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Abstract

This paper describes a new variation of a man-in-the-middle (MITM)
technique which, under certain circumstances, allows to permanently
hijack browsers encrypted HTTP communication channel flow and
compromise its confidentiality and integrity. The technique has been
named as "Client Domain Hooking", since it relies on a particular way
of achieving client-side communication endpoint persistency by forc-
ing an application to communicate only through a chosen attacker-
controlled domain through a single intercepted HTTP request and
without breaking applications functionality. This technique, currently
applies to browser-based applications only (both desktop and mo-
bile) with a significant impact on embeded browsers, where full trans-
parency of an attack can be achieved.

1 Introduction
In the following sections of this paper, we will take a closer look at the details
of the Client Domain Hooking technique, then we will review the current
security posture of some of the popular browser-based applications, along
with top Internet web applications configuration in relation to this form of
an attack. This paper will be supported by a practical implementation of
the described technique in form of a diagnostic tool that will help to evaulate
and improve security of affected applications and related services.

First practical implementation of this technique was released in January
2019 as part of the Modlishka publication, where Client Domain Hooking was
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used to highlight currently used 2FA ("two factor authentication") weakness
in relation to modern, automated, phishing attacks. The technique allowed to
create a universal proxy with a generic support for most of the currently used
2FA schemes, including SMS one-time password (OTP) [1], Time-based One-
Time Password (TOTP)[2], HMAC-based One-Time Password (HOTP)[3],
Push Based login approval[4], etc.

2 Problem description

2.1 State of the Art

MITM is a well-known type of an attack, where an attacker intercepts traffic
between communication endpoints and transparently relays them between
each other. Depending on the target protocol, specific modifications are
being made on the fly to the relayed traffic flow in order achieve a particular
goal. In the most typical case scenario, the goal is to simply compromise
integrity and confidentiality of the victim’s communication channel. The
technique described in this paper aims at interception of encrypted HTTP
traffic flow, which is located at the Application layer of the OSI model [5].

Previous research made around this topic, such as the famous SSLStrip
project [6] created by Moxie Marlinspike, is using a technique where all of
the URLs in an intercepted HTTP responses are stripped off from the SSL
layer, by rewriting their URL schemes to HTTP. As a result, this approach
achieves great transparency to the end user at the clear-text HTTP traffic
level, but it also relies on an active network layer attack.

Other tools like Bettercap[7], which is very accurately called as the "Swiss
Army knife" for MITM, comes with a variety of different attack techniques
that rely on a network layer MITM. Among many different functionali-
ties, this tool implements TCP, HTTP and HTTPS proxies (including the
SSLStrip attack implementation), that can be used to hijack the HTTP traf-
fic flow.

The new thing about the "Client Domain Hooking" MITM technique,
is that it achieves permanent HTTP traffic flow interception without the
requirement of an active and ongoing network layer traffic redirection. Inter-
ception of the client HTTP flow is done only once, through a wide range of
available techniques. Furthermore, the TLS traffic is by default trusted by
the client, since the proxy is using a real, CA signed, certificate.
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2.2 Client Domain Hooking

The Client Domain Hooking technique is based on a MITM attack and relies
on a reverse proxy mechanism at its core. That said, the way the proxied
traffic is handled in this approach is new and, as a result, enables permanent
interception of multi origin encrypted traffic over a single endpoint with a
single, CA signed, TLS certificate. Furthermore, all of this can be achieved
without actually breaking applications, often complex, functionality and in
an entirely transparent manner in some cases. The simplicity of the tech-
nique, allows to follow and intercept applications browsing traffic flow in an
arbitrary path of encrypted website referrals.

In order for this type of MITM to work in above described way, the
following requirements have to be achieved:

• All client generated TLS traffic has to always go through a single,
attacker controlled, domain.

The general principle in this approach is to "hook" the client appli-
cation in to an attacker-controlled domain. This step has to be done
only once. As soon this is achieved, the internal state of clients browser
will be adjusted accordingly and all of the subsequent requests will be
automatically sent to an attacker-controlled domain. We can say then
that the client domains have been "hooked".

In the simplest, browser attack scenario, in order to "hook" applications
domain, an attacker can first intercept and redirect initial clear-text
traffic to an attacker-controlled domain (for example, clear-text HTTP
traffic is by default sent by the browser, when no URL scheme has
been specified in the address bar by the user). This can be done either
through a typical MITM network-based attack or by relying on users’
direct interaction (ex. malicious links based on open redirect). There
are however also other strategies, that can be used to achieve this initial
step.

• TLS certificate, used by the endpoint, has to be trusted by the client
for all of its target domains.

In order to ensure that applications functionality stays intact, it is
crucial that the offered TLS certificate is trusted by the client for all
of the target domains. Furthermore, this has to be achieved without
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actually modifying anything on the client itself. The solution to this
point is described in detail, in the following section.

• HTTP traffic has to be handled and modified in such way that all of
application functionalities are working properly.

This includes all security mechanisms, such as SOP[8], CSP[9], etc.
Otherwise applications functionality would be broken due to security
related errors.

2.3 Browser Hooking Example

In order to better understand how all of the above-mentioned requirements
can be achieved in practice the following diagram will be used on a simple
browser based attack example. Of course, the same example can be applied
to embeded browsers or mobile application WebView.

In the example, we assume that an initial non-encrypted HTTP request
(port 80) was initally redirected to the proxy through a network based MITM
attack:

1. Browser sends HTTP request which is intercepted by an attacker an
redirected to the proxy. There are two cases that can be handled by
the proxy during this step:
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• initial Client Domain Hooking through a single intercepted clear-
text HTTP response.

• handling clients both encrypted and clear-text application traffic
that was previously domain hooked.

2. Proxy inspects the incoming request (including context data) and for-
wards it to the relevant server on victims’ behalf.

3. Server responds with a resource that contains multiple URLS with
a number of different domains and URL schemes (E.g. HTTP and
HTTPS).

4. Proxy inspects the incoming response and replaces all occurrences of
FQDNs (fully qualified domain names) with a single, attacker con-
trolled, domain.

In order to maintain the context for future client requests, informa-
tion about the original domain is encoded into subdomain of attackers-
controlled domain. Without this information, it would not be possi-
ble to determine the original destination of the received request and
proxying multiple origins over a single domain, would not be feasible.
Furthermore, passing context information over a subdomain allows us
to use a single wildcard certificate that will be always trusted by the
client. One could use another approach, such as passing context infor-
mation through additional URL parameters. Nevertheless, subdomains
appeared to be more suitable, generic, location. Another, possible ap-
proach, is to use injected by the proxy JavaScript code and translate
all of the relevant FQDNs from within the victim’s browser.

Example handling of FQDNs, for ’evil.tld’ Client Domain Hooking in
case of stateless proxying:

Original FQDN Translated FQDN
http://www.dom.dev http://EC

(
www.dom.dev

)
.evil.tld

https://account.dom.dev https://EC
(
account.dom.dev

)
.evil.tld

https://anotherdom.dev https://EC
(
anotherdom.dev

)
.evil.tld

Where, ’EC’ means: "encode and compress", which is a function used
to optimize the final FQDN generation. For this example, base32 with
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a chosen alphabet and adequate small string compression algorithm
was used in order to meet the domain naming standard (RFC 1035).

It should be noted that in case of stateful proxying, the subdomain
could be simply replaced with a short identifier that would be mapped
to the original domain in the applications memory. Of course, this
would mean that the distributed proxy instances would have to addi-
tionally rely on a common translation database.

5. Client receives the response and from now it is hooked to an attackers-
controlled domain. All further, both encrypted and clear-text commu-
nication that originate from the client, will be sent through an attack-
ers’ proxy.

2.4 Client Domain Hooking Strategies

In regard to potential techniques that can be used to perform the initial
"hook" of the application domain, the following examples can be considered:

• ARP cache poisoning and traffic redirection (classical network based
MITM) [10]

A classical MITM, where a malicious host intercepts all users traffic at
a network layer. In this case, all clear-text application traffic can be
redirected to a malicious proxy, in an attempt to hook client’s applica-
tions domains.

• DNS entry hijacking/cache poisoning [11]

Depending on the client implementation and used security mechanisms,
hijacking a domain entry can have none to severe consequences. In
case of a standard browser, a single clear-text HTTP request that oc-
cured because of an replaced DNS entry will be sufficient to hook the
client’s domain (given that the HSTS mechanism is not currently ac-
tive). Whereas, for mobile application WebView, the traffic can be
either intercepted entirely transparently (in a similar way as typical
browsers) or can be immune to this form of attack due to, for exam-
ple, application level enforcement of TLS traffic only with additional
certificate pinning.
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• XSS injection [12]
"Cross site Scripting" attacks can be used to hijack users traffic flow, by
dynamically redirecting client browser to a malicious domain - through
the injected, into browsers context, JavaScript code.

• Malicious URLS
For example, standard mistyped domains along with open redirect vul-
nerabilities that will try to convince the user that the target website is
a legitimate one.

• HTTP mixed-content
This issue can be abused in case of mobile WebViews in an attempt to
inject JavaScript code that will redirect client to an attacker-controlled
domain. In regard to the standard browsers this type of traffic is
blocked by default since: Firefox 23, IE 9 and Chrome (14.0.785.0).
Therefore, only legacy browsers would be vulnerable.

2.5 Consequences

Previous MITM attack techniques, aimed at HTTP communication channel
hijacking, were either focused on direct interception of plain clear-text traf-
fic or stripping off TLS layer from subsequent client requests by rewriting
URL schemes in a previously intercepted clear-text response. They also of-
ten required active network traffic redirection throughout the whole attack.
In order to address this issue, best security practices have been developed
and new security mechanisms implemented to prevent clear-text transmis-
sion and rely on TLS based traffic only to pass sensitive data between a
client and related backend. However, because of an assumption that prac-
tical multi domain TLS traffic flow interception is not easily achievable and
TLS communication channel already provides required confidentiality and
integrity, these mechanisms are still not strongly enforced by majority of
applications. In reality, in regard to browser-based traffic, the context for
confidentiality and integrity of transmitted data begins with its first, often
clear-text, HTTP request. Furthermore, in case of embedded browsers and
misconfigured mobile application WebViews, the whole process of hijacking
the TLS flow through Client Domain Hooking can be entirely transparent to
the end user, due to lack of clear indication of the target’s domains to the
end user or lack of domain validity verification mechanism.
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For instance, in an embeded browser-based attack scenario, the following
can be achieved:

• Clients target domains are hooked into one particular, attackers, con-
trolled domain, often with a single intercepted HTP request.

• All clear-text and encrypted client’s traffic is transparently intercepted
and modified by the proxy, without any further network level interfer-
ence.

• Client will by default trust the endpoint wildcard, CA signed, certificate
for all of its target domains.

• Context information is being passed through subdomains, which allows
an attacker to deploy stateless and distributed proxying set up.

• Application functionality stays intact.

2.6 Mitigation

In order to prevent this type of attack, client and backend application would
have to ensure that its browsing session cannot be easily domain hooked.
This can be achieved, though with certain limitations, through the following
currently available security mechanisms:

• Enforce TLS traffic

Enforcing encrypted traffic for domains that support TLS would greatly
reduce the attack surface. This can be easily achieved on mobile ap-
plications, since the exact protocol scheme can be hardcoded in the
code by application developer along with certificate pinning mecha-
nisms and clear-text traffic prevention. On the other hand, standard
desktop and embeded browsers are a bit more difficult to manage. Cur-
rently most of them tend to default to clear-text protocol when typed
in domain doesn’t contain any URL scheme and HSTS [13] was not
enabled. One potential solution could be based on sending a preflight
request to both encrypted and clear-text service endpoints (some of the
browsers do this), however that type of check could be easily intercepted
and blocked, resulting in a clear-text request again. The only, currently
feasible, solution seems to be based on HSTS ’preload’ database that is
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later hardcoded into the browser build (Chrome, Firefox, Opera, Safari,
IE 11 and Edge).

• Enforce HSTS for all domains that handle sensitive data

Unfortunately, this isn’t a silver bullet that would solve the issue en-
tirely but it is currently the first line of defence for browser-based ap-
plications.

• Enforce domain and TLS chain verification

This mostly applies to mobile application WebViews, since all of the
modern browsers automatically verify target domain TLS certificate -
one exception to this rule are "url spoofing" bugs that further com-
plicate the issue and can result in false sense of security for the end
user.

3 Current browser specific landscape
As this has been described in the previous section. In order to hook an appli-
cation to a particular domain, at least one point of entry has to be provided.
In the most typical case scenario, a simple redirection of a single unencrypted
HTTP request to an attacker-controlled domain will be sufficient.

First line of defense for browsers, is the HTTP Strict Transport Security
(HSTS) mechanism. The following table summarizes the current status of
implementation for the most popular browsers:
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Browser (version) Supports HSTS
Opera Mini (All) false

UC Browser for Android (11.8) false
Samsung Internet (9.2) false

IE Mobile (11) false
IE (11) true

Edge (18) true
Firefox (4-68) true
Chrome (4-76) true
Safari (7-12) true

Opera (12.1-68) true
iOS Safari (7-12.2) true

Android Browser (4.4-67) true
Blackberry Browser (7-10) true

Opera Mobile (46) true
Chrome for Android (73) true
Firefox for Android (66) true

This above table was based on the following source: ’https://caniuse.com’
The conclusion is that the HSTS mechanism is used by most of the

browsers. Nevertheless, in order to fully use the benefits of this security
mechanism the backend services also have to support it correctly.

The following table presents results of an HSTS support analysis for Alexa
rated TOP 1000 domains (test sample: 1000 domain names)

Test Results (%)
Lack of HSTS support 808 (80%)

HSTS enabled without a ’preload’ 114 (59%)*
HSTS enabled with ’max-age’ < 60 days 23 (11%)*

HTTP 302 temporary redirect from HTTP to HTTPS 100 (10%)
Number of permanently vulnerable domains 244 (24 %)

*of all HSTS enabled hosts
The number of permanently vulnerable domains has been calculated by

adding up all of the applications that do provide a valid HSTS header or use
HTTP 301 (permanent redirect) redirection to the HTTPS based service.
The sum (756) was deducted from the sample size (1000) and resulted in the
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final number of permanently vulnerable domains (244). In this approach we
are assuming that both HSTS and HTTP 301, will prevent a browser from
sending a clear-text HTTP request, on its second visit to the target domain.

According to the ’RFC2616’, unless appropriate ’Cache-Control’ or ’Ex-
pire’ response headers are provided, the HTTP 302 temporary redirect will
not be cached by the browser. Unfortunately, in practice, RFC2616 (sec.
10.3.3) is not strictly followed by all of the browsers. It appeared that some
of them, such as Firefox and Safari, are caching the temporary responses for
a certain period of time. However, for the sake of simplicity, the worst pos-
sible scenario has been assumed where user will use an RFC2616 compliant
browser.

It should be also noted that an assumption has been made to exclude
subdomains from the summary and focus only on the main domains. This
should resemble typical users’ behavior when typing in the domain name in
the browsers address bar.

4 Mobile Application Webviews
Mobile application based on WebView components are susceptible to trans-
parent Client Domain Hooking. This of course depends on a particular appli-
cation and backend set up, but in majority of current implementations this
type of attack is feasible.

4.1 Android

Android WebView is based on the Chromium [14] component and allows lo-
cal mobile application to load and display remote web pages. Up to Android
7.0 Nougat the WebView was a separate component called ’Android System
WebView’ that could be installed and updated through the Android play
store. In the latest Android version, WebView is handled by the Chrome
application directly, which means that the HSTS mechanism is supported
and HSTS ’preload’ entries are respected. Furthermore, starting with An-
droid 9.0, clear-text application traffic is disabled by default, which is a great
improvement in terms of default security practice.

The standard method used in every WebView to load a remote page is
declared as following (since API 1.0):
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public void loadUrl (String url)

The following conclusions have been verified on Android 9.0 (PIE) emu-
lator with enabled clear-text traffic in the AndroidManifest.xml (’usesClear-
textTraffic’ set to true) and default "LOAD_DEFAULT" cache settings:

• Initial clear-text HTTP request can be used to domain hook the appli-
cation.

• The URL scheme has to be defined in the ’loadUrl’ method argument
otherwise the remote page will not be loaded.

• HTTP Permanent 301 redirects are being cached for the previously re-
quested resources between the application restarts and system reboots.

4.2 iOS

iOS WKWebView is based on the WebKit [15] framework and allows local
mobile application to load and display remote web pages. Up to iOS 8.0 the
default webview was based on UIWebView, which suffered from a number
performance and security issues out of the box. Starting from iOS 8.0 the
default webview is based on WKWebVIew, which was a significant improve-
ment. Furthermore, starting from iOS 9.0, a new security mechanism has
been introduced called App Transport Security (’ATS’) that enforces secure
connections and is by default enabled for all mobile applications. It should be
noted however that the requirement of having the ATS mechanism enabled
for all of the ’App Store’ distributed applications is not currently enforced
by Apple.

The standard method used in every WKWebView to load a remote page
is declared as following (since iOS 8.0):

func load(_ request: URLRequest) -> WKNavigation?

The following conclusions have been verified on iOS 12.1 simulator with
ATS disabled in the project Info.plist (’Allow Arbitrary Loads’ set to true)
and cache policy set to the default ’.useProtocolCachePolicy’:

• Initial clear-text HTTP request can be used to domain hook the mobile
application.
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• The URL scheme has to be defined in the ’load’ method argument
otherwise the remote page will not be loaded.

• HTTP Permanent 301 redirects are being cached between application
restarts and system reboots. With one exception, when the WKWe-
bView ’load’ metod is called with the same domain as the previously
loaded one. In such case, the previously cached redirects are being
ignored and a new clear-text HTTP request is being sent again.

• HSTS along with the ’preload’ mechanism is working accordingly.

5 Mitigation for WebViews
• Prevent HTTP traffic by default: Enforce ATS mechanism for iOS and

disallow any clear-text traffic for Android mobile applications.

• Ensure to define valid HSTS headers for your services. Additionally,
consider adding your domain to the HSTS ’preload’ ’list’

• Disable JavaScript if it is not required by the application.

• Verify your applications with the ’Modlishka’ and ’hijack’ plugin. Check
out the ’NoGoToFail’ project.

6 Conclusions
Client Domain Hooking consequences may vary and depend on a client par-
ticular implementation and its backend configuration. In the worst-case sce-
nario, it appeared that it is possible to transparently and permanently hijack
TLS connection flow for both desktop and mobile browser-based applications
through a single intercepted clear-text HTTP request. The review of the cur-
rent security posture of these applications, revealed that the state of HSTS
implementation is not sufficiently strong enough to defend entirely against
this form of attack. Furthermore, the review of chosen Internet web applica-
tions revealed that in majority the HSTS is not used at all or the ’preload’
statement is missing, leaving an opening to Client Domain Hooking attacks
through a simple network based MITM. An overall conclusion is that the
current security posture of browser-based applications and related services,
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from the described attack perspective, is not sufficiently strong and requires
further work. In regard to the mobile applications, the easiest mitigation
is to forbid any clear-text traffic at the application level and ensure that
the endpoint TLS certificate is always verified. Browsers, should rely on the
HSTS ’preload’ mechanism, to at least partially mitigate the issue. It should
be also noted that the presented approach has a potential to be applied to
other type of applications and protocols.
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