%8 Laravel
10.x

DOCUMENTATION

Laravel Documentation - 10.x / Title

Laravel Documentation - 10.x

https://laravel.com/docs/

eBook compiled from the source

https://github.com/laravel/docs/

by david@mundosaparte.com

Get the latest version at https://github.com/driade/laravel-book

Date: Tuesday, 09-Apr-24 16:34:08 CEST

https://github.com/laravel/docs/
mailto:david@mundosaparte.com
https://github.com/driade/laravel-book

Laravel Documentation - 10.x / Title

Prologue

Release Notes

Upgrade Guide
Contribution Guide

Getting Started

Installation
Configuration
Directory Structure
Frontend

Starter Kits

Deployment

Architecture Concepts

Request Lifecycle
Service Container

Service Providers
Facades

The Basics

Routing
Middleware

CSRF Protection
Controllers

Requests
Responses
Views

Blade Templates

Asset Bundling
URL Generation

Session
Validation

Error Handling
Logging

Digging Deeper

Artisan Console
Broadcasting
Cache
Collections
Contracts
Events

File Storage

Helpers
HTTP Client

Localization

Mail

Notifications

Package Development
Processes

Queues

Rate Limiting

Strings

Contents

Laravel Documentation - 10.x / Title

Task Schedulin
Security

Authentication
Authorization
Email Verification
Encryption

Hashing
Password Reset

Database

Getting Started
Query Builder
Pagination
Migrations

Seeding
Redis

Eloquent ORM

Getting Started

Relationships
Collections

Mutators / Casts
API Resources
Serialization
Factories

Testing

Getting Started
HTTP Tests

Console Tests
Browser Tests
Database

Mocking
Packages

Breeze

Cashier (Stripe)
Cashier (Paddle)
Dusk

Envoy

Fortify
Folio

Homestead
Horizon
Mix

Octane
Passport
Pennant
Pint
Precognition

Prompts
Pulse

Reverb
Sail
Sanctum
Scout

Laravel Documentation - 10.x / Title

Socialite

Telescope
Valet

Laravel Documentation - 10.x / Prologue 6

Prologue

Release Notes

e Versioning Scheme
e Support Polic

e Laravel 10

Versioning Scheme

Laravel and its other first-party packages follow Semantic Versioning. Major framework releases are released
every year (~Q1), while minor and patch releases may be released as often as every week. Minor and patch
releases should never contain breaking changes.

When referencing the Laravel framework or its components from your application or package, you should
always use a version constraint such as »1e.e, since major releases of Laravel do include breaking changes.
However, we strive to always ensure you may update to a new major release in one day or less.

Named Arguments

Named arguments are not covered by Laravel's backwards compatibility guidelines. We may choose to rename
function arguments when necessary in order to improve the Laravel codebase. Therefore, using named
arguments when calling Laravel methods should be done cautiously and with the understanding that the
parameter names may change in the future.

Support Policy

For all Laravel releases, bug fixes are provided for 18 months and security fixes are provided for 2 years. For
all additional libraries, including Lumen, only the latest major release receives bug fixes. In addition, please
review the database versions supported by Laravel.

| Version | PHP (*) | Release | Bug Fixes Until | Security Fixes Until | | - | == | --- | - | --- || 8 | 7.3 - 8.1 |
September 8th, 2020 | July 26th, 2022 | January 24th, 2023 | | 9| 8.0 - 8.2 | February 8th, 2022 | August 8th,
2023 | February 6th, 2024 || 10 | 8.1 - 8.3 | February 14th, 2023 | August 6th, 2024 | February 4th, 2025 | | 11 |
8.2 - 8.3 | March 12th, 2024 | August 5th, 2025 | February 3rd, 2026 |

End of life

Security fixes only

(*) Supported PHP versions

Laravel 10

As you may know, Laravel transitioned to yearly releases with the release of Laravel 8. Previously, major
versions were released every 6 months. This transition is intended to ease the maintenance burden on the
community and challenge our development team to ship amazing, powerful new features without introducing
breaking changes. Therefore, we have shipped a variety of robust features to Laravel 9 without breaking
backwards compatibility.

Therefore, this commitment to ship great new features during the current release will likely lead to future
"major" releases being primarily used for "maintenance" tasks such as upgrading upstream dependencies,
which can be seen in these release notes.

Laravel 10 continues the improvements made in Laravel 9.x by introducing argument and return types to all
application skeleton methods, as well as all stub files used to generate classes throughout the framework. In
addition, a new, developer-friendly abstraction layer has been introduced for starting and interacting with
external processes. Further, Laravel Pennant has been introduced to provide a wonderful approach to managing
your application's "feature flags".

https://semver.org
https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments

Laravel Documentation - 10.x / Prologue

PHP 8.1

Laravel 10.x requires a minimum PHP version of 8.1.
Types

Application skeleton and stub type-hints were contributed by Nuno Maduro.

On its initial release, Laravel utilized all of the type-hinting features available in PHP at the time. However,
many new features have been added to PHP in the subsequent years, including additional primitive type-hints,
return types, and union types.

Laravel 10.x thoroughly updates the application skeleton and all stubs utilized by the framework to introduce
argument and return types to all method signatures. In addition, extraneous "doc block" type-hint information
has been deleted.

This change is entirely backwards compatible with existing applications. Therefore, existing applications that
do not have these type-hints will continue to function normally.

Laravel Pennant

Laravel Pennant was developed by Tim MacDonald.

A new first-party package, Laravel Pennant, has been released. Laravel Pennant offers a light-weight,
streamlined approach to managing your application's feature flags. Out of the box, Pennant includes an in-
memory array driver and a database driver for persistent feature storage.

Features can be easily defined via the Feature: :define method:

use Laravel\Pennant\Feature;
use Illuminate\Support\Lottery;

Feature::define('new-onboarding-flow', function () {

return Lottery::odds(1, 10);
1)

Once a feature has been defined, you may easily determine if the current user has access to the given feature:

if (Feature::active('new-onboarding-flow')) {
/7 ...
}

Of course, for convenience, Blade directives are also available:

@feature('new-onboarding-flow')
<div>
<l-- L -->
</div>
@endfeature

Pennant offers a variety of more advanced features and APIs. For more information, please consult the
comprehensive Pennant documentation.

Process Interaction

The process abstraction layer was contributed by Nuno Maduro and Taylor Otwell.

Laravel 10.x introduces a beautiful abstraction layer for starting and interacting with external processes via a
new Process facade:

use Illuminate\Support\Facades\Process;
$result = Process::run('ls -la');

return $result->output();

https://github.com/nunomaduro
https://github.com/timacdonald
https://github.com/nunomaduro
https://github.com/taylorotwell

Laravel Documentation - 10.x / Prologue

Processes may even be started in pools, allowing for the convenient execution and management of concurrent
processes:

use Illuminate\Process\Pool;
use Illuminate\Support\Facades\Process;

[$first, $second, $third] = Process::concurrently(function (Pool $pool) {
$pool->command('cat first.txt');
$pool->command('cat second.txt');
$pool->command('cat third.txt');

i

return $first->output();

In addition, processes may be faked for convenient testing:
Process: :fake();
/7.

Process::assertRan('ls -la');

For more information on interacting with processes, please consult the comprehensive process documentation.
Test Profiling

Test profiling was contributed by Nuno Maduro.

The Artisan test command has received a new --profile option that allows you to easily identify the slowest
tests in your application:

php artisan test --profile

For convenience, the slowest tests will be displayed directly within the CLI output:

nunomaduro@nunomaduro:~/Work/code/laravel

LN Tests\Feature\UpdateTeamNameTest
v

1 skipped, 43 passed
10.02s

Tests\Unit\ExampleTest
Tests\Feature\BrowserSessionsTest
Tests\Feature\ApiTokenPermissionsTest
Tests\Feature\PasswordConfirmationTest
Tests\Feature\AuthenticationTest
Tests\Feature\UpdatePasswordTest
Tests\Feature\UpdatePasswordTest
Tests\Feature\DeleteAccountTest
Tests\Feature\UpdatePasswordTest
Tests\Feature\DeleteAccountTest

(SIS SIS I S SIS

Pest Scaffolding

https://github.com/nunomaduro

Laravel Documentation - 10.x / Prologue

New Laravel projects may now be created with Pest test scaffolding by default. To opt-in to this feature,
provide the --pest flag when creating a new application via the Laravel installer:

laravel new example-application --pest

Generator CLI Prompts

Generator CLI prompts were contributed by Jess Archer.

To improve the framework's developer experience, all of Laravel's built-in make commands no longer require
any input. If the commands are invoked without input, you will be prompted for the required arguments:

php artisan make:controller

Horizon / Telescope Facelift

Horizon and Telescope have been updated with a fresh, modern look including improved typography, spacing,
and design:

https://github.com/jessarcher

Laravel Documentation - 10.x / Prologue

Not Secure — laravel.test

O Laravel Horizon - Laravel &

s

o8 Dashboard Overview

Q Monitoring

R Jobs Per Minute Jobs Past Hour Failed Jobs Past 7 Days Status

o1l Metrics
246 1,100 0 © Active

= Batches

@ Pending Jobs Total Processes Max Wait Time Max Runtime Max Throughput

Completed 2 2 default default
()
Jobs

N\ Silenced Jobs
Current Workload

© Failed Jobs
Queue Jobs Processes Wait
default 200 2 A few seconds
nunomadurohome-xaZQ (©)
Supervisor Queues Processes Balancing
supervisor-1 default 2 Auto

10

Laravel Documentation - 10.x / Upgrade Guide

Prologue

Upgrade Guide

e Upgrading to 10.0 from 9.x

High Impact Changes

o Updating Dependencies
e Updating Minimum Stabilit

Medium Impact Changes

Database Expressions
Model "Dates" Property
Monolog 3

Redis Cache Tags
Service Mocking

The Language Directory

Low Impact Changes

Closure Validation Rule Messages
Form Request after Method
Public Path Binding

Query Exception Constructor

Rate Limiter Return Values
The Redirect: :home_ Method
The Bus: : dispatchNow Method
The registerpolicies Method
ULID Columns

Upgrading to 10.0 from 9.x
Estimated Upgrade Time: 10 Minutes
[!NOTE]
We attempt to document every possible breaking change. Since some of these breaking changes are in

obscure parts of the framework only a portion of these changes may actually affect your application. Want
to save time? You can use Laravel Shift to help automate your application upgrades.

Updating Dependencies

Likelihood Of Impact: High

PHP 8.1.0 Required

Laravel now requires PHP 8.1.0 or greater.
Composer 2.2.0 Required

Laravel now requires Composer 2.2.0 or greater.
Composer Dependencies

You should update the following dependencies in your application's composer . json file:

https://laravelshift.com/
https://getcomposer.org

Laravel Documentation - 10.x / Upgrade Guide 12

laravel/framework tO 7A10.0
laravel/sanctum tO 73.2

doctrine/dbal to /3.0
spatie/laravel-ignition tO A2.0
laravel/passport to A11.0 (Upgrade Guide)
laravel/ui to 7.0

If you are upgrading to Sanctum 3.x from the 2.x release series, please consult the Sanctum upgrade guide.
Furthermore, if you wish to use PHPUnit 10, you should delete the processuncoveredriles attribute from the
<coverage> section of your application's phpunit.xml configuration file. Then, update the following
dependencies in your application's composer . json file:

® nunomaduro/collision tO A7.0
® phpunit/phpunit t0 710.0

Finally, examine any other third-party packages consumed by your application and verify you are using the
proper version for Laravel 10 support.

Minimum Stability

You should update the minimum-stability setting in your application's composer . json file to stable. Or, since the
default value of minimum-stability is stable, you may delete this setting from your application's composer . json
file:

"minimum-stability": "stable",
Application
Public Path Binding

Likelihood Of Impact: Low

If your application is customizing its "public path" by binding path.public into the container, you should
instead update your code to invoke the usepublicrath method offered by the 111uminate\Foundation\Application
object:

app()->usePublicPath(__DIR__.'/public');
Authorization

The registerPolicies Method

Likelihood Of Impact: Low

The registerpolicies method of the Authserviceprovider is now invoked automatically by the framework.
Therefore, you may remove the call to this method from the boot method of your application's
AuthServiceProvider.

Cache
Redis Cache Tags

Likelihood Of Impact: Medium

Usage of cache: :tags() is only recommended for applications using Memcached. If you are using Redis as your
application's cache driver, you should consider moving to Memcached or using an alternative solution.

Database

https://github.com/laravel/passport/blob/11.x/UPGRADE.md
https://github.com/laravel/sanctum/blob/3.x/UPGRADE.md
https://phpunit.de/announcements/phpunit-10.html

Laravel Documentation - 10.x / Upgrade Guide 13

Database Expressions

Likelihood Of Impact: Medium

Database "expressions" (typically generated via bB: : raw) have been rewritten in Laravel 10.x to offer additional
functionality in the future. Notably, the grammar's raw string value must now be retrieved via the expression's
getvalue(Grammar $grammar) method. Casting an expression to a string using (string) is no longer supported.

Typically, this does not affect end-user applications; however, if your application is manually casting
database expressions to strings using (string) or invoking the _ tostring method on the expression directly,
you should update your code to invoke the getvalue method instead:

use Illuminate\Support\Facades\DB;
$expression = DB::raw('select 1');

$string = $expression->getValue(DB: :connection()->getQueryGrammar());
Query Exception Constructor

Likelihood Of Impact: Very Low

The 11luminate\Database\QueryException constructor now accepts a string connection name as its first
argument. If your application is manually throwing this exception, you should adjust your code accordingly.

ULID Columns

Likelihood Of Impact: Low

When migrations invoke the ulid method without any arguments, the column will now be named ulid. In
previous releases of Laravel, invoking this method without any arguments created a column erroneously named
uuid:

$table->ulid();

To explicitly specify a column name when invoking the u1id method, you may pass the column name to the
method:

$table->ulid('ulid');
Eloquent
Model "Dates" Property

Likelihood Of Impact: Medium

The Eloquent model's deprecated $dates property has been removed. Your application should now use the
$casts property:

protected $casts = [
'deployed_at' => 'datetime',

1;
Localization
The Language Directory

Likelihood Of Impact: None

Though not relevant to existing applications, the Laravel application skeleton no longer contains the 1ang
directory by default. Instead, when writing new Laravel applications, it may be published using the
lang:publish Artisan command:

Laravel Documentation - 10.x / Upgrade Guide 14

php artisan lang:publish

Logging
Monolog 3

Likelihood Of Impact: Medium

Laravel's Monolog dependency has been updated to Monolog 3.x. If you are directly interacting with Monolog
within your application, you should review Monolog's upgrade guide.

If you are using third-party logging services such as BugSnag or Rollbar, you may need to upgrade those third-
party packages to a version that supports Monolog 3.x and Laravel 10.x.

Queues
The Bus: :dispatchNow Method

Likelihood Of Impact: Low

The deprecated Bus: :dispatchNow and dispatch_now methods have been removed. Instead, your application
should use the Bus: :dispatchsync and dispatch_sync methods, respectively.

The dispatch() Helper Return Value

Likelihood Of Impact: Low
Invoking dispatch with a class that does not implement 111uminate\cContracts\Queue would previously return the

result of the class's hand1le method. However, this will now return an 111uminate\Foundation\Bus\PendingBatch
instance. You may use dispatch_sync() to replicate the previous behavior.

Routing
Middleware Aliases

Likelihood Of Impact: Optional

In new Laravel applications, the sroutemiddleware property of the App\Http\kernel class has been renamed to
$middlewareAliases to better reflect its purpose. You are welcome to rename this property in your existing
applications; however, it is not required.

Rate Limiter Return Values

Likelihood Of Impact: Low

When invoking the RateLimiter: :attempt method, the value returned by the provided closure will now be
returned by the method. If nothing or nul1 is returned, the attempt method will return true:

$value = RateLimiter::attempt('key', 10, fn () => ['example'], 1);

$value; // ['example']
The Redirect: :home Method

Likelihood Of Impact: Very Low

The deprecated Redirect: :home method has been removed. Instead, your application should redirect to an
explicitly named route:

return Redirect::route('home');

https://github.com/Seldaek/monolog/blob/main/UPGRADE.md

Laravel Documentation - 10.x / Upgrade Guide 15

Testing
Service Mocking

Likelihood Of Impact: Medium

The deprecated MocksApplicationServices trait has been removed from the framework. This trait provided
testing methods such as expectsEvents, expectsJobs, and expectsNotifications

If your application uses these methods, we recommend you transition to Event: : fake, Bus: : fake, and
Notification::fake, respectively. You can learn more about mocking via fakes in the corresponding
documentation for the component you are attempting to fake.

Validation
Closure Validation Rule Messages

Likelihood Of Impact: Very Low

When writing closure based custom validation rules, invoking the $fail callback more than once will now
append the messages to an array instead of overwriting the previous message. Typically, this will not affect
your application.

In addition, the $fail callback now returns an object. If you were previously type-hinting the return type of
your validation closure, this may require you to update your type-hint:

public function rules()

{
'name' => [
function ($attribute, $value, $fail) {
$fail('validation.translation.key')->translate();
}l
]l
}

Validation Messages and Closure Rules

Likelihood Of Impact: Very Low

Previously, you could assign a failure message to a different key by providing an array to the $fail callback
injected into Closure based validation rules. However, you should now provide the key as the first argument
and the failure message as the second argument:

Validator: :make([
'foo' => 'string',
'bar' => [function ($attribute, $value, $fail) {
$fail('foo', 'Something went wrong!');
Bp
1)

Form Request After Method

Likelihood Of Impact: Very Low

Within form requests, the after method is now reserved by Laravel. If your form requests define an after
method, the method should be renamed or modified to utilize the new "after validation" feature of Laravel's
form requests.

Miscellaneous

We also encourage you to view the changes in the 1aravel/laravel GitHub repository. While many of these
changes are not required, you may wish to keep these files in sync with your application. Some of these
changes will be covered in this upgrade guide, but others, such as changes to configuration files or comments,

https://github.com/laravel/framework/pull/46757
https://github.com/laravel/laravel

Laravel Documentation - 10.x / Upgrade Guide

will not be.

You can easily view the changes with the GitHub comparison tool and choose which updates are important to
you. However, many of the changes shown by the GitHub comparison tool are due to our organization's
adoption of PHP native types. These changes are backwards compatible and the adoption of them during the
migration to Laravel 10 is optional.

16

https://github.com/laravel/laravel/compare/9.x...10.x

Laravel Documentation - 10.x / Contribution Guide 17

Prologue

Contribution Guide

Bug Reports
Support Questions

Core Development Discussion
Which Branch?

Compiled Assets
Security Vulnerabilities

Coding Style
o PHPDoc

o StyleCI
e Code of Conduct

Bug Reports

To encourage active collaboration, Laravel strongly encourages pull requests, not just bug reports. Pull requests
will only be reviewed when marked as "ready for review" (not in the "draft" state) and all tests for new features
are passing. Lingering, non-active pull requests left in the "draft" state will be closed after a few days.

However, if you file a bug report, your issue should contain a title and a clear description of the issue. You
should also include as much relevant information as possible and a code sample that demonstrates the issue.
The goal of a bug report is to make it easy for yourself - and others - to replicate the bug and develop a fix.

Remember, bug reports are created in the hope that others with the same problem will be able to collaborate
with you on solving it. Do not expect that the bug report will automatically see any activity or that others will
jump to fix it. Creating a bug report serves to help yourself and others start on the path of fixing the problem. If
you want to chip in, you can help out by fixing any bugs listed in our issue trackers. You must be authenticated
with GitHub to view all of Laravel's issues.

If you notice improper DocBlock, PHPStan, or IDE warnings while using Laravel, do not create a GitHub
issue. Instead, please submit a pull request to fix the problem.

The Laravel source code is managed on GitHub, and there are repositories for each of the Laravel projects:

Laravel Application
Laravel Art

Laravel Documentation
Laravel Dusk

Laravel Cashier Stripe
Laravel Cashier Paddle
Laravel Echo

Laravel Envoy

Laravel Folio

Laravel Framework
Laravel Homestead
Laravel Homestead Build Scripts
Laravel Horizon
Laravel Jetstream
Laravel Passport
Laravel Pennant
Laravel Pint

Laravel Prompts
Laravel Sail

Laravel Sanctum
Laravel Scout

Laravel Socialite
Laravel Telescope
Laravel Website

https://github.com/issues?q=is%3Aopen+is%3Aissue+label%3Abug+user%3Alaravel
https://github.com/laravel/laravel
https://github.com/laravel/art
https://github.com/laravel/docs
https://github.com/laravel/dusk
https://github.com/laravel/cashier
https://github.com/laravel/cashier-paddle
https://github.com/laravel/echo
https://github.com/laravel/envoy
https://github.com/laravel/folio
https://github.com/laravel/framework
https://github.com/laravel/homestead
https://github.com/laravel/settler
https://github.com/laravel/horizon
https://github.com/laravel/jetstream
https://github.com/laravel/passport
https://github.com/laravel/pennant
https://github.com/laravel/pint
https://github.com/laravel/prompts
https://github.com/laravel/sail
https://github.com/laravel/sanctum
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/telescope
https://github.com/laravel/laravel.com-next

Laravel Documentation - 10.x / Contribution Guide 18

Support Questions

Laravel's GitHub issue trackers are not intended to provide Laravel help or support. Instead, use one of the
following channels:

GitHub Discussions
Laracasts Forums
Laravel.io Forums
StackOverflow
Discord

Larachat

IRC

Core Development Discussion

You may propose new features or improvements of existing Laravel behavior in the Laravel framework
repository's GitHub discussion board. If you propose a new feature, please be willing to implement at least
some of the code that would be needed to complete the feature.

Informal discussion regarding bugs, new features, and implementation of existing features takes place in the
#internals channel of the Laravel Discord server. Taylor Otwell, the maintainer of Laravel, is typically present
in the channel on weekdays from 8am-5pm (UTC-06:00 or America/Chicago), and sporadically present in the
channel at other times.

Which Branch?

All bug fixes should be sent to the latest version that supports bug fixes (currently 10.x). Bug fixes should
never be sent to the master branch unless they fix features that exist only in the upcoming release.

Minor features that are fully backward compatible with the current release may be sent to the latest stable
branch (currently 10.x).

Major new features or features with breaking changes should always be sent to the master branch, which
contains the upcoming release.

Compiled Assets

If you are submitting a change that will affect a compiled file, such as most of the files in resources/css or
resources/js of the laravel/laravel repository, do not commit the compiled files. Due to their large size, they
cannot realistically be reviewed by a maintainer. This could be exploited as a way to inject malicious code into
Laravel. In order to defensively prevent this, all compiled files will be generated and committed by Laravel
maintainers.

Security Vulnerabilities

If you discover a security vulnerability within Laravel, please send an email to Taylor Otwell at
taylor@laravel.com. All security vulnerabilities will be promptly addressed.

Coding Style
Laravel follows the PSR-2 coding standard and the PSR-4 autoloading standard.
PHPDoc

Below is an example of a valid Laravel documentation block. Note that the @paran attribute is followed by two
spaces, the argument type, two more spaces, and finally the variable name:

https://github.com/laravel/framework/discussions
https://laracasts.com/discuss
https://laravel.io/forum
https://stackoverflow.com/questions/tagged/laravel
https://discord.gg/laravel
https://larachat.co
https://web.libera.chat/?nick=artisan&channels=#laravel
https://github.com/laravel/framework/discussions
https://discord.gg/laravel
mailto:taylor@laravel.com
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Laravel Documentation - 10.x / Contribution Guide 19

/**
* Register a binding with the container.
*
* @param string|array $abstract
* @param \Closure|string|null $concrete
* @param bool $shared
* @return void
*
* @throws \Exception
*/
public function bind($abstract, $concrete = null, $shared = false)
{
// ..
}

When the @param or @return attributes are redundant due to the use of native types, they can be removed:

/**
* Execute the job.
*/
public function handle(AudioProcessor $processor): void

{
}

//

However, when the native type is generic, please specify the generic type through the use of the @param or
@return attributes:

/**
* Get the attachments for the message.

*

* @return array<int, \Illuminate\Mail\Mailables\Attachment>

*/

public function attachments(): array

{
return [

Attachment::fromStorage('/path/to/file'),

1;

}

StyleCI

Don't worry if your code styling isn't perfect! StyleCI will automatically merge any style fixes into the Laravel
repository after pull requests are merged. This allows us to focus on the content of the contribution and not the
code style.

Code of Conduct

The Laravel code of conduct is derived from the Ruby code of conduct. Any violations of the code of conduct
may be reported to Taylor Otwell (taylor@laravel.com):

Participants will be tolerant of opposing views.

Participants must ensure that their language and actions are free of personal attacks and disparaging
personal remarks.

When interpreting the words and actions of others, participants should always assume good intentions.
Behavior that can be reasonably considered harassment will not be tolerated.

https://styleci.io/

Laravel Documentation - 10.x / Getting Started 20

Getting Started

Installation

e Meet Laravel
o Why Laravel?
o Creating a Laravel Project
Initial Configuration
o Environment Based Configuration
o Databases and Migrations
o Directory Configuration

e Docker Installation Using Sail
o Sail on macOS

o Sail on Windows

o Sail on Linux

o Choosing Your Sail Services
e IDE Support

Next Steps
o Laravel the Full Stack Framework

o Laravel the API Backend

Meet Laravel

Laravel is a web application framework with expressive, elegant syntax. A web framework provides a structure
and starting point for creating your application, allowing you to focus on creating something amazing while we
sweat the details.

Laravel strives to provide an amazing developer experience while providing powerful features such as thorough
dependency injection, an expressive database abstraction layer, queues and scheduled jobs, unit and integration
testing, and more.

Whether you are new to PHP web frameworks or have years of experience, Laravel is a framework that can
grow with you. We'll help you take your first steps as a web developer or give you a boost as you take your
expertise to the next level. We can't wait to see what you build.

['NOTE]
New to Laravel? Check out the Laravel Bootcamp for a hands-on tour of the framework while we walk
you through building your first Laravel application.

Why Laravel?

There are a variety of tools and frameworks available to you when building a web application. However, we
believe Laravel is the best choice for building modern, full-stack web applications.

A Progressive Framework

We like to call Laravel a "progressive" framework. By that, we mean that Laravel grows with you. If you're just
taking your first steps into web development, Laravel's vast library of documentation, guides, and video
tutorials will help you learn the ropes without becoming overwhelmed.

If you're a senior developer, Laravel gives you robust tools for dependency injection, unit testing, queues, real-
time events, and more. Laravel is fine-tuned for building professional web applications and ready to handle
enterprise work loads.

A Scalable Framework

Laravel is incredibly scalable. Thanks to the scaling-friendly nature of PHP and Laravel's built-in support for
fast, distributed cache systems like Redis, horizontal scaling with Laravel is a breeze. In fact, Laravel
applications have been easily scaled to handle hundreds of millions of requests per month.

https://bootcamp.laravel.com
https://laracasts.com

Laravel Documentation - 10.x / Getting Started 21

Need extreme scaling? Platforms like Laravel Vapor allow you to run your Laravel application at nearly
limitless scale on AWS's latest serverless technology.

A Community Framework

Laravel combines the best packages in the PHP ecosystem to offer the most robust and developer friendly
framework available. In addition, thousands of talented developers from around the world have contributed to
the framework. Who knows, maybe you'll even become a Laravel contributor.

Creating a Laravel Project

Before creating your first Laravel project, make sure that your local machine has PHP and Composer installed.
If you are developing on macOS, PHP and Composer can be installed in minutes via Laravel Herd. In addition,
we recommend installing Node and NPM.

After you have installed PHP and Composer, you may create a new Laravel project via Composer's create-
project command:

composer create-project laravel/laravel:/ 10.0 example-app

Or, you may create new Laravel projects by globally installing the Laravel installer via Composer:
composer global require laravel/installer

laravel new example-app

Once the project has been created, start Laravel's local development server using Laravel Artisan's serve
command:

cd example-app

php artisan serve

Once you have started the Artisan development server, your application will be accessible in your web browser

at http://localhost:8000. Next, you're ready to start taking your next steps into the Laravel ecosystem. Of course,
you may also want to configure a database.

[INOTE]

If you would like a head start when developing your Laravel application, consider using one of our starter
kits. Laravel's starter kits provide backend and frontend authentication scaffolding for your new Laravel
application.

Initial Configuration

All of the configuration files for the Laravel framework are stored in the config directory. Each option is
documented, so feel free to look through the files and get familiar with the options available to you.

Laravel needs almost no additional configuration out of the box. You are free to get started developing!
However, you may wish to review the config/app.php file and its documentation. It contains several options
such as timezone and locale that you may wish to change according to your application.

Environment Based Configuration

Since many of Laravel's configuration option values may vary depending on whether your application is
running on your local machine or on a production web server, many important configuration values are defined
using the .env file that exists at the root of your application.

Your .env file should not be committed to your application's source control, since each developer / server using
your application could require a different environment configuration. Furthermore, this would be a security risk
in the event an intruder gains access to your source control repository, since any sensitive credentials would get
exposed.

https://vapor.laravel.com
https://github.com/laravel/framework
https://getcomposer.org
https://herd.laravel.com
https://nodejs.org
https://github.com/laravel/installer
http://localhost:8000

Laravel Documentation - 10.x / Getting Started 22

['NOTE]
For more information about the .env file and environment based configuration, check out the full
configuration documentation.

Databases and Migrations

Now that you have created your Laravel application, you probably want to store some data in a database. By
default, your application's .env configuration file specifies that Laravel will be interacting with a MySQL
database and will access the database at 127.0.0.1.

['NOTE]
If you are developing on macOS and need to install MySQL, Postgres, or Redis locally, consider using
DBngin.

If you do not want to install MySQL or Postgres on your local machine, you can always use a SQLite database.
SQLite is a small, fast, self-contained database engine. To get started, update your .env configuration file to use
Laravel's sqlite database driver. You may remove the other database configuration options:

DB_CONNECTION=sqlite # [t1l! add]
DB_CONNECTION=mysql # [tl! remove]
DB_HOST=127.0.0.1 # [t1l! remove]
DB_PORT=3306 # [tl! remove]
DB_DATABASE=laravel # [tl! remove]
DB_USERNAME=root # [tl! remove]
DB_PASSWORD= # [tl! remove]

Once you have configured your SQLite database, you may run your application's database migrations, which
will create your application's database tables:

php artisan migrate

If an SQLite database does not exist for your application, Laravel will ask you if you would like the database to
be created. Typically, the SQLite database file will be created at database/database.sqlite.

Directory Configuration

Laravel should always be served out of the root of the "web directory" configured for your web server. You
should not attempt to serve a Laravel application out of a subdirectory of the "web directory". Attempting to do
so could expose sensitive files present within your application.

Docker Installation Using Sail

We want it to be as easy as possible to get started with Laravel regardless of your preferred operating system.
So, there are a variety of options for developing and running a Laravel project on your local machine. While
you may wish to explore these options at a later time, Laravel provides Sail, a built-in solution for running your
Laravel project using Docker.

Docker is a tool for running applications and services in small, light-weight "containers" which do not interfere
with your local machine's installed software or configuration. This means you don't have to worry about
configuring or setting up complicated development tools such as web servers and databases on your local
machine. To get started, you only need to install Docker Desktop.

Laravel Sail is a light-weight command-line interface for interacting with Laravel's default Docker
configuration. Sail provides a great starting point for building a Laravel application using PHP, MySQL, and
Redis without requiring prior Docker experience.

[INOTE]
Already a Docker expert? Don't worry! Everything about Sail can be customized using the docker -
compose.yml file included with Laravel.

Sail on macOS

https://dbngin.com/
https://www.sqlite.org/index.html
https://www.docker.com
https://www.docker.com/products/docker-desktop

Laravel Documentation - 10.x / Getting Started 23

If you're developing on a Mac and Docker Desktop is already installed, you can use a simple terminal
command to create a new Laravel project. For example, to create a new Laravel application in a directory
named "example-app", you may run the following command in your terminal:

curl -s "https://laravel.build/example-app" | bash

Of course, you can change "example-app" in this URL to anything you like - just make sure the application
name only contains alpha-numeric characters, dashes, and underscores. The Laravel application's directory will
be created within the directory you execute the command from.

Sail installation may take several minutes while Sail's application containers are built on your local machine.

After the project has been created, you can navigate to the application directory and start Laravel Sail. Laravel
Sail provides a simple command-line interface for interacting with Laravel's default Docker configuration:

cd example-app

./vendor/bin/sail up

Once the application's Docker containers have been started, you can access the application in your web browser
at: http://localhost.

['NOTE]
To continue learning more about Laravel Sail, review its complete documentation.

Sail on Windows

Before we create a new Laravel application on your Windows machine, make sure to install Docker Desktop.
Next, you should ensure that Windows Subsystem for Linux 2 (WSL2) is installed and enabled. WSL allows
you to run Linux binary executables natively on Windows 10. Information on how to install and enable WSL2
can be found within Microsoft's developer environment documentation.

[INOTE]
After installing and enabling WSL2, you should ensure that Docker Desktop is configured to use the
WSL2 backend.

Next, you are ready to create your first Laravel project. Launch Windows Terminal and begin a new terminal
session for your WSL2 Linux operating system. Next, you can use a simple terminal command to create a new
Laravel project. For example, to create a new Laravel application in a directory named "example-app", you may
run the following command in your terminal:

curl -s https://laravel.build/example-app | bash

Of course, you can change "example-app" in this URL to anything you like - just make sure the application
name only contains alpha-numeric characters, dashes, and underscores. The Laravel application's directory will
be created within the directory you execute the command from.

Sail installation may take several minutes while Sail's application containers are built on your local machine.

After the project has been created, you can navigate to the application directory and start Laravel Sail. Laravel
Sail provides a simple command-line interface for interacting with Laravel's default Docker configuration:

cd example-app

./vendor/bin/sail up

Once the application's Docker containers have been started, you can access the application in your web browser
at: http://localhost.

['NOTE]
To continue learning more about Laravel Sail, review its complete documentation.

Developing Within WSL.2

https://www.docker.com/products/docker-desktop
http://localhost
https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.docker.com/docker-for-windows/wsl/
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?rtc=1&activetab=pivot:overviewtab
http://localhost

Laravel Documentation - 10.x / Getting Started 24

Of course, you will need to be able to modify the Laravel application files that were created within your WSL2
installation. To accomplish this, we recommend using Microsoft's Visual Studio Code editor and their first-
party extension for Remote Development.

Once these tools are installed, you may open any Laravel project by executing the code . command from your
application's root directory using Windows Terminal.

Sail on Linux

If you're developing on Linux and Docker Compose is already installed, you can use a simple terminal
command to create a new Laravel project.

First, if you are using Docker Desktop for Linux, you should execute the following command. If you are not
using Docker Desktop for Linux, you may skip this step:

docker context use default

Then, to create a new Laravel application in a directory named "example-app", you may run the following
command in your terminal:

curl -s https://laravel.build/example-app | bash

Of course, you can change "example-app" in this URL to anything you like - just make sure the application
name only contains alpha-numeric characters, dashes, and underscores. The Laravel application's directory will
be created within the directory you execute the command from.

Sail installation may take several minutes while Sail's application containers are built on your local machine.

After the project has been created, you can navigate to the application directory and start Laravel Sail. Laravel
Sail provides a simple command-line interface for interacting with Laravel's default Docker configuration:

cd example-app

./vendor/bin/sail up

Once the application's Docker containers have been started, you can access the application in your web browser
at: http://localhost.

[INOTE]
To continue learning more about Laravel Sail, review its complete documentation.

Choosing Your Sail Services

When creating a new Laravel application via Sail, you may use the with query string variable to choose which
services should be configured in your new application's docker -compose.ym1 file. Available services include
mysql,pgsql,mariadb,redis,memcached,meilisearch,typesense,minio,selenium,and mailpit:

curl -s "https://laravel.build/example-app?with=mysql, redis" | bash

If you do not specify which services you would like configured, a default stack of mysq1, redis, meilisearch,
mailpit, and selenium will be configured.

You may instruct Sail to install a default Devcontainer by adding the devcontainer parameter to the URL:

curl -s "https://laravel.build/example-app?with=mysql, redis&devcontainer" | bash

IDE Support

You are free to use any code editor you wish when developing Laravel applications; however, PhpStorm offers
extensive support for Laravel and its ecosystem, including Laravel Pint.

In addition, the community maintained Laravel Idea PhpStorm plugin offers a variety of helpful IDE
augmentations, including code generation, Eloquent syntax completion, validation rule completion, and more.

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://docs.docker.com/compose/install/
http://localhost
https://www.jetbrains.com/phpstorm/laravel/
https://www.jetbrains.com/help/phpstorm/using-laravel-pint.html
https://laravel-idea.com/

Laravel Documentation - 10.x / Getting Started 25

Next Steps

Now that you have created your Laravel project, you may be wondering what to learn next. First, we strongly
recommend becoming familiar with how Laravel works by reading the following documentation:

Request Lifecycle
Configuration
Directory Structure
Frontend

Service Container
Facades

How you want to use Laravel will also dictate the next steps on your journey. There are a variety of ways to use
Laravel, and we'll explore two primary use cases for the framework below.

['NOTE]
New to Laravel? Check out the Laravel Bootcamp for a hands-on tour of the framework while we walk
you through building your first Laravel application.

Laravel the Full Stack Framework

Laravel may serve as a full stack framework. By "full stack" framework we mean that you are going to use
Laravel to route requests to your application and render your frontend via Blade templates or a single-page
application hybrid technology like Inertia. This is the most common way to use the Laravel framework, and, in
our opinion, the most productive way to use Laravel.

If this is how you plan to use Laravel, you may want to check out our documentation on frontend development,
routing, views, or the Eloquent ORM. In addition, you might be interested in learning about community
packages like Livewire and Inertia. These packages allow you to use Laravel as a full-stack framework while
enjoying many of the Ul benefits provided by single-page JavaScript applications.

If you are using Laravel as a full stack framework, we also strongly encourage you to learn how to compile
your application's CSS and JavaScript using Vite.

[INOTE]
If you want to get a head start building your application, check out one of our official application starter
kits.

Laravel the API Backend

Laravel may also serve as an API backend to a JavaScript single-page application or mobile application. For
example, you might use Laravel as an API backend for your Next.js application. In this context, you may use
Laravel to provide authentication and data storage / retrieval for your application, while also taking advantage
of Laravel's powerful services such as queues, emails, notifications, and more.

If this is how you plan to use Laravel, you may want to check out our documentation on routing, Laravel
Sanctum, and the Eloguent ORM.

[INOTE]
Need a head start scaffolding your Laravel backend and Next.js frontend? Laravel Breeze offers an API
stack as well as a Next.js frontend implementation so you can get started in minutes.

https://bootcamp.laravel.com
https://inertiajs.com
https://livewire.laravel.com
https://inertiajs.com
https://nextjs.org
https://github.com/laravel/breeze-next

Laravel Documentation - 10.x / Configuration 26

Getting Started

Configuration

e Introduction
e Environment Configuration
o Environment Variable Types
o Retrieving Environment Configuration
o Determining the Current Environment
o Encrypting Environment Files
Accessing Configuration Values
Configuration Caching

Debug Mode
Maintenance Mode

Introduction

All of the configuration files for the Laravel framework are stored in the config directory. Each option is
documented, so feel free to look through the files and get familiar with the options available to you.

These configuration files allow you to configure things like your database connection information, your mail
server information, as well as various other core configuration values such as your application timezone and
encryption key.

Application Overview
In a hurry? You can get a quick overview of your application's configuration, drivers, and environment via the

about Artisan command:

php artisan about

If you're only interested in a particular section of the application overview output, you may filter for that
section using the --only option:

php artisan about --only=environment

Or, to explore a specific configuration file's values in detail, you may use the config:show Artisan command:

php artisan config:show database

Environment Configuration

It is often helpful to have different configuration values based on the environment where the application is
running. For example, you may wish to use a different cache driver locally than you do on your production
server.

To make this a cinch, Laravel utilizes the DotEnv PHP library. In a fresh Laravel installation, the root directory
of your application will contain a .env.example file that defines many common environment variables. During
the Laravel installation process, this file will automatically be copied to .env.

Laravel's default .env file contains some common configuration values that may differ based on whether your
application is running locally or on a production web server. These values are then retrieved from various
Laravel configuration files within the config directory using Laravel's env function.

If you are developing with a team, you may wish to continue including a .env.example file with your
application. By putting placeholder values in the example configuration file, other developers on your team can
clearly see which environment variables are needed to run your application.

['NOTE]
Any variable in your .env file can be overridden by external environment variables such as server-level or

https://github.com/vlucas/phpdotenv

Laravel Documentation - 10.x / Configuration 27

system-level environment variables.
Environment File Security

Your .env file should not be committed to your application's source control, since each developer / server using
your application could require a different environment configuration. Furthermore, this would be a security risk
in the event an intruder gains access to your source control repository, since any sensitive credentials would get
exposed.

However, it is possible to encrypt your environment file using Laravel's built-in environment encryption.
Encrypted environment files may be placed in source control safely.

Additional Environment Files
Before loading your application's environment variables, Laravel determines if an APp_gnv environment variable

has been externally provided or if the --env CLI argument has been specified. If so, Laravel will attempt to load
an .env. [APP_ENV] file if it exists. If it does not exist, the default .env file will be loaded.

Environment Variable Types

All variables in your .env files are typically parsed as strings, so some reserved values have been created to
allow you to return a wider range of types from the env() function:

.env Value env() Value

true (bool) true
(true) (bool) true
false (bool) false

(false) (bool) false
empty (string) "

(empty) (string) "
null (null) null
(null) (null) null

If you need to define an environment variable with a value that contains spaces, you may do so by enclosing the
value in double quotes:

APP_NAME="My Application"
Retrieving Environment Configuration

All of the variables listed in the .env file will be loaded into the $_env PHP super-global when your application
receives a request. However, you may use the env function to retrieve values from these variables in your
configuration files. In fact, if you review the Laravel configuration files, you will notice many of the options
are already using this function:

'debug' => env('APP_DEBUG', false),

The second value passed to the env function is the "default value". This value will be returned if no
environment variable exists for the given key.

Determining the Current Environment

The current application environment is determined via the App_gnv variable from your .env file. You may access
this value via the environment method on the app facade:

use Illuminate\Support\Facades\App;

$environment = App::environment();

You may also pass arguments to the environment method to determine if the environment matches a given value.

Laravel Documentation - 10.x / Configuration 28

The method will return true if the environment matches any of the given values:

if (App::environment('local')) {
// The environment is local
}

if (App::environment(['local', 'staging'])) {
// The environment is either local OR staging...
}

['NOTE]
The current application environment detection can be overridden by defining a server-level app_Env
environment variable.

Encrypting Environment Files

Unencrypted environment files should never be stored in source control. However, Laravel allows you to
encrypt your environment files so that they may safely be added to source control with the rest of your
application.

Encryption

To encrypt an environment file, you may use the env:encrypt command:

php artisan env:encrypt

Running the env:encrypt command will encrypt your .env file and place the encrypted contents in an
.env.encrypted file. The decryption key is presented in the output of the command and should be stored in a
secure password manager. If you would like to provide your own encryption key you may use the - -key option
when invoking the command:

php artisan env:encrypt --key=3UVSEgGVK36XN82KKeyLFMhvosbZNiaF

[INOTE]

The length of the key provided should match the key length required by the encryption cipher being used.
By default, Laravel will use the Aes-256-cBc cipher which requires a 32 character key. You are free to use
any cipher supported by Laravel's encrypter by passing the - -cipher option when invoking the command.

If your application has multiple environment files, such as .env and .env.staging, you may specify the
environment file that should be encrypted by providing the environment name via the --env option:

php artisan env:encrypt --env=staging
Decryption

To decrypt an environment file, you may use the env:decrypt command. This command requires a decryption
key, which Laravel will retrieve from the LARAVEL_ENV_ENCRYPTION_KEY environment variable:

php artisan env:decrypt

Or, the key may be provided directly to the command via the --key option:

php artisan env:decrypt --key=3UVSEQGVK36XN82KKeyLFMhvosbzZN1aF

When the env:decrypt command is invoked, Laravel will decrypt the contents of the .env.encrypted file and
place the decrypted contents in the .env file.

The --cipher option may be provided to the env:decrypt command in order to use a custom encryption cipher:
php artisan env:decrypt --key=qUWuUNRdAfuImXcKxZ --cipher=AES-128-CBC

If your application has multiple environment files, such as .env and .env.staging, you may specify the
environment file that should be decrypted by providing the environment name via the --env option:

php artisan env:decrypt --env=staging

Laravel Documentation - 10.x / Configuration 29

In order to overwrite an existing environment file, you may provide the - -force option to the env:decrypt
command:

php artisan env:decrypt --force

Accessing Configuration Values

You may easily access your configuration values using the config facade or global config function from
anywhere in your application. The configuration values may be accessed using "dot" syntax, which includes the
name of the file and option you wish to access. A default value may also be specified and will be returned if the
configuration option does not exist:

use Illuminate\Support\Facades\Config;
$value = Config::get('app.timezone');
$value = config('app.timezone');

// Retrieve a default value if the configuration value does not exist...
$value = config('app.timezone', 'Asia/Seoul');

To set configuration values at runtime, you may invoke the config facade's set method or pass an array to the
config function:

Config::set('app.timezone', 'America/Chicago');

config(['app.timezone' => 'America/Chicago']);

Configuration Caching

To give your application a speed boost, you should cache all of your configuration files into a single file using
the config:cache Artisan command. This will combine all of the configuration options for your application into
a single file which can be quickly loaded by the framework.

You should typically run the php artisan config:cache command as part of your production deployment
process. The command should not be run during local development as configuration options will frequently
need to be changed during the course of your application's development.

Once the configuration has been cached, your application's .env file will not be loaded by the framework during
requests or Artisan commands; therefore, the env function will only return external, system level environment
variables.

For this reason, you should ensure you are only calling the env function from within your application's
configuration (config) files. You can see many examples of this by examining Laravel's default configuration
files. Configuration values may be accessed from anywhere in your application using the config function
described above.

The config:clear command may be used to purge the cached configuration:

php artisan config:clear

[!WARNING]

If you execute the config:cache command during your deployment process, you should be sure that you
are only calling the env function from within your configuration files. Once the configuration has been
cached, the .env file will not be loaded; therefore, the env function will only return external, system level
environment variables.

Debug Mode

The debug option in your config/app.php configuration file determines how much information about an error is
actually displayed to the user. By default, this option is set to respect the value of the App_bEBUG environment
variable, which is stored in your .env file.

Laravel Documentation - 10.x / Configuration 30

['WARNING]

For local development, you should set the App_peBUG environment variable to true. In your production
environment, this value should always be false. If the variable is set to true in production, you risk
exposing sensitive configuration values to your application's end users.

Maintenance Mode

When your application is in maintenance mode, a custom view will be displayed for all requests into your
application. This makes it easy to "disable" your application while it is updating or when you are performing
maintenance. A maintenance mode check is included in the default middleware stack for your application. If the
application is in maintenance mode, a Symfony\Component\HttpKernel\Exception\HttpException instance will be
thrown with a status code of 503.

To enable maintenance mode, execute the down Artisan command:

php artisan down

If you would like the rRefresh HTTP header to be sent with all maintenance mode responses, you may provide
the refresh option when invoking the down command. The refresh header will instruct the browser to
automatically refresh the page after the specified number of seconds:

php artisan down --refresh=15

You may also provide a retry option to the down command, which will be set as the rRetry-after HTTP header's
value, although browsers generally ignore this header:

php artisan down --retry=60
Bypassing Maintenance Mode
To allow maintenance mode to be bypassed using a secret token, you may use the secret option to specify a

maintenance mode bypass token:

php artisan down --secret="1630542a-246b-4b66-afal-dd72a4c43515"

After placing the application in maintenance mode, you may navigate to the application URL matching this
token and Laravel will issue a maintenance mode bypass cookie to your browser:

https://example.com/1630542a-246b-4b66-afal-dd72a4c43515

If you would like Laravel to generate the secret token for you, you may use the with-secret option. The secret
will be displayed to you once the application is in maintenance mode:

php artisan down --with-secret

When accessing this hidden route, you will then be redirected to the / route of the application. Once the cookie
has been issued to your browser, you will be able to browse the application normally as if it was not in
maintenance mode.

[INOTE]
Your maintenance mode secret should typically consist of alpha-numeric characters and, optionally,
dashes. You should avoid using characters that have special meaning in URLSs such as = or &.

Pre-Rendering the Maintenance Mode View

If you utilize the php artisan down command during deployment, your users may still occasionally encounter
errors if they access the application while your Composer dependencies or other infrastructure components are
updating. This occurs because a significant part of the Laravel framework must boot in order to determine your
application is in maintenance mode and render the maintenance mode view using the templating engine.

For this reason, Laravel allows you to pre-render a maintenance mode view that will be returned at the very
beginning of the request cycle. This view is rendered before any of your application's dependencies have
loaded. You may pre-render a template of your choice using the down command's render option:

Laravel Documentation - 10.x / Configuration 31

php artisan down --render="errors::503"
Redirecting Maintenance Mode Requests

While in maintenance mode, Laravel will display the maintenance mode view for all application URLs the user
attempts to access. If you wish, you may instruct Laravel to redirect all requests to a specific URL. This may be
accomplished using the redirect option. For example, you may wish to redirect all requests to the 7 URI:

php artisan down --redirect=/
Disabling Maintenance Mode

To disable maintenance mode, use the up command:
php artisan up

[!NOTE]
You may customize the default maintenance mode template by defining your own template at
resources/views/errors/503.blade.php

Maintenance Mode and Queues

While your application is in maintenance mode, no queued jobs will be handled. The jobs will continue to be
handled as normal once the application is out of maintenance mode.

Alternatives to Maintenance Mode

Since maintenance mode requires your application to have several seconds of downtime, consider alternatives
like Laravel Vapor and Envoyer to accomplish zero-downtime deployment with Laravel.

https://vapor.laravel.com
https://envoyer.io

Laravel Documentation - 10.x / Directory Structure 32

Getting Started

Directory Structure

e Introduction

e The Root Directory

The app_Directory

The bootstrap Directory
The config Directory
The database Directory
The public Directory
The resources Directory
The routes Directory
The storage Directory
The tests Directory

The vendor Directory

e The App Directory

The Broadcasting Directory
The console Directory
The Events Directory
The Exceptions Directory
The nttp Directory

The Jobs Directory

The Listeners Directory
The mail Directory

The Models Directory
The Notifications Directory
The policies Directory
The providers Directory
The Rules Directory

O 0 0O 0O 0O 0O 0O 0 0 O

O 0 0O 0O 0O OO OO 0 0 0 o

Introduction
The default Laravel application structure is intended to provide a great starting point for both large and small

applications. But you are free to organize your application however you like. Laravel imposes almost no
restrictions on where any given class is located - as long as Composer can autoload the class.

['NOTE]
New to Laravel? Check out the Laravel Bootcamp for a hands-on tour of the framework while we walk
you through building your first Laravel application.

The Root Directory

The App Directory

The app directory contains the core code of your application. We'll explore this directory in more detail soon;
however, almost all of the classes in your application will be in this directory.

The Bootstrap Directory

The bootstrap directory contains the app.php file which bootstraps the framework. This directory also houses a
cache directory which contains framework generated files for performance optimization such as the route and
services cache files. You should not typically need to modify any files within this directory.

The Config Directory

The config directory, as the name implies, contains all of your application's configuration files. It's a great idea
to read through all of these files and familiarize yourself with all of the options available to you.

https://bootcamp.laravel.com

Laravel Documentation - 10.x / Directory Structure 33

The Database Directory

The database directory contains your database migrations, model factories, and seeds. If you wish, you may
also use this directory to hold an SQLite database.

The Public Directory

The public directory contains the index.php file, which is the entry point for all requests entering your
application and configures autoloading. This directory also houses your assets such as images, JavaScript, and
CSS.

The Resources Directory
The resources directory contains your views as well as your raw, un-compiled assets such as CSS or JavaScript.
The Routes Directory

The routes directory contains all of the route definitions for your application. By default, several route files are
included with Laravel: web.php, api.php, console.php, and channels. php.

The web . php file contains routes that the RouteserviceProvider places in the web middleware group, which
provides session state, CSRF protection, and cookie encryption. If your application does not offer a stateless,
RESTful API then all your routes will most likely be defined in the web.php file.

The api.php file contains routes that the RouteserviceProvider places in the api middleware group. These routes
are intended to be stateless, so requests entering the application through these routes are intended to be
authenticated via tokens and will not have access to session state.

The console.php file is where you may define all of your closure based console commands. Each closure is
bound to a command instance allowing a simple approach to interacting with each command's IO methods.
Even though this file does not define HTTP routes, it defines console based entry points (routes) into your
application.

The channels.php file is where you may register all of the event broadcasting channels that your application
supports.

The Storage Directory

The storage directory contains your logs, compiled Blade templates, file based sessions, file caches, and other

files generated by the framework. This directory is segregated into app, framework, and logs directories. The app
directory may be used to store any files generated by your application. The framework directory is used to store

framework generated files and caches. Finally, the 10gs directory contains your application's log files.

The storage/app/public directory may be used to store user-generated files, such as profile avatars, that should
be publicly accessible. You should create a symbolic link at public/storage which points to this directory. You
may create the link using the php artisan storage:1link Artisan command.

The Tests Directory

The tests directory contains your automated tests. Example PHPUnit unit tests and feature tests are provided
out of the box. Each test class should be suffixed with the word Test. You may run your tests using the phpunit
or php vendor/bin/phpunit commands. Or, if you would like a more detailed and beautiful representation of
your test results, you may run your tests using the php artisan test Artisan command.

The Vendor Directory

The vendor directory contains your Composer dependencies.

The App Directory

https://phpunit.de/
https://getcomposer.org

Laravel Documentation - 10.x / Directory Structure 34

The majority of your application is housed in the app directory. By default, this directory is namespaced under
app and is autoloaded by Composer using the PSR-4 autoloading standard.

The app directory contains a variety of additional directories such as console, Http, and Providers. Think of the
console and Http directories as providing an API into the core of your application. The HTTP protocol and CLI
are both mechanisms to interact with your application, but do not actually contain application logic. In other
words, they are two ways of issuing commands to your application. The console directory contains all of your
Artisan commands, while the Http directory contains your controllers, middleware, and requests.

A variety of other directories will be generated inside the app directory as you use the make Artisan commands
to generate classes. So, for example, the app/Jobs directory will not exist until you execute the make:job Artisan
command to generate a job class.

['NOTE]
Many of the classes in the app directory can be generated by Artisan via commands. To review the
available commands, run the php artisan list make command in your terminal.

The Broadcasting Directory

The Broadcasting directory contains all of the broadcast channel classes for your application. These classes are
generated using the make:channel command. This directory does not exist by default, but will be created for you
when you create your first channel. To learn more about channels, check out the documentation on event

broadcasting.

The Console Directory

The console directory contains all of the custom Artisan commands for your application. These commands may
be generated using the make: command command. This directory also houses your console kernel, which is where
your custom Artisan commands are registered and your scheduled tasks are defined.

The Events Directory

This directory does not exist by default, but will be created for you by the event:generate and make:event
Artisan commands. The Events directory houses event classes. Events may be used to alert other parts of your
application that a given action has occurred, providing a great deal of flexibility and decoupling.

The Exceptions Directory

The Exceptions directory contains your application's exception handler and is also a good place to place any
exceptions thrown by your application. If you would like to customize how your exceptions are logged or
rendered, you should modify the Handler class in this directory.

The Http Directory

The Http directory contains your controllers, middleware, and form requests. Almost all of the logic to handle
requests entering your application will be placed in this directory.

The Jobs Directory

This directory does not exist by default, but will be created for you if you execute the make:job Artisan
command. The Jobs directory houses the queueable jobs for your application. Jobs may be queued by your
application or run synchronously within the current request lifecycle. Jobs that run synchronously during the
current request are sometimes referred to as "commands" since they are an implementation of the command

pattern.

The Listeners Directory

This directory does not exist by default, but will be created for you if you execute the event:generate or
make:listener Artisan commands. The Listeners directory contains the classes that handle your events. Event

https://www.php-fig.org/psr/psr-4/
https://en.wikipedia.org/wiki/Command_pattern

Laravel Documentation - 10.x / Directory Structure 35

listeners receive an event instance and perform logic in response to the event being fired. For example, a
UserRegistered event might be handled by a sendwelcomeEmail listener.

The Mail Directory

This directory does not exist by default, but will be created for you if you execute the make:mail Artisan
command. The mail directory contains all of your classes that represent emails sent by your application. Mail
objects allow you to encapsulate all of the logic of building an email in a single, simple class that may be sent
using the Mail::send method.

The Models Directory

The Models directory contains all of your Eloquent model classes. The Eloquent ORM included with Laravel
provides a beautiful, simple ActiveRecord implementation for working with your database. Each database table
has a corresponding "Model" which is used to interact with that table. Models allow you to query for data in
your tables, as well as insert new records into the table.

The Notifications Directory

This directory does not exist by default, but will be created for you if you execute the make:notification
Artisan command. The Notifications directory contains all of the "transactional" notifications that are sent by
your application, such as simple notifications about events that happen within your application. Laravel's
notification feature abstracts sending notifications over a variety of drivers such as email, Slack, SMS, or stored
in a database.

The Policies Directory

This directory does not exist by default, but will be created for you if you execute the make:policy Artisan
command. The policies directory contains the authorization policy classes for your application. Policies are
used to determine if a user can perform a given action against a resource.

The Providers Directory

The providers directory contains all of the service providers for your application. Service providers bootstrap
your application by binding services in the service container, registering events, or performing any other tasks
to prepare your application for incoming requests.

In a fresh Laravel application, this directory will already contain several providers. You are free to add your
own providers to this directory as needed.

The Rules Directory

This directory does not exist by default, but will be created for you if you execute the make:rule Artisan
command. The rules directory contains the custom validation rule objects for your application. Rules are used
to encapsulate complicated validation logic in a simple object. For more information, check out the validation
documentation.

Laravel Documentation - 10.x / Frontend 36

Getting Started

Frontend

Introduction
Using PHP
o PHP and Blade
o Livewire
o Starter Kits
Using Vue / React
o Inertia
o Starter Kits

Bundling Assets

Introduction

Laravel is a backend framework that provides all of the features you need to build modern web applications,
such as routing, validation, caching, queues, file storage, and more. However, we believe it's important to offer
developers a beautiful full-stack experience, including powerful approaches for building your application's
frontend.

There are two primary ways to tackle frontend development when building an application with Laravel, and
which approach you choose is determined by whether you would like to build your frontend by leveraging PHP
or by using JavaScript frameworks such as Vue and React. We'll discuss both of these options below so that you
can make an informed decision regarding the best approach to frontend development for your application.

Using PHP
PHP and Blade

In the past, most PHP applications rendered HTML to the browser using simple HTML templates interspersed
with PHP echo statements which render data that was retrieved from a database during the request:

<div>
<?php foreach ($users as $user): ?>
Hello, <?php echo $user->name; ?>

<?php endforeach; ?>
</div>

In Laravel, this approach to rendering HTML can still be achieved using views and Blade. Blade is an
extremely light-weight templating language that provides convenient, short syntax for displaying data, iterating
over data, and more:

<div>
@foreach ($users as $user)
Hello, {{ $user->name }}

@endforeach
</div>

When building applications in this fashion, form submissions and other page interactions typically receive an
entirely new HTML document from the server and the entire page is re-rendered by the browser. Even today,
many applications may be perfectly suited to having their frontends constructed in this way using simple Blade
templates.

Growing Expectations

However, as user expectations regarding web applications have matured, many developers have found the need
to build more dynamic frontends with interactions that feel more polished. In light of this, some developers
choose to begin building their application's frontend using JavaScript frameworks such as Vue and React.

Others, preferring to stick with the backend language they are comfortable with, have developed solutions that

Laravel Documentation - 10.x / Frontend 37

allow the construction of modern web application Uls while still primarily utilizing their backend language of
choice. For example, in the Rails ecosystem, this has spurred the creation of libraries such as Turbo Hotwire,
and Stimulus.

Within the Laravel ecosystem, the need to create modern, dynamic frontends by primarily using PHP has led to
the creation of Laravel Livewire and Alpine.js.

Livewire

Laravel Livewire is a framework for building Laravel powered frontends that feel dynamic, modern, and alive
just like frontends built with modern JavaScript frameworks like Vue and React.

When using Livewire, you will create Livewire "components" that render a discrete portion of your UI and
expose methods and data that can be invoked and interacted with from your application's frontend. For
example, a simple "Counter" component might look like the following:

<?php
namespace App\Http\Livewire;
use Livewire\Component;

class Counter extends Component

{
public $count = 0;
public function increment()
{
$this->count++;
}
public function render()
{
return view('livewire.counter');
}
}

And, the corresponding template for the counter would be written like so:

<div>
<button wire:click="increment">+</button>
<h1>{{ $count }}</h1>

</div>

As you can see, Livewire enables you to write new HTML attributes such as wire:click that connect your
Laravel application's frontend and backend. In addition, you can render your component's current state using
simple Blade expressions.

For many, Livewire has revolutionized frontend development with Laravel, allowing them to stay within the
comfort of Laravel while constructing modern, dynamic web applications. Typically, developers using Livewire
will also utilize Alpine.js to "sprinkle" JavaScript onto their frontend only where it is needed, such as in order
to render a dialog window.

If you're new to Laravel, we recommend getting familiar with the basic usage of views and Blade. Then,
consult the official Laravel Livewire documentation to learn how to take your application to the next level with
interactive Livewire components.

Starter Kits

If you would like to build your frontend using PHP and Livewire, you can leverage our Breeze or Jetstream
starter kits to jump-start your application's development. Both of these starter kits scaffold your application's
backend and frontend authentication flow using Blade and Tailwind so that you can simply start building your
next big idea.

Using Vue / React

https://rubyonrails.org/
https://turbo.hotwired.dev/
https://hotwired.dev/
https://stimulus.hotwired.dev/
https://livewire.laravel.com
https://alpinejs.dev/
https://livewire.laravel.com
https://alpinejs.dev/
https://livewire.laravel.com/docs
https://tailwindcss.com

Laravel Documentation - 10.x / Frontend 38

Although it's possible to build modern frontends using Laravel and Livewire, many developers still prefer to
leverage the power of a JavaScript framework like Vue or React. This allows developers to take advantage of
the rich ecosystem of JavaScript packages and tools available via NPM.

However, without additional tooling, pairing Laravel with Vue or React would leave us needing to solve a
variety of complicated problems such as client-side routing, data hydration, and authentication. Client-side
routing is often simplified by using opinionated Vue / React frameworks such as Nuxt and Next; however, data
hydration and authentication remain complicated and cumbersome problems to solve when pairing a backend
framework like Laravel with these frontend frameworks.

In addition, developers are left maintaining two separate code repositories, often needing to coordinate
maintenance, releases, and deployments across both repositories. While these problems are not insurmountable,
we don't believe it's a productive or enjoyable way to develop applications.

Inertia

Thankfully, Laravel offers the best of both worlds. Inertia bridges the gap between your Laravel application and
your modern Vue or React frontend, allowing you to build full-fledged, modern frontends using Vue or React
while leveraging Laravel routes and controllers for routing, data hydration, and authentication — all within a
single code repository. With this approach, you can enjoy the full power of both Laravel and Vue / React
without crippling the capabilities of either tool.

After installing Inertia into your Laravel application, you will write routes and controllers like normal.
However, instead of returning a Blade template from your controller, you will return an Inertia page:

<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;
use App\Models\User;

use Inertial\Inertia;

use Inertia\Response;

class UserController extends Controller

{
/**
* Show the profile for a given user.
*/
public function show(string $id): Response
{
return Inertia::render('Users/Profile', [
'user' => User::findOrFail($id)
1
}
}

An Inertia page corresponds to a Vue or React component, typically stored within the resources/js/Pages
directory of your application. The data given to the page via the Inertia::render method will be used to hydrate
the "props" of the page component:

<script setup>
import Layout from '@/Layouts/Authenticated.vue';
import { Head } from '@inertiajs/vue3';

const props = defineProps(['user']);
</script>

<template>
<Head title="User Profile" />

<Layout>
<template #header>
<h2 class="font-semibold text-x1 text-gray-800 leading-tight">
Profile
</h2>
</template>

<div class="py-12">
Hello, {{ user.name }}
</div>

https://nuxt.com/
https://nextjs.org/
https://inertiajs.com

Laravel Documentation - 10.x / Frontend 39

</Layout>
</template>

As you can see, Inertia allows you to leverage the full power of Vue or React when building your frontend,
while providing a light-weight bridge between your Laravel powered backend and your JavaScript powered
frontend.

Server-Side Rendering
If you're concerned about diving into Inertia because your application requires server-side rendering, don't

worry. Inertia offers server-side rendering support. And, when deploying your application via Laravel Forge, it's
a breeze to ensure that Inertia's server-side rendering process is always running.

Starter Kits

If you would like to build your frontend using Inertia and Vue / React, you can leverage our Breeze or
Jetstream starter kits to jump-start your application's development. Both of these starter kits scaffold your
application's backend and frontend authentication flow using Inertia, Vue / React, Tailwind, and Vite so that
you can start building your next big idea.

Bundling Assets

Regardless of whether you choose to develop your frontend using Blade and Livewire or Vue / React and
Inertia, you will likely need to bundle your application's CSS into production ready assets. Of course, if you
choose to build your application's frontend with Vue or React, you will also need to bundle your components
into browser ready JavaScript assets.

By default, Laravel utilizes Vite to bundle your assets. Vite provides lightning-fast build times and near
instantaneous Hot Module Replacement (HMR) during local development. In all new Laravel applications,
including those using our starter kits, you will find a vite.config.js file that loads our light-weight Laravel Vite
plugin that makes Vite a joy to use with Laravel applications.

The fastest way to get started with Laravel and Vite is by beginning your application's development using
Laravel Breeze, our simplest starter kit that jump-starts your application by providing frontend and backend
authentication scaffolding.

[INOTE]
For more detailed documentation on utilizing Vite with Laravel, please see our dedicated documentation

on bundling and compiling your assets.

https://inertiajs.com/server-side-rendering
https://forge.laravel.com
https://tailwindcss.com
https://vitejs.dev
https://vitejs.dev

Laravel Documentation - 10.x / Starter Kits 40

Getting Started

Starter Kits

e Introduction
e [aravel Breeze
o Installation
o Breeze and Blade
o Breeze and Livewire
o Breeze and React / Vue
o Breeze and Next.js / API
e Laravel Jetstream

Introduction

To give you a head start building your new Laravel application, we are happy to offer authentication and
application starter kits. These kits automatically scaffold your application with the routes, controllers, and
views you need to register and authenticate your application's users.

While you are welcome to use these starter kits, they are not required. You are free to build your own
application from the ground up by simply installing a fresh copy of Laravel. Either way, we know you will
build something great!

Laravel Breeze

Laravel Breeze is a minimal, simple implementation of all of Laravel's authentication features, including login,
registration, password reset, email verification, and password confirmation. In addition, Breeze includes a
simple "profile" page where the user may update their name, email address, and password.

Laravel Breeze's default view layer is made up of simple Blade templates styled with Tailwind CSS.
Additionally, Breeze provides scaffolding options based on Livewire or Inertia, with the choice of using Vue or
React for the Inertia-based scaffolding.

https://github.com/laravel/breeze
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com

Laravel Documentation - 10.x / Starter Kits 41

[NON J @ Laravel X+ i
<« C' A Not Secure | laravel.test/register aQa h N *» 0§
Name
Taylor Otwell
Email

taylor@laravel.com

Password

Confirm Password

Already registered?

Laravel Bootcamp

If you're new to Laravel, feel free to jump into the Laravel Bootcamp. The Laravel Bootcamp will walk you
through building your first Laravel application using Breeze. It's a great way to get a tour of everything that
Laravel and Breeze have to offer.

Installation

First, you should create a new Laravel application, configure your database, and run your database migrations.
Once you have created a new Laravel application, you may install Laravel Breeze using Composer:

composer require laravel/breeze --dev

After Composer has installed the Laravel Breeze package, you may run the breeze:install Artisan command.
This command publishes the authentication views, routes, controllers, and other resources to your application.
Laravel Breeze publishes all of its code to your application so that you have full control and visibility over its
features and implementation.

The breeze:install command will prompt you for your preferred frontend stack and testing framework:

php artisan breeze:install
php artisan migrate

npm install
npm run dev

Breeze and Blade

https://bootcamp.laravel.com

Laravel Documentation - 10.x / Starter Kits 42

The default Breeze "stack" is the Blade stack, which utilizes simple Blade templates to render your application's
frontend. The Blade stack may be installed by invoking the breeze:install command with no other additional
arguments and selecting the Blade frontend stack. After Breeze's scaffolding is installed, you should also
compile your application's frontend assets:

php artisan breeze:install
php artisan migrate

npm install
npm run dev

Next, you may navigate to your application's /login or /register URLs in your web browser. All of Breeze's
routes are defined within the routes/auth.php file.

['NOTE]
To learn more about compiling your application's CSS and JavaScript, check out Laravel's Vite
documentation.

Breeze and Livewire

Laravel Breeze also offers Livewire scaffolding. Livewire is a powerful way of building dynamic, reactive,
front-end Uls using just PHP.

Livewire is a great fit for teams that primarily use Blade templates and are looking for a simpler alternative to
JavaScript-driven SPA frameworks like Vue and React.

To use the Livewire stack, you may select the Livewire frontend stack when executing the breeze:install
Artisan command. After Breeze's scaffolding is installed, you should run your database migrations:

php artisan breeze:install

php artisan migrate
Breeze and React / Vue

Laravel Breeze also offers React and Vue scaffolding via an Inertia frontend implementation. Inertia allows you
to build modern, single-page React and Vue applications using classic server-side routing and controllers.

Inertia lets you enjoy the frontend power of React and Vue combined with the incredible backend productivity
of Laravel and lightning-fast Vite compilation. To use an Inertia stack, you may select the Vue or React
frontend stacks when executing the breeze:install Artisan command.

When selecting the Vue or React frontend stack, the Breeze installer will also prompt you to determine if you
would like Inertia SSR or TypeScript support. After Breeze's scaffolding is installed, you should also compile
your application's frontend assets:

php artisan breeze:install
php artisan migrate

npm install
npm run dev

Next, you may navigate to your application's /login or /register URLs in your web browser. All of Breeze's
routes are defined within the routes/auth.php file.

Breeze and Next.js / API

Laravel Breeze can also scaffold an authentication API that is ready to authenticate modern JavaScript
applications such as those powered by Next, Nuxt, and others. To get started, select the API stack as your
desired stack when executing the breeze:install Artisan command:

php artisan breeze:install

php artisan migrate

https://livewire.laravel.com
https://inertiajs.com
https://vitejs.dev
https://inertiajs.com/server-side-rendering
https://nextjs.org
https://nuxt.com

Laravel Documentation - 10.x / Starter Kits 43

During installation, Breeze will add a FRoNTEND_URL environment variable to your application's .env file. This
URL should be the URL of your JavaScript application. This will typically be http://localhost:3eee during
local development. In addition, you should ensure that your ApP_uRL is set to http://localhost:8000, which is
the default URL used by the serve Artisan command.

Next.js Reference Implementation

Finally, you are ready to pair this backend with the frontend of your choice. A Next reference implementation
of the Breeze frontend is available on GitHub. This frontend is maintained by Laravel and contains the same
user interface as the traditional Blade and Inertia stacks provided by Breeze.

Laravel Jetstream

While Laravel Breeze provides a simple and minimal starting point for building a Laravel application,
Jetstream augments that functionality with more robust features and additional frontend technology stacks. For
those brand new to Laravel, we recommend learning the ropes with Laravel Breeze before graduating to
Laravel Jetstream.

Jetstream provides a beautifully designed application scaffolding for Laravel and includes login, registration,
email verification, two-factor authentication, session management, API support via Laravel Sanctum, and
optional team management. Jetstream is designed using Tailwind CSS and offers your choice of Livewire or
Inertia driven frontend scaffolding.

Complete documentation for installing Laravel Jetstream can be found within the official Jetstream
documentation.

https://github.com/laravel/breeze-next
https://tailwindcss.com
https://livewire.laravel.com
https://inertiajs.com
https://jetstream.laravel.com

Laravel Documentation - 10.x / Deployment 44

Getting Started

Deployment

e Introduction

e Server Requirements
Server Configuration
o Nginx
e Optimization
Autoloader Optimization
Caching Configuration
Caching Events
Caching Routes
Caching Views

e Debug Mode
e FEasy Deployment With Forge / Vapor

o O o o

[e]

Introduction

When you're ready to deploy your Laravel application to production, there are some important things you can
do to make sure your application is running as efficiently as possible. In this document, we'll cover some great
starting points for making sure your Laravel application is deployed properly.

Server Requirements

The Laravel framework has a few system requirements. You should ensure that your web server has the
following minimum PHP version and extensions:

PHP>=18.1

Ctype PHP Extension
cURL PHP Extension
DOM PHP Extension
Fileinfo PHP Extension
Filter PHP Extension
Hash PHP Extension
Mbstring PHP Extension
OpenSSL PHP Extension
PCRE PHP Extension
PDO PHP Extension
Session PHP Extension
Tokenizer PHP Extension
XML PHP Extension

Server Configuration
Nginx

If you are deploying your application to a server that is running Nginx, you may use the following
configuration file as a starting point for configuring your web server. Most likely, this file will need to be
customized depending on your server's configuration. If you would like assistance in managing your server,
consider using a first-party Laravel server management and deployment service such as Laravel Forge.

Please ensure, like the configuration below, your web server directs all requests to your application's
public/index.php file. You should never attempt to move the index.php file to your project's root, as serving the
application from the project root will expose many sensitive configuration files to the public Internet:

server {
listen 80;
listen [::]:80;

https://forge.laravel.com

Laravel Documentation - 10.x / Deployment 45

server_name example.com;
root /srv/example.com/public;

add_header X-Frame-Options "SAMEORIGIN";
add_header X-Content-Type-Options "nosniff";

index index.php;
charset utf-8;

location / {
try _files $uri $uri/ /index.php?$query_string;

}
location = /favicon.ico { access_log off; log_not_found off; }
location = /robots.txt { access_log off; log_not_found off; }

error_page 404 /index.php;

location ~ \.php$ {
fastcgi_pass unix:/var/run/php/php8.2-fpm.sock;
fastcgi_param SCRIPT_FILENAME $realpath_root$fastcgi_script_name;
include fastcgi_params;

}
location ~ /\.(?!well-known).* {
deny all;
}
}
Optimization

Autoloader Optimization
When deploying to production, make sure that you are optimizing Composer's class autoloader map so
Composer can quickly find the proper file to load for a given class:

composer install --optimize-autoloader --no-dev

['NOTE]

In addition to optimizing the autoloader, you should always be sure to include a composer . lock file in your
project's source control repository. Your project's dependencies can be installed much faster when a
composer . lock file is present.

Caching Configuration
When deploying your application to production, you should make sure that you run the config:cache Artisan
command during your deployment process:

php artisan config:cache

This command will combine all of Laravel's configuration files into a single, cached file, which greatly reduces
the number of trips the framework must make to the filesystem when loading your configuration values.

[!WARNING]

If you execute the config:cache command during your deployment process, you should be sure that you
are only calling the env function from within your configuration files. Once the configuration has been
cached, the .env file will not be loaded and all calls to the env function for .env variables will return nu1l.

Caching Events

If your application is utilizing event discovery, you should cache your application's event to listener mappings
during your deployment process. This can be accomplished by invoking the event:cache Artisan command
during deployment:

php artisan event:cache

Laravel Documentation - 10.x / Deployment 46

Caching Routes

If you are building a large application with many routes, you should make sure that you are running the
route:cache Artisan command during your deployment process:

php artisan route:cache

This command reduces all of your route registrations into a single method call within a cached file, improving
the performance of route registration when registering hundreds of routes.

Caching Views

When deploying your application to production, you should make sure that you run the view:cache Artisan
command during your deployment process:

php artisan view:cache

This command precompiles all your Blade views so they are not compiled on demand, improving the
performance of each request that returns a view.

Debug Mode

The debug option in your config/app.php configuration file determines how much information about an error is
actually displayed to the user. By default, this option is set to respect the value of the App_peEBUG environment
variable, which is stored in your application's .env file.

['WARNING]
In your production environment, this value should always be false. If the App_bEBUG variable is set to
true in production, you risk exposing sensitive configuration values to your application's end users.

Easy Deployment With Forge / Vapor
Laravel Forge

If you aren't quite ready to manage your own server configuration or aren't comfortable configuring all of the
various services needed to run a robust Laravel application, Laravel Forge is a wonderful alternative.

Laravel Forge can create servers on various infrastructure providers such as DigitalOcean, Linode, AWS, and
more. In addition, Forge installs and manages all of the tools needed to build robust Laravel applications, such
as Nginx, MySQL, Redis, Memcached, Beanstalk, and more.

[INOTE]
Want a full guide to deploying with Laravel Forge? Check out the Laravel Bootcamp and the Forge video
series available on Laracasts.

Laravel Vapor

If you would like a totally serverless, auto-scaling deployment platform tuned for Laravel, check out Laravel
Vapor. Laravel Vapor is a serverless deployment platform for Laravel, powered by AWS. Launch your Laravel
infrastructure on Vapor and fall in love with the scalable simplicity of serverless. Laravel Vapor is fine-tuned by
Laravel's creators to work seamlessly with the framework so you can keep writing your Laravel applications
exactly like you're used to.

https://forge.laravel.com
https://bootcamp.laravel.com/deploying
https://laracasts.com/series/learn-laravel-forge-2022-edition
https://vapor.laravel.com

Laravel Documentation - 10.x / Architecture Concepts 47

Architecture Concepts

Request Lifecycle

e Introduction
e Lifecycle Overview
o First Steps
o HTTP / Console Kernels
o Service Providers
o Routing
o Finishing Up
e Focus on Service Providers

Introduction

When using any tool in the "real world", you feel more confident if you understand how that tool works.
Application development is no different. When you understand how your development tools function, you feel
more comfortable and confident using them.

The goal of this document is to give you a good, high-level overview of how the Laravel framework works. By
getting to know the overall framework better, everything feels less "magical" and you will be more confident
building your applications. If you don't understand all of the terms right away, don't lose heart! Just try to get a
basic grasp of what is going on, and your knowledge will grow as you explore other sections of the
documentation.

Lifecycle Overview

First Steps

The entry point for all requests to a Laravel application is the public/index.php file. All requests are directed to
this file by your web server (Apache / Nginx) configuration. The index.php file doesn't contain much code.
Rather, it is a starting point for loading the rest of the framework.

The index.php file loads the Composer generated autoloader definition, and then retrieves an instance of the
Laravel application from bootstrap/app.php. The first action taken by Laravel itself is to create an instance of
the application / service container.

HTTP / Console Kernels

Next, the incoming request is sent to either the HTTP kernel or the console kernel, depending on the type of
request that is entering the application. These two kernels serve as the central location that all requests flow
through. For now, let's just focus on the HTTP kernel, which is located in app/Http/Kernel.php.

The HTTP kernel extends the 111uminate\Foundation\Http\Kernel class, which defines an array of
bootstrappers that will be run before the request is executed. These bootstrappers configure error handling,
configure logging, detect the application environment, and perform other tasks that need to be done before the
request is actually handled. Typically, these classes handle internal Laravel configuration that you do not need
to worry about.

The HTTP kernel also defines a list of HTTP middleware that all requests must pass through before being
handled by the application. These middleware handle reading and writing the HTTP session, determining if the
application is in maintenance mode, verifying the CSRF token, and more. We'll talk more about these soon.

The method signature for the HTTP kernel's handle method is quite simple: it receives a Request and returns a
Response. Think of the kernel as being a big black box that represents your entire application. Feed it HTTP
requests and it will return HTTP responses.

Service Providers

Laravel Documentation - 10.x / Architecture Concepts 48

One of the most important kernel bootstrapping actions is loading the service providers for your application.
Service providers are responsible for bootstrapping all of the framework's various components, such as the
database, queue, validation, and routing components. All of the service providers for the application are
configured in the config/app.php configuration file's providers array.

Laravel will iterate through this list of providers and instantiate each of them. After instantiating the providers,
the register method will be called on all of the providers. Then, once all of the providers have been registered,
the boot method will be called on each provider. This is so service providers may depend on every container
binding being registered and available by the time their boot method is executed.

Essentially every major feature offered by Laravel is bootstrapped and configured by a service provider. Since
they bootstrap and configure so many features offered by the framework, service providers are the most
important aspect of the entire Laravel bootstrap process.

Routing

One of the most important service providers in your application is the App\Providers\RouteServiceProvider.
This service provider loads the route files contained within your application's routes directory. Go ahead, crack
open the RouteserviceProvider code and take a look at how it works!

Once the application has been bootstrapped and all service providers have been registered, the request will be
handed off to the router for dispatching. The router will dispatch the request to a route or controller, as well as
run any route specific middleware.

Middleware provide a convenient mechanism for filtering or examining HTTP requests entering your
application. For example, Laravel includes a middleware that verifies if the user of your application is
authenticated. If the user is not authenticated, the middleware will redirect the user to the login screen.
However, if the user is authenticated, the middleware will allow the request to proceed further into the
application. Some middleware are assigned to all routes within the application, like those defined in the
$middleware property of your HTTP kernel, while some are only assigned to specific routes or route groups. You
can learn more about middleware by reading the complete middleware documentation.

If the request passes through all of the matched route's assigned middleware, the route or controller method will
be executed and the response returned by the route or controller method will be sent back through the route's
chain of middleware.

Finishing Up

Once the route or controller method returns a response, the response will travel back outward through the
route's middleware, giving the application a chance to modify or examine the outgoing response.

Finally, once the response travels back through the middleware, the HTTP kernel's hand1le method returns the
response object and the index.php file calls the send method on the returned response. The send method sends
the response content to the user's web browser. We've finished our journey through the entire Laravel request
lifecycle!

Focus on Service Providers

Service providers are truly the key to bootstrapping a Laravel application. The application instance is created,
the service providers are registered, and the request is handed to the bootstrapped application. It's really that
simple!

Having a firm grasp of how a Laravel application is built and bootstrapped via service providers is very
valuable. Your application's default service providers are stored in the app/Providers directory.

By default, the appserviceProvider is fairly empty. This provider is a great place to add your application's own
bootstrapping and service container bindings. For large applications, you may wish to create several service
providers, each with more granular bootstrapping for specific services used by your application.

Laravel Documentation - 10.x / Service Container

Architecture Concepts

Service Container

e Introduction
o Zero Configuration Resolution
o When to Utilize the Container
e Binding
o Binding Basics

Contextual Binding
Binding Primitives
Binding Typed Variadics
Tagging

o Extending Bindings
Resolving

o The Make Method

o Automatic Injection
Method Invocation and Injection
Container Events
PSR-11

O O o o o

Introduction

Binding Interfaces to Implementations

49

The Laravel service container is a powerful tool for managing class dependencies and performing dependency
injection. Dependency injection is a fancy phrase that essentially means this: class dependencies are "injected"

into the class via the constructor or, in some cases, "setter" methods.

Let's look at a simple example:
<?php
namespace App\Http\Controllers;

use App\Http\Controllers\Controller;
use App\Repositories\UserRepository;
use App\Models\User;

use Illuminate\View\View;

class UserController extends Controller
{
/**
* Create a new controller instance.
*/
public function __construct(
protected UserRepository $users,

) {3

VAl

* Show the profile for the given user.

*/
public function show(string $id): View

{

$user = $this->users->find($id);

return view('user.profile', ['user' => $user]);

}

In this example, the usercontroller needs to retrieve users from a data source. So, we will inject a service that

is able to retrieve users. In this context, our userrRepository most likely uses Eloquent to retrieve user

information from the database. However, since the repository is injected, we are able to easily swap it out with

another implementation. We are also able to easily "mock", or create a dummy implementation of the

UserRepository when testing our application.

A deep understanding of the Laravel service container is essential to building a powerful, large application, as

Laravel Documentation - 10.x / Service Container 50

well as for contributing to the Laravel core itself.

Zero Configuration Resolution

If a class has no dependencies or only depends on other concrete classes (not interfaces), the container does not
need to be instructed on how to resolve that class. For example, you may place the following code in your
routes/web.php file:

<?php

class Service

{
}

Route::get('/', function (Service $service) {
die($service::class);

1)

/7 ...

In this example, hitting your application's / route will automatically resolve the service class and inject it into
your route's handler. This is game changing. It means you can develop your application and take advantage of
dependency injection without worrying about bloated configuration files.

Thankfully, many of the classes you will be writing when building a Laravel application automatically receive
their dependencies via the container, including controllers, event listeners, middleware, and more. Additionally,
you may type-hint dependencies in the handle method of queued jobs. Once you taste the power of automatic
and zero configuration dependency injection it feels impossible to develop without it.

When to Utilize the Container

Thanks to zero configuration resolution, you will often type-hint dependencies on routes, controllers, event
listeners, and elsewhere without ever manually interacting with the container. For example, you might type-hint
the 111uminate\Http\Request object on your route definition so that you can easily access the current request.
Even though we never have to interact with the container to write this code, it is managing the injection of these
dependencies behind the scenes:

use Illuminate\Http\Request;

Route::get('/', function (Request $request) {
/7 ...

F

In many cases, thanks to automatic dependency injection and facades, you can build Laravel applications
without ever manually binding or resolving anything from the container. So, when would you ever manually
interact with the container? Let's examine two situations.

First, if you write a class that implements an interface and you wish to type-hint that interface on a route or
class constructor, you must tell the container how to resolve that interface. Secondly, if you are writing a
Laravel package that you plan to share with other Laravel developers, you may need to bind your package's
services into the container.

Binding
Binding Basics
Simple Bindings

Almost all of your service container bindings will be registered within service providers, so most of these
examples will demonstrate using the container in that context.

Within a service provider, you always have access to the container via the $this->app property. We can register
a binding using the bind method, passing the class or interface name that we wish to register along with a
closure that returns an instance of the class:

Laravel Documentation - 10.x / Service Container 51

use App\Services\Transistor;
use App\Services\PodcastParser;
use Illuminate\Contracts\Foundation\Application;

$this->app->bind(Transistor::class, function (Application $app) {
return new Transistor($app->make(PodcastParser::class));

1

Note that we receive the container itself as an argument to the resolver. We can then use the container to resolve
sub-dependencies of the object we are building.

As mentioned, you will typically be interacting with the container within service providers; however, if you
would like to interact with the container outside of a service provider, you may do so via the App facade:

use App\Services\Transistor;
use Illuminate\Contracts\Foundation\Application;
use Illuminate\Support\Facades\App;

App::bind(Transistor::class, function (Application $app) {
/7 ...
1)

You may use the bind1f method to register a container binding only if a binding has not already been registered
for the given type:

$this->app->bindIf(Transistor::class, function (Application $app) {
return new Transistor($app->make(PodcastParser::class));

K

[!NOTE]

There is no need to bind classes into the container if they do not depend on any interfaces. The container
does not need to be instructed on how to build these objects, since it can automatically resolve these
objects using reflection.

Binding A Singleton

The singleton method binds a class or interface into the container that should only be resolved one time. Once
a singleton binding is resolved, the same object instance will be returned on subsequent calls into the container:

use App\Services\Transistor;
use App\Services\PodcastParser;
use Illuminate\Contracts\Foundation\Application;

$this->app->singleton(Transistor::class, function (Application $app) {
return new Transistor($app->make(PodcastParser::class));

K

You may use the singleton1if method to register a singleton container binding only if a binding has not already
been registered for the given type:

$this->app->singletonIf(Transistor::class, function (Application $app) {
return new Transistor ($app->make(PodcastParser::class));

1
Binding Scoped Singletons

The scoped method binds a class or interface into the container that should only be resolved one time within a
given Laravel request / job lifecycle. While this method is similar to the singleton method, instances registered
using the scoped method will be flushed whenever the Laravel application starts a new "lifecycle", such as when
a Laravel Octane worker processes a new request or when a Laravel queue worker processes a new job:

use App\Services\Transistor;
use App\Services\PodcastParser;
use Illuminate\Contracts\Foundation\Application;

$this->app->scoped(Transistor::class, function (Application $app) {

return new Transistor($app->make(PodcastParser::class));

i

Binding Instances

Laravel Documentation - 10.x / Service Container 52

You may also bind an existing object instance into the container using the instance method. The given instance
will always be returned on subsequent calls into the container:

use App\Services\Transistor;
use App\Services\PodcastParser;

$service = new Transistor(new PodcastParser);

$this->app->instance(Transistor::class, $service);
Binding Interfaces to Implementations

A very powerful feature of the service container is its ability to bind an interface to a given implementation. For
example, let's assume we have an EventPusher interface and a RediseventPusher implementation. Once we have
coded our RedisEventPusher implementation of this interface, we can register it with the service container like
so:

use App\Contracts\EventPusher;
use App\Services\RedisEventPusher;

$this->app->bind(EventPusher::class, RedisEventPusher::class);

This statement tells the container that it should inject the RedisEventPusher when a class needs an
implementation of EventPusher. Now we can type-hint the Eventpusher interface in the constructor of a class
that is resolved by the container. Remember, controllers, event listeners, middleware, and various other types of
classes within Laravel applications are always resolved using the container:

use App\Contracts\EventPusher;

/**
* Create a new class instance.
*/
public function __construct(
protected EventPusher $pusher

) O
Contextual Binding

Sometimes you may have two classes that utilize the same interface, but you wish to inject different
implementations into each class. For example, two controllers may depend on different implementations of the
Illuminate\Contracts\Filesystem\Filesystem contract. Laravel provides a simple, fluent interface for defining
this behavior:

use App\Http\Controllers\PhotoController;

use App\Http\Controllers\UploadController;

use App\Http\Controllers\VideoController;

use Illuminate\Contracts\Filesystem\Filesystem;
use Illuminate\Support\Facades\Storage;

$this->app->when(PhotoController::class)
->needs(Filesystem::class)
->give(function () {
return Storage::disk('local');

K

$this->app->when([VideoController::class, UploadController::class])
->needs(Filesystem::class)
->give(function () {
return Storage::disk('s3"');

1
Binding Primitives
Sometimes you may have a class that receives some injected classes, but also needs an injected primitive value
such as an integer. You may easily use contextual binding to inject any value your class may need:

use App\Http\Controllers\UserController;

$this->app->when(UserController::class)
->needs('$variableName')

Laravel Documentation - 10.x / Service Container

->give($value);

Sometimes a class may depend on an array of tagged instances. Using the giveTagged method, you may easily
inject all of the container bindings with that tag:

$this->app->when(ReportAggregator::class)
->needs('$reports"')
->giveTagged('reports');

If you need to inject a value from one of your application's configuration files, you may use the giveconfig
method:

$this->app->when(ReportAggregator::class)
->needs('$timezone')
->giveConfig('app.timezone');

Binding Typed Variadics

Occasionally, you may have a class that receives an array of typed objects using a variadic constructor
argument:

<?php

use App\Models\Filter;
use App\Services\Logger;

class Firewall
{
/**
* The filter instances.
*
* @var array
*/
protected $filters;

/**
* Create a new class instance.
*
/
public function __construct(
protected Logger $logger,
Filter ...$filters,
) {

}

$this->filters = $filters;
}

Using contextual binding, you may resolve this dependency by providing the give method with a closure that
returns an array of resolved Filter instances:

$this->app->when(Firewall::class)
->needs(Filter::class)
->give(function (Application $app) {
return [
$app->make(NullFilter::class),
$app->make(ProfanityFilter::class),
$app->make(TooLongFilter::class),
1;
1)

For convenience, you may also just provide an array of class names to be resolved by the container whenever
Firewall needs Filter instances:

$this->app->when(Firewall::class)
->needs(Filter::class)
->give([
NullFilter::class,
ProfanityFilter::class,
TooLongFilter::class,

1);

Variadic Tag Dependencies

Sometimes a class may have a variadic dependency that is type-hinted as a given class (Report ...$reports).

Laravel Documentation - 10.x / Service Container 54

Using the needs and giveTagged methods, you may easily inject all of the container bindings with that tag for the
given dependency:

$this->app->when(ReportAggregator::class)

->needs(Report::class)
->giveTagged('reports');

Tagging

Occasionally, you may need to resolve all of a certain "category" of binding. For example, perhaps you are
building a report analyzer that receives an array of many different rReport interface implementations. After
registering the rReport implementations, you can assign them a tag using the tag method:

$thij;>app—>bind(CpuReport::class, function () {

Ny -

$this->app->bind(MemoryReport::class, function () {

i

$this->app->tag([CpuReport::class, MemoryReport::class], 'reports');

Once the services have been tagged, you may easily resolve them all via the container's tagged method:
$this->app->bind(ReportAnalyzer::class, function (Application $app) {

return new ReportAnalyzer($app->tagged('reports'));
1)

Extending Bindings

The extend method allows the modification of resolved services. For example, when a service is resolved, you
may run additional code to decorate or configure the service. The extend method accepts two arguments, the
service class you're extending and a closure that should return the modified service. The closure receives the
service being resolved and the container instance:

$this->app->extend(Service::class, function (Service $service, Application $app) {
return new DecoratedService($service);

1
Resolving

The make Method

You may use the make method to resolve a class instance from the container. The make method accepts the name
of the class or interface you wish to resolve:

use App\Services\Transistor;

$transistor = $this->app->make(Transistor::class);

If some of your class's dependencies are not resolvable via the container, you may inject them by passing them
as an associative array into the makewith method. For example, we may manually pass the $id constructor
argument required by the Transistor service:

use App\Services\Transistor;

$transistor = $this->app->makeWith(Transistor::class, ['id' => 1]);

The bound method may be used to determine if a class or interface has been explicitly bound in the container:
if ($this->app->bound(Transistor::class)) {

/7.
3

If you are outside of a service provider in a location of your code that does not have access to the $app variable,
you may use the App facade or the app helper to resolve a class instance from the container:

Laravel Documentation - 10.x / Service Container 55

use App\Services\Transistor;
use Illuminate\Support\Facades\App;

$transistor = App::make(Transistor::class);

$transistor = app(Transistor::class);

If you would like to have the Laravel container instance itself injected into a class that is being resolved by the
container, you may type-hint the 111uminate\container\container class on your class's constructor:

use Illuminate\Container\Container;

/**
* Create a new class instance.
*/
public function __construct(
protected Container $container

) {3
Automatic Injection

Alternatively, and importantly, you may type-hint the dependency in the constructor of a class that is resolved
by the container, including controllers, event listeners, middleware, and more. Additionally, you may type-hint
dependencies in the handle method of queued jobs. In practice, this is how most of your objects should be
resolved by the container.

For example, you may type-hint a repository defined by your application in a controller's constructor. The
repository will automatically be resolved and injected into the class:

<?php
namespace App\Http\Controllers;

use App\Repositories\UserRepository;
use App\Models\User;

class UserController extends Controller

{
/**
* Create a new controller instance.
*/
public function __construct(
protected UserRepository $users,

) {3

/**
* Show the user with the given ID.
*/
public function show(string $id): User

{

$user = $this->users->findOrFail($id);

return $user;

Method Invocation and Injection

Sometimes you may wish to invoke a method on an object instance while allowing the container to
automatically inject that method's dependencies. For example, given the following class:

<?php
namespace App;
use App\Repositories\UserRepository;

class UserReport
{
/**
* Generate a new user report.
*/
public function generate(UserRepository $repository): array

Laravel Documentation - 10.x / Service Container

return [
1;
}
You may invoke the generate method via the container like so:

use App\UserReport;
use Illuminate\Support\Facades\App;

$report = App::call([new UserReport, 'generate']);

56

The call method accepts any PHP callable. The container's call method may even be used to invoke a closure

while automatically injecting its dependencies:

use App\Repositories\UserRepository;
use Illuminate\Support\Facades\App;

$result = App::call(function (UserRepository $repository) {
/7 ...

1)

Container Events

The service container fires an event each time it resolves an object. You may listen to this event using the
resolving method:

use App\Services\Transistor;
use Illuminate\Contracts\Foundation\Application;

$this->app->resolving(Transistor::class, function (Transistor $transistor, Application $app) {
// Called when container resolves objects of type "Transistor"...

F

$this->app->resolving(function (mixed $object, Application $app) {
// Called when container resolves object of any type...

F

As you can see, the object being resolved will be passed to the callback, allowing you to set any additional
properties on the object before it is given to its consumer.

PSR-11

Laravel's service container implements the PSR-11 interface. Therefore, you may type-hint the PSR-11
container interface to obtain an instance of the Laravel container:

use App\Services\Transistor;
use Psr\Container\ContainerInterface;

Route::get('/', function (ContainerInterface $container) {
$service = $container->get(Transistor::class);

/7.
i

An exception is thrown if the given identifier can't be resolved. The exception will be an instance of
Psr\Container\NotFoundExceptionInterface if the identifier was never bound. If the identifier was bound but
was unable to be resolved, an instance of Psr\Container\ContainerExceptionInterface will be thrown.

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-11-container.md

Laravel Documentation - 10.x / Service Providers 57

Architecture Concepts

Service Providers

e Introduction

o Writing Service Providers
o The Register Method
o The Boot Method

e Registering Providers

e Deferred Providers

Introduction

Service providers are the central place of all Laravel application bootstrapping. Your own application, as well
as all of Laravel's core services, are bootstrapped via service providers.

But, what do we mean by "bootstrapped"? In general, we mean registering things, including registering service
container bindings, event listeners, middleware, and even routes. Service providers are the central place to
configure your application.

If you open the config/app.php file included with Laravel, you will see a providers array. These are all of the
service provider classes that will be loaded for your application. By default, a set of Laravel core service
providers are listed in this array. These providers bootstrap the core Laravel components, such as the mailer,
queue, cache, and others. Many of these providers are "deferred" providers, meaning they will not be loaded on
every request, but only when the services they provide are actually needed.

In this overview, you will learn how to write your own service providers and register them with your Laravel
application.

[!NOTE]
If you would like to learn more about how Laravel handles requests and works internally, check out our
documentation on the Laravel request lifecycle.

Writing Service Providers

All service providers extend the 111uminate\Support\ServiceProvider class. Most service providers contain a
register and a boot method. Within the register method, you should only bind things into the service
container. You should never attempt to register any event listeners, routes, or any other piece of functionality
within the register method.

The Artisan CLI can generate a new provider via the make:provider command:

php artisan make:provider RiakServiceProvider

The Register Method

As mentioned previously, within the register method, you should only bind things into the service container.
You should never attempt to register any event listeners, routes, or any other piece of functionality within the
register method. Otherwise, you may accidentally use a service that is provided by a service provider which
has not loaded yet.

Let's take a look at a basic service provider. Within any of your service provider methods, you always have
access to the sapp property which provides access to the service container:

<?php
namespace App\Providers;
use App\Services\Riak\Connection;

use Illuminate\Contracts\Foundation\Application;
use Illuminate\Support\ServiceProvider;

Laravel Documentation - 10.x / Service Providers 58

class RiakServiceProvider extends ServiceProvider

{
/**
* Register any application services.
*/
public function register(): void
$this->app->singleton(Connection::class, function (Application $app) {
return new Connection(config('riak'));
1)
}
}

This service provider only defines a register method, and uses that method to define an implementation of
App\Services\Riak\Connection in the service container. If you're not yet familiar with Laravel's service
container, check out its documentation.

The bindings and singletons Properties

If your service provider registers many simple bindings, you may wish to use the bindings and singletons
properties instead of manually registering each container binding. When the service provider is loaded by the
framework, it will automatically check for these properties and register their bindings:

<?php
namespace App\Providers;

use App\Contracts\DowntimeNotifier;

use App\Contracts\ServerProvider;

use App\Services\DigitalOceanServerProvider;
use App\Services\PingdomDowntimeNotifier;
use App\Services\ServerToolsProvider;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{
/**
* All of the container bindings that should be registered.
* @var array
*/
public $bindings = [
ServerProvider::class => DigitalOceanServerProvider::class,
1;
/**
* All of the container singletons that should be registered.
* @var array
*/
public $singletons = [
DowntimeNotifier::class => PingdomDowntimeNotifier::class,
ServerProvider::class => ServerToolsProvider::class,
1;
}
The Boot Method

So, what if we need to register a view composer within our service provider? This should be done within the
boot method. This method is called after all other service providers have been registered, meaning you
have access to all other services that have been registered by the framework:

<?php
namespace App\Providers;

use Illuminate\Support\Facades\View;
use Illuminate\Support\ServiceProvider;

class ComposerServiceProvider extends ServiceProvider

{
/**
* Bootstrap any application services.

Laravel Documentation - 10.x / Service Providers 59

*/
public function boot(): void
{
View: :composer('view', function () {
/7 ...
1}
}

Boot Method Dependency Injection

You may type-hint dependencies for your service provider's boot method. The service container will
automatically inject any dependencies you need:

use Illuminate\Contracts\Routing\ResponseFactory;

*x

/: Bootstrap any application services.

puglic function boot(ResponseFactory $response): void

¢ $re523nse->macro(‘serialized', function (mixed $value) {
ST

}

Registering Providers

All service providers are registered in the config/app.php configuration file. This file contains a providers array
where you can list the class names of your service providers. By default, a set of Laravel core service providers
are registered in this array. The default providers bootstrap the core Laravel components, such as the mailer,
queue, cache, and others.

To register your provider, add it to the array:

'providers' => ServiceProvider::defaultProviders()->merge([
// Other Service Providers

App\Providers\ComposerServiceProvider::class,
1)->toArray(),

Deferred Providers

If your provider is only registering bindings in the service container, you may choose to defer its registration
until one of the registered bindings is actually needed. Deferring the loading of such a provider will improve
the performance of your application, since it is not loaded from the filesystem on every request.

Laravel compiles and stores a list of all of the services supplied by deferred service providers, along with the
name of its service provider class. Then, only when you attempt to resolve one of these services does Laravel
load the service provider.

To defer the loading of a provider, implement the \111luminate\Contracts\Support\DeferrableProvider interface
and define a provides method. The provides method should return the service container bindings registered by
the provider:

<?php
namespace App\Providers;

use App\Services\Riak\Connection;

use Illuminate\Contracts\Foundation\Application;

use Illuminate\Contracts\Support\DeferrableProvider;
use Illuminate\Support\ServiceProvider;

class RiakServiceProvider extends ServiceProvider implements DeferrableProvider
{
/**
* Register any application services.
*/

Laravel Documentation - 10.x / Service Providers

public function register(): void

$this->app->singleton(Connection::class, function (Application $app) {
return new Connection($app['config']['riak']);
1)
}

Jx*

* Get the services provided by the provider.
*

* @return array<int, string>
*/
public function provides(): array

{
}

return [Connection::class];

60

Laravel Documentation - 10.x / Facades

Architecture Concepts

Facades

e Introduction
e When to Utilize Facades

o Facades vs. Dependency Injection

o Facades vs. Helper Functions
How Facades Work
Real-Time Facades
Facade Class Reference

Introduction

61

Throughout the Laravel documentation, you will see examples of code that interacts with Laravel's features via
"facades". Facades provide a "static" interface to classes that are available in the application's service container.

Laravel ships with many facades which provide access to almost all of Laravel's features.

Laravel facades serve as "static proxies" to underlying classes in the service container, providing the benefit of
a terse, expressive syntax while maintaining more testability and flexibility than traditional static methods. It's

perfectly fine if you don't totally understand how facades work - just go with the flow and continue learning

about Laravel.

All of Laravel's facades are defined in the 111uminate\Support\Facades namespace. So, we can easily access a

facade like so:

use Illuminate\Support\Facades\Cache;
use Illuminate\Support\Facades\Route;

Route::get('/cache', function () {
return Cache::get('key');
1)

Throughout the Laravel documentation, many of the examples will use facades to demonstrate various features

of the framework.

Helper Functions

To complement facades, Laravel offers a variety of global "helper functions" that make it even easier to interact
with common Laravel features. Some of the common helper functions you may interact with are view, response,
url, config, and more. Each helper function offered by Laravel is documented with their corresponding feature;

however, a complete list is available within the dedicated helper documentation.

For example, instead of using the 111uminate\support\Facades\Response facade to generate a JSON response,
we may simply use the response function. Because helper functions are globally available, you do not need to

import any classes in order to use them:
use Illuminate\Support\Facades\Response;

Route::get('/users', function () {
return Response::json([
/7 ...
1)
1)

Route::get('/users', function () {
return response()->json([
/7 ...
1)
1)

When to Utilize Facades

Facades have many benefits. They provide a terse, memorable syntax that allows you to use Laravel's features

Laravel Documentation - 10.x / Facades 62

without remembering long class names that must be injected or configured manually. Furthermore, because of
their unique usage of PHP's dynamic methods, they are easy to test.

However, some care must be taken when using facades. The primary danger of facades is class "scope creep".
Since facades are so easy to use and do not require injection, it can be easy to let your classes continue to grow
and use many facades in a single class. Using dependency injection, this potential is mitigated by the visual
feedback a large constructor gives you that your class is growing too large. So, when using facades, pay special
attention to the size of your class so that its scope of responsibility stays narrow. If your class is getting too
large, consider splitting it into multiple smaller classes.

Facades vs. Dependency Injection

One of the primary benefits of dependency injection is the ability to swap implementations of the injected class.
This is useful during testing since you can inject a mock or stub and assert that various methods were called on
the stub.

Typically, it would not be possible to mock or stub a truly static class method. However, since facades use
dynamic methods to proxy method calls to objects resolved from the service container, we actually can test
facades just as we would test an injected class instance. For example, given the following route:

use Illuminate\Support\Facades\Cache;

Route::get('/cache', function () {
return Cache::get('key');
1)

Using Laravel's facade testing methods, we can write the following test to verify that the cache: : get method
was called with the argument we expected:

use Illuminate\Support\Facades\Cache;

/**
* A basic functional test example.
*
/
public function test_basic_example(): void

{
Cache::shouldReceive('get')
->with('key')
->andReturn('value');

$response = $this->get('/cache');

$response->assertSee('value');

Facades vs. Helper Functions

In addition to facades, Laravel includes a variety of "helper" functions which can perform common tasks like
generating views, firing events, dispatching jobs, or sending HTTP responses. Many of these helper functions
perform the same function as a corresponding facade. For example, this facade call and helper call are
equivalent:

return Illuminate\Support\Facades\View: :make('profile');

return view('profile');

There is absolutely no practical difference between facades and helper functions. When using helper functions,
you may still test them exactly as you would the corresponding facade. For example, given the following route:

Route::get('/cache', function () {
return cache('key');

i

The cache helper is going to call the get method on the class underlying the cache facade. So, even though we
are using the helper function, we can write the following test to verify that the method was called with the
argument we expected:

use Illuminate\Support\Facades\Cache;

Laravel Documentation - 10.x / Facades 63

/**

* A basic functional test example.

*/
public function test_basic_example(): void
{

Cache: :shouldReceive('get')
->with('key')
->andReturn('value');

$response = $this->get('/cache');

$response->assertSee('value');

How Facades Work

In a Laravel application, a facade is a class that provides access to an object from the container. The machinery
that makes this work is in the Facade class. Laravel's facades, and any custom facades you create, will extend
the base 11luminate\Support\Facades\Facade class

The Facade base class makes use of the __callstatic() magic-method to defer calls from your facade to an
object resolved from the container. In the example below, a call is made to the Laravel cache system. By
glancing at this code, one might assume that the static get method is being called on the cache class:

<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;
use Illuminate\Support\Facades\Cache;

use Illuminate\View\View;

class UserController extends Controller

{
/**
* Show the profile for the given user.
*/
public function showProfile(string $id): View
{
$user = Cache::get('user:'.$id);
return view('profile', ['user' => $user]);
}
}

Notice that near the top of the file we are "importing" the cache facade. This facade serves as a proxy for
accessing the underlying implementation of the 111uminate\Contracts\Cache\Factory interface. Any calls we
make using the facade will be passed to the underlying instance of Laravel's cache service.

If we look at that 111uminate\Support\Facades\cache class, you'll see that there is no static method get:

class Cache extends Facade

{
/**
* Get the registered name of the component.
*/
protected static function getFacadeAccessor(): string
{
return 'cache';
}
}

Instead, the cache facade extends the base Facade class and defines the method getFacadeAccessor(). This
method's job is to return the name of a service container binding. When a user references any static method on
the cache facade, Laravel resolves the cache binding from the service container and runs the requested method
(in this case, get) against that object.

Real-Time Facades

Using real-time facades, you may treat any class in your application as if it was a facade. To illustrate how this

Laravel Documentation - 10.x / Facades 64

can be used, let's first examine some code that does not use real-time facades. For example, let's assume our
Podcast model has a publish method. However, in order to publish the podcast, we need to inject a Publisher
instance:

<?php
namespace App\Models;

use App\Contracts\Publisher;
use Illuminate\Database\Eloquent\Model;

class Podcast extends Model

{
/**
* Publish the podcast.
*/
public function publish(Publisher $publisher): void
$this->update(['publishing' => now()]);
$publisher->publish($this);
}
}

Injecting a publisher implementation into the method allows us to easily test the method in isolation since we
can mock the injected publisher. However, it requires us to always pass a publisher instance each time we call
the publish method. Using real-time facades, we can maintain the same testability while not being required to
explicitly pass a publisher instance. To generate a real-time facade, prefix the namespace of the imported class
with Facades:

<?php
namespace App\Models;

use App\Contracts\Publisher; // [tl! remove]
use Facades\App\Contracts\Publisher; // [tl! add]
use Illuminate\Database\Eloquent\Model;

class Podcast extends Model

{
/**
* Publish the podcast.
*/
public function publish(Publisher $publisher): void // [tl! remove]
public function publish(): void // [tl! add]

{
$this->update(['publishing' => now()]);

$publisher->publish($this); // [t1l! remove]
Publisher::publish($this); // [t1l! add]

}

When the real-time facade is used, the publisher implementation will be resolved out of the service container
using the portion of the interface or class name that appears after the Facades prefix. When testing, we can use
Laravel's built-in facade testing helpers to mock this method call:

<?php
namespace Tests\Feature;

use App\Models\Podcast;

use Facades\App\Contracts\Publisher;

use Illuminate\Foundation\Testing\RefreshDatabase;
use Tests\TestCase;

class PodcastTest extends TestCase

{

use RefreshDatabase;

/**
* A test example.
*/
public function test_podcast_can_be_published(): void

{

$podcast = Podcast::factory()->create();

Laravel Documentation - 10.x / Facades 65

Publisher: :shouldReceive('publish')->once()->with($podcast);
$podcast->publish();

}

Facade Class Reference

Below you will find every facade and its underlying class. This is a useful tool for quickly digging into the API
documentation for a given facade root. The service container binding key is also included where applicable.

Facade | Class | Service Container Binding | | App |
[Tluminate\Foundation\Application]

(https://laravel.com/api/{{version} }/Illuminate/Foundation/Application.html) | "app™ Artisan |
[Tlluminate\Contracts\Console\Kernel]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Console/Kernel.html) | “artisan™ Auth |
[Tluminate\Auth\AuthManager](https://laravel.com/api/{ {version} }/Illuminate/Auth/AuthManager.html) |
“auth™ Auth (Instance) | [Tluminate\Contracts\Auth\Guard]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Auth/Guard.html) | “auth.driver” Blade |
[Tluminate\View\Compilers\BladeCompiler]

(https://laravel.com/api/{{version} }/Illuminate/View/Compilers/BladeCompiler.html) | “blade.compiler”
Broadcast | [TIluminate\Contracts\Broadcasting\Factory]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Broadcasting/Factory.html) | Broadcast (Instance) |
[Tlluminate\Contracts\Broadcasting\Broadcaster]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Broadcasting/Broadcaster.html) | Bus |
[Tlluminate\Contracts\Bus\Dispatcher]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Bus/Dispatcher.html) | Cache |
[[Nluminate\Cache\CacheManager](https://laravel.com/api/{ { version} }/Illuminate/Cache/CacheManager.html) |
“cache” Cache (Instance) | [[lluminate\Cache\Repository]

(https://laravel.com/api/{{version} }/Illuminate/Cache/Repository.html) | “cache.store™ Config |
[luminate\Config\Repository](https://laravel.com/api/{ { version} }/Illuminate/Config/Repository.html) |
“config® Cookie | [Illuminate\Cookie\CookieJar]

(https://laravel.com/api/{{version} }/Illuminate/Cookie/CookieJar.html) | "cookie™ Crypt |
[[Nluminate\Encryption\Encrypter](https://laravel.com/api/{ { version} }/Illuminate/Encryption/Encrypter.html) |
“encrypter” Date | [[lluminate\Support\DateFactory]

(https://laravel.com/api/{{version} }/Illuminate/Support/DateFactory.html) | "date™ DB |
[[luminate\Database\DatabaseManager]

(https://laravel.com/api/{{version} }/Illuminate/Database/DatabaseManager.html) | "db™ DB (Instance) |
[luminate\Database\Connection](https://laravel.com/api/{ { version} }/Illuminate/Database/Connection.html) |
“db.connection” Event | [[lluminate\Events\Dispatcher]

(https://laravel.com/api/{{version} }/Illuminate/Events/Dispatcher.html) | "events™ File |
[[Mluminate\Filesystem\Filesystem](https://laravel.com/api/{ { version} }/Illuminate/Filesystem/Filesystem.html)
| “files™ Gate | [[lluminate\Contracts\Auth\Access\Gate]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Auth/Access/Gate.html) | Hash |
[[Mluminate\Contracts\Hashing\Hasher]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Hashing/Hasher.html) | *hash™ Http |
[(luminate\Http\Client\Factory](https://laravel.com/api/{ { version} }/Illuminate/Http/Client/Factory.html) |
Lang | [TIluminate\Translation\Translator]

(https://laravel.com/api/{{version} }/Illuminate/Translation/Translator.html) | “translator™ Log |
[MMuminate\Log\LogManager](https://laravel.com/api/{ {version} }/Illuminate/Log/LogManager.html) | "log
Mail | [Tlluminate\Mail\Mailer](https://laravel.com/api/{ { version} }/Illuminate/Mail/Mailer.html) | "mailer
Notification | [[lluminate\Notifications\ChannelManager]

(https://laravel.com/api/{ {version} }/Illuminate/Notifications/ChannelManager.html) | Password |
[Tlluminate\Auth\Passwords\PasswordBrokerManager]

(https://laravel.com/api/{{version} }/Illuminate/Auth/Passwords/PasswordBrokerManager.html) |
“auth.password” Password (Instance) | [Tlluminate\Auth\Passwords\PasswordBroker]
(https://laravel.com/api/{{version} }/Illuminate/Auth/Passwords/PasswordBroker.html) | “auth.password.broker
Pipeline (Instance) | [[lluminate\Pipeline\Pipeline]

(https://laravel.com/api/{{version} }/Illuminate/Pipeline/Pipeline.html) | Process | [[lluminate\Process\Factory]
(https://laravel.com/api/{{version} }/Illuminate/Process/Factory.html) | Queue |

Laravel Documentation - 10.x / Facades 66

[[luminate\Queue\QueueManager](https://laravel.com/api/{{version} }/Illuminate/Queue/QueueManager.html)
| "queue” Queue (Instance) | [[lluminate\Contracts\Queue\Queue]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Queue/Queue.html) | "queue.connection” Queue
(Base Class) | [lluminate\Queue\Queue](https://laravel.com/api/{ { version } }/Illuminate/Queue/Queue.html) |
RateLimiter | [Tlluminate\Cache\RateLimiter]

(https://laravel.com/api/{{version} }/Illuminate/Cache/RateLimiter.html) | Redirect |
[Tlluminate\Routing\Redirector](https://laravel.com/api/{ { version} }/Illuminate/Routing/Redirector.html) |
“redirect” Redis | [[lluminate\Redis\RedisManager]

(https://laravel.com/api/{{version} }/Illuminate/Redis/RedisManager.html) | ‘redis” Redis (Instance) |
[Tlluminate\Redis\Connections\Connection]

(https://laravel.com/api/{{version} }/Illuminate/Redis/Connections/Connection.html) | ‘redis.connection’
Request | [Illuminate\Http\Request](https://laravel.com/api/{ { version} }/Illuminate/Http/Request.html) |
‘request” Response | [Illuminate\Contracts\Routing\ResponseFactory]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Routing/ResponseFactory.html) | Response
(Instance) | [[lluminate\Http\Response](https://laravel.com/api/{ {version} }/Illuminate/Http/Response.html) |
Route | [Illuminate\Routing\Router](https://laravel.com/api/{ { version} }/Illuminate/Routing/Router.html) |
‘router” Schema | [[lluminate\Database\Schema\Builder]

(https://laravel.com/api/{{version} }/Illuminate/Database/Schema/Builder.html) | Session |
[Tlluminate\Session\SessionManager]

(https://laravel.com/api/{{version} }/Illuminate/Session/SessionManager.html) | “session” Session (Instance) |
[Tlluminate\Session\Store](https://laravel.com/api/{ { version} }/Illuminate/Session/Store.html) | “session.store
Storage | [Tlluminate\Filesystem\FilesystemManager]

(https://laravel.com/api/{{version} }/Illuminate/Filesystem/FilesystemManager.html) | “filesystem™ Storage
(Instance) | [Illuminate\Contracts\Filesystem\Filesystem]

(https://laravel.com/api/{{version} }/Illuminate/Contracts/Filesystem/Filesystem.html) | “filesystem.disk- URL |
[[Mluminate\Routing\UrlGenerator](https://laravel.com/api/{ { version } }/Illuminate/Routing/UrlGenerator.html) |
“url” Validator | [I1luminate\Validation\Factory]

(https://laravel.com/api/{{version} }/Illuminate/Validation/Factory.html) | *validator™ Validator (Instance) |
[Mluminate\Validation\Validator](https://laravel.com/api/{ {version} }/Illuminate/Validation/Validator.html) |
View | [[lluminate\View\Factory](https://laravel.com/api/{{version} }/Illuminate/View/Factory.html) | "view"
View (Instance) | [Illuminate\View\View](https://laravel.com/api/{{version} }/Illuminate/View/View.html) |
Vite | [Tlluminate\Foundation\Vite](https://laravel.com/api/{ { version } }/Illuminate/Foundation/Vite.html) |

Laravel Documentation - 10.x / The Basics 67

The Basics

Routing

e Basic Routing
o Redirect Routes

o View Routes
o The Route List
o Route Parameters
o Required Parameters
o Optional Parameters

o Regular Expression Constraints
Named Routes

Route Groups

o Middleware

o Controllers

o Subdomain Routing

o Route Prefixes

o Route Name Prefixes
¢ Route Model Binding

o Implicit Bindin

o Implicit Enum Bindin

o Explicit Bindin
Fallback Routes
Rate Limiting

o Defining Rate Limiters

o Attaching Rate Limiters to Routes
Form Method Spoofing
Accessing the Current Route
Cross-Origin Resource Sharing (CORS)
Route Caching

Basic Routing

The most basic Laravel routes accept a URI and a closure, providing a very simple and expressive method of
defining routes and behavior without complicated routing configuration files:

use Illuminate\Support\Facades\Route;

Route::get('/greeting', function () {
return 'Hello World';
1)

The Default Route Files

All Laravel routes are defined in your route files, which are located in the routes directory. These files are
automatically loaded by your application's App\Providers\RouteserviceProvider. The routes/web.php file defines
routes that are for your web interface. These routes are assigned the web middleware group, which provides
features like session state and CSRF protection. The routes in routes/api.php are stateless and are assigned the
api middleware group.

For most applications, you will begin by defining routes in your routes/web.php file. The routes defined in
routes/web.php may be accessed by entering the defined route's URL in your browser. For example, you may
access the following route by navigating to http://example.com/user in your browser:

use App\Http\Controllers\UserController;

Route::get('/user', [UserController::class, 'index']);

Routes defined in the routes/api.php file are nested within a route group by the routeserviceprovider. Within
this group, the /api URI prefix is automatically applied so you do not need to manually apply it to every route

Laravel Documentation - 10.x / The Basics 68

in the file. You may modify the prefix and other route group options by modifying your RouteservicepProvider
class.

Available Router Methods

The router allows you to register routes that respond to any HTTP verb:

Route::get($uri, $callback);
Route::post($uri, $callback);
Route::put($uri, $callback);
Route::patch($uri, $callback);
Route::delete($uri, $callback);
Route::options($uri, $callback);

Sometimes you may need to register a route that responds to multiple HTTP verbs. You may do so using the
match method. Or, you may even register a route that responds to all HTTP verbs using the any method:
Route::match(['get', 'post'], '/', function () {

/7.
H;

Route::any('/"', function () {
/7 ..
1)

['NOTE]

When defining multiple routes that share the same URI, routes using the get, post, put, patch, delete, and
options methods should be defined before routes using the any, match, and redirect methods. This ensures
the incoming request is matched with the correct route.

Dependency Injection

You may type-hint any dependencies required by your route in your route's callback signature. The declared
dependencies will automatically be resolved and injected into the callback by the Laravel service container. For
example, you may type-hint the 111uminate\Http\Request class to have the current HTTP request automatically
injected into your route callback:

use Illuminate\Http\Request;
Route::get('/users', function (Request $request) {

/7.
F

CSREF Protection

Remember, any HTML forms pointing to posT, PUT, PATCH, or DELETE routes that are defined in the web routes file
should include a CSRF token field. Otherwise, the request will be rejected. You can read more about CSRF
protection in the CSRF documentation:

<form method="POST" action="/profile">
@csrf

</form>
Redirect Routes
If you are defining a route that redirects to another URI, you may use the Route: :redirect method. This method

provides a convenient shortcut so that you do not have to define a full route or controller for performing a
simple redirect:

Route::redirect('/here', '/there');

By default, Route: :redirect returns a 3e2 status code. You may customize the status code using the optional
third parameter:

Route::redirect('/here', '/there', 301);

Laravel Documentation - 10.x / The Basics 69

Or, you may use the Route: :permanentRedirect method to return a 301 status code:

Route::permanentRedirect('/here', '/there');

['WARNING]
When using route parameters in redirect routes, the following parameters are reserved by Laravel and
cannot be used: destination and status.

View Routes

If your route only needs to return a view, you may use the Route: :view method. Like the redirect method, this
method provides a simple shortcut so that you do not have to define a full route or controller. The view method
accepts a URI as its first argument and a view name as its second argument. In addition, you may provide an
array of data to pass to the view as an optional third argument:

Route::view('/welcome', 'welcome');
Route::view('/welcome', 'welcome', ['name' => 'Taylor']);
['WARNING]

When using route parameters in view routes, the following parameters are reserved by Laravel and cannot
be used: view, data, status, and headers

The Route List

The route:1ist Artisan command can easily provide an overview of all of the routes that are defined by your
application:

php artisan route:list

By default, the route middleware that are assigned to each route will not be displayed in the route:1ist output;
however, you can instruct Laravel to display the route middleware and middleware group names by adding the
-v option to the command:

php artisan route:list -v

Expand middleware groups...
php artisan route:list -vv

You may also instruct Laravel to only show routes that begin with a given URI:
php artisan route:list --path=api

In addition, you may instruct Laravel to hide any routes that are defined by third-party packages by providing
the --except-vendor option when executing the route:1list command:

php artisan route:list --except-vendor

Likewise, you may also instruct Laravel to only show routes that are defined by third-party packages by
providing the --only-vendor option when executing the route:1list command:

php artisan route:list --only-vendor
Route Parameters

Required Parameters

Sometimes you will need to capture segments of the URI within your route. For example, you may need to
capture a user's ID from the URL. You may do so by defining route parameters:
Route::get('/user/{id}', function (string $id) {

return 'User '.$id;

i

You may define as many route parameters as required by your route:

Laravel Documentation - 10.x / The Basics 70

Route::get('/posts/{post}/comments/{comment}', function (string $postId, string $commentId) {
/7 ...

1

Route parameters are always encased within {} braces and should consist of alphabetic characters. Underscores
() are also acceptable within route parameter names. Route parameters are injected into route callbacks /
controllers based on their order - the names of the route callback / controller arguments do not matter.

Parameters and Dependency Injection

If your route has dependencies that you would like the Laravel service container to automatically inject into
your route's callback, you should list your route parameters after your dependencies:

use Illuminate\Http\Request;

Route::get('/user/{id}', function (Request $request, string $id) {
return 'User '.$id;
1)

Optional Parameters

Occasionally you may need to specify a route parameter that may not always be present in the URI. You may
do so by placing a » mark after the parameter name. Make sure to give the route's corresponding variable a
default value:

Route::get('/user/{name?}', function (?string $name = null) {
return $name;

F

Route::get('/user/{name?}', function (?string $name = 'John') {
return $name;

1)
Regular Expression Constraints

You may constrain the format of your route parameters using the where method on a route instance. The where
method accepts the name of the parameter and a regular expression defining how the parameter should be
constrained:

Route::get('/user/{name}', function (string $name) {
/7 ...
})->where('name', '[A-Za-z]+');

Route::get('/user/{id}', function (string $id) {
/7 ...
})->where('id', '[0-9]+');

Route::get('/user/{id}/{name}', function (string $id, string $name) {
/7.
})->where(['id' => '[0-9]+', 'name' => '[a-z]+']);

For convenience, some commonly used regular expression patterns have helper methods that allow you to
quickly add pattern constraints to your routes:

Route::get('/user/{id}/{name}', function (string $id, string $name) {
/7 ...
})->whereNumber ('id')->whereAlpha('name');

Route::get('/user/{name}', function (string $name) {
/7 ...
})->whereAlphaNumeric('name');

Route::get('/user/{id}', function (string $id) {
/7 ...
})->wheretuid('id");

Route::get('/user/{id}', function (string $id) {
//
})->whereulid('id");

Route::get('/category/{category}', function (string $category) {

Laravel Documentation - 10.x / The Basics 71

/7.
})->whereIn('category', ['movie', 'song',6 'painting']);
If the incoming request does not match the route pattern constraints, a 404 HTTP response will be returned.

Global Constraints

If you would like a route parameter to always be constrained by a given regular expression, you may use the
pattern method. You should define these patterns in the boot method of your
App\Providers\RouteServiceProvider class:

/**
* Define your route model bindings, pattern filters, etc.
*/

public function boot(): void

{

Route::pattern('id', '[0-9]+');
}

Once the pattern has been defined, it is automatically applied to all routes using that parameter name:
Route::get('/user/{id}"', function (string $id) {

// Only executed if {id} is numeric...

K

Encoded Forward Slashes

The Laravel routing component allows all characters except / to be present within route parameter values. You
must explicitly allow / to be part of your placeholder using a where condition regular expression:

Route::get('/search/{search}', function (string $search) {

return $search;
})->where('search', '.*');

[!WARNING]
Encoded forward slashes are only supported within the last route segment.

Named Routes

Named routes allow the convenient generation of URLs or redirects for specific routes. You may specify a
name for a route by chaining the name method onto the route definition:

Route::get('/user/profile', function () {
/7 ...
})->name('profile');

You may also specify route names for controller actions:
Route::get(
'/user/profile’,

[UserProfileController::class, 'show']
)->name('profile');

[!WARNING]
Route names should always be unique.

Generating URLs to Named Routes
Once you have assigned a name to a given route, you may use the route's name when generating URLSs or

redirects via Laravel's route and redirect helper functions:

// Generating URLS...
$url = route('profile');

// Generating Redirects...
return redirect()->route('profile');

return to_route('profile');

Laravel Documentation - 10.x / The Basics 72

If the named route defines parameters, you may pass the parameters as the second argument to the route
function. The given parameters will automatically be inserted into the generated URL in their correct positions:

Route::get('/user/{id}/profile', function (string $id) {
})->é;méi;profile');
$url = route('profile', ['id' => 1]);
If you pass additional parameters in the array, those key / value pairs will automatically be added to the
generated URL's query string:
Route::get('/user/{id}/profile', function (string $id) {
})->g;méi;profile');
$url = route('profile', ['id' => 1, 'photos' => 'yes']);
// /user/1/profile?photos=yes
[!NOTE]

Sometimes, you may wish to specify request-wide default values for URL parameters, such as the current
locale. To accomplish this, you may use the URL: : defaults method.

Inspecting the Current Route

If you would like to determine if the current request was routed to a given named route, you may use the named
method on a Route instance. For example, you may check the current route name from a route middleware:

use Closure;
use Illuminate\Http\Request;
use Symfony\Component\HttpFoundation\Response;

/**
* Handle an incoming request.
* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/

public function handle(Request $request, Closure $next): Response

{
if ($request->route()->named('profile')) {
/7 ..
}
return $next($request);
}

Route Groups

Route groups allow you to share route attributes, such as middleware, across a large number of routes without
needing to define those attributes on each individual route.

Nested groups attempt to intelligently "merge" attributes with their parent group. Middleware and where
conditions are merged while names and prefixes are appended. Namespace delimiters and slashes in URI
prefixes are automatically added where appropriate.

Middleware

To assign middleware to all routes within a group, you may use the middleware method before defining the
group. Middleware are executed in the order they are listed in the array:

Route::middleware(['first', 'second'])->group(function () {
Route::get('/', function () {
// Uses first & second middleware...

i

Route::get('/user/profile', function () {
// Uses first & second middleware...
1)
1)

Laravel Documentation - 10.x / The Basics 73

Controllers

If a group of routes all utilize the same controller, you may use the controller method to define the common
controller for all of the routes within the group. Then, when defining the routes, you only need to provide the
controller method that they invoke:

use App\Http\Controllers\OrderController;

Route::controller(OrderController::class)->group(function () {
Route::get('/orders/{id}', 'show');
Route::post('/orders', 'store');

1
Subdomain Routing

Route groups may also be used to handle subdomain routing. Subdomains may be assigned route parameters
just like route URIs, allowing you to capture a portion of the subdomain for usage in your route or controller.
The subdomain may be specified by calling the domain method before defining the group:

Route: :domain('{account}.example.com')->group(function () {
Route::get('user/{id}', function (string $account, string $id) {
/7 ..
)
)

['WARNING]

In order to ensure your subdomain routes are reachable, you should register subdomain routes before
registering root domain routes. This will prevent root domain routes from overwriting subdomain routes
which have the same URI path.

Route Prefixes

The prefix method may be used to prefix each route in the group with a given URI. For example, you may
want to prefix all route URIs within the group with admin:

Route::prefix('admin')->group(function () {
Route::get('/users', function () {
// Matches The "/admin/users" URL

K
F

Route Name Prefixes

The name method may be used to prefix each route name in the group with a given string. For example, you may
want to prefix the names of all of the routes in the group with admin. The given string is prefixed to the route
name exactly as it is specified, so we will be sure to provide the trailing . character in the prefix:

Route::name('admin.')->group(function () {
Route::get('/users', function () {
// Route assigned name "admin.users"...
})->name('users');

i

Route Model Binding

When injecting a model ID to a route or controller action, you will often query the database to retrieve the
model that corresponds to that ID. Laravel route model binding provides a convenient way to automatically
inject the model instances directly into your routes. For example, instead of injecting a user's ID, you can inject
the entire user model instance that matches the given ID.

Implicit Binding

Laravel automatically resolves Eloquent models defined in routes or controller actions whose type-hinted
variable names match a route segment name. For example:

Laravel Documentation - 10.x / The Basics 74

use App\Models\User;

Route::get('/users/{user}', function (User S$user) {
return $user->email;

DE

Since the suser variable is type-hinted as the App\Models\user Eloquent model and the variable name matches
the {user} URI segment, Laravel will automatically inject the model instance that has an ID matching the
corresponding value from the request URI. If a matching model instance is not found in the database, a 404
HTTP response will automatically be generated.

Of course, implicit binding is also possible when using controller methods. Again, note the {user} URI segment
matches the suser variable in the controller which contains an App\Models\user type-hint:

use App\Http\Controllers\UserController;
use App\Models\User;

// Route definition...
Route::get('/users/{user}', [UserController::class, 'show']);

// Controller method definition...
public function show(User $user)

{

return view('user.profile', ['user' => $user]);
}
Soft Deleted Models

Typically, implicit model binding will not retrieve models that have been soft deleted. However, you may
instruct the implicit binding to retrieve these models by chaining the withTrashed method onto your route's
definition:

use App\Models\User;

Route::get('/users/{user}', function (User $user) {
return $user->email;
})->withTrashed();

Customizing the Key

Sometimes you may wish to resolve Eloquent models using a column other than id. To do so, you may specify
the column in the route parameter definition:

use App\Models\Post;

Route::get('/posts/{post:slug}', function (Post $post) {
return $post;

F

If you would like model binding to always use a database column other than id when retrieving a given model
class, you may override the getRoutekeyName method on the Eloquent model:

/**
* Get the route key for the model.
*/
public function getRouteKeyName(): string

{
}

return 'slug';

Custom Keys and Scoping

When implicitly binding multiple Eloquent models in a single route definition, you may wish to scope the
second Eloquent model such that it must be a child of the previous Eloquent model. For example, consider this
route definition that retrieves a blog post by slug for a specific user:

use App\Models\Post;
use App\Models\User;

Route::get('/users/{user}/posts/{post:slug}', function (User $user, Post $post) {

Laravel Documentation - 10.x / The Basics 75

return $post;

1

When using a custom keyed implicit binding as a nested route parameter, Laravel will automatically scope the
query to retrieve the nested model by its parent using conventions to guess the relationship name on the parent.
In this case, it will be assumed that the user model has a relationship named posts (the plural form of the route
parameter name) which can be used to retrieve the post model.

If you wish, you may instruct Laravel to scope "child" bindings even when a custom key is not provided. To do
so, you may invoke the scopeBindings method when defining your route:

use App\Models\Post;
use App\Models\User;

Route::get('/users/{user}/posts/{post}', function (User $user, Post $post) {
return $post;
})->scopeBindings();

Or, you may instruct an entire group of route definitions to use scoped bindings:

Route: :scopeBindings()->group(function () {
Route::get('/users/{user}/posts/{post}', function (User $user, Post $post) {
return $post;
1)
1)

Similarly, you may explicitly instruct Laravel to not scope bindings by invoking the withoutScopedBindings
method:

Route::get('/users/{user}/posts/{post:slug}', function (User $user, Post $post) {
return $post;
})->withoutScopedBindings();

Customizing Missing Model Behavior

Typically, a 404 HTTP response will be generated if an implicitly bound model is not found. However, you may
customize this behavior by calling the missing method when defining your route. The missing method accepts a
closure that will be invoked if an implicitly bound model can not be found:

use App\Http\Controllers\LocationsController;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Redirect;

Route::get('/locations/{location:slug}', [LocationsController::class, 'show'])
->name('locations.view')
->missing(function (Request $request) {
return Redirect::route('locations.index');

;i
Implicit Enum Binding

PHP 8.1 introduced support for Enums. To complement this feature, Laravel allows you to type-hint a string-
backed Enum on your route definition and Laravel will only invoke the route if that route segment corresponds
to a valid Enum value. Otherwise, a 404 HTTP response will be returned automatically. For example, given the
following Enum:

<?php
namespace App\Enums;
enum Category: string

{

case Fruits
case People

'fruits';
'people’;

}

You may define a route that will only be invoked if the {category} route segment is fruits or people.
Otherwise, Laravel will return a 404 HTTP response:

use App\Enums\Category;

https://www.php.net/manual/en/language.enumerations.backed.php
https://www.php.net/manual/en/language.enumerations.backed.php

Laravel Documentation - 10.x / The Basics 76

use Illuminate\Support\Facades\Route;

Route::get('/categories/{category}', function (Category $category) {
return $category->value;

H;
Explicit Binding

You are not required to use Laravel's implicit, convention based model resolution in order to use model binding.
You can also explicitly define how route parameters correspond to models. To register an explicit binding, use
the router's model method to specify the class for a given parameter. You should define your explicit model
bindings at the beginning of the boot method of your RouteserviceProvider class:

use App\Models\User;
use Illuminate\Support\Facades\Route;

/**
* Define your route model bindings, pattern filters, etc.
*/

public function boot(): void

{

Route::model('user', User::class);

/7.
}

Next, define a route that contains a {user} parameter:

use App\Models\User;

Route::get('/users/{user}', function (User $user) {
/7 ..

F

Since we have bound all {user} parameters to the App\Models\user model, an instance of that class will be
injected into the route. So, for example, a request to users/1 will inject the user instance from the database
which has an ID of 1.

If a matching model instance is not found in the database, a 404 HTTP response will be automatically
generated.

Customizing the Resolution Logic

If you wish to define your own model binding resolution logic, you may use the rRoute: :bind method. The
closure you pass to the bind method will receive the value of the URI segment and should return the instance of
the class that should be injected into the route. Again, this customization should take place in the boot method
of your application's RouteServiceProvider:

use App\Models\User;
use Illuminate\Support\Facades\Route;

/**
* Define your route model bindings, pattern filters, etc.
*/

public function boot(): void

{

Route::bind('user', function (string $value) {
return User::where('name', $value)->firstOrFail();

i

/7
3

Alternatively, you may override the resolverouteBinding method on your Eloquent model. This method will
receive the value of the URI segment and should return the instance of the class that should be injected into the
route:

/**
* Retrieve the model for a bound value.

*

* @param mixed $value

Laravel Documentation - 10.x / The Basics 77

* @param string|null $field
* @return \Illuminate\Database\Eloquent\Model|null

*/
public function resolveRouteBinding($value, $field = null)
{
return $this->where('name', $value)->firstOrFail();
}

If a route is utilizing implicit binding scoping, the resolvechildrouteBinding method will be used to resolve the
child binding of the parent model:

/**

* Retrieve the child model for a bound value.

*

* @param string $childType

* @param mixed $value

* @param string|null $field

* @return \Illuminate\Database\Eloquent\Model|null

*/
public function resolveChildRouteBinding($childType, $value, $field)
{

}

return parent::resolveChildRouteBinding($childType, $value, $field);

Fallback Routes

Using the Route: : fallback method, you may define a route that will be executed when no other route matches
the incoming request. Typically, unhandled requests will automatically render a "404" page via your
application's exception handler. However, since you would typically define the fallback route within your
routes/web.php file, all middleware in the web middleware group will apply to the route. You are free to add
additional middleware to this route as needed:

Route::fallback(function () {
// ..
1)

[!WARNING]
The fallback route should always be the last route registered by your application.

Rate Limiting

Defining Rate Limiters

Laravel includes powerful and customizable rate limiting services that you may utilize to restrict the amount of
traffic for a given route or group of routes. To get started, you should define rate limiter configurations that
meet your application's needs.

Typically, rate limiters are defined within the boot method of your application's
App\Providers\RouteServiceProvider class. In fact, this class already includes a rate limiter definition that is
applied to the routes in your application's routes/api.php file:

use Illuminate\Cache\RateLimiting\Limit;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\RateLimiter;

/**
* Define your route model bindings, pattern filters, and other route configuration.
*/

protected function boot(): void

{
RateLimiter::for('api', function (Request $request) {
return Limit::perMinute(60)->by($request->user()?->id ?: $request->ip());
1)
/7 ...
}

Rate limiters are defined using the RateLimiter facade's for method. The for method accepts a rate limiter name
and a closure that returns the limit configuration that should apply to routes that are assigned to the rate limiter.

Laravel Documentation - 10.x / The Basics 78

Limit configuration are instances of the 111uminate\cache\RateLimiting\Limit class. This class contains helpful
"builder" methods so that you can quickly define your limit. The rate limiter name may be any string you wish:

use Illuminate\Cache\RateLimiting\Limit;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\RateLimiter;

/**
* Define your route model bindings, pattern filters, and other route configuration.
*/

protected function boot(): void

{
RateLimiter::for('global', function (Request $request) {
return Limit::perMinute(1000);
1)
/7 ...
}

If the incoming request exceeds the specified rate limit, a response with a 429 HTTP status code will
automatically be returned by Laravel. If you would like to define your own response that should be returned by
a rate limit, you may use the response method:

RateLimiter::for('global', function (Request $request) {
return Limit::perMinute(1000)->response(function (Request $request, array $headers) {
return response('Custom response...', 429, $headers);
1)
1)

Since rate limiter callbacks receive the incoming HTTP request instance, you may build the appropriate rate
limit dynamically based on the incoming request or authenticated user:

RateLimiter::for('uploads', function (Request $request) {
return $request->user()->vipCustomer()
? Limit::none()
: Limit::perMinute(100);
1)

Segmenting Rate Limits

Sometimes you may wish to segment rate limits by some arbitrary value. For example, you may wish to allow
users to access a given route 100 times per minute per IP address. To accomplish this, you may use the by
method when building your rate limit:

RateLimiter::for('uploads', function (Request $request) {
return $request->user()->vipCustomer()
? Limit::none()
: Limit::perMinute(100)->by($request->ip());
1)

To illustrate this feature using another example, we can limit access to the route to 100 times per minute per
authenticated user ID or 10 times per minute per IP address for guests:

RateLimiter::for('uploads', function (Request $request) {
return $request->user()
? Limit::perMinute(100)->by($request->user()->id)
: Limit::perMinute(10)->by($request->ip());
1)

Multiple Rate Limits

If needed, you may return an array of rate limits for a given rate limiter configuration. Each rate limit will be
evaluated for the route based on the order they are placed within the array:

RateLimiter::for('login', function (Request $request) {
return [
Limit: :perMinute(500),
Limit::perMinute(3)->by($request->input('email')),
1;
1)

Laravel Documentation - 10.x / The Basics 79

Attaching Rate Limiters to Routes

Rate limiters may be attached to routes or route groups using the throttle middleware. The throttle middleware
accepts the name of the rate limiter you wish to assign to the route:

Route::middleware(['throttle:uploads'])->group(function () {
Route::post('/audio', function () {

1)
Route::post('/video', function () {
1OF

1)

Throttling With Redis

Typically, the throttle middleware is mapped to the 111uminate\Routing\Middleware\ThrottleRequests class.
This mapping is defined in your application's HTTP kernel (app\Http\Kernel). However, if you are using Redis
as your application's cache driver, you may wish to change this mapping to use the
Illuminate\Routing\Middleware\ThrottleRequestswithRedis class. This class is more efficient at managing rate
limiting using Redis:

'throttle' => \Illuminate\Routing\Middleware\ThrottleRequestswWithRedis::class,

Form Method Spoofing

HTML forms do not support puT, PATCH, or DELETE actions. So, when defining puT, PATCH, or DELETE routes that
are called from an HTML form, you will need to add a hidden _method field to the form. The value sent with the
_method field will be used as the HTTP request method:

<form action="/example" method="POST">

<input type="hidden" name="_method" value="PUT">

<input type="hidden" name="_token" value="{{ csrf_token() }}">
</form>

For convenience, you may use the @method Blade directive to generate the _method input field:

<form action="/example" method="POST">
@method('PUT")
@csrf

</form>

Accessing the Current Route

You may use the current, currentRouteName, and currentRouteAction methods on the rRoute facade to access
information about the route handling the incoming request:

use Illuminate\Support\Facades\Route;

$route = Route::current(); // Illuminate\Routing\Route

$name = Route::currentRouteName(); // string
$action = Route::currentRouteAction(); // string

You may refer to the API documentation for both the underlying class of the Route facade and Route instance
to review all of the methods that are available on the router and route classes.

Cross-Origin Resource Sharing (CORS)

Laravel can automatically respond to CORS opt1ons HTTP requests with values that you configure. All CORS
settings may be configured in your application's config/cors.php configuration file. The opTIONS requests will
automatically be handled by the Handlecors middleware that is included by default in your global middleware
stack. Your global middleware stack is located in your application's HTTP kernel (App\Http\Kernel).

['NOTE]

https://laravel.com/api/{{version}}/Illuminate/Routing/Router.html
https://laravel.com/api/{{version}}/Illuminate/Routing/Route.html

Laravel Documentation - 10.x / The Basics 80

For more information on CORS and CORS headers, please consult the MDN web documentation on
CORS.

Route Caching

When deploying your application to production, you should take advantage of Laravel's route cache. Using the
route cache will drastically decrease the amount of time it takes to register all of your application's routes. To
generate a route cache, execute the route:cache Artisan command:

php artisan route:cache

After running this command, your cached routes file will be loaded on every request. Remember, if you add
any new routes you will need to generate a fresh route cache. Because of this, you should only run the
route:cache command during your project's deployment.

You may use the route:clear command to clear the route cache:

php artisan route:clear

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#The_HTTP_response_headers

Laravel Documentation - 10.x / Middleware 81

The Basics

Middleware

Introduction
Defining Middleware
Registering Middleware
o Global Middleware
o Assigning Middleware to Routes
o Middleware Groups
o Sorting Middleware
Middleware Parameters
Terminable Middleware

Introduction

Middleware provide a convenient mechanism for inspecting and filtering HTTP requests entering your
application. For example, Laravel includes a middleware that verifies the user of your application is
authenticated. If the user is not authenticated, the middleware will redirect the user to your application's login
screen. However, if the user is authenticated, the middleware will allow the request to proceed further into the
application.

Additional middleware can be written to perform a variety of tasks besides authentication. For example, a
logging middleware might log all incoming requests to your application. There are several middleware included
in the Laravel framework, including middleware for authentication and CSRF protection. All of these
middleware are located in the app/Http/mMiddleware directory.

Defining Middleware

To create a new middleware, use the make:middleware Artisan command:

php artisan make:middleware EnsureTokenIsValid

This command will place a new EnsureTokenIsvalid class within your app/Http/mMiddleware directory. In this
middleware, we will only allow access to the route if the supplied token input matches a specified value.
Otherwise, we will redirect the users back to the home URI:

<?php

namespace App\Http\Middleware;
use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class EnsureTokenIsvalid

{
/**
* Handle an incoming request.
* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next): Response
{
if ($request->input('token') !== 'my-secret-token') {
return redirect('home');
}
return $next($request);
}
}

As you can see, if the given token does not match our secret token, the middleware will return an HTTP redirect
to the client; otherwise, the request will be passed further into the application. To pass the request deeper into
the application (allowing the middleware to "pass"), you should call the $next callback with the $request.

Laravel Documentation - 10.x / Middleware 82

It's best to envision middleware as a series of "layers" HTTP requests must pass through before they hit your
application. Each layer can examine the request and even reject it entirely.

['NOTE]
All middleware are resolved via the service container, so you may type-hint any dependencies you need
within a middleware's constructor.

Middleware and Responses

Of course, a middleware can perform tasks before or after passing the request deeper into the application. For
example, the following middleware would perform some task before the request is handled by the application:
<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class BeforeMiddleware

{
public function handle(Request $request, Closure $next): Response
{
// Perform action
return $next($request);
}
}

However, this middleware would perform its task after the request is handled by the application:
<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class AfterMiddleware

{
public function handle(Request $request, Closure $next): Response
{
$response = $next($request);
// Perform action
return $response;
}
}

Registering Middleware

Global Middleware

If you want a middleware to run during every HTTP request to your application, list the middleware class in the
$middleware property of your app/Http/Kernel.php class.

Assigning Middleware to Routes

If you would like to assign middleware to specific routes, you may invoke the middleware method when
defining the route:

use App\Http\Middleware\Authenticate;

Route::get('/profile', function () {

/7 ...
})->middleware(Authenticate::class);

Laravel Documentation - 10.x / Middleware 83

You may assign multiple middleware to the route by passing an array of middleware names to the middleware
method:

Route::get('/', function () {
//

})->middleware([First::class, Second::class]);

For convenience, you may assign aliases to middleware in your application's app/Http/Kernel.php file. By
default, the $middlewareAliases property of this class contains entries for the middleware included with Laravel.
You may add your own middleware to this list and assign it an alias of your choosing:

// Within App\Http\Kernel class...

protected $middlewareAliases = [
'auth' => \App\Http\Middleware\Authenticate::class,
'auth.basic' => \Illuminate\Auth\Middleware\AuthenticatewWithBasicAuth::class,
'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,
'cache.headers' => \Illuminate\Http\Middleware\SetCacheHeaders::class,
'can' => \Illuminate\Auth\Middleware\Authorize::class,
'guest' => \App\Http\Middleware\RedirectIfAuthenticated: :class,
'signed' => \Illuminate\Routing\Middleware\ValidateSignature::class,
'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,
'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,

1;

Once the middleware alias has been defined in the HTTP kernel, you may use the alias when assigning
middleware to routes:

Route::get('/profile', function () {
/7 ...
})->middleware('auth');

Excluding Middleware

When assigning middleware to a group of routes, you may occasionally need to prevent the middleware from
being applied to an individual route within the group. You may accomplish this using the withoutMiddleware
method:

use App\Http\Middleware\EnsureTokenIsValid;

Route::middleware([EnsureTokenIsValid::class])->group(function () {
Route::get('/', function () {
/7 ...
1)

Route::get('/profile', function () {
/7 ...
})->withoutMiddleware([EnsureTokenIsvValid::class]);

;i
You may also exclude a given set of middleware from an entire group of route definitions:

use App\Http\Middleware\EnsureTokenIsValid;

Route::withoutMiddleware([EnsureTokenIsvValid::class])->group(function () {
Route::get('/profile', function () {
/7 ...
1)
1)

The withoutmiddleware method can only remove route middleware and does not apply to global middleware.

Middleware Groups

Sometimes you may want to group several middleware under a single key to make them easier to assign to
routes. You may accomplish this using the $middlewarecroups property of your HTTP kernel.

Laravel includes predefined web and api middleware groups that contain common middleware you may want to
apply to your web and API routes. Remember, these middleware groups are automatically applied by your
application's App\Providers\RouteServiceProvider service provider to routes within your corresponding web and

Laravel Documentation - 10.x / Middleware 84

api route files:

/**
* The application's route middleware groups.
*

* @var array
*/
protected $middlewareGroups = [
'web' => [

\App\Http\Middleware\EncryptCookies::class,
\Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse: :class,
\Illuminate\Session\Middleware\StartSession::class,
\Illuminate\View\Middleware\ShareErrorsFromSession::class,
\App\Http\Middleware\VerifyCsrfToken::class,
\Illuminate\Routing\Middleware\SubstituteBindings::class,

]7

'api' => [
\Illuminate\Routing\Middleware\ThrottleRequests::class.':api’,
\Illuminate\Routing\Middleware\SubstituteBindings::class,

]!

1;

Middleware groups may be assigned to routes and controller actions using the same syntax as individual
middleware. Again, middleware groups make it more convenient to assign many middleware to a route at once:

Route::get('/', function () {
/7 ...
})->middleware('web");

Route::middleware(['web'])->group(function () {
// ...
1)

[!NOTE]
Out of the box, the web and api middleware groups are automatically applied to your application's
corresponding routes/web.php and routes/api.php files by the App\Providers\RouteServiceProvider.

Sorting Middleware

Rarely, you may need your middleware to execute in a specific order but not have control over their order when
they are assigned to the route. In this case, you may specify your middleware priority using the
$middlewarePriority property of your app/Http/Kernel.php file. This property may not exist in your HTTP
kernel by default. If it does not exist, you may copy its default definition below:

/**
* The priority-sorted list of middleware.

*

* This forces non-global middleware to always be in the given order.

*

* @var string[]

*/

protected $middlewarePriority = [
\Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests::class,
\Illuminate\Cookie\Middleware\EncryptCookies::class,
\Illuminate\Session\Middleware\StartSession::class,
\Illuminate\View\Middleware\ShareErrorsFromSession::class,
\Illuminate\Contracts\Auth\Middleware\AuthenticatesRequests::class,
\Illuminate\Routing\Middleware\ThrottleRequests::class,
\Illuminate\Routing\Middleware\ThrottleRequestswWithRedis: :class,
\Illuminate\Contracts\Session\Middleware\AuthenticatesSessions::class,
\Illuminate\Routing\Middleware\SubstituteBindings::class,
\Illuminate\Auth\Middleware\Authorize::class,

1;
Middleware Parameters

Middleware can also receive additional parameters. For example, if your application needs to verify that the
authenticated user has a given "role" before performing a given action, you could create an EnsureuserHasRole
middleware that receives a role name as an additional argument.

Additional middleware parameters will be passed to the middleware after the $next argument:

Laravel Documentation - 10.x / Middleware

<?php
namespace App\Http\Middleware;

use Closure;
use Illuminate\Http\Request;
use Symfony\Component\HttpFoundation\Response;

class EnsureUserHasRole

{
VA

* Handle an incoming request.
*

* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next, string $role): Response

{
if (! $request->user()->hasRole($role)) {
// Redirect...
}

return $next($request);

}

Middleware parameters may be specified when defining the route by separating the middleware name and
parameters with a ::

Route::put('/post/{id}', function (string $id) {

/7 ...
})->middleware('role:editor');

Multiple parameters may be delimited by commas:
Route::put('/post/{id}', function (string $id) {

/7 ...
})->middleware('role:editor, publisher');

Terminable Middleware

Sometimes a middleware may need to do some work after the HTTP response has been sent to the browser. If
you define a terminate method on your middleware and your web server is using FastCGI, the terminate
method will automatically be called after the response is sent to the browser:

<?php

namespace Illuminate\Session\Middleware;
use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class TerminatingMiddleware

{
/**
* Handle an incoming request.
* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next): Response
{
return $next($request);
}
/**
* Handle tasks after the response has been sent to the browser.
*/
public function terminate(Request $request, Response $response): void
{
/7 ...
}
}

The terminate method should receive both the request and the response. Once you have defined a terminable

Laravel Documentation - 10.x / Middleware 86

middleware, you should add it to the list of routes or global middleware in the app/Http/kernel.php file.

When calling the terminate method on your middleware, Laravel will resolve a fresh instance of the
middleware from the service container. If you would like to use the same middleware instance when the handle
and terminate methods are called, register the middleware with the container using the container's singleton
method. Typically this should be done in the register method of your AppservicepProvider:
use App\Http\Middleware\TerminatingMiddleware;
/ * %

* Register any application services.

*/
public function register(): void

$this->app->singleton(TerminatingMiddleware: :class);

Laravel Documentation - 10.x / CSRF Protection 87

The Basics

CSRF Protection

Introduction

Preventing CSRF Requests
o Excluding URIs

X-CSRF-Token

X-XSRF-Token

Introduction

Cross-site request forgeries are a type of malicious exploit whereby unauthorized commands are performed on
behalf of an authenticated user. Thankfully, Laravel makes it easy to protect your application from cross-site

request forgery (CSRF) attacks.

An Explanation of the Vulnerability

In case you're not familiar with cross-site request forgeries, let's discuss an example of how this vulnerability
can be exploited. Imagine your application has a /user/email route that accepts a posT request to change the
authenticated user's email address. Most likely, this route expects an email input field to contain the email
address the user would like to begin using.

Without CSRF protection, a malicious website could create an HTML form that points to your application's
/user/email route and submits the malicious user's own email address:

<form action="https://your-application.com/user/email" method="POST">
<input type="email" value="malicious-email@example.com">
</form>

<script>
document.forms[0].submit();
</script>

If the malicious website automatically submits the form when the page is loaded, the malicious user only needs
to lure an unsuspecting user of your application to visit their website and their email address will be changed in
your application.

To prevent this vulnerability, we need to inspect every incoming PosT, PUT, PATCH, Or DELETE request for a secret
session value that the malicious application is unable to access.

Preventing CSRF Requests

Laravel automatically generates a CSRF "token" for each active user session managed by the application. This
token is used to verify that the authenticated user is the person actually making the requests to the application.
Since this token is stored in the user's session and changes each time the session is regenerated, a malicious
application is unable to access it.

The current session's CSRF token can be accessed via the request's session or via the csrf_token helper
function:

use Illuminate\Http\Request;

Route::get('/token', function (Request $request) {
$token = $request->session()->token();

$token = csrf_token();

/7 ...
i

Anytime you define a "POST", "PUT", "PATCH", or "DELETE" HTML form in your application, you should
include a hidden CSRF _token field in the form so that the CSRF protection middleware can validate the

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Laravel Documentation - 10.x / CSRF Protection 88

request. For convenience, you may use the @csrf Blade directive to generate the hidden token input field:

<form method="POST" action="/profile">

@csrf

<!-- Equivalent to... -->

<input type="hidden" name="_token" value="{{ csrf_token() }}" />
</form>

The App\Http\Middleware\VerifyCsrfToken middleware, which is included in the web middleware group by
default, will automatically verify that the token in the request input matches the token stored in the session.
When these two tokens match, we know that the authenticated user is the one initiating the request.

CSREF Tokens & SPAs

If you are building a SPA that is utilizing Laravel as an API backend, you should consult the Laravel Sanctum
documentation for information on authenticating with your API and protecting against CSRF vulnerabilities.

Excluding URIs From CSRF Protection

Sometimes you may wish to exclude a set of URIs from CSRF protection. For example, if you are using Stripe
to process payments and are utilizing their webhook system, you will need to exclude your Stripe webhook
handler route from CSRF protection since Stripe will not know what CSRF token to send to your routes.

Typically, you should place these kinds of routes outside of the web middleware group that the
App\Providers\RouteServiceProvider applies to all routes in the routes/web.php file. However, you may also
exclude the routes by adding their URIs to the sexcept property of the verifycsrfToken middleware:

<?php
namespace App\Http\Middleware;
use Illuminate\Foundation\Http\Middleware\VerifyCsrfToken as Middleware;

class VerifyCsrfToken extends Middleware

{
/**
* The URIs that should be excluded from CSRF verification.
* @var array
*/
protected $except = [
'stripe/*!',
'http://example.com/foo/bar’,
'http://example.com/foo/*"',
1;
}
['NOTE]

For convenience, the CSRF middleware is automatically disabled for all routes when running tests.

X-CSRF-TOKEN

In addition to checking for the CSRF token as a POST parameter, the App\Http\Middleware\VerifyCsrfToken
middleware will also check for the x-csrr-Token request header. You could, for example, store the token in an
HTML meta tag:

<meta name="csrf-token" content="{{ csrf_token() }}">

Then, you can instruct a library like jQuery to automatically add the token to all request headers. This provides
simple, convenient CSRF protection for your AJAX based applications using legacy JavaScript technology:
$.ajaxSetup({
headers: {
'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
}

i

https://stripe.com

Laravel Documentation - 10.x / CSRF Protection 89

X-XSRF-TOKEN

Laravel stores the current CSRF token in an encrypted xsrr-ToKeN cookie that is included with each response
generated by the framework. You can use the cookie value to set the x-xsrF-TokeN request header.

This cookie is primarily sent as a developer convenience since some JavaScript frameworks and libraries, like
Angular and Axios, automatically place its value in the x-xsrr-Token header on same-origin requests.

['NOTE]
By default, the resources/js/bootstrap.js file includes the Axios HTTP library which will automatically
send the x-xsrr-TokeNn header for you.

Laravel Documentation - 10.x / Controllers 90

The Basics

Controllers

o

o

Introduction
Writing Controllers

Basic Controllers
Single Action Controllers

Controller Middleware

Resource Controllers

o

0O O o 0o o o

o

Partial Resource Routes
Nested Resources

Naming Resource Routes

Naming Resource Route Parameters
Scoping Resource Routes
Localizing Resource URIs
Supplementing Resource Controllers
Singleton Resource Controllers

e Dependency Injection and Controllers

Introduction

Instead of defining all of your request handling logic as closures in your route files, you may wish to organize
this behavior using "controller" classes. Controllers can group related request handling logic into a single class.
For example, a usercontroller class might handle all incoming requests related to users, including showing,
creating, updating, and deleting users. By default, controllers are stored in the app/Http/controllers directory.

Writing Controllers

Basic Controllers

To quickly generate a new controller, you may run the make:controller Artisan command. By default, all of the
controllers for your application are stored in the app/Http/controllers directory:

php artisan make:controller UserController

Let's take a look at an example of a basic controller. A controller may have any number of public methods
which will respond to incoming HTTP requests:

<?php

namespace App\Http\Controllers;

use App\Models\User;
use Illuminate\View\View;

class UserController extends Controller

* Show the profile for a given user.

public function show(string $id): View

return view('user.profile', [

{
/**
*/
{
1);
}
}

'user' => User::findOrFail($id)

Once you have written a controller class and method, you may define a route to the controller method like so:

use App\Http\Controllers\UserController;

Route::get('/user/{id}', [UserController::class, 'show']);

Laravel Documentation - 10.x / Controllers 91

When an incoming request matches the specified route URI, the show method on the
App\Http\Controllers\Usercontroller class will be invoked and the route parameters will be passed to the
method.

['NOTE]
Controllers are not required to extend a base class. However, you will not have access to convenient
features such as the middleware and authorize methods.

Single Action Controllers

If a controller action is particularly complex, you might find it convenient to dedicate an entire controller class
to that single action. To accomplish this, you may define a single __invoke method within the controller:

<?php

namespace App\Http\Controllers;

class ProvisionServer extends Controller

{
/**
* Provision a new web server.
*
/
public function __invoke()
{
// ..
}
}

When registering routes for single action controllers, you do not need to specify a controller method. Instead,
you may simply pass the name of the controller to the router:

use App\Http\Controllers\ProvisionServer;

Route::post('/server', ProvisionServer::class);

You may generate an invokable controller by using the - -invokable option of the make:controller Artisan
command:

php artisan make:controller ProvisionServer --invokable

[INOTE]
Controller stubs may be customized using stub publishing.

Controller Middleware

Middleware may be assigned to the controller's routes in your route files:

Route::get('profile', [UserController::class, 'show'])->middleware('auth');

Or, you may find it convenient to specify middleware within your controller's constructor. Using the middleware
method within your controller's constructor, you can assign middleware to the controller's actions:

class UserController extends Controller

{
/**
* Instantiate a new controller instance.
*/
public function __construct()
{
$this->middleware('auth');
$this->middleware('log"')->only('index"');
$this->middleware('subscribed')->except('store');
}
}

Controllers also allow you to register middleware using a closure. This provides a convenient way to define an
inline middleware for a single controller without defining an entire middleware class:

use Closure;

Laravel Documentation - 10.x / Controllers 92

use Illuminate\Http\Request;

$this->middleware(function (Request $request, Closure $next) {
return $next($request);

1

Resource Controllers

If you think of each Eloquent model in your application as a "resource", it is typical to perform the same sets of
actions against each resource in your application. For example, imagine your application contains a Photo
model and a Movie model. It is likely that users can create, read, update, or delete these resources.

Because of this common use case, Laravel resource routing assigns the typical create, read, update, and delete
("CRUD") routes to a controller with a single line of code. To get started, we can use the make:controller
Artisan command's - -resource option to quickly create a controller to handle these actions:

php artisan make:controller PhotoController --resource

This command will generate a controller at app/Http/Controllers/PhotoController.php. The controller will
contain a method for each of the available resource operations. Next, you may register a resource route that
points to the controller:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class);

This single route declaration creates multiple routes to handle a variety of actions on the resource. The
generated controller will already have methods stubbed for each of these actions. Remember, you can always
get a quick overview of your application's routes by running the route:1ist Artisan command.

You may even register many resource controllers at once by passing an array to the resources method:

Route::resources([
'photos' => PhotoController::class,
'posts' => PostController::class,

1);

Actions Handled by Resource Controllers

Verb URI Action Route Name
GET /photos index photos.index
GET /photos/create create photos.create
POST /photos store photos.store
GET /photos/{photo} show photos.show
GET /photos/{photo}/edit edit photos.edit
PUT/PATCH /photos/{photo} update photos.update
DELETE /photos/{photo} destroy photos.destroy

Customizing Missing Model Behavior

Typically, a 404 HTTP response will be generated if an implicitly bound resource model is not found. However,
you may customize this behavior by calling the missing method when defining your resource route. The missing
method accepts a closure that will be invoked if an implicitly bound model can not be found for any of the
resource's routes:

use App\Http\Controllers\PhotoController;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Redirect;

Route::resource('photos', PhotoController::class)
->missing(function (Request $request) {
return Redirect::route('photos.index');

i

Laravel Documentation - 10.x / Controllers 93

Soft Deleted Models

Typically, implicit model binding will not retrieve models that have been soft deleted, and will instead return a
404 HTTP response. However, you can instruct the framework to allow soft deleted models by invoking the
withTrashed method when defining your resource route:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class)->withTrashed();

Calling withTrashed with no arguments will allow soft deleted models for the show, edit, and update resource
routes. You may specify a subset of these routes by passing an array to the withTrashed method:

Route::resource('photos', PhotoController::class)->withTrashed(['show']);
Specifying the Resource Model
If you are using route model binding and would like the resource controller's methods to type-hint a model

instance, you may use the --model option when generating the controller:

php artisan make:controller PhotoController --model=Photo --resource
Generating Form Requests
You may provide the --requests option when generating a resource controller to instruct Artisan to generate

form request classes for the controller's storage and update methods:

php artisan make:controller PhotoController --model=Photo --resource --requests
Partial Resource Routes

When declaring a resource route, you may specify a subset of actions the controller should handle instead of the
full set of default actions:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class)->only([
'index', 'show'

1)

Route::resource('photos', PhotoController::class)->except([

'create', 'store', 'update', 'destroy'

1);

API Resource Routes

When declaring resource routes that will be consumed by APIs, you will commonly want to exclude routes that
present HTML templates such as create and edit. For convenience, you may use the apiresource method to
automatically exclude these two routes:

use App\Http\Controllers\PhotoController;

Route::apiResource('photos', PhotoController::class);

You may register many API resource controllers at once by passing an array to the apirResources method:

use App\Http\Controllers\PhotoController;
use App\Http\Controllers\PostController;

Route::apiResources([
'photos' => PhotoController::class,
'posts' => PostController::class,

1);

To quickly generate an API resource controller that does not include the create or edit methods, use the --api
switch when executing the make:controller command:

Laravel Documentation - 10.x / Controllers 94

php artisan make:controller PhotoController --api

Nested Resources

Sometimes you may need to define routes to a nested resource. For example, a photo resource may have
multiple comments that may be attached to the photo. To nest the resource controllers, you may use "dot"
notation in your route declaration:

use App\Http\Controllers\PhotoCommentController;
Route::resource('photos.comments', PhotoCommentController::class);
This route will register a nested resource that may be accessed with URISs like the following:

/photos/{photo}/comments/{comment}
Scoping Nested Resources

Laravel's implicit model binding feature can automatically scope nested bindings such that the resolved child
model is confirmed to belong to the parent model. By using the scoped method when defining your nested
resource, you may enable automatic scoping as well as instruct Laravel which field the child resource should be
retrieved by. For more information on how to accomplish this, please see the documentation on scoping
resource routes.

Shallow Nesting

Often, it is not entirely necessary to have both the parent and the child IDs within a URI since the child ID is
already a unique identifier. When using unique identifiers such as auto-incrementing primary keys to identify
your models in URI segments, you may choose to use "shallow nesting":

use App\Http\Controllers\CommentController;

Route::resource('photos.comments', CommentController::class)->shallow();

This route definition will define the following routes:

Verb URI Action Route Name
GET /photos/{photo}/comments index photos.comments.index
GET /photos/{photo}/comments/create create photos.comments.create
POST /photos/{photo}/comments store photos.comments.store
GET /comments/{comment} show comments.show
GET /comments/{comment}/edit edit comments.edit
PUT/PATCH /comments/{comment} update comments.update
DELETE /comments/{comment} destroy comments.destroy

Naming Resource Routes

By default, all resource controller actions have a route name; however, you can override these names by
passing a names array with your desired route names:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class)->names([
'create' => 'photos.build'

1)
Naming Resource Route Parameters

By default, Route: : resource will create the route parameters for your resource routes based on the
"singularized" version of the resource name. You can easily override this on a per resource basis using the
parameters method. The array passed into the parameters method should be an associative array of resource
names and parameter names:

Laravel Documentation - 10.x / Controllers 95

use App\Http\Controllers\AdminUserController;
Route::resource('users', AdminUserController::class)->parameters([

'users' => 'admin_user'

1);

The example above generates the following URI for the resource's show route:

/users/{admin_user}
Scoping Resource Routes

Laravel's scoped implicit model binding feature can automatically scope nested bindings such that the resolved

child model is confirmed to belong to the parent model. By using the scoped method when defining your nested
resource, you may enable automatic scoping as well as instruct Laravel which field the child resource should be
retrieved by:

use App\Http\Controllers\PhotoCommentController;
Route::resource('photos.comments', PhotoCommentController::class)->scoped([

'comment' => 'slug',

1)
This route will register a scoped nested resource that may be accessed with URIs like the following:

/photos/{photo}/comments/{comment:slug}

When using a custom keyed implicit binding as a nested route parameter, Laravel will automatically scope the
query to retrieve the nested model by its parent using conventions to guess the relationship name on the parent.
In this case, it will be assumed that the Photo model has a relationship named comments (the plural of the route
parameter name) which can be used to retrieve the comment model.

Localizing Resource URIs

By default, Route: : resource will create resource URIs using English verbs and plural rules. If you need to
localize the create and edit action verbs, you may use the Route: : resourceverbs method. This may be done at
the beginning of the boot method within your application's App\Providers\RouteServiceProvider:

/**
* Define your route model bindings, pattern filters, etc.
*/

public function boot(): void

{

Route: :resourceVerbs([
'create' => 'crear',
'edit' => 'editar',

1);

/7.
Y

Laravel's pluralizer supports several different languages which you may configure based on your needs. Once
the verbs and pluralization language have been customized, a resource route registration such as
Route: :resource('publicacion', PublicacionController::class) will produce the following URIs

/publicacion/crear

/publicacion/{publicaciones}/editar

Supplementing Resource Controllers

If you need to add additional routes to a resource controller beyond the default set of resource routes, you
should define those routes before your call to the Route: : resource method; otherwise, the routes defined by the
resource method may unintentionally take precedence over your supplemental routes:

use App\Http\Controller\PhotoController;

Route::get('/photos/popular', [PhotoController::class, 'popular']);

Laravel Documentation - 10.x / Controllers 96

Route::resource('photos', PhotoController::class);

['NOTE]
Remember to keep your controllers focused. If you find yourself routinely needing methods outside of the
typical set of resource actions, consider splitting your controller into two, smaller controllers.

Singleton Resource Controllers

Sometimes, your application will have resources that may only have a single instance. For example, a user's
"profile" can be edited or updated, but a user may not have more than one "profile". Likewise, an image may
have a single "thumbnail". These resources are called "singleton resources", meaning one and only one instance
of the resource may exist. In these scenarios, you may register a "singleton" resource controller:

use App\Http\Controllers\ProfileController;
use Illuminate\Support\Facades\Route;

Route::singleton('profile', ProfileController::class);
The singleton resource definition above will register the following routes. As you can see, "creation" routes are

not registered for singleton resources, and the registered routes do not accept an identifier since only one
instance of the resource may exist:

Verb URI Action Route Name
GET /profile show profile.show
GET /profile/edit edit profile.edit
PUT/PATCH /profile update profile.update

Singleton resources may also be nested within a standard resource:

Route::singleton('photos.thumbnail', ThumbnailController::class);

In this example, the photos resource would receive all of the standard resource routes; however, the thumbnail
resource would be a singleton resource with the following routes:

Verb URI Action Route Name
GET /photos/{photo}/thumbnail show photos.thumbnail.show
GET /photos/{photo}/thumbnail/edit edit photos.thumbnail.edit
PUT/PATCH /photos/{photo}/thumbnail update photos.thumbnail.update

Creatable Singleton Resources

Occasionally, you may want to define creation and storage routes for a singleton resource. To accomplish this,
you may invoke the creatable method when registering the singleton resource route:

Route::singleton('photos.thumbnail', ThumbnailController::class)->creatable();

In this example, the following routes will be registered. As you can see, a bELETE route will also be registered
for creatable singleton resources:

Verb URI Action Route Name
GET /photos/{photo}/thumbnail/create create photos.thumbnail.create
POST /photos/{photo}/thumbnail store photos.thumbnail.store
GET /photos/{photo}/thumbnail show photos.thumbnail.show
GET /photos/{photo}/thumbnail/edit edit photos.thumbnail.edit
PUT/PATCH /photos/{photo}/thumbnail update photos.thumbnail.update
DELETE /photos/{photo}/thumbnail destroy photos.thumbnail.destroy

If you would like Laravel to register the peLETE route for a singleton resource but not register the creation or
storage routes, you may utilize the destroyable method:

Route::singleton(...)->destroyable();

Laravel Documentation - 10.x / Controllers 97

API Singleton Resources
The apisingleton method may be used to register a singleton resource that will be manipulated via an API, thus
rendering the create and edit routes unnecessary:

Route::apiSingleton('profile', ProfileController::class);

Of course, API singleton resources may also be creatable, which will register store and destroy routes for the
resource:

Route::apiSingleton('photos.thumbnail', ProfileController::class)->creatable();

Dependency Injection and Controllers
Constructor Injection

The Laravel service container is used to resolve all Laravel controllers. As a result, you are able to type-hint
any dependencies your controller may need in its constructor. The declared dependencies will automatically be
resolved and injected into the controller instance:

<?php
namespace App\Http\Controllers;
use App\Repositories\UserRepository;

class UserController extends Controller

{
/**
* Create a new controller instance.
*
/
public function __construct(
protected UserRepository $users,
) {3
}

Method Injection

In addition to constructor injection, you may also type-hint dependencies on your controller's methods. A
common use-case for method injection is injecting the 111uminate\Http\Request instance into your controller
methods:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;

class UserController extends Controller

{
/**
* Store a new user.
*/
public function store(Request $request): RedirectResponse
{
$name = $request->name;
// Store the user...
return redirect('/users');
}
}

If your controller method is also expecting input from a route parameter, list your route arguments after your
other dependencies. For example, if your route is defined like so:

use App\Http\Controllers\UserController;

Route::put('/user/{id}', [UserController::class, 'update']);

Laravel Documentation - 10.x / Controllers

You may still type-hint the 111uminate\Http\Request and access your id parameter by defining your controller
method as follows:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;

class UserController extends Controller

{
/**
* Update the given user.
*/
public function update(Request $request, string $id): RedirectResponse

// Update the user...

return redirect('/users');

Laravel Documentation - 10.x / Requests

The Basics

HTTP Requests

Introduction
Interacting With The Request

o Accessing the Request
o Request Path, Host, and Method

Request Headers
Request IP Address

Content Negotiation
PSR-7 Requests

o O o o

¢ Input

Retrieving Input

Input Presence

Merging Additional Input
Old Input

Cookies

Input Trimming and Normalization

»® o0 o o o o o

e File

o Retrieving Uploaded Files

o Storing Uploaded Files
Configuring Trusted Proxies
Configuring Trusted Hosts

Introduction

Laravel's 111uminate\Http\Request class provides an object-oriented way to interact with the current HTTP
request being handled by your application as well as retrieve the input, cookies, and files that were submitted
with the request.

Interacting With The Request

Accessing the Request

To obtain an instance of the current HTTP request via dependency injection, you should type-hint the
Illuminate\Http\Request class on your route closure or controller method. The incoming request instance will
automatically be injected by the Laravel service container:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;

class UserController extends Controller

{
/**
* Store a new user.
*/
public function store(Request $request): RedirectResponse
{
$name = $request->input('name');
// Store the user...
return redirect('/users');
}
}

As mentioned, you may also type-hint the 111uminate\Http\Request class on a route closure. The service
container will automatically inject the incoming request into the closure when it is executed:

99

Laravel Documentation - 10.x / Requests 100

use Illuminate\Http\Request;
Route::get('/', function (Request $request) {
/7.
1)
Dependency Injection and Route Parameters
If your controller method is also expecting input from a route parameter you should list your route parameters
after your other dependencies. For example, if your route is defined like so:

use App\Http\Controllers\UserController;

Route::put('/user/{id}', [UserController::class, 'update']);

You may still type-hint the 111uminate\Http\Request and access your id route parameter by defining your
controller method as follows:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;

class UserController extends Controller

{
/**
* Update the specified user.
*
/
public function update(Request $request, string $id): RedirectResponse
// Update the user...
return redirect('/users');
}
}

Request Path, Host, and Method

The 111uminate\Http\Request instance provides a variety of methods for examining the incoming HTTP request
and extends the symfony\Component\HttpFoundation\Request class. We will discuss a few of the most important
methods below.

Retrieving the Request Path

The path method returns the request's path information. So, if the incoming request is targeted at
http://example.com/foo/bar, the path method will return foo/bar:

$uri = $request->path();
Inspecting the Request Path / Route

The is method allows you to verify that the incoming request path matches a given pattern. You may use the *
character as a wildcard when utilizing this method:
if ($request->is('admin/*")) {
/7
}
Using the routers method, you may determine if the incoming request has matched a named route:

if ($request->routeIs('admin.*')) {
/7 ..
}

Retrieving the Request URL

Laravel Documentation - 10.x / Requests 101

To retrieve the full URL for the incoming request you may use the url or fullurl methods. The url method will
return the URL without the query string, while the fullurl method includes the query string:

$url = $request->url();

$urlwithQueryString = $request->fullurl();

If you would like to append query string data to the current URL, you may call the fullurlwithquery method.
This method merges the given array of query string variables with the current query string:

$request->fullUrlwithQuery(['type' => 'phone']);

If you would like to get the current URL without a given query string parameter, you may utilize the
fullUrlwithoutQuery method:

$request->fullUrlwithoutQuery(['type']);
Retrieving the Request Host

You may retrieve the "host" of the incoming request via the host, httpHost, and schemeAndHt tpHost methods:
$request->host();

$request->httpHost();
$request->schemeAndHttpHost();

Retrieving the Request Method
The method method will return the HTTP verb for the request. You may use the isMethod method to verify that
the HTTP verb matches a given string:

$method = $request->method();

if ($request->isMethod('post')) {
/7 ...
}

Request Headers

You may retrieve a request header from the 111uminate\Http\Request instance using the header method. If the
header is not present on the request, nu1l will be returned. However, the header method accepts an optional
second argument that will be returned if the header is not present on the request:

$value = $request->header('X-Header-Name');

$value = $request->header('X-Header-Name', 'default');

The hasHeader method may be used to determine if the request contains a given header:
if ($request->hasHeader('X-Header-Name')) {

V72
H

For convenience, the bearerToken method may be used to retrieve a bearer token from the Authorization header.
If no such header is present, an empty string will be returned:

$token = $request->bearerToken();

Request IP Address

The ip method may be used to retrieve the IP address of the client that made the request to your application:

$ipAddress = $request->ip();

If you would like to retrieve an array of IP addresses, including all of the client IP addesses that were forwarded
by proxies, you may use the ips method. The "original" client IP address will be at the end of the array:

$ipAddresses = $request->ips();

Laravel Documentation - 10.x / Requests 102

In general, IP addresses should be considered untrusted, user-controlled input and be used for informational
purposes only.

Content Negotiation

Laravel provides several methods for inspecting the incoming request's requested content types via the Accept
header. First, the getAcceptablecontentTypes method will return an array containing all of the content types
accepted by the request:

$contentTypes = $request->getAcceptableContentTypes();

The accepts method accepts an array of content types and returns true if any of the content types are accepted
by the request. Otherwise, false will be returned:

if ($request->accepts(['text/html', 'application/json'])) {
/7 ..
}

You may use the prefers method to determine which content type out of a given array of content types is most
preferred by the request. If none of the provided content types are accepted by the request, nu1l will be
returned:

$preferred = $request->prefers(['text/html', 'application/json']);

Since many applications only serve HTML or JSON, you may use the expectsison method to quickly determine
if the incoming request expects a JSON response:

if ($request->expectsdson()) {
/7 ..
}

PSR-7 Requests

The PSR-7 standard specifies interfaces for HTTP messages, including requests and responses. If you would
like to obtain an instance of a PSR-7 request instead of a Laravel request, you will first need to install a few
libraries. Laravel uses the Symfony HTTP Message Bridge component to convert typical Laravel requests and
responses into PSR-7 compatible implementations:

composer require symfony/psr-http-message-bridge
composer require nyholm/psr7

Once you have installed these libraries, you may obtain a PSR-7 request by type-hinting the request interface
on your route closure or controller method:

use Psr\Http\Message\ServerRequestInterface;

Route::get('/', function (ServerRequestInterface $request) {
/7 ...

K

[INOTE]
If you return a PSR-7 response instance from a route or controller, it will automatically be converted back
to a Laravel response instance and be displayed by the framework.

Input
Retrieving Input
Retrieving All Input Data

You may retrieve all of the incoming request's input data as an array using the a11 method. This method may be
used regardless of whether the incoming request is from an HTML form or is an XHR request:

$input = $request->all();

https://www.php-fig.org/psr/psr-7/

Laravel Documentation - 10.x / Requests 103

Using the collect method, you may retrieve all of the incoming request's input data as a collection:
$input = $request->collect();
The collect method also allows you to retrieve a subset of the incoming request's input as a collection:

$request->collect('users')->each(function (string $user) {
//
1)

Retrieving an Input Value

Using a few simple methods, you may access all of the user input from your 111luminate\Http\Request instance
without worrying about which HTTP verb was used for the request. Regardless of the HTTP verb, the input
method may be used to retrieve user input:

$name = $request->input('name');

You may pass a default value as the second argument to the input method. This value will be returned if the
requested input value is not present on the request:

$name = $request->input('name', 'Sally');
When working with forms that contain array inputs, use "dot" notation to access the arrays:
$name = $request->input('products.@.name');

$names = $request->input('products.*.name');

You may call the input method without any arguments in order to retrieve all of the input values as an
associative array:

$input = $request->input();
Retrieving Input From the Query String

While the input method retrieves values from the entire request payload (including the query string), the query
method will only retrieve values from the query string:

$name = $request->query('name');
If the requested query string value data is not present, the second argument to this method will be returned:

$name = $request->query('name', 'Helen');

You may call the query method without any arguments in order to retrieve all of the query string values as an
associative array:

$query = $request->query();
Retrieving JSON Input Values
When sending JSON requests to your application, you may access the JSON data via the input method as long

as the content-Type header of the request is properly set to application/json. You may even use "dot" syntax to
retrieve values that are nested within JSON arrays / objects:

$name = $request->input('user.name');
Retrieving Stringable Input Values

Instead of retrieving the request's input data as a primitive string, you may use the string method to retrieve
the request data as an instance of 11luminate\Support\Stringable:

$name = $request->string('name')->trim();

Laravel Documentation - 10.x / Requests 104

Retrieving Boolean Input Values

When dealing with HTML elements like checkboxes, your application may receive "truthy" values that are
actually strings. For example, "true" or "on". For convenience, you may use the boolean method to retrieve

these values as booleans. The boolean method returns true for 1, "1", true, "true", "on", and "yes". All other
values will return false:

$archived = $request->boolean('archived');
Retrieving Date Input Values

For convenience, input values containing dates / times may be retrieved as Carbon instances using the date
method. If the request does not contain an input value with the given name, nu11 will be returned:

$birthday = $request->date('birthday');

The second and third arguments accepted by the date method may be used to specify the date's format and
timezone, respectively:

$elapsed = $request->date('elapsed', '!H:i', 'Europe/Madrid');

If the input value is present but has an invalid format, an 1nvalidArgumentException will be thrown; therefore, it
is recommended that you validate the input before invoking the date method.

Retrieving Enum Input Values

Input values that correspond to PHP enums may also be retrieved from the request. If the request does not
contain an input value with the given name or the enum does not have a backing value that matches the input
value, nu11 will be returned. The enum method accepts the name of the input value and the enum class as its first
and second arguments:

use App\Enums\Status;

$status = $request->enum('status', Status::class);
Retrieving Input via Dynamic Properties

You may also access user input using dynamic properties on the 111uminate\Http\Request instance. For
example, if one of your application's forms contains a name field, you may access the value of the field like so:

$name = $request->name;

When using dynamic properties, Laravel will first look for the parameter's value in the request payload. If it is
not present, Laravel will search for the field in the matched route's parameters.

Retrieving a Portion of the Input Data

If you need to retrieve a subset of the input data, you may use the only and except methods. Both of these
methods accept a single array or a dynamic list of arguments:

$input = $request->only(['username', 'password']);

$input = $request->only('username', 'password');

$input = $request->except(['credit_card']);

$input = $request->except('credit_card');

['WARNING]
The on1ly method returns all of the key / value pairs that you request; however, it will not return key / value
pairs that are not present on the request.

Input Presence

https://www.php.net/manual/en/language.types.enumerations.php

Laravel Documentation - 10.x / Requests 105

You may use the has method to determine if a value is present on the request. The has method returns true if the
value is present on the request:

if ($request->has('name')) {
//
}

When given an array, the has method will determine if all of the specified values are present:

if ($request->has(['name', 'email'])) {
/7 ...
}

The hasany method returns true if any of the specified values are present:

if ($request->hasAny(['name', 'email'])) {
/7 ...
}

The whenHas method will execute the given closure if a value is present on the request:

$request->whenHas('name', function (string $input) {
/7 ...
1)

A second closure may be passed to the whenHas method that will be executed if the specified value is not present
on the request:

$request->whenHas('name', function (string $input) {
// The "name" value is present...

}, function () {
// The "name" value is not present...

F

If you would like to determine if a value is present on the request and is not an empty string, you may use the
filled method:

if ($request->filled('name')) {
/7 ..
}

The anyFilled method returns true if any of the specified values is not an empty string:

if ($request->anyFilled(['name', 'email'])) {
/7 ..
}

The whenrilled method will execute the given closure if a value is present on the request and is not an empty
string:

$request->whenFilled('name', function (string $input) {
/7 ...
1)

A second closure may be passed to the whenFilled method that will be executed if the specified value is not
"filled":

$request->whenFilled('name', function (string $input) {
// The "name" value is filled...

}, function () {
// The "name" value is not filled...

1
To determine if a given key is absent from the request, you may use the missing and whenMissing methods:

if ($request->missing('name')) {
/7 ..
}

$request->whenMissing('name', function (array $input) {
// The "name" value is missing...

}, function () {
// The "name" value is present...

Laravel Documentation - 10.x / Requests 106

i
Merging Additional Input

Sometimes you may need to manually merge additional input into the request's existing input data. To
accomplish this, you may use the merge method. If a given input key already exists on the request, it will be
overwritten by the data provided to the merge method:

$request->merge(['votes' => 0]);

The merge1fMissing method may be used to merge input into the request if the corresponding keys do not
already exist within the request's input data:

$request->mergeIfMissing(['votes' => 0]);

Old Input

Laravel allows you to keep input from one request during the next request. This feature is particularly useful for
re-populating forms after detecting validation errors. However, if you are using Laravel's included validation
features, it is possible that you will not need to manually use these session input flashing methods directly, as
some of Laravel's built-in validation facilities will call them automatically.

Flashing Input to the Session

The f1ash method on the 111uminate\Http\Request class will flash the current input to the session so that it is
available during the user's next request to the application:

$request->flash();

You may also use the flashonly and flashexcept methods to flash a subset of the request data to the session.
These methods are useful for keeping sensitive information such as passwords out of the session:

$request->flashOnly(['username', 'email']);

$request->flashExcept('password');

Flashing Input Then Redirecting

Since you often will want to flash input to the session and then redirect to the previous page, you may easily
chain input flashing onto a redirect using the withinput method:

return redirect('form')->withInput();

return redirect()->route('user.create')->withInput();

return redirect('form')->withInput(

$request->except('password')

)i
Retrieving Old Input

To retrieve flashed input from the previous request, invoke the o1d method on an instance of
Illuminate\Http\Request. The o1d method will pull the previously flashed input data from the session:

$username = $request->o0ld('username');

Laravel also provides a global o1d helper. If you are displaying old input within a Blade template, it is more
convenient to use the o1d helper to repopulate the form. If no old input exists for the given field, nu11 will be
returned:

<input type="text" name="username" value="{{ old('username') }}">

Cookies

Laravel Documentation - 10.x / Requests 107

Retrieving Cookies From Requests

All cookies created by the Laravel framework are encrypted and signed with an authentication code, meaning
they will be considered invalid if they have been changed by the client. To retrieve a cookie value from the
request, use the cookie method on an 11luminate\Http\Request instance:

$value = $request->cookie('name');

Input Trimming and Normalization

By default, Laravel includes the App\Http\Middleware\Trimstrings and
Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull middleware in your application‘s global
middleware stack. These middleware are listed in the global middleware stack by the App\Http\Kernel class.
These middleware will automatically trim all incoming string fields on the request, as well as convert any
empty string fields to null. This allows you to not have to worry about these normalization concerns in your
routes and controllers.

Disabling Input Normalization

If you would like to disable this behavior for all requests, you may remove the two middleware from your
application's middleware stack by removing them from the $middleware property of your App\Http\Kernel class.

If you would like to disable string trimming and empty string conversion for a subset of requests to your
application, you may use the skipwhen method offered by both middleware. This method accepts a closure
which should return true or false to indicate if input normalization should be skipped. Typically, the skipwhen
method should be invoked in the boot method of your application's AppservicepProvider.

use App\Http\Middleware\TrimStrings;
use Illuminate\Http\Request;
use Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull;

/**
* Bootstrap any application services.
*/

public function boot(): void

{

TrimStrings::skipWhen(function (Request $request) {
return $request->is('admin/*");

1)
ConvertEmptyStringsToNull::skipWhen(function (Request $request) {
/7 ...
1)
}
Files

Retrieving Uploaded Files

You may retrieve uploaded files from an 111uminate\Http\Request instance using the file method or using
dynamic properties. The file method returns an instance of the 111uminate\Http\UploadedFile class, which
extends the PHP splrileinfo class and provides a variety of methods for interacting with the file:

$file = $request->file('photo');

$file = $request->photo;

You may determine if a file is present on the request using the hasrile method:

if ($request->hasFile('photo')) {
/7 ...
}

Validating Successful Uploads

Laravel Documentation - 10.x / Requests 108

In addition to checking if the file is present, you may verify that there were no problems uploading the file via
the isvalid method:

if ($request->file('photo')->isvalid()) {
/7 ...
}

File Paths and Extensions

The uploadedFile class also contains methods for accessing the file's fully-qualified path and its extension. The
extension method will attempt to guess the file's extension based on its contents. This extension may be
different from the extension that was supplied by the client:

$path = $request->photo->path();

$extension = $request->photo->extension();
Other File Methods

There are a variety of other methods available on uploadedrile instances. Check out the API documentation for
the class for more information regarding these methods.

Storing Uploaded Files

To store an uploaded file, you will typically use one of your configured filesystems. The uploadedrile class has
a store method that will move an uploaded file to one of your disks, which may be a location on your local
filesystem or a cloud storage location like Amazon S3.

The store method accepts the path where the file should be stored relative to the filesystem's configured root
directory. This path should not contain a filename, since a unique ID will automatically be generated to serve as
the filename.

The store method also accepts an optional second argument for the name of the disk that should be used to
store the file. The method will return the path of the file relative to the disk's root:

$path = $request->photo->store('images');

$path = $request->photo->store('images', 's3');

If you do not want a filename to be automatically generated, you may use the storeas method, which accepts
the path, filename, and disk name as its arguments:

$path = $request->photo->storeAs('images', 'filename.jpg');
$path = $request->photo->storeAs('images', 'filename.jpg', 's3');
[!NOTE]

For more information about file storage in Laravel, check out the complete file storage documentation.

Configuring Trusted Proxies

When running your applications behind a load balancer that terminates TLS / SSL certificates, you may notice
your application sometimes does not generate HTTPS links when using the ur1 helper. Typically this is because
your application is being forwarded traffic from your load balancer on port 80 and does not know it should
generate secure links.

To solve this, you may use the App\Http\Middleware\TrustProxies middleware that is included in your Laravel
application, which allows you to quickly customize the load balancers or proxies that should be trusted by your
application. Your trusted proxies should be listed as an array on the sproxies property of this middleware. In
addition to configuring the trusted proxies, you may configure the proxy sheaders that should be trusted:

<?php

namespace App\Http\Middleware;

https://github.com/symfony/symfony/blob/6.0/src/Symfony/Component/HttpFoundation/File/UploadedFile.php

Laravel Documentation - 10.x / Requests 109

use Illuminate\Http\Middleware\TrustProxies as Middleware;
use Illuminate\Http\Request;

class TrustProxies extends Middleware

{
Jx*

* The trusted proxies for this application.
*

* @var string|array
*/
protected $proxies = [
'192.168.1.1",
'192.168.1.2"',
1;

VA

* The headers that should be used to detect proxies.
*

* @var int
*/
protected $headers = Request::HEADER_X_FORWARDED_FOR | Request::HEADER_X_FORWARDED_HOST |
Request: :HEADER_X_FORWARDED_PORT | Request::HEADER_X_FORWARDED_PROTO;

}

['NOTE]

If you are using AWS Elastic Load Balancing, your sheaders value should be

Request : : HEADER_X_FORWARDED_AWS_ELB. For more information on the constants that may be used in the
sheaders property, check out Symfony's documentation on trusting proxies.

Trusting All Proxies

If you are using Amazon AWS or another "cloud" load balancer provider, you may not know the IP addresses
of your actual balancers. In this case, you may use * to trust all proxies:

/**
* The trusted proxies for this application.

*

* @var string|array
*/
protected $proxies = '*';

Configuring Trusted Hosts

By default, Laravel will respond to all requests it receives regardless of the content of the HTTP request's Host
header. In addition, the Host header's value will be used when generating absolute URLs to your application
during a web request.

Typically, you should configure your web server, such as Nginx or Apache, to only send requests to your
application that match a given host name. However, if you do not have the ability to customize your web server
directly and need to instruct Laravel to only respond to certain host names, you may do so by enabling the
App\Http\Middleware\TrustHosts middleware for your application.

The TrustHosts middleware is already included in the $middleware stack of your application; however, you
should uncomment it so that it becomes active. Within this middleware's hosts method, you may specify the
host names that your application should respond to. Incoming requests with other Host value headers will be
rejected:

/**
* Get the host patterns that should be trusted.
* @return array<int, string>
*/
public function hosts(): array
{
return [
'laravel.test’',
$this->allSubdomainsOfApplicationurl(),
1;

https://symfony.com/doc/current/deployment/proxies.html

Laravel Documentation - 10.x / Requests 110

The a11subdomainsofApplicationurl helper method will return a regular expression matching all subdomains of
your application's app.url configuration value. This helper method provides a convenient way to allow all of
your application's subdomains when building an application that utilizes wildcard subdomains.

Laravel Documentation - 10.x / Responses 111

The Basics

HTTP Responses

Creating Responses
o Attaching Headers to Responses

o Attaching Cookies to Responses
o Cookies and Encryption

Redirects
o Redirecting to Named Routes
o Redirecting to Controller Actions
o Redirecting to External Domains
o Redirecting With Flashed Session Data
Other Response Types
o View Responses
JSON Responses
File Downloads
File Responses
e Response Macros

o o0 o

Creating Responses
Strings and Arrays

All routes and controllers should return a response to be sent back to the user's browser. Laravel provides
several different ways to return responses. The most basic response is returning a string from a route or
controller. The framework will automatically convert the string into a full HTTP response:

Route::get('/', function () {
return 'Hello World';
K

In addition to returning strings from your routes and controllers, you may also return arrays. The framework
will automatically convert the array into a JSON response:

Route::get('/', function () {

return [1, 2, 3];
K

[INOTE]
Did you know you can also return Eloquent collections from your routes or controllers? They will
automatically be converted to JSON. Give it a shot!

Response Objects

Typically, you won't just be returning simple strings or arrays from your route actions. Instead, you will be
returning full 111uminate\Http\Response instances or views.

Returning a full Response instance allows you to customize the response's HTTP status code and headers. A
Response instance inherits from the symfony\component\HttpFoundation\Response class, which provides a variety
of methods for building HTTP responses:

Route::get('/home', function () {
return response('Hello World', 200)
->header ('Content-Type', 'text/plain');
1)

Eloquent Models and Collections
You may also return Eloquent ORM models and collections directly from your routes and controllers. When

you do, Laravel will automatically convert the models and collections to JSON responses while respecting the
model's hidden attributes:

Laravel Documentation - 10.x / Responses 112

use App\Models\User;

Route::get('/user/{user}', function (User S$user) {
return $user;

;i
Attaching Headers to Responses

Keep in mind that most response methods are chainable, allowing for the fluent construction of response
instances. For example, you may use the header method to add a series of headers to the response before
sending it back to the user:

return response($content)
->header('Content-Type', $type)
->header ('X-Header-One', 'Header Value')
->header ('X-Header-Two', 'Header Value');

Or, you may use the withHeaders method to specify an array of headers to be added to the response:

return response($content)
->withHeaders([
'Content-Type' => $type,
'X-Header-One' => 'Header Value',
'X-Header-Two' => 'Header Value',

1);

Cache Control Middleware

Laravel includes a cache.headers middleware, which may be used to quickly set the cache-control header for a
group of routes. Directives should be provided using the "snake case" equivalent of the corresponding cache-
control directive and should be separated by a semicolon. If etag is specified in the list of directives, an MD5
hash of the response content will automatically be set as the ETag identifier:

Route::middleware('cache.headers:public;max_age=2628000;etag')->group(function () {
Route::get('/privacy', function () {

/7 ...

1)

Route::get('/terms', function () {
/7 ...

1)

1
Attaching Cookies to Responses

You may attach a cookie to an outgoing 11luminate\Http\Response instance using the cookie method. You
should pass the name, value, and the number of minutes the cookie should be considered valid to this method:

return response('Hello World')->cookie(
'name', 'value', $minutes

)i

The cookie method also accepts a few more arguments which are used less frequently. Generally, these
arguments have the same purpose and meaning as the arguments that would be given to PHP's native setcookie
method:

return response('Hello World')->cookie(
'name', 'value', $minutes, $path, $domain, $secure, $httpOnly

)i

If you would like to ensure that a cookie is sent with the outgoing response but you do not yet have an instance
of that response, you can use the cookie facade to "queue" cookies for attachment to the response when it is
sent. The queue method accepts the arguments needed to create a cookie instance. These cookies will be
attached to the outgoing response before it is sent to the browser:

use Illuminate\Support\Facades\Cookie;

Cookie::queue('name', 'value', $minutes);

https://secure.php.net/manual/en/function.setcookie.php

Laravel Documentation - 10.x / Responses 113

Generating Cookie Instances

If you would like to generate a symfony\Component\HttpFoundation\Cookie instance that can be attached to a
response instance at a later time, you may use the global cookie helper. This cookie will not be sent back to the
client unless it is attached to a response instance:

$cookie = cookie('name', 'value', $minutes);

return response('Hello World')->cookie($cookie);
Expiring Cookies Early

You may remove a cookie by expiring it via the withoutcookie method of an outgoing response:

return response('Hello World')->withoutCookie('name');

If you do not yet have an instance of the outgoing response, you may use the cookie facade's expire method to
expire a cookie:

Cookie::expire('name');
Cookies and Encryption

By default, all cookies generated by Laravel are encrypted and signed so that they can't be modified or read by
the client. If you would like to disable encryption for a subset of cookies generated by your application, you
may use the sexcept property of the App\Http\Middleware\EncryptCookies middleware, which is located in the
app/Http/Middleware directory:

/**
* The names of the cookies that should not be encrypted.

*

* @var array
*/
protected $except = [
'cookie_name',

1;
Redirects

Redirect responses are instances of the 111uminate\Http\RedirectResponse class, and contain the proper headers
needed to redirect the user to another URL. There are several ways to generate a RedirectResponse instance. The
simplest method is to use the global redirect helper:

Route::get('/dashboard', function () {
return redirect('home/dashboard');

i

Sometimes you may wish to redirect the user to their previous location, such as when a submitted form is
invalid. You may do so by using the global back helper function. Since this feature utilizes the session, make
sure the route calling the back function is using the web middleware group:

Route::post('/user/profile', function () {
// Validate the request...

return back()->withInput();
1)

Redirecting to Named Routes

When you call the redirect helper with no parameters, an instance of 111uminate\Routing\Redirector is
returned, allowing you to call any method on the Redirector instance. For example, to generate a
RedirectResponse to a named route, you may use the route method:

return redirect()->route('login');

If your route has parameters, you may pass them as the second argument to the route method:

Laravel Documentation - 10.x / Responses 114

// For a route with the following URI: /profile/{id}

return redirect()->route('profile', ['id' => 1]);

Populating Parameters via Eloquent Models

If you are redirecting to a route with an "ID" parameter that is being populated from an Eloquent model, you
may pass the model itself. The ID will be extracted automatically:

// For a route with the following URI: /profile/{id}
return redirect()->route('profile', [$user]);
If you would like to customize the value that is placed in the route parameter, you can specify the column in the

route parameter definition (/profile/{id:slug}) or you can override the getRoutekey method on your Eloquent
model:

/**
* Get the value of the model's route key.
*/

public function getRouteKey(): mixed

{

return $this->slug;

}
Redirecting to Controller Actions

You may also generate redirects to controller actions. To do so, pass the controller and action name to the
action method:

use App\Http\Controllers\UserController;

return redirect()->action([UserController::class, 'index']);

If your controller route requires parameters, you may pass them as the second argument to the action method:
return redirect()->action(

[UserController::class, 'profile'], ['id' => 1]

)i
Redirecting to External Domains

Sometimes you may need to redirect to a domain outside of your application. You may do so by calling the away
method, which creates a RedirectResponse without any additional URL encoding, validation, or verification:

return redirect()->away('https://www.google.com');

Redirecting With Flashed Session Data

Redirecting to a new URL and flashing data to the session are usually done at the same time. Typically, this is
done after successfully performing an action when you flash a success message to the session. For convenience,
you may create a RedirectResponse instance and flash data to the session in a single, fluent method chain:

Route::post('/user/profile', function () {
/7 ...

return redirect('dashboard')->with('status', 'Profile updated!');

i

After the user is redirected, you may display the flashed message from the session. For example, using Blade
syntax:

@if (session('status'))
<div class="alert alert-success">
{{ session('status') }}
</div>
@endif

Laravel Documentation - 10.x / Responses 115

Redirecting With Input

You may use the withinput method provided by the RedirectResponse instance to flash the current request's
input data to the session before redirecting the user to a new location. This is typically done if the user has
encountered a validation error. Once the input has been flashed to the session, you may easily retrieve it during
the next request to repopulate the form:

return back()->withInput();

Other Response Types

The response helper may be used to generate other types of response instances. When the response helper is
called without arguments, an implementation of the 111uminate\Contracts\Routing\ResponseFactory contract is
returned. This contract provides several helpful methods for generating responses.

View Responses

If you need control over the response's status and headers but also need to return a view as the response's
content, you should use the view method:

return response()
->view('hello', $data, 200)
->header ('Content-Type', $type);

Of course, if you do not need to pass a custom HTTP status code or custom headers, you may use the global
view helper function.

JSON Responses

The json method will automatically set the content-Type header to application/json, as well as convert the
given array to JSON using the json_encode PHP function:
return response()->json([

'name' => 'Abigail',

'state' => 'CA',

1);

If you would like to create a JSONP response, you may use the json method in combination with the
withcallback method:

return response()

->json(['name' => 'Abigail', 'state' => 'CA'])
->withCallback($request->input('callback'));

File Downloads

The download method may be used to generate a response that forces the user's browser to download the file at
the given path. The download method accepts a filename as the second argument to the method, which will
determine the filename that is seen by the user downloading the file. Finally, you may pass an array of HTTP
headers as the third argument to the method:

return response()->download($pathToFile);

return response()->download($pathToFile, $name, $headers);

['WARNING]
Symfony HttpFoundation, which manages file downloads, requires the file being downloaded to have an
ASCII filename.

Streamed Downloads

Sometimes you may wish to turn the string response of a given operation into a downloadable response without
having to write the contents of the operation to disk. You may use the streambownload method in this scenario.

Laravel Documentation - 10.x / Responses 116

This method accepts a callback, filename, and an optional array of headers as its arguments:

use App\Services\GitHub;
return response()->streambownload(function () {
echo GitHub::api('repo')
->contents()

->readme('laravel', 'laravel')['contents'];
}, 'laravel-readme.md');

File Responses

The file method may be used to display a file, such as an image or PDF, directly in the user's browser instead
of initiating a download. This method accepts the absolute path to the file as its first argument and an array of
headers as its second argument:

return response()->file($pathToFile);

return response()->file($pathToFile, $headers);

Response Macros

If you would like to define a custom response that you can re-use in a variety of your routes and controllers,
you may use the macro method on the rResponse facade. Typically, you should call this method from the boot
method of one of your application's service providers, such as the App\Providers\AppserviceProvider service
provider:

<?php
namespace App\Providers;

use Illuminate\Support\Facades\Response;
use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{
/**
* Bootstrap any application services.
*/
public function boot(): void
{
Response::macro('caps', function (string $value) {
return Response::make(strtoupper($value));
K
}
}

The macro function accepts a name as its first argument and a closure as its second argument. The macro's
closure will be executed when calling the macro name from a ResponseFactory implementation or the response
helper:

return response()->caps('foo');

Laravel Documentation - 10.x / Views 117

The Basics

Views

e Introduction

o Writing Views in React / Vue

e Creating and Rendering Views
o Nested View Directories

o Creating the First Available View
o Determining if a View Exists

e Passing Data to Views
o Sharing Data With All Views

e View Composers
o View Creators

e Optimizing Views

Introduction

Of course, it's not practical to return entire HTML documents strings directly from your routes and controllers.
Thankfully, views provide a convenient way to place all of our HTML in separate files.

Views separate your controller / application logic from your presentation logic and are stored in the
resources/views directory. When using Laravel, view templates are usually written using the Blade templating
language. A simple view might look something like this:

<!-- View stored in resources/views/greeting.blade.php -->
<html>
<body>
<hi>Hello, {{ $name }}</h1>
</body>
</html>

Since this view is stored at resources/views/greeting.blade.php, we may return it using the global view helper
like so:

Route::get('/', function () {
return view('greeting', ['name' => 'James']);

F

[INOTE]
Looking for more information on how to write Blade templates? Check out the full Blade documentation
to get started.

Writing Views in React / Vue

Instead of writing their frontend templates in PHP via Blade, many developers have begun to prefer to write
their templates using React or Vue. Laravel makes this painless thanks to Inertia, a library that makes it a cinch
to tie your React / Vue frontend to your Laravel backend without the typical complexities of building an SPA.

Our Breeze and Jetstream starter kits give you a great starting point for your next Laravel application powered
by Inertia. In addition, the Laravel Bootcamp provides a full demonstration of building a Laravel application
powered by Inertia, including examples in Vue and React.

Creating and Rendering Views

You may create a view by placing a file with the .blade.php extension in your application's resources/views
directory or by using the make:view Artisan command:

php artisan make:view greeting

The .blade.php extension informs the framework that the file contains a Blade template. Blade templates

https://inertiajs.com/
https://bootcamp.laravel.com

Laravel Documentation - 10.x / Views 118

contain HTML as well as Blade directives that allow you to easily echo values, create "if" statements, iterate
over data, and more.

Once you have created a view, you may return it from one of your application's routes or controllers using the
global view helper:

Route::get('/', function () {

return view('greeting', ['name' => 'James']);

i

Views may also be returned using the view facade:
use Illuminate\Support\Facades\View;

return View::make('greeting', ['name' => 'James']);

As you can see, the first argument passed to the view helper corresponds to the name of the view file in the
resources/views directory. The second argument is an array of data that should be made available to the view. In
this case, we are passing the name variable, which is displayed in the view using Blade syntax.

Nested View Directories

Views may also be nested within subdirectories of the resources/views directory. "Dot" notation may be used to
reference nested views. For example, if your view is stored at resources/views/admin/profile.blade.php, you
may return it from one of your application's routes / controllers like so:

return view('admin.profile', $data);

[!'WARNING]
View directory names should not contain the . character.

Creating the First Available View

Using the view facade's first method, you may create the first view that exists in a given array of views. This
may be useful if your application or package allows views to be customized or overwritten:

use Illuminate\Support\Facades\View;

return View::first(['custom.admin', 'admin'], $data);

Determining if a View Exists
If you need to determine if a view exists, you may use the view facade. The exists method will return true if the
view exists:

use Illuminate\Support\Facades\View;

if (View::exists('admin.profile')) {
/7 ...
}

Passing Data to Views

As you saw in the previous examples, you may pass an array of data to views to make that data available to the
view:

return view('greetings', ['name' => 'Victoria']);

When passing information in this manner, the data should be an array with key / value pairs. After providing

data to a view, you can then access each value within your view using the data's keys, such as <?php echo

$name; ?>.

As an alternative to passing a complete array of data to the view helper function, you may use the with method
to add individual pieces of data to the view. The with method returns an instance of the view object so that you

Laravel Documentation - 10.x / Views 119

can continue chaining methods before returning the view:
return view('greeting')

->with('name', 'Victoria')
->with('occupation', 'Astronaut');

Sharing Data With All Views

Occasionally, you may need to share data with all views that are rendered by your application. You may do so
using the view facade's share method. Typically, you should place calls to the share method within a service
provider's boot method. You are free to add them to the App\Providers\AppServiceProvider class or generate a
separate service provider to house them:

<?php
namespace App\Providers;
use Illuminate\Support\Facades\View;

class AppServiceProvider extends ServiceProvider

/**
* Register any application services.
*
/
public function register(): void
{
/7 ...
}
/**
* Bootstrap any application services.
*
/
public function boot(): void
{
View: :share('key', 'value');
}

View Composers

View composers are callbacks or class methods that are called when a view is rendered. If you have data that
you want to be bound to a view each time that view is rendered, a view composer can help you organize that
logic into a single location. View composers may prove particularly useful if the same view is returned by
multiple routes or controllers within your application and always needs a particular piece of data.

Typically, view composers will be registered within one of your application's service providers. In this example,
we'll assume that we have created a new App\Providers\viewServiceProvider to house this logic.

We'll use the view facade's composer method to register the view composer. Laravel does not include a default
directory for class based view composers, so you are free to organize them however you wish. For example,
you could create an app/view/composers directory to house all of your application's view composers:

<?php

namespace App\Providers;

use App\View\Composers\ProfileComposer;
use Illuminate\Support\Facades;

use Illuminate\Support\ServiceProvider;

use Illuminate\View\View;

class ViewServiceProvider extends ServiceProvider

{
/**
* Register any application services.
*/
public function register(): void
{
/7 ...
}

J**

Laravel Documentation - 10.x / Views 120

* Bootstrap any application services.
*/
public function boot(): void
{
// Using class based composers...
Facades\View: :composer('profile', ProfileComposer::class);

// Using closure based composers...
Facades\View: :composer('welcome', function (View $view) {

/7 ...

1}

Facades\View: :composer('dashboard', function (View $view) {
/7 ...

1)

}
}
['WARNING]

Remember, if you create a new service provider to contain your view composer registrations, you will
need to add the service provider to the providers array in the config/app.php configuration file.

Now that we have registered the composer, the compose method of the App\view\Composers\ProfileComposer class
will be executed each time the profile view is being rendered. Let's take a look at an example of the composer
class:

<?php
namespace App\View\Composers;

use App\Repositories\UserRepository;
use Illuminate\View\View;

class ProfileComposer
{
/**
* Create a new profile composer.
*/
public function __construct(
protected UserRepository $users,

) {3

/**
* Bind data to the view.
*
/
public function compose(View $view): void

{
}

$view->with('count', $this->users->count());
}

As you can see, all view composers are resolved via the service container, so you may type-hint any
dependencies you need within a composer's constructor.

Attaching a Composer to Multiple Views

You may attach a view composer to multiple views at once by passing an array of views as the first argument to
the composer method:

use App\Views\Composers\MultiComposer;
use Illuminate\Support\Facades\View;

View: :composer (
['profile', 'dashboard'],
MultiComposer::class

)i
The composer method also accepts the * character as a wildcard, allowing you to attach a composer to all views:

use Illuminate\Support\Facades;
use Illuminate\View\View;

Facades\View: :composer('*', function (View $view) {
/7 ...

i

Laravel Documentation - 10.x / Views 121

View Creators

View "creators" are very similar to view composers; however, they are executed immediately after the view is
instantiated instead of waiting until the view is about to render. To register a view creator, use the creator
method:

use App\View\Creators\ProfileCreator;
use Illuminate\Support\Facades\View;

View::creator('profile', ProfileCreator::class);
Optimizing Views

By default, Blade template views are compiled on demand. When a request is executed that renders a view,
Laravel will determine if a compiled version of the view exists. If the file exists, Laravel will then determine if
the uncompiled view has been modified more recently than the compiled view. If the compiled view either does
not exist, or the uncompiled view has been modified, Laravel will recompile the view.

Compiling views during the request may have a small negative impact on performance, so Laravel provides the
view:cache Artisan command to precompile all of the views utilized by your application. For increased
performance, you may wish to run this command as part of your deployment process:

php artisan view:cache

You may use the view:clear command to clear the view cache:

php artisan view:clear

Laravel Documentation - 10.x / Blade Templates 122

The Basics

Blade Templates

e Introduction
o Supercharging Blade With Livewire
e Displaying Data
o HTML Entity Encodin
o Blade and JavaScript Frameworks
e Blade Directives
o If Statements
Switch Statements
Loops
The Loop Variable
Conditional Classes
Additional Attributes
Including Subviews
The @once Directive
Raw PHP
Comments
e Components
Rendering Components
Passing Data to Components

Component Attributes
Reserved Keywords

Slots

Inline Component Views
Dynamic Components
Manually Registering Components
e Anonymous Components
o Anonymous Index Components
o Data Properties / Attributes
o Accessing Parent Data
o Anonymous Components Paths

e Building Layouts
o Layouts Using Components

o Layouts Using Template Inheritance
e Forms
o CSREF Field
o Method Field
o Validation Errors
Stacks

Service Injection
Rendering Inline Blade Templates
Rendering Blade Fragments
Extending Blade

o Custom Echo Handlers

o Custom If Statements

O 0O 0 0O 0O 0 0 0 o©

O O 0 0 0 o o

[e]

Introduction

Blade is the simple, yet powerful templating engine that is included with Laravel. Unlike some PHP templating
engines, Blade does not restrict you from using plain PHP code in your templates. In fact, all Blade templates
are compiled into plain PHP code and cached until they are modified, meaning Blade adds essentially zero
overhead to your application. Blade template files use the .blade.php file extension and are typically stored in
the resources/views directory.

Blade views may be returned from routes or controllers using the global view helper. Of course, as mentioned in
the documentation on views, data may be passed to the Blade view using the view helper's second argument:

Laravel Documentation - 10.x / Blade Templates 123

Route::get('/', function () {
return view('greeting', ['name' => 'Finn']);

1}
Supercharging Blade With Livewire

Want to take your Blade templates to the next level and build dynamic interfaces with ease? Check out Laravel
Livewire. Livewire allows you to write Blade components that are augmented with dynamic functionality that
would typically only be possible via frontend frameworks like React or Vue, providing a great approach to
building modern, reactive frontends without the complexities, client-side rendering, or build steps of many
JavaScript frameworks.

Displaying Data

You may display data that is passed to your Blade views by wrapping the variable in curly braces. For example,
given the following route:

Route::get('/', function () {

return view('welcome', ['name' => 'Samantha']);

1
You may display the contents of the name variable like so:

Hello, {{ $name }}.

['NOTE]
Blade's {{ }} echo statements are automatically sent through PHP's htmlspecialchars function to prevent
XSS attacks.

You are not limited to displaying the contents of the variables passed to the view. You may also echo the results
of any PHP function. In fact, you can put any PHP code you wish inside of a Blade echo statement:

The current UNIX timestamp is {{ time() }}.

HTML Entity Encoding

By default, Blade (and the Laravel e function) will double encode HTML entities. If you would like to disable
double encoding, call the Blade: :withoutboubleEncoding method from the boot method of your
AppServiceProvider:

<?php
namespace App\Providers;

use Illuminate\Support\Facades\Blade;
use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{
/**
* Bootstrap any application services.
*/
public function boot(): void
{
Blade: :withoutDoubleEncoding();
}
}

Displaying Unescaped Data
By default, Blade {{ }} statements are automatically sent through PHP's htmlspecialchars function to prevent
XSS attacks. If you do not want your data to be escaped, you may use the following syntax:

Hello, {!! $name !!}.

['WARNING]
Be very careful when echoing content that is supplied by users of your application. You should typically

https://livewire.laravel.com

Laravel Documentation - 10.x / Blade Templates 124

use the escaped, double curly brace syntax to prevent XSS attacks when displaying user supplied data.
Blade and JavaScript Frameworks

Since many JavaScript frameworks also use "curly" braces to indicate a given expression should be displayed
in the browser, you may use the @ symbol to inform the Blade rendering engine an expression should remain
untouched. For example:

<hi>Laravel</h1>

Hello, @{{ name }}.

In this example, the @ symbol will be removed by Blade; however, {{ name }} expression will remain
untouched by the Blade engine, allowing it to be rendered by your JavaScript framework.

The @ symbol may also be used to escape Blade directives:

{{-- Blade template --}}
@@if()

<l-- HTML output -->
@if()

Rendering JSON

Sometimes you may pass an array to your view with the intention of rendering it as JSON in order to initialize a
JavaScript variable. For example:

<script>
var app = <?php echo json_encode($array); ?>;
</script>

However, instead of manually calling json_encode, you may use the 111uminate\Support\Js: : from method
directive. The from method accepts the same arguments as PHP's json_encode function; however, it will ensure
that the resulting JSON is properly escaped for inclusion within HTML quotes. The from method will return a
string Json.parse JavaScript statement that will convert the given object or array into a valid JavaScript object:

<script>
var app = {{ Illuminate\Support\Js::from($array) }};
</script>

The latest versions of the Laravel application skeleton include a 3s facade, which provides convenient access to
this functionality within your Blade templates:

<script>
var app = {{ Js::from($array) }};
</script>
['WARNING]

You should only use the 3s: : from method to render existing variables as JSON. The Blade templating is
based on regular expressions and attempts to pass a complex expression to the directive may cause
unexpected failures.

The @verbatim Directive

If you are displaying JavaScript variables in a large portion of your template, you may wrap the HTML in the
@verbatim directive so that you do not have to prefix each Blade echo statement with an @ symbol:

@verbatim
<div class="container">
Hello, {{ name }}.
</div>
@endverbatim

Blade Directives

Laravel Documentation - 10.x / Blade Templates 125

In addition to template inheritance and displaying data, Blade also provides convenient shortcuts for common
PHP control structures, such as conditional statements and loops. These shortcuts provide a very clean, terse
way of working with PHP control structures while also remaining familiar to their PHP counterparts.

If Statements

You may construct if statements using the @if, @elseif, @else, and @endif directives. These directives function
identically to their PHP counterparts:

@if (count($records) === 1)

I have one record!
@elseif (count($records) > 1)

I have multiple records!
@else

I don't have any records!
@endif

For convenience, Blade also provides an @unless directive:

@unless (Auth::check())
You are not signed in.
@endunless

In addition to the conditional directives already discussed, the @isset and @empty directives may be used as
convenient shortcuts for their respective PHP functions:

@isset($records)
// $records is defined and is not null...
@endisset

@empty($records)
// $records is "empty"...
@endempty

Authentication Directives

The @auth and @guest directives may be used to quickly determine if the current user is authenticated or is a
guest:

@auth
// The user 1is authenticated...
@endauth

@guest
// The user is not authenticated...
@endguest

If needed, you may specify the authentication guard that should be checked when using the @auth and @guest
directives:
@auth('admin')
// The user is authenticated...
@endauth
@guest('admin')

// The user is not authenticated...
@endguest

Environment Directives

You may check if the application is running in the production environment using the @production directive:
@production

// Production specific content...
@endproduction

Or, you may determine if the application is running in a specific environment using the @env directive:

@env('staging')
// The application is running in "staging"...

Laravel Documentation - 10.x / Blade Templates 126

@endenv

@env(['staging', 'production'])
// The application is running in "staging" or "production"...
@endenv

Section Directives

You may determine if a template inheritance section has content using the @hassection directive:

@hasSection('navigation')
<div class="pull-right">
@yield('navigation')
</div>

<div class="clearfix"></div>
@endif

You may use the sectionMissing directive to determine if a section does not have content:

@sectionMissing('navigation')
<div class="pull-right">
@include('default-navigation')
</div>
@endif

Session Directives

The @session directive may be used to determine if a session value exists. If the session value exists, the
template contents within the @session and @endsession directives will be evaluated. Within the @session
directive's contents, you may echo the $value variable to display the session value:

@session('status')
<div class="p-4 bg-green-100">
{{ $value }}
</div>
@endsession

Switch Statements

Switch statements can be constructed using the @switch, @case, @break, @default and @endswitch directives:

@switch($1i)
@case(1)
First case...
@break

@case(2)
Second case. ..
@break

@default
Default case...
@endswitch

Loops

In addition to conditional statements, Blade provides simple directives for working with PHP's loop structures.
Again, each of these directives functions identically to their PHP counterparts:

@for ($i = 0; $1i < 10; $i++)
The current value is {{ $i }}
@endfor

@foreach ($users as $user)
<p>This is user {{ $user->id }}</p>
@endforeach

@forelse ($users as $user)
{{ $user->name }}</1i>
@empty

Laravel Documentation - 10.x / Blade Templates 127

<p>No users</p>
@endforelse

@while (true)
<p>I'm looping forever.</p>
@endwhile

['NOTE]
While iterating through a foreach loop, you may use the loop variable to gain valuable information about
the loop, such as whether you are in the first or last iteration through the loop.

When using loops you may also skip the current iteration or end the loop using the @continue and @break
directives:

@foreach ($users as $user)
@if ($user->type == 1)
@continue
@endif

{{ $user->name }}</1li>

@if ($user->number == 5)
@break
@endif
@endforeach

You may also include the continuation or break condition within the directive declaration:

@foreach ($users as $user)
@continue($user->type == 1)

{{ $user->name }}</1li>

@break ($user->number == 5)
@endforeach

The Loop Variable

While iterating through a foreach loop, a $1oop variable will be available inside of your loop. This variable
provides access to some useful bits of information such as the current loop index and whether this is the first or
last iteration through the loop:

@foreach ($users as $user)
@if ($loop->first)
This is the first iteration.
@endif

@if ($loop->last)
This is the last iteration.
@endif

<p>This is user {{ $user->id }}</p>
@endforeach

If you are in a nested loop, you may access the parent loop's $1oop variable via the parent property:

@foreach ($users as $user)
@foreach ($user->posts as $post)
@if ($loop->parent->first)
This is the first iteration of the parent loop.
@endif
@endforeach
@endforeach

The $100p variable also contains a variety of other useful properties:

Property Description
$loop->index The index of the current loop iteration (starts at 0).
$loop->iteration The current loop iteration (starts at 1).
$loop->remaining The iterations remaining in the loop.

$loop->count The total number of items in the array being iterated.

Laravel Documentation - 10.x / Blade Templates 128

$loop->first Whether this is the first iteration through the loop.
$loop->last Whether this is the last iteration through the loop.
$loop->even Whether this is an even iteration through the loop.
$loop->odd Whether this is an odd iteration through the loop.

$loop->depth The nesting level of the current loop.

$loop->parent When in a nested loop, the parent's loop variable.

Conditional Classes & Styles

The @class directive conditionally compiles a CSS class string. The directive accepts an array of classes where
the array key contains the class or classes you wish to add, while the value is a boolean expression. If the array
element has a numeric key, it will always be included in the rendered class list:

@php
$isActive = false;
$hasError = true;
@endphp

<span @class([
'p'4'r
'font-bold' => $isActive,
'text-gray-500' => ! $isActive,
'bg-red' => $hasError,
1)>

Likewise, the @style directive may be used to conditionally add inline CSS styles to an HTML element:

@php
$isActive = true;
@endphp

<span @style([
'background-color: red',
'font-weight: bold' => $isActive,
1)>

Additional Attributes

For convenience, you may use the @checked directive to easily indicate if a given HTML checkbox input is
"checked". This directive will echo checked if the provided condition evaluates to true:

<input type="checkbox"
name="active"
value="active"
@checked(old('active', $user->active)) />

Likewise, the @selected directive may be used to indicate if a given select option should be "selected":

<select name="version">
@foreach ($product->versions as $version)

<option value="{{ $version }}" @selected(old('version') == $version)>
{{ $version }}
</option>
@endforeach
</select>

Additionally, the @disabled directive may be used to indicate if a given element should be "disabled":

<button type="submit" @disabled($errors->isNotEmpty())>Submit</button>

Moreover, the @readonly directive may be used to indicate if a given element should be "readonly":

<input type="email"
name="email"
value="email@laravel.com"
@readonly($user->isNotAdmin()) />

Laravel Documentation - 10.x / Blade Templates 129

In addition, the @required directive may be used to indicate if a given element should be "required":
<input type="text"
name="title"

value="title"
@required($user->isAdmin()) />

Including Subviews

['NOTE]
While you're free to use the @include directive, Blade components provide similar functionality and offer
several benefits over the @include directive such as data and attribute binding.

Blade's @include directive allows you to include a Blade view from within another view. All variables that are
available to the parent view will be made available to the included view:

<div>
@include('shared.errors')

<form>
<!-- Form Contents -->

</form>
</div>

Even though the included view will inherit all data available in the parent view, you may also pass an array of
additional data that should be made available to the included view:

@include('view.name', ['status' => 'complete'])

If you attempt to @include a view which does not exist, Laravel will throw an error. If you would like to include
a view that may or may not be present, you should use the @include1f directive:

@includeIf('view.name', ['status' => 'complete'])

If you would like to @include a view if a given boolean expression evaluates to true or false, you may use the
@includewhen and @includeuUnless directives:

@includewhen($boolean, 'view.name', ['status' => 'complete'])
@includeUnless($boolean, 'view.name', ['status' => 'complete'])
To include the first view that exists from a given array of views, you may use the includerirst directive:

@includeFirst(['custom.admin', 'admin'], ['status' => 'complete'])

[!WARNING]
You should avoid using the __p1r__and __FILE__ constants in your Blade views, since they will refer to the
location of the cached, compiled view.

Rendering Views for Collections

You may combine loops and includes into one line with Blade's @each directive:

@each('view.name', $jobs, 'job')

The @each directive's first argument is the view to render for each element in the array or collection. The second
argument is the array or collection you wish to iterate over, while the third argument is the variable name that
will be assigned to the current iteration within the view. So, for example, if you are iterating over an array of
jobs, typically you will want to access each job as a job variable within the view. The array key for the current
iteration will be available as the key variable within the view.

You may also pass a fourth argument to the @each directive. This argument determines the view that will be
rendered if the given array is empty.

@each('view.name', $jobs, 'job', 'view.empty')

['WARNING]

Laravel Documentation - 10.x / Blade Templates 130

Views rendered via @each do not inherit the variables from the parent view. If the child view requires these
variables, you should use the @foreach and @include directives instead.

The @once Directive

The @once directive allows you to define a portion of the template that will only be evaluated once per rendering
cycle. This may be useful for pushing a given piece of JavaScript into the page's header using stacks. For
example, if you are rendering a given component within a loop, you may wish to only push the JavaScript to
the header the first time the component is rendered:

@once
@push('scripts')
<script>
// Your custom JavaScript...
</script>
@endpush
@endonce

Since the @once directive is often used in conjunction with the @push or @prepend directives, the @pushonce and
@prependonce directives are available for your convenience:
@pushoOnce('scripts')
<script>
// Your custom JavaScript...

</script>
@endPushOnce

Raw PHP

In some situations, it's useful to embed PHP code into your views. You can use the Blade @php directive to
execute a block of plain PHP within your template:
@php

$counter = 1;
@endphp

Or, if you only need to use PHP to import a class, you may use the @use directive:

@use('App\Models\Flight')

A second argument may be provided to the @use directive to alias the imported class:

@use('App\Models\Flight', 'FlightModel')
Comments

Blade also allows you to define comments in your views. However, unlike HTML comments, Blade comments
are not included in the HTML returned by your application:

{{-- This comment will not be present in the rendered HTML --}}

Components

Components and slots provide similar benefits to sections, layouts, and includes; however, some may find the
mental model of components and slots easier to understand. There are two approaches to writing components:
class based components and anonymous components.

To create a class based component, you may use the make:component Artisan command. To illustrate how to use
components, we will create a simple Alert component. The make: component command will place the component
in the app/view/components directory:

php artisan make:component Alert

The make: component command will also create a view template for the component. The view will be placed in
the resources/views/components directory. When writing components for your own application, components are

Laravel Documentation - 10.x / Blade Templates 131

automatically discovered within the app/view/Components directory and resources/views/components directory,
so no further component registration is typically required.

You may also create components within subdirectories:

php artisan make:component Forms/Input

The command above will create an 1nput component in the app/view/Components/Forms directory and the view
will be placed in the resources/views/components/forms directory.

If you would like to create an anonymous component (a component with only a Blade template and no class),
you may use the - -view flag when invoking the make:component command:

php artisan make:component forms.input --view

The command above will create a Blade file at resources/views/components/forms/input.blade.php which can
be rendered as a component via <x-forms.input />.

Manually Registering Package Components

When writing components for your own application, components are automatically discovered within the
app/View/Components directory and resources/views/components directory.

However, if you are building a package that utilizes Blade components, you will need to manually register your
component class and its HTML tag alias. You should typically register your components in the boot method of
your package's service provider:

use Illuminate\Support\Facades\Blade;

/**
* Bootstrap your package's services.
*
/

public function boot(): void

{

Blade: :component('package-alert', Alert::class);

}
Once your component has been registered, it may be rendered using its tag alias:

<x-package-alert/>

Alternatively, you may use the componentNamespace method to autoload component classes by convention. For
example, a Nightshade package might have calendar and colorpicker components that reside within the
Package\Views\Components Namespace:

use Illuminate\Support\Facades\Blade;

/**
* Bootstrap your package's services.
*/

public function boot(): void

{
}

Blade: :componentNamespace('Nightshade\\Views\\Components', 'nightshade');

This will allow the usage of package components by their vendor namespace using the package-name: : syntax:

<x-nightshade::calendar />
<x-nightshade::color-picker />

Blade will automatically detect the class that's linked to this component by pascal-casing the component name.
Subdirectories are also supported using "dot" notation.

Rendering Components

To display a component, you may use a Blade component tag within one of your Blade templates. Blade
component tags start with the string x- followed by the kebab case name of the component class:

Laravel Documentation - 10.x / Blade Templates 132

<x-alert/>
<x-user-profile/>
If the component class is nested deeper within the app/view/components directory, you may use the . character to

indicate directory nesting. For example, if we assume a component is located at
app/View/Components/Inputs/Button.php, we njay'renderitlike SO:

<x-inputs.button/>

If you would like to conditionally render your component, you may define a shouldrender method on your
component class. If the shouldrender method returns false the component will not be rendered:

use Illuminate\Support\Str;

/**
* Whether the component should be rendered
*/

public function shouldRender(): bool

{

}

return Str::length($this->message) > 0;

Passing Data to Components

You may pass data to Blade components using HTML attributes. Hard-coded, primitive values may be passed
to the component using simple HTML attribute strings. PHP expressions and variables should be passed to the
component via attributes that use the : character as a prefix:

<x-alert type="error" :message="$message"/>

You should define all of the component's data attributes in its class constructor. All public properties on a
component will automatically be made available to the component's view. It is not necessary to pass the data to
the view from the component's render method:

<?php
namespace App\View\Components;

use Illuminate\View\Component;
use Illuminate\View\View;

class Alert extends Component
{
/**
* Create the component instance.
*
/
public function __construct(
public string $type,
public string $message,

) {3

/**
* Get the view / contents that represent the component.
*/

public function render(): View

{
}

return view('components.alert');
}

When your component is rendered, you may display the contents of your component's public variables by
echoing the variables by name:

<div class="alert alert-{{ $type }}">

{{ $message }}
</div>

Casing

Component constructor arguments should be specified using camelcase, while kebab-case should be used when

Laravel Documentation - 10.x / Blade Templates 133

referencing the argument names in your HTML attributes. For example, given the following component
constructor:

/**
* Create the component instance.
*/
public function _ construct(
public string $alertType,
) {3

The salertType argument may be provided to the component like so:

<x-alert alert-type="danger" />

Short Attribute Syntax

When passing attributes to components, you may also use a "short attribute" syntax. This is often convenient
since attribute names frequently match the variable names they correspond to:

{{-- short attribute syntax... --}}
<x-profile :$userId :$name />

{{-- Is equivalent to... --}}
<x-profile :user-id="$userId" :name="$name" />

Escaping Attribute Rendering

Since some JavaScript frameworks such as Alpine.js also use colon-prefixed attributes, you may use a double
colon (::) prefix to inform Blade that the attribute is not a PHP expression. For example, given the following
component:

<x-button ::class="{ danger: isDeleting }">

Submit
</x-button>

The following HTML will be rendered by Blade:

<button :class="{ danger: isDeleting }">
Submit
</button>

Component Methods

In addition to public variables being available to your component template, any public methods on the
component may be invoked. For example, imagine a component that has an isselected method:

/**
* Determine if the given option is the currently selected option.
*/
public function isSelected(string $option): bool
{
return $option === $this->selected;
}

You may execute this method from your component template by invoking the variable matching the name of
the method:

<option {{ $isSelected($value) ? 'selected' : '' }} value="{{ $value }}">
{{ $label }}
</option>

Accessing Attributes and Slots Within Component Classes

Blade components also allow you to access the component name, attributes, and slot inside the class's render
method. However, in order to access this data, you should return a closure from your component's render
method. The closure will receive a $data array as its only argument. This array will contain several elements
that provide information about the component:

Laravel Documentation - 10.x / Blade Templates 134

use Closure;

/**
* Get the view / contents that represent the component.
*/
public function render(): Closure
{
return function (array $data) {
// $data['componentName'];
// $data['attributes'];
// $data['slot'];
return '<div>Components content</div>';
}
}

The componentName is equal to the name used in the HTML tag after the x- prefix. So <x-alert />'s
componentName will be alert. The attributes element will contain all of the attributes that were present on the
HTML tag. The slot element is an 11luminate\Support\HtmlString instance with the contents of the
component's slot.

The closure should return a string. If the returned string corresponds to an existing view, that view will be
rendered; otherwise, the returned string will be evaluated as an inline Blade view.

Additional Dependencies

If your component requires dependencies from Laravel's service container, you may list them before any of the
component's data attributes and they will automatically be injected by the container:
use App\Services\AlertCreator;
/ * %
* Create the component instance.
*x/
public function __construct(
public AlertCreator $creator,
public string $type,
public string $message,

) {3

Hiding Attributes / Methods

If you would like to prevent some public methods or properties from being exposed as variables to your
component template, you may add them to an $except array property on your component:

<?php

namespace App\View\Components;

use Illuminate\View\Component;

class Alert extends Component

{
/**
* The properties / methods that should not be exposed to the component template.
* @var array
*/
protected $except = ['type'];
/**
* Create the component instance.
*/
public function __construct(
public string $type,
) {3
}

Component Attributes

We've already examined how to pass data attributes to a component; however, sometimes you may need to
specify additional HTML attributes, such as class, that are not part of the data required for a component to

Laravel Documentation - 10.x / Blade Templates 135

function. Typically, you want to pass these additional attributes down to the root element of the component
template. For example, imagine we want to render an alert component like so:

<x-alert type="error" :message="$message" class="mt-4"/>

All of the attributes that are not part of the component's constructor will automatically be added to the
component's "attribute bag". This attribute bag is automatically made available to the component via the
sattributes variable. All of the attributes may be rendered within the component by echoing this variable:

<div {{ $attributes }}>

<!-- Component content -->
</div>
['WARNING]

Using directives such as @env within component tags is not supported at this time. For example, <x-alert
:1ive="@env('production')"/> will not be COHlpﬂed.

Default / Merged Attributes

Sometimes you may need to specify default values for attributes or merge additional values into some of the
component's attributes. To accomplish this, you may use the attribute bag's merge method. This method is
particularly useful for defining a set of default CSS classes that should always be applied to a component:

<div {{ $attributes->merge(['class' => 'alert alert-'.$type]) }}>

{{ $message }}
</div>

If we assume this component is utilized like so:

<x-alert type="error" :message="$message" class="mb-4"/>

The final, rendered HTML of the component will appear like the following:

<div class="alert alert-error mb-4">
<!-- Contents of the $message variable -->
</div>

Conditionally Merge Classes

Sometimes you may wish to merge classes if a given condition is true. You can accomplish this via the class
method, which accepts an array of classes where the array key contains the class or classes you wish to add,
while the value is a boolean expression. If the array element has a numeric key, it will always be included in the
rendered class list:

<div {{ $attributes->class(['p-4', 'bg-red' => $hasError]) }}>
{{ $message }}
</div>

If you need to merge other attributes onto your component, you can chain the merge method onto the class
method:

<button {{ $attributes->class(['p-4'])->merge(['type' => 'button']) }}>

{{ $slot }}
</button>

[INOTE]
If you need to conditionally compile classes on other HTML elements that shouldn't receive merged
attributes, you can use the @class_directive.

Non-Class Attribute Merging

When merging attributes that are not class attributes, the values provided to the merge method will be
considered the "default" values of the attribute. However, unlike the class attribute, these attributes will not be
merged with injected attribute values. Instead, they will be overwritten. For example, a button component's
implementation may look like the following:

Laravel Documentation - 10.x / Blade Templates 136

<button {{ $attributes->merge(['type' => 'button']) }}>

{{ $slot }}
</button>

To render the button component with a custom type, it may be specified when consuming the component. If no
type is specified, the button type will be used:

<x-button type="submit">

Submit
</x-button>

The rendered HTML of the button component in this example would be:
<button type="submit">

Submit
</button>

If you would like an attribute other than class to have its default value and injected values joined together, you
may use the prepends method. In this example, the data-controller attribute will always begin with profile-
controller and any additional injected data-controller values will be placed after this default value:

<div {{ $attributes->merge(['data-controller' => $attributes->prepends('profile-controller')]) }}>

{{ $slot }}

</div>
Retrieving and Filtering Attributes
You may filter attributes using the filter method. This method accepts a closure which should return true if

you wish to retain the attribute in the attribute bag:

{{ $attributes->filter(fn (string $value, string $key) => $key == 'foo') }}

For convenience, you may use the wherestartswith method to retrieve all attributes whose keys begin with a
given string;:

{{ $attributes->whereStartswith('wire:model") }}

Conversely, the whereboesntstartwith method may be used to exclude all attributes whose keys begin with a
given string:

{{ $attributes->whereDoesntStartWith('wire:model') }}

Using the first method, you may render the first attribute in a given attribute bag:

{{ $attributes->whereStartswith('wire:model')->first() }}

If you would like to check if an attribute is present on the component, you may use the has method. This
method accepts the attribute name as its only argument and returns a boolean indicating whether or not the
attribute is present:

@if ($attributes->has('class'))

<div>Class attribute is present</div>
@endif

If an array is passed to the has method, the method will determine if all of the given attributes are present on the
component:

@if ($attributes->has(['name', 'class']))

<div>All of the attributes are present</div>
@endif

The hasany method may be used to determine if any of the given attributes are present on the component:
@if ($attributes->hasAny(['href', ':href', 'v-bind:href']))

<div>0One of the attributes is present</div>
@endif

You may retrieve a specific attribute's value using the get method:

{{ $attributes->get('class') }}

Laravel Documentation - 10.x / Blade Templates 137

Reserved Keywords

By default, some keywords are reserved for Blade's internal use in order to render components. The following
keywords cannot be defined as public properties or method names within your components:

data

render
resolveView
shouldRender
view
withAttributes
withName

Slots

You will often need to pass additional content to your component via "slots". Component slots are rendered by
echoing the $s1ot variable. To explore this concept, let's imagine that an alert component has the following
markup:

<!-- /resources/views/components/alert.blade.php -->

<div class="alert alert-danger">

{{ $slot }}

</div>

We may pass content to the s1lot by injecting content into the component:

<x-alert>
Whoops! Something went wrong!
</x-alert>

Sometimes a component may need to render multiple different slots in different locations within the
component. Let's modify our alert component to allow for the injection of a "title" slot:

<!-- /resources/views/components/alert.blade.php -->
{{ $title }}

<div class="alert alert-danger">

{{ $slot }}

</div>

You may define the content of the named slot using the x-slot tag. Any content not within an explicit x-slot
tag will be passed to the component in the $slot variable:

<x-alert>
<x-slot:title>
Server Error
</x-slot>

Whoops! Something went wrong!
</x-alert>

You may invoke a slot's isempty method to determine if the slot contains content:
{{ $title }}

<div class="alert alert-danger">
@if ($slot->isEmpty())
This is default content if the slot is empty.
@else

{{ $slot }}
@endif
</div>

Additionally, the hasActualcontent method may be used to determine if the slot contains any "actual" content
that is not an HTML comment:

@if ($slot->hasActualContent())
The scope has non-comment content.

Laravel Documentation - 10.x / Blade Templates 138

@endif
Scoped Slots

If you have used a JavaScript framework such as Vue, you may be familiar with "scoped slots", which allow
you to access data or methods from the component within your slot. You may achieve similar behavior in
Laravel by defining public methods or properties on your component and accessing the component within your
slot via the $component variable. In this example, we will assume that the x-alert component has a public
formatAlert method defined on its component class:

<x-alert>
<x-slot:title>
{{ $component->formatAlert('Server Error') }}
</x-slot>

Whoops! Something went wrong!
</x-alert>

Slot Attributes

Like Blade components, you may assign additional attributes to slots such as CSS class names:

<x-card class="shadow-sm">
<x-slot:heading class="font-bold">
Heading
</x-slot>

Content

<x-slot:footer class="text-sm">
Footer
</x-slot>
</x-card>

To interact with slot attributes, you may access the attributes property of the slot's variable. For more
information on how to interact with attributes, please consult the documentation on component attributes:

@props([
'heading’',
'footer',

1

<div {{ $attributes->class(['border']) }}>
<h1l {{ $heading->attributes->class(['text-1g']) }}>
{{ $heading }}
</h1>

{{ $slot }}

<footer {{ $footer->attributes->class(['text-gray-700']) }}>
{{ $footer }}
</footer>
</div>

Inline Component Views

For very small components, it may feel cumbersome to manage both the component class and the component's
view template. For this reason, you may return the component's markup directly from the render method:

/**
* Get the view / contents that represent the component.
*/

public function render(): string

{

return <<<'blade'
<div class="alert alert-danger">
{{ $slot }}
</div>
blade;

Laravel Documentation - 10.x / Blade Templates 139

Generating Inline View Components

To create a component that renders an inline view, you may use the inline option when executing the
make : component command:

php artisan make:component Alert --inline
Dynamic Components

Sometimes you may need to render a component but not know which component should be rendered until
runtime. In this situation, you may use Laravel's built-in dynamic-component component to render the component
based on a runtime value or variable:

// $componentName = "secondary-button";

<x-dynamic-component :component="$componentName" class="mt-4" />
Manually Registering Components

['WARNING]

The following documentation on manually registering components is primarily applicable to those who are
writing Laravel packages that include view components. If you are not writing a package, this portion of
the component documentation may not be relevant to you.

When writing components for your own application, components are automatically discovered within the
app/View/Components directory and resources/views/components directory.

However, if you are building a package that utilizes Blade components or placing components in non-
conventional directories, you will need to manually register your component class and its HTML tag alias so
that Laravel knows where to find the component. You should typically register your components in the boot
method of your package's service provider:

use Illuminate\Support\Facades\Blade;
use VendorPackage\View\Components\AlertComponent;

/**
* Bootstrap your package's services.
*/

public function boot(): void

{
}

Blade: :component('package-alert', AlertComponent::class);

Once your component has been registered, it may be rendered using its tag alias:

<x-package-alert/>
Autoloading Package Components

Alternatively, you may use the componentNamespace method to autoload component classes by convention. For
example, a Nightshade package might have calendar and colorpicker components that reside within the
Package\Views\Components Namespace:

use Illuminate\Support\Facades\Blade;

/**
* Bootstrap your package's services.
*/

public function boot(): void

{
}

Blade: :componentNamespace('Nightshade\\Views\\Components', 'nightshade');

This will allow the usage of package components by their vendor namespace using the package-name: : syntax:

<x-nightshade::calendar />
<x-nightshade::color-picker />

Laravel Documentation - 10.x / Blade Templates 140

Blade will automatically detect the class that's linked to this component by pascal-casing the component name.
Subdirectories are also supported using "dot" notation.

Anonymous Components

Similar to inline components, anonymous components provide a mechanism for managing a component via a
single file. However, anonymous components utilize a single view file and have no associated class. To define
an anonymous component, you only need to place a Blade template within your resources/views/components
directory. For example, assuming you have defined a component at
resources/views/components/alert.blade.php, you may simply render it like so:

<x-alert/>

You may use the . character to indicate if a component is nested deeper inside the components directory. For
example, assuming the component is defined at resources/views/components/inputs/button.blade.php, you may
render it like so:

<x-inputs.button/>
Anonymous Index Components

Sometimes, when a component is made up of many Blade templates, you may wish to group the given
component's templates within a single directory. For example, imagine an "accordion" component with the
following directory structure:

/resources/views/components/accordion.blade.php
/resources/views/components/accordion/item.blade.php

This directory structure allows you to render the accordion component and its item like so:

<x-accordion>
<x-accordion.item>

</x-accordion.item>
</x-accordion>

However, in order to render the accordion component via x-accordion, we were forced to place the "index'
accordion component template in the resources/views/components directory instead of nesting it within the
accordion directory with the other accordion related templates.

Thankfully, Blade allows you to place an index.blade.php file within a component's template directory. When
an index.blade.php template exists for the component, it will be rendered as the "root" node of the component.
So, we can continue to use the same Blade syntax given in the example above; however, we will adjust our
directory structure like so:

/resources/views/components/accordion/index.blade.php
/resources/views/components/accordion/item.blade.php

Data Properties / Attributes

Since anonymous components do not have any associated class, you may wonder how you may differentiate
which data should be passed to the component as variables and which attributes should be placed in the

component's attribute bag.

You may specify which attributes should be considered data variables using the @props directive at the top of
your component's Blade template. All other attributes on the component will be available via the component's
attribute bag. If you wish to give a data variable a default value, you may specify the variable's name as the
array key and the default value as the array value:

<!-- /resources/views/components/alert.blade.php -->
@props(['type' => 'info', 'message'])

<div {{ $attributes->merge(['class' => 'alert alert-'.$type]) }}>
{{ $message }}

Laravel Documentation - 10.x / Blade Templates 141

</div>

Given the component definition above, we may render the component like so:

<x-alert type="error" :message="$message" class="mb-4"/>

Accessing Parent Data

Sometimes you may want to access data from a parent component inside a child component. In these cases, you
may use the @aware directive. For example, imagine we are building a complex menu component consisting of a
parent <x-menu> and child <x-menu.item>:

<x-menu color="purple">
<x-menu.item>...</x-menu.item>
<x-menu.item>...</x-menu.item>
</x-menu>

The <x-menu> component may have an implementation like the following:
<!-- /resources/views/components/menu/index.blade.php -->
@props(['color' => 'gray'])

<ul {{ $attributes->merge(['class' => 'bg-'.$color.'-200']) }}>
{{ $slot }}

Because the color prop was only passed into the parent (<x-menu>), it won't be available inside <x-menu.item>.
However, if we use the @aware directive, we can make it available inside <x-menu.item> as well:

<!-- /resources/views/components/menu/item.blade.php -->
@aware(['color' => 'gray'])

<1li {{ $attributes->merge(['class' => 'text-'.$color.'-800']) }}>
{{ $slot }}

</1i>

['WARNING]

The @aware directive can not access parent data that is not explicitly passed to the parent component via
HTML attributes. Default @props values that are not explicitly passed to the parent component can not be
accessed by the @aware directive.

Anonymous Component Paths

As previously discussed, anonymous components are typically defined by placing a Blade template within your
resources/views/components directory. However, you may occasionally want to register other anonymous
component paths with Laravel in addition to the default path.

The anonymouscomponentPath method accepts the "path" to the anonymous component location as its first
argument and an optional "namespace" that components should be placed under as its second argument.
Typically, this method should be called from the boot method of one of your application's service providers:

/**
* Bootstrap any application services.
*/
public function boot(): void
{
Blade: :anonymousComponentPath(__DIR__.'/../components');
}

When component paths are registered without a specified prefix as in the example above, they may be rendered
in your Blade components without a corresponding prefix as well. For example, if a panel.blade.php
component exists in the path registered above, it may be rendered like so:

<x-panel />

Prefix "namespaces" may be provided as the second argument to the anonymouscomponentpath method:

Laravel Documentation - 10.x / Blade Templates 142

Blade: :anonymousComponentPath(__DIR__.'/../components', 'dashboard');

When a prefix is provided, components within that "namespace" may be rendered by prefixing to the
component's namespace to the component name when the component is rendered:

<x-dashboard: :panel />
Building Layouts

Layouts Using Components

Most web applications maintain the same general layout across various pages. It would be incredibly
cumbersome and hard to maintain our application if we had to repeat the entire layout HTML in every view we
create. Thankfully, it's convenient to define this layout as a single Blade component and then use it throughout
our application.

Defining the Layout Component

For example, imagine we are building a "todo" list application. We might define a 1ayout component that looks
like the following:

<!-- resources/views/components/layout.blade.php -->

<html>
<head>
<title>{{ $title ?? 'Todo Manager' }}</title>
</head>
<body>
<h1>Todos</h1>
<hr/>
{{ $slot }}
</body>
</html>

Applying the Layout Component

Once the 1ayout component has been defined, we may create a Blade view that utilizes the component. In this
example, we will define a simple view that displays our task list:

<!-- resources/views/tasks.blade.php -->
<x-layout>
@foreach ($tasks as $task)
{{ s$task }}
@endforeach

</x-layout>

Remember, content that is injected into a component will be supplied to the default $s10t variable within our
layout component. As you may have noticed, our layout also respects a stitle slot if one is provided;
otherwise, a default title is shown. We may inject a custom title from our task list view using the standard slot
syntax discussed in the component documentation:

<!-- resources/views/tasks.blade.php -->

<x-layout>
<x-slot:title>
Custom Title
</x-slot>

@foreach ($tasks as $task)
{{ s$task }}

@endforeach
</x-layout>

Now that we have defined our layout and task list views, we just need to return the task view from a route:
use App\Models\Task;

Route::get('/tasks', function () {

Laravel Documentation - 10.x / Blade Templates 143

return view('tasks', ['tasks' => Task::all()]);

H;
Layouts Using Template Inheritance
Defining a Layout

Layouts may also be created via "template inheritance". This was the primary way of building applications
prior to the introduction of components.

To get started, let's take a look at a simple example. First, we will examine a page layout. Since most web
applications maintain the same general layout across various pages, it's convenient to define this layout as a
single Blade view:

<!-- resources/views/layouts/app.blade.php -->
<html>
<head>
<title>App Name - @yield('title')</title>
</head>
<body>

@section('sidebar')
This is the master sidebar.
@show

<div class="container">
@yield('content')
</div>
</body>
</html>

As you can see, this file contains typical HTML mark-up. However, take note of the @section and @yield
directives. The @section directive, as the name implies, defines a section of content, while the @yield directive
is used to display the contents of a given section.

Now that we have defined a layout for our application, let's define a child page that inherits the layout.
Extending a Layout

When defining a child view, use the @extends Blade directive to specify which layout the child view should
"inherit". Views which extend a Blade layout may inject content into the layout's sections using @section
directives. Remember, as seen in the example above, the contents of these sections will be displayed in the
layout using @yield:

<!-- resources/views/child.blade.php -->
@extends('layouts.app')
@section('title', 'Page Title')

@section('sidebar')
@@parent

<p>This is appended to the master sidebar.</p>
@endsection

@section('content')
<p>This is my body content.</p>
@endsection

In this example, the sidebar section is utilizing the @@parent directive to append (rather than overwriting)
content to the layout's sidebar. The @@parent directive will be replaced by the content of the layout when the
view is rendered.

['NOTE]
Contrary to the previous example, this sidebar section ends with @endsection instead of @show. The
@endsection directive will only define a section while @show will define and immediately yield the section.

The @yield directive also accepts a default value as its second parameter. This value will be rendered if the

Laravel Documentation - 10.x / Blade Templates 144

section being yielded is undefined:

@yield('content', 'Default content')

Forms

CSRF Field

Anytime you define an HTML form in your application, you should include a hidden CSRF token field in the
form so that the CSRF protection middleware can validate the request. You may use the @csrf Blade directive
to generate the token field:

<form method="POST" action="/profile">
@csrf

</f0;ﬁ;

Method Field

Since HTML forms can't make puT, PATCH, or DELETE requests, you will need to add a hidden _method field to
spoof these HTTP verbs. The @method Blade directive can create this field for you:

<form action="/foo/bar" method="POST">
@method('PUT")

</form>

Validation Errors

The @error directive may be used to quickly check if validation error messages exist for a given attribute.
Within an @error directive, you may echo the smessage variable to display the error message:

<!-- /resources/views/post/create.blade.php -->
<label for="title">Post Title</label>
<input id="title"

type="text"

class="@error('title') is-invalid @enderror">
@error('title')

<div class="alert alert-danger">{{ $message }}</div>
@enderror

Since the @error directive compiles to an "if" statement, you may use the @else directive to render content when
there is not an error for an attribute:

<!-- /resources/views/auth.blade.php -->
<label for="email">Email address</label>
<input id="email"

type="email"
class="@error('email') is-invalid @else is-valid @enderror">

You may pass the name of a specific error bag as the second parameter to the @error directive to retrieve
validation error messages on pages containing multiple forms:

<!-- /resources/views/auth.blade.php -->
<label for="email">Email address</label>
<input id="email"

type="email"

class="@error('email', 'login') is-invalid @enderror">

@error('email', 'login')
<div class="alert alert-danger">{{ $message }}</div>

Laravel Documentation - 10.x / Blade Templates 145

@enderror

Stacks

Blade allows you to push to named stacks which can be rendered somewhere else in another view or layout.
This can be particularly useful for specifying any JavaScript libraries required by your child views:

@push('scripts')
<script src="/example.js"></script>
@endpush

If you would like to @push content if a given boolean expression evaluates to true, you may use the @pushif
directive:

@pushIf($shouldPush, 'scripts')
<script src="/example.js"></script>
@endPushIf

You may push to a stack as many times as needed. To render the complete stack contents, pass the name of the
stack to the @stack directive:

<head>
<!-- Head Contents -->

@stack('scripts')
</head>

If you would like to prepend content onto the beginning of a stack, you should use the @prepend directive:

@push('scripts')
This will be second...
@endpush

// Later...
@prepend('scripts')

This will be first...
@endprepend

Service Injection

The @inject directive may be used to retrieve a service from the Laravel service container. The first argument
passed to @inject is the name of the variable the service will be placed into, while the second argument is the
class or interface name of the service you wish to resolve:

@inject('metrics', 'App\Services\MetricsService')
<div>

Monthly Revenue: {{ $metrics->monthlyRevenue() }3}.
</div>

Rendering Inline Blade Templates

Sometimes you may need to transform a raw Blade template string into valid HTML. You may accomplish this
using the render method provided by the Blade facade. The render method accepts the Blade template string and
an optional array of data to provide to the template:

use Illuminate\Support\Facades\Blade;

return Blade::render('Hello, {{ $name }}', ['name' => 'Julian Bashir']);

Laravel renders inline Blade templates by writing them to the storage/framework/views directory. If you would
like Laravel to remove these temporary files after rendering the Blade template, you may provide the
deleteCachedview argument to the method:

return Blade: :render(
'Hello, {{ $name }}',
["name' => 'Julian Bashir'],

Laravel Documentation - 10.x / Blade Templates 146

deleteCachedview: true

)i

Rendering Blade Fragments

When using frontend frameworks such as Turbo and htmx, you may occasionally need to only return a portion
of a Blade template within your HTTP response. Blade "fragments" allow you to do just that. To get started,
place a portion of your Blade template within @fragment and @endfragment directives:

@fragment('user-list')

@foreach ($users as $user)
{{ $user->name }}</1li>
@endforeach

@endfragment

Then, when rendering the view that utilizes this template, you may invoke the fragment method to specify that
only the specified fragment should be included in the outgoing HTTP response:

return view('dashboard', ['users' => $users])->fragment('user-list');

The fragment1f method allows you to conditionally return a fragment of a view based on a given condition.
Otherwise, the entire view will be returned:

return view('dashboard', ['users' => $users])
->fragmentIf($request->hasHeader ('HX-Request'), 'user-list');

The fragments and fragmentsIif methods allow you to return multiple view fragments in the response. The
fragments will be concatenated together:

view('dashboard', ['users' => $users])
->fragments(['user-1list', 'comment-list']);

view('dashboard', ['users' => $users])
->fragmentsIf(
$request->hasHeader ('HX-Request'),
['user-1list', 'comment-list']

)i
Extending Blade

Blade allows you to define your own custom directives using the directive method. When the Blade compiler
encounters the custom directive, it will call the provided callback with the expression that the directive
contains.

The following example creates a @datetime(svar) directive which formats a given $var, which should be an
instance of pateTime:

<?php
namespace App\Providers;

use Illuminate\Support\Facades\Blade;
use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{
/**
* Register any application services.
*/
public function register(): void

{
}

/**
* Bootstrap any application services.
*/

public function boot(): void

{

/7 ...

https://turbo.hotwired.dev/
https://htmx.org/

Laravel Documentation - 10.x / Blade Templates 147

Blade::directive('datetime', function (string $expression) {
return "<?php echo ($expression)->format('m/d/Y H:i'"); ?>";

i
}

As you can see, we will chain the format method onto whatever expression is passed into the directive. So, in
this example, the final PHP generated by this directive will be:

<?php echo ($var)->format('m/d/Y H:i'); 2>

['WARNING]
After updating the logic of a Blade directive, you will need to delete all of the cached Blade views. The
cached Blade views may be removed using the view:clear Artisan command.

Custom Echo Handlers

If you attempt to "echo" an object using Blade, the object's _ tostring method will be invoked. The __tostring
method is one of PHP's built-in "magic methods". However, sometimes you may not have control over the
__tostring method of a given class, such as when the class that you are interacting with belongs to a third-party
library.

In these cases, Blade allows you to register a custom echo handler for that particular type of object. To
accomplish this, you should invoke Blade's stringable method. The stringable method accepts a closure. This
closure should type-hint the type of object that it is responsible for rendering. Typically, the stringable method
should be invoked within the boot method of your application's AppserviceProvider class:

use Illuminate\Support\Facades\Blade;
use Money\Money;

/**
* Bootstrap any application services.
*
/

public function boot(): void

{

Blade::stringable(function (Money $money) {
return $money->formatTo('en_GB');
1)
}

Once your custom echo handler has been defined, you may simply echo the object in your Blade template:

Cost: {{ $money }}
Custom If Statements

Programming a custom directive is sometimes more complex than necessary when defining simple, custom
conditional statements. For that reason, Blade provides a Blade: : if method which allows you to quickly define
custom conditional directives using closures. For example, let's define a custom conditional that checks the
configured default "disk" for the application. We may do this in the boot method of our Appserviceprovider:

use Illuminate\Support\Facades\Blade;

/**
* Bootstrap any application services.
*/

public function boot(): void

{

Blade::if ('disk', function (string $value) {
return config('filesystems.default') === $value;
1)
}

Once the custom conditional has been defined, you can use it within your templates:

@disk('local')

<!-- The application is using the local disk... -->
@elsedisk('s3"')
<!-- The application is using the s3 disk... -->

@else

https://www.php.net/manual/en/language.oop5.magic.php#object.tostring

Laravel Documentation - 10.x / Blade Templates 148

<!-- The application is using some other disk... -->
@enddisk

@unlessdisk('local')
<!-- The application is not using the local disk... -->
@enddisk

Laravel Documentation - 10.x / Asset Bundling 149

The Basics

Asset Bundling (Vite)

e Introduction

o Installation & Setup
o Installing Node
o Installing Vite and the Laravel Plugin
o Configuring Vite
o Loading Your Scripts and Styles
e Running Vite
e Working With JavaScript
o Aliases
o Vue
o React
o Inertia
o URL Processing
e Working With Stylesheets
e Working With Blade and Routes
o Processing Static Assets With Vite
o Refreshing on Save
o Aliases
Custom Base URLs
Environment Variables
Disabling Vite in Tests
Server-Side Rendering (SSR)
Script and Style Tag Attributes
o Content Security Policy (CSP) Nonce
o Subresource Integrity (SRI)
o Arbitrary Attributes
e Advanced Customization

o Correcting Dev Server URLs

Introduction

Vite is a modern frontend build tool that provides an extremely fast development environment and bundles your
code for production. When building applications with Laravel, you will typically use Vite to bundle your
application's CSS and JavaScript files into production ready assets.

Laravel integrates seamlessly with Vite by providing an official plugin and Blade directive to load your assets
for development and production.

[INOTE]
Are you running Laravel Mix? Vite has replaced Laravel Mix in new Laravel installations. For Mix
documentation, please visit the Laravel Mix website. If you would like to switch to Vite, please see our

migration guide.

Choosing Between Vite and Laravel Mix

Before transitioning to Vite, new Laravel applications utilized Mix, which is powered by webpack, when
bundling assets. Vite focuses on providing a faster and more productive experience when building rich
JavaScript applications. If you are developing a Single Page Application (SPA), including those developed with
tools like Inertia, Vite will be the perfect fit.

Vite also works well with traditional server-side rendered applications with JavaScript "sprinkles", including
those using Livewire. However, it lacks some features that Laravel Mix supports, such as the ability to copy
arbitrary assets into the build that are not referenced directly in your JavaScript application.

Migrating Back to Mix

https://vitejs.dev
https://laravel-mix.com/
https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-laravel-mix-to-vite
https://laravel-mix.com/
https://webpack.js.org/
https://inertiajs.com
https://livewire.laravel.com

Laravel Documentation - 10.x / Asset Bundling 150

Have you started a new Laravel application using our Vite scaffolding but need to move back to Laravel Mix
and webpack? No problem. Please consult our official guide on migrating from Vite to Mix.

Installation & Setup

['NOTE]

The following documentation discusses how to manually install and configure the Laravel Vite plugin.
However, Laravel's starter kits already include all of this scaffolding and are the fastest way to get started
with Laravel and Vite.

Installing Node

You must ensure that Node.js (16+) and NPM are installed before running Vite and the Laravel plugin:

node -v
npm -v

You can easily install the latest version of Node and NPM using simple graphical installers from the official
Node website. Or, if you are using Laravel Sail, you may invoke Node and NPM through Sail:

./vendor/bin/sail node -v
./vendor/bin/sail npm -v

Installing Vite and the Laravel Plugin

Within a fresh installation of Laravel, you will find a package. json file in the root of your application's directory
structure. The default package. json file already includes everything you need to get started using Vite and the
Laravel plugin. You may install your application's frontend dependencies via NPM:

npm install
Configuring Vite

Vite is configured via a vite.config. js file in the root of your project. You are free to customize this file based
on your needs, and you may also install any other plugins your application requires, such as @vitejs/plugin-vue
Or @vitejs/plugin-react.

The Laravel Vite plugin requires you to specify the entry points for your application. These may be JavaScript
or CSS files, and include preprocessed languages such as TypeScript, JSX, TSX, and Sass.

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel([
'resources/css/app.css’',
'resources/js/app.js',
1,
]l
1)

If you are building an SPA, including applications built using Inertia, Vite works best without CSS entry points:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel([
'resources/css/app.css', // [tl! remove]
'resources/js/app.js’',
1,
]l
¥

Instead, you should import your CSS via JavaScript. Typically, this would be done in your application's

https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-vite-to-laravel-mix
https://nodejs.org/en/download/
https://laravel.compackages-sail.xhtml

Laravel Documentation - 10.x / Asset Bundling 151

resources/js/app.js file:

import './bootstrap';
import '../css/app.css'; // [tl! add]

The Laravel plugin also supports multiple entry points and advanced configuration options such as SSR entry
points.

Working With a Secure Development Server

If your local development web server is serving your application via HTTPS, you may run into issues
connecting to the Vite development server.

If you are using Laravel Herd and have secured the site or you are using Laravel Valet and have run the secure
command against your application, the Laravel Vite plugin will automatically detect and use the generated TLS
certificate for you.

If you secured the site using a host that does not match the application's directory name, you may manually
specify the host in your application's vite.config.js file:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel({
/7 ...
detectTls: 'my-app.test', // [tl! add]
ok
]l
1)

When using another web server, you should generate a trusted certificate and manually configure Vite to use the
generated certificates:

/7 ...
import fs from 'fs'; // [tl! add]

const host = 'my-app.test'; // [tl! add]

export default defineConfig({
/7 ...
server: { // [tl! add]
host, // [tl! add]
hmr: { host }, // [tl! add]
https: { // [tl! add]
key: fs.readFileSync(/path/to/${host}.key”), // [tl! add]
cert: fs.readFileSync(/path/to/${host}.crt”), // [tl! add]
}, /7 [tl! add]
}, /7 [tl! add]
1)

If you are unable to generate a trusted certificate for your system, you may install and configure the
@vitejs/plugin-basic-ssl plugin. When using untrusted certificates, you will need to accept the certificate
warning for Vite's development server in your browser by following the "Local" link in your console when
running the npm run dev command.

Running the Development Server in Sail on WSL2

When running the Vite development server within Laravel Sail on Windows Subsystem for Linux 2 (WSL2),
you should add the following configuration to your vite.config.js file to ensure the browser can communicate
with the development server:

/7 ...

export default defineConfig({
/7 ...
server: { // [tl! add:start]
hmr: {
host: 'localhost',

https://herd.laravel.com
https://github.com/vitejs/vite-plugin-basic-ssl

Laravel Documentation - 10.x / Asset Bundling 152

}!
}, // [tl! add:end]
1)

If your file changes are not being reflected in the browser while the development server is running, you may
also need to configure Vite's server.watch.usePolling option.

Loading Your Scripts and Styles

With your Vite entry points configured, you may now reference them in a @vite() Blade directive that you add
to the <head> of your application's root template:

<!doctype html>

<head>

{{-- o --33

@vite(['resources/css/app.css', 'resources/js/app.js'])
</head>

If you're importing your CSS via JavaScript, you only need to include the JavaScript entry point:

<!doctype html>

<head>
- -1
@vite('resources/js/app.js')
</head>

The @vite directive will automatically detect the Vite development server and inject the Vite client to enable
Hot Module Replacement. In build mode, the directive will load your compiled and versioned assets, including
any imported CSS.

If needed, you may also specify the build path of your compiled assets when invoking the @vite directive:

<!doctype html>
<head>
{{-- Given build path is relative to public path. --}}

@vite('resources/js/app.js', 'vendor/courier/build')
</head>

Inline Assets

Sometimes it may be necessary to include the raw content of assets rather than linking to the versioned URL of
the asset. For example, you may need to include asset content directly into your page when passing HTML
content to a PDF generator. You may output the content of Vite assets using the content method provided by the
vite facade:

@php
use Illuminate\Support\Facades\Vite;
@endphp

<!doctype html>
<head>

- -1

<style>
{!! Vvite::content('resources/css/app.css') !!}
</style>
<script>
{!! Vite::content('resources/js/app.js') !!}
</script>
</head>

Running Vite

There are two ways you can run Vite. You may run the development server via the dev command, which is
useful while developing locally. The development server will automatically detect changes to your files and
instantly reflect them in any open browser windows.

https://vitejs.dev/config/server-options.html#server-watch

Laravel Documentation - 10.x / Asset Bundling 153

Or, running the build command will version and bundle your application's assets and get them ready for you to
deploy to production:

Run the Vite development server...
npm run dev

Build and version the assets for production...
npm run build

If you are running the development server in Sail on WSL2, you may need some additional configuration
options.

Working With JavaScript

Aliases

By default, The Laravel plugin provides a common alias to help you hit the ground running and conveniently
import your application's assets:

'@' => '/resources/js'

}

You may overwrite the '@’ alias by adding your own to the vite.config.js configuration file:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel(['resources/ts/app.tsx']),

]l

resolve: {
alias: {
'@': '/resources/ts',
}l
}l
K
Vue

If you would like to build your frontend using the Vue framework, then you will also need to install the
@vitejs/plugin-vue plugin:

npm install --save-dev @vitejs/plugin-vue

You may then include the plugin in your vite.config.js configuration file. There are a few additional options
you will need when using the Vue plugin with Laravel:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';
import vue from '@vitejs/plugin-vue';

export default defineConfig({

plugins: [
laravel(['resources/js/app.js']),
vue({
template: {

transformAssetUrls: {
// The Vue plugin will re-write asset URLs, when referenced
// in Single File Components, to point to the Laravel web
// server. Setting this to "null” allows the Laravel plugin
// to instead re-write asset URLs to point to the Vite
// server instead.
base: null,

// The Vue plugin will parse absolute URLs and treat them
// as absolute paths to files on disk. Setting this to

// “false® will leave absolute URLs un-touched so they can
// reference assets in the public directory as expected.
includeAbsolute: false,

https://vuejs.org/

Laravel Documentation - 10.x / Asset Bundling 154

}!
}
)
1,
1

['NOTE]
Laravel's starter kits already include the proper Laravel, Vue, and Vite configuration. Check out Laravel
Breeze for the fastest way to get started with Laravel, Vue, and Vite.

React

If you would like to build your frontend using the React framework, then you will also need to install the
@vitejs/plugin-react plugin:

npm install --save-dev @vitejs/plugin-react

You may then include the plugin in your vite.config.js configuration file:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';
import react from '@vitejs/plugin-react';

export default defineConfig({
plugins: [
laravel(['resources/js/app.jsx']),
react(),
]l
3

You will need to ensure that any files containing JSX have a . jsx or .tsx extension, remembering to update
your entry point, if required, as shown above.

You will also need to include the additional @vitereactrefresh Blade directive alongside your existing @vite
directive.

@viteReactRefresh
@vite('resources/js/app.jsx')

The @vitereactRefresh directive must be called before the @vite directive.

[INOTE]
Laravel's starter kits already include the proper Laravel, React, and Vite configuration. Check out Laravel
Breeze for the fastest way to get started with Laravel, React, and Vite.

Inertia

The Laravel Vite plugin provides a convenient resolvePagecomponent function to help you resolve your Inertia
page components. Below is an example of the helper in use with Vue 3; however, you may also utilize the
function in other frameworks such as React:

import { createApp, h } from 'vue';
import { createInertiaApp } from '@inertiajs/vue3';
import { resolvePageComponent } from 'laravel-vite-plugin/inertia-helpers';

createInertiaApp({
resolve: (name) => resolvePageComponent(./Pages/${name}.vue’, import.meta.glob('./Pages/**/*.vue')),
setup({ el, App, props, plugin }) {
return createApp({ render: () => h(App, props) })

.use(plugin)
.mount(el)
}l
1)
[!NOTE]

Laravel's starter kits already include the proper Laravel, Inertia, and Vite configuration. Check out Laravel
Breeze for the fastest way to get started with Laravel, Inertia, and Vite.

https://reactjs.org/

Laravel Documentation - 10.x / Asset Bundling 155

URL Processing

When using Vite and referencing assets in your application's HTML, CSS, or JS, there are a couple of caveats
to consider. First, if you reference assets with an absolute path, Vite will not include the asset in the build,;
therefore, you should ensure that the asset is available in your public directory.

When referencing relative asset paths, you should remember that the paths are relative to the file where they are
referenced. Any assets referenced via a relative path will be re-written, versioned, and bundled by Vite.

Consider the following project structure:

public/
taylor.png
resources/
js/
Pages/
Welcome.vue
images/
abigail.png

The following example demonstrates how Vite will treat relative and absolute URLs:

<!-- This asset is not handled by Vite and will not be included in the build -->

<!-- This asset will be re-written, versioned, and bundled by Vite -->

Working With Stylesheets

You can learn more about Vite's CSS support within the Vite documentation. If you are using PostCSS plugins
such as Tailwind, you may create a postcss.config.js file in the root of your project and Vite will automatically

apply it:

export default {
plugins: {
tailwindcss: {3},
autoprefixer: {3},
}l
3

[INOTE]

Laravel's starter kits already include the proper Tailwind, PostCSS, and Vite configuration. Or, if you
would like to use Tailwind and Laravel without using one of our starter kits, check out Tailwind's
installation guide for Laravel.

Working With Blade and Routes

Processing Static Assets With Vite

When referencing assets in your JavaScript or CSS, Vite automatically processes and versions them. In
addition, when building Blade based applications, Vite can also process and version static assets that you
reference solely in Blade templates.

However, in order to accomplish this, you need to make Vite aware of your assets by importing the static assets
into the application's entry point. For example, if you want to process and version all images stored in
resources/images and all fonts stored in resources/fonts, you should add the following in your application's
resources/js/app.js entry point:

import.meta.glob([
'../images/**',
'../fonts/**",

1);

These assets will now be processed by Vite when running npm run build. You can then reference these assets in
Blade templates using the vite: :asset method, which will return the versioned URL for a given asset:

https://vitejs.dev/guide/features.html#css
https://tailwindcss.com
https://tailwindcss.com/docs/guides/laravel

Laravel Documentation - 10.x / Asset Bundling 156

Refreshing on Save

When your application is built using traditional server-side rendering with Blade, Vite can improve your
development workflow by automatically refreshing the browser when you make changes to view files in your
application. To get started, you can simply specify the refresh option as true.

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel({
/7 ..
refresh: true,

1),
]!
1)

When the refresh option is true, saving files in the following directories will trigger the browser to perform a
full page refresh while you are running npm run dev:

app/View/Components/**
lang/**
resources/lang/**
resources/views/**

routes/**

Watching the routes/** directory is useful if you are utilizing Ziggy to generate route links within your
application's frontend.

If these default paths do not suit your needs, you can specify your own list of paths to watch:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel({
/7 ...
refresh: ['resources/views/**'],
)
]l
1)

Under the hood, the Laravel Vite plugin uses the vite-plugin-full-reload package, which offers some
advanced configuration options to fine-tune this feature's behavior. If you need this level of customization, you
may provide a config definition:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({

plugins: [
laravel({
/7 ...
refresh: [{
paths: ['path/to/watch/**'],
config: { delay: 300 }
P
)
]l
1)
Aliases

It is common in JavaScript applications to create aliases to regularly referenced directories. But, you may also
create aliases to use in Blade by using the macro method on the 111uminate\support\Facades\vite class.
Typically, "macros" should be defined within the boot method of a service provider:

https://github.com/tighten/ziggy
https://github.com/ElMassimo/vite-plugin-full-reload

Laravel Documentation - 10.x / Asset Bundling 157

/**
* Bootstrap any application services.
*/

public function boot(): void

{

Vite::macro('image', fn (string $asset) => $this->asset("resources/images/{$asset}"));

}

Once a macro has been defined, it can be invoked within your templates. For example, we can use the image
macro defined above to reference an asset located at resources/images/logo.png:

Custom Base URLs

If your Vite compiled assets are deployed to a domain separate from your application, such as via a CDN, you
must specify the AsseT_UrL environment variable within your application's .env file:

ASSET_URL=https://cdn.example.com

After configuring the asset URL, all re-written URLSs to your assets will be prefixed with the configured value:

https://cdn.example.com/build/assets/app.9dce8d17.js

Remember that absolute URLs are not re-written by Vite, so they will not be prefixed.

Environment Variables

You may inject environment variables into your JavaScript by prefixing them with viTe_ in your application's
.env file:

VITE_SENTRY_DSN_PUBLIC=http://example.com

You may access injected environment variables via the import.meta.env object:

import.meta.env.VITE_SENTRY_DSN_PUBLIC

Disabling Vite in Tests

Laravel's Vite integration will attempt to resolve your assets while running your tests, which requires you to
either run the Vite development server or build your assets.

If you would prefer to mock Vite during testing, you may call the withoutvite method, which is available for
any tests that extend Laravel's Testcase class:

use Tests\TestCase;

class ExampleTest extends TestCase

{
public function test_without_vite_example(): void
{
$this->withoutVvite();
/7 ...
}
}

If you would like to disable Vite for all tests, you may call the withoutvite method from the setup method on
your base Testcase class:

<?php
namespace Tests;
use Illuminate\Foundation\Testing\TestCase as BaseTestCase;

abstract class TestCase extends BaseTestCase

{

Laravel Documentation - 10.x / Asset Bundling 158

use CreatesApplication;

protected function setUp(): void// [tl! add:start]

{
parent::setUp();

$this->withoutvite();
}// [tl! add:end]

Server-Side Rendering (SSR)

The Laravel Vite plugin makes it painless to set up server-side rendering with Vite. To get started, create an
SSR entry point at resources/js/ssr.js and specify the entry point by passing a configuration option to the
Laravel plugin:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel({
input: 'resources/js/app.js',
ssr: 'resources/js/ssr.js',

),
]l
F

To ensure you don't forget to rebuild the SSR entry point, we recommend augmenting the "build" script in your
application's package.json to create your SSR build:
"scripts": {
"dev": "vite",
"build": "vite build" // [tl! remove]
"puild": "vite build && vite build --ssr" // [tl! add]
}

Then, to build and start the SSR server, you may run the following commands:

npm run build
node bootstrap/ssr/ssr.js

If you are using SSR with Inertia, you may instead use the inertia:start-ssr Artisan command to start the SSR
server:

php artisan inertia:start-ssr

[INOTE]
Laravel's starter kits already include the proper Laravel, Inertia SSR, and Vite configuration. Check out
Laravel Breeze for the fastest way to get started with Laravel, Inertia SSR, and Vite.

Script and Style Tag Attributes

Content Security Policy (CSP) Nonce

If you wish to include a nonce_attribute on your script and style tags as part of your Content Security Policy, you
may generate or specify a nonce using the usecspNonce method within a custom middleware:

<?php
namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Vite;

use Symfony\Component\HttpFoundation\Response;

class AddContentSecurityPolicyHeaders

{
J**

https://inertiajs.com/server-side-rendering
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/nonce
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Laravel Documentation - 10.x / Asset Bundling 159

* Handle an incoming request.
*

* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next): Response

{
Vite: :useCspNonce();
return $next($request)->withHeaders([
'Content-Security-Policy' => "script-src 'nonce-".Vite::cspNonce()."'",

1);
}

After invoking the usecspNonce method, Laravel will automatically include the nonce attributes on all generated
script and style tags.

If you need to specify the nonce elsewhere, including the Ziggy @route directive included with Laravel's starter
kits, you may retrieve it using the cspNonce method:

@routes(nonce: Vite::cspNonce())

If you already have a nonce that you would like to instruct Laravel to use, you may pass the nonce to the
useCspNonce method:

Vite: :useCspNonce($nonce);

Subresource Integrity (SRI)

If your Vite manifest includes integrity hashes for your assets, Laravel will automatically add the integrity
attribute on any script and style tags it generates in order to enforce Subresource Integrity. By default, Vite does
not include the integrity hash in its manifest, but you may enable it by installing the vite-plugin-manifest-sri
NPM plugin:

npm install --save-dev vite-plugin-manifest-sri

You may then enable this plugin in your vite.config. js file:
import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';
import manifestSRI from 'vite-plugin-manifest-sri';// [t1l! add]
export default defineConfig({
plugins: [

laravel({
/7 ...

)
manifestSRI(),// [tl! add]

]l
i

If required, you may also customize the manifest key where the integrity hash can be found:

use Illuminate\Support\Facades\Vite;

Vite::uselntegrityKey('custom-integrity-key');

If you would like to disable this auto-detection completely, you may pass false to the useIntegritykey method:

Vite::useIntegrityKey(false);

Arbitrary Attributes

If you need to include additional attributes on your script and style tags, such as the data-turbo-track attribute,
you may specify them via the usescriptTagattributes and usestyleTagAttributes methods. Typically, this
methods should be invoked from a service provider:

use Illuminate\Support\Facades\Vite;

Vite::useScriptTagAttributes([

https://github.com/tighten/ziggy#using-routes-with-a-content-security-policy
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.npmjs.com/package/vite-plugin-manifest-sri
https://turbo.hotwired.dev/handbook/drive#reloading-when-assets-change

Laravel Documentation - 10.x / Asset Bundling 160

'data-turbo-track' => 'reload', // Specify a value for the attribute...
'async' => true, // Specify an attribute without a value...
'integrity' => false, // Exclude an attribute that would otherwise be included...

1);

Vite::useStyleTagAttributes([
'data-turbo-track' => 'reload',

1);

If you need to conditionally add attributes, you may pass a callback that will receive the asset source path, its
URL, its manifest chunk, and the entire manifest:

use Illuminate\Support\Facades\Vite;

Vite::useScriptTagAttributes(fn (string $src, string $url, array|null $chunk, array|null $manifest) => [
'data-turbo-track' => $src === 'resources/js/app.js' ? 'reload' : false,

1);

Vite::useStyleTagAttributes(fn (string $src, string $url, array|null $chunk, array|null $manifest) => [
'data-turbo-track' => $chunk && $chunk['isEntry'] ? 'reload' : false,
1)

['WARNING]
The $chunk and $manifest arguments will be nu1l while the Vite development server is running.

Advanced Customization

Out of the box, Laravel's Vite plugin uses sensible conventions that should work for the majority of
applications; however, sometimes you may need to customize Vite's behavior. To enable additional
customization options, we offer the following methods and options which can be used in place of the @vite
Blade directive:

<!doctype html>
<head>

- -1

{
Vite::useHotFile(storage_path('vite.hot')) // Customize the "hot" file...

->useBuildDirectory('bundle') // Customize the build directory...
->useManifestFilename('assets.json') // Customize the manifest filename...
->withEntryPoints(['resources/js/app.js']) // Specify the entry points...
->createAssetPathsUsing(function (string $path, ?bool $secure) { // Customize the backend
path generation for built assets...
return "https://cdn.example.com/{$path}";
1)
1}

</head>

Within the vite.config.js file, you should then specify the same configuration:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';

export default defineConfig({
plugins: [
laravel({
hotFile: 'storage/vite.hot', // Customize the "hot" file...
buildDirectory: 'bundle', // Customize the build directory...
input: ['resources/js/app.js'], // Specify the entry points...

)
]l
build: {
manifest: 'assets.json', // Customize the manifest filename...

}l
i

Correcting Dev Server URLs

Some plugins within the Vite ecosystem assume that URLs which begin with a forward-slash will always point
to the Vite dev server. However, due to the nature of the Laravel integration, this is not the case.

For example, the vite-imagetools plugin outputs URLs like the following while Vite is serving your assets:

Laravel Documentation - 10.x / Asset Bundling 161

The vite-imagetools plugin is expecting that the output URL will be intercepted by Vite and the plugin may
then handle all URLs that start with /@imagetools. If you are using plugins that are expecting this behaviour,
you will need to manually correct the URLs. You can do this in your vite.config.js file by using the
transformonServe Option.

In this particular example, we will prepend the dev server URL to all occurrences of /@imagetools within the
generated code:

import { defineConfig } from 'vite';
import laravel from 'laravel-vite-plugin';
import { imagetools } from 'vite-imagetools';

export default defineConfig({
plugins: [
laravel({
/7 ..
transformOnServe: (code, devServerUrl) => code.replaceAll('/@imagetools’,
devServerUrl+'/@imagetools'),
.
imagetools(),
]!
)

Now, while Vite is serving Assets, it will output URLSs that point to the Vite dev server:

- <!-- [tl! remove] -->
+ <!-- [t1l! add] -->

Laravel Documentation - 10.x / URL Generation 162

The Basics

URL Generation

Introduction
The Basics

o Generating URLs

o Accessing the Current URL
URLs for Named Routes

o Signed URLs
URLs for Controller Actions
Default Values

Introduction

Laravel provides several helpers to assist you in generating URLSs for your application. These helpers are
primarily helpful when building links in your templates and API responses, or when generating redirect
responses to another part of your application.

The Basics

Generating URLs

The ur1 helper may be used to generate arbitrary URLs for your application. The generated URL will
automatically use the scheme (HTTP or HTTPS) and host from the current request being handled by the
application:

$post = App\Models\Post::find(1);
echo url("/posts/{$post->id}");

// http://example.com/posts/1

Accessing the Current URL

If no path is provided to the ur1 helper, an 111uminate\Routing\UrlGenerator instance is returned, allowing you
to access information about the current URL:

// Get the current URL without the query string...
echo url()->current();

// Get the current URL including the query string...
echo url()->full();

// Get the full URL for the previous request...
echo url()->previous();

Each of these methods may also be accessed via the urL facade:

use Illuminate\Support\Facades\URL;

echo URL::current();

URL:s for Named Routes

The route helper may be used to generate URLs to named routes. Named routes allow you to generate URLs
without being coupled to the actual URL defined on the route. Therefore, if the route's URL changes, no
changes need to be made to your calls to the route function. For example, imagine your application contains a
route defined like the following:

Route::get('/post/{post}', function (Post $post) {
/7 ...
})->name('post.show');

Laravel Documentation - 10.x / URL Generation 163

To generate a URL to this route, you may use the route helper like so:

echo route('post.show', ['post' => 1]);

// http://example.com/post/1

Of course, the route helper may also be used to generate URLs for routes with multiple parameters:
Route::get('/post/{post}/comment/{comment}', function (Post $post, Comment $comment) {
})->g;méi;comment.show‘);

echo route('comment.show', ['post' => 1, 'comment' => 3]);

// http://example.com/post/1/comment/3

Any additional array elements that do not correspond to the route's definition parameters will be added to the
URL's query string:

echo route('post.show', ['post' => 1, 'search' => 'rocket']);

// http://example.com/post/1?search=rocket
Eloquent Models

You will often be generating URLSs using the route key (typically the primary key) of Eloquent models. For this
reason, you may pass Eloquent models as parameter values. The route helper will automatically extract the
model's route key:

echo route('post.show', ['post' => $post]);

Signed URLs

Laravel allows you to easily create "signed" URLSs to named routes. These URLs have a "signature" hash
appended to the query string which allows Laravel to verify that the URL has not been modified since it was
created. Signed URLs are especially useful for routes that are publicly accessible yet need a layer of protection
against URL manipulation.

For example, you might use signed URLSs to implement a public "unsubscribe" link that is emailed to your
customers. To create a signed URL to a named route, use the signedroute method of the urL facade:

use Illuminate\Support\Facades\URL;

return URL::signedRoute('unsubscribe', ['user' => 1]);

You may exclude the domain from the signed URL hash by providing the absolute argument to the signedroute
method:

return URL::signedRoute('unsubscribe', ['user' => 1], absolute: false);

If you would like to generate a temporary signed route URL that expires after a specified amount of time, you
may use the temporarysignedroute method. When Laravel validates a temporary signed route URL, it will
ensure that the expiration timestamp that is encoded into the signed URL has not elapsed:

use Illuminate\Support\Facades\URL;
return URL::temporarySignedRoute(

'unsubscribe', now()->addMinutes(30), ['user' => 1]

)i
Validating Signed Route Requests

To verify that an incoming request has a valid signature, you should call the hasvalidsignature method on the
incoming Illuminate\Http\Request instance:

use Illuminate\Http\Request;

Route::get('/unsubscribe/{user}', function (Request $request) {

Laravel Documentation - 10.x / URL Generation 164

if (! $request->hasvalidSignature()) {
abort(401);
}

/7 ...
})->name('unsubscribe');

Sometimes, you may need to allow your application's frontend to append data to a signed URL, such as when
performing client-side pagination. Therefore, you can specify request query parameters that should be ignored
when validating a signed URL using the hasvalidsignaturewhileIgnoring method. Remember, ignoring
parameters allows anyone to modify those parameters on the request:

if (! $request->hasvalidSignaturewhileIgnoring(['page', 'order'])) {
abort(401);
}

Instead of validating signed URLSs using the incoming request instance, you may assign the
Illuminate\Routing\Middleware\ValidateSignature middleware to the route. If it is not already present, you may
assign this middleware an alias in your HTTP kernel's $middlewareAliases array:

/-k-k
* The application's middleware aliases.

*

* Aliases may be used to conveniently assign middleware to routes and groups.

*

* @var array<string, class-string]|string>
*
/
protected $middlewareAliases = [
'signed' => \Illuminate\Routing\Middleware\ValidateSignature::class,

1;

Once you have registered the middleware in your kernel, you may attach it to a route. If the incoming request
does not have a valid signature, the middleware will automatically return a 463 HTTP response:

Route::post('/unsubscribe/{user}', function (Request $request) {
// ...
})->name('unsubscribe')->middleware('signed');

If your signed URLs do not include the domain in the URL hash, you should provide the relative argument to
the middleware:

Route::post('/unsubscribe/{user}', function (Request $request) {
/7 ...
})->name('unsubscribe')->middleware('signed:relative');

Responding to Invalid Signed Routes

When someone visits a signed URL that has expired, they will receive a generic error page for the 403 HTTP
status code. However, you can customize this behavior by defining a custom "renderable" closure for the
InvalidSignatureException exception in your exception handler. This closure should return an HTTP response:

use Illuminate\Routing\Exceptions\InvalidSignatureException;

/**
* Register the exception handling callbacks for the application.
*/

public function register(): void

{
$this->renderable(function (InvalidSignatureException $e) {
return response()->view('error.link-expired', [], 403);

K

URL:s for Controller Actions

The action function generates a URL for the given controller action:
use App\Http\Controllers\HomeController;

$url = action([HomeController::class, 'index']);

Laravel Documentation - 10.x / URL Generation 165

If the controller method accepts route parameters, you may pass an associative array of route parameters as the
second argument to the function:

$url = action([UserController::class, 'profile'], ['id' => 1]);

Default Values

For some applications, you may wish to specify request-wide default values for certain URL parameters. For
example, imagine many of your routes define a {locale} parameter:

Route::get('/{locale}/posts', function () {
/7
})->name('post.index');
It is cuambersome to always pass the locale every time you call the route helper. So, you may use the
URL: :defaults method to define a default value for this parameter that will always be applied during the current

request. You may wish to call this method from a route middleware so that you have access to the current
request:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\URL;

use Symfony\Component\HttpFoundation\Response;

class SetDefaultLocaleForUrls

{
/**
* Handle an incoming request.
*
* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*
/
public function handle(Request $request, Closure $next): Response
URL::defaults(['locale' => $request->user()->locale]);
return $next($request);
}
}

Once the default value for the 1ocale parameter has been set, you are no longer required to pass its value when
generating URLs via the route helper.

URL Defaults and Middleware Priority

Setting URL default values can interfere with Laravel's handling of implicit model bindings. Therefore, you
should prioritize your middleware that set URL defaults to be executed before Laravel's own
substituteBindings middleware. You can accomplish this by making sure your middleware occurs before the
SubstituteBindings middleware within the $middlewarepriority property of your application's HTTP kernel.

The $middlewarePriority property is defined in the base 111uminate\Foundation\Http\Kernel class. You may
copy its definition from that class and overwrite it in your application's HTTP kernel in order to modify it:

/**
* The priority-sorted list of middleware.

*

* This forces non-global middleware to always be in the given order.
* @var array
*/
protected $middlewarePriority = [
/7 ...
\App\Http\Middleware\SetDefaultLocaleForUrls::class,
\Illuminate\Routing\Middleware\SubstituteBindings::class,
/7 ...
1;

Laravel Documentation - 10.x / Session 166

The Basics

HTTP Session

Introduction
o Configuration
o Driver Prerequisites
e Interacting With the Session
o Retrieving Data
o Storing Data
o Flash Data
o Deleting Data
o Regenerating the Session ID
Session Blocking
Adding Custom Session Drivers
o Implementing the Driver
o Registering the Driver

Introduction

Since HTTP driven applications are stateless, sessions provide a way to store information about the user across
multiple requests. That user information is typically placed in a persistent store / backend that can be accessed
from subsequent requests.

Laravel ships with a variety of session backends that are accessed through an expressive, unified API. Support
for popular backends such as Memcached, Redis, and databases is included.

Configuration

Your application's session configuration file is stored at config/session.php. Be sure to review the options
available to you in this file. By default, Laravel is configured to use the file session driver, which will work
well for many applications. If your application will be load balanced across multiple web servers, you should
choose a centralized store that all servers can access, such as Redis or a database.

The session driver configuration option defines where session data will be stored for each request. Laravel
ships with several great drivers out of the box:

file - sessions are stored in storage/framework/sessions

cookie - sessions are stored in secure, encrypted cookies.

database - sessions are stored in a relational database.

memcached / redis - sessions are stored in one of these fast, cache based stores.
dynamodb - sessions are stored in AWS DynamoDB.

array - sessions are stored in a PHP array and will not be persisted.

[INOTE]
The array driver is primarily used during testing and prevents the data stored in the session from being
persisted.

Driver Prerequisites
Database

When using the database session driver, you will need to create a table to contain the session records. An
example schema declaration for the table may be found below:

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

Schema: :create('sessions', function (Blueprint $table) {
$table->string('id')->primary();

https://memcached.org
https://redis.io

Laravel Documentation - 10.x / Session 167

$table->foreignId('user_id')->nullable()->index();
$table->string('ip_address', 45)->nullable();
$table->text('user_agent')->nullable();
$table->text('payload');
$table->integer('last_activity')->index();

i

You may use the session:table Artisan command to generate this migration. To learn more about database
migrations, you may consult the complete migration documentation:

php artisan session:table

php artisan migrate
Redis

Before using Redis sessions with Laravel, you will need to either install the PhpRedis PHP extension via PECL
or install the predis/predis package (~1.0) via Composer. For more information on configuring Redis, consult
Laravel's Redis documentation.

['NOTE]
In the session configuration file, the connection option may be used to specify which Redis connection is
used by the session.

Interacting With the Session

Retrieving Data

There are two primary ways of working with session data in Laravel: the global session helper and via a
Request instance. First, let's look at accessing the session via a Request instance, which can be type-hinted on a
route closure or controller method. Remember, controller method dependencies are automatically injected via
the Laravel service container:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\Request;
use Illuminate\View\View;

class UserController extends Controller

{
/**
* Show the profile for the given user.
*/
public function show(Request $request, string $id): View
{
$value = $request->session()->get('key');
/7 ...
$user = $this->users->find($id);
return view('user.profile', ['user' => $user]);
}
}

When you retrieve an item from the session, you may also pass a default value as the second argument to the
get method. This default value will be returned if the specified key does not exist in the session. If you pass a
closure as the default value to the get method and the requested key does not exist, the closure will be executed
and its result returned:

$value = $request->session()->get('key', 'default');
$value = $request->session()->get('key', function () {

return 'default';

i

The Global Session Helper

Laravel Documentation - 10.x / Session 168

You may also use the global session PHP function to retrieve and store data in the session. When the session
helper is called with a single, string argument, it will return the value of that session key. When the helper is
called with an array of key / value pairs, those values will be stored in the session:
Route::get('/home', function () {

// Retrieve a piece of data from the session...

$value = session('key');

// Specifying a default value...
$value = session('key', 'default');

// Store a piece of data in the session...

session(['key' => 'value']);

IOF

['NOTE]

There is little practical difference between using the session via an HTTP request instance versus using the
global session helper. Both methods are testable via the assertsessionHas method which is available in all
of your test cases.

Retrieving All Session Data

If you would like to retrieve all the data in the session, you may use the a11 method:

$data = $request->session()->all();
Retrieving a Portion of the Session Data

The only and except methods may be used to retrieve a subset of the session data:
$data = $request->session()->only(['username', 'email']);

$data = $request->session()->except(['username', 'email']);
Determining if an Item Exists in the Session
To determine if an item is present in the session, you may use the has method. The has method returns true if

the item is present and is not nu1l:

if ($request->session()->has('users')) {
/7 ...
}

To determine if an item is present in the session, even if its value is null, you may use the exists method:

if ($request->session()->exists('users')) {
/7 ..
}

To determine if an item is not present in the session, you may use the missing method. The missing method
returns true if the item is not present:

if ($request->session()->missing('users')) {
/7 ..
}

Storing Data
To store data in the session, you will typically use the request instance's put method or the global session
helper:

// Via a request instance...
$request->session()->put('key', 'value');

// Via the global "session" helper...
session(['key' => 'value']);

Pushing to Array Session Values

Laravel Documentation - 10.x / Session 169

The push method may be used to push a new value onto a session value that is an array. For example, if the
user.teams key contains an array of team names, you may push a new value onto the array like so:

$request->session()->push('user.teams', 'developers');
Retrieving and Deleting an Item

The pu1l method will retrieve and delete an item from the session in a single statement:

$value = $request->session()->pull('key', 'default');
Incrementing and Decrementing Session Values

If your session data contains an integer you wish to increment or decrement, you may use the increment and
decrement methods:

$request->session()->increment('count');

$request->session()->increment('count', $incrementBy = 2);
$request->session()->decrement('count');
$request->session()->decrement('count', $decrementBy = 2);

Flash Data

Sometimes you may wish to store items in the session for the next request. You may do so using the flash
method. Data stored in the session using this method will be available immediately and during the subsequent
HTTP request. After the subsequent HTTP request, the flashed data will be deleted. Flash data is primarily
useful for short-lived status messages:

$request->session()->flash('status', 'Task was successful!');

If you need to persist your flash data for several requests, you may use the reflash method, which will keep all
of the flash data for an additional request. If you only need to keep specific flash data, you may use the keep
method:

$request->session()->reflash();
$request->session()->keep(['username', 'email']);
To persist your flash data only for the current request, you may use the now method:

$request->session()->now('status', 'Task was successful!');

Deleting Data
The forget method will remove a piece of data from the session. If you would like to remove all data from the
session, you may use the flush method:

// Forget a single key...
$request->session()->forget('name');

// Forget multiple keys...
$request->session()->forget(['name', 'status']);

$request->session()->flush();

Regenerating the Session ID

Regenerating the session ID is often done in order to prevent malicious users from exploiting a session fixation
attack on your application.

Laravel automatically regenerates the session ID during authentication if you are using one of the Laravel
application starter kits or Laravel Fortify; however, if you need to manually regenerate the session ID, you may

https://owasp.org/www-community/attacks/Session_fixation

Laravel Documentation - 10.x / Session 170

use the regenerate method:

$request->session()->regenerate();

If you need to regenerate the session ID and remove all data from the session in a single statement, you may use
the invalidate method:

$request->session()->invalidate();

Session Blocking

['WARNING]

To utilize session blocking, your application must be using a cache driver that supports atomic locks.
Currently, those cache drivers include the memcached, dynamodb, redis, database, file, and array drivers. In
addition, you may not use the cookie session driver.

By default, Laravel allows requests using the same session to execute concurrently. So, for example, if you use
a JavaScript HTTP library to make two HTTP requests to your application, they will both execute at the same
time. For many applications, this is not a problem; however, session data loss can occur in a small subset of
applications that make concurrent requests to two different application endpoints which both write data to the
session.

To mitigate this, Laravel provides functionality that allows you to limit concurrent requests for a given session.
To get started, you may simply chain the block method onto your route definition. In this example, an incoming
request to the /profile endpoint would acquire a session lock. While this lock is being held, any incoming
requests to the /profile or /order endpoints which share the same session ID will wait for the first request to
finish executing before continuing their execution:

Route::post('/profile', function () {
// ...

})->block($lockSeconds = 10, $waitSeconds = 10)
Route::post('/order', function () {

/7 ...
})->block($lockSeconds = 10, $waitSeconds = 10)

The block method accepts two optional arguments. The first argument accepted by the block method is the
maximum number of seconds the session lock should be held for before it is released. Of course, if the request
finishes executing before this time the lock will be released earlier.

The second argument accepted by the block method is the number of seconds a request should wait while
attempting to obtain a session lock. An 11luminate\Contracts\Cache\LockTimeoutException will be thrown if the
request is unable to obtain a session lock within the given number of seconds.

If neither of these arguments is passed, the lock will be obtained for a maximum of 10 seconds and requests
will wait a maximum of 10 seconds while attempting to obtain a lock:

Route::post('/profile', function () {

/.
})->block()

Adding Custom Session Drivers

Implementing the Driver

If none of the existing session drivers fit your application's needs, Laravel makes it possible to write your own
session handler. Your custom session driver should implement PHP's built-in sessionHandlerinterface. This
interface contains just a few simple methods. A stubbed MongoDB implementation looks like the following:

<?php
namespace App\Extensions;

class MongoSessionHandler implements \SessionHandlerInterface

{

Laravel Documentation - 10.x / Session 171

public function open($savePath, $sessionName) {}
public function close() {}

public function read($sessionId) {}

public function write($sessionId, $data) {3}
public function destroy($sessionId) {}

public function gc($lifetime) {3}

['NOTE]
Laravel does not ship with a directory to contain your extensions. You are free to place them anywhere you
like. In this example, we have created an Extensions directory to house the MongosessionHandler.

Since the purpose of these methods is not readily understandable, let's quickly cover what each of the methods
do:

o The open method would typically be used in file based session store systems. Since Laravel ships with a
file session driver, you will rarely need to put anything in this method. You can simply leave this
method empty.

o The close method, like the open method, can also usually be disregarded. For most drivers, it is not
needed.

o The read method should return the string version of the session data associated with the given
$sessionId. There is no need to do any serialization or other encoding when retrieving or storing session
data in your driver, as Laravel will perform the serialization for you.

o The write method should write the given sdata string associated with the $sessionid to some persistent
storage system, such as MongoDB or another storage system of your choice. Again, you should not
perform any serialization - Laravel will have already handled that for you.

The destroy method should remove the data associated with the $session1d from persistent storage.
The gc method should destroy all session data that is older than the given $1ifetime, which is a UNIX
timestamp. For self-expiring systems like Memcached and Redis, this method may be left empty.

Registering the Driver

Once your driver has been implemented, you are ready to register it with Laravel. To add additional drivers to
Laravel's session backend, you may use the extend method provided by the session facade. You should call the
extend method from the boot method of a service provider. You may do this from the existing
App\Providers\AppServiceProvider Or create an entirely new prOVider:

<?php
namespace App\Providers;

use App\Extensions\MongoSessionHandler;
use Illuminate\Contracts\Foundation\Application;
use Illuminate\Support\Facades\Session;
use Illuminate\Support\ServiceProvider;

class SessionServiceProvider extends ServiceProvider
{
/**
* Register any application services.
*/
public function register(): void

{
}

/**
* Bootstrap any application services.
*/

public function boot(): void

{

/7 ...

Session::extend('mongo', function (Application $app) {
// Return an implementation of SessionHandlerInterface...
return new MongoSessionHandler;

i
}

Once the session driver has been registered, you may use the mongo driver in your config/session.php
configuration file.

Laravel Documentation - 10.x / Validation 172

The Basics

Validation

e Introduction
Validation Quickstart

o Defining the Routes
Creating the Controller
Writing the Validation Logic
Displaying the Validation Errors

Repopulating Forms
A Note on Optional Fields
o Validation Error Response Format
e Form Request Validation
o Creating Form Requests
o Authorizing Form Requests
o Customizing the Error Messages
o Preparing Input for Validation
e Manually Creating Validators
o Automatic Redirection
o Named Error Bags
o Customizing the Error Messages
o Performing Additional Validation
e Working With Validated Input
Working With Error Messages
o Specifying Custom Messages in Language Files
o Specifying Attributes in Language Files
o Specifying Values in Language Files
e Available Validation Rules
e Conditionally Adding Rules
Validating Arrays
o Validating Nested Array Input
o Error Message Indexes and Positions
e Validating Files

Validating Passwords
Custom Validation Rules

o Using Rule Objects

o Using Closures
o Implicit Rules

O O o o o

Introduction

Laravel provides several different approaches to validate your application's incoming data. It is most common
to use the validate method available on all incoming HTTP requests. However, we will discuss other
approaches to validation as well.

Laravel includes a wide variety of convenient validation rules that you may apply to data, even providing the
ability to validate if values are unique in a given database table. We'll cover each of these validation rules in
detail so that you are familiar with all of Laravel's validation features.

Validation Quickstart

To learn about Laravel's powerful validation features, let's look at a complete example of validating a form and
displaying the error messages back to the user. By reading this high-level overview, you'll be able to gain a
good general understanding of how to validate incoming request data using Laravel:

Defining the Routes

Laravel Documentation - 10.x / Validation 173

First, let's assume we have the following routes defined in our routes/web.php file:
use App\Http\Controllers\PostController;

Route::get('/post/create', [PostController::class, 'create']);
Route::post('/post', [PostController::class, 'store']);

The 6eT route will display a form for the user to create a new blog post, while the posT route will store the new
blog post in the database.

Creating the Controller

Next, let's take a look at a simple controller that handles incoming requests to these routes. We'll leave the store
method empty for now:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;
use Illuminate\View\View;

class PostController extends Controller

{
/**
* Show the form to create a new blog post.
*
/
public function create(): View

{
}

/**
* Store a new blog post.
*
/
public function store(Request $request): RedirectResponse

return view('post.create');

// Validate and store the blog post...
$post = /** ... */

return to_route('post.show', ['post' => $post->id]);

Writing the Validation Logic

Now we are ready to fill in our store method with the logic to validate the new blog post. To do this, we will
use the validate method provided by the 111uminate\Http\Request object. If the validation rules pass, your code
will keep executing normally; however, if validation fails, an 111uminate\validation\validationException
exception will be thrown and the proper error response will automatically be sent back to the user.

If validation fails during a traditional HTTP request, a redirect response to the previous URL will be generated.

If the incoming request is an XHR request, a JSON response containing the validation error messages will be
returned.

To get a better understanding of the validate method, let's jump back into the store method:

/**
* Store a new blog post.
*/
public function store(Request $request): RedirectResponse
{
$validated = $request->validate([
'title' => 'required|unique:posts|max:255"',
'body' => 'required',

1
// The blog post is valid...

return redirect('/posts');

Laravel Documentation - 10.x / Validation 174

}

As you can see, the validation rules are passed into the validate method. Don't worry - all available validation
rules are documented. Again, if the validation fails, the proper response will automatically be generated. If the
validation passes, our controller will continue executing normally.

Alternatively, validation rules may be specified as arrays of rules instead of a single | delimited string:

$validatedData = $request->validate([
'title' => ['required', 'unique:posts', 'max:255'],
'body' => ['required'],

1);

In addition, you may use the validatewithBag method to validate a request and store any error messages within
a named error bag:

$validatedData = $request->validatewithBag('post', [
'title' => ['required', 'unique:posts', 'max:255'],
'body' => ['required'],

D

Stopping on First Validation Failure

Sometimes you may wish to stop running validation rules on an attribute after the first validation failure. To do
s0, assign the bail rule to the attribute:

$request->validate([
'title' => 'bail|required|unique:posts|max:255"',
'body' => 'required',

1);

In this example, if the unique rule on the title attribute fails, the max rule will not be checked. Rules will be
validated in the order they are assigned.

A Note on Nested Attributes

If the incoming HTTP request contains "nested" field data, you may specify these fields in your validation rules
using "dot" syntax:

$request->validate([
'title' => 'required|unique:posts|max:255"',
'author.name' => 'required',
'author.description' => 'required',

1);

On the other hand, if your field name contains a literal period, you can explicitly prevent this from being
interpreted as "dot" syntax by escaping the period with a backslash:

$request->validate([
'title' => 'required|unique:posts|max:255"',
'vi\.0' => 'required',

1)
Displaying the Validation Errors

So, what if the incoming request fields do not pass the given validation rules? As mentioned previously,
Laravel will automatically redirect the user back to their previous location. In addition, all of the validation
errors and request input will automatically be flashed to the session.

An serrors variable is shared with all of your application's views by the
Illuminate\View\Middleware\ShareErrorsFromSession middleware, which is provided by the web middleware
group. When this middleware is applied an serrors variable will always be available in your views, allowing
you to conveniently assume the serrors variable is always defined and can be safely used. The serrors variable
will be an instance of 111uminate\Support\MessageBag. For more information on working with this object, check
out its documentation.

So, in our example, the user will be redirected to our controller's create method when validation fails, allowing

Laravel Documentation - 10.x / Validation 175

us to display the error messages in the view:

<!-- /resources/views/post/create.blade.php -->
<h1l>Create Post</h1>

@if ($errors->any())
<div class="alert alert-danger">

@foreach ($errors->all() as $error)
{{ $error }}</1i>

@endforeach

</div>
@endif
<!-- Create Post Form -->

Customizing the Error Messages

Laravel's built-in validation rules each have an error message that is located in your application's
lang/en/validation.php file. If your application does not have a 1ang directory, you may instruct Laravel to
create it using the lang:publish Artisan command.

Within the 1ang/en/validation.php file, you will find a translation entry for each validation rule. You are free to
change or modify these messages based on the needs of your application.

In addition, you may copy this file to another language directory to translate the messages for your application's
language. To learn more about Laravel localization, check out the complete localization documentation.

[!'WARNING]
By default, the Laravel application skeleton does not include the 1ang directory. If you would like to
customize Laravel's language files, you may publish them via the 1ang:publish Artisan command.

XHR Requests and Validation

In this example, we used a traditional form to send data to the application. However, many applications receive
XHR requests from a JavaScript powered frontend. When using the validate method during an XHR request,
Laravel will not generate a redirect response. Instead, Laravel generates a JSON response containing all of the
validation errors. This JSON response will be sent with a 422 HTTP status code.

The @error Directive
You may use the @error Blade directive to quickly determine if validation error messages exist for a given
attribute. Within an @error directive, you may echo the smessage variable to display the error message:
<!-- /resources/views/post/create.blade.php -->
<label for="title">Post Title</label>
<input id="title"
type="text"
name="title"
class="@error('title') is-invalid @enderror">
@error('title')

<div class="alert alert-danger">{{ $message }}</div>
@enderror

If you are using named error bags, you may pass the name of the error bag as the second argument to the @error
directive:

<input ... class="@error('title', 'post') is-invalid @enderror">
Repopulating Forms

When Laravel generates a redirect response due to a validation error, the framework will automatically flash all

Laravel Documentation - 10.x / Validation 176

of the request's input to the session. This is done so that you may conveniently access the input during the next
request and repopulate the form that the user attempted to submit.

To retrieve flashed input from the previous request, invoke the o1d method on an instance of
Illuminate\Http\Request. The o1d method will pull the previously flashed input data from the session:

$title = $request->o0ld('title');

Laravel also provides a global o1d helper. If you are displaying old input within a Blade template, it is more
convenient to use the old helper to repopulate the form. If no old input exists for the given field, nu11 will be
returned:

<input type="text" name="title" value="{{ old('title') }}">

A Note on Optional Fields

By default, Laravel includes the Trimstrings and convertEmptyStringsToNull middleware in your application's
global middleware stack. These middleware are listed in the stack by the App\Http\Kernel class. Because of this,
you will often need to mark your "optional" request fields as nullable if you do not want the validator to
consider null values as invalid. For example:

$request->validate([
'title' => 'required|unique:posts|max:255"',
'body' => 'required',
'publish_at' => 'nullable|date',

1)

In this example, we are specifying that the publish_at field may be either nul1 or a valid date representation. If
the nullable modifier is not added to the rule definition, the validator would consider nu11 an invalid date.

Validation Error Response Format

When your application throws a 111uminate\validation\validationException exception and the incoming HTTP
request is expecting a JSON response, Laravel will automatically format the error messages for you and return
a 422 Unprocessable Entity HTTP response.

Below, you can review an example of the JSON response format for validation errors. Note that nested error
keys are flattened into "dot" notation format:

{

"message": "The team name must be a string. (and 4 more errors)",
"errors": {
"team_name": [
"The team name must be a string.",
"The team name must be at least 1 characters."
]l
"authorization.role": [
"The selected authorization.role is invalid."
]l
"users.0.email": [
"The users.0.email field is required."
]l
"users.2.email": [
"The users.2.email must be a valid email address."
1

Form Request Validation

Creating Form Requests

For more complex validation scenarios, you may wish to create a "form request". Form requests are custom
request classes that encapsulate their own validation and authorization logic. To create a form request class, you
may use the make:request Artisan CLI command:

Laravel Documentation - 10.x / Validation 177

php artisan make:request StorePostRequest

The generated form request class will be placed in the app/Http/Requests directory. If this directory does not
exist, it will be created when you run the make: request command. Each form request generated by Laravel has
two methods: authorize and rules.

As you might have guessed, the authorize method is responsible for determining if the currently authenticated
user can perform the action represented by the request, while the rules method returns the validation rules that
should apply to the request's data:

/**
* Get the validation rules that apply to the request.

*
* @return array<string, \Illuminate\Contracts\Validation\Rule|array|string>
*/

public function rules(): array

{

return [
'title' => 'required|unique:posts|max:255"',
'body' => 'required',

1;

[!NOTE]
You may type-hint any dependencies you require within the rules method's signature. They will
automatically be resolved via the Laravel service container.

So, how are the validation rules evaluated? All you need to do is type-hint the request on your controller
method. The incoming form request is validated before the controller method is called, meaning you do not
need to clutter your controller with any validation logic:

/**
* Store a new blog post.
*
/
public function store(StorePostRequest $request): RedirectResponse

{

// The incoming request is valid...

// Retrieve the validated input data...
$validated = $request->validated();

// Retrieve a portion of the validated input data...
$validated $request->safe()->only(['name', 'email']);
$validated $request->safe()->except(['name', 'email']);

// Store the blog post...

return redirect('/posts');

}

If validation fails, a redirect response will be generated to send the user back to their previous location. The
errors will also be flashed to the session so they are available for display. If the request was an XHR request, an
HTTP response with a 422 status code will be returned to the user including a JSON representation of the
validation errors.

[INOTE]
Need to add real-time form request validation to your Inertia powered Laravel frontend? Check out
Laravel Precognition.

Performing Additional Validation

Sometimes you need to perform additional validation after your initial validation is complete. You can
accomplish this using the form request's after method.

The after method should return an array of callables or closures which will be invoked after validation is
complete. The given callables will receive an I11uminate\validation\validator instance, allowing you to raise
additional error messages if necessary:

use Illuminate\Validation\Validator;

Laravel Documentation - 10.x / Validation 178

/**
* Get the "after" validation callables for the request.
*/
public function after(): array
{
return [
function (validator $validator) {
if ($this->somethingElseIsInvalid()) {
$validator->errors()->add(
'field',
'Something is wrong with this field!'
)i
}
}
1;
}

As noted, the array returned by the after method may also contain invokable classes. The __invoke method of
these classes will receive an 11luminate\validation\validator instance:

use App\Validation\ValidateShippingTime;
use App\Validation\ValidateUserStatus;
use Illuminate\Validation\Validator;

/**
* Get the "after" validation callables for the request.
*/
public function after(): array
{
return [
new ValidateUserStatus,
new ValidateShippingTime,
function (validator $validator) {
//
}
1;
}

Stopping on the First Validation Failure

By adding a stoponFirstFailure property to your request class, you may inform the validator that it should stop
validating all attributes once a single validation failure has occurred:

/**
* Indicates if the validator should stop on the first rule failure.

*

* @var bool
*/
protected $stopOnFirstFailure = true;

Customizing the Redirect Location

As previously discussed, a redirect response will be generated to send the user back to their previous location
when form request validation fails. However, you are free to customize this behavior. To do so, define a
$redirect property on your form request:

/**
* The URI that users should be redirected to if validation fails.

*

* @var string
*/
protected $redirect = '/dashboard';

Or, if you would like to redirect users to a named route, you may define a $redirectRoute property instead:

/**
* The route that users should be redirected to if validation fails.

*

* @var string
*/
protected $redirectRoute = 'dashboard';

Authorizing Form Requests

Laravel Documentation - 10.x / Validation 179

The form request class also contains an authorize method. Within this method, you may determine if the
authenticated user actually has the authority to update a given resource. For example, you may determine if a
user actually owns a blog comment they are attempting to update. Most likely, you will interact with your

authorization gates and policies within this method:

use App\Models\Comment;

/**
* Determine if the user is authorized to make this request.
*/

public function authorize(): bool

{

$comment = Comment::find($this->route('comment'));

return $comment && $this->user()->can('update', $comment);

}

Since all form requests extend the base Laravel request class, we may use the user method to access the
currently authenticated user. Also, note the call to the route method in the example above. This method grants
you access to the URI parameters defined on the route being called, such as the {comment} parameter in the
example below:

Route: :post('/comment/{comment}"');

Therefore, if your application is taking advantage of route model binding, your code may be made even more
succinct by accessing the resolved model as a property of the request:

return $this->user()->can('update', $this->comment);

If the authorize method returns false, an HTTP response with a 403 status code will automatically be returned
and your controller method will not execute.

If you plan to handle authorization logic for the request in another part of your application, you may remove the
authorize method completely, or simply return true:

/* Determine if the user is authorized to make this request.
puglic function authorize(): bool
¢ return true;
}
['NOTE]

You may type-hint any dependencies you need within the authorize method's signature. They will
automatically be resolved via the Laravel service container.

Customizing the Error Messages

You may customize the error messages used by the form request by overriding the messages method. This
method should return an array of attribute / rule pairs and their corresponding error messages:

/**
* Get the error messages for the defined validation rules.

*

* @return array<string, string>

*/
public function messages(): array
{
return [
'title.required' => 'A title is required',
'body.required' => 'A message is required',
1;
}

Customizing the Validation Attributes

Many of Laravel's built-in validation rule error messages contain an :attribute placeholder. If you would like
the :attribute placeholder of your validation message to be replaced with a custom attribute name, you may

Laravel Documentation - 10.x / Validation 180

specify the custom names by overriding the attributes method. This method should return an array of attribute
/ name pairs:

Jx*

* Get custom attributes for validator errors.
*

* @return array<string, string>

*/
public function attributes(): array
{
return [
'email' => 'email address',
1;
}

Preparing Input for Validation

If you need to prepare or sanitize any data from the request before you apply your validation rules, you may use
the prepareForvalidation method:

use Illuminate\Support\Str;

/**
* Prepare the data for validation.
*
/
protected function prepareForvalidation(): void
{
$this->merge([
'slug' => Str::slug($this->slug),
1)
}

Likewise, if you need to normalize any request data after validation is complete, you may use the
passedvalidation method:

/**
* Handle a passed validation attempt.
*/
protected function passedvalidation(): void
{
$this->replace(['name' => 'Taylor']);
}

Manually Creating Validators

If you do not want to use the validate method on the request, you may create a validator instance manually
using the validator facade. The make method on the facade generates a new validator instance:

<?php
namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Validator;

class PostController extends Controller
{
/**
* Store a new blog post.
*/
public function store(Request $request): RedirectResponse
{
$validator = Validator::make($request->all(), [
'title' => 'required|unique:posts|max:255"',
'body' => 'required',

1);

if ($validator->fails()) {
return redirect('post/create')
->withErrors($validator)
->withInput();

Laravel Documentation - 10.x / Validation 181

// Retrieve the validated input...
$validated = $validator->validated();

// Retrieve a portion of the validated input...
$validated = $validator->safe()->only(['name', 'email']);
$validated = $validator->safe()->except(['name', 'email']);

// Store the blog post...
return redirect('/posts');

}

The first argument passed to the make method is the data under validation. The second argument is an array of
the validation rules that should be applied to the data.

After determining whether the request validation failed, you may use the witherrors method to flash the error
messages to the session. When using this method, the serrors variable will automatically be shared with your
views after redirection, allowing you to easily display them back to the user. The witherrors method accepts a
validator, a MessageBag, or a PHP array.

Stopping on First Validation Failure

The stoponFirstFailure method will inform the validator that it should stop validating all attributes once a
single validation failure has occurred:

if ($validator->stopOnFirstFailure()->fails()) {
/7 ...
}

Automatic Redirection

If you would like to create a validator instance manually but still take advantage of the automatic redirection
offered by the HTTP request's validate method, you may call the validate method on an existing validator
instance. If validation fails, the user will automatically be redirected or, in the case of an XHR request, a JSON

response will be returned:
Validator::make($request->all(), [
'title' => 'required|unique:posts|max:255"',
'body' => 'required',
1)->validate();

You may use the validatewithBag method to store the error messages in a named error bag if validation fails:
Validator::make($request->all(), [
'title' => 'required|unique:posts|max:255"',

'body' => 'required',
])->validatewithBag('post');

Named Error Bags

If you have multiple forms on a single page, you may wish to name the messageBag containing the validation
errors, allowing you to retrieve the error messages for a specific form. To achieve this, pass a name as the
second argument to withErrors:

return redirect('register')->withErrors($validator, 'login');
You may then access the named MessageBag instance from the serrors variable:
{{ $errors->login->first('email') }}

Customizing the Error Messages

If needed, you may provide custom error messages that a validator instance should use instead of the default
error messages provided by Laravel. There are several ways to specify custom messages. First, you may pass
the custom messages as the third argument to the validator: :make method:

Laravel Documentation - 10.x / Validation 182

$validator = Validator::make($input, $rules, $messages = [
'required' => 'The :attribute field is required.',

1);

In this example, the :attribute placeholder will be replaced by the actual name of the field under validation.
You may also utilize other placeholders in validation messages. For example:

$messages = [
'same' => 'The :attribute and :other must match.',
'size' => 'The :attribute must be exactly :size.',
'between' => 'The :attribute value :input is not between :min - :max.',
'in' => 'The :attribute must be one of the following types: :values',

1;
Specifying a Custom Message for a Given Attribute

Sometimes you may wish to specify a custom error message only for a specific attribute. You may do so using
"dot" notation. Specify the attribute's name first, followed by the rule:

$messages = [
'email.required' => 'We need to know your email address!',
1;

Specifying Custom Attribute Values

Many of Laravel's built-in error messages include an :attribute placeholder that is replaced with the name of
the field or attribute under validation. To customize the values used to replace these placeholders for specific
fields, you may pass an array of custom attributes as the fourth argument to the validator: :make method:

$validator = Validator::make($input, $rules, $messages, [
'email' => 'email address',

1)
Performing Additional Validation

Sometimes you need to perform additional validation after your initial validation is complete. You can
accomplish this using the validator's after method. The after method accepts a closure or an array of callables
which will be invoked after validation is complete. The given callables will receive an
Illuminate\validation\validator instance, allowing you to raise additional error messages if necessary:

use Illuminate\Support\Facades\Validator;
$validator = Validator::make(/* ... */);

$validator->after(function ($validator) {
if ($this->somethingElseIsInvalid()) {
$validator->errors()->add(
'field', 'Something is wrong with this field!'

)i

}

1)

if ($validator->fails()) {
/7 ..

}

As noted, the after method also accepts an array of callables, which is particularly convenient if your "after
validation" logic is encapsulated in invokable classes, which will receive an 111uminate\validation\validator
instance via their __invoke method:

use App\Validation\ValidateShippingTime;
use App\vValidation\ValidateUserStatus;

$validator->after ([
new ValidateUserStatus,
new ValidateShippingTime,
function ($validator) {
/7 ...
}I
1

Laravel Documentation - 10.x / Validation 183

Working With Validated Input

After validating incoming request data using a form request or a manually created validator instance, you may
wish to retrieve the incoming request data that actually underwent validation. This can be accomplished in
several ways. First, you may call the validated method on a form request or validator instance. This method
returns an array of the data that was validated:

$validated = $request->validated();

$validated = $validator->validated();

Alternatively, you may call the safe method on a form request or validator instance. This method returns an
instance of 111uminate\Support\validatedInput. This object exposes only, except, and a1l methods to retrieve a
subset of the validated data or the entire array of validated data:

$validated = $request->safe()->only(['name', 'email']);

$validated = $request->safe()->except(['name', 'email']);

$validated = $request->safe()->all();

In addition, the 111uminate\Support\validatedInput instance may be iterated over and accessed like an array:
// Validated data may be iterated...

foreach ($request->safe() as $key => $value) {
// ..
}

// Validated data may be accessed as an array...
$validated = $request->safe();

$email = $validated['email'];
If you would like to add additional fields to the validated data, you may call the merge method:
$validated = $request->safe()->merge(['name' => 'Taylor Otwell']);

If you would like to retrieve the validated data as a collection instance, you may call the collect method:

$collection = $request->safe()->collect();

Working With Error Messages

After calling the errors method on a validator instance, you will receive an 111uminate\Support\MessageBag
instance, which has a variety of convenient methods for working with error messages. The serrors variable that
is automatically made available to all views is also an instance of the messageBag class.

Retrieving the First Error Message for a Field

To retrieve the first error message for a given field, use the first method:

$errors = $validator->errors();

echo $errors->first('email');
Retrieving All Error Messages for a Field

If you need to retrieve an array of all the messages for a given field, use the get method:

foreach ($errors->get('email') as $message) {
/7 ..
}

If you are validating an array form field, you may retrieve all of the messages for each of the array elements
using the * character:

foreach ($errors->get('attachments.*') as $message) {

Laravel Documentation - 10.x / Validation 184
/7.

Retrieving All Error Messages for All Fields

To retrieve an array of all messages for all fields, use the a11 method:

foreach ($errors->all() as $message) {
// ...
}

Determining if Messages Exist for a Field

The has method may be used to determine if any error messages exist for a given field:

if ($errors->has('email')) {
/7 ..
}

Specifying Custom Messages in Language Files

Laravel's built-in validation rules each have an error message that is located in your application's
lang/en/validation.php file. If your application does not have a 1ang directory, you may instruct Laravel to
create it using the lang:publish Artisan command.

Within the 1ang/en/validation.php file, you will find a translation entry for each validation rule. You are free to
change or modify these messages based on the needs of your application.

In addition, you may copy this file to another language directory to translate the messages for your application's
language. To learn more about Laravel localization, check out the complete localization documentation.

['WARNING]
By default, the Laravel application skeleton does not include the 1ang directory. If you would like to
customize Laravel's language files, you may publish them via the 1ang:publish Artisan command.

Custom Messages for Specific Attributes

You may customize the error messages used for specified attribute and rule combinations within your
application's validation language files. To do so, add your message customizations to the custom array of your
application's 1ang/xx/validation.php language file:

'custom' => [
'email' => [
'required' => 'We need to know your email address!',
'max' => 'Your email address is too long!'

]l
]l

Specifying Attributes in Language Files

Many of Laravel's built-in error messages include an :attribute placeholder that is replaced with the name of
the field or attribute under validation. If you would like the :attribute portion of your validation message to be
replaced with a custom value, you may specify the custom attribute name in the attributes array of your
lang/xx/validation.php language file:

'attributes' => [
'email' => 'email address',

]l

['WARNING]
By default, the Laravel application skeleton does not include the 1ang directory. If you would like to
customize Laravel's language files, you may publish them via the lang:publish Artisan command.

Specifying Values in Language Files

Laravel Documentation - 10.x / Validation 185

Some of Laravel's built-in validation rule error messages contain a :value placeholder that is replaced with the
current value of the request attribute. However, you may occasionally need the :value portion of your
validation message to be replaced with a custom representation of the value. For example, consider the
following rule that specifies that a credit card number is required if the payment_type has a value of cc:

Validator::make($request->all(), [
'credit_card_number' => 'required_if:payment_type,cc'
D
If this validation rule fails, it will produce the following error message:

The credit card number field is required when payment type is cc.

Instead of displaying cc as the payment type value, you may specify a more user-friendly value representation
in your lang/xx/validation.php language file by defining a values array:

'values' => [
'payment_type' => [

]l

'cc' => 'credit card'

] ’
[!'WARNING]

By default, the Laravel application skeleton does not include the 1ang directory. If you would like to

customize Laravel's language files, you may publish them via the 1ang:publish Artisan command.

After defining this value, the validation rule will produce the following error message:

The credit card number field is required when payment type is credit card.

Available Validation Rules

Below is a list of all available validation rules and their function:

Accepted Exclude If Not Regex

Accepted If Exclude Unless Nullable

Active URL Exclude With Numeric

After (Date) Exclude Without Present

After Or Equal (Date) Exists (Database) Present If

Alpha Extensions Present Unless
Alpha Dash File Present With

Alpha Numeric Filled Present With All
Array Greater Than Prohibited

Ascii Greater Than Or Equal Prohibited If

Bail Hex Color Prohibited Unless
Before (Date) Image (File) Prohibits

Before Or Equal (Date) In Regular Expression
Between In Array Required

Boolean Integer Required If
Confirmed IP Address Required If Accepted
Current Password JSON Required Unless
Date Less Than Required With

Date Equals Less Than Or Equal Required With All
Date Format Lowercase Required Without
Decimal MAC Address Required Without All
Declined Max Required Array Keys
Declined If Max Digits Same

Different MIME Types Size

Digits MIME Type By File Extension Sometimes

Digits Between Min Starts With
Dimensions (Image Files) Min Digits String

Distinct Missing Timezone

Doesnt Start With Missing If Unique (Database)
Doesnt End With Missing Unless Uppercase

Laravel Documentation - 10.x / Validation 186

Email Missing With URL
Ends With Missing With All ULID
Enum Multiple Of UuID
Exclude Not In

accepted

The field under validation must be "yes", "on", 1, "1", true, or "true". This is useful for validating "Terms of
Service" acceptance or similar fields.

accepted_if:anotherfield,value,...

The field under validation must be "yes", "on", 1, "1", true, or "true" if another field under validation is equal to
a specified value. This is useful for validating "Terms of Service" acceptance or similar fields.

active_url

The field under validation must have a valid A or AAAA record according to the dns_get_record PHP function.
The hostname of the provided URL is extracted using the parse_url PHP function before being passed to
dns_get_record.

after:date

The field under validation must be a value after a given date. The dates will be passed into the strtotime PHP
function in order to be converted to a valid pateTime instance:

'start_date' => 'required|date|after:tomorrow'

Instead of passing a date string to be evaluated by strtotime, you may specify another field to compare against
the date:

'finish_date' => 'required|date|after:start_date'
after_or_equal:date

The field under validation must be a value after or equal to the given date. For more information, see the after
rule.

alpha

The field under validation must be entirely Unicode alphabetic characters contained in \p{L} and \p{m3}.

To restrict this validation rule to characters in the ASCII range (a-z and A-z), you may provide the ascii option
to the validation rule:

'username' => 'alpha:ascii',
alpha_dash

The field under validation must be entirely Unicode alpha-numeric characters contained in \p{L}, \p{M}, \p{N},
as well as ASCII dashes (-) and ASCII underscores (_).

To restrict this validation rule to characters in the ASCII range (a-z and A-z), you may provide the ascii option
to the validation rule:

'username' => 'alpha_dash:ascii',
alpha_num

The field under validation must be entirely Unicode alpha-numeric characters contained in \p{L3}, \p{M}, and

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AN%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AL%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AM%3A%5D&g=&i=

Laravel Documentation - 10.x / Validation 187

\p{N}.

To restrict this validation rule to characters in the ASCII range (a-z and A-z), you may provide the ascii option
to the validation rule:

'username' => 'alpha_num:ascii',
array

The field under validation must be a PHP array.

When additional values are provided to the array rule, each key in the input array must be present within the list
of values provided to the rule. In the following example, the admin key in the input array is invalid since it is not
contained in the list of values provided to the array rule:

use Illuminate\Support\Facades\Validator;

$input = [
'user' => [
'name' => 'Taylor Otwell',
'username' => 'taylorotwell',
'admin' => true,
]l
1;
Validator::make($input, [
'user' => 'array:name,username’,

1);

In general, you should always specify the array keys that are allowed to be present within your array.
ascii

The field under validation must be entirely 7-bit ASCII characters.

bail

Stop running validation rules for the field after the first validation failure.

While the bail rule will only stop validating a specific field when it encounters a validation failure, the

stoponFirstFailure method will inform the validator that it should stop validating all attributes once a single
validation failure has occurred:

if ($validator->stopOnFirstFailure()->fails()) {
/7 ..
}

before:date

The field under validation must be a value preceding the given date. The dates will be passed into the PHP
strtotime function in order to be converted into a valid pateTime instance. In addition, like the after rule, the
name of another field under validation may be supplied as the value of date.

before_or_equal:date

The field under validation must be a value preceding or equal to the given date. The dates will be passed into
the PHP strtotime function in order to be converted into a valid pateTime instance. In addition, like the after
rule, the name of another field under validation may be supplied as the value of date.

between:min,max

The field under validation must have a size between the given min and max (inclusive). Strings, numerics,
arrays, and files are evaluated in the same fashion as the size rule.

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AN%3A%5D&g=&i=

Laravel Documentation - 10.x / Validation 188

boolean

The field under validation must be able to be cast as a boolean. Accepted input are true, false, 1, 8, "1", and
ll@ll .

confirmed

The field under validation must have a matching field of {field}_confirmation. For example, if the field under
validation is password, a matching password_confirmation field must be present in the input.

current_password

The field under validation must match the authenticated user's password. You may specify an authentication
guard using the rule's first parameter:

'password' => 'current_password:api'

date

The field under validation must be a valid, non-relative date according to the strtotime PHP function.
date_equals:date

The field under validation must be equal to the given date. The dates will be passed into the PHP strtotime
function in order to be converted into a valid pateTime instance.

date_format:format,...

The field under validation must match one of the given formats. You should use either date or date_format
when validating a field, not both. This validation rule supports all formats supported by PHP's DateTime class.

decimal:min,max

The field under validation must be numeric and must contain the specified number of decimal places:

// Must have exactly two decimal places (9.99)...
'price' => 'decimal:2'

// Must have between 2 and 4 decimal places...

'price' => 'decimal:2,4'

declined

The field under validation must be "no", "off", 0, "@", false, OI "false".

declined_if:anotherfield,value,...

The field under validation must be "no", "off", 0, "e", false, or "false" if another field under validation is equal
to a specified value.

different:field

The field under validation must have a different value than field.
digits:value

The integer under validation must have an exact length of value.

digits_between:min,max

https://www.php.net/manual/en/class.datetime.php

Laravel Documentation - 10.x / Validation 189

The integer validation must have a length between the given min and max.
dimensions

The file under validation must be an image meeting the dimension constraints as specified by the rule's
parameters:

'avatar' => 'dimensions:min_width=100,min_height=200"
Available constraints are: min_width, max_width, min_height, max_height, width, height, ratio.

A ratio constraint should be represented as width divided by height. This can be specified either by a fraction
like 372 or a float like 1.5:

'avatar' => 'dimensions:ratio=3/2'

Since this rule requires several arguments, you may use the Rule: :dimensions method to fluently construct the
rule:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($data, [
'avatar' => [
'required’',
Rule::dimensions()->maxWidth(1000)->maxHeight (500)->ratio(3 / 2),
]l
IDF

distinct

When validating arrays, the field under validation must not have any duplicate values:

'foo.*.id' => 'distinct'

Distinct uses loose variable comparisons by default. To use strict comparisons, you may add the strict
parameter to your validation rule definition:

'foo.*.id' => 'distinct:strict'

You may add ignore_case to the validation rule's arguments to make the rule ignore capitalization differences:

'foo.*.id' => 'distinct:ignore_case'

doesnt_start_with:foo,bar,...

The field under validation must not start with one of the given values.
doesnt_end_with:foo,bar,...

The field under validation must not end with one of the given values.

email

The field under validation must be formatted as an email address. This validation rule utilizes the

equlias/email-validator package for validating the email address. By default, the rrcvalidation validator is
applied, but you can apply other validation styles as well:

'email' => 'email:rfc,dns'

The example above will apply the rrcvalidation and bnscheckvalidation validations. Here's a full list of
validation styles you can apply:

® rfc: RFCvalidation
® strict: NoRFCwarningsValidation

https://github.com/egulias/EmailValidator

Laravel Documentation - 10.x / Validation 190

dns: DNSCheckvalidation

spoof: SpoofCheckvalidation

filter: FilterEmailvalidation

filter_unicode: FilterEmailvalidation: :unicode()

The filter validator, which uses PHP's filter_var function, ships with Laravel and was Laravel's default email
validation behavior prior to Laravel version 5.8.

['WARNING]
The dns and spoof validators require the PHP int1 extension.

ends_with:foo,bar,...
The field under validation must end with one of the given values.
enum

The enum rule is a class based rule that validates whether the field under validation contains a valid enum value.
The enum rule accepts the name of the enum as its only constructor argument. When validating primitive values,
a backed Enum should be provided to the Enum rule:

use App\Enums\ServerStatus;
use Illuminate\Validation\Rule;

$request->validate([
'status' => [Rule::enum(ServerStatus::class)],

1);

The Enum rule's only and except methods may be used to limit which enum cases should be considered valid:

Rule::enum(ServerStatus::class)
->only([ServerStatus::Pending, ServerStatus::Active]);

Rule::enum(ServerStatus::class)
->except([ServerStatus::Pending, ServerStatus::Active]);

The when method may be used to conditionally modify the enum rule:

use Illuminate\Support\Facades\Auth;
use Illuminate\Validation\Rule;

Rule::enum(ServerStatus::class)
->when(
Auth::user()->isAdmin(),
fn ($rule) => $rule->only(...),
fn ($rule) => $rule->only(...),
)i

exclude

The field under validation will be excluded from the request data returned by the validate and validated
methods.

exclude_if:anotherfield,value

The field under validation will be excluded from the request data returned by the validate and validated
methods if the anotherfield field is equal to value.

If complex conditional exclusion logic is required, you may utilize the rRule: :exclude1f method. This method
accepts a boolean or a closure. When given a closure, the closure should return true or false to indicate if the
field under validation should be excluded:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($request->all(), [
'role_id' => Rule::excludeIf($request->user()->is_admin),

Laravel Documentation - 10.x / Validation 191

1);

Validator: :make($request->all(), [
'role_id' => Rule::excludeIf(fn () => $request->user()->is_admin),

1);
exclude_unless:anotherfield,value

The field under validation will be excluded from the request data returned by the validate and validated
methods unless anotherfield's field is equal to value. If value is null (exclude_unless:name, null), the field under
validation will be excluded unless the comparison field is nu1l or the comparison field is missing from the
request data.

exclude_with:anotherfield

The field under validation will be excluded from the request data returned by the validate and validated
methods if the anotherfield field is present.

exclude_without:anotherfield

The field under validation will be excluded from the request data returned by the validate and validated
methods if the anotherfield field is not present.

exists:table,column
The field under validation must exist in a given database table.

Basic Usage of Exists Rule
'state' => 'exists:states'

If the column option is not specified, the field name will be used. So, in this case, the rule will validate that the
states database table contains a record with a state column value matching the request's state attribute value.

Specifying a Custom Column Name

You may explicitly specify the database column name that should be used by the validation rule by placing it
after the database table name:

'state' => 'exists:states,abbreviation'

Occasionally, you may need to specify a specific database connection to be used for the exists query. You can
accomplish this by prepending the connection name to the table name:

'email' => 'exists:connection.staff,email’

Instead of specifying the table name directly, you may specify the Eloquent model which should be used to
determine the table name:

'user_id' => 'exists:App\Models\User,id'

If you would like to customize the query executed by the validation rule, you may use the rule class to fluently
define the rule. In this example, we'll also specify the validation rules as an array instead of using the |
character to delimit them:

use Illuminate\Database\Query\Builder;
use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($data, [
'email' => [
'required’,
Rule::exists('staff')->where(function (Builder $query) {
return $query->where('account_id', 1);

1.

Laravel Documentation - 10.x / Validation 192

]l
1);

You may explicitly specify the database column name that should be used by the exists rule generated by the
Rule::exists method by providing the column name as the second argument to the exists method:

'state' => Rule::exists('states', 'abbreviation'),
extensions:foo,bar,...

The file under validation must have a user-assigned extension corresponding to one of the listed extensions:

'photo' => ['required', 'extensions:jpg,png'l],

['WARNING]
You should never rely on validating a file by its user-assigned extension alone. This rule should typically
always be used in combination with the mimes or mimetypes rules.

file

The field under validation must be a successfully uploaded file.
filled

The field under validation must not be empty when it is present.
gt:field

The field under validation must be greater than the given field or value. The two fields must be of the same
type. Strings, numerics, arrays, and files are evaluated using the same conventions as the size rule.

gte:field

The field under validation must be greater than or equal to the given field or value. The two fields must be of
the same type. Strings, numerics, arrays, and files are evaluated using the same conventions as the size rule.

hex_color

The field under validation must contain a valid color value in hexadecimal format.
image

The file under validation must be an image (jpg, jpeg, png, bmp, gif, svg, or webp).
in:foo,bar,...

The field under validation must be included in the given list of values. Since this rule often requires you to
implode an array, the Rule::in method may be used to fluently construct the rule:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($data, [
'zones' => [
'required’,
Rule::in(['first-zone', 'second-zone']),
]l
1)

When the in rule is combined with the array rule, each value in the input array must be present within the list of
values provided to the in rule. In the following example, the LAs airport code in the input array is invalid since it
is not contained in the list of airports provided to the in rule:

https://developer.mozilla.org/en-US/docs/Web/CSS/hex-color

Laravel Documentation - 10.x / Validation

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

$input = [
'airports' => ['NYC', 'LAS'],
1;

Validator: :make($input, [
'airports' => [
'required’,
'array',

]7

'airports.*' => Rule::in(['NYC', 'LIT']),

1);

in_array:anotherfield.*

The field under validation must exist in anotherfield's values.

integer

The field under validation must be an integer.

[!'WARNING]

193

This validation rule does not verify that the input is of the "integer" variable type, only that the input is of a

type accepted by PHP's FILTER_VALIDATE_INT rule. If you need to validate the input as being a number
please use this rule in combination with the numeric validation rule.

ip

The field under validation must be an IP address.

ipvd

The field under validation must be an IPv4 address.

ipv6

The field under validation must be an IPv6 address.

json

The field under validation must be a valid JSON string.

It:field

The field under validation must be less than the given field. The two fields must be of the same type. Strings,

numerics, arrays, and files are evaluated using the same conventions as the size rule.

Ite:field

The field under validation must be less than or equal to the given field. The two fields must be of the same type.

Strings, numerics, arrays, and files are evaluated using the same conventions as the size rule.

lowercase

The field under validation must be lowercase.

mac_address

The field under validation must be a MAC address.

Laravel Documentation - 10.x / Validation 194

max:value

The field under validation must be less than or equal to a maximum value. Strings, numerics, arrays, and files
are evaluated in the same fashion as the size rule.

max_digits:value
The integer under validation must have a maximum length of value.
mimetypes:text/plain,...

The file under validation must match one of the given MIME types:

'video' => 'mimetypes:video/avi,video/mpeg,video/quicktime’

To determine the MIME type of the uploaded file, the file's contents will be read and the framework will
attempt to guess the MIME type, which may be different from the client's provided MIME type.

mimes:foo,bar,...

The file under validation must have a MIME type corresponding to one of the listed extensions:

'photo' => 'mimes:jpg, bmp, png'

Even though you only need to specify the extensions, this rule actually validates the MIME type of the file by
reading the file's contents and guessing its MIME type. A full listing of MIME types and their corresponding
extensions may be found at the following location:

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

MIME Types and Extensions

This validation rule does not verify agreement between the MIME type and the extension the user assigned to

the file. For example, the mimes:png validation rule would consider a file containing valid PNG content to be a

valid PNG image, even if the file is named photo. txt. If you would like to validate the user-assigned extension
of the file, you may use the extensions rule.

min:value

The field under validation must have a minimum value. Strings, numerics, arrays, and files are evaluated in the
same fashion as the size rule.

min_digits:value

The integer under validation must have a minimum length of value.

multiple_of:value

The field under validation must be a multiple of value.

missing

The field under validation must not be present in the input data.
missing_if:anotherfield,value,...

The field under validation must not be present if the anotherfield field is equal to any value.

missing_unless:anotherfield,value

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Laravel Documentation - 10.x / Validation 195

The field under validation must not be present unless the anotherfield field is equal to any value.
missing_with:foo,bar,...

The field under validation must not be present only if any of the other specified fields are present.
missing_with_all:foo,bar,...

The field under validation must not be present only if all of the other specified fields are present.
not_in:foo,bar,...

The field under validation must not be included in the given list of values. The rRule: :not1n method may be
used to fluently construct the rule:

use Illuminate\Validation\Rule;

Validator::make($data, [
'toppings' => [
'required’,
Rule::notIn(['sprinkles', 'cherries']),
]!
1)

not_regex:pattern

The field under validation must not match the given regular expression.

Internally, this rule uses the PHP preg_match function. The pattern specified should obey the same formatting
required by preg_match and thus also include valid delimiters. For example: 'email' => 'not_regex:/A.+$/i'.

['WARNING]
When using the regex / not_regex patterns, it may be necessary to specify your validation rules using an
array instead of using | delimiters, especially if the regular expression contains a | character.
nullable
The field under validation may be nu11.
numeric
The field under validation must be numeric.
present
The field under validation must exist in the input data.
present_if:anotherfield,value,...
The field under validation must be present if the anotherfield field is equal to any value.
present_unless:anotherfield,value
The field under validation must be present unless the anotherfield field is equal to any value.
present_with:foo,bar,...

The field under validation must be present only if any of the other specified fields are present.

present_with_all:foo,bar,...

https://www.php.net/manual/en/function.is-numeric.php

Laravel Documentation - 10.x / Validation 196

The field under validation must be present only if all of the other specified fields are present.
prohibited

The field under validation must be missing or empty. A field is "empty" if it meets one of the following criteria:

The value is null.

The value is an empty string.

The value is an empty array or empty countable object.
The value is an uploaded file with an empty path.

prohibited_if:anotherfield,value,...

The field under validation must be missing or empty if the anotherfield field is equal to any value. A field is
"empty" if it meets one of the following criteria:

The value is null.

The value is an empty string.

The value is an empty array or empty countable object.
The value is an uploaded file with an empty path.

If complex conditional prohibition logic is required, you may utilize the rRule::prohibited1f method. This
method accepts a boolean or a closure. When given a closure, the closure should return true or false to indicate
if the field under validation should be prohibited:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($request->all(), [
'role_id' => Rule::prohibitedIf($request->user()->is_admin),

1);

Validator::make($request->all(), [
'role_id' => Rule::prohibitedIf(fn () => $request->user()->is_admin),

IDF
prohibited_unless:anotherfield,value,...

The field under validation must be missing or empty unless the anotherfield field is equal to any value. A field
is "empty" if it meets one of the following criteria:

The value is null.

The value is an empty string.

The value is an empty array or empty countable object.
The value is an uploaded file with an empty path.

prohibits:anotherfield,...

If the field under validation is not missing or empty, all fields in anotherfield must be missing or empty. A field
is "empty" if it meets one of the following criteria:

The value is null.

The value is an empty string.

The value is an empty array or empty countable object.
The value is an uploaded file with an empty path.

regex:pattern

The field under validation must match the given regular expression.

Internally, this rule uses the PHP preg_match function. The pattern specified should obey the same formatting
required by preg_match and thus also include valid delimiters. For example: 'email' => 'regex:/A.+@.+$/i'.

Laravel Documentation - 10.x / Validation 197

['WARNING]
When using the regex / not_regex patterns, it may be necessary to specify rules in an array instead of using
| delimiters, especially if the regular expression contains a | character.

required

The field under validation must be present in the input data and not empty. A field is "empty" if it meets one of
the following criteria:

The value is null.

The value is an empty string.

The value is an empty array or empty countable object.
The value is an uploaded file with no path.

required_if:anotherfield,value,...

The field under validation must be present and not empty if the anotherfield field is equal to any value.

If you would like to construct a more complex condition for the required_if rule, you may use the
Rule::requiredIf method. This method accepts a boolean or a closure. When passed a closure, the closure
should return true or false to indicate if the field under validation is required:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($request->all(), [

'role_id' => Rule::requiredIf($request->user()->is_admin),

1);

Validator::make($request->all(), [
'role_id' => Rule::requiredIf(fn () => $request->user()->is_admin),

IDF
required_if_accepted:anotherfield,...

The field under validation must be present and not empty if the anotherfield field is equal to "yes", "on", 1, "1",
true, OI "true".

required_unless:anotherfield,value,...

The field under validation must be present and not empty unless the anotherfield field is equal to any value.
This also means anotherfield must be present in the request data unless value is nu1l. If value is nul1
(required_unless:name,null), the field under validation will be required unless the comparison field is nul1 or
the comparison field is missing from the request data.

required_with:foo,bar,...

The field under validation must be present and not empty only if any of the other specified fields are present
and not empty.

required_with_all:foo,bar,...

The field under validation must be present and not empty only if all of the other specified fields are present and
not empty.

required_without:foo,bar,...

The field under validation must be present and not empty only when any of the other specified fields are empty
or not present.

required_without_all:foo,bar,...

Laravel Documentation - 10.x / Validation 198

The field under validation must be present and not empty only when all of the other specified fields are empty
or not present.

required_array_keys:foo,bar,...

The field under validation must be an array and must contain at least the specified keys.
same:field

The given field must match the field under validation.

size:value

The field under validation must have a size matching the given value. For string data, value corresponds to the
number of characters. For numeric data, value corresponds to a given integer value (the attribute must also have
the numeric or integer rule). For an array, size corresponds to the count of the array. For files, size corresponds
to the file size in kilobytes. Let's look at some examples:

// Validate that a string is exactly 12 characters long...
'title' => 'size:12';

// Validate that a provided integer equals 10...
'seats' => 'integer|size:10';

// Validate that an array has exactly 5 elements...
'tags' => 'array|size:5';

// Validate that an uploaded file is exactly 512 kilobytes...
'image' => 'file|size:512';

starts_with:foo,bar,...

The field under validation must start with one of the given values.

string

The field under validation must be a string. If you would like to allow the field to also be nu11, you should
assign the nullable rule to the field.

timezone

The field under validation must be a valid timezone identifier according to the pateTimezone: :listIdentifiers
method.

The arguments accepted by the pateTimezone: :1istIdentifiers method may also be provided to this validation
rule:

'timezone' => 'required]|timezone:all';
'timezone' => 'required]|timezone:Africa';

'timezone' => 'required]|timezone:per_country,US"';
unique:table,column

The field under validation must not exist within the given database table.
Specifying a Custom Table / Column Name:

Instead of specifying the table name directly, you may specify the Eloquent model which should be used to
determine the table name:

'email' => 'unique:App\Models\User,email_address'

https://www.php.net/manual/en/datetimezone.listidentifiers.php

Laravel Documentation - 10.x / Validation 199

The column option may be used to specify the field's corresponding database column. If the column option is not
specified, the name of the field under validation will be used.

'email' => 'unique:users,email_address'
Specifying a Custom Database Connection

Occasionally, you may need to set a custom connection for database queries made by the Validator. To
accomplish this, you may prepend the connection name to the table name:

'email' => 'unique:connection.users,email_address'
Forcing a Unique Rule to Ignore a Given ID:

Sometimes, you may wish to ignore a given ID during unique validation. For example, consider an "update
profile" screen that includes the user's name, email address, and location. You will probably want to verify that
the email address is unique. However, if the user only changes the name field and not the email field, you do
not want a validation error to be thrown because the user is already the owner of the email address in question.

To instruct the validator to ignore the user's ID, we'll use the rule class to fluently define the rule. In this
example, we'll also specify the validation rules as an array instead of using the | character to delimit the rules:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;

Validator::make($data, [
'email' => [
'required’',
Rule::unique('users')->ignore($user->id),
]I
1)

['WARNING]

You should never pass any user controlled request input into the ignore method. Instead, you should only
pass a system generated unique ID such as an auto-incrementing ID or UUID from an Eloquent model
instance. Otherwise, your application will be vulnerable to an SQL injection attack.

Instead of passing the model key's value to the ignore method, you may also pass the entire model instance.
Laravel will automatically extract the key from the model:

Rule::unique('users')->ignore($user)

If your table uses a primary key column name other than id, you may specify the name of the column when
calling the ignore method:

Rule::unique('users')->ignore($user->id, 'user_id')

By default, the unique rule will check the uniqueness of the column matching the name of the attribute being
validated. However, you may pass a different column name as the second argument to the unique method:

Rule::unique('users', 'email_address')->ignore($user->id)
Adding Additional Where Clauses:
You may specify additional query conditions by customizing the query using the where method. For example,

let's add a query condition that scopes the query to only search records that have an account_id column value of
1

'email' => Rule::unique('users')->where(fn (Builder $query) => $query->where('account_id', 1))
uppercase
The field under validation must be uppercase.

url

Laravel Documentation - 10.x / Validation 200

The field under validation must be a valid URL.

If you would like to specify the URL protocols that should be considered valid, you may pass the protocols as
validation rule parameters:

'url' => 'url:http,https’',

'game' => 'url:minecraft,steam’',
ulid

The field under validation must be a valid Universally Unique Lexicographically Sortable Identifier (ULID).

uuid

The field under validation must be a valid RFC 4122 (version 1, 3, 4, or 5) universally unique identifier
(UUID).

Conditionally Adding Rules
Skipping Validation When Fields Have Certain Values

You may occasionally wish to not validate a given field if another field has a given value. You may accomplish
this using the exclude_if validation rule. In this example, the appointment_date and doctor_name fields will not
be validated if the has_appointment field has a value of false:

use Illuminate\Support\Facades\Validator;

$validator = Validator::make($data, [
'has_appointment' => 'required|boolean',
'appointment_date' => 'exclude_if:has_appointment, false|required|date’,
'doctor_name' => 'exclude_if:has_appointment, false|required|string',

1);

Alternatively, you may use the exclude_unless rule to not validate a given field unless another field has a given
value:

$validator = validator::make($data, [
'has_appointment' => 'required|boolean',
'appointment_date' => 'exclude_unless:has_appointment, true|required]|date’,
'doctor_name' => 'exclude_unless:has_appointment, true|required|string’,

1);

Validating When Present

In some situations, you may wish to run validation checks against a field only if that field is present in the data
being validated. To quickly accomplish this, add the sometimes rule to your rule list:

$v = validator::make($data, [

'email' => 'sometimes|required]|email’,

1)
In the example above, the email field will only be validated if it is present in the $data array.

[INOTE]
If you are attempting to validate a field that should always be present but may be empty, check out this
note on optional fields.

Complex Conditional Validation

Sometimes you may wish to add validation rules based on more complex conditional logic. For example, you
may wish to require a given field only if another field has a greater value than 100. Or, you may need two fields
to have a given value only when another field is present. Adding these validation rules doesn't have to be a
pain. First, create a validator instance with your static rules that never change:

https://github.com/ulid/spec

Laravel Documentation - 10.x / Validation 201

use Illuminate\Support\Facades\Validator;

$validator = Validator::make($request->all(), [
'email' => 'required]|email’,
'games' => 'required]|numeric',

1);

Let's assume our web application is for game collectors. If a game collector registers with our application and
they own more than 100 games, we want them to explain why they own so many games. For example, perhaps
they run a game resale shop, or maybe they just enjoy collecting games. To conditionally add this requirement,
we can use the sometimes method on the validator instance.

use Illuminate\Support\Fluent;

$validator->sometimes('reason', 'required|max:500', function (Fluent $input) {
return $input->games >= 100;

1)

The first argument passed to the sometimes method is the name of the field we are conditionally validating. The
second argument is a list of the rules we want to add. If the closure passed as the third argument returns true,
the rules will be added. This method makes it a breeze to build complex conditional validations. You may even
add conditional validations for several fields at once:

$validator->sometimes(['reason', 'cost'], 'required', function (Fluent $input) {
return $input->games >= 100;

F

[!NOTE]
The sinput parameter passed to your closure will be an instance of 111uminate\support\Fluent and may be
used to access your input and files under validation.

Complex Conditional Array Validation

Sometimes you may want to validate a field based on another field in the same nested array whose index you
do not know. In these situations, you may allow your closure to receive a second argument which will be the
current individual item in the array being validated:

$input = [
'channels' => [
[
'type' => 'email',
'address' => 'abigail@example.com',
]l
[
"type' => 'url',
'address' => 'https://example.com',
]l
]l
1;

$validator->sometimes('channels.*.address', 'email', function (Fluent $input, Fluent $item) {

return $item->type === 'email';

1)

$validator->sometimes('channels.*.address', 'url', function (Fluent $input, Fluent $item) {
return $item->type !== 'email';

1)

Like the $input parameter passed to the closure, the $item parameter is an instance of
Illuminate\Support\Fluent when the attribute data is an array; otherwise, it is a string.

Validating Arrays

As discussed in the array validation rule documentation, the array rule accepts a list of allowed array keys. If
any additional keys are present within the array, validation will fail:

use Illuminate\Support\Facades\Validator;

$input = [
'user' => [

Laravel Documentation - 10.x / Validation 202

'name' => 'Taylor Otwell',
'username' => 'taylorotwell',
‘admin' => true,
1,
1;

Validator: :make($input, [
'user' => 'array:name,username’,

1);

In general, you should always specify the array keys that are allowed to be present within your array.
Otherwise, the validator's validate and validated methods will return all of the validated data, including the
array and all of its keys, even if those keys were not validated by other nested array validation rules.

Validating Nested Array Input

Validating nested array based form input fields doesn't have to be a pain. You may use "dot notation" to validate
attributes within an array. For example, if the incoming HTTP request contains a photos[profile] field, you
may validate it like so:

use Illuminate\Support\Facades\Validator;

$validator = Validator::make($request->all(), [
'photos.profile' => 'required]|image',

1);

You may also validate each element of an array. For example, to validate that each email in a given array input
field is unique, you may do the following:

$validator = Validator::make($request->all(), [
'person.*.email' => 'email|unique:users',
'person.*.first_name' => 'required_with:person.*.last_name',

1);

Likewise, you may use the * character when specifying custom validation messages in your language files,
making it a breeze to use a single validation message for array based fields:

'custom' => [
'person.*.email' => [
'unique' => 'Each person must have a unique email address',
]

] r
Accessing Nested Array Data

Sometimes you may need to access the value for a given nested array element when assigning validation rules
to the attribute. You may accomplish this using the rRule: : foreach method. The foreach method accepts a
closure that will be invoked for each iteration of the array attribute under validation and will receive the
attribute's value and explicit, fully-expanded attribute name. The closure should return an array of rules to
assign to the array element:

use App\Rules\HasPermission;
use Illuminate\Support\Facades\Validator;
use Illuminate\validation\Rule;

$validator = Validator::make($request->all(), [
'companies.*.id' => Rule::forEach(function (string|null $value, string $attribute) {
return [
Rule::exists(Company::class, 'id'),
new HasPermission('manage-company', $value),
1;
N
1)

Error Message Indexes and Positions

When validating arrays, you may want to reference the index or position of a particular item that failed
validation within the error message displayed by your application. To accomplish this, you may include the
:index (starts from e) and :position (starts from 1) placeholders within your custom validation message:

Laravel Documentation - 10.x / Validation 203

use Illuminate\Support\Facades\Validator;

$input = [
'photos' => [
[
'name' => 'BeachVacation.jpg',
'description' => 'A photo of my beach vacation!',
]!
[
'name' => 'GrandCanyon.jpg',
'description' => '',
]!
]!
1;

Validator::validate($input, [
'photos.*.description' => 'required',

I

'photos.*.description.required' => 'Please describe photo #:position.',
1

Given the example above, validation will fail and the user will be presented with the following error of "Please
describe photo #2."

If necessary, you may reference more deeply nested indexes and positions via second-index, second-position,
third-index, third-position, etcC.

'photos. *.attributes.*.string' => 'Invalid attribute for photo #:second-position.',

Validating Files

Laravel provides a variety of validation rules that may be used to validate uploaded files, such as mimes, image,
min, and max. While you are free to specify these rules individually when validating files, Laravel also offers a
fluent file validation rule builder that you may find convenient:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rules\File;

Validator::validate($input, [
'attachment' => [
'required’,
File::types(['mp3', 'wav'])
->min(1024)
->max (12 * 1024),
]l
1)

If your application accepts images uploaded by your users, you may use the File rule's image constructor
method to indicate that the uploaded file should be an image. In addition, the dimensions rule may be used to
limit the dimensions of the image:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rule;
use Illuminate\Validation\Rules\File;

Validator::validate($input, [
'photo' => [
'required’,
File::image()
->min(1024)
->max (12 * 1024)
->dimensions(Rule: :dimensions()->maxwWidth(1000)->maxHeight(500)),
]l
1)

['NOTE]
More information regarding validating image dimensions may be found in the dimension rule
documentation.

File Sizes

For convenience, minimum and maximum file sizes may be specified as a string with a suffix indicating the file

Laravel Documentation - 10.x / Validation 204

size units. The kb, mb, gb, and tb suffixes are supported:
File::image()

->min('1kb")
->max('10mb"')

File Types

Even though you only need to specify the extensions when invoking the types method, this method actually
validates the MIME type of the file by reading the file's contents and guessing its MIME type. A full listing of
MIME types and their corresponding extensions may be found at the following location:

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Validating Passwords

To ensure that passwords have an adequate level of complexity, you may use Laravel's password rule object:

use Illuminate\Support\Facades\Validator;
use Illuminate\Validation\Rules\Password;

$validator = Validator::make($request->all(), [
'password' => ['required', 'confirmed', Password::min(8)],

1);

The password rule object allows you to easily customize the password complexity requirements for your
application, such as specifying that passwords require at least one letter, number, symbol, or characters with
mixed casing:

// Require at least 8 characters...
Password: :min(8)

// Require at least one letter...
Password: :min(8)->letters()

// Require at least one uppercase and one lowercase letter...
Password: :min(8)->mixedCase()

// Require at least one number...
Password: :min(8)->numbers()

// Require at least one symbol...
Password: :min(8)->symbols()

In addition, you may ensure that a password has not been compromised in a public password data breach leak
using the uncompromised method:

Password: :min(8)->uncompromised()

Internally, the Password rule object uses the k-Anonymity model to determine if a password has been leaked via
the haveibeenpwned.com service without sacrificing the user's privacy or security.

By default, if a password appears at least once in a data leak, it will be considered compromised. You can
customize this threshold using the first argument of the uncompromised method:

// Ensure the password appears less than 3 times in the same data leak...
Password: :min(8)->uncompromised(3);

Of course, you may chain all the methods in the examples above:

Password::min(8)
->letters()
->mixedCase()
->numbers()
->symbols()
->uncompromised()

Defining Default Password Rules

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
https://en.wikipedia.org/wiki/K-anonymity
https://haveibeenpwned.com

Laravel Documentation - 10.x / Validation 205

You may find it convenient to specify the default validation rules for passwords in a single location of your
application. You can easily accomplish this using the password: :defaults method, which accepts a closure. The
closure given to the defaults method should return the default configuration of the Password rule. Typically,
the defaults rule should be called within the boot method of one of your application's service providers:

use Illuminate\Validation\Rules\Password;

/**
* Bootstrap any application services.
*/

public function boot(): void

{

Password: :defaults(function () {
$rule = Password::min(8);

return $this->app->isProduction()
? $rule->mixedCase()->uncompromised()
: $rule;
1)
}

Then, when you would like to apply the default rules to a particular password undergoing validation, you may
invoke the defaults method with no arguments:

'password' => ['required', Password::defaults()],

Occasionally, you may want to attach additional validation rules to your default password validation rules. You
may use the rules method to accomplish this:

use App\Rules\ZxcvbnRule;

Password: :defaults(function () {
$rule = Password::min(8)->rules([new ZxcvbnRule]);

/...
F

Custom Validation Rules

Using Rule Objects

Laravel provides a variety of helpful validation rules; however, you may wish to specify some of your own.
One method of registering custom validation rules is using rule objects. To generate a new rule object, you may
use the make:rule Artisan command. Let's use this command to generate a rule that verifies a string is
uppercase. Laravel will place the new rule in the app/rules directory. If this directory does not exist, Laravel
will create it when you execute the Artisan command to create your rule:

php artisan make:rule Uppercase

Once the rule has been created, we are ready to define its behavior. A rule object contains a single method:
validate. This method receives the attribute name, its value, and a callback that should be invoked on failure
with the validation error message:

<?php
namespace App\Rules;

use Closure;
use Illuminate\Contracts\Validation\ValidationRule;

class Uppercase implements ValidationRule
{
/**
* Run the validation rule.
*/
public function validate(string $attribute, mixed $value, Closure $fail): void
{
if (strtoupper($value) !== $value) {
$fail('The :attribute must be uppercase.');
}

Laravel Documentation - 10.x / Validation 206

}

Once the rule has been defined, you may attach it to a validator by passing an instance of the rule object with
your other validation rules:

use App\Rules\Uppercase;

$request->validate([
'name' => ['required', 'string', new Uppercase],

1);
Translating Validation Messages

Instead of providing a literal error message to the $fail closure, you may also provide a translation string key
and instruct Laravel to translate the error message:

if (strtoupper($value) !== $value) {
$fail('validation.uppercase')->translate();
}

If necessary, you may provide placeholder replacements and the preferred language as the first and second
arguments to the translate method:

$fail('validation.location')->translate([
'value' => $this->value,
1, 'fr')

Accessing Additional Data

If your custom validation rule class needs to access all of the other data undergoing validation, your rule class
may implement the 111uminate\contracts\validation\DataAwareRrule interface. This interface requires your class
to define a setbata method. This method will automatically be invoked by Laravel (before validation proceeds)
with all of the data under validation:

<?php
namespace App\Rules;

use Illuminate\Contracts\Vvalidation\DataAwareRule;
use Illuminate\Contracts\VvValidation\ValidationRule;

class Uppercase implements DataAwareRule, ValidationRule

{
/**
* All of the data under validation.

*

* @var array<string, mixed>
*/
protected $data = [];

/7 ...
/**

* Set the data under validation.

*
* @param array<string, mixed> $data
*
puglic function setData(array $data): static
¢ $this->data = $data;
return $this;

}

Or, if your validation rule requires access to the validator instance performing the validation, you may
implement the validatorAwarerule interface:

<?php
namespace App\Rules;

use Illuminate\Contracts\Validation\ValidationRule;

Laravel Documentation - 10.x / Validation 207

use Illuminate\Contracts\Validation\ValidatorAwareRule;
use Illuminate\Validation\Validator;

class Uppercase implements ValidationRule, ValidatorAwareRule

Jx*

* The validator instance.
*

* @var \Illuminate\Validation\Validator
*
prgtected $validator;
/7 ...
/**
* Set the current validator.
*
puglic function setvalidator(Validator $validator): static
$this->validator = $validator;

return $this;

Using Closures

If you only need the functionality of a custom rule once throughout your application, you may use a closure
instead of a rule object. The closure receives the attribute's name, the attribute's value, and a $fail callback that
should be called if validation fails:

use Illuminate\Support\Facades\Validator;
use Closure;

$validator = Validator::make($request->all(), [

'title' => [
'required’,
'max:255"',
function (string $attribute, mixed $value, Closure $fail) {
if ($value === 'foo') {
$fail("The {$attribute} is invalid.");
}
}l
] 4
1)
Implicit Rules

By default, when an attribute being validated is not present or contains an empty string, normal validation rules,
including custom rules, are not run. For example, the unigue rule will not be run against an empty string:

use Illuminate\Support\Facades\Validator;
$rules = ['name' => 'unique:users,name'];
$input = ['name' => ''];

Validator::make($input, $rules)->passes(); // true

For a custom rule to run even when an attribute is empty, the rule must imply that the attribute is required. To
quickly generate a new implicit rule object, you may use the make:rule Artisan command with the --implicit
option:

php artisan make:rule Uppercase --implicit
['WARNING]

An "implicit" rule only implies that the attribute is required. Whether it actually invalidates a missing or
empty attribute is up to you.

Laravel Documentation - 10.x / Error Handling 208

The Basics

Error Handling

e Introduction

Configuration
e The Exception Handler
o Reporting Exceptions
o Exception Log Levels
o Ignoring Exceptions by Type
o Rendering Exceptions
o Reportable and Renderable Exceptions
o Throttling Reported Exceptions

HTTP Exceptions
o Custom HTTP Error Pages

Introduction

When you start a new Laravel project, error and exception handling is already configured for you. The
App\Exceptions\Handler class is where all exceptions thrown by your application are logged and then rendered
to the user. We'll dive deeper into this class throughout this documentation.

Configuration

The debug option in your config/app.php configuration file determines how much information about an error is
actually displayed to the user. By default, this option is set to respect the value of the App_bEBUG environment
variable, which is stored in your .env file.

During local development, you should set the App_bEBUG environment variable to true. In your production
environment, this value should always be false. If the value is set to true in production, you risk exposing
sensitive configuration values to your application's end users.

The Exception Handler
Reporting Exceptions

All exceptions are handled by the App\Exceptions\Handler class. This class contains a register method where
you may register custom exception reporting and rendering callbacks. We'll examine each of these concepts in
detail. Exception reporting is used to log exceptions or send them to an external service like Flare, Bugsnag, or
Sentry. By default, exceptions will be logged based on your logging configuration. However, you are free to log
exceptions however you wish.

If you need to report different types of exceptions in different ways, you may use the reportable method to
register a closure that should be executed when an exception of a given type needs to be reported. Laravel will
determine what type of exception the closure reports by examining the type-hint of the closure:

use App\Exceptions\InvalidOrderException;

/**
* Register the exception handling callbacks for the application.
*/

public function register(): void

{

$this->reportable(function (InvalidOrderException $e) {
/7 ...

i
}

When you register a custom exception reporting callback using the reportable method, Laravel will still log the
exception using the default logging configuration for the application. If you wish to stop the propagation of the
exception to the default logging stack, you may use the stop method when defining your reporting callback or

https://flareapp.io
https://bugsnag.com
https://github.com/getsentry/sentry-laravel

Laravel Documentation - 10.x / Error Handling 209

return false from the callback:

$this->reportable(function (InvalidOrderException $e) {
//

})->stop();

$this->reportable(function (InvalidOrderException $e) {
return false;

1

['NOTE]
To customize the exception reporting for a given exception, you may also utilize reportable exceptions.

Global Log Context

If available, Laravel automatically adds the current user's ID to every exception's log message as contextual
data. You may define your own global contextual data by defining a context method on your application's
App\Exceptions\Handler class. This information will be included in every exception's log message written by
your application:

/**
* Get the default context variables for logging.

*

* @return array<string, mixed>

*
/

protected function context(): array

{
return array_merge(parent::context(), [

'foo' => 'bar',

1)

}

Exception Log Context

While adding context to every log message can be useful, sometimes a particular exception may have unique
context that you would like to include in your logs. By defining a context method on one of your application's
exceptions, you may specify any data relevant to that exception that should be added to the exception's log
entry:

<?php
namespace App\Exceptions;
use Exception;

class InvalidOrderException extends Exception

{
/7.

/**
* Get the exception's context information.

*

* @return array<string, mixed>
*/
public function context(): array

{
}

return ['order_id' => $this->orderId];

The report Helper

Sometimes you may need to report an exception but continue handling the current request. The report helper
function allows you to quickly report an exception via the exception handler without rendering an error page to
the user:

public function isValid(string $value): bool
{
try {
// Validate the value...
} catch (Throwable $e) {

Laravel Documentation - 10.x / Error Handling 210

report($e);

return false;

Deduplicating Reported Exceptions

If you are using the report function throughout your application, you may occasionally report the same
exception multiple times, creating duplicate entries in your logs.

If you would like to ensure that a single instance of an exception is only ever reported once, you may set the
$withoutDuplicates property to true within your application's App\Exceptions\Handler class:

namespace App\Exceptions;
use Illuminate\Foundation\Exceptions\Handler as ExceptionHandler;

class Handler extends ExceptionHandler

{
/**
* Indicates that an exception instance should only be reported once.

*

* @var bool
*/
protected $withoutDuplicates = true;

/7.
Y

Now, when the report helper is called with the same instance of an exception, only the first call will be
reported:

$original = new RuntimeException('Whoops!"');
report($original); // reported

try {
throw $original;
} catch (Throwable $caught) {
report($caught); // ignored
}

report($original); // ignored
report($caught); // ignored

Exception Log Levels

When messages are written to your application's logs, the messages are written at a specified log level, which
indicates the severity or importance of the message being logged.

As noted above, even when you register a custom exception reporting callback using the reportable method,
Laravel will still log the exception using the default logging configuration for the application; however, since
the log level can sometimes influence the channels on which a message is logged, you may wish to configure
the log level that certain exceptions are logged at.

To accomplish this, you may define a s1evels property on your application's exception handler. This property
should contain an array of exception types and their associated log levels:

use PDOException;
use Psr\Log\LoglLevel;

/**
* A list of exception types with their corresponding custom log levels.
*
* @var array<class-string<\Throwable>, \Psr\Log\LogLevel::*>
*/
protected $levels = [
PDOException::class => LoglLevel::CRITICAL,
1;

Laravel Documentation - 10.x / Error Handling 211

Ignoring Exceptions by Type

When building your application, there will be some types of exceptions you never want to report. To ignore
these exceptions, define a $dontReport property on your application's exception handler. Any classes that you
add to this property will never be reported; however, they may still have custom rendering logic:

use App\Exceptions\InvalidOrderException;

VA

* A list of the exception types that are not reported.
*

* @var array<int, class-string<\Throwable>>
*/
protected $dontReport = [
InvalidOrderException::class,

1;

Internally, Laravel already ignores some types of errors for you, such as exceptions resulting from 404 HTTP
errors or 419 HTTP responses generated by invalid CSRF tokens. If you would like to instruct Laravel to stop
ignoring a given type of exception, you may invoke the stopignoring method within your exception handler's
register method:

use Symfony\Component\HttpKernel\Exception\HttpException;

/**
* Register the exception handling callbacks for the application.
*
/

public function register(): void

{

$this->stopIgnoring(HttpException::class);

/7 ...

Rendering Exceptions

By default, the Laravel exception handler will convert exceptions into an HTTP response for you. However,
you are free to register a custom rendering closure for exceptions of a given type. You may accomplish this by
invoking the renderable method within your exception handler.

The closure passed to the renderable method should return an instance of 111uminate\Http\Response, which may
be generated via the response helper. Laravel will determine what type of exception the closure renders by
examining the type-hint of the closure:

use App\Exceptions\InvalidOrderException;
use Illuminate\Http\Request;

/**
* Register the exception handling callbacks for the application.
*/
public function register(): void
{
$this->renderable(function (InvalidOrderException $e, Request $request) {
return response()->view('errors.invalid-order', [], 500);
1)
}

You may also use the renderable method to override the rendering behavior for built-in Laravel or Symfony
exceptions such as NotFoundHttpException. If the closure given to the renderable method does not return a
value, Laravel's default exception rendering will be utilized:

use Illuminate\Http\Request;
use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;

/**
* Register the exception handling callbacks for the application.
*/

public function register(): void

{

$this->renderable(function (NotFoundHttpException $e, Request $request) {
if ($request->is('api/*')) {
return response()->json([

Laravel Documentation - 10.x / Error Handling 212

'message' => 'Record not found.'
1, 404);

1

Reportable and Renderable Exceptions

Instead of defining custom reporting and rendering behavior in your exception handler's register method, you
may define report and render methods directly on your application's exceptions. When these methods exist,
they will automatically be called by the framework:

<?php

namespace App\Exceptions;
use Exception;

use Illuminate\Http\Request;

use Illuminate\Http\Response;

class InvalidOrderException extends Exception

{
/**
* Report the exception.
*
/
public function report(): void
{
/7 ...
}
/**
* Render the exception into an HTTP response.
*
/
public function render(Request $request): Response
{
return response(/* ... */);
}
}

If your exception extends an exception that is already renderable, such as a built-in Laravel or Symfony
exception, you may return false from the exception's render method to render the exception's default HTTP
response:

/**
* Render the exception into an HTTP response.
*
/
public function render(Request $request): Response|bool

{

if (/** Determine if the exception needs custom rendering */) {

return response(/* ... */);

}

return false;

}

If your exception contains custom reporting logic that is only necessary when certain conditions are met, you
may need to instruct Laravel to sometimes report the exception using the default exception handling
configuration. To accomplish this, you may return false from the exception's report method:

/**
* Report the exception.
*/
public function report(): bool

{
if (/** Determine if the exception needs custom reporting */) {

/7 ...

return true;

}

return false;

Laravel Documentation - 10.x / Error Handling 213

['NOTE]
You may type-hint any required dependencies of the report method and they will automatically be injected
into the method by Laravel's service container.

Throttling Reported Exceptions

If your application reports a very large number of exceptions, you may want to throttle how many exceptions
are actually logged or sent to your application's external error tracking service.

To take a random sample rate of exceptions, you can return a Lottery instance from your exception handler's
throttle method. If your App\Exceptions\Handler class does not contain this method, you may simply add it to
the class:

use Illuminate\Support\Lottery;
use Throwable;

/**
* Throttle incoming exceptions.
*/
protected function throttle(Throwable $e): mixed

{
}

return Lottery::odds(1, 1000);

It is also possible to conditionally sample based on the exception type. If you would like to only sample
instances of a specific exception class, you may return a Lottery instance only for that class:

use App\Exceptions\ApiMonitoringException;
use Illuminate\Support\Lottery;
use Throwable;

/**
* Throttle incoming exceptions.
*
/
protected function throttle(Throwable $e): mixed
{
if ($e instanceof ApiMonitoringException) {
return Lottery::odds(1, 1000);
}
}

You may also rate limit exceptions logged or sent to an external error tracking service by returning a Limit
instance instead of a Lottery. This is useful if you want to protect against sudden bursts of exceptions flooding
your logs, for example, when a third-party service used by your application is down:

use Illuminate\Broadcasting\BroadcastException;
use Illuminate\Cache\RateLimiting\Limit;
use Throwable;

/**
* Throttle incoming exceptions.
*/
protected function throttle(Throwable $e): mixed
{
if ($e instanceof BroadcastException) {
return Limit::perMinute(300);
}

}

By default, limits will use the exception's class as the rate limit key. You can customize this by specifying your
own key using the by method on the Limit:

use Illuminate\Broadcasting\BroadcastException;
use Illuminate\Cache\RateLimiting\Limit;
use Throwable;

/**
* Throttle incoming exceptions.
*/
protected function throttle(Throwable $e): mixed
{
if ($e instanceof BroadcastException) {
return Limit::perMinute(300)->by($e->getMessage());

Laravel Documentation - 10.x / Error Handling 214

}

Of course, you may return a mixture of Lottery and Limit instances for different exceptions:

use App\Exceptions\ApiMonitoringException;

use Illuminate\Broadcasting\BroadcastException;
use Illuminate\Cache\RatelLimiting\Limit;

use Illuminate\Support\Lottery;

use Throwable;

/**
* Throttle incoming exceptions.
*/
protected function throttle(Throwable $e): mixed

{

return match (true) {
$e instanceof BroadcastException => Limit::perMinute(300),
$e instanceof ApiMonitoringException => Lottery::odds(1, 1000),
default => Limit::none(),

3

HTTP Exceptions

Some exceptions describe HTTP error codes from the server. For example, this may be a "page not found" error
(404), an "unauthorized error" (401), or even a developer generated 500 error. In order to generate such a
response from anywhere in your application, you may use the abort helper:

abort(404);
Custom HTTP Error Pages

Laravel makes it easy to display custom error pages for various HTTP status codes. For example, to customize
the error page for 404 HTTP status codes, create a resources/views/errors/404.blade.php view template. This
view will be rendered for all 404 errors generated by your application. The views within this directory should

be named to match the HTTP status code they correspond to. The

symfony\Component\Ht tpkernel\Exception\HttpException instance raised by the abort function will be passed to
the view as an sexception variable:

<h2>{{ $exception->getMessage() }}</h2>

You may publish Laravel's default error page templates using the vendor :publish Artisan command. Once the
templates have been published, you may customize them to your liking:

php artisan vendor:publish --tag=laravel-errors
Fallback HTTP Error Pages
You may also define a "fallback" error page for a given series of HTTP status codes. This page will be rendered

if there is not a corresponding page for the specific HTTP status code that occurred. To accomplish this, define
a 4xx.blade.php template and a 5xx.blade.php template in your application's resources/views/errors directory.

Laravel Documentation - 10.x / Logging 215

The Basics

Logging

e Introduction

Configuration
o Available Channel Drivers
o Channel Prerequisites
o Logging Deprecation Warnings
o Building L.og Stacks
Writing L.og Messages
o Contextual Information
o Writing to Specific Channels
e Monolog Channel Customization
o Customizing Monolog for Channels
o Creating Monolog Handler Channels
o Creating Custom Channels via Factories
o Tailing [.og Messages Using Pail
o Installation

o Usage
o Filtering I.ogs

Introduction

To help you learn more about what's happening within your application, Laravel provides robust logging
services that allow you to log messages to files, the system error log, and even to Slack to notify your entire
team.

Laravel logging is based on "channels". Each channel represents a specific way of writing log information. For
example, the single channel writes log files to a single log file, while the s1ack channel sends log messages to
Slack. Log messages may be written to multiple channels based on their severity.

Under the hood, Laravel utilizes the Monolog library, which provides support for a variety of powerful log
handlers. Laravel makes it a cinch to configure these handlers, allowing you to mix and match them to
customize your application's log handling.

Configuration

All of the configuration options for your application's logging behavior are housed in the config/logging.php
configuration file. This file allows you to configure your application's log channels, so be sure to review each
of the available channels and their options. We'll review a few common options below.

By default, Laravel will use the stack channel when logging messages. The stack channel is used to aggregate
multiple log channels into a single channel. For more information on building stacks, check out the
documentation below.

Configuring the Channel Name

By default, Monolog is instantiated with a "channel name" that matches the current environment, such as
production or local. To change this value, add a name option to your channel's configuration:

'stack' => [
'driver' => 'stack',
'name' => 'channel-name',
'channels' => ['single', 'slack'],

] r
Available Channel Drivers

Each log channel is powered by a "driver". The driver determines how and where the log message is actually

https://github.com/Seldaek/monolog

Laravel Documentation - 10.x / Logging 216

recorded. The following log channel drivers are available in every Laravel application. An entry for most of
these drivers is already present in your application's config/logging.php configuration file, so be sure to review
this file to become familiar with its contents:

Name | Description | “custom” | A driver that calls a specified factory to create a channel
“daily” | A "RotatingFileHandler" based Monolog driver which rotates daily “errorlog” | An "ErrorLogHandler’
based Monolog driver ‘monolog” | A Monolog factory driver that may use any supported Monolog handler
“papertrail” | A “SyslogUdpHandler™ based Monolog driver “single” | A single file or path based logger channel
("StreamHandler") “slack™ | A “SlackWebhookHandler" based Monolog driver “stack™ | A wrapper to facilitate
creating "multi-channel” channels “syslog™ | A “SyslogHandler" based Monolog driver

['NOTE]
Check out the documentation on advanced channel customization to learn more about the monolog and
custom drivers.

Channel Prerequisites

Configuring the Single and Daily Channels

The single and daily channels have three optional configuration options: bubble, permission, and locking.

Name | Description | Default | | “bubble” | Indicates if messages should bubble
up to other channels after being handled | “true” “locking™ | Attempt to lock the log file before writing to it |
“false” “permission” | The log file's permissions | "0644"

Additionally, the retention policy for the daily channel can be configured via the days option:

Name | Description | Default
“days’ | The number of days that daily log files should be retained | *7°

Configuring the Papertrail Channel

The papertrail channel requires the host and port configuration options. You can obtain these values from
Papertrail.

Configuring the Slack Channel

The slack channel requires a url configuration option. This URL should match a URL for an incoming
webhook that you have configured for your Slack team.

By default, Slack will only receive logs at the critical level and above; however, you can adjust this in your
config/logging.php configuration file by modifying the 1evel configuration option within your Slack log
channel's configuration array.

Logging Deprecation Warnings

PHP, Laravel, and other libraries often notify their users that some of their features have been deprecated and
will be removed in a future version. If you would like to log these deprecation warnings, you may specify your
preferred deprecations log channel in your application's config/logging.php configuration file:

'deprecations' => env('LOG_DEPRECATIONS_CHANNEL', 'null'),
'channels' => [

]

Or, you may define a log channel named deprecations. If a log channel with this name exists, it will always be
used to log deprecations:

'channels' => [
'deprecations' => [
'driver' => 'single',

https://help.papertrailapp.com/kb/configuration/configuring-centralized-logging-from-php-apps/#send-events-from-php-app
https://slack.com/apps/A0F7XDUAZ-incoming-webhooks

Laravel Documentation - 10.x / Logging 217

'path' => storage_path('logs/php-deprecation-warnings.log'),
1,
1,

Building Log Stacks

As mentioned previously, the stack driver allows you to combine multiple channels into a single log channel
for convenience. To illustrate how to use log stacks, let's take a look at an example configuration that you might
see in a production application:

'channels' => [
'stack' => [
'driver' => 'stack',
'channels' => ['syslog', 'slack'],
]!
'syslog' => [
'driver' => 'syslog',
'level' => 'debug',
]!
'slack' => [
'driver' => 'slack',
'url' => env('LOG_SLACK_WEBHOOK_URL'),
'username' => 'Laravel Log',
'emoji' => ':boom:',
'level' => 'critical',
]l
]l

Let's dissect this configuration. First, notice our stack channel aggregates two other channels via its channels
option: syslog and slack. So, when logging messages, both of these channels will have the opportunity to log
the message. However, as we will see below, whether these channels actually log the message may be
determined by the message's severity / "level".

Log Levels

Take note of the level configuration option present on the syslog and slack channel configurations in the
example above. This option determines the minimum "level" a message must be in order to be logged by the
channel. Monolog, which powers Laravel's logging services, offers all of the log levels defined in the REC
5424 specification. In descending order of severity, these log levels are: emergency, alert, critical, error,
warning, notice, info, and debug.

So, imagine we log a message using the debug method:

Log: :debug('An informational message.');

Given our configuration, the syslog channel will write the message to the system log; however, since the error
message is not critical or above, it will not be sent to Slack. However, if we log an emergency message, it will
be sent to both the system log and Slack since the emergency level is above our minimum level threshold for
both channels:

Log: :emergency('The system is down!');

Writing Log Messages

You may write information to the logs using the Log facade. As previously mentioned, the logger provides the
eight logging levels defined in the REC 5424 specification: emergency, alert, critical, error, warning, notice,
info and debug:

use Illuminate\Support\Facades\Log;

Log: :emergency($message);
Log: :alert($message);
Log::critical($message);
Log::error($message);
Log: :warning($message);
Log: :notice($message);

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424

Laravel Documentation - 10.x / Logging 218

Log: :info($message);
Log: :debug($message);

You may call any of these methods to log a message for the corresponding level. By default, the message will
be written to the default log channel as configured by your 10gging configuration file:

<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;

use App\Models\User;

use Illuminate\Support\Facades\Log;

use Illuminate\View\View;

class UserController extends Controller

{
/**
* Show the profile for the given user.
*/
public function show(string $id): View
{
Log::info('Showing the user profile for user: {id}', ['id' => $id]);
return view('user.profile', [
'user' => User::findOrFail($id)
IDF
}
}

Contextual Information

An array of contextual data may be passed to the log methods. This contextual data will be formatted and
displayed with the log message:

use Illuminate\Support\Facades\Log;

Log::info('User {id} failed to login.', ['id' => $user->id]);

Occasionally, you may wish to specify some contextual information that should be included with all subsequent
log entries in a particular channel. For example, you may wish to log a request ID that is associated with each
incoming request to your application. To accomplish this, you may call the Log facade's withcontext method:

<?php
namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Log;

use Illuminate\Support\Str;

use Symfony\Component\HttpFoundation\Response;

class AssignRequestId

{
/**
* Handle an incoming request.

*

* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next): Response

{
$requestId = (string) Str::uuid();
Log: :withContext ([
'request-id' => $requestId
1
$response = $next($request);

$response->headers->set('Request-Id', $requestId);

return $response;

Laravel Documentation - 10.x / Logging 219

If you would like to share contextual information across all logging channels, you may invoke the
Log: :sharecontext () method. This method will provide the contextual information to all created channels and
any channels that are created subsequently:

<?php
namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Log;

use Illuminate\Support\Str;

use Symfony\Component\HttpFoundation\Response;

class AssignRequestId

{
VA

* Handle an incoming request.
*

* @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\Response) $next
*/
public function handle(Request $request, Closure $next): Response

{
$requestId = (string) Str::uuid();
Log: :shareContext ([
'request-id' => $requestId

1);
/...

[!NOTE] If you need to share log context while processing queued jobs, you may utilize job middleware.
Writing to Specific Channels

Sometimes you may wish to log a message to a channel other than your application's default channel. You may
use the channel method on the Log facade to retrieve and log to any channel defined in your configuration file:

use Illuminate\Support\Facades\Log;
Log: :channel('slack')->info('Something happened!");

If you would like to create an on-demand logging stack consisting of multiple channels, you may use the stack
method:

Log::stack(['single', 'slack'])->info('Something happened!");
On-Demand Channels

It is also possible to create an on-demand channel by providing the configuration at runtime without that
configuration being present in your application's logging configuration file. To accomplish this, you may pass a
configuration array to the Log facade's build method:

use Illuminate\Support\Facades\Log;

Log: :build([

'driver' => 'single',

'path' => storage_path('logs/custom.log'),
1)->info('Something happened!');

You may also wish to include an on-demand channel in an on-demand logging stack. This can be achieved by
including your on-demand channel instance in the array passed to the stack method:

use Illuminate\Support\Facades\Log;

$channel = Log::build([

'driver' => 'single',

'path' => storage_path('logs/custom.log'),
1

Laravel Documentation - 10.x / Logging 220

Log::stack(['slack', $channel])->info('Something happened!');

Monolog Channel Customization

Customizing Monolog for Channels

Sometimes you may need complete control over how Monolog is configured for an existing channel. For
example, you may want to configure a custom Monolog FormatterInterface implementation for Laravel's built-
in single channel.

To get started, define a tap array on the channel's configuration. The tap array should contain a list of classes
that should have an opportunity to customize (or "tap" into) the Monolog instance after it is created. There is no
conventional location where these classes should be placed, so you are free to create a directory within your
application to contain these classes:

'single' => [
'driver' => 'single',
'tap' => [App\Logging\CustomizeFormatter::class],
'path' => storage_path('logs/laravel.log'),
'level' => 'debug',

]l

Once you have configured the tap option on your channel, you're ready to define the class that will customize
your Monolog instance. This class only needs a single method: __invoke, which receives an
Illuminate\Log\Logger instance. The 11luminate\Log\Logger instance proxies all method calls to the underlying
Monolog instance:

<?php
namespace App\Logging;

use Illuminate\Log\Logger;
use Monolog\Formatter\LineFormatter;

class CustomizeFormatter

{
/**
* Customize the given logger instance.
*/
public function __invoke(Logger $logger): void
{
foreach ($logger->getHandlers() as $handler) {
$handler->setFormatter(new LineFormatter (
'[%datetime%] %channel%.%level_name%: %message% %context% %extra%'
)i
}
}
}
['NOTE]

All of your "tap" classes are resolved by the service container, so any constructor dependencies they
require will automatically be injected.

Creating Monolog Handler Channels

Monolog has a variety of available handlers and Laravel does not include a built-in channel for each one. In
some cases, you may wish to create a custom channel that is merely an instance of a specific Monolog handler
that does not have a corresponding Laravel log driver. These channels can be easily created using the monolog
driver.

When using the monolog driver, the handler configuration option is used to specify which handler will be
instantiated. Optionally, any constructor parameters the handler needs may be specified using the with
configuration option:

'logentries' => [
'driver' => 'monolog',
'handler' => Monolog\Handler\SyslogUdpHandler::class,
'with' => [

https://github.com/Seldaek/monolog/tree/main/src/Monolog/Handler

Laravel Documentation - 10.x / Logging 221

'host' => 'my.logentries.internal.datahubhost.company.com',
'port' => '10000',
1,
1,

Monolog Formatters

When using the monolog driver, the Monolog LineFormatter will be used as the default formatter. However, you
may customize the type of formatter passed to the handler using the formatter and formatter_with configuration
options:

'browser' => [
'driver' => 'monolog',
'handler' => Monolog\Handler\BrowserConsoleHandler::class,
'formatter' => Monolog\Formatter\HtmlFormatter::class,
'formatter_with' => [
'dateFormat' => 'Y-m-d',
]!
]I

If you are using a Monolog handler that is capable of providing its own formatter, you may set the value of the
formatter configuration option to default:

'newrelic' => [
'driver' => 'monolog',
'handler' => Monolog\Handler\NewRelicHandler::class,
'formatter' => 'default',

] ’
Monolog Processors

Monolog can also process messages before logging them. You can create your own processors or use the
existing processors offered by Monolog.

If you would like to customize the processors for a monolog driver, add a processors configuration value to your
channel's configuration:

'memory' => [

'driver' => 'monolog',

'handler' => Monolog\Handler\StreamHandler::class,

'with' => [
'stream' => 'php://stderr’',

]l

'processors' => [
// Simple syntax...
Monolog\Processor\MemoryUsageProcessor::class,

// With options...
[

'processor' => Monolog\Processor\PsrLogMessageProcessor::class,
'with' => ['removeUsedContextFields' => true],
]l
]l
]l

Creating Custom Channels via Factories

If you would like to define an entirely custom channel in which you have full control over Monolog's
instantiation and configuration, you may specify a custom driver type in your config/logging.php configuration
file. Your configuration should include a via option that contains the name of the factory class which will be
invoked to create the Monolog instance:

'channels' => [
'example-custom-channel' => [
'driver' => 'custom',
'via' => App\Logging\CreateCustomLogger::class,
]l
]l

Once you have configured the custom driver channel, you're ready to define the class that will create your

https://github.com/Seldaek/monolog/tree/main/src/Monolog/Processor

Laravel Documentation - 10.x / Logging 222

Monolog instance. This class only needs a single __invoke method which should return the Monolog logger
instance. The method will receive the channels configuration array as its only argument:

<?php
namespace App\Logging;
use Monolog\Logger;

class CreateCustomLogger

{
/**
* Create a custom Monolog instance.
*/
public function __invoke(array $config): Logger
{
return new Logger(/* ... */);
}
}

Tailing L.og Messages Using Pail

Often you may need to tail your application's logs in real time. For example, when debugging an issue or when
monitoring your application's logs for specific types of errors.

Laravel Pail is a package that allows you to easily dive into your Laravel application's log files directly from
the command line. Unlike the standard tail command, Pail is designed to work with any log driver, including
Sentry or Flare. In addition, Pail provides a set of useful filters to help you quickly find what you're looking for.

Laravel Documentation - 10.x / Logging 223

php artisan pail

- php artisan pail

INFO Tailing application logs.

INFO

This is some useful information.

Error Processing Request

WARNING

Something could be going wrong.

Installation

[!WARNING]
Laravel Pail requires PHP 8.2+ and the PCNTL extension.

To get started, install Pail into your project using the Composer package manager:

composer require laravel/pail

Usage

To start tailing logs, run the pail command:

php artisan pail

To increase the verbosity of the output and avoid truncation (...), use the -v option:
php artisan pail -v

For maximum verbosity and to display exception stack traces, use the -vv option:
php artisan pail -vv

To stop tailing logs, press ctrl+c at any time.
Filtering Logs
--filter

You may use the --filter option to filter logs by their type, file, message, and stack trace content:

https://php.net/releases/
https://www.php.net/manual/en/book.pcntl.php

Laravel Documentation - 10.x / Logging 224

php artisan pail --filter="QueryException"

- -message

To filter logs by only their message, you may use the - -message option:
php artisan pail --message="User created"

--level

The --1evel option may be used to filter logs by their log level:

php artisan pail --level=error

--user

To only display logs that were written while a given user was authenticated, you may provide the user's ID to
the --user option:

php artisan pail --user=1

Laravel Documentation - 10.x / Digging Deeper 225

Digging Deeper

Artisan Console

e Introduction

o Tinker (REPL)
o Writing Commands

o Generating Commands
o Command Structure

o Closure Commands
o Isolatable Commands

o Defining Input Expectations
o Arguments
Options
Input Arrays
Input Descriptions
Prompting for Missing Input
e Command I/O
o Retrieving Input
o Prompting for Input
o Writing Output
e Registering Commands
e Programmatically Executing Commands
o Calling Commands From Other Commands
e Signal Handling
e Stub Customization
e Events

o O o o

Introduction

Artisan is the command line interface included with Laravel. Artisan exists at the root of your application as the
artisan script and provides a number of helpful commands that can assist you while you build your application.
To view a list of all available Artisan commands, you may use the 1ist command:

php artisan list

Every command also includes a "help" screen which displays and describes the command's available arguments
and options. To view a help screen, precede the name of the command with help:

php artisan help migrate
Laravel Sail
If you are using Laravel Sail as your local development environment, remember to use the sail command line

to invoke Artisan commands. Sail will execute your Artisan commands within your application's Docker
containers:

./vendor/bin/sail artisan list

Tinker (REPL)
Laravel Tinker is a powerful REPL for the Laravel framework, powered by the PsySH package.
Installation

All Laravel applications include Tinker by default. However, you may install Tinker using Composer if you
have previously removed it from your application:

composer require laravel/tinker

https://github.com/bobthecow/psysh

Laravel Documentation - 10.x / Digging Deeper 226

['NOTE]
Looking for hot reloading, multiline code editing, and autocompletion when interacting with your Laravel
application? Check out Tinkerwell!

Usage
Tinker allows you to interact with your entire Laravel application on the command line, including your

Eloquent models, jobs, events, and more. To enter the Tinker environment, run the tinker Artisan command:

php artisan tinker

You can publish Tinker's configuration file using the vendor:publish command:

php artisan vendor:publish --provider="Laravel\Tinker\TinkerServiceProvider"

['WARNING]

The dispatch helper function and dispatch method on the pispatchable class depends on garbage collection
to place the job on the queue. Therefore, when using tinker, you should use Bus: :dispatch or Queue: :push
to dispatch jobs.

Command Allow List

Tinker utilizes an "allow" list to determine which Artisan commands are allowed to be run within its shell. By
default, you may run the clear-compiled, down, env, inspire, migrate, optimize, and up commands. If you would
like to allow more commands you may add them to the commands array in your tinker.php configuration file:

'commands' => [
// App\Console\Commands\ExampleCommand: :class,

]l

Classes That Should Not Be Aliased

Typically, Tinker automatically aliases classes as you interact with them in Tinker. However, you may wish to
never alias some classes. You may accomplish this by listing the classes in the dont_alias array of your
tinker.php configuration file:

'dont_alias' => [

App\Models\User::class,
]l

Writing Commands

In addition to the commands provided with Artisan, you may build your own custom commands. Commands
are typically stored in the app/console/commands directory; however, you are free to choose your own storage
location as long as your commands can be loaded by Composer.

Generating Commands

To create a new command, you may use the make:command Artisan command. This command will create a new
command class in the app/console/commands directory. Don't worry if this directory does not exist in your
application - it will be created the first time you run the make: command Artisan command:

php artisan make:command SendEmails
Command Structure

After generating your command, you should define appropriate values for the signature and description
properties of the class. These properties will be used when displaying your command on the 1ist screen. The
signature property also allows you to define your command's input expectations. The handle method will be
called when your command is executed. You may place your command logic in this method.

Let's take a look at an example command. Note that we are able to request any dependencies we need via the

https://tinkerwell.app

Laravel Documentation - 10.x / Digging Deeper 227

command's handle method. The Laravel service container will automatically inject all dependencies that are
type-hinted in this method's signature:

<?php

namespace App\Console\Commands;
use App\Models\User;

use App\Support\DripEmailer;

use Illuminate\Console\Command;

class SendEmails extends Command

{
/**
* The name and signature of the console command.
*
* @var string
*/
protected $signature = 'mail:send {user}';
/**
* The console command description.
*
* @var string
*/
protected $description = 'Send a marketing email to a user';
/**
* Execute the console command.
*
/
public function handle(DripEmailer $drip): void
{
$drip->send(User::find($this->argument('user')));
}
}
['NOTE]

For greater code reuse, it is good practice to keep your console commands light and let them defer to
application services to accomplish their tasks. In the example above, note that we inject a service class to
do the "heavy lifting" of sending the e-mails.

Closure Commands

Closure based commands provide an alternative to defining console commands as classes. In the same way that
route closures are an alternative to controllers, think of command closures as an alternative to command
classes. Within the commands method of your app/console/kernel.php file, Laravel loads the routes/console.php
file:

/**
* Register the closure based commands for the application.
*/
protected function commands(): void
{
require base_path('routes/console.php');
}

Even though this file does not define HTTP routes, it defines console based entry points (routes) into your
application. Within this file, you may define all of your closure based console commands using the

Artisan: :command method. The command method accepts two arguments: the command signature and a closure
which receives the command's arguments and options:

Artisan::command('mail:send {user}', function (string $user) {
$this->info("Sending email to: {$user}!");

i

The closure is bound to the underlying command instance, so you have full access to all of the helper methods
you would typically be able to access on a full command class.

Type-Hinting Dependencies

In addition to receiving your command's arguments and options, command closures may also type-hint

Laravel Documentation - 10.x / Digging Deeper 228

additional dependencies that you would like resolved out of the service container:

use App\Models\User;
use App\Support\DripEmailer;

Artisan::command('mail:send {user}', function (DripEmailer $drip, string $user) {

$drip->send(User::find($user));
1)

Closure Command Descriptions

When defining a closure based command, you may use the purpose method to add a description to the
command. This description will be displayed when you run the php artisan list or php artisan help
commands:

Artisan::command('mail:send {user}', function (string $user) {
/7 ...
})->purpose('Send a marketing email to a user');

Isolatable Commands

['WARNING]

To utilize this feature, your application must be using the memcached, redis, dynamodb, database, file, Or
array cache driver as your application's default cache driver. In addition, all servers must be
communicating with the same central cache server.

Sometimes you may wish to ensure that only one instance of a command can run at a time. To accomplish this,
you may implement the 111uminate\Contracts\Console\Isolatable interface on your command class:

<?php
namespace App\Console\Commands;

use Illuminate\Console\Command;
use Illuminate\Contracts\Console\Isolatable;

class SendEmails extends Command implements Isolatable

{
}

/7 ...

When a command is marked as 1solatable, Laravel will automatically add an --isolated option to the
command. When the command is invoked with that option, Laravel will ensure that no other instances of that
command are already running. Laravel accomplishes this by attempting to acquire an atomic lock using your
application's default cache driver. If other instances of the command are running, the command will not
execute; however, the command will still exit with a successful exit status code:

php artisan mail:send 1 --isolated

If you would like to specify the exit status code that the command should return if it is not able to execute, you
may provide the desired status code via the isolated option:

php artisan mail:send 1 --isolated=12
Lock ID

By default, Laravel will use the command's name to generate the string key that is used to acquire the atomic
lock in your application's cache. However, you may customize this key by defining an isolatableid method on
your Artisan command class, allowing you to integrate the command's arguments or options into the key:

/**
* Get the isolatable ID for the command.
*/

public function isolatableId(): string

{

return $this->argument('user');

}

Laravel Documentation - 10.x / Digging Deeper 229

Lock Expiration Time

By default, isolation locks expire after the command is finished. Or, if the command is interrupted and unable
to finish, the lock will expire after one hour. However, you may adjust the lock expiration time by defining a
isolationLockExpiresAt method on your command:

use DateTimeInterface;
use DatelInterval;

/**

* Determine when an isolation lock expires for the command.

*/
public function isolationLockExpiresAt(): DateTimeInterface|DateInterval
{

return now()->addMinutes(5);

}

Defining Input Expectations

When writing console commands, it is common to gather input from the user through arguments or options.
Laravel makes it very convenient to define the input you expect from the user using the signature property on
your commands. The signature property allows you to define the name, arguments, and options for the
command in a single, expressive, route-like syntax.

Arguments

All user supplied arguments and options are wrapped in curly braces. In the following example, the command
defines one required argument: user:

/**
* The name and signature of the console command.

*

* @var string
*/
protected $signature = 'mail:send {user}';

You may also make arguments optional or define default values for arguments:

// Optional argument...
'mail:send {user?}'

// Optional argument with default value...
'mail:send {user=foo}'

Options

Options, like arguments, are another form of user input. Options are prefixed by two hyphens (--) when they
are provided via the command line. There are two types of options: those that receive a value and those that
don't. Options that don't receive a value serve as a boolean "switch". Let's take a look at an example of this type
of option:

/**
* The name and signature of the console command.

*

* @var string
*/
protected $signature = 'mail:send {user} {--queue}';

In this example, the --queue switch may be specified when calling the Artisan command. If the - -queue switch
is passed, the value of the option will be true. Otherwise, the value will be false:

php artisan mail:send 1 --queue
Options With Values

Next, let's take a look at an option that expects a value. If the user must specify a value for an option, you
should suffix the option name with a = sign:

Laravel Documentation - 10.x / Digging Deeper 230

Jx*

* The name and signature of the console command.
*

* @var string
*/
protected $signature = 'mail:send {user} {--queue=}';

In this example, the user may pass a value for the option like so. If the option is not specified when invoking
the command, its value will be nu11:

php artisan mail:send 1 --queue=default

You may assign default values to options by specifying the default value after the option name. If no option
value is passed by the user, the default value will be used:

'mail:send {user} {--queue=default}'
Option Shortcuts

To assign a shortcut when defining an option, you may specify it before the option name and use the | character
as a delimiter to separate the shortcut from the full option name:

'mail:send {user} {--Q|queue}'’

When invoking the command on your terminal, option shortcuts should be prefixed with a single hyphen and
no = character should be included when specifying a value for the option:

php artisan mail:send 1 -Qdefault
Input Arrays

If you would like to define arguments or options to expect multiple input values, you may use the * character.
First, let's take a look at an example that specifies such an argument:

'mail:send {user*}'

When calling this method, the user arguments may be passed in order to the command line. For example, the
following command will set the value of user to an array with 1 and 2 as its values:

php artisan mail:send 1 2

This * character can be combined with an optional argument definition to allow zero or more instances of an
argument:

'mail:send {user?*}'

Option Arrays

When defining an option that expects multiple input values, each option value passed to the command should
be prefixed with the option name:

'mail:send {--id=*}"

Such a command may be invoked by passing multiple - -id arguments:

php artisan mail:send --id=1 --id=2
Input Descriptions

You may assign descriptions to input arguments and options by separating the argument name from the
description using a colon. If you need a little extra room to define your command, feel free to spread the
definition across multiple lines:

/**
* The name and signature of the console command.

*

Laravel Documentation - 10.x / Digging Deeper 231

* @var string
*/
protected $signature = 'mail:send
{user : The ID of the user}
{--queue : Whether the job should be queued}';

Prompting for Missing Input

If your command contains required arguments, the user will receive an error message when they are not
provided. Alternatively, you may configure your command to automatically prompt the user when required
arguments are missing by implementing the promptsForMissingInput interface:

<?php
namespace App\Console\Commands;

use Illuminate\Console\Command;
use Illuminate\Contracts\Console\PromptsForMissingInput;

class SendEmails extends Command implements PromptsForMissingInput

{
/**
* The name and signature of the console command.
*
* @var string
*/
protected $signature = 'mail:send {user}';
/7 ...
}

If Laravel needs to gather a required argument from the user, it will automatically ask the user for the argument
by intelligently phrasing the question using either the argument name or description. If you wish to customize
the question used to gather the required argument, you may implement the promptForMissingArgumentsuUsing
method, returning an array of questions keyed by the argument names:

/**
* Prompt for missing input arguments using the returned questions.

*

* @return array

*/
protected function promptForMissingArgumentsuUsing()
{
return [
'user' => 'Which user ID should receive the mail?',
1;
}

You may also provide placeholder text by using a tuple containing the question and placeholder:

return [
'user' => ['Which user ID should receive the mail?', 'E.g. 123'],

1;

If you would like complete control over the prompt, you may provide a closure that should prompt the user and
return their answer:

use App\Models\User;
use function Laravel\Prompts\search;

/7 ...

return [
'user' => fn () => search(
label: 'Search for a user:',
placeholder: 'E.g. Taylor Otwell',
options: fn ($value) => strlen($value) > 0
? User::where('name', 'like', "%{$value}%")->pluck('name', 'id')->all()
[1
)l
1;

['NOTE]
The comprehensive Laravel Prompts documentation includes additional information on the available

Laravel Documentation - 10.x / Digging Deeper 232

prompts and their usage.

If you wish to prompt the user to select or enter options, you may include prompts in your command's handle
method. However, if you only wish to prompt the user when they have also been automatically prompted for
missing arguments, then you may implement the afterPromptingForMissingArguments method:

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use function Laravel\Prompts\confirm;

/7 ...

VA

* Perform actions after the user was prompted for missing arguments.
*

* @param \Symfony\Component\Console\Input\InputInterface $input
* @param \Symfony\Component\Console\Output\OutputInterface $output
* @return void
*/
protected function afterPromptingForMissingArguments(InputInterface $input, OutputInterface $output)

{
$input->setOption('queue', confirm(
label: 'would you like to queue the mail?',
default: $this->option('queue')
));

Command I/0
Retrieving Input

While your command is executing, you will likely need to access the values for the arguments and options
accepted by your command. To do so, you may use the argument and option methods. If an argument or option
does not exist, null will be returned:

/**
* Execute the console command.
*/

public function handle(): void

{
}

$userId = $this->argument('user');

If you need to retrieve all of the arguments as an array, call the arguments method:

$arguments = $this->arguments();

Options may be retrieved just as easily as arguments using the option method. To retrieve all of the options as
an array, call the options method:

// Retrieve a specific option...
$queueName = $this->option('queue');

// Retrieve all options as an array...
$options = $this->options();

Prompting for Input

[INOTE]
Laravel Prompts is a PHP package for adding beautiful and user-friendly forms to your command-line
applications, with browser-like features including placeholder text and validation.

In addition to displaying output, you may also ask the user to provide input during the execution of your
command. The ask method will prompt the user with the given question, accept their input, and then return the
user's input back to your command:

/**
* Execute the console command.
*/

public function handle(): void

Laravel Documentation - 10.x / Digging Deeper 233

$name = $this->ask('What is your name?');

/7.
}

The ask method also accepts an optional second argument which specifies the default value that should be
returned if no user input is provided:

$name = $this->ask('What is your name?', 'Taylor');

The secret method is similar to ask, but the user's input will not be visible to them as they type in the console.
This method is useful when asking for sensitive information such as passwords:

$password = $this->secret('What is the password?');
Asking for Confirmation

If you need to ask the user for a simple "yes or no" confirmation, you may use the confirm method. By default,
this method will return false. However, if the user enters y or yes in response to the prompt, the method will
return true.

if ($this->confirm('Do you wish to continue?')) {
/7 ...
}

If necessary, you may specify that the confirmation prompt should return true by default by passing true as the
second argument to the confirm method:

if ($this->confirm('Do you wish to continue?', true)) {
// ...
}

Auto-Completion

The anticipate method can be used to provide auto-completion for possible choices. The user can still provide
any answer, regardless of the auto-completion hints:

$name = $this->anticipate('What is your name?', ['Taylor', 'Dayle']);

Alternatively, you may pass a closure as the second argument to the anticipate method. The closure will be
called each time the user types an input character. The closure should accept a string parameter containing the
user's input so far, and return an array of options for auto-completion:

$name = $this->anticipate('What is your address?', function (string $input) {
// Return auto-completion options...

1
Multiple Choice Questions

If you need to give the user a predefined set of choices when asking a question, you may use the choice method.
You may set the array index of the default value to be returned if no option is chosen by passing the index as
the third argument to the method:

$name = $this->choice(
'What is your name?',
['Taylor', 'Dayle'],
$defaultIndex

)i

In addition, the choice method accepts optional fourth and fifth arguments for determining the maximum
number of attempts to select a valid response and whether multiple selections are permitted:

$name = $this->choice(
'What is your name?',
['Taylor', 'Dayle'],
$defaultIndex,
$maxAttempts = null,

Laravel Documentation - 10.x / Digging Deeper 234

$allowMultipleSelections = false
)i

Writing Output

To send output to the console, you may use the line, info, comment, question, warn, and error methods. Each of
these methods will use appropriate ANSI colors for their purpose. For example, let's display some general
information to the user. Typically, the info method will display in the console as green colored text:

/**
* Execute the console command.
*/
public function handle(): void
{
/7 ...

$this->info('The command was successful!');

}
To display an error message, use the error method. Error message text is typically displayed in red:

$this->error('Something went wrong!');

You may use the 1ine method to display plain, uncolored text:

$this->line('Display this on the screen');

You may use the newLine method to display a blank line:

// Write a single blank line...
$this->newLine();

// Write three blank lines...
$this->newlLine(3);

Tables

The table method makes it easy to correctly format multiple rows / columns of data. All you need to do is
provide the column names and the data for the table and Laravel will automatically calculate the appropriate
width and height of the table for you:

use App\Models\User;
$this->table(
['Name', 'Email'],
User::all(['name', 'email'])->toArray()

)i
Progress Bars

For long running tasks, it can be helpful to show a progress bar that informs users how complete the task is.
Using the withprogressBar method, Laravel will display a progress bar and advance its progress for each
iteration over a given iterable value:

use App\Models\User;
$users = $this->withProgressBar(User::all(), function (User $user) {

$this->performTask($user);

i

Sometimes, you may need more manual control over how a progress bar is advanced. First, define the total
number of steps the process will iterate through. Then, advance the progress bar after processing each item:

$users = App\Models\User::all();
$bar = $this->output->createProgressBar(count($users));
$bar->start();

foreach ($users as $user) {

Laravel Documentation - 10.x / Digging Deeper 235

$this->performTask($user);

$bar->advance();

}

$bar->finish();

['NOTE]
For more advanced options, check out the Symfony Progress Bar component documentation.

Registering Commands

All of your console commands are registered within your application's App\console\Kernel class, which is your
application's "console kernel". Within the commands method of this class, you will see a call to the kernel's 1oad
method. The 1oad method will scan the app/console/commands directory and automatically register each
command it contains with Artisan. You are even free to make additional calls to the 10ad method to scan other
directories for Artisan commands:

/**
* Register the commands for the application.
*
/

protected function commands(): void

{

$this->load(__DIR__.'/Commands');
$this->load(__DIR__.'/../Domain/Orders/Commands');

V7
Y

If necessary, you may manually register commands by adding the command's class name to a $commands
property within your App\console\kernel class. If this property is not already defined on your kernel, you should
define it manually. When Artisan boots, all the commands listed in this property will be resolved by the service
container and registered with Artisan:

protected $commands = [
Commands\SendEmails::class

1;

Programmatically Executing Commands

Sometimes you may wish to execute an Artisan command outside of the CLI. For example, you may wish to
execute an Artisan command from a route or controller. You may use the call method on the Artisan facade to
accomplish this. The ca11 method accepts either the command's signature name or class name as its first
argument, and an array of command parameters as the second argument. The exit code will be returned:

use Illuminate\Support\Facades\Artisan;
Route::post('/user/{user}/mail', function (string $user) {
$exitCode = Artisan::call('mail:send', [
'user' => $user, '--queue' => 'default'

1);

/7.
i

Alternatively, you may pass the entire Artisan command to the call method as a string:

Artisan::call('mail:send 1 --queue=default');
Passing Array Values

If your command defines an option that accepts an array, you may pass an array of values to that option:
use Illuminate\Support\Facades\Artisan;

Route::post('/mail', function () {
$exitCode = Artisan::call('mail:send', [
'--id' => [5, 13]
1)

https://symfony.com/doc/current/components/console/helpers/progressbar.html

Laravel Documentation - 10.x / Digging Deeper 236

1
Passing Boolean Values

If you need to specify the value of an option that does not accept string values, such as the --force flag on the
migrate:refresh command, you should pass true or false as the value of the option:

$exitCode = Artisan::call('migrate:refresh', [
'--force' => true,

1);

Queueing Artisan Commands

Using the queue method on the Artisan facade, you may even queue Artisan commands so they are processed in
the background by your queue workers. Before using this method, make sure you have configured your queue
and are running a queue listener:

use Illuminate\Support\Facades\Artisan;

Route::post('/user/{user}/mail', function (string $user) {
Artisan::queue('mail:send', [
'user' => $user, '--queue' => 'default'

1);

/...
K

Using the onconnection and onQueue methods, you may specify the connection or queue the Artisan command
should be dispatched to:

Artisan::queue('mail:send', [
'user' => 1, '--queue' => 'default'
1) ->onConnection('redis')->onQueue('commands');

Calling Commands From Other Commands

Sometimes you may wish to call other commands from an existing Artisan command. You may do so using the
call method. This call method accepts the command name and an array of command arguments / options:

/**
* Execute the console command.
*/

public function handle(): void

{
$this->call('mail:send', [
'user' => 1, '--queue' => 'default'

1);

/7.
H

If you would like to call another console command and suppress all of its output, you may use the callsilently
method. The calisilently method has the same signature as the ca1l method:

$this->callSilently('mail:send', [
'user' => 1, '--queue' => 'default'

1);

Signal Handling

As you may know, operating systems allow signals to be sent to running processes. For example, the SIGTERM
signal is how operating systems ask a program to terminate. If you wish to listen for signals in your Artisan
console commands and execute code when they occur, you may use the trap method:

/**
* Execute the console command.
*/

public function handle(): void

{

Laravel Documentation - 10.x / Digging Deeper 237

$this->trap(SIGTERM, fn () => $this->shouldKeepRunning = false);

while ($this->shouldKeepRunning) {
/7 ...
}

}

To listen for multiple signals at once, you may provide an array of signals to the trap method:

$this->trap([SIGTERM, SIGQUIT], function (int $signal) {
$this->shouldKeepRunning = false;

dump($signal); // SIGTERM / SIGQUIT
1)

Stub Customization

The Artisan console's make commands are used to create a variety of classes, such as controllers, jobs,
migrations, and tests. These classes are generated using "stub" files that are populated with values based on
your input. However, you may want to make small changes to files generated by Artisan. To accomplish this,
you may use the stub:publish command to publish the most common stubs to your application so that you can
customize them:

php artisan stub:publish

The published stubs will be located within a stubs directory in the root of your application. Any changes you
make to these stubs will be reflected when you generate their corresponding classes using Artisan's make
commands.

Events

Artisan dispatches three events when running commands: 111uminate\Console\Events\ArtisanStarting,
Illuminate\Console\Events\CommandStarting,and,Illuminate\Console\Events\CommandFinished.frhe
Artisanstarting event is dispatched immediately when Artisan starts running. Next, the commandstarting event
is dispatched immediately before a command runs. Finally, the commandFinished event is dispatched once a
command finishes executing.

Laravel Documentation - 10.x / Broadcasting 238

Digging Deeper

Broadcasting

Introduction
Server Side Installation
o Configuration
o Reverb
o Pusher Channels
o Ably
o Open Source Alternatives
e Client Side Installation
o Reverb
o Pusher Channels
o Abl
e Concept Overview

o Using an Example Application

o Defining Broadcast Events
o Broadcast Name

o Broadcast Data
o Broadcast Queue
o Broadcast Conditions
o Broadcasting and Database Transactions
o Authorizing Channels
o Defining Authorization Routes
o Defining Authorization Callbacks
o Defining Channel Classes
e Broadcasting Events
o Only to Others
o Customizing the Connection
e Receiving Broadcasts
o Listening for Events
o Leaving a Channel
o Namespaces
e Presence Channels
o Authorizing Presence Channels
o Joining Presence Channels

o Broadcasting to Presence Channels
e Model Broadcasting

o Model Broadcasting Conventions
o Listening for Model Broadcasts

e (Client Events

e Notifications

Introduction

In many modern web applications, WebSockets are used to implement realtime, live-updating user interfaces.
When some data is updated on the server, a message is typically sent over a WebSocket connection to be
handled by the client. WebSockets provide a more efficient alternative to continually polling your application's
server for data changes that should be reflected in your UI.

For example, imagine your application is able to export a user's data to a CSV file and email it to them.
However, creating this CSV file takes several minutes so you choose to create and mail the CSV within a
queued job. When the CSV has been created and mailed to the user, we can use event broadcasting to dispatch
an App\Events\UserDataExported event that is received by our application's JavaScript. Once the event is
received, we can display a message to the user that their CSV has been emailed to them without them ever
needing to refresh the page.

To assist you in building these types of features, Laravel makes it easy to "broadcast" your server-side Laravel

Laravel Documentation - 10.x / Broadcasting 239

events over a WebSocket connection. Broadcasting your Laravel events allows you to share the same event
names and data between your server-side Laravel application and your client-side JavaScript application.

The core concepts behind broadcasting are simple: clients connect to named channels on the frontend, while
your Laravel application broadcasts events to these channels on the backend. These events can contain any
additional data you wish to make available to the frontend.

Supported Drivers

By default, Laravel includes three server-side broadcasting drivers for you to choose from: Laravel Reverb,
Pusher Channels, and Ably.

['NOTE]
Before diving into event broadcasting, make sure you have read Laravel's documentation on events and
listeners.

Server Side Installation

To get started using Laravel's event broadcasting, we need to do some configuration within the Laravel
application as well as install a few packages.

Event broadcasting is accomplished by a server-side broadcasting driver that broadcasts your Laravel events so
that Laravel Echo (a JavaScript library) can receive them within the browser client. Don't worry - we'll walk
through each part of the installation process step-by-step.

Configuration

All of your application's event broadcasting configuration is stored in the config/broadcasting.php
configuration file. Laravel supports several broadcast drivers out of the box: Pusher Channels, Redis, and a 1og
driver for local development and debugging. Additionally, a nul1 driver is included which allows you to totally
disable broadcasting during testing. A configuration example is included for each of these drivers in the
config/broadcasting.php configuration file.

Broadcast Service Provider

Before broadcasting any events, you will first need to register the App\Providers\BroadcastServiceProvider. In
new Laravel applications, you only need to uncomment this provider in the providers array of your
config/app.php configuration file. This BroadcastserviceProvider contains the code necessary to register the
broadcast authorization routes and callbacks.

Queue Configuration

You will also need to configure and run a queue worker. All event broadcasting is done via queued jobs so that
the response time of your application is not seriously affected by events being broadcast.

Reverb

You may install Reverb using the Composer package manager. Since Reverb is currently in beta, you will need
to explicitly install the beta release:

composer require laravel/reverb:@beta

Once the package is installed, you may run Reverb's installation command to publish the configuration, update
your applications's broadcasting configuration, and add Reverb's required environment variables:

php artisan reverb:install

You can find detailed Reverb installation and usage instructions in the Reverb documentation.

https://reverb.laravel.com
https://pusher.com/channels
https://ably.com
https://pusher.com/channels

Laravel Documentation - 10.x / Broadcasting 240

Pusher Channels

If you plan to broadcast your events using Pusher Channels, you should install the Pusher Channels PHP SDK
using the Composer package manager:

composer require pusher/pusher-php-server

Next, you should configure your Pusher Channels credentials in the config/broadcasting.php configuration file.
An example Pusher Channels configuration is already included in this file, allowing you to quickly specify your
key, secret, and application ID. Typically, these values should be set via the PUSHER_APP_KEY, PUSHER_APP_SECRET,

and PUSHER_APP_ID environment variables:

PUSHER_APP_ID=your -pusher-app-id

PUSHER_APP_KEY=your -pusher -key

PUSHER_APP_SECRET=your -pusher-secret
PUSHER_APP_CLUSTER=mt1

The config/broadcasting.php file's pusher configuration also allows you to specify additional options that are
supported by Channels, such as the cluster.

Next, you will need to change your broadcast driver to pusher in your .env file:

BROADCAST_DRIVER=pusher

Finally, you are ready to install and configure Laravel Echo, which will receive the broadcast events on the
client-side.

Open Source Pusher Alternatives

soketi provides a Pusher compatible WebSocket server for Laravel, allowing you to leverage the full power of
Laravel broadcasting without a commercial WebSocket provider. For more information on installing and using
open source packages for broadcasting, please consult our documentation on open source alternatives.

Ably

[INOTE]

The documentation below discusses how to use Ably in "Pusher compatibility" mode. However, the Ably
team recommends and maintains a broadcaster and Echo client that is able to take advantage of the unique
capabilities offered by Ably. For more information on using the Ably maintained drivers, please consult
Ably's Laravel broadcaster documentation.

If you plan to broadcast your events using Ably, you should install the Ably PHP SDK using the Composer
package manager:

composer require ably/ably-php

Next, you should configure your Ably credentials in the config/broadcasting.php configuration file. An
example Ably configuration is already included in this file, allowing you to quickly specify your key. Typically,
this value should be set via the ABLY_KEY environment variable:

ABLY_KEY=your -ably-key

Next, you will need to change your broadcast driver to ably in your .env file:

BROADCAST_DRIVER=ably

Finally, you are ready to install and configure Laravel Echo, which will receive the broadcast events on the
client-side.

Open Source Alternatives

Node

https://pusher.com/channels
https://docs.soketi.app/
https://github.com/ably/laravel-broadcaster
https://ably.com

Laravel Documentation - 10.x / Broadcasting 241

Soketi is a Node based, Pusher compatible WebSocket server for Laravel. Under the hood, Soketi utilizes
BWebSockets.js for extreme scalability and speed. This package allows you to leverage the full power of
Laravel broadcasting without a commercial WebSocket provider. For more information on installing and using
this package, please consult its official documentation.

Client Side Installation

Reverb

Laravel Echo is a JavaScript library that makes it painless to subscribe to channels and listen for events
broadcast by your server-side broadcasting driver. You may install Echo via the NPM package manager. In this
example, we will also install the pusher-js package since Reverb utilizes the Pusher protocol for WebSocket
subscriptions, channels, and messages:

npm install --save-dev laravel-echo pusher-js

Once Echo is installed, you are ready to create a fresh Echo instance in your application's JavaScript. A great
place to do this is at the bottom of the resources/js/bootstrap. js file that is included with the Laravel
framework. By default, an example Echo configuration is already included in this file - you simply need to
uncomment it and update the broadcaster configuration option to reverb:

import Echo from 'laravel-echo';

import Pusher from 'pusher-js';
window.Pusher = Pusher;

window.Echo = new Echo({
broadcaster: 'reverb',
key: import.meta.env.VITE_REVERB_APP_KEY,
wsHost: import.meta.env.VITE_REVERB_HOST,
wsPort: import.meta.env.VITE_REVERB_PORT,
wssPort: import.meta.env.VITE_REVERB_PORT,
forceTLS: (import.meta.env.VITE_REVERB_SCHEME ?? 'https') === 'https',
enabledTransports: ['ws', 'wss'],

K

Next, you should compile your application's assets:

npm run build

[!WARNING]
The Laravel Echo reverb broadcaster requires laravel-echo v1.16.0+.

Pusher Channels

Laravel Echo is a JavaScript library that makes it painless to subscribe to channels and listen for events
broadcast by your server-side broadcasting driver. You may install Echo via the NPM package manager. In this
example, we will also install the pusher-js package since we will be using the Pusher Channels broadcaster:

npm install --save-dev laravel-echo pusher-js

Once Echo is installed, you are ready to create a fresh Echo instance in your application's JavaScript. A great
place to do this is at the bottom of the resources/js/bootstrap. js file that is included with the Laravel
framework. By default, an example Echo configuration is already included in this file - you simply need to
uncomment it:

import Echo from 'laravel-echo';
import Pusher from 'pusher-js';

window.Pusher = Pusher;

window.Echo = new Echo({
broadcaster: 'pusher',
key: import.meta.env.VITE_PUSHER_APP_KEY,
cluster: import.meta.env.VITE_PUSHER_APP_CLUSTER,
forceTLS: true

i

https://github.com/soketi/soketi
https://docs.soketi.app/
https://github.com/laravel/echo
https://github.com/laravel/echo

Laravel Documentation - 10.x / Broadcasting 242

Once you have uncommented and adjusted the Echo configuration according to your needs, you may compile
your application's assets:

npm run build

['NOTE]
To learn more about compiling your application's JavaScript assets, please consult the documentation on
Vite.

Using an Existing Client Instance

If you already have a pre-configured Pusher Channels client instance that you would like Echo to utilize, you
may pass it to Echo via the client configuration option:

import Echo from 'laravel-echo';
import Pusher from 'pusher-js';

const options = {
broadcaster: 'pusher',
key: 'your-pusher-channels-key'

window.Echo = new Echo({
...options,
client: new Pusher(options.key, options)

1)
Ably

[!NOTE]

The documentation below discusses how to use Ably in "Pusher compatibility" mode. However, the Ably
team recommends and maintains a broadcaster and Echo client that is able to take advantage of the unique
capabilities offered by Ably. For more information on using the Ably maintained drivers, please consult

Ably's Laravel broadcaster documentation.

Laravel Echo is a JavaScript library that makes it painless to subscribe to channels and listen for events
broadcast by your server-side broadcasting driver. You may install Echo via the NPM package manager. In this
example, we will also install the pusher-js package.

You may wonder why we would install the pusher-js JavaScript library even though we are using Ably to
broadcast our events. Thankfully, Ably includes a Pusher compatibility mode which lets us use the Pusher
protocol when listening for events in our client-side application:

npm install --save-dev laravel-echo pusher-js

Before continuing, you should enable Pusher protocol support in your Ably application settings. You may
enable this feature within the "Protocol Adapter Settings" portion of your Ably application's settings
dashboard.

Once Echo is installed, you are ready to create a fresh Echo instance in your application's JavaScript. A great
place to do this is at the bottom of the resources/js/bootstrap. js file that is included with the Laravel
framework. By default, an example Echo configuration is already included in this file; however, the default
configuration in the bootstrap. js file is intended for Pusher. You may copy the configuration below to
transition your configuration to Ably:

import Echo from 'laravel-echo';
import Pusher from 'pusher-js';

window.Pusher = Pusher;

window.Echo = new Echo({
broadcaster: 'pusher',
key: import.meta.env.VITE_ABLY_PUBLIC_KEY,
wsHost: 'realtime-pusher.ably.io',
wsPort: 443,
disableStats: true,
encrypted: true,

i

https://github.com/ably/laravel-broadcaster
https://github.com/laravel/echo

Laravel Documentation - 10.x / Broadcasting 243

Note that our Ably Echo configuration references a viTe_aBLY_puBLIC_KEY environment variable. This variable's
value should be your Ably public key. Your public key is the portion of your Ably key that occurs before the :
character.

Once you have uncommented and adjusted the Echo configuration according to your needs, you may compile
your application's assets:

npm run dev

['NOTE]
To learn more about compiling your application's JavaScript assets, please consult the documentation on
Vite.

Concept Overview

Laravel's event broadcasting allows you to broadcast your server-side Laravel events to your client-side
JavaScript application using a driver-based approach to WebSockets. Currently, Laravel ships with Pusher
Channels and Ably drivers. The events may be easily consumed on the client-side using the Laravel Echo
JavaScript package.

Events are broadcast over "channels", which may be specified as public or private. Any visitor to your
application may subscribe to a public channel without any authentication or authorization; however, in order to
subscribe to a private channel, a user must be authenticated and authorized to listen on that channel.

['NOTE]
If you would like to explore open source alternatives to Pusher, check out the open source alternatives.

Using an Example Application

Before diving into each component of event broadcasting, let's take a high level overview using an e-commerce
store as an example.

In our application, let's assume we have a page that allows users to view the shipping status for their orders.
Let's also assume that an ordershipmentStatusUpdated event is fired when a shipping status update is processed
by the application:

use App\Events\OrderShipmentStatusUpdated;

OrderShipmentStatusUpdated: :dispatch($order);
The shouldBroadcast Interface

When a user is viewing one of their orders, we don't want them to have to refresh the page to view status
updates. Instead, we want to broadcast the updates to the application as they are created. So, we need to mark
the ordershipmentStatusUpdated event with the shouldBroadcast interface. This will instruct Laravel to broadcast
the event when it is fired:

<?php
namespace App\Events;

use App\Models\Order;

use Illuminate\Broadcasting\Channel;

use Illuminate\Broadcasting\InteractsWithSockets;

use Illuminate\Broadcasting\PresenceChannel;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;
use Illuminate\Queue\SerializesModels;

class OrderShipmentStatusUpdated implements ShouldBroadcast
{
/**
* The order instance.
* @var \App\Order
*/
public $order;

https://pusher.com/channels
https://ably.com

Laravel Documentation - 10.x / Broadcasting 244

}

The shouldBroadcast interface requires our event to define a broadcaston method. This method is responsible for
returning the channels that the event should broadcast on. An empty stub of this method is already defined on
generated event classes, so we only need to fill in its details. We only want the creator of the order to be able to
view status updates, so we will broadcast the event on a private channel that is tied to the order:

use Illuminate\Broadcasting\Channel;
use Illuminate\Broadcasting\PrivateChannel;

/**
* Get the channel the event should broadcast on.
*/

public function broadcastOn(): Channel

{

return new PrivateChannel('orders.'.$this->order->id);

}

If you wish the event to broadcast on multiple channels, you may return an array instead:
use Illuminate\Broadcasting\PrivateChannel;

/**
* Get the channels the event should broadcast on.

*

* @return array<int, \Illuminate\Broadcasting\Channel>

*/
public function broadcastOn(): array
{
return [
new PrivateChannel('orders.'.$this->order->id),
// ...
1;
}

Authorizing Channels

Remember, users must be authorized to listen on private channels. We may define our channel authorization
rules in our application's routes/channels.php file. In this example, we need to verify that any user attempting
to listen on the private orders.1 channel is actually the creator of the order:

use App\Models\Order;
use App\Models\User;

Broadcast::channel('orders.{orderId}', function (User $user, int $orderId) {
return $user->id === Order::findOrNew($orderId)->user_id;

F

The channel method accepts two arguments: the name of the channel and a callback which returns true or false
indicating whether the user is authorized to listen on the channel.

All authorization callbacks receive the currently authenticated user as their first argument and any additional
wildcard parameters as their subsequent arguments. In this example, we are using the {order1d} placeholder to
indicate that the "ID" portion of the channel name is a wildcard.

Listening for Event Broadcasts

Next, all that remains is to listen for the event in our JavaScript application. We can do this using Laravel Echo.
First, we'll use the private method to subscribe to the private channel. Then, we may use the 1isten method to
listen for the ordershipmentstatusupdated event. By default, all of the event's public properties will be included
on the broadcast event:

Echo.private(orders.${orderId}")
.listen('OrderShipmentStatusUpdated', (e) => {
console.log(e.order);

i

Defining Broadcast Events

Laravel Documentation - 10.x / Broadcasting 245

To inform Laravel that a given event should be broadcast, you must implement the
Illuminate\Contracts\Broadcasting\ShouldBroadcast interface on the event class. This interface is already
imported into all event classes generated by the framework so you may easily add it to any of your events.

The shouldBroadcast interface requires you to implement a single method: broadcaston. The broadcaston
method should return a channel or array of channels that the event should broadcast on. The channels should be
instances of channel, PrivateChannel, Or Presencechannel. Instances of channel represent public channels that
any user may subscribe to, while Privatechannels and Presencechannels represent private channels that require
channel authorization:

<?php
namespace App\Events;

use App\Models\User;

use Illuminate\Broadcasting\Channel;

use Illuminate\Broadcasting\InteractsWithSockets;

use Illuminate\Broadcasting\PresenceChannel;

use Illuminate\Broadcasting\PrivateChannel;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;
use Illuminate\Queue\SerializesModels;

class ServerCreated implements ShouldBroadcast

{

use SerializesModels;

/**
* Create a new event instance.
*/
public function __construct(
public User $user,

) {3

/**
* Get the channels the event should broadcast on.

*

* @return array<int, \Illuminate\Broadcasting\Channel>
*
/

public function broadcastOn(): array

{
return [
new PrivateChannel('user.'.$this->user->id),

1;
}

After implementing the shouldBroadcast interface, you only need to fire the event as you normally would. Once
the event has been fired, a queued job will automatically broadcast the event using your specified broadcast
driver.

Broadcast Name

By default, Laravel will broadcast the event using the event's class name. However, you may customize the
broadcast name by defining a broadcastAs method on the event:

/**
* The event's broadcast name.
*/
public function broadcastAs(): string

{
}

return 'server.created';

If you customize the broadcast name using the broadcastAs method, you should make sure to register your
listener with a leading . character. This will instruct Echo to not prepend the application's namespace to the
event:

.listen('.server.created', function (e) {

i

Broadcast Data

Laravel Documentation - 10.x / Broadcasting 246

When an event is broadcast, all of its public properties are automatically serialized and broadcast as the event's
payload, allowing you to access any of its public data from your JavaScript application. So, for example, if your
event has a single public suser property that contains an Eloquent model, the event's broadcast payload would
be:

"user": {
Ilidll. 1
. 4
"name": "Patrick Stewart"

}

However, if you wish to have more fine-grained control over your broadcast payload, you may add a
broadcastwith method to your event. This method should return the array of data that you wish to broadcast as
the event payload:

/**
* Get the data to broadcast.

*

* @return array<string, mixed>
*
/
public function broadcastWith(): array

{
}

return ['id' => $this->user->id];

Broadcast Queue

By default, each broadcast event is placed on the default queue for the default queue connection specified in
your queue.php configuration file. You may customize the queue connection and name used by the broadcaster
by defining connection and queue properties on your event class:

/**
* The name of the queue connection to use when broadcasting the event.

*
* @var string
*/
public $connection = 'redis';

/**
* The name of the queue on which to place the broadcasting job.

*

* @var string
*/
public $queue = 'default';

Alternatively, you may customize the queue name by defining a broadcastqueue method on your event:

/**
* The name of the queue on which to place the broadcasting job.
*/
public function broadcastQueue(): string
{
return 'default';
}

If you would like to broadcast your event using the sync queue instead of the default queue driver, you can
implement the shouldBroadcastNow interface instead of shouldBroadcast:

<?php
use Illuminate\Contracts\Broadcasting\ShouldBroadcastNow;

class OrderShipmentStatusUpdated implements ShouldBroadcastNow

{
}

/7 ...

Broadcast Conditions

Sometimes you want to broadcast your event only if a given condition is true. You may define these conditions

Laravel Documentation - 10.x / Broadcasting 247

by adding a broadcastwhen method to your event class:

/**
* Determine if this event should broadcast.
*/

public function broadcastWhen(): bool

{

return $this->order->value > 100;

}

Broadcasting and Database Transactions

When broadcast events are dispatched within database transactions, they may be processed by the queue before
the database transaction has committed. When this happens, any updates you have made to models or database
records during the database transaction may not yet be reflected in the database. In addition, any models or
database records created within the transaction may not exist in the database. If your event depends on these
models, unexpected errors can occur when the job that broadcasts the event is processed.

If your queue connection's after_commit configuration option is set to false, you may still indicate that a
particular broadcast event should be dispatched after all open database transactions have been committed by
implementing the shouldbispatchAftercommit interface on the event class:

<?php

namespace App\Events;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use Illuminate\Contracts\Events\ShouldDispatchAfterCommit;

use Illuminate\Queue\SerializesModels;

class ServerCreated implements ShouldBroadcast, ShouldDispatchAfterCommit

{
}

use SerializesModels;

[INOTE]
To learn more about working around these issues, please review the documentation regarding queued jobs
and database transactions.

Authorizing Channels

Private channels require you to authorize that the currently authenticated user can actually listen on the channel.
This is accomplished by making an HTTP request to your Laravel application with the channel name and
allowing your application to determine if the user can listen on that channel. When using Laravel Echo, the
HTTP request to authorize subscriptions to private channels will be made automatically; however, you do need
to define the proper routes to respond to these requests.

Defining Authorization Routes

Thankfully, Laravel makes it easy to define the routes to respond to channel authorization requests. In the
App\Providers\BroadcastServiceProvider included with your Laravel application, you will see a call to the
Broadcast : :routes method. This method will register the /broadcasting/auth route to handle authorization
requests:

Broadcast::routes();

The Broadcast : : routes method will automatically place its routes within the web middleware group; however,
you may pass an array of route attributes to the method if you would like to customize the assigned attributes:

Broadcast: :routes($attributes);
Customizing the Authorization Endpoint

By default, Echo will use the /broadcasting/auth endpoint to authorize channel access. However, you may
specify your own authorization endpoint by passing the authendpoint configuration option to your Echo

Laravel Documentation - 10.x / Broadcasting 248

instance:

window.Echo = new Echo({

broadcaster: 'pusher',

/7 ...

authEndpoint: '/custom/endpoint/auth'
1)

Customizing the Authorization Request

You can customize how Laravel Echo performs authorization requests by providing a custom authorizer when
initializing Echo:
window.Echo = new Echo({
/7.
authorizer: (channel, options) => {
return {
authorize: (socketId, callback) => {
axios.post('/api/broadcasting/auth', {
socket_id: socketId,
channel_name: channel.name

1
.then(response => {
callback(null, response.data);

1)
.catch(error => {
callback(error);

K
3

}l
1

Defining Authorization Callbacks

Next, we need to define the logic that will actually determine if the currently authenticated user can listen to a
given channel. This is done in the routes/channels.php file that is included with your application. In this file,
you may use the Broadcast: : channel method to register channel authorization callbacks:

use App\Models\User;
Broadcast::channel('orders.{orderId}', function (User $user, int $orderId) {

return $user->id === Order::findOrNew($orderId)->user_id;

F

The channel method accepts two arguments: the name of the channel and a callback which returns true or false
indicating whether the user is authorized to listen on the channel.

All authorization callbacks receive the currently authenticated user as their first argument and any additional
wildcard parameters as their subsequent arguments. In this example, we are using the {order1d} placeholder to
indicate that the "ID" portion of the channel name is a wildcard.

You may view a list of your application's broadcast authorization callbacks using the channel:1ist Artisan
command:

php artisan channel:list
Authorization Callback Model Binding

Just like HTTP routes, channel routes may also take advantage of implicit and explicit route model binding. For
example, instead of receiving a string or numeric order ID, you may request an actual order model instance:

use App\Models\Order;
use App\Models\User;

Broadcast::channel('orders.{order}', function (User $user, Order $order) {

return $user->id === $order->user_id;

i
['"WARNING]

Laravel Documentation - 10.x / Broadcasting 249

Unlike HTTP route model binding, channel model binding does not support automatic implicit model
binding scoping. However, this is rarely a problem because most channels can be scoped based on a single
model's unique, primary key.

Authorization Callback Authentication

Private and presence broadcast channels authenticate the current user via your application's default
authentication guard. If the user is not authenticated, channel authorization is automatically denied and the
authorization callback is never executed. However, you may assign multiple, custom guards that should
authenticate the incoming request if necessary:

Broadcast::channel('channel', function () {

/7 ...
}, ['guards' => ['web', 'admin']]);

Defining Channel Classes

If your application is consuming many different channels, your routes/channels.php file could become bulky.
So, instead of using closures to authorize channels, you may use channel classes. To generate a channel class,
use the make:channel Artisan command. This command will place a new channel class in the App/Broadcasting
directory.

php artisan make:channel OrderChannel

Next, register your channel in your routes/channels.php file:
use App\Broadcasting\OrderChannel;

Broadcast::channel('orders.{order}', OrderChannel::class);

Finally, you may place the authorization logic for your channel in the channel class' join method. This join
method will house the same logic you would have typically placed in your channel authorization closure. You
may also take advantage of channel model binding:

<?php
namespace App\Broadcasting;

use App\Models\Order;
use App\Models\User;

class OrderChannel

{
/**
* Create a new channel instance.
*/
public function __construct()
{
/7 ...
}
/**
* Authenticate the user's access to the channel.
*/
public function join(User $user, Order $order): array|bool
{
return $user->id === $order->user_id;
}
}
['NOTE]

Like many other classes in Laravel, channel classes will automatically be resolved by the service
container. So, you may type-hint any dependencies required by your channel in its constructor.

Broadcasting Events

Once you have defined an event and marked it with the shouldBroadcast interface, you only need to fire the
event using the event's dispatch method. The event dispatcher will notice that the event is marked with the

Laravel Documentation - 10.x / Broadcasting 250

shouldBroadcast interface and will queue the event for broadcasting:
use App\Events\OrderShipmentStatusUpdated;

OrderShipmentStatusUpdated: :dispatch($order);
Only to Others

When building an application that utilizes event broadcasting, you may occasionally need to broadcast an event
to all subscribers to a given channel except for the current user. You may accomplish this using the broadcast
helper and the toothers method:

use App\Events\OrderShipmentStatusUpdated;

broadcast(new OrderShipmentStatusUpdated($update))->toOthers();

To better understand when you may want to use the toothers method, let's imagine a task list application where
a user may create a new task by entering a task name. To create a task, your application might make a request to
a /task URL which broadcasts the task's creation and returns a JSON representation of the new task. When
your JavaScript application receives the response from the end-point, it might directly insert the new task into
its task list like so:

axios.post('/task', task)
.then((response) => {
this.tasks.push(response.data);

F

However, remember that we also broadcast the task's creation. If your JavaScript application is also listening
for this event in order to add tasks to the task list, you will have duplicate tasks in your list: one from the end-
point and one from the broadcast. You may solve this by using the toothers method to instruct the broadcaster
to not broadcast the event to the current user.

['WARNING]
Your event must use the I1luminate\Broadcasting\InteractswithSockets trait in order to call the toothers
method.

Configuration

When you initialize a Laravel Echo instance, a socket ID is assigned to the connection. If you are using a global
Axios instance to make HTTP requests from your JavaScript application, the socket ID will automatically be
attached to every outgoing request as an x-Socket -1b header. Then, when you call the toothers method, Laravel
will extract the socket ID from the header and instruct the broadcaster to not broadcast to any connections with
that socket ID.

If you are not using a global Axios instance, you will need to manually configure your JavaScript application to
send the x-socket-1p header with all outgoing requests. You may retrieve the socket ID using the Echo.socketId
method:

var socketId = Echo.socketId();

Customizing the Connection

If your application interacts with multiple broadcast connections and you want to broadcast an event using a
broadcaster other than your default, you may specify which connection to push an event to using the via
method:

use App\Events\OrderShipmentStatusUpdated;

broadcast(new OrderShipmentStatusUpdated($update))->via('pusher');

Alternatively, you may specify the event's broadcast connection by calling the broadcastvia method within the
event's constructor. However, before doing so, you should ensure that the event class uses the
InteractsWithBroadcasting trait:

<?php

https://github.com/mzabriskie/axios

Laravel Documentation - 10.x / Broadcasting 251

namespace App\Events;

use Illuminate\Broadcasting\Channel;

use Illuminate\Broadcasting\InteractswWithBroadcasting;
use Illuminate\Broadcasting\InteractsWithSockets;

use Illuminate\Broadcasting\PresenceChannel;

use Illuminate\Broadcasting\PrivateChannel;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;
use Illuminate\Queue\SerializesModels;

class OrderShipmentStatusUpdated implements ShouldBroadcast

{
use InteractsWithBroadcasting;
/**
* Create a new event instance.
*/
public function __construct()
$this->broadcastvia('pusher');
}
}

Receiving Broadcasts

Listening for Events

Once you have installed and instantiated Laravel Echo, you are ready to start listening for events that are
broadcast from your Laravel application. First, use the channel method to retrieve an instance of a channel, then
call the 1isten method to listen for a specified event:

Echo.channel(orders.${this.order.id}")
.listen('OrderShipmentStatusUpdated', (e) => {
console.log(e.order.name);

K

If you would like to listen for events on a private channel, use the private method instead. You may continue to
chain calls to the 1isten method to listen for multiple events on a single channel:

Echo.private(orders.${this.order.id}")

Jlisten(/* ... */)
Jlisten(/* ... */)
Jdlisten(/* ... */);

Stop Listening for Events

If you would like to stop listening to a given event without leaving the channel, you may use the stopListening
method:

Echo.private(orders.${this.order.id}")
.stopListening('OrderShipmentStatusUpdated')

Leaving a Channel
To leave a channel, you may call the 1eavechannel method on your Echo instance:
Echo.leaveChannel(orders.${this.order.id}");

If you would like to leave a channel and also its associated private and presence channels, you may call the
leave method:

Echo.leave(orders.${this.order.id}");

Namespaces

You may have noticed in the examples above that we did not specify the full App\Events namespace for the
event classes. This is because Echo will automatically assume the events are located in the App\Events

Laravel Documentation - 10.x / Broadcasting 252

namespace. However, you may configure the root namespace when you instantiate Echo by passing a namespace
configuration option:

window.Echo = new Echo({
broadcaster: 'pusher',
/7 ...
namespace: 'App.Other.Namespace'

i

Alternatively, you may prefix event classes with a . when subscribing to them using Echo. This will allow you
to always specify the fully-qualified class name:

Echo.channel('orders')
.listen('.Namespace\\Event\\Class', (e) => {
//
1)

Presence Channels

Presence channels build on the security of private channels while exposing the additional feature of awareness
of who is subscribed to the channel. This makes it easy to build powerful, collaborative application features
such as notifying users when another user is viewing the same page or listing the inhabitants of a chat room.

Authorizing Presence Channels

All presence channels are also private channels; therefore, users must be authorized to access them. However,
when defining authorization callbacks for presence channels, you will not return true if the user is authorized to
join the channel. Instead, you should return an array of data about the user.

The data returned by the authorization callback will be made available to the presence channel event listeners in
your JavaScript application. If the user is not authorized to join the presence channel, you should return false
or null:

use App\Models\User;

Broadcast::channel('chat.{roomId}', function (User $user, int $roomId) {
if ($user->canJoinRoom($roomId)) {
return ['id' => $user->id, 'name' => $user->name];
}

1
Joining Presence Channels

To join a presence channel, you may use Echo's join method. The join method will return a presencechannel
implementation which, along with exposing the 1isten method, allows you to subscribe to the here, joining,
and leaving events.

Echo.join(chat.${roomId}")
.here((users) => {
/7 ...
1)

.joining((user) => {
console.log(user.name);
1)

.leaving((user) => {
console.log(user.name);
1)

.error((error) => {
console.error(error);

i

The here callback will be executed immediately once the channel is joined successfully, and will receive an
array containing the user information for all of the other users currently subscribed to the channel. The joining
method will be executed when a new user joins a channel, while the 1eaving method will be executed when a
user leaves the channel. The error method will be executed when the authentication endpoint returns an HTTP
status code other than 200 or if there is a problem parsing the returned JSON.

Laravel Documentation - 10.x / Broadcasting 253

Broadcasting to Presence Channels

Presence channels may receive events just like public or private channels. Using the example of a chatroom, we
may want to broadcast NewMessage events to the room's presence channel. To do so, we'll return an instance of
PresenceChannel from the event's broadcaston method:

VA

* Get the channels the event should broadcast on.
*

* @return array<int, \Illuminate\Broadcasting\Channel>

*/
public function broadcastOn(): array
{
return [
new PresenceChannel('chat.'.$this->message->room_id),
1;
}

As with other events, you may use the broadcast helper and the toothers method to exclude the current user
from receiving the broadcast:

broadcast(new NewMessage($message));

broadcast(new NewMessage($message))->toOthers();

As typical of other types of events, you may listen for events sent to presence channels using Echo's 1isten
method:

Echo.join(chat.${roomId}")

.here(/* ... */)
Jjoining(/* ... */)
.leaving(/* ... */)
.listen('NewMessage', (e) => {
/7 ...
)
Model Broadcasting
['WARNING]

Before reading the following documentation about model broadcasting, we recommend you become
familiar with the general concepts of Laravel's model broadcasting services as well as how to manually
create and listen to broadcast events.

It is common to broadcast events when your application's Eloquent models are created, updated, or deleted. Of

course, this can easily be accomplished by manually defining custom events for Eloquent model state changes
and marking those events with the shouldBroadcast interface.

However, if you are not using these events for any other purposes in your application, it can be cumbersome to
create event classes for the sole purpose of broadcasting them. To remedy this, Laravel allows you to indicate
that an Eloquent model should automatically broadcast its state changes.

To get started, your Eloquent model should use the 111uminate\Database\Eloquent\BroadcastsEvents trait. In
addition, the model should define a broadcaston method, which will return an array of channels that the model's
events should broadcast on:

<?php
namespace App\Models;

use Illuminate\Broadcasting\Channel;

use Illuminate\Broadcasting\PrivateChannel;

use Illuminate\Database\Eloquent\BroadcastsEvents;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;

use Illuminate\Database\Eloquent\Relations\BelongsTo;

class Post extends Model

{

use BroadcastsEvents, HasFactory;

Laravel Documentation - 10.x / Broadcasting 254

/**
* Get the user that the post belongs to.
*/

public function user(): BelongsTo

{

}

VA

* Get the channels that model events should broadcast on.
*

* @return array<int, \Illuminate\Broadcasting\Channel|\Illuminate\Database\Eloquent\Model>
*/
public function broadcastOn(string $event): array

{
}

return $this->belongsTo(User::class);

return [$this, $this->user];
}

Once your model includes this trait and defines its broadcast channels, it will begin automatically broadcasting
events when a model instance is created, updated, deleted, trashed, or restored.

In addition, you may have noticed that the broadcaston method receives a string sevent argument. This
argument contains the type of event that has occurred on the model and will have a value of created, updated,
deleted, trashed, Or restored. By inspecting the value of this variable, you may determine which channels (if
any) the model should broadcast to for a particular event:

/**
* Get the channels that model events should broadcast on.

*

* @return array<string, array<int,
\Illuminate\Broadcasting\Channel|\Illuminate\Database\Eloquent\Model>>
*
/
public function broadcastOn(string $event): array

{

return match ($event) {

'deleted' => [],

default => [$this, $this->user],
3

Customizing Model Broadcasting Event Creation

Occasionally, you may wish to customize how Laravel creates the underlying model broadcasting event. You
may accomplish this by defining a newsroadcastableEvent method on your Eloquent model. This method should
return an Illuminate\Database\Eloquent\BroadcastableModelEventOccurred instance:

use Illuminate\Database\Eloquent\BroadcastableModelEventOccurred;

/**
* Create a new broadcastable model event for the model.
*/
protected function newBroadcastableEvent(string $event): BroadcastableModelEventOccurred

{
return (new BroadcastableModelEventOccurred(
$this, S$event
))->dontBroadcastToCurrentUser();

Model Broadcasting Conventions
Channel Conventions

As you may have noticed, the broadcaston method in the model example above did not return channel instances.
Instead, Eloquent models were returned directly. If an Eloquent model instance is returned by your model's
broadcaston method (or is contained in an array returned by the method), Laravel will automatically instantiate
a private channel instance for the model using the model's class name and primary key identifier as the channel
name.

So, an App\Models\User model with an id of 1 would be converted into an
Illuminate\Broadcasting\PrivateChannel instance with a name of App.Models.user.1. Of course, in addition to

Laravel Documentation - 10.x / Broadcasting 255

returning Eloquent model instances from your model's broadcaston method, you may return complete channel
instances in order to have full control over the model's channel names:

use Illuminate\Broadcasting\PrivateChannel;

Jx*

* Get the channels that model events should broadcast on.
*

* @return array<int, \Illuminate\Broadcasting\Channel>

*/
public function broadcastOn(string $event): array
{
return [
new PrivateChannel('user.'.$this->id)
1;
}

If you plan to explicitly return a channel instance from your model's broadcaston method, you may pass an
Eloquent model instance to the channel's constructor. When doing so, Laravel will use the model channel
conventions discussed above to convert the Eloquent model into a channel name string:

return [new Channel($this->user)];

If you need to determine the channel name of a model, you may call the broadcastchannel method on any model
instance. For example, this method returns the string App.Models.User.1 for an App\Models\User model with an
id of 1:

$user->broadcastChannel()
Event Conventions

Since model broadcast events are not associated with an "actual" event within your application's App\Events
directory, they are assigned a name and a payload based on conventions. Laravel's convention is to broadcast
the event using the class name of the model (not including the namespace) and the name of the model event that
triggered the broadcast.

So, for example, an update to the App\Models\Post model would broadcast an event to your client-side
application as Postupdated with the following payload:

{
"model": {
"id": 1,
"title": "My first post"
}I
"socket": "someSocketId",
}

The deletion of the App\Models\user model would broadcast an event named UserDeleted.

If you would like, you may define a custom broadcast name and payload by adding a broadcastas and
broadcastwith method to your model. These methods receive the name of the model event / operation that is
occurring, allowing you to customize the event's name and payload for each model operation. If nul1 is returned
from the broadcastAs method, Laravel will use the model broadcasting event name conventions discussed above
when broadcasting the event:

/**
* The model event's broadcast name.
*/
public function broadcastAs(string $event): string|null
{
return match ($event) {
'created' => 'post.created',
default => null,
by
}

/**
* Get the data to broadcast for the model.

*

Laravel Documentation - 10.x / Broadcasting 256

* @return array<string, mixed>
*/
public function broadcastWith(string $event): array

{
return match ($event) {
'created' => ['title' => $this->title],
default => ['model' => $this],
}

Listening for Model Broadcasts

Once you have added the BroadcastsEvents trait to your model and defined your model's broadcaston method,
you are ready to start listening for broadcasted model events within your client-side application. Before getting
started, you may wish to consult the complete documentation on listening for events.

First, use the private method to retrieve an instance of a channel, then call the 1isten method to listen for a
specified event. Typically, the channel name given to the private method should correspond to Laravel's model

broadcasting conventions.

Once you have obtained a channel instance, you may use the 1isten method to listen for a particular event.
Since model broadcast events are not associated with an "actual" event within your application's App\Events
directory, the event name must be prefixed with a . to indicate it does not belong to a particular namespace.
Each model broadcast event has a model property which contains all of the broadcastable properties of the
model:

Echo.private(App.Models.User.${this.user.id}")
.listen('.PostUpdated', (e) => {
console.log(e.model);

F

Client Events

[INOTE]
When using Pusher Channels, you must enable the "Client Events" option in the "App Settings" section of
your application dashboard in order to send client events.

Sometimes you may wish to broadcast an event to other connected clients without hitting your Laravel
application at all. This can be particularly useful for things like "typing" notifications, where you want to alert
users of your application that another user is typing a message on a given screen.

To broadcast client events, you may use Echo's whisper method:

Echo.private(chat.${roomId}")
.whisper('typing', {
name: this.user.name

i

To listen for client events, you may use the listenForwhisper method:

Echo.private(chat.${roomId}")
.listenForWhisper('typing', (e) => {
console.log(e.name);

K

Notifications

By pairing event broadcasting with notifications, your JavaScript application may receive new notifications as
they occur without needing to refresh the page. Before getting started, be sure to read over the documentation
on using the broadcast notification channel.

Once you have configured a notification to use the broadcast channel, you may listen for the broadcast events
using Echo's notification method. Remember, the channel name should match the class name of the entity
receiving the notifications:

Echo.private(App.Models.User.${userId})

https://pusher.com/channels
https://dashboard.pusher.com/

Laravel Documentation - 10.x / Broadcasting 257

.notification((notification) => {
console.log(notification.type);

1

In this example, all notifications sent to App\Models\User instances via the broadcast channel would be received
by the callback. A channel authorization callback for the App.Models.user.{id} channel is included in the
default BroadcastserviceProvider that ships with the Laravel framework.

Laravel Documentation - 10.x / Cache 258

Digging Deeper

Cache

e Introduction

* Configuration
o Driver Prerequisites
e Cache Usage

o Obtaining a Cache Instance
o Retrieving Items From the Cache

o Storing Items in the Cache
o Removing Items From the Cache
o The Cache Helper
e Atomic Locks
o Driver Prerequisites
o Managing Locks
o Managing I.ocks Across Processes

¢ Adding Custom Cache Drivers
o Writing the Driver

o Registering the Driver

e FEvents

Introduction

Some of the data retrieval or processing tasks performed by your application could be CPU intensive or take
several seconds to complete. When this is the case, it is common to cache the retrieved data for a time so it can
be retrieved quickly on subsequent requests for the same data. The cached data is usually stored in a very fast
data store such as Memcached or Redis.

Thankfully, Laravel provides an expressive, unified API for various cache backends, allowing you to take
advantage of their blazing fast data retrieval and speed up your web application.

Configuration

Your application's cache configuration file is located at config/cache.php. In this file, you may specify which
cache driver you would like to be used by default throughout your application. Laravel supports popular
caching backends like Memcached, Redis, DynamoDB, and relational databases out of the box. In addition, a
file based cache driver is available, while array and "null" cache drivers provide convenient cache backends for
your automated tests.

The cache configuration file also contains various other options, which are documented within the file, so make
sure to read over these options. By default, Laravel is configured to use the file cache driver, which stores the
serialized, cached objects on the server's filesystem. For larger applications, it is recommended that you use a
more robust driver such as Memcached or Redis. You may even configure multiple cache configurations for the
same driver.

Driver Prerequisites
Database

When using the database cache driver, you will need to set up a table to contain the cache items. You'll find an
example schema declaration for the table below:

Schema: :create('cache', function (Blueprint $table) {
$table->string('key')->unique();
$table->text('value');
$table->integer('expiration');

i
['NOTE]

https://memcached.org
https://redis.io
https://memcached.org
https://redis.io
https://aws.amazon.com/dynamodb

Laravel Documentation - 10.x / Cache 259

You may also use the php artisan cache:table Artisan command to generate a migration with the proper
schema.

Memcached

Using the Memcached driver requires the Memcached PECL package to be installed. You may list all of your
Memcached servers in the config/cache.php configuration file. This file already contains a memcached.servers
entry to get you started:

'memcached' => [
'servers' => [
[
'host' => env('MEMCACHED_HOST', '127.0.0.1'),
'port' => env('MEMCACHED_PORT', 11211),
'weight' => 100,
]!
]!
]l

If needed, you may set the host option to a UNIX socket path. If you do this, the port option should be set to e:

'memcached' => [

[

'host' => '/var/run/memcached/memcached.sock’,
'port' => 0,
'weight' => 100
]l
]l

Redis

Before using a Redis cache with Laravel, you will need to either install the PhpRedis PHP extension via PECL
or install the predis/predis package (~1.0) via Composer. Laravel Sail already includes this extension. In
addition, official Laravel deployment platforms such as Laravel Forge and Laravel Vapor have the PhpRedis
extension installed by default.

For more information on configuring Redis, consult its Laravel documentation page.
DynamoDB

Before using the DynamoDB cache driver, you must create a DynamoDB table to store all of the cached data.
Typically, this table should be named cache. However, you should name the table based on the value of the
stores.dynamodb. table configuration value within your application's cache configuration file.

This table should also have a string partition key with a name that corresponds to the value of the
stores.dynamodb.attributes.key configuration item within your application's cache configuration file. By
default, the partition key should be named key.

Cache Usage

Obtaining a Cache Instance

To obtain a cache store instance, you may use the cache facade, which is what we will use throughout this
documentation. The cache facade provides convenient, terse access to the underlying implementations of the
Laravel cache contracts:

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\Cache;
class UserController extends Controller
{

/**
* Show a list of all users of the application.

https://pecl.php.net/package/memcached
https://forge.laravel.com
https://vapor.laravel.com
https://aws.amazon.com/dynamodb

Laravel Documentation - 10.x / Cache 260

*/
public function index(): array

$value = Cache::get('key');
return [

/7.
1;

Accessing Multiple Cache Stores

Using the cache facade, you may access various cache stores via the store method. The key passed to the store
method should correspond to one of the stores listed in the stores configuration array in your cache
configuration file:

$value = Cache::store('file')->get('foo');

Cache::store('redis')->put('bar', 'baz', 600); // 10 Minutes
Retrieving Items From the Cache

The cache facade's get method is used to retrieve items from the cache. If the item does not exist in the cache,
null will be returned. If you wish, you may pass a second argument to the get method specifying the default
value you wish to be returned if the item doesn't exist:

$value = Cache::get('key');

$value Cache::get('key', 'default');

You may even pass a closure as the default value. The result of the closure will be returned if the specified item
does not exist in the cache. Passing a closure allows you to defer the retrieval of default values from a database
or other external service:

$value = Cache::get('key', function () {
return DB::table(/* ... */)->get();
1)

Determining Item Existence

The has method may be used to determine if an item exists in the cache. This method will also return false if
the item exists but its value is nu11:

if (Cache::has('key')) {
/7 ...
}

Incrementing / Decrementing Values

The increment and decrement methods may be used to adjust the value of integer items in the cache. Both of
these methods accept an optional second argument indicating the amount by which to increment or decrement
the item's value:

// Initialize the value if it does not exist...
Cache::add('key', 0, now()->addHours(4));

// Increment or decrement the value...
Cache::increment('key');
Cache::increment('key', $amount);
Cache::decrement('key');
Cache::decrement('key', $amount);

Retrieve and Store

Sometimes you may wish to retrieve an item from the cache, but also store a default value if the requested item
doesn't exist. For example, you may wish to retrieve all users from the cache or, if they don't exist, retrieve

Laravel Documentation - 10.x / Cache 261

them from the database and add them to the cache. You may do this using the cache: : remember method:

$value = Cache::remember('users', $seconds, function () {
return DB::table('users')->get();

1

If the item does not exist in the cache, the closure passed to the remember method will be executed and its result
will be placed in the cache.

You may use the rememberForever method to retrieve an item from the cache or store it forever if it does not
exist:

$value = Cache::rememberForever('users', function () {
return DB::table('users')->get();

1)
Retrieve and Delete

If you need to retrieve an item from the cache and then delete the item, you may use the pu1l method. Like the
get method, null will be returned if the item does not exist in the cache:

$value = Cache::pull('key');
Storing Items in the Cache

You may use the put method on the cache facade to store items in the cache:
Cache::put('key', 'value', $seconds = 10);

If the storage time is not passed to the put method, the item will be stored indefinitely:
Cache::put('key', 'value');

Instead of passing the number of seconds as an integer, you may also pass a bateTime instance representing the
desired expiration time of the cached item:

Cache::put('key', 'value', now()->addMinutes(10));
Store if Not Present

The add method will only add the item to the cache if it does not already exist in the cache store. The method
will return true if the item is actually added to the cache. Otherwise, the method will return false. The add
method is an atomic operation:

Cache::add('key', 'value', $seconds);
Storing Items Forever

The forever method may be used to store an item in the cache permanently. Since these items will not expire,
they must be manually removed from the cache using the forget method:

Cache::forever('key', 'value');

[INOTE]
If you are using the Memcached driver, items that are stored "forever" may be removed when the cache
reaches its size limit.

Removing Items From the Cache

You may remove items from the cache using the forget method:
Cache::forget('key');

You may also remove items by providing a zero or negative number of expiration seconds:

Laravel Documentation - 10.x / Cache 262

Cache::put('key', 'value', 0);

Cache::put('key', 'value', -5);

You may clear the entire cache using the f1ush method:

Cache: