disabled:

$browser->assertButtonDisabled($button);

assertFocused

Assert	that	the	given	field	is	focused:

$browser->assertFocused($field);

assertNotFocused

Assert	that	the	given	field	is	not	focused:

$browser->assertNotFocused($field);

assertAuthenticated

Assert	that	the	user	is	authenticated:

$browser->assertAuthenticated();

assertGuest

Assert	that	the	user	is	not	authenticated:

$browser->assertGuest();

assertAuthenticatedAs

Assert	that	the	user	is	authenticated	as	the	given	user:

$browser->assertAuthenticatedAs($user);

assertVue

Dusk	even	allows	you	to	make	assertions	on	the	state	of	Vue	component	data.	For	example,	imagine	your
application	contains	the	following	Vue	component:

//	HTML...

<profile	dusk="profile-component"></profile>

//	Component	Definition...

Vue.component('profile',	{

				template:	'<div>{{	user.name	}}</div>',

				data:	function	()	{

								return	{

												user:	{

																name:	'Taylor'

												}

								};

				}

});

You	may	assert	on	the	state	of	the	Vue	component	like	so:

/**

	*	A	basic	Vue	test	example.

	*/

public	function	test_vue():	void

{

				$this->browse(function	(Browser	$browser)	{

								$browser->visit('/')

Laravel	Documentation	-	10.x	/	Dusk 901

https://vuejs.org

																->assertVue('user.name',	'Taylor',	'@profile-component');

				});

}

assertVueIsNot

Assert	that	a	given	Vue	component	data	property	does	not	match	the	given	value:

$browser->assertVueIsNot($property,	$value,	$componentSelector	=	null);

assertVueContains

Assert	that	a	given	Vue	component	data	property	is	an	array	and	contains	the	given	value:

$browser->assertVueContains($property,	$value,	$componentSelector	=	null);

assertVueDoesntContain

Assert	that	a	given	Vue	component	data	property	is	an	array	and	does	not	contain	the	given	value:

$browser->assertVueDoesntContain($property,	$value,	$componentSelector	=	null);

Pages

Sometimes,	tests	require	several	complicated	actions	to	be	performed	in	sequence.	This	can	make	your	tests
harder	to	read	and	understand.	Dusk	Pages	allow	you	to	define	expressive	actions	that	may	then	be	performed
on	a	given	page	via	a	single	method.	Pages	also	allow	you	to	define	short-cuts	to	common	selectors	for	your
application	or	for	a	single	page.

Generating	Pages

To	generate	a	page	object,	execute	the	dusk:page	Artisan	command.	All	page	objects	will	be	placed	in	your
application's	tests/Browser/Pages	directory:

php	artisan	dusk:page	Login

Configuring	Pages

By	default,	pages	have	three	methods:	url,	assert,	and	elements.	We	will	discuss	the	url	and	assert	methods
now.	The	elements	method	will	be	discussed	in	more	detail	below.

The	url	Method

The	url	method	should	return	the	path	of	the	URL	that	represents	the	page.	Dusk	will	use	this	URL	when
navigating	to	the	page	in	the	browser:

/**

	*	Get	the	URL	for	the	page.

	*/

public	function	url():	string

{

				return	'/login';

}

The	assert	Method

The	assert	method	may	make	any	assertions	necessary	to	verify	that	the	browser	is	actually	on	the	given	page.
It	is	not	actually	necessary	to	place	anything	within	this	method;	however,	you	are	free	to	make	these	assertions
if	you	wish.	These	assertions	will	be	run	automatically	when	navigating	to	the	page:

/**

	*	Assert	that	the	browser	is	on	the	page.

	*/

Laravel	Documentation	-	10.x	/	Dusk 902

public	function	assert(Browser	$browser):	void

{

				$browser->assertPathIs($this->url());

}

Navigating	to	Pages

Once	a	page	has	been	defined,	you	may	navigate	to	it	using	the	visit	method:

use	Tests\Browser\Pages\Login;

$browser->visit(new	Login);

Sometimes	you	may	already	be	on	a	given	page	and	need	to	"load"	the	page's	selectors	and	methods	into	the
current	test	context.	This	is	common	when	pressing	a	button	and	being	redirected	to	a	given	page	without
explicitly	navigating	to	it.	In	this	situation,	you	may	use	the	on	method	to	load	the	page:

use	Tests\Browser\Pages\CreatePlaylist;

$browser->visit('/dashboard')

								->clickLink('Create	Playlist')

								->on(new	CreatePlaylist)

								->assertSee('@create');

Shorthand	Selectors

The	elements	method	within	page	classes	allows	you	to	define	quick,	easy-to-remember	shortcuts	for	any	CSS
selector	on	your	page.	For	example,	let's	define	a	shortcut	for	the	"email"	input	field	of	the	application's	login
page:

/**

	*	Get	the	element	shortcuts	for	the	page.

	*

	*	@return	array<string,	string>

	*/

public	function	elements():	array

{

				return	[

								'@email'	=>	'input[name=email]',

];

}

Once	the	shortcut	has	been	defined,	you	may	use	the	shorthand	selector	anywhere	you	would	typically	use	a
full	CSS	selector:

$browser->type('@email',	'taylor@laravel.com');

Global	Shorthand	Selectors

After	installing	Dusk,	a	base	Page	class	will	be	placed	in	your	tests/Browser/Pages	directory.	This	class	contains
a	siteElements	method	which	may	be	used	to	define	global	shorthand	selectors	that	should	be	available	on
every	page	throughout	your	application:

/**

	*	Get	the	global	element	shortcuts	for	the	site.

	*

	*	@return	array<string,	string>

	*/

public	static	function	siteElements():	array

{

				return	[

								'@element'	=>	'#selector',

];

}

Page	Methods

In	addition	to	the	default	methods	defined	on	pages,	you	may	define	additional	methods	which	may	be	used
throughout	your	tests.	For	example,	let's	imagine	we	are	building	a	music	management	application.	A	common

Laravel	Documentation	-	10.x	/	Dusk 903

action	for	one	page	of	the	application	might	be	to	create	a	playlist.	Instead	of	re-writing	the	logic	to	create	a
playlist	in	each	test,	you	may	define	a	createPlaylist	method	on	a	page	class:

<?php

namespace	Tests\Browser\Pages;

use	Laravel\Dusk\Browser;

class	Dashboard	extends	Page

{

				//	Other	page	methods...

				/**

					*	Create	a	new	playlist.

					*/

				public	function	createPlaylist(Browser	$browser,	string	$name):	void

				{

								$browser->type('name',	$name)

																->check('share')

																->press('Create	Playlist');

				}

}

Once	the	method	has	been	defined,	you	may	use	it	within	any	test	that	utilizes	the	page.	The	browser	instance
will	automatically	be	passed	as	the	first	argument	to	custom	page	methods:

use	Tests\Browser\Pages\Dashboard;

$browser->visit(new	Dashboard)

								->createPlaylist('My	Playlist')

								->assertSee('My	Playlist');

Components

Components	are	similar	to	Dusk’s	“page	objects”,	but	are	intended	for	pieces	of	UI	and	functionality	that	are
re-used	throughout	your	application,	such	as	a	navigation	bar	or	notification	window.	As	such,	components	are
not	bound	to	specific	URLs.

Generating	Components

To	generate	a	component,	execute	the	dusk:component	Artisan	command.	New	components	are	placed	in	the	
tests/Browser/Components	directory:

php	artisan	dusk:component	DatePicker

As	shown	above,	a	"date	picker"	is	an	example	of	a	component	that	might	exist	throughout	your	application	on
a	variety	of	pages.	It	can	become	cumbersome	to	manually	write	the	browser	automation	logic	to	select	a	date
in	dozens	of	tests	throughout	your	test	suite.	Instead,	we	can	define	a	Dusk	component	to	represent	the	date
picker,	allowing	us	to	encapsulate	that	logic	within	the	component:

<?php

namespace	Tests\Browser\Components;

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Component	as	BaseComponent;

class	DatePicker	extends	BaseComponent

{

				/**

					*	Get	the	root	selector	for	the	component.

					*/

				public	function	selector():	string

				{

								return	'.date-picker';

				}

				/**

					*	Assert	that	the	browser	page	contains	the	component.

					*/

				public	function	assert(Browser	$browser):	void

Laravel	Documentation	-	10.x	/	Dusk 904

				{

								$browser->assertVisible($this->selector());

				}

				/**

					*	Get	the	element	shortcuts	for	the	component.

					*

					*	@return	array<string,	string>

					*/

				public	function	elements():	array

				{

								return	[

												'@date-field'	=>	'input.datepicker-input',

												'@year-list'	=>	'div	>	div.datepicker-years',

												'@month-list'	=>	'div	>	div.datepicker-months',

												'@day-list'	=>	'div	>	div.datepicker-days',

];

				}

				/**

					*	Select	the	given	date.

					*/

				public	function	selectDate(Browser	$browser,	int	$year,	int	$month,	int	$day):	void

				{

								$browser->click('@date-field')

																->within('@year-list',	function	(Browser	$browser)	use	($year)	{

																				$browser->click($year);

																})

																->within('@month-list',	function	(Browser	$browser)	use	($month)	{

																				$browser->click($month);

																})

																->within('@day-list',	function	(Browser	$browser)	use	($day)	{

																				$browser->click($day);

																});

				}

}

Using	Components

Once	the	component	has	been	defined,	we	can	easily	select	a	date	within	the	date	picker	from	any	test.	And,	if
the	logic	necessary	to	select	a	date	changes,	we	only	need	to	update	the	component:

<?php

namespace	Tests\Browser;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Tests\Browser\Components\DatePicker;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				/**

					*	A	basic	component	test	example.

					*/

				public	function	test_basic_example():	void

				{

								$this->browse(function	(Browser	$browser)	{

												$browser->visit('/')

																				->within(new	DatePicker,	function	(Browser	$browser)	{

																								$browser->selectDate(2019,	1,	30);

																				})

																				->assertSee('January');

								});

				}

}

Continuous	Integration

[!WARNING]
Most	Dusk	continuous	integration	configurations	expect	your	Laravel	application	to	be	served	using	the
built-in	PHP	development	server	on	port	8000.	Therefore,	before	continuing,	you	should	ensure	that	your
continuous	integration	environment	has	an	APP_URL	environment	variable	value	of	http://127.0.0.1:8000.

Laravel	Documentation	-	10.x	/	Dusk 905

Heroku	CI

To	run	Dusk	tests	on	Heroku	CI,	add	the	following	Google	Chrome	buildpack	and	scripts	to	your	Heroku	
app.json	file:

{

		"environments":	{

				"test":	{

						"buildpacks":	[

								{	"url":	"heroku/php"	},

								{	"url":	"https://github.com/heroku/heroku-buildpack-google-chrome"	}

],

						"scripts":	{

								"test-setup":	"cp	.env.testing	.env",

								"test":	"nohup	bash	-c	'./vendor/laravel/dusk/bin/chromedriver-linux	>	/dev/null	2>&1	&'	&&	

nohup	bash	-c	'php	artisan	serve	--no-reload	>	/dev/null	2>&1	&'	&&	php	artisan	dusk"

						}

				}

		}

}

Travis	CI

To	run	your	Dusk	tests	on	Travis	CI,	use	the	following	.travis.yml	configuration.	Since	Travis	CI	is	not	a
graphical	environment,	we	will	need	to	take	some	extra	steps	in	order	to	launch	a	Chrome	browser.	In	addition,
we	will	use	php	artisan	serve	to	launch	PHP's	built-in	web	server:

language:	php

php:

		-	7.3

addons:

		chrome:	stable

install:

		-	cp	.env.testing	.env

		-	travis_retry	composer	install	--no-interaction	--prefer-dist

		-	php	artisan	key:generate

		-	php	artisan	dusk:chrome-driver

before_script:

		-	google-chrome-stable	--headless	--disable-gpu	--remote-debugging-port=9222	http://localhost	&

		-	php	artisan	serve	--no-reload	&

script:

		-	php	artisan	dusk

GitHub	Actions

If	you	are	using	GitHub	Actions	to	run	your	Dusk	tests,	you	may	use	the	following	configuration	file	as	a
starting	point.	Like	TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

name:	CI

on:	[push]

jobs:

		dusk-php:

				runs-on:	ubuntu-latest

				env:

						APP_URL:	"http://127.0.0.1:8000"

						DB_USERNAME:	root

						DB_PASSWORD:	root

						MAIL_MAILER:	log

				steps:

						-	uses:	actions/checkout@v4

						-	name:	Prepare	The	Environment

								run:	cp	.env.example	.env

						-	name:	Create	Database

								run:	|

										sudo	systemctl	start	mysql

										mysql	--user="root"	--password="root"	-e	"CREATE	DATABASE	\`my-database\`	character	set	

UTF8mb4	collate	utf8mb4_bin;"

						-	name:	Install	Composer	Dependencies

Laravel	Documentation	-	10.x	/	Dusk 906

https://www.heroku.com/continuous-integration
https://travis-ci.org
https://github.com/features/actions

								run:	composer	install	--no-progress	--prefer-dist	--optimize-autoloader

						-	name:	Generate	Application	Key

								run:	php	artisan	key:generate

						-	name:	Upgrade	Chrome	Driver

								run:	php	artisan	dusk:chrome-driver	--detect

						-	name:	Start	Chrome	Driver

								run:	./vendor/laravel/dusk/bin/chromedriver-linux	&

						-	name:	Run	Laravel	Server

								run:	php	artisan	serve	--no-reload	&

						-	name:	Run	Dusk	Tests

								run:	php	artisan	dusk

						-	name:	Upload	Screenshots

								if:	failure()

								uses:	actions/upload-artifact@v2

								with:

										name:	screenshots

										path:	tests/Browser/screenshots

						-	name:	Upload	Console	Logs

								if:	failure()

								uses:	actions/upload-artifact@v2

								with:

										name:	console

										path:	tests/Browser/console

Chipper	CI

If	you	are	using	Chipper	CI	to	run	your	Dusk	tests,	you	may	use	the	following	configuration	file	as	a	starting
point.	We	will	use	PHP's	built-in	server	to	run	Laravel	so	we	can	listen	for	requests:

#	file	.chipperci.yml

version:	1

environment:

		php:	8.2

		node:	16

#	Include	Chrome	in	the	build	environment

services:

		-	dusk

#	Build	all	commits

on:

			push:

						branches:	.*

pipeline:

		-	name:	Setup

				cmd:	|

						cp	-v	.env.example	.env

						composer	install	--no-interaction	--prefer-dist	--optimize-autoloader

						php	artisan	key:generate

						#	Create	a	dusk	env	file,	ensuring	APP_URL	uses	BUILD_HOST

						cp	-v	.env	.env.dusk.ci

						sed	-i	"s@APP_URL=.*@APP_URL=http://$BUILD_HOST:8000@g"	.env.dusk.ci

		-	name:	Compile	Assets

				cmd:	|

						npm	ci	--no-audit

						npm	run	build

		-	name:	Browser	Tests

				cmd:	|

						php	-S	[::0]:8000	-t	public	2>server.log	&

						sleep	2

						php	artisan	dusk:chrome-driver	$CHROME_DRIVER

						php	artisan	dusk	--env=ci

To	learn	more	about	running	Dusk	tests	on	Chipper	CI,	including	how	to	use	databases,	consult	the	official
Chipper	CI	documentation.

Laravel	Documentation	-	10.x	/	Dusk 907

https://chipperci.com
https://chipperci.com/docs/testing/laravel-dusk-new/

Packages

Laravel	Envoy
Introduction
Installation
Writing	Tasks

Defining	Tasks
Multiple	Servers
Setup
Variables
Stories
Hooks

Running	Tasks
Confirming	Task	Execution

Notifications
Slack
Discord
Telegram
Microsoft	Teams

Introduction

Laravel	Envoy	is	a	tool	for	executing	common	tasks	you	run	on	your	remote	servers.	Using	Blade	style	syntax,
you	can	easily	setup	tasks	for	deployment,	Artisan	commands,	and	more.	Currently,	Envoy	only	supports	the
Mac	and	Linux	operating	systems.	However,	Windows	support	is	achievable	using	WSL2.

Installation

First,	install	Envoy	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/envoy	--dev

Once	Envoy	has	been	installed,	the	Envoy	binary	will	be	available	in	your	application's	vendor/bin	directory:

php	vendor/bin/envoy

Writing	Tasks

Defining	Tasks

Tasks	are	the	basic	building	block	of	Envoy.	Tasks	define	the	shell	commands	that	should	execute	on	your
remote	servers	when	the	task	is	invoked.	For	example,	you	might	define	a	task	that	executes	the	php	artisan	
queue:restart	command	on	all	of	your	application's	queue	worker	servers.

All	of	your	Envoy	tasks	should	be	defined	in	an	Envoy.blade.php	file	at	the	root	of	your	application.	Here's	an
example	to	get	you	started:

@servers(['web'	=>	['user@192.168.1.1'],	'workers'	=>	['user@192.168.1.2']])

@task('restart-queues',	['on'	=>	'workers'])

				cd	/home/user/example.com

				php	artisan	queue:restart

@endtask

As	you	can	see,	an	array	of	@servers	is	defined	at	the	top	of	the	file,	allowing	you	to	reference	these	servers	via
the	on	option	of	your	task	declarations.	The	@servers	declaration	should	always	be	placed	on	a	single	line.
Within	your	@task	declarations,	you	should	place	the	shell	commands	that	should	execute	on	your	servers	when
the	task	is	invoked.

Laravel	Documentation	-	10.x	/	Envoy 908

https://github.com/laravel/envoy
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Local	Tasks

You	can	force	a	script	to	run	on	your	local	computer	by	specifying	the	server's	IP	address	as	127.0.0.1:

@servers(['localhost'	=>	'127.0.0.1'])

Importing	Envoy	Tasks

Using	the	@import	directive,	you	may	import	other	Envoy	files	so	their	stories	and	tasks	are	added	to	yours.
After	the	files	have	been	imported,	you	may	execute	the	tasks	they	contain	as	if	they	were	defined	in	your	own
Envoy	file:

@import('vendor/package/Envoy.blade.php')

Multiple	Servers

Envoy	allows	you	to	easily	run	a	task	across	multiple	servers.	First,	add	additional	servers	to	your	@servers
declaration.	Each	server	should	be	assigned	a	unique	name.	Once	you	have	defined	your	additional	servers	you
may	list	each	of	the	servers	in	the	task's	on	array:

@servers(['web-1'	=>	'192.168.1.1',	'web-2'	=>	'192.168.1.2'])

@task('deploy',	['on'	=>	['web-1',	'web-2']])

				cd	/home/user/example.com

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate	--force

@endtask

Parallel	Execution

By	default,	tasks	will	be	executed	on	each	server	serially.	In	other	words,	a	task	will	finish	running	on	the	first
server	before	proceeding	to	execute	on	the	second	server.	If	you	would	like	to	run	a	task	across	multiple	servers
in	parallel,	add	the	parallel	option	to	your	task	declaration:

@servers(['web-1'	=>	'192.168.1.1',	'web-2'	=>	'192.168.1.2'])

@task('deploy',	['on'	=>	['web-1',	'web-2'],	'parallel'	=>	true])

				cd	/home/user/example.com

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate	--force

@endtask

Setup

Sometimes,	you	may	need	to	execute	arbitrary	PHP	code	before	running	your	Envoy	tasks.	You	may	use	the	
@setup	directive	to	define	a	block	of	PHP	code	that	should	execute	before	your	tasks:

@setup

				$now	=	new	DateTime;

@endsetup

If	you	need	to	require	other	PHP	files	before	your	task	is	executed,	you	may	use	the	@include	directive	at	the
top	of	your	Envoy.blade.php	file:

@include('vendor/autoload.php')

@task('restart-queues')

				#	...

@endtask

Variables

If	needed,	you	may	pass	arguments	to	Envoy	tasks	by	specifying	them	on	the	command	line	when	invoking
Envoy:

php	vendor/bin/envoy	run	deploy	--branch=master

Laravel	Documentation	-	10.x	/	Envoy 909

You	may	access	the	options	within	your	tasks	using	Blade's	"echo"	syntax.	You	may	also	define	Blade	if
statements	and	loops	within	your	tasks.	For	example,	let's	verify	the	presence	of	the	$branch	variable	before
executing	the	git	pull	command:

@servers(['web'	=>	['user@192.168.1.1']])

@task('deploy',	['on'	=>	'web'])

				cd	/home/user/example.com

				@if	($branch)

								git	pull	origin	{{	$branch	}}

				@endif

				php	artisan	migrate	--force

@endtask

Stories

Stories	group	a	set	of	tasks	under	a	single,	convenient	name.	For	instance,	a	deploy	story	may	run	the	update-
code	and	install-dependencies	tasks	by	listing	the	task	names	within	its	definition:

@servers(['web'	=>	['user@192.168.1.1']])

@story('deploy')

				update-code

				install-dependencies

@endstory

@task('update-code')

				cd	/home/user/example.com

				git	pull	origin	master

@endtask

@task('install-dependencies')

				cd	/home/user/example.com

				composer	install

@endtask

Once	the	story	has	been	written,	you	may	invoke	it	in	the	same	way	you	would	invoke	a	task:

php	vendor/bin/envoy	run	deploy

Hooks

When	tasks	and	stories	run,	a	number	of	hooks	are	executed.	The	hook	types	supported	by	Envoy	are	@before,	
@after,	@error,	@success,	and	@finished.	All	of	the	code	in	these	hooks	is	interpreted	as	PHP	and	executed
locally,	not	on	the	remote	servers	that	your	tasks	interact	with.

You	may	define	as	many	of	each	of	these	hooks	as	you	like.	They	will	be	executed	in	the	order	that	they	appear
in	your	Envoy	script.

@before

Before	each	task	execution,	all	of	the	@before	hooks	registered	in	your	Envoy	script	will	execute.	The	@before
hooks	receive	the	name	of	the	task	that	will	be	executed:

@before

				if	($task	===	'deploy')	{

								//	...

				}

@endbefore

@after

After	each	task	execution,	all	of	the	@after	hooks	registered	in	your	Envoy	script	will	execute.	The	@after
hooks	receive	the	name	of	the	task	that	was	executed:

@after

				if	($task	===	'deploy')	{

								//	...

Laravel	Documentation	-	10.x	/	Envoy 910

				}

@endafter

@error

After	every	task	failure	(exits	with	a	status	code	greater	than	0),	all	of	the	@error	hooks	registered	in	your
Envoy	script	will	execute.	The	@error	hooks	receive	the	name	of	the	task	that	was	executed:

@error

				if	($task	===	'deploy')	{

								//	...

				}

@enderror

@success

If	all	tasks	have	executed	without	errors,	all	of	the	@success	hooks	registered	in	your	Envoy	script	will	execute:

@success

				//	...

@endsuccess

@finished

After	all	tasks	have	been	executed	(regardless	of	exit	status),	all	of	the	@finished	hooks	will	be	executed.	The	
@finished	hooks	receive	the	status	code	of	the	completed	task,	which	may	be	null	or	an	integer	greater	than	or
equal	to	0:

@finished

				if	($exitCode	>	0)	{

								//	There	were	errors	in	one	of	the	tasks...

				}

@endfinished

Running	Tasks

To	run	a	task	or	story	that	is	defined	in	your	application's	Envoy.blade.php	file,	execute	Envoy's	run	command,
passing	the	name	of	the	task	or	story	you	would	like	to	execute.	Envoy	will	execute	the	task	and	display	the
output	from	your	remote	servers	as	the	task	is	running:

php	vendor/bin/envoy	run	deploy

Confirming	Task	Execution

If	you	would	like	to	be	prompted	for	confirmation	before	running	a	given	task	on	your	servers,	you	should	add
the	confirm	directive	to	your	task	declaration.	This	option	is	particularly	useful	for	destructive	operations:

@task('deploy',	['on'	=>	'web',	'confirm'	=>	true])

				cd	/home/user/example.com

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate

@endtask

Notifications

Slack

Envoy	supports	sending	notifications	to	Slack	after	each	task	is	executed.	The	@slack	directive	accepts	a	Slack
hook	URL	and	a	channel	/	user	name.	You	may	retrieve	your	webhook	URL	by	creating	an	"Incoming
WebHooks"	integration	in	your	Slack	control	panel.

You	should	pass	the	entire	webhook	URL	as	the	first	argument	given	to	the	@slack	directive.	The	second
argument	given	to	the	@slack	directive	should	be	a	channel	name	(#channel)	or	a	user	name	(@user):

@finished

Laravel	Documentation	-	10.x	/	Envoy 911

https://slack.com

				@slack('webhook-url',	'#bots')

@endfinished

By	default,	Envoy	notifications	will	send	a	message	to	the	notification	channel	describing	the	task	that	was
executed.	However,	you	may	overwrite	this	message	with	your	own	custom	message	by	passing	a	third
argument	to	the	@slack	directive:

@finished

				@slack('webhook-url',	'#bots',	'Hello,	Slack.')

@endfinished

Discord

Envoy	also	supports	sending	notifications	to	Discord	after	each	task	is	executed.	The	@discord	directive	accepts
a	Discord	hook	URL	and	a	message.	You	may	retrieve	your	webhook	URL	by	creating	a	"Webhook"	in	your
Server	Settings	and	choosing	which	channel	the	webhook	should	post	to.	You	should	pass	the	entire	Webhook
URL	into	the	@discord	directive:

@finished

				@discord('discord-webhook-url')

@endfinished

Telegram

Envoy	also	supports	sending	notifications	to	Telegram	after	each	task	is	executed.	The	@telegram	directive
accepts	a	Telegram	Bot	ID	and	a	Chat	ID.	You	may	retrieve	your	Bot	ID	by	creating	a	new	bot	using	BotFather.
You	can	retrieve	a	valid	Chat	ID	using	@username_to_id_bot.	You	should	pass	the	entire	Bot	ID	and	Chat	ID
into	the	@telegram	directive:

@finished

				@telegram('bot-id','chat-id')

@endfinished

Microsoft	Teams

Envoy	also	supports	sending	notifications	to	Microsoft	Teams	after	each	task	is	executed.	The	@microsoftTeams
directive	accepts	a	Teams	Webhook	(required),	a	message,	theme	color	(success,	info,	warning,	error),	and	an
array	of	options.	You	may	retrieve	your	Teams	Webhook	by	creating	a	new	incoming	webhook.	The	Teams	API
has	many	other	attributes	to	customize	your	message	box	like	title,	summary,	and	sections.	You	can	find	more
information	on	the	Microsoft	Teams	documentation.	You	should	pass	the	entire	Webhook	URL	into	the	
@microsoftTeams	directive:

@finished

				@microsoftTeams('webhook-url')

@endfinished

Laravel	Documentation	-	10.x	/	Envoy 912

https://discord.com
https://telegram.org
https://t.me/botfather
https://t.me/username_to_id_bot
https://www.microsoft.com/en-us/microsoft-teams
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/connectors-using?tabs=cURL#example-of-connector-message

Packages

Laravel	Fortify
Introduction

What	is	Fortify?
When	Should	I	Use	Fortify?

Installation
The	Fortify	Service	Provider
Fortify	Features
Disabling	Views

Authentication
Customizing	User	Authentication
Customizing	the	Authentication	Pipeline
Customizing	Redirects

Two	Factor	Authentication
Enabling	Two	Factor	Authentication
Authenticating	With	Two	Factor	Authentication
Disabling	Two	Factor	Authentication

Registration
Customizing	Registration

Password	Reset
Requesting	a	Password	Reset	Link
Resetting	the	Password
Customizing	Password	Resets

Email	Verification
Protecting	Routes

Password	Confirmation

Introduction

Laravel	Fortify	is	a	frontend	agnostic	authentication	backend	implementation	for	Laravel.	Fortify	registers	the
routes	and	controllers	needed	to	implement	all	of	Laravel's	authentication	features,	including	login,	registration,
password	reset,	email	verification,	and	more.	After	installing	Fortify,	you	may	run	the	route:list	Artisan
command	to	see	the	routes	that	Fortify	has	registered.

Since	Fortify	does	not	provide	its	own	user	interface,	it	is	meant	to	be	paired	with	your	own	user	interface
which	makes	requests	to	the	routes	it	registers.	We	will	discuss	exactly	how	to	make	requests	to	these	routes	in
the	remainder	of	this	documentation.

[!NOTE]
Remember,	Fortify	is	a	package	that	is	meant	to	give	you	a	head	start	implementing	Laravel's
authentication	features.	You	are	not	required	to	use	it.	You	are	always	free	to	manually	interact	with
Laravel's	authentication	services	by	following	the	documentation	available	in	the	authentication,	password
reset,	and	email	verification	documentation.

What	is	Fortify?

As	mentioned	previously,	Laravel	Fortify	is	a	frontend	agnostic	authentication	backend	implementation	for
Laravel.	Fortify	registers	the	routes	and	controllers	needed	to	implement	all	of	Laravel's	authentication	features,
including	login,	registration,	password	reset,	email	verification,	and	more.

You	are	not	required	to	use	Fortify	in	order	to	use	Laravel's	authentication	features.	You	are	always	free
to	manually	interact	with	Laravel's	authentication	services	by	following	the	documentation	available	in	the
authentication,	password	reset,	and	email	verification	documentation.

If	you	are	new	to	Laravel,	you	may	wish	to	explore	the	Laravel	Breeze	application	starter	kit	before	attempting
to	use	Laravel	Fortify.	Laravel	Breeze	provides	an	authentication	scaffolding	for	your	application	that	includes
a	user	interface	built	with	Tailwind	CSS.	Unlike	Fortify,	Breeze	publishes	its	routes	and	controllers	directly	into

Laravel	Documentation	-	10.x	/	Fortify 913

https://github.com/laravel/fortify
https://tailwindcss.com

your	application.	This	allows	you	to	study	and	get	comfortable	with	Laravel's	authentication	features	before
allowing	Laravel	Fortify	to	implement	these	features	for	you.

Laravel	Fortify	essentially	takes	the	routes	and	controllers	of	Laravel	Breeze	and	offers	them	as	a	package	that
does	not	include	a	user	interface.	This	allows	you	to	still	quickly	scaffold	the	backend	implementation	of	your
application's	authentication	layer	without	being	tied	to	any	particular	frontend	opinions.

When	Should	I	Use	Fortify?

You	may	be	wondering	when	it	is	appropriate	to	use	Laravel	Fortify.	First,	if	you	are	using	one	of	Laravel's
application	starter	kits,	you	do	not	need	to	install	Laravel	Fortify	since	all	of	Laravel's	application	starter	kits
already	provide	a	full	authentication	implementation.

If	you	are	not	using	an	application	starter	kit	and	your	application	needs	authentication	features,	you	have	two
options:	manually	implement	your	application's	authentication	features	or	use	Laravel	Fortify	to	provide	the
backend	implementation	of	these	features.

If	you	choose	to	install	Fortify,	your	user	interface	will	make	requests	to	Fortify's	authentication	routes	that	are
detailed	in	this	documentation	in	order	to	authenticate	and	register	users.

If	you	choose	to	manually	interact	with	Laravel's	authentication	services	instead	of	using	Fortify,	you	may	do
so	by	following	the	documentation	available	in	the	authentication,	password	reset,	and	email	verification
documentation.

Laravel	Fortify	and	Laravel	Sanctum

Some	developers	become	confused	regarding	the	difference	between	Laravel	Sanctum	and	Laravel	Fortify.
Because	the	two	packages	solve	two	different	but	related	problems,	Laravel	Fortify	and	Laravel	Sanctum	are
not	mutually	exclusive	or	competing	packages.

Laravel	Sanctum	is	only	concerned	with	managing	API	tokens	and	authenticating	existing	users	using	session
cookies	or	tokens.	Sanctum	does	not	provide	any	routes	that	handle	user	registration,	password	reset,	etc.

If	you	are	attempting	to	manually	build	the	authentication	layer	for	an	application	that	offers	an	API	or	serves
as	the	backend	for	a	single-page	application,	it	is	entirely	possible	that	you	will	utilize	both	Laravel	Fortify	(for
user	registration,	password	reset,	etc.)	and	Laravel	Sanctum	(API	token	management,	session	authentication).

Installation

To	get	started,	install	Fortify	using	the	Composer	package	manager:

composer	require	laravel/fortify

Next,	publish	Fortify's	resources	using	the	vendor:publish	command:

php	artisan	vendor:publish	--provider="Laravel\Fortify\FortifyServiceProvider"

This	command	will	publish	Fortify's	actions	to	your	app/Actions	directory,	which	will	be	created	if	it	does	not
exist.	In	addition,	the	FortifyServiceProvider,	configuration	file,	and	all	necessary	database	migrations	will	be
published.

Next,	you	should	migrate	your	database:

php	artisan	migrate

The	Fortify	Service	Provider

The	vendor:publish	command	discussed	above	will	also	publish	the	App\Providers\FortifyServiceProvider
class.	You	should	ensure	this	class	is	registered	within	the	providers	array	of	your	application's	config/app.php
configuration	file.

Laravel	Documentation	-	10.x	/	Fortify 914

The	Fortify	service	provider	registers	the	actions	that	Fortify	published	and	instructs	Fortify	to	use	them	when
their	respective	tasks	are	executed	by	Fortify.

Fortify	Features

The	fortify	configuration	file	contains	a	features	configuration	array.	This	array	defines	which	backend	routes
/	features	Fortify	will	expose	by	default.	If	you	are	not	using	Fortify	in	combination	with	Laravel	Jetstream,	we
recommend	that	you	only	enable	the	following	features,	which	are	the	basic	authentication	features	provided	by
most	Laravel	applications:

'features'	=>	[

				Features::registration(),

				Features::resetPasswords(),

				Features::emailVerification(),

],

Disabling	Views

By	default,	Fortify	defines	routes	that	are	intended	to	return	views,	such	as	a	login	screen	or	registration	screen.
However,	if	you	are	building	a	JavaScript	driven	single-page	application,	you	may	not	need	these	routes.	For
that	reason,	you	may	disable	these	routes	entirely	by	setting	the	views	configuration	value	within	your
application's	config/fortify.php	configuration	file	to	false:

'views'	=>	false,

Disabling	Views	and	Password	Reset

If	you	choose	to	disable	Fortify's	views	and	you	will	be	implementing	password	reset	features	for	your
application,	you	should	still	define	a	route	named	password.reset	that	is	responsible	for	displaying	your
application's	"reset	password"	view.	This	is	necessary	because	Laravel's	
Illuminate\Auth\Notifications\ResetPassword	notification	will	generate	the	password	reset	URL	via	the	
password.reset	named	route.

Authentication

To	get	started,	we	need	to	instruct	Fortify	how	to	return	our	"login"	view.	Remember,	Fortify	is	a	headless
authentication	library.	If	you	would	like	a	frontend	implementation	of	Laravel's	authentication	features	that	are
already	completed	for	you,	you	should	use	an	application	starter	kit.

All	of	the	authentication	view's	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via
the	Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your
application's	App\Providers\FortifyServiceProvider	class.	Fortify	will	take	care	of	defining	the	/login	route	that
returns	this	view:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::loginView(function	()	{

								return	view('auth.login');

				});

				//	...

}

Your	login	template	should	include	a	form	that	makes	a	POST	request	to	/login.	The	/login	endpoint	expects	a
string	email	/	username	and	a	password.	The	name	of	the	email	/	username	field	should	match	the	username	value
within	the	config/fortify.php	configuration	file.	In	addition,	a	boolean	remember	field	may	be	provided	to
indicate	that	the	user	would	like	to	use	the	"remember	me"	functionality	provided	by	Laravel.

If	the	login	attempt	is	successful,	Fortify	will	redirect	you	to	the	URI	configured	via	the	home	configuration

Laravel	Documentation	-	10.x	/	Fortify 915

https://jetstream.laravel.com

option	within	your	application's	fortify	configuration	file.	If	the	login	request	was	an	XHR	request,	a	200
HTTP	response	will	be	returned.

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	login	screen	and	the	validation	errors
will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of	an	XHR	request,	the
validation	errors	will	be	returned	with	the	422	HTTP	response.

Customizing	User	Authentication

Fortify	will	automatically	retrieve	and	authenticate	the	user	based	on	the	provided	credentials	and	the
authentication	guard	that	is	configured	for	your	application.	However,	you	may	sometimes	wish	to	have	full
customization	over	how	login	credentials	are	authenticated	and	users	are	retrieved.	Thankfully,	Fortify	allows
you	to	easily	accomplish	this	using	the	Fortify::authenticateUsing	method.

This	method	accepts	a	closure	which	receives	the	incoming	HTTP	request.	The	closure	is	responsible	for
validating	the	login	credentials	attached	to	the	request	and	returning	the	associated	user	instance.	If	the
credentials	are	invalid	or	no	user	can	be	found,	null	or	false	should	be	returned	by	the	closure.	Typically,	this
method	should	be	called	from	the	boot	method	of	your	FortifyServiceProvider:

use	App\Models\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::authenticateUsing(function	(Request	$request)	{

								$user	=	User::where('email',	$request->email)->first();

								if	($user	&&

												Hash::check($request->password,	$user->password))	{

												return	$user;

								}

				});

				//	...

}

Authentication	Guard

You	may	customize	the	authentication	guard	used	by	Fortify	within	your	application's	fortify	configuration
file.	However,	you	should	ensure	that	the	configured	guard	is	an	implementation	of	
Illuminate\Contracts\Auth\StatefulGuard.	If	you	are	attempting	to	use	Laravel	Fortify	to	authenticate	an	SPA,
you	should	use	Laravel's	default	web	guard	in	combination	with	Laravel	Sanctum.

Customizing	the	Authentication	Pipeline

Laravel	Fortify	authenticates	login	requests	through	a	pipeline	of	invokable	classes.	If	you	would	like,	you	may
define	a	custom	pipeline	of	classes	that	login	requests	should	be	piped	through.	Each	class	should	have	an	
__invoke	method	which	receives	the	incoming	Illuminate\Http\Request	instance	and,	like	middleware,	a	$next
variable	that	is	invoked	in	order	to	pass	the	request	to	the	next	class	in	the	pipeline.

To	define	your	custom	pipeline,	you	may	use	the	Fortify::authenticateThrough	method.	This	method	accepts	a
closure	which	should	return	the	array	of	classes	to	pipe	the	login	request	through.	Typically,	this	method	should
be	called	from	the	boot	method	of	your	App\Providers\FortifyServiceProvider	class.

The	example	below	contains	the	default	pipeline	definition	that	you	may	use	as	a	starting	point	when	making
your	own	modifications:

use	Laravel\Fortify\Actions\AttemptToAuthenticate;

use	Laravel\Fortify\Actions\EnsureLoginIsNotThrottled;

use	Laravel\Fortify\Actions\PrepareAuthenticatedSession;

use	Laravel\Fortify\Actions\RedirectIfTwoFactorAuthenticatable;

use	Laravel\Fortify\Fortify;

Laravel	Documentation	-	10.x	/	Fortify 916

https://laravel.com/docs/sanctum

use	Illuminate\Http\Request;

Fortify::authenticateThrough(function	(Request	$request)	{

				return	array_filter([

												config('fortify.limiters.login')	?	null	:	EnsureLoginIsNotThrottled::class,

												Features::enabled(Features::twoFactorAuthentication())	?	

RedirectIfTwoFactorAuthenticatable::class	:	null,

												AttemptToAuthenticate::class,

												PrepareAuthenticatedSession::class,

]);

});

Customizing	Redirects

If	the	login	attempt	is	successful,	Fortify	will	redirect	you	to	the	URI	configured	via	the	home	configuration
option	within	your	application's	fortify	configuration	file.	If	the	login	request	was	an	XHR	request,	a	200
HTTP	response	will	be	returned.	After	a	user	logs	out	of	the	application,	the	user	will	be	redirected	to	the	/
URI.

If	you	need	advanced	customization	of	this	behavior,	you	may	bind	implementations	of	the	LoginResponse	and	
LogoutResponse	contracts	into	the	Laravel	service	container.	Typically,	this	should	be	done	within	the	register
method	of	your	application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Contracts\LogoutResponse;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->app->instance(LogoutResponse::class,	new	class	implements	LogoutResponse	{

								public	function	toResponse($request)

								{

												return	redirect('/');

								}

				});

}

Two	Factor	Authentication

When	Fortify's	two	factor	authentication	feature	is	enabled,	the	user	is	required	to	input	a	six	digit	numeric
token	during	the	authentication	process.	This	token	is	generated	using	a	time-based	one-time	password	(TOTP)
that	can	be	retrieved	from	any	TOTP	compatible	mobile	authentication	application	such	as	Google
Authenticator.

Before	getting	started,	you	should	first	ensure	that	your	application's	App\Models\User	model	uses	the	
Laravel\Fortify\TwoFactorAuthenticatable	trait:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Laravel\Fortify\TwoFactorAuthenticatable;

class	User	extends	Authenticatable

{

				use	Notifiable,	TwoFactorAuthenticatable;

}

Next,	you	should	build	a	screen	within	your	application	where	users	can	manage	their	two	factor	authentication
settings.	This	screen	should	allow	the	user	to	enable	and	disable	two	factor	authentication,	as	well	as	regenerate
their	two	factor	authentication	recovery	codes.

By	default,	the	features	array	of	the	fortify	configuration	file	instructs	Fortify's	two	factor	authentication
settings	to	require	password	confirmation	before	modification.	Therefore,	your	application	should
implement	Fortify's	password	confirmation	feature	before	continuing.

Laravel	Documentation	-	10.x	/	Fortify 917

Enabling	Two	Factor	Authentication

To	begin	enabling	two	factor	authentication,	your	application	should	make	a	POST	request	to	the	/user/two-
factor-authentication	endpoint	defined	by	Fortify.	If	the	request	is	successful,	the	user	will	be	redirected	back
to	the	previous	URL	and	the	status	session	variable	will	be	set	to	two-factor-authentication-enabled.	You	may
detect	this	status	session	variable	within	your	templates	to	display	the	appropriate	success	message.	If	the
request	was	an	XHR	request,	200	HTTP	response	will	be	returned.

After	choosing	to	enable	two	factor	authentication,	the	user	must	still	"confirm"	their	two	factor	authentication
configuration	by	providing	a	valid	two	factor	authentication	code.	So,	your	"success"	message	should	instruct
the	user	that	two	factor	authentication	confirmation	is	still	required:

@if	(session('status')	==	'two-factor-authentication-enabled')

				<div	class="mb-4	font-medium	text-sm">

								Please	finish	configuring	two	factor	authentication	below.

				</div>

@endif

Next,	you	should	display	the	two	factor	authentication	QR	code	for	the	user	to	scan	into	their	authenticator
application.	If	you	are	using	Blade	to	render	your	application's	frontend,	you	may	retrieve	the	QR	code	SVG
using	the	twoFactorQrCodeSvg	method	available	on	the	user	instance:

$request->user()->twoFactorQrCodeSvg();

If	you	are	building	a	JavaScript	powered	frontend,	you	may	make	an	XHR	GET	request	to	the	/user/two-
factor-qr-code	endpoint	to	retrieve	the	user's	two	factor	authentication	QR	code.	This	endpoint	will	return	a
JSON	object	containing	an	svg	key.

Confirming	Two	Factor	Authentication

In	addition	to	displaying	the	user's	two	factor	authentication	QR	code,	you	should	provide	a	text	input	where
the	user	can	supply	a	valid	authentication	code	to	"confirm"	their	two	factor	authentication	configuration.	This
code	should	be	provided	to	the	Laravel	application	via	a	POST	request	to	the	/user/confirmed-two-factor-
authentication	endpoint	defined	by	Fortify.

If	the	request	is	successful,	the	user	will	be	redirected	back	to	the	previous	URL	and	the	status	session	variable
will	be	set	to	two-factor-authentication-confirmed:

@if	(session('status')	==	'two-factor-authentication-confirmed')

				<div	class="mb-4	font-medium	text-sm">

								Two	factor	authentication	confirmed	and	enabled	successfully.

				</div>

@endif

If	the	request	to	the	two	factor	authentication	confirmation	endpoint	was	made	via	an	XHR	request,	a	200	HTTP
response	will	be	returned.

Displaying	the	Recovery	Codes

You	should	also	display	the	user's	two	factor	recovery	codes.	These	recovery	codes	allow	the	user	to
authenticate	if	they	lose	access	to	their	mobile	device.	If	you	are	using	Blade	to	render	your	application's
frontend,	you	may	access	the	recovery	codes	via	the	authenticated	user	instance:

(array)	$request->user()->recoveryCodes()

If	you	are	building	a	JavaScript	powered	frontend,	you	may	make	an	XHR	GET	request	to	the	/user/two-
factor-recovery-codes	endpoint.	This	endpoint	will	return	a	JSON	array	containing	the	user's	recovery	codes.

To	regenerate	the	user's	recovery	codes,	your	application	should	make	a	POST	request	to	the	/user/two-factor-
recovery-codes	endpoint.

Authenticating	With	Two	Factor	Authentication

During	the	authentication	process,	Fortify	will	automatically	redirect	the	user	to	your	application's	two	factor

Laravel	Documentation	-	10.x	/	Fortify 918

authentication	challenge	screen.	However,	if	your	application	is	making	an	XHR	login	request,	the	JSON
response	returned	after	a	successful	authentication	attempt	will	contain	a	JSON	object	that	has	a	two_factor
boolean	property.	You	should	inspect	this	value	to	know	whether	you	should	redirect	to	your	application's	two
factor	authentication	challenge	screen.

To	begin	implementing	two	factor	authentication	functionality,	we	need	to	instruct	Fortify	how	to	return	our
two	factor	authentication	challenge	view.	All	of	Fortify's	authentication	view	rendering	logic	may	be
customized	using	the	appropriate	methods	available	via	the	Laravel\Fortify\Fortify	class.	Typically,	you
should	call	this	method	from	the	boot	method	of	your	application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::twoFactorChallengeView(function	()	{

								return	view('auth.two-factor-challenge');

				});

				//	...

}

Fortify	will	take	care	of	defining	the	/two-factor-challenge	route	that	returns	this	view.	Your	two-factor-
challenge	template	should	include	a	form	that	makes	a	POST	request	to	the	/two-factor-challenge	endpoint.
The	/two-factor-challenge	action	expects	a	code	field	that	contains	a	valid	TOTP	token	or	a	recovery_code	field
that	contains	one	of	the	user's	recovery	codes.

If	the	login	attempt	is	successful,	Fortify	will	redirect	the	user	to	the	URI	configured	via	the	home	configuration
option	within	your	application's	fortify	configuration	file.	If	the	login	request	was	an	XHR	request,	a	204
HTTP	response	will	be	returned.

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	two	factor	challenge	screen	and	the
validation	errors	will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of	an
XHR	request,	the	validation	errors	will	be	returned	with	a	422	HTTP	response.

Disabling	Two	Factor	Authentication

To	disable	two	factor	authentication,	your	application	should	make	a	DELETE	request	to	the	/user/two-factor-
authentication	endpoint.	Remember,	Fortify's	two	factor	authentication	endpoints	require	password
confirmation	prior	to	being	called.

Registration

To	begin	implementing	our	application's	registration	functionality,	we	need	to	instruct	Fortify	how	to	return	our
"register"	view.	Remember,	Fortify	is	a	headless	authentication	library.	If	you	would	like	a	frontend
implementation	of	Laravel's	authentication	features	that	are	already	completed	for	you,	you	should	use	an
application	starter	kit.

All	of	Fortify's	view	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via	the	
Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your	
App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::registerView(function	()	{

								return	view('auth.register');

				});

				//	...

}

Laravel	Documentation	-	10.x	/	Fortify 919

Fortify	will	take	care	of	defining	the	/register	route	that	returns	this	view.	Your	register	template	should
include	a	form	that	makes	a	POST	request	to	the	/register	endpoint	defined	by	Fortify.

The	/register	endpoint	expects	a	string	name,	string	email	address	/	username,	password,	and	
password_confirmation	fields.	The	name	of	the	email	/	username	field	should	match	the	username	configuration
value	defined	within	your	application's	fortify	configuration	file.

If	the	registration	attempt	is	successful,	Fortify	will	redirect	the	user	to	the	URI	configured	via	the	home
configuration	option	within	your	application's	fortify	configuration	file.	If	the	request	was	an	XHR	request,	a
201	HTTP	response	will	be	returned.

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	registration	screen	and	the	validation
errors	will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of	an	XHR
request,	the	validation	errors	will	be	returned	with	a	422	HTTP	response.

Customizing	Registration

The	user	validation	and	creation	process	may	be	customized	by	modifying	the	
App\Actions\Fortify\CreateNewUser	action	that	was	generated	when	you	installed	Laravel	Fortify.

Password	Reset

Requesting	a	Password	Reset	Link

To	begin	implementing	our	application's	password	reset	functionality,	we	need	to	instruct	Fortify	how	to	return
our	"forgot	password"	view.	Remember,	Fortify	is	a	headless	authentication	library.	If	you	would	like	a
frontend	implementation	of	Laravel's	authentication	features	that	are	already	completed	for	you,	you	should	use
an	application	starter	kit.

All	of	Fortify's	view	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via	the	
Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your
application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::requestPasswordResetLinkView(function	()	{

								return	view('auth.forgot-password');

				});

				//	...

}

Fortify	will	take	care	of	defining	the	/forgot-password	endpoint	that	returns	this	view.	Your	forgot-password
template	should	include	a	form	that	makes	a	POST	request	to	the	/forgot-password	endpoint.

The	/forgot-password	endpoint	expects	a	string	email	field.	The	name	of	this	field	/	database	column	should
match	the	email	configuration	value	within	your	application's	fortify	configuration	file.

Handling	the	Password	Reset	Link	Request	Response

If	the	password	reset	link	request	was	successful,	Fortify	will	redirect	the	user	back	to	the	/forgot-password
endpoint	and	send	an	email	to	the	user	with	a	secure	link	they	can	use	to	reset	their	password.	If	the	request	was
an	XHR	request,	a	200	HTTP	response	will	be	returned.

After	being	redirected	back	to	the	/forgot-password	endpoint	after	a	successful	request,	the	status	session
variable	may	be	used	to	display	the	status	of	the	password	reset	link	request	attempt.

The	value	of	the	$status	session	variable	will	match	one	of	the	translation	strings	defined	within	your

Laravel	Documentation	-	10.x	/	Fortify 920

application's	passwords	language	file.	If	you	would	like	to	customize	this	value	and	have	not	published	Laravel's
language	files,	you	may	do	so	via	the	lang:publish	Artisan	command:

@if	(session('status'))

				<div	class="mb-4	font-medium	text-sm	text-green-600">

								{{	session('status')	}}

				</div>

@endif

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	request	password	reset	link	screen	and
the	validation	errors	will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of
an	XHR	request,	the	validation	errors	will	be	returned	with	a	422	HTTP	response.

Resetting	the	Password

To	finish	implementing	our	application's	password	reset	functionality,	we	need	to	instruct	Fortify	how	to	return
our	"reset	password"	view.

All	of	Fortify's	view	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via	the	
Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your
application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

use	Illuminate\Http\Request;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::resetPasswordView(function	(Request	$request)	{

								return	view('auth.reset-password',	['request'	=>	$request]);

				});

				//	...

}

Fortify	will	take	care	of	defining	the	route	to	display	this	view.	Your	reset-password	template	should	include	a
form	that	makes	a	POST	request	to	/reset-password.

The	/reset-password	endpoint	expects	a	string	email	field,	a	password	field,	a	password_confirmation	field,	and	a
hidden	field	named	token	that	contains	the	value	of	request()->route('token').	The	name	of	the	"email"	field	/
database	column	should	match	the	email	configuration	value	defined	within	your	application's	fortify
configuration	file.

Handling	the	Password	Reset	Response

If	the	password	reset	request	was	successful,	Fortify	will	redirect	back	to	the	/login	route	so	that	the	user	can
log	in	with	their	new	password.	In	addition,	a	status	session	variable	will	be	set	so	that	you	may	display	the
successful	status	of	the	reset	on	your	login	screen:

@if	(session('status'))

				<div	class="mb-4	font-medium	text-sm	text-green-600">

								{{	session('status')	}}

				</div>

@endif

If	the	request	was	an	XHR	request,	a	200	HTTP	response	will	be	returned.

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	reset	password	screen	and	the
validation	errors	will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of	an
XHR	request,	the	validation	errors	will	be	returned	with	a	422	HTTP	response.

Customizing	Password	Resets

The	password	reset	process	may	be	customized	by	modifying	the	App\Actions\ResetUserPassword	action	that
was	generated	when	you	installed	Laravel	Fortify.

Laravel	Documentation	-	10.x	/	Fortify 921

Email	Verification

After	registration,	you	may	wish	for	users	to	verify	their	email	address	before	they	continue	accessing	your
application.	To	get	started,	ensure	the	emailVerification	feature	is	enabled	in	your	fortify	configuration	file's	
features	array.	Next,	you	should	ensure	that	your	App\Models\User	class	implements	the	
Illuminate\Contracts\Auth\MustVerifyEmail	interface.

Once	these	two	setup	steps	have	been	completed,	newly	registered	users	will	receive	an	email	prompting	them
to	verify	their	email	address	ownership.	However,	we	need	to	inform	Fortify	how	to	display	the	email
verification	screen	which	informs	the	user	that	they	need	to	go	click	the	verification	link	in	the	email.

All	of	Fortify's	view's	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via	the	
Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your
application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::verifyEmailView(function	()	{

								return	view('auth.verify-email');

				});

				//	...

}

Fortify	will	take	care	of	defining	the	route	that	displays	this	view	when	a	user	is	redirected	to	the	/email/verify
endpoint	by	Laravel's	built-in	verified	middleware.

Your	verify-email	template	should	include	an	informational	message	instructing	the	user	to	click	the	email
verification	link	that	was	sent	to	their	email	address.

Resending	Email	Verification	Links

If	you	wish,	you	may	add	a	button	to	your	application's	verify-email	template	that	triggers	a	POST	request	to
the	/email/verification-notification	endpoint.	When	this	endpoint	receives	a	request,	a	new	verification	email
link	will	be	emailed	to	the	user,	allowing	the	user	to	get	a	new	verification	link	if	the	previous	one	was
accidentally	deleted	or	lost.

If	the	request	to	resend	the	verification	link	email	was	successful,	Fortify	will	redirect	the	user	back	to	the	
/email/verify	endpoint	with	a	status	session	variable,	allowing	you	to	display	an	informational	message	to	the
user	informing	them	the	operation	was	successful.	If	the	request	was	an	XHR	request,	a	202	HTTP	response
will	be	returned:

@if	(session('status')	==	'verification-link-sent')

				<div	class="mb-4	font-medium	text-sm	text-green-600">

								A	new	email	verification	link	has	been	emailed	to	you!

				</div>

@endif

Protecting	Routes

To	specify	that	a	route	or	group	of	routes	requires	that	the	user	has	verified	their	email	address,	you	should
attach	Laravel's	built-in	verified	middleware	to	the	route.	This	middleware	is	registered	within	your
application's	App\Http\Kernel	class:

Route::get('/dashboard',	function	()	{

				//	...

})->middleware(['verified']);

Password	Confirmation

Laravel	Documentation	-	10.x	/	Fortify 922

While	building	your	application,	you	may	occasionally	have	actions	that	should	require	the	user	to	confirm
their	password	before	the	action	is	performed.	Typically,	these	routes	are	protected	by	Laravel's	built-in	
password.confirm	middleware.

To	begin	implementing	password	confirmation	functionality,	we	need	to	instruct	Fortify	how	to	return	our
application's	"password	confirmation"	view.	Remember,	Fortify	is	a	headless	authentication	library.	If	you
would	like	a	frontend	implementation	of	Laravel's	authentication	features	that	are	already	completed	for	you,
you	should	use	an	application	starter	kit.

All	of	Fortify's	view	rendering	logic	may	be	customized	using	the	appropriate	methods	available	via	the	
Laravel\Fortify\Fortify	class.	Typically,	you	should	call	this	method	from	the	boot	method	of	your
application's	App\Providers\FortifyServiceProvider	class:

use	Laravel\Fortify\Fortify;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Fortify::confirmPasswordView(function	()	{

								return	view('auth.confirm-password');

				});

				//	...

}

Fortify	will	take	care	of	defining	the	/user/confirm-password	endpoint	that	returns	this	view.	Your	confirm-
password	template	should	include	a	form	that	makes	a	POST	request	to	the	/user/confirm-password	endpoint.
The	/user/confirm-password	endpoint	expects	a	password	field	that	contains	the	user's	current	password.

If	the	password	matches	the	user's	current	password,	Fortify	will	redirect	the	user	to	the	route	they	were
attempting	to	access.	If	the	request	was	an	XHR	request,	a	201	HTTP	response	will	be	returned.

If	the	request	was	not	successful,	the	user	will	be	redirected	back	to	the	confirm	password	screen	and	the
validation	errors	will	be	available	to	you	via	the	shared	$errors	Blade	template	variable.	Or,	in	the	case	of	an
XHR	request,	the	validation	errors	will	be	returned	with	a	422	HTTP	response.

Laravel	Documentation	-	10.x	/	Fortify 923

Packages

Laravel	Folio
Introduction
Installation

Page	Paths	/	URIs
Subdomain	Routing

Creating	Routes
Nested	Routes
Index	Routes

Route	Parameters
Route	Model	Binding

Soft	Deleted	Models
Render	Hooks
Named	Routes
Middleware
Route	Caching

Introduction

Laravel	Folio	is	a	powerful	page	based	router	designed	to	simplify	routing	in	Laravel	applications.	With
Laravel	Folio,	generating	a	route	becomes	as	effortless	as	creating	a	Blade	template	within	your	application's	
resources/views/pages	directory.

For	example,	to	create	a	page	that	is	accessible	at	the	/greeting	URL,	just	create	a	greeting.blade.php	file	in
your	application's	resources/views/pages	directory:

<div>

				Hello	World

</div>

Installation

To	get	started,	install	Folio	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/folio

After	installing	Folio,	you	may	execute	the	folio:install	Artisan	command,	which	will	install	Folio's	service
provider	into	your	application.	This	service	provider	registers	the	directory	where	Folio	will	search	for	routes	/
pages:

php	artisan	folio:install

Page	Paths	/	URIs

By	default,	Folio	serves	pages	from	your	application's	resources/views/pages	directory,	but	you	may	customize
these	directories	in	your	Folio	service	provider's	boot	method.

For	example,	sometimes	it	may	be	convenient	to	specify	multiple	Folio	paths	in	the	same	Laravel	application.
You	may	wish	to	have	a	separate	directory	of	Folio	pages	for	your	application's	"admin"	area,	while	using
another	directory	for	the	rest	of	your	application's	pages.

You	may	accomplish	this	using	the	Folio::path	and	Folio::uri	methods.	The	path	method	registers	a	directory
that	Folio	will	scan	for	pages	when	routing	incoming	HTTP	requests,	while	the	uri	method	specifies	the	"base
URI"	for	that	directory	of	pages:

use	Laravel\Folio\Folio;

Folio::path(resource_path('views/pages/guest'))->uri('/');

Folio::path(resource_path('views/pages/admin'))

Laravel	Documentation	-	10.x	/	Folio 924

https://github.com/laravel/folio

				->uri('/admin')

				->middleware([

								'*'	=>	[

												'auth',

												'verified',

												//	...

],

]);

Subdomain	Routing

You	may	also	route	to	pages	based	on	the	incoming	request's	subdomain.	For	example,	you	may	wish	to	route
requests	from	admin.example.com	to	a	different	page	directory	than	the	rest	of	your	Folio	pages.	You	may
accomplish	this	by	invoking	the	domain	method	after	invoking	the	Folio::path	method:

use	Laravel\Folio\Folio;

Folio::domain('admin.example.com')

				->path(resource_path('views/pages/admin'));

The	domain	method	also	allows	you	to	capture	parts	of	the	domain	or	subdomain	as	parameters.	These
parameters	will	be	injected	into	your	page	template:

use	Laravel\Folio\Folio;

Folio::domain('{account}.example.com')

				->path(resource_path('views/pages/admin'));

Creating	Routes

You	may	create	a	Folio	route	by	placing	a	Blade	template	in	any	of	your	Folio	mounted	directories.	By	default,
Folio	mounts	the	resources/views/pages	directory,	but	you	may	customize	these	directories	in	your	Folio
service	provider's	boot	method.

Once	a	Blade	template	has	been	placed	in	a	Folio	mounted	directory,	you	may	immediately	access	it	via	your
browser.	For	example,	a	page	placed	in	pages/schedule.blade.php	may	be	accessed	in	your	browser	at	
http://example.com/schedule.

To	quickly	view	a	list	of	all	of	your	Folio	pages	/	routes,	you	may	invoke	the	folio:list	Artisan	command:

php	artisan	folio:list

Nested	Routes

You	may	create	a	nested	route	by	creating	one	or	more	directories	within	one	of	Folio's	directories.	For
instance,	to	create	a	page	that	is	accessible	via	/user/profile,	create	a	profile.blade.php	template	within	the	
pages/user	directory:

php	artisan	make:folio	user/profile

#	pages/user/profile.blade.php	→	/user/profile

Index	Routes

Sometimes,	you	may	wish	to	make	a	given	page	the	"index"	of	a	directory.	By	placing	an	index.blade.php
template	within	a	Folio	directory,	any	requests	to	the	root	of	that	directory	will	be	routed	to	that	page:

php	artisan	make:folio	index

#	pages/index.blade.php	→	/

php	artisan	make:folio	users/index

#	pages/users/index.blade.php	→	/users

Route	Parameters

Laravel	Documentation	-	10.x	/	Folio 925

Often,	you	will	need	to	have	segments	of	the	incoming	request's	URL	injected	into	your	page	so	that	you	can
interact	with	them.	For	example,	you	may	need	to	access	the	"ID"	of	the	user	whose	profile	is	being	displayed.
To	accomplish	this,	you	may	encapsulate	a	segment	of	the	page's	filename	in	square	brackets:

php	artisan	make:folio	"users/[id]"

#	pages/users/[id].blade.php	→	/users/1

Captured	segments	can	be	accessed	as	variables	within	your	Blade	template:

<div>

				User	{{	$id	}}

</div>

To	capture	multiple	segments,	you	can	prefix	the	encapsulated	segment	with	three	dots	...:

php	artisan	make:folio	"users/[...ids]"

#	pages/users/[...ids].blade.php	→	/users/1/2/3

When	capturing	multiple	segments,	the	captured	segments	will	be	injected	into	the	page	as	an	array:

				@foreach	($ids	as	$id)

								User	{{	$id	}}

				@endforeach

Route	Model	Binding

If	a	wildcard	segment	of	your	page	template's	filename	corresponds	one	of	your	application's	Eloquent	models,
Folio	will	automatically	take	advantage	of	Laravel's	route	model	binding	capabilities	and	attempt	to	inject	the
resolved	model	instance	into	your	page:

php	artisan	make:folio	"users/[User]"

#	pages/users/[User].blade.php	→	/users/1

Captured	models	can	be	accessed	as	variables	within	your	Blade	template.	The	model's	variable	name	will	be
converted	to	"camel	case":

<div>

				User	{{	$user->id	}}

</div>

Customizing	the	Key

Sometimes	you	may	wish	to	resolve	bound	Eloquent	models	using	a	column	other	than	id.	To	do	so,	you	may
specify	the	column	in	the	page's	filename.	For	example,	a	page	with	the	filename	[Post:slug].blade.php	will
attempt	to	resolve	the	bound	model	via	the	slug	column	instead	of	the	id	column.

On	Windows,	you	should	use	-	to	separate	the	model	name	from	the	key:	[Post-slug].blade.php.

Model	Location

By	default,	Folio	will	search	for	your	model	within	your	application's	app/Models	directory.	However,	if	needed,
you	may	specify	the	fully-qualified	model	class	name	in	your	template's	filename:

php	artisan	make:folio	"users/[.App.Models.User]"

#	pages/users/[.App.Models.User].blade.php	→	/users/1

Soft	Deleted	Models

By	default,	models	that	have	been	soft	deleted	are	not	retrieved	when	resolving	implicit	model	bindings.
However,	if	you	wish,	you	can	instruct	Folio	to	retrieve	soft	deleted	models	by	invoking	the	withTrashed

Laravel	Documentation	-	10.x	/	Folio 926

function	within	the	page's	template:

<?php

use	function	Laravel\Folio\{withTrashed};

withTrashed();

?>

<div>

				User	{{	$user->id	}}

</div>

Render	Hooks

By	default,	Folio	will	return	the	content	of	the	page's	Blade	template	as	the	response	to	the	incoming	request.
However,	you	may	customize	the	response	by	invoking	the	render	function	within	the	page's	template.

The	render	function	accepts	a	closure	which	will	receive	the	View	instance	being	rendered	by	Folio,	allowing
you	to	add	additional	data	to	the	view	or	customize	the	entire	response.	In	addition	to	receiving	the	View
instance,	any	additional	route	parameters	or	model	bindings	will	also	be	provided	to	the	render	closure:

<?php

use	App\Models\Post;

use	Illuminate\Support\Facades\Auth;

use	Illuminate\View\View;

use	function	Laravel\Folio\render;

render(function	(View	$view,	Post	$post)	{

				if	(!	Auth::user()->can('view',	$post))	{

								return	response('Unauthorized',	403);

				}

				return	$view->with('photos',	$post->author->photos);

});	?>

<div>

				{{	$post->content	}}

</div>

<div>

				This	author	has	also	taken	{{	count($photos)	}}	photos.

</div>

Named	Routes

You	may	specify	a	name	for	a	given	page's	route	using	the	name	function:

<?php

use	function	Laravel\Folio\name;

name('users.index');

Just	like	Laravel's	named	routes,	you	may	use	the	route	function	to	generate	URLs	to	Folio	pages	that	have
been	assigned	a	name:

				All	Users

If	the	page	has	parameters,	you	may	simply	pass	their	values	to	the	route	function:

route('users.show',	['user'	=>	$user]);

Middleware

Laravel	Documentation	-	10.x	/	Folio 927

You	can	apply	middleware	to	a	specific	page	by	invoking	the	middleware	function	within	the	page's	template:

<?php

use	function	Laravel\Folio\{middleware};

middleware(['auth',	'verified']);

?>

<div>

				Dashboard

</div>

Or,	to	assign	middleware	to	a	group	of	pages,	you	may	chain	the	middleware	method	after	invoking	the	
Folio::path	method.

To	specify	which	pages	the	middleware	should	be	applied	to,	the	array	of	middleware	may	be	keyed	using	the
corresponding	URL	patterns	of	the	pages	they	should	be	applied	to.	The	*	character	may	be	utilized	as	a
wildcard	character:

use	Laravel\Folio\Folio;

Folio::path(resource_path('views/pages'))->middleware([

				'admin/*'	=>	[

								'auth',

								'verified',

								//	...

],

]);

You	may	include	closures	in	the	array	of	middleware	to	define	inline,	anonymous	middleware:

use	Closure;

use	Illuminate\Http\Request;

use	Laravel\Folio\Folio;

Folio::path(resource_path('views/pages'))->middleware([

				'admin/*'	=>	[

								'auth',

								'verified',

								function	(Request	$request,	Closure	$next)	{

												//	...

												return	$next($request);

								},

],

]);

Route	Caching

When	using	Folio,	you	should	always	take	advantage	of	Laravel's	route	caching	capabilities.	Folio	listens	for
the	route:cache	Artisan	command	to	ensure	that	Folio	page	definitions	and	route	names	are	properly	cached	for
maximum	performance.

Laravel	Documentation	-	10.x	/	Folio 928

Packages

Laravel	Homestead
Introduction
Installation	and	Setup

First	Steps
Configuring	Homestead
Configuring	Nginx	Sites
Configuring	Services
Launching	the	Vagrant	Box
Per	Project	Installation
Installing	Optional	Features
Aliases

Updating	Homestead
Daily	Usage

Connecting	via	SSH
Adding	Additional	Sites
Environment	Variables
Ports
PHP	Versions
Connecting	to	Databases
Database	Backups
Configuring	Cron	Schedules
Configuring	Mailpit
Configuring	Minio
Laravel	Dusk
Sharing	Your	Environment

Debugging	and	Profiling
Debugging	Web	Requests	With	Xdebug
Debugging	CLI	Applications
Profiling	Applications	With	Blackfire

Network	Interfaces
Extending	Homestead
Provider	Specific	Settings

VirtualBox

Introduction

Laravel	strives	to	make	the	entire	PHP	development	experience	delightful,	including	your	local	development
environment.	Laravel	Homestead	is	an	official,	pre-packaged	Vagrant	box	that	provides	you	a	wonderful
development	environment	without	requiring	you	to	install	PHP,	a	web	server,	or	any	other	server	software	on
your	local	machine.

Vagrant	provides	a	simple,	elegant	way	to	manage	and	provision	Virtual	Machines.	Vagrant	boxes	are
completely	disposable.	If	something	goes	wrong,	you	can	destroy	and	re-create	the	box	in	minutes!

Homestead	runs	on	any	Windows,	macOS,	or	Linux	system	and	includes	Nginx,	PHP,	MySQL,	PostgreSQL,
Redis,	Memcached,	Node,	and	all	of	the	other	software	you	need	to	develop	amazing	Laravel	applications.

[!WARNING]
If	you	are	using	Windows,	you	may	need	to	enable	hardware	virtualization	(VT-x).	It	can	usually	be
enabled	via	your	BIOS.	If	you	are	using	Hyper-V	on	a	UEFI	system	you	may	additionally	need	to	disable
Hyper-V	in	order	to	access	VT-x.

Included	Software

Ubuntu	22.04

Git

Sqlite3

PostgreSQL	15

Laravel	Documentation	-	10.x	/	Homestead 929

https://github.com/laravel/homestead
https://www.vagrantup.com

Git

PHP	8.3

PHP	8.2

PHP	8.1

PHP	8.0

PHP	7.4

PHP	7.3

PHP	7.2

PHP	7.1

PHP	7.0

PHP	5.6

Nginx

MySQL	8.0

lmm

PostgreSQL	15

Composer

Docker

Node	(With	Yarn,	Bower,	Grunt,	and	Gulp)

Redis

Memcached

Beanstalkd

Mailpit

avahi

ngrok

Xdebug

XHProf	/	Tideways	/	XHGui

wp-cli

Optional	Software

Apache

Blackfire

Cassandra

Chronograf

CouchDB

Crystal	&	Lucky	Framework

Elasticsearch

EventStoreDB

Flyway

Gearman

Go

Grafana

InfluxDB

Logstash

MariaDB

Meilisearch

MinIO

MongoDB

Neo4j

Oh	My	Zsh

Open	Resty

PM2

Python

R

RabbitMQ

Rust

RVM	(Ruby	Version	Manager)

Solr

TimescaleDB

Trader	(PHP	extension)

Webdriver	&	Laravel	Dusk	Utilities

Installation	and	Setup

First	Steps

Before	launching	your	Homestead	environment,	you	must	install	Vagrant	as	well	as	one	of	the	following
supported	providers:

Laravel	Documentation	-	10.x	/	Homestead 930

https://developer.hashicorp.com/vagrant/downloads

VirtualBox	6.1.x
Parallels

All	of	these	software	packages	provide	easy-to-use	visual	installers	for	all	popular	operating	systems.

To	use	the	Parallels	provider,	you	will	need	to	install	Parallels	Vagrant	plug-in.	It	is	free	of	charge.

Installing	Homestead

You	may	install	Homestead	by	cloning	the	Homestead	repository	onto	your	host	machine.	Consider	cloning	the
repository	into	a	Homestead	folder	within	your	"home"	directory,	as	the	Homestead	virtual	machine	will	serve	as
the	host	to	all	of	your	Laravel	applications.	Throughout	this	documentation,	we	will	refer	to	this	directory	as
your	"Homestead	directory":

git	clone	https://github.com/laravel/homestead.git	~/Homestead

After	cloning	the	Laravel	Homestead	repository,	you	should	checkout	the	release	branch.	This	branch	always
contains	the	latest	stable	release	of	Homestead:

cd	~/Homestead

git	checkout	release

Next,	execute	the	bash	init.sh	command	from	the	Homestead	directory	to	create	the	Homestead.yaml
configuration	file.	The	Homestead.yaml	file	is	where	you	will	configure	all	of	the	settings	for	your	Homestead
installation.	This	file	will	be	placed	in	the	Homestead	directory:

#	macOS	/	Linux...

bash	init.sh

#	Windows...

init.bat

Configuring	Homestead

Setting	Your	Provider

The	provider	key	in	your	Homestead.yaml	file	indicates	which	Vagrant	provider	should	be	used:	virtualbox	or	
parallels:

provider:	virtualbox

[!WARNING]
If	you	are	using	Apple	Silicon	the	Parallels	provider	is	required.

Configuring	Shared	Folders

The	folders	property	of	the	Homestead.yaml	file	lists	all	of	the	folders	you	wish	to	share	with	your	Homestead
environment.	As	files	within	these	folders	are	changed,	they	will	be	kept	in	sync	between	your	local	machine
and	the	Homestead	virtual	environment.	You	may	configure	as	many	shared	folders	as	necessary:

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

[!WARNING]
Windows	users	should	not	use	the	~/	path	syntax	and	instead	should	use	the	full	path	to	their	project,	such
as	C:\Users\user\Code\project1.

You	should	always	map	individual	applications	to	their	own	folder	mapping	instead	of	mapping	a	single	large
directory	that	contains	all	of	your	applications.	When	you	map	a	folder,	the	virtual	machine	must	keep	track	of
all	disk	IO	for	every	file	in	the	folder.	You	may	experience	reduced	performance	if	you	have	a	large	number	of
files	in	a	folder:

folders:

Laravel	Documentation	-	10.x	/	Homestead 931

https://www.virtualbox.org/wiki/Download_Old_Builds_6_1
https://www.parallels.com/products/desktop/
https://github.com/Parallels/vagrant-parallels

				-	map:	~/code/project1

						to:	/home/vagrant/project1

				-	map:	~/code/project2

						to:	/home/vagrant/project2

[!WARNING]
You	should	never	mount	.	(the	current	directory)	when	using	Homestead.	This	causes	Vagrant	to	not	map
the	current	folder	to	/vagrant	and	will	break	optional	features	and	cause	unexpected	results	while
provisioning.

To	enable	NFS,	you	may	add	a	type	option	to	your	folder	mapping:

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

						type:	"nfs"

[!WARNING]
When	using	NFS	on	Windows,	you	should	consider	installing	the	vagrant-winnfsd	plug-in.	This	plug-in
will	maintain	the	correct	user	/	group	permissions	for	files	and	directories	within	the	Homestead	virtual
machine.

You	may	also	pass	any	options	supported	by	Vagrant's	Synced	Folders	by	listing	them	under	the	options	key:

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

						type:	"rsync"

						options:

										rsync__args:	["--verbose",	"--archive",	"--delete",	"-zz"]

										rsync__exclude:	["node_modules"]

Configuring	Nginx	Sites

Not	familiar	with	Nginx?	No	problem.	Your	Homestead.yaml	file's	sites	property	allows	you	to	easily	map	a
"domain"	to	a	folder	on	your	Homestead	environment.	A	sample	site	configuration	is	included	in	the	
Homestead.yaml	file.	Again,	you	may	add	as	many	sites	to	your	Homestead	environment	as	necessary.
Homestead	can	serve	as	a	convenient,	virtualized	environment	for	every	Laravel	application	you	are	working
on:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

If	you	change	the	sites	property	after	provisioning	the	Homestead	virtual	machine,	you	should	execute	the	
vagrant	reload	--provision	command	in	your	terminal	to	update	the	Nginx	configuration	on	the	virtual
machine.

[!WARNING]
Homestead	scripts	are	built	to	be	as	idempotent	as	possible.	However,	if	you	are	experiencing	issues	while
provisioning	you	should	destroy	and	rebuild	the	machine	by	executing	the	vagrant	destroy	&&	vagrant	up
command.

Hostname	Resolution

Homestead	publishes	hostnames	using	mDNS	for	automatic	host	resolution.	If	you	set	hostname:	homestead	in
your	Homestead.yaml	file,	the	host	will	be	available	at	homestead.local.	macOS,	iOS,	and	Linux	desktop
distributions	include	mDNS	support	by	default.	If	you	are	using	Windows,	you	must	install	Bonjour	Print	Services
for	Windows.

Using	automatic	hostnames	works	best	for	per	project	installations	of	Homestead.	If	you	host	multiple	sites	on
a	single	Homestead	instance,	you	may	add	the	"domains"	for	your	web	sites	to	the	hosts	file	on	your	machine.
The	hosts	file	will	redirect	requests	for	your	Homestead	sites	into	your	Homestead	virtual	machine.	On	macOS
and	Linux,	this	file	is	located	at	/etc/hosts.	On	Windows,	it	is	located	at	
C:\Windows\System32\drivers\etc\hosts.	The	lines	you	add	to	this	file	will	look	like	the	following:

Laravel	Documentation	-	10.x	/	Homestead 932

https://developer.hashicorp.com/vagrant/docs/synced-folders/nfs
https://github.com/winnfsd/vagrant-winnfsd
https://developer.hashicorp.com/vagrant/docs/synced-folders/basic_usage
https://support.apple.com/kb/DL999?viewlocale=en_US&locale=en_US

192.168.56.56		homestead.test

Make	sure	the	IP	address	listed	is	the	one	set	in	your	Homestead.yaml	file.	Once	you	have	added	the	domain	to
your	hosts	file	and	launched	the	Vagrant	box	you	will	be	able	to	access	the	site	via	your	web	browser:

http://homestead.test

Configuring	Services

Homestead	starts	several	services	by	default;	however,	you	may	customize	which	services	are	enabled	or
disabled	during	provisioning.	For	example,	you	may	enable	PostgreSQL	and	disable	MySQL	by	modifying	the	
services	option	within	your	Homestead.yaml	file:

services:

				-	enabled:

								-	"postgresql"

				-	disabled:

								-	"mysql"

The	specified	services	will	be	started	or	stopped	based	on	their	order	in	the	enabled	and	disabled	directives.

Launching	the	Vagrant	Box

Once	you	have	edited	the	Homestead.yaml	to	your	liking,	run	the	vagrant	up	command	from	your	Homestead
directory.	Vagrant	will	boot	the	virtual	machine	and	automatically	configure	your	shared	folders	and	Nginx
sites.

To	destroy	the	machine,	you	may	use	the	vagrant	destroy	command.

Per	Project	Installation

Instead	of	installing	Homestead	globally	and	sharing	the	same	Homestead	virtual	machine	across	all	of	your
projects,	you	may	instead	configure	a	Homestead	instance	for	each	project	you	manage.	Installing	Homestead
per	project	may	be	beneficial	if	you	wish	to	ship	a	Vagrantfile	with	your	project,	allowing	others	working	on
the	project	to	vagrant	up	immediately	after	cloning	the	project's	repository.

You	may	install	Homestead	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/homestead	--dev

Once	Homestead	has	been	installed,	invoke	Homestead's	make	command	to	generate	the	Vagrantfile	and	
Homestead.yaml	file	for	your	project.	These	files	will	be	placed	in	the	root	of	your	project.	The	make	command
will	automatically	configure	the	sites	and	folders	directives	in	the	Homestead.yaml	file:

#	macOS	/	Linux...

php	vendor/bin/homestead	make

#	Windows...

vendor\\bin\\homestead	make

Next,	run	the	vagrant	up	command	in	your	terminal	and	access	your	project	at	http://homestead.test	in	your
browser.	Remember,	you	will	still	need	to	add	an	/etc/hosts	file	entry	for	homestead.test	or	the	domain	of	your
choice	if	you	are	not	using	automatic	hostname	resolution.

Installing	Optional	Features

Optional	software	is	installed	using	the	features	option	within	your	Homestead.yaml	file.	Most	features	can	be
enabled	or	disabled	with	a	boolean	value,	while	some	features	allow	multiple	configuration	options:

features:

				-	blackfire:

								server_id:	"server_id"

								server_token:	"server_value"

								client_id:	"client_id"

								client_token:	"client_value"

Laravel	Documentation	-	10.x	/	Homestead 933

				-	cassandra:	true

				-	chronograf:	true

				-	couchdb:	true

				-	crystal:	true

				-	dragonflydb:	true

				-	elasticsearch:

								version:	7.9.0

				-	eventstore:	true

								version:	21.2.0

				-	flyway:	true

				-	gearman:	true

				-	golang:	true

				-	grafana:	true

				-	influxdb:	true

				-	logstash:	true

				-	mariadb:	true

				-	meilisearch:	true

				-	minio:	true

				-	mongodb:	true

				-	neo4j:	true

				-	ohmyzsh:	true

				-	openresty:	true

				-	pm2:	true

				-	python:	true

				-	r-base:	true

				-	rabbitmq:	true

				-	rustc:	true

				-	rvm:	true

				-	solr:	true

				-	timescaledb:	true

				-	trader:	true

				-	webdriver:	true

Elasticsearch

You	may	specify	a	supported	version	of	Elasticsearch,	which	must	be	an	exact	version	number
(major.minor.patch).	The	default	installation	will	create	a	cluster	named	'homestead'.	You	should	never	give
Elasticsearch	more	than	half	of	the	operating	system's	memory,	so	make	sure	your	Homestead	virtual	machine
has	at	least	twice	the	Elasticsearch	allocation.

[!NOTE]
Check	out	the	Elasticsearch	documentation	to	learn	how	to	customize	your	configuration.

MariaDB

Enabling	MariaDB	will	remove	MySQL	and	install	MariaDB.	MariaDB	typically	serves	as	a	drop-in
replacement	for	MySQL,	so	you	should	still	use	the	mysql	database	driver	in	your	application's	database
configuration.

MongoDB

The	default	MongoDB	installation	will	set	the	database	username	to	homestead	and	the	corresponding	password
to	secret.

Neo4j

The	default	Neo4j	installation	will	set	the	database	username	to	homestead	and	the	corresponding	password	to	
secret.	To	access	the	Neo4j	browser,	visit	http://homestead.test:7474	via	your	web	browser.	The	ports	7687
(Bolt),	7474	(HTTP),	and	7473	(HTTPS)	are	ready	to	serve	requests	from	the	Neo4j	client.

Aliases

You	may	add	Bash	aliases	to	your	Homestead	virtual	machine	by	modifying	the	aliases	file	within	your
Homestead	directory:

alias	c='clear'

alias	..='cd	..'

Laravel	Documentation	-	10.x	/	Homestead 934

https://www.elastic.co/guide/en/elasticsearch/reference/current

After	you	have	updated	the	aliases	file,	you	should	re-provision	the	Homestead	virtual	machine	using	the	
vagrant	reload	--provision	command.	This	will	ensure	that	your	new	aliases	are	available	on	the	machine.

Updating	Homestead

Before	you	begin	updating	Homestead	you	should	ensure	you	have	removed	your	current	virtual	machine	by
running	the	following	command	in	your	Homestead	directory:

vagrant	destroy

Next,	you	need	to	update	the	Homestead	source	code.	If	you	cloned	the	repository,	you	can	execute	the
following	commands	at	the	location	you	originally	cloned	the	repository:

git	fetch

git	pull	origin	release

These	commands	pull	the	latest	Homestead	code	from	the	GitHub	repository,	fetch	the	latest	tags,	and	then
check	out	the	latest	tagged	release.	You	can	find	the	latest	stable	release	version	on	Homestead's	GitHub
releases	page.

If	you	have	installed	Homestead	via	your	project's	composer.json	file,	you	should	ensure	your	composer.json	file
contains	"laravel/homestead":	"^12"	and	update	your	dependencies:

composer	update

Next,	you	should	update	the	Vagrant	box	using	the	vagrant	box	update	command:

vagrant	box	update

After	updating	the	Vagrant	box,	you	should	run	the	bash	init.sh	command	from	the	Homestead	directory	in
order	to	update	Homestead's	additional	configuration	files.	You	will	be	asked	whether	you	wish	to	overwrite
your	existing	Homestead.yaml,	after.sh,	and	aliases	files:

#	macOS	/	Linux...

bash	init.sh

#	Windows...

init.bat

Finally,	you	will	need	to	regenerate	your	Homestead	virtual	machine	to	utilize	the	latest	Vagrant	installation:

vagrant	up

Daily	Usage

Connecting	via	SSH

You	can	SSH	into	your	virtual	machine	by	executing	the	vagrant	ssh	terminal	command	from	your	Homestead
directory.

Adding	Additional	Sites

Once	your	Homestead	environment	is	provisioned	and	running,	you	may	want	to	add	additional	Nginx	sites	for
your	other	Laravel	projects.	You	can	run	as	many	Laravel	projects	as	you	wish	on	a	single	Homestead
environment.	To	add	an	additional	site,	add	the	site	to	your	Homestead.yaml	file.

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

				-	map:	another.test

						to:	/home/vagrant/project2/public

[!WARNING]
You	should	ensure	that	you	have	configured	a	folder	mapping	for	the	project's	directory	before	adding	the

Laravel	Documentation	-	10.x	/	Homestead 935

https://github.com/laravel/homestead/releases

site.

If	Vagrant	is	not	automatically	managing	your	"hosts"	file,	you	may	need	to	add	the	new	site	to	that	file	as	well.
On	macOS	and	Linux,	this	file	is	located	at	/etc/hosts.	On	Windows,	it	is	located	at	
C:\Windows\System32\drivers\etc\hosts:

192.168.56.56		homestead.test

192.168.56.56		another.test

Once	the	site	has	been	added,	execute	the	vagrant	reload	--provision	terminal	command	from	your	Homestead
directory.

Site	Types

Homestead	supports	several	"types"	of	sites	which	allow	you	to	easily	run	projects	that	are	not	based	on
Laravel.	For	example,	we	may	easily	add	a	Statamic	application	to	Homestead	using	the	statamic	site	type:

sites:

				-	map:	statamic.test

						to:	/home/vagrant/my-symfony-project/web

						type:	"statamic"

The	available	site	types	are:	apache,	apache-proxy,	apigility,	expressive,	laravel	(the	default),	proxy	(for
nginx),	silverstripe,	statamic,	symfony2,	symfony4,	and	zf.

Site	Parameters

You	may	add	additional	Nginx	fastcgi_param	values	to	your	site	via	the	params	site	directive:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

						params:

										-	key:	FOO

												value:	BAR

Environment	Variables

You	can	define	global	environment	variables	by	adding	them	to	your	Homestead.yaml	file:

variables:

				-	key:	APP_ENV

						value:	local

				-	key:	FOO

						value:	bar

After	updating	the	Homestead.yaml	file,	be	sure	to	re-provision	the	machine	by	executing	the	vagrant	reload	--
provision	command.	This	will	update	the	PHP-FPM	configuration	for	all	of	the	installed	PHP	versions	and	also
update	the	environment	for	the	vagrant	user.

Ports

By	default,	the	following	ports	are	forwarded	to	your	Homestead	environment:

HTTP:	8000	→	Forwards	To	80
HTTPS:	44300	→	Forwards	To	443

Forwarding	Additional	Ports

If	you	wish,	you	may	forward	additional	ports	to	the	Vagrant	box	by	defining	a	ports	configuration	entry	within
your	Homestead.yaml	file.	After	updating	the	Homestead.yaml	file,	be	sure	to	re-provision	the	machine	by
executing	the	vagrant	reload	--provision	command:

ports:

				-	send:	50000

Laravel	Documentation	-	10.x	/	Homestead 936

						to:	5000

				-	send:	7777

						to:	777

						protocol:	udp

Below	is	a	list	of	additional	Homestead	service	ports	that	you	may	wish	to	map	from	your	host	machine	to	your
Vagrant	box:

SSH:	2222	→	To	22
ngrok	UI:	4040	→	To	4040
MySQL:	33060	→	To	3306
PostgreSQL:	54320	→	To	5432
MongoDB:	27017	→	To	27017
Mailpit:	8025	→	To	8025
Minio:	9600	→	To	9600

PHP	Versions

Homestead	supports	running	multiple	versions	of	PHP	on	the	same	virtual	machine.	You	may	specify	which
version	of	PHP	to	use	for	a	given	site	within	your	Homestead.yaml	file.	The	available	PHP	versions	are:	"5.6",
"7.0",	"7.1",	"7.2",	"7.3",	"7.4",	"8.0",	"8.1",	"8.2",	and	"8.3",	(the	default):

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

						php:	"7.1"

Within	your	Homestead	virtual	machine,	you	may	use	any	of	the	supported	PHP	versions	via	the	CLI:

php5.6	artisan	list

php7.0	artisan	list

php7.1	artisan	list

php7.2	artisan	list

php7.3	artisan	list

php7.4	artisan	list

php8.0	artisan	list

php8.1	artisan	list

php8.2	artisan	list

php8.3	artisan	list

You	may	change	the	default	version	of	PHP	used	by	the	CLI	by	issuing	the	following	commands	from	within
your	Homestead	virtual	machine:

php56

php70

php71

php72

php73

php74

php80

php81

php82

php83

Connecting	to	Databases

A	homestead	database	is	configured	for	both	MySQL	and	PostgreSQL	out	of	the	box.	To	connect	to	your
MySQL	or	PostgreSQL	database	from	your	host	machine's	database	client,	you	should	connect	to	127.0.0.1	on
port	33060	(MySQL)	or	54320	(PostgreSQL).	The	username	and	password	for	both	databases	is	homestead	/	
secret.

[!WARNING]
You	should	only	use	these	non-standard	ports	when	connecting	to	the	databases	from	your	host	machine.
You	will	use	the	default	3306	and	5432	ports	in	your	Laravel	application's	database	configuration	file	since
Laravel	is	running	within	the	virtual	machine.

Database	Backups

Laravel	Documentation	-	10.x	/	Homestead 937

Homestead	can	automatically	backup	your	database	when	your	Homestead	virtual	machine	is	destroyed.	To
utilize	this	feature,	you	must	be	using	Vagrant	2.1.0	or	greater.	Or,	if	you	are	using	an	older	version	of	Vagrant,
you	must	install	the	vagrant-triggers	plug-in.	To	enable	automatic	database	backups,	add	the	following	line	to
your	Homestead.yaml	file:

backup:	true

Once	configured,	Homestead	will	export	your	databases	to	.backup/mysql_backup	and	.backup/postgres_backup
directories	when	the	vagrant	destroy	command	is	executed.	These	directories	can	be	found	in	the	folder	where
you	installed	Homestead	or	in	the	root	of	your	project	if	you	are	using	the	per	project	installation	method.

Configuring	Cron	Schedules

Laravel	provides	a	convenient	way	to	schedule	cron	jobs	by	scheduling	a	single	schedule:run	Artisan	command
to	run	every	minute.	The	schedule:run	command	will	examine	the	job	schedule	defined	in	your	
App\Console\Kernel	class	to	determine	which	scheduled	tasks	to	run.

If	you	would	like	the	schedule:run	command	to	be	run	for	a	Homestead	site,	you	may	set	the	schedule	option	to
true	when	defining	the	site:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

						schedule:	true

The	cron	job	for	the	site	will	be	defined	in	the	/etc/cron.d	directory	of	the	Homestead	virtual	machine.

Configuring	Mailpit

Mailpit	allows	you	to	intercept	your	outgoing	email	and	examine	it	without	actually	sending	the	mail	to	its
recipients.	To	get	started,	update	your	application's	.env	file	to	use	the	following	mail	settings:

MAIL_MAILER=smtp

MAIL_HOST=localhost

MAIL_PORT=1025

MAIL_USERNAME=null

MAIL_PASSWORD=null

MAIL_ENCRYPTION=null

Once	Mailpit	has	been	configured,	you	may	access	the	Mailpit	dashboard	at	http://localhost:8025.

Configuring	Minio

Minio	is	an	open	source	object	storage	server	with	an	Amazon	S3	compatible	API.	To	install	Minio,	update
your	Homestead.yaml	file	with	the	following	configuration	option	in	the	features	section:

minio:	true

By	default,	Minio	is	available	on	port	9600.	You	may	access	the	Minio	control	panel	by	visiting	
http://localhost:9600.	The	default	access	key	is	homestead,	while	the	default	secret	key	is	secretkey.	When
accessing	Minio,	you	should	always	use	region	us-east-1.

In	order	to	use	Minio,	you	will	need	to	adjust	the	S3	disk	configuration	in	your	application's	
config/filesystems.php	configuration	file.	You	will	need	to	add	the	use_path_style_endpoint	option	to	the	disk
configuration	as	well	as	change	the	url	key	to	endpoint:

's3'	=>	[

				'driver'	=>	's3',

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION'),

				'bucket'	=>	env('AWS_BUCKET'),

				'endpoint'	=>	env('AWS_URL'),

				'use_path_style_endpoint'	=>	true,

]

Laravel	Documentation	-	10.x	/	Homestead 938

https://github.com/axllent/mailpit
https://github.com/minio/minio

Finally,	ensure	your	.env	file	has	the	following	options:

AWS_ACCESS_KEY_ID=homestead

AWS_SECRET_ACCESS_KEY=secretkey

AWS_DEFAULT_REGION=us-east-1

AWS_URL=http://localhost:9600

To	provision	Minio	powered	"S3"	buckets,	add	a	buckets	directive	to	your	Homestead.yaml	file.	After	defining
your	buckets,	you	should	execute	the	vagrant	reload	--provision	command	in	your	terminal:

buckets:

				-	name:	your-bucket

						policy:	public

				-	name:	your-private-bucket

						policy:	none

Supported	policy	values	include:	none,	download,	upload,	and	public.

Laravel	Dusk

In	order	to	run	Laravel	Dusk	tests	within	Homestead,	you	should	enable	the	webdriver	feature	in	your
Homestead	configuration:

features:

				-	webdriver:	true

After	enabling	the	webdriver	feature,	you	should	execute	the	vagrant	reload	--provision	command	in	your
terminal.

Sharing	Your	Environment

Sometimes	you	may	wish	to	share	what	you're	currently	working	on	with	coworkers	or	a	client.	Vagrant	has
built-in	support	for	this	via	the	vagrant	share	command;	however,	this	will	not	work	if	you	have	multiple	sites
configured	in	your	Homestead.yaml	file.

To	solve	this	problem,	Homestead	includes	its	own	share	command.	To	get	started,	SSH	into	your	Homestead
virtual	machine	via	vagrant	ssh	and	execute	the	share	homestead.test	command.	This	command	will	share	the	
homestead.test	site	from	your	Homestead.yaml	configuration	file.	You	may	substitute	any	of	your	other
configured	sites	for	homestead.test:

share	homestead.test

After	running	the	command,	you	will	see	an	Ngrok	screen	appear	which	contains	the	activity	log	and	the
publicly	accessible	URLs	for	the	shared	site.	If	you	would	like	to	specify	a	custom	region,	subdomain,	or	other
Ngrok	runtime	option,	you	may	add	them	to	your	share	command:

share	homestead.test	-region=eu	-subdomain=laravel

If	you	need	to	share	content	over	HTTPS	rather	than	HTTP,	using	the	sshare	command	instead	of	share	will
enable	you	to	do	so.

[!WARNING]
Remember,	Vagrant	is	inherently	insecure	and	you	are	exposing	your	virtual	machine	to	the	Internet	when
running	the	share	command.

Debugging	and	Profiling

Debugging	Web	Requests	With	Xdebug

Homestead	includes	support	for	step	debugging	using	Xdebug.	For	example,	you	can	access	a	page	in	your
browser	and	PHP	will	connect	to	your	IDE	to	allow	inspection	and	modification	of	the	running	code.

By	default,	Xdebug	is	already	running	and	ready	to	accept	connections.	If	you	need	to	enable	Xdebug	on	the
CLI,	execute	the	sudo	phpenmod	xdebug	command	within	your	Homestead	virtual	machine.	Next,	follow	your

Laravel	Documentation	-	10.x	/	Homestead 939

https://xdebug.org

IDE's	instructions	to	enable	debugging.	Finally,	configure	your	browser	to	trigger	Xdebug	with	an	extension	or
bookmarklet.

[!WARNING]
Xdebug	causes	PHP	to	run	significantly	slower.	To	disable	Xdebug,	run	sudo	phpdismod	xdebug	within	your
Homestead	virtual	machine	and	restart	the	FPM	service.

Autostarting	Xdebug

When	debugging	functional	tests	that	make	requests	to	the	web	server,	it	is	easier	to	autostart	debugging	rather
than	modifying	tests	to	pass	through	a	custom	header	or	cookie	to	trigger	debugging.	To	force	Xdebug	to	start
automatically,	modify	the	/etc/php/7.x/fpm/conf.d/20-xdebug.ini	file	inside	your	Homestead	virtual	machine
and	add	the	following	configuration:

;	If	Homestead.yaml	contains	a	different	subnet	for	the	IP	address,	this	address	may	be	different...

xdebug.client_host	=	192.168.10.1

xdebug.mode	=	debug

xdebug.start_with_request	=	yes

Debugging	CLI	Applications

To	debug	a	PHP	CLI	application,	use	the	xphp	shell	alias	inside	your	Homestead	virtual	machine:

xphp	/path/to/script

Profiling	Applications	With	Blackfire

Blackfire	is	a	service	for	profiling	web	requests	and	CLI	applications.	It	offers	an	interactive	user	interface
which	displays	profile	data	in	call-graphs	and	timelines.	It	is	built	for	use	in	development,	staging,	and
production,	with	no	overhead	for	end	users.	In	addition,	Blackfire	provides	performance,	quality,	and	security
checks	on	code	and	php.ini	configuration	settings.

The	Blackfire	Player	is	an	open-source	Web	Crawling,	Web	Testing,	and	Web	Scraping	application	which	can
work	jointly	with	Blackfire	in	order	to	script	profiling	scenarios.

To	enable	Blackfire,	use	the	"features"	setting	in	your	Homestead	configuration	file:

features:

				-	blackfire:

								server_id:	"server_id"

								server_token:	"server_value"

								client_id:	"client_id"

								client_token:	"client_value"

Blackfire	server	credentials	and	client	credentials	require	a	Blackfire	account.	Blackfire	offers	various	options
to	profile	an	application,	including	a	CLI	tool	and	browser	extension.	Please	review	the	Blackfire
documentation	for	more	details.

Network	Interfaces

The	networks	property	of	the	Homestead.yaml	file	configures	network	interfaces	for	your	Homestead	virtual
machine.	You	may	configure	as	many	interfaces	as	necessary:

networks:

				-	type:	"private_network"

						ip:	"192.168.10.20"

To	enable	a	bridged	interface,	configure	a	bridge	setting	for	the	network	and	change	the	network	type	to	
public_network:

networks:

				-	type:	"public_network"

						ip:	"192.168.10.20"

						bridge:	"en1:	Wi-Fi	(AirPort)"

Laravel	Documentation	-	10.x	/	Homestead 940

https://www.jetbrains.com/phpstorm/marklets/
https://blackfire.io/docs/introduction
https://blackfire.io/docs/player/index
https://blackfire.io/signup
https://blackfire.io/docs/php/integrations/laravel/index
https://developer.hashicorp.com/vagrant/docs/networking/public_network

To	enable	DHCP,	just	remove	the	ip	option	from	your	configuration:

networks:

				-	type:	"public_network"

						bridge:	"en1:	Wi-Fi	(AirPort)"

To	update	what	device	the	network	is	using,	you	may	add	a	dev	option	to	the	network's	configuration.	The
default	dev	value	is	eth0:

networks:

				-	type:	"public_network"

						ip:	"192.168.10.20"

						bridge:	"en1:	Wi-Fi	(AirPort)"

						dev:	"enp2s0"

Extending	Homestead

You	may	extend	Homestead	using	the	after.sh	script	in	the	root	of	your	Homestead	directory.	Within	this	file,
you	may	add	any	shell	commands	that	are	necessary	to	properly	configure	and	customize	your	virtual	machine.

When	customizing	Homestead,	Ubuntu	may	ask	you	if	you	would	like	to	keep	a	package's	original
configuration	or	overwrite	it	with	a	new	configuration	file.	To	avoid	this,	you	should	use	the	following
command	when	installing	packages	in	order	to	avoid	overwriting	any	configuration	previously	written	by
Homestead:

sudo	apt-get	-y	\

				-o	Dpkg::Options::="--force-confdef"	\

				-o	Dpkg::Options::="--force-confold"	\

				install	package-name

User	Customizations

When	using	Homestead	with	your	team,	you	may	want	to	tweak	Homestead	to	better	fit	your	personal
development	style.	To	accomplish	this,	you	may	create	a	user-customizations.sh	file	in	the	root	of	your
Homestead	directory	(the	same	directory	containing	your	Homestead.yaml	file).	Within	this	file,	you	may	make
any	customization	you	would	like;	however,	the	user-customizations.sh	should	not	be	version	controlled.

Provider	Specific	Settings

VirtualBox

natdnshostresolver

By	default,	Homestead	configures	the	natdnshostresolver	setting	to	on.	This	allows	Homestead	to	use	your	host
operating	system's	DNS	settings.	If	you	would	like	to	override	this	behavior,	add	the	following	configuration
options	to	your	Homestead.yaml	file:

provider:	virtualbox

natdnshostresolver:	'off'

Laravel	Documentation	-	10.x	/	Homestead 941

https://developer.hashicorp.com/vagrant/docs/networking/public_network#dhcp

Packages

Laravel	Horizon
Introduction
Installation

Configuration
Balancing	Strategies
Dashboard	Authorization
Silenced	Jobs

Upgrading	Horizon
Running	Horizon

Deploying	Horizon
Tags
Notifications
Metrics
Deleting	Failed	Jobs
Clearing	Jobs	From	Queues

Introduction

[!NOTE]
Before	digging	into	Laravel	Horizon,	you	should	familiarize	yourself	with	Laravel's	base	queue	services.
Horizon	augments	Laravel's	queue	with	additional	features	that	may	be	confusing	if	you	are	not	already
familiar	with	the	basic	queue	features	offered	by	Laravel.

Laravel	Horizon	provides	a	beautiful	dashboard	and	code-driven	configuration	for	your	Laravel	powered	Redis
queues.	Horizon	allows	you	to	easily	monitor	key	metrics	of	your	queue	system	such	as	job	throughput,
runtime,	and	job	failures.

When	using	Horizon,	all	of	your	queue	worker	configuration	is	stored	in	a	single,	simple	configuration	file.	By
defining	your	application's	worker	configuration	in	a	version	controlled	file,	you	may	easily	scale	or	modify
your	application's	queue	workers	when	deploying	your	application.

Laravel	Documentation	-	10.x	/	Horizon 942

https://github.com/laravel/horizon

Installation

[!WARNING]
Laravel	Horizon	requires	that	you	use	Redis	to	power	your	queue.	Therefore,	you	should	ensure	that	your
queue	connection	is	set	to	redis	in	your	application's	config/queue.php	configuration	file.

You	may	install	Horizon	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/horizon

After	installing	Horizon,	publish	its	assets	using	the	horizon:install	Artisan	command:

php	artisan	horizon:install

Configuration

After	publishing	Horizon's	assets,	its	primary	configuration	file	will	be	located	at	config/horizon.php.	This
configuration	file	allows	you	to	configure	the	queue	worker	options	for	your	application.	Each	configuration
option	includes	a	description	of	its	purpose,	so	be	sure	to	thoroughly	explore	this	file.

[!WARNING]
Horizon	uses	a	Redis	connection	named	horizon	internally.	This	Redis	connection	name	is	reserved	and
should	not	be	assigned	to	another	Redis	connection	in	the	database.php	configuration	file	or	as	the	value	of
the	use	option	in	the	horizon.php	configuration	file.

Environments

After	installation,	the	primary	Horizon	configuration	option	that	you	should	familiarize	yourself	with	is	the	
environments	configuration	option.	This	configuration	option	is	an	array	of	environments	that	your	application
runs	on	and	defines	the	worker	process	options	for	each	environment.	By	default,	this	entry	contains	a	

Laravel	Documentation	-	10.x	/	Horizon 943

https://redis.io

production	and	local	environment.	However,	you	are	free	to	add	more	environments	as	needed:

'environments'	=>	[

				'production'	=>	[

								'supervisor-1'	=>	[

												'maxProcesses'	=>	10,

												'balanceMaxShift'	=>	1,

												'balanceCooldown'	=>	3,

],

],

				'local'	=>	[

								'supervisor-1'	=>	[

												'maxProcesses'	=>	3,

],

],

],

When	you	start	Horizon,	it	will	use	the	worker	process	configuration	options	for	the	environment	that	your
application	is	running	on.	Typically,	the	environment	is	determined	by	the	value	of	the	APP_ENV	environment
variable.	For	example,	the	default	local	Horizon	environment	is	configured	to	start	three	worker	processes	and
automatically	balance	the	number	of	worker	processes	assigned	to	each	queue.	The	default	production
environment	is	configured	to	start	a	maximum	of	10	worker	processes	and	automatically	balance	the	number	of
worker	processes	assigned	to	each	queue.

[!WARNING]
You	should	ensure	that	the	environments	portion	of	your	horizon	configuration	file	contains	an	entry	for
each	environment	on	which	you	plan	to	run	Horizon.

Supervisors

As	you	can	see	in	Horizon's	default	configuration	file,	each	environment	can	contain	one	or	more	"supervisors".
By	default,	the	configuration	file	defines	this	supervisor	as	supervisor-1;	however,	you	are	free	to	name	your
supervisors	whatever	you	want.	Each	supervisor	is	essentially	responsible	for	"supervising"	a	group	of	worker
processes	and	takes	care	of	balancing	worker	processes	across	queues.

You	may	add	additional	supervisors	to	a	given	environment	if	you	would	like	to	define	a	new	group	of	worker
processes	that	should	run	in	that	environment.	You	may	choose	to	do	this	if	you	would	like	to	define	a	different
balancing	strategy	or	worker	process	count	for	a	given	queue	used	by	your	application.

Maintenance	Mode

While	your	application	is	in	maintainance	mode,	queued	jobs	will	not	be	processed	by	Horizon	unless	the
supervisor's	force	option	is	defined	as	true	within	the	Horizon	configuration	file:

'environments'	=>	[

				'production'	=>	[

								'supervisor-1'	=>	[

												//	...

												'force'	=>	true,

],

],

],

Default	Values

Within	Horizon's	default	configuration	file,	you	will	notice	a	defaults	configuration	option.	This	configuration
option	specifies	the	default	values	for	your	application's	supervisors.	The	supervisor's	default	configuration
values	will	be	merged	into	the	supervisor's	configuration	for	each	environment,	allowing	you	to	avoid
unnecessary	repetition	when	defining	your	supervisors.

Balancing	Strategies

Unlike	Laravel's	default	queue	system,	Horizon	allows	you	to	choose	from	three	worker	balancing	strategies:	
simple,	auto,	and	false.	The	simple	strategy	splits	incoming	jobs	evenly	between	worker	processes:

Laravel	Documentation	-	10.x	/	Horizon 944

'balance'	=>	'simple',

The	auto	strategy,	which	is	the	configuration	file's	default,	adjusts	the	number	of	worker	processes	per	queue
based	on	the	current	workload	of	the	queue.	For	example,	if	your	notifications	queue	has	1,000	pending	jobs
while	your	render	queue	is	empty,	Horizon	will	allocate	more	workers	to	your	notifications	queue	until	the
queue	is	empty.

When	using	the	auto	strategy,	you	may	define	the	minProcesses	and	maxProcesses	configuration	options	to
control	the	minimum	and	the	maximum	number	of	worker	processes	Horizon	should	scale	up	and	down	to:

'environments'	=>	[

				'production'	=>	[

								'supervisor-1'	=>	[

												'connection'	=>	'redis',

												'queue'	=>	['default'],

												'balance'	=>	'auto',

												'autoScalingStrategy'	=>	'time',

												'minProcesses'	=>	1,

												'maxProcesses'	=>	10,

												'balanceMaxShift'	=>	1,

												'balanceCooldown'	=>	3,

												'tries'	=>	3,

],

],

],

The	autoScalingStrategy	configuration	value	determines	if	Horizon	will	assign	more	worker	processes	to
queues	based	on	the	total	amount	of	time	it	will	take	to	clear	the	queue	(time	strategy)	or	by	the	total	number	of
jobs	on	the	queue	(size	strategy).

The	balanceMaxShift	and	balanceCooldown	configuration	values	determine	how	quickly	Horizon	will	scale	to
meet	worker	demand.	In	the	example	above,	a	maximum	of	one	new	process	will	be	created	or	destroyed	every
three	seconds.	You	are	free	to	tweak	these	values	as	necessary	based	on	your	application's	needs.

When	the	balance	option	is	set	to	false,	the	default	Laravel	behavior	will	be	used,	wherein	queues	are
processed	in	the	order	they	are	listed	in	your	configuration.

Dashboard	Authorization

The	Horizon	dashboard	may	be	accessed	via	the	/horizon	route.	By	default,	you	will	only	be	able	to	access	this
dashboard	in	the	local	environment.	However,	within	your	app/Providers/HorizonServiceProvider.php	file,
there	is	an	authorization	gate	definition.	This	authorization	gate	controls	access	to	Horizon	in	non-local
environments.	You	are	free	to	modify	this	gate	as	needed	to	restrict	access	to	your	Horizon	installation:

/**

	*	Register	the	Horizon	gate.

	*

	*	This	gate	determines	who	can	access	Horizon	in	non-local	environments.

	*/

protected	function	gate():	void

{

				Gate::define('viewHorizon',	function	(User	$user)	{

								return	in_array($user->email,	[

												'taylor@laravel.com',

]);

				});

}

Alternative	Authentication	Strategies

Remember	that	Laravel	automatically	injects	the	authenticated	user	into	the	gate	closure.	If	your	application	is
providing	Horizon	security	via	another	method,	such	as	IP	restrictions,	then	your	Horizon	users	may	not	need	to
"login".	Therefore,	you	will	need	to	change	function	(User	$user)	closure	signature	above	to	function	(User	
$user	=	null)	in	order	to	force	Laravel	to	not	require	authentication.

Silenced	Jobs

Sometimes,	you	may	not	be	interested	in	viewing	certain	jobs	dispatched	by	your	application	or	third-party

Laravel	Documentation	-	10.x	/	Horizon 945

packages.	Instead	of	these	jobs	taking	up	space	in	your	"Completed	Jobs"	list,	you	can	silence	them.	To	get
started,	add	the	job's	class	name	to	the	silenced	configuration	option	in	your	application's	horizon	configuration
file:

'silenced'	=>	[

				App\Jobs\ProcessPodcast::class,

],

Alternatively,	the	job	you	wish	to	silence	can	implement	the	Laravel\Horizon\Contracts\Silenced	interface.	If	a
job	implements	this	interface,	it	will	automatically	be	silenced,	even	if	it	is	not	present	in	the	silenced
configuration	array:

use	Laravel\Horizon\Contracts\Silenced;

class	ProcessPodcast	implements	ShouldQueue,	Silenced

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				//	...

}

Upgrading	Horizon

When	upgrading	to	a	new	major	version	of	Horizon,	it's	important	that	you	carefully	review	the	upgrade	guide.
In	addition,	when	upgrading	to	any	new	Horizon	version,	you	should	re-publish	Horizon's	assets:

php	artisan	horizon:publish

To	keep	the	assets	up-to-date	and	avoid	issues	in	future	updates,	you	may	add	the	vendor:publish	--
tag=laravel-assets	command	to	the	post-update-cmd	scripts	in	your	application's	composer.json	file:

{

				"scripts":	{

								"post-update-cmd":	[

												"@php	artisan	vendor:publish	--tag=laravel-assets	--ansi	--force"

]

				}

}

Running	Horizon

Once	you	have	configured	your	supervisors	and	workers	in	your	application's	config/horizon.php	configuration
file,	you	may	start	Horizon	using	the	horizon	Artisan	command.	This	single	command	will	start	all	of	the
configured	worker	processes	for	the	current	environment:

php	artisan	horizon

You	may	pause	the	Horizon	process	and	instruct	it	to	continue	processing	jobs	using	the	horizon:pause	and	
horizon:continue	Artisan	commands:

php	artisan	horizon:pause

php	artisan	horizon:continue

You	may	also	pause	and	continue	specific	Horizon	supervisors	using	the	horizon:pause-supervisor	and	
horizon:continue-supervisor	Artisan	commands:

php	artisan	horizon:pause-supervisor	supervisor-1

php	artisan	horizon:continue-supervisor	supervisor-1

You	may	check	the	current	status	of	the	Horizon	process	using	the	horizon:status	Artisan	command:

php	artisan	horizon:status

You	may	gracefully	terminate	the	Horizon	process	using	the	horizon:terminate	Artisan	command.	Any	jobs
that	are	currently	being	processed	by	will	be	completed	and	then	Horizon	will	stop	executing:

Laravel	Documentation	-	10.x	/	Horizon 946

https://github.com/laravel/horizon/blob/master/UPGRADE.md

php	artisan	horizon:terminate

Deploying	Horizon

When	you're	ready	to	deploy	Horizon	to	your	application's	actual	server,	you	should	configure	a	process
monitor	to	monitor	the	php	artisan	horizon	command	and	restart	it	if	it	exits	unexpectedly.	Don't	worry,	we'll
discuss	how	to	install	a	process	monitor	below.

During	your	application's	deployment	process,	you	should	instruct	the	Horizon	process	to	terminate	so	that	it
will	be	restarted	by	your	process	monitor	and	receive	your	code	changes:

php	artisan	horizon:terminate

Installing	Supervisor

Supervisor	is	a	process	monitor	for	the	Linux	operating	system	and	will	automatically	restart	your	horizon
process	if	it	stops	executing.	To	install	Supervisor	on	Ubuntu,	you	may	use	the	following	command.	If	you	are
not	using	Ubuntu,	you	can	likely	install	Supervisor	using	your	operating	system's	package	manager:

sudo	apt-get	install	supervisor

[!NOTE]
If	configuring	Supervisor	yourself	sounds	overwhelming,	consider	using	Laravel	Forge,	which	will
automatically	install	and	configure	Supervisor	for	your	Laravel	projects.

Supervisor	Configuration

Supervisor	configuration	files	are	typically	stored	within	your	server's	/etc/supervisor/conf.d	directory.	Within
this	directory,	you	may	create	any	number	of	configuration	files	that	instruct	supervisor	how	your	processes
should	be	monitored.	For	example,	let's	create	a	horizon.conf	file	that	starts	and	monitors	a	horizon	process:

[program:horizon]

process_name=%(program_name)s

command=php	/home/forge/example.com/artisan	horizon

autostart=true

autorestart=true

user=forge

redirect_stderr=true

stdout_logfile=/home/forge/example.com/horizon.log

stopwaitsecs=3600

When	defining	your	Supervisor	configuration,	you	should	ensure	that	the	value	of	stopwaitsecs	is	greater	than
the	number	of	seconds	consumed	by	your	longest	running	job.	Otherwise,	Supervisor	may	kill	the	job	before	it
is	finished	processing.

[!WARNING]
While	the	examples	above	are	valid	for	Ubuntu	based	servers,	the	location	and	file	extension	expected	of
Supervisor	configuration	files	may	vary	between	other	server	operating	systems.	Please	consult	your
server's	documentation	for	more	information.

Starting	Supervisor

Once	the	configuration	file	has	been	created,	you	may	update	the	Supervisor	configuration	and	start	the
monitored	processes	using	the	following	commands:

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	horizon

[!NOTE]
For	more	information	on	running	Supervisor,	consult	the	Supervisor	documentation.

Laravel	Documentation	-	10.x	/	Horizon 947

https://forge.laravel.com
http://supervisord.org/index.html

Tags

Horizon	allows	you	to	assign	“tags”	to	jobs,	including	mailables,	broadcast	events,	notifications,	and	queued
event	listeners.	In	fact,	Horizon	will	intelligently	and	automatically	tag	most	jobs	depending	on	the	Eloquent
models	that	are	attached	to	the	job.	For	example,	take	a	look	at	the	following	job:

<?php

namespace	App\Jobs;

use	App\Models\Video;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Foundation\Bus\Dispatchable;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	RenderVideo	implements	ShouldQueue

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*/

				public	function	__construct(

								public	Video	$video,

)	{}

				/**

					*	Execute	the	job.

					*/

				public	function	handle():	void

				{

								//	...

				}

}

If	this	job	is	queued	with	an	App\Models\Video	instance	that	has	an	id	attribute	of	1,	it	will	automatically	receive
the	tag	App\Models\Video:1.	This	is	because	Horizon	will	search	the	job's	properties	for	any	Eloquent	models.	If
Eloquent	models	are	found,	Horizon	will	intelligently	tag	the	job	using	the	model's	class	name	and	primary
key:

use	App\Jobs\RenderVideo;

use	App\Models\Video;

$video	=	Video::find(1);

RenderVideo::dispatch($video);

Manually	Tagging	Jobs

If	you	would	like	to	manually	define	the	tags	for	one	of	your	queueable	objects,	you	may	define	a	tags	method
on	the	class:

class	RenderVideo	implements	ShouldQueue

{

				/**

					*	Get	the	tags	that	should	be	assigned	to	the	job.

					*

					*	@return	array<int,	string>

					*/

				public	function	tags():	array

				{

								return	['render',	'video:'.$this->video->id];

				}

}

Manually	Tagging	Event	Listeners

When	retrieving	the	tags	for	a	queued	event	listener,	Horizon	will	automatically	pass	the	event	instance	to	the	
tags	method,	allowing	you	to	add	event	data	to	the	tags:

Laravel	Documentation	-	10.x	/	Horizon 948

class	SendRenderNotifications	implements	ShouldQueue

{

				/**

					*	Get	the	tags	that	should	be	assigned	to	the	listener.

					*

					*	@return	array<int,	string>

					*/

				public	function	tags(VideoRendered	$event):	array

				{

								return	['video:'.$event->video->id];

				}

}

Notifications

[!WARNING]
When	configuring	Horizon	to	send	Slack	or	SMS	notifications,	you	should	review	the	prerequisites	for	the
relevant	notification	channel.

If	you	would	like	to	be	notified	when	one	of	your	queues	has	a	long	wait	time,	you	may	use	the	
Horizon::routeMailNotificationsTo,	Horizon::routeSlackNotificationsTo,	and	
Horizon::routeSmsNotificationsTo	methods.	You	may	call	these	methods	from	the	boot	method	of	your
application's	App\Providers\HorizonServiceProvider:

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				parent::boot();

				Horizon::routeSmsNotificationsTo('15556667777');

				Horizon::routeMailNotificationsTo('example@example.com');

				Horizon::routeSlackNotificationsTo('slack-webhook-url',	'#channel');

}

Configuring	Notification	Wait	Time	Thresholds

You	may	configure	how	many	seconds	are	considered	a	"long	wait"	within	your	application's	
config/horizon.php	configuration	file.	The	waits	configuration	option	within	this	file	allows	you	to	control	the
long	wait	threshold	for	each	connection	/	queue	combination.	Any	undefined	connection	/	queue	combinations
will	default	to	a	long	wait	threshold	of	60	seconds:

'waits'	=>	[

				'redis:critical'	=>	30,

				'redis:default'	=>	60,

				'redis:batch'	=>	120,

],

Metrics

Horizon	includes	a	metrics	dashboard	which	provides	information	regarding	your	job	and	queue	wait	times	and
throughput.	In	order	to	populate	this	dashboard,	you	should	configure	Horizon's	snapshot	Artisan	command	to
run	every	five	minutes	via	your	application's	scheduler:

/**

	*	Define	the	application's	command	schedule.

	*/

protected	function	schedule(Schedule	$schedule):	void

{

				$schedule->command('horizon:snapshot')->everyFiveMinutes();

}

Deleting	Failed	Jobs

If	you	would	like	to	delete	a	failed	job,	you	may	use	the	horizon:forget	command.	The	horizon:forget
command	accepts	the	ID	or	UUID	of	the	failed	job	as	its	only	argument:

Laravel	Documentation	-	10.x	/	Horizon 949

php	artisan	horizon:forget	5

Clearing	Jobs	From	Queues

If	you	would	like	to	delete	all	jobs	from	your	application's	default	queue,	you	may	do	so	using	the	
horizon:clear	Artisan	command:

php	artisan	horizon:clear

You	may	provide	the	queue	option	to	delete	jobs	from	a	specific	queue:

php	artisan	horizon:clear	--queue=emails

Laravel	Documentation	-	10.x	/	Horizon 950

Packages

Laravel	Mix
Introduction

Introduction

Laravel	Mix,	a	package	developed	by	Laracasts	creator	Jeffrey	Way,	provides	a	fluent	API	for	defining
webpack	build	steps	for	your	Laravel	application	using	several	common	CSS	and	JavaScript	pre-processors.

In	other	words,	Mix	makes	it	a	cinch	to	compile	and	minify	your	application's	CSS	and	JavaScript	files.
Through	simple	method	chaining,	you	can	fluently	define	your	asset	pipeline.	For	example:

mix.js('resources/js/app.js',	'public/js')

				.postCss('resources/css/app.css',	'public/css');

If	you've	ever	been	confused	and	overwhelmed	about	getting	started	with	webpack	and	asset	compilation,	you
will	love	Laravel	Mix.	However,	you	are	not	required	to	use	it	while	developing	your	application;	you	are	free
to	use	any	asset	pipeline	tool	you	wish,	or	even	none	at	all.

[!NOTE]
Vite	has	replaced	Laravel	Mix	in	new	Laravel	installations.	For	Mix	documentation,	please	visit	the
official	Laravel	Mix	website.	If	you	would	like	to	switch	to	Vite,	please	see	our	Vite	migration	guide.

Laravel	Documentation	-	10.x	/	Mix 951

https://github.com/laravel-mix/laravel-mix
https://laracasts.com
https://webpack.js.org
https://laravel-mix.com/
https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-laravel-mix-to-vite

Packages

Laravel	Octane
Introduction
Installation
Server	Prerequisites

FrankenPHP
RoadRunner
Swoole

Serving	Your	Application
Serving	Your	Application	via	HTTPS
Serving	Your	Application	via	Nginx
Watching	for	File	Changes
Specifying	the	Worker	Count
Specifying	the	Max	Request	Count
Reloading	the	Workers
Stopping	the	Server

Dependency	Injection	and	Octane
Container	Injection
Request	Injection
Configuration	Repository	Injection

Managing	Memory	Leaks
Concurrent	Tasks
Ticks	and	Intervals
The	Octane	Cache
Tables

Introduction

Laravel	Octane	supercharges	your	application's	performance	by	serving	your	application	using	high-powered
application	servers,	including	FrankenPHP,	Open	Swoole,	Swoole,	and	RoadRunner.	Octane	boots	your
application	once,	keeps	it	in	memory,	and	then	feeds	it	requests	at	supersonic	speeds.

Installation

Octane	may	be	installed	via	the	Composer	package	manager:

composer	require	laravel/octane

After	installing	Octane,	you	may	execute	the	octane:install	Artisan	command,	which	will	install	Octane's
configuration	file	into	your	application:

php	artisan	octane:install

Server	Prerequisites

[!WARNING]
Laravel	Octane	requires	PHP	8.1+.

FrankenPHP

[!WARNING]
FrankenPHP's	Octane	integration	is	in	beta	and	should	be	used	with	caution	in	production.

FrankenPHP	is	a	PHP	application	server,	written	in	Go,	that	supports	modern	web	features	like	early	hints	and
Zstandard	compression.	When	you	install	Octane	and	choose	FrankenPHP	as	your	server,	Octane	will
automatically	download	and	install	the	FrankenPHP	binary	for	you.

Laravel	Documentation	-	10.x	/	Octane 952

https://github.com/laravel/octane
https://frankenphp.dev/
https://openswoole.com/
https://github.com/swoole/swoole-src
https://roadrunner.dev
https://php.net/releases/
https://frankenphp.dev

FrankenPHP	via	Laravel	Sail

If	you	plan	to	develop	your	application	using	Laravel	Sail,	you	should	run	the	following	commands	to	install
Octane	and	FrankenPHP:

./vendor/bin/sail	up

./vendor/bin/sail	composer	require	laravel/octane

Next,	you	should	use	the	octane:install	Artisan	command	to	install	the	FrankenPHP	binary:

./vendor/bin/sail	artisan	octane:install	--server=frankenphp

Finally,	add	a	SUPERVISOR_PHP_COMMAND	environment	variable	to	the	laravel.test	service	definition	in	your
application's	docker-compose.yml	file.	This	environment	variable	will	contain	the	command	that	Sail	will	use	to
serve	your	application	using	Octane	instead	of	the	PHP	development	server:

services:

		laravel.test:

				environment:

						SUPERVISOR_PHP_COMMAND:	"/usr/bin/php	-d	variables_order=EGPCS	/var/www/html/artisan	octane:start	

--server=frankenphp	--host=0.0.0.0	--admin-port=2019	--port=80"	#	[tl!	add]

						XDG_CONFIG_HOME:		/var/www/html/config	#	[tl!	add]

						XDG_DATA_HOME:		/var/www/html/data	#	[tl!	add]

To	enable	HTTPS,	HTTP/2,	and	HTTP/3,	apply	these	modifications	instead:

services:

		laravel.test:

				ports:

								-	'${APP_PORT:-80}:80'

								-	'${VITE_PORT:-5173}:${VITE_PORT:-5173}'

								-	'443:443'	#	[tl!	add]

								-	'443:443/udp'	#	[tl!	add]

				environment:

						SUPERVISOR_PHP_COMMAND:	"/usr/bin/php	-d	variables_order=EGPCS	/var/www/html/artisan	octane:start	

--host=localhost	--port=443	--admin-port=2019	--https"	#	[tl!	add]

						XDG_CONFIG_HOME:		/var/www/html/config	#	[tl!	add]

						XDG_DATA_HOME:		/var/www/html/data	#	[tl!	add]

Typically,	you	should	access	your	FrankenPHP	Sail	application	via	https://localhost,	as	using	
https://127.0.0.1	requires	additional	configuration	and	is	discouraged.

FrankenPHP	via	Docker

Using	FrankenPHP's	official	Docker	images	can	offer	improved	performance	and	the	use	additional	extensions
not	included	with	static	installations	of	FrankenPHP.	In	addition,	the	official	Docker	images	provide	support	for
running	FrankenPHP	on	platforms	it	doesn't	natively	support,	such	as	Windows.	FrankenPHP's	official	Docker
images	are	suitable	for	both	local	development	and	production	usage.

You	may	use	the	following	Dockerfile	as	a	starting	point	for	containerizing	your	FrankenPHP	powered	Laravel
application:

FROM	dunglas/frankenphp

RUN	install-php-extensions	\

				pcntl

				#	Add	other	PHP	extensions	here...

COPY	.	/app

ENTRYPOINT	["php",	"artisan",	"octane:frankenphp"]

Then,	during	development,	you	may	utilize	the	following	Docker	Compose	file	to	run	your	application:

#	compose.yaml

services:

		frankenphp:

				build:

						context:	.

				entrypoint:	php	artisan	octane:frankenphp	--max-requests=1

Laravel	Documentation	-	10.x	/	Octane 953

https://frankenphp.dev/docs/known-issues/#using-https127001-with-docker

				ports:

						-	"8000:8000"

				volumes:

						-	.:/app

You	may	consult	the	official	FrankenPHP	documentation	for	more	information	on	running	FrankenPHP	with
Docker.

RoadRunner

RoadRunner	is	powered	by	the	RoadRunner	binary,	which	is	built	using	Go.	The	first	time	you	start	a
RoadRunner	based	Octane	server,	Octane	will	offer	to	download	and	install	the	RoadRunner	binary	for	you.

RoadRunner	via	Laravel	Sail

If	you	plan	to	develop	your	application	using	Laravel	Sail,	you	should	run	the	following	commands	to	install
Octane	and	RoadRunner:

./vendor/bin/sail	up

./vendor/bin/sail	composer	require	laravel/octane	spiral/roadrunner-cli	spiral/roadrunner-http	

Next,	you	should	start	a	Sail	shell	and	use	the	rr	executable	to	retrieve	the	latest	Linux	based	build	of	the
RoadRunner	binary:

./vendor/bin/sail	shell

#	Within	the	Sail	shell...

./vendor/bin/rr	get-binary

Then,	add	a	SUPERVISOR_PHP_COMMAND	environment	variable	to	the	laravel.test	service	definition	in	your
application's	docker-compose.yml	file.	This	environment	variable	will	contain	the	command	that	Sail	will	use	to
serve	your	application	using	Octane	instead	of	the	PHP	development	server:

services:

		laravel.test:

				environment:

						SUPERVISOR_PHP_COMMAND:	"/usr/bin/php	-d	variables_order=EGPCS	/var/www/html/artisan	octane:start	

--server=roadrunner	--host=0.0.0.0	--rpc-port=6001	--port=80"	#	[tl!	add]

Finally,	ensure	the	rr	binary	is	executable	and	build	your	Sail	images:

chmod	+x	./rr

./vendor/bin/sail	build	--no-cache

Swoole

If	you	plan	to	use	the	Swoole	application	server	to	serve	your	Laravel	Octane	application,	you	must	install	the
Swoole	PHP	extension.	Typically,	this	can	be	done	via	PECL:

pecl	install	swoole

Open	Swoole

If	you	want	to	use	the	Open	Swoole	application	server	to	serve	your	Laravel	Octane	application,	you	must
install	the	Open	Swoole	PHP	extension.	Typically,	this	can	be	done	via	PECL:

pecl	install	openswoole

Using	Laravel	Octane	with	Open	Swoole	grants	the	same	functionality	provided	by	Swoole,	such	as	concurrent
tasks,	ticks,	and	intervals.

Swoole	via	Laravel	Sail

[!WARNING]

Laravel	Documentation	-	10.x	/	Octane 954

https://frankenphp.dev/docs/docker/
https://roadrunner.dev

Before	serving	an	Octane	application	via	Sail,	ensure	you	have	the	latest	version	of	Laravel	Sail	and
execute	./vendor/bin/sail	build	--no-cache	within	your	application's	root	directory.

Alternatively,	you	may	develop	your	Swoole	based	Octane	application	using	Laravel	Sail,	the	official	Docker
based	development	environment	for	Laravel.	Laravel	Sail	includes	the	Swoole	extension	by	default.	However,
you	will	still	need	to	adjust	the	docker-compose.yml	file	used	by	Sail.

To	get	started,	add	a	SUPERVISOR_PHP_COMMAND	environment	variable	to	the	laravel.test	service	definition	in	your
application's	docker-compose.yml	file.	This	environment	variable	will	contain	the	command	that	Sail	will	use	to
serve	your	application	using	Octane	instead	of	the	PHP	development	server:

services:

		laravel.test:

				environment:

						SUPERVISOR_PHP_COMMAND:	"/usr/bin/php	-d	variables_order=EGPCS	/var/www/html/artisan	octane:start	

--server=swoole	--host=0.0.0.0	--port=80"	#	[tl!	add]

Finally,	build	your	Sail	images:

./vendor/bin/sail	build	--no-cache

Swoole	Configuration

Swoole	supports	a	few	additional	configuration	options	that	you	may	add	to	your	octane	configuration	file	if
necessary.	Because	they	rarely	need	to	be	modified,	these	options	are	not	included	in	the	default	configuration
file:

'swoole'	=>	[

				'options'	=>	[

								'log_file'	=>	storage_path('logs/swoole_http.log'),

								'package_max_length'	=>	10	*	1024	*	1024,

],

],

Serving	Your	Application

The	Octane	server	can	be	started	via	the	octane:start	Artisan	command.	By	default,	this	command	will	utilize
the	server	specified	by	the	server	configuration	option	of	your	application's	octane	configuration	file:

php	artisan	octane:start

By	default,	Octane	will	start	the	server	on	port	8000,	so	you	may	access	your	application	in	a	web	browser	via	
http://localhost:8000.

Serving	Your	Application	via	HTTPS

By	default,	applications	running	via	Octane	generate	links	prefixed	with	http://.	The	OCTANE_HTTPS
environment	variable,	used	within	your	application's	config/octane.php	configuration	file,	can	be	set	to	true
when	serving	your	application	via	HTTPS.	When	this	configuration	value	is	set	to	true,	Octane	will	instruct
Laravel	to	prefix	all	generated	links	with	https://:

'https'	=>	env('OCTANE_HTTPS',	false),

Serving	Your	Application	via	Nginx

[!NOTE]
If	you	aren't	quite	ready	to	manage	your	own	server	configuration	or	aren't	comfortable	configuring	all	of
the	various	services	needed	to	run	a	robust	Laravel	Octane	application,	check	out	Laravel	Forge.

In	production	environments,	you	should	serve	your	Octane	application	behind	a	traditional	web	server	such	as
Nginx	or	Apache.	Doing	so	will	allow	the	web	server	to	serve	your	static	assets	such	as	images	and	stylesheets,
as	well	as	manage	your	SSL	certificate	termination.

In	the	Nginx	configuration	example	below,	Nginx	will	serve	the	site's	static	assets	and	proxy	requests	to	the

Laravel	Documentation	-	10.x	/	Octane 955

https://forge.laravel.com

Octane	server	that	is	running	on	port	8000:

map	$http_upgrade	$connection_upgrade	{

				default	upgrade;

				''						close;

}

server	{

				listen	80;

				listen	[::]:80;

				server_name	domain.com;

				server_tokens	off;

				root	/home/forge/domain.com/public;

				index	index.php;

				charset	utf-8;

				location	/index.php	{

								try_files	/not_exists	@octane;

				}

				location	/	{

								try_files	$uri	$uri/	@octane;

				}

				location	=	/favicon.ico	{	access_log	off;	log_not_found	off;	}

				location	=	/robots.txt		{	access_log	off;	log_not_found	off;	}

				access_log	off;

				error_log		/var/log/nginx/domain.com-error.log	error;

				error_page	404	/index.php;

				location	@octane	{

								set	$suffix	"";

								if	($uri	=	/index.php)	{

												set	$suffix	?$query_string;

								}

								proxy_http_version	1.1;

								proxy_set_header	Host	$http_host;

								proxy_set_header	Scheme	$scheme;

								proxy_set_header	SERVER_PORT	$server_port;

								proxy_set_header	REMOTE_ADDR	$remote_addr;

								proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;

								proxy_set_header	Upgrade	$http_upgrade;

								proxy_set_header	Connection	$connection_upgrade;

								proxy_pass	http://127.0.0.1:8000$suffix;

				}

}

Watching	for	File	Changes

Since	your	application	is	loaded	in	memory	once	when	the	Octane	server	starts,	any	changes	to	your
application's	files	will	not	be	reflected	when	you	refresh	your	browser.	For	example,	route	definitions	added	to
your	routes/web.php	file	will	not	be	reflected	until	the	server	is	restarted.	For	convenience,	you	may	use	the	--
watch	flag	to	instruct	Octane	to	automatically	restart	the	server	on	any	file	changes	within	your	application:

php	artisan	octane:start	--watch

Before	using	this	feature,	you	should	ensure	that	Node	is	installed	within	your	local	development	environment.
In	addition,	you	should	install	the	Chokidar	file-watching	library	within	your	project:

npm	install	--save-dev	chokidar

You	may	configure	the	directories	and	files	that	should	be	watched	using	the	watch	configuration	option	within
your	application's	config/octane.php	configuration	file.

Specifying	the	Worker	Count

Laravel	Documentation	-	10.x	/	Octane 956

https://nodejs.org
https://github.com/paulmillr/chokidar

By	default,	Octane	will	start	an	application	request	worker	for	each	CPU	core	provided	by	your	machine.	These
workers	will	then	be	used	to	serve	incoming	HTTP	requests	as	they	enter	your	application.	You	may	manually
specify	how	many	workers	you	would	like	to	start	using	the	--workers	option	when	invoking	the	octane:start
command:

php	artisan	octane:start	--workers=4

If	you	are	using	the	Swoole	application	server,	you	may	also	specify	how	many	"task	workers"	you	wish	to
start:

php	artisan	octane:start	--workers=4	--task-workers=6

Specifying	the	Max	Request	Count

To	help	prevent	stray	memory	leaks,	Octane	gracefully	restarts	any	worker	once	it	has	handled	500	requests.	To
adjust	this	number,	you	may	use	the	--max-requests	option:

php	artisan	octane:start	--max-requests=250

Reloading	the	Workers

You	may	gracefully	restart	the	Octane	server's	application	workers	using	the	octane:reload	command.
Typically,	this	should	be	done	after	deployment	so	that	your	newly	deployed	code	is	loaded	into	memory	and	is
used	to	serve	to	subsequent	requests:

php	artisan	octane:reload

Stopping	the	Server

You	may	stop	the	Octane	server	using	the	octane:stop	Artisan	command:

php	artisan	octane:stop

Checking	the	Server	Status

You	may	check	the	current	status	of	the	Octane	server	using	the	octane:status	Artisan	command:

php	artisan	octane:status

Dependency	Injection	and	Octane

Since	Octane	boots	your	application	once	and	keeps	it	in	memory	while	serving	requests,	there	are	a	few
caveats	you	should	consider	while	building	your	application.	For	example,	the	register	and	boot	methods	of
your	application's	service	providers	will	only	be	executed	once	when	the	request	worker	initially	boots.	On
subsequent	requests,	the	same	application	instance	will	be	reused.

In	light	of	this,	you	should	take	special	care	when	injecting	the	application	service	container	or	request	into	any
object's	constructor.	By	doing	so,	that	object	may	have	a	stale	version	of	the	container	or	request	on	subsequent
requests.

Octane	will	automatically	handle	resetting	any	first-party	framework	state	between	requests.	However,	Octane
does	not	always	know	how	to	reset	the	global	state	created	by	your	application.	Therefore,	you	should	be	aware
of	how	to	build	your	application	in	a	way	that	is	Octane	friendly.	Below,	we	will	discuss	the	most	common
situations	that	may	cause	problems	while	using	Octane.

Container	Injection

In	general,	you	should	avoid	injecting	the	application	service	container	or	HTTP	request	instance	into	the
constructors	of	other	objects.	For	example,	the	following	binding	injects	the	entire	application	service	container
into	an	object	that	is	bound	as	a	singleton:

Laravel	Documentation	-	10.x	/	Octane 957

use	App\Service;

use	Illuminate\Contracts\Foundation\Application;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->app->singleton(Service::class,	function	(Application	$app)	{

								return	new	Service($app);

				});

}

In	this	example,	if	the	Service	instance	is	resolved	during	the	application	boot	process,	the	container	will	be
injected	into	the	service	and	that	same	container	will	be	held	by	the	Service	instance	on	subsequent	requests.
This	may	not	be	a	problem	for	your	particular	application;	however,	it	can	lead	to	the	container	unexpectedly
missing	bindings	that	were	added	later	in	the	boot	cycle	or	by	a	subsequent	request.

As	a	work-around,	you	could	either	stop	registering	the	binding	as	a	singleton,	or	you	could	inject	a	container
resolver	closure	into	the	service	that	always	resolves	the	current	container	instance:

use	App\Service;

use	Illuminate\Container\Container;

use	Illuminate\Contracts\Foundation\Application;

$this->app->bind(Service::class,	function	(Application	$app)	{

				return	new	Service($app);

});

$this->app->singleton(Service::class,	function	()	{

				return	new	Service(fn	()	=>	Container::getInstance());

});

The	global	app	helper	and	the	Container::getInstance()	method	will	always	return	the	latest	version	of	the
application	container.

Request	Injection

In	general,	you	should	avoid	injecting	the	application	service	container	or	HTTP	request	instance	into	the
constructors	of	other	objects.	For	example,	the	following	binding	injects	the	entire	request	instance	into	an
object	that	is	bound	as	a	singleton:

use	App\Service;

use	Illuminate\Contracts\Foundation\Application;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->app->singleton(Service::class,	function	(Application	$app)	{

								return	new	Service($app['request']);

				});

}

In	this	example,	if	the	Service	instance	is	resolved	during	the	application	boot	process,	the	HTTP	request	will
be	injected	into	the	service	and	that	same	request	will	be	held	by	the	Service	instance	on	subsequent	requests.
Therefore,	all	headers,	input,	and	query	string	data	will	be	incorrect,	as	well	as	all	other	request	data.

As	a	work-around,	you	could	either	stop	registering	the	binding	as	a	singleton,	or	you	could	inject	a	request
resolver	closure	into	the	service	that	always	resolves	the	current	request	instance.	Or,	the	most	recommended
approach	is	simply	to	pass	the	specific	request	information	your	object	needs	to	one	of	the	object's	methods	at
runtime:

use	App\Service;

use	Illuminate\Contracts\Foundation\Application;

$this->app->bind(Service::class,	function	(Application	$app)	{

				return	new	Service($app['request']);

});

$this->app->singleton(Service::class,	function	(Application	$app)	{

Laravel	Documentation	-	10.x	/	Octane 958

				return	new	Service(fn	()	=>	$app['request']);

});

//	Or...

$service->method($request->input('name'));

The	global	request	helper	will	always	return	the	request	the	application	is	currently	handling	and	is	therefore
safe	to	use	within	your	application.

[!WARNING]
It	is	acceptable	to	type-hint	the	Illuminate\Http\Request	instance	on	your	controller	methods	and	route
closures.

Configuration	Repository	Injection

In	general,	you	should	avoid	injecting	the	configuration	repository	instance	into	the	constructors	of	other
objects.	For	example,	the	following	binding	injects	the	configuration	repository	into	an	object	that	is	bound	as	a
singleton:

use	App\Service;

use	Illuminate\Contracts\Foundation\Application;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->app->singleton(Service::class,	function	(Application	$app)	{

								return	new	Service($app->make('config'));

				});

}

In	this	example,	if	the	configuration	values	change	between	requests,	that	service	will	not	have	access	to	the
new	values	because	it's	depending	on	the	original	repository	instance.

As	a	work-around,	you	could	either	stop	registering	the	binding	as	a	singleton,	or	you	could	inject	a
configuration	repository	resolver	closure	to	the	class:

use	App\Service;

use	Illuminate\Container\Container;

use	Illuminate\Contracts\Foundation\Application;

$this->app->bind(Service::class,	function	(Application	$app)	{

				return	new	Service($app->make('config'));

});

$this->app->singleton(Service::class,	function	()	{

				return	new	Service(fn	()	=>	Container::getInstance()->make('config'));

});

The	global	config	will	always	return	the	latest	version	of	the	configuration	repository	and	is	therefore	safe	to
use	within	your	application.

Managing	Memory	Leaks

Remember,	Octane	keeps	your	application	in	memory	between	requests;	therefore,	adding	data	to	a	statically
maintained	array	will	result	in	a	memory	leak.	For	example,	the	following	controller	has	a	memory	leak	since
each	request	to	the	application	will	continue	to	add	data	to	the	static	$data	array:

use	App\Service;

use	Illuminate\Http\Request;

use	Illuminate\Support\Str;

/**

	*	Handle	an	incoming	request.

	*/

public	function	index(Request	$request):	array

{

				Service::$data[]	=	Str::random(10);

Laravel	Documentation	-	10.x	/	Octane 959

				return	[

								//	...

];

}

While	building	your	application,	you	should	take	special	care	to	avoid	creating	these	types	of	memory	leaks.	It
is	recommended	that	you	monitor	your	application's	memory	usage	during	local	development	to	ensure	you	are
not	introducing	new	memory	leaks	into	your	application.

Concurrent	Tasks

[!WARNING]
This	feature	requires	Swoole.

When	using	Swoole,	you	may	execute	operations	concurrently	via	light-weight	background	tasks.	You	may
accomplish	this	using	Octane's	concurrently	method.	You	may	combine	this	method	with	PHP	array
destructuring	to	retrieve	the	results	of	each	operation:

use	App\Models\User;

use	App\Models\Server;

use	Laravel\Octane\Facades\Octane;

[$users,	$servers]	=	Octane::concurrently([

				fn	()	=>	User::all(),

				fn	()	=>	Server::all(),

]);

Concurrent	tasks	processed	by	Octane	utilize	Swoole's	"task	workers",	and	execute	within	an	entirely	different
process	than	the	incoming	request.	The	amount	of	workers	available	to	process	concurrent	tasks	is	determined
by	the	--task-workers	directive	on	the	octane:start	command:

php	artisan	octane:start	--workers=4	--task-workers=6

When	invoking	the	concurrently	method,	you	should	not	provide	more	than	1024	tasks	due	to	limitations
imposed	by	Swoole's	task	system.

Ticks	and	Intervals

[!WARNING]
This	feature	requires	Swoole.

When	using	Swoole,	you	may	register	"tick"	operations	that	will	be	executed	every	specified	number	of
seconds.	You	may	register	"tick"	callbacks	via	the	tick	method.	The	first	argument	provided	to	the	tick	method
should	be	a	string	that	represents	the	name	of	the	ticker.	The	second	argument	should	be	a	callable	that	will	be
invoked	at	the	specified	interval.

In	this	example,	we	will	register	a	closure	to	be	invoked	every	10	seconds.	Typically,	the	tick	method	should	be
called	within	the	boot	method	of	one	of	your	application's	service	providers:

Octane::tick('simple-ticker',	fn	()	=>	ray('Ticking...'))

								->seconds(10);

Using	the	immediate	method,	you	may	instruct	Octane	to	immediately	invoke	the	tick	callback	when	the	Octane
server	initially	boots,	and	every	N	seconds	thereafter:

Octane::tick('simple-ticker',	fn	()	=>	ray('Ticking...'))

								->seconds(10)

								->immediate();

The	Octane	Cache

[!WARNING]
This	feature	requires	Swoole.

When	using	Swoole,	you	may	leverage	the	Octane	cache	driver,	which	provides	read	and	write	speeds	of	up	to

Laravel	Documentation	-	10.x	/	Octane 960

2	million	operations	per	second.	Therefore,	this	cache	driver	is	an	excellent	choice	for	applications	that	need
extreme	read	/	write	speeds	from	their	caching	layer.

This	cache	driver	is	powered	by	Swoole	tables.	All	data	stored	in	the	cache	is	available	to	all	workers	on	the
server.	However,	the	cached	data	will	be	flushed	when	the	server	is	restarted:

Cache::store('octane')->put('framework',	'Laravel',	30);

[!NOTE]
The	maximum	number	of	entries	allowed	in	the	Octane	cache	may	be	defined	in	your	application's	octane
configuration	file.

Cache	Intervals

In	addition	to	the	typical	methods	provided	by	Laravel's	cache	system,	the	Octane	cache	driver	features	interval
based	caches.	These	caches	are	automatically	refreshed	at	the	specified	interval	and	should	be	registered	within
the	boot	method	of	one	of	your	application's	service	providers.	For	example,	the	following	cache	will	be
refreshed	every	five	seconds:

use	Illuminate\Support\Str;

Cache::store('octane')->interval('random',	function	()	{

				return	Str::random(10);

},	seconds:	5);

Tables

[!WARNING]
This	feature	requires	Swoole.

When	using	Swoole,	you	may	define	and	interact	with	your	own	arbitrary	Swoole	tables.	Swoole	tables	provide
extreme	performance	throughput	and	the	data	in	these	tables	can	be	accessed	by	all	workers	on	the	server.
However,	the	data	within	them	will	be	lost	when	the	server	is	restarted.

Tables	should	be	defined	within	the	tables	configuration	array	of	your	application's	octane	configuration	file.
An	example	table	that	allows	a	maximum	of	1000	rows	is	already	configured	for	you.	The	maximum	size	of
string	columns	may	be	configured	by	specifying	the	column	size	after	the	column	type	as	seen	below:

'tables'	=>	[

				'example:1000'	=>	[

								'name'	=>	'string:1000',

								'votes'	=>	'int',

],

],

To	access	a	table,	you	may	use	the	Octane::table	method:

use	Laravel\Octane\Facades\Octane;

Octane::table('example')->set('uuid',	[

				'name'	=>	'Nuno	Maduro',

				'votes'	=>	1000,

]);

return	Octane::table('example')->get('uuid');

[!WARNING]
The	column	types	supported	by	Swoole	tables	are:	string,	int,	and	float.

Laravel	Documentation	-	10.x	/	Octane 961

https://www.swoole.co.uk/docs/modules/swoole-table
https://www.swoole.co.uk/docs/modules/swoole-table

Packages

Laravel	Passport
Introduction

Passport	or	Sanctum?
Installation

Deploying	Passport
Migration	Customization
Upgrading	Passport

Configuration
Client	Secret	Hashing
Token	Lifetimes
Overriding	Default	Models
Overriding	Routes

Issuing	Access	Tokens
Managing	Clients
Requesting	Tokens
Refreshing	Tokens
Revoking	Tokens
Purging	Tokens

Authorization	Code	Grant	With	PKCE
Creating	the	Client
Requesting	Tokens

Password	Grant	Tokens
Creating	a	Password	Grant	Client
Requesting	Tokens
Requesting	All	Scopes
Customizing	the	User	Provider
Customizing	the	Username	Field
Customizing	the	Password	Validation

Implicit	Grant	Tokens
Client	Credentials	Grant	Tokens
Personal	Access	Tokens

Creating	a	Personal	Access	Client
Managing	Personal	Access	Tokens

Protecting	Routes
Via	Middleware
Passing	the	Access	Token

Token	Scopes
Defining	Scopes
Default	Scope
Assigning	Scopes	to	Tokens
Checking	Scopes

Consuming	Your	API	With	JavaScript
Events
Testing

Introduction

Laravel	Passport	provides	a	full	OAuth2	server	implementation	for	your	Laravel	application	in	a	matter	of
minutes.	Passport	is	built	on	top	of	the	League	OAuth2	server	that	is	maintained	by	Andy	Millington	and
Simon	Hamp.

[!WARNING]
This	documentation	assumes	you	are	already	familiar	with	OAuth2.	If	you	do	not	know	anything	about
OAuth2,	consider	familiarizing	yourself	with	the	general	terminology	and	features	of	OAuth2	before
continuing.

Laravel	Documentation	-	10.x	/	Passport 962

https://github.com/laravel/passport
https://github.com/thephpleague/oauth2-server
https://oauth2.thephpleague.com/terminology/

Passport	or	Sanctum?

Before	getting	started,	you	may	wish	to	determine	if	your	application	would	be	better	served	by	Laravel
Passport	or	Laravel	Sanctum.	If	your	application	absolutely	needs	to	support	OAuth2,	then	you	should	use
Laravel	Passport.

However,	if	you	are	attempting	to	authenticate	a	single-page	application,	mobile	application,	or	issue	API
tokens,	you	should	use	Laravel	Sanctum.	Laravel	Sanctum	does	not	support	OAuth2;	however,	it	provides	a
much	simpler	API	authentication	development	experience.

Installation

To	get	started,	install	Passport	via	the	Composer	package	manager:

composer	require	laravel/passport

Passport's	service	provider	registers	its	own	database	migration	directory,	so	you	should	migrate	your	database
after	installing	the	package.	The	Passport	migrations	will	create	the	tables	your	application	needs	to	store
OAuth2	clients	and	access	tokens:

php	artisan	migrate

Next,	you	should	execute	the	passport:install	Artisan	command.	This	command	will	create	the	encryption
keys	needed	to	generate	secure	access	tokens.	In	addition,	the	command	will	create	"personal	access"	and
"password	grant"	clients	which	will	be	used	to	generate	access	tokens:

php	artisan	passport:install

[!NOTE]
If	you	would	like	to	use	UUIDs	as	the	primary	key	value	of	the	Passport	Client	model	instead	of	auto-
incrementing	integers,	please	install	Passport	using	the	uuids	option.

After	running	the	passport:install	command,	add	the	Laravel\Passport\HasApiTokens	trait	to	your	
App\Models\User	model.	This	trait	will	provide	a	few	helper	methods	to	your	model	which	allow	you	to	inspect
the	authenticated	user's	token	and	scopes.	If	your	model	is	already	using	the	Laravel\Sanctum\HasApiTokens	trait,
you	may	remove	that	trait:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Factories\HasFactory;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	HasFactory,	Notifiable;

}

Finally,	in	your	application's	config/auth.php	configuration	file,	you	should	define	an	api	authentication	guard
and	set	the	driver	option	to	passport.	This	will	instruct	your	application	to	use	Passport's	TokenGuard	when
authenticating	incoming	API	requests:

'guards'	=>	[

				'web'	=>	[

								'driver'	=>	'session',

								'provider'	=>	'users',

],

				'api'	=>	[

								'driver'	=>	'passport',

								'provider'	=>	'users',

],

],

Client	UUIDs

Laravel	Documentation	-	10.x	/	Passport 963

You	may	also	run	the	passport:install	command	with	the	--uuids	option	present.	This	option	will	instruct
Passport	that	you	would	like	to	use	UUIDs	instead	of	auto-incrementing	integers	as	the	Passport	Client	model's
primary	key	values.	After	running	the	passport:install	command	with	the	--uuids	option,	you	will	be	given
additional	instructions	regarding	disabling	Passport's	default	migrations:

php	artisan	passport:install	--uuids

Deploying	Passport

When	deploying	Passport	to	your	application's	servers	for	the	first	time,	you	will	likely	need	to	run	the	
passport:keys	command.	This	command	generates	the	encryption	keys	Passport	needs	in	order	to	generate
access	tokens.	The	generated	keys	are	not	typically	kept	in	source	control:

php	artisan	passport:keys

If	necessary,	you	may	define	the	path	where	Passport's	keys	should	be	loaded	from.	You	may	use	the	
Passport::loadKeysFrom	method	to	accomplish	this.	Typically,	this	method	should	be	called	from	the	boot
method	of	your	application's	App\Providers\AuthServiceProvider	class:

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::loadKeysFrom(__DIR__.'/../secrets/oauth');

}

Loading	Keys	From	the	Environment

Alternatively,	you	may	publish	Passport's	configuration	file	using	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag=passport-config

After	the	configuration	file	has	been	published,	you	may	load	your	application's	encryption	keys	by	defining
them	as	environment	variables:

PASSPORT_PRIVATE_KEY="-----BEGIN	RSA	PRIVATE	KEY-----

<private	key	here>

-----END	RSA	PRIVATE	KEY-----"

PASSPORT_PUBLIC_KEY="-----BEGIN	PUBLIC	KEY-----

<public	key	here>

-----END	PUBLIC	KEY-----"

Migration	Customization

If	you	are	not	going	to	use	Passport's	default	migrations,	you	should	call	the	Passport::ignoreMigrations
method	in	the	register	method	of	your	App\Providers\AppServiceProvider	class.	You	may	export	the	default
migrations	using	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag=passport-migrations

Upgrading	Passport

When	upgrading	to	a	new	major	version	of	Passport,	it's	important	that	you	carefully	review	the	upgrade	guide.

Configuration

Client	Secret	Hashing

If	you	would	like	your	client's	secrets	to	be	hashed	when	stored	in	your	database,	you	should	call	the	
Passport::hashClientSecrets	method	in	the	boot	method	of	your	App\Providers\AuthServiceProvider	class:

use	Laravel\Passport\Passport;

Laravel	Documentation	-	10.x	/	Passport 964

https://github.com/laravel/passport/blob/master/UPGRADE.md

Passport::hashClientSecrets();

Once	enabled,	all	of	your	client	secrets	will	only	be	displayable	to	the	user	immediately	after	they	are	created.
Since	the	plain-text	client	secret	value	is	never	stored	in	the	database,	it	is	not	possible	to	recover	the	secret's
value	if	it	is	lost.

Token	Lifetimes

By	default,	Passport	issues	long-lived	access	tokens	that	expire	after	one	year.	If	you	would	like	to	configure	a
longer	/	shorter	token	lifetime,	you	may	use	the	tokensExpireIn,	refreshTokensExpireIn,	and	
personalAccessTokensExpireIn	methods.	These	methods	should	be	called	from	the	boot	method	of	your
application's	App\Providers\AuthServiceProvider	class:

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::tokensExpireIn(now()->addDays(15));

				Passport::refreshTokensExpireIn(now()->addDays(30));

				Passport::personalAccessTokensExpireIn(now()->addMonths(6));

}

[!WARNING]
The	expires_at	columns	on	Passport's	database	tables	are	read-only	and	for	display	purposes	only.	When
issuing	tokens,	Passport	stores	the	expiration	information	within	the	signed	and	encrypted	tokens.	If	you
need	to	invalidate	a	token	you	should	revoke	it.

Overriding	Default	Models

You	are	free	to	extend	the	models	used	internally	by	Passport	by	defining	your	own	model	and	extending	the
corresponding	Passport	model:

use	Laravel\Passport\Client	as	PassportClient;

class	Client	extends	PassportClient

{

				//	...

}

After	defining	your	model,	you	may	instruct	Passport	to	use	your	custom	model	via	the	
Laravel\Passport\Passport	class.	Typically,	you	should	inform	Passport	about	your	custom	models	in	the	boot
method	of	your	application's	App\Providers\AuthServiceProvider	class:

use	App\Models\Passport\AuthCode;

use	App\Models\Passport\Client;

use	App\Models\Passport\PersonalAccessClient;

use	App\Models\Passport\RefreshToken;

use	App\Models\Passport\Token;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::useTokenModel(Token::class);

				Passport::useRefreshTokenModel(RefreshToken::class);

				Passport::useAuthCodeModel(AuthCode::class);

				Passport::useClientModel(Client::class);

				Passport::usePersonalAccessClientModel(PersonalAccessClient::class);

}

Overriding	Routes

Sometimes	you	may	wish	to	customize	the	routes	defined	by	Passport.	To	achieve	this,	you	first	need	to	ignore
the	routes	registered	by	Passport	by	adding	Passport::ignoreRoutes	to	the	register	method	of	your	application's
AppServiceProvider:

Laravel	Documentation	-	10.x	/	Passport 965

use	Laravel\Passport\Passport;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				Passport::ignoreRoutes();

}

Then,	you	may	copy	the	routes	defined	by	Passport	in	its	routes	file	to	your	application's	routes/web.php	file
and	modify	them	to	your	liking:

Route::group([

				'as'	=>	'passport.',

				'prefix'	=>	config('passport.path',	'oauth'),

				'namespace'	=>	'\Laravel\Passport\Http\Controllers',

],	function	()	{

				//	Passport	routes...

});

Issuing	Access	Tokens

Using	OAuth2	via	authorization	codes	is	how	most	developers	are	familiar	with	OAuth2.	When	using
authorization	codes,	a	client	application	will	redirect	a	user	to	your	server	where	they	will	either	approve	or
deny	the	request	to	issue	an	access	token	to	the	client.

Managing	Clients

First,	developers	building	applications	that	need	to	interact	with	your	application's	API	will	need	to	register
their	application	with	yours	by	creating	a	"client".	Typically,	this	consists	of	providing	the	name	of	their
application	and	a	URL	that	your	application	can	redirect	to	after	users	approve	their	request	for	authorization.

The	passport:client	Command

The	simplest	way	to	create	a	client	is	using	the	passport:client	Artisan	command.	This	command	may	be	used
to	create	your	own	clients	for	testing	your	OAuth2	functionality.	When	you	run	the	client	command,	Passport
will	prompt	you	for	more	information	about	your	client	and	will	provide	you	with	a	client	ID	and	secret:

php	artisan	passport:client

Redirect	URLs

If	you	would	like	to	allow	multiple	redirect	URLs	for	your	client,	you	may	specify	them	using	a	comma-
delimited	list	when	prompted	for	the	URL	by	the	passport:client	command.	Any	URLs	which	contain	commas
should	be	URL	encoded:

http://example.com/callback,http://examplefoo.com/callback

JSON	API

Since	your	application's	users	will	not	be	able	to	utilize	the	client	command,	Passport	provides	a	JSON	API
that	you	may	use	to	create	clients.	This	saves	you	the	trouble	of	having	to	manually	code	controllers	for
creating,	updating,	and	deleting	clients.

However,	you	will	need	to	pair	Passport's	JSON	API	with	your	own	frontend	to	provide	a	dashboard	for	your
users	to	manage	their	clients.	Below,	we'll	review	all	of	the	API	endpoints	for	managing	clients.	For
convenience,	we'll	use	Axios	to	demonstrate	making	HTTP	requests	to	the	endpoints.

The	JSON	API	is	guarded	by	the	web	and	auth	middleware;	therefore,	it	may	only	be	called	from	your	own
application.	It	is	not	able	to	be	called	from	an	external	source.

GET	/oauth/clients

This	route	returns	all	of	the	clients	for	the	authenticated	user.	This	is	primarily	useful	for	listing	all	of	the	user's

Laravel	Documentation	-	10.x	/	Passport 966

https://github.com/laravel/passport/blob/11.x/routes/web.php
https://github.com/axios/axios

clients	so	that	they	may	edit	or	delete	them:

axios.get('/oauth/clients')

				.then(response	=>	{

								console.log(response.data);

				});

POST	/oauth/clients

This	route	is	used	to	create	new	clients.	It	requires	two	pieces	of	data:	the	client's	name	and	a	redirect	URL.	The
redirect	URL	is	where	the	user	will	be	redirected	after	approving	or	denying	a	request	for	authorization.

When	a	client	is	created,	it	will	be	issued	a	client	ID	and	client	secret.	These	values	will	be	used	when
requesting	access	tokens	from	your	application.	The	client	creation	route	will	return	the	new	client	instance:

const	data	=	{

				name:	'Client	Name',

				redirect:	'http://example.com/callback'

};

axios.post('/oauth/clients',	data)

				.then(response	=>	{

								console.log(response.data);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

PUT	/oauth/clients/{client-id}

This	route	is	used	to	update	clients.	It	requires	two	pieces	of	data:	the	client's	name	and	a	redirect	URL.	The	
redirect	URL	is	where	the	user	will	be	redirected	after	approving	or	denying	a	request	for	authorization.	The
route	will	return	the	updated	client	instance:

const	data	=	{

				name:	'New	Client	Name',

				redirect:	'http://example.com/callback'

};

axios.put('/oauth/clients/'	+	clientId,	data)

				.then(response	=>	{

								console.log(response.data);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

DELETE	/oauth/clients/{client-id}

This	route	is	used	to	delete	clients:

axios.delete('/oauth/clients/'	+	clientId)

				.then(response	=>	{

								//	...

				});

Requesting	Tokens

Redirecting	for	Authorization

Once	a	client	has	been	created,	developers	may	use	their	client	ID	and	secret	to	request	an	authorization	code
and	access	token	from	your	application.	First,	the	consuming	application	should	make	a	redirect	request	to	your
application's	/oauth/authorize	route	like	so:

use	Illuminate\Http\Request;

use	Illuminate\Support\Str;

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

Laravel	Documentation	-	10.x	/	Passport 967

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://third-party-app.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'',

								'state'	=>	$state,

								//	'prompt'	=>	'',	//	"none",	"consent",	or	"login"

]);

				return	redirect('http://passport-app.test/oauth/authorize?'.$query);

});

The	prompt	parameter	may	be	used	to	specify	the	authentication	behavior	of	the	Passport	application.

If	the	prompt	value	is	none,	Passport	will	always	throw	an	authentication	error	if	the	user	is	not	already
authenticated	with	the	Passport	application.	If	the	value	is	consent,	Passport	will	always	display	the
authorization	approval	screen,	even	if	all	scopes	were	previously	granted	to	the	consuming	application.	When
the	value	is	login,	the	Passport	application	will	always	prompt	the	user	to	re-login	to	the	application,	even	if
they	already	have	an	existing	session.

If	no	prompt	value	is	provided,	the	user	will	be	prompted	for	authorization	only	if	they	have	not	previously
authorized	access	to	the	consuming	application	for	the	requested	scopes.

[!NOTE]
Remember,	the	/oauth/authorize	route	is	already	defined	by	Passport.	You	do	not	need	to	manually	define
this	route.

Approving	the	Request

When	receiving	authorization	requests,	Passport	will	automatically	respond	based	on	the	value	of	prompt
parameter	(if	present)	and	may	display	a	template	to	the	user	allowing	them	to	approve	or	deny	the
authorization	request.	If	they	approve	the	request,	they	will	be	redirected	back	to	the	redirect_uri	that	was
specified	by	the	consuming	application.	The	redirect_uri	must	match	the	redirect	URL	that	was	specified
when	the	client	was	created.

If	you	would	like	to	customize	the	authorization	approval	screen,	you	may	publish	Passport's	views	using	the	
vendor:publish	Artisan	command.	The	published	views	will	be	placed	in	the	resources/views/vendor/passport
directory:

php	artisan	vendor:publish	--tag=passport-views

Sometimes	you	may	wish	to	skip	the	authorization	prompt,	such	as	when	authorizing	a	first-party	client.	You
may	accomplish	this	by	extending	the	Client	model	and	defining	a	skipsAuthorization	method.	If	
skipsAuthorization	returns	true	the	client	will	be	approved	and	the	user	will	be	redirected	back	to	the	
redirect_uri	immediately,	unless	the	consuming	application	has	explicitly	set	the	prompt	parameter	when
redirecting	for	authorization:

<?php

namespace	App\Models\Passport;

use	Laravel\Passport\Client	as	BaseClient;

class	Client	extends	BaseClient

{

				/**

					*	Determine	if	the	client	should	skip	the	authorization	prompt.

					*/

				public	function	skipsAuthorization():	bool

				{

								return	$this->firstParty();

				}

}

Converting	Authorization	Codes	to	Access	Tokens

If	the	user	approves	the	authorization	request,	they	will	be	redirected	back	to	the	consuming	application.	The
consumer	should	first	verify	the	state	parameter	against	the	value	that	was	stored	prior	to	the	redirect.	If	the

Laravel	Documentation	-	10.x	/	Passport 968

state	parameter	matches	then	the	consumer	should	issue	a	POST	request	to	your	application	to	request	an	access
token.	The	request	should	include	the	authorization	code	that	was	issued	by	your	application	when	the	user
approved	the	authorization	request:

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Http;

Route::get('/callback',	function	(Request	$request)	{

				$state	=	$request->session()->pull('state');

				throw_unless(

								strlen($state)	>	0	&&	$state	===	$request->state,

								InvalidArgumentException::class,

								'Invalid	state	value.'

);

				$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

								'grant_type'	=>	'authorization_code',

								'client_id'	=>	'client-id',

								'client_secret'	=>	'client-secret',

								'redirect_uri'	=>	'http://third-party-app.com/callback',

								'code'	=>	$request->code,

]);

				return	$response->json();

});

This	/oauth/token	route	will	return	a	JSON	response	containing	access_token,	refresh_token,	and	expires_in
attributes.	The	expires_in	attribute	contains	the	number	of	seconds	until	the	access	token	expires.

[!NOTE]
Like	the	/oauth/authorize	route,	the	/oauth/token	route	is	defined	for	you	by	Passport.	There	is	no	need	to
manually	define	this	route.

JSON	API

Passport	also	includes	a	JSON	API	for	managing	authorized	access	tokens.	You	may	pair	this	with	your	own
frontend	to	offer	your	users	a	dashboard	for	managing	access	tokens.	For	convenience,	we'll	use	Axios	to
demonstrate	making	HTTP	requests	to	the	endpoints.	The	JSON	API	is	guarded	by	the	web	and	auth
middleware;	therefore,	it	may	only	be	called	from	your	own	application.

GET	/oauth/tokens

This	route	returns	all	of	the	authorized	access	tokens	that	the	authenticated	user	has	created.	This	is	primarily
useful	for	listing	all	of	the	user's	tokens	so	that	they	can	revoke	them:

axios.get('/oauth/tokens')

				.then(response	=>	{

								console.log(response.data);

				});

DELETE	/oauth/tokens/{token-id}

This	route	may	be	used	to	revoke	authorized	access	tokens	and	their	related	refresh	tokens:

axios.delete('/oauth/tokens/'	+	tokenId);

Refreshing	Tokens

If	your	application	issues	short-lived	access	tokens,	users	will	need	to	refresh	their	access	tokens	via	the	refresh
token	that	was	provided	to	them	when	the	access	token	was	issued:

use	Illuminate\Support\Facades\Http;

$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

				'grant_type'	=>	'refresh_token',

				'refresh_token'	=>	'the-refresh-token',

				'client_id'	=>	'client-id',

				'client_secret'	=>	'client-secret',

Laravel	Documentation	-	10.x	/	Passport 969

https://github.com/mzabriskie/axios

				'scope'	=>	'',

]);

return	$response->json();

This	/oauth/token	route	will	return	a	JSON	response	containing	access_token,	refresh_token,	and	expires_in
attributes.	The	expires_in	attribute	contains	the	number	of	seconds	until	the	access	token	expires.

Revoking	Tokens

You	may	revoke	a	token	by	using	the	revokeAccessToken	method	on	the	Laravel\Passport\TokenRepository.	You
may	revoke	a	token's	refresh	tokens	using	the	revokeRefreshTokensByAccessTokenId	method	on	the	
Laravel\Passport\RefreshTokenRepository.	These	classes	may	be	resolved	using	Laravel's	service	container:

use	Laravel\Passport\TokenRepository;

use	Laravel\Passport\RefreshTokenRepository;

$tokenRepository	=	app(TokenRepository::class);

$refreshTokenRepository	=	app(RefreshTokenRepository::class);

//	Revoke	an	access	token...

$tokenRepository->revokeAccessToken($tokenId);

//	Revoke	all	of	the	token's	refresh	tokens...

$refreshTokenRepository->revokeRefreshTokensByAccessTokenId($tokenId);

Purging	Tokens

When	tokens	have	been	revoked	or	expired,	you	might	want	to	purge	them	from	the	database.	Passport's
included	passport:purge	Artisan	command	can	do	this	for	you:

#	Purge	revoked	and	expired	tokens	and	auth	codes...

php	artisan	passport:purge

#	Only	purge	tokens	expired	for	more	than	6	hours...

php	artisan	passport:purge	--hours=6

#	Only	purge	revoked	tokens	and	auth	codes...

php	artisan	passport:purge	--revoked

#	Only	purge	expired	tokens	and	auth	codes...

php	artisan	passport:purge	--expired

You	may	also	configure	a	scheduled	job	in	your	application's	App\Console\Kernel	class	to	automatically	prune
your	tokens	on	a	schedule:

/**

	*	Define	the	application's	command	schedule.

	*/

protected	function	schedule(Schedule	$schedule):	void

{

				$schedule->command('passport:purge')->hourly();

}

Authorization	Code	Grant	With	PKCE

The	Authorization	Code	grant	with	"Proof	Key	for	Code	Exchange"	(PKCE)	is	a	secure	way	to	authenticate
single	page	applications	or	native	applications	to	access	your	API.	This	grant	should	be	used	when	you	can't
guarantee	that	the	client	secret	will	be	stored	confidentially	or	in	order	to	mitigate	the	threat	of	having	the
authorization	code	intercepted	by	an	attacker.	A	combination	of	a	"code	verifier"	and	a	"code	challenge"
replaces	the	client	secret	when	exchanging	the	authorization	code	for	an	access	token.

Creating	the	Client

Before	your	application	can	issue	tokens	via	the	authorization	code	grant	with	PKCE,	you	will	need	to	create	a
PKCE-enabled	client.	You	may	do	this	using	the	passport:client	Artisan	command	with	the	--public	option:

php	artisan	passport:client	--public

Laravel	Documentation	-	10.x	/	Passport 970

Requesting	Tokens

Code	Verifier	and	Code	Challenge

As	this	authorization	grant	does	not	provide	a	client	secret,	developers	will	need	to	generate	a	combination	of	a
code	verifier	and	a	code	challenge	in	order	to	request	a	token.

The	code	verifier	should	be	a	random	string	of	between	43	and	128	characters	containing	letters,	numbers,	and
"-",	".",	"_",	"~"	characters,	as	defined	in	the	RFC	7636	specification.

The	code	challenge	should	be	a	Base64	encoded	string	with	URL	and	filename-safe	characters.	The	trailing	'='
characters	should	be	removed	and	no	line	breaks,	whitespace,	or	other	additional	characters	should	be	present.

$encoded	=	base64_encode(hash('sha256',	$code_verifier,	true));

$codeChallenge	=	strtr(rtrim($encoded,	'='),	'+/',	'-_');

Redirecting	for	Authorization

Once	a	client	has	been	created,	you	may	use	the	client	ID	and	the	generated	code	verifier	and	code	challenge	to
request	an	authorization	code	and	access	token	from	your	application.	First,	the	consuming	application	should
make	a	redirect	request	to	your	application's	/oauth/authorize	route:

use	Illuminate\Http\Request;

use	Illuminate\Support\Str;

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

				$request->session()->put(

								'code_verifier',	$code_verifier	=	Str::random(128)

);

				$codeChallenge	=	strtr(rtrim(

								base64_encode(hash('sha256',	$code_verifier,	true))

				,	'='),	'+/',	'-_');

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://third-party-app.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'',

								'state'	=>	$state,

								'code_challenge'	=>	$codeChallenge,

								'code_challenge_method'	=>	'S256',

								//	'prompt'	=>	'',	//	"none",	"consent",	or	"login"

]);

				return	redirect('http://passport-app.test/oauth/authorize?'.$query);

});

Converting	Authorization	Codes	to	Access	Tokens

If	the	user	approves	the	authorization	request,	they	will	be	redirected	back	to	the	consuming	application.	The
consumer	should	verify	the	state	parameter	against	the	value	that	was	stored	prior	to	the	redirect,	as	in	the
standard	Authorization	Code	Grant.

If	the	state	parameter	matches,	the	consumer	should	issue	a	POST	request	to	your	application	to	request	an	access
token.	The	request	should	include	the	authorization	code	that	was	issued	by	your	application	when	the	user
approved	the	authorization	request	along	with	the	originally	generated	code	verifier:

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Http;

Route::get('/callback',	function	(Request	$request)	{

				$state	=	$request->session()->pull('state');

				$codeVerifier	=	$request->session()->pull('code_verifier');

				throw_unless(

Laravel	Documentation	-	10.x	/	Passport 971

https://tools.ietf.org/html/rfc7636

								strlen($state)	>	0	&&	$state	===	$request->state,

								InvalidArgumentException::class

);

				$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

								'grant_type'	=>	'authorization_code',

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://third-party-app.com/callback',

								'code_verifier'	=>	$codeVerifier,

								'code'	=>	$request->code,

]);

				return	$response->json();

});

Password	Grant	Tokens

[!WARNING]
We	no	longer	recommend	using	password	grant	tokens.	Instead,	you	should	choose	a	grant	type	that	is
currently	recommended	by	OAuth2	Server.

The	OAuth2	password	grant	allows	your	other	first-party	clients,	such	as	a	mobile	application,	to	obtain	an
access	token	using	an	email	address	/	username	and	password.	This	allows	you	to	issue	access	tokens	securely
to	your	first-party	clients	without	requiring	your	users	to	go	through	the	entire	OAuth2	authorization	code
redirect	flow.

Creating	a	Password	Grant	Client

Before	your	application	can	issue	tokens	via	the	password	grant,	you	will	need	to	create	a	password	grant
client.	You	may	do	this	using	the	passport:client	Artisan	command	with	the	--password	option.	If	you	have
already	run	the	passport:install	command,	you	do	not	need	to	run	this	command:

php	artisan	passport:client	--password

Requesting	Tokens

Once	you	have	created	a	password	grant	client,	you	may	request	an	access	token	by	issuing	a	POST	request	to
the	/oauth/token	route	with	the	user's	email	address	and	password.	Remember,	this	route	is	already	registered
by	Passport	so	there	is	no	need	to	define	it	manually.	If	the	request	is	successful,	you	will	receive	an	
access_token	and	refresh_token	in	the	JSON	response	from	the	server:

use	Illuminate\Support\Facades\Http;

$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

				'grant_type'	=>	'password',

				'client_id'	=>	'client-id',

				'client_secret'	=>	'client-secret',

				'username'	=>	'taylor@laravel.com',

				'password'	=>	'my-password',

				'scope'	=>	'',

]);

return	$response->json();

[!NOTE]
Remember,	access	tokens	are	long-lived	by	default.	However,	you	are	free	to	configure	your	maximum
access	token	lifetime	if	needed.

Requesting	All	Scopes

When	using	the	password	grant	or	client	credentials	grant,	you	may	wish	to	authorize	the	token	for	all	of	the
scopes	supported	by	your	application.	You	can	do	this	by	requesting	the	*	scope.	If	you	request	the	*	scope,	the	
can	method	on	the	token	instance	will	always	return	true.	This	scope	may	only	be	assigned	to	a	token	that	is
issued	using	the	password	or	client_credentials	grant:

use	Illuminate\Support\Facades\Http;

Laravel	Documentation	-	10.x	/	Passport 972

https://oauth2.thephpleague.com/authorization-server/which-grant/

$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

				'grant_type'	=>	'password',

				'client_id'	=>	'client-id',

				'client_secret'	=>	'client-secret',

				'username'	=>	'taylor@laravel.com',

				'password'	=>	'my-password',

				'scope'	=>	'*',

]);

Customizing	the	User	Provider

If	your	application	uses	more	than	one	authentication	user	provider,	you	may	specify	which	user	provider	the
password	grant	client	uses	by	providing	a	--provider	option	when	creating	the	client	via	the	artisan	
passport:client	--password	command.	The	given	provider	name	should	match	a	valid	provider	defined	in	your
application's	config/auth.php	configuration	file.	You	can	then	protect	your	route	using	middleware	to	ensure
that	only	users	from	the	guard's	specified	provider	are	authorized.

Customizing	the	Username	Field

When	authenticating	using	the	password	grant,	Passport	will	use	the	email	attribute	of	your	authenticatable
model	as	the	"username".	However,	you	may	customize	this	behavior	by	defining	a	findForPassport	method	on
your	model:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

				/**

					*	Find	the	user	instance	for	the	given	username.

					*/

				public	function	findForPassport(string	$username):	User

				{

								return	$this->where('username',	$username)->first();

				}

}

Customizing	the	Password	Validation

When	authenticating	using	the	password	grant,	Passport	will	use	the	password	attribute	of	your	model	to
validate	the	given	password.	If	your	model	does	not	have	a	password	attribute	or	you	wish	to	customize	the
password	validation	logic,	you	can	define	a	validateForPassportPasswordGrant	method	on	your	model:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Support\Facades\Hash;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

				/**

					*	Validate	the	password	of	the	user	for	the	Passport	password	grant.

					*/

				public	function	validateForPassportPasswordGrant(string	$password):	bool

				{

								return	Hash::check($password,	$this->password);

				}

}

Laravel	Documentation	-	10.x	/	Passport 973

Implicit	Grant	Tokens

[!WARNING]
We	no	longer	recommend	using	implicit	grant	tokens.	Instead,	you	should	choose	a	grant	type	that	is
currently	recommended	by	OAuth2	Server.

The	implicit	grant	is	similar	to	the	authorization	code	grant;	however,	the	token	is	returned	to	the	client	without
exchanging	an	authorization	code.	This	grant	is	most	commonly	used	for	JavaScript	or	mobile	applications
where	the	client	credentials	can't	be	securely	stored.	To	enable	the	grant,	call	the	enableImplicitGrant	method	in
the	boot	method	of	your	application's	App\Providers\AuthServiceProvider	class:

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::enableImplicitGrant();

}

Once	the	grant	has	been	enabled,	developers	may	use	their	client	ID	to	request	an	access	token	from	your
application.	The	consuming	application	should	make	a	redirect	request	to	your	application's	/oauth/authorize
route	like	so:

use	Illuminate\Http\Request;

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://third-party-app.com/callback',

								'response_type'	=>	'token',

								'scope'	=>	'',

								'state'	=>	$state,

								//	'prompt'	=>	'',	//	"none",	"consent",	or	"login"

]);

				return	redirect('http://passport-app.test/oauth/authorize?'.$query);

});

[!NOTE]
Remember,	the	/oauth/authorize	route	is	already	defined	by	Passport.	You	do	not	need	to	manually	define
this	route.

Client	Credentials	Grant	Tokens

The	client	credentials	grant	is	suitable	for	machine-to-machine	authentication.	For	example,	you	might	use	this
grant	in	a	scheduled	job	which	is	performing	maintenance	tasks	over	an	API.

Before	your	application	can	issue	tokens	via	the	client	credentials	grant,	you	will	need	to	create	a	client
credentials	grant	client.	You	may	do	this	using	the	--client	option	of	the	passport:client	Artisan	command:

php	artisan	passport:client	--client

Next,	to	use	this	grant	type,	you	may	add	the	CheckClientCredentials	middleware	to	the	$middlewareAliases
property	of	your	application's	app/Http/Kernel.php	file:

use	Laravel\Passport\Http\Middleware\CheckClientCredentials;

protected	$middlewareAliases	=	[

				'client'	=>	CheckClientCredentials::class,

];

Then,	attach	the	middleware	to	a	route:

Route::get('/orders',	function	(Request	$request)	{

				...

})->middleware('client');

Laravel	Documentation	-	10.x	/	Passport 974

https://oauth2.thephpleague.com/authorization-server/which-grant/

To	restrict	access	to	the	route	to	specific	scopes,	you	may	provide	a	comma-delimited	list	of	the	required	scopes
when	attaching	the	client	middleware	to	the	route:

Route::get('/orders',	function	(Request	$request)	{

				...

})->middleware('client:check-status,your-scope');

Retrieving	Tokens

To	retrieve	a	token	using	this	grant	type,	make	a	request	to	the	oauth/token	endpoint:

use	Illuminate\Support\Facades\Http;

$response	=	Http::asForm()->post('http://passport-app.test/oauth/token',	[

				'grant_type'	=>	'client_credentials',

				'client_id'	=>	'client-id',

				'client_secret'	=>	'client-secret',

				'scope'	=>	'your-scope',

]);

return	$response->json()['access_token'];

Personal	Access	Tokens

Sometimes,	your	users	may	want	to	issue	access	tokens	to	themselves	without	going	through	the	typical
authorization	code	redirect	flow.	Allowing	users	to	issue	tokens	to	themselves	via	your	application's	UI	can	be
useful	for	allowing	users	to	experiment	with	your	API	or	may	serve	as	a	simpler	approach	to	issuing	access
tokens	in	general.

[!NOTE]
If	your	application	is	primarily	using	Passport	to	issue	personal	access	tokens,	consider	using	Laravel
Sanctum,	Laravel's	light-weight	first-party	library	for	issuing	API	access	tokens.

Creating	a	Personal	Access	Client

Before	your	application	can	issue	personal	access	tokens,	you	will	need	to	create	a	personal	access	client.	You
may	do	this	by	executing	the	passport:client	Artisan	command	with	the	--personal	option.	If	you	have	already
run	the	passport:install	command,	you	do	not	need	to	run	this	command:

php	artisan	passport:client	--personal

After	creating	your	personal	access	client,	place	the	client's	ID	and	plain-text	secret	value	in	your	application's	
.env	file:

PASSPORT_PERSONAL_ACCESS_CLIENT_ID="client-id-value"

PASSPORT_PERSONAL_ACCESS_CLIENT_SECRET="unhashed-client-secret-value"

Managing	Personal	Access	Tokens

Once	you	have	created	a	personal	access	client,	you	may	issue	tokens	for	a	given	user	using	the	createToken
method	on	the	App\Models\User	model	instance.	The	createToken	method	accepts	the	name	of	the	token	as	its
first	argument	and	an	optional	array	of	scopes	as	its	second	argument:

use	App\Models\User;

$user	=	User::find(1);

//	Creating	a	token	without	scopes...

$token	=	$user->createToken('Token	Name')->accessToken;

//	Creating	a	token	with	scopes...

$token	=	$user->createToken('My	Token',	['place-orders'])->accessToken;

JSON	API

Passport	also	includes	a	JSON	API	for	managing	personal	access	tokens.	You	may	pair	this	with	your	own

Laravel	Documentation	-	10.x	/	Passport 975

frontend	to	offer	your	users	a	dashboard	for	managing	personal	access	tokens.	Below,	we'll	review	all	of	the
API	endpoints	for	managing	personal	access	tokens.	For	convenience,	we'll	use	Axios	to	demonstrate	making
HTTP	requests	to	the	endpoints.

The	JSON	API	is	guarded	by	the	web	and	auth	middleware;	therefore,	it	may	only	be	called	from	your	own
application.	It	is	not	able	to	be	called	from	an	external	source.

GET	/oauth/scopes

This	route	returns	all	of	the	scopes	defined	for	your	application.	You	may	use	this	route	to	list	the	scopes	a	user
may	assign	to	a	personal	access	token:

axios.get('/oauth/scopes')

				.then(response	=>	{

								console.log(response.data);

				});

GET	/oauth/personal-access-tokens

This	route	returns	all	of	the	personal	access	tokens	that	the	authenticated	user	has	created.	This	is	primarily
useful	for	listing	all	of	the	user's	tokens	so	that	they	may	edit	or	revoke	them:

axios.get('/oauth/personal-access-tokens')

				.then(response	=>	{

								console.log(response.data);

				});

POST	/oauth/personal-access-tokens

This	route	creates	new	personal	access	tokens.	It	requires	two	pieces	of	data:	the	token's	name	and	the	scopes
that	should	be	assigned	to	the	token:

const	data	=	{

				name:	'Token	Name',

				scopes:	[]

};

axios.post('/oauth/personal-access-tokens',	data)

				.then(response	=>	{

								console.log(response.data.accessToken);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

DELETE	/oauth/personal-access-tokens/{token-id}

This	route	may	be	used	to	revoke	personal	access	tokens:

axios.delete('/oauth/personal-access-tokens/'	+	tokenId);

Protecting	Routes

Via	Middleware

Passport	includes	an	authentication	guard	that	will	validate	access	tokens	on	incoming	requests.	Once	you	have
configured	the	api	guard	to	use	the	passport	driver,	you	only	need	to	specify	the	auth:api	middleware	on	any
routes	that	should	require	a	valid	access	token:

Route::get('/user',	function	()	{

				//	...

})->middleware('auth:api');

[!WARNING]
If	you	are	using	the	client	credentials	grant,	you	should	use	the	client	middleware	to	protect	your	routes
instead	of	the	auth:api	middleware.

Laravel	Documentation	-	10.x	/	Passport 976

https://github.com/mzabriskie/axios

Multiple	Authentication	Guards

If	your	application	authenticates	different	types	of	users	that	perhaps	use	entirely	different	Eloquent	models,
you	will	likely	need	to	define	a	guard	configuration	for	each	user	provider	type	in	your	application.	This	allows
you	to	protect	requests	intended	for	specific	user	providers.	For	example,	given	the	following	guard
configuration	the	config/auth.php	configuration	file:

'api'	=>	[

				'driver'	=>	'passport',

				'provider'	=>	'users',

],

'api-customers'	=>	[

				'driver'	=>	'passport',

				'provider'	=>	'customers',

],

The	following	route	will	utilize	the	api-customers	guard,	which	uses	the	customers	user	provider,	to	authenticate
incoming	requests:

Route::get('/customer',	function	()	{

				//	...

})->middleware('auth:api-customers');

[!NOTE]
For	more	information	on	using	multiple	user	providers	with	Passport,	please	consult	the	password	grant
documentation.

Passing	the	Access	Token

When	calling	routes	that	are	protected	by	Passport,	your	application's	API	consumers	should	specify	their
access	token	as	a	Bearer	token	in	the	Authorization	header	of	their	request.	For	example,	when	using	the	Guzzle
HTTP	library:

use	Illuminate\Support\Facades\Http;

$response	=	Http::withHeaders([

				'Accept'	=>	'application/json',

				'Authorization'	=>	'Bearer	'.$accessToken,

])->get('https://passport-app.test/api/user');

return	$response->json();

Token	Scopes

Scopes	allow	your	API	clients	to	request	a	specific	set	of	permissions	when	requesting	authorization	to	access
an	account.	For	example,	if	you	are	building	an	e-commerce	application,	not	all	API	consumers	will	need	the
ability	to	place	orders.	Instead,	you	may	allow	the	consumers	to	only	request	authorization	to	access	order
shipment	statuses.	In	other	words,	scopes	allow	your	application's	users	to	limit	the	actions	a	third-party
application	can	perform	on	their	behalf.

Defining	Scopes

You	may	define	your	API's	scopes	using	the	Passport::tokensCan	method	in	the	boot	method	of	your
application's	App\Providers\AuthServiceProvider	class.	The	tokensCan	method	accepts	an	array	of	scope	names
and	scope	descriptions.	The	scope	description	may	be	anything	you	wish	and	will	be	displayed	to	users	on	the
authorization	approval	screen:

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::tokensCan([

								'place-orders'	=>	'Place	orders',

								'check-status'	=>	'Check	order	status',

]);

Laravel	Documentation	-	10.x	/	Passport 977

}

Default	Scope

If	a	client	does	not	request	any	specific	scopes,	you	may	configure	your	Passport	server	to	attach	default
scope(s)	to	the	token	using	the	setDefaultScope	method.	Typically,	you	should	call	this	method	from	the	boot
method	of	your	application's	App\Providers\AuthServiceProvider	class:

use	Laravel\Passport\Passport;

Passport::tokensCan([

				'place-orders'	=>	'Place	orders',

				'check-status'	=>	'Check	order	status',

]);

Passport::setDefaultScope([

				'check-status',

				'place-orders',

]);

[!NOTE]
Passport's	default	scopes	do	not	apply	to	personal	access	tokens	that	are	generated	by	the	user.

Assigning	Scopes	to	Tokens

When	Requesting	Authorization	Codes

When	requesting	an	access	token	using	the	authorization	code	grant,	consumers	should	specify	their	desired
scopes	as	the	scope	query	string	parameter.	The	scope	parameter	should	be	a	space-delimited	list	of	scopes:

Route::get('/redirect',	function	()	{

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://example.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'place-orders	check-status',

]);

				return	redirect('http://passport-app.test/oauth/authorize?'.$query);

});

When	Issuing	Personal	Access	Tokens

If	you	are	issuing	personal	access	tokens	using	the	App\Models\User	model's	createToken	method,	you	may	pass
the	array	of	desired	scopes	as	the	second	argument	to	the	method:

$token	=	$user->createToken('My	Token',	['place-orders'])->accessToken;

Checking	Scopes

Passport	includes	two	middleware	that	may	be	used	to	verify	that	an	incoming	request	is	authenticated	with	a
token	that	has	been	granted	a	given	scope.	To	get	started,	add	the	following	middleware	to	the	
$middlewareAliases	property	of	your	app/Http/Kernel.php	file:

'scopes'	=>	\Laravel\Passport\Http\Middleware\CheckScopes::class,

'scope'	=>	\Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

Check	For	All	Scopes

The	scopes	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	access	token	has	all	of
the	listed	scopes:

Route::get('/orders',	function	()	{

				//	Access	token	has	both	"check-status"	and	"place-orders"	scopes...

})->middleware(['auth:api',	'scopes:check-status,place-orders']);

Laravel	Documentation	-	10.x	/	Passport 978

Check	for	Any	Scopes

The	scope	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	access	token	has	at	least
one	of	the	listed	scopes:

Route::get('/orders',	function	()	{

				//	Access	token	has	either	"check-status"	or	"place-orders"	scope...

})->middleware(['auth:api',	'scope:check-status,place-orders']);

Checking	Scopes	on	a	Token	Instance

Once	an	access	token	authenticated	request	has	entered	your	application,	you	may	still	check	if	the	token	has	a
given	scope	using	the	tokenCan	method	on	the	authenticated	App\Models\User	instance:

use	Illuminate\Http\Request;

Route::get('/orders',	function	(Request	$request)	{

				if	($request->user()->tokenCan('place-orders'))	{

								//	...

				}

});

Additional	Scope	Methods

The	scopeIds	method	will	return	an	array	of	all	defined	IDs	/	names:

use	Laravel\Passport\Passport;

Passport::scopeIds();

The	scopes	method	will	return	an	array	of	all	defined	scopes	as	instances	of	Laravel\Passport\Scope:

Passport::scopes();

The	scopesFor	method	will	return	an	array	of	Laravel\Passport\Scope	instances	matching	the	given	IDs	/	names:

Passport::scopesFor(['place-orders',	'check-status']);

You	may	determine	if	a	given	scope	has	been	defined	using	the	hasScope	method:

Passport::hasScope('place-orders');

Consuming	Your	API	With	JavaScript

When	building	an	API,	it	can	be	extremely	useful	to	be	able	to	consume	your	own	API	from	your	JavaScript
application.	This	approach	to	API	development	allows	your	own	application	to	consume	the	same	API	that	you
are	sharing	with	the	world.	The	same	API	may	be	consumed	by	your	web	application,	mobile	applications,
third-party	applications,	and	any	SDKs	that	you	may	publish	on	various	package	managers.

Typically,	if	you	want	to	consume	your	API	from	your	JavaScript	application,	you	would	need	to	manually
send	an	access	token	to	the	application	and	pass	it	with	each	request	to	your	application.	However,	Passport
includes	a	middleware	that	can	handle	this	for	you.	All	you	need	to	do	is	add	the	CreateFreshApiToken
middleware	to	your	web	middleware	group	in	your	app/Http/Kernel.php	file:

'web'	=>	[

				//	Other	middleware...

				\Laravel\Passport\Http\Middleware\CreateFreshApiToken::class,

],

[!WARNING]
You	should	ensure	that	the	CreateFreshApiToken	middleware	is	the	last	middleware	listed	in	your
middleware	stack.

This	middleware	will	attach	a	laravel_token	cookie	to	your	outgoing	responses.	This	cookie	contains	an
encrypted	JWT	that	Passport	will	use	to	authenticate	API	requests	from	your	JavaScript	application.	The	JWT
has	a	lifetime	equal	to	your	session.lifetime	configuration	value.	Now,	since	the	browser	will	automatically

Laravel	Documentation	-	10.x	/	Passport 979

send	the	cookie	with	all	subsequent	requests,	you	may	make	requests	to	your	application's	API	without
explicitly	passing	an	access	token:

axios.get('/api/user')

				.then(response	=>	{

								console.log(response.data);

				});

Customizing	the	Cookie	Name

If	needed,	you	can	customize	the	laravel_token	cookie's	name	using	the	Passport::cookie	method.	Typically,
this	method	should	be	called	from	the	boot	method	of	your	application's	App\Providers\AuthServiceProvider
class:

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Passport::cookie('custom_name');

}

CSRF	Protection

When	using	this	method	of	authentication,	you	will	need	to	ensure	a	valid	CSRF	token	header	is	included	in
your	requests.	The	default	Laravel	JavaScript	scaffolding	includes	an	Axios	instance,	which	will	automatically
use	the	encrypted	XSRF-TOKEN	cookie	value	to	send	an	X-XSRF-TOKEN	header	on	same-origin	requests.

[!NOTE]
If	you	choose	to	send	the	X-CSRF-TOKEN	header	instead	of	X-XSRF-TOKEN,	you	will	need	to	use	the
unencrypted	token	provided	by	csrf_token().

Events

Passport	raises	events	when	issuing	access	tokens	and	refresh	tokens.	You	may	use	these	events	to	prune	or
revoke	other	access	tokens	in	your	database.	If	you	would	like,	you	may	attach	listeners	to	these	events	in	your
application's	App\Providers\EventServiceProvider	class:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Laravel\Passport\Events\AccessTokenCreated'	=>	[

								'App\Listeners\RevokeOldTokens',

],

				'Laravel\Passport\Events\RefreshTokenCreated'	=>	[

								'App\Listeners\PruneOldTokens',

],

];

Testing

Passport's	actingAs	method	may	be	used	to	specify	the	currently	authenticated	user	as	well	as	its	scopes.	The
first	argument	given	to	the	actingAs	method	is	the	user	instance	and	the	second	is	an	array	of	scopes	that	should
be	granted	to	the	user's	token:

use	App\Models\User;

use	Laravel\Passport\Passport;

public	function	test_servers_can_be_created():	void

{

				Passport::actingAs(

								User::factory()->create(),

								['create-servers']

);

Laravel	Documentation	-	10.x	/	Passport 980

				$response	=	$this->post('/api/create-server');

				$response->assertStatus(201);

}

Passport's	actingAsClient	method	may	be	used	to	specify	the	currently	authenticated	client	as	well	as	its	scopes.
The	first	argument	given	to	the	actingAsClient	method	is	the	client	instance	and	the	second	is	an	array	of
scopes	that	should	be	granted	to	the	client's	token:

use	Laravel\Passport\Client;

use	Laravel\Passport\Passport;

public	function	test_orders_can_be_retrieved():	void

{

				Passport::actingAsClient(

								Client::factory()->create(),

								['check-status']

);

				$response	=	$this->get('/api/orders');

				$response->assertStatus(200);

}

Laravel	Documentation	-	10.x	/	Passport 981

Packages

Laravel	Pennant
Introduction
Installation
Configuration
Defining	Features

Class	Based	Features
Checking	Features

Conditional	Execution
The	HasFeatures	Trait
Blade	Directive
Middleware
In-Memory	Cache

Scope
Specifying	the	Scope
Default	Scope
Nullable	Scope
Identifying	Scope
Serializing	Scope

Rich	Feature	Values
Retrieving	Multiple	Features
Eager	Loading
Updating	Values

Bulk	Updates
Purging	Features

Testing
Adding	Custom	Pennant	Drivers

Implementing	the	Driver
Registering	the	Driver

Events

Introduction

Laravel	Pennant	is	a	simple	and	light-weight	feature	flag	package	-	without	the	cruft.	Feature	flags	enable	you
to	incrementally	roll	out	new	application	features	with	confidence,	A/B	test	new	interface	designs,	complement
a	trunk-based	development	strategy,	and	much	more.

Installation

First,	install	Pennant	into	your	project	using	the	Composer	package	manager:

composer	require	laravel/pennant

Next,	you	should	publish	the	Pennant	configuration	and	migration	files	using	the	vendor:publish	Artisan
command:

php	artisan	vendor:publish	--provider="Laravel\Pennant\PennantServiceProvider"

Finally,	you	should	run	your	application's	database	migrations.	This	will	create	a	features	table	that	Pennant
uses	to	power	its	database	driver:

php	artisan	migrate

Configuration

After	publishing	Pennant's	assets,	its	configuration	file	will	be	located	at	config/pennant.php.	This
configuration	file	allows	you	to	specify	the	default	storage	mechanism	that	will	be	used	by	Pennant	to	store

Laravel	Documentation	-	10.x	/	Pennant 982

https://github.com/laravel/pennant

resolved	feature	flag	values.

Pennant	includes	support	for	storing	resolved	feature	flag	values	in	an	in-memory	array	via	the	array	driver.	Or,
Pennant	can	store	resolved	feature	flag	values	persistently	in	a	relational	database	via	the	database	driver,	which
is	the	default	storage	mechanism	used	by	Pennant.

Defining	Features

To	define	a	feature,	you	may	use	the	define	method	offered	by	the	Feature	facade.	You	will	need	to	provide	a
name	for	the	feature,	as	well	as	a	closure	that	will	be	invoked	to	resolve	the	feature's	initial	value.

Typically,	features	are	defined	in	a	service	provider	using	the	Feature	facade.	The	closure	will	receive	the
"scope"	for	the	feature	check.	Most	commonly,	the	scope	is	the	currently	authenticated	user.	In	this	example,
we	will	define	a	feature	for	incrementally	rolling	out	a	new	API	to	our	application's	users:

<?php

namespace	App\Providers;

use	App\Models\User;

use	Illuminate\Support\Lottery;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Pennant\Feature;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Feature::define('new-api',	fn	(User	$user)	=>	match	(true)	{

												$user->isInternalTeamMember()	=>	true,

												$user->isHighTrafficCustomer()	=>	false,

												default	=>	Lottery::odds(1	/	100),

								});

				}

}

As	you	can	see,	we	have	the	following	rules	for	our	feature:

All	internal	team	members	should	be	using	the	new	API.
Any	high	traffic	customers	should	not	be	using	the	new	API.
Otherwise,	the	feature	should	be	randomly	assigned	to	users	with	a	1	in	100	chance	of	being	active.

The	first	time	the	new-api	feature	is	checked	for	a	given	user,	the	result	of	the	closure	will	be	stored	by	the
storage	driver.	The	next	time	the	feature	is	checked	against	the	same	user,	the	value	will	be	retrieved	from
storage	and	the	closure	will	not	be	invoked.

For	convenience,	if	a	feature	definition	only	returns	a	lottery,	you	may	omit	the	closure	completely:

Feature::define('site-redesign',	Lottery::odds(1,	1000));

Class	Based	Features

Pennant	also	allows	you	to	define	class	based	features.	Unlike	closure	based	feature	definitions,	there	is	no
need	to	register	a	class	based	feature	in	a	service	provider.	To	create	a	class	based	feature,	you	may	invoke	the	
pennant:feature	Artisan	command.	By	default	the	feature	class	will	be	placed	in	your	application's	app/Features
directory:

php	artisan	pennant:feature	NewApi

When	writing	a	feature	class,	you	only	need	to	define	a	resolve	method,	which	will	be	invoked	to	resolve	the
feature's	initial	value	for	a	given	scope.	Again,	the	scope	will	typically	be	the	currently	authenticated	user:

<?php

namespace	App\Features;

Laravel	Documentation	-	10.x	/	Pennant 983

use	Illuminate\Support\Lottery;

class	NewApi

{

				/**

					*	Resolve	the	feature's	initial	value.

					*/

				public	function	resolve(User	$user):	mixed

				{

								return	match	(true)	{

												$user->isInternalTeamMember()	=>	true,

												$user->isHighTrafficCustomer()	=>	false,

												default	=>	Lottery::odds(1	/	100),

								};

				}

}

[!NOTE]	Feature	classes	are	resolved	via	the	container,	so	you	may	inject	dependencies	into	the	feature
class's	constructor	when	needed.

Customizing	the	Stored	Feature	Name

By	default,	Pennant	will	store	the	feature	class's	fully	qualified	class	name.	If	you	would	like	to	decouple	the
stored	feature	name	from	the	application's	internal	structure,	you	may	specify	a	$name	property	on	the	feature
class.	The	value	of	this	property	will	be	stored	in	place	of	the	class	name:

<?php

namespace	App\Features;

class	NewApi

{

				/**

					*	The	stored	name	of	the	feature.

					*

					*	@var	string

					*/

				public	$name	=	'new-api';

				//	...

}

Checking	Features

To	determine	if	a	feature	is	active,	you	may	use	the	active	method	on	the	Feature	facade.	By	default,	features
are	checked	against	the	currently	authenticated	user:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

use	Illuminate\Http\Response;

use	Laravel\Pennant\Feature;

class	PodcastController

{

				/**

					*	Display	a	listing	of	the	resource.

					*/

				public	function	index(Request	$request):	Response

				{

								return	Feature::active('new-api')

																?	$this->resolveNewApiResponse($request)

																:	$this->resolveLegacyApiResponse($request);

				}

				//	...

}

Although	features	are	checked	against	the	currently	authenticated	user	by	default,	you	may	easily	check	the
feature	against	another	user	or	scope.	To	accomplish	this,	use	the	for	method	offered	by	the	Feature	facade:

Laravel	Documentation	-	10.x	/	Pennant 984

return	Feature::for($user)->active('new-api')

								?	$this->resolveNewApiResponse($request)

								:	$this->resolveLegacyApiResponse($request);

Pennant	also	offers	some	additional	convenience	methods	that	may	prove	useful	when	determining	if	a	feature
is	active	or	not:

//	Determine	if	all	of	the	given	features	are	active...

Feature::allAreActive(['new-api',	'site-redesign']);

//	Determine	if	any	of	the	given	features	are	active...

Feature::someAreActive(['new-api',	'site-redesign']);

//	Determine	if	a	feature	is	inactive...

Feature::inactive('new-api');

//	Determine	if	all	of	the	given	features	are	inactive...

Feature::allAreInactive(['new-api',	'site-redesign']);

//	Determine	if	any	of	the	given	features	are	inactive...

Feature::someAreInactive(['new-api',	'site-redesign']);

[!NOTE]
When	using	Pennant	outside	of	an	HTTP	context,	such	as	in	an	Artisan	command	or	a	queued	job,	you
should	typically	explicitly	specify	the	feature's	scope.	Alternatively,	you	may	define	a	default	scope	that
accounts	for	both	authenticated	HTTP	contexts	and	unauthenticated	contexts.

Checking	Class	Based	Features

For	class	based	features,	you	should	provide	the	class	name	when	checking	the	feature:

<?php

namespace	App\Http\Controllers;

use	App\Features\NewApi;

use	Illuminate\Http\Request;

use	Illuminate\Http\Response;

use	Laravel\Pennant\Feature;

class	PodcastController

{

				/**

					*	Display	a	listing	of	the	resource.

					*/

				public	function	index(Request	$request):	Response

				{

								return	Feature::active(NewApi::class)

																?	$this->resolveNewApiResponse($request)

																:	$this->resolveLegacyApiResponse($request);

				}

				//	...

}

Conditional	Execution

The	when	method	may	be	used	to	fluently	execute	a	given	closure	if	a	feature	is	active.	Additionally,	a	second
closure	may	be	provided	and	will	be	executed	if	the	feature	is	inactive:

<?php

namespace	App\Http\Controllers;

use	App\Features\NewApi;

use	Illuminate\Http\Request;

use	Illuminate\Http\Response;

use	Laravel\Pennant\Feature;

class	PodcastController

{

				/**

					*	Display	a	listing	of	the	resource.

					*/

Laravel	Documentation	-	10.x	/	Pennant 985

				public	function	index(Request	$request):	Response

				{

								return	Feature::when(NewApi::class,

												fn	()	=>	$this->resolveNewApiResponse($request),

												fn	()	=>	$this->resolveLegacyApiResponse($request),

);

				}

				//	...

}

The	unless	method	serves	as	the	inverse	of	the	when	method,	executing	the	first	closure	if	the	feature	is	inactive:

return	Feature::unless(NewApi::class,

				fn	()	=>	$this->resolveLegacyApiResponse($request),

				fn	()	=>	$this->resolveNewApiResponse($request),

);

The	HasFeatures	Trait

Pennant's	HasFeatures	trait	may	be	added	to	your	application's	User	model	(or	any	other	model	that	has	features)
to	provide	a	fluent,	convenient	way	to	check	features	directly	from	the	model:

<?php

namespace	App\Models;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Laravel\Pennant\Concerns\HasFeatures;

class	User	extends	Authenticatable

{

				use	HasFeatures;

				//	...

}

Once	the	trait	has	been	added	to	your	model,	you	may	easily	check	features	by	invoking	the	features	method:

if	($user->features()->active('new-api'))	{

				//	...

}

Of	course,	the	features	method	provides	access	to	many	other	convenient	methods	for	interacting	with	features:

//	Values...

$value	=	$user->features()->value('purchase-button')

$values	=	$user->features()->values(['new-api',	'purchase-button']);

//	State...

$user->features()->active('new-api');

$user->features()->allAreActive(['new-api',	'server-api']);

$user->features()->someAreActive(['new-api',	'server-api']);

$user->features()->inactive('new-api');

$user->features()->allAreInactive(['new-api',	'server-api']);

$user->features()->someAreInactive(['new-api',	'server-api']);

//	Conditional	execution...

$user->features()->when('new-api',

				fn	()	=>	/*	...	*/,

				fn	()	=>	/*	...	*/,

);

$user->features()->unless('new-api',

				fn	()	=>	/*	...	*/,

				fn	()	=>	/*	...	*/,

);

Blade	Directive

To	make	checking	features	in	Blade	a	seamless	experience,	Pennant	offers	a	@feature	directive:

@feature('site-redesign')

Laravel	Documentation	-	10.x	/	Pennant 986

				<!--	'site-redesign'	is	active	-->

@else

				<!--	'site-redesign'	is	inactive	-->

@endfeature

Middleware

Pennant	also	includes	a	middleware	that	may	be	used	to	verify	the	currently	authenticated	user	has	access	to	a
feature	before	a	route	is	even	invoked.	You	may	assign	the	middleware	to	a	route	and	specify	the	features	that
are	required	to	access	the	route.	If	any	of	the	specified	features	are	inactive	for	the	currently	authenticated	user,
a	400	Bad	Request	HTTP	response	will	be	returned	by	the	route.	Multiple	features	may	be	passed	to	the	static	
using	method.

use	Illuminate\Support\Facades\Route;

use	Laravel\Pennant\Middleware\EnsureFeaturesAreActive;

Route::get('/api/servers',	function	()	{

				//	...

})->middleware(EnsureFeaturesAreActive::using('new-api',	'servers-api'));

Customizing	the	Response

If	you	would	like	to	customize	the	response	that	is	returned	by	the	middleware	when	one	of	the	listed	features	is
inactive,	you	may	use	the	whenInactive	method	provided	by	the	EnsureFeaturesAreActive	middleware.
Typically,	this	method	should	be	invoked	within	the	boot	method	of	one	of	your	application's	service	providers:

use	Illuminate\Http\Request;

use	Illuminate\Http\Response;

use	Laravel\Pennant\Middleware\EnsureFeaturesAreActive;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				EnsureFeaturesAreActive::whenInactive(

								function	(Request	$request,	array	$features)	{

												return	new	Response(status:	403);

								}

);

				//	...

}

In-Memory	Cache

When	checking	a	feature,	Pennant	will	create	an	in-memory	cache	of	the	result.	If	you	are	using	the	database
driver,	this	means	that	re-checking	the	same	feature	flag	within	a	single	request	will	not	trigger	additional
database	queries.	This	also	ensures	that	the	feature	has	a	consistent	result	for	the	duration	of	the	request.

If	you	need	to	manually	flush	the	in-memory	cache,	you	may	use	the	flushCache	method	offered	by	the	Feature
facade:

Feature::flushCache();

Scope

Specifying	the	Scope

As	discussed,	features	are	typically	checked	against	the	currently	authenticated	user.	However,	this	may	not
always	suit	your	needs.	Therefore,	it	is	possible	to	specify	the	scope	you	would	like	to	check	a	given	feature
against	via	the	Feature	facade's	for	method:

return	Feature::for($user)->active('new-api')

								?	$this->resolveNewApiResponse($request)

								:	$this->resolveLegacyApiResponse($request);

Laravel	Documentation	-	10.x	/	Pennant 987

Of	course,	feature	scopes	are	not	limited	to	"users".	Imagine	you	have	built	a	new	billing	experience	that	you
are	rolling	out	to	entire	teams	rather	than	individual	users.	Perhaps	you	would	like	the	oldest	teams	to	have	a
slower	rollout	than	the	newer	teams.	Your	feature	resolution	closure	might	look	something	like	the	following:

use	App\Models\Team;

use	Carbon\Carbon;

use	Illuminate\Support\Lottery;

use	Laravel\Pennant\Feature;

Feature::define('billing-v2',	function	(Team	$team)	{

				if	($team->created_at->isAfter(new	Carbon('1st	Jan,	2023')))	{

								return	true;

				}

				if	($team->created_at->isAfter(new	Carbon('1st	Jan,	2019')))	{

								return	Lottery::odds(1	/	100);

				}

				return	Lottery::odds(1	/	1000);

});

You	will	notice	that	the	closure	we	have	defined	is	not	expecting	a	User,	but	is	instead	expecting	a	Team	model.
To	determine	if	this	feature	is	active	for	a	user's	team,	you	should	pass	the	team	to	the	for	method	offered	by
the	Feature	facade:

if	(Feature::for($user->team)->active('billing-v2'))	{

				return	redirect()->to('/billing/v2');

}

//	...

Default	Scope

It	is	also	possible	to	customize	the	default	scope	Pennant	uses	to	check	features.	For	example,	maybe	all	of
your	features	are	checked	against	the	currently	authenticated	user's	team	instead	of	the	user.	Instead	of	having
to	call	Feature::for($user->team)	every	time	you	check	a	feature,	you	may	instead	specify	the	team	as	the
default	scope.	Typically,	this	should	be	done	in	one	of	your	application's	service	providers:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Auth;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Pennant\Feature;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Feature::resolveScopeUsing(fn	($driver)	=>	Auth::user()?->team);

								//	...

				}

}

If	no	scope	is	explicitly	provided	via	the	for	method,	the	feature	check	will	now	use	the	currently	authenticated
user's	team	as	the	default	scope:

Feature::active('billing-v2');

//	Is	now	equivalent	to...

Feature::for($user->team)->active('billing-v2');

Nullable	Scope

If	the	scope	you	provide	when	checking	a	feature	is	null	and	the	feature's	definition	does	not	support	null	via	a
nullable	type	or	by	including	null	in	a	union	type,	Pennant	will	automatically	return	false	as	the	feature's	result

Laravel	Documentation	-	10.x	/	Pennant 988

value.

So,	if	the	scope	you	are	passing	to	a	feature	is	potentially	null	and	you	want	the	feature's	value	resolver	to	be
invoked,	you	should	account	for	that	in	your	feature's	definition.	A	null	scope	may	occur	if	you	check	a	feature
within	an	Artisan	command,	queued	job,	or	unauthenticated	route.	Since	there	is	usually	not	an	authenticated
user	in	these	contexts,	the	default	scope	will	be	null.

If	you	do	not	always	explicitly	specify	your	feature	scope	then	you	should	ensure	the	scope's	type	is	"nullable"
and	handle	the	null	scope	value	within	your	feature	definition	logic:

use	App\Models\User;

use	Illuminate\Support\Lottery;

use	Laravel\Pennant\Feature;

Feature::define('new-api',	fn	(User	$user)	=>	match	(true)	{//	[tl!	remove]

Feature::define('new-api',	fn	(User|null	$user)	=>	match	(true)	{//	[tl!	add]

				$user	===	null	=>	true,//	[tl!	add]

				$user->isInternalTeamMember()	=>	true,

				$user->isHighTrafficCustomer()	=>	false,

				default	=>	Lottery::odds(1	/	100),

});

Identifying	Scope

Pennant's	built-in	array	and	database	storage	drivers	know	how	to	properly	store	scope	identifiers	for	all	PHP
data	types	as	well	as	Eloquent	models.	However,	if	your	application	utilizes	a	third-party	Pennant	driver,	that
driver	may	not	know	how	to	properly	store	an	identifier	for	an	Eloquent	model	or	other	custom	types	in	your
application.

In	light	of	this,	Pennant	allows	you	to	format	scope	values	for	storage	by	implementing	the	FeatureScopeable
contract	on	the	objects	in	your	application	that	are	used	as	Pennant	scopes.

For	example,	imagine	you	are	using	two	different	feature	drivers	in	a	single	application:	the	built-in	database
driver	and	a	third-party	"Flag	Rocket"	driver.	The	"Flag	Rocket"	driver	does	not	know	how	to	properly	store	an
Eloquent	model.	Instead,	it	requires	a	FlagRocketUser	instance.	By	implementing	the	toFeatureIdentifier
defined	by	the	FeatureScopeable	contract,	we	can	customize	the	storable	scope	value	provided	to	each	driver
used	by	our	application:

<?php

namespace	App\Models;

use	FlagRocket\FlagRocketUser;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Pennant\Contracts\FeatureScopeable;

class	User	extends	Model	implements	FeatureScopeable

{

				/**

					*	Cast	the	object	to	a	feature	scope	identifier	for	the	given	driver.

					*/

				public	function	toFeatureIdentifier(string	$driver):	mixed

				{

								return	match($driver)	{

												'database'	=>	$this,

												'flag-rocket'	=>	FlagRocketUser::fromId($this->flag_rocket_id),

								};

				}

}

Serializing	Scope

By	default,	Pennant	will	use	a	fully	qualified	class	name	when	storing	a	feature	associated	with	an	Eloquent
model.	If	you	are	already	using	an	Eloquent	morph	map,	you	may	choose	to	have	Pennant	also	use	the	morph
map	to	decouple	the	stored	feature	from	your	application	structure.

To	achieve	this,	after	defining	your	Eloquent	morph	map	in	a	service	provider,	you	may	invoke	the	Feature
facade's	useMorphMap	method:

Laravel	Documentation	-	10.x	/	Pennant 989

use	Illuminate\Database\Eloquent\Relations\Relation;

use	Laravel\Pennant\Feature;

Relation::enforceMorphMap([

				'post'	=>	'App\Models\Post',

				'video'	=>	'App\Models\Video',

]);

Feature::useMorphMap();

Rich	Feature	Values

Until	now,	we	have	primarily	shown	features	as	being	in	a	binary	state,	meaning	they	are	either	"active"	or
"inactive",	but	Pennant	also	allows	you	to	store	rich	values	as	well.

For	example,	imagine	you	are	testing	three	new	colors	for	the	"Buy	now"	button	of	your	application.	Instead	of
returning	true	or	false	from	the	feature	definition,	you	may	instead	return	a	string:

use	Illuminate\Support\Arr;

use	Laravel\Pennant\Feature;

Feature::define('purchase-button',	fn	(User	$user)	=>	Arr::random([

				'blue-sapphire',

				'seafoam-green',

				'tart-orange',

]));

You	may	retrieve	the	value	of	the	purchase-button	feature	using	the	value	method:

$color	=	Feature::value('purchase-button');

Pennant's	included	Blade	directive	also	makes	it	easy	to	conditionally	render	content	based	on	the	current	value
of	the	feature:

@feature('purchase-button',	'blue-sapphire')

				<!--	'blue-sapphire'	is	active	-->

@elsefeature('purchase-button',	'seafoam-green')

				<!--	'seafoam-green'	is	active	-->

@elsefeature('purchase-button',	'tart-orange')

				<!--	'tart-orange'	is	active	-->

@endfeature

[!NOTE]	When	using	rich	values,	it	is	important	to	know	that	a	feature	is	considered	"active"	when	it	has
any	value	other	than	false.

When	calling	the	conditional	when	method,	the	feature's	rich	value	will	be	provided	to	the	first	closure:

Feature::when('purchase-button',

				fn	($color)	=>	/*	...	*/,

				fn	()	=>	/*	...	*/,

);

Likewise,	when	calling	the	conditional	unless	method,	the	feature's	rich	value	will	be	provided	to	the	optional
second	closure:

Feature::unless('purchase-button',

				fn	()	=>	/*	...	*/,

				fn	($color)	=>	/*	...	*/,

);

Retrieving	Multiple	Features

The	values	method	allows	the	retrieval	of	multiple	features	for	a	given	scope:

Feature::values(['billing-v2',	'purchase-button']);

//	[

//					'billing-v2'	=>	false,

//					'purchase-button'	=>	'blue-sapphire',

//]

Laravel	Documentation	-	10.x	/	Pennant 990

Or,	you	may	use	the	all	method	to	retrieve	the	values	of	all	defined	features	for	a	given	scope:

Feature::all();

//	[

//					'billing-v2'	=>	false,

//					'purchase-button'	=>	'blue-sapphire',

//					'site-redesign'	=>	true,

//]

However,	class	based	features	are	dynamically	registered	and	are	not	known	by	Pennant	until	they	are	explicitly
checked.	This	means	your	application's	class	based	features	may	not	appear	in	the	results	returned	by	the	all
method	if	they	have	not	already	been	checked	during	the	current	request.

If	you	would	like	to	ensure	that	feature	classes	are	always	included	when	using	the	all	method,	you	may	use
Pennant's	feature	discovery	capabilities.	To	get	started,	invoke	the	discover	method	in	one	of	your	application's
service	providers:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Pennant\Feature;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Feature::discover();

								//	...

				}

}

The	discover	method	will	register	all	of	the	feature	classes	in	your	application's	app/Features	directory.	The	all
method	will	now	include	these	classes	in	its	results,	regardless	of	whether	they	have	been	checked	during	the
current	request:

Feature::all();

//	[

//					'App\Features\NewApi'	=>	true,

//					'billing-v2'	=>	false,

//					'purchase-button'	=>	'blue-sapphire',

//					'site-redesign'	=>	true,

//]

Eager	Loading

Although	Pennant	keeps	an	in-memory	cache	of	all	resolved	features	for	a	single	request,	it	is	still	possible	to
encounter	performance	issues.	To	alleviate	this,	Pennant	offers	the	ability	to	eager	load	feature	values.

To	illustrate	this,	imagine	that	we	are	checking	if	a	feature	is	active	within	a	loop:

use	Laravel\Pennant\Feature;

foreach	($users	as	$user)	{

				if	(Feature::for($user)->active('notifications-beta'))	{

								$user->notify(new	RegistrationSuccess);

				}

}

Assuming	we	are	using	the	database	driver,	this	code	will	execute	a	database	query	for	every	user	in	the	loop	-
executing	potentially	hundreds	of	queries.	However,	using	Pennant's	load	method,	we	can	remove	this	potential
performance	bottleneck	by	eager	loading	the	feature	values	for	a	collection	of	users	or	scopes:

Feature::for($users)->load(['notifications-beta']);

Laravel	Documentation	-	10.x	/	Pennant 991

foreach	($users	as	$user)	{

				if	(Feature::for($user)->active('notifications-beta'))	{

								$user->notify(new	RegistrationSuccess);

				}

}

To	load	feature	values	only	when	they	have	not	already	been	loaded,	you	may	use	the	loadMissing	method:

Feature::for($users)->loadMissing([

				'new-api',

				'purchase-button',

				'notifications-beta',

]);

Updating	Values

When	a	feature's	value	is	resolved	for	the	first	time,	the	underlying	driver	will	store	the	result	in	storage.	This	is
often	necessary	to	ensure	a	consistent	experience	for	your	users	across	requests.	However,	at	times,	you	may
want	to	manually	update	the	feature's	stored	value.

To	accomplish	this,	you	may	use	the	activate	and	deactivate	methods	to	toggle	a	feature	"on"	or	"off":

use	Laravel\Pennant\Feature;

//	Activate	the	feature	for	the	default	scope...

Feature::activate('new-api');

//	Deactivate	the	feature	for	the	given	scope...

Feature::for($user->team)->deactivate('billing-v2');

It	is	also	possible	to	manually	set	a	rich	value	for	a	feature	by	providing	a	second	argument	to	the	activate
method:

Feature::activate('purchase-button',	'seafoam-green');

To	instruct	Pennant	to	forget	the	stored	value	for	a	feature,	you	may	use	the	forget	method.	When	the	feature	is
checked	again,	Pennant	will	resolve	the	feature's	value	from	its	feature	definition:

Feature::forget('purchase-button');

Bulk	Updates

To	update	stored	feature	values	in	bulk,	you	may	use	the	activateForEveryone	and	deactivateForEveryone
methods.

For	example,	imagine	you	are	now	confident	in	the	new-api	feature's	stability	and	have	landed	on	the	best	
'purchase-button'	color	for	your	checkout	flow	-	you	can	update	the	stored	value	for	all	users	accordingly:

use	Laravel\Pennant\Feature;

Feature::activateForEveryone('new-api');

Feature::activateForEveryone('purchase-button',	'seafoam-green');

Alternatively,	you	may	deactivate	the	feature	for	all	users:

Feature::deactivateForEveryone('new-api');

[!NOTE]	This	will	only	update	the	resolved	feature	values	that	have	been	stored	by	Pennant's	storage
driver.	You	will	also	need	to	update	the	feature	definition	in	your	application.

Purging	Features

Sometimes,	it	can	be	useful	to	purge	an	entire	feature	from	storage.	This	is	typically	necessary	if	you	have
removed	the	feature	from	your	application	or	you	have	made	adjustments	to	the	feature's	definition	that	you
would	like	to	rollout	to	all	users.

Laravel	Documentation	-	10.x	/	Pennant 992

You	may	remove	all	stored	values	for	a	feature	using	the	purge	method:

//	Purging	a	single	feature...

Feature::purge('new-api');

//	Purging	multiple	features...

Feature::purge(['new-api',	'purchase-button']);

If	you	would	like	to	purge	all	features	from	storage,	you	may	invoke	the	purge	method	without	any	arguments:

Feature::purge();

As	it	can	be	useful	to	purge	features	as	part	of	your	application's	deployment	pipeline,	Pennant	includes	a	
pennant:purge	Artisan	command	which	will	purge	the	provided	features	from	storage:

php	artisan	pennant:purge	new-api

php	artisan	pennant:purge	new-api	purchase-button

It	is	also	possible	to	purge	all	features	except	those	in	a	given	feature	list.	For	example,	imagine	you	wanted	to
purge	all	features	but	keep	the	values	for	the	"new-api"	and	"purchase-button"	features	in	storage.	To
accomplish	this,	you	can	pass	those	feature	names	to	the	--except	option:

php	artisan	pennant:purge	--except=new-api	--except=purchase-button

For	convenience,	the	pennant:purge	command	also	supports	an	--except-registered	flag.	This	flag	indicates
that	all	features	except	those	explicitly	registered	in	a	service	provider	should	be	purged:

php	artisan	pennant:purge	--except-registered

Testing

When	testing	code	that	interacts	with	feature	flags,	the	easiest	way	to	control	the	feature	flag's	returned	value	in
your	tests	is	to	simply	re-define	the	feature.	For	example,	imagine	you	have	the	following	feature	defined	in
one	of	your	application's	service	provider:

use	Illuminate\Support\Arr;

use	Laravel\Pennant\Feature;

Feature::define('purchase-button',	fn	()	=>	Arr::random([

				'blue-sapphire',

				'seafoam-green',

				'tart-orange',

]));

To	modify	the	feature's	returned	value	in	your	tests,	you	may	re-define	the	feature	at	the	beginning	of	the	test.
The	following	test	will	always	pass,	even	though	the	Arr::random()	implementation	is	still	present	in	the	service
provider:

use	Laravel\Pennant\Feature;

public	function	test_it_can_control_feature_values()

{

				Feature::define('purchase-button',	'seafoam-green');

				$this->assertSame('seafoam-green',	Feature::value('purchase-button'));

}

The	same	approach	may	be	used	for	class	based	features:

use	App\Features\NewApi;

use	Laravel\Pennant\Feature;

public	function	test_it_can_control_feature_values()

{

				Feature::define(NewApi::class,	true);

				$this->assertTrue(Feature::value(NewApi::class));

}

If	your	feature	is	returning	a	Lottery	instance,	there	are	a	handful	of	useful	testing	helpers	available.

Laravel	Documentation	-	10.x	/	Pennant 993

Store	Configuration

You	may	configure	the	store	that	Pennant	will	use	during	testing	by	defining	the	PENNANT_STORE	environment
variable	in	your	application's	phpunit.xml	file:

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	colors="true">

				<!--	...	-->

				<php>

								<env	name="PENNANT_STORE"	value="array"/>

								<!--	...	-->

				</php>

</phpunit>

Adding	Custom	Pennant	Drivers

Implementing	the	Driver

If	none	of	Pennant's	existing	storage	drivers	fit	your	application's	needs,	you	may	write	your	own	storage
driver.	Your	custom	driver	should	implement	the	Laravel\Pennant\Contracts\Driver	interface:

<?php

namespace	App\Extensions;

use	Laravel\Pennant\Contracts\Driver;

class	RedisFeatureDriver	implements	Driver

{

				public	function	define(string	$feature,	callable	$resolver):	void	{}

				public	function	defined():	array	{}

				public	function	getAll(array	$features):	array	{}

				public	function	get(string	$feature,	mixed	$scope):	mixed	{}

				public	function	set(string	$feature,	mixed	$scope,	mixed	$value):	void	{}

				public	function	setForAllScopes(string	$feature,	mixed	$value):	void	{}

				public	function	delete(string	$feature,	mixed	$scope):	void	{}

				public	function	purge(array|null	$features):	void	{}

}

Now,	we	just	need	to	implement	each	of	these	methods	using	a	Redis	connection.	For	an	example	of	how	to
implement	each	of	these	methods,	take	a	look	at	the	Laravel\Pennant\Drivers\DatabaseDriver	in	the	Pennant
source	code

[!NOTE]
Laravel	does	not	ship	with	a	directory	to	contain	your	extensions.	You	are	free	to	place	them	anywhere	you
like.	In	this	example,	we	have	created	an	Extensions	directory	to	house	the	RedisFeatureDriver.

Registering	the	Driver

Once	your	driver	has	been	implemented,	you	are	ready	to	register	it	with	Laravel.	To	add	additional	drivers	to
Pennant,	you	may	use	the	extend	method	provided	by	the	Feature	facade.	You	should	call	the	extend	method
from	the	boot	method	of	one	of	your	application's	service	provider:

<?php

namespace	App\Providers;

use	App\Extensions\RedisFeatureDriver;

use	Illuminate\Contracts\Foundation\Application;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Pennant\Feature;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*/

				public	function	register():	void

				{

								//	...

				}

Laravel	Documentation	-	10.x	/	Pennant 994

https://github.com/laravel/pennant/blob/1.x/src/Drivers/DatabaseDriver.php

				/**

					*	Bootstrap	any	application	services.

					*/

				public	function	boot():	void

				{

								Feature::extend('redis',	function	(Application	$app)	{

												return	new	RedisFeatureDriver($app->make('redis'),	$app->make('events'),	[]);

								});

				}

}

Once	the	driver	has	been	registered,	you	may	use	the	redis	driver	in	your	application's	config/pennant.php
configuration	file:

'stores'	=>	[

				'redis'	=>	[

								'driver'	=>	'redis',

								'connection'	=>	null,

],

				//	...

],

Events

Pennant	dispatches	a	variety	of	events	that	can	be	useful	when	tracking	feature	flags	throughout	your
application.

Laravel\Pennant\Events\RetrievingKnownFeature

This	event	is	dispatched	the	first	time	a	known	feature	is	retrieved	during	a	request	for	a	specific	scope.	This
event	can	be	useful	to	create	and	track	metrics	against	the	feature	flags	that	are	being	used	throughout	your
application.

Laravel\Pennant\Events\RetrievingUnknownFeature

This	event	is	dispatched	the	first	time	an	unknown	feature	is	retrieved	during	a	request	for	a	specific	scope.
This	event	can	be	useful	if	you	have	intended	to	remove	a	feature	flag,	but	may	have	accidentally	left	some
stray	references	to	it	throughout	your	application.

For	example,	you	may	find	it	useful	to	listen	for	this	event	and	report	or	throw	an	exception	when	it	occurs:

<?php

namespace	App\Providers;

use	Illuminate\Foundation\Support\Providers\EventServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Event;

use	Laravel\Pennant\Events\RetrievingUnknownFeature;

class	EventServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	other	events	for	your	application.

					*/

				public	function	boot():	void

				{

								Event::listen(function	(RetrievingUnknownFeature	$event)	{

												report("Resolving	unknown	feature	[{$event->feature}].");

								});

				}

}

Laravel\Pennant\Events\DynamicallyDefiningFeature

This	event	is	dispatched	when	a	class	based	feature	is	being	dynamically	checked	for	the	first	time	during	a
request.

Laravel	Documentation	-	10.x	/	Pennant 995

Packages

Laravel	Pint
Introduction
Installation
Running	Pint
Configuring	Pint

Presets
Rules
Excluding	Files	/	Folders

Introduction

Laravel	Pint	is	an	opinionated	PHP	code	style	fixer	for	minimalists.	Pint	is	built	on	top	of	PHP-CS-Fixer	and
makes	it	simple	to	ensure	that	your	code	style	stays	clean	and	consistent.

Pint	is	automatically	installed	with	all	new	Laravel	applications	so	you	may	start	using	it	immediately.	By
default,	Pint	does	not	require	any	configuration	and	will	fix	code	style	issues	in	your	code	by	following	the
opinionated	coding	style	of	Laravel.

Installation

Pint	is	included	in	recent	releases	of	the	Laravel	framework,	so	installation	is	typically	unnecessary.	However,
for	older	applications,	you	may	install	Laravel	Pint	via	Composer:

composer	require	laravel/pint	--dev

Running	Pint

You	can	instruct	Pint	to	fix	code	style	issues	by	invoking	the	pint	binary	that	is	available	in	your	project's	
vendor/bin	directory:

./vendor/bin/pint

You	may	also	run	Pint	on	specific	files	or	directories:

./vendor/bin/pint	app/Models

./vendor/bin/pint	app/Models/User.php

Pint	will	display	a	thorough	list	of	all	of	the	files	that	it	updates.	You	can	view	even	more	detail	about	Pint's
changes	by	providing	the	-v	option	when	invoking	Pint:

./vendor/bin/pint	-v

If	you	would	like	Pint	to	simply	inspect	your	code	for	style	errors	without	actually	changing	the	files,	you	may
use	the	--test	option:

./vendor/bin/pint	--test

If	you	would	like	Pint	to	only	modify	the	files	that	have	uncommitted	changes	according	to	Git,	you	may	use
the	--dirty	option:

./vendor/bin/pint	--dirty

Configuring	Pint

As	previously	mentioned,	Pint	does	not	require	any	configuration.	However,	if	you	wish	to	customize	the
presets,	rules,	or	inspected	folders,	you	may	do	so	by	creating	a	pint.json	file	in	your	project's	root	directory:

Laravel	Documentation	-	10.x	/	Pint 996

https://github.com/laravel/pint

{

				"preset":	"laravel"

}

In	addition,	if	you	wish	to	use	a	pint.json	from	a	specific	directory,	you	may	provide	the	--config	option	when
invoking	Pint:

pint	--config	vendor/my-company/coding-style/pint.json

Presets

Presets	defines	a	set	of	rules	that	can	be	used	to	fix	code	style	issues	in	your	code.	By	default,	Pint	uses	the	
laravel	preset,	which	fixes	issues	by	following	the	opinionated	coding	style	of	Laravel.	However,	you	may
specify	a	different	preset	by	providing	the	--preset	option	to	Pint:

pint	--preset	psr12

If	you	wish,	you	may	also	set	the	preset	in	your	project's	pint.json	file:

{

				"preset":	"psr12"

}

Pint's	currently	supported	presets	are:	laravel,	per,	psr12,	and	symfony.

Rules

Rules	are	style	guidelines	that	Pint	will	use	to	fix	code	style	issues	in	your	code.	As	mentioned	above,	presets
are	predefined	groups	of	rules	that	should	be	perfect	for	most	PHP	projects,	so	you	typically	will	not	need	to
worry	about	the	individual	rules	they	contain.

However,	if	you	wish,	you	may	enable	or	disable	specific	rules	in	your	pint.json	file:

{

				"preset":	"laravel",

				"rules":	{

								"simplified_null_return":	true,

								"braces":	false,

								"new_with_braces":	{

												"anonymous_class":	false,

												"named_class":	false

								}

				}

}

Pint	is	built	on	top	of	PHP-CS-Fixer.	Therefore,	you	may	use	any	of	its	rules	to	fix	code	style	issues	in	your
project:	PHP-CS-Fixer	Configurator.

Excluding	Files	/	Folders

By	default,	Pint	will	inspect	all	.php	files	in	your	project	except	those	in	the	vendor	directory.	If	you	wish	to
exclude	more	folders,	you	may	do	so	using	the	exclude	configuration	option:

{

				"exclude":	[

								"my-specific/folder"

]

}

If	you	wish	to	exclude	all	files	that	contain	a	given	name	pattern,	you	may	do	so	using	the	notName
configuration	option:

{

				"notName":	[

								"*-my-file.php"

]

}

Laravel	Documentation	-	10.x	/	Pint 997

https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://mlocati.github.io/php-cs-fixer-configurator

If	you	would	like	to	exclude	a	file	by	providing	an	exact	path	to	the	file,	you	may	do	so	using	the	notPath
configuration	option:

{

				"notPath":	[

								"path/to/excluded-file.php"

]

}

Laravel	Documentation	-	10.x	/	Pint 998

Packages

Precognition
Introduction
Live	Validation

Using	Vue
Using	Vue	and	Inertia
Using	React
Using	React	and	Inertia
Using	Alpine	and	Blade
Configuring	Axios

Customizing	Validation	Rules
Handling	File	Uploads
Managing	Side-Effects
Testing

Introduction

Laravel	Precognition	allows	you	to	anticipate	the	outcome	of	a	future	HTTP	request.	One	of	the	primary	use
cases	of	Precognition	is	the	ability	to	provide	"live"	validation	for	your	frontend	JavaScript	application	without
having	to	duplicate	your	application's	backend	validation	rules.	Precognition	pairs	especially	well	with
Laravel's	Inertia-based	starter	kits.

When	Laravel	receives	a	"precognitive	request",	it	will	execute	all	of	the	route's	middleware	and	resolve	the
route's	controller	dependencies,	including	validating	form	requests	-	but	it	will	not	actually	execute	the	route's
controller	method.

Live	Validation

Using	Vue

Using	Laravel	Precognition,	you	can	offer	live	validation	experiences	to	your	users	without	having	to	duplicate
your	validation	rules	in	your	frontend	Vue	application.	To	illustrate	how	it	works,	let's	build	a	form	for	creating
new	users	within	our	application.

First,	to	enable	Precognition	for	a	route,	the	HandlePrecognitiveRequests	middleware	should	be	added	to	the
route	definition.	You	should	also	create	a	form	request	to	house	the	route's	validation	rules:

use	App\Http\Requests\StoreUserRequest;

use	Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests;

Route::post('/users',	function	(StoreUserRequest	$request)	{

				//	...

})->middleware([HandlePrecognitiveRequests::class]);

Next,	you	should	install	the	Laravel	Precognition	frontend	helpers	for	Vue	via	NPM:

npm	install	laravel-precognition-vue

With	the	Laravel	Precognition	package	installed,	you	can	now	create	a	form	object	using	Precognition's	useForm
function,	providing	the	HTTP	method	(post),	the	target	URL	(/users),	and	the	initial	form	data.

Then,	to	enable	live	validation,	invoke	the	form's	validate	method	on	each	input's	change	event,	providing	the
input's	name:

<script	setup>

import	{	useForm	}	from	'laravel-precognition-vue';

const	form	=	useForm('post',	'/users',	{

				name:	'',

				email:	'',

});

Laravel	Documentation	-	10.x	/	Precognition 999

const	submit	=	()	=>	form.submit();

</script>

<template>

				<form	@submit.prevent="submit">

								<label	for="name">Name</label>

								<input

												id="name"

												v-model="form.name"

												@change="form.validate('name')"

								/>

								<div	v-if="form.invalid('name')">

												{{	form.errors.name	}}

								</div>

								<label	for="email">Email</label>

								<input

												id="email"

												type="email"

												v-model="form.email"

												@change="form.validate('email')"

								/>

								<div	v-if="form.invalid('email')">

												{{	form.errors.email	}}

								</div>

								<button	:disabled="form.processing">

												Create	User

								</button>

				</form>

</template>

Now,	as	the	form	is	filled	by	the	user,	Precognition	will	provide	live	validation	output	powered	by	the
validation	rules	in	the	route's	form	request.	When	the	form's	inputs	are	changed,	a	debounced	"precognitive"
validation	request	will	be	sent	to	your	Laravel	application.	You	may	configure	the	debounce	timeout	by	calling
the	form's	setValidationTimeout	function:

form.setValidationTimeout(3000);

When	a	validation	request	is	in-flight,	the	form's	validating	property	will	be	true:

<div	v-if="form.validating">

				Validating...

</div>

Any	validation	errors	returned	during	a	validation	request	or	a	form	submission	will	automatically	populate	the
form's	errors	object:

<div	v-if="form.invalid('email')">

				{{	form.errors.email	}}

</div>

You	can	determine	if	the	form	has	any	errors	using	the	form's	hasErrors	property:

<div	v-if="form.hasErrors">

				<!--	...	-->

</div>

You	may	also	determine	if	an	input	has	passed	or	failed	validation	by	passing	the	input's	name	to	the	form's	
valid	and	invalid	functions,	respectively:

				

				

[!WARNING]
A	form	input	will	only	appear	as	valid	or	invalid	once	it	has	changed	and	a	validation	response	has	been
received.

Laravel	Documentation	-	10.x	/	Precognition 1000

If	you	are	validating	a	subset	of	a	form's	inputs	with	Precognition,	it	can	be	useful	to	manually	clear	errors.	You
may	use	the	form's	forgetError	function	to	achieve	this:

<input

				id="avatar"

				type="file"

				@change="(e)	=>	{

								form.avatar	=	e.target.files[0]

								form.forgetError('avatar')

				}"

>

Of	course,	you	may	also	execute	code	in	reaction	to	the	response	to	the	form	submission.	The	form's	submit
function	returns	an	Axios	request	promise.	This	provides	a	convenient	way	to	access	the	response	payload,
reset	the	form	inputs	on	successful	submission,	or	handle	a	failed	request:

const	submit	=	()	=>	form.submit()

				.then(response	=>	{

								form.reset();

								alert('User	created.');

				})

				.catch(error	=>	{

								alert('An	error	occurred.');

				});

You	may	determine	if	a	form	submission	request	is	in-flight	by	inspecting	the	form's	processing	property:

<button	:disabled="form.processing">

				Submit

</button>

Using	Vue	and	Inertia

[!NOTE]
If	you	would	like	a	head	start	when	developing	your	Laravel	application	with	Vue	and	Inertia,	consider
using	one	of	our	starter	kits.	Laravel's	starter	kits	provide	backend	and	frontend	authentication	scaffolding
for	your	new	Laravel	application.

Before	using	Precognition	with	Vue	and	Inertia,	be	sure	to	review	our	general	documentation	on	using
Precognition	with	Vue.	When	using	Vue	with	Inertia,	you	will	need	to	install	the	Inertia	compatible
Precognition	library	via	NPM:

npm	install	laravel-precognition-vue-inertia

Once	installed,	Precognition's	useForm	function	will	return	an	Inertia	form	helper	augmented	with	the	validation
features	discussed	above.

The	form	helper's	submit	method	has	been	streamlined,	removing	the	need	to	specify	the	HTTP	method	or
URL.	Instead,	you	may	pass	Inertia's	visit	options	as	the	first	and	only	argument.	In	addition,	the	submit	method
does	not	return	a	Promise	as	seen	in	the	Vue	example	above.	Instead,	you	may	provide	any	of	Inertia's
supported	event	callbacks	in	the	visit	options	given	to	the	submit	method:

<script	setup>

import	{	useForm	}	from	'laravel-precognition-vue-inertia';

const	form	=	useForm('post',	'/users',	{

				name:	'',

				email:	'',

});

const	submit	=	()	=>	form.submit({

				preserveScroll:	true,

				onSuccess:	()	=>	form.reset(),

});

</script>

Using	React

Laravel	Documentation	-	10.x	/	Precognition 1001

https://inertiajs.com/forms#form-helper
https://inertiajs.com/manual-visits
https://inertiajs.com/manual-visits#event-callbacks

Using	Laravel	Precognition,	you	can	offer	live	validation	experiences	to	your	users	without	having	to	duplicate
your	validation	rules	in	your	frontend	React	application.	To	illustrate	how	it	works,	let's	build	a	form	for
creating	new	users	within	our	application.

First,	to	enable	Precognition	for	a	route,	the	HandlePrecognitiveRequests	middleware	should	be	added	to	the
route	definition.	You	should	also	create	a	form	request	to	house	the	route's	validation	rules:

use	App\Http\Requests\StoreUserRequest;

use	Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests;

Route::post('/users',	function	(StoreUserRequest	$request)	{

				//	...

})->middleware([HandlePrecognitiveRequests::class]);

Next,	you	should	install	the	Laravel	Precognition	frontend	helpers	for	React	via	NPM:

npm	install	laravel-precognition-react

With	the	Laravel	Precognition	package	installed,	you	can	now	create	a	form	object	using	Precognition's	useForm
function,	providing	the	HTTP	method	(post),	the	target	URL	(/users),	and	the	initial	form	data.

To	enable	live	validation,	you	should	listen	to	each	input's	change	and	blur	event.	In	the	change	event	handler,
you	should	set	the	form's	data	with	the	setData	function,	passing	the	input's	name	and	new	value.	Then,	in	the	
blur	event	handler	invoke	the	form's	validate	method,	providing	the	input's	name:

import	{	useForm	}	from	'laravel-precognition-react';

export	default	function	Form()	{

				const	form	=	useForm('post',	'/users',	{

								name:	'',

								email:	'',

				});

				const	submit	=	(e)	=>	{

								e.preventDefault();

								form.submit();

				};

				return	(

								<form	onSubmit={submit}>

												<label	for="name">Name</label>

												<input

																id="name"

																value={form.data.name}

																onChange={(e)	=>	form.setData('name',	e.target.value)}

																onBlur={()	=>	form.validate('name')}

												/>

												{form.invalid('name')	&&	<div>{form.errors.name}</div>}

												<label	for="email">Email</label>

												<input

																id="email"

																value={form.data.email}

																onChange={(e)	=>	form.setData('email',	e.target.value)}

																onBlur={()	=>	form.validate('email')}

												/>

												{form.invalid('email')	&&	<div>{form.errors.email}</div>}

												<button	disabled={form.processing}>

																Create	User

												</button>

								</form>

);

};

Now,	as	the	form	is	filled	by	the	user,	Precognition	will	provide	live	validation	output	powered	by	the
validation	rules	in	the	route's	form	request.	When	the	form's	inputs	are	changed,	a	debounced	"precognitive"
validation	request	will	be	sent	to	your	Laravel	application.	You	may	configure	the	debounce	timeout	by	calling
the	form's	setValidationTimeout	function:

form.setValidationTimeout(3000);

When	a	validation	request	is	in-flight,	the	form's	validating	property	will	be	true:

Laravel	Documentation	-	10.x	/	Precognition 1002

{form.validating	&&	<div>Validating...</div>}

Any	validation	errors	returned	during	a	validation	request	or	a	form	submission	will	automatically	populate	the
form's	errors	object:

{form.invalid('email')	&&	<div>{form.errors.email}</div>}

You	can	determine	if	the	form	has	any	errors	using	the	form's	hasErrors	property:

{form.hasErrors	&&	<div><!--	...	--></div>}

You	may	also	determine	if	an	input	has	passed	or	failed	validation	by	passing	the	input's	name	to	the	form's	
valid	and	invalid	functions,	respectively:

{form.valid('email')	&&	}

{form.invalid('email')	&&	}

[!WARNING]
A	form	input	will	only	appear	as	valid	or	invalid	once	it	has	changed	and	a	validation	response	has	been
received.

If	you	are	validating	a	subset	of	a	form's	inputs	with	Precognition,	it	can	be	useful	to	manually	clear	errors.	You
may	use	the	form's	forgetError	function	to	achieve	this:

<input

				id="avatar"

				type="file"

				onChange={(e)	=>	

								form.setData('avatar',	e.target.value);

								form.forgetError('avatar');

				}

>

Of	course,	you	may	also	execute	code	in	reaction	to	the	response	to	the	form	submission.	The	form's	submit
function	returns	an	Axios	request	promise.	This	provides	a	convenient	way	to	access	the	response	payload,
reset	the	form's	inputs	on	a	successful	form	submission,	or	handle	a	failed	request:

const	submit	=	(e)	=>	{

				e.preventDefault();

				form.submit()

								.then(response	=>	{

												form.reset();

												alert('User	created.');

								})

								.catch(error	=>	{

												alert('An	error	occurred.');

								});

};

You	may	determine	if	a	form	submission	request	is	in-flight	by	inspecting	the	form's	processing	property:

<button	disabled={form.processing}>

				Submit

</button>

Using	React	and	Inertia

[!NOTE]
If	you	would	like	a	head	start	when	developing	your	Laravel	application	with	React	and	Inertia,	consider
using	one	of	our	starter	kits.	Laravel's	starter	kits	provide	backend	and	frontend	authentication	scaffolding
for	your	new	Laravel	application.

Before	using	Precognition	with	React	and	Inertia,	be	sure	to	review	our	general	documentation	on	using
Precognition	with	React.	When	using	React	with	Inertia,	you	will	need	to	install	the	Inertia	compatible
Precognition	library	via	NPM:

Laravel	Documentation	-	10.x	/	Precognition 1003

npm	install	laravel-precognition-react-inertia

Once	installed,	Precognition's	useForm	function	will	return	an	Inertia	form	helper	augmented	with	the	validation
features	discussed	above.

The	form	helper's	submit	method	has	been	streamlined,	removing	the	need	to	specify	the	HTTP	method	or
URL.	Instead,	you	may	pass	Inertia's	visit	options	as	the	first	and	only	argument.	In	addition,	the	submit	method
does	not	return	a	Promise	as	seen	in	the	React	example	above.	Instead,	you	may	provide	any	of	Inertia's
supported	event	callbacks	in	the	visit	options	given	to	the	submit	method:

import	{	useForm	}	from	'laravel-precognition-react-inertia';

const	form	=	useForm('post',	'/users',	{

				name:	'',

				email:	'',

});

const	submit	=	(e)	=>	{

				e.preventDefault();

				form.submit({

								preserveScroll:	true,

								onSuccess:	()	=>	form.reset(),

				});

};

Using	Alpine	and	Blade

Using	Laravel	Precognition,	you	can	offer	live	validation	experiences	to	your	users	without	having	to	duplicate
your	validation	rules	in	your	frontend	Alpine	application.	To	illustrate	how	it	works,	let's	build	a	form	for
creating	new	users	within	our	application.

First,	to	enable	Precognition	for	a	route,	the	HandlePrecognitiveRequests	middleware	should	be	added	to	the
route	definition.	You	should	also	create	a	form	request	to	house	the	route's	validation	rules:

use	App\Http\Requests\CreateUserRequest;

use	Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests;

Route::post('/users',	function	(CreateUserRequest	$request)	{

				//	...

})->middleware([HandlePrecognitiveRequests::class]);

Next,	you	should	install	the	Laravel	Precognition	frontend	helpers	for	Alpine	via	NPM:

npm	install	laravel-precognition-alpine

Then,	register	the	Precognition	plugin	with	Alpine	in	your	resources/js/app.js	file:

import	Alpine	from	'alpinejs';

import	Precognition	from	'laravel-precognition-alpine';

window.Alpine	=	Alpine;

Alpine.plugin(Precognition);

Alpine.start();

With	the	Laravel	Precognition	package	installed	and	registered,	you	can	now	create	a	form	object	using
Precognition's	$form	"magic",	providing	the	HTTP	method	(post),	the	target	URL	(/users),	and	the	initial	form
data.

To	enable	live	validation,	you	should	bind	the	form's	data	to	its	relevant	input	and	then	listen	to	each	input's	
change	event.	In	the	change	event	handler,	you	should	invoke	the	form's	validate	method,	providing	the	input's
name:

<form	x-data="{

				form:	$form('post',	'/register',	{

								name:	'',

								email:	'',

				}),

}">

				@csrf

Laravel	Documentation	-	10.x	/	Precognition 1004

https://inertiajs.com/forms#form-helper
https://inertiajs.com/manual-visits
https://inertiajs.com/manual-visits#event-callbacks

				<label	for="name">Name</label>

				<input

								id="name"

								name="name"

								x-model="form.name"

								@change="form.validate('name')"

				/>

				<template	x-if="form.invalid('name')">

								<div	x-text="form.errors.name"></div>

				</template>

				<label	for="email">Email</label>

				<input

								id="email"

								name="email"

								x-model="form.email"

								@change="form.validate('email')"

				/>

				<template	x-if="form.invalid('email')">

								<div	x-text="form.errors.email"></div>

				</template>

				<button	:disabled="form.processing">

								Create	User

				</button>

</form>

Now,	as	the	form	is	filled	by	the	user,	Precognition	will	provide	live	validation	output	powered	by	the
validation	rules	in	the	route's	form	request.	When	the	form's	inputs	are	changed,	a	debounced	"precognitive"
validation	request	will	be	sent	to	your	Laravel	application.	You	may	configure	the	debounce	timeout	by	calling
the	form's	setValidationTimeout	function:

form.setValidationTimeout(3000);

When	a	validation	request	is	in-flight,	the	form's	validating	property	will	be	true:

<template	x-if="form.validating">

				<div>Validating...</div>

</template>

Any	validation	errors	returned	during	a	validation	request	or	a	form	submission	will	automatically	populate	the
form's	errors	object:

<template	x-if="form.invalid('email')">

				<div	x-text="form.errors.email"></div>

</template>

You	can	determine	if	the	form	has	any	errors	using	the	form's	hasErrors	property:

<template	x-if="form.hasErrors">

				<div><!--	...	--></div>

</template>

You	may	also	determine	if	an	input	has	passed	or	failed	validation	by	passing	the	input's	name	to	the	form's	
valid	and	invalid	functions,	respectively:

<template	x-if="form.valid('email')">

				

</template>

<template	x-if="form.invalid('email')">

				

</template>

[!WARNING]
A	form	input	will	only	appear	as	valid	or	invalid	once	it	has	changed	and	a	validation	response	has	been
received.

You	may	determine	if	a	form	submission	request	is	in-flight	by	inspecting	the	form's	processing	property:

<button	:disabled="form.processing">

				Submit

</button>

Laravel	Documentation	-	10.x	/	Precognition 1005

Repopulating	Old	Form	Data

In	the	user	creation	example	discussed	above,	we	are	using	Precognition	to	perform	live	validation;	however,
we	are	performing	a	traditional	server-side	form	submission	to	submit	the	form.	So,	the	form	should	be
populated	with	any	"old"	input	and	validation	errors	returned	from	the	server-side	form	submission:

<form	x-data="{

				form:	$form('post',	'/register',	{

								name:	'{{	old('name')	}}',

								email:	'{{	old('email')	}}',

				}).setErrors({{	Js::from($errors->messages())	}}),

}">

Alternatively,	if	you	would	like	to	submit	the	form	via	XHR	you	may	use	the	form's	submit	function,	which
returns	an	Axios	request	promise:

<form	

				x-data="{

								form:	$form('post',	'/register',	{

												name:	'',

												email:	'',

								}),

								submit()	{

												this.form.submit()

																.then(response	=>	{

																				form.reset();

																				alert('User	created.')

																})

																.catch(error	=>	{

																				alert('An	error	occurred.');

																});

								},

				}"

				@submit.prevent="submit"

>

Configuring	Axios

The	Precognition	validation	libraries	use	the	Axios	HTTP	client	to	send	requests	to	your	application's	backend.
For	convenience,	the	Axios	instance	may	be	customized	if	required	by	your	application.	For	example,	when
using	the	laravel-precognition-vue	library,	you	may	add	additional	request	headers	to	each	outgoing	request	in
your	application's	resources/js/app.js	file:

import	{	client	}	from	'laravel-precognition-vue';

client.axios().defaults.headers.common['Authorization']	=	authToken;

Or,	if	you	already	have	a	configured	Axios	instance	for	your	application,	you	may	tell	Precognition	to	use	that
instance	instead:

import	Axios	from	'axios';

import	{	client	}	from	'laravel-precognition-vue';

window.axios	=	Axios.create()

window.axios.defaults.headers.common['Authorization']	=	authToken;

client.use(window.axios)

[!WARNING]
The	Inertia	flavored	Precognition	libraries	will	only	use	the	configured	Axios	instance	for	validation
requests.	Form	submissions	will	always	be	sent	by	Inertia.

Customizing	Validation	Rules

It	is	possible	to	customize	the	validation	rules	executed	during	a	precognitive	request	by	using	the	request's	
isPrecognitive	method.

For	example,	on	a	user	creation	form,	we	may	want	to	validate	that	a	password	is	"uncompromised"	only	on	the

Laravel	Documentation	-	10.x	/	Precognition 1006

https://github.com/axios/axios

final	form	submission.	For	precognitive	validation	requests,	we	will	simply	validate	that	the	password	is
required	and	has	a	minimum	of	8	characters.	Using	the	isPrecognitive	method,	we	can	customize	the	rules
defined	by	our	form	request:

<?php

namespace	App\Http\Requests;

use	Illuminate\Foundation\Http\FormRequest;

use	Illuminate\Validation\Rules\Password;

class	StoreUserRequest	extends	FormRequest

{

				/**

					*	Get	the	validation	rules	that	apply	to	the	request.

					*

					*	@return	array

					*/

				protected	function	rules()

				{

								return	[

												'password'	=>	[

																'required',

																$this->isPrecognitive()

																				?	Password::min(8)

																				:	Password::min(8)->uncompromised(),

],

												//	...

];

				}

}

Handling	File	Uploads

By	default,	Laravel	Precognition	does	not	upload	or	validate	files	during	a	precognitive	validation	request.	This
ensure	that	large	files	are	not	unnecessarily	uploaded	multiple	times.

Because	of	this	behavior,	you	should	ensure	that	your	application	customizes	the	corresponding	form	request's
validation	rules	to	specify	the	field	is	only	required	for	full	form	submissions:

/**

	*	Get	the	validation	rules	that	apply	to	the	request.

	*

	*	@return	array

	*/

protected	function	rules()

{

				return	[

								'avatar'	=>	[

												...$this->isPrecognitive()	?	[]	:	['required'],

												'image',

												'mimes:jpg,png'

												'dimensions:ratio=3/2',

],

								//	...

];

}

If	you	would	like	to	include	files	in	every	validation	request,	you	may	invoke	the	validateFiles	function	on
your	client-side	form	instance:

form.validateFiles();

Managing	Side-Effects

When	adding	the	HandlePrecognitiveRequests	middleware	to	a	route,	you	should	consider	if	there	are	any	side-
effects	in	other	middleware	that	should	be	skipped	during	a	precognitive	request.

For	example,	you	may	have	a	middleware	that	increments	the	total	number	of	"interactions"	each	user	has	with
your	application,	but	you	may	not	want	precognitive	requests	to	be	counted	as	an	interaction.	To	accomplish
this,	we	may	check	the	request's	isPrecognitive	method	before	incrementing	the	interaction	count:

Laravel	Documentation	-	10.x	/	Precognition 1007

<?php

namespace	App\Http\Middleware;

use	App\Facades\Interaction;

use	Closure;

use	Illuminate\Http\Request;

class	InteractionMiddleware

{

				/**

					*	Handle	an	incoming	request.

					*/

				public	function	handle(Request	$request,	Closure	$next):	mixed

				{

								if	(!	$request->isPrecognitive())	{

												Interaction::incrementFor($request->user());

								}

								return	$next($request);

				}

}

Testing

If	you	would	like	to	make	precognitive	requests	in	your	tests,	Laravel's	TestCase	includes	a	withPrecognition
helper	which	will	add	the	Precognition	request	header.

Additionally,	if	you	would	like	to	assert	that	a	precognitive	request	was	successful,	e.g.,	did	not	return	any
validation	errors,	you	may	use	the	assertSuccessfulPrecognition	method	on	the	response:

public	function	test_it_validates_registration_form_with_precognition()

{

				$response	=	$this->withPrecognition()

								->post('/register',	[

												'name'	=>	'Taylor	Otwell',

]);

				$response->assertSuccessfulPrecognition();

				$this->assertSame(0,	User::count());

}

Laravel	Documentation	-	10.x	/	Precognition 1008

Packages

Prompts
Introduction
Installation
Available	Prompts

Text
Password
Confirm
Select
Multi-select
Suggest
Search
Multi-search
Pause

Informational	Messages
Tables
Spin
Progress	Bar
Terminal	Considerations
Unsupported	Environments	and	Fallbacks

Introduction

Laravel	Prompts	is	a	PHP	package	for	adding	beautiful	and	user-friendly	forms	to	your	command-line
applications,	with	browser-like	features	including	placeholder	text	and	validation.

Laravel	Documentation	-	10.x	/	Prompts 1009

https://github.com/laravel/prompts

Laravel	Prompts	is	perfect	for	accepting	user	input	in	your	Artisan	console	commands,	but	it	may	also	be	used
in	any	command-line	PHP	project.

[!NOTE]
Laravel	Prompts	supports	macOS,	Linux,	and	Windows	with	WSL.	For	more	information,	please	see	our
documentation	on	unsupported	environments	&	fallbacks.

Installation

Laravel	Prompts	is	already	included	with	the	latest	release	of	Laravel.

Laravel	Prompts	may	also	be	installed	in	your	other	PHP	projects	by	using	the	Composer	package	manager:

composer	require	laravel/prompts

Available	Prompts

Text

The	text	function	will	prompt	the	user	with	the	given	question,	accept	their	input,	and	then	return	it:

use	function	Laravel\Prompts\text;

$name	=	text('What	is	your	name?');

You	may	also	include	placeholder	text,	a	default	value,	and	an	informational	hint:

$name	=	text(

				label:	'What	is	your	name?',

				placeholder:	'E.g.	Taylor	Otwell',

				default:	$user?->name,

				hint:	'This	will	be	displayed	on	your	profile.'

);

Required	Values

If	you	require	a	value	to	be	entered,	you	may	pass	the	required	argument:

$name	=	text(

				label:	'What	is	your	name?',

Laravel	Documentation	-	10.x	/	Prompts 1010

				required:	true

);

If	you	would	like	to	customize	the	validation	message,	you	may	also	pass	a	string:

$name	=	text(

				label:	'What	is	your	name?',

				required:	'Your	name	is	required.'

);

Additional	Validation

Finally,	if	you	would	like	to	perform	additional	validation	logic,	you	may	pass	a	closure	to	the	validate
argument:

$name	=	text(

				label:	'What	is	your	name?',

				validate:	fn	(string	$value)	=>	match	(true)	{

								strlen($value)	<	3	=>	'The	name	must	be	at	least	3	characters.',

								strlen($value)	>	255	=>	'The	name	must	not	exceed	255	characters.',

								default	=>	null

				}

);

The	closure	will	receive	the	value	that	has	been	entered	and	may	return	an	error	message,	or	null	if	the
validation	passes.

Password

The	password	function	is	similar	to	the	text	function,	but	the	user's	input	will	be	masked	as	they	type	in	the
console.	This	is	useful	when	asking	for	sensitive	information	such	as	passwords:

use	function	Laravel\Prompts\password;

$password	=	password('What	is	your	password?');

You	may	also	include	placeholder	text	and	an	informational	hint:

$password	=	password(

				label:	'What	is	your	password?',

				placeholder:	'password',

				hint:	'Minimum	8	characters.'

);

Required	Values

If	you	require	a	value	to	be	entered,	you	may	pass	the	required	argument:

$password	=	password(

				label:	'What	is	your	password?',

				required:	true

);

If	you	would	like	to	customize	the	validation	message,	you	may	also	pass	a	string:

$password	=	password(

				label:	'What	is	your	password?',

				required:	'The	password	is	required.'

);

Additional	Validation

Finally,	if	you	would	like	to	perform	additional	validation	logic,	you	may	pass	a	closure	to	the	validate
argument:

$password	=	password(

				label:	'What	is	your	password?',

				validate:	fn	(string	$value)	=>	match	(true)	{

								strlen($value)	<	8	=>	'The	password	must	be	at	least	8	characters.',

								default	=>	null

Laravel	Documentation	-	10.x	/	Prompts 1011

				}

);

The	closure	will	receive	the	value	that	has	been	entered	and	may	return	an	error	message,	or	null	if	the
validation	passes.

Confirm

If	you	need	to	ask	the	user	for	a	"yes	or	no"	confirmation,	you	may	use	the	confirm	function.	Users	may	use	the
arrow	keys	or	press	y	or	n	to	select	their	response.	This	function	will	return	either	true	or	false.

use	function	Laravel\Prompts\confirm;

$confirmed	=	confirm('Do	you	accept	the	terms?');

You	may	also	include	a	default	value,	customized	wording	for	the	"Yes"	and	"No"	labels,	and	an	informational
hint:

$confirmed	=	confirm(

				label:	'Do	you	accept	the	terms?',

				default:	false,

				yes:	'I	accept',

				no:	'I	decline',

				hint:	'The	terms	must	be	accepted	to	continue.'

);

Requiring	"Yes"

If	necessary,	you	may	require	your	users	to	select	"Yes"	by	passing	the	required	argument:

$confirmed	=	confirm(

				label:	'Do	you	accept	the	terms?',

				required:	true

);

If	you	would	like	to	customize	the	validation	message,	you	may	also	pass	a	string:

$confirmed	=	confirm(

				label:	'Do	you	accept	the	terms?',

				required:	'You	must	accept	the	terms	to	continue.'

);

Select

If	you	need	the	user	to	select	from	a	predefined	set	of	choices,	you	may	use	the	select	function:

use	function	Laravel\Prompts\select;

$role	=	select(

				'What	role	should	the	user	have?',

				['Member',	'Contributor',	'Owner'],

);

You	may	also	specify	the	default	choice	and	an	informational	hint:

$role	=	select(

				label:	'What	role	should	the	user	have?',

				options:	['Member',	'Contributor',	'Owner'],

				default:	'Owner',

				hint:	'The	role	may	be	changed	at	any	time.'

);

You	may	also	pass	an	associative	array	to	the	options	argument	to	have	the	selected	key	returned	instead	of	its
value:

$role	=	select(

				label:	'What	role	should	the	user	have?',

				options:	[

								'member'	=>	'Member',

								'contributor'	=>	'Contributor',

								'owner'	=>	'Owner'

Laravel	Documentation	-	10.x	/	Prompts 1012

],

				default:	'owner'

);

Up	to	five	options	will	be	displayed	before	the	list	begins	to	scroll.	You	may	customize	this	by	passing	the	
scroll	argument:

$role	=	select(

				label:	'Which	category	would	you	like	to	assign?',

				options:	Category::pluck('name',	'id'),

				scroll:	10

);

Validation

Unlike	other	prompt	functions,	the	select	function	doesn't	accept	the	required	argument	because	it	is	not
possible	to	select	nothing.	However,	you	may	pass	a	closure	to	the	validate	argument	if	you	need	to	present	an
option	but	prevent	it	from	being	selected:

$role	=	select(

				label:	'What	role	should	the	user	have?',

				options:	[

								'member'	=>	'Member',

								'contributor'	=>	'Contributor',

								'owner'	=>	'Owner'

],

				validate:	fn	(string	$value)	=>

								$value	===	'owner'	&&	User::where('role',	'owner')->exists()

												?	'An	owner	already	exists.'

												:	null

);

If	the	options	argument	is	an	associative	array,	then	the	closure	will	receive	the	selected	key,	otherwise	it	will
receive	the	selected	value.	The	closure	may	return	an	error	message,	or	null	if	the	validation	passes.

Multi-select

If	you	need	to	the	user	to	be	able	to	select	multiple	options,	you	may	use	the	multiselect	function:

use	function	Laravel\Prompts\multiselect;

$permissions	=	multiselect(

				'What	permissions	should	be	assigned?',

				['Read',	'Create',	'Update',	'Delete']

);

You	may	also	specify	default	choices	and	an	informational	hint:

use	function	Laravel\Prompts\multiselect;

$permissions	=	multiselect(

				label:	'What	permissions	should	be	assigned?',

				options:	['Read',	'Create',	'Update',	'Delete'],

				default:	['Read',	'Create'],

				hint:	'Permissions	may	be	updated	at	any	time.'

);

You	may	also	pass	an	associative	array	to	the	options	argument	to	return	the	selected	options'	keys	instead	of
their	values:

$permissions	=	multiselect(

				label:	'What	permissions	should	be	assigned?',

				options:	[

								'read'	=>	'Read',

								'create'	=>	'Create',

								'update'	=>	'Update',

								'delete'	=>	'Delete'

],

				default:	['read',	'create']

);

Up	to	five	options	will	be	displayed	before	the	list	begins	to	scroll.	You	may	customize	this	by	passing	the	

Laravel	Documentation	-	10.x	/	Prompts 1013

scroll	argument:

$categories	=	multiselect(

				label:	'What	categories	should	be	assigned?',

				options:	Category::pluck('name',	'id'),

				scroll:	10

);

Requiring	a	Value

By	default,	the	user	may	select	zero	or	more	options.	You	may	pass	the	required	argument	to	enforce	one	or
more	options	instead:

$categories	=	multiselect(

				label:	'What	categories	should	be	assigned?',

				options:	Category::pluck('name',	'id'),

				required:	true,

);

If	you	would	like	to	customize	the	validation	message,	you	may	provide	a	string	to	the	required	argument:

$categories	=	multiselect(

				label:	'What	categories	should	be	assigned?',

				options:	Category::pluck('name',	'id'),

				required:	'You	must	select	at	least	one	category',

);

Validation

You	may	pass	a	closure	to	the	validate	argument	if	you	need	to	present	an	option	but	prevent	it	from	being
selected:

$permissions	=	multiselect(

				label:	'What	permissions	should	the	user	have?',

				options:	[

								'read'	=>	'Read',

								'create'	=>	'Create',

								'update'	=>	'Update',

								'delete'	=>	'Delete'

],

				validate:	fn	(array	$values)	=>	!	in_array('read',	$values)

								?	'All	users	require	the	read	permission.'

								:	null

);

If	the	options	argument	is	an	associative	array	then	the	closure	will	receive	the	selected	keys,	otherwise	it	will
receive	the	selected	values.	The	closure	may	return	an	error	message,	or	null	if	the	validation	passes.

Suggest

The	suggest	function	can	be	used	to	provide	auto-completion	for	possible	choices.	The	user	can	still	provide
any	answer,	regardless	of	the	auto-completion	hints:

use	function	Laravel\Prompts\suggest;

$name	=	suggest('What	is	your	name?',	['Taylor',	'Dayle']);

Alternatively,	you	may	pass	a	closure	as	the	second	argument	to	the	suggest	function.	The	closure	will	be	called
each	time	the	user	types	an	input	character.	The	closure	should	accept	a	string	parameter	containing	the	user's
input	so	far	and	return	an	array	of	options	for	auto-completion:

$name	=	suggest(

				'What	is	your	name?',

				fn	($value)	=>	collect(['Taylor',	'Dayle'])

								->filter(fn	($name)	=>	Str::contains($name,	$value,	ignoreCase:	true))

)

You	may	also	include	placeholder	text,	a	default	value,	and	an	informational	hint:

$name	=	suggest(

Laravel	Documentation	-	10.x	/	Prompts 1014

				label:	'What	is	your	name?',

				options:	['Taylor',	'Dayle'],

				placeholder:	'E.g.	Taylor',

				default:	$user?->name,

				hint:	'This	will	be	displayed	on	your	profile.'

);

Required	Values

If	you	require	a	value	to	be	entered,	you	may	pass	the	required	argument:

$name	=	suggest(

				label:	'What	is	your	name?',

				options:	['Taylor',	'Dayle'],

				required:	true

);

If	you	would	like	to	customize	the	validation	message,	you	may	also	pass	a	string:

$name	=	suggest(

				label:	'What	is	your	name?',

				options:	['Taylor',	'Dayle'],

				required:	'Your	name	is	required.'

);

Additional	Validation

Finally,	if	you	would	like	to	perform	additional	validation	logic,	you	may	pass	a	closure	to	the	validate
argument:

$name	=	suggest(

				label:	'What	is	your	name?',

				options:	['Taylor',	'Dayle'],

				validate:	fn	(string	$value)	=>	match	(true)	{

								strlen($value)	<	3	=>	'The	name	must	be	at	least	3	characters.',

								strlen($value)	>	255	=>	'The	name	must	not	exceed	255	characters.',

								default	=>	null

				}

);

The	closure	will	receive	the	value	that	has	been	entered	and	may	return	an	error	message,	or	null	if	the
validation	passes.

Search

If	you	have	a	lot	of	options	for	the	user	to	select	from,	the	search	function	allows	the	user	to	type	a	search	query
to	filter	the	results	before	using	the	arrow	keys	to	select	an	option:

use	function	Laravel\Prompts\search;

$id	=	search(

				'Search	for	the	user	that	should	receive	the	mail',

				fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[]

);

The	closure	will	receive	the	text	that	has	been	typed	by	the	user	so	far	and	must	return	an	array	of	options.	If
you	return	an	associative	array	then	the	selected	option's	key	will	be	returned,	otherwise	its	value	will	be
returned	instead.

You	may	also	include	placeholder	text	and	an	informational	hint:

$id	=	search(

				label:	'Search	for	the	user	that	should	receive	the	mail',

				placeholder:	'E.g.	Taylor	Otwell',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				hint:	'The	user	will	receive	an	email	immediately.'

);

Laravel	Documentation	-	10.x	/	Prompts 1015

Up	to	five	options	will	be	displayed	before	the	list	begins	to	scroll.	You	may	customize	this	by	passing	the	
scroll	argument:

$id	=	search(

				label:	'Search	for	the	user	that	should	receive	the	mail',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				scroll:	10

);

Validation

If	you	would	like	to	perform	additional	validation	logic,	you	may	pass	a	closure	to	the	validate	argument:

$id	=	search(

				label:	'Search	for	the	user	that	should	receive	the	mail',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				validate:	function	(int|string	$value)	{

								$user	=	User::findOrFail($value);

								if	($user->opted_out)	{

												return	'This	user	has	opted-out	of	receiving	mail.';

								}

				}

);

If	the	options	closure	returns	an	associative	array,	then	the	closure	will	receive	the	selected	key,	otherwise,	it
will	receive	the	selected	value.	The	closure	may	return	an	error	message,	or	null	if	the	validation	passes.

Multi-search

If	you	have	a	lot	of	searchable	options	and	need	the	user	to	be	able	to	select	multiple	items,	the	multisearch
function	allows	the	user	to	type	a	search	query	to	filter	the	results	before	using	the	arrow	keys	and	space-bar	to
select	options:

use	function	Laravel\Prompts\multisearch;

$ids	=	multisearch(

				'Search	for	the	users	that	should	receive	the	mail',

				fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[]

);

The	closure	will	receive	the	text	that	has	been	typed	by	the	user	so	far	and	must	return	an	array	of	options.	If
you	return	an	associative	array	then	the	selected	options'	keys	will	be	returned;	otherwise,	their	values	will	be
returned	instead.

You	may	also	include	placeholder	text	and	an	informational	hint:

$ids	=	multisearch(

				label:	'Search	for	the	users	that	should	receive	the	mail',

				placeholder:	'E.g.	Taylor	Otwell',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				hint:	'The	user	will	receive	an	email	immediately.'

);

Up	to	five	options	will	be	displayed	before	the	list	begins	to	scroll.	You	may	customize	this	by	providing	the	
scroll	argument:

$ids	=	multisearch(

				label:	'Search	for	the	users	that	should	receive	the	mail',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				scroll:	10

);

Laravel	Documentation	-	10.x	/	Prompts 1016

Requiring	a	Value

By	default,	the	user	may	select	zero	or	more	options.	You	may	pass	the	required	argument	to	enforce	one	or
more	options	instead:

$ids	=	multisearch(

				'Search	for	the	users	that	should	receive	the	mail',

				fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				required:	true,

);

If	you	would	like	to	customize	the	validation	message,	you	may	also	provide	a	string	to	the	required	argument:

$ids	=	multisearch(

				'Search	for	the	users	that	should	receive	the	mail',

				fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				required:	'You	must	select	at	least	one	user.'

);

Validation

If	you	would	like	to	perform	additional	validation	logic,	you	may	pass	a	closure	to	the	validate	argument:

$ids	=	multisearch(

				label:	'Search	for	the	users	that	should	receive	the	mail',

				options:	fn	(string	$value)	=>	strlen($value)	>	0

								?	User::where('name',	'like',	"%{$value}%")->pluck('name',	'id')->all()

								:	[],

				validate:	function	(array	$values)	{

								$optedOut	=	User::where('name',	'like',	'%a%')->findMany($values);

								if	($optedOut->isNotEmpty())	{

												return	$optedOut->pluck('name')->join(',	',	',	and	').'	have	opted	out.';

								}

				}

);

If	the	options	closure	returns	an	associative	array,	then	the	closure	will	receive	the	selected	keys;	otherwise,	it
will	receive	the	selected	values.	The	closure	may	return	an	error	message,	or	null	if	the	validation	passes.

Pause

The	pause	function	may	be	used	to	display	informational	text	to	the	user	and	wait	for	them	to	confirm	their
desire	to	proceed	by	pressing	the	Enter	/	Return	key:

use	function	Laravel\Prompts\pause;

pause('Press	ENTER	to	continue.');

Informational	Messages

The	note,	info,	warning,	error,	and	alert	functions	may	be	used	to	display	informational	messages:

use	function	Laravel\Prompts\info;

info('Package	installed	successfully.');

Tables

The	table	function	makes	it	easy	to	display	multiple	rows	and	columns	of	data.	All	you	need	to	do	is	provide
the	column	names	and	the	data	for	the	table:

use	function	Laravel\Prompts\table;

table(

Laravel	Documentation	-	10.x	/	Prompts 1017

				['Name',	'Email'],

				User::all(['name',	'email'])

);

Spin

The	spin	function	displays	a	spinner	along	with	an	optional	message	while	executing	a	specified	callback.	It
serves	to	indicate	ongoing	processes	and	returns	the	callback's	results	upon	completion:

use	function	Laravel\Prompts\spin;

$response	=	spin(

				fn	()	=>	Http::get('http://example.com'),

				'Fetching	response...'

);

[!WARNING]
The	spin	function	requires	the	pcntl	PHP	extension	to	animate	the	spinner.	When	this	extension	is	not
available,	a	static	version	of	the	spinner	will	appear	instead.

Progress	Bars

For	long	running	tasks,	it	can	be	helpful	to	show	a	progress	bar	that	informs	users	how	complete	the	task	is.
Using	the	progress	function,	Laravel	will	display	a	progress	bar	and	advance	its	progress	for	each	iteration	over
a	given	iterable	value:

use	function	Laravel\Prompts\progress;

$users	=	progress(

				label:	'Updating	users',

				steps:	User::all(),

				callback:	fn	($user)	=>	$this->performTask($user),

);

The	progress	function	acts	like	a	map	function	and	will	return	an	array	containing	the	return	value	of	each
iteration	of	your	callback.

The	callback	may	also	accept	the	\Laravel\Prompts\Progress	instance,	allowing	you	to	modify	the	label	and	hint
on	each	iteration:

$users	=	progress(

				label:	'Updating	users',

				steps:	User::all(),

				callback:	function	($user,	$progress)	{

								$progress

												->label("Updating	{$user->name}")

												->hint("Created	on	{$user->created_at}");

								return	$this->performTask($user);

				},

				hint:	'This	may	take	some	time.',

);

Sometimes,	you	may	need	more	manual	control	over	how	a	progress	bar	is	advanced.	First,	define	the	total
number	of	steps	the	process	will	iterate	through.	Then,	advance	the	progress	bar	via	the	advance	method	after
processing	each	item:

$progress	=	progress(label:	'Updating	users',	steps:	10);

$users	=	User::all();

$progress->start();

foreach	($users	as	$user)	{

				$this->performTask($user);

				$progress->advance();

}

$progress->finish();

Laravel	Documentation	-	10.x	/	Prompts 1018

Terminal	Considerations

Terminal	Width

If	the	length	of	any	label,	option,	or	validation	message	exceeds	the	number	of	"columns"	in	the	user's	terminal,
it	will	be	automatically	truncated	to	fit.	Consider	minimizing	the	length	of	these	strings	if	your	users	may	be
using	narrower	terminals.	A	typically	safe	maximum	length	is	74	characters	to	support	an	80-character
terminal.

Terminal	Height

For	any	prompts	that	accept	the	scroll	argument,	the	configured	value	will	automatically	be	reduced	to	fit	the
height	of	the	user's	terminal,	including	space	for	a	validation	message.

Unsupported	Environments	and	Fallbacks

Laravel	Prompts	supports	macOS,	Linux,	and	Windows	with	WSL.	Due	to	limitations	in	the	Windows	version
of	PHP,	it	is	not	currently	possible	to	use	Laravel	Prompts	on	Windows	outside	of	WSL.

For	this	reason,	Laravel	Prompts	supports	falling	back	to	an	alternative	implementation	such	as	the	Symfony
Console	Question	Helper.

[!NOTE]
When	using	Laravel	Prompts	with	the	Laravel	framework,	fallbacks	for	each	prompt	have	been	configured
for	you	and	will	be	automatically	enabled	in	unsupported	environments.

Fallback	Conditions

If	you	are	not	using	Laravel	or	need	to	customize	when	the	fallback	behavior	is	used,	you	may	pass	a	boolean
to	the	fallbackWhen	static	method	on	the	Prompt	class:

use	Laravel\Prompts\Prompt;

Prompt::fallbackWhen(

				!	$input->isInteractive()	||	windows_os()	||	app()->runningUnitTests()

);

Fallback	Behavior

If	you	are	not	using	Laravel	or	need	to	customize	the	fallback	behavior,	you	may	pass	a	closure	to	the	
fallbackUsing	static	method	on	each	prompt	class:

use	Laravel\Prompts\TextPrompt;

use	Symfony\Component\Console\Question\Question;

use	Symfony\Component\Console\Style\SymfonyStyle;

TextPrompt::fallbackUsing(function	(TextPrompt	$prompt)	use	($input,	$output)	{

				$question	=	(new	Question($prompt->label,	$prompt->default	?:	null))

								->setValidator(function	($answer)	use	($prompt)	{

												if	($prompt->required	&&	$answer	===	null)	{

																throw	new	\RuntimeException(is_string($prompt->required)	?	$prompt->required	:	

'Required.');

												}

												if	($prompt->validate)	{

																$error	=	($prompt->validate)($answer	??	'');

																if	($error)	{

																				throw	new	\RuntimeException($error);

																}

												}

												return	$answer;

								});

				return	(new	SymfonyStyle($input,	$output))

Laravel	Documentation	-	10.x	/	Prompts 1019

https://symfony.com/doc/current/components/console/helpers/questionhelper.html

								->askQuestion($question);

});

Fallbacks	must	be	configured	individually	for	each	prompt	class.	The	closure	will	receive	an	instance	of	the
prompt	class	and	must	return	an	appropriate	type	for	the	prompt.

Laravel	Documentation	-	10.x	/	Prompts 1020

Packages

Laravel	Pulse
Introduction
Installation

Configuration
Dashboard

Authorization
Customization
Resolving	Users
Cards

Capturing	Entries
Recorders
Filtering

Performance
Using	a	Different	Database
Redis	Ingest
Sampling
Trimming
Handling	Pulse	Exceptions

Custom	Cards
Card	Components
Styling
Data	Capture	and	Aggregation

Introduction

Laravel	Pulse	delivers	at-a-glance	insights	into	your	application's	performance	and	usage.	With	Pulse,	you	can
track	down	bottlenecks	like	slow	jobs	and	endpoints,	find	your	most	active	users,	and	more.

For	in-depth	debugging	of	individual	events,	check	out	Laravel	Telescope.

Installation

[!WARNING]
Pulse's	first-party	storage	implementation	currently	requires	a	MySQL	or	PostgreSQL	database.	If	you	are
using	a	different	database	engine,	you	will	need	a	separate	MySQL	or	PostgreSQL	database	for	your	Pulse
data.

Since	Pulse	is	currently	in	beta,	you	may	need	to	adjust	your	application's	composer.json	file	to	allow	beta
package	releases	to	be	installed:

"minimum-stability":	"beta",

"prefer-stable":	true

Then,	you	may	use	the	Composer	package	manager	to	install	Pulse	into	your	Laravel	project:

composer	require	laravel/pulse

Next,	you	should	publish	the	Pulse	configuration	and	migration	files	using	the	vendor:publish	Artisan
command:

php	artisan	vendor:publish	--provider="Laravel\Pulse\PulseServiceProvider"

Finally,	you	should	run	the	migrate	command	in	order	to	create	the	tables	needed	to	store	Pulse's	data:

php	artisan	migrate

Once	Pulse's	database	migrations	have	been	run,	you	may	access	the	Pulse	dashboard	via	the	/pulse	route.

Laravel	Documentation	-	10.x	/	Pulse 1021

https://github.com/laravel/pulse

[!NOTE]
If	you	do	not	want	to	store	Pulse	data	in	your	application's	primary	database,	you	may	specify	a	dedicated
database	connection.

Configuration

Many	of	Pulse's	configuration	options	can	be	controlled	using	environment	variables.	To	see	the	available
options,	register	new	recorders,	or	configure	advanced	options,	you	may	publish	the	config/pulse.php
configuration	file:

php	artisan	vendor:publish	--tag=pulse-config

Dashboard

Authorization

The	Pulse	dashboard	may	be	accessed	via	the	/pulse	route.	By	default,	you	will	only	be	able	to	access	this
dashboard	in	the	local	environment,	so	you	will	need	to	configure	authorization	for	your	production
environments	by	customizing	the	'viewPulse'	authorization	gate.	You	can	accomplish	this	within	your
application's	app/Providers/AuthServiceProvider.php	file:

use	App\Models\User;

use	Illuminate\Support\Facades\Gate;

/**

	*	Register	any	authentication	/	authorization	services.

	*/

public	function	boot():	void

{

				Gate::define('viewPulse',	function	(User	$user)	{

								return	$user->isAdmin();

				});

				//	...

}

Customization

The	Pulse	dashboard	cards	and	layout	may	be	configured	by	publishing	the	dashboard	view.	The	dashboard
view	will	be	published	to	resources/views/vendor/pulse/dashboard.blade.php:

php	artisan	vendor:publish	--tag=pulse-dashboard

The	dashboard	is	powered	by	Livewire,	and	allows	you	to	customize	the	cards	and	layout	without	needing	to
rebuild	any	JavaScript	assets.

Within	this	file,	the	<x-pulse>	component	is	responsible	for	rendering	the	dashboard	and	provides	a	grid	layout
for	the	cards.	If	you	would	like	the	dashboard	to	span	the	full	width	of	the	screen,	you	may	provide	the	full-
width	prop	to	the	component:

<x-pulse	full-width>

				...

</x-pulse>

By	default,	the	<x-pulse>	component	will	create	a	12	column	grid,	but	you	may	customize	this	using	the	cols
prop:

<x-pulse	cols="16">

				...

</x-pulse>

Each	card	accepts	a	cols	and	rows	prop	to	control	the	space	and	positioning:

<livewire:pulse.usage	cols="4"	rows="2"	/>

Most	cards	also	accept	an	expand	prop	to	show	the	full	card	instead	of	scrolling:

Laravel	Documentation	-	10.x	/	Pulse 1022

https://livewire.laravel.com/

<livewire:pulse.slow-queries	expand	/>

Resolving	Users

For	cards	that	display	information	about	your	users,	such	as	the	Application	Usage	card,	Pulse	will	only	record
the	user's	ID.	When	rendering	the	dashboard,	Pulse	will	resolve	the	name	and	email	fields	from	your	default	
Authenticatable	model	and	display	avatars	using	the	Gravatar	web	service.

You	may	customize	the	fields	and	avatar	by	invoking	the	Pulse::user	method	within	your	application's	
App\Providers\AppServiceProvider	class.

The	user	method	accepts	a	closure	which	will	receive	the	Authenticatable	model	to	be	displayed	and	should
return	an	array	containing	name,	extra,	and	avatar	information	for	the	user:

use	Laravel\Pulse\Facades\Pulse;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Pulse::user(fn	($user)	=>	[

								'name'	=>	$user->name,

								'extra'	=>	$user->email,

								'avatar'	=>	$user->avatar_url,

]);

				//	...

}

[!NOTE]
You	may	completely	customize	how	the	authenticated	user	is	captured	and	retrieved	by	implementing	the	
Laravel\Pulse\Contracts\ResolvesUsers	contract	and	binding	it	in	Laravel's	service	container.

Cards

Servers

The	<livewire:pulse.servers	/>	card	displays	system	resource	usage	for	all	servers	running	the	pulse:check
command.	Please	refer	to	the	documentation	regarding	the	servers	recorder	for	more	information	on	system
resource	reporting.

Application	Usage

The	<livewire:pulse.usage	/>	card	displays	the	top	10	users	making	requests	to	your	application,	dispatching
jobs,	and	experiencing	slow	requests.

If	you	wish	to	view	all	usage	metrics	on	screen	at	the	same	time,	you	may	include	the	card	multiple	times	and
specify	the	type	attribute:

<livewire:pulse.usage	type="requests"	/>

<livewire:pulse.usage	type="slow_requests"	/>

<livewire:pulse.usage	type="jobs"	/>

To	learn	how	to	customize	how	Pulse	retrieves	and	displays	user	information,	consult	our	documentation	on
resolving	users.

[!NOTE]
If	your	application	receives	a	lot	of	requests	or	dispatches	a	lot	of	jobs,	you	may	wish	to	enable	sampling.
See	the	user	requests	recorder,	user	jobs	recorder,	and	slow	jobs	recorder	documentation	for	more
information.

Exceptions

The	<livewire:pulse.exceptions	/>	card	shows	the	frequency	and	recency	of	exceptions	occurring	in	your

Laravel	Documentation	-	10.x	/	Pulse 1023

application.	By	default,	exceptions	are	grouped	based	on	the	exception	class	and	location	where	it	occurred.
See	the	exceptions	recorder	documentation	for	more	information.

Queues

The	<livewire:pulse.queues	/>	card	shows	the	throughput	of	the	queues	in	your	application,	including	the
number	of	jobs	queued,	processing,	processed,	released,	and	failed.	See	the	queues	recorder	documentation	for
more	information.

Slow	Requests

The	<livewire:pulse.slow-requests	/>	card	shows	incoming	requests	to	your	application	that	exceed	the
configured	threshold,	which	is	1,000ms	by	default.	See	the	slow	requests	recorder	documentation	for	more
information.

Slow	Jobs

The	<livewire:pulse.slow-jobs	/>	card	shows	the	queued	jobs	in	your	application	that	exceed	the	configured
threshold,	which	is	1,000ms	by	default.	See	the	slow	jobs	recorder	documentation	for	more	information.

Slow	Queries

The	<livewire:pulse.slow-queries	/>	card	shows	the	database	queries	in	your	application	that	exceed	the
configured	threshold,	which	is	1,000ms	by	default.

By	default,	slow	queries	are	grouped	based	on	the	SQL	query	(without	bindings)	and	the	location	where	it
occurred,	but	you	may	choose	to	not	capture	the	location	if	you	wish	to	group	solely	on	the	SQL	query.

See	the	slow	queries	recorder	documentation	for	more	information.

Slow	Outgoing	Requests

The	<livewire:pulse.slow-outgoing-requests	/>	card	shows	outgoing	requests	made	using	Laravel's	HTTP
client	that	exceed	the	configured	threshold,	which	is	1,000ms	by	default.

By	default,	entries	will	be	grouped	by	the	full	URL.	However,	you	may	wish	to	normalize	or	group	similar
outgoing	requests	using	regular	expressions.	See	the	slow	outgoing	requests	recorder	documentation	for	more
information.

Cache

The	<livewire:pulse.cache	/>	card	shows	the	cache	hit	and	miss	statistics	for	your	application,	both	globally
and	for	individual	keys.

By	default,	entries	will	be	grouped	by	key.	However,	you	may	wish	to	normalize	or	group	similar	keys	using
regular	expressions.	See	the	cache	interactions	recorder	documentation	for	more	information.

Capturing	Entries

Most	Pulse	recorders	will	automatically	capture	entries	based	on	framework	events	dispatched	by	Laravel.
However,	the	servers	recorder	and	some	third-party	cards	must	poll	for	information	regularly.	To	use	these
cards,	you	must	run	the	pulse:check	daemon	on	all	of	your	individual	application	servers:

php	artisan	pulse:check

[!NOTE]
To	keep	the	pulse:check	process	running	permanently	in	the	background,	you	should	use	a	process	monitor
such	as	Supervisor	to	ensure	that	the	command	does	not	stop	running.

Laravel	Documentation	-	10.x	/	Pulse 1024

As	the	pulse:check	command	is	a	long-lived	process,	it	will	not	see	changes	to	your	codebase	without	being
restarted.	You	should	gracefully	restart	the	command	by	calling	the	pulse:restart	command	during	your
application's	deployment	process:

php	artisan	pulse:restart

[!NOTE]
Pulse	uses	the	cache	to	store	restart	signals,	so	you	should	verify	that	a	cache	driver	is	properly	configured
for	your	application	before	using	this	feature.

Recorders

Recorders	are	responsible	for	capturing	entries	from	your	application	to	be	recorded	in	the	Pulse	database.
Recorders	are	registered	and	configured	in	the	recorders	section	of	the	Pulse	configuration	file.

Cache	Interactions

The	CacheInteractions	recorder	captures	information	about	the	cache	hits	and	misses	occurring	in	your
application	for	display	on	the	Cache	card.

You	may	optionally	adjust	the	sample	rate	and	ignored	key	patterns.

You	may	also	configure	key	grouping	so	that	similar	keys	are	grouped	as	a	single	entry.	For	example,	you	may
wish	to	remove	unique	IDs	from	keys	caching	the	same	type	of	information.	Groups	are	configured	using	a
regular	expression	to	"find	and	replace"	parts	of	the	key.	An	example	is	included	in	the	configuration	file:

Recorders\CacheInteractions::class	=>	[

				//	...

				'groups'	=>	[

								//	'/:\d+/'	=>	':*',

],

],

The	first	pattern	that	matches	will	be	used.	If	no	patterns	match,	then	the	key	will	be	captured	as-is.

Exceptions

The	Exceptions	recorder	captures	information	about	reportable	exceptions	occurring	in	your	application	for
display	on	the	Exceptions	card.

You	may	optionally	adjust	the	sample	rate	and	ignored	exceptions	patterns.	You	may	also	configure	whether	to
capture	the	location	that	the	exception	originated	from.	The	captured	location	will	be	displayed	on	the	Pulse
dashboard	which	can	help	to	track	down	the	exception	origin;	however,	if	the	same	exception	occurs	in
multiple	locations	then	it	will	appear	multiple	times	for	each	unique	location.

Queues

The	Queues	recorder	captures	information	about	your	applications	queues	for	display	on	the	Queues.

You	may	optionally	adjust	the	sample	rate	and	ignored	jobs	patterns.

Slow	Jobs

The	SlowJobs	recorder	captures	information	about	slow	jobs	occurring	in	your	application	for	display	on	the
Slow	Jobs	card.

You	may	optionally	adjust	the	slow	job	threshold,	sample	rate,	and	ignored	job	patterns.

Slow	Outgoing	Requests

The	SlowOutgoingRequests	recorder	captures	information	about	outgoing	HTTP	requests	made	using	Laravel's
HTTP	client	that	exceed	the	configured	threshold	for	display	on	the	Slow	Outgoing	Requests	card.

Laravel	Documentation	-	10.x	/	Pulse 1025

You	may	optionally	adjust	the	slow	outgoing	request	threshold,	sample	rate,	and	ignored	URL	patterns.

You	may	also	configure	URL	grouping	so	that	similar	URLs	are	grouped	as	a	single	entry.	For	example,	you
may	wish	to	remove	unique	IDs	from	URL	paths	or	group	by	domain	only.	Groups	are	configured	using	a
regular	expression	to	"find	and	replace"	parts	of	the	URL.	Some	examples	are	included	in	the	configuration
file:

Recorders\OutgoingRequests::class	=>	[

				//	...

				'groups'	=>	[

								//	'#^https://api\.github\.com/repos/.*$#'	=>	'api.github.com/repos/*',

								//	'#^https?://([^/]*).*$#'	=>	'\1',

								//	'#/\d+#'	=>	'/*',

],

],

The	first	pattern	that	matches	will	be	used.	If	no	patterns	match,	then	the	URL	will	be	captured	as-is.

Slow	Queries

The	SlowQueries	recorder	captures	any	database	queries	in	your	application	that	exceed	the	configured	threshold
for	display	on	the	Slow	Queries	card.

You	may	optionally	adjust	the	slow	query	threshold,	sample	rate,	and	ignored	query	patterns.	You	may	also
configure	whether	to	capture	the	query	location.	The	captured	location	will	be	displayed	on	the	Pulse	dashboard
which	can	help	to	track	down	the	query	origin;	however,	if	the	same	query	is	made	in	multiple	locations	then	it
will	appear	multiple	times	for	each	unique	location.

Slow	Requests

The	Requests	recorder	captures	information	about	requests	made	to	your	application	for	display	on	the	Slow
Requests	and	Application	Usage	cards.

You	may	optionally	adjust	the	slow	route	threshold,	sample	rate,	and	ignored	paths.

Servers

The	Servers	recorder	captures	CPU,	memory,	and	storage	usage	of	the	servers	that	power	your	application	for
display	on	the	Servers	card.	This	recorder	requires	the	pulse:check	command	to	be	running	on	each	of	the
servers	you	wish	to	monitor.

Each	reporting	server	must	have	a	unique	name.	By	default,	Pulse	will	use	the	value	returned	by	PHP's	
gethostname	function.	If	you	wish	to	customize	this,	you	may	set	the	PULSE_SERVER_NAME	environment	variable:

PULSE_SERVER_NAME=load-balancer

The	Pulse	configuration	file	also	allows	you	to	customize	the	directories	that	are	monitored.

User	Jobs

The	UserJobs	recorder	captures	information	about	the	users	dispatching	jobs	in	your	application	for	display	on
the	Application	Usage	card.

You	may	optionally	adjust	the	sample	rate	and	ignored	job	patterns.

User	Requests

The	UserRequests	recorder	captures	information	about	the	users	making	requests	to	your	application	for	display
on	the	Application	Usage	card.

You	may	optionally	adjust	the	sample	rate	and	ignored	job	patterns.

Laravel	Documentation	-	10.x	/	Pulse 1026

Filtering

As	we	have	seen,	many	recorders	offer	the	ability	to,	via	configuration,	"ignore"	incoming	entries	based	on
their	value,	such	as	a	request's	URL.	But,	sometimes	it	may	be	useful	to	filter	out	records	based	on	other
factors,	such	as	the	currently	authenticated	user.	To	filter	out	these	records,	you	may	pass	a	closure	to	Pulse's	
filter	method.	Typically,	the	filter	method	should	be	invoked	within	the	boot	method	of	your	application's	
AppServiceProvider:

use	Illuminate\Support\Facades\Auth;

use	Laravel\Pulse\Entry;

use	Laravel\Pulse\Facades\Pulse;

use	Laravel\Pulse\Value;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Pulse::filter(function	(Entry|Value	$entry)	{

								return	Auth::user()->isNotAdmin();

				});

				//	...

}

Performance

Pulse	has	been	designed	to	drop	into	an	existing	application	without	requiring	any	additional	infrastructure.
However,	for	high-traffic	applications,	there	are	several	ways	of	removing	any	impact	Pulse	may	have	on	your
application's	performance.

Using	a	Different	Database

For	high-traffic	applications,	you	may	prefer	to	use	a	dedicated	database	connection	for	Pulse	to	avoid
impacting	your	application	database.

You	may	customize	the	database	connection	used	by	Pulse	by	setting	the	PULSE_DB_CONNECTION	environment
variable.

PULSE_DB_CONNECTION=pulse

Redis	Ingest

[!WARNING]
The	Redis	Ingest	requires	Redis	6.2	or	greater	and	phpredis	or	predis	as	the	application's	configured	Redis
client	driver.

By	default,	Pulse	will	store	entries	directly	to	the	configured	database	connection	after	the	HTTP	response	has
been	sent	to	the	client	or	a	job	has	been	processed;	however,	you	may	use	Pulse's	Redis	ingest	driver	to	send
entries	to	a	Redis	stream	instead.	This	can	be	enabled	by	configuring	the	PULSE_INGEST_DRIVER	environment
variable:

PULSE_INGEST_DRIVER=redis

Pulse	will	use	your	default	Redis	connection	by	default,	but	you	may	customize	this	via	the	
PULSE_REDIS_CONNECTION	environment	variable:

PULSE_REDIS_CONNECTION=pulse

When	using	the	Redis	ingest,	you	will	need	to	run	the	pulse:work	command	to	monitor	the	stream	and	move
entries	from	Redis	into	Pulse's	database	tables.

php	artisan	pulse:work

[!NOTE]

Laravel	Documentation	-	10.x	/	Pulse 1027

To	keep	the	pulse:work	process	running	permanently	in	the	background,	you	should	use	a	process	monitor
such	as	Supervisor	to	ensure	that	the	Pulse	worker	does	not	stop	running.

As	the	pulse:work	command	is	a	long-lived	process,	it	will	not	see	changes	to	your	codebase	without	being
restarted.	You	should	gracefully	restart	the	command	by	calling	the	pulse:restart	command	during	your
application's	deployment	process:

php	artisan	pulse:restart

[!NOTE]
Pulse	uses	the	cache	to	store	restart	signals,	so	you	should	verify	that	a	cache	driver	is	properly	configured
for	your	application	before	using	this	feature.

Sampling

By	default,	Pulse	will	capture	every	relevant	event	that	occurs	in	your	application.	For	high-traffic	applications,
this	can	result	in	needing	to	aggregate	millions	of	database	rows	in	the	dashboard,	especially	for	longer	time
periods.

You	may	instead	choose	to	enable	"sampling"	on	certain	Pulse	data	recorders.	For	example,	setting	the	sample
rate	to	0.1	on	the	User	Requests	recorder	will	mean	that	you	only	record	approximately	10%	of	the	requests	to
your	application.	In	the	dashboard,	the	values	will	be	scaled	up	and	prefixed	with	a	~	to	indicate	that	they	are	an
approximation.

In	general,	the	more	entries	you	have	for	a	particular	metric,	the	lower	you	can	safely	set	the	sample	rate
without	sacrificing	too	much	accuracy.

Trimming

Pulse	will	automatically	trim	its	stored	entries	once	they	are	outside	of	the	dashboard	window.	Trimming	occurs
when	ingesting	data	using	a	lottery	system	which	may	be	customized	in	the	Pulse	configuration	file.

Handling	Pulse	Exceptions

If	an	exception	occurs	while	capturing	Pulse	data,	such	as	being	unable	to	connect	to	the	storage	database,
Pulse	will	silently	fail	to	avoid	impacting	your	application.

If	you	wish	to	customize	how	these	exceptions	are	handled,	you	may	provide	a	closure	to	the	
handleExceptionsUsing	method:

use	Laravel\Pulse\Facades\Pulse;

use	Illuminate\Support\Facades\Log;

Pulse::handleExceptionsUsing(function	($e)	{

				Log::debug('An	exception	happened	in	Pulse',	[

								'message'	=>	$e->getMessage(),

								'stack'	=>	$e->getTraceAsString(),

]);

});

Custom	Cards

Pulse	allows	you	to	build	custom	cards	to	display	data	relevant	to	your	application's	specific	needs.	Pulse	uses
Livewire,	so	you	may	want	to	review	its	documentation	before	building	your	first	custom	card.

Card	Components

Creating	a	custom	card	in	Laravel	Pulse	starts	with	extending	the	base	Card	Livewire	component	and	defining	a
corresponding	view:

namespace	App\Livewire\Pulse;

use	Laravel\Pulse\Livewire\Card;

Laravel	Documentation	-	10.x	/	Pulse 1028

https://livewire.laravel.com
https://livewire.laravel.com/docs

use	Livewire\Attributes\Lazy;

#[Lazy]

class	TopSellers	extends	Card

{

				public	function	render()

				{

								return	view('livewire.pulse.top-sellers');

				}

}

When	using	Livewire's	lazy	loading	feature,	The	Card	component	will	automatically	provide	a	placeholder	that
respects	the	cols	and	rows	attributes	passed	to	your	component.

When	writing	your	Pulse	card's	corresponding	view,	you	may	leverage	Pulse's	Blade	components	for	a
consistent	look	and	feel:

<x-pulse::card	:cols="$cols"	:rows="$rows"	:class="$class"	wire:poll.5s="">

				<x-pulse::card-header	name="Top	Sellers">

								<x-slot:icon>

												...

								</x-slot:icon>

				</x-pulse::card-header>

				<x-pulse::scroll	:expand="$expand">

								...

				</x-pulse::scroll>

</x-pulse::card>

The	$cols,	$rows,	$class,	and	$expand	variables	should	be	passed	to	their	respective	Blade	components	so	the
card	layout	may	be	customized	from	the	dashboard	view.	You	may	also	wish	to	include	the	wire:poll.5s=""
attribute	in	your	view	to	have	the	card	automatically	update.

Once	you	have	defined	your	Livewire	component	and	template,	the	card	may	be	included	in	your	dashboard
view:

<x-pulse>

				...

				<livewire:pulse.top-sellers	cols="4"	/>

</x-pulse>

[!NOTE]
If	your	card	is	included	in	a	package,	you	will	need	to	register	the	component	with	Livewire	using	the	
Livewire::component	method.

Styling

If	your	card	requires	additional	styling	beyond	the	classes	and	components	included	with	Pulse,	there	are	a	few
options	for	including	custom	CSS	for	your	cards.

Laravel	Vite	Integration

If	your	custom	card	lives	within	your	application's	code	base	and	you	are	using	Laravel's	Vite	integration,	you
may	update	your	vite.config.js	file	to	include	a	dedicated	CSS	entry	point	for	your	card:

laravel({

				input:	[

								'resources/css/pulse/top-sellers.css',

								//	...

],

}),

You	may	then	use	the	@vite	Blade	directive	in	your	dashboard	view,	specifying	the	CSS	entrypoint	for	your
card:

<x-pulse>

				@vite('resources/css/pulse/top-sellers.css')

				...

Laravel	Documentation	-	10.x	/	Pulse 1029

https://livewire.laravel.com/docs/lazy

</x-pulse>

CSS	Files

For	other	use	cases,	including	Pulse	cards	contained	within	a	package,	you	may	instruct	Pulse	to	load	additional
stylesheets	by	defining	a	css	method	on	your	Livewire	component	that	returns	the	file	path	to	your	CSS	file:

class	TopSellers	extends	Card

{

				//	...

				protected	function	css()

				{

								return	__DIR__.'/../../dist/top-sellers.css';

				}

}

When	this	card	is	included	on	the	dashboard,	Pulse	will	automatically	include	the	contents	of	this	file	within	a	
<style>	tag	so	it	does	not	need	to	be	published	to	the	public	directory.

Tailwind	CSS

When	using	Tailwind	CSS,	you	should	create	a	dedicated	Tailwind	configuration	file	to	avoid	loading
unnecessary	CSS	or	conflicting	with	Pulse's	Tailwind	classes:

export	default	{

				darkMode:	'class',

				important:	'#top-sellers',

				content:	[

								'./resources/views/livewire/pulse/top-sellers.blade.php',

],

				corePlugins:	{

								preflight:	false,

				},

};

You	may	then	specify	the	configuration	file	in	your	CSS	entrypoint:

@config	"../../tailwind.top-sellers.config.js";

@tailwind	base;

@tailwind	components;

@tailwind	utilities;

You	will	also	need	to	include	an	id	or	class	attribute	in	your	card's	view	that	matches	the	selector	passed	to
Tailwind's	important	selector	strategy:

<x-pulse::card	id="top-sellers"	:cols="$cols"	:rows="$rows"	class="$class">

				...

</x-pulse::card>

Data	Capture	and	Aggregation

Custom	cards	may	fetch	and	display	data	from	anywhere;	however,	you	may	wish	to	leverage	Pulse's	powerful
and	efficient	data	recording	and	aggregation	system.

Capturing	Entries

Pulse	allows	you	to	record	"entries"	using	the	Pulse::record	method:

use	Laravel\Pulse\Facades\Pulse;

Pulse::record('user_sale',	$user->id,	$sale->amount)

				->sum()

				->count();

The	first	argument	provided	to	the	record	method	is	the	type	for	the	entry	you	are	recording,	while	the	second
argument	is	the	key	that	determines	how	the	aggregated	data	should	be	grouped.	For	most	aggregation	methods
you	will	also	need	to	specify	a	value	to	be	aggregated.	In	the	example	above,	the	value	being	aggregated	is	

Laravel	Documentation	-	10.x	/	Pulse 1030

https://tailwindcss.com/docs/configuration#selector-strategy

$sale->amount.	You	may	then	invoke	one	or	more	aggregation	methods	(such	as	sum)	so	that	Pulse	may	capture
pre-aggregated	values	into	"buckets"	for	efficient	retrieval	later.

The	available	aggregation	methods	are:

avg

count

max

min

sum

[!NOTE]
When	building	a	card	package	that	captures	the	currently	authenticated	user	ID,	you	should	use	the	
Pulse::resolveAuthenticatedUserId()	method,	which	respects	any	user	resolver	customizations	made	to
the	application.

Retrieving	Aggregate	Data

When	extending	Pulse's	Card	Livewire	component,	you	may	use	the	aggregate	method	to	retrieve	aggregated
data	for	the	period	being	viewed	in	the	dashboard:

class	TopSellers	extends	Card

{

				public	function	render()

				{

								return	view('livewire.pulse.top-sellers',	[

												'topSellers'	=>	$this->aggregate('user_sale',	['sum',	'count']);

]);

				}

}

The	aggregate	method	returns	return	a	collection	of	PHP	stdClass	objects.	Each	object	will	contain	the	key
property	captured	earlier,	along	with	keys	for	each	of	the	requested	aggregates:

@foreach	($topSellers	as	$seller)

				{{	$seller->key	}}

				{{	$seller->sum	}}

				{{	$seller->count	}}

@endforeach

Pulse	will	primarily	retrieve	data	from	the	pre-aggregated	buckets;	therefore,	the	specified	aggregates	must
have	been	captured	up-front	using	the	Pulse::record	method.	The	oldest	bucket	will	typically	fall	partially
outside	the	period,	so	Pulse	will	aggregate	the	oldest	entries	to	fill	the	gap	and	give	an	accurate	value	for	the
entire	period,	without	needing	to	aggregate	the	entire	period	on	each	poll	request.

You	may	also	retrieve	a	total	value	for	a	given	type	by	using	the	aggregateTotal	method.	For	example,	the
following	method	would	retrieve	the	total	of	all	user	sales	instead	of	grouping	them	by	user.

$total	=	$this->aggregateTotal('user_sale',	'sum');

Displaying	Users

When	working	with	aggregates	that	record	a	user	ID	as	the	key,	you	may	resolve	the	keys	to	user	records	using
the	Pulse::resolveUsers	method:

$aggregates	=	$this->aggregate('user_sale',	['sum',	'count']);

$users	=	Pulse::resolveUsers($aggregates->pluck('key'));

return	view('livewire.pulse.top-sellers',	[

				'sellers'	=>	$aggregates->map(fn	($aggregate)	=>	(object)	[

								'user'	=>	$users->find($aggregate->key),

								'sum'	=>	$aggregate->sum,

								'count'	=>	$aggregate->count,

])

]);

The	find	method	returns	an	object	containing	name,	extra,	and	avatar	keys,	which	you	may	optionally	pass

Laravel	Documentation	-	10.x	/	Pulse 1031

directly	to	the	<x-pulse::user-card>	Blade	component:

<x-pulse::user-card	:user="{{	$seller->user	}}"	:stats="{{	$seller->sum	}}"	/>

Custom	Recorders

Package	authors	may	wish	to	provide	recorder	classes	to	allow	users	to	configure	the	capturing	of	data.

Recorders	are	registered	in	the	recorders	section	of	the	application's	config/pulse.php	configuration	file:

[

				//	...

				'recorders'	=>	[

								Acme\Recorders\Deployments::class	=>	[

												//	...

],

								//	...

],

]

Recorders	may	listen	to	events	by	specifying	a	$listen	property.	Pulse	will	automatically	register	the	listeners
and	call	the	recorders	record	method:

<?php

namespace	Acme\Recorders;

use	Acme\Events\Deployment;

use	Illuminate\Support\Facades\Config;

use	Laravel\Pulse\Facades\Pulse;

class	Deployments

{

				/**

					*	The	events	to	listen	for.

					*

					*	@var	list<class-string>

					*/

				public	array	$listen	=	[

								Deployment::class,

];

				/**

					*	Record	the	deployment.

					*/

				public	function	record(Deployment	$event):	void

				{

								$config	=	Config::get('pulse.recorders.'.static::class);

								Pulse::record(

												//	...

);

				}

}

Laravel	Documentation	-	10.x	/	Pulse 1032

Packages

Laravel	Reverb
Introduction
Installation
Configuration

Application	Credentials
Allowed	Origins
Additional	Applications
SSL

Running	the	Server
Debugging
Restarting

Running	Reverb	in	Production
Open	Files
Event	Loop
Web	Server
Ports
Process	Management
Scaling

Introduction

Laravel	Reverb	brings	blazing-fast	and	scalable	real-time	WebSocket	communication	directly	to	your	Laravel
application,	and	provides	seamless	integration	with	Laravel’s	existing	suite	of	event	broadcasting	tools.

Installation

[!WARNING]
Laravel	Reverb	requires	PHP	8.2+	and	Laravel	10.47+.

You	may	use	the	Composer	package	manager	to	install	Reverb	into	your	Laravel	project.	Since	Reverb	is
currently	in	beta,	you	will	need	to	explicitly	install	the	beta	release:

composer	require	laravel/reverb:@beta

Once	the	package	is	installed,	you	may	run	Reverb's	installation	command	to	publish	the	configuration,	add
Reverb's	required	environment	variables,	and	enable	event	broadcasting	in	your	application:

php	artisan	reverb:install

Configuration

The	reverb:install	command	will	automatically	configure	Reverb	using	a	sensible	set	of	default	options.	If
you	would	like	to	make	any	configuration	changes,	you	may	do	so	by	updating	Reverb's	environment	variables
or	by	updating	the	config/reverb.php	configuration	file.

Application	Credentials

In	order	to	establish	a	connection	to	Reverb,	a	set	of	Reverb	"application"	credentials	must	be	exchanged
between	the	client	and	server.	These	credentials	are	configured	on	the	server	and	are	used	to	verify	the	request
from	the	client.	You	may	define	these	credentials	using	the	following	environment	variables:

REVERB_APP_ID=my-app-id

REVERB_APP_KEY=my-app-key

REVERB_APP_SECRET=my-app-secret

Allowed	Origins

Laravel	Documentation	-	10.x	/	Reverb 1033

https://github.com/laravel/reverb

You	may	also	define	the	origins	from	which	client	requests	may	originate	by	updating	the	value	of	the	
allowed_origins	configuration	value	within	the	apps	section	of	the	config/reverb.php	configuration	file.	Any
requests	from	an	origin	not	listed	in	your	allowed	origins	will	be	rejected.	You	may	allow	all	origins	using	*:

'apps'	=>	[

				[

								'id'	=>	'my-app-id',

								'allowed_origins'	=>	['laravel.com'],

								//	...

]

]

Additional	Applications

Typically,	Reverb	provides	a	WebSocket	server	for	the	application	in	which	it	is	installed.	However,	it	is
possible	to	serve	more	than	one	application	using	a	single	Reverb	installation.

For	example,	you	may	wish	to	maintain	a	single	Laravel	application	which,	via	Reverb,	provides	WebSocket
connectivity	for	multiple	applications.	This	can	be	achieved	by	defining	multiple	apps	in	your	application's	
config/reverb.php	configuration	file:

'apps'	=>	[

				[

								'app_id'	=>	'my-app-one',

								//	...

],

				[

								'app_id'	=>	'my-app-two',

								//	...

],

],

SSL

In	most	cases,	secure	WebSocket	connections	are	likely	handled	by	an	upstream	web	server	(Nginx,	etc.)	before
the	request	is	proxied	to	your	Reverb	server.

However,	it	can	sometimes	be	useful,	such	as	during	local	development,	for	the	Reverb	server	to	handle	secure
connections	directly.	If	you	are	using	Laravel	Herd's	secure	site	functionality,	or	you	are	using	Laravel	Valet
and	have	run	the	secure	command	against	your	application,	you	may	use	the	Herd	/	Valet	certificate	generated
for	your	site	to	secure	your	Reverb	connections.	To	do	so,	set	the	REVERB_HOST	environment	variable	to	your
site's	hostname	or	explicitly	pass	the	hostname	option	when	starting	the	Reverb	server:

php	artisan	reverb:start	--host="0.0.0.0"	--port=8080	--hostname="laravel.test"

Since	Herd	and	Valet	domains	resolve	to	localhost,	running	the	commmand	above	will	result	in	your	Reverb
server	being	accessible	via	the	secure	WebSocket	protocol	(wss)	at	wss://laravel.test:8080.

You	may	also	manually	choose	a	certificate	by	defining	tls	options	in	your	application's	config/reverb.php
configuration	file.	Within	the	array	of	tls	options,	you	may	provide	any	of	the	options	supported	by	PHP's	SSL
context	options:

'options'	=>	[

				'tls'	=>	[

								'local_cert'	=>	'/path/to/cert.pem'

],

],

Running	the	Server

The	Reverb	server	can	be	started	using	the	reverb:start	Artisan	command:

php	artisan	reverb:start

By	default,	the	Reverb	server	will	be	started	at	0.0.0.0:8080,	making	it	accessible	from	all	network	interfaces.

If	you	need	to	specify	a	custom	host	or	port,	you	may	do	so	via	the	--host	and	--port	options	when	starting	the

Laravel	Documentation	-	10.x	/	Reverb 1034

https://herd.laravel.com
https://www.php.net/manual/en/context.ssl.php

server:

php	artisan	reverb:start	--host=127.0.0.1	--port=9000

Alternatively,	you	may	define	REVERB_SERVER_HOST	and	REVERB_SERVER_PORT	environment	variables	in	your
application's	.env	configuration	file.

The	REVERB_SERVER_HOST	and	REVERB_SERVER_PORT	environment	variables	should	not	be	confused	with	
REVERB_HOST	and	REVERB_PORT.	The	former	specify	the	host	and	port	on	which	to	run	the	Reverb	server	itself,
while	the	latter	pair	instruct	Laravel	where	to	send	broadcast	messages.	For	example,	in	a	production
environment,	you	may	route	requests	from	your	public	Reverb	hostname	on	port	443	to	a	Reverb	server
operating	on	0.0.0.0:8080.	In	this	scenario,	your	environment	variables	would	be	defined	as	follows:

REVERB_SERVER_HOST=0.0.0.0

REVERB_SERVER_PORT=8080

REVERB_HOST=ws.laravel.com

REVERB_PORT=443

Debugging

To	improve	performance,	Reverb	does	not	output	any	debug	information	by	default.	If	you	would	like	to	see	the
stream	of	data	passing	through	your	Reverb	server,	you	may	provide	the	--debug	option	to	the	reverb:start
command:

php	artisan	reverb:start	--debug

Restarting

Since	Reverb	is	a	long-running	process,	changes	to	your	code	will	not	be	reflected	without	restarting	the	server
via	the	reverb:restart	Artisan	command.

The	reverb:restart	command	ensures	all	connections	are	gracefully	terminated	before	stopping	the	server.	If
you	are	running	Reverb	with	a	process	manager	such	as	Supervisor,	the	server	will	be	automatically	restarted
by	the	process	manager	after	all	connections	have	been	terminated:

php	artisan	reverb:restart

Running	Reverb	in	Production

Due	to	the	long-running	nature	of	WebSocket	servers,	you	may	need	to	make	some	optimizations	to	your	server
and	hosting	environment	to	ensure	your	Reverb	server	can	effectively	handle	the	optimal	number	of
connections	for	the	resources	available	on	your	server.

[!NOTE]
If	your	site	is	managed	by	Laravel	Forge,	you	may	automatically	optimize	your	server	for	Reverb	directly
from	the	"Application"	panel.	By	enabling	the	Reverb	integration,	Forge	will	ensure	your	server	is
production-ready,	including	installing	any	required	extensions	and	increasing	the	allowed	number	of
connections.

Open	Files

Each	WebSocket	connection	is	held	in	memory	until	either	the	client	or	server	disconnects.	In	Unix	and	Unix-
like	environments,	each	connection	is	represented	by	a	file.	However,	there	are	often	limits	on	the	number	of
allowed	open	files	at	both	the	operating	system	and	application	level.

Operating	System

On	a	Unix	based	operating	system,	you	may	determine	the	allowed	number	of	open	files	using	the	ulimit
command:

ulimit	-n

Laravel	Documentation	-	10.x	/	Reverb 1035

https://forge.laravel.com

This	command	will	display	the	open	file	limits	allowed	for	different	users.	You	may	update	these	values	by
editing	the	/etc/security/limits.conf	file.	For	example,	updating	the	maximum	number	of	open	files	to	10,000
for	the	forge	user	would	look	like	the	following:

#	/etc/security/limits.conf

forge								soft		nofile		10000

forge								hard		nofile		10000

Event	Loop

Under	the	hood,	Reverb	uses	a	ReactPHP	event	loop	to	manage	WebSocket	connections	on	the	server.	By
default,	this	event	loop	is	powered	by	stream_select,	which	doesn't	require	any	additional	extensions.	However,
stream_select	is	typically	limited	to	1,024	open	files.	As	such,	if	you	plan	to	handle	more	than	1,000	concurrent
connections,	you	will	need	to	use	an	alternative	event	loop	not	bound	by	the	same	restrictions.

Reverb	will	automatically	switch	to	an	ext-event,	ext-ev,	or	ext-uv	powered	loop	when	available.	All	of	these
PHP	extensions	are	available	for	install	via	PECL:

pecl	install	event

#	or

pecl	install	ev

#	or

pecl	install	uv

Web	Server

In	most	cases,	Reverb	runs	on	a	non	web-facing	port	on	your	server.	So,	in	order	to	route	traffic	to	Reverb,	you
should	configure	a	reverse	proxy.	Assuming	Reverb	is	running	on	host	0.0.0.0	and	port	8080	and	your	server
utilizes	the	Nginx	web	server,	a	reverse	proxy	can	be	defined	for	your	Reverb	server	using	the	following	Nginx
site	configuration:

server	{

				...

				location	/	{

								proxy_http_version	1.1;

								proxy_set_header	Host	$http_host;

								proxy_set_header	Scheme	$scheme;

								proxy_set_header	SERVER_PORT	$server_port;

								proxy_set_header	REMOTE_ADDR	$remote_addr;

								proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;

								proxy_set_header	Upgrade	$http_upgrade;

								proxy_set_header	Connection	"Upgrade";

								proxy_pass	http://0.0.0.0:8080;

				}

				...

}

Typically,	web	servers	are	configured	to	limit	the	number	of	allowed	connections	in	order	to	prevent
overloading	the	server.	To	increase	the	number	of	allowed	connections	on	an	Nginx	web	server	to	10,000,	the	
worker_rlimit_nofile	and	worker_connections	values	of	the	nginx.conf	file	should	be	updated:

user	forge;

worker_processes	auto;

pid	/run/nginx.pid;

include	/etc/nginx/modules-enabled/*.conf;

worker_rlimit_nofile	10000;

events	{

		worker_connections	10000;

		multi_accept	on;

}

The	configuration	above	will	allow	up	to	10,000	Nginx	workers	per	process	to	be	spawned.	In	addition,	this
configuration	sets	Nginx's	open	file	limit	to	10,000.

Ports

Laravel	Documentation	-	10.x	/	Reverb 1036

Unix-based	operating	systems	typically	limit	the	number	of	ports	which	can	be	opened	on	the	server.	You	may
see	the	current	allowed	range	via	the	following	command:

	cat	/proc/sys/net/ipv4/ip_local_port_range

#	32768	60999

The	output	above	shows	the	server	can	handle	a	maximum	of	28,231	(60,999	-	32,768)	connections	since	each
connection	requires	a	free	port.	Although	we	recommend	horizontal	scaling	to	increase	the	number	of	allowed
connections,	you	may	increase	the	number	of	available	open	ports	by	updating	the	allowed	port	range	in	your
server's	/etc/sysctl.conf	configuration	file.

Process	Management

In	most	cases,	you	should	use	a	process	manager	such	as	Supervisor	to	ensure	the	Reverb	server	is	continually
running.	If	you	are	using	Supervisor	to	run	Reverb,	you	should	update	the	minfds	setting	of	your	server's	
supervisor.conf	file	to	ensure	Supervisor	is	able	to	open	the	files	required	to	handle	connections	to	your	Reverb
server:

[supervisord]

...

minfds=10000

Scaling

If	you	need	to	handle	more	connections	than	a	single	server	will	allow,	you	may	scale	your	Reverb	server
horizontally.	Utilizing	the	publish	/	subscribe	capabilities	of	Redis,	Reverb	is	able	to	manage	connections	across
multiple	servers.	When	a	message	is	received	by	one	of	your	application's	Reverb	servers,	the	server	will	use
Redis	to	publish	the	incoming	message	to	all	other	servers.

To	enable	horizontal	scaling,	you	should	set	the	REVERB_SCALING_ENABLED	environment	variable	to	true	in	your
application's	.env	configuration	file:

REVERB_SCALING_ENABLED=true

Next,	you	should	have	a	dedicated,	central	Redis	server	to	which	all	of	the	Reverb	servers	will	communicate.
Reverb	will	use	the	default	Redis	connection	configured	for	your	application	to	publish	messages	to	all	of	your
Reverb	servers.

Once	you	have	enabled	Reverb's	scaling	option	and	configured	a	Redis	server,	you	may	simply	invoke	the	
reverb:start	command	on	multiple	servers	that	are	able	to	communicate	with	your	Redis	server.	These	Reverb
servers	should	be	placed	behind	a	load	balancer	that	distributes	incoming	requests	evenly	among	the	servers.

Laravel	Documentation	-	10.x	/	Reverb 1037

Packages

Laravel	Sail
Introduction
Installation	and	Setup

Installing	Sail	Into	Existing	Applications
Configuring	A	Shell	Alias

Starting	and	Stopping	Sail
Executing	Commands

Executing	PHP	Commands
Executing	Composer	Commands
Executing	Artisan	Commands
Executing	Node	/	NPM	Commands

Interacting	With	Databases
MySQL
Redis
Meilisearch
Typesense

File	Storage
Running	Tests

Laravel	Dusk
Previewing	Emails
Container	CLI
PHP	Versions
Node	Versions
Sharing	Your	Site
Debugging	With	Xdebug

Xdebug	CLI	Usage
Xdebug	Browser	Usage

Customization

Introduction

Laravel	Sail	is	a	light-weight	command-line	interface	for	interacting	with	Laravel's	default	Docker
development	environment.	Sail	provides	a	great	starting	point	for	building	a	Laravel	application	using	PHP,
MySQL,	and	Redis	without	requiring	prior	Docker	experience.

At	its	heart,	Sail	is	the	docker-compose.yml	file	and	the	sail	script	that	is	stored	at	the	root	of	your	project.	The	
sail	script	provides	a	CLI	with	convenient	methods	for	interacting	with	the	Docker	containers	defined	by	the	
docker-compose.yml	file.

Laravel	Sail	is	supported	on	macOS,	Linux,	and	Windows	(via	WSL2).

Installation	and	Setup

Laravel	Sail	is	automatically	installed	with	all	new	Laravel	applications	so	you	may	start	using	it	immediately.
To	learn	how	to	create	a	new	Laravel	application,	please	consult	Laravel's	installation	documentation	for	your
operating	system.	During	installation,	you	will	be	asked	to	choose	which	Sail	supported	services	your
application	will	be	interacting	with.

Installing	Sail	Into	Existing	Applications

If	you	are	interested	in	using	Sail	with	an	existing	Laravel	application,	you	may	simply	install	Sail	using	the
Composer	package	manager.	Of	course,	these	steps	assume	that	your	existing	local	development	environment
allows	you	to	install	Composer	dependencies:

composer	require	laravel/sail	--dev

Laravel	Documentation	-	10.x	/	Sail 1038

https://github.com/laravel/sail
https://docs.microsoft.com/en-us/windows/wsl/about

After	Sail	has	been	installed,	you	may	run	the	sail:install	Artisan	command.	This	command	will	publish
Sail's	docker-compose.yml	file	to	the	root	of	your	application	and	modify	your	.env	file	with	the	required
environment	variables	in	order	to	connect	to	the	Docker	services:

php	artisan	sail:install

Finally,	you	may	start	Sail.	To	continue	learning	how	to	use	Sail,	please	continue	reading	the	remainder	of	this
documentation:

./vendor/bin/sail	up

[!WARNING]
If	you	are	using	Docker	Desktop	for	Linux,	you	should	use	the	default	Docker	context	by	executing	the
following	command:	docker	context	use	default.

Adding	Additional	Services

If	you	would	like	to	add	an	additional	service	to	your	existing	Sail	installation,	you	may	run	the	sail:add
Artisan	command:

php	artisan	sail:add

Using	Devcontainers

If	you	would	like	to	develop	within	a	Devcontainer,	you	may	provide	the	--devcontainer	option	to	the	
sail:install	command.	The	--devcontainer	option	will	instruct	the	sail:install	command	to	publish	a	default	
.devcontainer/devcontainer.json	file	to	the	root	of	your	application:

php	artisan	sail:install	--devcontainer

Configuring	A	Shell	Alias

By	default,	Sail	commands	are	invoked	using	the	vendor/bin/sail	script	that	is	included	with	all	new	Laravel
applications:

./vendor/bin/sail	up

However,	instead	of	repeatedly	typing	vendor/bin/sail	to	execute	Sail	commands,	you	may	wish	to	configure	a
shell	alias	that	allows	you	to	execute	Sail's	commands	more	easily:

alias	sail='sh	$([-f	sail]	&&	echo	sail	||	echo	vendor/bin/sail)'

To	make	sure	this	is	always	available,	you	may	add	this	to	your	shell	configuration	file	in	your	home	directory,
such	as	~/.zshrc	or	~/.bashrc,	and	then	restart	your	shell.

Once	the	shell	alias	has	been	configured,	you	may	execute	Sail	commands	by	simply	typing	sail.	The
remainder	of	this	documentation's	examples	will	assume	that	you	have	configured	this	alias:

sail	up

Starting	and	Stopping	Sail

Laravel	Sail's	docker-compose.yml	file	defines	a	variety	of	Docker	containers	that	work	together	to	help	you
build	Laravel	applications.	Each	of	these	containers	is	an	entry	within	the	services	configuration	of	your	
docker-compose.yml	file.	The	laravel.test	container	is	the	primary	application	container	that	will	be	serving
your	application.

Before	starting	Sail,	you	should	ensure	that	no	other	web	servers	or	databases	are	running	on	your	local
computer.	To	start	all	of	the	Docker	containers	defined	in	your	application's	docker-compose.yml	file,	you	should
execute	the	up	command:

sail	up

Laravel	Documentation	-	10.x	/	Sail 1039

https://code.visualstudio.com/docs/remote/containers

To	start	all	of	the	Docker	containers	in	the	background,	you	may	start	Sail	in	"detached"	mode:

sail	up	-d

Once	the	application's	containers	have	been	started,	you	may	access	the	project	in	your	web	browser	at:
http://localhost.

To	stop	all	of	the	containers,	you	may	simply	press	Control	+	C	to	stop	the	container's	execution.	Or,	if	the
containers	are	running	in	the	background,	you	may	use	the	stop	command:

sail	stop

Executing	Commands

When	using	Laravel	Sail,	your	application	is	executing	within	a	Docker	container	and	is	isolated	from	your
local	computer.	However,	Sail	provides	a	convenient	way	to	run	various	commands	against	your	application
such	as	arbitrary	PHP	commands,	Artisan	commands,	Composer	commands,	and	Node	/	NPM	commands.

When	reading	the	Laravel	documentation,	you	will	often	see	references	to	Composer,	Artisan,	and	Node	/
NPM	commands	that	do	not	reference	Sail.	Those	examples	assume	that	these	tools	are	installed	on	your
local	computer.	If	you	are	using	Sail	for	your	local	Laravel	development	environment,	you	should	execute	those
commands	using	Sail:

#	Running	Artisan	commands	locally...

php	artisan	queue:work

#	Running	Artisan	commands	within	Laravel	Sail...

sail	artisan	queue:work

Executing	PHP	Commands

PHP	commands	may	be	executed	using	the	php	command.	Of	course,	these	commands	will	execute	using	the
PHP	version	that	is	configured	for	your	application.	To	learn	more	about	the	PHP	versions	available	to	Laravel
Sail,	consult	the	PHP	version	documentation:

sail	php	--version

sail	php	script.php

Executing	Composer	Commands

Composer	commands	may	be	executed	using	the	composer	command.	Laravel	Sail's	application	container
includes	a	Composer	2.x	installation:

sail	composer	require	laravel/sanctum

Installing	Composer	Dependencies	for	Existing	Applications

If	you	are	developing	an	application	with	a	team,	you	may	not	be	the	one	that	initially	creates	the	Laravel
application.	Therefore,	none	of	the	application's	Composer	dependencies,	including	Sail,	will	be	installed	after
you	clone	the	application's	repository	to	your	local	computer.

You	may	install	the	application's	dependencies	by	navigating	to	the	application's	directory	and	executing	the
following	command.	This	command	uses	a	small	Docker	container	containing	PHP	and	Composer	to	install	the
application's	dependencies:

docker	run	--rm	\

				-u	"$(id	-u):$(id	-g)"	\

				-v	"$(pwd):/var/www/html"	\

				-w	/var/www/html	\

				laravelsail/php83-composer:latest	\

				composer	install	--ignore-platform-reqs

When	using	the	laravelsail/phpXX-composer	image,	you	should	use	the	same	version	of	PHP	that	you	plan	to
use	for	your	application	(80,	81,	82,	or	83).

Laravel	Documentation	-	10.x	/	Sail 1040

http://localhost

Executing	Artisan	Commands

Laravel	Artisan	commands	may	be	executed	using	the	artisan	command:

sail	artisan	queue:work

Executing	Node	/	NPM	Commands

Node	commands	may	be	executed	using	the	node	command	while	NPM	commands	may	be	executed	using	the	
npm	command:

sail	node	--version

sail	npm	run	dev

If	you	wish,	you	may	use	Yarn	instead	of	NPM:

sail	yarn

Interacting	With	Databases

MySQL

As	you	may	have	noticed,	your	application's	docker-compose.yml	file	contains	an	entry	for	a	MySQL	container.
This	container	uses	a	Docker	volume	so	that	the	data	stored	in	your	database	is	persisted	even	when	stopping
and	restarting	your	containers.

In	addition,	the	first	time	the	MySQL	container	starts,	it	will	create	two	databases	for	you.	The	first	database	is
named	using	the	value	of	your	DB_DATABASE	environment	variable	and	is	for	your	local	development.	The	second
is	a	dedicated	testing	database	named	testing	and	will	ensure	that	your	tests	do	not	interfere	with	your
development	data.

Once	you	have	started	your	containers,	you	may	connect	to	the	MySQL	instance	within	your	application	by
setting	your	DB_HOST	environment	variable	within	your	application's	.env	file	to	mysql.

To	connect	to	your	application's	MySQL	database	from	your	local	machine,	you	may	use	a	graphical	database
management	application	such	as	TablePlus.	By	default,	the	MySQL	database	is	accessible	at	localhost	port
3306	and	the	access	credentials	correspond	to	the	values	of	your	DB_USERNAME	and	DB_PASSWORD	environment
variables.	Or,	you	may	connect	as	the	root	user,	which	also	utilizes	the	value	of	your	DB_PASSWORD	environment
variable	as	its	password.

Redis

Your	application's	docker-compose.yml	file	also	contains	an	entry	for	a	Redis	container.	This	container	uses	a
Docker	volume	so	that	the	data	stored	in	your	Redis	data	is	persisted	even	when	stopping	and	restarting	your
containers.	Once	you	have	started	your	containers,	you	may	connect	to	the	Redis	instance	within	your
application	by	setting	your	REDIS_HOST	environment	variable	within	your	application's	.env	file	to	redis.

To	connect	to	your	application's	Redis	database	from	your	local	machine,	you	may	use	a	graphical	database
management	application	such	as	TablePlus.	By	default,	the	Redis	database	is	accessible	at	localhost	port	6379.

Meilisearch

If	you	chose	to	install	the	Meilisearch	service	when	installing	Sail,	your	application's	docker-compose.yml	file
will	contain	an	entry	for	this	powerful	search-engine	that	is	compatible	with	Laravel	Scout.	Once	you	have
started	your	containers,	you	may	connect	to	the	Meilisearch	instance	within	your	application	by	setting	your	
MEILISEARCH_HOST	environment	variable	to	http://meilisearch:7700.

From	your	local	machine,	you	may	access	Meilisearch's	web	based	administration	panel	by	navigating	to	
http://localhost:7700	in	your	web	browser.

Laravel	Documentation	-	10.x	/	Sail 1041

https://docs.docker.com/storage/volumes/
https://tableplus.com
https://redis.io
https://docs.docker.com/storage/volumes/
https://tableplus.com
https://www.meilisearch.com
https://github.com/meilisearch/meilisearch-laravel-scout

Typesense

If	you	chose	to	install	the	Typesense	service	when	installing	Sail,	your	application's	docker-compose.yml	file	will
contain	an	entry	for	this	lightning	fast,	open-source	search-engine	that	is	natively	integrated	with	Laravel	Scout.
Once	you	have	started	your	containers,	you	may	connect	to	the	Typesense	instance	within	your	application	by
setting	the	following	environment	variables:

TYPESENSE_HOST=typesense

TYPESENSE_PORT=8108

TYPESENSE_PROTOCOL=http

TYPESENSE_API_KEY=xyz

From	your	local	machine,	you	may	access	Typesense's	API	via	http://localhost:8108.

File	Storage

If	you	plan	to	use	Amazon	S3	to	store	files	while	running	your	application	in	its	production	environment,	you
may	wish	to	install	the	MinIO	service	when	installing	Sail.	MinIO	provides	an	S3	compatible	API	that	you	may
use	to	develop	locally	using	Laravel's	s3	file	storage	driver	without	creating	"test"	storage	buckets	in	your
production	S3	environment.	If	you	choose	to	install	MinIO	while	installing	Sail,	a	MinIO	configuration	section
will	be	added	to	your	application's	docker-compose.yml	file.

By	default,	your	application's	filesystems	configuration	file	already	contains	a	disk	configuration	for	the	s3
disk.	In	addition	to	using	this	disk	to	interact	with	Amazon	S3,	you	may	use	it	to	interact	with	any	S3
compatible	file	storage	service	such	as	MinIO	by	simply	modifying	the	associated	environment	variables	that
control	its	configuration.	For	example,	when	using	MinIO,	your	filesystem	environment	variable	configuration
should	be	defined	as	follows:

FILESYSTEM_DISK=s3

AWS_ACCESS_KEY_ID=sail

AWS_SECRET_ACCESS_KEY=password

AWS_DEFAULT_REGION=us-east-1

AWS_BUCKET=local

AWS_ENDPOINT=http://minio:9000

AWS_USE_PATH_STYLE_ENDPOINT=true

In	order	for	Laravel's	Flysystem	integration	to	generate	proper	URLs	when	using	MinIO,	you	should	define	the	
AWS_URL	environment	variable	so	that	it	matches	your	application's	local	URL	and	includes	the	bucket	name	in
the	URL	path:

AWS_URL=http://localhost:9000/local

You	may	create	buckets	via	the	MinIO	console,	which	is	available	at	http://localhost:8900.	The	default
username	for	the	MinIO	console	is	sail	while	the	default	password	is	password.

[!WARNING]
Generating	temporary	storage	URLs	via	the	temporaryUrl	method	is	not	supported	when	using	MinIO.

Running	Tests

Laravel	provides	amazing	testing	support	out	of	the	box,	and	you	may	use	Sail's	test	command	to	run	your
applications	feature	and	unit	tests.	Any	CLI	options	that	are	accepted	by	PHPUnit	may	also	be	passed	to	the	
test	command:

sail	test

sail	test	--group	orders

The	Sail	test	command	is	equivalent	to	running	the	test	Artisan	command:

sail	artisan	test

By	default,	Sail	will	create	a	dedicated	testing	database	so	that	your	tests	do	not	interfere	with	the	current	state
of	your	database.	In	a	default	Laravel	installation,	Sail	will	also	configure	your	phpunit.xml	file	to	use	this
database	when	executing	your	tests:

Laravel	Documentation	-	10.x	/	Sail 1042

https://typesense.org
https://min.io

<env	name="DB_DATABASE"	value="testing"/>

Laravel	Dusk

Laravel	Dusk	provides	an	expressive,	easy-to-use	browser	automation	and	testing	API.	Thanks	to	Sail,	you	may
run	these	tests	without	ever	installing	Selenium	or	other	tools	on	your	local	computer.	To	get	started,
uncomment	the	Selenium	service	in	your	application's	docker-compose.yml	file:

selenium:

				image:	'selenium/standalone-chrome'

				extra_hosts:

						-	'host.docker.internal:host-gateway'

				volumes:

								-	'/dev/shm:/dev/shm'

				networks:

								-	sail

Next,	ensure	that	the	laravel.test	service	in	your	application's	docker-compose.yml	file	has	a	depends_on	entry
for	selenium:

depends_on:

				-	mysql

				-	redis

				-	selenium

Finally,	you	may	run	your	Dusk	test	suite	by	starting	Sail	and	running	the	dusk	command:

sail	dusk

Selenium	on	Apple	Silicon

If	your	local	machine	contains	an	Apple	Silicon	chip,	your	selenium	service	must	use	the	seleniarm/standalone-
chromium	image:

selenium:

				image:	'seleniarm/standalone-chromium'

				extra_hosts:

								-	'host.docker.internal:host-gateway'

				volumes:

								-	'/dev/shm:/dev/shm'

				networks:

								-	sail

Previewing	Emails

Laravel	Sail's	default	docker-compose.yml	file	contains	a	service	entry	for	Mailpit.	Mailpit	intercepts	emails	sent
by	your	application	during	local	development	and	provides	a	convenient	web	interface	so	that	you	can	preview
your	email	messages	in	your	browser.	When	using	Sail,	Mailpit's	default	host	is	mailpit	and	is	available	via
port	1025:

MAIL_HOST=mailpit

MAIL_PORT=1025

MAIL_ENCRYPTION=null

When	Sail	is	running,	you	may	access	the	Mailpit	web	interface	at:	http://localhost:8025

Container	CLI

Sometimes	you	may	wish	to	start	a	Bash	session	within	your	application's	container.	You	may	use	the	shell
command	to	connect	to	your	application's	container,	allowing	you	to	inspect	its	files	and	installed	services	as
well	execute	arbitrary	shell	commands	within	the	container:

sail	shell

sail	root-shell

To	start	a	new	Laravel	Tinker	session,	you	may	execute	the	tinker	command:

Laravel	Documentation	-	10.x	/	Sail 1043

https://github.com/axllent/mailpit
http://localhost:8025
https://github.com/laravel/tinker

sail	tinker

PHP	Versions

Sail	currently	supports	serving	your	application	via	PHP	8.3,	8.2,	8.1,	or	PHP	8.0.	The	default	PHP	version
used	by	Sail	is	currently	PHP	8.3.	To	change	the	PHP	version	that	is	used	to	serve	your	application,	you	should
update	the	build	definition	of	the	laravel.test	container	in	your	application's	docker-compose.yml	file:

#	PHP	8.3

context:	./vendor/laravel/sail/runtimes/8.3

#	PHP	8.2

context:	./vendor/laravel/sail/runtimes/8.2

#	PHP	8.1

context:	./vendor/laravel/sail/runtimes/8.1

#	PHP	8.0

context:	./vendor/laravel/sail/runtimes/8.0

In	addition,	you	may	wish	to	update	your	image	name	to	reflect	the	version	of	PHP	being	used	by	your
application.	This	option	is	also	defined	in	your	application's	docker-compose.yml	file:

image:	sail-8.1/app

After	updating	your	application's	docker-compose.yml	file,	you	should	rebuild	your	container	images:

sail	build	--no-cache

sail	up

Node	Versions

Sail	installs	Node	20	by	default.	To	change	the	Node	version	that	is	installed	when	building	your	images,	you
may	update	the	build.args	definition	of	the	laravel.test	service	in	your	application's	docker-compose.yml	file:

build:

				args:

								WWWGROUP:	'${WWWGROUP}'

								NODE_VERSION:	'18'

After	updating	your	application's	docker-compose.yml	file,	you	should	rebuild	your	container	images:

sail	build	--no-cache

sail	up

Sharing	Your	Site

Sometimes	you	may	need	to	share	your	site	publicly	in	order	to	preview	your	site	for	a	colleague	or	to	test
webhook	integrations	with	your	application.	To	share	your	site,	you	may	use	the	share	command.	After
executing	this	command,	you	will	be	issued	a	random	laravel-sail.site	URL	that	you	may	use	to	access	your
application:

sail	share

When	sharing	your	site	via	the	share	command,	you	should	configure	your	application's	trusted	proxies	within
the	TrustProxies	middleware.	Otherwise,	URL	generation	helpers	such	as	url	and	route	will	be	unable	to
determine	the	correct	HTTP	host	that	should	be	used	during	URL	generation:

/**

	*	The	trusted	proxies	for	this	application.

	*

	*	@var	array|string|null

	*/

protected	$proxies	=	'*';

If	you	would	like	to	choose	the	subdomain	for	your	shared	site,	you	may	provide	the	subdomain	option	when

Laravel	Documentation	-	10.x	/	Sail 1044

executing	the	share	command:

sail	share	--subdomain=my-sail-site

[!NOTE]
The	share	command	is	powered	by	Expose,	an	open	source	tunneling	service	by	BeyondCode.

Debugging	With	Xdebug

Laravel	Sail's	Docker	configuration	includes	support	for	Xdebug,	a	popular	and	powerful	debugger	for	PHP.	In
order	to	enable	Xdebug,	you	will	need	to	add	a	few	variables	to	your	application's	.env	file	to	configure
Xdebug.	To	enable	Xdebug	you	must	set	the	appropriate	mode(s)	before	starting	Sail:

SAIL_XDEBUG_MODE=develop,debug,coverage

Linux	Host	IP	Configuration

Internally,	the	XDEBUG_CONFIG	environment	variable	is	defined	as	client_host=host.docker.internal	so	that
Xdebug	will	be	properly	configured	for	Mac	and	Windows	(WSL2).	If	your	local	machine	is	running	Linux,
you	should	ensure	that	you	are	running	Docker	Engine	17.06.0+	and	Compose	1.16.0+.	Otherwise,	you	will
need	to	manually	define	this	environment	variable	as	shown	below.

First,	you	should	determine	the	correct	host	IP	address	to	add	to	the	environment	variable	by	running	the
following	command.	Typically,	the	<container-name>	should	be	the	name	of	the	container	that	serves	your
application	and	often	ends	with	_laravel.test_1:

docker	inspect	-f	{{range.NetworkSettings.Networks}}{{.Gateway}}{{end}}	<container-name>

Once	you	have	obtained	the	correct	host	IP	address,	you	should	define	the	SAIL_XDEBUG_CONFIG	variable	within
your	application's	.env	file:

SAIL_XDEBUG_CONFIG="client_host=<host-ip-address>"

Xdebug	CLI	Usage

A	sail	debug	command	may	be	used	to	start	a	debugging	session	when	running	an	Artisan	command:

#	Run	an	Artisan	command	without	Xdebug...

sail	artisan	migrate

#	Run	an	Artisan	command	with	Xdebug...

sail	debug	migrate

Xdebug	Browser	Usage

To	debug	your	application	while	interacting	with	the	application	via	a	web	browser,	follow	the	instructions
provided	by	Xdebug	for	initiating	an	Xdebug	session	from	the	web	browser.

If	you're	using	PhpStorm,	please	review	JetBrain's	documentation	regarding	zero-configuration	debugging.

[!WARNING]
Laravel	Sail	relies	on	artisan	serve	to	serve	your	application.	The	artisan	serve	command	only	accepts
the	XDEBUG_CONFIG	and	XDEBUG_MODE	variables	as	of	Laravel	version	8.53.0.	Older	versions	of	Laravel	(8.52.0
and	below)	do	not	support	these	variables	and	will	not	accept	debug	connections.

Customization

Since	Sail	is	just	Docker,	you	are	free	to	customize	nearly	everything	about	it.	To	publish	Sail's	own
Dockerfiles,	you	may	execute	the	sail:publish	command:

sail	artisan	sail:publish

Laravel	Documentation	-	10.x	/	Sail 1045

https://github.com/beyondcode/expose
https://beyondco.de
https://xdebug.org/
https://xdebug.org/docs/step_debug#mode
https://xdebug.org/docs/step_debug#web-application
https://www.jetbrains.com/help/phpstorm/zero-configuration-debugging.html

After	running	this	command,	the	Dockerfiles	and	other	configuration	files	used	by	Laravel	Sail	will	be	placed
within	a	docker	directory	in	your	application's	root	directory.	After	customizing	your	Sail	installation,	you	may
wish	to	change	the	image	name	for	the	application	container	in	your	application's	docker-compose.yml	file.	After
doing	so,	rebuild	your	application's	containers	using	the	build	command.	Assigning	a	unique	name	to	the
application	image	is	particularly	important	if	you	are	using	Sail	to	develop	multiple	Laravel	applications	on	a
single	machine:

sail	build	--no-cache

Laravel	Documentation	-	10.x	/	Sail 1046

Packages

Laravel	Sanctum
Introduction

How	it	Works
Installation
Configuration

Overriding	Default	Models
API	Token	Authentication

Issuing	API	Tokens
Token	Abilities
Protecting	Routes
Revoking	Tokens
Token	Expiration

SPA	Authentication
Configuration
Authenticating
Protecting	Routes
Authorizing	Private	Broadcast	Channels

Mobile	Application	Authentication
Issuing	API	Tokens
Protecting	Routes
Revoking	Tokens

Testing

Introduction

Laravel	Sanctum	provides	a	featherweight	authentication	system	for	SPAs	(single	page	applications),	mobile
applications,	and	simple,	token	based	APIs.	Sanctum	allows	each	user	of	your	application	to	generate	multiple
API	tokens	for	their	account.	These	tokens	may	be	granted	abilities	/	scopes	which	specify	which	actions	the
tokens	are	allowed	to	perform.

How	it	Works

Laravel	Sanctum	exists	to	solve	two	separate	problems.	Let's	discuss	each	before	digging	deeper	into	the
library.

API	Tokens

First,	Sanctum	is	a	simple	package	you	may	use	to	issue	API	tokens	to	your	users	without	the	complication	of
OAuth.	This	feature	is	inspired	by	GitHub	and	other	applications	which	issue	"personal	access	tokens".	For
example,	imagine	the	"account	settings"	of	your	application	has	a	screen	where	a	user	may	generate	an	API
token	for	their	account.	You	may	use	Sanctum	to	generate	and	manage	those	tokens.	These	tokens	typically
have	a	very	long	expiration	time	(years),	but	may	be	manually	revoked	by	the	user	at	anytime.

Laravel	Sanctum	offers	this	feature	by	storing	user	API	tokens	in	a	single	database	table	and	authenticating
incoming	HTTP	requests	via	the	Authorization	header	which	should	contain	a	valid	API	token.

SPA	Authentication

Second,	Sanctum	exists	to	offer	a	simple	way	to	authenticate	single	page	applications	(SPAs)	that	need	to
communicate	with	a	Laravel	powered	API.	These	SPAs	might	exist	in	the	same	repository	as	your	Laravel
application	or	might	be	an	entirely	separate	repository,	such	as	a	SPA	created	using	Vue	CLI	or	a	Next.js
application.

For	this	feature,	Sanctum	does	not	use	tokens	of	any	kind.	Instead,	Sanctum	uses	Laravel's	built-in	cookie
based	session	authentication	services.	Typically,	Sanctum	utilizes	Laravel's	web	authentication	guard	to

Laravel	Documentation	-	10.x	/	Sanctum 1047

https://github.com/laravel/sanctum

accomplish	this.	This	provides	the	benefits	of	CSRF	protection,	session	authentication,	as	well	as	protects
against	leakage	of	the	authentication	credentials	via	XSS.

Sanctum	will	only	attempt	to	authenticate	using	cookies	when	the	incoming	request	originates	from	your	own
SPA	frontend.	When	Sanctum	examines	an	incoming	HTTP	request,	it	will	first	check	for	an	authentication
cookie	and,	if	none	is	present,	Sanctum	will	then	examine	the	Authorization	header	for	a	valid	API	token.

[!NOTE]
It	is	perfectly	fine	to	use	Sanctum	only	for	API	token	authentication	or	only	for	SPA	authentication.	Just
because	you	use	Sanctum	does	not	mean	you	are	required	to	use	both	features	it	offers.

Installation

[!NOTE]
The	most	recent	versions	of	Laravel	already	include	Laravel	Sanctum.	However,	if	your	application's	
composer.json	file	does	not	include	laravel/sanctum,	you	may	follow	the	installation	instructions	below.

You	may	install	Laravel	Sanctum	via	the	Composer	package	manager:

composer	require	laravel/sanctum

Next,	you	should	publish	the	Sanctum	configuration	and	migration	files	using	the	vendor:publish	Artisan
command.	The	sanctum	configuration	file	will	be	placed	in	your	application's	config	directory:

php	artisan	vendor:publish	--provider="Laravel\Sanctum\SanctumServiceProvider"

Finally,	you	should	run	your	database	migrations.	Sanctum	will	create	one	database	table	in	which	to	store	API
tokens:

php	artisan	migrate

Next,	if	you	plan	to	utilize	Sanctum	to	authenticate	a	SPA,	you	should	add	Sanctum's	middleware	to	your	api
middleware	group	within	your	application's	app/Http/Kernel.php	file:

'api'	=>	[

				\Laravel\Sanctum\Http\Middleware\EnsureFrontendRequestsAreStateful::class,

				\Illuminate\Routing\Middleware\ThrottleRequests::class.':api',

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

Migration	Customization

If	you	are	not	going	to	use	Sanctum's	default	migrations,	you	should	call	the	Sanctum::ignoreMigrations	method
in	the	register	method	of	your	App\Providers\AppServiceProvider	class.	You	may	export	the	default	migrations
by	executing	the	following	command:	php	artisan	vendor:publish	--tag=sanctum-migrations

Configuration

Overriding	Default	Models

Although	not	typically	required,	you	are	free	to	extend	the	PersonalAccessToken	model	used	internally	by
Sanctum:

use	Laravel\Sanctum\PersonalAccessToken	as	SanctumPersonalAccessToken;

class	PersonalAccessToken	extends	SanctumPersonalAccessToken

{

				//	...

}

Then,	you	may	instruct	Sanctum	to	use	your	custom	model	via	the	usePersonalAccessTokenModel	method
provided	by	Sanctum.	Typically,	you	should	call	this	method	in	the	boot	method	of	one	of	your	application's
service	providers:

Laravel	Documentation	-	10.x	/	Sanctum 1048

use	App\Models\Sanctum\PersonalAccessToken;

use	Laravel\Sanctum\Sanctum;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				Sanctum::usePersonalAccessTokenModel(PersonalAccessToken::class);

}

API	Token	Authentication

[!NOTE]
You	should	not	use	API	tokens	to	authenticate	your	own	first-party	SPA.	Instead,	use	Sanctum's	built-in
SPA	authentication	features.

Issuing	API	Tokens

Sanctum	allows	you	to	issue	API	tokens	/	personal	access	tokens	that	may	be	used	to	authenticate	API	requests
to	your	application.	When	making	requests	using	API	tokens,	the	token	should	be	included	in	the	Authorization
header	as	a	Bearer	token.

To	begin	issuing	tokens	for	users,	your	User	model	should	use	the	Laravel\Sanctum\HasApiTokens	trait:

use	Laravel\Sanctum\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	HasFactory,	Notifiable;

}

To	issue	a	token,	you	may	use	the	createToken	method.	The	createToken	method	returns	a	
Laravel\Sanctum\NewAccessToken	instance.	API	tokens	are	hashed	using	SHA-256	hashing	before	being	stored	in
your	database,	but	you	may	access	the	plain-text	value	of	the	token	using	the	plainTextToken	property	of	the	
NewAccessToken	instance.	You	should	display	this	value	to	the	user	immediately	after	the	token	has	been	created:

use	Illuminate\Http\Request;

Route::post('/tokens/create',	function	(Request	$request)	{

				$token	=	$request->user()->createToken($request->token_name);

				return	['token'	=>	$token->plainTextToken];

});

You	may	access	all	of	the	user's	tokens	using	the	tokens	Eloquent	relationship	provided	by	the	HasApiTokens
trait:

foreach	($user->tokens	as	$token)	{

				//	...

}

Token	Abilities

Sanctum	allows	you	to	assign	"abilities"	to	tokens.	Abilities	serve	a	similar	purpose	as	OAuth's	"scopes".	You
may	pass	an	array	of	string	abilities	as	the	second	argument	to	the	createToken	method:

return	$user->createToken('token-name',	['server:update'])->plainTextToken;

When	handling	an	incoming	request	authenticated	by	Sanctum,	you	may	determine	if	the	token	has	a	given
ability	using	the	tokenCan	method:

if	($user->tokenCan('server:update'))	{

				//	...

}

Token	Ability	Middleware

Laravel	Documentation	-	10.x	/	Sanctum 1049

Sanctum	also	includes	two	middleware	that	may	be	used	to	verify	that	an	incoming	request	is	authenticated
with	a	token	that	has	been	granted	a	given	ability.	To	get	started,	add	the	following	middleware	to	the	
$middlewareAliases	property	of	your	application's	app/Http/Kernel.php	file:

'abilities'	=>	\Laravel\Sanctum\Http\Middleware\CheckAbilities::class,

'ability'	=>	\Laravel\Sanctum\Http\Middleware\CheckForAnyAbility::class,

The	abilities	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	token	has	all	of	the
listed	abilities:

Route::get('/orders',	function	()	{

				//	Token	has	both	"check-status"	and	"place-orders"	abilities...

})->middleware(['auth:sanctum',	'abilities:check-status,place-orders']);

The	ability	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	token	has	at	least	one
of	the	listed	abilities:

Route::get('/orders',	function	()	{

				//	Token	has	the	"check-status"	or	"place-orders"	ability...

})->middleware(['auth:sanctum',	'ability:check-status,place-orders']);

First-Party	UI	Initiated	Requests

For	convenience,	the	tokenCan	method	will	always	return	true	if	the	incoming	authenticated	request	was	from
your	first-party	SPA	and	you	are	using	Sanctum's	built-in	SPA	authentication.

However,	this	does	not	necessarily	mean	that	your	application	has	to	allow	the	user	to	perform	the	action.
Typically,	your	application's	authorization	policies	will	determine	if	the	token	has	been	granted	the	permission
to	perform	the	abilities	as	well	as	check	that	the	user	instance	itself	should	be	allowed	to	perform	the	action.

For	example,	if	we	imagine	an	application	that	manages	servers,	this	might	mean	checking	that	token	is
authorized	to	update	servers	and	that	the	server	belongs	to	the	user:

return	$request->user()->id	===	$server->user_id	&&

							$request->user()->tokenCan('server:update')

At	first,	allowing	the	tokenCan	method	to	be	called	and	always	return	true	for	first-party	UI	initiated	requests
may	seem	strange;	however,	it	is	convenient	to	be	able	to	always	assume	an	API	token	is	available	and	can	be
inspected	via	the	tokenCan	method.	By	taking	this	approach,	you	may	always	call	the	tokenCan	method	within
your	application's	authorizations	policies	without	worrying	about	whether	the	request	was	triggered	from	your
application's	UI	or	was	initiated	by	one	of	your	API's	third-party	consumers.

Protecting	Routes

To	protect	routes	so	that	all	incoming	requests	must	be	authenticated,	you	should	attach	the	sanctum
authentication	guard	to	your	protected	routes	within	your	routes/web.php	and	routes/api.php	route	files.	This
guard	will	ensure	that	incoming	requests	are	authenticated	as	either	stateful,	cookie	authenticated	requests	or
contain	a	valid	API	token	header	if	the	request	is	from	a	third	party.

You	may	be	wondering	why	we	suggest	that	you	authenticate	the	routes	within	your	application's	
routes/web.php	file	using	the	sanctum	guard.	Remember,	Sanctum	will	first	attempt	to	authenticate	incoming
requests	using	Laravel's	typical	session	authentication	cookie.	If	that	cookie	is	not	present	then	Sanctum	will
attempt	to	authenticate	the	request	using	a	token	in	the	request's	Authorization	header.	In	addition,
authenticating	all	requests	using	Sanctum	ensures	that	we	may	always	call	the	tokenCan	method	on	the	currently
authenticated	user	instance:

use	Illuminate\Http\Request;

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Revoking	Tokens

You	may	"revoke"	tokens	by	deleting	them	from	your	database	using	the	tokens	relationship	that	is	provided	by

Laravel	Documentation	-	10.x	/	Sanctum 1050

the	Laravel\Sanctum\HasApiTokens	trait:

//	Revoke	all	tokens...

$user->tokens()->delete();

//	Revoke	the	token	that	was	used	to	authenticate	the	current	request...

$request->user()->currentAccessToken()->delete();

//	Revoke	a	specific	token...

$user->tokens()->where('id',	$tokenId)->delete();

Token	Expiration

By	default,	Sanctum	tokens	never	expire	and	may	only	be	invalidated	by	revoking	the	token.	However,	if	you
would	like	to	configure	an	expiration	time	for	your	application's	API	tokens,	you	may	do	so	via	the	expiration
configuration	option	defined	in	your	application's	sanctum	configuration	file.	This	configuration	option	defines
the	number	of	minutes	until	an	issued	token	will	be	considered	expired:

'expiration'	=>	525600,

If	you	would	like	to	specify	the	expiration	time	of	each	token	independently,	you	may	do	so	by	providing	the
expiration	time	as	the	third	argument	to	the	createToken	method:

return	$user->createToken(

				'token-name',	['*'],	now()->addWeek()

)->plainTextToken;

If	you	have	configured	a	token	expiration	time	for	your	application,	you	may	also	wish	to	schedule	a	task	to
prune	your	application's	expired	tokens.	Thankfully,	Sanctum	includes	a	sanctum:prune-expired	Artisan
command	that	you	may	use	to	accomplish	this.	For	example,	you	may	configure	a	scheduled	tasks	to	delete	all
expired	token	database	records	that	have	been	expired	for	at	least	24	hours:

$schedule->command('sanctum:prune-expired	--hours=24')->daily();

SPA	Authentication

Sanctum	also	exists	to	provide	a	simple	method	of	authenticating	single	page	applications	(SPAs)	that	need	to
communicate	with	a	Laravel	powered	API.	These	SPAs	might	exist	in	the	same	repository	as	your	Laravel
application	or	might	be	an	entirely	separate	repository.

For	this	feature,	Sanctum	does	not	use	tokens	of	any	kind.	Instead,	Sanctum	uses	Laravel's	built-in	cookie
based	session	authentication	services.	This	approach	to	authentication	provides	the	benefits	of	CSRF
protection,	session	authentication,	as	well	as	protects	against	leakage	of	the	authentication	credentials	via	XSS.

[!WARNING]
In	order	to	authenticate,	your	SPA	and	API	must	share	the	same	top-level	domain.	However,	they	may	be
placed	on	different	subdomains.	Additionally,	you	should	ensure	that	you	send	the	Accept:	
application/json	header	and	either	the	Referer	or	Origin	header	with	your	request.

Configuration

Configuring	Your	First-Party	Domains

First,	you	should	configure	which	domains	your	SPA	will	be	making	requests	from.	You	may	configure	these
domains	using	the	stateful	configuration	option	in	your	sanctum	configuration	file.	This	configuration	setting
determines	which	domains	will	maintain	"stateful"	authentication	using	Laravel	session	cookies	when	making
requests	to	your	API.

[!WARNING]
If	you	are	accessing	your	application	via	a	URL	that	includes	a	port	(127.0.0.1:8000),	you	should	ensure
that	you	include	the	port	number	with	the	domain.

Sanctum	Middleware

Laravel	Documentation	-	10.x	/	Sanctum 1051

Next,	you	should	add	Sanctum's	middleware	to	your	api	middleware	group	within	your	app/Http/Kernel.php
file.	This	middleware	is	responsible	for	ensuring	that	incoming	requests	from	your	SPA	can	authenticate	using
Laravel's	session	cookies,	while	still	allowing	requests	from	third	parties	or	mobile	applications	to	authenticate
using	API	tokens:

'api'	=>	[

				\Laravel\Sanctum\Http\Middleware\EnsureFrontendRequestsAreStateful::class,

				\Illuminate\Routing\Middleware\ThrottleRequests::class.':api',

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

CORS	and	Cookies

If	you	are	having	trouble	authenticating	with	your	application	from	a	SPA	that	executes	on	a	separate
subdomain,	you	have	likely	misconfigured	your	CORS	(Cross-Origin	Resource	Sharing)	or	session	cookie
settings.

You	should	ensure	that	your	application's	CORS	configuration	is	returning	the	Access-Control-Allow-
Credentials	header	with	a	value	of	True.	This	may	be	accomplished	by	setting	the	supports_credentials	option
within	your	application's	config/cors.php	configuration	file	to	true.

In	addition,	you	should	enable	the	withCredentials	and	withXSRFToken	options	on	your	application's	global	axios
instance.	Typically,	this	should	be	performed	in	your	resources/js/bootstrap.js	file.	If	you	are	not	using	Axios
to	make	HTTP	requests	from	your	frontend,	you	should	perform	the	equivalent	configuration	on	your	own
HTTP	client:

axios.defaults.withCredentials	=	true;

axios.defaults.withXSRFToken	=	true;

Finally,	you	should	ensure	your	application's	session	cookie	domain	configuration	supports	any	subdomain	of
your	root	domain.	You	may	accomplish	this	by	prefixing	the	domain	with	a	leading	.	within	your	application's	
config/session.php	configuration	file:

'domain'	=>	'.domain.com',

Authenticating

CSRF	Protection

To	authenticate	your	SPA,	your	SPA's	"login"	page	should	first	make	a	request	to	the	/sanctum/csrf-cookie
endpoint	to	initialize	CSRF	protection	for	the	application:

axios.get('/sanctum/csrf-cookie').then(response	=>	{

				//	Login...

});

During	this	request,	Laravel	will	set	an	XSRF-TOKEN	cookie	containing	the	current	CSRF	token.	This	token
should	then	be	passed	in	an	X-XSRF-TOKEN	header	on	subsequent	requests,	which	some	HTTP	client	libraries	like
Axios	and	the	Angular	HttpClient	will	do	automatically	for	you.	If	your	JavaScript	HTTP	library	does	not	set
the	value	for	you,	you	will	need	to	manually	set	the	X-XSRF-TOKEN	header	to	match	the	value	of	the	XSRF-TOKEN
cookie	that	is	set	by	this	route.

Logging	In

Once	CSRF	protection	has	been	initialized,	you	should	make	a	POST	request	to	your	Laravel	application's	/login
route.	This	/login	route	may	be	implemented	manually	or	using	a	headless	authentication	package	like	Laravel
Fortify.

If	the	login	request	is	successful,	you	will	be	authenticated	and	subsequent	requests	to	your	application's	routes
will	automatically	be	authenticated	via	the	session	cookie	that	the	Laravel	application	issued	to	your	client.	In
addition,	since	your	application	already	made	a	request	to	the	/sanctum/csrf-cookie	route,	subsequent	requests
should	automatically	receive	CSRF	protection	as	long	as	your	JavaScript	HTTP	client	sends	the	value	of	the	
XSRF-TOKEN	cookie	in	the	X-XSRF-TOKEN	header.

Laravel	Documentation	-	10.x	/	Sanctum 1052

Of	course,	if	your	user's	session	expires	due	to	lack	of	activity,	subsequent	requests	to	the	Laravel	application
may	receive	401	or	419	HTTP	error	response.	In	this	case,	you	should	redirect	the	user	to	your	SPA's	login
page.

[!WARNING]
You	are	free	to	write	your	own	/login	endpoint;	however,	you	should	ensure	that	it	authenticates	the	user
using	the	standard,	session	based	authentication	services	that	Laravel	provides.	Typically,	this	means	using
the	web	authentication	guard.

Protecting	Routes

To	protect	routes	so	that	all	incoming	requests	must	be	authenticated,	you	should	attach	the	sanctum
authentication	guard	to	your	API	routes	within	your	routes/api.php	file.	This	guard	will	ensure	that	incoming
requests	are	authenticated	as	either	a	stateful	authenticated	requests	from	your	SPA	or	contain	a	valid	API	token
header	if	the	request	is	from	a	third	party:

use	Illuminate\Http\Request;

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Authorizing	Private	Broadcast	Channels

If	your	SPA	needs	to	authenticate	with	private	/	presence	broadcast	channels,	you	should	place	the	
Broadcast::routes	method	call	within	your	routes/api.php	file:

Broadcast::routes(['middleware'	=>	['auth:sanctum']]);

Next,	in	order	for	Pusher's	authorization	requests	to	succeed,	you	will	need	to	provide	a	custom	Pusher	
authorizer	when	initializing	Laravel	Echo.	This	allows	your	application	to	configure	Pusher	to	use	the	axios
instance	that	is	properly	configured	for	cross-domain	requests:

window.Echo	=	new	Echo({

				broadcaster:	"pusher",

				cluster:	import.meta.env.VITE_PUSHER_APP_CLUSTER,

				encrypted:	true,

				key:	import.meta.env.VITE_PUSHER_APP_KEY,

				authorizer:	(channel,	options)	=>	{

								return	{

												authorize:	(socketId,	callback)	=>	{

																axios.post('/api/broadcasting/auth',	{

																				socket_id:	socketId,

																				channel_name:	channel.name

																})

																.then(response	=>	{

																				callback(false,	response.data);

																})

																.catch(error	=>	{

																				callback(true,	error);

																});

												}

								};

				},

})

Mobile	Application	Authentication

You	may	also	use	Sanctum	tokens	to	authenticate	your	mobile	application's	requests	to	your	API.	The	process
for	authenticating	mobile	application	requests	is	similar	to	authenticating	third-party	API	requests;	however,
there	are	small	differences	in	how	you	will	issue	the	API	tokens.

Issuing	API	Tokens

To	get	started,	create	a	route	that	accepts	the	user's	email	/	username,	password,	and	device	name,	then
exchanges	those	credentials	for	a	new	Sanctum	token.	The	"device	name"	given	to	this	endpoint	is	for

Laravel	Documentation	-	10.x	/	Sanctum 1053

informational	purposes	and	may	be	any	value	you	wish.	In	general,	the	device	name	value	should	be	a	name	the
user	would	recognize,	such	as	"Nuno's	iPhone	12".

Typically,	you	will	make	a	request	to	the	token	endpoint	from	your	mobile	application's	"login"	screen.	The
endpoint	will	return	the	plain-text	API	token	which	may	then	be	stored	on	the	mobile	device	and	used	to	make
additional	API	requests:

use	App\Models\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Validation\ValidationException;

Route::post('/sanctum/token',	function	(Request	$request)	{

				$request->validate([

								'email'	=>	'required|email',

								'password'	=>	'required',

								'device_name'	=>	'required',

]);

				$user	=	User::where('email',	$request->email)->first();

				if	(!	$user	||	!	Hash::check($request->password,	$user->password))	{

								throw	ValidationException::withMessages([

												'email'	=>	['The	provided	credentials	are	incorrect.'],

]);

				}

				return	$user->createToken($request->device_name)->plainTextToken;

});

When	the	mobile	application	uses	the	token	to	make	an	API	request	to	your	application,	it	should	pass	the	token
in	the	Authorization	header	as	a	Bearer	token.

[!NOTE]
When	issuing	tokens	for	a	mobile	application,	you	are	also	free	to	specify	token	abilities.

Protecting	Routes

As	previously	documented,	you	may	protect	routes	so	that	all	incoming	requests	must	be	authenticated	by
attaching	the	sanctum	authentication	guard	to	the	routes:

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Revoking	Tokens

To	allow	users	to	revoke	API	tokens	issued	to	mobile	devices,	you	may	list	them	by	name,	along	with	a
"Revoke"	button,	within	an	"account	settings"	portion	of	your	web	application's	UI.	When	the	user	clicks	the
"Revoke"	button,	you	can	delete	the	token	from	the	database.	Remember,	you	can	access	a	user's	API	tokens
via	the	tokens	relationship	provided	by	the	Laravel\Sanctum\HasApiTokens	trait:

//	Revoke	all	tokens...

$user->tokens()->delete();

//	Revoke	a	specific	token...

$user->tokens()->where('id',	$tokenId)->delete();

Testing

While	testing,	the	Sanctum::actingAs	method	may	be	used	to	authenticate	a	user	and	specify	which	abilities
should	be	granted	to	their	token:

use	App\Models\User;

use	Laravel\Sanctum\Sanctum;

public	function	test_task_list_can_be_retrieved():	void

{

				Sanctum::actingAs(

Laravel	Documentation	-	10.x	/	Sanctum 1054

								User::factory()->create(),

								['view-tasks']

);

				$response	=	$this->get('/api/task');

				$response->assertOk();

}

If	you	would	like	to	grant	all	abilities	to	the	token,	you	should	include	*	in	the	ability	list	provided	to	the	
actingAs	method:

Sanctum::actingAs(

				User::factory()->create(),

				['*']

);

Laravel	Documentation	-	10.x	/	Sanctum 1055

Packages

Laravel	Scout
Introduction
Installation

Queueing
Driver	Prerequisites

Algolia
Meilisearch
Typesense

Configuration
Configuring	Model	Indexes
Configuring	Searchable	Data
Configuring	the	Model	ID
Configuring	Search	Engines	per	Model
Identifying	Users

Database	/	Collection	Engines
Database	Engine
Collection	Engine

Indexing
Batch	Import
Adding	Records
Updating	Records
Removing	Records
Pausing	Indexing
Conditionally	Searchable	Model	Instances

Searching
Where	Clauses
Pagination
Soft	Deleting
Customizing	Engine	Searches

Custom	Engines

Introduction

Laravel	Scout	provides	a	simple,	driver	based	solution	for	adding	full-text	search	to	your	Eloquent	models.
Using	model	observers,	Scout	will	automatically	keep	your	search	indexes	in	sync	with	your	Eloquent	records.

Currently,	Scout	ships	with	Algolia,	Meilisearch,	Typesense,	and	MySQL	/	PostgreSQL	(database)	drivers.	In
addition,	Scout	includes	a	"collection"	driver	that	is	designed	for	local	development	usage	and	does	not	require
any	external	dependencies	or	third-party	services.	Furthermore,	writing	custom	drivers	is	simple	and	you	are
free	to	extend	Scout	with	your	own	search	implementations.

Installation

First,	install	Scout	via	the	Composer	package	manager:

composer	require	laravel/scout

After	installing	Scout,	you	should	publish	the	Scout	configuration	file	using	the	vendor:publish	Artisan
command.	This	command	will	publish	the	scout.php	configuration	file	to	your	application's	config	directory:

php	artisan	vendor:publish	--provider="Laravel\Scout\ScoutServiceProvider"

Finally,	add	the	Laravel\Scout\Searchable	trait	to	the	model	you	would	like	to	make	searchable.	This	trait	will
register	a	model	observer	that	will	automatically	keep	the	model	in	sync	with	your	search	driver:

<?php

Laravel	Documentation	-	10.x	/	Scout 1056

https://github.com/laravel/scout
https://www.algolia.com/
https://www.meilisearch.com
https://typesense.org

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

{

				use	Searchable;

}

Queueing

While	not	strictly	required	to	use	Scout,	you	should	strongly	consider	configuring	a	queue	driver	before	using
the	library.	Running	a	queue	worker	will	allow	Scout	to	queue	all	operations	that	sync	your	model	information
to	your	search	indexes,	providing	much	better	response	times	for	your	application's	web	interface.

Once	you	have	configured	a	queue	driver,	set	the	value	of	the	queue	option	in	your	config/scout.php
configuration	file	to	true:

'queue'	=>	true,

Even	when	the	queue	option	is	set	to	false,	it's	important	to	remember	that	some	Scout	drivers	like	Algolia	and
Meilisearch	always	index	records	asynchronously.	Meaning,	even	though	the	index	operation	has	completed
within	your	Laravel	application,	the	search	engine	itself	may	not	reflect	the	new	and	updated	records
immediately.

To	specify	the	connection	and	queue	that	your	Scout	jobs	utilize,	you	may	define	the	queue	configuration	option
as	an	array:

'queue'	=>	[

				'connection'	=>	'redis',

				'queue'	=>	'scout'

],

Of	course,	if	you	customize	the	connection	and	queue	that	Scout	jobs	utilize,	you	should	run	a	queue	worker	to
process	jobs	on	that	connection	and	queue:

php	artisan	queue:work	redis	--queue=scout

Driver	Prerequisites

Algolia

When	using	the	Algolia	driver,	you	should	configure	your	Algolia	id	and	secret	credentials	in	your	
config/scout.php	configuration	file.	Once	your	credentials	have	been	configured,	you	will	also	need	to	install
the	Algolia	PHP	SDK	via	the	Composer	package	manager:

composer	require	algolia/algoliasearch-client-php

Meilisearch

Meilisearch	is	a	blazingly	fast	and	open	source	search	engine.	If	you	aren't	sure	how	to	install	Meilisearch	on
your	local	machine,	you	may	use	Laravel	Sail,	Laravel's	officially	supported	Docker	development	environment.

When	using	the	Meilisearch	driver	you	will	need	to	install	the	Meilisearch	PHP	SDK	via	the	Composer
package	manager:

composer	require	meilisearch/meilisearch-php	http-interop/http-factory-guzzle

Then,	set	the	SCOUT_DRIVER	environment	variable	as	well	as	your	Meilisearch	host	and	key	credentials	within
your	application's	.env	file:

SCOUT_DRIVER=meilisearch

MEILISEARCH_HOST=http://127.0.0.1:7700

MEILISEARCH_KEY=masterKey

Laravel	Documentation	-	10.x	/	Scout 1057

https://www.meilisearch.com

For	more	information	regarding	Meilisearch,	please	consult	the	Meilisearch	documentation.

In	addition,	you	should	ensure	that	you	install	a	version	of	meilisearch/meilisearch-php	that	is	compatible	with
your	Meilisearch	binary	version	by	reviewing	Meilisearch's	documentation	regarding	binary	compatibility.

[!WARNING]
When	upgrading	Scout	on	an	application	that	utilizes	Meilisearch,	you	should	always	review	any
additional	breaking	changes	to	the	Meilisearch	service	itself.

Typesense

Typesense	is	a	lightning-fast,	open	source	search	engine	and	supports	keyword	search,	semantic	search,	geo
search,	and	vector	search.

You	can	self-host	Typesense	or	use	Typesense	Cloud.

To	get	started	using	Typesense	with	Scout,	install	the	Typesense	PHP	SDK	via	the	Composer	package	manager:

composer	require	typesense/typesense-php

Then,	set	the	SCOUT_DRIVER	environment	variable	as	well	as	your	Typesense	host	and	API	key	credentials	within
your	application's	.env	file:

SCOUT_DRIVER=typesense

TYPESENSE_API_KEY=masterKey

TYPESENSE_HOST=localhost

If	needed,	you	may	also	specify	your	installation's	port,	path,	and	protocol:

TYPESENSE_PORT=8108

TYPESENSE_PATH=

TYPESENSE_PROTOCOL=http

Additional	settings	and	schema	definitions	for	your	Typesense	collections	can	be	found	within	your
application's	config/scout.php	configuration	file.	For	more	information	regarding	Typesense,	please	consult	the
Typesense	documentation.

Preparing	Data	for	Storage	in	Typesense

When	utilizing	Typesense,	your	searchable	model's	must	define	a	toSearchableArray	method	that	casts	your
model's	primary	key	to	a	string	and	creation	date	to	a	UNIX	timestamp:

/**

	*	Get	the	indexable	data	array	for	the	model.

	*

	*	@return	array<string,	mixed>

	*/

public	function	toSearchableArray()

{

				return	array_merge($this->toArray(),[

								'id'	=>	(string)	$this->id,

								'created_at'	=>	$this->created_at->timestamp,

]);

}

You	should	also	define	your	Typesense	collection	schemas	in	your	application's	config/scout.php	file.	A
collection	schema	describes	the	data	types	of	each	field	that	is	searchable	via	Typesense.	For	more	information
on	all	available	schema	options,	please	consult	the	Typesense	documentation.

If	you	need	to	change	your	Typesense	collection's	schema	after	it	has	been	defined,	you	may	either	run	
scout:flush	and	scout:import,	which	will	delete	all	existing	indexed	data	and	recreate	the	schema.	Or,	you	may
use	Typesense's	API	to	modify	the	collection's	schema	without	removing	any	indexed	data.

If	your	searchable	model	is	soft	deletable,	you	should	define	a	__soft_deleted	field	in	the	model's
corresponding	Typesense	schema	within	your	application's	config/scout.php	configuration	file:

User::class	=>	[

Laravel	Documentation	-	10.x	/	Scout 1058

https://docs.meilisearch.com/learn/getting_started/quick_start.html
https://github.com/meilisearch/meilisearch-php#-compatibility-with-meilisearch
https://github.com/meilisearch/Meilisearch/releases
https://typesense.org
https://typesense.org/docs/guide/install-typesense.html#option-2-local-machine-self-hosting
https://cloud.typesense.org
https://typesense.org/docs/guide/#quick-start
https://typesense.org/docs/latest/api/collections.html#schema-parameters

				'collection-schema'	=>	[

								'fields'	=>	[

												//	...

												[

																'name'	=>	'__soft_deleted',

																'type'	=>	'int32',

																'optional'	=>	true,

],

],

],

],

Dynamic	Search	Parameters

Typesense	allows	you	to	modify	your	search	parameters	dynamically	when	performing	a	search	operation	via
the	options	method:

use	App\Models\Todo;

Todo::search('Groceries')->options([

				'query_by'	=>	'title,	description'

])->get();

Configuration

Configuring	Model	Indexes

Each	Eloquent	model	is	synced	with	a	given	search	"index",	which	contains	all	of	the	searchable	records	for
that	model.	In	other	words,	you	can	think	of	each	index	like	a	MySQL	table.	By	default,	each	model	will	be
persisted	to	an	index	matching	the	model's	typical	"table"	name.	Typically,	this	is	the	plural	form	of	the	model
name;	however,	you	are	free	to	customize	the	model's	index	by	overriding	the	searchableAs	method	on	the
model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

{

				use	Searchable;

				/**

					*	Get	the	name	of	the	index	associated	with	the	model.

					*/

				public	function	searchableAs():	string

				{

								return	'posts_index';

				}

}

Configuring	Searchable	Data

By	default,	the	entire	toArray	form	of	a	given	model	will	be	persisted	to	its	search	index.	If	you	would	like	to
customize	the	data	that	is	synchronized	to	the	search	index,	you	may	override	the	toSearchableArray	method	on
the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

{

				use	Searchable;

				/**

Laravel	Documentation	-	10.x	/	Scout 1059

https://typesense.org/docs/latest/api/search.html#search-parameters

					*	Get	the	indexable	data	array	for	the	model.

					*

					*	@return	array<string,	mixed>

					*/

				public	function	toSearchableArray():	array

				{

								$array	=	$this->toArray();

								//	Customize	the	data	array...

								return	$array;

				}

}

Some	search	engines	such	as	Meilisearch	will	only	perform	filter	operations	(>,	<,	etc.)	on	data	of	the	correct
type.	So,	when	using	these	search	engines	and	customizing	your	searchable	data,	you	should	ensure	that
numeric	values	are	cast	to	their	correct	type:

public	function	toSearchableArray()

{

				return	[

								'id'	=>	(int)	$this->id,

								'name'	=>	$this->name,

								'price'	=>	(float)	$this->price,

];

}

Configuring	Filterable	Data	and	Index	Settings	(Meilisearch)

Unlike	Scout's	other	drivers,	Meilisearch	requires	you	to	pre-define	index	search	settings	such	as	filterable
attributes,	sortable	attributes,	and	other	supported	settings	fields.

Filterable	attributes	are	any	attributes	you	plan	to	filter	on	when	invoking	Scout's	where	method,	while	sortable
attributes	are	any	attributes	you	plan	to	sort	by	when	invoking	Scout's	orderBy	method.	To	define	your	index
settings,	adjust	the	index-settings	portion	of	your	meilisearch	configuration	entry	in	your	application's	scout
configuration	file:

use	App\Models\User;

use	App\Models\Flight;

'meilisearch'	=>	[

				'host'	=>	env('MEILISEARCH_HOST',	'http://localhost:7700'),

				'key'	=>	env('MEILISEARCH_KEY',	null),

				'index-settings'	=>	[

								User::class	=>	[

												'filterableAttributes'=>	['id',	'name',	'email'],

												'sortableAttributes'	=>	['created_at'],

												//	Other	settings	fields...

],

								Flight::class	=>	[

												'filterableAttributes'=>	['id',	'destination'],

												'sortableAttributes'	=>	['updated_at'],

],

],

],

If	the	model	underlying	a	given	index	is	soft	deletable	and	is	included	in	the	index-settings	array,	Scout	will
automatically	include	support	for	filtering	on	soft	deleted	models	on	that	index.	If	you	have	no	other	filterable
or	sortable	attributes	to	define	for	a	soft	deletable	model	index,	you	may	simply	add	an	empty	entry	to	the	
index-settings	array	for	that	model:

'index-settings'	=>	[

				Flight::class	=>	[]

],

After	configuring	your	application's	index	settings,	you	must	invoke	the	scout:sync-index-settings	Artisan
command.	This	command	will	inform	Meilisearch	of	your	currently	configured	index	settings.	For
convenience,	you	may	wish	to	make	this	command	part	of	your	deployment	process:

php	artisan	scout:sync-index-settings

Configuring	the	Model	ID

Laravel	Documentation	-	10.x	/	Scout 1060

https://docs.meilisearch.com/reference/api/settings.html

By	default,	Scout	will	use	the	primary	key	of	the	model	as	the	model's	unique	ID	/	key	that	is	stored	in	the
search	index.	If	you	need	to	customize	this	behavior,	you	may	override	the	getScoutKey	and	the	getScoutKeyName
methods	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	User	extends	Model

{

				use	Searchable;

				/**

					*	Get	the	value	used	to	index	the	model.

					*/

				public	function	getScoutKey():	mixed

				{

								return	$this->email;

				}

				/**

					*	Get	the	key	name	used	to	index	the	model.

					*/

				public	function	getScoutKeyName():	mixed

				{

								return	'email';

				}

}

Configuring	Search	Engines	per	Model

When	searching,	Scout	will	typically	use	the	default	search	engine	specified	in	your	application's	scout
configuration	file.	However,	the	search	engine	for	a	particular	model	can	be	changed	by	overriding	the	
searchableUsing	method	on	the	model:

<?php

namespace	App\Models;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Engines\Engine;

use	Laravel\Scout\EngineManager;

use	Laravel\Scout\Searchable;

class	User	extends	Model

{

				use	Searchable;

				/**

					*	Get	the	engine	used	to	index	the	model.

					*/

				public	function	searchableUsing():	Engine

				{

								return	app(EngineManager::class)->engine('meilisearch');

				}

}

Identifying	Users

Scout	also	allows	you	to	auto	identify	users	when	using	Algolia.	Associating	the	authenticated	user	with	search
operations	may	be	helpful	when	viewing	your	search	analytics	within	Algolia's	dashboard.	You	can	enable	user
identification	by	defining	a	SCOUT_IDENTIFY	environment	variable	as	true	in	your	application's	.env	file:

SCOUT_IDENTIFY=true

Enabling	this	feature	will	also	pass	the	request's	IP	address	and	your	authenticated	user's	primary	identifier	to
Algolia	so	this	data	is	associated	with	any	search	request	that	is	made	by	the	user.

Database	/	Collection	Engines

Laravel	Documentation	-	10.x	/	Scout 1061

https://algolia.com

Database	Engine

[!WARNING]
The	database	engine	currently	supports	MySQL	and	PostgreSQL.

If	your	application	interacts	with	small	to	medium	sized	databases	or	has	a	light	workload,	you	may	find	it
more	convenient	to	get	started	with	Scout's	"database"	engine.	The	database	engine	will	use	"where	like"
clauses	and	full	text	indexes	when	filtering	results	from	your	existing	database	to	determine	the	applicable
search	results	for	your	query.

To	use	the	database	engine,	you	may	simply	set	the	value	of	the	SCOUT_DRIVER	environment	variable	to	database,
or	specify	the	database	driver	directly	in	your	application's	scout	configuration	file:

SCOUT_DRIVER=database

Once	you	have	specified	the	database	engine	as	your	preferred	driver,	you	must	configure	your	searchable	data.
Then,	you	may	start	executing	search	queries	against	your	models.	Search	engine	indexing,	such	as	the
indexing	needed	to	seed	Algolia,	Meilisearch	or	Typesense	indexes,	is	unnecessary	when	using	the	database
engine.

Customizing	Database	Searching	Strategies

By	default,	the	database	engine	will	execute	a	"where	like"	query	against	every	model	attribute	that	you	have
configured	as	searchable.	However,	in	some	situations,	this	may	result	in	poor	performance.	Therefore,	the
database	engine's	search	strategy	can	be	configured	so	that	some	specified	columns	utilize	full	text	search
queries	or	only	use	"where	like"	constraints	to	search	the	prefixes	of	strings	(example%)	instead	of	searching
within	the	entire	string	(%example%).

To	define	this	behavior,	you	may	assign	PHP	attributes	to	your	model's	toSearchableArray	method.	Any
columns	that	are	not	assigned	additional	search	strategy	behavior	will	continue	to	use	the	default	"where	like"
strategy:

use	Laravel\Scout\Attributes\SearchUsingFullText;

use	Laravel\Scout\Attributes\SearchUsingPrefix;

/**

	*	Get	the	indexable	data	array	for	the	model.

	*

	*	@return	array<string,	mixed>

	*/

#[SearchUsingPrefix(['id',	'email'])]

#[SearchUsingFullText(['bio'])]

public	function	toSearchableArray():	array

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'bio'	=>	$this->bio,

];

}

[!WARNING]
Before	specifying	that	a	column	should	use	full	text	query	constraints,	ensure	that	the	column	has	been
assigned	a	full	text	index.

Collection	Engine

While	you	are	free	to	use	the	Algolia,	Meilisearch,	or	Typesense	search	engines	during	local	development,	you
may	find	it	more	convenient	to	get	started	with	the	"collection"	engine.	The	collection	engine	will	use	"where"
clauses	and	collection	filtering	on	results	from	your	existing	database	to	determine	the	applicable	search	results
for	your	query.	When	using	this	engine,	it	is	not	necessary	to	"index"	your	searchable	models,	as	they	will
simply	be	retrieved	from	your	local	database.

To	use	the	collection	engine,	you	may	simply	set	the	value	of	the	SCOUT_DRIVER	environment	variable	to	
collection,	or	specify	the	collection	driver	directly	in	your	application's	scout	configuration	file:

Laravel	Documentation	-	10.x	/	Scout 1062

SCOUT_DRIVER=collection

Once	you	have	specified	the	collection	driver	as	your	preferred	driver,	you	may	start	executing	search	queries
against	your	models.	Search	engine	indexing,	such	as	the	indexing	needed	to	seed	Algolia,	Meilisearch,	or
Typesense	indexes,	is	unnecessary	when	using	the	collection	engine.

Differences	From	Database	Engine

On	first	glance,	the	"database"	and	"collections"	engines	are	fairly	similar.	They	both	interact	directly	with	your
database	to	retrieve	search	results.	However,	the	collection	engine	does	not	utilize	full	text	indexes	or	LIKE
clauses	to	find	matching	records.	Instead,	it	pulls	all	possible	records	and	uses	Laravel's	Str::is	helper	to
determine	if	the	search	string	exists	within	the	model	attribute	values.

The	collection	engine	is	the	most	portable	search	engine	as	it	works	across	all	relational	databases	supported	by
Laravel	(including	SQLite	and	SQL	Server);	however,	it	is	less	efficient	than	Scout's	database	engine.

Indexing

Batch	Import

If	you	are	installing	Scout	into	an	existing	project,	you	may	already	have	database	records	you	need	to	import
into	your	indexes.	Scout	provides	a	scout:import	Artisan	command	that	you	may	use	to	import	all	of	your
existing	records	into	your	search	indexes:

php	artisan	scout:import	"App\Models\Post"

The	flush	command	may	be	used	to	remove	all	of	a	model's	records	from	your	search	indexes:

php	artisan	scout:flush	"App\Models\Post"

Modifying	the	Import	Query

If	you	would	like	to	modify	the	query	that	is	used	to	retrieve	all	of	your	models	for	batch	importing,	you	may
define	a	makeAllSearchableUsing	method	on	your	model.	This	is	a	great	place	to	add	any	eager	relationship
loading	that	may	be	necessary	before	importing	your	models:

use	Illuminate\Database\Eloquent\Builder;

/**

	*	Modify	the	query	used	to	retrieve	models	when	making	all	of	the	models	searchable.

	*/

protected	function	makeAllSearchableUsing(Builder	$query):	Builder

{

				return	$query->with('author');

}

[!WARNING]
The	makeAllSearchableUsing	method	may	not	be	applicable	when	using	a	queue	to	batch	import	models.
Relationships	are	not	restored	when	model	collections	are	processed	by	jobs.

Adding	Records

Once	you	have	added	the	Laravel\Scout\Searchable	trait	to	a	model,	all	you	need	to	do	is	save	or	create	a
model	instance	and	it	will	automatically	be	added	to	your	search	index.	If	you	have	configured	Scout	to	use
queues	this	operation	will	be	performed	in	the	background	by	your	queue	worker:

use	App\Models\Order;

$order	=	new	Order;

//	...

$order->save();

Laravel	Documentation	-	10.x	/	Scout 1063

Adding	Records	via	Query

If	you	would	like	to	add	a	collection	of	models	to	your	search	index	via	an	Eloquent	query,	you	may	chain	the	
searchable	method	onto	the	Eloquent	query.	The	searchable	method	will	chunk	the	results	of	the	query	and	add
the	records	to	your	search	index.	Again,	if	you	have	configured	Scout	to	use	queues,	all	of	the	chunks	will	be
imported	in	the	background	by	your	queue	workers:

use	App\Models\Order;

Order::where('price',	'>',	100)->searchable();

You	may	also	call	the	searchable	method	on	an	Eloquent	relationship	instance:

$user->orders()->searchable();

Or,	if	you	already	have	a	collection	of	Eloquent	models	in	memory,	you	may	call	the	searchable	method	on	the
collection	instance	to	add	the	model	instances	to	their	corresponding	index:

$orders->searchable();

[!NOTE]
The	searchable	method	can	be	considered	an	"upsert"	operation.	In	other	words,	if	the	model	record	is
already	in	your	index,	it	will	be	updated.	If	it	does	not	exist	in	the	search	index,	it	will	be	added	to	the
index.

Updating	Records

To	update	a	searchable	model,	you	only	need	to	update	the	model	instance's	properties	and	save	the	model	to
your	database.	Scout	will	automatically	persist	the	changes	to	your	search	index:

use	App\Models\Order;

$order	=	Order::find(1);

//	Update	the	order...

$order->save();

You	may	also	invoke	the	searchable	method	on	an	Eloquent	query	instance	to	update	a	collection	of	models.	If
the	models	do	not	exist	in	your	search	index,	they	will	be	created:

Order::where('price',	'>',	100)->searchable();

If	you	would	like	to	update	the	search	index	records	for	all	of	the	models	in	a	relationship,	you	may	invoke	the	
searchable	on	the	relationship	instance:

$user->orders()->searchable();

Or,	if	you	already	have	a	collection	of	Eloquent	models	in	memory,	you	may	call	the	searchable	method	on	the
collection	instance	to	update	the	model	instances	in	their	corresponding	index:

$orders->searchable();

Modifying	Records	Before	Importing

Sometimes	you	may	need	to	prepare	the	collection	of	models	before	they	are	made	searchable.	For	instance,
you	may	want	to	eager	load	a	relationship	so	that	the	relationship	data	can	be	efficiently	added	to	your	search
index.	To	accomplish	this,	define	a	makeSearchableUsing	method	on	the	corresponding	model:

use	Illuminate\Database\Eloquent\Collection;

/**

	*	Modify	the	collection	of	models	being	made	searchable.

	*/

public	function	makeSearchableUsing(Collection	$models):	Collection

{

				return	$models->load('author');

}

Laravel	Documentation	-	10.x	/	Scout 1064

Removing	Records

To	remove	a	record	from	your	index	you	may	simply	delete	the	model	from	the	database.	This	may	be	done
even	if	you	are	using	soft	deleted	models:

use	App\Models\Order;

$order	=	Order::find(1);

$order->delete();

If	you	do	not	want	to	retrieve	the	model	before	deleting	the	record,	you	may	use	the	unsearchable	method	on	an
Eloquent	query	instance:

Order::where('price',	'>',	100)->unsearchable();

If	you	would	like	to	remove	the	search	index	records	for	all	of	the	models	in	a	relationship,	you	may	invoke	the
unsearchable	on	the	relationship	instance:

$user->orders()->unsearchable();

Or,	if	you	already	have	a	collection	of	Eloquent	models	in	memory,	you	may	call	the	unsearchable	method	on
the	collection	instance	to	remove	the	model	instances	from	their	corresponding	index:

$orders->unsearchable();

Pausing	Indexing

Sometimes	you	may	need	to	perform	a	batch	of	Eloquent	operations	on	a	model	without	syncing	the	model	data
to	your	search	index.	You	may	do	this	using	the	withoutSyncingToSearch	method.	This	method	accepts	a	single
closure	which	will	be	immediately	executed.	Any	model	operations	that	occur	within	the	closure	will	not	be
synced	to	the	model's	index:

use	App\Models\Order;

Order::withoutSyncingToSearch(function	()	{

				//	Perform	model	actions...

});

Conditionally	Searchable	Model	Instances

Sometimes	you	may	need	to	only	make	a	model	searchable	under	certain	conditions.	For	example,	imagine	you
have	App\Models\Post	model	that	may	be	in	one	of	two	states:	"draft"	and	"published".	You	may	only	want	to
allow	"published"	posts	to	be	searchable.	To	accomplish	this,	you	may	define	a	shouldBeSearchable	method	on
your	model:

/**

	*	Determine	if	the	model	should	be	searchable.

	*/

public	function	shouldBeSearchable():	bool

{

				return	$this->isPublished();

}

The	shouldBeSearchable	method	is	only	applied	when	manipulating	models	through	the	save	and	create
methods,	queries,	or	relationships.	Directly	making	models	or	collections	searchable	using	the	searchable
method	will	override	the	result	of	the	shouldBeSearchable	method.

[!WARNING]
The	shouldBeSearchable	method	is	not	applicable	when	using	Scout's	"database"	engine,	as	all	searchable
data	is	always	stored	in	the	database.	To	achieve	similar	behavior	when	using	the	database	engine,	you
should	use	where	clauses	instead.

Searching

Laravel	Documentation	-	10.x	/	Scout 1065

You	may	begin	searching	a	model	using	the	search	method.	The	search	method	accepts	a	single	string	that	will
be	used	to	search	your	models.	You	should	then	chain	the	get	method	onto	the	search	query	to	retrieve	the
Eloquent	models	that	match	the	given	search	query:

use	App\Models\Order;

$orders	=	Order::search('Star	Trek')->get();

Since	Scout	searches	return	a	collection	of	Eloquent	models,	you	may	even	return	the	results	directly	from	a
route	or	controller	and	they	will	automatically	be	converted	to	JSON:

use	App\Models\Order;

use	Illuminate\Http\Request;

Route::get('/search',	function	(Request	$request)	{

				return	Order::search($request->search)->get();

});

If	you	would	like	to	get	the	raw	search	results	before	they	are	converted	to	Eloquent	models,	you	may	use	the	
raw	method:

$orders	=	Order::search('Star	Trek')->raw();

Custom	Indexes

Search	queries	will	typically	be	performed	on	the	index	specified	by	the	model's	searchableAs	method.
However,	you	may	use	the	within	method	to	specify	a	custom	index	that	should	be	searched	instead:

$orders	=	Order::search('Star	Trek')

				->within('tv_shows_popularity_desc')

				->get();

Where	Clauses

Scout	allows	you	to	add	simple	"where"	clauses	to	your	search	queries.	Currently,	these	clauses	only	support
basic	numeric	equality	checks	and	are	primarily	useful	for	scoping	search	queries	by	an	owner	ID:

use	App\Models\Order;

$orders	=	Order::search('Star	Trek')->where('user_id',	1)->get();

In	addition,	the	whereIn	method	may	be	used	to	verify	that	a	given	column's	value	is	contained	within	the	given
array:

$orders	=	Order::search('Star	Trek')->whereIn(

				'status',	['open',	'paid']

)->get();

The	whereNotIn	method	verifies	that	the	given	column's	value	is	not	contained	in	the	given	array:

$orders	=	Order::search('Star	Trek')->whereNotIn(

				'status',	['closed']

)->get();

Since	a	search	index	is	not	a	relational	database,	more	advanced	"where"	clauses	are	not	currently	supported.

[!WARNING]
If	your	application	is	using	Meilisearch,	you	must	configure	your	application's	filterable	attributes	before
utilizing	Scout's	"where"	clauses.

Pagination

In	addition	to	retrieving	a	collection	of	models,	you	may	paginate	your	search	results	using	the	paginate
method.	This	method	will	return	an	Illuminate\Pagination\LengthAwarePaginator	instance	just	as	if	you	had
paginated	a	traditional	Eloquent	query:

use	App\Models\Order;

Laravel	Documentation	-	10.x	/	Scout 1066

$orders	=	Order::search('Star	Trek')->paginate();

You	may	specify	how	many	models	to	retrieve	per	page	by	passing	the	amount	as	the	first	argument	to	the	
paginate	method:

$orders	=	Order::search('Star	Trek')->paginate(15);

Once	you	have	retrieved	the	results,	you	may	display	the	results	and	render	the	page	links	using	Blade	just	as	if
you	had	paginated	a	traditional	Eloquent	query:

<div	class="container">

				@foreach	($orders	as	$order)

								{{	$order->price	}}

				@endforeach

</div>

{{	$orders->links()	}}

Of	course,	if	you	would	like	to	retrieve	the	pagination	results	as	JSON,	you	may	return	the	paginator	instance
directly	from	a	route	or	controller:

use	App\Models\Order;

use	Illuminate\Http\Request;

Route::get('/orders',	function	(Request	$request)	{

				return	Order::search($request->input('query'))->paginate(15);

});

[!WARNING]
Since	search	engines	are	not	aware	of	your	Eloquent	model's	global	scope	definitions,	you	should	not
utilize	global	scopes	in	applications	that	utilize	Scout	pagination.	Or,	you	should	recreate	the	global
scope's	constraints	when	searching	via	Scout.

Soft	Deleting

If	your	indexed	models	are	soft	deleting	and	you	need	to	search	your	soft	deleted	models,	set	the	soft_delete
option	of	the	config/scout.php	configuration	file	to	true:

'soft_delete'	=>	true,

When	this	configuration	option	is	true,	Scout	will	not	remove	soft	deleted	models	from	the	search	index.
Instead,	it	will	set	a	hidden	__soft_deleted	attribute	on	the	indexed	record.	Then,	you	may	use	the	withTrashed
or	onlyTrashed	methods	to	retrieve	the	soft	deleted	records	when	searching:

use	App\Models\Order;

//	Include	trashed	records	when	retrieving	results...

$orders	=	Order::search('Star	Trek')->withTrashed()->get();

//	Only	include	trashed	records	when	retrieving	results...

$orders	=	Order::search('Star	Trek')->onlyTrashed()->get();

[!NOTE]
When	a	soft	deleted	model	is	permanently	deleted	using	forceDelete,	Scout	will	remove	it	from	the	search
index	automatically.

Customizing	Engine	Searches

If	you	need	to	perform	advanced	customization	of	the	search	behavior	of	an	engine	you	may	pass	a	closure	as
the	second	argument	to	the	search	method.	For	example,	you	could	use	this	callback	to	add	geo-location	data	to
your	search	options	before	the	search	query	is	passed	to	Algolia:

use	Algolia\AlgoliaSearch\SearchIndex;

use	App\Models\Order;

Order::search(

				'Star	Trek',

				function	(SearchIndex	$algolia,	string	$query,	array	$options)	{

Laravel	Documentation	-	10.x	/	Scout 1067

								$options['body']['query']['bool']['filter']['geo_distance']	=	[

												'distance'	=>	'1000km',

												'location'	=>	['lat'	=>	36,	'lon'	=>	111],

];

								return	$algolia->search($query,	$options);

				}

)->get();

Customizing	the	Eloquent	Results	Query

After	Scout	retrieves	a	list	of	matching	Eloquent	models	from	your	application's	search	engine,	Eloquent	is
used	to	retrieve	all	of	the	matching	models	by	their	primary	keys.	You	may	customize	this	query	by	invoking
the	query	method.	The	query	method	accepts	a	closure	that	will	receive	the	Eloquent	query	builder	instance	as
an	argument:

use	App\Models\Order;

use	Illuminate\Database\Eloquent\Builder;

$orders	=	Order::search('Star	Trek')

				->query(fn	(Builder	$query)	=>	$query->with('invoices'))

				->get();

Since	this	callback	is	invoked	after	the	relevant	models	have	already	been	retrieved	from	your	application's
search	engine,	the	query	method	should	not	be	used	for	"filtering"	results.	Instead,	you	should	use	Scout	where
clauses.

Custom	Engines

Writing	the	Engine

If	one	of	the	built-in	Scout	search	engines	doesn't	fit	your	needs,	you	may	write	your	own	custom	engine	and
register	it	with	Scout.	Your	engine	should	extend	the	Laravel\Scout\Engines\Engine	abstract	class.	This	abstract
class	contains	eight	methods	your	custom	engine	must	implement:

use	Laravel\Scout\Builder;

abstract	public	function	update($models);

abstract	public	function	delete($models);

abstract	public	function	search(Builder	$builder);

abstract	public	function	paginate(Builder	$builder,	$perPage,	$page);

abstract	public	function	mapIds($results);

abstract	public	function	map(Builder	$builder,	$results,	$model);

abstract	public	function	getTotalCount($results);

abstract	public	function	flush($model);

You	may	find	it	helpful	to	review	the	implementations	of	these	methods	on	the	
Laravel\Scout\Engines\AlgoliaEngine	class.	This	class	will	provide	you	with	a	good	starting	point	for	learning
how	to	implement	each	of	these	methods	in	your	own	engine.

Registering	the	Engine

Once	you	have	written	your	custom	engine,	you	may	register	it	with	Scout	using	the	extend	method	of	the
Scout	engine	manager.	Scout's	engine	manager	may	be	resolved	from	the	Laravel	service	container.	You	should
call	the	extend	method	from	the	boot	method	of	your	App\Providers\AppServiceProvider	class	or	any	other
service	provider	used	by	your	application:

use	App\ScoutExtensions\MySqlSearchEngine;

use	Laravel\Scout\EngineManager;

/**

	*	Bootstrap	any	application	services.

	*/

public	function	boot():	void

{

				resolve(EngineManager::class)->extend('mysql',	function	()	{

								return	new	MySqlSearchEngine;

				});

}

Laravel	Documentation	-	10.x	/	Scout 1068

Once	your	engine	has	been	registered,	you	may	specify	it	as	your	default	Scout	driver	in	your	application's	
config/scout.php	configuration	file:

'driver'	=>	'mysql',

Laravel	Documentation	-	10.x	/	Scout 1069

Packages

Laravel	Socialite
Introduction
Installation
Upgrading	Socialite
Configuration
Authentication

Routing
Authentication	and	Storage
Access	Scopes
Slack	Bot	Scopes
Optional	Parameters

Retrieving	User	Details

Introduction

In	addition	to	typical,	form	based	authentication,	Laravel	also	provides	a	simple,	convenient	way	to
authenticate	with	OAuth	providers	using	Laravel	Socialite.	Socialite	currently	supports	authentication	via
Facebook,	Twitter,	LinkedIn,	Google,	GitHub,	GitLab,	Bitbucket,	and	Slack.

[!NOTE]
Adapters	for	other	platforms	are	available	via	the	community	driven	Socialite	Providers	website.

Installation

To	get	started	with	Socialite,	use	the	Composer	package	manager	to	add	the	package	to	your	project's
dependencies:

composer	require	laravel/socialite

Upgrading	Socialite

When	upgrading	to	a	new	major	version	of	Socialite,	it's	important	that	you	carefully	review	the	upgrade	guide.

Configuration

Before	using	Socialite,	you	will	need	to	add	credentials	for	the	OAuth	providers	your	application	utilizes.
Typically,	these	credentials	may	be	retrieved	by	creating	a	"developer	application"	within	the	dashboard	of	the
service	you	will	be	authenticating	with.

These	credentials	should	be	placed	in	your	application's	config/services.php	configuration	file,	and	should	use
the	key	facebook,	twitter	(OAuth	1.0),	twitter-oauth-2	(OAuth	2.0),	linkedin-openid,	google,	github,	gitlab,	
bitbucket,	or	slack,	depending	on	the	providers	your	application	requires:

'github'	=>	[

				'client_id'	=>	env('GITHUB_CLIENT_ID'),

				'client_secret'	=>	env('GITHUB_CLIENT_SECRET'),

				'redirect'	=>	'http://example.com/callback-url',

],

[!NOTE]
If	the	redirect	option	contains	a	relative	path,	it	will	automatically	be	resolved	to	a	fully	qualified	URL.

Authentication

Routing

Laravel	Documentation	-	10.x	/	Socialite 1070

https://github.com/laravel/socialite
https://socialiteproviders.com/
https://github.com/laravel/socialite/blob/master/UPGRADE.md

To	authenticate	users	using	an	OAuth	provider,	you	will	need	two	routes:	one	for	redirecting	the	user	to	the
OAuth	provider,	and	another	for	receiving	the	callback	from	the	provider	after	authentication.	The	example
routes	below	demonstrate	the	implementation	of	both	routes:

use	Laravel\Socialite\Facades\Socialite;

Route::get('/auth/redirect',	function	()	{

				return	Socialite::driver('github')->redirect();

});

Route::get('/auth/callback',	function	()	{

				$user	=	Socialite::driver('github')->user();

				//	$user->token

});

The	redirect	method	provided	by	the	Socialite	facade	takes	care	of	redirecting	the	user	to	the	OAuth	provider,
while	the	user	method	will	examine	the	incoming	request	and	retrieve	the	user's	information	from	the	provider
after	they	have	approved	the	authentication	request.

Authentication	and	Storage

Once	the	user	has	been	retrieved	from	the	OAuth	provider,	you	may	determine	if	the	user	exists	in	your
application's	database	and	authenticate	the	user.	If	the	user	does	not	exist	in	your	application's	database,	you
will	typically	create	a	new	record	in	your	database	to	represent	the	user:

use	App\Models\User;

use	Illuminate\Support\Facades\Auth;

use	Laravel\Socialite\Facades\Socialite;

Route::get('/auth/callback',	function	()	{

				$githubUser	=	Socialite::driver('github')->user();

				$user	=	User::updateOrCreate([

								'github_id'	=>	$githubUser->id,

],	[

								'name'	=>	$githubUser->name,

								'email'	=>	$githubUser->email,

								'github_token'	=>	$githubUser->token,

								'github_refresh_token'	=>	$githubUser->refreshToken,

]);

				Auth::login($user);

				return	redirect('/dashboard');

});

[!NOTE]
For	more	information	regarding	what	user	information	is	available	from	specific	OAuth	providers,	please
consult	the	documentation	on	retrieving	user	details.

Access	Scopes

Before	redirecting	the	user,	you	may	use	the	scopes	method	to	specify	the	"scopes"	that	should	be	included	in
the	authentication	request.	This	method	will	merge	all	previously	specified	scopes	with	the	scopes	that	you
specify:

use	Laravel\Socialite\Facades\Socialite;

return	Socialite::driver('github')

				->scopes(['read:user',	'public_repo'])

				->redirect();

You	can	overwrite	all	existing	scopes	on	the	authentication	request	using	the	setScopes	method:

return	Socialite::driver('github')

				->setScopes(['read:user',	'public_repo'])

				->redirect();

Slack	Bot	Scopes

Laravel	Documentation	-	10.x	/	Socialite 1071

Slack's	API	provides	different	types	of	access	tokens,	each	with	their	own	set	of	permission	scopes.	Socialite	is
compatible	with	both	of	the	following	Slack	access	tokens	types:

Bot	(prefixed	with	xoxb-)
User	(prefixed	with	xoxp-)

By	default,	the	slack	driver	will	generate	a	user	token	and	invoking	the	driver's	user	method	will	return	the
user's	details.

Bot	tokens	are	primarily	useful	if	your	application	will	be	sending	notifications	to	external	Slack	workspaces
that	are	owned	by	your	application's	users.	To	generate	a	bot	token,	invoke	the	asBotUser	method	before
redirecting	the	user	to	Slack	for	authentication:

return	Socialite::driver('slack')

				->asBotUser()

				->setScopes(['chat:write',	'chat:write.public',	'chat:write.customize'])

				->redirect();

In	addition,	you	must	invoke	the	asBotUser	method	before	invoking	the	user	method	after	Slack	redirects	the
user	back	to	your	application	after	authentication:

$user	=	Socialite::driver('slack')->asBotUser()->user();

When	generating	a	bot	token,	the	user	method	will	still	return	a	Laravel\Socialite\Two\User	instance;	however,
only	the	token	property	will	be	hydrated.	This	token	may	be	stored	in	order	to	send	notifications	to	the
authenticated	user's	Slack	workspaces.

Optional	Parameters

A	number	of	OAuth	providers	support	other	optional	parameters	on	the	redirect	request.	To	include	any
optional	parameters	in	the	request,	call	the	with	method	with	an	associative	array:

use	Laravel\Socialite\Facades\Socialite;

return	Socialite::driver('google')

				->with(['hd'	=>	'example.com'])

				->redirect();

[!WARNING]
When	using	the	with	method,	be	careful	not	to	pass	any	reserved	keywords	such	as	state	or	response_type.

Retrieving	User	Details

After	the	user	is	redirected	back	to	your	application's	authentication	callback	route,	you	may	retrieve	the	user's
details	using	Socialite's	user	method.	The	user	object	returned	by	the	user	method	provides	a	variety	of
properties	and	methods	you	may	use	to	store	information	about	the	user	in	your	own	database.

Differing	properties	and	methods	may	be	available	on	this	object	depending	on	whether	the	OAuth	provider
you	are	authenticating	with	supports	OAuth	1.0	or	OAuth	2.0:

use	Laravel\Socialite\Facades\Socialite;

Route::get('/auth/callback',	function	()	{

				$user	=	Socialite::driver('github')->user();

				//	OAuth	2.0	providers...

				$token	=	$user->token;

				$refreshToken	=	$user->refreshToken;

				$expiresIn	=	$user->expiresIn;

				//	OAuth	1.0	providers...

				$token	=	$user->token;

				$tokenSecret	=	$user->tokenSecret;

				//	All	providers...

				$user->getId();

				$user->getNickname();

				$user->getName();

Laravel	Documentation	-	10.x	/	Socialite 1072

https://api.slack.com/authentication/token-types
https://api.slack.com/scopes

				$user->getEmail();

				$user->getAvatar();

});

Retrieving	User	Details	From	a	Token	(OAuth2)

If	you	already	have	a	valid	access	token	for	a	user,	you	can	retrieve	their	user	details	using	Socialite's	
userFromToken	method:

use	Laravel\Socialite\Facades\Socialite;

$user	=	Socialite::driver('github')->userFromToken($token);

Retrieving	User	Details	From	a	Token	and	Secret	(OAuth1)

If	you	already	have	a	valid	token	and	secret	for	a	user,	you	can	retrieve	their	user	details	using	Socialite's	
userFromTokenAndSecret	method:

use	Laravel\Socialite\Facades\Socialite;

$user	=	Socialite::driver('twitter')->userFromTokenAndSecret($token,	$secret);

Stateless	Authentication

The	stateless	method	may	be	used	to	disable	session	state	verification.	This	is	useful	when	adding	social
authentication	to	a	stateless	API	that	does	not	utilize	cookie	based	sessions:

use	Laravel\Socialite\Facades\Socialite;

return	Socialite::driver('google')->stateless()->user();

[!WARNING]
Stateless	authentication	is	not	available	for	the	Twitter	OAuth	1.0	driver.

Laravel	Documentation	-	10.x	/	Socialite 1073

Packages

Laravel	Telescope
Introduction
Installation

Local	Only	Installation
Configuration
Data	Pruning
Dashboard	Authorization

Upgrading	Telescope
Filtering

Entries
Batches

Tagging
Available	Watchers

Batch	Watcher
Cache	Watcher
Command	Watcher
Dump	Watcher
Event	Watcher
Exception	Watcher
Gate	Watcher
HTTP	Client	Watcher
Job	Watcher
Log	Watcher
Mail	Watcher
Model	Watcher
Notification	Watcher
Query	Watcher
Redis	Watcher
Request	Watcher
Schedule	Watcher
View	Watcher

Displaying	User	Avatars

Introduction

Laravel	Telescope	makes	a	wonderful	companion	to	your	local	Laravel	development	environment.	Telescope
provides	insight	into	the	requests	coming	into	your	application,	exceptions,	log	entries,	database	queries,
queued	jobs,	mail,	notifications,	cache	operations,	scheduled	tasks,	variable	dumps,	and	more.

Laravel	Documentation	-	10.x	/	Telescope 1074

https://github.com/laravel/telescope

Installation

You	may	use	the	Composer	package	manager	to	install	Telescope	into	your	Laravel	project:

composer	require	laravel/telescope

After	installing	Telescope,	publish	its	assets	using	the	telescope:install	Artisan	command.	After	installing
Telescope,	you	should	also	run	the	migrate	command	in	order	to	create	the	tables	needed	to	store	Telescope's
data:

php	artisan	telescope:install

php	artisan	migrate

Finally,	you	may	access	the	Telescope	dashboard	via	the	/telescope	route.

Migration	Customization

If	you	are	not	going	to	use	Telescope's	default	migrations,	you	should	call	the	Telescope::ignoreMigrations
method	in	the	register	method	of	your	application's	App\Providers\AppServiceProvider	class.	You	may	export
the	default	migrations	using	the	following	command:	php	artisan	vendor:publish	--tag=telescope-migrations

Local	Only	Installation

If	you	plan	to	only	use	Telescope	to	assist	your	local	development,	you	may	install	Telescope	using	the	--dev

Laravel	Documentation	-	10.x	/	Telescope 1075

flag:

composer	require	laravel/telescope	--dev

php	artisan	telescope:install

php	artisan	migrate

After	running	telescope:install,	you	should	remove	the	TelescopeServiceProvider	service	provider	registration
from	your	application's	config/app.php	configuration	file.	Instead,	manually	register	Telescope's	service
providers	in	the	register	method	of	your	App\Providers\AppServiceProvider	class.	We	will	ensure	the	current
environment	is	local	before	registering	the	providers:

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				if	($this->app->environment('local'))	{

								$this->app->register(\Laravel\Telescope\TelescopeServiceProvider::class);

								$this->app->register(TelescopeServiceProvider::class);

				}

}

Finally,	you	should	also	prevent	the	Telescope	package	from	being	auto-discovered	by	adding	the	following	to
your	composer.json	file:

"extra":	{

				"laravel":	{

								"dont-discover":	[

												"laravel/telescope"

]

				}

},

Configuration

After	publishing	Telescope's	assets,	its	primary	configuration	file	will	be	located	at	config/telescope.php.	This
configuration	file	allows	you	to	configure	your	watcher	options.	Each	configuration	option	includes	a
description	of	its	purpose,	so	be	sure	to	thoroughly	explore	this	file.

If	desired,	you	may	disable	Telescope's	data	collection	entirely	using	the	enabled	configuration	option:

'enabled'	=>	env('TELESCOPE_ENABLED',	true),

Data	Pruning

Without	pruning,	the	telescope_entries	table	can	accumulate	records	very	quickly.	To	mitigate	this,	you	should
schedule	the	telescope:prune	Artisan	command	to	run	daily:

$schedule->command('telescope:prune')->daily();

By	default,	all	entries	older	than	24	hours	will	be	pruned.	You	may	use	the	hours	option	when	calling	the
command	to	determine	how	long	to	retain	Telescope	data.	For	example,	the	following	command	will	delete	all
records	created	over	48	hours	ago:

$schedule->command('telescope:prune	--hours=48')->daily();

Dashboard	Authorization

The	Telescope	dashboard	may	be	accessed	via	the	/telescope	route.	By	default,	you	will	only	be	able	to	access
this	dashboard	in	the	local	environment.	Within	your	app/Providers/TelescopeServiceProvider.php	file,	there	is
an	authorization	gate	definition.	This	authorization	gate	controls	access	to	Telescope	in	non-local
environments.	You	are	free	to	modify	this	gate	as	needed	to	restrict	access	to	your	Telescope	installation:

use	App\Models\User;

/**

Laravel	Documentation	-	10.x	/	Telescope 1076

	*	Register	the	Telescope	gate.

	*

	*	This	gate	determines	who	can	access	Telescope	in	non-local	environments.

	*/

protected	function	gate():	void

{

				Gate::define('viewTelescope',	function	(User	$user)	{

								return	in_array($user->email,	[

												'taylor@laravel.com',

]);

				});

}

[!WARNING]
You	should	ensure	you	change	your	APP_ENV	environment	variable	to	production	in	your	production
environment.	Otherwise,	your	Telescope	installation	will	be	publicly	available.

Upgrading	Telescope

When	upgrading	to	a	new	major	version	of	Telescope,	it's	important	that	you	carefully	review	the	upgrade
guide.

In	addition,	when	upgrading	to	any	new	Telescope	version,	you	should	re-publish	Telescope's	assets:

php	artisan	telescope:publish

To	keep	the	assets	up-to-date	and	avoid	issues	in	future	updates,	you	may	add	the	vendor:publish	--
tag=laravel-assets	command	to	the	post-update-cmd	scripts	in	your	application's	composer.json	file:

{

				"scripts":	{

								"post-update-cmd":	[

												"@php	artisan	vendor:publish	--tag=laravel-assets	--ansi	--force"

]

				}

}

Filtering

Entries

You	may	filter	the	data	that	is	recorded	by	Telescope	via	the	filter	closure	that	is	defined	in	your	
App\Providers\TelescopeServiceProvider	class.	By	default,	this	closure	records	all	data	in	the	local	environment
and	exceptions,	failed	jobs,	scheduled	tasks,	and	data	with	monitored	tags	in	all	other	environments:

use	Laravel\Telescope\IncomingEntry;

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->hideSensitiveRequestDetails();

				Telescope::filter(function	(IncomingEntry	$entry)	{

								if	($this->app->environment('local'))	{

												return	true;

								}

								return	$entry->isReportableException()	||

												$entry->isFailedJob()	||

												$entry->isScheduledTask()	||

												$entry->isSlowQuery()	||

												$entry->hasMonitoredTag();

				});

}

Batches

Laravel	Documentation	-	10.x	/	Telescope 1077

https://github.com/laravel/telescope/blob/master/UPGRADE.md

While	the	filter	closure	filters	data	for	individual	entries,	you	may	use	the	filterBatch	method	to	register	a
closure	that	filters	all	data	for	a	given	request	or	console	command.	If	the	closure	returns	true,	all	of	the	entries
are	recorded	by	Telescope:

use	Illuminate\Support\Collection;

use	Laravel\Telescope\IncomingEntry;

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->hideSensitiveRequestDetails();

				Telescope::filterBatch(function	(Collection	$entries)	{

								if	($this->app->environment('local'))	{

												return	true;

								}

								return	$entries->contains(function	(IncomingEntry	$entry)	{

												return	$entry->isReportableException()	||

																$entry->isFailedJob()	||

																$entry->isScheduledTask()	||

																$entry->isSlowQuery()	||

																$entry->hasMonitoredTag();

												});

				});

}

Tagging

Telescope	allows	you	to	search	entries	by	"tag".	Often,	tags	are	Eloquent	model	class	names	or	authenticated
user	IDs	which	Telescope	automatically	adds	to	entries.	Occasionally,	you	may	want	to	attach	your	own	custom
tags	to	entries.	To	accomplish	this,	you	may	use	the	Telescope::tag	method.	The	tag	method	accepts	a	closure
which	should	return	an	array	of	tags.	The	tags	returned	by	the	closure	will	be	merged	with	any	tags	Telescope
would	automatically	attach	to	the	entry.	Typically,	you	should	call	the	tag	method	within	the	register	method
of	your	App\Providers\TelescopeServiceProvider	class:

use	Laravel\Telescope\IncomingEntry;

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				$this->hideSensitiveRequestDetails();

				Telescope::tag(function	(IncomingEntry	$entry)	{

								return	$entry->type	===	'request'

																				?	['status:'.$entry->content['response_status']]

																				:	[];

				});

	}

Available	Watchers

Telescope	"watchers"	gather	application	data	when	a	request	or	console	command	is	executed.	You	may
customize	the	list	of	watchers	that	you	would	like	to	enable	within	your	config/telescope.php	configuration
file:

'watchers'	=>	[

				Watchers\CacheWatcher::class	=>	true,

				Watchers\CommandWatcher::class	=>	true,

				...

],

Some	watchers	also	allow	you	to	provide	additional	customization	options:

'watchers'	=>	[

				Watchers\QueryWatcher::class	=>	[

Laravel	Documentation	-	10.x	/	Telescope 1078

								'enabled'	=>	env('TELESCOPE_QUERY_WATCHER',	true),

								'slow'	=>	100,

],

				...

],

Batch	Watcher

The	batch	watcher	records	information	about	queued	batches,	including	the	job	and	connection	information.

Cache	Watcher

The	cache	watcher	records	data	when	a	cache	key	is	hit,	missed,	updated	and	forgotten.

Command	Watcher

The	command	watcher	records	the	arguments,	options,	exit	code,	and	output	whenever	an	Artisan	command	is
executed.	If	you	would	like	to	exclude	certain	commands	from	being	recorded	by	the	watcher,	you	may	specify
the	command	in	the	ignore	option	within	your	config/telescope.php	file:

'watchers'	=>	[

				Watchers\CommandWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_COMMAND_WATCHER',	true),

								'ignore'	=>	['key:generate'],

],

				...

],

Dump	Watcher

The	dump	watcher	records	and	displays	your	variable	dumps	in	Telescope.	When	using	Laravel,	variables	may
be	dumped	using	the	global	dump	function.	The	dump	watcher	tab	must	be	open	in	a	browser	for	the	dump	to	be
recorded,	otherwise,	the	dumps	will	be	ignored	by	the	watcher.

Event	Watcher

The	event	watcher	records	the	payload,	listeners,	and	broadcast	data	for	any	events	dispatched	by	your
application.	The	Laravel	framework's	internal	events	are	ignored	by	the	Event	watcher.

Exception	Watcher

The	exception	watcher	records	the	data	and	stack	trace	for	any	reportable	exceptions	that	are	thrown	by	your
application.

Gate	Watcher

The	gate	watcher	records	the	data	and	result	of	gate	and	policy	checks	by	your	application.	If	you	would	like	to
exclude	certain	abilities	from	being	recorded	by	the	watcher,	you	may	specify	those	in	the	ignore_abilities
option	in	your	config/telescope.php	file:

'watchers'	=>	[

				Watchers\GateWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_GATE_WATCHER',	true),

								'ignore_abilities'	=>	['viewNova'],

],

				...

],

HTTP	Client	Watcher

The	HTTP	client	watcher	records	outgoing	HTTP	client	requests	made	by	your	application.

Laravel	Documentation	-	10.x	/	Telescope 1079

Job	Watcher

The	job	watcher	records	the	data	and	status	of	any	jobs	dispatched	by	your	application.

Log	Watcher

The	log	watcher	records	the	log	data	for	any	logs	written	by	your	application.

By	default,	Telescope	will	only	record	logs	at	the	error	level	and	above.	However,	you	can	modify	the	level
option	in	your	application's	config/telescope.php	configuration	file	to	modify	this	behavior:

'watchers'	=>	[

				Watchers\LogWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_LOG_WATCHER',	true),

								'level'	=>	'debug',

],

				//	...

],

Mail	Watcher

The	mail	watcher	allows	you	to	view	an	in-browser	preview	of	emails	sent	by	your	application	along	with	their
associated	data.	You	may	also	download	the	email	as	an	.eml	file.

Model	Watcher

The	model	watcher	records	model	changes	whenever	an	Eloquent	model	event	is	dispatched.	You	may	specify
which	model	events	should	be	recorded	via	the	watcher's	events	option:

'watchers'	=>	[

				Watchers\ModelWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_MODEL_WATCHER',	true),

								'events'	=>	['eloquent.created*',	'eloquent.updated*'],

],

				...

],

If	you	would	like	to	record	the	number	of	models	hydrated	during	a	given	request,	enable	the	hydrations
option:

'watchers'	=>	[

				Watchers\ModelWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_MODEL_WATCHER',	true),

								'events'	=>	['eloquent.created*',	'eloquent.updated*'],

								'hydrations'	=>	true,

],

				...

],

Notification	Watcher

The	notification	watcher	records	all	notifications	sent	by	your	application.	If	the	notification	triggers	an	email
and	you	have	the	mail	watcher	enabled,	the	email	will	also	be	available	for	preview	on	the	mail	watcher	screen.

Query	Watcher

The	query	watcher	records	the	raw	SQL,	bindings,	and	execution	time	for	all	queries	that	are	executed	by	your
application.	The	watcher	also	tags	any	queries	slower	than	100	milliseconds	as	slow.	You	may	customize	the
slow	query	threshold	using	the	watcher's	slow	option:

'watchers'	=>	[

				Watchers\QueryWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_QUERY_WATCHER',	true),

								'slow'	=>	50,

],

Laravel	Documentation	-	10.x	/	Telescope 1080

				...

],

Redis	Watcher

The	Redis	watcher	records	all	Redis	commands	executed	by	your	application.	If	you	are	using	Redis	for
caching,	cache	commands	will	also	be	recorded	by	the	Redis	watcher.

Request	Watcher

The	request	watcher	records	the	request,	headers,	session,	and	response	data	associated	with	any	requests
handled	by	the	application.	You	may	limit	your	recorded	response	data	via	the	size_limit	(in	kilobytes)	option:

'watchers'	=>	[

				Watchers\RequestWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_REQUEST_WATCHER',	true),

								'size_limit'	=>	env('TELESCOPE_RESPONSE_SIZE_LIMIT',	64),

],

				...

],

Schedule	Watcher

The	schedule	watcher	records	the	command	and	output	of	any	scheduled	tasks	run	by	your	application.

View	Watcher

The	view	watcher	records	the	view	name,	path,	data,	and	"composers"	used	when	rendering	views.

Displaying	User	Avatars

The	Telescope	dashboard	displays	the	user	avatar	for	the	user	that	was	authenticated	when	a	given	entry	was
saved.	By	default,	Telescope	will	retrieve	avatars	using	the	Gravatar	web	service.	However,	you	may	customize
the	avatar	URL	by	registering	a	callback	in	your	App\Providers\TelescopeServiceProvider	class.	The	callback
will	receive	the	user's	ID	and	email	address	and	should	return	the	user's	avatar	image	URL:

use	App\Models\User;

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*/

public	function	register():	void

{

				//	...

				Telescope::avatar(function	(string	$id,	string	$email)	{

								return	'/avatars/'.User::find($id)->avatar_path;

				});

}

Laravel	Documentation	-	10.x	/	Telescope 1081

Packages

Laravel	Valet
Introduction
Installation

Upgrading	Valet
Serving	Sites

The	"Park"	Command
The	"Link"	Command
Securing	Sites	With	TLS
Serving	a	Default	Site
Per-Site	PHP	Versions

Sharing	Sites
Sharing	Sites	on	Your	Local	Network

Site	Specific	Environment	Variables
Proxying	Services
Custom	Valet	Drivers

Local	Drivers
Other	Valet	Commands
Valet	Directories	and	Files

Disk	Access

Introduction

[!NOTE]
Looking	for	an	even	easier	way	to	develop	Laravel	applications	on	macOS?	Check	out	Laravel	Herd.	Herd
includes	everything	you	need	to	get	started	with	Laravel	development,	including	Valet,	PHP,	and
Composer.

Laravel	Valet	is	a	development	environment	for	macOS	minimalists.	Laravel	Valet	configures	your	Mac	to
always	run	Nginx	in	the	background	when	your	machine	starts.	Then,	using	DnsMasq,	Valet	proxies	all
requests	on	the	*.test	domain	to	point	to	sites	installed	on	your	local	machine.

In	other	words,	Valet	is	a	blazing	fast	Laravel	development	environment	that	uses	roughly	7	MB	of	RAM.	Valet
isn't	a	complete	replacement	for	Sail	or	Homestead,	but	provides	a	great	alternative	if	you	want	flexible	basics,
prefer	extreme	speed,	or	are	working	on	a	machine	with	a	limited	amount	of	RAM.

Out	of	the	box,	Valet	support	includes,	but	is	not	limited	to:

Laravel

Bedrock

CakePHP	3

ConcreteCMS

Contao

Craft

Drupal

ExpressionEngine

Jigsaw

Joomla

Katana

Kirby

Magento

OctoberCMS

Sculpin

Slim

Statamic

Static	HTML

Symfony

WordPress

Zend

However,	you	may	extend	Valet	with	your	own	custom	drivers.

Installation

[!WARNING]
Valet	requires	macOS	and	Homebrew.	Before	installation,	you	should	make	sure	that	no	other	programs
such	as	Apache	or	Nginx	are	binding	to	your	local	machine's	port	80.

Laravel	Documentation	-	10.x	/	Valet 1082

https://herd.laravel.com
https://github.com/laravel/valet
https://www.nginx.com/
https://en.wikipedia.org/wiki/Dnsmasq
https://laravel.com
https://roots.io/bedrock/
https://cakephp.org
https://www.concretecms.com/
https://contao.org/en/
https://craftcms.com
https://www.drupal.org/
https://www.expressionengine.com/
https://jigsaw.tighten.co
https://www.joomla.org/
https://github.com/themsaid/katana
https://getkirby.com/
https://magento.com/
https://octobercms.com/
https://sculpin.io/
https://www.slimframework.com
https://statamic.com
https://symfony.com
https://wordpress.org
https://framework.zend.com
https://brew.sh/

To	get	started,	you	first	need	to	ensure	that	Homebrew	is	up	to	date	using	the	update	command:

brew	update

Next,	you	should	use	Homebrew	to	install	PHP:

brew	install	php

After	installing	PHP,	you	are	ready	to	install	the	Composer	package	manager.	In	addition,	you	should	make
sure	the	$HOME/.composer/vendor/bin	directory	is	in	your	system's	"PATH".	After	Composer	has	been	installed,
you	may	install	Laravel	Valet	as	a	global	Composer	package:

composer	global	require	laravel/valet

Finally,	you	may	execute	Valet's	install	command.	This	will	configure	and	install	Valet	and	DnsMasq.	In
addition,	the	daemons	Valet	depends	on	will	be	configured	to	launch	when	your	system	starts:

valet	install

Once	Valet	is	installed,	try	pinging	any	*.test	domain	on	your	terminal	using	a	command	such	as	ping	
foobar.test.	If	Valet	is	installed	correctly	you	should	see	this	domain	responding	on	127.0.0.1.

Valet	will	automatically	start	its	required	services	each	time	your	machine	boots.

PHP	Versions

[!NOTE]
Instead	of	modifying	your	global	PHP	version,	you	can	instruct	Valet	to	use	per-site	PHP	versions	via	the	
isolate	command.

Valet	allows	you	to	switch	PHP	versions	using	the	valet	use	php@version	command.	Valet	will	install	the
specified	PHP	version	via	Homebrew	if	it	is	not	already	installed:

valet	use	php@8.1

valet	use	php

You	may	also	create	a	.valetrc	file	in	the	root	of	your	project.	The	.valetrc	file	should	contain	the	PHP	version
the	site	should	use:

php=php@8.1

Once	this	file	has	been	created,	you	may	simply	execute	the	valet	use	command	and	the	command	will
determine	the	site's	preferred	PHP	version	by	reading	the	file.

[!WARNING]
Valet	only	serves	one	PHP	version	at	a	time,	even	if	you	have	multiple	PHP	versions	installed.

Database

If	your	application	needs	a	database,	check	out	DBngin,	which	provides	a	free,	all-in-one	database	management
tool	that	includes	MySQL,	PostgreSQL,	and	Redis.	After	DBngin	has	been	installed,	you	can	connect	to	your
database	at	127.0.0.1	using	the	root	username	and	an	empty	string	for	the	password.

Resetting	Your	Installation

If	you	are	having	trouble	getting	your	Valet	installation	to	run	properly,	executing	the	composer	global	require	
laravel/valet	command	followed	by	valet	install	will	reset	your	installation	and	can	solve	a	variety	of
problems.	In	rare	cases,	it	may	be	necessary	to	"hard	reset"	Valet	by	executing	valet	uninstall	--force
followed	by	valet	install.

Upgrading	Valet

Laravel	Documentation	-	10.x	/	Valet 1083

https://getcomposer.org
https://dbngin.com

You	may	update	your	Valet	installation	by	executing	the	composer	global	require	laravel/valet	command	in
your	terminal.	After	upgrading,	it	is	good	practice	to	run	the	valet	install	command	so	Valet	can	make
additional	upgrades	to	your	configuration	files	if	necessary.

Upgrading	to	Valet	4

If	you're	upgrading	from	Valet	3	to	Valet	4,	take	the	following	steps	to	properly	upgrade	your	Valet	installation:

If	you've	added	.valetphprc	files	to	customize	your	site's	PHP	version,	rename	each	.valetphprc	file	to	
.valetrc.	Then,	prepend	php=	to	the	existing	content	of	the	.valetrc	file.
Update	any	custom	drivers	to	match	the	namespace,	extension,	type-hints,	and	return	type-hints	of	the
new	driver	system.	You	may	consult	Valet's	SampleValetDriver	as	an	example.
If	you	use	PHP	7.1	-	7.4	to	serve	your	sites,	make	sure	you	still	use	Homebrew	to	install	a	version	of
PHP	that's	8.0	or	higher,	as	Valet	will	use	this	version,	even	if	it's	not	your	primary	linked	version,	to	run
some	of	its	scripts.

Serving	Sites

Once	Valet	is	installed,	you're	ready	to	start	serving	your	Laravel	applications.	Valet	provides	two	commands	to
help	you	serve	your	applications:	park	and	link.

The	park	Command

The	park	command	registers	a	directory	on	your	machine	that	contains	your	applications.	Once	the	directory
has	been	"parked"	with	Valet,	all	of	the	directories	within	that	directory	will	be	accessible	in	your	web	browser
at	http://<directory-name>.test:

cd	~/Sites

valet	park

That's	all	there	is	to	it.	Now,	any	application	you	create	within	your	"parked"	directory	will	automatically	be
served	using	the	http://<directory-name>.test	convention.	So,	if	your	parked	directory	contains	a	directory
named	"laravel",	the	application	within	that	directory	will	be	accessible	at	http://laravel.test.	In	addition,
Valet	automatically	allows	you	to	access	the	site	using	wildcard	subdomains	(http://foo.laravel.test).

The	link	Command

The	link	command	can	also	be	used	to	serve	your	Laravel	applications.	This	command	is	useful	if	you	want	to
serve	a	single	site	in	a	directory	and	not	the	entire	directory:

cd	~/Sites/laravel

valet	link

Once	an	application	has	been	linked	to	Valet	using	the	link	command,	you	may	access	the	application	using	its
directory	name.	So,	the	site	that	was	linked	in	the	example	above	may	be	accessed	at	http://laravel.test.	In
addition,	Valet	automatically	allows	you	to	access	the	site	using	wildcard	sub-domains
(http://foo.laravel.test).

If	you	would	like	to	serve	the	application	at	a	different	hostname,	you	may	pass	the	hostname	to	the	link
command.	For	example,	you	may	run	the	following	command	to	make	an	application	available	at	
http://application.test:

cd	~/Sites/laravel

valet	link	application

Of	course,	you	may	also	serve	applications	on	subdomains	using	the	link	command:

valet	link	api.application

You	may	execute	the	links	command	to	display	a	list	of	all	of	your	linked	directories:

Laravel	Documentation	-	10.x	/	Valet 1084

https://github.com/laravel/valet/blob/d7787c025e60abc24a5195dc7d4c5c6f2d984339/cli/stubs/SampleValetDriver.php

valet	links

The	unlink	command	may	be	used	to	destroy	the	symbolic	link	for	a	site:

cd	~/Sites/laravel

valet	unlink

Securing	Sites	With	TLS

By	default,	Valet	serves	sites	over	HTTP.	However,	if	you	would	like	to	serve	a	site	over	encrypted	TLS	using
HTTP/2,	you	may	use	the	secure	command.	For	example,	if	your	site	is	being	served	by	Valet	on	the	
laravel.test	domain,	you	should	run	the	following	command	to	secure	it:

valet	secure	laravel

To	"unsecure"	a	site	and	revert	back	to	serving	its	traffic	over	plain	HTTP,	use	the	unsecure	command.	Like	the	
secure	command,	this	command	accepts	the	hostname	that	you	wish	to	unsecure:

valet	unsecure	laravel

Serving	a	Default	Site

Sometimes,	you	may	wish	to	configure	Valet	to	serve	a	"default"	site	instead	of	a	404	when	visiting	an	unknown
test	domain.	To	accomplish	this,	you	may	add	a	default	option	to	your	~/.config/valet/config.json
configuration	file	containing	the	path	to	the	site	that	should	serve	as	your	default	site:

"default":	"/Users/Sally/Sites/example-site",

Per-Site	PHP	Versions

By	default,	Valet	uses	your	global	PHP	installation	to	serve	your	sites.	However,	if	you	need	to	support	multiple
PHP	versions	across	various	sites,	you	may	use	the	isolate	command	to	specify	which	PHP	version	a	particular
site	should	use.	The	isolate	command	configures	Valet	to	use	the	specified	PHP	version	for	the	site	located	in
your	current	working	directory:

cd	~/Sites/example-site

valet	isolate	php@8.0

If	your	site	name	does	not	match	the	name	of	the	directory	that	contains	it,	you	may	specify	the	site	name	using
the	--site	option:

valet	isolate	php@8.0	--site="site-name"

For	convenience,	you	may	use	the	valet	php,	composer,	and	which-php	commands	to	proxy	calls	to	the
appropriate	PHP	CLI	or	tool	based	on	the	site's	configured	PHP	version:

valet	php

valet	composer

valet	which-php

You	may	execute	the	isolated	command	to	display	a	list	of	all	of	your	isolated	sites	and	their	PHP	versions:

valet	isolated

To	revert	a	site	back	to	Valet's	globally	installed	PHP	version,	you	may	invoke	the	unisolate	command	from	the
site's	root	directory:

valet	unisolate

Sharing	Sites

Valet	includes	a	command	to	share	your	local	sites	with	the	world,	providing	an	easy	way	to	test	your	site	on
mobile	devices	or	share	it	with	team	members	and	clients.

Laravel	Documentation	-	10.x	/	Valet 1085

Out	of	the	box,	Valet	supports	sharing	your	sites	via	ngrok	or	Expose.	Before	sharing	a	site,	you	should	update
your	Valet	configuration	using	the	share-tool	command,	specifying	either	ngrok	or	expose:

valet	share-tool	ngrok

If	you	choose	a	tool	and	don't	have	it	installed	via	Homebrew	(for	ngrok)	or	Composer	(for	Expose),	Valet	will
automatically	prompt	you	to	install	it.	Of	course,	both	tools	require	you	to	authenticate	your	ngrok	or	Expose
account	before	you	can	start	sharing	sites.

To	share	a	site,	navigate	to	the	site's	directory	in	your	terminal	and	run	Valet's	share	command.	A	publicly
accessible	URL	will	be	placed	into	your	clipboard	and	is	ready	to	paste	directly	into	your	browser	or	to	be
shared	with	your	team:

cd	~/Sites/laravel

valet	share

To	stop	sharing	your	site,	you	may	press	Control	+	C.

[!WARNING]
If	you're	using	a	custom	DNS	server	(like	1.1.1.1),	ngrok	sharing	may	not	work	correctly.	If	this	is	the
case	on	your	machine,	open	your	Mac's	system	settings,	go	to	the	Network	settings,	open	the	Advanced
settings,	then	go	the	DNS	tab	and	add	127.0.0.1	as	your	first	DNS	server.

Sharing	Sites	via	Ngrok

Sharing	your	site	using	ngrok	requires	you	to	create	an	ngrok	account	and	set	up	an	authentication	token.	Once
you	have	an	authentication	token,	you	can	update	your	Valet	configuration	with	that	token:

valet	set-ngrok-token	YOUR_TOKEN_HERE

[!NOTE]
You	may	pass	additional	ngrok	parameters	to	the	share	command,	such	as	valet	share	--region=eu.	For
more	information,	consult	the	ngrok	documentation.

Sharing	Sites	via	Expose

Sharing	your	site	using	Expose	requires	you	to	create	an	Expose	account	and	authenticate	with	Expose	via	your
authentication	token.

You	may	consult	the	Expose	documentation	for	information	regarding	the	additional	command-line	parameters
it	supports.

Sharing	Sites	on	Your	Local	Network

Valet	restricts	incoming	traffic	to	the	internal	127.0.0.1	interface	by	default	so	that	your	development	machine
isn't	exposed	to	security	risks	from	the	Internet.

If	you	wish	to	allow	other	devices	on	your	local	network	to	access	the	Valet	sites	on	your	machine	via	your
machine's	IP	address	(eg:	192.168.1.10/application.test),	you	will	need	to	manually	edit	the	appropriate
Nginx	configuration	file	for	that	site	to	remove	the	restriction	on	the	listen	directive.	You	should	remove	the	
127.0.0.1:	prefix	on	the	listen	directive	for	ports	80	and	443.

If	you	have	not	run	valet	secure	on	the	project,	you	can	open	up	network	access	for	all	non-HTTPS	sites	by
editing	the	/usr/local/etc/nginx/valet/valet.conf	file.	However,	if	you're	serving	the	project	site	over	HTTPS
(you	have	run	valet	secure	for	the	site)	then	you	should	edit	the	~/.config/valet/Nginx/app-name.test	file.

Once	you	have	updated	your	Nginx	configuration,	run	the	valet	restart	command	to	apply	the	configuration
changes.

Site	Specific	Environment	Variables

Laravel	Documentation	-	10.x	/	Valet 1086

https://dashboard.ngrok.com/signup
https://dashboard.ngrok.com/get-started/your-authtoken
https://ngrok.com/docs
https://expose.dev/register
https://expose.dev/docs/getting-started/getting-your-token
https://expose.dev/docs

Some	applications	using	other	frameworks	may	depend	on	server	environment	variables	but	do	not	provide	a
way	for	those	variables	to	be	configured	within	your	project.	Valet	allows	you	to	configure	site	specific
environment	variables	by	adding	a	.valet-env.php	file	within	the	root	of	your	project.	This	file	should	return	an
array	of	site	/	environment	variable	pairs	which	will	be	added	to	the	global	$_SERVER	array	for	each	site	specified
in	the	array:

<?php

return	[

				//	Set	$_SERVER['key']	to	"value"	for	the	laravel.test	site...

				'laravel'	=>	[

								'key'	=>	'value',

],

				//	Set	$_SERVER['key']	to	"value"	for	all	sites...

				'*'	=>	[

								'key'	=>	'value',

],

];

Proxying	Services

Sometimes	you	may	wish	to	proxy	a	Valet	domain	to	another	service	on	your	local	machine.	For	example,	you
may	occasionally	need	to	run	Valet	while	also	running	a	separate	site	in	Docker;	however,	Valet	and	Docker
can't	both	bind	to	port	80	at	the	same	time.

To	solve	this,	you	may	use	the	proxy	command	to	generate	a	proxy.	For	example,	you	may	proxy	all	traffic	from
http://elasticsearch.test	to	http://127.0.0.1:9200:

#	Proxy	over	HTTP...

valet	proxy	elasticsearch	http://127.0.0.1:9200

#	Proxy	over	TLS	+	HTTP/2...

valet	proxy	elasticsearch	http://127.0.0.1:9200	--secure

You	may	remove	a	proxy	using	the	unproxy	command:

valet	unproxy	elasticsearch

You	may	use	the	proxies	command	to	list	all	site	configurations	that	are	proxied:

valet	proxies

Custom	Valet	Drivers

You	can	write	your	own	Valet	"driver"	to	serve	PHP	applications	running	on	a	framework	or	CMS	that	is	not
natively	supported	by	Valet.	When	you	install	Valet,	a	~/.config/valet/Drivers	directory	is	created	which
contains	a	SampleValetDriver.php	file.	This	file	contains	a	sample	driver	implementation	to	demonstrate	how	to
write	a	custom	driver.	Writing	a	driver	only	requires	you	to	implement	three	methods:	serves,	isStaticFile,	and
frontControllerPath.

All	three	methods	receive	the	$sitePath,	$siteName,	and	$uri	values	as	their	arguments.	The	$sitePath	is	the
fully	qualified	path	to	the	site	being	served	on	your	machine,	such	as	/Users/Lisa/Sites/my-project.	The	
$siteName	is	the	"host"	/	"site	name"	portion	of	the	domain	(my-project).	The	$uri	is	the	incoming	request	URI
(/foo/bar).

Once	you	have	completed	your	custom	Valet	driver,	place	it	in	the	~/.config/valet/Drivers	directory	using	the	
FrameworkValetDriver.php	naming	convention.	For	example,	if	you	are	writing	a	custom	valet	driver	for
WordPress,	your	filename	should	be	WordPressValetDriver.php.

Let's	take	a	look	at	a	sample	implementation	of	each	method	your	custom	Valet	driver	should	implement.

The	serves	Method

The	serves	method	should	return	true	if	your	driver	should	handle	the	incoming	request.	Otherwise,	the	method

Laravel	Documentation	-	10.x	/	Valet 1087

should	return	false.	So,	within	this	method,	you	should	attempt	to	determine	if	the	given	$sitePath	contains	a
project	of	the	type	you	are	trying	to	serve.

For	example,	let's	imagine	we	are	writing	a	WordPressValetDriver.	Our	serves	method	might	look	something
like	this:

/**

	*	Determine	if	the	driver	serves	the	request.

	*/

public	function	serves(string	$sitePath,	string	$siteName,	string	$uri):	bool

{

				return	is_dir($sitePath.'/wp-admin');

}

The	isStaticFile	Method

The	isStaticFile	should	determine	if	the	incoming	request	is	for	a	file	that	is	"static",	such	as	an	image	or	a
stylesheet.	If	the	file	is	static,	the	method	should	return	the	fully	qualified	path	to	the	static	file	on	disk.	If	the
incoming	request	is	not	for	a	static	file,	the	method	should	return	false:

/**

	*	Determine	if	the	incoming	request	is	for	a	static	file.

	*

	*	@return	string|false

	*/

public	function	isStaticFile(string	$sitePath,	string	$siteName,	string	$uri)

{

				if	(file_exists($staticFilePath	=	$sitePath.'/public/'.$uri))	{

								return	$staticFilePath;

				}

				return	false;

}

[!WARNING]
The	isStaticFile	method	will	only	be	called	if	the	serves	method	returns	true	for	the	incoming	request
and	the	request	URI	is	not	/.

The	frontControllerPath	Method

The	frontControllerPath	method	should	return	the	fully	qualified	path	to	your	application's	"front	controller",
which	is	typically	an	"index.php"	file	or	equivalent:

/**

	*	Get	the	fully	resolved	path	to	the	application's	front	controller.

	*/

public	function	frontControllerPath(string	$sitePath,	string	$siteName,	string	$uri):	string

{

				return	$sitePath.'/public/index.php';

}

Local	Drivers

If	you	would	like	to	define	a	custom	Valet	driver	for	a	single	application,	create	a	LocalValetDriver.php	file	in
the	application's	root	directory.	Your	custom	driver	may	extend	the	base	ValetDriver	class	or	extend	an	existing
application	specific	driver	such	as	the	LaravelValetDriver:

use	Valet\Drivers\LaravelValetDriver;

class	LocalValetDriver	extends	LaravelValetDriver

{

				/**

					*	Determine	if	the	driver	serves	the	request.

					*/

				public	function	serves(string	$sitePath,	string	$siteName,	string	$uri):	bool

				{

								return	true;

				}

				/**

					*	Get	the	fully	resolved	path	to	the	application's	front	controller.

Laravel	Documentation	-	10.x	/	Valet 1088

					*/

				public	function	frontControllerPath(string	$sitePath,	string	$siteName,	string	$uri):	string

				{

								return	$sitePath.'/public_html/index.php';

				}

}

Other	Valet	Commands

Command	|	Description	-------------	|	-------------	`valet	list`	|	Display	a	list	of	all	Valet	commands.	`valet
diagnose`	|	Output	diagnostics	to	aid	in	debugging	Valet.	`valet	directory-listing`	|	Determine	directory-listing
behavior.	Default	is	"off",	which	renders	a	404	page	for	directories.	`valet	forget`	|	Run	this	command	from	a
"parked"	directory	to	remove	it	from	the	parked	directory	list.	`valet	log`	|	View	a	list	of	logs	which	are	written
by	Valet's	services.	`valet	paths`	|	View	all	of	your	"parked"	paths.	`valet	restart`	|	Restart	the	Valet	daemons.
`valet	start`	|	Start	the	Valet	daemons.	`valet	stop`	|	Stop	the	Valet	daemons.	`valet	trust`	|	Add	sudoers	files	for
Brew	and	Valet	to	allow	Valet	commands	to	be	run	without	prompting	for	your	password.	`valet	uninstall`	|
Uninstall	Valet:	shows	instructions	for	manual	uninstall.	Pass	the	`--force`	option	to	aggressively	delete	all	of
Valet's	resources.

Valet	Directories	and	Files

You	may	find	the	following	directory	and	file	information	helpful	while	troubleshooting	issues	with	your	Valet
environment:

~/.config/valet

Contains	all	of	Valet's	configuration.	You	may	wish	to	maintain	a	backup	of	this	directory.

~/.config/valet/dnsmasq.d/

This	directory	contains	DNSMasq's	configuration.

~/.config/valet/Drivers/

This	directory	contains	Valet's	drivers.	Drivers	determine	how	a	particular	framework	/	CMS	is	served.

~/.config/valet/Nginx/

This	directory	contains	all	of	Valet's	Nginx	site	configurations.	These	files	are	rebuilt	when	running	the	install
and	secure	commands.

~/.config/valet/Sites/

This	directory	contains	all	of	the	symbolic	links	for	your	linked	projects.

~/.config/valet/config.json

This	file	is	Valet's	master	configuration	file.

~/.config/valet/valet.sock

This	file	is	the	PHP-FPM	socket	used	by	Valet's	Nginx	installation.	This	will	only	exist	if	PHP	is	running
properly.

~/.config/valet/Log/fpm-php.www.log

This	file	is	the	user	log	for	PHP	errors.

~/.config/valet/Log/nginx-error.log

This	file	is	the	user	log	for	Nginx	errors.

Laravel	Documentation	-	10.x	/	Valet 1089

/usr/local/var/log/php-fpm.log

This	file	is	the	system	log	for	PHP-FPM	errors.

/usr/local/var/log/nginx

This	directory	contains	the	Nginx	access	and	error	logs.

/usr/local/etc/php/X.X/conf.d

This	directory	contains	the	*.ini	files	for	various	PHP	configuration	settings.

/usr/local/etc/php/X.X/php-fpm.d/valet-fpm.conf

This	file	is	the	PHP-FPM	pool	configuration	file.

~/.composer/vendor/laravel/valet/cli/stubs/secure.valet.conf

This	file	is	the	default	Nginx	configuration	used	for	building	SSL	certificates	for	your	sites.

Disk	Access

Since	macOS	10.14,	access	to	some	files	and	directories	is	restricted	by	default.	These	restrictions	include	the
Desktop,	Documents,	and	Downloads	directories.	In	addition,	network	volume	and	removable	volume	access	is
restricted.	Therefore,	Valet	recommends	your	site	folders	are	located	outside	of	these	protected	locations.

However,	if	you	wish	to	serve	sites	from	within	one	of	those	locations,	you	will	need	to	give	Nginx	"Full	Disk
Access".	Otherwise,	you	may	encounter	server	errors	or	other	unpredictable	behavior	from	Nginx,	especially
when	serving	static	assets.	Typically,	macOS	will	automatically	prompt	you	to	grant	Nginx	full	access	to	these
locations.	Or,	you	may	do	so	manually	via	System	Preferences	>	Security	&	Privacy	>	Privacy	and	selecting	
Full	Disk	Access.	Next,	enable	any	nginx	entries	in	the	main	window	pane.

Laravel	Documentation	-	10.x	/	Valet 1090

https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf

	Title
	Prologue
	Release Notes
	Upgrade Guide
	Contribution Guide

	Getting Started
	Installation
	Configuration
	Directory Structure
	Frontend
	Starter Kits
	Deployment

	Architecture Concepts
	Request Lifecycle
	Service Container
	Service Providers
	Facades

	The Basics
	Routing
	Middleware
	CSRF Protection
	Controllers
	Requests
	Responses
	Views
	Blade Templates
	Asset Bundling
	URL Generation
	Session
	Validation
	Error Handling
	Logging

	Digging Deeper
	Artisan Console
	Broadcasting
	Cache
	Collections
	Contracts
	Events
	File Storage
	Helpers
	HTTP Client
	Localization
	Mail
	Notifications
	Package Development
	Processes
	Queues
	Rate Limiting
	Strings
	Task Scheduling

	Security
	Authentication
	Authorization
	Email Verification
	Encryption
	Hashing
	Password Reset

	Database
	Getting Started
	Query Builder
	Pagination
	Migrations
	Seeding
	Redis

	Eloquent ORM
	Getting Started
	Relationships
	Collections
	Mutators / Casts
	API Resources
	Serialization
	Factories

	Testing
	Getting Started
	HTTP Tests
	Console Tests
	Browser Tests
	Database
	Mocking

	Packages
	Breeze
	Cashier (Stripe)
	Cashier (Paddle)
	Dusk
	Envoy
	Fortify
	Folio
	Homestead
	Horizon
	Mix
	Octane
	Passport
	Pennant
	Pint
	Precognition
	Prompts
	Pulse
	Reverb
	Sail
	Sanctum
	Scout
	Socialite
	Telescope
	Valet

